

Java™ 2 Enterprise
Edition 1.4 Bible

James McGovern, Rahim Adatia, Yakov Fain,
Jason Gordon, Ethan Henry, Walter Hurst,

Ashish Jain, Mark Little, Vaidyanathan Nagarajan,
Harshad Oak, Lee Anne Phillips

a539663 FM.qxd 7/25/03 9:12 AM Page i

a539663 FM.qxd 7/25/03 9:12 AM Page i

Java™ 2 Enterprise
Edition 1.4 Bible

James McGovern, Rahim Adatia, Yakov Fain,
Jason Gordon, Ethan Henry, Walter Hurst,

Ashish Jain, Mark Little, Vaidyanathan Nagarajan,
Harshad Oak, Lee Anne Phillips

a539663 FM.qxd 7/25/03 9:12 AM Page i

Java™ 2 Enterprise Edition 1.4 Bible

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2003 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 0-7645-3966-3

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1O/RS/QY/QT/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978)
750-8400, fax (978) 646-8700. Requests to the Publisher for permission should be addressed to the Legal Department, Wiley
Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447, E-Mail:
permcoordinator@wiley.com.

is a trademark of Wiley Publishing, Inc.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: WHILE THE PUBLISHER AND AUTHOR HAVE USED THEIR BEST
EFFORTS IN PREPARING THIS BOOK, THEY MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS BOOK AND SPECIFICALLY DISCLAIM ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED
OR EXTENDED BY SALES REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR YOUR SITUATION. YOU SHOULD CONSULT WITH A
PROFESSIONAL WHERE APPROPRIATE. NEITHER THE PUBLISHER NOR AUTHOR SHALL BE LIABLE FOR ANY LOSS
OF PROFIT OR ANY OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL,
CONSEQUENTIAL, OR OTHER DAMAGES.

For general information on our other products and services or to obtain technical support, please contact our Customer
Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic books.

Library of Congress Control Number: 2003101921

Trademarks: Wiley, the Wiley logo, and related trade dress are trademarks or registered trademarks of John Wiley & Sons,
Inc. and/or its affiliates, in the United States and other countries, and may not be used without written permission. Java is a
trademark of Sun Microsystems, Inc. All other trademarks are the property of their respective owners. Wiley Publishing,
Inc., is not associated with any product or vendor mentioned in this book.

a539663 FM.qxd 7/25/03 9:12 AM Page ii

About the Authors
James McGovern is currently employed as an enterprise architect for Hartford
Financial Services. He is the coauthor of The Practical Guide to Enterprise
Architecture (Prentice Hall, 2003), Java Web Services Architecture (Morgan
Kaufmann, 2003), and Xquery — Kick Start (Sams Publishing, 2003). James has 16
years of experience in information technology. He is a member of the Java
Community Process, the IEEE, and the Worldwide Institute of Software Architects.
He holds industry certifications from Microsoft, Cisco, and Sun.

Rahim Adatia has been programming since he got his first computer — a TRS-80 —
way back in the beginning of the ’80s. Fortunately, he didn’t stagnate there and pro-
gressed on to developing large-scale enterprise architectures using C/C++, UML,
CORBA, J2EE/EJB/Java, and now C# and .NET. He has applied his more than 15
years of experience to leading implementations at Charles Schwab, Williams
Communications, Valtech, Nortel Networks, Corel Corporation, Lokah Limited, and
T-Mobile International, to name a few. Most recently, he has focused on the wireless
middleware market, where he has led product development using Web services,
J2EE, and .NET. He is also a delegate for T-Mobile International at the Open Mobile
Alliance standards body. Rahim has contributed to numerous books and articles
throughout his career, including the books Professional EJB and J#, and is actively
reviewing other titles. He can be reached at rahimadatia@yahoo.com.

Yakov Fain has more than 20 years of experience in information technology and is
an experienced architect, developer, instructor, and mentor. He is the author of The
Java Tutorial for the Real World. Yakov is the principal of Smart Data Processing, Inc.
(http://www.smartdataprocessing.com), whose clients include major Wall
Street companies. He is a Sun Certified Java 2 Programmer and a Sybase Certified
Powerbuilder Developer.

Jason Gordon is a software engineer for Verizon and serves as lead for the Global
Email system team. While at Verizon he has played a variety of roles, including
systems architect for the eBusiness Technology Integration and eInfrastructure
group and key developer of the EDGE project, which helped provide a Web-based
infrastructure to facilitate the merger of Bell Atlantic and GTE into Verizon. Jason
also served as a member of Verizon’s XML-Task Force and collaborated on several
wireless and Web-services initiatives within the company. In addition to being an
active technical author, Jason also currently serves as the national technology
coordinator for the National Society of Black Engineers. He can be reached at
jasontgordon@hotmail.com or http://www.jtgordon.com.

Ethan Henry has most recently worked as the manager of training services at
Sitraka. In previous positions he was a developer, product manager, and Java evan-
gelist. He has written numerous articles for Java Report, Dr. Dobbs Journal, Java
Developers Journal, and Web Techniques. He has been a technical reviewer of
multiple books, including Enterprise Java Beans by Valesky, Java How to Program by
Dietel and Dietel, Professional JSP by Wrox, and Java Language API Superbible from
the Waite Group all the way back in 1996.

a539663 FM.qxd 7/25/03 9:12 AM Page iii

iv About the Authors

Walter Hurst is the chief technology officer and founder of Wakesoft. He is widely
recognized as a leader in the design and implementation of large-scale distributed
enterprise applications. At Wakesoft, Walter was the product architect and author
before becoming more involved in company strategy and industry leadership. He is
a frequent speaker at conferences and often writes for technical publications.
During his career he has been involved in the design, architecture, and implementa-
tion of distributed business systems for many Fortune 1000 companies as an inde-
pendent consultant and also, while at Xpedior and Andersen Consulting, Walter
received a B.S. in computer engineering from the University of Michigan. When he
needs a break from technology, Walter volunteers as a scuba diver for the Steinhart
Aquarium in San Francisco, where he cleans the shark tank.

Ashish Jain is an enterprise consultant/architect with over ten years of IT experi-
ence. He currently works for BEA Systems Professional Services. In this capacity,
Ashish assists BEA customers in designing and implementing their e-business
strategies using solutions based on J2EE. He holds several industry certifications
from SUN and BEA. He is an active member of local J2EE-user groups and a board
member of the Denver BEA-user group. He holds a degree in electronics engineering
from BITS Pilani, India.

Mark Little is Head of Transactions Technology for Arjuna Technologies Limited, a
company that spun off from Hewlett-Packard to concentrate on developing transac-
tions technologies for J2EE and Web services. Prior to this, Mark was a distin-
guished engineer/architect in HP’s Arjuna Labs in England, where he led the HP
Transaction Service and HP Web Services Transaction teams. He is one of the pri-
mary authors of the OMG Activity Service Specification. He is a member of the
expert group for the work in J2EE: JSR 95 and JSR 117, and is the specification lead
for JSR 156 (Java API for XML Transactions). Mark is active on the OTS Revision
Task Force and the OASIS Business Transactions Protocol specification. He is the
coauthor of an upcoming book, Transaction and Java for Systems Professionals
(Prentice Hall). He has been published in many industry magazines, including
Doctor Dobbs, The Java Developers Journal, the Web Services Journal,
Developer.com, and Application Development Advisor. Mark holds a Ph.D. in com-
puter science from the University of Newcastle.

Vaidyanathan Nagarajan, a.k.a Nathan, is the coauthor of a recent book, Xquery —
Kick Start (Sams Publishing). He coauthored Professional EJB for Wrox in summer of
2001. He has seven years of experience in information technology. Prior to joining
Hartford Life Insurance as an enterprise developer, he worked as a consultant to
Netscape Professional Services. He has an M.B.A. in General Management from a
leading business school in the New England area. He is a former student of the
Indian Institute of Technology, Mumbai, India. His main interests include program-
ming in Java, robotics using Lego Mindstorms, writing, reading, and cartooning. If
he is not thinking about design patterns or Java, he will be modeling a robot in his
robotic lab. He can be reached at vnathan@hotmail.com.

a539663 FM.qxd 7/25/03 9:12 AM Page iv

vAbout the Authors

Harshad Oak holds a master’s degree in computer management and is a Sun
Certified Java Programmer and a Sun Certified Web Component Developer. He has
been part of several J2EE projects at i-flex Solutions and Cognizant Technology
Solutions. He is also a regular contributor of articles to developer Web sites like
http://www.builder.com.

Lee Anne Phillips has a long history in computer networking and interface design,
having created beaucoup systems-firmware and machine-language hardware-inter-
face routines before the appearance of Java and other sensible tools to relieve the
burdens of a suffering humanity. She attended the University of California at
Berkeley. Lee Anne is the author of many books and articles on computer-related
subjects, including Special Edition Using XML, Practical HTML 4, and about a fifth of
HTML 4.0 Unleashed Professional Reference Edition. An extended list may be seen on
her Web site: www.leeanne.com.

a539663 FM.qxd 7/25/03 9:12 AM Page v

Credits
Acquisitions Editor
Jim Minatel

Project Editors
Valerie H. Perry
Neil Romanosky
Mark Enochs

Technical Editor
Kunal Mittal

Copy Editor
S. B. Kleinman

Editorial Manager
Mary Beth Wakefield

Vice President & Executive Group
Publisher
Richard Swadley

Vice President and Executive
Publisher
Bob Ipsen

Vice President and Publisher
Joseph B. Wikert

Executive Editorial Director
Mary Bednarek

Project Coordinator
Kristie Rees

Graphics and Production Specialists
Beth Brooks
Jennifer Click
Sean Decker
Heather Pope

Quality Control Technicians
Laura Albert
John Greenough
Brian H.Walls

Media Development Specialist
Angela Denny

Proofreading and Indexing
TECHBOOKS Production Services

a539663 FM.qxd 7/25/03 9:12 AM Page vi

Foreword

Something about this book needs to be short, so I guess it’s going to have to be
the foreword. Seriously, though, this is a very good book. In fact, it’s the best

introduction to J2EE that I’ve seen. It’s well written, covering all the information you
need to succeed with J2EE. And it’s presented in an order that makes sense — the
chapters provide an end-to-end overview of J2EE. The book starts by showing you
how to build the frontend of your application, then describes your connectivity
options, then shows you how to build your business logic using Enterprise
JavaBeans (EJB), and finally explains how to connect to the backend databases. In
other words, this book is architecturally layered.

Why should you read this book? First, because the authors know what they’re talk-
ing about and can explain it in ways that you can understand. Second, because it
really does cover the fundamentals of J2EE incredibly well. The first five parts of
this book are oriented toward people learning to work with J2EE technology, and in
my opinion they do an incredibly good job of explaining exactly what you need to
know. Third, because the book goes beyond J2EE. Part VI is a great overview of
using Web services with J2EE, a critical issue most developers need to understand.
Part VII is a great overview of common J2EE patterns, and Part VIII covers such
important topics as performance and frameworks. In many ways this book is a
“one-stop shop” for J2EE information.

In the end the thing that I like most about this book is that it’s practical. Yes, it’s
pretty darn big, but as a result it provides a significant amount of real-world advice.
Isn’t that what good books are supposed to do?

Scott W. Ambler
Senior consultant, Ronin International, Inc. (http://www.ronin-intl.com)
Author, Agile Modeling, Agile Database Techniques
Coauthor, Mastering EJB 2/e

a539663 FM.qxd 7/25/03 9:12 AM Page vii

Acknowledgments

The process of writing a book is more time-consuming than anyone could ever
imagine. Luckily, the author team was composed of very talented people who

made the experience enjoyable. Some doubted that we could complete a book of
this magnitude on schedule without sacrificing quality. That you are reading it now
means that we were successful in our undertakings.

This book is the result of many people’s efforts. We would first like to thank our
acquisitions editor, Jim Minatel, for providing insight into the publishing industry in
general, and for allowing us to challenge the typical book-production process and
to focus on writing a good book instead of simply following a publishing formula.
The team would also like to thank Neil Romanosky for his efforts in making Wiley a
little more agile.

We would also like to acknowledge authors we have worked with in the past and
hope to work with in the future, including Sameer Tyagi, Martin Fowler, Sunil
Mathew, James Linn, Michael Stevens, Elias Jo, Vikas Sharan, John Crupi, Steven
Graham, Erich Gamma, Paul Reed, Tim Howes, Kent Beck, Jeff Sutherland, Marty
Biggs, Alistair Cockburn, Ed Roman, Nitin Narayan, Marty Biggs, Chris Caserio, Kurt
Cagle, Per Bothner, and Jeff Ryan.

To our peers in the industry who maintain a sense of speed, agility, and balance

a539663 FM.qxd 7/25/03 9:12 AM Page viii

ixAcknowledgments

James McGovern — First, I must thank my wife, Sherry, and my son, little James,
for putting up with me for the past several months while I’ve kidnapped and held
myself hostage in my dungeon (office) working on this book. I know they would
have liked to have me around more, but writing this book is something I really
needed to do. Thank you for your support.

I would like to acknowledge my Connecticut family: Daisy May, Pamela, Annika,
Demesha, Aunt Jesse, and the little doggie Pinto. Universal greetings to my Trinidad
family: Soogia, Kello Ricky (Kenrick), Robby (Kiley), Kelon, and Keifer, and to my
United Kingdom family: Nicholas, Ian, and Alex.

Finally, thanks to my father James Sr. and mother Mattie Lee, who gave me the
courage to start and the discipline to finish.

Rahim Adatia — I would like to thank James McGovern, Jim Minatel, and Mark
Enochs for all their hard work in developing this book. Thank you for your patience.
I would also like to thank the professors and colleagues I have worked with at the
University of Ottawa, Valtech (U.K. and U.S.A.!), BEA, and T-Mobile International.
Last but not least, I would like to thank my family and friends who have been there
to support and encourage me — I know that I can be difficult at times (did I say
that?). Thank you for your strength.

Yakov Fain — I’d like to thank my family — Natalia, Yuri, and David — for their love
and support. I’d also like to thank a wonderful teacher and a lovely lady, Dr. Alice S.
Koutkova, and close friends of our family, Dora and Felix Rubinchik.

Jason Gordon — I would like to thank GOD for giving me guidance and strength. I
would also like to acknowledge the following people: Abby, Jerry, Marvin, Charlie
Lindahl, Beth, Mitch, Kyle, Lisa, The Jamisons, and my entire family. A special
thanks to my Mother who has been there every time I needed her. I would like to
thank MaryKim for her encouraging words and advice. I would like to thank Lee
Felts who gave me the inspiration to write. I would like to thank Kyle for his support
and guidance. Last but not least . . . thanks to Mr. Starbucks and his friend Mr.
Caffeine! You guys are awesome!

Ethan Henry — I’d like to thank my family, especially my wonderful wife Margit, for
helping me work on this book, my colleagues at Sitraka (now Quest Software), the rest
of the author team, and the fine people at Wiley who helped pull everything together.

Walter Hurst — For all the effort required writing my chapter, I would first like to
thank my wife, Christine. This chapter is just one more instance where I had to
work hard on nights and weekends, and her cheerful support is what made it all
possible. I would also like to thank James McGovern for inviting me to write the
chapter; this book would not be possible without a lead author organizing the many
required writers, which is a task probably very akin to herding cats. The concepts
contained within this chapter I have learned indirectly from thought leaders in the
industry, directly from my time at Sage IT Partners, and even more definitely since
founding Wakesoft. There are too many individuals to list them, but they know who
they are. Thank you.

a539663 FM.qxd 7/25/03 9:12 AM Page ix

x Acknowledgments

Ashish Jain — I would like to thank my wife Nishma and our son Eshan for their
love and patience and support. I would also like to thank my colleagues at BEA,
Chris John and Bob Webster, for their useful and insightful comments.

Mark Little — I would like to thank my wife Paula and two sons, Daniel and Adam
(who was born during the writing of this book) for their support and love. They
have put up with my disappearances into the book-writing world many times over
the past few months, and I know it can’t have been easy. My entire family has given
all the effort over the many years meaning and ensured that I stayed sane. Lots of
love to Adam, who thinks his rattle and toys are far more important than Java
and J2EE!

Vaidyanathan Nagarajan — I would like to thank my wife Padma and my parents,
Nagarajan and Geetha, for encouraging me to put in my best effort in contributing
to this book. This book is dedicated to Padma, Geetha, Nagarajan, Vedham, all my
family members, and my best friends the Srinivasans (Arun and Sujata) who have
supported me in being what I am. A special mention goes to James McGovern for
giving me an opportunity to work with him and for introducing me to the world of
writing technical books. Thanks to those Asterix comics (by the time I completed
writing this book, I have collected all the Asterix collection except for one) and
Dilbert strips for making the creative juices run fresh in me every morning. I would
also like to take a moment to thank my friend and colleague, Thomas Nordlund, for
prototyping the source code for the session-authenticator pattern.

Harshad Oak — I wish to thank my father, Baba, without whose affection, support,
inspiration, and experiments at the art of cooking Indian food, nothing would have
been possible. I also wish to thank my dear sister Charu for always being there for
me, and Sangeeta for helping me with my writing and painstakingly reviewing my
work. Thanks to Jim and Mark for being a big help throughout this project and to
Laura and Stacey for playing an important part in my writing endeavors.

Lee Anne Phillips — My deepest thanks to Alison Eve Ulman, who provided needed
support and advice throughout the development of the chapter on JAAS, and to my
editors, whose tactful suggestions rarely failed to be either right on the mark or an
indication of a needed new direction for the phrase or discussion in question. Any
remaining errors or infelicitous explanations are entirely my own responsibility, the
creation of a book being a cooperative enterprise, especially this one that ulti-
mately depends on the imagination and skill of the author.

a539663 FM.qxd 7/25/03 9:12 AM Page x

Contents at a Glance
Foreword . vii
Acknowledgments . viii
Introduction . xxix

Part I: Introduction . 1
Chapter 1: Understanding Java and the J2EE Platform 3
Chapter 2: Reviewing XML Fundamentals . 17
Chapter 3: Introducing Application Servers . 43
Chapter 4: Understanding Remote Method Invocation 55

Part II: The Presentation Tier . 75
Chapter 5: Studying Servlet Programming . 77
Chapter 6: Going Over JSP Basics . 113
Chapter 7: Using JSP Tag Extensions . 143

Part III: The Enterprise Information System Tier 179
Chapter 8: Working with JavaMail . 181
Chapter 9: Understanding the Java Messaging Service 231
Chapter 10: Introducing Java Transactions . 255
Chapter 11: Examining JNDI and Directory Services 303
Chapter 12: Understanding Java Authentication and Authorization Services . . . 347
Chapter 13: Exploring Java Cryptography Extensions 409

Part IV: The Service Tier . 427
Chapter 14: Understanding EJB Architecture and Design 429
Chapter 15: Explaining Session Beans and Business Logic 483
Chapter 16: Working with Entity Beans . 511
Chapter 17: Using Message-Driven Beans . 565

Part V: The Data Tier . 579
Chapter 18: Reviewing Java Database Connectivity 581
Chapter 19: Understanding the J2EE Connector Architecture 607

a539663 FM.qxd 7/25/03 9:12 AM Page xi

Part VI: Web Services . 645
Chapter 20: Introducing Web Services . 647
Chapter 21: Digging Deeper into SOAP, WSDL, and UDDI 665
Chapter 22: Understanding J2EE Web Services 711

Part VII: Patterns . 727
Chapter 23: Reviewing Presentation-Tier Patterns 729
Chapter 24: Working with Service-Tier Patterns 763
Chapter 25: Using Data-Tier Patterns . 797

Part VIII: Advanced Topics . 817
Chapter 26: Exploring Frameworks and Application Architecture 819
Chapter 27: Using ANT to Build and Deploy Applications 857
Chapter 28: Creating High-Performance Java Applications 881

Appendix A: Airline Reservations Business Case 915
Appendix B: Magazine Publisher Business Case 923
Appendix C: Additional Reading and References 927

Index . 935

a539663 FM.qxd 7/25/03 9:12 AM Page xii

Contents
Foreword . vii

Acknowledgments . viii

Introduction . xxix

Part I: Introduction 1

Chapter 1: Understanding Java and the J2EE Platform 3
Reviewing a Brief History of Java . 3
Understanding J2SE . 5
Examining the Origin of (J2EE) . 5

Application components . 6
Roles . 7

Working with the Model-View-Controller . 9
The model . 9
The view . 10
The control . 10

Understanding J2EE APIs . 10
J2EE standard services . 11
Application component APIs . 13

Discovering What’s New in J2EE 1.4 . 13
Looking toward the Future of J2EE . 14
Understanding the Java Community Process (JCP) 14
Summary . 15

Chapter 2: Reviewing XML Fundamentals 17
Explaining XML . 17

Well-formed XML . 18
Valid XML . 18

Understanding XML Document Structure . 20
Prologue . 20
Elements . 20
Attributes . 21

a539663 FM.qxd 7/25/03 9:12 AM Page xiii

xiv Contents

Examining XML Parsers . 21
DOM parsers . 22
SAX parsers . 22
DOM versus SAX . 23

Implementing XML DTDs . 24
Understanding XML Namespaces . 26
Exploring XML Schema . 30
Working with eXtensible Stylesheet

Language Transformations (XSLT) . 34
Producing simple HTML with XSLT . 35
Producing a Wireless Markup Language (WML) Document

with XML . 38
Introducing J2EE XML–Based APIs . 40
Summary . 41

Chapter 3: Introducing Application Servers 43
Implementing the J2EE Platform . 43
Understanding the Features of an Application Server 45

Scalability . 46
Client agnosticism . 46
Server management . 47
Development . 47

Examining Full J2EE Implementations . 47
BEA WebLogic . 48
Borland Enterprise Server . 48
IBM WebSphere . 48
JBoss . 49
Oracle 9iAS . 49
Orion . 50
Sun ONE Application Server . 50

Examining Partial J2EE Implementations . 51
Apache Tomcat . 52
Resin . 52
ServletExec . 52

Avoiding Vendor Lock-In . 53
Summary . 54

Chapter 4: Understanding Remote Method Invocation 55
Providing an Overview of RMI . 55
Developing Applications with RMI . 57

Declaring remote interfaces . 57
Implementing remote interfaces . 58
Stubs and skeletons . 60
Registering remote objects . 61
Writing RMI clients . 63
Setting up the Flight Server example 65

a539663 FM.qxd 7/25/03 9:12 AM Page xiv

xvContents

Pushing Data from the RMI Server . 68
RMI over Inter-ORB Protocol (IIOP) . 72
Summary . 73

Part II: The Presentation Tier 75

Chapter 5: Studying Servlet Programming 77
Creating a Magazine Publisher Application Using Servlets 77

The server side . 78
The client side . 79
Creating an HTML login screen . 79

Using the Servlet Context . 84
Performing URL Redirection . 85

Using RequestDispatcher . 86
Using sendRedirect() . 86
The Lost Password screen example . 87
Session tracking with servlets . 88
Cookies . 88
URL rewriting . 90
Hidden fields . 90
The session-tracking API with HttpSession object 91
Example of a LoginServlet with an access counter 93
Listeners . 94
Filters . 97
Deploying servlets . 103
The Web-application archive . 103

Examining the web.xml Deployment Descriptor 104
Mandatory servlet elements . 104
Servlet listener elements . 105
Servlet filter elements . 106
Applet-servlet communication . 107

What’s New in the Servlet 2.4 Specification 111
Summary . 112

Chapter 6: Going Over JSP Basics . 113
Introducing JSP . 113
Examining MVC and JSP . 115
JSP Scripting Elements and Directives . 116

Declarations . 117
Expressions . 117
Directives . 118
Scriptlets . 119
Comments . 119
Actions . 120
Implicit JSP objects . 121

a539663 FM.qxd 7/25/03 9:12 AM Page xv

xvi Contents

Working with Variable Scopes . 122
Error Pages . 123
Using JavaBeans . 124

Using JavaBeans in JSP . 125
The scope of JavaBeans . 127
Creating a login JSP using a JavaBean 127
Deploying the Login JSP example using Tomcat 129

Designing an Online Store with JSP . 130
Airline Reservations Business Case . 133
Summary . 141

Chapter 7: Using JSP Tag Extensions 143
Why Use Tag Extensions? . 143
Explaining Custom-Tag Concepts . 144

Working with the JSP Standard Tag Library 145
Importing a tag library . 147
The Tag Library Descriptor . 148
The tag-library-descriptor location 151

Explaining taglib Mapping . 152
Understanding Tag Handlers . 153

Classic tag handlers . 153
Simple tag handlers . 170

Exploring Dynamic Attributes . 174
Summary . 177

Part III: The Enterprise Information System Tier 179

Chapter 8: Working with JavaMail . 181
Exploring the “Hello World” of JavaMail . 181
Understanding the Protocols for JavaMail 183

SMTP . 183
POP3 . 184
IMAP . 184
MIME . 185

JavaMail Components . 185
Session management . 186
Message manipulation . 190
Message content . 199
Mail storage and retrieval . 205
Transportation with javax.mail.Transport 216

Using the JavaMail API . 218
Sending e-mail and attachments . 218
Receiving e-mail . 223

Integrating JavaMail into J2EE . 229
Summary . 230

a539663 FM.qxd 7/25/03 9:12 AM Page xvi

xviiContents

Chapter 9: Understanding the Java Messaging Service 231
Explaining Messaging . 231
Introducing JMS . 232

JMS versus RMI . 232
Message structure . 234

Examining Messaging Models . 235
Point-to-point messaging . 235
Publish-and-subscribe messaging . 236

Understanding the Major JMS Components 236
Destinations . 237
Connections . 237
Connection factories . 237
Sessions . 238
Producers . 238
Consumers . 238

Configuring JMS . 239
Connexia Airlines Point-to-Point Messaging Business Case 240
Magazine-Publisher Publish-Subscribe Messaging Business Case 248
Explaining Reliable Messaging . 252

Autonomous messages . 252
Persistent messages . 252
Synchronous acknowledgments . 253
Transactions . 253

Introducing Message-Driven Enterprise JavaBeans 254
Summary . 254

Chapter 10: Introducing Java Transactions 255
What Are Atomic Transactions? . 255
Examining Transactional Objects and Participants 257
Reviewing Atomicity and the Two-Phase Commit Protocol 259

Optimizations . 260
Heuristics and removing the two-phase block 261

Understanding Local and Distributed Transactions 262
Local transactions . 262
Distributed transactions . 264
Interposition . 265

Understanding Consistency . 267
Introducing Isolation (Serializability) . 268

Optimistic versus pessimistic concurrency control 269
Degrees of isolation . 270

Understanding the Role of Durability . 272
Performing Failure Recovery . 273
Using Transaction-Processing Monitors . 274
Transaction Models . 275

Nested transactions . 276
Nested top-level transactions . 277
Extended transaction models and the J2EE Activity Service 278

a539663 FM.qxd 7/25/03 9:12 AM Page xvii

xviii Contents

Understanding Transaction Standards . 283
X/Open Distributed Transaction Processing 284
The Object Transaction Service . 285

Understanding the Java Transaction API 288
The JTA’s relationship to the JTS . 289
The UserTransaction interface . 290
The TransactionManager interface 291
Suspending and resuming a transaction 292
The Transaction interface . 293
The XAResource interface . 294
Enrolling participants with the transaction 295
Transaction synchronization . 296
Transaction equality . 297
The XID interface . 297

Airline Reservation Using Transactions Business Case 297
Summary . 301

Chapter 11: Examining JNDI and Directory Services 303
Explaining Naming Services and Directory Services 303
Providing an Overview of X.500 and LDAP 305

LDAP implementations . 305
Configuring OpenLDAP . 306
LDAP schema . 308

Reviewing the JNDI Structure . 309
Directories and entries . 310
Names and attributes . 310
Binding and references . 311
Contexts and subcontexts . 311
File systems . 311
DNS naming conventions . 311
LDAP mapping . 312

Using JNDI and LDAP . 312
Connecting to the server . 312
Specifying environment properties 313
Implementing authentication . 316
Performing simple LDAP lookups . 316
Performing searches and comparing entries 318
Modifying the directory . 322
Adding objects to a directory . 323

Connecting to DNS . 328
DNS environment properties . 330
DNS lookups . 331
Reverse DNS lookups . 332

a539663 FM.qxd 7/25/03 9:12 AM Page xviii

xixContents

Considering Other JNDI Service Providers 332
File systems . 333
COS naming for CORBA . 333
Network Information System . 333
Directory Services Markup Language 334
Application-server providers . 334

Exploring the Enterprise JavaBean Environment 335
Airline Reservations Business Case . 337
Magazine Publisher Business Case . 342
Summary . 346

Chapter 12: Understanding Java Authentication and
Authorization Services . 347

Examining the Importance of Java Security 348
Typical Java security weaknesses . 349
Providing an overview of JAAS . 353

Understanding Security Realms . 355
Single login across security domains 356
Setting up for JAAS . 358
Callback handlers . 358
Pluggable/stackable authentication 360

Examining the Java Subject Class . 362
Authenticating Users . 364

Authorizing users . 368
JAAS policy files . 368
Compiling the example . 369

Debugging the Simple JAAS Module . 372
Hiding JAAS . 375
Predefined JAAS login callbacks and their handlers 375
Custom login modules . 384
Writing your own login handler . 385
Writing your own callback handler 394
Authenticating a Web user against a Windows NT domain 397
Brief security analysis . 397
Security limitations . 398
Implementation . 398
Alternative methods . 403

Connexia Airlines Business Case . 404
Authenticating a Web user against a directory service 404
Brief security analysis . 404
Security limitations . 405
Implementation . 405

Summary . 407

a539663 FM.qxd 7/25/03 9:12 AM Page xix

xx Contents

Chapter 13: Exploring Java Cryptography Extensions 409
Grasping the Basic Terminology . 410

One-way encryption versus two-way encryption 410
Algorithms . 412
Shared-key cryptography . 415
Public-key cryptography . 416
Digital certificates . 417
Protocols . 417

Reviewing the Java Cryptography Package 420
Writing a Java Program Using JCE . 421
Magazine Publisher Business Case . 422
Airline Reservations Business Case . 424
Summary . 426

Part IV: The Service Tier 427

Chapter 14: Understanding EJB Architecture and Design 429
Explaining the EJB Component Model . 429
Reviewing Roles, Relationships, and Responsibilities 432

The deployment descriptor . 432
The bean provider . 433
The server/container provider . 433
The application assembler . 434
The EJB deployer . 435
The system administrator . 435

The Enterprise JavaBean . 436
Entity beans . 436
Session beans . 440
Entity beans versus session beans . 441
Message-driven beans (MDB) . 442
What does an EJB contain? . 443

Understanding EJB Container Functionality 446
Restrictions on the bean provider . 447
Achieving scalability by pooling resources 450
The life of an entity bean . 451
The life of a session bean . 454
Transactions and EJBs . 456
Container-managed transactions . 456
Examining a transactional EJB example 462
Naming objects . 463
The security infrastructure . 464
The Timer service . 464
Persistence in BMP and CMP . 466
Distribution support . 466

Integrating with CORBA . 467
Why is CORBA important to J2EE? . 468
When J2EE met CORBA . 469

a539663 FM.qxd 7/25/03 9:12 AM Page xx

xxiContents

Performance and Scalability Issues . 472
Application-server availability strategies 473
Transaction concerns . 475
Threading model . 476
Tools . 479

Summary . 481

Chapter 15: Explaining Session Beans and Business Logic 483
Writing a Session EJB . 484

The home interface . 484
The component interface . 485
The session bean class . 487
The deployment descriptor . 488
The stateless session bean . 489

Connexia Airlines Business Case . 492
FlightServiceHome — The home interface 493
FlightService — The remote interface 493
FlightServiceBean — The bean class 494
The ejb-jar.xml deployment descriptor 495
Deployment . 496
Writing an EJB client . 496
Stateful-session-bean model . 499
The lifecycle of the stateful session bean 500
Passivation and activation . 502

Implementing the Session Synchronization Interface 503
Storing a Handle . 503
Collecting Payment Business Case . 504

WorkFlowHome — The home interface 504
WorkFlow — The remote interface . 504
WorkFlowBean — The bean class . 505

Choosing between Stateless and Stateful Beans 509
The stateless model . 510
The stateful model . 510

Summary . 510

Chapter 16: Working with Entity Beans 511
Understanding Entity Beans . 511

Remote and local client views . 512
Entity-bean components . 513
The entity-container contract . 517
Container-managed persistence (CMP) 526
Bean-managed persistence (BMP) . 552
Exceptions . 562

Summary . 563

a539663 FM.qxd 7/25/03 9:12 AM Page xxi

xxii Contents

Chapter 17: Using Message-Driven Beans 565
Understanding the Need for MDB . 565
Reviewing MDB Lifecycle Methods . 569
Examining MDB Deployment Descriptors 570

Deployment descriptors as per EJB 2.0 570
Changes in MDB 2.1 deployment descriptors 572
Internal messaging within EJB applications 573

Understanding Clients and MDB . 575
Working with EJBs Asynchronously . 576
Summary . 577

Part V: The Data Tier 579

Chapter 18: Reviewing Java Database Connectivity 581
Introducing JDBC Driver Types . 582
Creating Your First JDBC Program . 583

Retrieving data . 585
Database-error processing . 587
Processing result sets . 587
The ResultSetMetaData class . 589
Scrollable result sets . 591
The PreparedStatement class . 592
The CallableStatement class . 592

Performing Batch Updates . 593
Using Savepoints . 594
Configuring the JDBC-ODBC Bridge . 594
Explaining Database Connection Pools and Data Sources 596

Configuring connection pools . 597
Creating Data Source objects . 597

Revisiting DBProcessor . 599
Using the RowSet Interface . 601

Working with CachedRowSet . 602
The WebRowSet class . 606

Summary . 606

Chapter 19: Understanding the J2EE Connector Architecture 607
Examining the Contracts . 608

The lifecycle-management contract 610
Work management contract . 612
Outbound communication . 616
Inbound communication . 631

The Common Client Interface (CCI) . 633
Connection interfaces . 634
Interaction interfaces . 635
Data interfaces . 635

a539663 FM.qxd 7/25/03 9:12 AM Page xxii

xxiiiContents

Metadata interfaces . 636
Using the CCI . 636

Packaging and Deployment . 640
Summary . 643

Part VI: Web Services 645

Chapter 20: Introducing Web Services 647
Defining Web Services . 648

Universal Resource Identifiers . 648
XML-based technologies . 648

Why Do We Need Web Services? . 649
Remote Method Invocation . 649
DCOM . 650
CORBA . 650
Web-service architecture . 650
Advantages of Web services . 652

Examining Some Web-Service Scenarios 653
Enterprise-application integration (EAI) 654

Understanding the Technologies behind Web Services 656
SOAP . 657
WSDL . 657
UDDI . 658
Web services in a service-oriented architecture 659

Summary . 663

Chapter 21: Digging Deeper into SOAP, WSDL, and UDDI 665
Understanding the SOAP Message Architecture 666

The header . 666
The body . 667
XML schemas and SOAP data types 668
Arrays . 670
SOAP RPC . 672
SOAP messaging . 675
SOAP and Java . 676

Explaining WSDL . 681
SOAP binding . 686
HTTP GET and POST binding . 687
MIME binding . 688
WSDL and Java . 689

Examining UDDI . 689
UDDI versions 1, 2, and 3 . 689
Searching with UDDI . 698
Publishing with UDDI . 700
Subscribing with UDDI . 703
UDDI and Java . 704

Summary . 709

a539663 FM.qxd 7/25/03 9:12 AM Page xxiii

xxiv Contents

Chapter 22: Understanding J2EE Web Services 711
Integrating J2EE and Web Services . 711

Using Java servlets in a Web-services architecture 712
Exposing EJBs as Web services . 713
Using JMS as a transport layer . 714
Exploring Products and Tools for Web Services 715

JSR 109 — J2EE Web Services . 717
The client-side programming model 719
The server-side programming model 721
Web-service deployment descriptors 725

Summary . 725

Part VII: Patterns 727

Chapter 23: Reviewing Presentation-Tier Patterns 729
Providing an Overview of Patterns . 729
Explaining the Session Pattern . 731

Forces . 732
Implementation . 732
Strategies . 734
Results . 735
Session pattern — UML diagram and sample code 735
Related patterns . 735

Understanding the Router Pattern . 736
Forces . 736
Implementation . 736
Strategies . 738
Results . 738
The router pattern — sample code . 738
Related patterns . 740

Reviewing the Model-View-Controller Pattern 740
Forces . 741
Implementation . 742
Strategies . 743
Results . 743
The model-view-controller pattern — sample code 744
Related patterns . 745

Using the Front-Controller Pattern . 746
Forces . 746
Implementation . 746
Strategies . 748
Results . 749
The front-controller pattern — sample code 749
Related patterns . 750

a539663 FM.qxd 7/25/03 9:12 AM Page xxiv

xxvContents

Working with the View-Helper Pattern . 750
Forces . 750
Implementation . 751
Strategies . 752
Results . 753
The view-helper pattern — sample code 753
Related patterns . 753

Using the Composite-View Pattern . 754
Forces . 754
Implementation . 754
Strategies . 756
Results . 757
The composite-view pattern — sample code 757
Related patterns . 757

Using the Intercepting-Filter Pattern . 758
Forces . 758
Implementation . 758
Strategies . 760
Results . 760
The intercepting-filter pattern — sample code 761
Related patterns . 761

Summary . 762

Chapter 24: Working with Service-Tier Patterns 763
Introducing Service-Tier Patterns . 763
Using the Business-Delegate Pattern . 765

Forces . 765
Implementation . 765
Structure . 765
Strategies . 767
Results . 767
Business-delegate pattern — sample code 768
Related patterns . 769

Understanding the Value-Object Pattern . 769
Forces . 769
Implementation . 770
Strategies . 771
Results . 772
Value-object pattern — sample code 772
Related patterns . 773

Exploring the Session-Facade Pattern . 774
Forces . 774
Implementation . 774
Structure . 774
Strategies . 776

a539663 FM.qxd 7/25/03 9:12 AM Page xxv

xxvi Contents

Results . 776
Session-facade pattern — sample code 776
Related patterns . 777

Explaining the Composite-Entity Pattern 777
Forces . 778
Implementation . 778
Strategies . 779
Results . 780
Composite-entity pattern — sample code 780
Related patterns . 781

Using the Service-Locator Pattern . 781
Forces . 782
Implementation . 782
Strategies . 783
Results . 784
Service-locator pattern — sample code 784
Related patterns . 785

Working with the Half-Object-Plus-Protocol Pattern 785
Forces . 786
Implementation . 786
Strategies . 787
Results . 788
Half-object-plus-protocol pattern — sample code 788
Related patterns . 788

Summary . 796

Chapter 25: Using Data-Tier Patterns 797
Introducing the Data-Access-Object Pattern 797

Implementation . 799
Implementing the Data-Access-Object Pattern 801

Applying the data-access-object pattern 803
Applying related patterns . 805

Using the Service-Activator Pattern . 805
Implementation . 806

Implementing the Service-Activator Pattern 809
The service-activator-server strategy 809
The EJB-server strategy . 809
The EJB-client strategy . 809
Applying the service-activator pattern 810
Applying related patterns . 810

Examining the Transfer-Object Pattern . 811
Implementation . 812
Implementing the transfer-object pattern 813
Applying the transfer-object pattern 814
Applying related patterns . 815

Summary . 816

a539663 FM.qxd 7/25/03 9:12 AM Page xxvi

xxviiContents

Part VIII: Advanced Topics 817

Chapter 26: Exploring Frameworks and Application
Architecture . 819

What are Frameworks? . 820
Frameworks versus class libraries . 821
The pains of J2EE . 821

Understanding Framework Principles . 823
Inversion of control . 823
Separation of concerns . 823
Loose coupling . 824
Extensibility . 824
Configurability . 824
Alignment . 825
Design patterns . 826
Examining the Struts framework example 827

Understanding Framework Objectives and Benefits 835
Design . 835
Development and testing . 836
Production and maintenance . 836
Application portfolios . 837

Reviewing Application Architecture beyond Frameworks 837
Overview of architectures . 837
Traditional application architecture 838
Services-oriented architecture . 839
Application architecture versus frameworks 841

Building Your Own Framework . 841
Building versus buying . 841
Open source . 842
Software vendor . 843
System Integrators (SIs) . 844

Predicting the Future of Frameworks . 845
Alternatives to Frameworks . 846

All-in-one proprietary environments 846
Model-driven architecture . 847
Minimal J2EE . 848
Advanced Integrated Development Environments 848

Evaluating Frameworks . 850
Requirements . 850
Cost . 850
Framework checklist . 851
Vendor questions . 853

Summary . 854

a539663 FM.qxd 7/25/03 9:12 AM Page xxvii

xxviii Contents

Chapter 27: Using ANT to Build and Deploy Applications 857
Introducing ANT . 857
Getting Comfortable with ANT Vocabulary 863

Projects . 864
Properties . 864
Targets . 865
File matching . 867
Tasks . 868

Putting It All Together . 877
Summary . 879

Chapter 28: Creating High-Performance Java Applications 881
Understanding Different Types of Problems 881

Functional problems . 882
Performance problems . 882

Isolating Problems . 886
Critical-path analysis . 886
Load testing . 886
Benchmarking . 887
Tunable parameters . 889
Profiling . 892

Logging . 893
Logging APIs . 894

Managing Memory-Usage Problems . 906
Loiterers . 908
Loiterer anti-patterns . 910

Summary . 914

Appendix A: Airline Reservations Business Case 915

Appendix B: Magazine Publisher Business Case 923

Appendix C: Additional Reading and References 927

Index . 935

a539663 FM.qxd 7/25/03 9:12 AM Page xxviii

Introduction

The world of information technology is evolving rapidly. Enterprise applications
must deliver services that meet the needs of the global business environment,

ensure that users’ data remains private, protect the integrity of enterprise data, and
ensure that business transactions are accurate and processed quickly. Enterprises
today need to extend their reach, reduce their costs, and lower the response times
of their services to customers, employers, and suppliers. Typically, applications
that do these things must combine enterprise information systems (EIS) with new
business functions that deliver services to a broad range of users.

J2EE reduces the cost and complexity of developing multi-tier enterprise services.
J2EE applications can be rapidly deployed and easily enhanced as the enterprise
responds to competitive pressures.

This book provides leading-edge but practical examples to illustrate how J2EE can
be applied to existing business and technology initiatives. The book focuses on
thinking concretely about the specifications that comprise J2EE, while providing
solutions to today’s problems.

This book is ideal for those who prefer personal interaction to processes and tools,
responding to change to following a plan, and techniques that work to comprehen-
sive documentation. Some of the respective authors’ anecdotal experiences will
periodically appear. This will make for an easier read and allow the reader to con-
nect and become involved.

Whom this book is for
J2EE is the foundation of many large-scale application-development projects. As
major corporations shift away from expanding the spaghetti code contained within
their monolithic mainframe systems, they are looking for an architecture that will
prevent them from making past mistakes again. J2EE is the answer. The author
team, as writers and buyers of many of today’s information-technology books,
wanted to write something different from what is currently on the shelves. This
book is targeted toward architects and senior developers who understand the fun-
damentals of Java and want to take the next step. The driving goals are to provide a
complete overview of the major J2EE technologies and to show how they can be
used to solve non-trivial business problems.

a539663 FM.qxd 7/25/03 9:12 AM Page xxix

xxx Introduction

If you are a developer, an architect, or even a project manager, you will appreciate
our attempt to bring you a no-frills introduction to J2EE. The author team has
worked many long hours to bring you the ultimate guide that explains everything
you need to know about J2EE. This book provides examples that clearly illustrate
how the technologies contained within can be applied to existing business and
technology undertakings. Where appropriate, this book will provide additional
sources of information.

Each author has enjoyed the freedom to provide anecdotal experiences where
appropriate, as all knowledge is beneficial. This book should be considered a
trusted advisor and an authoritative source of J2EE information.

What this book covers
The Java 2 Platform, Enterprise Edition (J2EE) defines the standard for developing
n-tier enterprise applications using Java. J2EE simplifies enterprise applications by
basing them on standardized modular components and providing for those compo-
nents a complete set of services that handle the complexities automatically.

N-tier applications are difficult to build. Usually building such an application
requires people with a variety of skills and an understanding of both modern and
legacy code and data. Enterprise applications typically use heterogeneous
approaches to systems development and require the integration of tools from a
variety of vendors and the merging of disparate application models and standards.

This book covers the various components of J2EE that are used to build enterprise
n-tier applications, including the following:

✦ JavaServer Pages (JSP)

✦ Enterprise JavaBeans (EJB)

✦ Java Messaging Service (JMS)

✦ Java Naming and Directory Interface (JNDI)

✦ Java Authentication and Authorization Service (JAAS)

✦ Java Connector Architecture (JCA)

✦ And more . . .

The author team recommends that the chapters in this book be read in order, as
each chapter builds upon previous chapters. If reading the chapters in order is not
viable, reading a particular section in a single sitting may be a better choice.

a539663 FM.qxd 7/25/03 9:12 AM Page xxx

xxxiIntroduction

What this book is not!
The purpose of this book is to cover the various components of J2EE. Understanding
J2EE requires a working knowledge of the basics of Java. This book’s coverage of
Java will be limited to coverage of the APIs required for advanced J2EE features. All
the examples within this book use Java, so it is important to minimally understand
the principles of another object-oriented language such as C++ or Smalltalk.

The authors have avoided recommending software-development processes, pro-
ject-management discipline, software architecture, or naming conventions. We
believe that our readers are better served by other books that cover these topics.

What you’ll need
To gain the most benefit from this book, you’ll need a workstation loaded up with
the following software:

✦ An application server that supports Sun’s J2EE SDK, version 1.4

✦ A relational database, such as Microsoft SQL Server or Oracle

✦ An integrated development environment (IDE) for Java, such as Borland
JBuilder (http://www.borland.com) or Eclipse (http://www.eclipse.org)

✦ An SMTP-compliant mail server, if you plan to write applications that will pro-
cess incoming or outgoing electronic mail

Conventions used in this book
This book uses the following conventions when it explains how to do something on
your computer:

✦ Italic type introduces new technical terms.

✦ Bold type indicates a new section of code that has been introduced into an
existing code listing, or something you should type.

✦ Monospace font is for output you see on your computer.

✦ Keystroke combinations are separated by plus signs (+). For example,
Ctrl+Alt+Del means “press the Ctrl, Alt, and Delete keys together.”

✦ When using the mouse, assuming you’re right-handed, the term click refers to
pressing the left mouse button once. The term double-click refers to pressing
the left mouse button twice. The term right-click refers to pressing the right
mouse button once. The term drag refers to holding down the left mouse but-
ton and pulling the pointer to where you want it to be. If you are left-handed,
adjust these instructions to match your mouse setup.

a539663 FM.qxd 7/25/03 9:12 AM Page xxxi

xxxii Introduction

The companion Web site
Be sure to visit the companion Web site for this book at http://www.wiley.com/
compbooks/mcgovern, where you can download code listings and program exam-
ples covered in this book. These are also available at http://www.j2eebible.com.

Disclaimer
Any source code shown in the examples is free, and you may use it as your heart
desires, with the sole restriction that you may not claim you are the author. Neither
the publisher, the authors, or their respective employers provide any form of war-
ranty on the code contained within this book, nor do they guarantee its usefulness
for any particular purpose.

The author team and editors have worked long hours to bring you a comprehensive
guide to J2EE. If you find any mistakes in this book, we would appreciate your con-
tacting us at our respective e-mail addresses. We equally appreciate any comments,
suggestions, praise, or letters of admiration you have for this book.

This book will use for its examples a fictitious airline company and magazine pub-
lisher. Any example companies, organizations, products, domain names, e-mail
addresses, people, places, and events depicted in these examples are fictitious. No
association with any real company, organization, product, domain name, e-mail
address, person, place, or events is intended or should be inferred.

a539663 FM.qxd 7/25/03 9:12 AM Page xxxii

Introduction
✦ ✦ ✦ ✦

In This Part

Chapter 1
Understanding Java
and the J2EE Platform

Chapter 2
Reviewing XML
Fundamentals

Chapter 3
Introducing
Application Servers

Chapter 4
Understanding
Remote Method
Invocation

✦ ✦ ✦ ✦

P A R T

II

b539663 PP01.qxd 7/25/03 9:13 AM Page 1

b539663 PP01.qxd 7/25/03 9:13 AM Page 2

Understanding
Java and the
J2EE Platform

Java 2 Enterprise Edition, or J2EE, is a package of specifi-
cations aligned to enable the development of multi-tier

enterprise applications. The specifications outline the various
components needed within a J2EE enterprise system, the
technologies for accessing and providing services, and even
the roles played during the development, deployment, and
runtime lifecycle. The combination of these specifications
introduced faster and more streamlined development pro-
cesses, to the software industry, that have been mapped onto
common software methodologies such as RUP, XP, and others.

J2EE has fast become the de facto standard for developing and
deploying enterprise systems. It represents Sun’s attempt to
take their Java mantra of “Write Once, Run Anywhere” to the
next level and make it “Write Once, Deploy Anywhere.” While
using it is not as easy as dropping new code fragments into
existing code, J2EE has made significant strides in easing the
burden on the developers and deployers of a system.

This chapter will introduce J2EE. At the time of this writing
J2EE 1.4 is in beta but it should be in public release by the
time this book is published.

Reviewing a Brief History of Java
In 1995, Sun released Java, a fully object-oriented program-
ming language. While most of the concepts within Java were
not new, it did meld many features, such as memory manage-
ment and garbage collection from Smalltalk and the syntax of
C/C++, into a new easy-to-learn programming language.

11C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Reviewing a brief
history of Java

Understanding J2SE

Examining the
origin of J2EE

Working with
the Model-View-
Controller (MVC)

Understanding
the J2EE APIs

Discovering what’s
new in J2EE 1.4

Looking toward
the future of J2EE

Understanding the
Java Community
Process

✦ ✦ ✦ ✦

c539663 ch01.qxd 7/25/03 9:13 AM Page 3

4 Part I ✦ Introduction

Java brought the concept of a virtual machine into the mainstream. Traditionally,
programs written in a particular language, such as C, were compiled directly for
the operating system on which the program would run. In order for companies to
support multiple-target runtime environments, a new build environment became
necessary for each target — for example, Windows95, HP-UX, Solaris, and so on.
However, Java is not compiled completely, but instead is compiled to an intermedi-
ary stage as Java bytecodes. At runtime, the Java bytecodes are executed within a
virtual machine, which is a piece of software that interprets the bytecodes in run-
time into the native binary for the operating system.

The virtual machine is responsible for allocating and releasing memory, ensuring
security, and optimizing the execution of the Java bytecodes, among other functions.
This has indeed created a new market simply for virtual machines for various oper-
ating systems. As long as a virtual machine is available for a particular operating
system, the Java bytecodes should be able to be executed on it, assuming that all
the Java APIs are implemented. Figure 1-1 shows the stages that Java code must go
through before being executed on a target machine.

Figure 1-1: Java Virtual Machine compilation

* Not all APIs shown

Web container

Web
components

Web container

JMS

JNDI

Java
Mail

JAAS

RMI_IIOP

JMX

XML-RPC

JDBC

EJB
components

EJB container

App container

Applets Apps

c539663 ch01.qxd 7/25/03 9:13 AM Page 4

5Chapter 1 ✦ Understanding Java and the J2EE Platform

Understanding J2SE
Around 1998, Sun updated the Java specification and introduced Java 1.2 along with
the accompanying libraries, making Java not only a language, but also a platform —
Java 2 Standard Edition (J2SE). Prior to the release of J2SE, Java had gone through
the number of revisions and new libraries were not necessarily introduced in a con-
certed manner, making it difficult for developers to understand. Prior to the J2SE,
the Java Development Kit (JDK) was the primary package that was installed, and
developers would choose which additional libraries they would want such as Java
Database Connectivity (JDBC) or Swing. This led to inconsistent environments mak-
ing it difficult to port code since the deploying party would not be guaranteed of
the libraries on the deployment platform.

JDBC is the topic of Chapter 18.

With J2SE, Sun attempted to fix the problem by bundling the various libraries into
a single unit. J2SE provided libraries for GUI support, networking, database access,
and more. J2SE is also the foundation for the J2EE.

Examining the Origin of (J2EE)
J2SE was sufficient for developing stand-alone applications, but what was missing
was a standard way to develop and deploy enterprise applications — one similar to
the standard method for using the Common Object Request Broker Architecture
(CORBA). While J2SE already included enterprise-level APIs such as Remote Method
Invocations (RMI), too much was still left undefined — such as persistence, transac-
tion management, security, and so on. This resulted in a plethora of architectures
being developed.

J2EE, introduced in 1998, defines a multi-tier architecture for enterprise information
systems (EIS). By defining the way in which multi-tier applications should be devel-
oped, J2EE reduces the costs, in both time and money, of developing large-scale
enterprise systems. Figure 1-2 illustrates the J2EE architecture, highlighting the new
additions within the 1.4 release.

The J2EE platform specifies the logical application components within a system and
defines the roles played in the development process.

Cross-
Reference

c539663 ch01.qxd 7/25/03 9:13 AM Page 5

6 Part I ✦ Introduction

Figure 1-2: J2EE Architecture (source: Javasoft)

Application components
Four application components are defined within the J2EE platform. They are as
follows:

✦ Application clients (Standalone Java clients)

✦ Applets (Java code which executes within a browser)

✦ Web components (JSPs, Servlets)

✦ Server components (EJBs, J2EE API implementations)

A product does not need to support all types of components; the norm is to provide
an implementation to support a particular component type. However, all compo-
nents are similar in that they run within a container. The container is responsible
for providing the runtime environment, the mechanism for identifying and under-
standing the file formats used for deployment, and the standard services for appli-
cation components to use.

The four application components are discussed in the following sections.

Application clients
Clients are generally stand-alone applications written in Java. They run within a vir-
tual machine and can use the J2EE standard services to access components located
within another tier. The J2EE standard services are usually provided on the client
via an installation of J2SE, or along with the distribution of the application itself.

Traditional development

SolarisHP-UXWin32

C Code

Java development

SolarisHP-UXWin32

Java
ByteCode

Direct compilation

Runtime VM Interpretation

Direct compilation

Intermediate compilationIntermediate compilation

Runtime VM interpretation

Java
Code

c539663 ch01.qxd 7/25/03 9:13 AM Page 6

7Chapter 1 ✦ Understanding Java and the J2EE Platform

Applets
Applets are similar to application clients, but execute within a Web browser. Initially
applets garnered extensive attention, as they were seen as a means of making Web
pages more dynamic. Most Web browsers have an embedded Java Virtual Machine
(JVM); however, the Java plugin can be used to force the browser to use a particu-
lar version of JVM.

Web components
Although the term can be misleading, Web components do not execute on the client
side. Web components are server-side components, generally used to provide the
presentation layer to be returned to a client. Two types of Web components exist:
Java Server Pages (JSPs) and Java servlets. Very basically, JSPs are similar to regular
HTML pages but contain embedded Java code while Java servlets are Java classes
that use Java’s I/O application programming interfaces (APIs) to output HTML to
the client. Both JSPs and servlets can be used to output other format types.

Server components
Server components come in the form of Enterprise JavaBeans (EJBs). EJBs execute
within a container that manages the runtime behavior of the EJB. EJBs are usually
where the business logic for an enterprise system resides.

Roles
The roles specified within the J2EE are those played during the development and
deployment cycles of an enterprise application. While the roles are distinct, in real-
ity multiple roles tend to be filled by the same organization. The following roles are
discussed in this section:

✦ J2EE product provider

✦ Application component provider

✦ Application assembler

✦ Deployer

✦ System administrator

✦ Tool provider

✦ System component provider

The J2EE product provider
A J2EE product provider is a company that provides a product that implements a
part of the J2EE specification. For example, one company may provide a product that
implements the J2EE container for EJBs, and another may provide a product that pro-
vides an implementation for a JMS server.

c539663 ch01.qxd 7/25/03 9:13 AM Page 7

8 Part I ✦ Introduction

The application component provider
An application component provider is a developer who creates a component that is
intended to reside within one of the J2EE containers. The application component
provider develops application components adhering to the J2EE API specifications
with the intention that the component will be deployed within a J2EE Server. This
enables a developer to select a different J2EE product provider without modifying
the component. Application component providers develop a range of components,
including EJBs, HTML pages, and other Web components.

The application assembler
An application assembler generally uses various application components to create
a single application for distribution. Generally, in a large project, one team will be
responsible for developing the Web components, another for the business-logic
components, and perhaps another for the data-object components. The application
assembler would package the various components and then distribute them as an
enterprise archive (.ear) file.

The deployer
The deployment of an enterprise application nearly always requires a different
configuration for each rollout. J2EE has taken this into consideration by specifying
the role of deployer. The deployer is responsible for configuring the applications
developed by the application assembler for execution within a platform provided
by the J2EE product provider.

The system administrator
A system administrator generally uses tools provided by a tool provider to monitor
the runtime environment and to ensure that services are performing optimally.
Various tools are available on the market, ranging from those which allow for moni-
toring the system as a whole, to runtime inspection on individual services to help
determine where bottlenecks may reside.

The tool provider
The J2EE specification also provides tools to make development easier and to moni-
tor the runtime environment. Tools vary from integrated development environments
to runtime-performance products.

The system-component provider
Many system components are available for the J2EE architecture. The J2EE archi-
tecture provides ways to introduce these new components for accessing services
such as existing messaging systems, transaction services, and others, such as
billing systems that may be industry-specific. Using the connector architecture is
one way to introduce these new components.

c539663 ch01.qxd 7/25/03 9:13 AM Page 8

9Chapter 1 ✦ Understanding Java and the J2EE Platform

In addition to specifying the lifecycle roles, the J2EE also recommends the usage of
the model-view-controller (MVC) design pattern to ease the burden on developing
long-lived applications.

Working with the Model-View-Controller
The MVC paradigm provides a pattern for separating the presentation logic (view),
business logic (control), and data objects (model). J2EE’s architecture maps onto
the MVC nicely. Typically, entity beans are used to provide the model logic, while a
mix of entity beans and session beans are used to provide the control logic, and
Web components are used to implement both control and presentation logic. In
practice, however, the separation of the three types of logic is not as distinct, and
additional patterns are often needed to support the development cycle. Figure 1-3
shows how the three different logical functional blocks work together.

Figure 1-3: MVC pattern

Sun has provided guidelines in the form of Java BluePrints. A sample application,
Java Adventure Builder, has been developed specifically for J2EE 1.4 and you can
download it from http://www.javasoft.com.

The model
The M in MVC refers to the data object model. For example, in an airline ticketing
service you may have the concept of a booking, which in the real world is repre-
sented by a paper ticket. The model deals with issues such as how the booking
is represented within the software system, where it is persisted, and how it is
accessed. For example, the booking may be held within a relational database within

Controller

Displayed by

Manipulates User interactions

Model View

c539663 ch01.qxd 7/25/03 9:13 AM Page 9

10 Part I ✦ Introduction

a table named Bookings with the fields PassengerName, DepartureCity,
DestinationCity, TravelDate, and DepartureTime. This data may be accessed
via JDBC using Entity Beans (which we will discuss in detail later in the chapter).

Entity beans and JDBC are discussed in Chapters 16 and 18, respectively.

The view
The view is responsible for presentation issues. It handles how the client will see
the application, and so HTML issues are usually dealt with here. However, other
markup languages such as Wireless Markup Language (WML) and Extensible Markup
Language (XML) are increasingly being used to support more varied types of clients.
The Booking example may be displayed in various ways. For example, on a wireless
device only the most relevant information might be displayed due to the limited
screen size. In fact, the term view may be misleading, implying that it is meant for
visual display only; the view may also be used to present the model via an audio
interface if desired. The method in which the model is presented is abstracted from
the underlying data.

The control
The control part of the paradigm deals with the business logic of the application. It
handles how and when a client interacting with the view is able to access the model.
The control layer usually interacts with authorization and authentication services,
other J2EE services, and external systems to enforce the business rules to be applied
to the application. In our Booking example, the control would determine whether
the view can actually display the model. This may be based on whether the user is
logged in, if he or she has appropriate authorization and so on. It would also hold
the business logic of what to do if the user attempts to view a booking that no
longer exists — for example, should an error be presented to the user? Should the
user be prompted with a screen asking for additional information? These are rules
that change within the business but they do not necessarily force a change on the
view or model.

To support the MVC, the J2EE architecture also provides a varied set of APIs to help
facilitate the separation between the model, view, and control functional blocks
within an application.

Understanding J2EE APIs
The J2EE specification stipulates a number of different APIs, not all of which are
mandatory for every application component type. In some cases, for example the
Java Database Connectivity (JDBC) API, the API may only be mandatory for the
some components, while other APIs may be optional for all components.

Cross-
Reference

c539663 ch01.qxd 7/25/03 9:13 AM Page 10

11Chapter 1 ✦ Understanding Java and the J2EE Platform

The J2EE specifies a set of standard services, which are listed in the next section
with an accompanying chart. The standard services have been used within other
APIs, such as EJB, JSP, and Java servlets.

J2EE standard services
Included in the J2EE are the following standard services. Some of these services are
provided by J2SE, while others are termed “optional packages,” meaning that they
are optional within a J2SE implementation, but not within a J2EE implementation.

✦ HyperText Transfer Protocol/HyperText Transfer Protocol Secure sockets
(HTTP/HTTPS) — Both of these protocols must be supported by J2EE servers.

✦ Java Transaction API (JTA) 1.0 — JTA provides an interface for demarcating
transactions. It enables the developer to attach transaction-processing
systems.

✦ Remote Method Invocation to Internet Inter-ORB Protocol (RMI-IIOP) —
EJB components use this service for communication. The underlying IIOP
protocol can be used to access compliant CORBA objects residing in external
systems.

✦ Java Database Connectivity (JDBC) 3.0 — JDBC provides a Java interface for
executing SQL statements without understanding the specifics of the underly-
ing data store. JDBC 3.0 merged with the previously optional JDBC Extension
package.

✦ Java Message Service (JMS) 1.1 — JMS is an asynchronous messaging service
that enables the user to send and receive messages via point-to-point or
publish-subscribe models.

✦ JavaMail 1.3 — JavaMail enables the delivery and retrieval of e-mail via mes-
sage transports and message stores, respectively.

✦ Java Naming and Directory Interface (JNDI) 1.2 — JNDI is used to access
directories such as Lightweight Directory Access Protocol (LDAP). Typically,
components use the API to obtain references to other components.

✦ JavaBeans Activation Framework (JAF) 1.0 — JavaMail uses JAF to handle
various different Multipurpose Internet Mail Extensions (MIME) types that
may be included within an e-mail message. It converts MIME byte streams
into Java objects that can than be handled by assigned JavaBeans.

✦ Java API for XML Parsing (JAXP) 1.2 — JAXP includes both Simple API for
XML (SAX) and Document Object Model (DOM) APIs for manipulating XML
documents. The JAXP API also enables Extensible Stylesheet Language
Transformation (XSLT) engines to be plugged in.

✦ J2EE Connector Architecture 1.5 — The connector architecture specifies
a mechanism by which to attach new resource adaptors to a J2EE server.
Resource adaptors can be used to provide access to services that are not
specified through other APIs.

c539663 ch01.qxd 7/25/03 9:13 AM Page 11

12 Part I ✦ Introduction

✦ Security Services — These are provided via Java Authentication and
Authorization Service (JAAS) 1.0, which allows J2EE servers to control access
to services.

✦ Web Services — Support for Web services is provided via Simple Object
Access Protocol (SOAP) for attachments; API for Java (SAAJ) 1.1 for handling
of SOAP messages; Java API for XML Registries (JAXR) 1.0 for access to
Universal Description, Discovery, and Integration (UDDI); and Java API for
XML-based RPC (JAX-RPC) 1.0 to specify how clients can use Web services.

✦ Management — The Java 2 Platform, Enterprise Edition Management API 1.0,
and Java Management Extensions (JMX) 1.2 are used to provide management
support for querying a server during runtime.

✦ Deployment — The Java 2 Platform, Enterprise Edition Deployment API 1.1
allows tools to plug into a J2EE server for deployment purposes.

✦ Java Authorization Service Provider Contract for Containers (JACC) 1.0 —
JACC is the interface between application servers and authorization policy
providers.

Table 1-1 gives a list of the various J2EE Standard Services APIs and indicates
which APIs are required for each component type.

Table 1-1
J2EE Standard Services APIs

Standard Service Version App Client Web EJB

HTTP/HTTPS 1.0, SSL 3.0, TLS 1.0 Required Required Required

JTA 1.0 Not Required Required Required

RMI-IIOP Required Required Required

JDBC 3.0 Required Required Required

JMS 1.1 Required Required Required

JavaMail 1.3 Required Required Required

JNDI 1.2 Required Required Required

JAF 1.0 Required Required Required

JAXP 1.2 Required Required Required

Connecture 1.5 Not Required Required Required
Architecture

JAAS 1.0 Required Required Required

c539663 ch01.qxd 7/25/03 9:13 AM Page 12

13Chapter 1 ✦ Understanding Java and the J2EE Platform

Standard Service Version App Client Web EJB

SAAJ 1.2 Required Required Required

JAXR 1.0 Required Required Required

JAX-RPC 1.1 Required Required Required

JMX 1.2 Required Required Required

JACC 1.0 Not Required Required Required

Application component APIs
The standard services described in the previous section are used to provide addi-
tional J2EE application-component specifications as Web and server components.
The following is a list of the application component APIs specified in J2EE.

✦ Enterprise JavaBeans (EJB) 2.1 — EJBs are similar to CORBA components
and typically encapsulate business-logic code or data-model code. They exe-
cute within a container, which manages their interactions with other compo-
nents, including resources and security. Three different types of EJBs exist:

• Entity beans

• Message-driven beans

• Session beans, which come in two flavors — either stateless or stateful.

✦ Java Servlet 2.4 — Servlets are classes that reside on the server and are typi-
cally used to respond to incoming requests via HTTP. They are often used to
return the presentation layer to a client.

✦ JavaServer Pages (JSP) 2.0 — JSP pages are very similar to HTML pages,
except that they have embedded Java code. The pages are parsed and exe-
cuted on the server prior to being returned to the requesting client. JSPs can
make use of additional APIs, such as JSP tag extensions, to allow for more
complex logic.

Not all of the preceding APIs will be discussed in this book, as many of them are
fairly straightforward.

Discovering What’s New in J2EE 1.4
Version 1.4 introduces significant improvements in J2EE’s support for Web services
and XML. Until now J2EE lagged behind the recently introduced Microsoft .NET,
which provided extensive support for XML from its initial release in 2000. However,

Note

c539663 ch01.qxd 7/25/03 9:13 AM Page 13

14 Part I ✦ Introduction

J2EE 1.4 has dramatically changed that with the introduction of XML-RPC, JAXR,
SAAJ, and modifications within the Enterprise JavaBeans (EJB) specification, as
well as with the manner in which new libraries are deployed. XML and support for
Web services are now an integral part of J2EE, providing another level of abstrac-
tion for the decoupling of systems.

In addition, J2EE 1.4 has improved tools support via the J2EE Management and J2EE
Deployment APIs, and many of the other individual APIs have been enhanced as
well. The following chapters will discuss the various APIs and their capabilities in
greater detail.

Looking toward the Future of J2EE
Java has progressed incredibly since its inception, as has J2EE. While the needs of
today and those of the near future are being met by the current release of J2EE, it
is not complete, nor will it ever be. Like all enterprise systems, J2EE is constantly
evolving.

Some of the innovations planned for the future are an XML data-binding API,
enhanced security APIs, support for JDBC RowSets, and more. For a full list of
potential future enhancements, review “Future Directions” in the specification
document. Alternatively, you can follow the Java Community Process, which is
discussed next.

Understanding the Java
Community Process (JCP)

The JCP is an initiative similar to a standardization body, put in place by Sun to
allow for an unbiased approach to the development of Java. While it is not an official
standards body, it is open to the public. All the Java APIs, along with the various
distributions (J2EE, J2SE, and J2ME), are covered with the JCP.

Generally, the process works as follows:

1. A member (or group of members) within the JCP submits a Java Specification
Request (JSR) which requests either a new specification or modifications to
an existing one.

2. Following the acceptance of the JSR by the JCP, an expert group is formed
and specification development begins.

3. Final acceptance of the specification is made via a vote by an executive
committee.

c539663 ch01.qxd 7/25/03 9:13 AM Page 14

15Chapter 1 ✦ Understanding Java and the J2EE Platform

The JCP Web site lists over 500 members working on 90 outstanding JSRs as of the
start of 2003. If you would like to be a part of the ongoing development of Java, sign
up and start contributing to one of the existing JSRs at http://www.jcp.org.

Summary
This chapter has given a brief introduction to Java and to the J2EE platform. It is
by no means exhaustive but is more intended to give a basic grasp of the concepts.
You learned about Java and the Java Virtual Machine. You took a look at the evolu-
tion of the Java platform from J2SE to J2EE and examined the various component
types within the J2EE architecture. Using this information, you will be able to take
advantage of the following chapters, which will discuss the various APIs and their
usage in greater detail.

✦ ✦ ✦

c539663 ch01.qxd 7/25/03 9:13 AM Page 15

c539663 ch01.qxd 7/25/03 9:13 AM Page 16

Reviewing XML
Fundamentals

One of the most significant recent additions to J2EE is
its support for Web services and its integration of the

eXtensible Markup Language (XML) to facilitate faster devel-
opment of enterprise applications. To support Web services,
new application-programming interfaces (APIs) such as Java
API for XML-based Remote Procedure Calls (JAX-RPC) have
been added. This chapter will briefly discuss the history and
structure of XML. It will introduce key concepts such as DTDs,
XML Schemas, and XML Namespaces. It will also give exam-
ples of how to use XML efficiently.

Within this chapter, we will touch on some of the applications
of XML, going into greater detail in other parts of this book.
We will see that XML is a very flexible yet simple technology
that is well suited for electronic data interchange due to its
characteristics of being extensible and easy to use.

Explaining XML
XML was accepted as a standard by the World Wide Web
Consortium (W3C) in 1996 and was immediately heralded as
the wave of the future. This was because of its promise to
improve the Web experience by replacing HTML with XML,
making it possible to improve its presentation and redefine
the way in which documents and data were exchanged. In the
initial days, XML was primarily used as a more flexible markup
language for use in Web pages; however, as developers famil-
iarized themselves with XML and its related technologies, a
whole host of new uses such as database manipulation, con-
figuration manipulation, and service description have been
presented.

22C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Explaining XML

Understanding XML
document structure

Examining
XML parsers

Implementing
XML DTDs

Understanding
XML namespaces

Exploring
XML schemas

Working with
eXtensible Stylesheet
Language
Transformations
(XSLT)

Introducing J2EE
XML-based APIs

✦ ✦ ✦ ✦

c539663 ch02.qxd 7/25/03 9:13 AM Page 17

18 Part I ✦ Introduction

While XML is helping to revolutionize the software industry by introducing a new
document exchange format, it is a relatively simple technology. However its termi-
nology is beginning to be misused; for example, XSLT, which is an application of
XML, is sometime compared directly with XML itself. That, along with new function-
ality such as XML-Schema or XML Namespaces continuously being introduced to
fulfill XML’s promise, can make the task of fully grasping XML a seemingly daunting
task.

XML has its roots in the Standard Generalized Markup Language (SGML) and Hypertext
Markup Language (HTML). SGML was the industry’s first standardized markup lan-
guage, but it was far too complex and did not get widespread acceptance since the
required supporting software tended to be expensive. XML represented a concerted
effort to take the best principles from SGML and develop a simpler and more generic
markup language. The basic concept of XML is to use tags similar to the markup tags
used in HTML, to identify data in order to make it easier for another application to
understand the context of the data. Unlike HTML, XML’s flexibility allows for the
tagging of any type of data.

If you have ever written an HTML document, you have also written an XML document.
Unlike HTML documents, though, XML documents must adhere strictly to the rules,
which we will discuss in this chapter. To begin with, let’s look at two of the most
important restrictions on XML documents. First, all XML documents must be well
formed. Next, they must be valid.

Well-formed XML
A well-formed XML document is simply one that is correct syntactically and that
contains tags that are used properly. Here’s an example:

<myXML>
<nestedTag>
contained content

</nestedTag>
</myXML>

For example, use of correct case, correct nesting, and the presence of start and end
tags account for a well-formed XML document. XML documents must always be well
formed. An XML browser will only be able to view an XML document if no syntactical
errors are present; this forces developers to produce higher-quality documents.

Valid XML
An XML document is said to be valid if it follows the rules laid out by the Document
Tag Definition (DTD) or XML Schema for that document. (We will discuss DTDs and
XML-Schemas later in this chapter.) These rules specify which tags can be used and
what type of content they may contain. Before taking a more detailed look at how
XML is structured, let’s take a look at how HTML handles these issues.

c539663 ch02.qxd 7/25/03 9:13 AM Page 18

19Chapter 2 ✦ Reviewing XML Fundamentals

In HTML, the schema for HTML would be the HTML language definition itself.
Unfortunately, HTML browsers are lax in their enforcement of HTML guidelines,
thus perpetuating lazy development. This has led to poorly developed HTML con-
taining tags that are neither valid nor well formed. Listing 2-1 provides an example
of a bad HTML page.

Listing 2-1: An example of bad HTML

<html>
Hello, this is my <i>web page</i>

And this is a tag that will be ignored. <myTAG>
</body>
</HTML>

The preceding HTML code will display in your browser without any problems, but
you can see that it contains a tag called <myTAG> that is not a valid tag within HTML.
More seriously, it does not have a beginning <body> tag.

Listing 2-2 gives an example of a well-formed HTML document; however, it is still
lacking.

Listing 2-2: A well-formed HTML document

<html>
<head
><title>A better HTML page</title>

</head>

<body>
Hello, this is my <i>web page</i>

And this is a tag that will still be ignored. <myTAG>

</body>
</html>

The preceding HTML example still has a lot wrong with it, including that it does not
separate presentation logic from content logic. In fact, HTML does not provide the
ability to convey the context of content. In Listing 2-2 the text contained within the
... tags will be presented in bold. However, the actual meaning of that
content is not conveyed

c539663 ch02.qxd 7/25/03 9:13 AM Page 19

20 Part I ✦ Introduction

In addition, HTML is not extensible (meaning that new tags cannot be defined and
introduced into the document). In Listing 2-1 and Listing 2-2 the HTML browser
ignored the <myTAG> element. Typically, HTML browsers will ignore tags that they
do not understand. This may not be too serious in HTML; however, for document
exchange within more complex and critical systems, it could have disastrous effects.
Now that we have taken a look at the limitations of HTML, let’s consider the struc-
ture of an XML document.

Understanding XML Document Structure
XML documents consist of several elements that are similar to the tags used to make
up an HTML document. These elements are used to provide context to the informa-
tion that they surround. XML documents can be developed to be document-centric,
meaning that they are intended to be used by humans. However, XML documents
can also be data-centric, meaning that they are intended to be used by another
application and will generally contain data extracted from a database or data that
will be submitted to an API.

XML documents consist of the three following components:

✦ Prologue

✦ Elements

✦ Attributes

Prologue
Usually XML documents begin with a prologue like the following:

<? xml version=”1.0” encoding=”UTF-8”?>

The prologue, always enclosed within angle brackets (<>), declares the version of
XML being used (the current version is 1.0) and the encoding standard. If the pro-
logue is not present, the defaults (XML version 1.0 and an encoding standard of
UTF-8) are assumed; however, for interoperability purposes you should always
included the prologue. The prologue is the only element that has a slightly different
syntax from the others: It begins with a question mark (?).

Elements
The rest of an XML document is made up of a sequence of elements. Typically an
XML element will have the following format:

<element_tag_name attribute1_name=”attribute_value”
attribute2_na...>element_content</element_tag_name>

c539663 ch02.qxd 7/25/03 9:13 AM Page 20

21Chapter 2 ✦ Reviewing XML Fundamentals

Elements may contain either data or other nested elements; however, note that
unlike in HTML documents, in XML documents all element tags must have a closing
tag. Thus the HTML tags for a line break,
, and for a horizontal line, <HR>
would not be valid by themselves; they need to be closed with </BR> or </HR>
respectively. However, if no content needs to be enclosed, the start and end tags
may be compressed as
 or <HR/>.

Attributes
Within the element tag declaration it is also possible to include attributes that may
be used to further qualify the tag. Unlike in HTML, in XML the possible attributes
and their values can be defined in an accompanying DTD or schema. (DTDs and
schemas are covered later in this chapter.) Also, in XML documents tag and attribute
definitions are case-sensitive. Thus <important> and <IMPORTANT> are viewed as
different tags in XML because they are different cases. Let’s now take a look at how
XML documents are processed.

Examining XML Parsers
Much as HTML is parsed within an HTML browser, XML is parsed by a piece of soft-
ware called an XML parser (sometimes referred to as an XML processor). The func-
tionality required of an XML parser has been defined by the W3C, so it is fairly easy
to swap among different parsers. Basically, an XML parser provides an application
with access to the elements within a document, thus becoming the link between the
document and the application. The parser is responsible for making sure that the
XML document is well formed and (optionally) if it is valid.

Figure 2-1 provides a high-level overview of the processing of an XML document.
An XML document along with its associated schema is input into an XML parser.
The parser checks that the document is well formed and, if the schema is also
available, checks that the XML is valid according to what has been defined in the
schema. Because the schema is also an XML document, it is validated recursively
against another schema, respectively. The parser then provides access methods for
another application to access the data that was contained within the original XML
document.

A document can be parsed in one of two ways: via the Document Object Model
(DOM) specified by the W3C, or via the Simple API for XML (SAX), which is also
popular.

c539663 ch02.qxd 7/25/03 9:13 AM Page 21

22 Part I ✦ Introduction

Figure 2-1: XML processing

DOM parsers
A DOM parser reads an entire document at once and holds a corresponding tree-like
structure in memory. Each element within the document is a node in the tree. Using
the org.w3c.dom.Node interface specified by the W3C, another application can tra-
verse or modify the tree. In Figure 2-2, the XML on the left is parsed into memory to
have a similar structure tree on the right. The XML is read line by line. The prologue
indicates the XML version and the encoding that is being used to process the rest
of the document. As the elements are encountered, the processor develops the
associated tree. For example, when it encounters the first <customerName> tag, it
knows that any elements encountered within are children elements until a corre-
sponding </customerName> tag is encountered. This document does not have a
schema or DTD associated with it, thus the processor will not check for validity.
We will see in a later section how we can enforce the validity of a document using
a schema or DTD.

Figure 2-2: A DOM parser’s memory structure

SAX parsers
A SAX parser is an event-driven parser. It reads the document sequentially without
storing the structure into memory, thus making SAX more efficient than DOM. At the
start of the document, the SAX parser begins by making callback functions based

John

<?xml version = "1.0" encoding = "utf-8"?>
<AirlineBooking>
 <customerName>
 <first_name>John/first_name>
 <last_name>Doe/last_name>
 </customerName>
 <date>2004-02-02</date>
 <airline>United Airlines</airline>
 <flight_no>1234</flight_no>
</AirlineBooking>

AirlineBooking

date airline flight_nocustomerName

first_name last_name

Doe

2004-02-02 United
Airlines

1234

XML
Doc

XML
Processor

Schema

Application

c539663 ch02.qxd 7/25/03 9:13 AM Page 22

23Chapter 2 ✦ Reviewing XML Fundamentals

on the tags it encounters. Most XML parsers support SAX, although the W3C stan-
dards group has not officially accepted it.

In Figure 2-3, the SAX processor issues events for the start and end of the XML doc-
ument, for the start and end of each tag, and for each piece of character data. In
most instances the XML document will also include processing instructions such as
namespaces and schema instructions, each of which will also result in a SAX event.
In the following example, when the XML document is processed by the SAX parser,
an event is triggered by the start of the document, and then for each contained ele-
ment. The first element encountered is the <carRental> tag, which causes a start
element event. The corresponding end element tag is not triggered until all of the
other elements have been processed and the final element </carRental> tag is
encountered.

Figure 2-3: Event sequence via SAX processing

DOM versus SAX
Both DOM and SAX have their benefits and drawbacks. Because DOM stores the
structure of the document into memory, it requires more resources and is therefore
less efficient; however, it enables easy traversal between elements, making it more
suitable than SAX for modifying documents.

SAX, on the other hand, is more lightweight, retaining no memory of the structure
of the document; this makes it less memory-intensive. SAX is more suitable than
DOM when applications are more concerned with individual elements than with
where those elements reside within the document. Choosing a parser is an impor-
tant decision and the expected needs of the application should be considered
wisely.

J2EE provides an API for handling XML parsing in the form of JAXP (Java API for
XML Processing), which enables you to use either DOM or SAX.

Note

<?xml version = "1.0" encoding = "utf-8"?>
<CarRental>
 <customerName>JohnDoe
 </customerName>
 <date>2004-02-02</date>
 <model>Oldsmobile Alero</model>
</CarRental>

Start Document
Start Element "CarRental"
Start Element "customerName"
Character Data "John Doe"
End Element "customerName"
Start Element "date"
Character Data "2004-02-02"
End Element "date"
Start Element "model"
Character Data "Oldsmobile Alero"
End Element "model"
End Element "CarRental"
End Document

c539663 ch02.qxd 7/25/03 9:13 AM Page 23

24 Part I ✦ Introduction

So far, we have only looked at how to create a well-formed XML document.
However, to create a valid XML document, you need to specify a DTD or an XML
Schema, which describes the valid tags and their constraints permitted for the
accompanying XML document. We will first look at DTDs and compare them with
XML Schema.

Implementing XML DTDs
Document Tag Definitions (DTDs) were the initial mechanism defined by the W3C
for specifying the validity of an XML document. A corresponding DTD specifies the
elements that an XML document may contain — its attributes, child elements, and
content type. Prior to XML Schemas, if an XML document did not have a DTD, it
would have been up to the consuming application to ensure that the document was
valid. This is not a maintainable approach since it would require modification to the
consuming application whenever the structure of the XML document would change.
With a DTD, the XML parser can check that the corresponding XML is valid, thus
reducing the burden on applications.

You can specify a DTD in one of two ways. The first is by defining it within the XML
document itself, and the second is by specifying the location of the DTD within the
prologue. A DTD for a TravelInformation element might look like this:

<!DOCTYPE TravelInformation [
<!ELEMENT TravelInformation (Item+)>
<!ELEMENT Item (CDATA)>
]>

The initial tag declares the root element for the document. The enclosing brackets
([]) list the possible elements, their attributes, the order and number of allowed
occurrences, and the possible values. In the preceding example, the first element is
stated to be TravelInformation and it must include at least one Item element.
The plus (+) character denotes that the Item element must be present. An asterisk
(*) would denote that the corresponding element could occur any number times
(including none), and a question mark (?) would denote that it could occur only
either zero or one times. The following table summarizes these special characters:

Special Character Effect on Preceding Element D

+ Must occur at least once

* May occur any amount of times (including zero)

? May only appear zero or one times

c539663 ch02.qxd 7/25/03 9:13 AM Page 24

25Chapter 2 ✦ Reviewing XML Fundamentals

The keyword CDATA specifies that the element data may be any character data. The
other possible values that a tag may specify for the data enclosed are #PCDATA
(parsed character data), which allows any character data other than markup or
special characters, or the tag may specify that another element can be contained
as the TravelInformation tag declared.

Attributes may also be declared by means of the following syntax:

<!ATTLIST element-name attribute-name attribute-type
default-value>

The default value can be specified to have a value, to require that it must be given
by the producer of the XML document, or to be a fixed value. In the current exam-
ple we could specify an attribute for the Item element as follows:

<!ATTLIST Item status (confirmed|paid) “confirmed”>

This declaration specifies that the status attribute must be present with a value of
confirmed or paid. If the author of the XML page does not explicitly include the
attribute, a default value of confirmed will be included by the DTD.

In order to internally specify the DTD, we can list the DTD specification directly into
the XML document as shown in Listing 2-3.

Listing 2-3: TravelInfo_InternalDTD.xml

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE TravelInformation [
<!ELEMENT TravelInformation (Item+)>
<!ELEMENT Item (#PCDATA)>
<!ATTLIST Item status (confirmed|paid) “confirmed”>
]>

<TravelInformation>
<Item>

...
</Item>
<Item status=”paid”>
...
</Item>

</TravelInformation>

As you can see, in the preceding example only the second Item element declares
the status attribute; however, when you view the document in a browser the
status attribute for the first Item element will be included with a default value of
confirmed.

c539663 ch02.qxd 7/25/03 9:13 AM Page 25

26 Part I ✦ Introduction

To externally specify the DTD, modify the document-type tag element at the beginning
of the XML document to what you see in Listing 2-4, where TravelInformation.dtd
is the name of the file that contains the remaining DTD. That DTD appears in List-
ing 2-5.

Listing 2-4: TravelInfo_External.xml

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE TravelInformation SYSTEM “TravelInformation.dtd”>
<TravelInformation>
<Item>
...

</Item>
<Item status=”paid”> ...
</Item>

</TravelInformation>

Listing 2-5: TravelInformation.dtd

<?xml version=”1.0” encoding=”UTF-8”?>
<!ELEMENT TravelInformation (Item+)>
<!ELEMENT Item (#PCDATA)>
<!ATTLIST Item
status (confirmed | paid) “confirmed”

>

The preceding examples should give you a beginner’s grasp of using DTDs; after
playing around a bit you will see how they are lacking. DTDs grew from SGML, but
the limitation of using DTDs in XML was quickly evident. The primary limitation is
that DTDs require XML parsers to understand a second syntax because DTDs are
not specified in XML. In addition, DTDs do not support namespaces very well.
Enter XML schemas. However, before we look at XML Schemas, let’s take a look
at namespaces.

Understanding XML Namespaces
Namespaces are similar to those in C++ or packages within Java. They provide a
way to distinguish among tags in order to make them globally unique. For example,
imagine the airline-ticket example from the DOM parser section earlier in this chap-
ter. We also have another travel plan for a car rental, and both reservations may

c539663 ch02.qxd 7/25/03 9:13 AM Page 26

27Chapter 2 ✦ Reviewing XML Fundamentals

need to be included in an overall itinerary that uses the TravelInformation
schema. Because the Item tag allows any character data to be included we can
embed our AirlineBooking and CarRental XML element examples from the XML
Parser section within it.

The code shown in Listing 2-6 may be used to deliver a message between systems
in order to relay all reservations.

Listing 2-6: Delivering the message

<?xml version=”1.0” encoding=”utf-8”?>
<TravelInformation>
<Item>
<AirlineBooking>
<customerName>John Doe</customerName>
<date>2004-02-02</date>
<airline>United Airlines</airline>
<flight_no>1234</flight_no>

</AirlineBooking>
</Item>
<Item>
<CarRental>
<customerName>John Doe</customerName>
<date>2003-02-02</date>
<model>Oldsmobile Alero</model>

</CarRental>
</Item

</TravelInformation>

The problem with this is that it provides no way for the receiving application to
distinguish which tags are for which reservation. For example, customerName
and date appear within both AirlineBooking and CarRental. If we add the tag
<notes> to both Item and AirlineBooking, the problem will be compounded
since there will now be a tag with the same name in two different locations of the
document and there is no way for the processing application to distinguish between
them when they are encountered. Listing 2-7 shows the new XML document with
the new <notes> tag entered in the two different locations.

Listing 2-7: The new XML document

<?xml version=”1.0” encoding=”UTF-8”?>
<TravelInformation>
<Item>
<note>A note added to the Item tag</note>

Continued

c539663 ch02.qxd 7/25/03 9:13 AM Page 27

28 Part I ✦ Introduction

Listing 2-7 (continued)

<AirlineBooking>
<customerName>John Doe</customerName>
<date>2004-02-02</date>
<airline>United Airlines</airline>
<flight_no>1234</flight_no>
<note>A note for the AirlineBooking tag</note>

</AirlineBooking>
</Item>
<Item>
<CarRental>
<customerName>John Doe</customerName>
<date>2003-02-02</date>
<model>Oldsmobile Alero</model>

</CarRental>
</Item>

</TravelInformation>

Namespaces provide a way to separate tags into groups using Uniform Resource
Identifiers (URIs). Namespaces can be identified within the prologue of the docu-
ment, which allows subsequent tags to make use of them. Using namespaces, we
can make the TravelInformation XML document more comprehensible. In Listing
2-8, we have added namespace declarations to distinguish the different tags.

Listing 2-8: TravelInformationNS.xml

<?xml version=”1.0” encoding=”UTF-8”?>

<TravelInformation
xmlns=”http://www.j2eebible.com/chap02/TravelInformation”
xmlns:flight=”http://www.j2eebible.com/chap02/Flight”
xmlns:car=”http://www.j2eebible.com/chap02/Car”>

<Item>
<note>A note added to the Item tag</note>
<flight:AirlineBooking>
<flight:customerName>John Doe</flight:customerName>
<flight:airline>United Airlines</flight:airline>
<flight:flight_no>1234</flight:flight_no>
<flight:note>A note for the AirlineBooking tag
</flight:note>

</flight:AirlineBooking>
</Item>
<Item>
<note>Another note added to Item</note>
<car:CarRental>

c539663 ch02.qxd 7/25/03 9:13 AM Page 28

29Chapter 2 ✦ Reviewing XML Fundamentals

<car:customerName>John Doe</car:customerName>
<car:date>2003-02-02</car:date>
<car:model>Oldsmobile Alero</car:model>

</car:CarRental>
</Item>

</TravelInformation>

The preceding listing contains three namespaces. The first specified namespace,
xmlns=”http://www.j2eebible.com/chap02/TravelInformation” is the
default and is not given a name. The other two namespaces are flight and car.
Any tag can specify that it belongs to a particular namespace by prefixing its decla-
ration with the namespace name and a colon. For example, the AirlineBooking
tag is now prefixed by flight:, which indicates that it belongs to that namespace.
In the current example it is necessary to explicitly specify that all tags contained
within AirlineBooking also belong to the flight namespace.

An alternate syntax can be used to remove the need to explicitly add the namespace
to every tag. Namespaces can be included directly in a tag to specify a different
default until the tag has been closed, as shown in Listing 2-9.

Listing 2-9: TravelInformationNS2.xml

<?xml version=”1.0” encoding=”UTF-8”?>
<TravelInformation
xmlns=”http://www.j2eebible.com/chap02/TravelInformation”>

<Item>
<note>A note added to the Item tag</note>
<AirlineBooking
xmlns=”http://www.j2eebible.com/chap02/Flight”>
<customerName>John Doe</customerName>
<airline>United Airlines</airline>
<flight_no>1234</flight_no>
<note>A note for the AirlineBooking tag
</note>

</AirlineBooking>
</Item>
<Item>
<note>Another note added to Item</note>
<CarRental
xmlns=”http://www.j2eebible.com/chap02/Car”>
<customerName>John Doe</customerName>
<date>2003-02-02</date>
<model>Oldsmobile Alero</model>

</CarRental>
</Item>

</TravelInformation>

c539663 ch02.qxd 7/25/03 9:13 AM Page 29

30 Part I ✦ Introduction

The preceding listing may be possible in a scenario in which the application creating
the TravelInformation document is not the same application that has developed
the other documents and does not know about their respective contents or their
namespaces. The validation of the individual documents needs to be performed;
however, because DTDs do not support namespaces very well, XML Schema is the
preferred mechanism for such validation.

Exploring XML Schema
The XML Schema, compared to DTDs, is a more flexible and powerful means of spec-
ifying the validity of an XML document. Schemas are superior in part because they
are also specified in XML, and thus are extensible. The XML Schema specification is
an extremely large and complex specification, and so DTDs continue to be used.

A complete tutorial on XML Schema is beyond the scope of this book. However, we
can look at the simple schema shown in Listing 2-10.

Listing 2-10: SimpleExample.xsd

<?xml version=”1.0” encoding=”UTF-8”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<xsd:element name=”myTag”>
<xsd:complexType>
<xsd:sequence>
<xsd:element name=”FirstName” type=”xsd:string”/>
<xsd:element name=”LastName” type=”xsd:string”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:annotation>
<xsd:documentation xml:lang=”en”>
This is a simple example of a schema.

</xsd:documentation>
</xsd:annotation>

</xsd:schema>

The preceding schema is pretty straightforward. Like all XML files, it begins with
the prologue declaration. That is immediately followed by the first tag schema,
prefixed by the namespace xsd, which is defined to point at the URI http://www.
w3.org/2001/XMLSchema. XML Schema defines the schema tag, along with all the

c539663 ch02.qxd 7/25/03 9:13 AM Page 30

31Chapter 2 ✦ Reviewing XML Fundamentals

other tags in the preceding document that are prefixed by xsd. The first xsd:
element tag defines a new tag with the name myTag and the first enclosing tag
defines it to be of type complexType. This means that it is a tag that may hold both
other element tags and attributes. The enclosed xsd:element tags define simple
elements — simple meaning that that they cannot contain other element tags or
attributes. They must be of one of the data types defined within XML Schema. The
most common data types are as follows:

✦ string

✦ normalizedString

✦ token

✦ byte

✦ int

✦ long

✦ short

✦ float

✦ double

✦ decimal

✦ time

✦ dateTime

✦ date

The string data type is quite useful for enabling the embedding of tags or other
XML documents.

The XML Schema data types are far more powerful than those provided in DTDs,
in that they enable you to define specific types of character data. In DTDs, for
example, the definition <!ELEMENT date (#PCDATA)> leaves room for failure in
interoperability because the date entry may be given as 2004-04-06, which could
mean April 6, 2004 to one application and June 4, 2004 to another. In XML Schema,
the format of the date data type has been strictly defined as YYYY-MM-DD.

Lastly, in the preceding schema example is a new way of inserting comments — by
means of the tags xsd:annotation and xsd:documentation. This mechanism for
adding comments is very useful in that it allows XML tools to access the comments
as needed.

To use the preceding schema definition in a XML document you can simply add two
new attributes to the root element, as shown in Listing 2-11.

c539663 ch02.qxd 7/25/03 9:13 AM Page 31

32 Part I ✦ Introduction

Listing 2-11: SimpleExample.xml

<?xml version=”1.0” encoding=”UTF-8”?>
<myTag

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:noNamespaceSchemaLocation=”SimpleExample.xsd”>

<FirstName>John</FirstName>
<LastName>Doe</LastName>

</myTag>

The first added attribute defines a namespace, xsi, associated with http://www.
w3.org/2001/XMLSchema-instance, and then defines the qualified attribute xsi:
noNamespaceSchemaLocation with the schema document simpleExample.xsd. The
declaration noNamespaceSchemaLocation declares that in absence of a namespace,
this schema should be used as the default. Alternatively, you can use the attribute
schemaLocation to associate specific namespaces with different schemas, which
we will demonstrate in Listing 2-12.

Listing 2-12: TravelInformationSchema.xml

<?xml version=”1.0” encoding=”UTF-8”?>

<TravelInformation
xmlns=”http://www.j2eebible.com/chap02/TravelInformation”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:noNamespaceSchemaLocation=”TravelInformationSchema.xsd”>

<Item>
<note>A note added to the Item tag</note>
<AirlineBooking
xmlns=”http://www.j2eebible.com/chap02/AirlineBooking”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=

“http://www.j2eebible.com/chap02/AirlineBooking
AirlineBooking.xsd”>

<customerName>John Doe</customerName>
<airline>United Airlines</airline>
<flight_no>1234</flight_no>
<note>A note for the AirlineBooking tag
</note>

</AirlineBooking>
</Item>

c539663 ch02.qxd 7/25/03 9:13 AM Page 32

33Chapter 2 ✦ Reviewing XML Fundamentals

<Item>
<note>Another note added to Item</note>
<CarRental
xmlns=”http://www.j2eebible.com/chap02/Car”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:schemaLocation=”http://www.j2eebible.com/chap02/CarRental
CarRental.xsd”>

<customerName>John Doe</customerName>
<date>2003-02-02</date>
<model>Oldsmobile Alero</model>

</CarRental>
</Item>

</TravelInformation>

Listing 2-12 specifies that the TravelInformation namespace is associated with
TravelInformation.xsd. Listing 2-13 displays TravelInformation.xsd.

Listing 2-13: TravelInformationSchema.xsd

<?xml version=”1.0” encoding=”UTF-8”?>
<xsd:schema
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

targetNamespace=”http://www.j2eebible.com/chap02/TravelInformat
ion”

xmlns=”http://www.j2eebible.com/chap02/TravelInformation”
elementFormDefault=”qualified”>

<xsd:element name=”Item”>
<xsd:complexType mixed=”true”>
<xsd:sequence>
<xsd:any/>

</xsd:sequence>
<xsd:attribute name=”status” type=”xsd:string”

default=”confirmed”/>
</xsd:complexType>

</xsd:element>

<xsd:element name=”TravelInformation”>
<xsd:complexType>
<xsd:sequence>
<xsd:element ref=”Item” minOccurs=”0”

maxOccurs=”unbounded”/>

Continued

c539663 ch02.qxd 7/25/03 9:13 AM Page 33

34 Part I ✦ Introduction

Listing 2-13 (continued)

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:annotation>
<xsd:documentation xml:lang=”en”>
TravelInformation schema for J2EEBible Chapter.

</xsd:documentation>
</xsd:annotation>

</xsd:schema>

The XSD in Listing 2-13 describes two different complexTypes. The first is the Item
tag. It specifies that it may have any type of content within itself — meaning that it
may contain another XML document — and it also specifies that it may include the
status attribute. The second complexType is the TravelInformation tag, which is
simply defined as an unbounded sequence of Item tags.

We have also specified the file for the http://www.j2eebible.com/chap02/
TravelInformation namespace using the targetNamespace keyword.

Working with eXtensible Stylesheet
Language Transformations (XSLT)

So far we have not distinguished between documents intended to be read by
humans and those developed for machines. If documents are intended to be read
by humans, presentation must be considered. XML itself does not necessarily con-
tain any presentation logic. In keeping with the methodology of the model-view-
control (MVC) pattern, in which presentation logic is separated from the model
and the control logic, the W3C has defined Extensible Stylesheet Language
Transformations (XSLT) for presentation.

In the example that we are using of arranging travel schedules, the data are being
described without our knowing how it is going to be presented. Depending upon
the medium that will be used to view the information (a desktop, PDA, or a mobile
phone), the presentation may vary. We can use XSLT to define a stylesheet that will
make the presentation decisions.

A stylesheet is a document that can be applied to another document to add presen-
tation logic. Within the browser world, Cascading StyleSheets (CSS) has proliferated
in order to alter the presentation of HTML pages. Similarly, XSLT can be applied to

c539663 ch02.qxd 7/25/03 9:13 AM Page 34

35Chapter 2 ✦ Reviewing XML Fundamentals

XML documents in order to alter their presentation; however, XSLT is far more pow-
erful than CSS. XSLT can be used not only to convey to a browser how to display an
XML file, but also to transform an XML document into another XML document alto-
gether. Furthermore, XSLT documents are defined in XML, and therefore can take
advantage of all the benefits of XML.

Consider our current example, wherein we have travel details embedded in a single
document. The application will need to transform the document so that it can be
read by the device requesting it.

XSLT is a great example of the power of XML. An XSLT document has a defined
schema and is processed by a specialized XML processor that understands that
schema, matching the XSLT tags to instructions for XSLT transformation. While the
XSLT specification is far too large to include here, we will step through some basic
examples to give you a feel for them.

Producing simple HTML with XSLT
You can apply an XSL file to a document by including a tag of the format

<?xml-stylesheet type=”text/xsl” href=”<docLocation>”?>

in the XML document to be transformed. In the preceding code fragment,
<docLocation> should be replaced by the location of the XSL file. Alternatively,
the XSL file can be applied externally.

For example, if you know that the XSL file to be applied will always have the name
TravelInformation.xsl, you can add the following name to the
TravelInformationSchema.xml document:

<?xml-stylesheet type=”text/xsl” href=”TravelInformation.xsl”?>

This is not to say that the contents of that XSL document cannot change.

For example, TravelInformation.xsl may look like Listing 2-14.

Listing 2-14: TravelInformation.xsl

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:def=”http://www.j2eebible.com/chap02/TravelInformation”
xmlns:car=”http://www.j2eebible.com/chap02/CarRental”
xmlns:flight=”http://www.j2eebible.com/chap02/AirlineBooking”>
<xsl:output method=”html” version=”1.0” encoding=”UTF-8”/>

Continued

c539663 ch02.qxd 7/25/03 9:13 AM Page 35

36 Part I ✦ Introduction

Listing 2-14 (continued)

<xsl:template match=”/”>
<html>
<head>
<title>XSLT Sample</title>

</head>
<body>
<table border=”1” bgcolor=”yellow”>
<thead>
<tr>
<th>Type</th>
<th>Date</th>
<th>Name</th>
<th>Operator</th>
<th>Details</th>

</tr>
</thead>

<xsl:apply-templates/>
</table>

</body>
</html>

</xsl:template>
<xsl:template match=”car:CarRental”>
<tr>
<td>Car Rental</td>
<td><xsl:value-of select=”car:date”/></td>
<td><xsl:value-of select=”car:customerName”/></td>
<td><xsl:value-of select=”car:model”/></td>

</tr>
</xsl:template>
<xsl:template match=”flight:AirlineBooking”>
<tr>
<td>Flight</td>
<td><xsl:value-of select=”flight:date”/></td>
<td><xsl:value-of select=”flight:customerName”/></td>
<td><xsl:value-of select=”flight:airline”/></td>
<td><xsl:value-of select=”flight:flight_no”/></td>

</tr>
</xsl:template>
<xsl:template match=”def:note”/>

</xsl:stylesheet>

Like all XML files, the XSL file begins with the prologue declaration, which is followed
by <xsl:stylesheet>, the first tag specific to XSLT. This is the root tag for XSLT.
You can specify other namespaces in addition to xsl=http://www.w3.org/1999/
XSL/Transform if you know something about the document to be transformed. In

c539663 ch02.qxd 7/25/03 9:13 AM Page 36

37Chapter 2 ✦ Reviewing XML Fundamentals

this case, you know that three namespaces will be present: the default one from the
source XML document, the namespace corresponding to the CarRental XML, and
the namespace corresponding to the AirlineBooking XML. It is only necessary,
though, to include the namespaces if you want the XSL document to manipulate the
content of the XML.

The <xsl:output> tag specifies the output method to be xml. Alternatively, the
method could have been set to html, text, or the like. Much like an explicit pro-
logue declaration, the output has been defined to be of version 1.0 with an encod-
ing of UTF-8.

The only other tag embedded within the xsl:stylesheet tag is the xsl:template
tag. Templates contain the core logic for an XSL document. They enable processing
based either on encountered tags or on the content embedded within.

The xsl:template tag includes a match indicating where to apply the template. In
the current example the first template tag contains the phrase match=”/”, which
specifies that the template should be applied to the root. When the XSL processor
encounters the TravelInformation tag of the XML document being transformed,
it realizes that it is the root element and it is matched in the XSL file by the slash (/)
qualifier.

The embedded content is then delivered to the output, unless it is a tag belonging
to the xsl namespace. Tags in the xsl namespace are also interpreted to commands
by the XSLT processor. The first tag encountered is the apply-templates tag. This
indicates to the processor that it should apply all the additional templates to the
current tag in the original XML document or optionally to a sub-node if the select
attribute is specified.

In the current example there are three additional templates:

✦ match=”car:CarRental”

✦ match=”flight:AirlineBooking”

✦ match=”def:note”

The original template started the setup of an HTML table. The CarRental and
AirlineBooking templates simply cycle through the contents of the corresponding
matching nodes and search for sub-nodes that match the tags specified by the
select attribute in the <xsl:value-of...> tags and processor output their values.

If you view the preceding document within a browser, you will see a simple HTML
document with a table listing the two different bookings. The notes will not be dis-
played because no action will be taken in the corresponding template. Listing 2-15
shows the output of viewing the above XML document with the XSLT directive
added.

c539663 ch02.qxd 7/25/03 9:13 AM Page 37

38 Part I ✦ Introduction

Listing 2-15: Resulting HTML

<html xmlns:car=”http://www.j2eebible.com/chap02/CarRental”
xmlns:def=”http://www.j2eebible.com/chap02/TravelInformation”
xmlns:flight=”http://www.j2eebible.com/chap02/AirlineBooking”>
<head>
<META http-equiv=”Content-Type” content=”text/html;
charset=UTF-8”>
<title>XSLT Sample</title></head>
<body><table border=”1” bgcolor=”blue”>
<thead>
<tr><th>Type</th>
<th>Date</th><th>Name</th>
<th>Service Provider</th>
<th>Details</th></tr>
</thead>
<tr><td>Flight</td>
<td>2004-02-02</td>
<td>John Doe</td>
<td>United Airlines</td>
<td>1234</td></tr>
<tr><td>Car Rental</td>
<td>2004-02-02</td>
<td>John Doe</td>
<td>Oldsmobile Alero</td>
</tr>
</table>
</body></html>

Note that matches will work for every instance of the expression. For example, in
the preceding XSL document, replace the match in the first template with def:Item.
If you transform the XML document now, you will see that two tables are present in
the resulting page — one for each entry in the original document. When it encoun-
ters the first def:Item tag the XSLT processor outputs the initial table elements,
and then matches with the flight:AirlineBooking tag with the XSLT’s apply-
templates tag, completing the first table. When it encounters the second Item tag
the processor outputs the second table.

Producing a Wireless Markup Language (WML)
Document with XML
The power of XSLT is that it can modify presentation based on the context of the
request. For example, if the request for the preceding TravelInformation XML
were to be made using a mobile phone, the request would need to be formatted
with WML in order to be displayed on the device (though if the device were WAP
2.0–compliant, XHTML might make more sense).

c539663 ch02.qxd 7/25/03 9:13 AM Page 38

39Chapter 2 ✦ Reviewing XML Fundamentals

Listing 2-16 is an example of an XSL file for transforming TravelInformation into
WML.

Listing 2-16: XSL to produce WML

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns=”http://http://www.w3.org/TR/xhtml1”
xmlns:def=”http://www.j2eebible.com/chap02/TravelInformation”
xmlns:car=”http://www.j2eebible.com/chap02/CarRental”
xmlns:flight=”http://www.j2eebible.com/chap02/AirlineBooking”>
<xsl:output method=”xml” encoding=”UTF-8”/>
<xsl:template match=”/”>
<wml>
<card>Welcome!
</card>

<xsl:apply-templates/>
</wml>

</xsl:template>
<xsl:template match=”def:note”/>
<xsl:template match=”car:CarRental”>
<card>
Car Rental

Date:

<xsl:value-of select=”car:date”/>
Name:

<xsl:value-of select=”car:customerName”/>
Car Model:

<xsl:value-of select=”car:model”/>

</card>
</xsl:template>
<xsl:template match=”flight:AirlineBooking”>
<card>
Flight

Date:

<xsl:value-of select=”flight:date”/>
Name:

<xsl:value-of select=”flight:customerName”/>

Airline:
<xsl:value-of select=”flight:airline”/>

Flight Number:
<xsl:value-of select=”flight:flight_no”/>

</card>
</xsl:template>

</xsl:stylesheet>

c539663 ch02.qxd 7/25/03 9:13 AM Page 39

40 Part I ✦ Introduction

The preceding XSL is very straightforward. It begins with the prologue and the
opening XSL tag <xsl:stylesheet>, within which are the necessary namespaces.
Following this are the same xsl:output and xsl:template tags that were in the
previous example, with the formatting changed so that WML is created instead of
HTML.

When you’re applying an XSL, it is important to understand the way in which the
XSLT processor will progress through the XML document. In XSLT processing, the
order in which the matching occurs can affect the way in which documents are
transformed, if the XSL tags are applied in an unexpected order.

The previous two examples are a good introduction to XSLT, but you should be
aware that they hardly scratch the surface of its capabilities. For more information
on the XSLT spec, visit http://www.w3.org/Style/XSL/.

Introducing J2EE XML–Based APIs
A number of Java APIs are available to facilitate the manipulation, development,
and usage of XML. Table 2-1 identifies each of them.

Table 2-1
Java XMLAPIs

API Full API Name Description

JAXP Java API for XML Processing JAXP enables the processing of
XML documents by either DOM
or SAX. It also provides APIs to
apply XSL Transformations.

JAXM Java API for XML Messaging JAXM is an easy-to-use API that
enables you to develop XML-
based messages using SOAP.

JAX-RPC Java API for XML–Remote Procedure Call JAX-RPC also uses SOAP but
specifically for the construction
of calls to be made when Web
services are being used.

JAXB Java API XML Binding JAXB facilitates the development
of Java classes to represent XML
schemas, making XML
documents easier to process.

JAXR Java API for XML Registries JAXR makes the deployment and
discovery of Web services easier.

c539663 ch02.qxd 7/25/03 9:13 AM Page 40

41Chapter 2 ✦ Reviewing XML Fundamentals

Summary
In this chapter we took a look at XML, its origins, and some of its uses. In doing so
we contrasted it with HTML and highlighted XML’s strict enforcement to be well
formed and valid. We provided a brief introduction to DOM and SAX, comparing
their uses and their benefits and drawbacks. Key concepts such as DTDs, XML
Schemas, and XML Namespaces were introduced in this chapter along with their
syntax and application to XML documents.

Finally, we discussed XSLT, a great example of an XML-based application, which
allows for transforming XML documents, usually for presentation purposes. You
should now be well armed to delve into APIs that utilize XML. Within other chapters
in this book, we will take a look at the Java XML APIs in further detail and see how
they fit into the J2EE architecture.

✦ ✦ ✦

c539663 ch02.qxd 7/25/03 9:13 AM Page 41

c539663 ch02.qxd 7/25/03 9:13 AM Page 42

Introducing
Application
Servers

Discussing the ins and outs of the various APIs within the
J2EE platform is all well and good, but at some point

someone has to actually do the work and provide the function-
ality behind the method calls your code so heavily relies on.
For example, when your servlet is invoked via its service()
method, who invokes this call? Who manages the request and
response? This is where the application server fits in, provid-
ing the housekeeping for your business logic.

By all accounts your firm’s choice of application server
should not influence your design in the slightest. You should
always design for the J2EE platform and resist the urge to use
any libraries that may tie you to a particular vendor’s platform.
That said, sometimes a vendor will offer a very attractive
library that you can’t resist. While this pretty much ties you
to that particular vendor, we’ll take a look at a technique that
will make this tie less painful and easier to undo should you
decide to port to another vendor.

This chapter will explain the role the application server plays
in the Java space and the characteristics that define an official
J2EE application server.

Implementing the J2EE Platform
The J2EE platform is a large collection of APIs, all working
together to provide a unified platform for enterprise
development.

33C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Implementing the
J2EE platform

Understanding
the features of an
application server

Examining full J2EE
implementations

Examining partial
J2EE implementations

Avoiding vendor
lock-in

✦ ✦ ✦ ✦

c539663 ch03.qxd 7/25/03 9:13 AM Page 43

44 Part I ✦ Introduction

The J2EE platform consists of various components and services that are available
and operate in the following containers:

✦ Applet container

✦ Applet client container

✦ Web container

✦ Enterprise JavaBeans (EJB) container

J2EE components and services are as follows:

✦ Applets

✦ Servlets

✦ JSP (JavaServer Pages)

✦ EJB (Enterprise JavaBeans)

✦ JavaMail

✦ JMS (Java Messaging Service)

✦ Connectors

✦ JMX (Java Management Extensions)

✦ JTA (Java Transaction API)

✦ JNDI (Java Naming and Directory Interface)

✦ JDBC (Java Database Connectivity)

✦ Management tools

✦ Web services

✦ Java IDL

✦ RMI-IIOP protocol

✦ JAXP (Java API for XML Parsing)

✦ JAXR (Java API for XML Registries)

✦ JACC (Java Authorization Service Provider Contract for Containers)

✦ JAX_RPC (Java API for XML-based RPC)

✦ SAAJ (SOAP Attachments API for Java)

✦ JAF (JavaBeans Activation Framework)

✦ Security Services

A J2EE platform requires a database, accessible from these components, using JDBC
API. However, J2EE itself does not actually implement these components but relies
on third-party vendors (licensees) to provide the actual implementation. Because

c539663 ch03.qxd 7/25/03 9:13 AM Page 44

45Chapter 3 ✦ Introducing Application Servers

the whole underpinning of J2EE is “develop once, deploy anywhere,” it is very
important to ensure that implementation is tightly monitored with no areas open
for misinterpretation. This is where the J2EE Compatibility Test Suite (CTS) fits in.
This is a comprehensive suite of tests that an application server must pass before
it can carry the official “J2EE Certified” branding. The CTS consists of the following
types of tests:

Signature tests check that all required elements of all J2EE components are
included.

API tests check that all required API are implemented and each individual API
meets all requirements of specification.

End-to-end integration tests check compatibility of components, for example
the client application has to access a database using Enterprise JavaBeans
components.

Passing these tests ensures that any application developed to the J2EE APIs will run
on any server that has been certified as J2EE-compliant.

But how do you know if the application you have written is indeed J2EE-compliant?
As a developer you can have your application checked under the Java Verification
Program. This program, much like “100% Java,”(a set of guidelines to ensure that
your program is portable) has been designed to allow companies to determine
whether their enterprise applications are truly compliant to J2EE and thus deploy-
able to any of the Java application servers. You can download the program from
http://java.sun.com/j2ee/verified/. It is not free. You must also pay Sun a
license fee for permission to use the testing software and all the branding that goes
with it should your application pass the tests.

Each J2EE application server provides developers with a number of features that
will be discussed in the next section.

Understanding the Features
of an Application Server

The previous section dealt with the implementation of an application server and
the various APIs it has to provide for before being considered a J2EE platform. This
section discusses the following features that an application server should provide:

✦ Scalability

✦ Client agnosticism

✦ Server management

✦ Development

c539663 ch03.qxd 7/25/03 9:13 AM Page 45

46 Part I ✦ Introduction

Scalability
A scalable piece of software is thought to be able to cope equally well with one client
or a much larger number of concurrent Web clients, without requiring complete re-
design of the software. More resources might be required for more clients, but only
on the systems side, not in the application software.

Of course, we are discussing this from the perspective of the client programs access-
ing distributed applications that run under control of the application servers but
scaling software is not exclusive to such applications. Consider writing a text editor.
What upper limit will you impose on the size of file you can edit? 1MB? 10MB? 100MB?
At what point will you say, “Enough is enough?” If you write your text editor with a
limit, the editor will not be considered scalable.

The same logic applies when it comes to processing clients in a J2EE application
server. At what number does the number of clients become too many? Answer: You
should not establish a limit. The J2EE framework has been designed with scalability
in mind; therefore, assuming you have adhered to the best practices and design
patterns, your enterprise application should be able to scale to service thousands
of concurrent clients.

An application server should provide the infrastructure to permit this scalability,
managing a server farm of potentially many hundreds, or even thousands, of inde-
pendent servers all working together to present a unified front. The application
server should make adding or removing servers a trivial matter. The load balancing
and sharing of session data amongst the various worker-servers should also be eas-
ily configurable.

The most important thing when scaling is to ensure that you stick to the recom-
mended practices so you don’t inadvertently create any bottlenecks in your own
software. Java, contrary to popular belief, doesn’t provide any magic techniques to
help you do this. It is still up to you, the developer. Java, with its inherent object-
orientation and code reusability, certainly makes the job of designing and imple-
menting scalable applications much easier, but it should by no means be taken for
granted.

Client agnosticism
The official J2EE Blueprints states that a J2EE application can support many types
of the clients running as independent applications as well as the clients running
under control of a Web browser. For example, the application server should be as
comfortable scaling thousands of RMI/IIOP requests as it would be scaling HTTP
requests. The former case may require an increase in the number of concurrent
Enterprise JavaBeans, while the scaling of the HTTP requests may be achieved by
increased number of Java Servlets. It should not matter what protocol has been
used to deliver a client’s request to the application server.

c539663 ch03.qxd 7/25/03 9:13 AM Page 46

47Chapter 3 ✦ Introducing Application Servers

Server management
As you probably realize, J2EE is quite an expansive framework. A multitude of differ-
ent resources all work together to provide a single coherent system.

As an administrator you want to be in control of your server environment from one
integrated console, configuring application and server resources. Using resources
as benign as JDBC pools right up to deploying WAR (Web Application Archive) and
EAR (Enterprise Application Archive) files that represent complete enterprise appli-
cations should be straightforward, and no server restarts should be necessary.

The administrator console should also provide up-to-the-second runtime informa-
tion on the performance of all aspects of the system to enable you to plan for the
future and avert any major disasters.

Development
Finally, the application server should make it easy for the J2EE developer to safely
develop new applications without unduly affecting the existing applications execut-
ing. For example, a new application could be added by simple modification of the
configuration files that are used during the server startup process. For example, to
deploy a new application you can include additional WAR or EAR files to the config-
uration files. The application should also be compatible with the major IDE vendors;
this ensures that the developer is free to choose his or her development platform,
as opposed to being locked into the application server’s particular choice. The next
section will discuss the major vendors of the J2EE application servers.

Examining Full J2EE Implementations
This section will take a look at the available application servers that fully support
the J2EE platform. They implement what is effectively a one-stop shop for your J2EE
needs. Even though the J2EE platform is middleware and you may opt for one J2EE
component, you are not tied to its whole implementation; you are still free to swap
in third-party implementations to replace specific layers.

We’ll take a look at the following application servers in this section:

✦ BEA WebLogic

✦ Borland Enterprise Server

✦ IBM WebSphere

✦ JBoss

✦ Oracle 9iAS

✦ Orion Application Server

✦ Sun ONE

c539663 ch03.qxd 7/25/03 9:13 AM Page 47

48 Part I ✦ Introduction

The following sections are not meant to serve as product reviews, but instead to
give you a flavor of each item’s capabilities.

BEA WebLogic
BEA is one of the oldest players in the J2EE game with its WebLogic offering. The
original developers of WebLogic were heavily involved with the first evolution of the
Servlet API and have been major contributors to the enterprise specifications ever
since. BEA in many respects set the precedent that the others followed; specifically,
it was one of the first to implement its complete server in Java itself. BEA presently
has one of the largest in the world deployment base of J2EE servers and continually
pushes the threshold for ease of implementation and deployment. BEA’s application
server is available free for development at http://www.bea.com/products/
weblogic/server/; it integrates with all the major IDEs with no problems.

BEA also provides, free of charge, one of the fastest JVMs: jRockit. This is a JVM
designed specifically for the server side in which the virtual machine is expected to
be executing for long periods of time. BEA has spent a lot of time working with Intel
to optimize jRockit specifically for the Intel processors to ensure that WebLogic
runs as fast as possible. BEA is leaving nothing to chance, by controlling the virtual
machine its server heavily relies on. Incidentally, Oracle’s Application Server also
ships with jRockit.

Borland Enterprise Server
A company better known for its rich development tools, Borland is also a major
player in the J2EE space with its Enterprise AppServer Edition (see http://www.
borland.com/besappserver). This application server integrates tightly with its
JBuilder IDE, but is open to all J2EE development tools. Supporting all the latest
APIs, Borland has integrated rather than innovated with its enterprise server. The
Enterprise Server brings together and enhances technology from the likes of
Apache (Axis/HTTP Server/Tomcat) and Sonic Software (SonicMQ for JMS).

IBM WebSphere
After BEA, IBM has the biggest J2EE market share with its WebSphere application
server (see http://www.ibm.com/software/webservers/appserv/was/). IBM
offers a number of different WebSphere editions for different budgets and levels of
functionality. WebSphere Express is basically a complete Web-hosting system includ-
ing servlets and JSP. The 5.0 edition of WebSphere is available in Base, Network
Deployment, and Enterprise versions.

IBM is not renowned for its speed in implementing new releases. In fact it is famed
for lagging significantly behind the others when it comes to providing implementa-
tions of the latest J2EE specification.

c539663 ch03.qxd 7/25/03 9:13 AM Page 48

49Chapter 3 ✦ Introducing Application Servers

IBM has poured a significant amount of resources into Java over the years and much
of its technology is available to the community in one shape or another. A great
example is its development environment, Eclipse, which is now available at http://
www.eclipse.org/ as a free open-source download.

JBoss
One of the oldest and most popular open-source implementations of the J2EE frame-
work is from the JBoss group (see http://www.jboss.org/). JBoss has taken a
slightly different approach to the implementation compared to other application
server vendors by building a sophisticated API model that enables you to (for
example) swap out the servlet engine for Tomcat as opposed to using JBoss’ Jetty
engine. This swap feature applies to all the major J2EE components.

JBoss is free for development and deployment and is a very straightforward appli-
cation server.

Oracle 9iAS
Contrary to popular belief, Oracle is more than just a database company. It has been
making significant inroads in providing all the software that you need on the server
side. When Oracle decided to enter the Java marketplace a number of years ago, it
went on a shopping spree, buying up all the necessary components to ensure it
wouldn’t be starting from scratch.

Oracle’s core application server is based on code licensed from IronFlare’s Orion
application server. Its development environment, JDeveloper, was originally a code
snapshot of Borland’s JBuilder. However, it is fair to note that Oracle recently
announced that it has developed all the code currently contained in JDeveloper and
that it has broken free of the code of Borland. Oracle’s HTTP server is the popular
Apache Server. It recently purchased TopLink from ailing WebGain to round out its
Java offering.

But Oracle has done more than just put these components together. It has designed
all the components, recoding where necessary to meet its demanding company
standard of “unbreakable code.” Oracle 9iAS is the result of these efforts. It is a pure
Java implementation with a very small memory footprint. An application server
that is increasingly gaining market share, it fully implements the J2EE framework,
providing all the necessary facilities for large-scale deployment.

The server is available as a free download from http://www.oracle.com/ for
development only.

c539663 ch03.qxd 7/25/03 9:13 AM Page 49

50 Part I ✦ Introduction

Orion
One of the application servers that seems to be gaining significant popularity in the
development community is the Orion application server from IronFlare in Sweden.
One of the primary reasons for IronFlare’s success is how easy it is to get this server
up and running. Simply download and run; java –jar orion.jar and that’s it. It
is written purely in Java and uses the existing JVM installed on your system without
having to drag its own along.

The server has been designed to be very developer-centric, enabling easy deploy-
ment, simple configuration, and very short startup, execution, and deployment times.
The server can be configured through its Java Swing GUI or by means of directly
manipulating the XML files, depending on your own preference.

Orion also attempts to support the latest APIs. The server is free for development and
non-commercial projects. You can obtain it from http://www.orionserver.com/

Sun ONE Application Server
Sun’s Open Net Environment (ONE) Application Server (version 7) forms the heart
of Sun’s J2EE offering. Built from the legacy of the iPlanet server, Sun’s application
server comes in two primary editions, Platform (see http://wwws.sun.com/
software/download/products/Sun_ONE_App_Svr_7,_Platform_Edition.html)
and Standard (see http://wwws.sun.com/software/products/appsrvr/
appsrvr_download.html). Each one implements the latest EJB, JSP, and JMS APIs
and ships on the latest JVM. As you might imagine, Sun ONE is one of the first
application servers to incorporate the latest releases of the JDK, which for better
or worse allows Sun to prove to the community that it has total faith in their own
technology by “eating in its own kitchen.” At the time of this writing Sun ONE offi-
cially supports version 1.3 of J2EE, but expect version 1.4 soon.

Sun’s Platform edition is designed for development and limited deployment for mid-
sized applications. It is free, which makes it attractive, especially when you consider
that it now ships as standard with all releases of Sun’s Solaris operating system.

The Standard edition is a fuller product offering, featuring a richer suite of tools
specially aimed at providing the necessary tools for a complete Web-serviced plat-
form. This edition handles mid-sized to enterprise applications and is designed to
handle high loads.

Sun also offers a development environment based on the NetBeans technology,
called Studio 4. This integrates with the Sun ONE application server, simplifying
development and deployment in Sun ONE as well as other application servers.

c539663 ch03.qxd 7/25/03 9:13 AM Page 50

51Chapter 3 ✦ Introducing Application Servers

Examining Partial J2EE Implementations
Without a doubt, the J2EE platform is large. Many developers will only ever use
servlets and JSP; the requirement to install the full J2EE server is overkill for them.
The Servlet API is one of the oldest and best-established APIs of the J2EE platform.
It was on the scene years before J2EE was available, and thanks largely to its suc-
cess Java at the server side became not only an option but a serious contender for
the best technology for development of the Web applications.

From the Servlet API grew the JSP specification, which essentially takes embedded
Java inside an HTML page, converts it into a servlet, and compiles and runs it. This
results in a very powerful partnership. The Servlet API gave the world the WAR for-
mat, which enables you to deploy servlet applications very easily by packaging up
all the files into one easily managed file that you can then drop into an application
server for execution.

Many servlet engines on the market provide support for the full Servlet API and JSP
specifications, and in this section we’ll look at some of the more popular ones:

✦ Apache Tomcat

✦ Resin

✦ ServletExec

Table 3-1 provides an overview of the major features of the three servlet containers
mentioned in this chapter.

Table 3-1
Major features of the servlet containers

Category Apache Tomcat Resin ServletExec

Servlet API 2.3 2.3 2.3

JSP specification 1.2 1.2 1.2

Built-in HTTP server Yes Yes No

Development cost None None None

Deployment costs None $500 $695

Configuration File-based File-based Web-based

c539663 ch03.qxd 7/25/03 9:13 AM Page 51

52 Part I ✦ Introduction

Apache Tomcat
It’s difficult to be involved with Java servlets or JSP and not have run into Tomcat
from Apache. This is the official servlet and JSP reference implementation that Sun
uses. Tomcat is free to use and deploy and is an open-source implementation that
you can download from the main Apache site at http://jakarta.apache.org/
tomcat/.

Tomcat comes in many versions. The reason for the multiversion approach is that
each major version represents the corresponding Servlet API version that it imple-
ments. For example, at the time of this writing, Tomcat 5 was being discussed as the
official implementation of the Servlet API 2.4 and the JSP 2.0 specification.

Tomcat does not come with any fancy administration tools and all settings are con-
trolled via XML files, which may put off some developers. Tomcat also ships with
its own Web server but works better in conjunction with the Apache Web Server.
Because Tomcat requires you to administer the XML files manually, you will get a
better understanding of how the Servlet API operates. Tomcat also serves as an
excellent first-step, hands-on servlet engine.

Resin
Resin is a no-frills Servlet engine from Caucho Technology (see http://www.caucho.
com/resin/). Resin has been around for a number of years now and has a good
reputation among the developer community. The engine itself can stand on its own
using the built-in HTTP server or provide servlet/JSP processing for a variety of
Web servers, including Apache and Microsoft’s Internet Information Server.

Resin offers many of the features that you would expect from a servlet engine,
including load balancing and distributed sessions. Resin is free for developers and
non-commercial applications.

ServletExec
One of the oldest and best-established players in this market space is ServletExec
from New Atlanta (see http://www.newatlanta.com/products/servletexec/).
The New Atlanta team has been involved in the evolution and design of the Servlet
API from the start, and its ServletExec engine is one of the oldest servlet engines
available. New Atlanta has stayed focused on the Servlet API and has resisted the
urge to make ServletExec into a full-blown J2EE server.

ServletExec is an engine that bolts onto your existing Web server and takes over
the processing of any servlet or JSP requests. It supports all the major Web servers
(IIS, Netscape/iPlanet, Apache) and also operates on most of the major operating
systems (Windows NT/2000/XP, Solaris, AIX, and Linux).

c539663 ch03.qxd 7/25/03 9:13 AM Page 52

53Chapter 3 ✦ Introducing Application Servers

One of the great features of JSP is its accessibility. There’s no need to worry about
complicated IDEs or compilers; you just save an HTML page with embedded Java,
trigger it with your browser, and you are done. New Atlanta has made the installa-
tion and administration of its servlet engine similarly straightforward. It has done
all the hard work of figuring out what needs to be done with each Web server and
the configuration of the server is very simple.

ServletExec (as well as ServletExec Debugger) is available for free as a development
environment; only when you deploy you need to purchase a license.

We’ve introduced you to various vendors of the J2EE application servers. In the
next section, we’ll discuss how to avoid dependency on a particular vendor.

Avoiding Vendor Lock-In
While the J2EE framework has a lot to offer the developer, there is still a lot of room
for improvement, which many vendors have been quick to provide through their
own libraries. It can sometimes be frustrating when you come up against what
seems like a brick wall. The framework has let you down in some way and the time
has come to look elsewhere. You may be able to overcome the obstacle using a
library that is native only to that application server.

You may think that this won’t happen to you, but you might be surprised at how
easy it is to drop into a particular vendor’s API, especially if you are using an IDE
that is quick to “sell” you easy-access classes. But if you use a method native to a
particular server, you are effectively locked into that application server and won’t
be able to easily deploy to another server. You have thus rendered null and void the
whole openness of J2EE. Fortunately, careful consideration of your design enables
you to have the best of both worlds — openness and utility.

The best way to avoid lock-in is to develop your own proxy interface to act as a
stepping stone between your code and the underlying library. Then, for each J2EE
server you intend to deploy on, you simply provide the necessary class implemen-
tation that maps onto the underlying library.

Take a look at a quick example that is simple enough to illustrate the point. Here is
a simple interface that defines a method to return a reference to a file that can be
shared:

public interface myFileLibraryProxy {
public File createSharedFile();

}

c539663 ch03.qxd 7/25/03 9:13 AM Page 53

54 Part I ✦ Introduction

In your application code you would simply refer to the myFileLibraryProxy class,
possibly using a factory pattern to obtain an instance of this class to use. For each
server you would code an implementation that would map the call to an underlying
method, as shown here:

public class beaFileLibrary implements myFileLibraryProxy {
public File createSharedFile(){
//-- calls an underlying BEA method

}
}

In your deployment files you could include all the implementations and let the fac-
tory class decide which one to actually instantiate, depending on the underlying
server platform. This method will work for the majority of instances in which you
may feel the need to use a specific vendor’s application code. The key thing to
remember is that what may seem like a good idea today may not seem to be a good
idea tomorrow. Try to avoid coding yourself into a corner, and adhere to the stan-
dards at all costs.

For a comprehensive and up-to-date look at the vendors that provide J2EE implemen-
tations, visit http://www.flashline.com/Components/appservermatrix.
jsp.

Summary
In this chapter we took a look at the overall role the application server plays in
J2EE.We also mentioned components that comprise the J2EE platform. These com-
ponents will be discussed in greater detail in the subsequent chapters of this book.
It is important to understand the difference between J2EE specification and specific
implementations done by the vendors of the application servers. Any application
server has to pass the J2EE Compatibility Test Suite to have a right for the “J2EE
certified” brand.

We covered the dynamics of application servers and took a quick look at the major
operators in this space. In addition to the major vendors we looked at the minor
vendors that provide implementations for servlet engines.

✦ ✦ ✦

Note

c539663 ch03.qxd 7/25/03 9:13 AM Page 54

Understanding
Remote Method
Invocation

Ultimately, J2EE is about distributed applications. In the
following chapters of this book you’ll learn various ways

of designing software components that reside on multiple
computers and communicate over the network. But before
diving into the world of application servers, engines, and con-
tainers, take a look at a simple but powerful way of creating
distributed Java applications using technology called Remote
Method Invocation (RMI).

We decided to put this chapter toward the beginning of the
book because RMI is not only the simplest way of creating
distributed applications, but also gives us a chance to intro-
duce you to naming services similar to the Java Naming and
Directory Interface (JNDI). In this chapter we will also intro-
duce such terms as data marshalling, stubs, and skeletons,
which are also important for understanding Enterprise
JavaBean (EJB) technology.

Providing an Overview of RMI
RMI is the action of invoking a method of a remote interface
on a remote object. It enables Java clients to invoke methods
on Java objects living on the remote computer’s Java Virtual
Machine (JVM). Both JVMs can be running on the same or dif-
ferent computers, but the most important thing is that the
application has to be distributed, which in the case of RMI
means that it should use at least two JVMs.

44C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Using RMI in
distributed Java
applications

Understanding
stubs and skeletons

Working through
an airline flight
information server
example

Pushing data
to clients

✦ ✦ ✦ ✦

c539663 ch04.qxd 7/25/03 9:13 AM Page 55

56 Part I ✦ Introduction

Since RMI is a part of J2SE, it’s available on all platforms that support Java, and does
not require any additional software. RMI is often compared with Common Object
Request Broker Architecture (CORBA), which enables communication between dis-
tributed components written in different languages, but CORBA requires additional
middleware called an object request broker to provide data translation from one
language to another. While a discussion of CORBA is outside the scope of this book,
later we’ll introduce you to other J2EE technologies that allow communication
between systems written in different languages and running on different platforms.

Any RMI application consists of the following components:

✦ Client

✦ Server

✦ Registry

The registry is the naming service. The RMI components usually run on separate
networked computers. The server creates some Java objects, registers them with
the naming service, and waits for remote clients to invoke methods on these objects.
A client application gets a reference to a remote-server object from the registry and
then invokes methods on this remote object. The main concept of RMI is that even
though the methods are being called in the client’s JVM, they are executed on the
server’s JVM.

The best part of RMI applications is that a developer does not have to program the
network communications — the programming is done automatically by a special
tool called an RMI compiler (rmic). This tool generates two additional classes, stub
and skeleton, that will take care of data exchange over the network by using data
marshalling — presentation of Java objects as a set of bytes — and serialization.

RMI technology is useful for many business applications written in Java. Some of
the typical applications are listed here:

✦ Getting stock-market price quotes

✦ Obtaining flight information

✦ Requesting and downloading music files

✦ Performing inventory maintenance

Usually an RMI server works in the wait mode: It “listens” to requests on a particular
port. A Java RMI client does not work directly with the server’s database(s) or other
resources — it just sends a request for the information or updates in a form of a
Java class, XML, or the like. That’s why the underlying infrastructure of a system is
hidden from the client and no database drivers or other third-party software must
be installed on the client’s machines.

After giving a brief overview of the RMI technology, the next several sections of this
chapter will define the process of creation of an RMI application step-by-step.

c539663 ch04.qxd 7/25/03 9:13 AM Page 56

57Chapter 4 ✦ Understanding Remote Method Invocation

Developing Applications with RMI
Writing distributed RMI applications usually consists of the following steps:

1. Declaring a remote interface for the client

2. Implementing a remote interface on the server

3. Writing a client program that uses this remote interface to connect to a server
and call its methods

4. Generating stubs (client proxies) and skeletons (server entities)

5. Starting the registry on the server and registering remote objects with it

6. Starting the server application on the remote machine

7. Starting the Java application that is either located on the client machine or
downloaded as a Java applet

You’ll learn how to perform each of these steps by developing the Flight Information
Application, which provides a client with the latest flight departure/arrival informa-
tion for Connexia Airlines, which is explained fully in Appendix A.

Declaring remote interfaces
A remote interface defines method(s) that can be invoked remotely by a client. Like
any Java interfaces, the remote interfaces describe the behavior of remote objects
and do not contain the implementation of this behavior. The client program will
“have a feeling” that it calls local methods, but actually these calls will be redirected
to a remote server.

The following are the rules for creation of remote interfaces:

An application’s remote interface must declare business methods having
public access that will enable clients to communicate with the server.

An application’s remote interface must extend the java.rmi.Remote inter-
face. The Remote interface does not have any methods — just declare the
required methods there.

Each method must declare a java.rmi.RemoteException or one of its
ancestors.

Method arguments and return data types must be serializable.

Let’s apply all these rules while writing the code for the FlightServer interface
that will be used on the client side of our sample application. Since Java inter-
faces just declare methods and cannot contain code in the method bodies, our
interface will declare two business methods —getDepartureTime() and
getArrivalTime(). Please note that the FlightServer interface from Listing 4-1
extends the Remote interface and that its methods declare RemoteException.

c539663 ch04.qxd 7/25/03 9:14 AM Page 57

58 Part I ✦ Introduction

Listing 4-1: The FlightServer interface

import java.rmi.*;
public interface FlightServer extends java.rmi.Remote {

public String getDepartureTime(String flightNo)
throws java.rmi.RemoteException;

public String getArrivalTime(String flightNo)
throws java.rmi.RemoteException;

}

These two methods constitute the only API that is available for the client. The class
that implements these methods may have other methods as well, but those are hid-
den from the client.

Implementing remote interfaces
In RMI, the interface and implementations are completely separated. While the
remote interface just declares the methods used by the client, the actual class that
provides the implementation for these methods will run on the server side in a sep-
arate JVM. These methods must have exactly the same signatures as their proxies
on the client, otherwise the RMI clients won’t find them.

You can make the implementation class visible to remote Java clients declaring that
this class is inherited from the java.rmi.server.UnicastRemoteObject class, as
in the FlightServerImpl class derived from Listing 4-2. This class will respond to
and process the client’s requests. The implementation class can also initiate the
data feed to the client, as explained in the section “Pushing Data from the RMI
Server,” later in this chapter.

In real life flight information should be retrieved from a database or other data
source, but for simplicity’s sake we’ll just create two hard-coded Hashtable objects
containing arrival and departure information. After reading Chapter 18, you should
be able to replace the hardcoded flight information with dynamic data coming from
a database.

When a client calls the method getArrivalTime() or getDepartureTime(), this
call will be received by a local object (the stub), which converts it into a method-
invocation on the remote class FlightServerImpl. Listing 4-2 contains the code
for this remote class.

c539663 ch04.qxd 7/25/03 9:14 AM Page 58

59Chapter 4 ✦ Understanding Remote Method Invocation

Listing 4-2: The FlightServerImpl class

import java.rmi.*;
import java.rmi.server.*;
import java.util.Hashtable;
public class FlightServerImpl extends UnicastRemoteObject

implements FlightServer {
private Hashtable arrivals = new Hashtable();
private Hashtable departures = new Hashtable();
public FlighterverImpl() throws RemoteException {
super();
// Define some hard-coded arrival and departure times
// The key in the Hashtable represents a flight number
arrivals.put(“CO1208”,”3:20PM”);
arrivals.put (“CO1331”,”8:00PM”);
arrivals.put (“CO3450”,”6:05PM”);
departures.put (“CO1209”,”4:20PM”);
departures.put (“CO1200”,”9:15PM”);
departures.put(“CO0456”,”10:05PM”);

}

public String getArrivalTime(String flightNo)
throws RemoteException {

String arrTime=null;

// Throw an exception if the flight number does not exist
arrTime= (String) arrivals.get(flightNo);
if (arrTime==null) {

throw new RemoteException(“Flight number “+ flightNo +
“ does not exist”);

}
return arrTime;

}
public String getDepartureTime(String flightNo)

throws RemoteException {
String depTime=null;

// Throw an exception if the flight number does not exist
depTime= (String) departures.get(flightNo);
if (depTime==null) {

throw new RemoteException(“Flight number “+ flightNo +
“ does not exist”);

}
return depTime;

}
}

c539663 ch04.qxd 7/25/03 9:14 AM Page 59

60 Part I ✦ Introduction

If the FlightServerImpl class cannot be inherited from the UnicastRemoteObject
because it’s already derived from some other business class, you can just declare
that this class implements the Remote interface. You would then make it available
to the remote clients by exporting it. Here’s how you would do this:

FlightServerImpl fsi = new FlightServerImpl();
UnicastRemoteObject.exportObject(fsi);

Remote exceptions
In RMI applications, all remote methods must declare java.rmi.RemoteException.
(See method declarations in Listing 4-2.) This exception will be thrown by the server
application in such cases as communication failures, marshalling or unmarshalling
errors, and so on. Because a RemoteException is a checked exception, it has to be
handled in the client code. (See the FlightClient-class example later in this chap-
ter in the section “Writing RMI Clients.”)

Besides the RemoteException, a remote application can throw any other exceptions
to be handled by the client exactly as if they were thrown locally.

Stubs and skeletons
After the remote interface and its implementation are created, you need to generate
the objects responsible for the network communications between them. The stub is
a client-side object that represents the remote object. When a client calls a remote
method, such as getFlightArrivals(), the stub method is invoked and it does
the following:

✦ Initiates a connection with the remote JVM

✦ Marshals (prepares and transmits) the parameters to the server

✦ Waits for the result of the method invocation

✦ Unmarshals (reads) the return value or exception returned

✦ Returns the value to the client

All the background work (serialization and networking) is hidden from
developers — they just need to write local method calls!

An RMI server may have a similar object called a skeleton to process the client’s
network calls. It performs the following operations for each received call:

✦ Unmarshals (reads) the parameters for the remote method

✦ Invokes the method on the actual remote-object implementation

✦ Marshals the result to the caller

c539663 ch04.qxd 7/25/03 9:14 AM Page 60

61Chapter 4 ✦ Understanding Remote Method Invocation

The skeleton is responsible for dispatching the client call to the actual object imple-
mentation. The skeletons are deprecated starting from Java 1.2 onwards. They are
not replaced by any other classes and can be just ignored. But if at least one of the
JVMs participating in the RMI application uses Java version 1.1 or older, the skeleton
class must exist on the server side.

J2SE comes with the RMI compiler called rmic, which generates stubs and skeletons
from the existing implementation class. You can start the rmic program like this:

c:>rmic FlightServerImpl

This command will create two more classes — one (FlightServerImpl_stub.
class) for the client side and the other (FlightServerImpl_skel.class) for the
server.

The stub implements only remote interfaces. When the client calls a remote method
the stub marshals and serializes the data over the network to the skeleton (or to the
server application). The skeleton, in turn unmarshals and deserializes the data on
the remote machine and passes the data to the actual implementation of the method.
After the method completes, the return value is delivered back to the client in the
reverse order. Obviously, the remote method parameters and returned values of the
remote methods must be serializable.

If you want to know what’s under the hood, run the rmic with the -keepgenerated
flag to see the source code of the stub and skeleton in the files
FlightServerImpl_stub.java and FlightServerImpl_skel.java.

If the application does not use JVMs older than version 1.2, you can inform the
RMI compiler that the stub does not have to be generated by issuing the following
command:

c:>rmic –v1.2 FlightServerImpl

Registering remote objects
Before a client program can invoke a particular method on the remote object, it has
to find this object on the network. A server makes remote objects visible to the
clients by registering these objects with a naming service. The rmiregistry is a
simple naming service that comes with J2SE. The process of registering an object
with the RMI registry is called binding. The RMI registry is nothing but a naming ser-
vice that knows where to find the server’s objects, and it will enable clients to look
up an object in the network by name. While the class name can be long and include
the package name, the registry name is usually short and descriptive.

Two methods in the java.rmi.Naming class can bind an object to the registry. The
bind() method binds an object to a name. It throws the AlreadyBoundException
if the binding already exists under the specified name.

c539663 ch04.qxd 7/25/03 9:14 AM Page 61

62 Part I ✦ Introduction

The rebind() method replaces any preexisting registry entry with the new one.
The unbind() method removes an object from the registry.

The registry must be up and running by the time you bind the objects. To start the
registry, open a command window and type the following:

c:\>rmiregistry

This command will start the registry on the default RMI port 1099. If you need to
specify another port, provide the port’s number as a command-line parameter. For
example, to start the registry on port 6000 use the following command:

c:\>rmiregistry 6000

The StartFlightServer program shown in Listing 4-3 binds the FlightServerImpl
class under the name FlightService to the registry that runs on the same machine
as the server (localhost) on port 6000.

Listing 4-3: The StartFlightServer class

import java.rmi.*;
import java.rmi.registry.LocateRegistry;
public class StartFlightServer {
public static void main (String args[]) {
try {
FlightServerImpl fsi = new FlightServerImpl();
Naming.rebind(“rmi://localhost:6000/FlightService”,fsi);
System.out.println(
“FlightService is waiting for the requests on port

6000...”);
} catch(Exception ex) {

ex.printStackTrace();
}
}
}

If the specified port is being used by another program, the rmiregistry will throw
an exception that may look like the following:

java.rmi.server.ExportException: Port already in use: 6000;
nested exception is: java.net.BindException: Address already in

use: JVM_Bind

In this case, start the server on a different port and specify the new port number
in the StartFlightServer program and in the FlightClient class shown in
Listing 4-4.

c539663 ch04.qxd 7/25/03 9:14 AM Page 62

63Chapter 4 ✦ Understanding Remote Method Invocation

Listing 4-4: The FlightClient class

import java.rmi.*;
import java.util.Vector;
public class FlightClient {
public static void main (String args[]) {
if (args.length == 0) {
System.out.println(“\nUsage: java “ +
“-Djava.security.policy=security.policy FlightClient

flightNo”);
System.exit(0);

}
try {

if (System.getSecurityManager() == null) {
System.setSecurityManager(new

RMISecurityManager());
}
FlightServer myServer = (FlightServer)

Naming.lookup(“rmi://localhost:6000/FlightService”);
// this example searches for the arrival info only
String arrival = myServer.getArrivalTime(args[0]);
System.out.println(“Arrival time of “ + args[0] +

“ is “ + arrival);
} catch (NotBoundException nbe) {

System.out.println(nbe.getMessage());
} catch (java.net.MalformedURLException mfue) {

System.out.println(mfue.getMessage());
} catch (RemoteException re) {

System.out.println(re.getMessage());
}
}

}

Instead of starting the registry manually, you could have also started it from within
the StartFlightServer program itself. Just add the following line at the beginning
of the main() method in Listing 4-3:

LocateRegistry.createRegistry(6000);

To bring the flight server up, open a command window and start the
StartFlightServer class from your working directory. Here’s an example:

C:\>java StartFlightServer

Writing RMI clients
The client has to perform a lookup in the registry on the server’s machine and
obtain a remote reference to the object listed under the specified name. The

c539663 ch04.qxd 7/25/03 9:14 AM Page 63

64 Part I ✦ Introduction

lookup() method of the java.rmi.Naming class locates the remote object on the
specified host and port, as shown in Listing 4-4:

FlightServer myServer = (FlightServer)
Naming.lookup(“rmi://localhost:6000/FlightService”);

Please note the casting of the Object from the lookup() method to the
FlightServer type. Even though the FlightService registry entry represents the
FlightServerImpl class, we cast it to the FlightServer remote interface. Java
allows you to cast a class to any interface it implements, and the FlightServerImpl
class implements the FlightServer interface. This Java feature also enables you
to keep on the client side only the thin FlightServer interface instead of the much
fatter implementation class. The myServer variable in Listing 4-4 will “see” only the
methods defined in this interface, while the FlightServerImpl class may imple-
ment many other interfaces as well, and may have other public methods.

Recall that a remote class can start its own registry that supports the naming ser-
vices for the RMI clients. The registry API is defined by the java.rmi.registry.
Registry interface.

The RMI registry runs by default on port 1099, unless another port number is
specified. When the client wants to invoke methods on the remote object it obtains
a reference to that object by looking up the name. The lookup returns to the client a
stub of the remote object.

The method takes the object’s URL as an argument in this format:

rmi://<hostname>[:<name_service_port>]/<service_name>

These components are described as follows:

✦ hostname is the name of the computer on the local area network (LAN) or a
DNS name on the Internet.

✦ name_service_port has to be specified only if the naming service is running
on a port other than the default one (1099).

✦ service_name is the name of the remote object that should have been bound
to the registry.

More advanced naming services that are widely used in J2EE applications are
described in Chapter 11.

The main() method in the class from Listing 4-4 loads the instance of the java.
rmi.RMISecurityManager method (a subclass of the SecurityManager class)
that allows access to a specified port.

System.setSecurityManager(new RMISecurityManager());

Cross-
Reference

c539663 ch04.qxd 7/25/03 9:14 AM Page 64

65Chapter 4 ✦ Understanding Remote Method Invocation

If the RMI client is an applet, RMISecurityManager is not needed — just make sure
that the RMI implementation classes exist on the same server that the applet is
coming from. If the Web server and RMI server are running on different hosts, the
applets have to be digitally signed.

FlightClient can be started as follows:

c:>java -Djava.security.policy=security.policy FlightClient CO1208

Policy files contain permissions granted to users of this application. A sample secu-
rity file is shown in Listing 4-5. Detailed explanations of how to write security-policy
files can be found at http://java.sun.com/j2se/1.4/docs/guide/security/
PolicyFiles.html

Listing 4-5: The security.policy file

grant {
// Allow the client to connect to any port above 1024
permission java.net.SocketPermission “*:1024-”, “connect”;

};

An absence of granted access permissions will prevent the FlightClient from
accessing the RMI server and will generate the following exception:

java.security.AccessControlException: access denied
(java.net.SocketPermission 127.0.0.1:6000 connect,resolve)

Setting up the Flight Server example
This section will bring all the RMI pieces of our sample application together. Figure
4-1 shows the RMI components of our flight server. It depicts the client, server, and
the registry. The client and the server use different classes and interfaces that are
listed below the JVM1 and JVM2 boxes, respectively. The client (JVM1) performs a
lookup of the server in the registry and calls remote methods on the server. The
server (JVM2) has to register the remote object with the registry. The stubs and
skeletons perform both marshalling and unmarshalling.

Follow the steps below to install and run the RMI Flight Server application. Doing
so will enable you to emulate a distributed environment on a stand-alone machine.
We’ll open multiple command windows — one for the RMI server, one for the reg-
istry, and one or more for the client(s). If you have access to a network, start the
server and the clients on separate machines and replace the localhost in Listing
4-3 and Listing 4-4 with the actual IP address or network name of the workstation.
For the sake of this example we assume that all required classes are created in the
directory called chapter4.

c539663 ch04.qxd 7/25/03 9:14 AM Page 65

66 Part I ✦ Introduction

Figure 4-1: The Flight Server example contains these RMI components.

1. Create the FlightServer.java file containing the remote interface from
Listing 4-1.

2. Create the FlightServerImpl.java server class based on the code shown
in Listing 4-2.

3. Create the StartFlightServer.java class according to Listing 4-3.

4. Create the FlightClient.java class according to Listing 4-4.

5. Compile all of the preceding classes as follows:

c:\chapter4>javac *.java

6. Create stub and skeleton classes from FlightServerImpl using the rmic
compiler, as follows:

c:\chapter4>rmic StockServerImpl

7. Open three command windows emulating separate machines.

8. Start the RMI registry on port 6000 from the first command window. Your
screen should resemble Figure 4-2.

Do not expect to see any confirmation that the rmi registry has been successfully
started. The very fact that no error messages are shown in this command window
is your confirmation.

RMI

1. Naming, lookup
 (“FlightServer”)
2. Call remote methods

The client needs:
1. FlightServer.class
2. FlightServer_stub.class
3. FlightClient

Object Registration
during server startup

The Server Machine needs:
1. FlightServerImpl.class
2. Start FlightServer.class
3. FlightServerImpl_skel.class
 (this class is required only
 in Java versions prior to 1.2)

RMI Registry

Client Code

Stub

Server Code

Skeleton

JVM1

marshalling/unmarshalling
serialization/deserialization

Local method call
with Remote
Interface

Remote method
call

JVM2

c539663 ch04.qxd 7/25/03 9:14 AM Page 66

67Chapter 4 ✦ Understanding Remote Method Invocation

Figure 4-2: Starting the RMI registry

Register FlightService with the naming service from the second command win-
dow, as shown in Figure 4-3:

Figure 4-3: Starting the Flight Server

What can go wrong at this point? If the registry does not run on the host and port
specified in Listing 4-3, the program will throw an exception that may look like this:

java.rmi.ConnectException: Connection refused to host:
localhost; nested exception

is:java.net.ConnectException:
Connection refused: no further information

Depending on the settings of your LAN, the loopback IP address 127.0.0.1
(localhost) may or may not work. If it does not work, replace localhost with the
network name or IP address of your computer.

Run the FlightClient from the third command window, as shown in Figure 4-4.
Pass the flight number as a command-line argument and the client will connect to
the “remote” server and receive the flight information. Do not forget to create a
security.policy file, as shown in Listing 4-5.

Figure 4-4: Running the Flight Client

c539663 ch04.qxd 7/25/03 9:14 AM Page 67

68 Part I ✦ Introduction

To deploy this application within Connexia Airlines, create the FlightInfoClient.
jar file containing the FlightClient.class, FlightServer.class, and
FlightServerImpl_stub.class files and install this jar on each customer service
representative’s workstation.

If Connexia Airlines is ready to provide its customers on the Web with flight informa-
tion, create an applet with a simple GUI containing a text field in which the user can
enter a flight number, a Submit button, and a text field to display the result. Besides
the GUI part, the applet should contain code similar to that of the FlightClient,
but that does not create RMISecurityManager. When it’s ready, add the applet’s
class to the FlightInfoClient.jar and add the applet HTML tag to the Web page.
Here’s an example:

<HTML>
<BODY>
<APPLET code=”FlightInfoApplet.class”
archive=”FlightInfoClient.jar” width=100 height=100>

</APPLET>
</BODY>
</HTML>

Up till now, we’ve been using the client-server terminology in this chapter. We’ve
also assumed that the client is a program that requests services from another pro-
gram (the server). The next section will explain how an RMI server can initiate the
data exchange with an RMI client.

Pushing Data from the RMI Server
In our airline example requests for the flight information were originated by the
client application. Now try to visualize yourself in the arrival area of the Connexia
terminal waiting for your friend’s arrival. There are plenty of monitors everywhere
with flight-arrival information that is updated at a specified time interval. All these
monitors are the clients that receive the data feed from some remote server. Our
flight-information application that we developed earlier in this chapter could be
used for automation of such airport terminal. There is a major difference though —
in this case not the client but the server has to initiate updates of the information
on the clients’ monitors!

In this section we’ll show you how to treat the RMI server and the client as peers so
either of them can “start the conversation.” This is how it works. The RMI client(s)
has to register itself with the server, and it also has to implement an interface that
contains the code refreshing the screen. Periodically the RMI server will call the
method that refreshes the screen on each registered client. In other words, instead
of the client pulling the data from the server, the server is pushing the data to the
client.

c539663 ch04.qxd 7/25/03 9:14 AM Page 68

69Chapter 4 ✦ Understanding Remote Method Invocation

Let’s discuss the modifications that should be done to our flight-information appli-
cation. First, the client has to implement an additional interface (which may look
like the one shown in Listing 4-6). This interface contains only one method,
refreshFlightInfo(), which should be implemented by the client. The server
will call this method on the client, passing a collection of flight number/time pairs
that have to be updated on the screen.

Listing 4-6: The RefreshScreen interface

import java.rmi.*;
public interface RefreshScreen extends java.rmi.Remote {

void updateFlightInfo(Hashtable flightsInfo)
throws RemoteException;

}

The new version of the flight client is shown in Listing 4-7.

Listing 4-7: The FlightClient2 class

import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;
import java.util.Vector;
import java.util.Hashtable;
import java.util.Date;
import java.io.Serializable;

public class FlightClient2 implements RefreshScreen {

public FlightClient2(){
}

public void updateFlightInfo(Hashtable flightInfo){
System.out.println(“Flight data as of “ + new Date() +

“: “+flightInfo);
}

public static void main (String args[]) {

FlightClient2 fc=new FlightClient2();
try {
if (System.getSecurityManager() == null) {

System.setSecurityManager(
new RMISecurityManager());

Continued

c539663 ch04.qxd 7/25/03 9:14 AM Page 69

70 Part I ✦ Introduction

Listing 4-7 (continued)

}

UnicastRemoteObject.exportObject(fc);

FlightServer myServer = (FlightServer)
Naming.lookup(“rmi://localhost:6000/FlightService”);

// register the client for automatic flight info updates
myServer.registerClient(fc);

} catch (Exception e) {
System.out.println(e.getMessage());

}

System.out.println(“FlightClient2 is waiting for the “ +
“flight info updates from the server... “);

while(true){} // keep the client alive...
}

}

Let’s discuss the important changes that will allow the remote server to call the
updateFlightInfo() method on the client and execute this method in the
client’s JVM:

1. The client registers itself with the server using the method
registerClient(fc).

2. The client also makes itself visible to the remote server by exporting itself
with the help of UnicastRemoteObject.

3. The client also has to be processed by the rmic compiler. The following
command will create two pairs of stubs and skeletons:

c:>rmic FlightServerImpl FlightClient2

4. At the end of the main() method you can see an endless loop that will keep
the client alive so that it can receive updates from the server.

5. To simplify the example, the updateFlightInfo() method just prints the
current date and time and the content of the received Hashtable with the
flight information. We just want to see that the client receives the data feed
from the server. It should not be too difficult to improve the look of the client
by creating a Java Swing screen with a JTable that displays the received data.

c539663 ch04.qxd 7/25/03 9:14 AM Page 70

71Chapter 4 ✦ Understanding Remote Method Invocation

The server from Listing 4-2 also needs some changes. The modified version of the
FlightServerImpl class will have a new member variable to store the reference to
the client. Here’s the code:

private RefreshScreen client;

The registerClient() method will store the reference to the client and will start
sending “update” flight information as soon as the client registers. Here’s the code:

public void registerClient(RefreshScreen client)
throws java.rmi.RemoteException{

this.client=client;
startClientUpdates();

}
private void startClientUpdates()

throws java.rmi.RemoteException{
while(true){
// Send the arrivals info every 10 seconds
try{

Thread.sleep(10000);
} catch(InterruptedException e){
e.printStackTrace();

}
client.updateFlightInfo(arrivals);

}

Please note that the registerClient() method has an argument of type
RefreshScreen, which is perfectly legal because our client implements this inter-
face. Of course, we could have used the argument of type FlightClient2, but our
method is more flexible because it’ll work for different clients as long as they imple-
ment the interface RefreshScreen. This is polymorphism in action! Start this appli-
cation in a different command window as you did before, and the messages with the
flight information will be refreshed in the client’s window every 10 seconds.

It’s very important to understand that the server-side method call client.
updateFlightInfo(arrivals) is actually executed on the client side! The refer-
ence variable client, with the help of the stub, points at the object on the client’s
JVM. If you need proof that this is the case, perform the following experiment with
FlightClient2:

1. Remove the client’s stub.

2. Comment out the line that exports the client.

3. Declare that the client also implements the Serializable interface.

Run this example again and you’ll see that the messages with the flight information
are now printed in the server’s window. In this wrong version the whole client has
been serialized to the server and the updateFlightInfo() method works in the

c539663 ch04.qxd 7/25/03 9:14 AM Page 71

72 Part I ✦ Introduction

server’s JVM. This wrong version of the client would not be able to update the mon-
itors in the Connexia terminal.

This example demonstrates a simple method for use when the server needs to push
the data to the client — either at specified intervals or when an important event
occurs. Another example in which such technology could be used is the stock-
market data feed. Just create an applet as an RMI client, register it with the server
that will feed it with real-time price quotes, and enjoy the earnings.

However, there are situations when Java RMI applications need to communicate
with non-Java applications. The next section will introduce you to another protocol
that can be considered for the RMI-based solutions.

RMI over Inter-ORB Protocol (IIOP)
The RMI technology internally uses the Java Remote Method Protocol (JRMP),
which can be used for communications between Java programs only. On the other
hand, CORBA technology can be used in distributed applications whose components
are written in different languages, but CORBA uses the Internet Inter-ORB Protocol
(IIOP). Back in 1997, IBM and Sun Microsystems created RMI-IIOP protocol, which
allows write Java client programs that are communicating with non-Java objects.
RMI-IIOP supports both JRMP and IIOP protocols.

CORBA uses the Interface Definition Language (IDL) to define objects, and the RMI
compiler supports mapping between Java and IDL objects. The –iiop flag causes
rmic to generate stubs and ties (CORBA specific delegation mechanism) for remote
objects using the IIOP protocol, rather than stubs and skeletons. Some other differ-
ences in the development of RMI-IIOP applications (as opposed to CORBA applica-
tions) are listed here:

The server-implementation class must extend the javax.rmi.
PortableRemoteObject class.

JSDK includes the tnameserv.exe program, which is used as a naming
service.

The JNDI lookup has a different appearance. It looks like this:

Object obj=ctx.lookup(“FlightService”);
FlightServer fs = (FlightServer)

PortableRemoteObject.narrow(obj,FlightServer.class);

rmic must be run one extra time with the–idl option to generate IDL for
CORBA clients.

c539663 ch04.qxd 7/25/03 9:14 AM Page 72

73Chapter 4 ✦ Understanding Remote Method Invocation

While RMI is a lot simpler than CORBA, the latter gives you more flexibility in creat-
ing distributed applications. As a matter of fact, you may not even have a choice if
an application written in CORBA is already in production and you need to write a
Java application that communicates with it.

RMI and RMI-IIOP protocols are also implemented in the Enterprise JavaBeans con-
tainers that are explained later in the book in Part IV.

Summary
In this chapter we’ve shown you the simplest way to create a distributed applica-
tion using Remote Method Invocation. It’s readily available on any platform where
Java exists and does not require any third-party middleware. You should also con-
sider RMI for any Web application in which a Java applet communicates with a
remote RMI server.

RMI technology allows you to arrange communication between the client and the
server JVM in a unique way when the client can locate the remote object and
dynamically load the code (objects) to the server for processing. The details of
communication between the client and the server are hidden for a developer by
means of subs and skeletons. The RMI principles have been used in the EJB compo-
nents described later in Part IV of this book.

✦ ✦ ✦

c539663 ch04.qxd 7/25/03 9:14 AM Page 73

c539663 ch04.qxd 7/25/03 9:14 AM Page 74

The
Presentation
Tier

✦ ✦ ✦ ✦

In This Part

Chapter 5
Studying Servlet
Programming

Chapter 6
Going Over
JSP Basics

Chapter 7
Using JSP Tag
Extensions

✦ ✦ ✦ ✦

P A R T

IIII

e539663 PP02.qxd 7/25/03 9:14 AM Page 75

e539663 PP02.qxd 7/25/03 9:14 AM Page 76

Studying Servlet
Programming

Java servlets, empowered by other J2EE components,
enable you to create responsive, reliable, and scalable

server-side Web applications. They run inside a servlet con-
tainer that communicates with the user’s Web browser by
exchanging HTTP request and response objects. The servlet
container processes each servlet’s request in a separate
thread, maintains user sessions, creates response objects and
sends them back to the client. Servlets are easily portable to
any application server or servlet engine — it comes down to
copying a Web-application archive to the right disk directory
(see the section, “Deploying Servlets,” later in this chapter).

In this chapter you’ll learn how to work with servlets by
developing some of the screens for the Magazine Publisher
application described in Appendix B.

Creating a Magazine Publisher
Application Using Servlets

When you use an online store or bank or when you search
for some information on the Internet, your request is usually
processed on the server side. Only a limited number of opera-
tions, such as simple calculations and input validation, are
performed on the client’s machine using Java applets and
JavaScript.

However, Java applets have security restrictions and depend
on the version of the Web browser’s JVM (for example, some
of the Java classes or methods may not be available in older
versions of JVM). Also, if a Web browser has to download large
Java programs, the site’s response time will substantially
increase. That’s why the better choice is to keep only light-
weight HTML pages (a thin client) on the client’s machine,

55C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Creating Java
Web applications

Using servlets
for processing
HTML forms

Providing
session tracking

Using cookies

Applying listeners
and filters

✦ ✦ ✦ ✦

f539663 ch05.qxd 7/25/03 9:14 AM Page 77

78 Part II ✦ The Presentation Tier

while major processing should be done by the programs running on the server.
The server computers could be more powerful than the client computers, have the
proper version of JVM, and might be clustered, load-balanced, fail-overed, and so
on. Also the network bandwidth requirements are lowered if the client just sends
short requests.

Because the Magazine Publisher is a Web application, we need to decide what soft-
ware runs where. Let’s start with the server.

The server side
Web server software supporting the HTTP protocol has to run on the server side.
This Web server will “listen” for the user’s requests, usually on port 80. If the Web
server receives a simple request for a static HTML page, it can handle this request
without any additional software.

The server also needs to run a servlet engine (or an application server that has a
servlet container that is a component that supports the life cycle of servlets). If
a user requests some information that should be retrieved programmatically from
a database or any other resource, we’ll use Java servlets that will accommodate
the request, build an output HTML page dynamically, and pass that page over to the
user with the help of the Web server. When the user’s Web browser displays the
received page, it does not know if that page was a static HTML page or a fresh one
right from the oven (servlet engine).

Even though HTML is just a markup language, it has some basic elements and GUI
components, such as buttons, text fields, check boxes, and dropdown lists, that
allow users to enter data, make some selections, and submit requests to a remote
server. For example, the HTML <FORM> tag enables users to enter and submit data
from a Web page. Since this is not an HTML tutorial we’ll just mention some impor-
tant elements of this tag:

All GUI controls should be placed between the <FORM> and </FORM> tags.

A <FORM> tag has important attributes such as action and method. The action
attribute contains the uniform resource locator (URL) of the server program to
which the browser should send the user’s input. The method attribute tells the
browser how to send the data; this attribute is usually either Get or Post, as shown
in the following example:

<form action= “http://www.mymagpublisher.com/servlet/LoginServlet”
method=Get>

You can create a text field as follows:

<input type=Text name=”id” >

Note

f539663 ch05.qxd 7/25/03 9:14 AM Page 78

79Chapter 5 ✦ Studying Servlet Programming

The name of the text field will be passed by the browser to the servlet as a parame-
ter name.

The button that sends the data is of type Submit, and the button that clears all
fields is of type Reset:

<input type=”Submit”>
<input type=”Reset”>

The client side
Our Magazine Publisher wants to maximize the number of customers by minimizing
requirements for the client’s computer. The publisher wants to ensure that even the
clients with older computers and slow Internet connections will not wait long. Our
user should be able to work with any system, from an old PC to a Unix-based dumb
terminal to an Apple computer — as long as the system has a Web browser
installed. The user will interact with the publisher using HTML pages. Since we are
not going to install any software on the client machine, the maintenance of the sys-
tem becomes easy because all software and hardware upgrades will be done in one
central location — the publisher’s company.

Creating an HTML login screen
Let’s create a simple HTML login screen containing two text fields for the user ID
and the password, and two buttons: Reset and Submit. Listing 5-1 shows the code
for this screen, pub_login.html.

Listing 5-1: pub_login.html

<html>
<head>
<title>Magazine Publisher Login</title>
</head>
<body>
<P>
<form action=”http://www.mymagpublisher.com

/servlet/LoginServlet” method=Post>
Enter Login ID: <input type=Text name=”id” >
<P>
Enter Password: <input type=Password name=”pwd”>
<P>
<input type=”Submit” value=”Login”>
<input type=”Reset” >

</form>
</body>
</html>

f539663 ch05.qxd 7/25/03 9:14 AM Page 79

80 Part II ✦ The Presentation Tier

If you open this page in your browser, the screen will look like the one shown in
Figure 5-1.

Figure 5-1: The HTML client — pub_login.html

The client’s part is ready, so let’s work on the LoginServlet.

Servlet structure and life cycle methods
To create a servlet for a Web application we’ll have to derive our class from the
javax.servlet.http.HttpServlet class, which in turn is derived from the
javax.servlet.GenericServlet class. The simplified class diagram in Figure 5-2
shows an example of a user-created servlet called MyServlet.

Figure 5-2: The servlet inheritance hierarchyGenericServlet

service()
init()
destroy()

HttpServlet

doGet()
doPost()

MyServlet

doPost()

f539663 ch05.qxd 7/25/03 9:14 AM Page 80

81Chapter 5 ✦ Studying Servlet Programming

The servlet engine invokes methods such as init, service, and destroy.
Application programmers can also create so-called listener objects, which are
objects that are notified when some important events occur (as you’ll see in
“Listeners,” later in this chapter).

Init()
The servlet container calls the init() method exactly once after instantiating the
servlet. This method is called when the servlet is initially loaded by the container.
When this happens depends on the deployment parameter — it may happen during
the application server’s startup, or when the servlet is being requested for the first
time. This method is a good place to write code that creates non-user-specific
resources, namely the creation of object pools. For example, you can create a pool
of reusable connections objects to a messaging server (see Chapter 9). In general,
object pooling could substantially improve performance of the application by mini-
mizing the need of the Java garbage collection. The method init is overloaded and
one of its versions receives the object ServletConfig as an argument. This object
provides the method getInitParameter() to find the values of the configuration
parameters, if any. For details, see “Examining the web.xml Deployment
Descriptor,” later in this chapter.

service()
The service() method is called on the servlet’s ancestor every time the servlet
receives a user’s request. At this point the servlet container passes an instance of
the class ServletRequest, which contains the client’s data, to the servlet. The
service() method creates the objects HttpServletRequest and
HttpServletResponse and passes them as parameters to the doGet() or
doPost() method of the descendent class.

destroy()
The method destroy() is called by the servlet container to notify the servlet that
it’s about to be removed from service. This method will be called only once, and
developers should use it to program clean up of any resources that are being held,
for example threads and file, handlesdoPost() and doGet().

A programmer has to create a class derived from the HttpServlet and override
the doGet() or doPost() method according to the method attribute used in the
HTML form. The request object contains the information received from the Web
browser, and the servlet’s output will be sent back to the user as an instance of
the response object.

Writing the servlet
Let’s write the login servlet shown in Listing 5-2 that will be invoked by pub_login.
html. This servlet checks the user’s ID and, if it is correct, greets the user; other-
wise it displays an error message. To stay focused on servlet-coding techniques
we’ll just compare the ID and a password with the hard-coded values jsmith and
spring12.

f539663 ch05.qxd 7/25/03 9:14 AM Page 81

82 Part II ✦ The Presentation Tier

Listing 5-2: The LoginServlet.java class

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class LoginServlet extends
javax.servlet.http.HttpServlet {

// Do not declare these variables on the
// class level – the same instance of
// LoginServlet is shared by all users

public void doPost(HttpServletRequest req,
HttpServletResponse res)

throws ServletException, IOException {

res.setContentType(“text/html”);
PrintWriter out = res.getWriter();

String id = req.getParameter(“id”);
String password = req.getParameter(“pwd”);

out.println(“<HTML><BODY>”);

if(“jsmith”.equalsIgnoreCase(id) &&
“spring12”.equalsIgnoreCase(password)){

out.println(“Hello “+ id +
“. Welcome to our magazines! “);

} else {
out.println(“Id/Password combination is not valid”);

}

out.println(“</BODY></HTML>”);
}
}

When the doPost() method of LoginServlet is being called by the container, it
receives references to the HttpServletRequest and HttpServletResponse objects.
First the code calls the method setOutput() of the HttpServletResponse object
to specify the output type text/html. Then it gets the reference to the servlet’s
output stream of type PrintWriter. The method println() of the PrintWriter’s
sends the text output to the user.

The servlet sends to the browser text surrounded by the HTML <HTML> and <BODY>
tags. Actually, our LoginServlet can send any mix of plain text and HTML tags.

Note

f539663 ch05.qxd 7/25/03 9:14 AM Page 82

83Chapter 5 ✦ Studying Servlet Programming

Third, the servlet gets the parameters supplied by the user’s browser from the
request object. It can do this with the help of such methods as getParameter(),
getParameterValues(), and getParameterNames().

Fourth, after applying some business rules, the servlet forms the content of the out-
put page and sends it to the output stream PrintWriter.

At this point the servlet has to be compiled as any other Java class and deployed as
described in the section “Deploying Servlets,” later in this chapter.

Even though the code in Listing 5-2 looks simple, two invisible players are present
here — the Web browser and the servlet container. In this example, two computers
talk to each other and some of the methods are called by the servlet container. This
is why it’s very important to understand what happens and when in this example.
The following is a list of the steps involved in the browser/servlet interaction, using
LoginServlet as an example:

1. The user enters his or her ID and password and presses the Submit button on
the Login Web page.

2. The Web browser tries to connect to http://www.mymagpublisher.com/
servlet/LoginServlet and sends the entered data using Post.

3. A servlet engine checks to see if the LoginServlet is already running.

4. If LoginServlet is not running the servlet container starts it and invokes its
method init().

5. The servlet container calls the service() method of the servlet’s superclass,
passing HttpServletRequest and HTTPServletResponse to it as arguments.

6. The ancestor’s method service() calls the doPost() method of the
LoginServlet.

7. The code in LoginServlet.doPost() extracts the data entered by the user
from HttpServletRequest.

8. After applying some application business logic contained in the doPost()
method, the results are sent to the user’s browser when the code invokes the
method println() on the object PrintWriter. The method getWriter() gets
the reference to this object from the HTTPServletResponse.

9. The user’s Web browser displays the received HTML page.

Please note that we did not use instance variables in LoginServlet, because the
same servlet is used by multiple users. If you want to ensure that only one thread
processes the method service() at any given time, implement the interface
SingleThreadModel in your servlet . This interface has no methods to implement.
Its use is generally not recommended, as it slows down the servlet’s performance.

f539663 ch05.qxd 7/25/03 9:14 AM Page 83

84 Part II ✦ The Presentation Tier

HTTP Get and Post requests
If the HTML <FORM> tag has the attribute method=Get, the servlet has to override
the method doGet(). In this case the Web browser will append the values entered
by the user to the end of the URL string, using the question mark (?) as a delimiter.
For example, if pub_login has the method=GET as its form attribute, the Web
browser will create the following URL string:

http://www.mymagpublisher.com /servlet/LoginServlet?id=
”jsmith”&pwd=”Spring12”

The HTML method Get has the following disadvantages:

The length of the URL string is limited.

Different browsers have different restrictions on the URL length.

The URL string can be used only for text/data exchange. The binary data are
not passed as a part of the URL.

The data is not protected — the password is visible as it’s a part of the URL.

If the HTML <FORM> tag uses the method=Post attribute, the servlet has to override
the doPost() method. The doPost() method does not append the user’s input to
the URL string and can be used for sending and receiving various datatypes
described in the Multipurpose Internet Mail Extensions (MIME).

If you’d like a servlet to handle both Get and Post requests, override both the
doGet() and doPost() methods. If you place the application’s code in the method
doGet(), the method doPost() should look like this:

public void doPost(HttpServletRequest req,
HttpServletResponse res)

throws ServletException, IOException {

doGet(req, res); // execute the code from doGet()

}

We started this chapter with a detailed discussion of the login servlet example, to
give you a feeling of basic data flow between the servlet and the Web client. The
following sections will discuss more advanced topics such as servlet context and
session tracking.

Using the Servlet Context
The servlet context is a place inside the container where the servlet(s) live. More
than one Web application can be deployed in the servlet container, and each of
them will have its own servlet context. The ServletContext class can be used by
the servlet whenever it needs to use the services of the container.

f539663 ch05.qxd 7/25/03 9:14 AM Page 84

85Chapter 5 ✦ Studying Servlet Programming

Java does not have global variables, but in a stand-alone Java application you can
use the System.setProperty() and getProperty() methods to create variables
visible by all the application’s classes. You can also do this by using the following
methods of the ServletContext class:

✦ setAttribute()

✦ getAttribute()

✦ getAttributeNames()

✦ removeAttribute()

For example, a servlet can set the database name in the init() method, as follows:

getServletContext().setAttribute(“com.mycompany.dbname”,”Alpha”);

Another servlet from the same Web application can get this value as follows:

String dbName = getServletContext().getAttribute(“com.
mycompany.dbname”);

Keep in mind that these attributes are local to a Java Virtual Machine (JVM), and
that in a distributed environment such global parameters should be stored in the
HttpSession object. This object is described in “Session Tracking with Servlets,”
later in this chapter, or in other persisted objects.

The ServletContext class allows a servlet to load shareable file resources such as
HTML, GIF, and so on. Here’s an example:

InputStream in = getServletContext().getResourceAsStream
(“/myLogo.gif”);

You’ll see more examples of the ServletContext class usage later in the chapter in
the sections “Using RequestDispatcher” and “Listeners.”

The following section will explain how a servlet can re-direct the processing of the
user request to a different Web resource.

Performing URL Redirection
Servlets often need to redirect the processing of the user’s request to a different
URL, servlet or a JavaServer Page JSP (see Chapter 6, “Going Over JSP Basics”).
You can do this by using either of the following methods: HttpServletResponse.
sendRedirect() or RequestDispatcher.forward() explained in the next two
sections. The JavaScript language also has a mechanism for redirection on the
client side, but the JavaScript language is beyond the scope of this book.

f539663 ch05.qxd 7/25/03 9:14 AM Page 85

86 Part II ✦ The Presentation Tier

Using RequestDispatcher
Let’s say LoginServlet needs to pass control to LostPasswordServlet if
the user enters the wrong password. The reference to the instance of the
RequestDispatcher can be obtained from the ServletContext by means of
either the getRequestDispatcher() or getNamedRequestDispatcher() method.
When this is done just call the dispatcher’s forward() method, providing the
HttpServletRequest and HttpServletResponse as arguments. For example:

ServletContext context = getServletContext();
RequestDispatcher requestDisp = null;
String password = req.getParameter(“pwd”);

if (password.equals(“spring12”) {
requestDisp =

context.getRequestDispatcher(“MainServlet”);
}
else {
requestDisp =

context.getRequestDispatcher(“LostPasswordServlet”);
}

requestDisp.forward(req,res);

If the entered password is correct, the forward() method passes the request
and response objects from LoginServlet to MainServlet, and from then on
MainServlet interacts with the user. If the password is not correct, LostPassword
servlet will be in charge. (See “The Lost Password screen example,” later in this
chapter, for details.)

If the first servlet needs to stay in control and include its own output to the
response object as well as the output produced by another servlet or JSP, the
include() method should be used instead of forward(). For example:

requestDisp.include(req,res)

It’s worth mentioning that an instance of RequestDispatcher can also be
obtained from the ServletRequest object. The difference between calling
getRequestDispatcher() on ServletRequest and calling getRequestDispatcher()
on ServletContext is that ServletRequest enables you to specify a relative path
as a method argument.

Using sendRedirect()
While the forward() method performs the redirection on the server side using
original request and response objects, the sendRedirect() method sends the
request with the new URL back to the client, which connects to this URL, thereby
creating a new pair of request/response objects:

f539663 ch05.qxd 7/25/03 9:14 AM Page 86

87Chapter 5 ✦ Studying Servlet Programming

response.sendRedirect(“www.anothersite.com”) ;

As you can guess, the sendRedirect() method is slower than forward(), but it gives
you more flexibility because it can redirect the user to any URL, while forward()
works only within the same Web application.

The Lost Password screen example
Listing 5-3 contains the source code of LostPasswordServlet and the output
screen it generates appears in Figure 5-3. The screen enables users to enter their
e-mail addresses. If the e-mail addresses are known to the magazine’s publisher,
PasswordMailerServlet will e-mail the forgotten password to the specified
address. Please note that we are able to get the user’s ID from the request object
forwarded from LoginServlet.

Listing 5-3: LostPassword.java

import javax.servlet.*;
import javax.servlet.http.*;
public class LostPasswordServlet extends HttpServlet {
public void doPost(HttpServletRequest req,

HttpServletResponse res)
throws ServletException, IOException {
PrintWriter out = res.getWriter();

String id = req.getParameter(“id”);

out.println(“<head><title>”);
out.println(“Magazine Publisher Lost Password”);
out.println(“</title></head><body>”);
out.println(“Dear “ + id + “<P>”);
out.println(“Please enter the email address you have “);
out.println(“registered with your Magazine Publisher”);
out.println(“account. We will send instructions on “);
out.println(“how to reset your password “);
out.println(“to that address.<P>”);
out.println(“<form action=\””http://”);
out.println(

“www.mymagpublisher.com/PasswordMailerServlet”);
out.println(“method=Get>”);
out.println(“Enter e-mail: <input type=Text “);
out.println(“name=”email”>”);
out.println(“<input type=\”Submit\””);
out.println(“value=\”Send\”></form></body></html>”);
}

}

f539663 ch05.qxd 7/25/03 9:14 AM Page 87

88 Part II ✦ The Presentation Tier

Figure 5-3: The Lost Password screen

As you can see from the lost password example, we may have situations when the
user’s request has to be processed by more than one Web resource. The following
section will explain how to store and share the important information about the
user’s session between multiple servlet requests.

Session tracking with servlets
HTTP is a stateless protocol. This means that if a user inputs some data on a Web
page and then goes to another page, the second page does not “know” what has
been done on the first. Session tracking allows the server application to remember
the user’s input and carry it from page to page.

A session is some logical task that a user tries to accomplish on a Web site. Think of
the so-called shopping cart application, for example, in which the process of buying
a book may involve several steps — book selection, input of billing and shipping
information, and so on. Multiple users connect to the same servlet, but each of
them has a personal shopping cart.

Session information can be stored either in the client or in the server tier, and the
Java Servlets API enables you to store the session data by using cookies, rewriting
the URL, and using hidden form fields cookies or the session tracking API provided
by the HTTPSession class. These alternatives are discussed in the following sections.

Cookies
A cookie is a small file that a Web server may send to the user’s Web browser, which
in turn saves it to the hard disk. This file contains an ID that is unique to the com-
puter, so the server can identify the user when he or she connects to that particular
Web site again. Obviously, your bank’s site and a bookstore will send cookies with
different data. Whenever you connect to a Web site, your browser finds all cookies
for this site and sends them to the URL as part of the HttpServletRequest object.

f539663 ch05.qxd 7/25/03 9:14 AM Page 88

89Chapter 5 ✦ Studying Servlet Programming

Internet browsers give you the option to disable cookies. Your Web browser will
store up to 20 cookies per Web site, and the size of a cookie cannot exceed 4K.
A servlet can also specify the maximum lifetime of the cookie in seconds.

The following code snippet shows how a servlet can create and send a cookie that
will store the user’s account ID:

public void doGet(HttpServletRequest req,
HttpServletResponse res){

Cookie myCookie = new Cookie(“acctID”,”12345”);

// Set the lifetime of the cookie to 24 hours
myCookie.setMaxAge(60*60*24);
res.addCookie(myCookie);
}

When a user connects to the same site again, a servlet can retrieve the client’s
cookies from the HttpServletRequest object, as shown here:

Cookie [] cookies = req.getCookies();
for (i=0; i < cookies.length; i++){
Cookie currentCookie = cookie[i];
String name = currentCookie.getName();
String value = currentCookie.getValue();

if(name.equals(“acctID”)){
// find some data about the user based in the account ID

and create a
// personalized page. For example display the books which

user
// has been looking for during the previous visit, etc.

}

}

Cookies enable you to store the session information on the client side, which has
the following advantages.

Cookies can survive server crashes because they are stored on the client’s
hard disk.

They lighten the load on the server’s memory.

They simplify server fail-over procedure, because they may store the valuable
data about the last user selections made before the server has crashed.

Cookies also have the following disadvantages:

Cookies can be read by unauthorized users.

They can increase the load on the network.

User can disable cookies in their Web browsers.

f539663 ch05.qxd 7/25/03 9:14 AM Page 89

90 Part II ✦ The Presentation Tier

URL rewriting
URL rewriting allows the session ID to be attached to the end of the URL string to
help the servlet container identify the client for subsequent requests. The session
info is appended in the same way as the parameters in an HTTP GET request. The
major advantage of URL rewriting is that it enables servlets to keep track of the ses-
sion when a user disables cookies. The automatic switch between the use of cook-
ies and URL rewriting is a configurable parameter of the servlet container.

When a servlet appends the session info to the URL, it should encode this URL
using the HttpServletResponse method urlEncode(). This method will deter-
mine whether the Web browser supports cookies, and if not it’ll attach the session
ID to the URL. For example, if the original HTML page has the following link,

;

the servlet can rewrite this URL and append the session ID, if needed, as follows:

String newURL =
res.urlEncode(“http://www.mymagpublisher.com/servlet/
subscribeServlet”);
out.println(“Subscribe to
Magazine”);

The Web browser might get the URL http://www.mymagpublisher.com/
servlet/subscribeServlet;jsessionid=657487.

Hidden fields
HTML form’s hidden fields are yet another place for storing session data. The
hidden type is one of the valid types for the input fields of the HTML tag, and
when a servlet prepares an HTML page it may include one or more hidden fields.

The following is a code fragment from a servlet that creates an HTML page and
stores selected magazines in the HTML code. Please note the bold code that creates
and sends to the Web browser a hidden field:

out.println(“<form action=
http://www.mymagpublisher.com/servlet/subscribeServlet>”);
out println(“Select another magazine: <input type=text
name=item”);
out.println(“<input type=submit value=Add>”);
out.println(“<input type=hidden name=item value=Smart
Cooking>”);
out.println(“</form>”);

The user will see an empty text field with a button, but when you check the source
of this page, you’ll see the hidden field with the value Smart Cooking.

f539663 ch05.qxd 7/25/03 9:14 AM Page 90

91Chapter 5 ✦ Studying Servlet Programming

During subsequent requests the servlet can retrieve all the values from the hidden
fields, as shown here:

String[] selectedItems=request.getParameterValues(“item”);

All previously selected magazines (as contained in our shopping cart) will be stored
in the selectedItems array. Hidden fields give you more flexibility than URL
rewriting, because no size restriction exists and your selections are not visible
unless a knowledgeable user looks at the code of the HTML page.

The session-tracking API with HttpSession object
Instead of sending the shopping cart across the network to the client, you can keep
it inside the javax.servlet.http.HttpSession object in the servlet container’s
memory. The container creates one HttpSession object per client, and the servlet
can store any objects as key/value pairs there. These objects are the attributes of
the HttpSession object. Figure 5-4 shows the interaction between the user and a
servlet container. Please note that each client has a separate HttpSession.

Figure 5-4: Session tracking

The following line of code creates or finds a session object:

HttpSession mySession = request.getSession(true);

The getSession(true) call means “Find my session object, or create a new one
if not found.” Usually any shopping process consists of a number of subsequent
servlet calls, such as listing an inventory, adding an item to the shopping cart,
entering the shipping information, and so on. The getSession(true) call should
be used in the very first servlet. At this moment the application server generates
a unique session ID and sends it to the user’s Web browser as a cookie or by using
URL rewriting.

HTTP Session 1HTML CLIENT 1

HTML CLIENT 2

Servlet

SERVLET CONTAINER

Web
Server

shopping
cart 1

HTTP Request

Cookie or
URL Rewriting

HTTP Request

Cookie or
URL Rewriting

HTTP Session 2

shopping
cart 2

f539663 ch05.qxd 7/25/03 9:14 AM Page 91

92 Part II ✦ The Presentation Tier

The getSession(false) call means “find my session object,” assuming that the
object might have been created prior to this HTTP request. If this call returns null,
the session object may have been destroyed, and you should display a message
about the expired session to let the user start the process from scratch.

Now let’s create a simple class that represents a magazine:

class Magazine {
String title;
double price;

}

This is what you can do in the doGet() method of the servlet:

...
// Find or create a session object
HttpSession session = request.getSession(true);

// We’ll store selected magazines in a Vector.
// Find the shopping cart that might have been
// created during previous calls to this servlet.

Vector myShoppingCart=session.getAttribute(“shoppingCart”);

if (myShoppingCart == null){
// This is the first call - create a Vector
myShoppingCart = new Vector();

}

// create an instance of a magazine object
Magazine selectedMag = new Magazine();

selectedMag.title=request.getParameter(“magTitle”);
selectedMag.price=

Double.parseDouble(request.getParameter(“price”));

// Add the magazine to shopping cart
myShoppingCart.addElement(selectedMag);

// Put the shopping cart back into the session object
session.setAttribute(“shoppingCart”, myShoppingCart);
...

After the order has been placed, the servlet should close the session by making the
following call:

session.invalidate();

If the session has not been invalidated explicitly, the application server will invali-
date it automatically after the time specified in the server’s parameters has expired.
(See the <session-timeout> parameter in the section, “Examining the web.xml

f539663 ch05.qxd 7/25/03 9:14 AM Page 92

93Chapter 5 ✦ Studying Servlet Programming

Deployment Descriptor,” later in this chapter.) Application server vendors may pro-
vide a GUI tool to specify the session timeout. For example, if you use WebLogic or
WebSphere, you can specify the time using the respective administration console.
Idling sessions can also be programmatically invalidated after a specified period of
time. For example, a program can perform the following call after creating a session
object, in order to invalidate it in 120 seconds:

session.setMaxInactiveInterval(120); // invalidate in 2 minutes

Example of a LoginServlet with an access counter
Let’s look at the “non-shopping” use of the sessions in Listing 5-4. Let’s modify the
LoginServlet to allow only a limited number of login attempts. A simple class-
level variable counter that is incremented in every doPost() method call will not
work for us because only one servlet exists for all users, and this counter would list
the total number of login attempts. We need to maintain a separate counter for each
user; hence the session object is the right tool.

Listing 5-4: LoginServlet.java with the counter

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class LoginServlet extends

javax.servlet.http.HttpServlet {

public void doPost(HttpServletRequest req,
HttpServletResponse res)

throws ServletException, IOException {

res.setContentType(“text/html”);
PrintWriter out = res.getWriter();

String id = req.getParameter(“id”);
String password = req.getParameter(“pwd”);

HttpSession session = request.getSession(true);

Integer counter=session.getAttribute(“logAttempt”);

if (counter == null){
// This is the first call - create a counter
counter=new Integer(1);
} else {
// do not allow more that 5 attempts
if (counter.intValue()>5){

Continued

f539663 ch05.qxd 7/25/03 9:14 AM Page 93

94 Part II ✦ The Presentation Tier

Listing 5-4 (continued)

res.sendRedirect(“BadLoginServlet”);
}

}

// Store the counter in the session object
session.setAttribute(“logAttempt”,counter);

out.println(“<HTML><BODY>”);

if(“jsmith”.equalsIgnoreCase(id) &&
“spring12”.equalsIgnoreCase(password)){

out.println(“Welcome “+ id +”!”);

// store the user’s ID for other servlets
session.setAttribute(“userID”,id);

} else {
out.println(“Id/Password combination is not valid”);

}

out.println(“</BODY></HTML>”);
}
}

The next section will introduce you to servlet listeners — a feature that helps to
keep track of important events that may happen during a servlet life cycle.

Listeners
Starting from the Servlet 2.3 specification developers have been able keep track of
important ServletContext and HttpSession events. Listeners are Java classes
that a programmer can write and deploy in the Web-application archive. (See
“Deploying Servlets,” later in this chapter, for details.) These listeners can be noti-
fied of lifecycle events and attribute changes. Servlet listeners are defined as Java
interfaces; see Table 5-1 below.

Typically, a servlet-context creation event is used for the creation of such reusable
objects as connections to the databases, messaging servers, and so on. When a
servlet context is about to be shut down these objects should be gracefully closed.
These interfaces are used in the same way as any other Java interface: Just write a
class that implements one of them and specify its name in the deployment descriptor.
(The web.xml deployment descriptor is discussed later in this chapter.) Each of the
callback methods defined in these interfaces has one argument — an object describ-
ing an event. The classes that represent various events are listed in Table 5-2.

f539663 ch05.qxd 7/25/03 9:14 AM Page 94

95Chapter 5 ✦ Studying Servlet Programming

Table 5-1
Servlet listener interfaces

Interface Name Event Description Interface Methods

ServletContextListener Creation or contextInitialized()
shutdown of the

Package: javax.Servlet servlet context contextDestroyed()

ServletContextAttributeListener Addition, attributeAdded()
replacement, or

Package: javax.Servlet removal of the attributeReplaced()
attributes of the
Servlet attributeRemoved()
Context object

HttpSessionListener Creation, sessionCreated()
invalidation, or

Package: javax.Servlet.http timeout of the sessionDestroyed()
session

HttpSessionAttributeListener Addition, attributeAdded()
replacement, or

Package: javax.Servlet.http removal of the attributeReplaced()
session attributes

attributeRemoved()

Table 5-2
Servlet listener event classes

Class Name Method(s)

ServletContextEvent getServletContext()

ServletContextAttributeEvent getName()
extends ServletContextEvent

getValue()

HttpSessionEvent getSession()

HttpSessionBindingEvent extends getName()
HttpSessionEvent

getValue()

The following code fragment demonstrates how to write a servlet-context listener
that connects to an external messaging server when the servlet context is created.
This listener closes the connection when the context is destroyed.

f539663 ch05.qxd 7/25/03 9:14 AM Page 95

96 Part II ✦ The Presentation Tier

package com.magpub.listeners;
public class MagPublisherContextListener

implements ServletContextListener {
private ServletContext context = null;
public void contextInitialized(ServletContextEvent e){

this.context=e.getServletContext();

// Establish a connection to the JMS server
Connection mqCon =

// Store connection to the messaging server in
// the ServletContext object.

context.setAttribute(“mqConnection”,mqCon);
}

public void contextDestroyed(ServletContextEvent e){

// disconnect from the messaging server
mqCon = (Connection)

context.getAttribute(“mqConnection”);

mqCon.disconnect();
}

}

Do not forget to specify the MagPublisherContextListener class in the web.
xml file as described in “Deploying Servlets,” later in this chapter.

Session listeners can be implemented in a similar way. Say we need to create an
administrative tool that displays all active users working with a MagPublisher
servlet. Every time a user creates a session we can send a JMS message to a
queue. These messages will be retrieved and displayed by another GUI program.
For example:

public class MagPublisherSessionListener
implements HttpSessionListener {

public void sessionCreated(HttpSessionEvent e)
{

// The code sending a JMS message
// to add a user goes here

}

public void sessionDestroyed(HttpSessionEvent e)
{

// The code sending a JMS message
// to remove a user goes here

}
}

Note

f539663 ch05.qxd 7/25/03 9:14 AM Page 96

97Chapter 5 ✦ Studying Servlet Programming

The act of adding an object or attribute to, or removing it from, a session can be
caught by implementing the HttpSessionAttributeListener. If this attribute/
object also implements the HttpSessionBindingListener interface, the servlet
container sends a notification to this object saying something like “Hey, you’ve been
bound to (or unbound from) a session!” One more interface is worth mentioning
here —HttpSessionActivationListener. The servlet container may decide to
move session objects from one JVM to another, and it may passivate (temporarily
remove from memory) and activate the session during this process. A container
may also persist sessions and reactivate them after restart. A container is required
to send a notification about these events to all attributes bound to sessions imple-
menting HttpSessionActivationListener.

The next section will introduce you to yet another interesting feature of servlets
called filters.

Filters
Servlet filters were first introduced in the Servlet 2.3 Specification and are used for
additional processing or transformation of data contained in the request or response
objects. Basically, filters allow you to plug in Java classes performing some business
processing before or after the servlet. This is done without changing the servlet’s
code just by simple modification of the deployment descriptor elements located in
the web.xml file. Please refer to the section, “Examining the web-xml Deployment
Descriptor,” later in this chapter for all configuration related examples. Filters add
an ability to change the behavior of the servlets without changing the servlets’
code. They act like pre- or post-processors. Let’s looks at the example that shows
how filters can make your code more elegant.

How can you write a servlet that performs a particular type of processing, but based
on some deployment parameter sends its output either in HTML or XML format? In
the pre-filter era you’d have to write an if statement in the method doPost(), like
this:

// Get the value of the someInitParam in the method init() as
described above
...
if (someInitParam==’a’){

out.println(“<HTML>”);
...

}else if (someInitParam ==’b’){
out.println(“<?xml version=\”1.0\”?>”);

...
}

However, if the output in the WML format is requested the servlet’s code has to be
modified to add yet another else if statement. Filters enable you to remove for-
matting or some other reusable processing of the incoming or outgoing datafrom

f539663 ch05.qxd 7/25/03 9:14 AM Page 97

98 Part II ✦ The Presentation Tier

the servlet’s class. They act as plugins to the request and response objects and can
perform additional processing for existing servlets without requiring modification
to the servlets’ code. The following reusable tasks are good candidates to be used
in the filters rather than in the servlets themselves:

✦ Encryption

✦ Sign-on

✦ Auditing

✦ Data compressing

✦ Performance benchmarking

✦ Debug logging

Filters can also be chained to create a combination of functions without modifying
the servlet’s code — just add another <FILTER> section to the deployment
descriptor file to turn the filter on. By modifying another configuration parameter
<filter-mapping> you can apply the filter to one or multiple servlets.

The package javax.servlet provides three simple interfaces: Filter, FilterConfig,
and FilterChain. To create a filter, write a Java class that implements the javax.
servlet.Filter interface, which contains the methods listed in Table 5-3.

Table 5-3
The filter interface

Method Name Description

doFilter(ServletRequest req, Called by the container whenever a client
ServletResponse res, requests a servlet that has this particular filter
FilterChain chain) specified in the file web.xml. The third

parameter allows the filter to pass these objects
to the next filter in the chain, if any.

init(FilterConfig filtConfig) Called by the container when the filter is
loaded.

destroy() Called when the filter is unloaded.

The interface FilterConfig provides an access to the initialization parameters
of the servlet and to the object ServletContext. It has the following methods:
getInitParameter(), getInitParameterNames(), getServletContext(), and
getFilterName(). A reference to the FilterConfig object is given to the filter by
the servlet container as an argument of the method init(), and it’s a good idea to
make it available for all filter methods by storing it in a class variable.

f539663 ch05.qxd 7/25/03 9:14 AM Page 98

99Chapter 5 ✦ Studying Servlet Programming

The interface FilterChain has only one method doFilter() with two parameters:
ServletRequest and ServletResponse. In case of request filtering you call it to
pass control to the next filter in a chain or a servlet. For response filters this method
sends the output back to the user’s Web browser.

The following code fragment illustrates the creation of a filter that will intercept
and log all requests. After the LogFilter class is compiled, its name and mapping
to the application resources has to be listed in the file web.xml (as explained in
“Examining the web.xml Deployment Descriptor,” later in this chapter).

package com.magpub.filters;

import java.util.Date;

public class LogFilter implements Filter{
private FilterConfig fConfig=null;
private String custRepFile=null;

public void init(FilterConfig filterConfig){
fConfig=filterConfig;
// Get an initialization parameter CustRepFile

specified in
// the <init> section of the web.xml

custRepFile = fConfig.getInitParameter(“CustRepFile”);
}

public void doFilter(ServletRequest req, ServletResponse
res,

FilterChain
chain){

// Log IP addresses of user machines requesting a servlet.

log(“Received request from “ + req.getRemoteHost());

// Pass control to the next filter in chain or the servlet
chain.doFilter(req,res);

}

public void destroy(){
fConfig=null;

}

// A user-defined method
public void log(String msg){
Date date=new Date();
System.out.println(“Date:” + date+”,” + msg)

}

}

f539663 ch05.qxd 7/25/03 9:14 AM Page 99

100 Part II ✦ The Presentation Tier

Say you want to notify security administrator about the IP addresses of the users
who entered invalid credentials on the Login screen. The e-mail address of the secu-
rity administrator could be retrieved in a filter from the initialization parameter, for
example.

String email = fConfig.getInitParameter(“SecAdminEmail”);
String ipAddress = request.getRemoteHost();

Now you can add the code sending an e-mail as described in Chapter 8, “Working
with JavaMail.”

The following code fragment shows how to apply some encryption for all parame-
ters that are being sent to a servlet:

public void doFilter(ServletRequest req, ServletResponse res,
FilterChain

chain){
// Get all parameters from the request object and encrypt them
// using some custom method encrypt()

Enumeration params = request.getParameterNames();
while(params.hasMoreElements()){
String parName=(String)params.nextElement();
String parValue= request.getParameter(parName);
String encryptedValue = encrypt(parValue);

req.setAttribute(parName,encryptedValue);

}

// Pass control to the next filter in chain or the servlet
chain.doFilter(req,res);

}

Please note that we set the encrypted values as attributes of the request object.
The servlet or the next filter in the chain should retrieve these values using such
methods as getAttributeNames() and getAttributes().

Now let’s look at the filtering of the responses. This time we will actually modify
the response object rather than just adding an attribute to it. Since the arguments
of the method doFilter() have types ServletRequest and ServletResponse,
you can create your own wrappers around the HttpServletRequest and
HttpServletResponse to create more sophisticated filters. For this purpose
Java servlets API provides the classes HttpServletRequestWrapper and
HttpServletResponseWrapper.

Imagine that a servlet has to be implemented in multiple branches of a company.
Each branch has to display a footer on the output HTML screen containing its own
address, telephone and some other static information. This could be achieved by
modifying the response object generated by the servlet.

f539663 ch05.qxd 7/25/03 9:14 AM Page 100

101Chapter 5 ✦ Studying Servlet Programming

First, we need to prevent a servlet from closing the output response stream so the
filter could intercept and modify the output. This could be done by creating a cus-
tomized response object that generates a so-called stand-in stream. Basically, the
servlet’s filter creates a wrapper response object and gives it to the servlet using
the call similar to the following:

doFilter(request, wrapper);

where the wrapper is an instance of a subclass of HttpServletResponseWrapper.

When the servlet sends its response object using this wrapper, we’ll intercept and
modify it in the filter class as shown in the following code snippet. This technique is
an example of a well-known design pattern called Decorator or Wrapper, when an
instance of a class is modified to gain additional functionality. A wrapper class has
the same interface as the object it contains, but provides an additional processing
inside the interface method(s).

public class FooterFilter implements Filter{
private FilterConfig fConfig=null;
private String branchAddress =null;

public void init(FilterConfig filterConfig){
fConfig=filterConfig;
// Get an initialization parameter branchAddress

specified in
// the <init> section of the web.xml

branchAddress =
fConfig.getInitParameter(“BranchAddress”);

}

public void doFilter(ServletRequest req, ServletResponse
res,

FilterChain
chain){

PrintWriter out = res.getWriter();

// Pass the servlet’s output to the Web browser or to the
next

// filter in chain
TextResponseWrapper wrapper = new TextResponseWrapper(

(HttpServletResponse)res);
chain.doFilter(req,wrapper);

// A response modification part
java.io.CharArrayWriter caw = new

java.io.CharArrayWriter();

// Get the servlet’s output string up to the tag </body>

f539663 ch05.qxd 7/25/03 9:14 AM Page 101

102 Part II ✦ The Presentation Tier

String servletOutput = wrapper.toString();
servletOutput= servletOutput.substring(0,

servletOutput.indexOf(“</body>”)-1);

// Write the first part of the output to the buffer
caw.write(servletOutput);

// Append the address of the branch
caw.write(“<p>” + branchAddress);

// Append the closing tags of the HTML page
caw.write(“</body></html>”);

// Re-calculate and set the new length of the writer’s
buffer

res.setContentLength(caw.toString().length());

// send the output to the Web browser
out.write(caw.toString());
out.close();
}

}

Following is the code of the response wrapper that has been used in the
FooterFilter. This class overrides the method getWriter() to substitute the
standard output stream with the customized one which is constructed in the filter.

public class TextResponseWrapper extends
HttpServletResponseWrapper {

private java.io.CharArrayWriter buffer;
public String toString() {

return buffer.toString();
}
public TextResponseWrapper(HttpServletResponse res){

super(res);
buffer = new java.io.CharArrayWriter();

}
public PrintWriter getWriter(){

return new PrintWriter(buffer);
}

}

We’ve mentioned various configuration parameters that can be used when a servlet
is deployed. In the next section we’ll discuss in detail the process of servlet deploy-
ment and various parameters that can be used in the servlet’s deployment descrip-
tor file, web.xml.

f539663 ch05.qxd 7/25/03 9:14 AM Page 102

103Chapter 5 ✦ Studying Servlet Programming

Deploying servlets
Java Community Process provides the following definition of a Web application in
the servlet specification: “A Web application is a collection of servlets, HTML pages,
classes and other resources that make up a complete application on a Web server.”

J2EE defines a standard way to deploy Web applications. It suggests that all com-
ponents of a Web application should be packaged in the Web application archive
(WAR) — the file with extension .war, which has the same format as .jar files.
(The WAR is discussed next.) A Web application could be deployed either indepen-
dently in the .war file, or it could be included in the Enterprise Application archive
(.ear file) along with other application components, such as Enterprise JavaBeans.
(See Part IV, “The Service Tier” for details.)

Multiple Web applications can be deployed on the same application server. Keep in
mind though, that an application server assigns the same cookie name (JSESSIONID)
for the session tracking cookies for all Web applications. If you use this name for the
user authentication, refer to your vendor’s documentation to see how to control the
name of the cookie in the Web application. For example, the WebLogic application
server provides a special deployment parameter CookieName for this.

The Web-application archive
Web-application archives are created with the Java jar utility, just like regular Java
archives, which contain multiple files in a compressed form compatible with zip
files. A sample jar command is shown at the end of this section. The WAR has to
store deployed files using the following directory structure:

✦ The top level contains the resources that you’d put in a regular document root
directory (HTML files, JavaServer Pages, and client-side resources).

✦ The META-INF subdirectory contains the file manifest.mf, which contains
information about the files in this archive.

✦ The WEB-INF directory can contain the web.xml deployment descriptor and
JSP tag library descriptors, if any.

✦ The XML web.xml file maps names of the deployed objects to full names of
corresponding Java classes, and can contain some other application proper-
ties such as session configuration, security, and others.

✦ Subdirectory classes contain compiled servlets, beans, and utility classes.

✦ The lib subdirectory is for any additional jar files. If the same class exists in
the subdirectory classes as well as in jar, the version from the classes direc-
tory is loaded.

✦ The tlds subdirectory is for JSP tag libraries (see Chapter 7, “Using JSP Tag
Extensions”), if any.

f539663 ch05.qxd 7/25/03 9:14 AM Page 103

104 Part II ✦ The Presentation Tier

A Web-application developer usually creates this directory structure on the local
disk, and creates the WAR when the files are ready for deployment. The following com-
mand adds all the files from the current directory into the file MagPublisher.war:

jar cvf MagPublisher.war *

As long as your files are located in the directory structure described above, your
Web application could be deployed even without creation of the WAR, which is typi-
cal for the development stage of the application.

As we’ve mentioned in the beginning of this chapter, static resources such as HTML
files, images, jars and applets could be processed be the Web server alone, that’s why
you may leave these resources outside of the WAR in the document root directory.

Examining the web.xml
Deployment Descriptor

The web.xml deployment descriptor is an XML file that can be prepared by any
plain-text editor. The application-server vendor may provide a GUI tool for
creation deployment descriptors. While web.xml is a required file for every Web
application deployed in a J2EE compliant application server, vendors may also
create additional deployment descriptor files. Please refer to your vendor’s docu-
mentation describing the servlet deployment procedure.

The web.xml file should start with a DOCTYPE element pointing to the proper DTD
file. For example, for the Servlet 2.3 Specification this element should look like this:

<!DOCTYPE web-app PUBLIC
“-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN”

“http://java.sun.com/dtd/web-app_2_3.dtd”>

Mandatory servlet elements
The following servlet names are mapped to actual servlet classes that might be
located in packages:

<web-app>
<servlet>
<servlet-name>LoginServlet</servlet-name>
<servlet-class>LoginServlet </servlet-class>

</servlet>
<servlet>
<servlet-name>BadLoginServlet</servlet-name>
<servlet-class>

com.security.BadLoginServlet

f539663 ch05.qxd 7/25/03 9:14 AM Page 104

105Chapter 5 ✦ Studying Servlet Programming

</servlet-class>
</servlet>

</web-app>Optional Servlet Elements

While tags such as <servlet-name> and <servlet-class> are required elements,
the following list includes some of the optional XML tags:

✦ <init-param> is a servlet-initialization parameter that can be accessed by
means of ServletConfig.getInitParameter()— for example:

<init-param>
<param-name>CustRepFile</param-name>
<param-value>c:\custrep.ser</param-value>
</init-param>

✦ <load-on-startup> indicates a servlet that has to be loaded, and whose
init() method has to be called on the Web-application startup. This tag may
be empty or have an optional integer value that specifies the order in which
the servlet must be loaded.

✦ <session-config> specifies the timeout for users’ sessions. The following
example specifies a 60-second timeout:

<session-config>
<session-timeout>60</session-timeout>
</session-config>

✦ <security-role-ref> specifies the mapping between the hard-coded in the
servlet security role and a <security-role> defined in the deployment
descriptor, as shown here:

<security-role-ref>
<role-name>DIRECT</role-name>
<!--Name used in the servlet’s code -->
<role-link>director</role-link>
</security-role-ref >

Servlet listener elements
If event listeners were created for this Web application, they should be listed in the
web.xml. Here’s an example:

<web-app>
<listener>

<listener-class>
com.magpub.listeners.ContextListener

</listener-class>
</listener>
<servlet>

...
</servlet>

<web-app>

f539663 ch05.qxd 7/25/03 9:14 AM Page 105

106 Part II ✦ The Presentation Tier

Servlet filter elements
To deploy filters, add the <filter> section to the web.xml file, and also map the
filter to the servlet that will be using the filter. For example: <filter>

<filter-name>LogFilter</filter-name>
<filter-class>com.magpub.filters.LogFilter</filter-class>

</filter>
<filter-mapping>
<filter-name>LogFilter</filter-name>
<servlet-name>LoginServlet</servlet-name>

</filter-mapping>

To apply a filter to selected servlets repeat the <filter-mapping> section for each
servlet.

If you’d like the filter to be used by all servlets of the Web application use the
<url-pattern> section instead of the <servlet-name>, for example to apply the
filter for all Web application objects use the following element:

<url-pattern>/*</url-pattern>

The next example ensures that the filter will work only with JavaServer Pages
(see Chapter 6):

<url-pattern>/*.jsp</url-pattern>

To create a filter chain provide multiple <filter-mapping> sections. The following
example ensures that request data will be logged and encrypted before reaching
the LoginServlet:

<filter-mapping>
<filter-name>LogFilter</filter-name>
<servlet-name>LoginServlet</servlet-name>

</filter-mapping>
<filter-mapping>
<filter-name>EncryptFilter</filter-name>
<servlet-name>LoginServlet</servlet-name>

</filter-mapping>

The new deployment element <dispatcher> allows you to specify if the filter has
to be applied, for example only when a control is redirected by a forward() or
include() call of a request dispatcher. The following section ensures that the
LogFilter will be invoked only when the request’s generated by the call to a
method forward() in the servlet LoginServlet:

<filter-mapping>
<filter-name>LogFilter</filter-name>
<servlet-name>LoginServlet</servlet-name>
<dispatcher>FORWARD</dispacher>

</filter-mapping>

f539663 ch05.qxd 7/25/03 9:14 AM Page 106

107Chapter 5 ✦ Studying Servlet Programming

The next descriptor will apply the filter MyFilter only to requests that come
directly from the client:

<filter-mapping>
<filter-name>MyFilter</filter-name>
<url-pattern>/*</url-pattern>
<dispatcher>REQUEST</dispacher>

</filter-mapping>

The next section will show that not only HTML clients, but also Java applets could
work with servlets.

Applet-servlet communication
Because HTML alone does not provide advanced GUI components, Java applets with
AWT or Swing components can become handy. The main business processing should
still be done by the servlets on the server side, but applets can take care of the pre-
sentation part. Let’s take a look at the following applet/servlet design considerations:

Applets have to be downloaded to the client’s machine, so we still want to
keep them lightweight (small in size).

Applets should not connect directly to server databases — this will make
them smaller, because they won’t contain JDBC drivers.

In Internet applications applets do not access the user’s disk, and therefore
they should be used primarily for data entry, validation, display, and simple
calculations.

Applets may not work properly if the user’s Web browser has an outdated JVM.

While applets can connect to a remote computer using socket or RMI program-
ming, there is an easier way — HTTP tunneling, which is a way of creating a
sub-protocol for specific tasks on top of the existing protocol (HTTP). With
the help of the HTTP protocol, applets can establish a communication chan-
nel with servlets and send and receive any text and binary objects using Java
Serialization.

An applet can collect the user’s input from the GUI components, package the data
in a serializable object, and send the data to the servlet.

To receive data from a servlet, the applet has to play the role of a Web browser. It has
to understand the data it receives and populate the appropriate GUI components. For
example, if an applet expects to receive the magazine data as two values — the title
and the price — it needs to get a reference to the servlet’s input stream and read
the received values, as shown here:

URL servetlURL = new
URL(“http://www.mymagpublisher.com/ShowMagazines”);
URLConnection con = servletURL.openConnection();
InputStream in = con.getInputStream();

f539663 ch05.qxd 7/25/03 9:14 AM Page 107

108 Part II ✦ The Presentation Tier

BufferedReader servletData = new BufferedReader(new
DataInputStream(in));

String magTitle = servletData.readLine();
String magPrice = servletData.readLine();

txtTitle.setText(magTitle); // display the data in a AWT
TextField
txtPrice.setText(magPrice);

What if a magazine is represented not by two, but by 50 values? Instead of perform-
ing 50 reads over the network we should pre-populate an object on the client side
and send it to the servlet in one shot. Let’s look at the applet/servlet communication
using Java Serialization, which allows easy conversion of a Java object into a stream
of bytes. Our applet is going to prepare the magazine-subscription order and send
it over to a servlet, which will save the order in a database. We could implement
this process by performing the following steps involved in applet/servlet object
serialization:

1. Create a SubscriptionOrder class that implements the Serializable
interface.

2. Using Java AWT or Swing components, create an applet to collect subscription
info. Include a Send button to enable the user to submit the order to a servlet.

3. Create a database table for storing the orders, and a servlet that can work
with the database using JDBC.

4. In the applet, under the actionPerformed() of the Send button do the
following:

a. Create an instance of SubscriptionOrder and initialize it with the
values entered on the screen.

b. Connect to a servlet using the URLConnection class.

c. Obtain a reference to the OutputStream object of the servlet.

d. Create an instance of ObjectOutputStream, chaining it with the
servlet’s OutputStream. Send the order to this stream using the
writeObject() object.

e. Close the streams.

5. In the servlet, do the following:

a. Obtain a reference to the applet’s InputStream using request.
getInputStream().

b. Create an instance of the ObjectInputStream, chaining it with the
applet’s InputStream, and call the readObject() method to de-serialize
the SubscriptionOrder instance.

c. Connect to the database and save the order in the database.

d. Close the streams.

f539663 ch05.qxd 7/25/03 9:14 AM Page 108

109Chapter 5 ✦ Studying Servlet Programming

Listings 5-5, 5-6, and 5-7 illustrate this process:

Listing 5-5: Code fragment from SubscriptionOrder.java

class SubscriptionOrder implements java.io.Serializable{
private String magazineID;
private int quantity;
private String promoCode;
private String custID;

SubscriptionOrder(String magazineID, int quantity,
String promoCode, String custID){

this. magazineID = magazineID;
this.quantity=quantity;
this.type=promocode;
this.custID=custID;

}
public String getMagID (){return magazineID;}
public int getQuantity(){return quantity;}
...

Listing 5-6: Code fragment from Client.java

class Client extends java.applet.Applet implements
ActionListener {

ObjectOutputStream out = null;

// The GUI components should be created here
...

// The user pressed a button
public void actionPerformed (ActionEvent event){

if (event.getSource() == buttonSend){
SubscriptionOrder sOrd = new SubscriptionOrder(

listMagId.getSelectedItem(),

Integer.parseInt(txtQuantity.getText()),
txtPromo.getText(),
txtCustID.getText());

try{
URL orderServlet =
new
URL(“http://www.mymagpublisher.com/ShowMagazines/OrderServlet”
);

Continued

f539663 ch05.qxd 7/25/03 9:14 AM Page 109

110 Part II ✦ The Presentation Tier

Listing 5-6 (continued)

URLConnection con = orderServlet.openConnection();

//We are only sending data ,otherwise call also the
setDoInput(true)
con.setDoOutput(true);

// We are sending the binary object, that’s why the content
type
// should be application/octet-stream.
con.setRequestProperty (“Content-Type”, “application/octet-
stream”);

out = new ObjectOutputStream(con.getOutputStream());

// Send the order to the servlet
out.writeObject(sOrd);

} catch(){
...

} finally{
out.flush();
out.close();

}
}
}

Listing 5-7: Code fragment from OrderServlet.java

class OrderServlet extends HttpServlet{

// Since we are passing the binary data from the applet,
// we can’t use doGet()

public void doPost(HttpServletRequest request,
HttpServletResponse response){

ObjectInputStream appletStream = null;
SubscriptionOrder receivedOrder = null;

try{
// get the applet’s input stream
appletStream = new

ObjectInputStream(request.getInputStream());

//de-serialize the order received from the applet
receivedOrder = (SubscriptionOrder)

f539663 ch05.qxd 7/25/03 9:14 AM Page 110

111Chapter 5 ✦ Studying Servlet Programming

appletStream.readObject();

// connect do the database and save the received order

// If the servlet needs to send some data to the
// applet, it need s to call create an instance of
// the ObjectOutputStream by using
// request.getOutputStream(), and send a serializable //
object over there.

} catch(Exception e){
e.printStackTrace();

} finally{
...
appletStream.close();

}
}
}

A similar technique can be implemented to send data from a servlet back to the
applet. For example, a servlet connects to the database, selects all orders of a given
customer, puts the result set into a Vector, and serializes the result set into the
applet’s steam. The applet de-serializes the Vector and populates a JTable.
Examples of working with relational databases using JDBC can be found in the
Chapter 18.

The next section briefly lists some of the important new features of servlets that
were introduced in the specification 2.4.

What’s New in the Servlet 2.4 Specification
The Java Servlet Specification 2.4 is not a major upgrade of the servlet API, but
some of the new features and changes are listed here:

✦ The ability to extend deployment descriptors will enable developers to insert
application-specific configuration information into the deployment descriptor.

✦ New listeners will allow developers to use a ServletRequestListener
instance to intercept events when a request comes in and out of scope (enters
and exits the first filter in the filter chain). A ServletRequestAttributeListener
instance will catch the events when attributes are being added to, removed
from, or replaced on a ServletRequest instance.

✦ Filters can be configured and invoked under RequestDispatcher forward()
and include() calls.

✦ Unhandled listener exceptions are propagated to the application’s code.

f539663 ch05.qxd 7/25/03 9:14 AM Page 111

112 Part II ✦ The Presentation Tier

Summary
In this chapter, we’ve introduced you to Java servlets that are widely used to create
Web applications. While processing HTTP requests, servlet containers provide a
concurrent multithreaded environment to improve the performance of such appli-
cations. Session management is yet another vital aspect of most of the Web applica-
tions, and you’ve learned various ways of storing session information.

✦ ✦ ✦

f539663 ch05.qxd 7/25/03 9:14 AM Page 112

Going Over
JSP Basics

JavaServer Pages (JSP) is a J2EE component that enables
you to develop Web applications that work as if they had

been created with Java servlets. The JSP specification defines
JSP as “a technology for building the applications for generat-
ing dynamic Web content such as HTML, DHTML, SHTML, and
XML.” This chapter will teach you about the various JSP script-
ing elements and directives. You will also learn how to work
with variable scopes and experiment with a few examples.
Finally, you will design an online store and then apply JSP to
the Airline Reservation business case.

Let’s begin with some simple examples.

Introducing JSP
The first very basic examples discussed in this section will
show the easy way of generating HTML content using JSP.
Let’s say you’ve created and deployed a servlet that displays
the HelloWorld HTML page by using println() in its
doGet() method. Here’s that code:

out.println(“<HTML><BODY>”);
out.println(“Hello World”);
out.println(“</BODY></HTML>”);

What if you need to change the layout of this page — say you
want to add a header and a footer? Because you’ve already
learned about Java servlets, you can easily add several
out.println() statements, and then recompile the servlet
and deploy it again. A real Web application can generate
dozens of Web pages and each of them may need to be modi-
fied. Fortunately, JSP enables you to separate screen design
from business logic, so a Web designer can take care of the
HTML part while the Java developer concentrates on the pro-
gramming of business functions required by the application.

66C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Introducing
JavaServer Pages

Applying the
model-view-controller
design pattern

Using JavaBeans
with JSP

Developing a sample
user-login application

Developing a sample
user-registration
application

✦ ✦ ✦ ✦

f539663 ch06.qxd 7/25/03 9:14 AM Page 113

114 Part II ✦ The Presentation Tier

Now, to see how a simple HTML page could be converted into a JSP, type into any
plain editor the HTML code shown in Listing 6-1, and save it in a file named
HelloWorld.jsp.

Listing 6-1: HelloWorld.jsp

<HTML>
<BODY>
Hello World

</BODY>
</HTML>

This file has to be placed into a document root directory on the application-server
machine or deployed in the Web application-archive file (as explained in the previ-
ous chapter). Now users can access this JSP from the Web browser by entering a
URL like this: http://www.mydomainname.com/HelloWorld.jsp. Upon the first
request to this page, the JSP container will automatically generate, compile, and
deploy a servlet that produces the output based on the content of the file
HelloWorld.jsp. The container will automatically generate the jspService()
method in the new servlet, which will have the same functionality and arguments as
the servlet’s service() method. The first request of the JSP will take longer than
all single subsequent ones because of this generation process, but then the servlet
will be up and running and will respond immediately.

It does not take a rocket scientist to understand that we could have achieved the
same effect by creating a HelloWorld.html file without all these complications.
This is true, as long as your page is a static one and does not need to perform any
business processing.

Remember, HTML is not a programming language, just a markup language. It could
not perform even such a simple calculation as 2 + 2, but JSP can easily do it by
using special tags that enable the programmer to embed Java code into an HTML
page. During the servlet-generation process this Java code will also be included and
executed as part of the servlet.

JSP elements are surrounded by angle brackets, like this: <%=2+2%>. The JSP con-
tainer will replace these elements with the regular Java code. For example, the tag
<%=2+2%> will be replaced with a Java statement similar to the following one:

out.println(2+2);

Listing 6-2 shows the code for the MyFirstJSPPage.jsp file.

Note

f539663 ch06.qxd 7/25/03 9:14 AM Page 114

115Chapter 6 ✦ Going Over JSP Basics

Listing 6-2: My First JSP

<HTML>
<BODY>

You may not know that 2 + 2 is <%= 2 + 2%>
<p>The code within the JSP tag was created by a Java

developer, while the rest of the page has been done by the HTML
person.
</BODY>
</HTML>

When this JSP is requested by the user, it will display the following text in the Web
browser:

You may not know that 2 + 2 is 4
The code within the JSP tag was created by a Java
developer, while the rest of the page has been done
by the HTML person.

Please note that the expression <%2 + 2%> has been replaced by the value of 4.
A JSP tag <%= ... %> from the preceding example can contain any Java expression
that will be evaluated, and its result will be displayed in place of the expression by
the JSP engine.

A JavaServer Page is nothing but a servlet that is automatically generated by a JSP
container from a file containing valid HTML and JSP tags. The latest JSP specification
is 2.0.The original Java Specification Request (JSR152) listed the version as 1.3.
However, based on the scope of changes — such as introduction of the new
Expression Language, the Standard Tags Library (JSTL), and some others — this
specification has been released as version 2.0.

The following sections explain the various elements of JavaServer Pages, starting
with a discussion of the design of the Web applications, and specifically, applying
the model-view-controller to the JSP technology.

Examining MVC and JSP
The model-view-controller paradigm was briefly discussed in Chapter 1. Now, we will
show you how to apply it in practice for Web applications. MVC suggests dividing
the components of an application (or even an object!) into the three parts:

f539663 ch06.qxd 7/25/03 9:14 AM Page 115

116 Part II ✦ The Presentation Tier

✦ The model — This component represents the application data and the business
processing code.

✦ The view — This component is responsible for the presentation layer — Web
pages or GUI screens, for example.

✦ The controller — This component provides a reaction to the user’s input,
“input” being such things as button clicks.

Even some of the Java Swing components were designed using the MVC pattern.
For example, a JTable (the view) that looks like a spreadsheet can store its data
in a different class, such as a descendent of the AbstractTableModel class (the
model).

For Web applications the MVC pattern can work as follows:

The view portion is implemented by means of JSP, HTML, and JavaScript.

The model portion of an application can be developed with any Java (and
non-Java) classes such as beans, EJB, and JMS. It can also provide data stor-
age using a database-management system, flat files, and so on.

The controller is a navigation object that redirects control to appropriate
classes based on the user’s choices or some other events that may happen
in the system. For example, the user makes a selection on a Web page that has
to be processed by a Java class or JSP. A Java servlet is a good candidate for
this role.

Any changes in page appearance (such as colors, fonts, or screen-real-estate allo-
cation) can be made by the HTML person responsible for the presentation of the
application. After the changes are applied and the modified JSP is deployed, the JSP
will automatically be regenerated into a new servlet upon the first user’s request.
(See an example in the section “Deploying Login JSP Example Using Apache Tomcat,”
later in this chapter.) Since the business logic has not been changed (2 + 2 is still
equal to 4), there is no need to change the model.

See the section “Designing an Online Store with JSP,” later in this chapter, for a prac-
tical example of using the MVC paradigm.

The next section will introduce you to the basic JSP elements that control the
servlet generation process and allow embedding of Java code into HTML pages.

JSP Scripting Elements and Directives
JSP elements (tags) can by grouped according to the functions they perform.
For example, they can be referred to as variable declarations, expressions, page
attributes, and so on. The tags are surrounded by angle brackets (<>), and like
HTML and XML tags can have attributes. Everything else that can be contained in

f539663 ch06.qxd 7/25/03 9:14 AM Page 116

117Chapter 6 ✦ Going Over JSP Basics

the JSP page but that cannot be known to the JSP translators (plain text, HTML
tags, and so on) is called template data.

First we’ll discuss the use of the following tags and other JSP elements:

✦ Declarations

✦ Expressions

✦ Directives

✦ Scriptlets

✦ Comments

✦ Actions

✦ Implicit JSP objects

✦ Error pages

✦ JavaBeans

Then we’ll build the Login and Registration screens for the Connexia Airlines busi-
ness case described in Appendix A.

Declarations
Declarations do not generate the output to the user’s screen. They are used for
declaring class variables and methods and start with <%! . The lastName
variable declared in the following code is only available in the current page:

<%! String lastName; %>
If you need to declare a Java method called myMethod() in a
JSP you could do it as follows:
<%! private void myMethod(){

...
}

%>

The code contained in the JSP declaration block will be located in the generated
servlet outside any existing method.

Expressions
JSP expressions start with <%= and can contain any Java expression, which will be
evaluated and its result inserted into the HTML page right where the expression is
located. For example:

<HTML><BODY>
<%! double salary=50000; %>
Your new salary is <%= salary*1.2 %>
<HTML><BODY>

f539663 ch06.qxd 7/25/03 9:14 AM Page 117

118 Part II ✦ The Presentation Tier

The next example shows how to display the current date on the Web page:

Today’s date is <%= new java.util.Date() %>

Please note that there is no semicolon (;) at the end of the expression.

Directives
Directives do not generate screen output. They inform the JSP engine about the
rules to be applied to the JSP. The page directive starts with <%@ page and will be
applied during the servlet-generation process only to the current page. It’s used
with such attributes as import, extends, session, errorPage, and contentType.
For example, an equivalent of the Java import statement looks like this:

<%@ page import=”java.io.*” %>

With servlets you set the type of the output by code like response.
setContentType(“text/html”). The JSP version of this code is shown here:

<%@ page contentType=”text/html” %>

Now consider the following example:

<%@ page session=”true” %>

You can see that, as in servlets, the JSP containing this directive will try to find an
existing session object, and if it does not find one will create a new one. You can
find another example of the page directive in the section “Error Pages,” later in this
chapter.

The include directive allows inclusion of any text file or code from another JSP, at
the time when the page is compiled into a servlet. For example, if every JSP in your
application has to display the same header, you can place the code for the header
in the file TheHeader.jsp and include it in every page. The following code fragment
uses an HTML table to display a Web page with the content of the file TheHeader.
jsp on top:

<table><tr>
<td><%@ include file=”/TheHeader.jsp” %></td>
</tr>
<tr><td>
The rest of the web page content goes here
</td>
</table>

You can find out more about JSP directives at the following Web page: http://
java.sun.com/products/jsp/tags/tags.html.

f539663 ch06.qxd 7/25/03 9:14 AM Page 118

119Chapter 6 ✦ Going Over JSP Basics

Scriptlets
Scriptlets can contain any valid Java code that will be included in the method
jspService during servlet-code generation. For example, within scriptlets you
can also insert variable and method declarations, Java expressions, and so on.
Scriptlets start with <%. The jspService method is responsible for generating the
Web-page output, as in the following example:

<% lastName = “Smith”; %>

The plain text and HTML tags should be placed outside of the scriptlets.

Next is an example of a mix of plain text, HTML, and JSP tags that uses scriptlets.
Please note that before adding any text, HTML tags, or JSP elements, the scriptlet
must be closed by adding the symbols %> , and then you can write the text and
other JSP tags:

<% if (userID.equals(“jSmith”)) { %>
Hello John! You’ve got mail.
<% } else { %>
Please register or login.<P>
<% } %>

This mix will be converted into the Java code in the servlet, which may look like the
following:

if (userID.equals(“jSmith”)) {
out.println(“Hello John! You’ve got mail.”);

} else{
out.println(“Please register or login.<P>”);

}

Even though the JSP syntax enables insertion of Java code fragments, variables,
and method declarations, you should try to minimize the amount of Java code in
the JSP body. Remember that the whole point of using JSP is to separate business
processing from the presentation. That’s why the best practice is either to move
Java code into JavaBeans, as shown later in this chapter, or to use custom tag
libraries, as shown in the next chapter.

Comments
JSP comments start with <%-- and end with --%>, and are not included in the out-
put Web page:

<%-- Some comments --%>

If you need to include comments in the source of the output page, use the HTML
comments, which start with <!-- and end with -->.

f539663 ch06.qxd 7/25/03 9:14 AM Page 119

120 Part II ✦ The Presentation Tier

Actions
JSP actions provide runtime instructions to the JSP containers. For example, a JSP
action can include a file, forward a request to another page, or create an instance of
a JavaBean.

<jsp:include page “header.jsp” />
<jsp:forward page=”someOther.jsp” />
<jsp:useBean id=”User” class=”com.connexiaair.AirUser” />

JavaBeans and the use of the action <jsp:useBean> will be discussed later in this
chapter in the section, “Using JavaBeans.” I will briefly discuss the rest of the stan-
dard JSP action tags in this section.

forward
The forward action enables you to redirect the program flow to a different HTML file,
JSP, or servlet while maintaining the same request and response objects. This direc-
tive works in the same way as the forward() method of the RequestDispatcher
class, described in the previous chapter.

include versus jsp:include
Please note the following difference: the include directive adds the content of the
included page at the time of compilation, while the jsp:include action does it at
runtime. This adds flexibility to JSP, because the decision about what page to include
can be made based on the user’s actions or other events that may take place when
the Web application is already running.

plugin
The plugin action ensures that if your JSP includes an applet, the Java plugin will
be downloaded to the user’s browser JVM to avoid version-compatibility problems.
During code generation, the tag <JSP:plugin> will be replaced in the output
stream by either an <object> or an <embed> tag, depending on the user’s browser.

<jsp:param>
The <jsp:param> action can be used as a nested tag with such action tags as
<jsp:forward>, <jsp:include>, and <jsp:params>. For example, it can be used
to pass parameters to an applet like this:

<jsp:plugin type=applet code=Login.class>
<jsp:params>
<jsp:param name=”userID” value=”SCOTT” />
<jsp:param name=”password” value=”TIGER” />

</jsp:params>

f539663 ch06.qxd 7/25/03 9:14 AM Page 120

121Chapter 6 ✦ Going Over JSP Basics

</jsp:plugin>
The following example shows how a JSP can redirect control to a login servlet. The
JSP could also contain the code that adds new parameters to the JSP that is being
loaded. For example, a parameter called password was not part of the original
request object but will be passed the JSP LoginServlet:

<jsp:forward page=”LoginServlet”>
<jsp:param name=”password” value=”Spring” />

</jsp:forward>
Besides scripting elements, JSP also uses reserved variable names that point to
implicit objects, which are discussed next.

Implicit JSP objects
In the previous chapter you learned how to use such objects as HttpServletRequest,
HttpServletResponse, HttpSession, and ServletContext. Since JSPs live by the
same rules as servlets, they also need to be able to get access to these objects.
Fortunately, JSPs provide a number of predefined variables that give you access to
these vital objects. Since all these objects were explained in Chapter 5, we’ll just men-
tion their names along with the corresponding JSP variables:

✦ request— This variable points at HttpServletRequest. The following exam-
ple gets the flight destination entered by the user on the HTML page:

<% String dest=
request.getParameter(“destination”); %>

✦ response— Use this variable to access the HttpServletResponse object.
For example:

<% response.setContentType(“text/html”); %>

✦ out— This variable represents the JspWriter class, which has the same
functionality as the PrintWriter class in servlets. Here’s an example:

<% out.println(“Enter flight destination”); %>

✦ session— This variable represents the instance of the HTTPSession object.

✦ exception— This variable represents an instance of the uncaught
Throwable object and contains error information. This variable is only avail-
able from the JSP error page that contains the directive isErrorPage=true.
See the section “Error Pages,” later in this chapter, for details.

✦ page— This variable represents the instance of the JSP’s Java class processing
the current request.

✦ pageContext— This variable represents the javax.servlet.jsp.
PageContext class, which contains methods for dealing with scoped data.
See examples in the next section, “Working with Variable Scopes.”

f539663 ch06.qxd 7/25/03 9:14 AM Page 121

122 Part II ✦ The Presentation Tier

✦ application— This variable gives you access to the ServletContext object
without your having to call getServletConfig().getContext().

✦ config— This variable provides access to the ServletConfig object.

Working with Variable Scopes
If a JSP variable is declared inside a scriptlet, it has a local scope (visible only within
a method). The variable has to be declared by means of the declaration tag to have
an instance scope (visible from any method of the generated servlet class).

JSP variables can also be stored in the PageContext and have the scope of a page,
request, session, or application. If the data have the page scope, they are visible
only within the current page. If they have the request scope the data are alive for as
long as the request is not complete. Session-scoped variables are destroyed when
the session is over. If the data have the application scope the variables die only
when the Web application is destroyed.

You can prolong the lifetime of a variable by storing it as an attribute of the page
context using an implicit JSP pageContext object. The following examples show
you how to do it:

<%
pageContext.setAttribute(“airline.flight”, “704”,

PageContext.PAGE_SCOPE);
pageContext.setAttribute(“airline.userID”, “jsmith”,

PageContext.REQUEST_SCOPE);
pageContext.setAttribute(“airline.flightOrigin”, “JFK”,

PageContext.SESSION_SCOPE);
pageContext.setAttribute(“airline.sysadmin”,
“support@connexiaair.com”, PageContext.APPLICATION_SCOPE);
%>

The following are examples of how to display these values, if you wish:

<%=pageContext.getAttribute(“airline.flight”,
PageContext.PAGE_SCOPE); %>

<%=pageContext.getAttribute(“airline.userID”,
PageContext.REQUEST_SCOPE); %>

<%=pageContext.getAttribute(“airline.flightOrigin”,
PageContext.SESSION_SCOPE); %>

<%=pageContext.getAttribute(“airline.sysadmin”,
PageContext.APPLICATION_SCOPE); %>

For additional scope information see the section “The scope of JavaBeans,” later in
this chapter.

f539663 ch06.qxd 7/25/03 9:14 AM Page 122

123Chapter 6 ✦ Going Over JSP Basics

Error Pages
Let’s say we have a flight reservation page, Reservation.jsp, containing the code
that may throw Java exceptions. Instead of scaring users with stack trace screens,
we’d rather prepare a friendly ReservationErrors.jsp that explains the problem
in plain English. Do not forget to mention the name of the custom error page that
will display reservation errors, as shown in Listing 6-3.

Listing 6-3: Declaring a custom error page in a JSP

<HTML>
The code searching for seats availability and other

HTML stuff goes here
...
<%@ page errorPage=RegistrationErrors.jsp %>

</HTML>

Listing 6-4 shows ReservationErrors.jsp, which uses the predefined JSP variable
exception, which in turn displays the error message in a user-friendly manner, and
also contains the exception description for the technical-support team. The line
<%@ page isErrorPage=”true” %> must be present in the custom error page.

Listing 6-4: The error page, ReservationErrors.jsp

<HTML>
<BODY>
<%@ page isErrorPage=”true” %>

Dear friend!
<P>
We are sorry to inform you that there was a little problem
during your flight reservation.
<P>
Make sure that the field Number of Passengers contains only
numeric values.
<P>
If this does not solve your problem please contact our award
winning technical support team at (999)100-0000 and provide
them with the following information:
<P>
<%=exception.toString() %>
</BODY>
</HTML>

f539663 ch06.qxd 7/25/03 9:14 AM Page 123

124 Part II ✦ The Presentation Tier

You can have different error pages for different types of errors. The mapping
between the error type and the name of the error page is specified in the deploy-
ment descriptor web-xml. These are probably the two most “popular” error codes:

✦ 404 — Resource not found

✦ 500 — Internal error

The error page for the “resource not found” error does not even have to be a JSP —
it can be a static HTML page such as Connexia404.html. Most of the JSP compila-
tion errors and Java exceptions generate a 500 error, which can be processed by
Connexia500.jsp. To implement the error pages, you should create them and add
the following section to the web.xml file:

<error-page>
<error-code>404</error-code>
<location>Connexia404.html</location>

</error-page>
<error-page>

<error-code>500</error-code>
<location>Connexia500.jsp</location>

</error-page>

You can even use the <exception-type> element of the deployment descriptor
to define an error page to be displayed if a particular Java exception occurs. For
example:

<error-page>
<exception-type>java.sql.SQLException</exception-type>
<location>ConnexiaDBError.jsp</location>

</error-page>

The next section discusses special JavaBean classes.

Using JavaBeans
A JavaBean is a Java class that has a no-arguments constructor, private or
protected fields (properties) and public setter/getter methods accessing the
bean’s properties. If a bean has to support persistence, it should implement the
Serializable interface. JavaBeans in the JSP world are used for data exchange,
and they also help separate business processing from presentation.

See Chapter 7 for a discussion about tag libraries, which are an alternative means
of creating reusable JSP components.

Listing 6-5 shows an example of a JavaBean representing a user of Connexia Airlines.
Please note the naming conventions used in this listing for the setters and getters.

Cross-
Reference

f539663 ch06.qxd 7/25/03 9:14 AM Page 124

125Chapter 6 ✦ Going Over JSP Basics

Listing 6-5: The JavaBean AirlineUser.java

package com.connexiaair;
class AirlineUser implements java.io.Serializable{

private String lastName;
private String firstName;
private boolean employee;

AirlineUser (){
// some initialization code goes here

}

public String getLastName(){
return lastName;

}
public String getFirstName(){

return firstName;
}
public void setLastName(String value){

lastName = value;
}
public void setFirstName (String value){

firstName = value;
}
public void setEmployee(boolean value){

employee = value;
}

public boolean isEmployee (){
return employee;

}

}

This class holds the first and last names of the user and also allows you to mark the
user as an employee. Please note that we named the getter method isEmployee()
rather than getEmployee() because it returns a boolean value.

Using JavaBeans in JSP
You declare a JavaBean in a JSP by specifying its name using the JSP action tag
<jsp:useBean>. The syntax of this JSP element can vary depending on a bean’s
type, but in general you have to provide the bean’s ID (nickname) and location.
After that you can set or get its properties. The following JSP element instantiates
the bean AirlineUser:

<jsp:useBean id=”AirUser”
class=”com.connexiaair.AirlineUser” />

f539663 ch06.qxd 7/25/03 9:14 AM Page 125

126 Part II ✦ The Presentation Tier

If you need to use a bean that has been serialized, say into the file AirUser.ser,
the syntax of the useBean action will look slightly different:

<jsp:useBean id=”Student” beanName=”AirUser.ser” type=
” com.connexiaair.AirlineUser” />

The next line shows how to assign the value Smith to the bean’s LastName property:

<jsp:setProperty name=” AirUser” property=”LastName”
value=”Smith”/>

You can get the value of a bean’s property and insert it into the output page in two
ways:

<jsp:getProperty name=”AirUser” property=”LastName” />

or

<%=AirUser.getLastName() %>

Typically, you will need to populate the bean’s properties based on the data entered
in the tag <Form> on the HTML page. For example:

<FORM ACTION=http://myServer:8080/Registration.jsp
method =Post>

Enter the Last Name:<INPUT TYPE=”Text” name=”LName”>
Enter the First Name:<INPUT TYPE=”Text” name=”FName”>
</FORM>

The following is the code fragment from a Registration.jsp file that passes the
values entered on the preceding form to the JavaBean and populates its properties:

<jsp:useBean id=”AirUser”
class=”com.connexiaair.AirlineUser” />

<jsp:setProperty name=”AirUser” property=”LastName” value=
“<%= request.getParameter(“LName”) %>” />

<jsp:setProperty name=” AirUser” property=”FirstName” value=
“<%=request.getParameter(“FName”) %>” />

If the bean property names are the same as the field names on the HTML form, all
values entered on the HTML form can be passed to the bean in one shot by means
of the wildcard (*):

<jsp:setProperty name=”AirUser” property=”*” />

f539663 ch06.qxd 7/25/03 9:14 AM Page 126

127Chapter 6 ✦ Going Over JSP Basics

The scope of JavaBeans
The bean’s scope can be defined by means of the scope attribute of the
<jsp:useBean> tag, as explained here. Only one of the following scopes could be
specified as an attribute:

✦ page— This is the default scope and specifies that the bean is only available
within the current page and will be destroyed as soon as the user exits the
page. For example:

<jsp:useBean id=”AirUser”
class=”com.connexiaair.AirlineUser” scope=”page” />

✦ request— Specifies that the bean will stay alive as long as the request object
does. Even if control will be redirected to a different JSP with the <jsp:
forward> tag, the bean will still be available on the new page, because the
request object is alive. Here’s an example:

<jsp:useBean id=”AirUser”
class=”com.connexiaair.AirUser” scope=”request” />

✦ session— Specifies that the bean will be available for all pages until the ses-
sion object expires. (Read about session tracking in the previous chapter.)

<jsp:useBean id=”AirUser”
class=”com.connexiaair.AirUser” scope=”session” />

✦ application— Specifies that the bean is available for all users and all pages.
A bean with this setting is a “global bean.” For example:

<jsp:useBean id=”AirUser”
class=”com.connexiaair.AirUser”

scope=”application” />

Creating a login JSP using a JavaBean
Let’s redesign the login-screen example from Chapter 5 (see Listings 5-1 and 5-2) to
demonstrate the use of JSP scriptlets, expressions, implicit objects, and JavaBeans.

Listing 6-6 shows the Login.html example. It invokes the Welcome.jsp page
shown in Listing 6-7. That page uses the JavaBean Login.java, shown in Listing
6-8, to check the user’s credentials.

Listing 6-6: Login.html

<html>
<head>
<title>Login</title>
</head>

Continued

f539663 ch06.qxd 7/25/03 9:14 AM Page 127

128 Part II ✦ The Presentation Tier

Listing 6-6 (continued)

<body>
<P>
<form action=”http://localhost:8080/Welcome.jsp” method=Post>
Enter Login ID: <input type=Text name=”id” >
<P>
Enter Password: <input type=Password name=”pwd”>
<P>
<input type=”Submit” value=”Login”>
<input type=”Reset” >

</form>
</body>
</html>

Listing 6-7: Welcome.jsp

<jsp:useBean id=”login” class=”com.connexiaair.Login”
scope=”session”/>

<jsp:setProperty name=”login” property=”*”/>

<html>
<head>
<title>Connexia Airlines</title>
<body>

<%
if (login.checkCredentials())
{
%>
Welcome <%=request.getParameter(“id”) %> !
<% } else { %>
Invalid credentials.
<% } %>
</body></html>

Listing 6-8: The Login.java JavaBean

package com.connexiaair;

public class Login {
// Bean’s properties
private String id;
private String password;

// Setters

f539663 ch06.qxd 7/25/03 9:14 AM Page 128

129Chapter 6 ✦ Going Over JSP Basics

public void setId(String value){
id=value;

}
public void setPwd(String value){

password=value;
}

// A no-argument constructor
public Login() {
}

// A method containing business logic
public boolean checkCredentials(){
if(“jsmith”.equalsIgnoreCase(id) &&
“spring12”.equalsIgnoreCase(password)){

return true;
} else{
return false;

}
}

}

If the user enters jsmith and spring12 on the login page the Welcome.jsp will
generate a Web page containing the message “Hello jsmith!” For any other user’s
input the Welcome.jsp will respond with the unfriendly “Invalid credentials.” In a
real-world application the method checkCredentials()could connect to a data-
base, LDAP server or other resource to validate the user’s credentials.

See Chapter 18 for details about Java Database Connectivity.

The easiest way to deploy this simple application is to copy the .html and .jsp
files to the document root directory of your application server and to put the com-
piled Login class into any directory listed in the classpath on the server (usually
compiled classes are located in the directory called classes).

Deploying the Login JSP example using Tomcat
Apache Tomcat 5.0 is a servlet and JSP container used in the official implementation
of the Java Servlets 2.4 and JSP 2.0 technologies. You can download it from http://
jakarta.apache.org/tomcat/. The following steps describe the process of JSP
deployment in Tomcat:

1. Install Tomcat. Then, copy the Login.html and Welcome.jsp files to the
webapps\ROOT directory. You can place the Login.class file in the webapps\
ROOT\WEB-INF\classes\com\connexiaair directory.

2. Now, start Tomcat by clicking the Start Tomcat option in Microsoft Window’s
start menu. For Unix installations, use the startup script.

Cross-
Reference

f539663 ch06.qxd 7/25/03 9:14 AM Page 129

130 Part II ✦ The Presentation Tier

3. To run the login example, start your Web browser and go to http://
localhost:8080/Login.html.

It’ll be a couple of seconds during the first run before you see the output of
the Welcome.jsp file, because Tomcat needs to generate and compile the JSP
into a servlet, but all future requests will be processed a lot faster.

You can also deploy this example as a Web application using the .war file, as
explained in Chapter 5.

If, out of curiosity, you’d like to see the Java code generated from Welcome.jsp,
you can find it in the Tomcat directory work. We are now ready to discuss a more
advanced example of JSP in real-world applications.

Designing an Online Store with JSP
Every purchasing process on the Internet consists of a few steps that are pretty
much the same regardless of what goods or services you order. You, the online
buyer, will usually perform the following actions:

1. Register or login to the online store, travel agency, airline, et cetera.

2. Browse the inventory of goods or services.

3. Select an item and add it to the shopping cart. After that, you may either
proceed to checkout or keep browsing the inventory.

4. Once you have proceeded to checkout, enter (or confirm) your payment and
shipping information.

5. Press that scary-looking button that says, “You are about to place THE
ORDER! Are you 100% sure?”

At the end of the process, the order is saved in the vendor’s database and a receipt
is e-mailed to the buyer.

Online stores can be developed with such J2EE components as Java servlets, JSP,
Java Database Connectivity (JDBC), and JavaMail, and this book explains all of
them.

Servlet programming is discussed in Chapter 5 and JDBC is covered in Chapter 18.

Let’s discuss the Web-layer components that can be used for the development of
such applications as online stores. This discussion can also serve as an example
of how to apply the model-view-controller design pattern explained earlier in this
chapter in the section “More On MVC.” JavaBeans and other Java classes will repre-
sent the model, a servlet will represent the Controller, and several JSPs will represent
the view.

Cross-
Reference

f539663 ch06.qxd 7/25/03 9:14 AM Page 130

131Chapter 6 ✦ Going Over JSP Basics

Web sites usually consist of several screens with top and side panels that contain
menus. The top panel may show the global menu and the company’s logo. This
global menu is usually displayed on every page. The side panel generally shows the
navigational menu and may be different for each screen. These panels should be
created as separate JSPs, and other screens (also JSPs) will include them by means
of the <jsp:include> directive.

The shopping process consists of multiple steps, so we should take care of session
tracking to remember every item that’s been added to the shopping cart. A JavaBean
is a good candidate to provide shopping-cart support, and the JSP’s implicit session
object will store this bean — let’s call it ShoppingCartBean. The items placed into
the shopping cart will be represented by the Item class, as shown in Listing 6-9:

See Chapter 15 for a discussion of session beans.

Listing 6-9: A Shopping-Cart Item

class Item {
long productCode;
String description;
double unitPrice;
int quantity;

// Setters and getters go here
}

Since the shopping cart may contain more than one item, ShoppingCartBean has
to be able to store a collection of items. For this let’s use a Java Vector class.

import java.util.Vector;
import java.uo.Serializable;

class ShoppingCartBean implements Serializable{

private Vector selectedItems = new Vector();

ShoppingCartBean(){ }

public Vector getItems(){
return selectedItems;

}

public void addItem (Item selectedItem){
selectedItems.add(selectedItem);

}
}

Cross-
Reference

f539663 ch06.qxd 7/25/03 9:14 AM Page 131

132 Part II ✦ The Presentation Tier

You can create JSPs such as ProductCatalog.jsp, Billing.jsp, Shipping.jsp,
and Receipt.jsp to interact with the online buyer. Each of these JSPs may gener-
ate a screen containing an HTML <Form> element with fields required by the next
JSP, if needed.

A MainServlet servlet, shown in Listing 6-10, will process all user requests and
load the appropriate JSP starting with ProductCatalog.jsp. For example, if the
“Proceed To Checkout” button on the HTML form is clicked, the MainServlet
should load Billing.jsp. If the user clicks the “Continue” button on the billing
screen, the MainServlet will load Shipping.jsp. If the user clicks the “Return To
Shopping” button, the servlet will load ProductCatalog.jsp again. The lightweight
servlet MainServlet should perform only navigational functions. It can have an if
statement to load the appropriate JSP with the help of the RequestDispatcher
class, as was explained in the previous chapter.

Listing 6-10: A partial controller servlet

class MainServlet extends HTTPServlet{
...
public void doGet(HttpServletRequest request,

HttpServletResponse response) {

HttpSession session = request.getSession(true);
RequestDispatcher disp = null;

// Find existing or create a new Shopping Cart
ShoppingCartBean shoppingCart =
(ShoppingCartBean) session.getAttribute(“ShoppingCart”);

if(shoppingCart == null) {
session.setAttribute(“ShoppingCart”,

new ShoppingCartBean ());
}

String nextScreen =
request.getParameter(“ScreenName”);

if (“Billing”.equals(nextScreen)) {
disp = getServletConfig().getServletContext().
getRequestDispatcher(“Billing.jsp”);

} else if (“Shipping”.equals(nextScreen)) {
disp = getServletConfig().getServletContext().
getRequestDispatcher(“Shipping.jsp”);

}
...

if (disp != null) {

f539663 ch06.qxd 7/25/03 9:14 AM Page 132

133Chapter 6 ✦ Going Over JSP Basics

disp.forward(request, response);
}
}
}

You can create a similar controller functionality using JSP, as shown in the next case
study.

When the application starts, one more class can be instantiated and populated —
the ProductCatalog class. This class connects to the database, as explained in
Chapter 18, and retrieves and stores all available products. If the number of products
is too big for all of them to be kept in memory, or if you’d like to show the real-time
data, repopulate the product catalog from the database every time ProductCatalog.
jsp is displayed. The next section contains the Airline Reservations example that
illustrates interaction between such components of Web application as HTML
pages, JSPs and JavaBeans.

Airline Reservations Business Case
Let’s develop an airline-registration screen that will put together all the bits and
pieces that you’ve learned in this chapter. This screen will allow agents, partners,
consumers, and employees to register on the airline’s Web site. A user will enter his
or her name, e-mail address, and phone number. An employee will be required to
enter his or her employee ID, an agent will be required to enter his or her agent ID,
and a partner will be required to enter his or her partner ID.

During the reservation or registration process the user’s input must be validated
against the database. Because you have not yet learned how to access databases
from Java, we’ll throw an exception instead of saving user information in the
database. Later on, in Chapter 18, we’ll rewrite this code.

This example uses the following files:

✦ register.html

✦ register.jsp

✦ registerBean.java

✦ DBProcessor.java.

The file register.html, shown in Listing 6-11, contains an HTML form to be filled
in by the user. Please note that all fields are located in an HTML table that simplifies
filed alignment and ensures that the screen will look the same regardless of window

f539663 ch06.qxd 7/25/03 9:14 AM Page 133

134 Part II ✦ The Presentation Tier

sizes and screen resolution. Since the form tag has the attribute action=”register.
jsp”, the user’s input will be sent to register.jsp when the “Register” button is
clicked.

Listing 6-11: The registration page, register.html

<html>
<head><title>Connexia Airline</title></head>
<body>
<form action=”register.jsp” method=post>
<center>
<table bgcolor=”#CCCCCC” border=0>

<th colspan=2>
Connexia Airline Registration</th>
<tr >
<td valign=top>
First Name[*]

<input type=”text” name=”firstName” size=15></td>
<td valign=top>
Last Name[*]

<input type=”text” name=”lastName” size=15></td>
</tr>

<tr>
<td valign=top>
Address[*]

<input type=”text” name=”street” size=25>

</td>
<td valign=top>
Zip Code[*]

<input type=”text” name=”zip” size=5 maxlength=5></td>
</tr>

<tr >
<td valign=top>
E-mail

<input type=”text” name=”email” size=25></td>
</tr>

<tr>
<td valign=top colspan=2>
User ID[*]

<input type=”text” name=”userName” size=10>
</td>
</tr>
<tr>

<td valign=top colspan=2>
Who are you?[*]

f539663 ch06.qxd 7/25/03 9:14 AM Page 134

135Chapter 6 ✦ Going Over JSP Basics

<input type=”radio” name=”userType” value=”Cons” checked>
Consumer
<input type=”radio” name=”userType” value=”Empl”>Employee

<input type=”radio” name=”userType” value=”Agent”>Agent
<input type=”radio” name=”userType” value=”Partner”> Partner

</td>
</tr>

<tr>
<td valign=top>
Password[*]

<input type=”password” name=”pwd” size=12></td>
<td valign=top>
Confirm Password[*]

<input type=”password” name=”pwdConf” size=12></td>

</tr>

<tr>
<td valign=top colspan=2>
Would you like to receive Connexia Air newsletters?

<input type=”radio” name=”sendLetter” value=”Yes” checked>Yes

<input type=”radio” name=”sendLetter” value=”No” > No
</td>
</tr>

<tr><td>[*] Required Info</tr>
<tr>
<td align=center colspan=2>
<input type=”submit” value=”Register”> <input type=”reset”
value=”Reset”>
</td>
</tr>

</table>
</center>
</form>
</body>
</html>

Figure 6-1 shows the output of the file register.html.

After filling out the registration form the user clicks the “Register” button. At this
point the browser creates the request object containing the user’s data and sends
it over to register.jsp. The content of this JSP depends on the functionality
required. For example, if the registration of the agent, employee, and partner require
additional registration information (screens), this JSP can play the role of a controller,
much like the servlet shown earlier in Listing 6-10.

f539663 ch06.qxd 7/25/03 9:14 AM Page 135

136 Part II ✦ The Presentation Tier

Figure 6-1: The registration screen

Listing 6-12 shows how to use a JSP as a controller in an MVC application.

Listing 6-12: Code snippet from a controller JSP

<%
String userType =

request.getParameter(“UserType”);

if (“Empl”.equals(userType)) { %>
<jsp:forward url=”registerEmployee.jsp” />

<% } else if (“Agent”.equals(userType)) { %>
<jsp:forward url=”registerAgent.jsp” />

<% } else if (“Partner”.equals(userType)) { %>
<jsp:forward url=”registerPartner.jsp” />

<% } %>

Recall that the directive jsp:forward will pass the request object with all parame-
ters to the next JSP. The code saving the user’s registration information should be
located in a JavaBean and utility classes —registerBean.java and DBProcessor.
java, respectively.

f539663 ch06.qxd 7/25/03 9:14 AM Page 136

137Chapter 6 ✦ Going Over JSP Basics

To simplify the example we won’t forward the registration request to other JSPs,
but rather use the bean in the register.jsp shown in Listing 6-13. This JSP will
demonstrate a data exchange between the JSP and the bean. Please note that this
JSP declares the custom error page myErrors.jsp shown later in this section.

Listing 6-13: register.jsp

%-- instantiate the RegisterBean --%>
<jsp:useBean id=”registrar”
class=”com.connexiaair.RegisterBean”

scope=”request”/>

<%-- pass the user’s input to the RegisterBean --%>
<jsp:setProperty name=”registrar” property=”*”/>

<%@ page errorPage=”myErrors.jsp” %>

<html>
<head>
<title>Connexia Airline</title>
<body>

<%-- Initiate registration process --%>
<% registrar.registerUser(); %>

</body></html>

Listing 6-14 contains the source code for RegisterBean.java, which, besides get-
ters and setters, has a registerUser() method. This method will instantiate a
DBProcessor class that should save the registration information in the database.

Listing 6-14: RegisterBean.java

package com.connexiaair;

public class RegisterBean {
// Bean’s properties
private String fName;
private String lName;
private String id;
private String password;
private String password2;
private String street;
private String zip;

Continued

f539663 ch06.qxd 7/25/03 9:14 AM Page 137

138 Part II ✦ The Presentation Tier

Listing 6-14 (continued)

private String email;
private String userType;
private String sendLetter;

// Setters and getters
public void setFirstName(String value){fName=value;}
public String getFirstName(){return fName;}
public void setLastName(String value){lName=value;}
public String getLastName(){return lName;}
public void setStreet(String value){street=value;}
public String getStreet(){return street;}
public void setZip(String value){zip=value;}
public String getZip(){return zip;}
public void setEmail(String value){email=value;}
public String getEmail(){return email;}
public void setPwd(String value){password=value;}
public String getPwd(){return password;}
public void setPwdConf(String value){password2=value;}
public String getPwdConf(){return password2;}
public void setUserType(String value){userType=value;}
public String getUserType(){return userType;}
public void setSendLetter(String value){sendLetter=value;}
public String getSendLetter(){return sendLetter;}

// No-argument constructor
public RegisterBean() {
}

// A method to save the registration info in the database
public void registerUser() throws java.sql.SQLException{

DBProcessor dbp = new DBProcessor();
dbp.addUser(this);

}
}

Listing 6-15 shows the DBProcessor class that should take care of database com-
munications. At this point its addUser() method will just throw an exception, and
this will give us a chance to demonstrate the use of the custom error page.

DBProcessor will be explained in Chapter 18.Cross-
Reference

f539663 ch06.qxd 7/25/03 9:14 AM Page 138

139Chapter 6 ✦ Going Over JSP Basics

Listing 6-15: DBProcessor.java

package com.connexiaair;
import java.sql.SQLException;

public class DBProcessor {

public DBProcessor() {
}

public void addUser(RegisterBean rb) throws SQLException{
// The real code saving data in the database could be
// found in Chapter 18.
String errMessage=”DBProcessor: I Do not know how to “ +

“work with databases - see you in chapter 18. “;

throw new SQLException(errMessage);
}

}

Exceptions thrown by DBProcessor will be propagated to register.jsp, and
myErrors.jsp, shown in Listing 6-16, will pick them up (see Figure 6-2).

Listing 6-16: The custom error page, myErrors.jsp

%@ page isErrorPage=”true” %>

<HTML><BODY>

<H2>
Connexia Airline is experiencing the following problems:

</H2>

<%=exception.toString() %>

<H2>Please try again later </H2>

</BODY><HTML>

f539663 ch06.qxd 7/25/03 9:14 AM Page 139

140 Part II ✦ The Presentation Tier

Figure 6-2: This is the output of the custom error page
myErrors.jsp.

If you remove the line <%@ page errorPage=”myErrors.jsp” %> from register.
jsp, its output could look like what is shown in Figure 6-3.

Figure 6-3: This is a fragment of the Tomcat default exception output.

f539663 ch06.qxd 7/25/03 9:14 AM Page 140

141Chapter 6 ✦ Going Over JSP Basics

The following steps will help you use Tomcat to deploy the Airline Registration
example:

1. Copy registration.html and register.jsp and myErrors.jsp to the
webapps\ROOT directory.

2. Place the compiled classes RegisterBean and DBProcessor in the
webapps\ROOT\WEB-INF\classes\com\connexiaair directory.

3. Start Tomcat by clicking the Start Tomcat menu option in Microsoft Window’s
Start menu. For Unix installations, use the startup script.

4. To run the registration example, start your Web browser and enter the follow-
ing URL: http://localhost:8080/register.html.

In general, JSPs are deployed the same way in any J2EE-compliant application
server — just place JSPs and other static resources in the document root directory
and make sure that compiled classes are located in the derectory listed in the
classpath environment variable.

Summary
In this chapter we’ve introduced you to a simple but powerful Web technology —
JavaServer Pages. JSP leads to a cleaner application design by separating Web
components responsible for the presentation from the Java objects containing
the business logic. Web designers can master relatively small sets of JSP tags
while Java developers can concentrate on programming the processing logic of
the application.

✦ ✦ ✦

f539663 ch06.qxd 7/25/03 9:14 AM Page 141

f539663 ch06.qxd 7/25/03 9:14 AM Page 142

Using JSP Tag
Extensions

In the previous chapter you were introduced to the basics
of JSP and you even used some of the tags meant to sim-

plify JavaBean usage in your JSP files. In this chapter we take
JSP further and explore JSP tag extensions. We will first put
forth the logic behind adopting custom tags; then we will
check out a simple tag usage after which we will get to the
actual nitty-gritty of the thing.

The proposed new version of JSP, version 2.0, has introduced
quite a lot of changes to JSP and particularly in the domain of
tag extensions. In this chapter we will explore these changes
and also look at a technology that is rapidly growing in popu-
larity — JSP Standard Tag Libraries (JSTL).

Why Use Tag Extensions?
One of the most talked-about aspects of development lately
and one that is referred to very often in any discussion about
design patterns and considerations is the separation of presen-
tation and logic. The prevailing idea is that the presentation
and the logic of your application should stay independent of
each other and ideally even be capable of being managed by
different people.

Taking this approach means that a Web designer should be
responsible for your presentation while a Java developer han-
dles the logic behind the presentation. As the Web designer,
who presumably does not understand much Java, is responsi-
ble for your presentation, naturally you should not use Java
in the JSPs responsible for the presentation. JSPs that have
scriptlets used most liberally and have Java code appearing
all over the JSP are a nightmare to maintain. The logic gets
distributed between JSPs and the Java code, and becomes
difficult to understand.

77C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Introducing tag
extensions

Working with
Tag Library
Descriptors (TLDs)

Explaining
taglib mapping

Using classic
tag handlers

Understanding
simple tag handlers

Exploring dynamic
attributes

✦ ✦ ✦ ✦

f539663 ch07.qxd 7/25/03 9:14 AM Page 143

144 Part II ✦ The Presentation Tier

So if you do not want Java in your JSPs but you still want to make presentation
decisions based on some logic, you need a technology as easily comprehensible
as HTML that is still capable of invoking the power of Java where necessary.

This is why custom tags were created. Custom tags are HTML-like tags that you
develop using Java and that are meant to provide some additional functionality.
If we take HTML tags as an example, to create a new paragraph we use the <p> tag
that HTML provides<p>...</p> tag. The reason that the text is displayed in a new
paragraph is that the browser sees and understands these tags. Similarly, if we were
to use the <blue>...</blue> <blue></blue> tag to display all numeric content
within it in blue, would it work? Of course not, as the browser has no idea what
the<blue> tag stands for.

But we can provide the implementation we want ourselves, using the power of Java.
To take this example a step further, what we can do is tell the Web designers respon-
sible for the presentation that whenever they encounter a case in which they want
all numeric data in the text to be displayed in blue, they can use the <blue></blue>
<blue> tag. If we weren’t able to use this tag, we would have had to embed Java
right in the JSP page. This would certainly have made the page a mess and would
have been impossible for someone who does not know Java.

Here are the advantages of using custom tags:

✦ Simplicity and ease of use — Custom tags are very simple for even a nonpro-
grammer to use and using them makes the JSP page a lot easier to comprehend.

✦ Code reusability — Once you have the functionality in place as a custom tag,
that code never has to repeat. The same piece of code can be reused over and
over.

✦ Ease of maintenance — Any change you make to the core tag logic is reflected
across all pages in which the tag is used. This can be a lifesaver. You do not
have to touch any of the individual JSPs in which that particular tag was used.

Custom tags are the topic of the next section.

Tag extensions are also often referred to as custom tags and are not new in JSP 2.0.
They have been around right from JSP 1.1, although in JSP 2.0 they have under-
gone some significant changes.

Explaining Custom-Tag Concepts
Now that you have an understanding of what a custom tag is and the purpose that
custom tags are meant to serve, we will introduce some of the terminology that you
need to be aware of in order to understand and use custom tags. We will also dwell
on some of the Web-application-configuration issues that you may need to handle.

Note

f539663 ch07.qxd 7/25/03 9:14 AM Page 144

145Chapter 7 ✦ Using JSP Tag Extensions

✦ Tag library — A collection of tags. Most tags tend to be packaged as part of
libraries containing many tags that might work independently or in coordina-
tion with each other. Being reusable components, tag libraries are generally
distributed as JAR files.

✦ Tag-library descriptor — This is an XML file with .tld extension. This file
contains the syntax of the tags and the instructions that the container
requires in order to manage those tags.

✦ Tag handler — This is the Java class that contains the logic to perform the
expected action for the tag. It is a container-managed object. The class has to
implement one of the specified Java interfaces if it is to be treated as a valid
tag handler by the container.

Before you begin developing your own tags and tag libraries, have a look at how
tags are used in JSP and how you need to configure your Web application to get the
tags to work properly. We’ll examine a simple example of a tag so that the purpose
and usage of custom tags becomes a little more apparent. For this example, we will
introduce the JSP Standard Tag Library (JSTL) and use a tag from the library.

Working with the JSP Standard Tag Library
When custom tags first arrived on the scene they were heralded as an important
step in simplifying JSP development. However, most developers (including me)
found developing custom tags somewhat difficult. JSPs’ support for scriptlets also
led many developers to take the easy way out and go back to using scriptlets and
embedding Java code in their JSPs.

If you want to read the JSTL specification, check out http://java.sun.com/
products/jstl. Apache Taglibs is the reference implementation for this specifi-
cation and can be downloaded at http://jakarta.apache.org. Here you can
also find tag libraries for string manipulation, working with dates, and so on that
are not part of the specification but that could come in handy.

As a result, developing custom tags for specific project requirements never really
caught on as much as it was expected to. However, custom tags that were meant to
achieve basic functionality that was common across companies and projects were
rapidly adopted. Look around the Web and you can find freely available tags that do
specific tasks very well. It was a wise move to come up with a new specification for
these common tags, and the JSTL is just that. It is a specification for developing
custom tags that perform common tasks like formatting dates, parsing XML, and
iterating through collections.

JSTL is not specific to JSP version 2.0. JSTL should work fine with any container
that supports JSP 1.2.

Let’s have a look at a simple JSP, shown in Listing 7-1, which uses one of the tags in
the JSTL.

Note

Note

f539663 ch07.qxd 7/25/03 9:14 AM Page 145

146 Part II ✦ The Presentation Tier

Listing 7-1: NumberFormat.jsp

<%@ taglib prefix=”fmt” uri=”http://java.sun.com/jstl/fmt” %>
<html>
<body>
<fmt:formatNumber value=”00099765.4355” type=”currency” currencySymbol=”$”

maxFractionDigits=”2”/>
</body>
</html>

NumberFormat.jsp on execution displays $99,765.44 as the output. Now let’s dis-
sect this simple code so you can see how the formatNumber tag has been used in
this JSP.

The first line is the taglib directive that tells the container, which unique Uniform
Resource Identifier (URI) identifies this tag and the prefix that you would be using
while using any of the tags associated with this particular tag-library descriptor. So
whenever the container finds in this JSP a tag with the prefix ‘fmt’, it will look for
the associated tag-library descriptor to check the exact usage of the tag and the tag
handler responsible for actually processing the tag and performing the required
action. We will look at this process in more detail when we develop our own tags in
the section, “Understanding Tag Handlers,” later in this chapter.

Here we are using the formatNumber tag, which is part of the formatting library.
The formatNumber tag is meant to format a numeric value as a number, currency,
or percentage. Here we have used its capability to format a number based on the
instructions provided and to convert that number to the format of the currency
specified.

The value attribute conveys the value to be formatted while the type attribute tells
the handler that the value is a currency amount. The currencySymbol attribute
specifies the symbol for the currency. The maxFractionDigits attribute tells the
handler that the value is to be rounded off so that only two digits exist after the
decimal.

That is how simple tag usage is; the tag handler underneath does all the hard work
to generate the expected results. The required functionality is now covered, the
code underneath will be reused, and, most importantly, the JSP is now very easy to
understand.

Many other tags much like the tag we just discussed are part of the library that cov-
ers functionality that is required very often in your JSPs. The JSTL as of version 1.0
consists of four tag libraries:

f539663 ch07.qxd 7/25/03 9:14 AM Page 146

147Chapter 7 ✦ Using JSP Tag Extensions

✦ Core library — This library consists of the tags that are used most often.
These are tags that iterate through collections, perform if-logic, write output
to the page, and so on.

✦ XML library — This library provides tags to parse XML, perform XSL transfor-
mations, and perform similar actions on your XML.

✦ Formatting library — This library is most useful for internationalization and
performing date and number transformation.

✦ SQL library — This library consists of tags to connect to the database, fire
SQL queries, and perform other database-related activities. Although very
few applications these days have JSPs that talk directly to the database, this
library is useful in that scenario.

Now that we have had a quick look at JSTL and a basic tag example, let’s examine
what you need to do in order to get your tags to work on a Web container like Tomcat.

Importing a tag library
A prerequisite for using custom tags in your JSP is that you must first tell the con-
tainer that you are using them. This process is referred to as importing a tag library
into a JSP. You can do this in one of two ways, one using the standard JSP syntax
and the other using the XML syntax.

The JSP syntax
If you are using the JSP syntax, you need to put down a taglib directive. In
Chapter 6, we discussed the purpose that JSP directives are meant to serve. The
taglib directive tells the container that the JSP uses a tag library. The attributes
of this directive specify the prefix that denotes usage of that particular library, and
the URI that uniquely identifies that tag library.

In Listing 7-1, the taglib directive was as follows:

<%@ taglib prefix=”fmt” uri=”http://java.sun.com/jstl/fmt” %>

The prefix attribute specifies that all tags in the JSP file that begin with the prefix
fmt should be associated with this tag library. All tags for this library that are used
in this JSP page will be in the format <fmt:XXX>. The tag library does not dictate
the prefix that you need to use. You can use the same tag library using any prefix
you wish, as long as the prefix is unique to this JSP. The specification restricts
usage of the following prefixes

✦ jsp

✦ jspx

✦ java

✦ javax

f539663 ch07.qxd 7/25/03 9:14 AM Page 147

148 Part II ✦ The Presentation Tier

✦ servlet

✦ sun

✦ sunw

Empty prefixes are also not permitted.

The uri attribute accepts either an absolute URI or a relative URI, and is meant to
uniquely identify the tag-library descriptor associated with the prefix fmt that we
used in Listing 7-1. That the URI has been specified does not mean that the container
looks for the tag-library descriptor at that location. The URI is meant for mapping
purposes only.

You can directly specify the actual location of the TLD file in the uri attribute. Use
this option only for achieving quick results during development; do not use it in a
real application, as your JSP now gets bound to the actual name and location of the
TLD file.

The XML syntax
While writing a JSP page using the XML syntax, note that taglib does not have a
corresponding tag form, unlike other directives, such as page and include, which
are represented as <jsp:directive.page> and <jsp:directive.include>
respectively. No <jsp:directive.taglib> tag exists.

To achieve the same purpose served by the taglib directive in Listing 7-1, we
would place the code in this format:

<jsp:root xmlns:fmt=”http://java.sun.com/jstl/fmt” version=”2.0”>

Here <jsp:root> is the root element for the JSP page. The preceding example is
more typical of a JSP 1.2 page, as unlike in JSP 1.2, in JSP 2.0 it is not compulsory to
introduce tag libraries right into the <jsp:root>. You now have the option of incor-
porating tag libraries wherever required using additional xmlns attributes.

Until JSP 1.2 it was mandatory to have <jsp:root> as the top element of a JSP
written using the XML syntax. With JSP version 2.0, using <jsp:root> is no longer
mandatory.

The Tag Library Descriptor
The TLD plays an important role in the workings of all tags. The TLD is an XML file
that contains information that the container needs to be able to process a tag. The
container needs to be told things like the name of the tag, its attributes, the URI,
and the tag-handler class. Without this information, the container is unable to vali-
date the tag or properly execute the tag handler. TLD files also play an important
part in enabling JSP-authoring tools to provide tag-related features.

Note

Note

f539663 ch07.qxd 7/25/03 9:14 AM Page 148

149Chapter 7 ✦ Using JSP Tag Extensions

The JSP 2.0 specification lists XML schemas and the document-type definition (DTD)
files for tag-library descriptors for JSP version 1.1 and above. All JSP 2.0 compatible
containers must be able to parse and accept all these TLD formats. So all your JSP
1.2–compatible TLDs should work fine on any JSP 2.0 container.

The schema for the JSP 2.0 TLD file goes on for dozens of pages and talks about
many elements. We will touch on some of the more common elements. For an
in-depth understanding of the TLD file, do have a look at the TLD schema, which
is part of the JSP 2.0 specification. The example in Listing 7-2 uses most of the
common elements in the JSP 2.0 TLD file.

Listing 7-2: A sample TLD

<?xml version=”1.0” encoding=”UTF-8” ?>
<taglib xmlns=”http://java.sun.com/xml/ns/j2ee”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee web-

jsptaglibrary_2_0.xsd”
version=”2.0”>
<description>A maths utility tag library</description>
<tlib-version>1.0</tlib-version>
<short-name>util</short-name>
<uri>/utiltag</uri>
<tag>

<description>Display the square of a number</description>
<name>square</name>
<tag-class>com.j2eebible.tags.SquareTag</tag-class>
<body-content>scriptless</body-content>
<variable>

<description>Variable to display value</description>
<name-given>val</name-given>

</variable>
<attribute>

<name>rep</name>
<required>true</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
<dynamic-attributes>true</dynamic-attributes>

</tag>
<function>
<description>Add Integers Function</description>
<name>add</name>

<function-class>jsp2.j2eebible.AdditionClass</function-class>
<function-signature>java.lang.String add(int, int)</function-

signature>
</function>

</taglib>

Note

f539663 ch07.qxd 7/25/03 9:14 AM Page 149

150 Part II ✦ The Presentation Tier

Listing 7-2 is a basic JSP 2.0 tag-library descriptor that provides the specification
for a tag called ‘square’ and a function called ‘add’. Table 7-1 lists some of the
elements and their meanings in the order in which they appear.

Table 7-1
TLD methods

Method Description

description A string describing the use and purpose of the entire tag
library

version The version of the tag-library implementation

short-name The preferred prefix for the tag library

uri A URI meant to uniquely identify that uniquely identifies
this tag library

tag One or more tag elements

description The description of a particular tag functionality

name An action name unique to a particular tag library

tag-class The tag-handler class

body-content The body-content type for the tag (default JSP)

variable A variable that can be used in scripting and in expression-
language expressions

description The variable description

name-given The name for the variable as a constant

attribute The attributes for the tag

name The attribute name

required Whether the attribute is required or optional; takes the
values true and false, default is false

rtexprvalue Whether the attribute can take a runtime expression as
value (default false)

dynamic-attributes An element that denotes whether the tag supports dynamic
attributes (new with JSP 2.0; default false)

function The functions used in the expression language

description The description of the function

name The unique function name

function-class The class that implements the function

function-signature The function signature

f539663 ch07.qxd 7/25/03 9:14 AM Page 150

151Chapter 7 ✦ Using JSP Tag Extensions

The <body-content> element requires a special mention. With JSP 2.0 this element
takes the four following values:

✦ tagdependent— The container will not interpret the tag body. It is the
responsibility of the tag.

✦ JSP— The tag-body content is JSP and will be interpreted by the container.
(This is the default value.)

✦ empty— The tag body is empty.

✦ scriptless— No scripting is accepted within the body of the tag. This
value accepts template text, expression-language expressions and JSP action
elements.

The tag-library-descriptor location
For any custom tag to work, the container must find and use the relevant TLD file.
The TLD file can be maintained as an independent file in the application-directory
structure, or it can be part of the .jar file that contains the tag library.

Independent files
With JSP 2.0, in the case of an independent TLD file the file must be present in the
WEB-INF directory or some subdirectory of it. This TLD file also should not be
placed in the WEB-INF/classes or WEB-INF/lib directories.

While developing your own tags, keep all your TLD files in a separate directory such
as WEB-INF/tlds. This makes editing the files as you work on them a lot easier.
Once you’re done developing the tags you can package these TLDs into JAR files.

TLDs within JARs
The easiest way to distribute tag libraries is by packaging them into JAR files. Using
a tag library packaged as a JAR file can be as simple as dumping that JAR file into
the WEB-INF/lib directory of the application in which you intend to use the library.

For a tag library packaged as a JAR file the TLD files must reside in the META-INF
directory within the JAR file or any of its subdirectories. A tag library packaged as
a JAR file can have one or more tag-library descriptors.

If you develop a new tag library that would handle string manipulations, for exam-
ple, you can package the library as a JAR file. Let’s name it stringtags.jar. In this
JAR file, the TLD files for the tags you have created would reside in the META-INF
directory in the JAR file. To use this library in a Web application you are developing,
all you would have to do is place the JAR file in the lib directory of your Web appli-
cation and any container that supports JSP 2.0 will be able to load the library for
use in your application.

In the next section, we will have a closer look at how tag library mappings work and
how the container is able to figure out where to find a tag and how to execute it.

f539663 ch07.qxd 7/25/03 9:14 AM Page 151

152 Part II ✦ The Presentation Tier

Explaining taglib Mapping
We have shown that in every JSP the container needs to be told the URI for a partic-
ular tag-library descriptor. Based on the tag-library descriptor that the container
finds for a URI, the container is able to process the tags in the JSP. We showed that
the TLD file can be placed in multiple locations. So to be able to associate a URI
with the physical location of the tag-library descriptor, the container maintains a
map of the URIs and the location of the TLD files.

The container creates the map in the following order of precedence:

1. The taglib map that is part of the Web-deployment descriptor (web.xml) file

2. The TLD files that the container finds in the META-INF directory of the JAR
files found in the WEB-INF/lib directory and the TLD files that it finds in the
WEB-INF directory and its subdirectories

3. Implicit map entries that the container might have anyway

For any taglib URI stated in the JSP file, the container has to find the associated
TLD file. Let’s consider an example in which you wish to use a tag in your JSP for
which the tag-library descriptor is a file named map.tld located in the WEB-INF/
tlds directory. The taglib directive in our JSP is as follows:

<%@ taglib prefix=”xyz” uri=”/mapTag” %>

The container will be able to locate all files with the .tld extension that exist in the
WEB-INF directory and its subdirectories. It will then create mappings for these
TLD files based on the URI specified in them. However, if you want your web.xml
file to reflect all the tags your application uses, or if the TLD does not state the URI
that would uniquely identify that particular tag library, you can explicitly provide
all taglib mappings in your web.xml.

In the web.xml file, the taglib mapping for the preceding example needs to be in
the following format:

<taglib>
<taglib-uri>

/mapTag
</taglib-uri>
<taglib-location>

/WEB-INF/tlds/map.tld
</taglib-location>

</taglib>

The <taglib> element must be a sub-element of <jsp-config>. Now that we have
discussed the possible locations for the TLD files, let’s get down to a discussion
about what tag handlers are and the types of tag handlers.

f539663 ch07.qxd 7/25/03 9:14 AM Page 152

153Chapter 7 ✦ Using JSP Tag Extensions

Understanding Tag Handlers
Now that you have seen how tags are used and gotten a sense of the configuration
issues you need to be aware of, let’s get into the core of the topic, understanding
the tag handlers.

Tag handlers are ordinary Java classes implementing certain interfaces. The way the
container handles them is what makes them special. For all development purposes,
treat them exactly like any other Java class.

With JSP 2.0, tag handlers have been classified into the two following types:

✦ Classic — These are the handlers that were present in JSP 1.2. Not much about
these tags has changed.

✦ Simple — The development of these handlers can be called one of the most
important in JSP 2.0. Simple tag handlers are an easier-to-use alternative to
the classic tag handlers.

The primary reason for adding simple tag handlers was that it was hard to learn
how to use the JSP 1.2–style tag handlers. In terms of functionality, simple tag han-
dlers on their own do not offer anything that classic tag handlers do not. However,
as their name suggests, simple tag handlers certainly are a lot easier to use than
classic tag handlers.

Let’s first deal with classic tag handlers. Once you understand these, simple tags
are easy to grasp.

Classic tag handlers
The JSP 2.0 specification define a classic tag handler as follows:

A classic tag handler is a Java class that implements the Tag, IterationTag,
or BodyTag interface, and is the runtime representation of a custom action.

A classic tag handler is just another Java class that implements the methods of the
interface being implemented. Each of these three interfaces is meant to denote a
different kind of tag handling.

Until JSP 1.2 the Tag interface, javax.servlet.jsp.tagext.Tag, was the
top-level interface. The other interfaces were sub-interfaces of the Tag interface.
However, with JSP 2.0 a new top-level interface, javax.servlet.jsp.tagext.
JspTag, has been introduced. The Tag and SimpleTag interfaces both extend
JspTag.

Note

Note

f539663 ch07.qxd 7/25/03 9:14 AM Page 153

154 Part II ✦ The Presentation Tier

The Tag interface
The Tag interface is the base interface for all classic tag handlers. Figure 7-1 depicts
the Tag hierarchy that you need to get familiar with before using tags. All classic tag
handlers directly or indirectly implement this interface. This interface defines the
methods required in all classic tag handlers. Tag handlers implementing just the Tag
interface can be used for writing basic tags that do not involve any iterations or
processing of the tag’s body content. Table 7-2 lists the methods of the Tag interface
while Table 7-3 lists the various constants defined.

Figure 7-1: The Tag interfaces hierarchy and support classes implement the
Tag interfaces.

Table 7-2
Tag methods

Method Description

void setPageContext The container calls this method to set the context for
(PageContext) the current page.

void setParent(Tag) The container sets the parent tag, and this is the
closest enclosing tag handler of that tag.

JspTag

Tag

BodyTag IterationTag SimpleTag

BodyTagSupport TagSupport SimpleTagSupport

Support Classes
implementing the

relevant interfaces

The Tag
Interfaces

f539663 ch07.qxd 7/25/03 9:14 AM Page 154

155Chapter 7 ✦ Using JSP Tag Extensions

Method Description

int doStartTag() The container invokes this method on encountering
the start of the tag.

int doEndTag() The container invokes this method on encountering
the end of the tag.

Tag getParent() This method gets the parent of the current tag handler.
It is used primarily in the case of cooperating tags.

void release() This method is called on the tag handler to release any
resources held.

Table 7-3
Tag constants

Field Description

EVAL_BODY_INCLUDE The doStartTag method returns this value to tell the
container to evaluate the body of the tag.

SKIP_BODY The doStartTag method returns this value to tell the
container to skip tag-body evaluation.

EVAL_PAGE The doEndTag method returns this value to tell the container
to evaluate the rest of the page.

SKIP_PAGE The doEndTag returns this value to tell the container to skip
evaluation of the rest of the page.

Let’s take a look at a simple example that uses the Tag interface. In this example
we’ll use an empty tag that generates a hello message. The tag usage should look
like the following:

<j2eebible:hello fname=”MyFName” lname=”MyLName”/>

This sample tag should generate the following content:

Hello MyFName MyLName! How do you do?

Let’s get down to creating our first example. First, we need to create a separate Web
application in the Tomcat webapps directory. Following the normal Web-application
standards, we create the following new directories:

✦ webapps/j2eeBible

✦ webapps/j2eeBible/WEB-INF

✦ webapps/j2eeBible/WEB-INF/lib

✦ webapps/j2eeBible/WEB-INF/classes

f539663 ch07.qxd 7/25/03 9:14 AM Page 155

156 Part II ✦ The Presentation Tier

Apart from these standard directories, we also create the new directory webapps/
j2eeBible/WEB-INF/tlds, where we would be keeping all the TLD files. As you may
recall, the container can find and use all .tld-extension files located in WEB-INF or
any of its subdirectories.

As shown in Listing 7-3, we create a new <tag> node for our tag. It need not be the
only tag in the TLD file; one TLD file can hold many distinct tags. As we have speci-
fied the URI in the TLD file, on finding this TLD file the container will be able to cre-
ate a new taglib mapping on its own. With JSP 2.0, it is no longer mandatory to
provide the mapping of the web.xml file. The URI we have specified is /j2eebible,
so all JSPs that intend to use this TLD file can access it using this URI; they do not
need to specify the location of the TLD file.

Listing 7-3: j2eebible-taglib.tld

<?xml version=”1.0” encoding=”UTF-8” ?>
<taglib xmlns=”http://java.sun.com/xml/ns/j2ee”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee web-

jsptaglibrary_2_0.xsd”
version=”2.0”>
<description>Samples for J2EEBible </description>
<tlib-version>1.0</tlib-version>
<short-name>j2eebible</short-name>
<uri>/j2eeBible</uri>
<tag>

<description>Displays a Hello Message</description>
<name>hello</name>
<tag-class>com.j2eeBible.mytags.BasicTag</tag-class>
<body-content>empty</body-content>
<attribute>

<name>fname</name>
<required>true</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
<attribute>

<name>lname</name>
<required>true</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
</tag>

</taglib>

Next we specify the name of the tag as hello and the name of the tag-handler class
as com.j2eeBible.mytags.BasicTag. As our tag is an empty tag and will have no
body content, the body-content element’s value is stated as empty. The two attributes,
for the first name and the last name, are specified in Listing 7-4.

f539663 ch07.qxd 7/25/03 9:14 AM Page 156

157Chapter 7 ✦ Using JSP Tag Extensions

Listing 7-4: Hello.jsp

<%@ taglib prefix=”j2eebible” uri=”/j2eeBible” %>
<html>
<head>
<title>Hello Handler</title>

</head>
<body>
<j2eebible:hello fname=”George” lname=”Bush”/>

</body>
</html>

Listing 7-5 shows a bare-bones JSP in which we use the tag we have created. (Note
that the URI specified here is exactly the same as the one we specified in the TLD
file.) The prefix can of course change, and therefore this same tag, with different
prefixes, can be used in different JSPs. Next let’s look at the actual code that does
the task for us.

Listing 7-5: BasicTag.java

package com.j2eeBible.mytags;

import javax.servlet.jsp.JspException;
import javax.servlet.jsp.PageContext;
import javax.servlet.jsp.tagext.Tag;

public class BasicTag implements Tag
{

PageContext pageContext;
Tag parent;
String fname;
String lname;
int cnt=0;

public BasicTag()
{

System.out.println((++cnt)+”) >> IN CONSTRUCTOR”);
}
public void setParent(Tag parent)
{

System.out.println((++cnt)+”) >> IN SETPARENT”);
this.parent = parent;

}
public void setPageContext(PageContext pageContext)
{

Continued

f539663 ch07.qxd 7/25/03 9:14 AM Page 157

158 Part II ✦ The Presentation Tier

Listing 7-5 (continued)

System.out.println((++cnt)+”) >> IN SETPAGECONTEXT”);
this.pageContext = pageContext;

}
public Tag getParent()
{

System.out.println((++cnt)+”) >> IN GET PARENT”);
return this.parent;

}
public int doStartTag() throws JspException
{

System.out.println((++cnt)+”) >> IN DO START”);
try
{
pageContext.getOut().write(“Hello “+getFname()+” “+getLname()+”!

How do you do?”);
}
catch(Exception e)
{
e.printStackTrace();

}
return SKIP_BODY;

}
public int doEndTag() throws JspException
{

System.out.println((++cnt)+”) >> IN DO END \n”);
cnt=0;
return EVAL_PAGE;

}
public void release()
{

System.out.println((++cnt)+”) >> RELEASING RESOURCES”);
pageContext = null;
parent = null;

}
public String getFname()
{

return fname;
}
public void setFname(String newFname)
{

System.out.println((++cnt)+”) >> Setting FName”);
fname = newFname;

}
public String getLname()
{
return lname;

}

f539663 ch07.qxd 7/25/03 9:14 AM Page 158

159Chapter 7 ✦ Using JSP Tag Extensions

public void setLname(String newLname)
{
System.out.println((++cnt)+”) >> Setting LName”);
lname = newLname;

}
}

The key to understanding custom tags is understanding the various flows based on
return values. Listing 7-5 depicts a trick that is particularly useful for understanding
tags. Look at the System.out lines in the code. Here we increment a counter while
printing out the location. On tag usage and execution by the container, we get a nice
little message on the Tomcat console showing exactly how things went. You should
get the following output on the Tomcat console:

1) IN CONSTRUCTOR
2) IN SETPAGECONTEXT
3) IN SETPARENT
4) Setting FName
5) Setting LName
6) IN DO START
7) IN DO END

What this output shows, first, is that the container called the constructor for our
tag handler. Next it set the pageContext and the parent tag for our tag. After this,
the container called the setter methods for the two attributes we have used. Only
after all these steps were executed successfully did we get to doStartTag and get
our piece of code generating the output expected. As for all classic tag handlers,
the container caches and reuses handler instances; the release method was not
called.

The IterationTag interface
The IterationTag interface extends the Tag interface and introduces just a single
new method to enable reevaluation of the body of the tag. All the concepts that
applied to the Tag interface also hold good for the IterationTag interface.
IterationTag is like a Tag on steroids. Refer to Table 7-4 and 7-5 for methods and
constants that are new to the IterationTag interface. The IterationTag interface
is used primarily in cases in which the tag content is to be repeatedly generated.

Table 7-4
IterationTag method

Method Description

Int doAfterBody() This method is called after the body contents of the tag are
evaluated.

f539663 ch07.qxd 7/25/03 9:14 AM Page 159

160 Part II ✦ The Presentation Tier

Table 7-5
IterationTag constant

Field Description

EVAL_BODY_AGAIN The doAfterBody method can return this value if the body
of the tag needs to be reevaluated.

As shown in Listing 7-3, let’s declare a new tag in the same tag-library descriptor
that we used for earlier examples. We just put in this new tag into the existing TLD.

<tag>
<description>Iterates through an array</description>
<name>itrArray</name>
<tag-class>com.j2eeBible.mytags.TryIterationTag</tag-class>
<body-content>JSP</body-content>
</tag>

We now have a new tag called itrArray that takes JSP content as its body. Next, in
Listing 7-6, we use a very basic JSP page that will display the output of this tag.

Listing 7-6: Iterate.jsp

<%@ taglib prefix=”j2eebible” uri=”/j2eeBible” %>
<html>
<head>
<title>Hello Handler</title>

</head>
<body>
<j2eebible:itrArray>

The Value is:
</j2eebible:itrArray>

</body>
</html>

The key difference between using the Tag interface and using the IterationTag
interface is the presence of the doAfterBody method. If this method returns a value
of EVAL_BODY_AGAIN the container reevaluates the body of the tag. This is what
makes it possible for the tag to generate the output multiple times. In Listing 7-7,
the doAfterBody method is where all the logic is. As long as the counter is less
than the size of the array, the body content keeps getting reevaluated. When this
condition stops being fulfilled, the method returns SKIP_BODY.

f539663 ch07.qxd 7/25/03 9:14 AM Page 160

161Chapter 7 ✦ Using JSP Tag Extensions

Reevaluation of the tag body does not mean that the doStartTag method is
called every time. The doStartTag method is called only once.

Listing 7-7: TryIterationTag.jsp

package com.j2eeBible.mytags;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

public class TryIterationTag implements IterationTag
{

protected PageContext pageContext;
protected Tag parent;
int iTagCnt=0;
int cnt=0;
String []arTeam=new String[]{“One”,”Two”,”Three”};

public TryIterationTag()
{
System.out.println((++cnt)+”) **IN CONSTRUCTOR”);

}
public void setParent(Tag parent)
{

System.out.println((++cnt)+”) **SET PARENT”);
this.parent = parent;

}
public void setPageContext(PageContext pageContext)
{

System.out.println((++cnt)+”) **SET PAGECONTEXT”);
this.pageContext = pageContext;

}
public Tag getParent()
{

return this.parent;
}
public int doStartTag() throws JspException
{

System.out.println((++cnt)+”) **IN DOSTARTTAG”);
return EVAL_BODY_INCLUDE;

}
public int doEndTag() throws JspException
{

System.out.println((++cnt)+”) **IN DOENDTAG \n”);
return EVAL_PAGE;

public int doAfterBody() throws JspException
{

System.out.println((++cnt)+”) **IN DOAFTERBODY”);
if(iTagCnt<arTeam.length)
{

Continued

Note

f539663 ch07.qxd 7/25/03 9:14 AM Page 161

162 Part II ✦ The Presentation Tier

Listing 7-7 (continued)

try
{
pageContext.getOut().write(arTeam[iTagCnt]);
iTagCnt++;

}
catch(Exception e)
{
e.printStackTrace();

}
return EVAL_BODY_AGAIN;

}
else
{
iTagCnt=0;
return SKIP_BODY;

}
public void release()

{
System.out.println((++cnt)+”) **RELEASE”);
pageContext = null;
parent = null;

}
}

Listing 7-8 shows the output expected. However, in this case, the output that we
actually get is not as expected. We get an additional and unnecessary string at
the end.

Listing 7-8: Actual output of using TryIterationTag example

The Value is: One
The Value is: Two
The Value is: Three
The Value is:

Although this iteration worked fine, we got an additional The Value is: string
in our output. As you might have figured out, this problem has arisen because
IterationTag does not offer the capability to buffer content.

The System.outs that we incorporated into our code will show that the
doAfterBody method is called four times, while the array we have has only three
values. So when doAfterBody is called the fourth time, the if condition fails and

f539663 ch07.qxd 7/25/03 9:14 AM Page 162

163Chapter 7 ✦ Using JSP Tag Extensions

we return SKIP_BODY. This works fine. However, the problem here is that
IterationTag does not buffer the content, so the string The Value is: has
already been written to the stream by the time the doAfterBody method is called
the fourth time.

To solve this problem and to get the expected output (listed in Listing 7-9), one
solution is that in doAfterBody a new piece of code is put in, that would check if
the counter has got to the last element in the array. If it has, the output is dumped
to the stream and SKIP_BODY is returned. However, in this example we will go for
another option. We buffer the contents of the tag body, so when we are done iterat-
ing through the array and have the string The Value is: in our buffer, we simply
clear the contents of the buffer without writing to the output.

The BodyTag interface
The BodyTag interface extends the IterationTag interface and introduces two
new methods and one new constant. The purpose of this interface is to enable
buffering of the body content of a tag. The output of the tag can now be generated
after the buffered body content is processed, modified or even rejected. Table 7-6
lists the new methods introduced by the BodyTag interface, and Table 7-7 lists the
new constant.

Table 7-6
The BodyTag interface

Method Description

void setBodyContent(BodyContent) The container calls this method just before
calling doInitBody. This method is called
only if the tag has a body and the
doStartTag has returned
EVAL_BODY_BUFFERED.

void doInitBody () The container calls this method just before
body-tag processing begins.

Table 7-7
The BodyTag-interface constant

Field Description

EVAL_BODY_BUFFERED The doStartTag method can return this value only if the
handler class is implementing the BodyTag interface. This
return value leads to the creation of a new buffer containing
the body content.

f539663 ch07.qxd 7/25/03 9:14 AM Page 163

164 Part II ✦ The Presentation Tier

The interfaces IterationTag and BodyTag are closely related, and BodyTag builds
on the IterationTag capability, providing a content buffering capability that
IterationTag does not provide. Let’s take a look at an example of IterationTag
usage wherein (although the iteration functionality will work fine) it will become
obvious why the BodyTag interface is required. We will then use BodyTag to solve
the problem that we face when using IterationTag.

In this example we have an array of values. (We are using a hardcoded array here,
but in a real-life scenario you could use something similar that you have retrieved
from a database or the user session.) The tag is meant to repeatedly display the
tag-body content while iterating through the array of values and appending a value
to the body content.

We declare the array to be used, in the following fashion:

String []arTeam=new String[]{“One”,”Two”,”Three”};

In the JSP file we have this tag:

<j2eebible:itrArray>

The Value is:

</j2eebible:itrArray>

The expected output appears in Listing 7-9.

Listing 7-9: Output expected from the itrArray tag

The Value is: One
The Value is: Two
The Value is: Three
}
}

As shown in Table 7-7, the BodyTag interface introduces a new constant named
EVAL_BODY_BUFFERED. When doStartTag returns this value, the container does not
write the contents of the tag body to the output but instead buffers them. Therefore,
in our code we always have the option of writing the buffered content to the output
stream as is, or editing it, or even just getting rid of it.

For this example we again introduce a new tag, itrBufArray, into our tag-library
descriptor.

<tag>
<description>BufferContent and Iterates through an array</description>
<name>itrBufArray</name>

f539663 ch07.qxd 7/25/03 9:14 AM Page 164

165Chapter 7 ✦ Using JSP Tag Extensions

<tag-class>com.j2eeBible.mytags.TryBodyTag</tag-class>
<body-content>JSP</body-content>
</tag>

The JSP we are using here is the same as the one we used for the IterationTag
example. The only change is the tag name. Listing 7-10 shows the tag usage in a
simple JSP file.

Listing 7-10: IterateBuf.jsp

<%@ taglib prefix=”j2eebible” uri=”/j2eeBible” %>
<html>
<head>
<title>Hello Handler</title>

</head>
<body>
<j2eebible:itrBufArray>

The Value is:
</j2eebible:itrBufArray>

</body>
</html>

As shown in Listing 7-11, the code for this example is also very similar to the code
we used for the IterationTag example. The differences in this example are that
the doStartTag method now returns EVAL_BODY_BUFFERED, that a new method,
doInitBody, is introduced, and that changes are made to the doAfterBody
method. The doAfterBody method is where we work with the buffered tag-body
contents provided to us.

The doInit method is not invoked if the tag body is empty. Even if the tag body is
not empty, doInit is invoked only if doStartTag returns EVAL_BODY_BUFFERED
and not if it returns any other values.

Listing 7-11: TryBodyTag.java

package com.j2eeBible.mytags;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

public class TryBodyTag implements BodyTag
{

protected BodyContent bodyOut;
protected PageContext pageContext;

Continued

Note

f539663 ch07.qxd 7/25/03 9:14 AM Page 165

166 Part II ✦ The Presentation Tier

Listing 7-11 (continued)

protected Tag parent;
int iTagCnt=0;
int cnt=0;
String []arTeam=new String[]{“One”,”Two”,”Three”};

public TryBodyTag()
{
System.out.println((++cnt)+”) $$IN CONSTRUCTOR”);

}
public void setParent(Tag parent)
{

System.out.println((++cnt)+”) $$IN SETPARENT”);
this.parent = parent;

}
public void setBodyContent(BodyContent bodyOut)
{

System.out.println((++cnt)+”) $$IN SET BODYCONTENT”);
this.bodyOut = bodyOut;

}
public void setPageContext(PageContext pageContext)
{

System.out.println((++cnt)+”) $$IN SETPAGECONTEXT”);
this.pageContext = pageContext;

}
public Tag getParent()
{

return this.parent;
}
public int doStartTag() throws JspException
{

System.out.println((++cnt)+”) $$IN DOSTARTTAG”);
return EVAL_BODY_BUFFERED;

}
public int doEndTag() throws JspException
{

System.out.println((++cnt)+”) $$IN DOENDTAG \n”);
return EVAL_PAGE;

}
public void doInitBody() throws JspException
{

System.out.println((++cnt)+”) $$IN DOINITBODY”);
}
public int doAfterBody() throws JspException
{

System.out.println((++cnt)+”) $$IN DOAFTERBODY”);
try
{

JspWriter out=bodyOut.getEnclosingWriter();

f539663 ch07.qxd 7/25/03 9:14 AM Page 166

167Chapter 7 ✦ Using JSP Tag Extensions

String strStaticText=bodyOut.getString();

if(iTagCnt<arTeam.length)
{
try
{
String strWrite=strStaticText+

arTeam[iTagCnt];
System.out.println(“iTagCnt “+ iTagCnt+”

Writing “+strWrite);
out.print(strWrite);
bodyOut.clearBody();
iTagCnt++;

}
catch(Exception e)
{
e.printStackTrace();

}
return EVAL_BODY_AGAIN;

}
else
{
iTagCnt=0;
bodyOut.clearBody();
return SKIP_BODY;

}
}
catch (Exception e)
{

e.printStackTrace();
}
return SKIP_BODY;

}
public void release()
{

System.out.println((++cnt)+”) $$IN RELEASE”);
bodyOut = null;
pageContext = null;
parent = null;

}
}

TagSupport and BodyTagSupport
With all these interfaces, although we don’t really need to write a lot of code, most
of the classes are full of forced implementations of methods in the interface. We
provide real implementations for very few methods, and so our code becomes
unnecessarily lengthy and complex.

f539663 ch07.qxd 7/25/03 9:14 AM Page 167

168 Part II ✦ The Presentation Tier

The idea behind the TagSupport and BodyTagSupport classes is to free the devel-
oper from having to write all that unnecessary code. They are utility classes that
provide default implementations for the methods in the IterationTag and BodyTag
interfaces, respectively.

Using these classes, we have the option of overriding only those methods for which
we wish to provide some implementation. Now, the same result achieved by imple-
menting the interface and overriding all the methods can be achieved with just a
fraction of the code.

The TagSupport class implements the IterationTag interface. Table 7-8 lists the
various methods of TagSupport. BodyTagSupport extends TagSupport and imple-
ments the BodyTag interface. Table 7-9 lists the various methods of BodyTagSupport.

Table 7-8
TagSupport methods

Method Description

int doAfterBody () This method returns SKIP_BODY by default. You
need to override this method only if repeated
evaluation of the body is required.

int doEndTag () This method returns EVAL_PAGE by default. You do
not need to override it in most cases.

int doStartTag() This method returns SKIP_BODY by default.

static Tag findAncestor This method finds the closest instance of the
WithClass(Tag, Class) specified class. (Note that this is a static method.)

String getId() This method returns the value of the id attribute of
the tag.

Tag getParent() This method gets the closest enclosing Tag instance.

Object getValue(String) This method gets the value for a certain key from the
Hashmap of tag attribute values maintained by the
class.

Enumeration getValues() This method gets an enumeration of all values.

void release() The method is meant to have code that releases any
resources that you use while processing the tag. You
need to override it only if you wish to explicitly
release any resources, instead of having the container
handle it for you.

f539663 ch07.qxd 7/25/03 9:14 AM Page 168

169Chapter 7 ✦ Using JSP Tag Extensions

Method Description

void removeValue(String) This method removes from the Hashmap the value
associated with the specified key.

void setId(String) This method sets the ID for the tag.

void setParent(Tag) This method sets the parent tag.

void setValue This method sets a value against a key in the
(String, Object) Hashmap.

Because BodyTagSupport extends TagSupport, it inherits a number of implemen-
tations from that interface. The additional methods in BodyTagSupport and the
methods that differ from those of TagSupport are listed in Table 7-9.

Table 7-9
BodyTagSupport methods

Method Description

void doInitBody The default method performs no action.

int doStartTag() This method returns
EVAL_BODY_BUFFERED by default.

BodyContent getBodyContent() This method gets the reference to the
current BodyContent.

JspWriter getPreviousOut This method gets the reference to
JspWriter that underlies the
BodyContent reference.

void setBodyContent(BodyContent) This method sets the body content for
the tag.

While you’re using TagSupport classes, a big advantage is the Hashmap of attributes
that is maintained by the class. This HashMap has key-value pairs of all attributes of
the tag, where the key is the name of the attribute and the value is the value of the
attribute. The underlying TagSupport and BodyTagSupport class has this function-
ality and nothing needs to be done by the class extending the support class. Using
the name of the attribute as the key, these values can be fetched from the Hashmap
when required.

With the support classes, you only need to extend a class; you do not need to imple-
ment an interface and then selectively provide implementations to the methods that
would have your logic in them.

f539663 ch07.qxd 7/25/03 9:14 AM Page 169

170 Part II ✦ The Presentation Tier

Simple tag handlers
Simple tag handlers are new in JSP 2.0. The classic tag handlers we discussed ear-
lier can perform all the tasks that a simple tag handler can; the difference between
the two kinds of handlers is that simple tag handlers are easier to use.

The SimpleTag interface extends the JspTag interface and is made up of just five
methods as shown in Table 7-10. Within these methods, simple tags can do every-
thing that classic tags can.

Table 7-10
SimpleTag methods

Method Description

void doTag() This method is called by the container and is
responsible for processing the tag.

void setParent(JspTag) This method sets the parent of the tag.

JspTag getParent() This method returns the parent of the tag.

void setJspContext This method sets the JspContext into the
protected field jspContext.

void setJspBody(JspFragment) This method sets the body of the tag as a
JspFragment.

The lifecycle of a simple tag handler is as follows:

1. For every use of the tag, the container creates a new instance of the tag han-
dler. (In this the simple tag handler is unlike the classic tag handlers, which
cache and reuse the same instance.) However, although the container now
creates a lot more objects, it no longer has to waste time caching and main-
taining them. As most new Java Virtual Machines (JVMs) are very good at
garbage collection, the creation of a new handler instance for each tag usage
should not affect performance.

2. The container calls the setJspContext and setParent methods.

3. The setter methods for the tag attributes are called in the order in which the
attributes appear.

4. The setJspBody method is called. The body of the tag is set as a JspFragment.

5. The doTag method is called.

Compared to that of the classic tags, this is a drastically simple flow. The doTag is
really the method to focus on, as the other methods are more or less enablers. So
now let’s get down to implementing with SimpleTag the same example we imple-
mented earlier using IterationTag and BodyTag.

f539663 ch07.qxd 7/25/03 9:14 AM Page 170

171Chapter 7 ✦ Using JSP Tag Extensions

First, let’s add a new tag to the TLD, as shown here:

<tag>
<description>Iterate array using a Simple Tag</description>
<name>itrSimple</name>
<tag-class>com.j2eeBible.mytags.TrySimpleTag</tag-class>
<body-content>JSP</body-content>

</tag>

We now slightly modify our earlier JSP and change the tag name to itrsample, as
shown in Listing 7-12.

Listing 7-12: IterateSimple.jsp

<%@ taglib prefix=”j2eebible” uri=”/j2eeBible” %>
<html>
<head>
<title>Hello Handler</title>

</head>
<body>
<j2eebible:itrSimple>

The Value is:
</j2eebible:itrSimple>

</body>
</html>

The best part of using SimpleTag is the concise and easy-to-understand code.
Listing 7-13 is how the code for the tag usage in Listing 7-12 will look.

Listing 7-13: TrySimpleTag.jsp

package com.j2eeBible.mytags;

import java.io.IOException;
import javax.servlet.jsp.JspContext;
import javax.servlet.jsp.JspException;
import javax.servlet.jsp.tagext.JspFragment;
import javax.servlet.jsp.tagext.JspTag;
import javax.servlet.jsp.tagext.SimpleTag;

public class TrySimpleTag implements SimpleTag
{

JspTag parent;

Continued

f539663 ch07.qxd 7/25/03 9:14 AM Page 171

172 Part II ✦ The Presentation Tier

Listing 7-13 (continued)

JspContext jspContext;
JspFragment jspBody;
int cnt=0;

String []arTeam=new String[]{“One”,”Two”,”Three”};

public TrySimpleTag()
{
System.out.println((++cnt)+”) ## IN Constructor”);

}
public void setParent(JspTag parent)
{
System.out.println((++cnt)+”) ## IN SetParent”);
this.parent=parent;

}
public JspTag getParent()
{
return this.parent;

}
public void doTag() throws JspException, IOException
{

System.out.println((++cnt)+”) ## IN DOTAG \n”);
for(int iCnt=0; iCnt<arTeam.length; iCnt++)
{
jspBody.invoke(null);
jspContext.getOut().write(arTeam[iCnt]);

}
}
public void setJspContext(JspContext newJspContext)
{

System.out.println((++cnt)+”) ## IN Set JspContext”);
jspContext = newJspContext;

}
public void setJspBody(JspFragment newJspBody)
{
System.out.println((++cnt)+”) ## IN Set JSP Body”);
jspBody = newJspBody;

}
}

The counter we have used in all the code in this chapter is an instance variable. In
earlier examples we had to set it back to 0 when a particular tag usage was done.
This was required as the same instance was getting reused and so the value of the
instance variable was carried over across multiple tag usages. We do not do that in
the code for the simple tag handler, yet the output for each invocation on the
Tomcat console begins with 1, indicating that a new instance is being created for
every tag usage, having a fresh counter starting with 0.

Note

f539663 ch07.qxd 7/25/03 9:14 AM Page 172

173Chapter 7 ✦ Using JSP Tag Extensions

The doTag method is the only method that has some logic in it. The rest are methods
forced by the interface and have pretty basic implementations. As JspFragment is
an addition of JSP2.0 and plays a key role in making the tag code in Listing 7-13 so
simple, let’s delve a little further into what a JspFragment is.

JspFragment
The JspFragment interface (javax.servlet.jsp.tagext.JspFragment) is new
to JSP 2.0 and is meant to encapsulate a portion of the code in one object. In addi-
tion to such scenarios as in Listing 7-13, where the tag-body content constitutes a
JspFragment, JspFragment is used where tag attributes are declared by means of
the <jsp:attribute> tag.

The JspFragment interface has just one method, whose signature is as follows:

public void invoke(java.io.Writer out)

Calling the invoke method executes the fragment, directing all output to the Writer
stated. If a null Writer reference is passed, the output is directed to the JspWriter
for the JspContext associate. Therefore, in our example in Listing 7-13 either of the
following two lines of code could have been used to output the body content:

jspBody.invoke(null);
jspBody.invoke(jspContext.getOut());

SimpleTagSupport
Simple tag handlers do have the potential to drastically reduce custom-tag com-
plexity. If you found the SimpleTag example in Listing 7-13 simple, we have an even
better class to work with, the SimpleTagSupport class.

Much like TagSupport and BodyTagSupport, SimpleTagSupport is a utility class
that provides default implementations for the methods in the SimpleTag interface.
Table 7-11 lists the various methods of the SimpleTagSupport.

Table 7-11
SimpleTagSupport methods

Method Description

void doTag() This method is an empty method and does nothing
for you.

static JspTag This is a static method that finds an instance of the
findAncestorWithClass specified class that is closest in the tag structure to
(JspTag, Class) the tag being used.

Continued

f539663 ch07.qxd 7/25/03 9:14 AM Page 173

174 Part II ✦ The Presentation Tier

Table 7-11 (continued)

Method Description

JspFragment getJspBody() This method gets the body of the tag as a
JspFragment.

JspContext getJspContext() This method returns the page context.

JspTag getParent() This method returns the parent of the tag.

void setJspBody This method is called by the container and sets the
(JspFragment) tag body in a protected field, jspBody.

void setJspContext This method is called by the container and sets the
(JspContext) jspContext in a protected field, jspContext.

void setParent(JspTag) This method sets the parent for the tag.

Let’s now explore dynamic attributes, which are new in JSP 2.0, and then take a look
at a dynamic-attributes example in which we use the SimpleTagSupport class.

Exploring Dynamic Attributes
Dynamic attributes have emerged because it is not always possible to know the
number and names of all the attributes that a tag would use. Dynamic attributes
give you the flexibility to change the number and names of the attributes that the
tag has without having to touch the tag definition in the TLD. In order for dynamic
attributes to be used the tag handler must implement the DynamicAttributes
interface and an additional <dynamic-attributes> tag must be introduced into
the tag-library descriptor. The TLD element is what tells the container that a certain
tag accepts dynamic attributes.

Any tag handler can support dynamic attributes.

The DynamicAttributes interface declares the following method:

public void setDynamicAttribute(String uri, String localName, Object value)

Every time the container encounters an attribute that is not declared in the TLD for
a tag that supports dynamic attributes, the container calls this method. The handler
can store these values in a Hashmap or Arraylist that can be retrieved later.

Note

f539663 ch07.qxd 7/25/03 9:14 AM Page 174

175Chapter 7 ✦ Using JSP Tag Extensions

For our example, we will create a tag that takes zero or more values as attributes
and displays their sum. For this let’s first declare the following tag:

<tag>
<description>Add all attribute values</description>
<name>addAttr</name>
<tag-class>com.j2eeBible.mytags.TrySimpleDynamic</tag-class>
<body-content>empty</body-content>
<dynamic-attributes>true</dynamic-attributes>

</tag>

Note the addition of the new element <dynamic-attributes>. The default value
for this element is false. Listing 7-14 is a JSP that will display the result of the tag
execution.

Listing 7-14: DynaAttribs.jsp

<%@ taglib prefix=”j2eebible” uri=”/j2eeBible” %>
<html>
<head>
<title>Hello Handler</title>

</head>
<body>
<j2eebible:addAttr x=”2.0” y=”3.0” z=”5.0”/>

<j2eebible:addAttr/>

</body>
</html>

In Listing 7-15, we use the SimpleTagSupport class, which eliminates the need to
write unnecessary code.

Listing 7-15: TrySimpleDynamic.java

package com.j2eeBible.mytags;

import java.io.IOException;

import javax.servlet.jsp.JspException;
import javax.servlet.jsp.JspWriter;
import javax.servlet.jsp.tagext.DynamicAttributes;

Continued

f539663 ch07.qxd 7/25/03 9:14 AM Page 175

176 Part II ✦ The Presentation Tier

Listing 7-15 (continued)

import javax.servlet.jsp.tagext.SimpleTagSupport;

public class TrySimpleDynamic extends SimpleTagSupport implements
DynamicAttributes
{

double dblTotal=0.00;
boolean blValidAttr=true;

public void doTag() throws JspException, IOException
{
JspWriter out = getJspContext().getOut();
if(blValidAttr)
{
out.write(“The attributes add to:”+String.valueOf(dblTotal));

}
else

{
out.write(“Invalid attributes provided.”);

}

}

public void setDynamicAttribute(String uri, String localName,Object value)
throws JspException

{
try
{
double dblAtrVal=Double.parseDouble((String)value);
dblTotal+=dblAtrVal;

}
catch(NumberFormatException e)
{
blValidAttr=false;

}
}

}

The tag shown in Listing 7-15 generates the following output:

The attributes add to:10.0
The attributes add to:0.0

The attribute names have no relevance in this particular example. However, the
setDynamicAttributes method does pass the attribute name and can be used for
further processing.

f539663 ch07.qxd 7/25/03 9:14 AM Page 176

177Chapter 7 ✦ Using JSP Tag Extensions

Summary
In this chapter we looked at the usage and relevance of custom tags. With JSP 2.0,
custom tags are certainly a far easier and more viable option then they ever were
before. Although Classic tag handlers do confer the advantage of backward compat-
ibility up to JSP version 1.1, simple tag handlers should be used wherever possible.

With an ever-growing number of freely available tag libraries on the Web, try and
avoid developing new tags for tasks for which a tried and tested tag library might
already exist. The JSP Standard Tag Libraries (JSTL) is another recent development
that you must explore before taking up any tag development. If you find that you
have too many complex situations to be tackled in your JSP, it is likely that a
change of design is what is really required rather than creating new tags to handle
complexities.

✦ ✦ ✦

f539663 ch07.qxd 7/25/03 9:14 AM Page 177

f539663 ch07.qxd 7/25/03 9:14 AM Page 178

The Enterprise
Information
System Tier

✦ ✦ ✦ ✦

In This Part

Chapter 8
Working with
JavaMail

Chapter 9
Understanding the
Java Messaging
Service

Chapter 10
Introducing Java
Transactions

Chapter 11
Examining JNDI and
Directory Services

Chapter 12
Understanding Java
Authentication and
Authorization
Services

Chapter 13
Exploring Java
Cryptography
Extensions

✦ ✦ ✦ ✦

P A R T

IIIIII

g539663 PP03.qxd 7/25/03 9:14 AM Page 179

g539663 PP03.qxd 7/25/03 9:14 AM Page 180

Working with
JavaMail

The JavaMail API is an abstract suite of classes for han-
dling message-based systems. It was first introduced as a

stand-alone package but now ships as part of the core J2EE
API, although it can still be downloaded as a separate package
to be used with other applications outside of the J2EE space.

In this chapter we’ll go through the logistics of using the
JavaMail API to handle e-mail without having to worry too
much about the underlying protocols. We’ll look at the proto-
cols briefly and take a look at how MIME operates. In addition,
we’ll be looking at how the JavaMail API has abstracted all the
logistics away, with real examples of sending and receiving
e-mail with a variety of different protocols. Finally, we’ll take a
look at harnessing the power of JavaMail within a J2EE appli-
cation and how JavaMail integrates with the application
server.

Exploring the “Hello World”
of JavaMail

Before we take a detailed tour of the JavaMail API let’s take a
quick look at one of the most common tasks associated with
e-mail: sending a single mail message via the Simple Mail
Transport Protocol (SMTP). You might employ this routine,
for example, to provide a feedback form on a Web page, or to
report the status of some aspect of your application. Take a
look at the code in Listing 8-1.

88C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Understanding
the protocols
for JavaMail

Providing an
overview of JavaMail

Using the
JavaMail API

Implementing an
integrated JavaMail
within J2EE

✦ ✦ ✦ ✦

h539663 ch08.qxd 7/25/03 9:15 AM Page 181

182 Part III ✦ The Enterprise Information System Tier

Listing 8-1: Generating a HelloWorld e-mail

import javax.mail.*;
import javax.activation.*;
import javax.mail.internet.*;

public class sendSMTP extends Object{
public static String main(String args[]){
try{

//--[Set up the default parameters Properties p = new
Properties();

p.put(“mail.transport.protocol”, “smtp”);
p.put(“mail.smtp.host”, “yourmail.yourserver.com”);
p.put(“mail.smtp.port”, “25”);

//--[Create the session and create a new mail message
Session mailSession = Session.getInstance(p);
Message msg = new MimeMessage(mailSession);

//--[Set the FROM, TO, DATE and SUBJECT fields
msg.setFrom(new InternetAddress(“me@noah.com”));
msg.setRecipients(Message.RecipientType.TO,

InternetAddress.parse(“info@cormac.com”));
msg.setSentDate(new Date());
msg.setSubject(“Hello World!”);

//--[Create the body of the mail
msg.setText(“Hello from my first e-mail sent with

JavaMail”);

//--[Ask the Transport class to send our mail message
Transport.send(msg);

}catch(Exception E){
System.out.println(“Oops something has gone pear

shaped!”);
System.out.println(E);

}
}

}

SMTP is discussed later in this chapter in the section of the same name.

This small program, although not very practical because the values are hardcoded,
illustrates just how little you actually need to know about the underlying protocols
in order to successfully send an e-mail.

h539663 ch08.qxd 7/25/03 9:15 AM Page 182

183Chapter 8 ✦ Working with JavaMail

This program assumes that either the server via which you are attempting to
deliver the message has had relaying authorized for your client IP address, or the
e-mail address you are sending is valid for that server. So don’t panic if your e-mail
isn’t coming through; it may well be because of the forwarding SMTP server. Check
with the administrator of that machine if you are authorized.

We won’t go into too much detail here about the actual steps associated with send-
ing the e-mail, as we will be taking a much closer look at the JavaMail API in subse-
quent sections. But it is fair to note that in this instance the majority of the work is
involved with creating the actual mail message — setting its various properties such
as the FROM, TO, and SUBJECT fields.

The JavaMail API helps the developer at each step of the process. Classes are there
to aid in the production and validation of the e-mail components. For example, later
on in this chapter, we’ll look at classes designed to help us handle the complexities
of working with e-mail addresses.

Listing 8-1 uses the SMTP protocol to deliver our message. The next section will dis-
cuss the protocols used by JavaMail in greater detail.

Understanding the Protocols for JavaMail
The protocols that underpin the workings of electronic mail are well established
and very mature. Although it is not completely necessary, it is never a bad idea to
get a feeling for what the JavaMail API is attempting to abstract for you. This section
will take a quick a look at the following core protocol implementations that are bun-
dled as part of the JavaMail distribution:

✦ Simple Mail Transport Protocol (SMTP)

✦ Post Office Protocol version 3 (POP3)

✦ Internet Message Access Protocol (IMAP)

Although Multipurpose Internet Mail Extensions (MIME) is not strictly a transport
protocol because it packages mail content, we’ll take a look at it as well.

SMTP
The Simple Mail Transport Protocol was first proposed back in 1982 and was designed
for the delivery of mail messages to servers. Its staying power can be attributed to
its extreme simplicity in moving (or relaying) messages. Note that SMTP is merely a
delivery agent and is not used to read e-mail.

h539663 ch08.qxd 7/25/03 9:15 AM Page 183

184 Part III ✦ The Enterprise Information System Tier

SMTP can act as a relay server by delivering e-mail on behalf of another server. For
this reason, it has been abused by spammers to send large volumes of unsolicited
e-mails to users all over the world. Consequently, many system administrators have
blocked, or restricted, their SMTP server’s capability, and will only accept e-mail
that is specifically addressed to that server’s user base.

It can appear that your JavaMail application isn’t sending e-mail properly and you
may be looking at your code for reasons why. Chances are that the SMTP server
you are attempting to send e-mail to is not the host for that e-mail and has had its
relaying capabilities significantly restricted. JavaMail will attempt to report these
problems to you via exceptions if the server you are talking to gives back an error
message. Many such servers do not, however, merely absorbing the message.

You can read more about the specifics of SMTP by referring to the RFC 821 docu-
ment at http://www.rfc-editor.org/rfc/rfc821.txt.

POP3
The Post Office Protocol is the mechanism by which the majority of people collect
their e-mail. It is then the responsibility of the user to take care of the e-mail by fil-
ing it in some logical storage. Much as with a mailbox at a real post office, a user
comes along and collects, or downloads, his or her e-mail, storing it locally and
removing it from the server. The POP server does not offer any storage facilities
beyond the mailbox that new mail is delivered to. This setup can be a little confus-
ing to new users because modern-day e-mail clients give the illusion that the server
stores the messages.

POP has been in its present state, version 3.0, since late 1988, with it roots going
back to 1984. Again, this is a very established protocol, and its staying power again
can be attributed to the simplicity of its instruction set. You can read more about
the specifics of SMTP by referring to the RFC 1939 document at http://www.
rfc-editor.org/rfc/rfc1939.txt.

IMAP
The Internet Message Access Protocol is a protocol that many enterprise e-mail
servers employ. It offers a far richer set of functions than POP. With POP the premise
is that the user is responsible for the storage of e-mail, whereas with IMAP the server
assumes this responsibility. IMAP offers a folder structure for the user to interact
with and all messages are stored on the server. The user has no need to download
e-mail to his or her local machine.

This setup has the major advantage, for the user, of keeping all of his or her e-mails
in one place, irrespective of the client that user is using to log in with.

Note

h539663 ch08.qxd 7/25/03 9:15 AM Page 184

185Chapter 8 ✦ Working with JavaMail

JavaMail supports this protocol. However, you should be aware that many of the
features of IMAP are dependent solely on the mail server. JavaMail merely passes
the request on through to the backend server and collates any results. It is on occa-
sions like this that JavaMail resembles JDBC, which merely passes the processing
through to the backend database and doesn’t actually do any major processing by
itself.

Although a far superior protocol to POP, IMAP is not as widely used as the others,
so make sure your server supports it before attempting any communication using
this protocol. IMAP is a communication protocol used between the user and the
server and is only responsible for the reading and retrieval of messages. It is not
used for the delivery of e-mail between servers.

You can read more about the specifics of IMAP by referring to the RFC 2060 docu-
ment at http://www.rfc-editor.org/rfc/rfc2060.txt. To learn more about
the various implementations of IMAP and to find out which e-mail servers support
it, refer to the site http://www.imap.org/.

MIME
The Multipurpose Internet Mail Extension defines the translation of and all the rules
that are associated with the transmission of binary-based e-mail. Internet mail is
fundamentally based on pure American Standard Code for Information Interchange
(ASCII) text, and on the whole does not permit non-ASCII data to be used. At first
this may seem a little restrictive, but considering the wide variety of machine types
that are exchanging e-mail with one another, it was important to choose the lowest
common denominator to ensure data arrived safely. However, the need to start
attaching non-ASCII files to mail messages soon became apparent and a standard
was required to deal with the encoding of binary files into ASCII in such a way that
they could be transported and, when received, decoded back out to their native
binary representations.

The JavaMail API takes care of all this for us and ensures that all the necessary
protocols and translations are handled correctly. For more information on MIME
visit http://www.oac.uci.edu/indiv/ehood/MIME/MIME.html.

JavaMail Components
The JavaMail API is a collection of about one hundred classes and interfaces. That
makes it sound tremendously complicated, but don’t be intimidated by numbers.
Fortunately you don’t need to understand every single detail to be able to use the
API. This is the power of an object-orientated system: It abstracts the implementa-
tion away and presents a clear and concise interface with the functionality.

h539663 ch08.qxd 7/25/03 9:15 AM Page 185

186 Part III ✦ The Enterprise Information System Tier

In this section we’ll take a look at the major components that make up the API. We’ll
delve into some of the more active classes to give you a feeling of just how flexible
this API really is. It contains four major components:

✦ Session management — The session aspect of the API defines the interaction
the mail client has with the network. It handles all aspects associated with the
overall communication, including the protocol to use for transfer and any
default values that may be required.

✦ Message manipulation — Because the whole premise of the JavaMail is to
send and receive mail messages, it shouldn’t come as any great surprise that
there are many ways of creating and manipulating mail messages.

✦ Mail storage and retrieval — If a message isn’t being sent or received, it is in
storage. Messages are stored in hierarchies that are not unlike those of files
and directories. The JavaMail API has a suite of classes for managing this
storage, including classes for adding, deleting, and moving messages.

✦ Transportation — Last but not least is the delivery of the message. The API
provides easy mechanisms for this.

After mentioning the major mail components we’ll discuss their usage in detail in
the subsequent sections of this chapter.

Session management
A session, in the JavaMail context, is merely used for storing information about the
logistics of establishing a connection session with the server. Therefore, it is not
uncommon for sessions to be shared among users, if they are all using, say, the
same SMTP server. For those of you familiar with servlet sessions, please note that
these sessions share no functionality with them.

The session does not handle any authorization per se; this is done later on, as you
will see, but the session can hold login information. So be careful when you decide
whether or not you wish the session to be shared with every other class running in
the Java Virtual Machine (JVM) at the time.

javax.mail.Session
JavaMail has the javax.mail.Session class that defines the mail session used for
communicating with remote mail systems. The Session class has no public con-
structors to which to create a new instance. Instead you obtain one by calling one
of the static methods of the class, as shown here:

static Session getInstance(Properties P)

The first method returns an unshared, private Session instance with the
Properties passed in.

Note

h539663 ch08.qxd 7/25/03 9:15 AM Page 186

187Chapter 8 ✦ Working with JavaMail

If, however, you wish to have a session that can be shared among other users
within the JVM, you can use the following call to obtain a new instance:

static Session getDefaultInstance(Properties P)

The difference between the two calls is the method getDefaultInstance() uses
the Properties object only in the initial call. When you make subsequent calls to
the method, it will always return the same instance. All parameters within the
Properties class will be ignored. If you need a new instance each time, use the
getInstance(...) call instead.

The Session object uses the java.util.Properties class to allow for the differ-
ent session parameters to be passed in. You can either obtain an instance of this
class by creating a new one and filling in the necessary parameters, or by using the
one returned from the call to System.getProperties(). The JavaMail API defines
a set of parameters that are used by the core protocols as shown in Table 8-1. Please
note that this list is by no means exhaustive; it is feasible that other protocol imple-
mentations, for example the Network News Transport Protocol (NNTP), may wish
for additional information.

Table 8-1
Parameters used by core protocols

Property Description Default Value

Mail.transport.protocol This is the default transport The first available
protocol that will be returned one from the
when getTransport() is called. configured

protocols

mail.store.protocol This is the default store protocol The first available
that will be returned when one from the
getStore() is called. configured

protocols

mail.host This is the default host that both The local machine
the transport and store protocols
will use, should their own hosts
not be specified.

mail.user This is the default user that both user.name
the transport and store protocols
will use, should their own users
not be specified.

mail.from This is the return address user@host
of the current user.

Continued

h539663 ch08.qxd 7/25/03 9:15 AM Page 187

188 Part III ✦ The Enterprise Information System Tier

Table 8-1 (continued)

Property Description Default Value

mail.protocol.host This overrides mail.host mail.host
property, for the specified
protocol.

mail.protocol.user This overrides the mail.user mail.user
property for the specified protocol.

mail.debug This is the debug setting for false
the session.

Going back to our quick SMTP example that sends mail (see Listing 8-1), you can
see that the process we use to obtain a Session variable isn’t steeped in as much
mystery now. In the following code we are creating a new instance of the Properties
class and populating the key properties with information detailing that when we
call all the default transport mechanisms we wish to use SMTP as our delivery
agent.

Properties p = new Properties();
p.put(“mail.transport.protocol”, “smtp”);
p.put(“mail.smtp.host”, “yourmail.yourserver.com”);
p.put(“mail.smtp.port”, “25”);
Session mailSession = Session.getInstance(p);

Our session that we have obtained is private to us, which means that should we make
some changes to the parameters and re-obtain a Session variable, the session will
reflect the updates. The Session object now enables us to access folders and stores
on a remote system through the use of simple method calls. You will see this in
action later on in the chapter.

javax.mail.Authenticator
In the majority of cases in which you are reading mail (or even sending it), you will
need to supply a user name and password in order to authenticate the connection.
The JavaMail API provides for this very cleanly with the Authenticator class. When
a session comes to the point where it requires authentication details, it makes a call
to this class for the required information. The two following variations on the static
methods we used to obtain a session in the previous section make this authentica-
tion possible:

static Session getInstance(Properties P)
static Session getDefaultInstance(Properties P, Authenticator A)

The only difference between the two is the additional reference to the Authenticator
object in the second example.

h539663 ch08.qxd 7/25/03 9:15 AM Page 188

189Chapter 8 ✦ Working with JavaMail

Building an authentication module is relatively straightforward as long as you imple-
ment the necessary interfaces and adhere to the simple rules. When the session
comes to the point where it needs the password, it will make a call to the method

javax.mail.PasswordAuthentication getPasswordAuthentication()

from the Authenticator abstract class. The PasswordAuthentication class is
merely a wrapper that allows the user name and password to be conveniently
passed back to the calling method.

Let’s work through a simple example to demonstrate this overall process. We’ll
assume that, when asked, we simply look up the default user within a text file of pass-
words. Granted this is not the most secure way of handling this situation. However, it
illustrates the point without bogging us down in the complexities of connecting to a
database, for example, which would be a far more sensible choice in real life.

To begin with, we simply subclass the Authenticator class, providing an imple-
mentation for the getPasswordAuthentication() method, as shown in Listing 8-2.

Listing 8-2: A very silly authenticator

import javax.mail.*;
import java.io.*;
import java.utils.*;

public class dumbAuthenticator extends Authenticator{
Properties passwordList;

public class dumbAuthenticator(){
super();
try{
//--[Load in the password key file
passwordList = new Properties();
passwordList.load(new

FileInputStreamReader(“/pass.list”));
}catch(Exception E){
System.out.println(E);

}
}

public PasswordAuthentication getPasswordAuthentication(){
if (passwordList.containsKey(getDefaultUserName()))
return new PasswordAuthentication(getDefaultUserName(),

(String)passwordList.get(getDefaultUserName()
));

else
return null;

}
}

h539663 ch08.qxd 7/25/03 9:15 AM Page 189

190 Part III ✦ The Enterprise Information System Tier

When this class is first created, it attempts to load a key/data text file of user
names and passwords using the standard java.utils.Properties mechanism.
After that the class sits dormant until a Session object calls upon it using the
getPasswordAuthentication() method, which subsequently performs a lookup
in the Properties object and if this object is found, creates a new instance of
PasswordAuthentication and returns. Otherwise a null is returned. To integrate
this class into the session’s authentication procedure, we would modify our original
code to include the stupidAuthenticator class. Here’s the code:

Properties p = new Properties();
p.put(“mail.transport.protocol”, “smtp”);
p.put(“mail.smtp.host”, “yourmail.yourserver.com”);
p.put(“mail.smtp.port”, “25”);
dumbAuthenticator sA = new dumbAuthenticator();
Session mailSession = Session.getInstance(p, sA);

This code would then have the desired effect of handing off all responsibility for
gathering passwords to the dumbAuthenticator object.

Message manipulation
One of the core features of JavaMail, as you might expect, is the ability to work with
messages. As we have seen earlier in this chapter, the actual procedure involved in
sending an e-mail isn’t that complicated. However, where things can get confusing is
with the generation of the actual message to be sent; adhering to all the MIME stan-
dards to ensure safe and coherent transmission can indeed be a tricky business.

javax.mail.Message
The JavaMail API offers a rich library of classes to make the construction and
deconstruction of mail messages a relatively painless process, and it all starts with
javax.mail.Message. This abstract class provides the basic container for the rep-
resentation of a mail message.

A mail message is made up of two major components, a header and some content.
The Message class implements the javax.mail.Part interface, which deals
with the functionality associated with constructing the header and the content.

Now, the JavaMail API might seem complicated when it comes to dealing with mes-
sage contents. This is because the MIME specification allows for multiparts — several
message parts, each with its own encoding and attributes, to be sent in one message.
Multiparts are what make MIME powerful to use and, at times, such a pain to work
with. We’ll take a look at this array of classes and interfaces and hopefully shine some
light on what might first appears to be a bewildering web of interconnecting classes.
Although we are going to be using the most common message format, MIME, the
JavaMail API has been designed to use any type of message. For the purposes of this
chapter we’ll concentrate on the standard that you are most likely to use within an
Internet environment.

h539663 ch08.qxd 7/25/03 9:15 AM Page 190

191Chapter 8 ✦ Working with JavaMail

javax.mail.internet.MimeMessage
The Message class is an abstract class and therefore to actually start to use a mail
message you must use a subclassed implementation. The one implementation that
is part of JavaMail is the javax.mail.internet.MimeMessage class. We can
obtain a new object instance of this class in a number of ways. The first method,
shown next, calls one of its public constructors:

public MimeMessage(Session S)
public MimeMessage(MimeMessage M)

The first method creates an empty MimeMessage based on the session properties
passed in. This is the most common method of creating a new object instance. An
alternative is to use the copy-constructor, which creates a new message instance
with all the same properties and content as the one passed in. This can be a very
inefficient way of creating a new MimeMessage and ought to be avoided where pos-
sible. You might think of using this method, however, when creating a message that
is a reply to an existing e-mail. Fortunately, the creators of JavaMail were one step
ahead of you on that front and conveniently offer the following method:

public Message reply(boolean replyToAll)

This method enables you to easily create a new message with all the necessary
headers set. It also modifies the subject line by prefixing the RE: if it is not already
there.

Since this class is used to work with Internet mail messages, we’ll take a quick look
at some of the methods for accessing the common header fields that exist as part of
the message specification (as detailed in RFC 822).

Here is a header plucked straight from a message received from the popular
hotmail.com service.

Message-ID: <001e01c0feab$0366b7e0$8c74f5d1@computer>
From: “Noah Williamson” <noahwilliamson@hotmail.com>
To: cormac@n-ary.com
Subject: Re: thanks
Date: Thurs, 6 Mar 2003 21:46:39 -0400
MIME-Version: 1.0
Content-Type: text/plain; charset=us-ascii
X-Priority: 3
X-MSMail-Priority: Normal
X-Mailer: Microsoft Outlook Express 5.00.2615.200

These fields are explained in the following paragraphs.

A number of fields have been removed for clarity.Note

h539663 ch08.qxd 7/25/03 9:15 AM Page 191

192 Part III ✦ The Enterprise Information System Tier

From
The mail message has to have originated from at least one person and this sender(s)
is detailed in the From header in the mail message. This field must be a valid for-
matted Internet mail address(es); the Message class provides a set of methods for
setting and retrieving it. To read the field, use the following method:

Address[] getFrom()

This will return an array of javax.mail.Address objects that represent the e-mail
addresses. We’ll be using this class throughout various examples in this chapter.
For the moment, consider it a wrapper class for representing a valid Internet mail
address. You can set the field with either of these simple access methods:

void setFrom()
void setFrom(javax.mail.Address fromAddress)

The first method may confuse you a little. How do you set the From field without
actually passing it anything? Well, you might remember that in the session discus-
sion we examined the various default properties that we can associate with a given
mail session. The first of the preceding methods merely uses the default property
from the session for the From field in the message. The second method enables you
to specify an alternative address to be used for the From field. If you want to set
multiple addresses for the From field you can use the following method:

void addFrom(Address[] moreAddresses)

This will add the array of addresses to the existing From field.

TO/CC/BCC
Three broad classifications exist for addressing mail messages:

✦ To: The To field is generally intended for the recipients to whom the message
is directly addressed.

✦ CC: CC stands for carbon copy, and is for public acknowledgement of recipients
receiving a copy of the message.

✦ BCC: BCC stands for blind carbon copy, and is a hidden list of recipients who
receive a copy of the message. Only the sender can see this list.

The Message class makes it easy to set and retrieve the various headers. Here’s an
example:

void setRecipient(Message.RecipientType type, Address[]
addresses)
void setRecipient(Message.RecipientType type, Address address)
Address[] getRecipients(Message.RecipientType type)
Address[] getAllRecipients()

h539663 ch08.qxd 7/25/03 9:15 AM Page 192

193Chapter 8 ✦ Working with JavaMail

In addition to the setXXX(...) methods, there exist derivates of the
addRecipients(...) method for easily appending new addresses to existing
address fields. Message.RecipientType defines the following constants:

Message.RecipientType.TO
Message.RecipientType.CC
Message.RecipientType.BCC
MimeMessage.RecipientType.NEWSGROUPS

In addition to these, MimeMessage defines an additional type for use with protocols
that are servicing newsgroups via the NNTP protocol. The use of these methods to
set the various fields is shown here:

Session mailSession = Session.getInstance(p);
Message msg = new MimeMessage(mailSession);

msg.setRecipients(Message.RecipientType.TO,
InternetAddress.parse(“info@noah.com”));

msg.setRecipients(Message.RecipientType.CC,
InternetAddress.parse(“info@cormac.com”));

msg.setRecipients(Message.RecipientType.BCC,
InternetAddress.parse(“noonecansee@me.com”)

);

Reply-To
In some instances you may want a mail message to come from a specific person,
but want any reply to go somewhere else. For example, say your company CEO
announces a major product: He or she can send the e-mail, but he or she may want
the company’s sales team to follow up on any replies. The mail standard allows for
this configuration through the special Reply-To header field. The API provides two
methods for the manipulation of this header field. To set the field, use the following
method:

void setReplyTo(Address[] addresses)

If you do not make a call to this method, it is assumed to be null and will not be
included in the resulting message header. To retrieve the Reply-To header, simply
make a call to the following method:

Address[] getReplyTo()

If the header isn’t present, this method will return the same information you would
get if you were to call getFrom().

Subject
As you would expect, methods exist for setting the Subject header of a mail mes-
sage. Here’s an example:

void setSubject(String subject)
String getSubject()

h539663 ch08.qxd 7/25/03 9:15 AM Page 193

194 Part III ✦ The Enterprise Information System Tier

Date
The Date field of the mail message is accessed by means of the following methods
with the standard Java Date object. Because of this you don’t have to remember the
exact format of the date for the mail exchange.

void setSentDate(Date date)
Date getSentDate()

Message ID
Each mail message travelling around the Internet is meant to have a unique
identifier — so if all of them ever make it to one large storage area, we’ll be able to
index them! The JavaMail API generates message id for us when the message is
saved. But we can read the MessageID field in the messages. Here’s an example:

String getMessageID()

Custom headers
The message header was designed to be flexible enough to allow any number of
headers to be added. You can use this feature to send extra data with mail messages.
To read and write headers we use the following:

void setHeader(String name, String value)
String getHeader(String name, String delimiter)

In addition to these methods, a whole range of methods exists that allow greater
access to the information within the message header. See http://java.sun.com/
products/javamail/1.3/docs/javadocs/com/sun/mail/pop3/POP3Message.
html for more information.

javax.mail.Part
The JavaMail API offers the javax.mail.Part interface and its derivatives for
putting together and controlling a rather complex set of message parts.

Think of the construction of mail messages as happening in logical blocks, or parts,
where each block is in fact a unit of data. For example, a file attachment would be
considered a block, as would the main body text of the message. Now consider the
fact that, in its initial form, a message can only contain one block of data; so how can
one attach multiple data blocks to a single message? This is what the MIME standard
aims to do with its variety of MIME types. But let’s go back to the JavaMail world for
the moment before we look at specific implementations.

A message can contain either a single block, or a special block that itself can hold a
list of blocks. In turn, that block can contain either a single block, or a special block
to indicate a list. And so forth, and so forth.

In JavaMail, a message can only hold a single item content or a javax.mail.
Multipart as its content. The Multipart class is a placeholder for multiple Part

h539663 ch08.qxd 7/25/03 9:15 AM Page 194

195Chapter 8 ✦ Working with JavaMail

objects. There is a special class called javax.mail.BodyPart that is used within a
Multipart content list to denote the blocks of data that make up the overall block
of content.

Therefore, a Multipart class can only hold BodyPart classes, and a BodyPart,
much like the Message class, can hold either a single block of content or a single
Multipart class. JavaMail provides one implementation of the structure depicted
in Figure 8-1, and that is the MIME implementation. The implementation follows this
model and the actual classes use the same names as their abstract counterparts
(except that the names of the actual classes are prefixed with Mime). But before we
go into the classes more deeply we’ll take a look at just how the content is stored.
To do this we need to have a quick look at the JavaBeans Activation Framework (JAF).

Figure 8-1: Message relationship

The JavaBean Activation Framework
If the world contained only the core data types of Java then it would be an easier
environment to work in. But sadly this isn’t the case. The number of data types is
infinite and the good news is that the MIME standard permits this wide range of
data types to be sent as content in any part as long as it’s properly labeled with a
label that adheres to the xxxx/yyyy convention. For example, we already know of
at least one MIME data type, text/plain, which can basically be handled with a
java.lang.String object.

However, this is probably the easiest form of content and is not representative of
the bigger picture. To cope with the complexity of the data types the JavaMail API
employs the services of the JavaBean Activation Framework (JAF) to give a clean
and consistent interface to the wide range of data types that exist. You can learn
more about the JAF by visiting http://java.sun.com/beans/glasgow/jaf.html

The JAF provides the javax.activation.DataHandler class for handling various
data operations. When the Part class is handling content, all operations are per-
formed through the DataHandler class, although the Part class does expose some
shortcut methods, which we’ll see later in this section.

Table 8-2 lists some of the more common methods of the DataHandler class.

Message

MultiPart MultiPart

Header

Part

BodyPart

BodyPart

BodyPart

BodyPart

BodyPart

Content

ContentContains
either

Contains
either

h539663 ch08.qxd 7/25/03 9:15 AM Page 195

196 Part III ✦ The Enterprise Information System Tier

Table 8-2
Common methods of the DataHandler class

Method Description

String getContentType() This method returns the MIME type of the object,
including any parameters associated with it.

Object.getContent() This method returns the data. If the DataHandler was
created with an object, this method returns it. If it was
created with a DataSource this method will attempt to
find the content object and return that. Otherwise, an
InputStream is returned.

InputStream This method returns an input stream to the object that is
getInputStream() holding or representing the data.

OutputStream This method returns an output stream to the object that
getOutputStream() is holding or representing the data so that the content

may be overwritten.

void writeTo This is a convenient method that will write the data
(OutputStream OutputS) content to the output stream passed in.

The JavaMail API provides the following default DataHandlers for the MIME types:

✦ text/plain

✦ text/html

✦ multipart/mixed

✦ message/rfc822

Although you may not have realized it, in our simple and crude example of sending
an e-mail the MimePart class was handling the DataHandler for us. Remember how
we set the content for the text mail in Listing 8-1?

msg.setText(“Hello from my first e-mail with JavaMail”);

The MimeMessage class has provided some convenience methods that enable you
to quickly set the data for simple content types. We could have achieved the same
effect by calling all the components ourselves, as shown here:

String messageBody = “Hello from my first e-mail with
JavaMail”;
DataHandler dh = new DataHandler(messageBody, “text/plain”);
msg.setDataHandler(dh);

But the above steps have been wrapped up for us in a single call to MimeMessage.
setText(...). In this example we created a new instance of the String class and

h539663 ch08.qxd 7/25/03 9:15 AM Page 196

197Chapter 8 ✦ Working with JavaMail

set it with our message body’s text. Next we created a new DataHandler instance,
passing in a String object and labeling the String data with the type text/plain.
Finally, we set the message content to this new DataHandler instance.

Getting at the information involves using the DataHandler class and the Part inter-
face defines some shortcut methods for us. But for illustration purposes and to
reinforce the notion that a specific DataHandler class handles the message con-
tent, we’ll go the long way round. Here’s the example:

DataHandler dh = msg.getDataHandler();
if (dh.getContentType().equals(“text/plain”))
String messageBody = (String)dh.getContent();

We first retrieve an instance of the DataHandler that is holding the data for us.
We then check the content type of the data. This enables us to determine how to
use the object that is returned to us from the call to DataHandler.getContent().
Remember, we created this instance of DataHandler by passing in a String refer-
ence to its constructor; therefore, as per the JAF API documentation, a call to
getContent() will return the original object we used to create the content, which
in this instance is the String reference. So we forward cast to a String object the
Object reference returned from getContent().

Later in this chapter in the section, “Receiving Attachments,” you will see how to
use the getInputStream() feature of the DataHandler class to handle data types
that don’t have a DataHandler implementation, such as the MIME type image/jpeg
that is used to represent images.

javax.mail.Multipart
As we discussed in the previous section, a multipart is designed to manage multiple
parts as a single unit. You’re most likely to find a multipart when you attach a file to
a mail. The message body would be one part and the file attachment would be the
other. Therefore you would have to use a multipart MIME message to package this
whole thing up for successful transmission. Take a quick look at Listing 8-3, which
illustrates the construction of the two parts of the mail message.

Listing 8-3: Constructing two parts of the mail message

MimeMessage msg = new MimeMessage(session);
Multipart mailBody = new MimeMultipart();

//--[Create the first part
MimeBodyPart mainBody = new MimeBodyPart();
mainBody.setText(“Here is that file we spoke of”);
mailBody.addBodyPart(mainBody);

//--[Create the second part with the attachment

Continued

h539663 ch08.qxd 7/25/03 9:15 AM Page 197

198 Part III ✦ The Enterprise Information System Tier

Listing 8-3 (continued)

FileDataSource fds = new FileDataSource(“c:\\photo.jpg”);
MimeBodyPart mimeAttach = new MimeBodyPart();
mimeAttach.setDataHandler(new DataHandler(fds));
mimeAttach.setFileName(fds.getName());

mailBody.addBodyPart(mimeAttach);

msg.setContent(msg);

Don’t worry too much about the logistics of attaching a file; we’ll take a much more
detailed look at them in the later sections dealing with attachments. As you can see,
we first created a new instance of MimeMultipart, the implementation for the
Multipart abstract class. This will serve as a placeholder that will enable us to
insert as many parts as we require, and in this example we only need two: one for
the message text and the other for the file.

We then created an instance of MimeBodyPart that will hold the content for our
message text and, because we know the message text is of type text/plain, we used
the shortcut method setText(...) to set the text. After this we took this instance
and attached it to the MimeMultipart by making a call to addBodyPart(...), pass-
ing in our MimeBodyPart reference.

We repeated this for the file attachment, ending with a call to the addBodyPart(...)
method. Finally, once we finished creating all the necessary parts that make up the
multipart message, we set the content of our original MimeMessage to that of the
MimeMultipart.

Internally the Multipart stores the various parts in a java.utils.Vector, and
because of this the majority of the public methods of this class are merely wrap-
pers, that enable you to manage the list of BodyParts. Table 8-3 lists the methods
of the class Multipart.

Table 8-3
The methods of the Multipart class

Method Signature Description

void addBodyPart This method adds the BodyPart to the end of the list
(BodyPart bp) of currently held BodyParts.

void addBodyPart This method adds the BodyPart bp to the list at the
(BodyPart bp, int index) specified index.

BodyPart getBodyPart This method returns the BodyPart that is at the
(int index) position passed in.

h539663 ch08.qxd 7/25/03 9:15 AM Page 198

199Chapter 8 ✦ Working with JavaMail

Method Signature Description

String getContentType() This method returns the MIME type for this Multipart.

int getCount() This method returns the number of BodyParts in the
list.

Part getParent() This method returns the parent that is presently
holding this Multipart, or null if not known.

boolean removeBodyPart This method removes the BodyPart bp instance from
(BodyPart bp) the list. It returns true if successful, false if the

instance is not found.

boolean removeBodyPart This method removes the BodyPart instance from the
(int index) list at the specified position. It returns true if

successful, or false if the instance is not found.

void setParent This method sets the parent for this Multipart.
(Part parent)

As you can see the Multipart class isn’t very complex; its main purpose is simply
to manage the list of BodyParts it has been asked to hold. Speaking of BodyParts,
let’s take a closer look at the properties associated with holding data.

javax.mail.BodyPart
A BodyPart is the abstract class used to denote the part that makes up a Multipart.
The BodyPart class is identical to the Part class except for the addition of one
extra method to obtain the Multipart. The following method returns the contain-
ing Multipart, or null if not known: is inclusive of.

Multipart getParent()

Message content
The message has a variety of methods that enable you to determine how to handle
message content and data makeup. As you have seen, a message can be made up of
a number of different Parts, and because of this all the methods described in this
section are found in the Part interface as opposed to the Message abstract class.

Recall that the MIME specification states that all content-type descriptions must be
in the xxxx/yyyy format, where xxxx is the major type and yyyy is the subtype.
Each Part can have its own MIME format and to determine the format we can use
the following method:

String getContentType()

h539663 ch08.qxd 7/25/03 9:15 AM Page 199

200 Part III ✦ The Enterprise Information System Tier

This might return, for example, the type text/plain; charset=us-ascii shown
in the Internet mail message earlier in the section, “The JavaBean Activation
Framework.” You may think that this result is invalid, because it seems to include
extra information after the xxxx/yyyy format, but the other data are parameter
data. The MIME standard allows extra information to be transferred in this attribute
that will aid in the decoding and encoding stage.

Because we make a lot of decisions based on just the xxxx/yyyy format, we have
a helper class that assists us in determining whether a given MIME type is present.
This is the method:

boolean isMimeType(String mimeType)

It makes it easy for us to determine a given type. We can pass in text/plain to see
if that is the content type. We can even pass in text/* to see if the MIME type is of
the text/ type. This last is particularly useful for determining if the content is a
MultiPart/ or not.

In addition to this the MIME specification enables further description through
optional attributes: description, disposition, and filename. This information
must be packaged up according to certain rules, but because you are working
through the JavaMail API you don’t need to worry about them. The description
field enables you to set some descriptive notes about this particular MIME part.
Naturally, methods such as the following help you do this:

String getDescription()
void setDescription(String desc)

Another parameter that MIME permits is the disposition field. This is a very use-
ful field, especially if you are using HTML-formatted e-mails. This field describes
whether a particular part should be saved as an attachment or used internally to
display the message. The JavaMail API defines these two constants:

static public ATTACHMENT
static public INLINE

We can use them either to set or to check the disposition of the part by calling the
methods accordingly. Here’s an example:

String getDisposition()
void setDisposition(String disp)

So, for example, if we want to see whether a particular Part containing an attach-
ment should be used internally or saved to disk, we can use the following call:

String dispos = msg.getDisposition();
if (dispos == null || dispos.equalsIgnoreCase(Part.ATTACHMENT
))
System.out.println(“This part is as an attachment”);

h539663 ch08.qxd 7/25/03 9:15 AM Page 200

201Chapter 8 ✦ Working with JavaMail

Lastly, the MIME specification states that if the part is a file attachment you can offer
a possible name to use when the attachment is being saved. The filename passed
will not contain any directory information and will be simply the name of the file,
including any extension should the file have one. Methods for operating with this
field are as you might expect. Here’s an example:

String getFileName()
void setFileName(String fname)

In addition to these parameters, you can determine the message size and line count
by calling the following methods:

int getSize()
int getLineCount()

The message size and line count is particularly useful information for clients, because
it enables them to determine whether or not they should bother downloading the
message if they are using a slow connection such as a wireless device. However,
please note that it is not always possible to retrieve the dimensions of a mail mes-
sage. If the values cannot be determined–1 is returned. If that’s not enough to put
you off using these methods, consider that because of message-encoding algorithms
the values they return may not actually reflect the size and line count of a particular
message part. So beware.

Message flags
Recall that a message has a wide range of attributes associated with it to describe
its contents and addressing properties. However, none of these present attributes
go anywhere to give a message a state. For example, we have no real way of telling
whether a message is new, or whether it’s a reply to an existing mail, or even if it has
been read or answered. The JavaMail API aids the developer by providing a mecha-
nism for easily storing this type of information within each message.

In addition to the standard flags, JavaMail API enables you to add and manipulate
user-defined status flags. You can manage the flags using the wrapper class javax.
mail.Flags. This class manages all the status flags, including the system- and user-
defined statuses.

The core system flags have a broad range of characteristics and are listed in
Table 8-4.

Don’t rely on status flags. Their implementation depends on the individual
provider and in some cases it may not even be possible to determine a message’s
status. For example, the status of SEEN may not be available in a newsgroup
(NNTP) implementation.

Note

h539663 ch08.qxd 7/25/03 9:15 AM Page 201

202 Part III ✦ The Enterprise Information System Tier

Table 8-4
Core system flags

Flag Description

Flags.Flag.ANSWERED If the message has been answered by another e-mail, this
flag is set.

Flags.Flag.DELETED If the message has been flagged for deletion, this flag is set.
When a call is made to expunge the folder, all the messages
with this flag set will be deleted.

Flags.Flag.DRAFT If the message has not been sent this flag is set.

Flags.Flag.FLAGGED If this flag has been set the client has flagged the message for
some reason.

Flags.Flag.RECENT If this flag has been set the message was received since the
last time the client opened the folder.

Flags.Flag.SEEN If the message has been read the flag is set. The client may
change the state of this flag.

Flags.Flag.USER This flag indicates whether or not the folder can support
user-defined flags. (Note this isn’t the actual user-defined
flag, merely an indication of the existence of such flags.)

The support of these flags is up to the provider. For example, the POP protocol sup-
ports only the Flags.Flag.DELETED flag. Fortunately this arrangement is not as
bad as it sounds, as you can determine which flags are supported by making a call
to the following method:

public Flags getPermanentFlags()

Make this call from the javax.mail.Folder class (we will be taking a close look at
the Folder class later on in the chapter in the section, “Accessing Folders”). Flags
are used to track the statuses of messages and enable you to perform operations
only on messages that satisfy a particular status. For example, as you will discover
later on, you can easily list all the messages in a folder that have the SEEN flag set.

The javax.mail.Message class has a suite of methods that enable you to check
and set the status of the flags. For example, to check whether a message has been
read or not you can use the following:

if (msg.isSet(Flags.Flag.SEEN))
System.out.println(“This message has been read”);

Message flags are a wonderful addition to your ability to track messages, but be
careful when you use them as they can’t be relied on across implementations.
Table 8-5 lists the methods of the Message class that work with message flags.

h539663 ch08.qxd 7/25/03 9:15 AM Page 202

203Chapter 8 ✦ Working with JavaMail

Table 8-5
Methods that work with message flags

Method signature Description

boolean isExpunged() This method checks whether or not the message has
been expunged after being marked for deletion.

boolean isSet This method checks the status of the specified flag.
(Flags.Flag flag)

Flags getFlags() This method returns a copy of the Flags object.
Note that if you modify any of the flags within this
object the modification will have no effect on the
flags in the Message class.

void setFlags This method sets or clears all the flags in the
(Flags flag, boolean set) message that are in this Flag object. Any flags

that are in the message but not in this object are
unaffected.

void setFlags(Flags.Flag This method sets the given flag to a given state.
flag, boolean set)

javax.mail.Address
Anyone who has written classes that have had to deal with Internet e-mail addresses
will know the hassles associated with all the different formats an address can take.
It can be a parsing nightmare at times. Each message has at least one address asso-
ciated with it, and because of this the javax.mail.Address is the class used to
denote the address of a message.

However, JavaMail addresses can differ greatly between systems. For example, the
address for a message destined for a newsgroup is not the same as that of one des-
tined for an Internet e-mail account. Because of this the base class, javax.mail.
Address has very little functionality with only a minimal amount of methods exposed.

Instead the subclasses provide all the real functionality. The JavaMail API ships
with these two implementations:

✦ javax.mail.internet.InternetAddress

✦ javax.mail.internet.NewsAddress

javax.mail.internet.InternetAddress
An e-mail address must contain at least an address; optionally a name may be asso-
ciated with it. For example, the following two e-mail addresses are valid:

“Ceri Moran” <ceri@n-ary.com>
<ceri@n-ary.com>

h539663 ch08.qxd 7/25/03 9:15 AM Page 203

204 Part III ✦ The Enterprise Information System Tier

When you have more than one e-mail address to express, for example in the To field
of a message header, you concatenate the addresses using the comma as a separator.
So you do not have to continually parse and concatenate e-mail addresses, the
JavaMail API provides a helper class:

javax.mail.internet.InternetAddress

This class takes all of the hard work out of this task. Methods such as the following
make the creation and handling of e-mail addresses a trivial task:

InternetAddress MyAddress = new InternetAddress();
MyAddress.setAddress(“ceri@n-ary.com”);
MyAddress.setPersonal(“Ceri Moran”);
System.out.println(“MyAddress=” + MyAddress.toString());

As you probably noticed in the previous sections, it’s very rare to work with a sin-
gle individual address; lists or arrays of addresses are far more common. Because
of this the InternetAddress has the following static methods to make the parsing
of these lists a very easy task:

InternetAddress to[] = InternetAddress.parse(
“alan@n-ary.com,ceri@n-ary.com”
);

for (int x=0; x < to.length; x++){
System.out.println(“to[“+x+”].Address=”+to[x].getAddress());

System.out.println(“to[“+x+”].Personal=”+to[x].getPersonal());
}

The following derivative of InternetAddress.parse(...) takes in a Boolean
value to force the tolerance of the parsing algorithm:

public InternetAddress[] InternetAddress.parse(String a,
boolean strict)

If the argument named strict is set to false, the list of addresses can be sepa-
rated by either spaces or commas. If strict is set to true, the majority of the rules
laid out in RFC 822 are adhered to. You would use this method if you were allowing
a user to enter a list of names when creating e-mail messages.

javax.mail.internet.NewsAddress
Newsgroup addressing differs from e-mail addressing. A newsgroup message has at
least a newsgroup name, and optionally a host name. The JavaMail API provides an
implementation for the newsgroup addresses with the javax.mail.internet.
NewsAddress class. This class operates like the InternetAddress class we dis-
cussed in the previous section, providing the following methods for easy handling
of both individual addresses and lists of addresses:

h539663 ch08.qxd 7/25/03 9:15 AM Page 204

205Chapter 8 ✦ Working with JavaMail

NewsAddress MyNews = new NewsAddress(
“comp.lang.java.programmer”);
MyNews.setHost(“news.sun.com”);
System.out.println(“MyNews.newsgroup=” + MyNews.getNewsgroup()
);
System.out.println(“MyNews.host=” + MyNews.getHost());

Mail storage and retrieval
So far you have seen how the JavaMail API deals with the individual message and
the properties and actions associated with it. Next we’ll look at the management of
messages and how JavaMail provides for the handling of groups of messages.

javax.mail.Store
Messages are organized into folders and these folders are held within a single store.
A store must by default have at least one folder in which messages can reside. This
requirement allows the JavaMail API to provide a uniform access method across all
the different protocols. For example, the POP protocol has no notion of folders and
simply stores its messages as one list. But for the sake of abstraction any implemen-
tations of the POP protocol must provide the INBOX folder.

Before you can access folders you must first obtain a javax.mail.Store object
instance, typically from the javax.mail.Session object we discussed earlier in
the section, “Session Management.” The Store class provides the access methods
to the hierarchy of folders and authenticates the connection if the underlying proto-
col requires it. A Store object instance can be retrieved from the Session instance
via any of the following methods:

public Store getStore()
public Store getStore(Provider provider)
public Store getStore(String protocol)
public Store getStore(URLName urlname)

The first version of getStore() uses the default protocol, specified in the system
property mail.store.protocol, to create the Store object. The second version
uses the supplied Provider instance to create and return an instance. The third
version enables you to use a protocol other than the default one, while the fourth
version uses a special object, URLName, to create the Store object.

Once you have obtained the Store object you need to connect to the mail storage
before you start to retrieve and work with folders. You do this with a single call to
the connect(...) method, passing in the necessary authentication details if the
underlying storage requires it.

The following code snippet illustrates a typical scenario involving retrieval of the
Store object for connection to a POP server.

h539663 ch08.qxd 7/25/03 9:15 AM Page 205

206 Part III ✦ The Enterprise Information System Tier

//--[Set up the default parameters
Properties p = new Properties();
p.put(“mail.transport.protocol”, “pop”);

//--[Create the session and create a new mail message
Session mailSession = Session.getInstance(p);

//--[Get the Store and connect to the server
Store mailStore = mailSession.getStore();
mailStore.connect(“pop.server.com”,110,”myname”,”mypassword”
);

//--[Proceed to manipulate folders

The connect(...) method can come in any one of a number of flavors, depend-
ing on the authentication required. Should the connection to the underlying
message store fail, the connect(...) method throws the javax.mail.
AuthenticationFailedException.

At this point the Store instance is ready for use, giving access to the folder
database.

javax.mail.URLName
JavaMail has introduced a very clean and uniform addressing scheme, based on
the URL syntax, to be used to access mail-storage systems. The following format,
as you can see, is not unlike a standard URL and encapsulates all the information
required to access a given resource inside a mail service.

<protocol>:://<username>:<password>@<server>[:<port>][/<foldern
ame>]

The class, javax.mail.URLName, provides the necessary methods to build and
extract information. The JavaMail API encourages the use of this class as an address-
ing scheme and you will see that many of the methods use the address as opposed
to carrying around up to five individual pieces of information.

The next example shows how to connect to a remote server using the URLName
object:

//--[Set up the default parameters
Properties p = new Properties();
p.put(“mail.transport.protocol”, “pop”);

//--[Create the session and create a new mail message
Session mailSession = Session.getInstance(p);

//--[Get the Store and connect to the server
URLName urlname = new URLName(
“pop3://alan:ceri@www.hotmail.com”);

h539663 ch08.qxd 7/25/03 9:15 AM Page 206

207Chapter 8 ✦ Working with JavaMail

Store mailStore = mailSession.getStore(urlname);
mailStore.connect();

//--[Proceed to manipulate folders

We will see extensive use of the URLName class in subsequent sections as we take
a closer look at how to interact with individual messages inside given folders. The
Store class exposes a method to obtain the URLName for a session. This method is
getURLName(). As you can imagine, using this method could present a security
problem because the password would be in clear view. To solve this problem, the
password information is not available when obtaining the URLName object.

The URLName class has absolutely no relationship to the java.net.URL class
and the fact they share the URL in their names is only a coincidence. That said, as
you can see, the functionality of the URLName class is very similar to that of the
URL class. But do not confuse the two.

Accessing folders
It is through the Store object that we retrieve references to the folders contained
within. (A folder is represented with the javax.mail.Folder class and will be dis-
cussed in the next section.) By default, the Store object must provide at least one
folder. This is because some mail services don’t support the notion of folders at all
and this maintains a layer of abstraction for the JavaMail API. This ensures that no
special cases exist, irrespective of the mail protocol. Table 8-6 lists the methods of
the class Store that deal with folders.

Table 8-6
Methods that deal with folders

Method Signature Description

Folder getDefaultFolder() This method retrieves the top-level or root folder for
the store. In the instance of the POP protocol, this is
the INBOX folder.

Folder getFolder This method returns the folder within the store,
(String name) whether or not it exists. You can then in turn call

the Folder.exists() method to determine that
folder’s state. This is useful when you wish to create
new folders.

Folder getFolder This method is similar in usage to the method
(URLName name) getFolder() listed above, except that the folder

is addressed by means of the URLName object.

Continued

Note

h539663 ch08.qxd 7/25/03 9:15 AM Page 207

208 Part III ✦ The Enterprise Information System Tier

Table 8-6 (continued)

Method Signature Description

Folder[] getPersonal This method returns an array of folders that are
Namespaces() considered to be accessible by the current user.

Folder[] getUser This method returns an array of folders that are
Namespaces(String user) considered to be accessible by the current user and

the given user passed in. This method is useful if, for
example, a manager has granted access to certain
folders to his secretary or another team member.

Folder[] getShared This method returns an array of folders that are
Namespaces() considered to be accessible by all.

Therefore, accessing the one and only folder within a POP box for a given user
would take place as follows:

//--[Get the Store and connect to the server
URLName urlname = new URLName(
“pop3://alan:ceri@www.hotmail.com”);
Store mailStore = mailSession.getStore(urlname);
mailStore.connect();

//--[Proceed to manipulate folders
Folder inbox = mailStore.getDefaultFolder();

//--[or Folder inbox = mailStore.getFolder(“INBOX”);

Note the special use of the keyword INBOX. This keyword is reserved and is a spe-
cial name to denote the folder in which the user will receive his or her messages.
Note that not all protocols offer the INBOX folder. For example NNTP, the newsgroup
protocol, has no concept of inboxes.

When using the methods for accessing the folders, you generally have to know the
name of the folder beforehand, although this isn’t always the case. In addition to
this, a folder can contain both messages and folders. The Folder object helps us
figure out the folder names by giving us some access methods that enable us to eas-
ily list all the folders contained within. We can get the folders using the following
method:

Folder[] javax.mail.Folder.list()

This method can be run on a closed folder and will return an array of all the folders
contained under the present folder. This method will only list this folder’s top-level

h539663 ch08.qxd 7/25/03 9:15 AM Page 208

209Chapter 8 ✦ Working with JavaMail

folders and not drill down any deeper. However, not all folders are permitted to con-
tain further folders. Therefore, before we do any listing it is advisable that we check
that such a list can be produced, as follows:

Folder listOfFolders[] = null;
if ((thisFolder.getType() & Folder.HOLDS_FOLDERS))
listOfFolders = thisFolder.list();

The getType() method from the Folder class returns the status field for this
folder, which is an integer bit-field with each bit representing a given state. The
static Folder.HOLDS_FOLDERS field is but one of those statuses we can perform
a check on by logically ANDing.

The Folder object doesn’t stop there. We can use a specialized version of the
list(...) method that enables us to pass in a search string to either narrow or
broaden the set of results returned. For example, consider the following:

Folder listOfFolders[] = thisFolder.list(“Clients%”);

This would return all the folders within the current folder, thisFolder, that begin
with the string Clients. The % is a special wildcard that enables you to scope the
current folder. Now consider the following example:

Folder listOfFolders[] = thisFolder.list(“C*”);

This would return all the folders, including any subfolders, that start with the letter
C. The asterisk (*) wildcard searches all the subfolders and, when used on its own,
can list all the folders in a complete hierarchy, as shown in Listing 8-4.

Listing 8-4: Listing folders in a hierarchy

//--[Set up the default parameters
Properties p = new Properties();

//--[Create the session and create a new mail message
Session mailSession = Session.getInstance(p);

//--[Get the Store and connect to the server
URLName urlname = new URLName(
“imap://alan:ceri@mail.hotmail.com”);
Store mailStore = mailSession.getStore(urlname);
mailStore.connect();

//--[Proceed to list all the folders
Folder thisFolder = mailStore.getDefaultFolder();

if (thisFolder != null){

Continued

h539663 ch08.qxd 7/25/03 9:15 AM Page 209

210 Part III ✦ The Enterprise Information System Tier

Listing 8-4 (continued)

if ((thisFolder.getType() & Folder.HOLDS_FOLDERS)){
Folder[] listOfFolders = thisFolder.list(“*”);
for (int x=0; x < listOfFolders.length; x++)
System.out.println(“Name=” + listOfFolders[x].getName()

);
}

}

In addition to the list(...) methods, the following methods limit the search to
just the folders that the user has subscribed to:

Folder[] listSubscribed()
Folder[] listSubscribed(String search)

Remember that many of these listXXX(...) methods are rendered useless in
some protocol implementations — such as POP — because the underlying storage
doesn’t support it.

javax.mail.Folder
A folder is used as a container for a list of messages. Folders themselves can contain
additional folders, thus providing a directory-like structure to the message archive.
The purpose of the Folder object is to facilitate the communication and manage-
ment of messages. Folders are by default initially retrieved in a closed state, and
before any operations are executed that change the contents of the folder, the folder
must first be opened.

Not all operations require the folder to be opened; for example, you can list folders,
rename a folder, and monitor for new messages while the folder is closed. Once the
folder is opened, you can retrieve messages, change notifications, and perform any
other function that the folder object offers.

Messages within a folder are numerically addressed from 1 to a number equal to the
total number of messages in the folder. This is analogous to the way the POP proto-
col treats its messages, with the numbering being according to the order in which
they are received, with the lowest number being the oldest message. However, this
ordering cannot always be relied on, and it’s best to order the messages beforehand
should your application call for it.

The message number is usually fixed between the time when a folder is opened and
the time when it is closed. When you delete a message the numbering of the remain-
ing messages is not recalculated until the call to expunge() occurs. This will per-
manently delete the messages marked for deletion and then cause a renumbering of

h539663 ch08.qxd 7/25/03 9:15 AM Page 210

211Chapter 8 ✦ Working with JavaMail

the messages in the folder. Therefore, tracking messages through this numbering
scheme can be problematic. If possible, refer to the message using the Message
reference.

Opening and closing folders
Before you can list any messages you must first put the folder into an open state.
You do this by making the following call:

void open(int mode)

The open(...) method will place the folder into either a READ_ONLY or a READ_WRITE
state, depending on the mode passed in. The underlying implementation is respon-
sible for determining whether or not a particular mode is valid. For example, some
implementations, such as IMAP, will permit multiple users to read a given folder and
in some cases even permit multiple users to write to the folder. But some POP
implementations might not allow concurrent readers. You can see the state the folder
was opened in by calling the getType() method as shown here:

if (thisFolder.getType() == Folder.READ_ONLY)
System.out.println(“This folder opened with READ_ONLY

access”);
else
System.out.println(“This folder opened with READ_WRITE

access”);

Once a folder is opened you can begin using the majority of the access methods.
After you’ve finished with a folder it’s best to perform an explicit close(...)
method to allow the underlying protocol to clean up any resources as opposed to
leaving it for the garbage collector to clean up later.

The close(...) method takes in an additional Boolean parameter, which indicates
whether or not an expunge operation should be performed. If this parameter is
true, a call to expunge() occurs, permanently deleting any messages marked with
the Flag.DELETED flag.

Sometimes you may be passed in a Folder object without knowing what state it is
in. You can easily determine whether it’s open or not by making the following call:

boolean isOpen()

Listing messages
The Folder object is designed to hold messages and to that end, a rich method list
is available for retrieving messages held within the folder. Messages are returned as
lists by means of arrays. The objects returned are meant to be lightweight in the
sense that not all the information regarding a message is available immediately.

h539663 ch08.qxd 7/25/03 9:15 AM Page 211

212 Part III ✦ The Enterprise Information System Tier

For example, if you were to retrieve the contents of a folder that held 10 messages,
each having a 10MB file attachment, that wouldn’t equate to 100MB of memory
usage. Instead the message attributes and contents are retrieved when calls to the
specific access methods are made. Keep in mind that this is purely up to the imple-
mentation of the underlying protocol, but in the majority of instances it is adhered
to because otherwise problems with bandwidth and general memory management
would result.

Table 8-7 lists the methods of the class Folder that deal with the folder’s content.

Table 8-7
Methods that deal with the content of a folder

Message Signature Description

int getMessageCount() This method returns the total number of
messages held in this folder, or –1 if the total
cannot be determined for some reason.

boolean hasNewMessages() This method returns true if any of the messages
held within the folder has the Flag.RECENT flag
set. It is purely up to the underlying
implementation what the definition of a new
message is.

int getNewMessageCount() This is much like the previous method, except that
it returns the number of messages that have the
Flag.RECENT flag set, or –1 if this number
cannot be determined for some reason.

int getUnreadMessageCount() This method returns true if any of the messages
held within the folder does not have the
Flag.SEEN flag set.

Message getMessage(int index) This method returns a lightweight version of the
message at the given index.

Message[] getMessages() This method returns an array of all the messages
contained within this folder.

Message[] getMessages This method returns an array of all the messages
(int start, int end) contained within this folder that are in the range

specified by start and end.

Message[] getMessages This method retrieves all the messages referenced
(int index[]) by the array of indexes passed in.

Listing 8-5 demonstrates the listing of all the messages within a POP folder and dis-
playing the subject field for each message.

h539663 ch08.qxd 7/25/03 9:15 AM Page 212

213Chapter 8 ✦ Working with JavaMail

Listing 8-5: Listing messages in a POP folder and displaying
the subject fields

//--[Set up the default parameters
Properties p = new Properties();
p.put(“mail.transport.protocol”, “pop”);

//--[Create the session and create a new mail message
Session mailSession = Session.getInstance(p);

//--[Get the Store and connect to the server
URLName urlname = new URLName(
“pop3://alan:ceri@www.hotmail.com”);
Store mailStore = mailSession.getStore(urlname);
mailStore.connect();

//--[Proceed to get the folder
Folder rootFolder = mailStore.getDefaultFolder();
Folder inbox = rootFolder.getFolder(“INBOX”);
inbox.open(Folder.READ_ONLY);

Messages[] allTheMessages = inbox.getMessages();
for (int x=0; x < allTheMessages.length; x++){
System.out.println(“ID:” + x

+ “ Subject:” +
allTheMessages[x].getSubject());
}

inbox.close(false);
mailStore.close();

Although JavaMail provides the necessary methods with which to determine vari-
ous totals regarding a folder’s status, it is not always the most efficient manner. For
example, assume we wanted a count of all the messages that have recently been
delivered, as per the getNewMessageCount() method. Depending on whether or
not the underlying protocol can provide this functionality, this could result in a call
to retrieve all the messages and then a check of the individual message-flag statuses.

What was first an innocent enough call for some numerical statistics has turned
out to be quite an expensive operation. Because of this it is sometimes best just to
retrieve the messages yourself and run through them once, calculating all the nec-
essary totals in one pass.

Advancing message fetching
Recall that when we ask for a message list, this is a list of lightweight references to
the actual message data, with the data being retrieved as and when they are called
upon through their access methods. Although this is on the whole a very efficient

h539663 ch08.qxd 7/25/03 9:15 AM Page 213

214 Part III ✦ The Enterprise Information System Tier

system, in some instances you may wish to explicitly request that certain amounts
of the message be pre-filled with data when they are retrieved from the server.

The JavaMail API supports this functionality through the use of javax.mail.
FetchProfile, which lists the data required. The Folder class provides the
following method:

void fetch(Message[] messageList, FetchProfile fProfile)

For a given list of messages, this method fetches the data for each one, as shown
here:

FetchProfile fProfile = new FetchProfile();
fProfile.add(“To”);
fProfile.add(“From”);
fProfile.add(“Subject”);
thisFolder.fetch(thisFolder.getMessages(), fProfile);

This example creates a new instance of the FetchProfile class and adds the mail-
header fields it would like to be fetched from the server for all the messages in the
call from getMessages(). In our example we looked for the header fields To, From,
and Subject. However, the FetchProfile class knows that the majority of people
want groups of data to be retrieved, and to this end it enables you to express a
group rather than specifying the individual fields.

The three groups of fields defined for use with the FetchProfile class are listed in
Table 8-8.

Table 8-8
The fields of the inner class FetchProfile.Item

Field Description

FetchProfile.Item.ENVELOPE This field includes the common header fields:
From, To, Cc, Bcc, ReplyTo, Subject, and
Date.

FetchProfile.Item.CONTENT_INFO This field includes the information regarding
the content, but not the content itself.
Therefore, information such as content type,
disposition, description, size, and line count
are fetched.

FetchProfile.Item.FLAGS This field consists of all the status flags for the
message.

h539663 ch08.qxd 7/25/03 9:15 AM Page 214

215Chapter 8 ✦ Working with JavaMail

Modifying our current example, we could instead write the following:

FetchProfile fProfile = new FetchProfile();
fProfile.add(FetchProfile.Item.ENVELOPE);
thisFolder.fetch(thisFolder.getMessages(), fProfile);

Copying and moving messages
Chances are that if a store can support the notion of multiple folders it will permit
the feature of copying and moving messages among different folders. To copy a list
of messages you simply call the following method:

void copyMessages(Messages[] messageList, Folder toFolder)

This method runs through the list of messages and copies the given messages, which
must be part of the present folder, to the folder given. The messages must be part
of the present folder to allow the server side to optimize the transfer.

Moving messages is a simple matter of copying first and then performing a delete
on each message. But remember to copy the messages first before deleting, even
though the deletion isn’t performed until the folder is expunged.

Searching messages
It is important to push as much processing to the server side as possible and to
this end one of the most common operations of client-side applications is to search
their message stores. The JavaMail API provides a very flexible search interface to
build searches that can be very complex in nature. Hopefully, the underlying imple-
mentation will pass this search to the server to perform. The Folder object provides
the two following methods for searching out messages:

Message[] search(SearchTerm term)
Message[] search(SearchTerm term, Message[] messageList)

These methods return a list of Messages that match the criteria, or an empty array
if none matches. Consider the next example, which lists all the messages that came
from noah@n-ary.com or cormac@n-ary.com:

SearchTerm st = new OrTerm(new FromStringTerm(“noah@n-ary.com”
),

new FromStringTerm(“cormac@n-
ary.com”));
Message messageList[] = thisFolder.search(st);

The javax.mail.search package provides a rich suite of classes that enable you
to build up very complex search expressions. By building on the SearchTerm class,
the JavaMail API offers the following logical operators:

✦ AndTerm(SearchTerm LHS, SearchTerm RHS)

✦ AndTerm(SearchTerm items[])

h539663 ch08.qxd 7/25/03 9:15 AM Page 215

216 Part III ✦ The Enterprise Information System Tier

✦ OrTerm(SearchTerm LHS, SearchTerm RHS)

✦ OrTerm(SearchTerm items[])

✦ NotTerm(SearchTerm LHS)

In addition to these, the ComparisonTerm object offers the following constants for
building up numerical comparisons:

✦ ComparisonTerm.EQ (Equal to)

✦ ComparisonTerm.GE (Greater than or Equal to)

✦ ComparisonTerm.GT (Greater than)

✦ ComparisonTerm.LE (Less than or Equal to)

✦ ComparisonTerm.LT (Less than)

✦ ComparisonTerm.NE (Not Equal to)

The message fields that can be searched include the following:

✦ BodyTerm(String pattern)

✦ FlagTerm(Flags flags, boolean set)

✦ FromStringTerm(String pattern)

✦ FromTerm(Address add)

✦ MessageIDTerm(String messageID)

✦ MessageNumberTerm(int messageNumber)

✦ ReceivedDateTerm(int comparison, Date date)

✦ RecipientStringTerm(Message.RecipientType type, String
pattern)

✦ RecipientTerm(Message.RecipientType type, Address add)

✦ SentDateTerm(int comparison, Date date)

✦ SizeTerm(int comparison, int size)

✦ SubjectTerm(String pattern)

Transportation with javax.mail.Transport
The final class in our exploratory look at the JavaMail API is the class responsible
for the delivery of messages, javax.mail.Transport. In the majority of instances,
you will be using the SMTP protocol for delivery. As a convenience, the Transport
class offers the following static method for sending messages that we saw earlier in
the chapter:

Transport.send(msg);

h539663 ch08.qxd 7/25/03 9:15 AM Page 216

217Chapter 8 ✦ Working with JavaMail

However, if you wish to have a little more control over the delivery of the message,
consider the example shown in Listing 8-6, which implicitly gets the specific
Transport object instance, manually connects, and then performs a send on the
message.

Listing 8-6: Controlling message delivery

try{

Transport myTransport = session.getTransport(“smtp”);
myTransport.connect();
myTransport.sendMessage(msg, msg.getAllRecipients());
myTransport.close();

} catch (SendFailedException E){

Address[] list = E.getInvalidAddresses();
for (int x=0; x < list.length; x++)
System.out.println(“Invalid Address: “ + list[x]);

list = E.getUnsentAddresses();
for (int x=0; x < list.length; x++)
System.out.println(“Unsent Address: “ + list[x]);

list = E.getValidSentAddresses();
for (int x=0; x < list.length; x++)
System.out.println(“Sent Address: “ + list[x]);

}

The advantage of this mechanism, as oppose to the static call, is that if you are
sending large amounts of messages the underlying protocol doesn’t require you to
keep connecting to the server for each message. Instead the same connection is
used. But did you notice the try ... catch block?

Should something go wrong, the send(...) methods throw a SendFailedException
with a whole host of diagnostic information that gives you a clue as to which
addresses got a successful delivery notification. Three lists of addresses are avail-
able to you in the event of an error:

✦ Address[] getInvalidAddresses()— This call returns the addresses that
didn’t get the message for some reason such as incorrect address formatting.

✦ Address[] getUnsentAddresses()— This call returns the addresses that
weren’t accepted for delivery.

✦ Address[] getValidSentAddresses()— This call returns the addresses
that were accepted for delivery.

h539663 ch08.qxd 7/25/03 9:15 AM Page 217

218 Part III ✦ The Enterprise Information System Tier

It is important to note that although a message is accepted for delivery, this does
not guarantee it will make it to its final destination. The only thing that can be
assured is the transmission from your application to the server the transport layer
is communicating with. This does not equal successful delivery to the end user.

Now that we have gone through all the core classes and their relationships with
respect to the manipulation of messages and folders, let us put them to use in some
examples.

Using the JavaMail API
The purpose of this section is not to provide you with a complete, all-singing all-
dancing mail client (that’s your job!) but rather to give you real examples that show
clearly what is going on without cluttering up the rest of the program with distractions.

Sending e-mail and attachments
Probably the first thing you want to do is send some e-mail. We have already demon-
strated how to send a basic plain-text e-mail using the SMTP protocol, but have a
look at an application that is a little more functional.

The class shown, javamail_send, takes the four following parameters:

✦ SMTP host

✦ to e-mail

✦ from e-mail

✦ e-mail body

As you can see in Listing 8-7, we parse out the command-line parameters and pro-
ceed to set up the session to the server.

Listing 8-7: Setting up the session to the server

import java.util.*;
import java.io.*;
import javax.mail.*;
import javax.mail.internet.*;
import javax.activation.*;

public class javamail_send extends Object {

public static void main(String args[]){

String smtpServer = null;
String toE-mail = null;

h539663 ch08.qxd 7/25/03 9:15 AM Page 218

219Chapter 8 ✦ Working with JavaMail

String fromE-mail = null;
String body = null;

//--[Parse the Command line parameters
for (int x=0; x < args.length-1; x++){
if (args[x].equalsIgnoreCase(“-S”))
smtpServer = args[x+1];

else if (args[x].equalsIgnoreCase(“-T”))
toE-mail = args[x+1];

else if (args[x].equalsIgnoreCase(“-F”))
fromE-mail = args[x+1];

else if (args[x].equalsIgnoreCase(“-B”))
body = args[x+1];

}

if (smtpServer == null || toE-mail == null ||
fromE-mail == null || body == null){

System.out.println(“Usage: javamail_send -S <server>
-T <toe-mail> -F <from> -B

<body>”);
System.exit(1);

}

try{
//--[Set up the default parameters

Properties props = new Properties();
props.put(“mail.transport.protocol”, “smtp”);
props.put(“mail.smtp.host”, smtpServer);
props.put(“mail.smtp.port”, “25”);

//--[Create the session and create a new mail message
Session mailSession = Session.getInstance(props);
Message msg = new MimeMessage(mailSession);

//--[Set the FROM, TO, DATE and SUBJECT fields
msg.setFrom(new InternetAddress(fromE-mail));
msg.setRecipients(Message.RecipientType.TO,

InternetAddress.parse(toE-mail));
msg.setSentDate(new Date());
msg.setSubject(“Test Mail”);

//--[Create the body of the mail
msg.setText(body);

Transport.send(msg);

msg.writeTo(System.out);

} catch (Exception E){
System.out.println(E);
}

}
}

h539663 ch08.qxd 7/25/03 9:15 AM Page 219

220 Part III ✦ The Enterprise Information System Tier

We create the e-mail message in the usual way with the MimeMessage class, using
as little information as possible. After all the necessary properties of the message
are set, we use the static method Transport.send(...) to the deliver the mes-
sage. That’s it.

At the end of the program we do a simple dump of the core message by making a
call to Message.writeTo(...), which produces the following message:

Message-ID: <1473500.994102261928.JavaMail.Alan@host50>
Date: Fri, 7 Mar 2003 19:31:01 +0000 (GMT)
From: alan@n-ary.com
To: alan@n-ary.com
Subject: Test Mail
Mime-Version: 1.0
Content-Type: text/plain; charset=us-ascii
Content-Transfer-Encoding: 7bit

hello world this is a test

You can see all the headers and the actual composition of the e-mail. We’ll look at
one more e-mail dump when we send attachments.

Having seen how easy it is to send basic e-mail, have a look at sending something a
little more complicated: file attachments. We touched on this a little earlier in the
section “javax.mail.Multipart,” and we build up the system using a series of differ-
ent MIME bodies — one representing the message text, and the other holding the
necessary information for the file we are looking to send.

Taking the example from the beginning of this section, we’ll replace the try...catch
block with the code in Listing 8-8. You can see the complete code for this example
in the javamail_send_attachment.java file included in the source code for this
book.

Listing 8-8: Replacing the try...catch block

try{
//--[Set up the default parameters
Properties props = new Properties();
props.put(“mail.transport.protocol”, “smtp”);
props.put(“mail.smtp.host”, smtpServer);
props.put(“mail.smtp.port”, “25”);

//--[Create the session and create a new mail message
Session mailSession = Session.getInstance(props);
Message msg = new MimeMessage(mailSession);

//--[Set the FROM, TO, DATE and SUBJECT fields
msg.setFrom(new InternetAddress(fromE-mail));
msg.setRecipients(Message.RecipientType.TO,

h539663 ch08.qxd 7/25/03 9:15 AM Page 220

221Chapter 8 ✦ Working with JavaMail

InternetAddress.parse(toE-mail));
msg.setSentDate(new Date());
msg.setSubject(“Test Mail with attachment”);

//--[Create the first part
Multipart mailBody = new MimeMultipart();

MimeBodyPart mainBody = new MimeBodyPart();
mainBody.setText(body);
mailBody.addBodyPart(mainBody);

//--[Create the second part with the attachment
FileDataSource fds = new FileDataSource(file);
MimeBodyPart mimeAttach = new MimeBodyPart();
mimeAttach.setDataHandler(new DataHandler(fds));
mimeAttach.setFileName(fds.getName());
mailBody.addBodyPart(mimeAttach);

//--[Create the body of the mail
msg.setContent(mailBody);

Transport.send(msg);

System.out.println(“The e-mail below was sent successfully”
);
msg.writeTo(System.out);

}catch(Exception E){
System.out.println(E);

}

Since this message has two different parts, we need to create the body of the
core message with a MimeMultipart class. This enables us to put together the
various parts of the e-mail. The first part is the message body and with this we use
a MimeBodyPart class to hold the message text, which we then add to the
MimeMultipart instance by calling addBodyPart(...).

The file attachment is the next part we must tackle. We use it by creating another
instance of MimeBodyPart, which we will use to hold our file attachment. We use
the class from the Java Activation Framework, FileDataSource, to handle the
attachment for the file. We then use this class to create our DataHandler instance,
which we can then use to set the data handler in the MimeBodyPart. We can set the
filename of the attachment with a call from the FileDataSource class. As before,
we take this MimeBodyPart instance and add it to the list of the parts being han-
dled by the MimeMultipart instance.

Finally, we take the MimeMultipart instance and set the main body of the message
to this object with the call to msg.setContent(...).

h539663 ch08.qxd 7/25/03 9:15 AM Page 221

222 Part III ✦ The Enterprise Information System Tier

For sheer curiosity value, and because we can, let’s have a quick look at the e-mail
message that is generated this time. Looking at the following mail message, you
can see that the mail header is pretty much the same, except for the fact that the
Content-Type has been changed to reflect that this is a multipart message in which
each part of the message is delimited with the string that may look as follows:

----=_Part_0_1472506.994107400236

If you seek out this string, you will see another set of Content-XXX headers. These
describe the data makeup of the particular section. Notice the part that handles
the file attachment: This describes all the information that was used to encode
the binary data for the file attached. In this instance that information is base64.
Listing 8-9 displays this code.

Listing 8-9: Another set of Content XXX headers

Message-ID: <1474204.994107400567.JavaMail.Alan@host50>
Date: Fri, 7 Mar 2003 19:31:01 +0000 (GMT)
From: alan@n-ary.com
To: alan@n-ary.com
Subject: Test Mail with attachment
Mime-Version: 1.0
Content-Type: multipart/mixed; boundary=”----
=_Part_0_1472506.994107400236”

------=_Part_0_1472506.994107400236
Content-Type: text/plain; charset=us-ascii
Content-Transfer-Encoding: 7bit

Hot damn this is so EASY!!!
:-)

------=_Part_0_1472506.994107400236
Content-Type: image/jpeg; name=pic.jpg
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename=pic.jpg

/9j/4AAQSkZJRgABAQEASABIAAD/2wBDAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQE
BAQEBAQEBAQEB
AQEBAQICAQECAQEBAgICAgICAgICAQICAgICAgICAgL/2wBDAQEBAQEBAQEBAQE
CAQEBAgICAgIC
AgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgL/wAA
RCABWAHMDASIA
ABgABQAP06XrPKoVRIQFAA/Qcev/2Q==
------=_Part_0_1472506.994107400236--

h539663 ch08.qxd 7/25/03 9:15 AM Page 222

223Chapter 8 ✦ Working with JavaMail

The JavaMail API handles all this mail creation for us. As you can see the overall
format of the file is relatively straightforward. Ironically, one of the trickier parts is
choosing a boundary string for the MIME parts. It mustn’t appear apart of the data
for each section; otherwise the parsing algorithm used for receiving the message
will be confused.

Now that we have seen how easy it is to send messages, let us take a look at the flip
side of mail management: reading mail.

Receiving e-mail
Receiving e-mail is as simple as sending e-mail as long as you follow the proper
steps described earlier in this chapter in the section, “Mail storage and retrieval.”
We’ll illustrate the majority of the concepts of dealing with mail by building a sim-
ple command-line access tool to POP3 mail. This will be a very simple tool, and it
most certainly will not replace your Outlook or Eudora client! It will list all the mes-
sages held on a POP server and enable the user to interact with this list. But first of
all, let’s build the framework for this application. Listing 8-10 provides the code for
this.

Listing 8-10: Providing the framework

import java.util.*;
import java.io.*;
import javax.mail.*;
import javax.mail.internet.*;
import javax.activation.*;

public class javamail_pop extends Object {

public static void main(String args[]){

if (args.length != 1){
System.out.println(“Usage: javamail_popview <urlname>”

);
System.exit(1);

}

URLName urlname = new URLName(args[0]);

try{
//--[Set up the default parameters

Properties props = new Properties();
props.put(“mail.transport.protocol”, “pop”);

Continued

h539663 ch08.qxd 7/25/03 9:15 AM Page 223

224 Part III ✦ The Enterprise Information System Tier

Listing 8-10 (continued)

props.put(“mail.pop.port”, “110”);

//--[Open up the session
Session session = Session.getInstance(props);
Store store = session.getStore(urlname);
store.connect();

//--[Open up the folder
Folder folder = store.getDefaultFolder();
if (folder == null){
System.out.println(“Problem occurred”);
System.exit(1);

}

Folder popFolder = folder.getFolder(“INBOX”);
popFolder.open(Folder.READ_ONLY);

System.out.println(“Opened with: “ +
popFolder.getMessageCount());

BufferedReader cmdPrompt = new BufferedReader(
new InputStreamReader(

System.in));
displayMessages(popFolder);

for(;;){
System.out.println(“Enter command (exit to end)”);
System.out.print(“% “);
String cmd = cmdPrompt.readLine().toLowerCase();
if (cmd.equalsIgnoreCase(“exit”))
break;

else
displayMessages(popFolder);

}

popFolder.close(false);
store.close();

} catch (Exception E){
System.out.println(E);

}
}

//--[Displays the list of messages from the given folder.
//--[Display only the message id, from and subject fields
private static void displayMessages(Folder folder) throws

Exception {

Message[] listOfMessages = folder.getMessages();

h539663 ch08.qxd 7/25/03 9:15 AM Page 224

225Chapter 8 ✦ Working with JavaMail

FetchProfile fProfile = new FetchProfile();
fProfile.add(FetchProfile.Item.ENVELOPE);
folder.fetch(listOfMessages, fProfile);

System.out.println(“Message List:”);

for (int x=0; x < listOfMessages.length; x++){
StringBuffer sb = new StringBuffer(32);

//--[Message ID starts from 1
sb.append(“# “ + (x+1));

Address[] addList = listOfMessages[x].getFrom();
if (addList.length > 0)
sb.append(“\t” +

((InternetAddress)addList[0]).getAddress());

sb.append(“\t\t” + listOfMessages[x].getSubject());

System.out.println(sb.toString());
}

System.out.println(“End of message list\r\n”);
}

}

We run this application from the command line, passing in the URLName string,
which describes all the information needed to make the connection to the POP3
server. For example:

% <javaruntime> javamail_pop

pop3://popname:poppassword@www.hotmail.com

The first thing this small application does is create an instance of the URLName class
and use this instance to obtain access to the Store class that holds the folder hier-
archy. Once we have this, we can obtain the top-level folder, which will give us
access, the special INBOX folder that is the only valid folder for the POP protocol.

We will implement a simple command-line-type interface using the InputStream
from System.in. By creating a BufferedReader object instance we can easily look
for complete commands simply by calling the readLine() method. By putting this
method inside a continuous loop, we can easily send multiple commands and have
the user exit the session by typing in exit.

One of the most fundamental methods in this application is displayMessage(...),
which takes the given folder and lists all the messages contained within, displaying
the message id, From field, and Subject for each message.

h539663 ch08.qxd 7/25/03 9:15 AM Page 225

226 Part III ✦ The Enterprise Information System Tier

Notice the use of the FetchProfile class described in the section, “Advancing
message fetching.” This is used to fill in the lightweight message references with
all the necessary information regarding the message header. After the call to fill in
the information, we simply run around the message loop extracting the necessary
information.

So the next step is to add to our command-line application the ability to display the
content of particular message ids. The first thing we need to do is add the ability
to process the display <id> command. We make the necessary addition to make
the core for(;;) loop to look like the following code:

for(;;){
System.out.println(“Enter command (exit to end)”);
System.out.print(“% “);
String cmd = cmdPrompt.readLine().toLowerCase();
if (cmd.equalsIgnoreCase(“exit”))
break;

else if (cmd.indexOf(“display”) == 0)
displaySingleMessage(popFolder, cmd);

else
displayMessages(popFolder);

}

This code simply looks for the display keyword and, when it finds that keyword,
calls the displaySingleMessage(...) method as detailed next. This method then
parses out the message id and attempts to retrieve the message at that given index
by calling the getMessage(...) method. After that, code writes the message to
the output stream by simply calling the writeTo(...) method. Here’s the example:

private static void displaySingleMessage(Folder folder, String
cmd)

throws
Exception {
int c1 = cmd.indexOf(“ “);
if (c1 == -1){
System.out.println(“display <id>”);
return;

}

int messageID = Integer.parseInt(cmd.substring(c1+1));
Message mess = folder.getMessage(messageID);

mess.writeTo(System.out);
System.out.println(“End of message\r\n”);

}

It doesn’t take a Java genius to work out that this application is fraught with pitfalls.
Very little checking is going on with respect to the ID of the desired message to
check that it is indeed in the range listed by the folder. In addition to this, the error-
handling is a little crude, simply allowing the exception to be thrown and caught by
one try...catch block.

h539663 ch08.qxd 7/25/03 9:15 AM Page 226

227Chapter 8 ✦ Working with JavaMail

The purpose of this application isn’t to build a fully robust POP client, but instead
to illustrate some basic JavaMail principles.

Deleting mail
Let’s extend our POP client to include the ability to delete a message in the folder.
We can simply add to the message loop the ability to handle the delete <id> com-
mand, which deletion in turn calls the deleteSingleMethod(...) shown next.

This method parses out the message id and retrieves that message. We wish to
delete this message, and as we know from the previous sections, no explicit delete
method exists for the message. Instead we have to set the DELETED flag to true and
then, when the folder is closed, the messages with the deleted flag will be removed.
Here’s the example:

private static void deleteSingleMessage(Folder folder, String cmd)
throws Exception {

int c1 = cmd.indexOf(“ “);
if (c1 == -1){
System.out.println(“delete <id>”);
return;

}

int messageID = Integer.parseInt(cmd.substring(c1+1));
Message mess = folder.getMessage(messageID);

mess.setFlag(Flags.Flag.DELETED, true);

System.out.println(“Deleted message\r\n”);
}

If you run the code, you will discover one small implementation problem: It doesn’t
work. The message doesn’t get deleted. Why not? Well it’s quite subtle, really, and
it’s small problems like this that you have to look for when working with folders.
Initially we opened the folder in the mode READ_ONLY. This effectively locked out
all modifications to the folder and all messages contained within. By changing the
opening mode we can make our application burst into life with the power to delete
messages. Here’s the example:

popFolder.open(Folder.READ_WRITE);

Receiving attachments
The final piece of functionality we really ought to add is the ability to save attach-
ments to disk. We’ll add the save <id> command, which will look up a given mes-
sage, see if any attachments are associated with it, and then save it into the current
directory. As before, we modify the main command-processing loop to look for the
save command and call the saveAttachment(...) method. Listing 8-11 provides
the example.

h539663 ch08.qxd 7/25/03 9:15 AM Page 227

228 Part III ✦ The Enterprise Information System Tier

Listing 8-11: Saving attachments to disk

private static void saveAttachment(Folder folder, String cmd)
throws Exception {

int c1 = cmd.indexOf(“ “);
if (c1 == -1){
System.out.println(“delete <id>”);
return;

}

int messageID = Integer.parseInt(cmd.substring(c1+1));
Message mess = folder.getMessage(messageID);

if (mess.isMimeType(“multipart/*”)){

Multipart multipart = (Multipart)mess.getContent();

for (int i=0, n=multipart.getCount(); i<n; i++) {
Part part = multipart.getBodyPart(i);

String disposition = part.getDisposition();
if (disposition != null &&

(disposition.equals(Part.ATTACHMENT) ||
disposition.equals(Part.INLINE))){

FileWriter outFile = new FileWriter(part.getFileName());
BufferedReader in = new BufferedReader(

new InputStreamReader(
part.getInputStream()));

int c;
while ((c=in.read()) != -1)
outFile.write(c);

outFile.close();
System.out.println(“Attachment: “+part.getFileName()+” written”);

}
}

}
}

As with our other methods, we parse out the given id and retrieve that message
from the folder. Next we make the assumption that our message attachments will
be part of a multipart/* message and will not appear on their own. This may not
always be the case, because you can send a message with just the file and no accom-
panying text.

Having discovered that the MIME type is indeed a multipart/* of some kind, we
cast our message content to a Multipart and run through the list of parts. We look
at the disposition of the message, and if it’s marked as either an ATTACHMENT or an
INLINE it is saved to disk.

h539663 ch08.qxd 7/25/03 9:15 AM Page 228

229Chapter 8 ✦ Working with JavaMail

The saving out is a simple matter of reading a byte from the InputStream of the
part object and writing it out to an appropriate FileWriter class.

Up until now, this chapter has dealt with JavaMail without drawing any specific
attention to the other libraries of J2EE. This was on purpose, as JavaMail is a very
powerful API that can be used in a variety of different applications. However, because
this is a book on J2EE, we’ll take a look at how you can implement some of the fea-
tures of your Application server to use JavaMail features.

Integrating JavaMail into J2EE
When we were looking to send e-mail we had to get ourselves a mail Session object
to the transport layer we wanted to communicate with, in this instance an SMTP
server. This object would have the hostname/ip address and might even include
some authentication to gain the right to relay e-mail. We don’t wish to hardcode any
of this information into our WAR/EAR files. This is the sort of information that will
only be available when the system is in production and may even be liable to change.

Therefore, it is better if we keep this information out and let the administrator con-
figure it. Naturally we can use configuration files and what have you. But a much
more elegant approach is possible; we can use the Java Naming Directory Interface
(JNDI).

See Chapter 11 for details about JNDI.

J2EE enables us to declare a resource at runtime under the comp/env/mail JNDI
context name, to which we can attach our properties for SMTP. Many of the J2EE
application servers will provide access to this information through their own
administration tools. Failing that, look at your application server’s own documenta-
tion for declaring JavaMail resource contexts.

Let’s look at the example provided first thing in this chapter, but this time altered to
work inside a J2EE component. Instead of creating the Properties object as before,
we look up the Session object using JNDI with the context name of mail/mySMTP.
Listing 8-12 provides this code.

Listing 8-12: Looking up the Session object

public void sendE-mail(){
try{
Context initCtx = new InitialContext();
Context envCtx = (Context) initCtx.lookup(“java:comp/env”);

Continued

Cross-
Reference

h539663 ch08.qxd 7/25/03 9:15 AM Page 229

230 Part III ✦ The Enterprise Information System Tier

Listing 8-12 (continued)

Session session = (Session) envCtx.lookup(“mail/mySMTP”);

Message msg = new MimeMessage(session);

//--[Set the FROM, TO, DATE and SUBJECT fields
msg.setFrom(new InternetAddress(“me@noah.com”));
msg.setRecipients(Message.RecipientType.TO,

InternetAddress.parse(“info@cormac.com”));
msg.setSentDate(new Date());
msg.setSubject(“Hello World!”);

//--[Create the body of the mail
msg.setText(“Hello from my first e-mail sent with

JavaMail”);

//--[Ask the Transport class to send our mail message
Transport.send(msg);

}catch(Exception E){
System.out.println(“Oops something has gone pear

shaped!”);
System.out.println(E);

}
}

This allows the component to remain completely generic and enables the adminis-
trator to decide which mail devices he or she wishes to connect to. In this respect,
the JavaMail API is very much like the JDBC driver.

Summary
Hopefully, you now appreciate that JavaMail is very impressive and extremely
flexible in the art of accessing and interacting with messages. The API completely
abstracts away the actual implementation details of the underlying protocols to
give us complete and unobstructed access to the mail messages.

In this chapter we’ve covered various protocols that are used for sending and
receiving e-mails, discussed message attachments, multi-part messages and how to
store messages in folders on a disk. We looked at the core components that make
up JavaMail and how we can use them from everything from stand-alone components
right through to embedded components within a J2EE application.

✦ ✦ ✦

h539663 ch08.qxd 7/25/03 9:15 AM Page 230

Understanding
the Java
Messaging
Service

J2EE isn’t restricted to transaction processing with servlets
and Enterprise JavaBeans. It also interoperates with non-

Java-based Enterprise systems, whether they’re databases or
legacy business systems. One of the most popular ways to
interface with these legacy systems is via messaging.

In this chapter, we’ll look at how to send and receive messages.
We’ll also discuss the key concepts that surround messaging —
the different messaging models, point-to-point and publish-
subscribe, message-oriented middleware, and the various
classes implemented in any application that uses messaging.

Explaining Messaging
The basic concept behind messaging is that distributed appli-
cations can communicate using a self-contained package of
business data and routing headers. These packages are mes-
sages. In contrast to Remote Method Invocation (RMI) or
Hypertext Transfer Protocol (HTTP), with which a client con-
tacts a server directly and conducts a two-way conversation,
messaging-based apps communicate asynchronously through
a messaging server. That is, when a message is sent to another
application the sender does not wait for a response. Similarly,
applications that process messages are not required to provide
any confirmation that the message has been received and pro-
cessed. They can send another message in return to indicate
successful completion of an operation, but this isn’t strictly
necessary. The software services that support message-based
applications are referred to as message-oriented middleware.

99C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Understanding
message-oriented
middleware

Using publish/
subscribe messaging

Explaining point-to-
point messaging

Understanding
reliable messaging

✦ ✦ ✦ ✦

h539663 ch09.qxd 7/25/03 9:15 AM Page 231

232 Part III ✦ The Enterprise Information System Tier

Messaging is typically used in situations like enterprise-application integration
(EAI) and business-to-business (B2B) communications. Most mature organizations
have a variety of new and mature applications that were created independently and
do not interoperate. Sometimes these organizations want to have these applications
share data to better coordinate enterprise-wide activity. The process of getting these
disparate applications to talk to each other is generally referred to as enterprise-
application integration. A variety of techniques are used for EAI but enterprise-wide
messaging is central to most of them. Data and events are exchanged among appli-
cations in the form of messages via topics or queues.

Business-to-business communication is a similar situation. Since the invention of
computer networks in the 1960s, businesses have communicated via Electronic Data
Interchange (EDI) using fixed, proprietary formats. The cost of entry for new partic-
ipants was high and data were not exchanged in real time. With the advent of the
Internet and technologies like XML, businesses can now cooperate without tightly
integrating their business systems. A manufacturer can broadcast a request for bids
on raw materials. Suppliers can reply with messages via a queue, indicating prices
and quantities. New suppliers can be added at will and topics and queues can be
used to separate the handling of requests for different types of materials or inven-
tories. All of this is possible using loosely-coupled messaging, available in Java via
the Java Messaging Service (JMS) API.

Introducing JMS
JMS is the Java Messaging Service. It is a wrapper API that does not provide any
services directly, but instead serves to standardize the messaging functionality
provided by some other service provider, like IBM’s MQSeries (now WebSphere MQ)
or Sonic Software’s SonicMQ. Many application servers also provide their own JMS
server implementations. JMS provides a single API that can be used to access the
messaging facilities provided by any messaging-service provider, much as Java
Database Connectivity (JDBC) is used to access any relational database that pro-
vides a JDBC driver.

See Chapter 18 for a discussion of JDBC.

JMS versus RMI
To further help you understand JMS, let’s explore the differences between systems
built with JMS and those built with a synchronous protocol, like RMI. Other similar
synchronous protocols include the Simple Object Access Protocol (SOAP) and
CORBA’s Internet Inter-Orb Protocol (IIOP). RMI tries to make a request that goes
across the network appear to be the same as a method invocation in the same pro-
cess. When a method call is made via RMI the caller blocks until the procedure
completes. Work is performed sequentially, which ensures that tasks are completed

Cross-
Reference

h539663 ch09.qxd 7/25/03 9:15 AM Page 232

233Chapter 9 ✦ Understanding the Java Messaging Service

in the specified order. Additionally, when multiple components exist each element
of the system has to create an independent connection to each other component,
leading to a many-to-many mapping problem between system components.

Message-oriented systems, in contrast, are asynchronous. They continue processing
as soon as the message is dispatched. Messages are processed centrally by the
message-oriented middleware (MOM) server, which takes care of issues like reliabil-
ity, transaction processing, and message delivery. No blocking exists in messaging
systems. The MOM server guarantees the delivery of messages to make sure that
all messages eventually get to a consumer, even if a partial system failure occurs.
Additionally, because all components in the system communicate via a centralized
server, the overall architecture is a simpler one-to-many (messaging server to sys-
tem components) relationship. In the specific case of JMS, the MOM server is some-
times referred to as the JMS server.

JMS provides other features like support for clustered, high-availability message
servers and transaction support to ensure that related messages are either delivered
together or not at all. JMS messages can also be processed in EJBs via support for
message-driven beans. Message-driven beans are a special form of stateless session
beans that process messages instead of processing requests that come in via RMI. A
message filter is created to make sure each type of message-driven bean only receives
the messages it is interested in. Message-driven beans are handled like other EJBs
in which pooling, activation, and passivation are all automatically handled by the
container to ensure that enough beans exist to handle the volume of incoming mes-
sages. See Chapter 17 for more on message-driven beans.

Overall, messaging and RMI are both used to connect pieces of a distributed appli-
cation but they follow very different approaches. Using synchronous techniques
such as RMI usually leads to more tightly coupled systems. Asynchronous tech-
niques, such as JMS messaging, result in systems that are loosely coupled. Loose
coupling is an important property of distributed systems that makes them easier to
manage as they change over time.

Now that we’ve looked at the fundamentals of what messaging is all about, let’s
examine the syntax of using JMS.

A Note on Versions

J2EE 1.4 includes version 1.1 of the JMS specification. J2EE 1.3 included JMS 1.0.2b. Some
significant changes have been made between these two versions of the specification. Many
application servers and stand-alone JMS servers still in use implement JMS 1.0.2b.

The code examples in this chapter will not compile using a JMS 1.0.2b library. If you’re having
problems running the examples make sure that your JMS server implements JMS 1.1.

h539663 ch09.qxd 7/25/03 9:15 AM Page 233

234 Part III ✦ The Enterprise Information System Tier

Message structure
The first element of JMS you need to understand is how messages are structured.
A message consists of the three following parts:

✦ Headers

✦ Properties

✦ Body

The message headers provide a fixed set of metadata fields describing the message,
with information such as where the message is going and when it was received. The
properties are a set of key-value pairs used for application-specific purposes, usually
to help filter messages quickly when they’ve been received. Finally, the body contains
whatever data is being sent in the message. The contents of the body vary depending
on the type of the message: The javax.jms.Message interface has several sub-
interfaces for different types of messages. Table 9-1 lists these message types.

Table 9-1
Message types

Message Type Message Contents

javax.jms.BytesMessage A stream of bytes. A number of convenience methods
on the BytesMessage interface enable developers to
deal with other primitive types or Strings,
automatically turning these values into bytes.

javax.jms.MapMessage A set of key-value pairs. Unlike a java.util.Map
object, MapMessage always uses Strings for the keys
and some primitive type for the values.

javax.jms.ObjectMessage A serialized object instance. Note that the serialization
mechanism will also automatically serialize any objects
being referred to indirectly, so the “single object” may
in fact be the root of a large graph of objects.

javax.jms.StreamMessage A stream of primitives. Very similar in function to
BytesMessage.

javax.jms.TextMessage A String instance.

Most JMS providers also provide a vendor-specific XMLMessage interface that is
usually derived from TextMessage. The only advantage of using these classes is
that they usually have some convenience methods to automatically parse the con-
tents of the message upon receipt.

h539663 ch09.qxd 7/25/03 9:15 AM Page 234

235Chapter 9 ✦ Understanding the Java Messaging Service

These are all interfaces, not classes. In JMS you don’t create messages (or almost
any type of JMS object) directly — you use a factory class to create the instances
for you. This provides a layer of independence from the particular JMS implementa-
tion you’re using. Now that we’ve had a look at how messages are structured, let’s
have a look at how they’re passed from message senders to message receivers.

Examining Messaging Models
For maximum compatibility with existing messaging servers, JMS supports two dif-
ferent messaging models: point-to-point (p2p) and publish-and-subscribe (pub/sub).
Previous message-oriented middleware systems supported either the pub/sub or
the p2p model. Because JMS is used as a Java-based wrapper around existing mes-
saging systems it supports both messaging models. Most pure-Java implementa-
tions of JMS support both models.

Point-to-point messaging
In the point-to-point model messages are sent from producers to consumers via
queues. A given queue may have multiple receivers but only one receiver may con-
sume each message. This is illustrated in Figure 9-1. Unlike the pub/sub model, in
which messages are pushed automatically to consumers, the p2p model typically
uses a pull mechanism whereby consumers request messages from a queue.

JMS also supports a p2p push model, wherein messages are automatically delivered
as in the pub/sub model. The JMS provider ensures that each message is delivered
once and only once. The JMS specification makes no other guarantees about how
messages are distributed among multiple receivers, although many JSM implemen-
tations implement load balancing to ensure that messages are distributed evenly
among receivers. The p2p message model also allows queue browsing, whereby a
receiver can examine the contents of a queue before consuming a message.

Figure 9-1: The point-to-point message distribution model

Topic
Subscriber

Subscriber
Publisher

Publish and Subscribe (1 → Many)

h539663 ch09.qxd 7/25/03 9:15 AM Page 235

236 Part III ✦ The Enterprise Information System Tier

Publish-and-subscribe messaging
In the publish-and-subscribe messaging model, messages are sent (published) to
consumers via topics. Messages published on a specific topic are sent to all message
consumers that have registered (subscribed) to receive messages on that topic. This
is illustrated in Figure 9-2. Messages are pushed from publishers to subscribers —
subscribers receive automatic notification whenever a message is published to
a topic they’re subscribed to. A single message may be distributed to hundreds,
even thousands, of subscribers. No coupling of producers to consumers exists —
subscribers and publishers can be added dynamically at runtime. This allows sys-
tems to be easily modified and expanded without having to reconfigure existing
publishers and subscribers.

Figure 9-2: The publish-and-subscribe message distribution model

Pub/sub supports a number of other features to make messaging more reliable.
A durable subscription is a special type of subscription that outlasts a consumer’s
connection to the messaging server. When a durable subscriber is disconnected
from the JMS server the server will store all messages that would have gone to the
subscriber and deliver them when the subscriber reconnects. This is also referred
to as store-and-forward messaging. This type of behavior is essential for guaranteed
messaging, with which a consumer can be ensured of receiving all messages regard-
less of application or network failures.

Which model is right for your application? It depends on how you want messages
handled and, to a large extent, on how other existing applications in your organiza-
tion are using messaging already. Having looked at how messages are handled, let’s
look at the specific components and classes used in JMS.

Understanding the Major JMS Components
Other than messages a number of classes exist that you’ll need to use in almost every
JMS application. Separate interfaces are available for dealing with publish/subscribe
systems and point-to-point systems, but because they have so many similarities
base classes encapsulate common functionality. This section discusses the follow-
ing components:

Queue
Receiver

Receiver
Sender

Point-to-Point (1 → 1)

h539663 ch09.qxd 7/25/03 9:15 AM Page 236

237Chapter 9 ✦ Understanding the Java Messaging Service

✦ Destinations

✦ Connections

✦ Connection factories

✦ Sessions

✦ Producers

✦ Consumers

Destinations
A destination is, as its name implies, somewhere you’re sending a message. Specific
types of destinations are queues (in point-to-point systems) or topics (in publish/
subscribe systems). Destinations are normally configured in the messaging server
and are not directly instantiated in the application. Instead, you obtain them via a
JNDI lookup. Queues and topics can also be created dynamically, but queues and
topics so created are only valid for the lifetime of the connection with which they’re
associated. The destination interface is javax.jms.Destination, which has the
four following sub-interfaces:

✦ Queue—Used for communicating in p2p systems, a Queue instance is a local
proxy for the queue stored in the messaging server.

✦ Topic—Used for communication in pub/sub systems, a Topic instance is a
local proxy for the topic stored in the messaging server.

✦ TemporaryQueue—This is a unique Queue object created for the duration of a
QueueConnection. It is a system-defined queue that can only be consumed by
the QueueConnection that created it.

✦ TemporaryTopic—This a unique Topic object created for the duration of a
TopicConnection. It is a system-defined queue that can only be consumed
by the TopicConnection that created it.

Connections
JMS Connections are similar to the Connection class in JDBC — it represents a con-
nection between the application and the messaging server over which messages can
be sent. The connection interface is javax.jms.Connection. In the JMS 1.0.2b spec-
ification, there were separate interfaces for connections to pub/sub or p2p messag-
ing system, but in the unified model used in JMS 1.1, you only need to use the single
Connection interface. There are still QueueConnection and TopicConnection
interfaces, but they are only provided for backwards compatibility.

Connection factories
As in JDBC, connections in JMS are not directly instantiated. Instead, a connection
factory creates connections. Where does the connection factory come from? From a

h539663 ch09.qxd 7/25/03 9:15 AM Page 237

238 Part III ✦ The Enterprise Information System Tier

JNDI lookup, like a destination. Connection factories and destinations are the only
types of objects in JMS that need to be obtained via JNDI. Connection factories
don’t do anything else other than create connection objects. The connection fac-
tory interface is javax.jms.ConnectionFactory. While ConnectionFactory has
sub-interfaces, they’re not necessary — the base ConnectionFactory interface can
do everything an application needs done. The extra interfaces are, again, left over
from older versions of the JMS specification.

Sessions
You don’t send and receive messages directly through a connection. Instead, you
need a session. A session serves as a factory for message objects, message produc-
ers and consumers, TemporaryTopics, and TemporaryQueues. It also does the
following:

Provides transactional behavior for the work done by its producers and
consumers

Defines a serial order for the messages it consumes and the messages it
produces

Retains messages it consumes until they have been acknowledged

Sessions are created using a Connection object. The session interface is javax.
jms.Session. Like the ConnectionFactory interface, Session has sub-interfaces,
but these aren’t necessary in JMS 1.1.

Producers
Finally, having created a number of administrative objects (a ConnectionFactory,
a Connection, a Session, and a Destination) we can get to the point where
we’re able to actually create a message and send it somewhere. The javax.jms.
Message-Producer interface has two sub-interfaces: QueueSender and
TopicPublisher. You can use whichever interface you like but the QueueSender
and TopicPublisher interfaces don’t add any additional functionality to
MessageProducer. Topic-Publisher’s publish() methods do exactly the same
thing as the send() method in MessageProducer. MessageProducer instances
can be created using a Session.

Consumers
If you want to receive messages, use the session to create a MessageConsumer. The
interface javax.jms.MessageConsumer has two sub-interfaces, QueueReceiver
and TopicSubscriber. Messages can be received two different ways with a
MessageConsumer.

h539663 ch09.qxd 7/25/03 9:15 AM Page 238

239Chapter 9 ✦ Understanding the Java Messaging Service

First, with the push approach, you can create a class that implements the
Message-Listener interface and pass an instance of it to MessageConsumer.
setMessage-Listener(). Whenever a message becomes available it will be auto-
matically passed to the listener’s onMessage() method.

Second, with the pull approach, you call MessageConsumer.receive(), which will
return a message if one is available. If no message is available the no-argument ver-
sion of receive() will block. You can also call receive(int), which will timeout
after the specified number of milliseconds, or receiveNoWait(), which will return
null if no message is available.

The session ensures that messages sent to a MessageListener are serialized — if
the same MessageListener is registered with several MessageConsumers that have
been created using the same Session, it is guaranteed that onMessage() will not
be called again until the current message is finished processing.

Now that we’ve seen what types of objects are needed to send and receive messages,
let’s look at how to set up and configure a JMS-based application along with some
samples.

Configuring JMS
Much of the work in configuring a messaging-based application is done in the mes-
saging server itself. Topics and queues are configured through the administrative
interface of your MOM server, so consult your vendor’s documentation to learn
how to do this.

JMS and Threads

Some JMS objects are safe to share between threads, specifically connection factories and
connections. Sessions are single-threaded objects and, as such, should not be shared among
multiple threads. If you know that a given session object will not be used in more than one
thread it’s safe to store it in some accessible location (like an instance variable). If the object
may be shared among multiple threads (the way a servlet is), then create a new session each
time the method that needs to dispatch a message is invoked. Because J2EE application
servers have multiple threads, all potentially executing the same methods, it’s safer not to try
to share session objects outside the scope of a single method.

MessageProducers and MessageConsumers, being tied to a specific session, are also not
safe to share among threads.

h539663 ch09.qxd 7/25/03 9:15 AM Page 239

240 Part III ✦ The Enterprise Information System Tier

At minimum you’ll need to configure a ConnectionFactory and a Topic for pub/
sub applications or a Queue for p2p applications. These objects will be retrieved by
the application via JNDI. The application will need to know the type and location of
the naming service. These values can be hardcoded into the application or passed
in at runtime, either via the command line or via a configuration file.

See Chapter 11 for a discussion of JNDI.

Some JMS providers require you to create either a QueueConnectionFactory or
a TopicConnectionfactory, but some providers do not distinguish between the
two and in some cases either type of ConnectionFactory can be used to create
connections to both a queue and a topic.

For the example involving Connexia Airlines we will describe a point-to-point system
where a meal request is passed via a queue to Connexia’s catering partner. This is
an example of loosely coupled business-process integration via messaging between
companies. We will assume that a ConnectionFactory exists and that a Queue,
connexia.MealOrderQueue, has been configured as well.

For the example with J2EE Publisher we’ll show an order-processing system that
processes orders that have been entered and then dispatches them to all the other
systems in the company that need to take some action based on the orders —
billing, shipping, accounting and so on. When an order is created the creator may
not even know what other systems need to be notified, but by using a publish-and-
subscribe messaging model we can be sure that the information is available to any
interested systems. We’ll assume that a ConnectionFactory exists and that a
Topic, publisher.BookOrdersTopic, has been configured as well.

Connexia Airlines Point-to-Point
Messaging Business Case

In a p2p system all messages are routed via queues. Multiple listeners may be
receiving messages from the queue, but each message goes to one and only one
listener. The example code here will be simplified with only one listener, but you
would add additional listeners just as you added the first one. Note that deciding
which queue gets which message is JMS server–specific. Some JMS servers load-
balance and try to distribute the messages equally across all consumers, but this
behavior is not defined by the JMS specification.

Setting up all the objects on the message-sending side is straightforward, but you
must follow these steps:

1. Obtain a JNDI InitialContext. You don’t need to do this more than once,
and for performance reasons it’s best to do it only once and save the result for
use later.

Cross-
Reference

h539663 ch09.qxd 7/25/03 9:15 AM Page 240

241Chapter 9 ✦ Understanding the Java Messaging Service

2. Obtain the ConnectionFactory via a JNDI lookup. Again, JNDI lookups can be
slow, so do this only once and cache the result.

3. Obtain the destination Queue via a JNDI lookup.

4. Use the ConnectionFactory to obtain a Connection.

Then follow these instructions in order to send a message:

1. Use the Connection to obtain a Session.

2. Use the Session to create a MessageProducer.

3. Use the Session to create an appropriate message.

4. Send the Message using the MessageProducer.

If you’re sending multiple messages you can reuse Message objects without affecting
the content of messages that have already been sent.

On the receiving end the steps are very similar, except that you create a
MessageConsumer instead of a MessageProducer.

For the Connexia Airlines example we’ll create a MealService class with a request()
method that will request a specified type of meal. We’ll also create a no-argument ver-
sion that will request a “regular” meal. This method will use the QueueConnection
that was created during initialization to send a MapMessage to the catering com-
pany, detailing the type of meal as well as the date and flight number for the given
passenger. To test it we’ll use a dummy MessageListener and a simple servlet.

Listing 9-1 contains the code to create the message.

Listing 9-1: MealService.java

import java.util.*;
import java.text.DateFormat;
import javax.jms.*;
import javax.naming.*;

public class MealService {

public static final String REGULAR = “regular”;
public static final String LOW_SALT = “low salt”;
public static final String VEGETARIAN = “vegetarian”;
public static final String KOSHER = “kosher”;
public static final String HALAL = “halal”;
public static final String DIABETIC = “diabetic”;

private static MealService singleton = null;

Continued

h539663 ch09.qxd 7/25/03 9:15 AM Page 241

242 Part III ✦ The Enterprise Information System Tier

Listing 9-1 (continued)

private Connection connection;
private Queue mealOrderQ;

private MealService() {

try {
// initialize appropriate JMS objects
// obtain the JNDI InitialContext
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

“com.swiftmq.jndi.InitialContextFactoryImpl”);
env.put(Context.PROVIDER_URL,

“smqp://localhost:4001/timeout=10000”);
Context ctx = new InitialContext(env);

// obtain the ConnectionFactory and
// create the Connection
ConnectionFactory cf = (ConnectionFactory)ctx.lookup(

“QueueConnectionFactory”);
connection = cf.createConnection();

// obtain the destination Queue
mealOrderQ = (Queue)ctx.lookup(

“connexia.MealOrderQueue”);
}
catch(NamingException ne) {

ne.printStackTrace();
}
catch(JMSException je) {

je.printStackTrace();
}

}

public static MealService getMealService() {
if(singleton == null)

singleton = new MealService();
return singleton;

}

public void request(int flight_number, Date date) {
request(REGULAR, flight_number, date);

}

public void request(String type, int flight_number, Date date)
{

MessageProducer qSender;
Session session;

h539663 ch09.qxd 7/25/03 9:15 AM Page 242

243Chapter 9 ✦ Understanding the Java Messaging Service

try {
// obtain a Session
session = connection.createSession(false,

Session.AUTO_ACKNOWLEDGE);

// obtain a MessageProducer
qSender = session.createProducer(mealOrderQ);

// build the map message
MapMessage msg = session.createMapMessage();
msg.setString(“mealType”, type);
msg.setInt(“flightNumber”,flight_number);
msg.setString(“date”,

DateFormat.getDateInstance().format(date));

// set the message headers
msg.setJMSDeliveryMode(DeliveryMode.PERSISTENT);

// send the message
qSender.send(msg);

qSender.close();
session.close();

}
catch(JMSException e) {

e.printStackTrace();
}

}

public void close() {
try {

connection.close();
singleton = null;

}
catch(JMSException e) {

e.printStackTrace();
}

}

public static void main(String args[]) {
MealService service = MealService.getMealService();
service.request(234, new Date());
service.close();
System.exit(0);

}

}

h539663 ch09.qxd 7/25/03 9:15 AM Page 243

244 Part III ✦ The Enterprise Information System Tier

So let’s have a look at what the MealService class is doing.

First of all, MealService is a singleton. The use of a singleton is unrelated to JMS,
but it’s important to understand that only one MealService instance will be acces-
sible from any point in the application. It’s worth noting that we are not required to
make MealService a singleton — we simply want to avoid initializing multiple
Connection objects, for performance reasons. Creating a separate MealService
object for every request is certainly possible and will not affect our ability to send
messages successfully.

The environment properties you pass in to the InitialContext will depend on
what JMS provider you’re using. The parameters specified here are the ones used
with SwiftMQ 4.5.1 from IIT Software (http://www.swiftmq.com).

See Chapter 11 for more information on using JNDI with various commercial
application servers.

Once the MealService object has been initialized, sending a message in the
request() method is relatively simple. It may seem that you need to create a lot of
objects to perform a simple task, but each object plays a specific role in the appli-
cation. One important item to note is that when the Session is created we need to
specify two arguments. The first argument, a boolean, indicates whether the session
is transacted. We specified false, which means that we don’t want transaction sup-
port. (Transactional sessions are discussed later in the chapter in the “Transaction”
section.) The second argument, an int, indicates how message-receipt acknowl-
edgement will be handled and has one of the three values listed in Table 9-2.

Table 9-2
JMS acknowledgement modes

Mode Description

Session.AUTO_ACKNOWLEDGE This method indicates that message-receipt
responses are automatically generated. The
response is provided automatically by the
JMS server when an application sends a
message. When an application receives a
message, the response is generated by the
JMS client’s runtime code.

This mode provides guaranteed once-and-
only-once message delivery to the JMS
destination.

This is the mode used most frequently.

Cross-
Reference

h539663 ch09.qxd 7/25/03 9:15 AM Page 244

245Chapter 9 ✦ Understanding the Java Messaging Service

Mode Description

Session.DUPS_OK_ACKNOWLEDGE This mode informs the JMS provider that it
is OK to send a message more than once
to a destination. The idea is that in some
cases the once-and-only-once delivery
mechanism may incur extra overhead and
reduce performance.

Note that this mode is not guaranteed to
work any faster than AUTO_ACKNOWLEDGE.
Unless you have a good reason to avoid
automatic message acknowledgement and
your application can tolerate duplicate
messages, do not use this mode.

Session.CLIENT_ACKNOWLEDGE This mode puts the onus of message
acknowledgement on the receiving client
code. To acknowledge the receipt of a
message, call msg.acknowledge().

This mode gives the client the ability to
inspect a message before acknowledging
its receipt or to reduce overhead by
acknowledging a group of messages all at
once — a call to acknowledge() implicitly
acknowledges all previous messages that
have been received but not acknowledged.

We set only one JMS message-header property here, JMSDeliveryMode. Valid val-
ues for JMSDeliveryMode are DeliveryMode.PERSISTENT and DeliveryMode.
NON_PERSISTENT. An application marks a message as persistent if it feels that the
application will have problems if the message is lost in transit. If an occasional lost
message is tolerable, mark the message as non-persistent. In our case we don’t
want to lose any meal requests so we use the persistent delivery mode. What the
JMS server does with persistent messages is server-implementation-specific but
they will probably be written to some persistent data store, such as a file on disk or
a database. A number of other JMS message headers can be set; you can either set
them directly on the message or, for some properties, specify a default value via the
MessageProducer. Table 9-3 describes the different JMS message header fields.

h539663 ch09.qxd 7/25/03 9:15 AM Page 245

246 Part III ✦ The Enterprise Information System Tier

Table 9-3
JMS message headers

Header Description

JMSDestination This header identifies which destination (either a Queue or a
Topic) the message was sent to. This is useful for Message
Listeners that consume messages from multiple destinations.

JMSDeliveryMode This header is specified as either DeliverMode.PERSISTENT or
DeliveryMode.NON_PERSISTENT.

JMSMessageID This header is a string that uniquely identifies the message.

JMSTimestamp This is a long value, in milliseconds, automatically set by the
messageProducer, that represents when the message was sent
via send().

JMSExpiration This is a long value, in milliseconds, that specifies the maximum
amount of time that the JMS server should hold on to the
message. Specify zero (0) to indicate that the message doesn’t
expire.

JMSRedelivered This is a Boolean that indicates whether the JMS server has
already attempted to deliver this message but failed or is not
certain it succeeded.

JMSPriority This header specifies one of the 10 priority levels in JMS, 0–9.
Levels 0–4 are gradations of normal priority. Levels 5–9 indicate
higher, or expedited, priorities. The default level is 4.

Once the message has been sent we close the sender and session and when we exit
the application we close the connection as well. Closing a connection also closes
any open sessions, producers, or consumers associated with that connection, as
well as deleting any temporary destinations. Any uncommitted transactions will be
rolled back when the connection is closed.

The application that receives and processes the messages is even simpler, at least
in terms of the message-handling part. Presumably some challenge remains in cook-
ing and delivering the meals to Connexia Airlines. Listing 9-2 shows the code for the
Caterer class.

Listing 9-2: Caterer.java

import javax.naming.*;
import javax.jms.*;
import java.util.*;

public class Caterer implements MessageListener {

h539663 ch09.qxd 7/25/03 9:15 AM Page 246

247Chapter 9 ✦ Understanding the Java Messaging Service

private Caterer() {
try {

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

“com.swiftmq.jndi.InitialContextFactoryImpl”);
env.put(Context.PROVIDER_URL,

“smqp://localhost:4001/timeout=10000”);
Context ctx = new InitialContext(env);

ConnectionFactory cf = (ConnectionFactory)ctx.lookup(
“QueueConnectionFactory”);

Connection connection = cf.createConnection();
Queue mealOrderQ = (Queue)ctx.lookup(

“connexia.MealOrderQueue”);
Session session = connection.createSession(false,

Session.AUTO_ACKNOWLEDGE);
MessageConsumer mc = session.createConsumer(

mealOrderQ);
mc.setMessageListener(this);
connection.start();

}
catch(Exception e) {

e.printStackTrace();
}

}

public void onMessage(Message msg) {
try {

MapMessage mmsg = (MapMessage)msg;
System.out.println(“Meal request for flight “+

mmsg.getString(“flightNumber”)+
“ on date “+mmsg.getString(“date”));

}
catch(Exception e) {

e.printStackTrace();
}

}

public static void main(String args[]) {
Caterer c = new Caterer();

}

}

The setup for this class is pretty much the same as it was for the MealService
class, except that a MessageConsumer is created instead of a MessageProducer.
Registering a messageListener isn’t enough — to begin receiving messages you
must also call Connection.start(). You can turn message delivery on and off by
calling start() and stop() on the Connection object. Stopping message delivery
has no effect on a connection’s ability to send messages.

h539663 ch09.qxd 7/25/03 9:15 AM Page 247

248 Part III ✦ The Enterprise Information System Tier

To run the example, run java Caterer on the command line and then, in another
window, run java MealService. Try running multiple Caterer instances in different
windows — notice that any message produced is sent to only one Caterer. Now
let’s look at an example using pub/sub messaging.

Magazine-Publisher Publish-Subscribe
Messaging Business Case

The setup of publish-subscribe messaging systems in JMS is almost identical to that
of point-to-point systems. Aside from terminology (topic instead of queue, for exam-
ple) the major difference is that all messages published to a topic are broadcast to
all subscribers. With queues, even if multiple receivers are connected to a single
queue, only one of them will receive a message posted to the queue.

Because JMS 1.1 has unified the two messaging models virtually no difference exists
between code that posts a message to a queue and code that publishes a message
to a topic. In JMS 1.0.2b this was not the case — you were required to use either
QueueConnection or TopicConnection, QueueSession or TopicSession, and so
on. In JMS 1.1 the Connection, Session, MessageConsumer, and MessageProducer
interfaces handle both messaging models.

The application shown in Listing 9-3 sends messages to the publisher.
BookOrdersTopic topic.

Listing 9-3: BookOrder.java

import javax.naming.*;
import javax.jms.*;
import java.util.Hashtable;

public class BookOrder {

private String name;
private String isbn;

public BookOrder() {
name = “default”;
isbn = “none”;

}

public void setCustomer(String name) {
this.name = name;

}

h539663 ch09.qxd 7/25/03 9:15 AM Page 248

249Chapter 9 ✦ Understanding the Java Messaging Service

public void setBook(String isbn) {
this.isbn = isbn;

}

public void dispatch() {

try {
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

“com.swiftmq.jndi.InitialContextFactoryImpl”);
env.put(Context.PROVIDER_URL,

“smqp://localhost:4001/timeout=10000”);
Context ctx = new InitialContext(env);

ConnectionFactory cf = (ConnectionFactory)ctx.lookup(
“TopicConnectionFactory”);

Connection connection = cf.createConnection();

Topic bookOrderTopic = (Topic)ctx.lookup(
“publisher.BookOrdersTopic”);

Session session = connection.createSession(false,
Session.AUTO_ACKNOWLEDGE);

MessageProducer publisher = session.createProducer(
bookOrderTopic);

MapMessage msg = session.createMapMessage();
msg.setString(“customer”,name);
msg.setString(“isbn”,isbn);

publisher.send(msg, DeliveryMode.PERSISTENT,
5, 600000);

}
catch(Exception e) {

e.printStackTrace();
}

}

}

The OrderProcessor class shown in Listing 9-4 receives the messages created by
BookOrder class and does something with them. In this case it simply prints the
information to the user but in a real application it would perform some useful
processing.

h539663 ch09.qxd 7/25/03 9:15 AM Page 249

250 Part III ✦ The Enterprise Information System Tier

Listing 9-4: OrderProcessor.java

import javax.naming.*;
import javax.jms.*;
import java.util.Hashtable;

public class OrderProcessor implements MessageListener {

String name;

public OrderProcessor(String name) {
this.name = name;

try {
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

“com.swiftmq.jndi.InitialContextFactoryImpl”);
env.put(Context.PROVIDER_URL,

“smqp://localhost:4001/timeout=10000”);
Context ctx = new InitialContext(env);

ConnectionFactory cf = (ConnectionFactory)ctx.lookup(
“TopicConnectionFactory”);

Connection connection = cf.createConnection();

Topic bookOrderTopic = (Topic)ctx.lookup(
“publisher.BookOrdersTopic”);

Session session = connection.createSession(false,
Session.AUTO_ACKNOWLEDGE);

MessageConsumer subscriber = session.createConsumer(
bookOrderTopic);

subscriber.setMessageListener(this);
connection.start();

}
catch(Exception e) {

e.printStackTrace();
}

}

public void onMessage(Message msg) {
try {

MapMessage mmsg = (MapMessage)msg;
System.out.println(“Processor “+name+

“ received an order for “+
mmsg.getString(“isbn”)+” from “+
mmsg.getString(“customer”));

}

h539663 ch09.qxd 7/25/03 9:15 AM Page 250

251Chapter 9 ✦ Understanding the Java Messaging Service

catch(Exception e) {
e.printStackTrace();

}
}

public static void main(String args[]) {
OrderProcessor accounting = new

OrderProcessor(“accounting”);
OrderProcessor shipping = new

OrderProcessor(“shipping”);
OrderProcessor sales_tracking = new

OrderProcessor(“sales_tracking”);

try {
Thread.sleep(1000);

}
catch(InterruptedException e) {
}

BookOrder order = new BookOrder();
order.setBook(“0-7645-3966-3”);
order.setCustomer(“ehenry”);
order.dispatch();
order.setCustomer(“fgeary”);
order.dispatch();

try {
Thread.sleep(1000);

}
catch(InterruptedException e) {
}

System.exit(0);
}

}

Observe that in the main() method for OrderProcessor, which actually tests mes-
sage distribution, multiple OrderProcessor instances are created. When you run
this code you should see one message received and processed three times. Perhaps
this does not seem very impressive in this small sample application, but JMS pro-
vides transparent distribution and scalability making it trivial to scale this example
up into an enterprise-grade order-processing system.

In BookOrder.dispatch() note that the MessageProducer.send() method
specifies three parameters in addition to the destination. The first is the delivery
mode. In the point-to-point example this value was set on the message by means of

h539663 ch09.qxd 7/25/03 9:15 AM Page 251

252 Part III ✦ The Enterprise Information System Tier

calling setJMSDeliveryMode(). This value is set by the MessageProducer (via
MessageProducer.setDeliveryMode()) unless overridden in the message header
or in the call to send(). The second parameter is the message priority — again, this
value is taken from the MessageProducer unless it is overridden in the message
header or in the call to send().

Finally, a time-to-live (TTL) value in milliseconds is specified. In this case, a value of
600000 represents a 10-minute time to live. Be aware that message expiration is
often calculated by means of taking the current system time when the message is
dispatched and adding the time-to-live value; therefore, if the clocks on the mes-
sage producer and the messaging server are not synchronized messages may be
prematurely expired. You can get around this by ensuring that the systems involved
in message processing have synchronized clocks or by increasing the time-to-live
value to ensure that messages are not prematurely removed. Now we’ve seen the
basics of how to create, send and receive messages, let’s look at extending the
basic messaging model to help ensure reliability.

Explaining Reliable Messaging
JMS has a number of features that help ensure reliability. Guaranteed messaging is
powerful but it doesn’t happen automatically — JMS has a number of features
“under the hood” that help ensure that messages are delivered consistently and
reliably. Three components make up guaranteed messaging: message autonomy,
store-and-forward messaging, and the message-acknowledgement semantics of JMS
systems.

Autonomous messages
First of all messages are autonomous — they are generated by a producer, received
by a consumer, and may then be retransmitted to another consumer. Once a mes-
sage is created, however, it will not be modified by the messaging server — it will
either be delivered or it will expire if it cannot be delivered before its time-to-live
period expires.

Persistent messages
Messages marked as persistent are guaranteed to be delivered by the messaging
server. Once a message is successfully received it will be stored in a persistent data
store like a database or a file until it can be delivered to a consumer. In the event of
a messaging-server failure, any pending messages will be held until the server is
restarted and can begin attempting delivery again.

h539663 ch09.qxd 7/25/03 9:15 AM Page 252

253Chapter 9 ✦ Understanding the Java Messaging Service

Synchronous acknowledgments
Finally, a variety of synchronous acknowledgements exist in the otherwise asyn-
chronous message-transmission process. When a JMS client attempts to send a
message, it first goes to the JMS server, which acknowledges successful receipt of
the message. Because of message persistence the JMS server will safely hold on to
the message until it is delivered to a message consumer and the server has
received acknowledgement that the message has, in fact, been received. Think of it
like a FedEx delivery — you, the sender, get a confirmation when you give a package
to FedEx and FedEx, in return, gets a confirmation from the recipient when the
package is delivered.

Transactions
When you need atomic delivery of several messages — that is, either all the mes-
sages are delivered or none is — you need to use a transaction. JMS supports trans-
actions in two ways — via the JMS transaction support in the Session interface and
via the distributed-transaction support in the Java Transaction API.

Because Chapter 10 deals extensively with the Java Transaction API, we’ll only look
at JMS session–based transactions here.

To create a session with transactional behavior, simply specify true as the first
parameter passed to createSession(). The new session object is now transacted.
You don’t need to specify the beginning of the transaction; it starts automatically.
All messages sent through any producer created using that session are part of the
transaction until either rollback() or commit() is invoked on the session. Once a
transaction is completed by either a commit or rollback a new transaction is
started automatically. The following code fragment shows how a set of messages
can be handled inside a transaction.

Session session = connection.createSession(true,
Session.AUTO_ACKNOWLEDGE);

MessageProducer producer = session.createProducer(
Destination);

// send some messages via producer

if(successful)
session.commit();

else
session.rollback();

Transactions are a very powerful tool and a necessity in any environment where
data integrity is the primary concern. The only concept in JMS and J2EE that we
haven’t discussed so far are message-driven Enterprise JavaBeans.

Cross-
Reference

h539663 ch09.qxd 7/25/03 9:15 AM Page 253

254 Part III ✦ The Enterprise Information System Tier

Introducing Message-Driven
Enterprise JavaBeans

Message-driven beans are a special form of stateless session beans that respond to
JMS messages instead of method calls via RMI. They implement both the javax.ejb.
MessageDrivenBean interface as well as javax.jms.MessageListener. The EJB
container is in charge of creating the JMS connection, session, and message con-
sumer. The destination to which the message-driven bean is connected is specified
in the bean’s deployment descriptor. Message-driven beans make it easy to encapsu-
late message-processing logic without creating all the JMS administrative objects
manually.

Chapter 17 goes into much greater detail about message-driven EJBs.

Summary
This chapter aims to provide a basic overview of the capabilities of JMS and to
show you how to use the core JMS classes. JMS becomes considerably more
complex as you begin to explore guaranteed messaging and distributed transactions.
Nevertheless, this chapter provides the essentials to help you write JMS applications.

In this chapter we’ve explored what message-oriented middleware (MOM) systems
are good for and looked at how messaging concepts like point-to-point (p2p) mes-
saging and publish/subscribe (pub/sub) messaging are applied to JMS.

Because there are so many interfaces used in even a simple JMS-based application,
we had an overview of the JMS API and its major components: messages, destina-
tions, connections, connection factories, sessions, producers and consumers. All of
these components were shown in action in the examples provided.

Finally, we looked at the basics of making messaging reliable via message persis-
tence and support for transactions. Messaging is a powerful model for building
loosely coupled enterprise applications and with JMS it’s easy to use messaging
in Java.

✦ ✦ ✦

Cross-
Reference

h539663 ch09.qxd 7/25/03 9:15 AM Page 254

Introducing Java
Transactions

In this chapter we will introduce the notion of atomic trans-
actions and show how they are integral to all enterprise-

level applications. Put simply, without transactions there can
be no guarantee of data consistency in the presence of fail-
ures or concurrent access. In mission-critical applications
(such as banking or air-traffic control), a lack of transactional
support can be the difference between successfully making a
sale or not. Many people are wary of applications that can
potentially lose their customers millions of dollars if a power
failure occurs at just the wrong instant, for example!

The concept of atomic transactions has been around since the
1960s and several transaction-processing systems from that
time continue to be used today. IBM’s CICS and BEA’s Tuxedo
are two such systems. However, the advent of Java and J2EE
truly popularized transactions, bringing them to the forefront
of everyday computing. Unlike previous standardization tools,
J2EE took the step of mandating transaction support: Vendors
have to provide transactional capabilities for their users.
This being the case, knowing what transactions are and how
they can help you in your application design are of crucial
importance.

What Are Atomic Transactions?
Consider the case of a distributed system where each machine
provides various services, such as data storage, printing, bank
accounts and so on, that can be invoked by an application pro-
gram. It is natural to require that an application using a collec-
tion of these services behaves consistently in the presence of
failures. Let’s consider a very simple example: Imagine an
online bank that allows customers to transfer funds between
accounts (CurrentAccount and SavingsAccount), and let’s
further assume that Mr. Smith has both of these accounts

1010C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Describing what
atomic transactions
are for

Illustrating ACID
properties

Exploring different
transaction models
and how each might
be useful for an
application
programmer

Describing important
transaction standards

Reviewing a new
transaction paradigm
being developed
for J2EE

Explaining the
JTA architecture

✦ ✦ ✦ ✦

h539663 ch10.qxd 7/25/03 9:15 AM Page 255

256 Part III ✦ The Enterprise Information System Tier

whose balances are $500 and $1400, respectively. As shown, the bank is responsible
for communicating with the transaction service to start and end the transaction
Mr. Smith will use to manage transferring his funds.

Mr. Smith wants to transfer $400 from the CurrentAccount to the SavingsAccount
and because of bank processes, this will occur in the following steps:

1. Read the amount of money in the CurrentAccount to determine that there
are enough funds to transfer.

2. Debit $400 from the CurrentAccount.

3. Credit $400 to the SavingsAccount.

4. The bank checks that the CurrentAccount is still in credit and if not, charges
Mr. Smith for an overdraft.

The transfer process may be affected by failures of software or hardware that could
affect the overall consistency of the system in a number of ways. For example, if a
failure occurs between steps 2 and 3, then it is entirely possible for the $400 to be
removed from the CurrentAccount and to vanish into the ether rather than be
credited to the SavingsAccount. This loss of data integrity would have dire conse-
quences for the user and ultimately the bank!

Now let’s assume that Mrs. Smith wants to withdraw $200 from the CurrentAccount
to go shopping. Her withdrawal goes through the following steps:

1. Check the CurrentAccount has sufficient funds.

2. Withdraw $200.

3. The bank checks that the CurrentAccount is still in credit and if not, charges
Mr. Smith for an overdraft.

If Mrs. Smith withdraws at the same time her husband is transferring funds then it is
entirely possible for both operations to see sufficient funds in the CurrentAccount
for their own requirements, when in fact there is insufficient funds for both. The
result is that the CurrentAccount ends up $100 overdrawn and Mr. Smith gets an
overdraft charge he didn’t expect!

What Mr. Smith would like is that accesses to the account are handled in such a
manner that consistency of both accounts is maintained despite failures or concur-
rent access. And this is in fact a more general statement of desirability for dis-
tributed applications that manipulate data or shared resources. Fortunately atomic
transactions can help here.

Put simply, an atomic transaction is a unit of work that has the following properties
(known as the ACID properties):

h539663 ch10.qxd 7/25/03 9:15 AM Page 256

257Chapter 10 ✦ Introducing Java Transactions

✦ Atomicity — The transaction either completes successfully (commits), making
the work that was performed within its scope permanent, or it fails, and all its
effects are undone (rolled back). If it rolls back, it is as though the transaction
never started in the first place.

✦ Consistency — The transaction produces consistent results and preserves
application-specific invariants.

✦ Isolation — Intermediate states produced while a transaction is being exe-
cuted are not visible to others. Furthermore, transactions appear to be exe-
cuted serially, even if they are executed concurrently (this is known as the
serialisability property of transactions). As you will see later in this chapter, it
is possible to relax isolation levels to improve application performance and
throughput, but this should be done with extreme care.

✦ Durability — Once a computation terminates normally, the results produced
are not destroyed by subsequent crashes. Any state changes produced (such
as the new states of all objects modified within the transaction) are recorded
on stable storage.

Therefore, an application that is structured such that all critical data are accessed
within and controlled by transactions is guaranteed to preserve data consistency
regardless of concurrent access by different users and arbitrary numbers of fail-
ures. The transaction-processing system is responsible for this guarantee and most
applications will be unaware of the extra work that is going on behind the scenes
on their behalf. Typically all an application programmer will have to do is start and
end a transaction.

Obviously, the previous paragraphs only skim the surface of what transaction-
processing systems must do in order to provide data consistency to their users.
There’s no such thing as a free lunch, and attendant upon transactional guarantees
is overhead in terms of enforcing isolation restrictions, atomicity, and (in a dis-
tributed environment) messages. Therefore, understanding what happens when
you use transactions is important, as it will help you know just when and where to
use them.

In the following sections we will examine each of the ACID properties in detail.
However, first we will describe the differences between transactional objects/
services and transaction participants/resources.

Examining Transactional Objects
and Participants

Most transaction-processing systems make a distinction between a transactional
object or service and the participants controlled by the transaction. Consider the
following definitions:

h539663 ch10.qxd 7/25/03 9:15 AM Page 257

258 Part III ✦ The Enterprise Information System Tier

✦ Transactional object/service — This is the object that encapsulates the work
required to be conducted within the scope of a transaction. This work cannot
be committed by the application; control is placed into the transaction’s
domain. An example of such an object would be an EJB responsible for buying
a seat on a flight given user input; only if the user commits the transaction is
the ticket for the flight actually purchased. This means that the EJB cannot by
itself make the work it is asked to do happen; that is ultimately the responsi-
bility of the transaction and the associated transactional participant.

✦ Transactional participants/resources — Under the manipulation of the trans-
action, this is the entity that controls the outcome of the work performed by
the transactional object. In the preceding example, as illustrated in Figure 10-1,
if the flight-purchasing EJB uses a database to store information on seat avail-
ability, it will typically access this information via a JDBC driver. SQL statements
will be sent to the database for processing (for example, reserve seat 4A) via
the driver, but these statements will be tentative and only commit when (and
if) the transaction does so. In order to do this the driver/database will associ-
ate a participant with the transaction. This will inform the database of the
transaction outcome.

See Chapter 14 for a discussion of EJB architecture and design.

Figure 10-1: Transactional object and participant

Client application

Database

Reserve seat

Commit/rollback

Participant

Transaction

Commit/rollback

EJB SQL

Cross-
Reference

h539663 ch10.qxd 7/25/03 9:15 AM Page 258

259Chapter 10 ✦ Introducing Java Transactions

Before we can go any further, we had better look at what exactly happens when a
transaction terminates. In the next few sections, we’ll look at the two-phase commit
protocol and some of the various optimizations that are available in many imple-
mentations.

Reviewing Atomicity and the
Two-Phase Commit Protocol

Associated with every transaction is a coordinator, which is responsible for govern-
ing the outcome of the transaction. The coordinator may be implemented as a sepa-
rate service or may be co-located with the user for improved performance — that is,
within the same Java Virtual Machine (JVM). It communicates with participants
enlisted with its transaction to inform them of the desired termination require-
ments — whether they should commit or roll back the work done within the scope
of the transaction.

In order to ensure that a transaction has an atomic (all or nothing) outcome, a two-
phase commit protocol is required to obtain consensus between the various partic-
ipants. Figure 10-2 illustrates the main aspects of this protocol. During the first
phase, known as the prepare phase, the transaction coordinator, C, attempts to
communicate with both transaction participants, A and B, to determine whether
they can commit or roll back. A rollback response, or no response, from any partici-
pant acts as a veto on the transaction, causing it to roll back. Based upon these
responses, the coordinator decides whether to commit or roll back the transaction.
If the decision is to commit the transaction, the coordinator records this decision
on stable storage (in the transaction log) and the protocol enters the second phase.
In this phase the coordinator forces the participants to carry out the decision. The
coordinator also informs the participants if the transaction rolls back.

Figure 10-2: Two-phase commit protocol

C A

B

Yes

Yes

Commit?

Commit?

Phase 1

C A

B

Commit?

Commit?

Phase 2

h539663 ch10.qxd 7/25/03 9:15 AM Page 259

260 Part III ✦ The Enterprise Information System Tier

When each participant receives the prepare message from the coordinator, it must
determine whether or not it can commit the work that it controls. If it can, it must
record sufficient information on stable storage to either commit or roll back
changes made during the transaction.

After returning the prepare response, each participant that returned a commit
response must remain blocked until it has received the coordinator’s second-phase
message. Until the participants receive this message, the resources they manage
(such as database tables) are unavailable for use by other transactions. If the coor-
dinator fails before delivering this message, these resources must remain blocked
until the crashed machines have recovered; in this situation, specialized crash-
recovery mechanisms are employed by the transaction system to ensure that any
transactions or resources affected by the failures are completed (either committed
or rolled back). Therefore the protocol is (eventually) unblocked.

Optimizations
The standard two-phase commit protocol has several variants, and the differences
among these variants can mean significant differences in performance and recovery
from failures. We will briefly describe the ones most commonly found in modern
transaction-processing systems:

✦ Presumed rollback — The transaction coordinator need not record informa-
tion about the participants in stable storage until it decides to commit — that
is, until after the prepare phase has completed successfully. If the transaction
rolls back either before or after prepare, the coordinator need not inform
enlisted participants; it does this only as a courtesy, as failure to contact a
participant has no effect on the transaction outcome. If a subsequent request
for the status of the transaction occurs no information will be available in the
log, and the requestor will be able to assume that the transaction has rolled
back.

✦ One-phase — If only a single participant is involved in the transaction a pre-
pare phase is not necessary, because consensus is implicit (a participant
should be able to agree with itself, after all). Therefore, the participant will
simply be told to commit. In some variants the transaction coordinator need
not record information about the decision, because the outcome of the trans-
action is solely down to the participant.

✦ Read-only — If a participant is responsible for an object or service that did not
do any work during the course of the transaction, or that did not do any work
that modified state, it does not need to be informed about the outcome of the
transaction because its fate has no effect on the transaction. This being the
case, it can indicate to the coordinator during prepare that it is a read-only par-
ticipant and it will be omitted from the second phase of the commit protocol.

h539663 ch10.qxd 7/25/03 9:15 AM Page 260

261Chapter 10 ✦ Introducing Java Transactions

Heuristics and removing the two-phase block
As you have seen, in order to guarantee atomicity the two-phase commit protocol is
necessarily blocking. If the coordinator fails after having issued prepare, partici-
pants must remain in this state until they hear the outcome from the transaction
coordinator. Since recovery may take an arbitrary amount of time, participants may
remain blocked indefinitely. Obviously some applications and participants cannot
tolerate being blocked.

As a result, quite early in the development of transaction-processing systems devel-
opers worked to control this problem in a controlled way: As a result, participants
that have gotten past the prepare phase are allowed to make autonomous decisions
as to whether they commit or roll back. A participant that makes such a decision
must record it in case the participant is eventually contacted in order that the origi-
nal transaction can be completed. If the coordinator eventually informs the partici-
pant of the fate of the transaction and it is the same as the autonomous choice the
participant made, there is obviously no problem: The participant simply got there
before the coordinator did! However, if the decision is contrary, a non-atomic out-
come has happened — a heuristic outcome, with a corresponding heuristic decision.
At this point we are no longer in the world of ACID transactions; we have entered
the heuristic zone!

A participant is free to make a heuristic decision at any time after it has been told
to prepare (and told the coordinator it can commit). The implementer of a partici-
pant may choose never to make an autonomous choice for fear of causing a non-
atomic outcome: Just because heuristics are allowed does not mean that they have
to be used.

Other implementations may choose to make autonomous decisions when they have
not heard from the coordinator within a day of being asked to prepare, since most
transaction commits take seconds or minutes to complete. Obviously the choice
the participant makes (to commit or to roll back) will depend upon the participant
implementation and possibly the application or environment in which the partici-
pant finds itself. For example, an implementation that controls a nuclear reactor’s
control rods may decide to always fail-safe and drop the rods back into the
reactor — that is, to roll back — if it does not hear from the administrator.

The possible heuristic outcomes are as follows:

✦ Heuristic rollback — The commit operation failed because some or all of the
participants unilaterally rolled back the transaction.

✦ Heuristic commit — An attempted rollback operation failed because all the
participants unilaterally committed. This may happen if, for example, the
coordinator was able to successfully prepare the transaction but then decided
to roll it back (because it could not update its log, for instance), while in the
meantime the participants decided to commit.

h539663 ch10.qxd 7/25/03 9:15 AM Page 261

262 Part III ✦ The Enterprise Information System Tier

✦ Heuristic mixed — Some updates were committed while others were rolled
back.

✦ Heuristic hazard — The disposition of some of the updates is unknown.
Those that are known have either all been committed or all been rolled back.

How heuristic outcomes are reported to the application and resolved is usually the
domain of complex, manually-driven system-administration tools. Attempting an
automatic resolution requires semantic information about the nature of partici-
pants involved in the transaction that is normally not available to most transaction-
processing systems.

It is worthwhile to check how your transaction implementation of choice manages
heuristics before you use transactions in anger. Resolving heuristics without good
support from the transaction system can be a long and arduous task, and further
errors may occur during the resolution process. For example, imagine finding that
the airline-reservation center and credit-card sites had autonomously booked your
plane ticket and charged you for the pleasure when you had told the reservation
transaction to roll back. Resolving this problem is not trivial even if you find out
immediately that the errors have occurred, but if the transaction system does not
tell you which participants did not guarantee atomicity, you may not learn about
the errors until the tickets arrive in the mail — followed by your credit card bill!

Understanding Local and Distributed
Transactions

So far, we haven’t said anything about whether transactions are running in a local
or remote application or environment. In fact we have said nothing about locality.
So, let’s address that in the next few sections.

Local transactions
A local transaction is one that is created and committed against a single resource
such as a database. Local transactions can be used for a large number of applica-
tions in which the same database instance is being used. In addition, support for
local transactions is mandated in order for a JDBC driver to claim full compliance.
Therefore, you can generally expect the ability to create and manage local transac-
tions against most databases you will encounter in your J2EE travels.

If we concentrate purely on local transactions within J2EE, JDBC connections have
an auto-commit mode, which by default is set to “on”. What this means is that every
SQL statement created by the connection will be executed within its own transac-
tion, which will be committed immediately upon completion. In order to associate

h539663 ch10.qxd 7/25/03 9:15 AM Page 262

263Chapter 10 ✦ Introducing Java Transactions

more than one statement with a transaction you must disable this mode. The fol-
lowing code, in which con represents an object that implements the java.sql.
Connection interface, shows how the auto-commit mode is disabled:

con.setAutoCommit(false);

If auto-commit is disabled, a transaction will be implicitly created and associated
with the connection when the first ever statement is executed, but the transaction
will not be committed until the application explicitly calls the connection’s commit()
method. At that stage all statements that were executed prior to the last call to
commit() will be committed. Likewise, the application can call rollback() and
undo all the statements. The following code illustrates the general sequence for
committing multiple statements simultaneously:

// turn off auto-commit mode
con.setAutoCommit (false);
// create a statement
Statement update1 = con.createStatement ();
// execute an update
update1.executeUpdate (. . .);
// create a second statement
Statement update2 = con.createStatement ();
// execute a second update
update2.executeUpdate (. . .);
// commit the transaction
con.commit ();

In this example the auto-commit mode is disabled for the connection. Subsequently,
two different updates are executed with the context of the same transaction since
both statements are associated with the transactional connection. When the
commit() method is invoked both of the updates will be made permanent in the
target database.

The following are the advantages and disadvantages of using auto-commit:

If auto-commit is enabled for a given connection and multiple statements are
executed during the application, the potential exists for multiple unnecessary
commits. An inherent overhead associated with database commits may
degrade the performance of such an application. For example, making a
backup copy of the object state prior to performing updates and then over-
writing the state with the final state of the object if the transaction commits,
or replacing the state with the backup. Disabling auto-commit can improve
performance.

Database locks associated with transactional processing may cause perfor-
mance degradation in a situation involving multiple concurrent users. In such
a situation, a developer may choose to enable auto-commit so the database
locks are not held for long durations.

h539663 ch10.qxd 7/25/03 9:15 AM Page 263

264 Part III ✦ The Enterprise Information System Tier

In general, therefore, you need to consider carefully where to place the transac-
tional boundaries for statement execution in order to optimize an application’s
throughput.

Distributed transactions
In order for a transaction to span a distributed number of services or tasks, certain
information has to flow between the sites or domains involved in the application.
This information is commonly referred to as the context and includes the following
elements:

Globally unique transaction identifier

Coordinator location or endpoint address so participants can be registered

As shown in Figure 10-3, the context is propagated by means of whatever distribu-
tion mechanism is appropriate to the environment in which it is used. The context
is typically propagated implicitly as part of normal message interchange within an
application. That is to say, the application programmer need not do anything to
ensure that the context is propagated on remote invocations.

Figure 10-3: Relationship between services and contexts

Transaction-processing systems typically use interceptors to add the transaction
context associated with the invoking thread to the outgoing application message.
As shown in the figure, when the interceptor is called it asks the transaction service
for the necessary information about the transaction (if any) associated with the
application thread performing the remote-service invocation.

On the service side, the transaction context is stripped off the message and associ-
ated with the thread that is about to do the work requested. As you will see in the fol-
lowing section, the transaction associated may be the original transaction resident at
the client, or it may entail the domain importing the transaction context to create a

Application
Message

Context Context

Message

Decompose

Message
+

Context

Server

Compose

InterceptorInterceptor

Transaction
service

Transaction
service

h539663 ch10.qxd 7/25/03 9:15 AM Page 264

265Chapter 10 ✦ Introducing Java Transactions

local transaction proxy for the remote transaction. In either event, it appears as
though the transaction seamlessly crosses process/machine boundaries.

Interposition
Consider the situation depicted in Figure 10-4, which involves a transaction coordi-
nator and three participants. Let’s assume that each of these participants is on a
different machine from the coordinator and from each other. Each of the lines con-
necting the coordinator to the participants also represents the invocations from the
coordinator to the participants and vice versa. Now perform the following actions:

1. Enroll a participant in the transaction.

2. Execute the two-phase commit protocol.

Figure 10-4: Illustration of a distributed transaction

The overhead involved in making these distributed invocations will depend upon a
number of factors, including how congested the network is, the load on the respec-
tive machines, and the number of transactions being executed. In addition, as the
number of participants increases, so does the overhead involved in the coordina-
tor’s executing the two-phase commit protocol.

A common way to help reduce this overhead involves first recognizing the fact that
as far as a coordinator is concerned it does not matter what the participant imple-
mentation is. However, although one participant may interact with a database to
commit the transaction, another may just as readily be responsible for forwarding
the coordinators’ messages to a number of databases — essentially acting as a coor-
dinator itself, as shown in Figure 10-5.

Coordinator

ParticipantParticipant

Participant

h539663 ch10.qxd 7/25/03 9:15 AM Page 265

266 Part III ✦ The Enterprise Information System Tier

Figure 10-5: Example of a participant also acting as a
subordinate coordinator

In this case, the participant is acting like a proxy for the transaction coordinator
(the root coordinator). In the example, the proxy coordinator is responsible for
interacting with the two participants when it receives an invocation from the coor-
dinator and for collating their responses (and its own) for the coordinator. As far as
a participant is concerned a coordinator invokes it, whereas as far as the root coor-
dinator is concerned it only sees participants.

This technique of using proxy coordinators (also known as subordinate coordinators
or sub-coordinators) is known as interposition. Each domain (machine) that imports
a transaction context may create a subordinate coordinator that enrolls with the
imported coordinator as though it were a participant. Any participants required to
enroll in the transaction within this domain actually enroll with the subordinate
coordinator. In a large distributed application a tree of coordinators and partici-
pants may be created, as illustrated in Figure 10-6.

Because a subordinate coordinator must execute the two-phase commit protocol
on its enlisted participants, it must have its own transaction log and corresponding
failure-recovery subsystem. The subordinate must record sufficient recovery infor-
mation for any work it may do as a participant, and it must record additional recov-
ery information in its role as a coordinator.

Coordinator

ParticipantParticipant

Participant/
proxy-coordinator

h539663 ch10.qxd 7/25/03 9:15 AM Page 266

267Chapter 10 ✦ Introducing Java Transactions

Figure 10-6: Example tree structure of a distributed transaction with interposition

Now, you may be asking yourself, “Why do I need to know this?” The answer is
fairly simple and straightforward: Any decent distributed transaction system will
provide you with interposition as standard, and if it does not you should look else-
where. In our experience, the performance advantages of using interposition can be
significant as soon as the number of participants from a single machine gets above
one. Although you may not foresee such an occurrence, it’s easy for one to happen
as your applications grow with customer needs. If you don’t have the support now
you may not have it when you really need it, and that could leave you with just one
choice: moving to another vendor implementation. Despite standards, moving from
one vendor implementation to another is not trivial and gets more and more com-
plex as your applications get bigger and bigger. Plan for the future now and don’t
take the risk.

So far, we’ve considered atomicity (the A in ACID) and some of the issues involved
when using transactions in a distributed environment. Now let’s look at the I (isola-
tion) property of an ACID transaction.

Understanding Consistency
A transactional application should maintain the consistency of the resources
(databases, file systems, and so on) that it uses. In essence, transactional applica-
tions should move from one consistent state to another. However, unlike the other

Root coordinator

Leaf
participant

Subordinate
Coordinator

h539663 ch10.qxd 7/25/03 9:15 AM Page 267

268 Part III ✦ The Enterprise Information System Tier

transactional properties (atomicity, isolation, and durability), consistency is some-
thing that the transaction system cannot achieve by itself because it does not pos-
sess any semantic information about the resources it manipulates; it would be
impossible for a transaction-processing system to assert that the resources are
moving to (or from) consistent states. All a transaction system can ensure is that
any state changes that do occur are performed in a manner that is guaranteed
despite failures. It is the application programmer’s responsibility to ensure consis-
tency — in whatever way makes sense for the resources concerned.

Whereas consistency is really a property of the application, the next ACID property
we’ll consider (isolation) sits between the application and the transaction service.
Luckily for us, it can be tied quite closely to consistency.

Introducing Isolation (Serializability)
This property ensures that the concurrent executions of programs that access com-
mon objects are free from interference (that is, it ensures that the concurrent execu-
tion can be shown to be equivalent to some serial order of execution). Some form of
concurrency control policy is required to ensure this property. Typically this policy
is implemented by means of locks associated with the resource being managed.
When a data item is accessed from within a transaction a lock is acquired on it. This
lock may be of either of the following types:

✦ READ — This type of lock is acquired by the resource prior to reading the
data item.

✦ WRITE — This type of lock is acquired by the resource prior to updating the
data item.

The most common locking rule allows for concurrent read access to a data item
while requiring exclusive access for data updates. In other words, a READ lock asso-
ciated with one transaction does not conflict with READ locks from other transac-
tions, whereas a WRITE lock conflicts with all other types of lock from other
transactions.

In order to ensure transaction serializability, locking must follow a two-phase pol-
icy, as illustrated in Figure 10-7. During the first phase, termed the growing phase, a
computation can acquire locks but not release them. The second phase of the com-
putation is the shrinking phase, during which time held locks can be released but no
locks can be acquired.

h539663 ch10.qxd 7/25/03 9:15 AM Page 268

269Chapter 10 ✦ Introducing Java Transactions

Figure 10-7: How locks are acquired during transaction

Now suppose that a transaction in its shrinking phase is to be rolled back and that
some objects with write locks have already been released. If some of these objects
have been locked on behalf of other transactions, rolling back of the first transac-
tion will require these transactions to be rolled back as well. To avoid this cascade
rollback problem, it is necessary to make the shrinking phase appear to be instanta-
neous, as shown in the preceding figure by the dotted lines. In effect this means
that all the held locks are released simultaneously.

Optimistic versus pessimistic concurrency control
Most transaction systems use what is commonly referred to as pessimistic concur-
rency control: Whenever a data structure or other transactional resource is
accessed, a lock is obtained on it. This lock will remain held for the duration of the
transaction. The benefit of this is that other users will not be able to modify (and
possibly not even be able to observe) the resource until the holding transaction
has terminated. This style has the following disadvantages:

There can be significant overhead involved in acquiring and maintaining
concurrency-control information in an environment where conflict or data
sharing is not high.

Deadlocks may occur, in which one user waits for another to release a lock
not realizing that that user is waiting for the release of a lock held by the first.

Time

Growing phase Shrinking phase

Locks held

h539663 ch10.qxd 7/25/03 9:15 AM Page 269

270 Part III ✦ The Enterprise Information System Tier

Optimistic concurrency control assumes that conflicts are not high and tries to
ensure locks are held only briefly. It requires a means of detecting whether an
update to a resource does conflict with any updates that may have occurred in the
interim, and a means of determining how to recover from those conflicts. Typically
detection will be made by means of timestamps: The system will take a snapshot of
the timestamps associated with resources and compare them with the timestamps
available when the transaction commits. Resolution is a different problem entirely,
because it requires semantic information about the resources concerned.
Therefore, most transaction systems that offer optimistic schemes will typically
cause the detecting transaction to roll back. After rollback the application must
retry, this time with new data.

Assuming both types of concurrency control are available, whether to use opti-
mistic or pessimistic concurrency control is up to the user and the application
being considered. A close examination of the environment in which the application
and transactional resources reside is necessary to determine whether shared
access to resources should occur, and the probability that sharing will cause a
transaction to have to roll back.

Unfortunately, most J2EE transaction systems support only pessimistic concur-
rency control. This obviously makes the choice of which type to use easier, but it
still presents performance problems. However, as you will see in the following sec-
tions, within pessimistic concurrency control are ways of removing potential per-
formance bottlenecks.

Degrees of isolation
One of the problems with two-phase locking is that if the majority of requests on
data are read-only, locks may be held for a long time and thus reduce the concur-
rency possible within the system to unacceptable levels. Consider for example that
rather than reserving a seat on an airline, someone may decide to browse and see
which seats have been allocated and to whom. If such a user does this within a sin-
gle transaction, every seat he or she looks at will potentially have a READ lock
obtained for it and prevent other users from reserving that seat (reservation obvi-
ously requires a WRITE lock because the state of the seat is being updated). Those
seats will be unavailable for the duration of the browsing user’s transaction.

In order to address this problem weaker locking rules were introduced, ranging in
severity from no transactional support to very strict access control. As the transac-
tion level gets higher greater care is taken to avoid conflicts. In addition, higher
transaction levels yield slower execution times because of the need for increased
database locking and the resultant decrease in concurrency between clients. Thus,
because of the inherent performance implications, careful consideration is required
when selecting the isolation level for a given application. In the following sections
we will describe the following levels:

h539663 ch10.qxd 7/25/03 9:15 AM Page 270

271Chapter 10 ✦ Introducing Java Transactions

✦ None

✦ Read uncommitted

✦ Read committed

✦ Repeatable read

✦ Serializable

None
None is the lowest isolation level, indicating that transactions are not supported.
Strictly speaking this level is not valid, because isolation is a prerequisite for
transactionality.

Read uncommitted
Read uncommitted specifies that the following types of reads can occur:

✦ Dirty reads

✦ Non-repeatable reads

✦ Phantom reads

Dirty reads
A dirty read takes place when uncommitted data is read from the database. This
will commonly happen when Transaction A reads information that has been modi-
fied by Transaction B before the latter has actually committed the transaction.
Consequently, the information read by Transaction A may not be valid if
Transaction B is rolled back.

Non-repeatable reads
A non-repeatable takes place when the data read within the scope of a transaction
would be different if the query were repeated.

Phantom reads
Finally, a phantom read occurs when Transaction A queries for data satisfying a
given condition, Transaction B subsequently inserts or updates data such that
another row now meets the condition in Transaction A, and Transaction A later
repeats the query. The new row is referred to as a phantom row.

This transaction level is most appropriate for situations in which an application is
simply querying for data that is rarely modified, or that is designated as read-only.
In this situation the application will perform optimally because little or no locking
overhead is incurred.

h539663 ch10.qxd 7/25/03 9:15 AM Page 271

272 Part III ✦ The Enterprise Information System Tier

Read committed
Read committed allows non-repeatable and phantom reads while precluding read-
ing of uncommitted data. In other words, this isolation level ensures that an execut-
ing query sees only data that existed in the database before the transaction was
initiated; it does not see uncommitted data or changes committed by concurrent
transactions. The possibility does exist that two successive queries in the same
transaction could see different results if other queries commit data between the
execution of the two (see non-repeatable read above).

This isolation level is supported by most databases and is generally the default
level. The isolation provided by this level is adequate for many applications, but for
applications that require complex database interactions a more rigorously consis-
tent view of the database may be required.

Repeatable read
In addition to the data consistency attained with read-committed isolation, a
repeatable read ensures that executing the same query multiple times will result in
the same data set even if another transaction modifies the data. Transaction with
this isolation level can therefore only execute repeatable reads.

Serializable
The serializable isolation level mandates that the transaction has exclusive update
privileges to the database data; other concurrent transactions can neither write nor
read the same data. In addition, the transaction has no view into data modifications
performed by other concurrent transactions; the data view of the given transaction
does not change from the view provided when the transaction is initiated.

We’ve looked at Atomicity, Consistency, and Isolation, so that only leaves Durability
for us to consider in the next section. Along with Atomicity, Durability is perhaps
the most important aspect of transactions. It can certainly have a significant impact
on performance.

Understanding the Role of Durability
The durability (persistence) property requires that any state changes that occur
during the transaction must be saved in a manner such that a subsequent failure
will not cause them to be lost. How these state changes are made durable is depen-
dent on the transaction system and the resources ultimately used to commit the
work done by the transactional objects.

The durability property can never be a guarantee, because a catastrophic failure (such
as corruption of the hard disk) can ultimately result in total loss of information.

Note

Note

h539663 ch10.qxd 7/25/03 9:15 AM Page 272

273Chapter 10 ✦ Introducing Java Transactions

Although most users of transactions will consider durability as an aspect for the
application and its objects or participants (remember what a participant must do
during the commit protocol?), an aspect also exists within the transaction-system
implementation itself. In order to guarantee atomicity in the presence of failures
(both transaction coordinator and participant), it is necessary for the transaction
service to maintain durable state. What this state comprises will depend upon the
implementation. For example, the coordinator may have to remember the point in
the protocol it has reached (that is, whether it is committing or rolling back), the
identity of all registered participants, and what part of the protocol those partici-
pants have reached.

This information is recorded in what is typically referred to as the transaction log.
Some implementations may maintain a separate log (file) for each transaction, which
is removed when it is no longer needed. An implementation might also have a single
log for all transactions, in which the transaction information is appended to the end
of the log and pruned from the log when the respective transaction completes.

All of this information regarding durability is needed in case of failures so that the
transaction system can eventually complete any transactions affected (whether
this is to commit or rollback). In the next section, we’ll look at how failure recovery
uses this information.

Performing Failure Recovery
Failures occur in all computing systems, both centralized and distributed. The
more components involved with an application, the greater the chance of a failure
occurring. In a distributed system, failures are often independent — the failure of
one component does not necessarily cause the (immediate) failure of another. In
order to deal with this situation, transaction-service implementations typically pos-
sess failure-recovery subsystems that will ensure that results of a transaction are
applied consistently to all resources affected by the transaction, even if some of the
application processes or the machine hosting them crash or lose network connec-
tivity. In the case of machine (system) crash or network failure, the recovery will
not take place until the system or network is restored, but the original application
does not need to be restarted: Recovery responsibility is typically delegated to a
separate recovery process.

Recovery after failure requires that information about the transaction and the
resources involved survive the failure and be accessible afterward: This informa-
tion (the transaction log mentioned in the previous section) is held in some durable
state-store and therefore available upon machine recovery. Typically the recovery
system scans the transaction log to determine whether any transactions require
recovery. If such transactions exist, the information within the log is used to recre-
ate the transaction and continue to complete it. What action the recovery subsys-
tem performs will depend upon which flavor of two-phase commit the transaction

h539663 ch10.qxd 7/25/03 9:15 AM Page 273

274 Part III ✦ The Enterprise Information System Tier

system uses; for example, in a presumed rollback protocol, the fact that a log entry
exists implicitly means that the transaction was in the process of committing.

Until the recovery procedures are complete, resources affected by a transaction
that was in progress at the time of the failure may be inaccessible. For database
resources, this situation may be reported as tables or rows held by in-doubt transac-
tions. Recall that resources previously prepared may make an autonomous decision
about whether to commit or roll back if the coordinator fails. Upon recovery, this
autonomous decision may result in a non-atomic outcome. For example, the recov-
ered coordinator sends a participant the second-phase commit message only to
find that the participant has previously rolled back; this heuristic outcome will be
reported to the coordinator, which should then report it to the application or sys-
tem administrator to resolve.

What we have described so far assumes that recovery occurs from the coordinator
(a system known as top-down recovery). However, this is not necessarily always the
case. In fact, recovery may have to be driven from the participant (which is known
as bottom-up recovery). So, for example, if a machine on which a participant resides
fails and then recovers, the participant may need to enquire as to the status of the
transaction. If participants wait for recovery to be driven from the top down, the
following problems could occur:

If the coordinator has also failed and recovered, it may take some time before
the recovery subsystem gets around to recovering the specific transaction;
hence resources may be inaccessible for longer than necessary.

If a presumed rollback protocol is used, and the participant fails after having
said it could prepare, and the coordinator fails before it writes its log, no
recovery will take place on behalf of that transaction — no log entry means
the transaction has rolled back. Hence, the participant will never get a termi-
nation message from the recovery subsystem.

Because of these problems, most transaction systems require that a failure-
recovery component exist on both the coordinator and participant machines
so that recovery can be driven in a bi-directional manner.

We’ve seen how all of the ACID properties of transactions are provided. In the next
few sections, let’s turn our attention to what kind of system provides transactions
(the transaction processing monitor).

Using Transaction-Processing Monitors
So far we have talked mainly about transaction systems, or transaction-processing
systems. These enforce ACID properties for transactional resources by using a two-
phase commit protocol in conjunction with two-phase locking. But most transaction

h539663 ch10.qxd 7/25/03 9:15 AM Page 274

275Chapter 10 ✦ Introducing Java Transactions

products are sold as transaction-processing monitors (TPMs). A product that sup-
ports the development of transactional applications or systems is identified as a
TPM and provides the following features:

Toolkits and APIs to allow transactions to be demarcated (created and termi-
nated) and controlled in a distributed environment (given our definition of a
transaction system, we can say that it is at the heart of this part of the TPM)

Security requirements are integrated. An execution environment to manage
transaction load to maintain high throughput as the number of transactions to
be executed increases — transactions may be automatically distributed across
a number of different execution environments

Transactions are highly available. If a transaction fails it may be automatically
restarted on another machine, or multiple copies (replicas) may be executed
to mask failures

Administration services for configuring, monitoring, and managing transac-
tions and transactional applications

In the world of J2EE, many of these services may seem familiar — they form the
heart of application servers. A TPM is essentially a transaction-aware application
server, and, in fact, many of the features found in J2EE application servers have
their basis in transaction-processing monitors. Likewise, many modern-day TPMs
are Java application servers with transaction-service cores.

While most transaction systems provide ACID transactions, there are places where
they simply don’t work: ACID is too strong. So, let’s briefly look at other types of
transactions and where J2EE is going in this area.

Transaction Models
The most common form of transaction that you will use is called a top-level transac-
tion and it exhibits all the ACID properties. However, traditional transaction-
processing systems are sufficient if an application function can be represented as
a single top-level transaction. Frequently this is not the case. Top-level transactions
are most suitably viewed as “short-lived” entities, performing stable state changes
to the system; they are less suited when used in “long-lived” application functions
(such as running for minutes, hours, or days). Long-lived top-level transactions may
reduce the concurrency in the system to an unacceptable level by holding on to
resources (such as locks) for a long time; furthermore, if such a transaction rolls
back, much valuable work could be undone. Several enhancements to the tradi-
tional flat-transaction model have been proposed and we will briefly describe the
following ones in this section:

h539663 ch10.qxd 7/25/03 9:15 AM Page 275

276 Part III ✦ The Enterprise Information System Tier

✦ Nested transactions

✦ Nested top-level transactions

✦ Extended transaction models and the J2EE Activity Service

Nested transactions
Given a system that provides transactions for certain operations, it is sometimes
necessary to combine them to form another operation, which is also required to be
a transaction. The resulting transaction’s effects are a combination of the effects of
the transactions from which it is composed. The transactions contained within the
resulting transaction are called nested transactions (or sub-transactions), and the
resulting transaction is referred to as the enclosing transaction. The enclosing trans-
action is sometimes referred to as the parent of a nested (or child) transaction. A
hierarchical transaction structure can thus result, as shown in Figure 10-8, in which
each ellipse is a separate transaction.

Figure 10-8: Diagrammatic representation of a nested transaction

If a remote invocation is made within the scope of a nested transaction, the trans-
action context may contain information about the entire hierarchy and not just the
most current transaction.

An important difference exists between nested and top-level transactions: The
effect of a nested transaction is provisional upon the commit or rollback of its
enclosing transaction(s). That is to say, the effects will be recovered if the enclosing
transaction rolls back, even if the nested transaction has initially committed.

Note

Time

Nested transaction

Top-level transaction

h539663 ch10.qxd 7/25/03 9:15 AM Page 276

277Chapter 10 ✦ Introducing Java Transactions

Sub-transactions are useful for two reasons:

✦ Fault isolation — If a sub-transaction rolls back the enclosing transaction is
not required to roll back as well, so any work already done is preserved.

✦ Modularity — If a transaction is already associated with a call when a new
transaction is begun, the transaction may be automatically nested within it.
Therefore a programmer who knows that an object requires transactions can
use them within the object. If the object’s methods are invoked without a
client transaction, the object’s transactions will simply be top-level; other-
wise, they will be nested within the scope of the client’s transactions.
Likewise, a client need not know that the object is transactional and can begin
its own transaction.

Because nested transactions do not make any state changes durable until the
enclosing top-level transaction commits, they do not need failure-recovery
mechanisms.

Nested top-level transactions
In addition to normal top-level and nested transactions are nested top-level transac-
tions, which can be used to relax isolation in a controlled manner. With this mecha-
nism it is possible to invoke a top-level transaction from within another transaction,
regardless of the depth of the current transaction hierarchy. As illustrated in Figure
10-9, a nested top-level transaction can be executed from anywhere within another
transaction and behaves exactly like a normal top-level transaction: Its results are
made permanent when it commits and will not be undone if any of the transactions
within which it was originally nested roll back. In the event that the invoking trans-
action rolls back compensation may be required.

Figure 10-9: Diagrammatic representation of an independent
top-level transaction

C

B

A

Note

h539663 ch10.qxd 7/25/03 9:15 AM Page 277

278 Part III ✦ The Enterprise Information System Tier

Figure 10-9 shows a typical nesting of transactions, wherein Transaction B is nested
within Transaction A. Although Transaction C is logically nested within B, because
it is an independent top-level transaction it will commit or roll back independently
of the other transactions within the structure.

Extended transaction models and the
J2EE Activity Service
Building certain activities from transactions that execute for an extended period of
time (typically called long-running transactions) can reduce the amount of concur-
rency within an application or, in the event of failures, require work to be per-
formed again. For example, in certain classes of application it is known that
resources acquired within a transaction can be released “early,” rather than having
to wait until the transaction terminates. However, in the event of the transaction
rolling back, certain compensation may be necessary to restore the system to a
consistent state. One way of approaching this specific problem would be to use
nested top-level transactions.

Consider the following situation. A user wants to book an entire trip, including a
taxi (t1), reserving a table at a restaurant (t2), reserving a seat at the theatre (t3),
and then booking a room at a hotel (t4), as shown in Figure 10-10. If all the applica-
tion activity happens within a single transaction (indicated by the dotted ellipse),
the taxi resource, restaurant resource, and so on will remain locked until the entire
trip has been arranged. This situation will most likely be unacceptable to the indi-
vidual service providers if the booking takes the user longer than a matter of min-
utes to conclude.

Figure 10-10: This logical long-running transaction does not encounter failure.

Application
activity

Time

t1 t4

t2

t3

t5 t6

h539663 ch10.qxd 7/25/03 9:15 AM Page 278

279Chapter 10 ✦ Introducing Java Transactions

Therefore, as Figure 10-10 shows, we can structure each service interaction as a
separate transaction (the solid ellipses) to form a logical long-running transaction.
However, if failures and concurrent access occur during the lifetime of these trans-
actional activities, the behavior of the entire logical long-running transaction may
not possess ACID properties. Furthermore, some form of (application-specific) com-
pensation may be required to attempt to return the state of the system to (applica-
tion-specific) consistency.

For example, let’s assume that t4 has failed (rolls back), as shown in Figure 10-11.
Further, let’s assume that the application can continue to make forward progress,
but that in order to do so it must now undo some state changes made prior to the
start of t4 (by t1, t2, or t3); because t4 is a transaction, its state changes will be
undone automatically by the transaction system, so no form of compensation is
required. Therefore, new activities are started: tc1, which is a compensation activity
that will attempt to undo state changes performed by, say, t2; and t3, which will con-
tinue the application once tc1 has completed. tc5’ and tc6’ are new activities that
continue after compensation; for example, because it was not possible to reserve
the theater, restaurant, and hotel, it is decided to book tickets at the cinema.
Obviously other forms of transaction composition are possible: For example, t5’ can
execute in parallel to tc1.

Figure 10-11: This logical long-running transaction encounters failure.

This structuring of top-level transactions in this manner is just one example of what
are known as extended transactions. However, it is unrealistic to believe that the
“one-size-fits-all” paradigm will suffice; a single-model approach to extended trans-
actions is unlikely to be sufficient for all (or even the majority of) applications.

Application
activity

Time

Failure

t1 t4

t2

t3

tc1 t5' t6'

h539663 ch10.qxd 7/25/03 9:15 AM Page 279

280 Part III ✦ The Enterprise Information System Tier

J2EE is tackling this problem with the Activity Service, which builds upon work done
within the OMG on the definition of a low-level infrastructure to support the coordi-
nation and control of abstract, application-specific entities. (Activities are discussed
in the next section.) These entities (activities) may be transactional, they may use
weaker forms of serializability, or they may not be transactional at all; the important
point is that the Activity Service is concerned only with their control and coordina-
tion, leaving the semantics of such activities to the application programmer.

It’s worth pausing for a moment to point out that this is very new and cutting-edge
stuff, so please don’t expect it to be available from all vendors immediately! It will
most probably take a while for this service to make its way into J2EE, but if you are
either using transactions now or thinking of using them in the future you’re better
off knowing now what to expect.

What is an Activity?
An Activity is a unit of distributed work that may or may not be transactional.
During its lifetime an Activity may have transactional and non-transactional peri-
ods. Every entity, including other Activities, can be part of an Activity, although an
Activity need not be composed of other Activities. An Activity is used to carry
transactional and other essential specifications of the application’s contract with
its middleware.

Demarcation signals of any kind are communicated to any registered entities
(actions) through signals. For example, the termination of one activity may initiate
the start/restart of other activities in a workflow-like environment. Signals can be
used to infer a flow of control during the execution of an application. Actions allow
an Activity to be independent of the specific work it is required to do for signals.

An Activity may run for an arbitrary length of time, and may use transactions (and
sub-transactions) at arbitrary points during its lifetime. For example, consider
Figure 10-12, which shows a series of connected Activities cooperating during the
lifetime of an application. The solid ellipses represent transaction boundaries,
whereas the dotted ellipses represent Activity boundaries. Activity A1 uses two top-
level transactions during its execution, whereas Activity A2 uses none. Additionally,
transactional Activity A3 has another transactional Activity, A3’, nested within it.

Just as a thread of control may require transactional and non-transactional periods
and can suspend and resume its transactionality, so too may it require periods of
non-Activity-related work. Thus, it is possible for an Activity thread to perform
some work outside the scope of the activity before returning to Activity-related
work. In the example shown in the figure, if the thread performing Activity A3’
decides to perform some non-Activity-related work, it can do so outside the scope
of A3’ and A3.

h539663 ch10.qxd 7/25/03 9:15 AM Page 280

281Chapter 10 ✦ Introducing Java Transactions

Figure 10-12: The relationship between activities and transactions

Signals, SignalSets, and Actions
An Activity coordinator may be implicitly associated with each Activity and is used
to drive the Signal and Action interactions. If an Activity has no associated Actions,
then it need not have an activity coordinator. Activities that must be informed when
another Activity sends a specific Signal can register an appropriate Action with that
Activity’s coordinator. When the Activity sends a signal (such as at termination
time), the coordinator’s role is to forward this Signal to all registered Actions and to
deal with the outcomes generated by the Actions.

To allow Actions to be selectively signaled, Signals are bound to SignalSets, and
Actions are implicitly associated with SignalSets. When a Signal is raised it is
within the context of a specific SignalSet, and only those Actions registered with
that SignalSet receive the Signal. An Action may register interest in more than one
SignalSet and an Activity may use more than one SignalSet during its lifetime.

With the exception of some predefined Signals and SignalSets, the majority of
Signals and SignalSets are defined and provided by the higher-level applications
that make use of this framework. To use the generic framework provided it is neces-
sary for these higher-level applications to impose application-specific meanings
upon Signals and SignalSets— that is, the applications must impose a structure
on their abstract form. A Signal with the name foobar can mean one thing when
used within one application, but the same name may have a completely different
meaning when used elsewhere.

The typical coordinator logic that determines which messages to send to which
participants is actually embodied within SignalSets, so the real coordinator can

A1 A2

A3

A5

A4

Time

A3‘A3‘

h539663 ch10.qxd 7/25/03 9:15 AM Page 281

282 Part III ✦ The Enterprise Information System Tier

be fairly dumb. This setup enables the same coordinator to be used with any num-
ber of different SignalSet implementations and hence with any number of associ-
ated extended-transaction models. The set of Signals a given SignalSet can
generate may change from one use to another and the actual set of Signals it sends
may be a subset of these Signals. The logic that determines which Signal to send to
an Action is hidden within a SignalSet and may be as complex or as simple as is
required by the Activity implementation. When a Signal is sent to an Action, the
Action acts upon the content and returns an outcome, which is passed to the
SignalSet; the SignalSet may then use that information when determining the
nature of the next Signal to send.

As shown in Figure 10-13, a given SignalSet is assumed to implement a state
machine, and so it starts off in the waiting state until it is required by the Activity
coordinator to send its first Signal, when it either enters the first Signal state or the
end state if it has no Signals to send. Once in the end state the SignalSet cannot
provide any further Signals and will not be reused. If the SignalSet enters the first
Signal state it may then be asked for another Signal to send, and will then either
enter the next Signal state, or the end state if it has no further Signals to send. Once
in the next Signal state the SignalSet will be asked for a new Signal until it enters
the end state. A new Signal is only requested from the SignalSet when all regis-
tered Actions have been sent the current Signal, or when an exceptional outcome is
generated by an Action.

Figure 10-13: The state transitions a SignalSet goes
through

For example, suppose we have two SignalSets to represent the possible out-
comes for a transaction, Rollback and Commit and register Actions with the
Activity as the transactional participants. The Signal associated with the Rollback
SignalSet would simply be “rollback”, whereas the Commit SignalSet would
have “prepare”, “commit”, and “rollback” Signals. If the application decides to com-
mit, then when called by the Activity Coordinator the SignalSet would generate
the “prepare” Signal to be sent to the registered Actions, as shown in Figure 10-14.
The Activity Coordinator would then send this Signal to each Action, and inform the

Waiting

First signal Next signal

h539663 ch10.qxd 7/25/03 9:15 AM Page 282

283Chapter 10 ✦ Introducing Java Transactions

SignalSet of the result. Assuming none of the Actions returns an exceptional
response to this Signal, then when all Actions have received the “prepare” Signal,
and the Activity Coordinator asks the SignalSet for the next Signal, it will return
the “commit” Signal.

Figure 10-14: An example of the Activity coordinator signaling
Actions

However, if during the “prepare” phase, an Action returns a response which indi-
cates that there is no point in sending the “prepare” Signal to further Actions, the
Activity Coordinator will be required to obtain a new Signal from the SignalSet
(the “rollback” Signal in this case), and send this to all registered Actions. As stated
previously, the intelligence about which Signal to send, and about interpreting out-
comes from Actions, resides within the SignalSet, allowing implementations of
the framework presented within this specification to be highly configurable, to
match application requirements.

In the following sections, we’ll look at the various transaction standards that have
arisen over the years since transaction-processing technology was first developed
and how they relate to J2EE.

Understanding Transaction Standards
In this section we will describe two of the more important transaction standards —
X/Open Distributed Transaction Processing and the Object Transaction Service
(OTS) — and how they relate to J2EE. As you will see in the section on the Java

Action

Signal
set

Get
signal

Activity coordinator

Transmit signal

Action Action Action

h539663 ch10.qxd 7/25/03 9:15 AM Page 283

284 Part III ✦ The Enterprise Information System Tier

Transaction API, these standards have influenced transactions in J2EE significantly,
either explicitly (in the case of XA, discussed next) or implicitly (in the case of the
OTS). Therefore, it’s important to know some of their details.

X/Open Distributed Transaction Processing
X/Open is part of The Open Group, Inc., whose goal is to promote application porta-
bility through the development of API standards. In 1991 it developed a distributed
transaction–processing model (XA Distributed Transaction Processing), which
includes many of the features offered by traditional TP monitors. The model divides
a transaction-processing system into the three following components:

✦ Transaction manager

✦ Database or other resource manager

✦ Transactional-communications manager

The transactional-communications manager interfaces among them all, as shown in
Figure 10-15. It is of particular importance to us as it essentially forms the basis of
the Java Transaction API (JTA).

Figure 10-15: The X/Open interfaces

Application

TX
XA

TxRPC XATMI CPI-C

XA+Transaction manager Communications resource
manager (CRM)

Resource manager
(RM)

h539663 ch10.qxd 7/25/03 9:15 AM Page 284

285Chapter 10 ✦ Introducing Java Transactions

These are the main actors within this model:

✦ Transaction manager — The TM is what you would expect — the transaction
coordinator and its associated systems. The X/Open specification only sup-
ports top-level transactions.

✦ Communications-resource manager — The CRM provides an API to a commu-
nications system that can be used for distributed transactional systems. The
system ensures that remote invocations have the transaction context propa-
gated with them.

✦ Resource manager — The RM represents the transactional participants,
including databases, messaging queues, file systems, and so on.

✦ XA — This defines the interface between the RM and the TM. Most transaction-
processing systems and major databases support XA. Implementations of this
interface are the transactional participants driven through the two-phase
commit protocol.

✦ XA+ — This is a superset of XA that allows the CRM to inform the TM when
new machines join a distributed transaction.

✦ TX — This defines a transaction-demarcation API and allows applications to
enquire as to the status of transactions.

Most application programmers never see the X/Open DTP actors since they are hid-
den behind vendor-specific extensions, such as database drivers or other high-level
interfaces. The fact that these actors are defined in the C programming language
also restricts some of their immediate applicability.

The Object Transaction Service
The most widely accepted standard for distributed objects is the Common Object
Request Broker Architecture (CORBA) from the Object Management Group (OMG).
It consists of the Object Request Broker (ORB), which enables distributed objects
to interact with each other, and a number of services that have also been specified
by the OMG, including persistence, concurrency control, and the Object
Transaction Service (OTS), which was released in 1992.

The Java Transaction Service (JTS) is the Java language mapping of the OTS.

Up until this point, all the major transaction vendors had their own sets of inter-
faces for interacting with their transaction systems and both interoperability and
portability were virtually impossible. Although some components may have sup-
ported the X/Open XA standard, support was not mandated and was typically
unavailable to programmers directly anyway. Thus, the purpose of the OTS was to
provide a standard set of interfaces through which vendors could expose their

Note

h539663 ch10.qxd 7/25/03 9:15 AM Page 285

286 Part III ✦ The Enterprise Information System Tier

transaction systems and users could drive transactionality in their applications.
The fact that the OTS came at the start of the object-orientation boom also made it
important because no standard for transactions existed in any object-oriented envi-
ronment at that time.

The OTS specification also defines how to interoperate with X/Open XA and other
transaction implementations. Obviously, OTS implementations are required to
interoperate with other OTS implementations.

The OTS does not require all objects to have transactional behavior. Instead objects
can choose not to support transactional operations at all, or to support them for
some requests but not others. Furthermore, the transaction-service specification
distinguishes between recoverable objects and transactional objects. Recoverable
objects are those that contain the actual state that may be changed by a transac-
tion and must therefore be informed when the transaction commits or rolls back to
ensure that the consistency of the state changes. In contrast, a simple transactional
object need not necessarily be a recoverable object if its state is actually imple-
mented by means of other recoverable objects. The major difference is that a
simple transactional object need not take part in the commit protocol used to
determine the outcome of the transaction because it does not maintain any state
itself, having delegated that responsibility to other recoverable objects that will
take part in the commit process. This is essentially the same distinction we made
earlier between transactional objects and participants. The fundamental architec-
ture of the OTS is shown in Figure 10-16.

Figure 10-16: The OTS architecture

Transaction originator

Transaction service

Associated
with thread

Associated
with thread

Recoverable serverTransaction
context

Sent with request

Transaction
context

Transaction
context

Current Current

TransactionFactory
Control

Terminator Control
Coordinator
RecoveryCoordinator

Resource
SubtransactionAwareResource

Current Current

TransactionFactory
Control

Terminator Control
Coordinator
RecoveryCoordinator

Resource
SubtransactionAwareResource

Note

h539663 ch10.qxd 7/25/03 9:15 AM Page 286

287Chapter 10 ✦ Introducing Java Transactions

Briefly the roles are as follows:

✦ Current is the application programmers’ typical means of interacting with
the transaction implementation. It allows applications to start and end trans-
actions. It is a per-thread object, so it must remember the transaction associ-
ated with each thread that has used it. The underlying implementation will
typically use the TransactionFactory for creating top-level transactions.
Nested transactions are an optional extra.

✦ Control is the interface that provides access to a specific transaction and
wraps the transaction Coordinator and Terminator interfaces that are used
to enlist participants and end the transaction, respectively. One of the reasons
for dividing this functionality between two interfaces was to allow a transac-
tion implementation to have finer control over the entities that could termi-
nate the transaction.

✦ Resource and SubtransactionAwareResource represent the transaction
participants and have a deliberately generic interface to allow any two-
phase–compliant implementation — rather than just XA-compliant implemen-
tations — to be registered with the transaction.

✦ Each top-level transaction has an associated RecoveryCoordinator that is
available to participants in order for them to drive failure recovery. As we
mentioned earlier, recovery after a crash will almost certainly be driven from
the transaction coordinators’ end, but allowing participants to drive it as well
can improve recovery time.

Recall that the transaction context is fundamental to any distributed-transaction
system, and the OTS is no different in this respect.

It is important to realize that the OTS is simply a protocol engine that guarantees
that transactional behavior is obeyed but does not directly support all the transac-
tion properties. As such it requires other cooperating services that implement the
required functionality, including the following:

✦ Persistence and Recovery Service — This is required to support the atomic-
ity and durability properties.

✦ Concurrency Control Service — This is required to support the isolation
property.

The OTS does not specify how these different functionalities should be provided.
Because of this, it is more than likely that any vendor implementation will provide
implementations (and hence APIs) that differ from those of other vendors.

h539663 ch10.qxd 7/25/03 9:15 AM Page 287

288 Part III ✦ The Enterprise Information System Tier

To participate within an OTS transaction, a programmer must be concerned with
the following:

Creating Resource and SubtransactionAwareResource objects for each
object that will participate within the transaction or sub-transaction. These
resources are responsible for the persistence, concurrency control, and
recovery for the object. The OTS will invoke these objects during the pre-
pare/commit/rollback phases of the transaction, and the Resources must
then perform all appropriate work.

Registering Resource and SubtransactionAwareResource objects at the
correct time within the transaction, and ensuring that each object is only reg-
istered once within a given transaction. As part of the registration process a
Resource will receive a reference to a RecoveryCoordinator, which must be
made persistent so that recovery can occur in the event of a failure.

Ensuring that, in the case of nested transactions, any propagation of resources
such as locks to parent transactions is correctly performed. The programmer
must also manage the propagation of SubtransactionAwareResource objects
to parents.

In the event of failures, the programmer or system administrator is responsible for
driving the crash recovery for each Resource that was participating within the
transaction.

Importantly, the OTS does not provide any Resource implementations. The applica-
tion programmer or OTS implementer must provide these. We hope that you can
begin to see that writing any kind of complex transactional application using the
OTS can be extremely difficult and is beyond the scope of most programmers. Even
in the case of a relatively trivial application such as one for booking a flight on an
airline, a typical programmer using just the OTS would probably have to spend
more time on using and driving the transaction system than on the higher-level
airline-reservation application.

So, without suitable abstractions to isolate a user from these low-level details, the
use of transactions would generally be limited. In the following section we will show
how J2EE provided just such an abstraction through the EJB and JTA abstractions.

Understanding the Java Transaction API
The interfaces specified by the OTS are typically too low-level for most application
programmers. Although the X/Open DTP XA interfaces define a higher-level abstrac-
tion for the interactions between a resource manager and a transaction manager,
they do so in a very procedural (that is, non-object-oriented) way. The Java
Transaction API (JTA) builds on the X/Open DTP model to define higher-level Java
interfaces to assist in the development of distributed transactional applications.

h539663 ch10.qxd 7/25/03 9:15 AM Page 288

289Chapter 10 ✦ Introducing Java Transactions

The JTA’s relationship to the JTS
Figure 10-17 illustrates the relationships among the JTA and possible transaction-
service implementations. As shown, the JTA defines a general notion of a
Transaction Manager along with the various interfaces and associated roles
required to interact with it. What the JTA specification does not mandate is a spe-
cific transaction-service implementation. Thus, as long as a vendor supports the
JTA interfaces, any underlying transaction service may be used.

Figure 10-17: The JTA architecture

However, the ability to have clients and services participate in transactions that
execute in different vendors’ application servers is important. Therefore, if interop-
erability is required, J2EE recommends that either a JTS be used or the equivalent
on-the-wire protocol be provided by the implementation.

The JTA specification takes the approach of limiting the type of transaction partici-
pant to those that are XA-compliant, rather than allowing the more general
resources that the OTS allows. For most applications this does not pose a problem
because typically the type of resources that will be participating within your trans-
actions will be XA-compliant databases. However, for more advanced applications
it may be necessary to go beyond XA and look at the underlying transaction-service
implementation — if this implementation is standards-based (such as the JTS) it will
obviously make application portability easier to achieve.

Note

EJB JDBC, JMS

JTA XAResourceJTA UserTransaction

Inbound TX Outbound TX

Application
Server

Resource
Manager

Transaction
Manager

Low Level
Transaction

Service
Implementation

Application

JTA TransactionManager

h539663 ch10.qxd 7/25/03 9:15 AM Page 289

290 Part III ✦ The Enterprise Information System Tier

The UserTransaction interface
The javax.transaction.UserTransaction interface provides applications with
the ability to demarcate transaction boundaries. It provides typical methods for
beginning, committing, and rolling back top-level transactions. Nested transactions
are not supported and if the calling thread is already associated with a transaction
begin throws a NotSupportedException. When a new transaction is created,
UserTransaction automatically associates it with the invoking thread, meaning
that the threads’ notion of the current transaction is modified. At any given time a
thread’s transaction context may either be null or refer to a specific global transac-
tion. Multiple threads may be associated with the same global transaction.

commit()
The commit() method is used to complete the transaction currently associated
with the calling thread; after it returns, the thread is no longer associated with any
transaction. If commit() is called when the thread has no associated transaction
context, the transaction manager throws an IllegalStateException. In addition,
some implementations restrict the commit operation to the originator of the trans-
action in order to guarantee integrity. Therefore, a SecurityException is thrown if
the calling thread is not allowed to commit the transaction.

rollback()
The rollback() method is used to roll back the transaction associated with the
current thread. As with commit(), after the rollback() method returns the thread
is no longer associated with any transaction. Likewise, if the thread is not associated
with a transaction, the implementation may throw an IllegalStateException, and
if it is not allowed to terminate the transaction, the implementation may throw a
SecurityException.

Timeout values
Whenever a top-level transaction is created, a timeout value may be associated with
it, meaning that the transaction is subject to being rolled back if it has not completed
within the specified number of seconds. The implementation of your transaction sys-
tem is free to specify any default timeout value for transactions and it’s a good idea
for you to determine that number. You can use the setTransactionTimeout method
to modify this value on a per-thread basis. Per-thread means that when called the
value applies only to the invoking thread. In addition, any new value applies only to
subsequently created transactions.

If a value of 0 is specified, the implementation-specified default will be restored
for the calling thread.

Note

h539663 ch10.qxd 7/25/03 9:15 AM Page 290

291Chapter 10 ✦ Introducing Java Transactions

SetRollbackOnly()
The setRollbackOnly() method marks the transaction so that the only possible
outcome is for it to roll back. The IllegalStateException is raised if the transac-
tion has already been prepared or completed, or if no transaction is currently asso-
ciated with the calling thread.

The UserTransaction interface
The J2EE 1.3 specification indicates that components that may use the
UserTransaction interface (such as EJB, Servlet, and JSP) must access the provided
reference by performing a JNDI name lookup for java:comp/UserTransaction.
Here’s an example:

// create a JNDI Initial context
Context ctx = new InitialContext();
// obtain the UserTransaction
UserTransaction utx = (UserTransaction) ctx.lookup

(“java:comp/UserTransaction”);
// begin the transaction
utx.begin();
// . . . do work
utx.commit();

An EJB may also access the UserTransaction implementation via the EJBContext.
getUserTransaction() method. Any such reference is only valid within the compo-
nent instance that performed the lookup.

The TransactionManager interface
Rather than UserTransaction, an application server uses the javax.transaction.
TransactionManager interface to demarcate transaction boundaries on behalf of
an application and its associated components. The TransactionManager is similar
to UserTransaction in that it is responsible for maintaining the transaction-
context association with the various threads of execution. (As mentioned earlier,
nested transactions are not supported.) The same begin(), commit(), and
rollback() methods are available to the application server through this interface.
To determine the status of the current transaction you can use the getStatus()
method, which will return one of the values specified in the Status interface.

Each transaction context is represented by a different javax.transaction.
Transaction object, which is used to perform operations specific to a target trans-
action regardless of the calling thread’s transaction context. In this way Transaction
is different from UserTransaction and TransactionManager, in which the same
instance can be used to control different transactions. The getTransaction()
method returns the Transaction object associated with the calling thread.

h539663 ch10.qxd 7/25/03 9:15 AM Page 291

292 Part III ✦ The Enterprise Information System Tier

Suspending and resuming a transaction
The JTA supports the concept of a thread temporarily suspending and resuming
transactions to enable it to perform non-transactional work. The suspend() method
is called to temporarily suspend the transaction that is currently associated with
the calling thread. If the thread is not associated with a transaction, a null object
reference is returned; otherwise, a valid Transaction object is returned. The
Transaction object can be leveraged as an argument to the TransactionManager.
resume() method to restore the associated transaction context. Suspending a trans-
action should be done with care, as any work performed subsequent to the suspend
operation being called will not be recoverable. In other words, if the suspended
transaction eventually rolls back, this work will not be undone.

The resume() method re-establishes the suspended transaction context with the
calling thread. If the transaction specified is a valid transaction, the transaction
context is associated with the calling thread; otherwise, the thread is associated
with no transaction, as shown here:

Transaction tx = TransactionManager.suspend ();
. . .
TransactionManager.resume (tx);

If resume() is invoked when the calling thread is already associated with another
transaction, the TransactionManager throws an IllegalStateException excep-
tion. Additionally, some transaction-manager implementations allow a suspended
transaction to be resumed by a different thread: This is the only standard way in
which multiple threads within the same JVM can become associated with the same
transaction.

When a transaction is suspended, an application server must ensure that the
resources in use by the application are no longer registered with the suspended
transaction. De-listing a resource from the TransactionManager tells the resource
manager to dissociate the transaction from the specified resource object. When the
application’s transaction context is resumed, the application server must ensure
that the resources used by the application are re-enlisted with the transaction.
Enlisting a resource as a result of a transaction’s being resumed causes the
TransactionManager to notify the resource manager that it should re-associate
the resource object with the given transaction. Making the distinction between
associating or re-associating is important for the resource manager to make, as it
is in fact illegal for the TransactionManager to try to associate (rather than
re-associate) the same transaction with the resource more than once.

h539663 ch10.qxd 7/25/03 9:15 AM Page 292

293Chapter 10 ✦ Introducing Java Transactions

The Transaction interface
The javax.transaction.Transaction interface allows applications to invoke
operations on the transaction associated with the target object. Every transaction
is associated with a Transaction object. The Transaction object can subse-
quently be used to enlist transactional resources, register synchronization call-
backs, commit or roll back the transaction, or obtain the transaction’s status.

The main distinction between the Transaction and TransactionManager inter-
faces involves thread-to-transaction association: When you use Transaction, the
calling thread is not required to have the same transaction associated with the
thread. No thread-to-transaction associations will be changed — so, for example,
an invoking thread could still find itself associated with the transaction it just
terminated.

In addition to the TransactionManager interface, the methods of the Transaction
interface are generally used extensively by an application server to help manage
the transactions for enterprise components. For example, an application server
makes use of the getStatus() or getTransaction() methods to make decisions
about whether a transaction should be initiated, suspended, resumed, committed,
or rolled back, based on the current status and the transactional attribute assigned
to the EJB method. For instance, the processing an application server may under-
take if an EJB method requires a transaction to be created prior to execution may
include the following:

Transaction tx = null;
TransactionManager tm = getTransactionManagerFromJNDI();

// see if a transaction is initiated and is
// associated with the invoking thread
try
{

tx = tm.getTransaction();
}
catch(SystemException e)
{

// log exception
}

if (tx == null)
{

// initiate a transaction since it is required
try
{

tm.begin();
}
catch(NotSupportedException e)

h539663 ch10.qxd 7/25/03 9:15 AM Page 293

294 Part III ✦ The Enterprise Information System Tier

{
// log exception

}
catch(SystemException e)
{

// log exception
}

}

The application server first obtains the TransactionManager using
getTransactionManager(), which we assume uses JNDI as mentioned earlier.
The Transaction object is obtained from the TransactionManager. If the
Transaction is null then there is no transaction currently associated with the
invoking thread and it is safe to start a new transaction using the begin() opera-
tion on the TransactionManager.

The XAResource interface
Whereas the OTS interfaces define a generic Resource interface that can be used
to register arbitrary resources with a transaction, the JTA is based on the model
proposed by the X/Open CAE XA specification. The javax.transaction.xa.
XAResource interface is a Java mapping of the XAResource interface.

A resource adapter that is to be used in a transactional environment implements
the XAResource interface. For example, each database connection used by an
application or its components is linked with an XAResource object that facilitates
communication with the underlying resource-manager instance. The transaction
manager obtains and uses an XAResource for every resource manager participating
in a global distributed transaction. It uses the start() and end() methods to asso-
ciate and dissociate the transaction, respectively, from the resource.

The XA specification requires that the xa_calls responsible for transaction associ-
ation must be made from the same thread of control. This concept is central to the
transaction manager’s coordination of resource managers; a resource manager
understands that a given work request pertains to a particular transaction branch
because both the application and the transaction manager call it from the same
thread.

In an object-oriented environment this concept is inappropriate because threads
are generally dispatched dynamically during method invocations. In an application
server, different threads may be using the same connection and associated
XAResource object. Therefore, it is very possible that different threads will invoke
the start() and end() methods on a given XAResource. It is the responsibility of
the application server to ensure that, although multiple threads may access a trans-
actional resource, only one transaction context is associated with that resource.

h539663 ch10.qxd 7/25/03 9:15 AM Page 294

295Chapter 10 ✦ Introducing Java Transactions

It is possible to interleave multiple transactions using the same resource as long as
each start() invocation is paired with an end() method call. In other words,
each time a resource is used with a different transaction the end() method must
be invoked for the previous transaction and then the start() invocation must be
invoked for the current transaction.

Enrolling participants with the transaction
The application server typically manages transactional resources such as database
connections by using a resource adapter in conjunction with connection pooling.
For a transaction manager to coordinate the transactional work performed by the
target resource managers, the application server must manage the association and
dissociation of these participants with the transaction.

The enrollment process is as follows:

1. Within the two-phase commit protocol, the enlistment of participants is typi-
cally a unidirectional operation, meaning that the coordinator simply registers
the fact that the participant has been enlisted by some other entity (such as a
service). Recall that the JTA essentially wraps the X/Open XA protocol and
hence its participants are required to be XA-compliant.

Because of subtleties in the underlying XA protocol, association with and dis-
association from the transaction are in fact bi-directional operations: The
transaction manager is required to inform the resource that enlistment or de-
listment has occurred. Each resource is tied to a specific Resource Manager
(RM) and when association or disassociation occurs the appropriate RM must
be informed in order to ensure that work done using the RM is either associ-
ated (or not) with the transaction. At any given time, a connection to a
Resource Manager is associated with a single transaction or with no transac-
tion at all.

2. An application server registers each resource used by the application by
invoking the enlistResource() method with a javax.transaction.
XAResource object that identifies the resource.

3. An enlistment request informs the Resource Manager to start associating the
transaction with the work performed through the resource. The transaction
manager is responsible for passing a parameter representing the transactional
state (either beginning a new transaction or joining or resuming an existing
transaction, using JMJOIN or JMRESUME, respectively) in its XAResource.
start() method call to the resource manager.

4. The delistResource() method dissociates the specified resource from the
transaction context and informs the Resource Manager that transactional use
is ended (or suspended). The application server invokes the method with the
two parameters: the XAResource object that represents the resource, and a

Note

h539663 ch10.qxd 7/25/03 9:15 AM Page 295

296 Part III ✦ The Enterprise Information System Tier

flag to indicate whether the operation is the result of the transaction being
suspended (TMSUSPEND), a portion of the work having failed (TMFAIL), or a
normal resource release by the application (TMSUCCESS). A suspended trans-
action may later be resumed on the same Resource Manager. An important
distinction exists between ending and suspending a transaction, because once
a transaction is ended, the Resource Manager will not allow itself to be associ-
ated with that transaction again.

5. The de-list request tells the transaction manager to inform the resource man-
ager to dissociate the transaction from the XAResource. A flag is passed as
part of the invocation, indicating whether the transaction manager intends to
come back to the same resource, in which case the resource states will have
to be kept intact. The transaction manager passes the appropriate flag value
in its XAResource.end() method call to the underlying Resource Manager.

Transaction synchronization
If an entity wishes to be informed that a transaction is about to terminate, it can reg-
ister with the transaction an object that is an instance of the javax.transaction.
Synchronization interface. Synchronizations are typically employed to flush
volatile (cached) state (which may be being used to improve the performance of an
application) to a recoverable object or database prior to the transaction committing.
Once flushed, the data will be controlled by an XAResource.

For each transaction started, the application server may (and usually does) register
a javax.transaction.Synchronization callback object that is invoked by the
transaction manager at the appropriate time. The process is as follows:

1. beforeCompletion() is called prior to the start of the two-phase transaction-
commit protocol. This call is executed in the transaction context of the caller
who initiates the TransactionManager.commit() or TransactionManager.
rollback(), or is executed with no transaction context if Transaction.
commit() is used instead. If any beforeCompletion operation fails, the trans-
action will be forced to roll back.

2. afterCompletion() is called after the transaction has completed. The status
of the transaction is supplied in the associated method parameter. This
method is executed without a transaction context. Any failures that occur dur-
ing afterCompletion processing can be safely ignored by the transaction
system, as the transaction has completed.

Application servers generally use the synchronization facility to manage the pool-
ing of transactional resources. For example, an application server may use the
afterCompletion() notification to return a JDBC connection to the connection
pool.

h539663 ch10.qxd 7/25/03 9:15 AM Page 296

297Chapter 10 ✦ Introducing Java Transactions

Transaction equality
The Transaction object’s equals() method allows comparison between the tar-
get object and another Transaction object. The equals() method returns true if
the given transaction object and the parameter passed in both reference the same
global transaction. Here’s an example:

Transaction tx = TransactionManager.getTransaction ();
Transaction anotherTx = . . .
. . .
boolean isSame = tx.equals (anotherTx);

The XID interface
The javax.transaction.xa.XID interface provides a Java mapping of the X/Open
XA specification’s XID structure. The transaction manager uses the XID and
Resource Manager to identify a particular transactional. The XID is rarely if ever
accessed by an application server in the context of transactional processing. The
XID interface provides methods that provide the transaction’s format ID, a global
transaction ID, and a branch qualifier.

A transaction may have one or more branches that can be used to define separate
but coordinated units of work. Each unit of work can be associated with at most
one transaction branch, and once the transaction manager begins to commit a spe-
cific branch the RM can receive no additional work on behalf of that branch.
However, this does not prevent it from receiving work on behalf of the same trans-
action but from a different branch.

In the following section, we shall see how many of the concepts we have previously
discussed may be used in practice.

Airline Reservation Using Transactions
Business Case

To illustrate some of the issues we have discussed in this chapter we’ll build upon
the airline-reservation system we proposed earlier. Assume a slightly enhanced
application structure, as shown in Figure 10-18. The tourist wants to book a trip
from his home city (Newcastle in the United Kingdom, say) to a conference being
held in Boston, United States on the second of February. The trip involves a
national flight (Newcastle to London) followed by a transatlantic flight (London to
Boston). Obviously the trip cannot be made if only one of these flights is available
and therefore the tourist does not want to purchase one flight without the other;
assuming both flights are available, they must be purchased as an atomic unit.
Therefore, the use of atomic transactions in this situation is obvious.

h539663 ch10.qxd 7/25/03 9:15 AM Page 297

298 Part III ✦ The Enterprise Information System Tier

Figure 10-18: Example vacation booking using two-phase commit transactions

Luckily for the tourist, two airline reservation sites not only make their individual
reservations atomic by internally using transactions but, as we shall see, enable
those transactions to be coordinated as a single atomic unit.

Firstly, the client is capable of executing its own transactions (JTA transactions in
this example). For simplicity we will assume that the client’s transaction manager is
co-located with the client application — that is, within the same JVM. When the
tourist attempts to book the trip he will first start an atomic transaction (Tx in the
figure, created via a call to UserTransaction.begin()) within which to perform
each of the reservation attempts (RsvA and RsvB). When the reservation-invocation
attempts are made, the transaction context for Tx is implicitly propagated with
each operation to the respective airline reservation site.

Here’s an example of the client’s code. To make things a little simpler, we’ve omit-
ted some of the error handling that you might expect. After starting a new transac-
tion, the client obtains a list of flights that are operating on the travel date and
selects the ones he wants. If the transaction commits successfully, seats on both
flights will have been booked. Otherwise, no seat will have been booked and the
client can try again later.

UserTransaction ut = getUserTransactionFromJNDI();

Date travelDate; // probably set via a GUI

EJB client

JTA trans

RsvA

RsvB

Transatlantic flight TF

Interposed JTA trans

Bean XARes

National flight NF

Interposed JTA trans

Bean XARes

tra
nsaction context Tx

transaction context Tx

Flt Day
BA2 2/2

... ...

Flt Day
UA4 2/2

... ...

h539663 ch10.qxd 7/25/03 9:15 AM Page 298

299Chapter 10 ✦ Introducing Java Transactions

if (ut != null)
{

try
{

ut.begin();

FlightInformation fi1 =
NF.getFlightInformation(travelDate);

FlightInformation fi2 =
TF.getFlightInformation(travelDate);

int NFNo = 0; // National Flight Number
int IFNo = 0; // International Flight Number

/*
* Check that seats are available on required date and
* assign them to variable NFNo (National Flight Number)
* and IFNo (International Flight Number)
* /

fi1.bookSeat(travelDate, NFNo);
fi2.bookSeat(travelDate, IFNo);

ut.commit();
}
catch (TransactionRolledBackException ex)
{

System.err.println(“Failed to get both seats.”);
}
catch (Exception ex)
{

System.err.println(“Some other error happened: “+ex);
}

}
else

System.err.println(“Could not find UserTransaction”);

Next, both the transatlantic reservation site (TF) and the national reservation site
(NF) allow transaction contexts to be imported. In other words, when a client makes
an invocation on either of the sites it is permissible for that client already to have a
transaction associated with it. (How transactional properties on beans are specified
within J2EE will be discussed later in Chapter 14 on Enterprise JavaBeans.) When
the client application performs RsvA, for example, the transaction context for Tx is
propagated to, and imported by, TF.

As you saw in the section “Interposition,” earlier in this chapter, a good transaction-
service implementation will typically employ sub-coordination when doing the
import. Using this method, a subordinate transaction coordinator is created within
TF that is enlisted with the parent (root) transaction coordinator resident at the

h539663 ch10.qxd 7/25/03 9:15 AM Page 299

300 Part III ✦ The Enterprise Information System Tier

client. How interposition is actually done will depend upon the underlying
transaction-service implementation. When the context import is complete, the
application-server thread in TF that is to do the real work is effectively associated
with the client’s transaction (the global transaction), thus ensuring that any work
the thread does will be ultimately controlled by that transaction.

In this example, all airline-reservation information is held within databases indepen-
dently maintained by the respective sites, and all operations such as reserving a
seat or enquiring as to the availability of a seat are performed by means of appro-
priate SQL statements. As shown in the example program fragment below, the appli-
cation therefore requests a transactional resource (a JDBC connection in this case)
from a configured resource adapter (a JDBC datasource). In order to ensure that all
the work performed by the reservation site is transactional, the application server
intercedes in the resource request and obtains an XAResource from the resource
adapter being used. It then enlists the XAResource with the global transaction
(Transaction.enlistResource()). In reality, because interposition is most
probably being used, the XAResource is enlisted with the subordinate transaction
coordinator resident within the same JVM as the airline-reservation system.

TransactionManager tm = getTransactionManagerFromJNDI();
XAConnection conn = ourDataSource.getXAConnection();

if (tm != null)
{

XAResource xaRes = conn.getXAResource();

if (!tm.enlistResource(xaRes))
{

// throw an appropriate exception for application
}

}

The transaction manager invokes the XAResource.start() method to associate the
resource manager’s work with the transaction. The application server then requests
the associated connection object from the resource adapter (XAConnection.
getConnection()) and returns it to the application for it to use. The reservation
site can then perform operations on the relevant data held within its database; any
updates will be provisional because the global transaction has yet to complete. In
the case of TF, the only flight that matches the tourist’s requirements is BA2 and
therefore issuing the relevant SQL command reserves the seat.

When the reservation-site operation has completed, it closes the connection and
the application server de-lists the resource when it receives the close notification
from the resource adapter (Transaction.delistResource()). The transaction
manager dissociates the transaction from the resource manager by invoking the
XAResource.end() method.

Assuming the transatlantic flight can be reserved, the application program can then
attempt to reserve the national flight. A similar course of events will be carried out

h539663 ch10.qxd 7/25/03 9:15 AM Page 300

301Chapter 10 ✦ Introducing Java Transactions

so that eventually the XAResource associated with the national-flight reservation
will be registered with the global transaction managed by the client.

If both flights can be reserved, the client application can then instruct the global
transaction to commit (UserTransaction.commit()). The transaction coordina-
tor then performs the two-phase commit protocol on the registered resources —
the two subordinate transaction coordinators will then each invoke XAResource.
prepare() and XAResource.commit() to commit the work associated with the
transaction. As you have seen, because transactions are used throughout this reser-
vation work, either both or none of the flights will be reserved despite failures.

Summary
In this chapter we looked at the fundamentals behind atomic transactions and
showed you how these transactions are a useful structuring tool for creating appli-
cations and objects that are to be both fault-tolerant and capable of being shared in
a consistent manner among concurrent users. Although transactions are useful in a
local environment, you have seen that they really come into their own when used in
a distributed system in which multiple participants must be coordinated to ensure
a consistent outcome.

We discussed the various implications of using atomic transactions (you never get
something for nothing!) and showed you how most transaction-processing imple-
mentations will provide optimizations to improve performance and throughput. We
also mentioned some of the different transaction models available in some systems
(such as nested transactions) and others that are being developed for future use
(such as the J2EE Activity Service). Although not all transaction systems support
these transaction flavors, it is important to understand what they can mean to cur-
rent and future developments and possibly to take this information into account
when making your own purchasing or development choices.

We examined two of the most important standards in transaction processing, the
X/Open XA and the OMGs Object Transaction Service. Both of these standards have
heavily influenced transactions in J2EE and we illustrated this through a closer look
at the Java Transaction API and an associated example.

Finally, what we have tried to illustrate in this chapter is that there is much more to
atomic transactions that the well-known two-phase commit protocol — such as fail-
ure recovery mechanisms, heuristics, interposition, and so on. When considering
using or buying (or possibly even developing) a transaction system, you should
have all of these capabilities available to you to ensure consistency, performance,
and reliability.

✦ ✦ ✦

h539663 ch10.qxd 7/25/03 9:15 AM Page 301

h539663 ch10.qxd 7/25/03 9:15 AM Page 302

Examining JNDI
and Directory
Services

One of the key tasks in a distributed application is find-
ing items such as components, resources, message

queues, and databases. The Java Naming and Directory
Interface (JNDI) is an essential part of J2EE applications, pro-
viding a mechanism for finding distributed components — but
JNDI is good for more than just looking up EJB interfaces. It
also allows access to important enterprise systems such as
directory servers.

This chapter explores using JNDI to access the various nam-
ing and directory services available to J2EE applications,
specifically LDAP and DNS.

Explaining Naming Services
and Directory Services

Strictly speaking, a naming service translates human-friendly
names to machine-friendly names. Most naming services are
extended into directory services, which associate names with
entries but also assign the entries additional attributes. For
example, a directory might translate a user’s real name into an
e-mail address that also contains a phone number and physical
mailing address. Some examples of directories are the Novell
Directory Service (NDS), Microsoft’s Active Directory (AD), and
various other directory-service products that implement the
Lightweight Directory Access Protocol (LDAP) standard.

1111C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Introducing directory
services

Understanding LDAP

Accessing LDAP
directories with JNDI

Accessing DNS
with JNDI

✦ ✦ ✦ ✦

h539663 ch11.qxd 7/25/03 9:15 AM Page 303

304 Part III ✦ The Enterprise Information System Tier

While a few pure naming services are in use, most directory services are used sim-
ply as naming services. For example, the Internet Domain Name System (DNS) is a
complex system; however, it is most often used simply for translating domain
names (such as www.wiley.com) to IP addresses (such as 192.168.100.1).

Directory services are an important part of modern network infrastructure. They
enable users and applications to look up network resources such as servers, print-
ers, and user addresses. A directory maps the human-friendly names to something
useful to an application, such as by mapping network resources to their respective
network addresses. Users can take advantage of directories to find distributed
resources without having to know their physical locations on the network.
Applications can use directories as a database, to look up e-mail addresses corre-
sponding to users’ names.

Generally speaking, directories are organized hierarchically. That is, they’re built in
a tree structure. A corporate directory might have a single root node, with a sec-
ond-level node for each state in which there is an office and, below those, a node
for each department in that office. In each department would be a list of employees
in the department, in that regional office. For example, if you had two regional
offices, Michigan and Kansas, you might have a sales department node in each
office, listing all the sales staff in that office. One major advantage of using this type
of structure is that it makes distributing the directory across multiple physical
servers easy. Each regional office can have its own server, which can function as
the directory master for its own part of the directory tree. Each server can also
replicate the contents of the other servers. This setup would allow users to connect
to their local servers but still see the entire corporate directory without having to
know how the directory servers were configured.

A directory can ultimately be thought of as a very sophisticated address book in
which every entry contains the same types of information and the entries are orga-
nized for easy access. Why not just use an existing data-storage mechanism such as
a relational database? Why have specialized directory services? Here are several
reasons:

✦ Directories are optimized for read-only access. You look up entries in a direc-
tory far more often than you add or update entries. Relational databases need
to provide a balance between query and update speed.

✦ Directories impose a structure on the data. All the entries have the same types
of information in them, and once you’ve found the entry you’re looking for the
extra attributes are in one place in the directory. Relational databases have a
more general-purpose structure than directories. Also, the restricted struc-
ture of a directory means that you don’t have to worry about issues such as
using first normal form, as you do in a database.

h539663 ch11.qxd 7/25/03 9:15 AM Page 304

305Chapter 11 ✦ Examining JNDI and Directory Services

✦ Directories are often distributed. This makes administration easier and allows
user load on the servers to be distributed as well. The simplified structure of
a directory is easier to replicate than the structure of a relational database.

✦ Directories are sorted. However, only one sorting structure exists, and directo-
ries do not have to be very good at dealing with advanced queries. This
allows them to be simpler, cheaper, and easier to administer.

Of course, like any popular technology, standards play an important role in deter-
mining how to access directory services.

Providing an Overview of X.500 and LDAP
X.500 is a set of international standards developed by the International
Telecommunications Union (ITU-T) in conjunction with the International Standards
Organization (ISO). These standards are principally designed to allow multiple
directory systems to connect to each other and exchange information. This gives
the appearance to the end user of there being a single unified directory system. In
X.500 parlance, Directory Service Agents (DSAs) maintain the database of names
and attributes in the directory. Directory User Agents (DUAs) make use of DSA ser-
vices on a user’s behalf. The DSA and DUA communicate via the Directory Access
Protocol (DAP).

Although the thoroughness of the X.500 specification makes it very powerful, it is
also hard to implement and difficult to use. Recognizing the need to provide a sim-
pler way to access directory services and standardize them internationally, the
University of Michigan developed the Lightweight Directory Access Protocol
(LDAP) in the ‘90s. (See RFC 1487 et al. for details.) LDAP is based on a simple
string-based approach to accessing directory services. It is widely used and is sup-
ported by a wide range of commercial and free directory products.

LDAP implementations
Some directory servers that provide a LDAP interface are the following:

✦ SunONE Directory Server

✦ Novell eDirectory (formerly NDS)

✦ Microsoft Active Directory

✦ OpenLDAP

h539663 ch11.qxd 7/25/03 9:15 AM Page 305

306 Part III ✦ The Enterprise Information System Tier

If you want to try some of the code examples in this chapter against a sample LDAP
directory, the next section, “Configuring OpenLDAP,” provides a LDAP Directory
Interchange Format (LDIF) file that you can import into most LDAP-compatible
directory servers. If you don’t already have a directory server available, you can
get OpenLDAP and use that. The OpenLDAP source code is available at http://
www.openldap.org and pre-compiled Windows binaries are available at http://
www.fivesight.com/downloads/openldap.asp.

Configuring OpenLDAP
To use OpenLDAP to run the code in this chapter you’ll need to modify the configu-
ration file slapd.conf (shown in Listing 11-1) and import the LDIF file (shown in
the subsequent listing). In the configuration file you will need to add the schema
definitions for Java objects as well as for inetOrgPerson. Change the path names
shown here to reflect where you’ve installed the OpenLDAP files.

Listing 11-1: slapd.conf

slapd.conf – use this bare file or
merge this with the original slapd.conf
include c:/openldap/schema/core.schema
include c:/openldap/schema/java.schema
include c:/openldap/schema/cosine.schema
include c:/openldap/schema/inetorgperson.schema

pidfile c:/tmp/slapd.pid
argsfile c:/tmp/slapd.args

database ldbm
suffix “o=Acme Inventions”
directory c:/tmp/openldap-ldbm

index objectClass eq

See OpenLDAP 2.1 Administrator’s Guide for more information. It’s available at
http://www.openldap.org/doc/admin21/.

Once the configuration file is set up, start the OpenLDAP server from the command
line by running slapd. Then take the LDIF file and import it into the directory with
the following slapdadd command:

slapadd -v -f slapd.conf -l j2eebible.ldif –c

Listing 11-2 shows the LDIF file that contains some simple directory entries.

h539663 ch11.qxd 7/25/03 9:15 AM Page 306

307Chapter 11 ✦ Examining JNDI and Directory Services

Listing 11-2: j2eebible.ldif

dn: o=Acme Inventions
o: Acme Inventions
objectclass: top
objectclass: organization

dn: ou=Sales, o=Acme Inventions
ou: Sales
objectclass: top
objectclass: organizationalunit

dn: ou=Engineering, o=Acme Inventions
ou: Engineering
objectclass: top
objectclass: organizationalunit

dn: cn=James McGovern, ou=Sales, o=Acme Inventions
cn: James McGovern
sn: McGovern
mail: james.mcgovern@example.com
telephonenumber: +1 610 555 6273
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson

dn: cn=Lee Anne Phillips, ou=Sales, o=Acme Inventions
cn: Lee Anne Phillips
sn: Phillips
mail: leeanne.phillips@example.com
mail: lee.anne.phillips@example.com
telephonenumber: +1 408 555 6273
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson

dn: cn=Elias Jo, ou=Sales, o=Acme Inventions
cn: Elias Jo
sn: Jo
mail: elias.jo@example.com
telephonenumber: +1 673 555 6273
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson

Continued

h539663 ch11.qxd 7/25/03 9:15 AM Page 307

308 Part III ✦ The Enterprise Information System Tier

Listing 11-2 (continued)

dn: cn=Ethan Henry, ou=Engineering, o=Acme Inventions
cn: Ethan Henry
sn: Henry
mail: ethan.henry@example.com
userPassword: coyote
telephonenumber: +1 416 555 6273
telephonenumber: +1 905 555 6273
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson

LDAP schema
While LDAP provides a general interface to directory services, it does not specify
any particular layout for the directory, also known as the directory schema. There
are some standards, such as the schema for inetOrgPerson defined in RFC 2798
(see http://www.faqs.org/rfcs/rfc2798.html) but these aren’t absolutely
required.

While the structure of LDAP directory entries is fixed as a sequence of attributes
and values, the meaning that you assign to individual attributes is not fixed any-
where outside of how you use the values in your applications. In the sample direc-
tory shown in Listings 11-1 and 11-2, the root node has the attribute o=Acme
Inventions, which indicates that the organization’s name is Acme Inventions. This
is the standard definition of the “o” attribute in RFC 2798 but you could assign
some other meaning to it in your directory if you wanted to define your own
schema. For now, let’s assume that we’re using the RFC 2798 schema for entries in
our directory.

Some common LDAP attributes are listed in Table 11-1.

Table 11-1
Common LDAP attributes

LDAP Attribute Definition Example

o Organization o=Acme Inventions

ou Organizational unit ou=Sales

c Country — typically the c=CA
two-letter country code

h539663 ch11.qxd 7/25/03 9:15 AM Page 308

309Chapter 11 ✦ Examining JNDI and Directory Services

LDAP Attribute Definition Example

cn Common name cn=Ethan Henry

sn Surname sn=Henry

givenname First name givenname=Ethan

uid User ID uid=ehenry

dn Distinguished name cn=Ethan Henry, ou=Engineering,
o=Acme Inventions
or maybe
uid=ehenry, dc=example, dc=com

dc Internet domain name dc=example, dc=com

mail E-mail address mail=ethan.henry@example.com

The distinguished name, or DN, specifies the complete path from the root of the
directory to a particular entry. Attributes are generally expressed using the mixed-
case style, such as employeeNumber. So, while the distinguished name attribute is
usually written as dn in source code, we refer to it as DN in documentation. The DN
is read backwards, from right to left. The hierarchy can be organized in any number
of ways — in some cases it’s by Internet domain name, as shown here:

uid=ehenry, dc=example, dc=com

In other cases (and in our example) the directory may be organized according to a
company’s internal organization, as shown here:

cn=Ethan Henry, ou=Sales, o=Acme Inventions

The leftmost part of the DN is referred to as the Relative Distinguished Name (RDN),
cn=ehenry in this case. Inside a given LDAP context, such as ou=Sales, o=Acme
Inventions, the RDN is what distinguishes entries from one another.

Regardless of how your directory is structured, let’s move on to seeing how you
can access it via JNDI.

Reviewing the JNDI Structure
The Java Naming and Directory Interface, JNDI, is an API that provides directory
and naming services to Java applications. Other Java APIs have been developed for
LDAP and other types of directories. However, JNDI is a generic interface that pro-
vides access to a variety of directory services, including LDAP, NDS, DNS, and even
local file systems.

h539663 ch11.qxd 7/25/03 9:15 AM Page 309

310 Part III ✦ The Enterprise Information System Tier

JNDI provides a generic hierarchical interface with directory and naming services.
The core JNDI classes listed in Table 11-2 are located in the javax.naming package
and its subpackages.

Table 11-2
JNDI packages

Class Description

javax.naming Accesses simple naming services.

javax.naming.directory Accesses directory services.

javax.naming.event Handles event notification when dealing with
naming and directory services.

javax.naming.ldap Deals with LDAP v3 controls and extended
operations.

javax.naming.spi Consists of the Service Provider Interface (SPI)
classes and interfaces used by LDAP service
implementers to provide access to a specific type of
naming or directory service.

A few core interfaces in JNDI are used frequently. Understanding these is essential
and will help you see how JNDI maps onto the various naming and directory ser-
vices to which it provides access. These interfaces are as follows:

✦ Directories and entries

✦ Names and attributes

✦ Bindings and references

✦ Contexts and subcontexts

Directories and entries
A directory consists of a number of entries or objects. Both terms are used, but for
the sake of simplicity we’ve stuck to “entries” — both to avoid overloading the term
“objects” and to make it easier to distinguish objects in the directory from objects
in Java.

Names and attributes
Each entry has a name associated with it. The directory’s job is to map names to
entries. Entries also have additional attributes associated with them. In LDAP

h539663 ch11.qxd 7/25/03 9:15 AM Page 310

311Chapter 11 ✦ Examining JNDI and Directory Services

terms, an entry’s name would be its dn and the entry would have multiple other
attributes associated with it.

Binding and references
The association of a name to an entry is called a binding. In some cases information
cannot be stored directly inside a directory, or one directory entry needs to refer,
indirectly, to another. In these cases a reference can be stored inside the directory,
to refer indirectly to information elsewhere in the directory or even to information
outside the directory.

Contexts and subcontexts
A collection of bindings is a context. Contexts have their own naming conventions,
which may be related to the names of the entries stored in them. Entries are typi-
cally manipulated via contexts — you perform lookups and add and modify opera-
tions with them. You can take a context and bind it inside another context, creating
a subcontext.

File systems
Now, let’s look at some examples of how these concepts map to various services
that can be accessed via JNDI.

A file system can be thought of as a type of directory service. A Unix file system is
hierarchical and has a single root, like a directory. The entries are files. The names
are, somewhat obviously, filenames. Attributes, such as owner ID and read/write/
execute permissions, are associated with each file as well. A directory such as /usr
represents a context (defined in the previous section). Other directories inside
/usr represent subcontexts, such as /usr/bin and /usr/local. There’s a connec-
tion between the name of the context, /usr/bin, and the entries bound to that con-
text, such as /usr/bin/chmod. Finally, a file system contains references, such as
hard or soft links (created with ln or ln –s).

DNS naming conventions
DNS uses a hierarchical naming convention where contexts are ordered from right
to left and separated with periods. For example, in www.example.com. www is a
name in the example.com context, which in turn names an entry in the com context.
DNS provides more than just a name to IP address mapping — DNS entries can have
different types of records associated with them (such as A, NS, and MX). These
records can in turn be expressed as attributes, making their values accessible
via JNDI.

h539663 ch11.qxd 7/25/03 9:15 AM Page 311

312 Part III ✦ The Enterprise Information System Tier

LDAP mapping
Finally, LDAP can of course be mapped into this structure as well. Each entry has a
unique DN, which is composed of a set of LDAP attributes and values, such as
uid=ehenry, dc=example, dc=com. The leftmost attribute/value pair, uid=ehenry,
is the RDN, which is the name in JNDI terms, while the remainder of the DN,
dc=example, dc=com, forms the context. The context in this case, dc=example,
dc=com, might be a subcontext of dc=com. It might also be a single level, multi-
valued context though, depending on how the directory is structured.

LDAP attributes can have multiple values, so in some cases dc=example, dc=com
represents two entries, while dc=example,dc=com represents one entry with two
values for the dc attribute. Other attributes can also be associated with the dn,
such as an e-mail address or phone number. References can be stored inside LDAP
directories as well, either to other directory entries or to external resources, such
as files. This provides the ability to link data to an entry without having to copy the
data into the entry. For example, you might have entries in the directory for print-
ers and entries for different departments might have references indicating their
default printer.

The interface between JNDI and these different directory structures is made with a
JNDI service provider. The Java 2 SDK v1.4 includes providers for the CORBA COS
Naming Service, DNS, LDAP, and Remote Method Invocation (RMI).

By far the most important use for JNDI of these different services is accessing LDAP
directories, which is discussed next.

Using JNDI and LDAP
While JDNI can be used to access a variety of services, LDAP is by far the most
widely used directory-service standard. It’s implemented for a variety of tasks, from
creating simple e-mail address books to providing user-authentication and -autho-
rization services. Almost all commercial directory servers provide LDAP interfaces.
This section gives examples of all the basic JNDI operations in the context of
accessing a LDAP directory.

Connecting to the server
The first thing you’ll need to do before you can perform any queries is connect to
the server. You do this by creating a context that represents the root of the directory
or the DN beneath the root relative to which you want your queries performed. The
Context interface represents a context for a naming service, while a DirContext
interface represents a directory context in which a name is bound to both an entry
and a set of attributes. Here’s an example:

h539663 ch11.qxd 7/25/03 9:15 AM Page 312

313Chapter 11 ✦ Examining JNDI and Directory Services

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

“com.sun.jndi.ldap.LdapCtxFactory”);
env.put(Context.PROVIDER_URL, “ldap://myserver”);
InitialDirContext ctx = new InitialDirContext(env);

Here, we’re connecting to the root context in the directory service running on the
machine named myserver. You can connect to something other than the directory
root by specifying a different DN in the LDAP URL, as shown here:

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

“com.sun.jndi.ldap.LdapCtxFactory”);
env.put(Context.PROVIDER_URL,

“ldap://myserver/ou=Sales,o=Acme Inventions”);
InitialDirContext ctx = new InitialDirContext(env);

Why use javax.naming.directory.InitialDirContext instead of javax.naming.
ldap.InitialLdapContext? InitialLdapContext is only necessary if you want to
specify LDAP extended controls, which aren’t required for most applications.

Specifying environment properties
A number of environment properties must be specified so that the
InitialDirContext knows what kind of service it’s connected to, where the
server is located, and so on. The more commonly specified properties are listed
in Table 11-3.

Table 11-3
JNDI environment properties

Constant in Property
javax.naming.Context Name Type Description

INITIAL_CONTEXT java.naming java.lang This specifies the fully
_FACTORY .factory .String qualified class name of

.initial the class that will create
the Context

PROVIDER_URL java.naming java.lang This property specifies
.provider.url .String the service’s provider’s URL.

SECURITY java.naming One of “none,” This property specifies the
_AUTHENTICATION .security “simple,” or type of authentication that

. authentication “strong” will be used.

Continued

h539663 ch11.qxd 7/25/03 9:15 AM Page 313

314 Part III ✦ The Enterprise Information System Tier

Table 11-3 (continued)

Constant in Property
javax.naming.Context Name Type Description

SECURITY java.naming Dependent on This property specifies the
_PRINCIPAL .security authentication identity of the user

. principal scheme attempting authentication.
For example, it can be a
user name.

SECURITY java.naming Dependent on This property specifies the
_CREDENTIALS .security authentication credentials with which the

. credentials scheme user will prove his identity.
For example, it can be a
password or digital
certificate.

APPLET java.naming java.applet This property specifies an
.applet .Applet applet that will supply

other properties via its
PARAM tags.

The default values for unspecified properties depend on the service provider being
used. In many cases, only java.naming.factory.initial and java.naming.
provider.url must be specified. These are not the only environment properties
that exist — other properties may be specific to the service, to some feature, or to
the service provider. You’ll need to consult the documentation for your specific
JNDI service provider for more information.

The environment properties used to create InitialDirContext don’t need to be
hard-coded into the application. When you create an InitialContext, an
InitialDirContext or an InitialLdapContext, the constructor determines the
property values by searching through these sources in the following order:

1. In the hashtable passed into the constructor.

2. For factory and provider properties where value is not specified in the
hashtable, and in the system properties passed in on the command.

3. For factory and provider properties, if the Context.APPLET property is set,
then these properties will be ready from the applet’s PARAM tags.

4. Any property present in the application resource files named jndi.properties
located in the classpath or JAVA_HOME/lib/jndi.properties.

h539663 ch11.qxd 7/25/03 9:15 AM Page 314

315Chapter 11 ✦ Examining JNDI and Directory Services

For single-value properties the first value found will be used, while for multi-value
properties all the values found will be used and added to the value list in the order
found. All properties listed in Table 11-3 are single-valued although some properties
can be multi-valued. All these options give developers the ability to change servers
or authentication mechanisms without having to recompile source code.

None of these mechanisms is very useful for Web-based applications packaged in
WAR files. You probably don’t want to hard-code values in the source code. You
don’t want to pass environment properties on the command line. Furthermore
you might not have a searchable classpath depending on the application server;
there are a lot of problems. One option for Web applications is to pass in JNDI
environment parameters via the init-param section of the web.xml deploy-
ment descriptor.

Here’s a servlet that obtains the PROVIDER_URL property from the deployment
descriptor:

public void doGet(HttpServletRequest req,
HttpServletResponse resp) {
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

“com.sun.jndi.ldap.LdapCtxFactory”);
env.put(Context.PROVIDER_URL,

getInitParameter(“java.naming.provider.url”));
InitialDirContext ctx = new InitialDirContext(env);

}

Here’s how the deployment descriptor would specify the actual provider URL to
use. The bold lines indicate where the parameter is being set.

<web-app>
<servlet>
<servlet-name>SomeServlet</servlet-name>
<servlet-class>com.acme.SomeServlet</servlet-class>
<init-param>
<param-name>java.naming.provider.url</param-name>
<param-value>ldap://localhost/o=Acme Inventions</param-value>

</init-param>
</servlet>

<servlet-mapping>
<servlet-name>SomeServlet</servlet-name>
<url-pattern>/acme/*</url-pattern>

</servlet-mapping>
</web-app>

Tip

h539663 ch11.qxd 7/25/03 9:15 AM Page 315

316 Part III ✦ The Enterprise Information System Tier

While it is technically possible to configure JNDI properties by putting a jndi.
properties file in your Web container’s classpath, this is often undesirable, as
multiple Web applications deployed in the same container may not all want the
same property values. For this reason it’s better to pass a unique set of JNDI prop-
erties to each servlet via the <init-parm> tag.

Once all the properties are set, you’re ready to connect to your directory server —
unless, of course, the directory requires authentication to prevent unauthorized
access.

Implementing authentication
A LDAP server may require a user name and password to authenticate users before
allowing any queries. Here’s an example:

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

“com.sun.jndi.ldap.LdapCtxFactory”);
env.put(Context.PROVIDER_URL, “ldap://myserver”);
env.put(Context.SECURITY_AUTHENTICATION, “simple”);
env.put(Context.SECURITY_PRINCIPAL, “username”);
env.put(Context.SECURITY_CREDENTIALS, “password”);
InitialDirContext ctx = new InitialDirContext(env);

Simple authentication uses unencrypted, “cleartext” passwords. LDAP v3
servers may support more secure authentication mechanisms via Simple Authen-
tication and Security Layer (SASL). The following code finds the SASL authentication
mechanisms supported by a server:

DirContext ctx = new InitialDirContext();
Attributes attrs = ctx.getAttributes(

“ldap://myserver”,
new String[]{“supportedSASLMechanisms”});

The LDAP provider in Java 2 SDK v1.4 has built-in support for the External, Digest-
MD5, and Kerberos v5 SASL mechanisms. Older versions of the LDAP provider have
built-in support for the CRAM-MD5 and External SASL mechanisms. You can add
support for additional mechanisms. See JSR 28 found at http://www.jcp.org/en/
jsr/detail?id=28) for more information on the Java SASL specification.

Performing simple LDAP lookups
Once you’re connected to a LDAP server and have the DirContext you can do a
number of things with it. First, you can list all the entries in the context via
Context.list(“”). Note that the root context may possess multiple attributes.
For example, even if the root context is “dc=example,dc=com”, there isn’t neces-
sarily a “dc=com”. Attempting to list the contents of “dc=com” in the following
example would result in an exception:

Caution

h539663 ch11.qxd 7/25/03 9:15 AM Page 316

317Chapter 11 ✦ Examining JNDI and Directory Services

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

“com.sun.jndi.ldap.LdapCtxFactory”);
env.put(Context.PROVIDER_URL, “ldap://myserver”);

DirContext ctx = new InitialDirContext(env);
NamingEnumeration ne = ctx.list(“dc=example,dc=com”);

while(ne.hasMore()) {
NameClassPair ncp = (NameClassPair)ne.next();
System.out.println(ncp.getName());

}

ne.close();
ctx.close();

You can obtain the attributes associated with an entry in the context via DirContext.
getAttributes(). You’ll need to pass either the full DN of the entry for which you
want to obtain the attributes, or the RDN relative to the place where you opened the
InitialDirContext. The first example shows using the full DN:

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

“com.sun.jndi.ldap.LdapCtxFactory”);
env.put(Context.PROVIDER_URL, “ldap://myserver”);

DirContext ctx = new InitialDirContext(env);
Attributes attrs = ctx.getAttributes(

“cn=Lee Anne Phillips,ou=Sales,o=Acme Inventions”);
NamingEnumeration ne = attrs.getAll();
while(ne.hasMore()) {

System.out.println(ne.next());
}
ne.close();
ctx.close();

The following code will print out all the attributes associated with Lee Anne
Phillips:

telephoneNumber: +1 408 555 6273
mail: leeanne.phillips@example.com, lee.anne.phillips@example.com
objectClass: top, person, organizationalPerson, inetOrgPerson
sn: Phillips
cn: Lee Anne Phillips

The next example shows using a RDN and obtaining Lee Anne’s e-mail address. Note
that in Lee Anne’s case the mail attribute has multiple values.

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

“com.sun.jndi.ldap.LdapCtxFactory”);
env.put(Context.PROVIDER_URL,

h539663 ch11.qxd 7/25/03 9:15 AM Page 317

318 Part III ✦ The Enterprise Information System Tier

“ldap://localhost/ou=Sales,o=Acme Inventions”);

DirContext ctx = new InitialDirContext(env);
Attributes attrs = ctx.getAttributes(

“cn=Lee Anne Phillips”);
Attribute attr = attrs.get(“mail”);

// this is the default email address
System.out.println(“default mail attribute: “

+attr.get());

// get all email addresses
for(int i=0; i < attr.size(); i++)

System.out.println(“mail attribute value #”
+i+”: “+attr.get(i));

ctx.close();

Note that when you call getAttributes() all attributes associated with the entry
will be returned. In some cases these could be a large amount of data, which could
make the query very slow. To make things more efficient you can specify which
attributes you want the directory to send back, as shown here:

String attr_req[] = { “mail”, “ou” };
Attributes attrs = ctx.getAttributes(

“cn=Lee Anne Phillips”, attr_req);

Now the directory will only return only the mail and ou attributes, reducing net-
work traffic and memory usage.

Performing searches and comparing entries
Looking up entries in a directory given the entry’s DN is fine, but what if you want to
find entries that match other attributes? Or if you know part of the DN but not all of
it? LDAP has a search-filter syntax for more powerful searches.

You can search in a context using the search() method to find entries that match
the set of supplied attributes. Here’s an example:

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

“com.sun.jndi.ldap.LdapCtxFactory”);
env.put(Context.PROVIDER_URL,

“ldap://localhost”);

DirContext ctx = new InitialDirContext(env);

// passing true in the constructor specifies that

h539663 ch11.qxd 7/25/03 9:15 AM Page 318

319Chapter 11 ✦ Examining JNDI and Directory Services

// attribute name case should be ignored
Attributes search_attrs = new BasicAttributes(true);
search_attrs.put(“sn”,”Henry”);

NamingEnumeration results = ctx.search(
“ou=Engineering,o=Acme Inventions”,search_attrs);

while(results.hasMore()) {
SearchResult result = (SearchResult)results.next();
System.out.println(result.getName());
System.out.println(result.getAttributes());

}

This will print out the RDN of the entry (cn=Ethan Henry) as well as a list of all the
attributes and their values for that entry.

While this is useful, sometimes you don’t know the full value of the attributes
you’re looking for. You might know that someone’s first name is James, but you
might not know the full value of the cn attribute and firstname might not be an
attribute in the directory (as in our example). A search filter takes the form of a reg-
ular expression specified in RFC 2254 found at http://www.faqs.org/rfcs/
rfc2254.html.

For example, to search for anyone with a name beginning with James you might
specify (cn=James*) as the filter. You can also combine multiple filters. For
example, to specify people named James in Sales you can set the filter to
(&(cn=James*)(ou=Sales)). Search filters use a prefix syntax — that is, the
operator is specified first, followed by the arguments. The valid operators are
listed in Table 11-4.

Table 11-4
LDAP search operators

Symbol Description

& AND means that all conditions listed must be true for this expression to be
true (takes multiple conditions).

| OR means that one or more of the conditions listed must be true for this
expression to be true (takes multiple arguments).

! NOT means that the value of this expression is the opposite of the listed
condition (takes one argument).

= Equality is used according to the matching rule of the attribute.

~= Approximate equality is used according to the matching rule of the attribute.

Continued

h539663 ch11.qxd 7/25/03 9:15 AM Page 319

320 Part III ✦ The Enterprise Information System Tier

Table 11-4 (continued)

Symbol Description

>= Matches when the attribute is greater than the specified value.

<= Matches when the attribute is less than the specified value.

=* Presence means that the attribute must be present, but can have any value.

* Wildcard means that any set of characters will match.

\ Escape is used for including *, (, and) inside attribute values.

Each item in a search filter has to be enclosed in a pair of parentheses, as in
(“cn=James McGovern”). Some examples of search filters that would match
entries in the sample directory are as follows:

(& (ou=Engineering) (sn=Jo))
(& (ou=Sales) !(sn=Smith))
(| (cn=J*) (cn=E*) (cn=L*))

You can further control the search via the SearchControls class. For example, in
the previous example the context ou=Engineering,o=Acme Inventions had to
be explicitly specified because by default searches only apply in the specified con-
text. The SearchControls class can control the following aspects of the search:

✦ The search scope, which determines whether the search should be performed
in all subcontexts, just in the specified context (the default setting), or only in
the named entry

✦ The maximum number of entries to return

✦ How long to wait before timing out

✦ Which attributes should be returned along with each matching entry

Here’s some sample code that uses the SearchControls class. The code relevant
to searching is highlighted in bold:

import javax.naming.*;
import javax.naming.directory.*;
import java.util.*;

public class Search {
public static void main(String args[]) {

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

“com.sun.jndi.ldap.LdapCtxFactory”);
env.put(Context.PROVIDER_URL,

h539663 ch11.qxd 7/25/03 9:15 AM Page 320

321Chapter 11 ✦ Examining JNDI and Directory Services

“ldap://myserver”);

try {
DirContext ctx = new InitialDirContext(env);

String filter = “(cn=E*)”;
SearchControls controls = new SearchControls();
controls.setSearchScope(

SearchControls.SUBTREE_SCOPE);
String ret_attrs[] = { “cn”, “mail” };
controls.setReturningAttributes(ret_attrs);

NamingEnumeration result = ctx.search(
“o=Acme Inventions”,filter,controls);

while(result.hasMore()) {
System.out.println(result.next());

}
}
catch(NamingException e) {

e.printStackTrace();
}

}
}

In some cases a directory will allow you to check the value of an attribute but won’t
provide you with the attribute’s value. This is often the case with tasks such as
checking password values — cases in which you don’t want to return the password
to the client application. This type of security restriction is configured internally in
the directory and is generally not visible to the JNDI LDAP client. If you know that
you need to perform a comparison operation, perform a regular search using the
following constraints:

✦ The search scope (in the SearchControls object) should be set to
OBJECT_SCOPE

✦ The exact DNmust be specified

✦ The filter string should contain no wildcards

✦ SearchControls.setReturningAttributes should not be invoked

For example, the following code checks a user’s password in our directory:

SearchControls controls = new SearchControls();
controls.setReturningObjFlag(true);
controls.setSearchScope(SearchControls.OBJECT_SCOPE);
String filter = “userPassword=coyote”;
NamingEnumeration answer = ctx.search(“cn=Ethan Henry,

ou=Engineering,o=Acme Inventions”, filter, controls);

h539663 ch11.qxd 7/25/03 9:15 AM Page 321

322 Part III ✦ The Enterprise Information System Tier

If the attributes specified in the search filter all match, answer.hasMore() returns
true. Otherwise, answer.hasMore() returns false. If you directly query the value
of an attribute that can only be compared, OpenLDAP will indicate that the
attribute exists but will not return a value for it. Other directories should behave
similarly.

Modifying the directory
Of course, simply finding entries in a directory may not be all you need to do.
Sometimes new entries need to be added to the directory and sometimes out-of-
date entries need to be removed. Both of these tasks are easy to carry out.

Adding new entries
Before you can add an entry you need to know two things:

✦ What context is the new entry being added to?

✦ What attributes does the new entry have?

To add a new entry you put all the attributes into a BasicAttributes object and
then call createSubconext, as shown here:

BasicAttributes attrs = new BasicAttributes();
attrs.put(“cn”,”Alan Williamson”);
attrs.put(“mail”,”alan.williamson@example.com”);
attrs.put(“telephone”,”+44 099 024 7226”);
DirContext new_ctx = ctx.createSubcontext(

“ou=Engineering,o=Acme Inventions”,attrs);

Removing entries
Removing entries is even simpler than adding new entries. Removing a context
removes the context, all its attributes, and all its subcontexts.

Be careful — if you delete the root context the entire database will be removed!

The following example removes an entry, all the entry’s attributes, and any entries
beneath it:

ctx.destroySubcontext(
“cn=Alan Williamson, ou=Engineering, o=Acme Inventions”);

Caution

h539663 ch11.qxd 7/25/03 9:15 AM Page 322

323Chapter 11 ✦ Examining JNDI and Directory Services

Adding objects to a directory
Directory servers are powerful general-purpose tools. They’re capable of storing
more than just human-readable text information; you can use a directory as a stor-
age mechanism for Java objects as well. This section covers the following
approaches to adding Java objects to a directory:

✦ Storing serialized data

✦ Storing the object as a reference

✦ Storing the object data as directory attributes

Storing serialized data
The first approach to storing an object in a directory is simply to serialize the
object and store the resultant string of bytes in the directory. This approach has
the advantage of being simple to implement, but the information thus stored in the
directory can only be understood by another Java application. The directory must
be configured with the correct schema in order to store Java objects — for example,
see the ava.schema file distributed with OpenLDAP.

This code stores an object in a directory by serializing it:

SomeData sd = new SomeData(); // implements Serializable
ctx.bind(“cn=SomeData”,sd);

The application that retrieves the object from the directory has to have the class
file for that type of object available to deserialize the object. If you want to specify
where to find the class definition for the object you can add the javaCodeBase
attribute to the object entry, as shown here:

SomeData sd = new SomeData(); // implements Serializable
Basic Attributes attrs = new BasicAttributes();
attrs.put(“javaCodeBase”, “http://java.example.com/code”);
ctx.bind(“cn=SomeData”,sd,attrs);

Once the object has been stored in the directory it can be retrieved with a call to
lookup(), as shown here:

SomeData sd2 = (SomeData)ctx.lookup(“cn=SomeData”);

Storing objects as references
The second approach to storing an object in a directory is to store it as a reference.
When an object is stored as a reference a number of RefAddr objects are stored in
the directory, along with the name and location of a factory class. When it comes
time to retrieve the object an instance of the factory class is created and it, in turn,

h539663 ch11.qxd 7/25/03 9:15 AM Page 323

324 Part III ✦ The Enterprise Information System Tier

retrieves the RefAddr objects from the directory and recreates the object. The
location of the factory class is a URL (or a list of URLs) that specifies where to look
to find the class definition for the factory class.

If this sounds more complicated than the previous approach, that’s because it is.
The advantage is that the information in the directory can be stored in a more com-
pact form. More importantly, code is executed when the object is recreated, which
provides the ability for the application to go out and connect to remote machines
or retrieve other external information that can be used to recreate the object.

A simple example of using references should give you the general idea of how the
reference mechanism works. Classes whose objects are to be stored as references
must implement the Referenceable interface. The two concrete subclasses
RefAddr can be used to store information in the directory: StringRefAddr and
BinaryRefAddr. Here’s an example:

public class Widget implements Referenceable {
public String name;
public int mass;

public Widget(String name, int mass) {
this.name=name; this.mass=mass;

}

public Reference getReference() throws NamingException {
StringRefAddr nameRef = new StringRefAddr(“Widget Name”, name);
byte bytes[] = { (byte)mass, (byte)(mass>>8) };
BinaryRefAddr massRef = new BinaryRefAddr(“Mass”, bytes);
Reference ref = new Reference(Widget.class.getName(),

WidgetFactory.class.getName(),
null);

ref.add(nameRef);
ref.add(massRef);
return ref;

}
}

When the object is stored in the directory via a call to bind() it is automatically
turned into a set of RefAddr objects by calling getReference(). When the object
is retrieved an instance of the factory class is created, which in turn re-creates the
object. When creating a factory class be aware that sometimes a factory object is
asked to instantiate an object that it doesn’t know anything about. This is normal —
a service provider may have many object factories on hand. If a factory is asked to
instantiate something it doesn’t recognize, the factory should just return null. The
only time a factory should throw an exception is when it is sure that it knows how
to create the type of object being asked for but is unable to. Here’s an example:

h539663 ch11.qxd 7/25/03 9:15 AM Page 324

325Chapter 11 ✦ Examining JNDI and Directory Services

public class WidgetFactory implements ObjectFactory {
public Object getObjectInstance(Object info, Name name,
Context nameCtx, Hashtable environment) throws Exception {

if(info instanceof Reference) {
Reference ref = (Reference)info;
if(ref.getClassName().equals(Widget.class.getName())) {

String nam = (String)ref.get(“Widget Name”).getContent();
byte bytes[] = (byte[])ref.get(“Mass”).getContent();
return new Widget(nam,bytes[0]+(bytes[1]<<8));

}
}
return null; // try another factory

}
}

The JNDI provider (the LDAP provider in this case) will read the reference informa-
tion stored in the directory and pass it to each of the object-factory instances it
has. One of those instances should recognize the type of the object, take the infor-
mation, and create a new copy of the object that was originally stored.

So to put an object into a directory using references you would do this:

Widget w = new Widget(“ACME Rocket Booster”,100);
// assuming we already have a DirContext object
ctx.bind(“cn=Rocket Booster”,w);

The service provider will store the Widget object by calling getReference() and
then storing the Reference object n the directory. When you extract the following
object

Widget w2 = (Widget)ctx.lookup(“cn=Rocket Booster”);

the service provider will take the RefAddr objects and pass them to the corre-
sponding object factories to be converted into instances of the appropriate objects.
If multiple factories are defined, the JNDI framework will check each of them until it
finds a factory that can handle that type of data. The order in which the factories
are searched is not defined, so you should only reference one factory for each type
of object you want to read from a directory.

You can store a Referenceable object in the directory only if the underlying ser-
vice provider supports it. Sun’s LDAP service provider supports storing both
Reference and Referenceable objects.

Storing object data as directory attributes
There may be times when you want to store a Java object inside a directory but
make the object data easily accessible to non-Java applications. The easiest way do
this is to store the entire object’s data as attributes instead of serializing the data or

Note

h539663 ch11.qxd 7/25/03 9:15 AM Page 325

326 Part III ✦ The Enterprise Information System Tier

using references. By implementing the DirContext interface on your class the ser-
vice provider will store the data for instances of that class as a series of standard
LDAP attributes.

The LDAP service provider may not support storing objects as attributes. Sun’s
LDAP service provider does support this functionality.

Implementing the DirContext interface requires implementing a lot of methods.
For the purposes of storing objects, however, most of the methods don’t need to be
implemented and can be given empty method bodies. The only method that is
required for storing objects is getAttributes(). Here’s an example:

public class Widget2 implements DirContext {

String name;
int mass;

public Widget2(String name, int mass) {
this.name = name; this.mass = mass;

}

public Widget2(String name, int mass) {
// the constructor arg indicates that
// the case for strings should be ignored

}

public Attributes getAttributes(String name)
throws NamingException {
// there aren’t really any subcontexts so only
// provide attributes for this context
if(!name.equals(“”))

throw new NameNotFoundException();

Attributes myAttrs = new BasicAttributes();
myAttrs = new BasicAttributes(true);
Attribute attr = new BasicAttribute(“objectclass”);
attr.add(“extensibleObject”);
attr.add(“top”);
myAttrs.put(attr);
attr = new BasicAttribute(“name”,name);
myAttrs.put(attr);
attr = new BasicAttribute(“mass”,new Integer(mass));
myAttrs.put(attr);

return myAttrs;
}

public Attributes getAttributes(Name name)
throws NamingException {

Note

h539663 ch11.qxd 7/25/03 9:15 AM Page 326

327Chapter 11 ✦ Examining JNDI and Directory Services

return getAttributes(name.toString());
}

// remainder of DirContext methods with empty bodies...

}

Again, storing the object in the directory is accomplished exactly the same way as
shown earlier in this chapter — by adding to the directory via bind(). Here’s an
example:

Widget2 w = new Widget2(“ACME Canned Tornado”, 2);
ctx.bind(“cn=Canned Tornado”, w);

The object can now be accessed like any other directory entry. Alternatively, if you
want to retrieve the entry as an object, you can use an object factory to automati-
cally turn the set of attributes into an object.

An object factory for an object stored as a set of attributes is similar to the
WidgetFactory object factory shown earlier. The difference is that in this case the
factory needs to implement DirObjectFactory instead of just ObjectFactory.
DirObjectFactory’s getObjectInstance() method takes an additional parame-
ter, the set of attributes representing the object. Here’s an example:

public class WidgetFactory2 implements DirObjectFactory {
// empty body for getObjectInstance(Object,Name,Context,Hashtable)

public Object getObjectInstance(Object obj, Name name,
Context nameCtx, Hashtable environment, Attributes attrs)
throws Exception {

if(obj instanceof DirContext) {
try {

// make sure both name and mass attributes are present
if((attrs.get(“name”) == null) ||

(attrs.get(“mass”) == null))
return null;

String name = (String)attrs.get(“name”).get();
int mass = String.parseInt(

(String)attrs.get(“mass”).get());
return new Widget2(name,mass);

} catch(Exception e) {
e.printStackTrace();
throw e;

}
}

return null;
}

}

h539663 ch11.qxd 7/25/03 9:15 AM Page 327

328 Part III ✦ The Enterprise Information System Tier

Two separate object-factory classes are shown to clearly demonstrate the differ-
ence between retrieving an object stored as a reference and retrieving an object
stored using attributes, but it is possible to put both methods into a single factory
class capable of re-creating Widget objects from either a reference or a set of
attributes.

In addition to being storing and retrieving objects in a directory, you can store addi-
tional attributes to make finding the objects easy with the LDAP search facilities
described earlier in this chapter. Attributes can be supplied when the object is put
into the directory via DirContext.bind(Name, Object, Attributes) or modi-
fied later on with DirContext.modifyAttributes(Name, int, Attributes),
where the int parameter specifies one of the three operations listed in Table 11-5.

Table 11-5
Attribute-modification operations

Parameter value Action

DirContext.ADD_ATTRIBUTE The specified attributes will be added to the
directory entry.

DirContext.REMOVE_ATTRIBUTE The specified attributes will be removed from
the entry.

DirContext.REPLACE_ATTRIBUTE The specified attributes will have their values
changed in the entry.

Attribute modification is atomic — either all the modifications are applied or none
of them is.

These are the essentials of accessing LDAP-enabled directories with JNDI. LDAP and
JNDI are a powerful combination, allowing you to access existing directory informa-
tion from inside Java applications. More powerful features are available as well
enabling you to store Java objects in a directory and automatic conversion between
the data store in the directory and Java objects.

Connecting to DNS
LDAP isn’t the only service provider available for JNDI. Another type of directly
that’s used frequently in Java applications is DNS — the Internet Directory Name
Service. DNS is the directory that maps human-readable machine names (such as
www.example.com) to IP addresses (such as 192.168.100.1). DNS is more than

h539663 ch11.qxd 7/25/03 9:15 AM Page 328

329Chapter 11 ✦ Examining JNDI and Directory Services

just a simple naming service, though. It contains a number of different record types
that specify different types of name-to-address translation. Table 11-6 lists some of
the more commonly used record types, which are defined in RFC 1035 found at
http://www.faqs.org/rfcs/rfc1035.html.

Table 11-6
DNS record types

Record Type Use

A Address: Used for basic name-to-address translation. IP addresses take
the form of four eight-bit octets — for example, 192.168.100.1.

NS Name server: Used as the authoritative or master name server for the
specified domain

CNAME Canonical domain name: Applies to the specified server — in some cases
domain names may in fact be aliases for other names

SOA Start of authority: Contains information about the domain itself, such as a
timestamp indicating the last update, a contact address, and some other
information.

TXT Text: Freeform text describing the domain

MX Mail exchange: Specifies the servers in the domain used to receive mail.
There may be multiple MX records per domain, specifying primary mail
servers, secondary mail servers, and so on.

PTR Pointer: Used for doing reverse domain-name lookups from IP addresses.
The PTR record’s name is not the IP address, but the IP address with its
four octets reversed, followed by .IN-ADDR.ARPA. For example, a
reverse lookup on 192.168.100.1 would use the PTR record
1.100.168.192.IN-ADDR.ARPA.

The java.net.InetAddress class is capable of doing basic A-record lookups, but
for anything more sophisticated, such as a Java-based mail-delivery application,
you’ll need to access DNS via JNDI.

To connect to a DNS server you’ll need to go through the same basic set of steps
you went through to connect to a LDAP server: Specify your environment parame-
ters and then obtain an InitalDirConext. Sun includes a DNS service provider by
default in JDK 1.4 and above. If you’re using JDK 1.3 or another JVM that doesn’t
include a DNS service provider in its library, you can download the classes from
http://java.sun.com/products/jndi/index.html#download.

h539663 ch11.qxd 7/25/03 9:15 AM Page 329

330 Part III ✦ The Enterprise Information System Tier

DNS environment properties
The properties listed in Table 11-7 can be used with Sun’s JNDI DNS service
provider.

Table 11-7
DNS environment properties

Property Description

java.naming.provider.url Specifies the host name and port number of the
DNS server to use, as well as the initial context’s
domain name. A URL-like notation is used to
represent DNS servers in the following format:

dns:[//host[:port]][/domain] That is, if you do not specify a hostname
localhost will be used as the default. If you do
not specify a port number the default for DNS
services is port 53.

java.naming.factory.initial The initial context factory for the DNS service
provider is com.sun.jndi.dns.DnsContext
Factory. This class is always used for accessing
DNS via JNDI.

com.sun.jndi.dns.recursion Specifies whether the DNS server will forward
queries for which it has no information. If the
value is false the DNS server will only reply
with information in its own database or cache. If
the value is unspecified or true queries will be
automatically forwarded by the DNS server.

java.naming.authoritative Specifies whether the server should only return
authoritative responses — that is, whether it
should not return cached values but should
instead forward the query to a nameserver
specified in the domain’s NS record.

com.sun.jndi.lookup.attr Specifies the attribute to pass to an object factory
when you attempt to turn the DNS entry into an
object. Defaults to TXT.

java.naming.factory.object Specifies a colon-separated list of class names to
use as factories for transforming entries into
objects. Not DNS-specific — refer to the previous
section on storing objects in directories.

h539663 ch11.qxd 7/25/03 9:15 AM Page 330

331Chapter 11 ✦ Examining JNDI and Directory Services

DNS lookups
Once you’ve specified the environment properties and obtained an
InitialDirContext, performing simple name-to-address translation is as simple
as calling getAttributes(). Always specify exactly what attributes you want in
the getAttributes() call — in some cases a DNS server will return only the infor-
mation it has in its cache unless you explicitly ask for certain attributes. Here is a
code fragment along with the output it generates from two consecutive runs:

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,”com.sun.jndi.dns.DnsCo
ntextFactory”);
env.put(Context.PROVIDER_URL, “dns://mydnssever/”);
env.put(“com.sun.jndi.dns.recursion”, “true”);
DirContext ctx = new InitialDirContext(env);

Attributes attrs = ctx.getAttributes(args[0]);
System.out.println(attrs);

attrs = ctx.getAttributes(args[0], new String[] { “MX” });
System.out.println(attrs);

attrs = ctx.getAttributes(args[0], new String[] { “A” });
System.out.println(attrs);

Running this code results in the following output:

C:\>java dnsex quest.com
{ns=NS: A.NS.VERIO.NET, S.NS.VERIO.NET}
{mx=MX: 110 backupmx2.veriomail.com, 10 mail.quest.com, 30 exchange.quest.com,
100 backupmx1.veriomail.com}
{a=A: 192.77.210.55}

C:\>java dnsex quest.com
{a=A: 192.77.210.55, ns=NS: A.NS.VERIO.NET, S.NS.VERIO.NET, mx=MX: 110
backupmx2.veriomail.com, 10 mail.quest.com, 30 exchange.quest.com, 100
backupmx1.veriomail.com}
{mx=MX: 110 backupmx2.veriomail.com, 10 mail.quest.com, 30 exchange.quest.com,
100 backupmx1.veriomail.com}
{a=A: 192.77.210.55}

Note that the first time getAttributes() is called the DNS server returns only the
attributes it has in its cache: the NS records. Once the A and MX records have been
explicitly retrieved they are included in the full attribute set the next time.

h539663 ch11.qxd 7/25/03 9:15 AM Page 331

332 Part III ✦ The Enterprise Information System Tier

Reverse DNS lookups
In certain situations you’d like to find the hostname of a given IP address. For
example, when you’re processing Web-server logs it can be useful to do a reverse
lookup for the names of machines accessing your server so you can see where
your users are coming from. In other cases applications need to perform reverse
lookups for security reasons, to verify that servers are what they claim to be.
In some cases Simple Mail Transfer Protocol (SMTP) servers will do a double
reverse lookup — they’ll perform a reverse lookup of the IP address of the machine
attempting to deliver mail and then perform a regular lookup on that hostname. If
both IP addresses match, everything is OK; otherwise the connection is rejected.

Reverse lookup is not always possible. In many cases no hostname can be
retrieved for a given IP address. If no name record is available an exception will be
thrown.

Reverse lookups work like regular lookups except for the following changes:

✦ The lookup is performed in the in-addr.arpa domain. This string has to be
passed in with the provider URL or at the end of the IP address being queried.

✦ The IP address is provided backwards — that is, if the host you’re looking for
has the IP address 216.239.37.100, you need to do a lookup on
100.37.239.216.

The following code should retrieve a single PTR record with a value of
www.google.com:

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

“com.sun.jndi.dns.DnsContextFactory”);
env.put(Context.PROVIDER_URL,

“dns://mydnsserver/in-addr.arpa”);
DirContext ctx = new InitialDirContext(env);

// do a reverse lookup on 216.239.37.100
Attributes attrs = ctx.getAttributes(“100.37.239.216”);
System.out.println(attrs);

JNDI provides a convenient and powerful way to access DNS information. We’ll see
more on accessing DNS information via JNDI in one of the examples later in the
chapter.

Considering Other JNDI Service Providers
A number of JNDI service providers are available. Depending on the version of the
Java SDK you’re using some providers may be bundled by default. If you’re looking

Caution

h539663 ch11.qxd 7/25/03 9:15 AM Page 332

333Chapter 11 ✦ Examining JNDI and Directory Services

for JNDI-provider classes you can check Sun’s listing at http://java.sun.com/
products/jndi/serviceproviders.html. This section covers the following JNDI
service providers:

✦ File systems

✦ COS naming for CORBA

✦ Network Information System (NIS)

✦ Directory Services Markup Language (DSML)

✦ Application-server providers

File systems
The hierarchical nature of modern computer file systems maps naturally to the
interface provided by JNDI. Sun’s file-system JNDI provider is built on top of
java.io.File, so it is only capable of doing things that are possible with the File
class — for example, you can’t get around file-system security limitations.

The file-system service provider is not meant to be used for any serious manipula-
tion of the file system — lots of classes in the java.io and java.nio packages can
enable you to do that. The file-system service provider is, however, good for learn-
ing how to use JNDI if you don’t have a LDAP server handy.

COS naming for CORBA
The Common Object Services (COS) name server is the name server for storing
Common Object Request Broker Architecture (CORBA) object references. CORBA is
a standard for language-neutral application interoperation via the Internet Inter-Orb
Protocol (IIOP). CORBA is used in a wide variety of enterprise applications, espe-
cially in systems in which not every component is written in Java.

The COS naming service provider is provided by default in Sun’s JDK 1.3 and higher,
but the code can also be downloaded from Sun’s Web site at http://java.sun.com/
products/jndi/index.html#download.

Network Information System
The Network Information System (NIS) is a hierarchical and secure network-
information service system primarily for Unix systems. NIS is a simple distributed
database that enables information managers and system administrators to manage
the network information for complex and heterogeneous computer systems. NIS
can be used as a distributed password file but has other, more advanced, directory
functionality as well. You can download the NIS service provider from Sun.

h539663 ch11.qxd 7/25/03 9:15 AM Page 333

334 Part III ✦ The Enterprise Information System Tier

Directory Services Markup Language
DSML is a new and evolving specification for representing directory information as
XML documents. DSML v1 only specifies a XML structure for representing directory
entries or query results, not queries. Sun’s DSML v1 service provider provides a
read-only interface to DSML files or DSML data available via an HTTP URL. The ser-
vice provider reads in the entire document and makes an in-memory representation
(the way a DOM parser does). Any changes you make to the information are not
reflected in the original source of the DSML data.

More information on DSML is available from http://www.oasis-open.org/
committees/dsml/. Sun’s DSML service provider is available from Sun’s service-
providers download page.

Application-server providers
JNDI isn’t just used for directory services, although all the examples shown in this
chapter involve directories. Many of the other J2EE APIs use JNDI as a naming-
service interface to locate distributed resources such as JDBC data sources,
Enterprise JavaBeans, and JMS destinations.

Application-server providers usually have their own naming-service providers.
Consult your product documentation for more information about what environment
properties you need to specify. Usually you’ll just need to specify the initial context
factory and a provider URL, but in some cases other information may be necessary
as well.

Listings 11-3 through 11-5 provide some examples of how to obtain naming contexts
in the following application servers:

✦ BEA WebLogic

✦ IBM WebSphere

✦ JBoss

Listing 11-3: BEA WebLogic server

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

“weblogic.jndi.WLInitialContextFactory”);
env.put(Context.PROVIDER_URL, “t3://weblogicServer:7001”);
Context ctx = new InitialContext(env);

h539663 ch11.qxd 7/25/03 9:15 AM Page 334

335Chapter 11 ✦ Examining JNDI and Directory Services

Listing 11-4: IBM WebSphere server

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

“com.ibm.websphere.naming.WsnInitialContextFactory”);
env.put(Context.PROVIDER_URL,

“iiop://myhost.mycompany.com:900”);
Context initialContext = new InitialContext(env);

Listing 11-5: JBoss server

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

“org.jnp.interfaces.NamingContextFactory”);
env.put(Context.PROVIDER_URL, “jnp://localhost:1099”);
Context ctx = new InitialContext(env);

Note that each of the different naming-service providers has its own initial context
factory class and its own concept of how to format provider pseudo-URLs. The JNDI
name for components is typically configured in the application server’s administra-
tive console or in the component’s deployment descriptor. Again, refer to the prod-
uct documentation for instructions about how to configure the namespace.

Exploring the Enterprise JavaBean
Environment

When you’re writing the code for an EJB you can use JNDI to access the enterprise
bean’s environment. This is a special set of values that is described in the EJB’s
deployment descriptor and accessed via JNDI. For example, in the code for an EJB
you may have the following:

Context initCtx = new InitialContext();
Context myEnv = (Context)

initCtx.lookup(“java:comp/env”);
Integer max = (Integer)myEnv.lookup(“maxValue”);
// or
Integer max2 = (Integer)initCtx.lookup(

“java:comp/env/maxValue”);

h539663 ch11.qxd 7/25/03 9:15 AM Page 335

336 Part III ✦ The Enterprise Information System Tier

In this case, the application is trying to retrieve the value of the property maxValue
specified in the enterprise bean’s environment. This value is set in the enterprise
bean’s deployment descriptor as shown here:

<enterprise-beans>
<session>

...
<ejb-name>SomeBean</ejb-name>
<ejb-class>com.company.SomeBean</ejb-class>

...
<env-entry>

<description>
The maximum number of things to be done.

</description>
<env-entry-name>maxValue</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>15</env-entry-value>

</env-entry>

This deployment descriptor fragment indicates that there is a property in the enter-
prise bean’s environment called maxValue of type Integer that has the value, 15.
The environment entry values may be one of the following Java types:

✦ String

✦ Character

✦ Integer

✦ Boolean

✦ Double

✦ Byte

✦ Short

✦ Long

✦ Float

Environment properties can also be set for the following:

References to other EJBs

Web service references via the Java API for XML-based RPC (JAX-RPC) and fac-
tory references for JDBC connection factories;

JMS connection factories

JavaMail connection factories

URL connection factories

h539663 ch11.qxd 7/25/03 9:15 AM Page 336

337Chapter 11 ✦ Examining JNDI and Directory Services

All of these types of environment properties use the same java:com/env JNDI
syntax.

More information on enterprise bean environment references can be found in the
Enterprise JavaBean 2.1 specification, section 20.

Airline Reservations Business Case
Connexia Airlines needs to create a directory that will store all the information
about the users who will need to access its reservations system. The directory will
have to store information about users — specifically whether a user is an agent,
partner, consumer, or employee. Other pieces of information might include the
user’s full name, telephone number, and e-mail address.

There are two things we need to figure out here: The first is the schema and config-
uration of the directory server, and the second is how that server will be accessed
from Java code. The first has nothing to do with Java and JNDI. However, reviewing
it is necessary because it isn’t possible to build the JNDI access code without know-
ing some details about how the directory server is configured.

For the purposes of this example we’ll show a configuration file that could be used
with OpenLDAP. A number of predefined object classes are provided with
OpenLDAP. For the sake of convenience we can represent all the users in our sys-
tem using the InetOrgPerson schema, which was originally defined in RFC 2798.
This schema provides definitions for more attribute types than we could probably
use, so we’ll restrict our use of InetOrgPerson to these attributes:

Attribute Description

cn The user’s full name, required by the schema

sn The user’s surname, required by the schema

uid The user’s unique ID

userPassword The user’s password, stored in cleartext for this example

employeeNumber The employee ID (for employees)

telephoneNumber The user’s telephone number

mail The user’s e-mail address

employeeType Either agent, partner, consumer, or employee

o The organization (Connexia Airlines)

h539663 ch11.qxd 7/25/03 9:15 AM Page 337

338 Part III ✦ The Enterprise Information System Tier

A definition for the InetOrgPerson schema has already been provided, so we don’t
have to worry about that. The only thing we do need to check is what level of
access we want to give to different types of users. In this application users are not
going to be looking up other users’ records, so we don’t need to restrict access
based on user type. In situations in which users may be viewing or manipulating the
contents of the directory, we would want to restrict access to read-only for non-
employees. We might also want to only allow attribute comparisons and not full
attribute reads for the userPassword. Finally, we might only want to allow write
access only to fields such as telephoneNumber and cn so users wouldn’t be able to
modify their own uid or employeeType attributes.

As an example of restricting access to certain attributes, we might specify the fol-
lowing security restriction in the OpenLDAP configuration file:

access to * by * read
access to * attr=telephoneNumber, mail by * write
access to * attr=userPassword by * compare

This would enable users to compare userPassword attributes but not to read
them, to write to the telephoneNumber and mail attributes, and to read everything
else. For more information on configuring directory security, see your directory
server’s documentation. For OpenLDAP, see OpenLDAP 2.1 Administrator’s Guide at
http://www.openldap.org/doc/admin/.

These security considerations are determined primarily by the directory’s accessi-
bility. If the directory server is publicly accessible on the Internet, extensive secu-
rity restrictions must be put in place. If the directory server is isolated behind a
firewall and is only accessible to a limited number of applications (this is typical of
many Web-based systems), security doesn’t need to be implemented in the direc-
tory server itself as it is taken care of by the application and network architecture.

For this example we need to store passwords in cleartext and make them readable
so that they can be mailed to users who have forgotten their passwords.

Next we have to determine how the directory will be organized. Because the most
common use of the directory is to authenticate users with their uid and
userPassword attributes, it would make sense to organize the directory by uid.

Here’s a sample LDIF file showing some possible directory entries:

dn: o=Connexia Airlines
o: Connexia Airlines
objectclass: top
objectclass: organization

dn: uid=jmcgovern, o=Connexia Airlines
uid: jmcgovern

h539663 ch11.qxd 7/25/03 9:15 AM Page 338

339Chapter 11 ✦ Examining JNDI and Directory Services

userPassword: red
cn: James McGovern
sn: McGovern
mail: james.mcgovern@example.com
telephonenumber: +1 610 555 6273
employeeType: agent
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson

dn: uid=mlittle, o=Connexia Airlines
uid: mlittle
userPassword: green
cn: Mark Little
sn: Little
mail: mark.little@example.com
telephonenumber: +1 905 555 6273
employeeType: partner
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson

dn: uid=radatia, o=Connexia Airlines
uid: radatia
userPassword: blue
cn: Rahim Adatia
sn: Adatia
mail: rahim.adatia@example.com
telephonenumber: +1 715 555 6273
employeeType: consumer
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson

dn: uid=jgordon, o=Connexia Airlines
uid: jgordon
userPassword: fuscia
cn: Jason Gordon
sn: Gordon
mail: jason.gordon@example.com
telephonenumber: +1 664 555 6273
employeeType: employee
employeeNumber: 90210
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson

h539663 ch11.qxd 7/25/03 9:15 AM Page 339

340 Part III ✦ The Enterprise Information System Tier

Here’s the OpenLDAP configuration file to use with this directory. Replace
%OPENLDAP% with the name of the directory where OpenLDAP is installed.

include %OPENLDAP%/schema/core.schema
include %OPENLDAP%/schema/java.schema
include %OPENLDAP%/schema/cosine.schema
include %OPENLDAP%/schema/inetorgperson.schema

pidfile %OPENLDAP%/slapd.pid
argsfile %OPENLDAP%/slapd.args

database ldbm
suffix “o=Connexia Airlines”
directory %OPENLDAP%/openldap-ldbm

access to * by * read
access to * attr=telephoneNumber,mail by * write
access to * attr=userPassword by * compare

index objectClass eq

This directory doesn’t have much of a complex structure, but a complex structure
isn’t necessary for the applications we’re looking at building.

Why use a directory instead of a relational database for storing user information?
There are two reasons: speed and cost. A database may be busy with many com-
plex queries. Trying to check a user’s password against a busy database may take a
long time. Because the directory doesn’t deal with any other tasks it should always
have a short response time. Also, databases are expensive. Many databases are
licensed based on their size or the number of concurrent connections. There may
be many users and because storing their information doesn’t require a database’s
special capabilities it would be a waste of database resources. Finally, in the future
it may be possible to integrate the user directory for Connexia Airlines’ Web appli-
cations with the internal employee directory, making it easy for an employee to log
in without having to set up a new account.

Another advantage of using LDAP for user-authentication data is the ability to inte-
grate with the Java Authentication and Authorization Service (JAAS).

See Chapter 12 for more information on JAAS.

Shortly you’ll see some sample code that shows how an application might validate
a user’s password. Note that the connection to the directory is anonymous — no
security is used to prevent unauthorized applications from connection to the direc-
tory. However, because userPassword attributes can’t be read directly, at least that
information is safe.

Cross-
Reference

h539663 ch11.qxd 7/25/03 9:15 AM Page 340

341Chapter 11 ✦ Examining JNDI and Directory Services

The following program shows a method that can be used to verify the password. To
make sure it works, we test one of the user IDs with a couple of different passwords.
If we attempted to read the value of the userPassword attribute the result would
not have any value for that attribute.

import java.util.*;
import javax.naming.*;
import javax.naming.directory.*;

public class CheckPassword {
public static boolean checkPassword(String uid,
String password) {

// get initial context
// these properties could also be specified
// on the command line or in a jndi.properties file
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

“com.sun.jndi.ldap.LdapCtxFactory”);
env.put(Context.PROVIDER_URL,

“ldap://localhost/o=Connexia Airlines”);

try {
DirContext ctx = new InitialDirContext(env);
SearchControls controls = new SearchControls();
controls.setReturningObjFlag(true);
controls.setSearchScope(

SearchControls.OBJECT_SCOPE);
String filter = “userPassword=”+password;
NamingEnumeration answer = ctx.search(“uid=”+uid,

filter, controls);

return answer.hasMore();
} catch(NamingException e) {

e.printStackTrace();
return false;

}
}

public static void main(String args[]) {
System.out.println(checkPassword(“jmcgovern”,”red”));
System.out.println(checkPassword(“jmcgovern”,

“blue”));
}

}

This type of directory structure provides a flexible base upon which to build a wide
range of enterprise systems. In some cases, the directory used for application-
based authentication may also be integrated with other enterprise systems, such as
e-mail or enterprise resource planning (ERP) systems. LDAP and JNDI provide a
flexible interface that allows developers to easily access this information from
within custom applications.

h539663 ch11.qxd 7/25/03 9:15 AM Page 341

342 Part III ✦ The Enterprise Information System Tier

Magazine Publisher Business Case
In the second business case, a magazine publisher wants to cut down on the num-
ber of fraudulent transactions being conducted over its Web site. One way to do
this is to monitor what external sites are connecting to the publisher’s e-commerce
system. Two approaches are possible:

✦ The application can perform a reverse lookup on the customer’s system for all
transactions and log the information along with the publisher’s internal
record of the sale. This approach has a couple of advantages. The reverse
lookup can be performed asynchronously, so the user doesn’t need to wait for
the reverse lookup in order to receive confirmation. Also, many machines con-
nected to the Internet don’t have reverse lookup entries in DNS, even though
there isn’t anything nefarious about them. This is especially true of users who
use dialup Internet access.

✦ The application can perform a double reverse lookup, attempting to check
the domain name from the IP address and then to turn the domain name
back into an IP address to compare the two values. While it is used by some
FTP and SMTP servers this is not a good approach for a consumer-oriented
e-commerce application. Too many legitimate customers are likely to be
turned away because of DNS configuration issues.

Even though the second option, the double reverse lookup, is out of the question,
let’s look at some code for it. First, here’s the code for a basic reverse lookup:

import java.util.*;
import javax.naming.*;
import javax.naming.directory.*;

public class rdns {

/**
* @return the name of the machine being checked or null
* if there is no reverse DNS entry
**/
public static String reverseLookup(InetAddress addr) {

byte octets[] = addr.getAddress();
StringBuffer revName = new StringBuffer(15);

// silly signed bytes...
revName.append((int)octets[3] & 0xff);
revName.append(‘.’);
revName.append((int)octets[2] & 0xff);
revName.append(‘.’);
revName.append((int)octets[1] & 0xff);
revName.append(‘.’);
revName.append((int)octets[0] & 0xff);

h539663 ch11.qxd 7/25/03 9:15 AM Page 342

343Chapter 11 ✦ Examining JNDI and Directory Services

try {
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

“com.sun.jndi.dns.DnsContextFactory”);
env.put(Context.PROVIDER_URL,

“dns://192.168.1.1/in-addr.arpa”);
env.put(“com.sun.jndi.dns.recursion”, “true”);
DirContext ctx = new InitialDirContext(env);

Attributes attrs =
ctx.getAttributes(revName.toString());

return (String)attrs.get(“PTR”).get();

} catch(NamingException e) {
e.printStackTrace();
return null;

}
}

public static void main(String args[]) {
// perform a reverse lookup on args[0]
try {

InetAddress addr = InetAddress.getByName(args[0]);
System.out.println(addr.getHostAddress());
System.out.println(addr.getHostName());
System.out.println(reverseLookup(addr));

} catch(UnknownHostException e) {
e.printStackTrace();

}
}
}

Now, let’s try this code on common Internet hostnames and see what happens:

C:\>java rdns google.com
216.239.51.100
google.com
www.google.com

C:\>java rdns 216.239.51.100
216.239.51.100
216.239.51.100
www.google.com

C:\>java rdns aol.com
64.12.187.24
aol.com
aolr-v4.websys.aol.com

C:\>java rdns 64.12.187.24
64.12.187.24
aolr-v4.websys.aol.com
aolr-v4.websys.aol.com

h539663 ch11.qxd 7/25/03 9:15 AM Page 343

344 Part III ✦ The Enterprise Information System Tier

C:\>java rdns aolr-v4.websys.aol.com
64.12.187.24
aolr-v4.websys.aol.com
aolr-v4.websys.aol.com

C:\>java rdns 192.168.100.1
192.168.100.1
192.168.100.1
javax.naming.NameNotFoundException: DNS name not found
[response code 3]; remaining name ‘1.100.168.192’ at
com.sun.jndi.dns.DnsClient.checkResponseCode(DnsClient.java:485
)
...

So, we can see that because numerous domain name aliases are in use, double
reverse lookups might not always provide a match, even for safe domains.
Additionally, not all addresses are in the DNS database, so sometimes a lookup
will fail.

Performing a double reverse lookup is simple given the reverse lookup code, as
shown here:

import java.net.*;
import java.util.*;
import javax.naming.*;
import javax.naming.directory.*;

public class drdns {

public static String reverseLookup(InetAddress addr) {
// same as before...

}

public static boolean doubleLookup(InetAddress addr) {

byte octets[] = addr.getAddress();
StringBuffer revName = new StringBuffer(28);

// silly signed bytes...
revName.append((int)octets[3] & 0xff);
revName.append(‘.’);
revName.append((int)octets[2] & 0xff);
revName.append(‘.’);
revName.append((int)octets[1] & 0xff);
revName.append(‘.’);
revName.append((int)octets[0] & 0xff);
revName.append(“.in-addr.arpa”);

try {
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

“com.sun.jndi.dns.DnsContextFactory”);

h539663 ch11.qxd 7/25/03 9:15 AM Page 344

345Chapter 11 ✦ Examining JNDI and Directory Services

env.put(Context.PROVIDER_URL,
“dns://192.168.1.1”);

env.put(“com.sun.jndi.dns.recursion”, “true”);
DirContext ctx = new InitialDirContext(env);

Attributes attrs =
ctx.getAttributes(revName.toString());

String name = (String)attrs.get(“PTR”).get();

Attributes attrs2 = ctx.getAttributes(name);
String address = (String)attrs2.get(“A”).get();

System.out.println(“ “+address);

return address.equals(addr.getHostAddress());

} catch(NamingException e) {
e.printStackTrace();
return false;

}
}

public static void main(String args[]) {
// perform a double reverse lookup on args[0]
try {

InetAddress addr = InetAddress.getByName(args[0]);
System.out.println(addr.getHostAddress());
System.out.println(addr.getHostName());
System.out.println(reverseLookup(addr));
System.out.println(doubleLookup(addr));

} catch(UnknownHostException e) {
e.printStackTrace();

}
}
}

So, while the preceding code works and is fairly straightforward, in practice DNS
name mappings give us results like this:

C:\>java drdns 216.239.51.100
216.239.51.100
216.239.51.100
www.google.com
216.239.51.101

false

C:\>java drdns 216.239.51.101
216.239.51.101
216.239.51.101
www.google.com
216.239.51.101

true

h539663 ch11.qxd 7/25/03 9:15 AM Page 345

346 Part III ✦ The Enterprise Information System Tier

Two addresses reverse-map to the same domain name in this instance. Although
multiple A records may exist for www.google.com, that fact is not being picked up
in this case. Although we might be able to write extra code to search through all the
possible A records for a domain, the fundamental problem remains: the reverse-
lookup database is separate from the normal DNS database and consistency
between the two is not assured.

Our best bet to reduce fraud is to include the domain name of the machine used to
make all purchases online and eventually begin to deny access to machines, which
have historically been the source of fraudulent transactions.

Summary
This chapter described JNDI, one of the key APIs in the J2EE specification. JNDI
provides the interface to a variety of directory and naming services that play
important roles in connecting the different parts of your distributed enterprise
applications. Because we can never be sure exactly where services are physically
located in a distributed system, naming and directory services allow applications
to connect to services at runtime, dynamically.

JNDI can be used to access a variety of hierarchical directory services. LDAP and
DNS are the two most frequently used types of directories. We also looked at how
JNDI is used as a straight naming service for the lookup of distributed resources
like Enterprise JavaBeans (EJBs).

In this chapter we’ve introduced you to the structure of the JNDI API, the basics of
LDAP directories and how to access them via JNDI as well as the basics of DNS and
how to access it via JNDI. Equipped with this knowledge, you are ready to tackle
developing a wide range of directory-enabled J2EE applications.

✦ ✦ ✦

h539663 ch11.qxd 7/25/03 9:15 AM Page 346

Understanding
Java
Authentication
and
Authorization
Services

Java is among the first widely available programming envi-
ronments designed to ensure security from the ground up

rather than to be added in as an afterthought. As such, its
security mechanisms and services are continuously evolving
because the world of security never stands still. People inter-
ested in performing illicit actions are finding and exploiting
ever more arcane ways of compromising system integrity
while Java engineers are busily figuring out new ways to
defeat them. Java Authentication and Authorization Services
(JAAS) is one of the latest tools in the Java repertoire to make
the task of foiling intrusions easier. Introduced as an optional
package in the Java 2 SDK version 1.3, JAAS is now integrated
into version 1.4 following the usual Sun Microsystems release
timetable.

This chapter is an introduction to JAAS security with an
emphasis on explaining how ordinary software engineers can
incorporate a reasonable level of security into their projects
without becoming security gurus. The new security tools
introduced in Java 2, including an entirely new security

1212C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Examining the
importance of Java
security

Providing an
overview of Java
Authentication and
Authorization
Services

Understanding
security realms

Setting up for JAAS

Working with the
Java Subject class

Using the JAAS
login context

Authenticating users

Authorizing users

Working with
predefined JAAS
login handlers

Writing a login
handler

Writing a callback
handler

✦ ✦ ✦ ✦

h539663 ch12.qxd 7/25/03 9:16 AM Page 347

348 Part III ✦ The Enterprise Information System Tier

model, are designed to relieve the programmer of much (but not all) of the respon-
sibility for complex and dynamic security considerations.

One of the necessities in any security scheme is preventing unauthorized access to
system resources, because the fewer potential attackers the less likely the system
is to be misused. JAAS provides secure login and permissions services, limiting
access to critical applications and files to authorized users and administrators and
providing a needed level of defense against unauthorized incursions. JAAS also pro-
vides access to single login services, a method of allowing a user to access multiple
services across many security domains with only one login interaction, for widely
distributed applications, to encourage adherence to enterprise security policies
and minimize user inconvenience.

Examining the Importance of Java Security
The Java enterprise is (in most cases) an inherently distributed environment. It
may include one or more local-area networks (LANs) and possibly wide-area net-
work (WAN) access as needed for access to various business systems for staff; Web
access for customers and suppliers; and other specialized access points and sys-
tems designed to implement the complete business model. The standard tools used
to implement security in Java systems are built into the language itself: Strong typ-
ing, byte-code verification, runtime type-checking, class loaders, and security man-
agers all help ensure that Java code doesn’t do what it shouldn’t. In addition, you
can fine-tune the system by granting specific levels of permissions to known code
or code sources.

But even this isn’t really enough in systems on which people’s livelihoods, includ-
ing (for the sake of argument) yours, depend. At every point where a business sys-
tem touches the outside world, a potential security weakness can be found and
exploited. Here are some examples:

A point-of-sale terminal is capable of generating credits as well as generating
debits, and either action may be performed fraudulently, resulting in business
loss.

Personnel and customer files are valuable business assets, and unauthorized
access or dissemination can subject the enterprise to substantial liability.

Inventory and other files may be manipulated for either fraudulent or mali-
cious purposes, causing disruption of essential services and forcing expensive
recovery procedures.

Sensitive information can be observed by unauthorized persons, and this
can compromise privacy, impair business relationships, or facilitate illegal
activities.

h539663 ch12.qxd 7/25/03 9:16 AM Page 348

349Chapter 12 ✦ Understanding Java Authentication and Authorization Services

The interesting thing about these potential exploits is that in each case some indi-
vidual person is responsible, so it’s essential to control individual access every-
where a potential weakness exists. Ordinary customers have no reason to access a
point-of-sale terminal, unauthorized employees have no business accessing person-
nel and customer files, and random passers-by have no business updating your
inventory records. So the enterprise as a whole gains quite a bit of safety by ensur-
ing that certain operations can only be performed or observed by certain people.
Here are some of the ways to ensure this:

By physical controls such as locking computers themselves away from casual
access

By programmatic means, such as locking down virtual access points and, per-
haps most importantly, restricting their use to authorized persons

By encrypting communications among vulnerable parts of the application

Java security services enable the programmer to control virtual access points with
a number of APIs, of which JAAS is only one example. Of course no systems exist
that can’t be compromised, but judicious implementation of Java security tech-
niques can help keep all but the most skilled and determined intruder away from
your system.

Typical Java security weaknesses
Securing the Java enterprise involves many separate issues, so let’s see where Java
applications are most vulnerable. Table 12-1 lists the most common weakness that
Java is heir to. While handling all these potential security problems is beyond the
scope of this short chapter, we’ll look at a few easy measures to bolster your
defenses and see where JAAS fits into the overall scheme of Java security.

Table 12-1
Java security vulnerabilities

Vulnerability Potential Exploit

Cloning Cloning enables a malefactor to create an instance of your Java object
without running your constructor. Unfortunately, this possibility makes
the object-oriented nature and extensibility of Java a potential
weakness.

Serialization and Serialization allows inspection of your code, including embedded
deserialization values, by a hostile application or individual, facilitating the discovery of

potential weaknesses or private data. Deserialization may allow an
intruder to make spoofing attacks on your Java application by feeding it
a fraudulently altered or wrongly initialized instance of one of your
classes.

Continued

h539663 ch12.qxd 7/25/03 9:16 AM Page 349

350 Part III ✦ The Enterprise Information System Tier

Table 12-1 (continued)

Vulnerability Potential Exploit

Uninitialized It’s possible to allocate a Java object without running its constructor.
variables This may enable a clever programmer to manipulate the object in order

to access data he or she shouldn’t be able to access.

Signed code Unsigned Java runs in the sandbox, a specific Java run mode designed
to minimize the likelihood of malicious interference by restricting
memory access and preventing file I/O, which minimizes its potential
for causing damage. Signing code that doesn’t absolutely need to be
signed multiplies potential weaknesses with few benefits, if any.

Embedded No real protections exist for information embedded in Java code.
trade secrets Obfuscation disguises Java bytecodes to hinder examination and

reverse engineering of the code by altering control flow, changing
identifier names, manipulating data structures, replacing simple
variables with complex calculations, and specific tricks designed to
break known decompilers, might better be described as annoyance,
because it only makes it more difficult for someone to figure out what
your code does by using readily available disassemblers or decompilers.
Obfuscation also increases the risk of someone stealthily introducing
Java byte codes into the compiled byte- code file that do things not
intended by the designer and possibly not contemplated by the original
designers of Java. Since the security manager finds it almost as difficult
to inspect the code as does a naïve user, these “back doors” can remain
in place with little chance of discovery.

Weak or Before JAAS was introduced in Java 2 v1.3, verification of user ID was
inconsistent user largely left to the operating system or to the programmer, often with
verification mixed results. Users could plausibly repudiate transactions made in

their names, making it possible for them to later fraudulently deny
responsibility for actions they actually performed. On the other hand, a
malicious intruder could potentially enter harmful transactions in the
name of an innocent user with limited exposure to detection.

Relative lack of Many Java applications don’t have secure logging, either ignoring
secure logging logging completely or relying on well-known system logs with little or

no security that allow security exploits to be hidden after the fact.

In most cases methods exist by which your applications may be secured, methods
that involve limiting the scope or behavior of Java objects to minimize the possibil-
ity of unauthorized interference. Most enterprises today are connected to the
Internet, with concomitant wider exposure to mischief and mischance, so mere ver-
ification of behavior and scope may not be enough. The programmer must also
exercise due diligence in the study and practice of best coding practices to system-
atically minimize or eliminate potential weaknesses.

h539663 ch12.qxd 7/25/03 9:16 AM Page 350

351Chapter 12 ✦ Understanding Java Authentication and Authorization Services

For many of the weaknesses mentioned in the preceding table, the partial solution
is to explicitly override the behavior of dangerous methods to throw an exception.
For example, to eliminate the possibility of your class being cloned, you’d use code
something like what you see in Listing 12-1.

Listing 12-1: Overriding the clone() method

public final void clone() throws
java.lang.CloneNotSupportedException {

throw new java.lang.CloneNotSupportedException();
}

To eliminate the possibility of a malfeasant serializing or deserializing your code,
you’d insert code like that shown in Listing 12-2. The first code redefines
writeObject, the ordinary method used to serialize an object. The second rede-
fines readObject, the corresponding method used to deserialize an object.

Listing 12-2: Overriding writeObject and readObject methods

private final void writeObject(ObjectOutputStream out)
throws java.io.IOException {
throw new java.io.IOException(“Serialization forbidden.”);
}

private final void readObject(ObjectInputStream in)
throws java.io.IOException {
throw new java.io.IOException(“Deserialization forbidden.”);
}

You can also redefine dangerous methods within your class to make them safer,
even using cryptographic protection if high security and privacy are needed.

A systematic approach to security involves looking at every potential weakness in
your code and in the environment within which your code runs, including commu-
nications paths between different sections of the code, and people who might have
either legitimate or illegitimate access to any machine on which your code runs.

Figure 12-1 shows an overview of the Java security environment of which JAAS is
only a part.

h539663 ch12.qxd 7/25/03 9:16 AM Page 351

352 Part III ✦ The Enterprise Information System Tier

Figure 12-1: The Java security environment shows the types of barriers hindering
unauthorized access.

As shown in Figure 12-1, going clockwise from the upper left corner, JAAS uses its
own authentication and authorization services to prevent unauthorized users from
accessing critical applications. Unauthorized persons or processes are also pre-
vented from snooping on the login process, and its required security files, by
GSS/JCE/JSSE encryption. The authenticity of the code itself, assuming that it is
signed, has a valid certificate that has actually been signed by the entity trusted by
the application, and not an imposter. The CertPath mechanism is used to ensure
this process.

Standard operating system access permissions are used to protect directories and
files from outside interference by persons trying to access the code for any reason,
including monitoring runtime state or code structure, or replacing trusted code
with modified versions. In the end, only authorized users are allowed to run the
code and interact with the application, using the identity already established by the
operating system. This combination of security mechanisms allows JAAS to inte-
grate easily with preexisting applications, usually replacing a separate login pro-
cess and expanding protection to foil potential security threats from a variety of
sources. Although JAAS is only a part of the complete picture, it serves a central
role because it forms the interface between users and the applications they need to
perform their tasks.

Aside from these active measures, it may also be a good idea for the security
administrator to decompile most Java applications, applets, or beans before
installing them on the system, and to inspect them for security risks and then

Unauthorized
User

Authorized
Users

GSS/JCE/JSSE
Encryption

Login
File

Access
Permissions

CertPath

Code
Signer

JAAS

Snoop

Snoop

App

EJB

h539663 ch12.qxd 7/25/03 9:16 AM Page 352

353Chapter 12 ✦ Understanding Java Authentication and Authorization Services

recompile them to ensure that dirty tricks haven’t been inserted in among the byte
codes. Further security measures are discussed on the Sun Java Security site at
http://java.sun.com/security/ and in various discussion groups on the Web.

Providing an overview of JAAS
The familiar Java sandbox was designed primarily to protect users, and their personal
machines, from malicious interference from hostile systems in the outside world. The
sandbox enables users to run Java applets without worrying too much about where
they came from, by preventing the code from acting in a dangerous way.

Unfortunately, many useful activities are inherently dangerous, and so new facilities
were added to enable system administrators (or users) to selectively lower the
walls of the sandbox so that the code can interact with file systems, communica-
tions networks, and other resources. But this carries its own risks, because once
the walls are lowered it becomes easier for an unauthorized user to exploit weak-
nesses. As with any security decision, system administrators must carefully assess
both risks and benefits to ensure that a correct tradeoff is made between protec-
tion and ease of use. Unlike some other methods of providing active content, trust
in the Java security milieu is not all or nothing, but can be fine-tuned to precisely fit
business needs.

As you know, JAAS is designed to protect systems from hostile users. It does this
with two basic mechanisms:

✦ Authentication services — These services ensure that every user is autho-
rized to use the system and is known by name. They commonly do this by
means of some sort of login mechanism, but in some environments — such as
Windows 2000, Solaris, and many other operating system or network environ-
ments — user information and permissions can be found somewhere in the
environment. Therefore, the JAAS login may consist primarily of JAAS check-
ing the existence of an authorized login and copying information from that
login into the Java login context.

✦ Authorization services — These services associate with each user a set of
permissions that may grant differing levels of access to different users and
may also restrict privileges to specific actions and files, relying on operating-
system security features to guarantee the integrity of the application files as
well as using programmatic controls to ensure disciplined access to database
records and fields. In addition, authorization services can associate creden-
tials or certificates with a user or service, to ensure that the code being exe-
cuted is the same code it was when last you looked.

To ensure portability and flexibility, the actual mechanisms by which these services
are provided are implemented as plugin modules defined in external files. On differ-
ing platforms, as technology improves, or when business practices change, the
details of the security implementation can easily change as well. A further benefit
for most enterprises is that JAAS can easily integrate Java applications into existing
enterprise-security mechanisms and policies.

h539663 ch12.qxd 7/25/03 9:16 AM Page 353

354 Part III ✦ The Enterprise Information System Tier

JAAS is usually supported by encryption or other secure-communications tools, but
these tools are not, strictly speaking, part of JAAS. We’ll examine these services
briefly nonetheless, because they form a natural complement to JAAS.

Java encryption is covered in more detail in Chapter 13.

A JAAS-enabled application performs a series of three basic functions:

1. The application obtains login information, either by requesting an explicit
login sequence from the user or by obtaining the user’s login context from the
environment. This information may include credentials from local facilities, or
from public certificate authorities by using the Java CertPath API. CertPath
is actually a part of the Java Security Architecture which supports X.509
Certification Paths, allowing the programmer to create, build, and validate a
chain of certificates binding the user, or program code, to an encrypted public
key guaranteeing authenticity and integrity and extending back to a known
and trusted certificate authority.

2. The application calls the doAs() or doAsPrivileged() method, including
the user’s login context and the module to be executed in the call.

3. The security manager is then called to verify that the user has all the neces-
sary permissions to run the code. If the user does not, the call fails. If the user
does, the call succeeds. Because the called module has access to the user’s
login information, his or her identity can be logged to facilitate surveillance
and recovery.

The JAAS login process is a two-stage transaction similar (but not identical) to
those discussed in Chapter 10. This ensures that the process can’t be exploited to
compromise correct login completion though race conditions or module failures.
The entire login process is tried out to ensure that it will succeed before the
commit() method is called to complete the actual login.

Handling security is arbitrarily complex, and few enterprises can afford to allocate
the required resources to adequately adapt to an ever-changing playing field, so it
becomes the programmer’s responsibility to handle security despite the fact that
this may not be among his or her strongest skills. Luckily, handling security with
predefined Java APIs is not terribly hard, and indeed, as you’ll see in the section
“Hiding JAAS,” once a login facility appropriate for your application environment is
available, you can ignore JAAS completely by including in the command string a
simple login utility that invokes the Java interpreter.

But what about users who have accounts on many machines? How does JAAS han-
dle that? Read on to discover the answer to this question.

Cross-
Reference

h539663 ch12.qxd 7/25/03 9:16 AM Page 354

355Chapter 12 ✦ Understanding Java Authentication and Authorization Services

Understanding Security Realms
Most of us have accounts on more than one machine. At the very least, you probably
have a default account on your personal computer and another on your connectivity
provider. It’s very likely that the operating systems that support these two accounts
are different and that the root account on each machine refers to a different person.
These two people, one of whom is probably you, may enforce widely differing poli-
cies about who can do what and who has access to each one’s machine.

Quiet reflection allows the savvy developer to realize that a very large number of
security regimes are available. These include the relative chaos of most user
machines promiscuously connected to the Internet, the virtual privacy of networks,
and the Faraday-caged Comsec/Emsec/Compusec security of military computers.
Even on the Internet, the potential security barriers to outside access are numer-
ous, with proprietary offerings making it difficult for the hacker and hapless user
both to connect to virtual private networks and other protected environments.

Earlier in this chapter, in the section “Providing an overview of JAAS,” we discussed
some of the operating systems that JAAS supports. Different operating systems sup-
port different character sets, byte order, machine architectures, user names, and
security environments, all of which may make it difficult for a single user to share
information, even security information, between systems. However, even machines
using the same operating system may not share security files for any number of
good reasons. Even in a single enterprise, some departments may have entirely sep-
arate networks and operating environments. So when users need to access systems
residing on different machines, they often require an account on each machine. The
system administrator on machine A may require user names in the form, <first ini-
tial><first four letters of last name><three-digit accession number>. However, the
administrator of machine B may allow free-form names chosen by the user alone
like “codewiz” or “larry.” Finally, the administrator of machine C may use dotted
notation to present the full name. So, Lawrence B. Smith may have to remember ids
and passwords for lsmit032, larry, larry7, Lawrence.B.Smith and any number of oth-
ers; one for each security realm Larry has privileges in.

A JAAS security realm is any logical grouping of users and services that makes
sense. It might be users on a particular machine, or those working for a particular
company, division, or workgroup. From a Windows perspective, a realm is roughly
equivalent to a Windows domain; in another environment, it might be a virtual
realm located on a distributed server like a Kerberos server or Sun’s X.500 Keystore
(LDAP) server, with the users and services all operating on machines under their
own security disciplines. The default Java security policies allow for security
domains to be configured to provide different privileges to be associated with par-
ticular bits of code. Users may also be grouped into arbitrary conglomerates to
ensure the ability to flexibly grant or deny particular permissions based on enter-
prise needs without departing completely from the sandbox-versus-unlimited-
access model. The invocation of a JAAS security manager allows the full power of
individual or group authentication and authorization to be added to the standard

h539663 ch12.qxd 7/25/03 9:16 AM Page 355

356 Part III ✦ The Enterprise Information System Tier

security model, but you don’t have to invoke a security manager unless it’s truly
needed for application security.

JAAS allows each security realm to announce its requirements before the user
attempts to log in, so that in the Borland implementation of JAAS, for example, a
property called reactive login enables enterprise clients to automatically request
the proper challenge and response for a particular security realm before proceed-
ing with the login. Depending on the information gathered from the server, the user
process can modify its login strategy before continuing with a login attempt. If mul-
tiple realms are supported, the client will offer the user a menu of security realms
to choose from. This allows further flexibility within the total security system
because it’s not then necessary to authenticate the user for all the realms within
which identities and passwords are held before performing a task.

Judicious use of alternative login options might accomplish similar results, or cus-
tom login modules could be written to build in this supple behavior by design.
However, the inherent modularity of JAAS enables third-party vendors to add value
to their offerings by foreseeing needs like this. These vendors can then supply
behaviors that provide more than the handful of simple login modules furnished by
Sun in the JAAS software development kit (SDK).

Single login across security domains
Anyone with more than a few accounts on several machines has cursed the need to
maintain a list of user names and passwords for each account. Wouldn’t it be nice
to have a secure central place where you could keep a virtual key ring with all your
user names and passwords tidily protected by a single login name and password?
You bet it would.

The lure of single login is a siren call for systems administrators as well, because
the other side of single login is the hope of reduced maintenance costs. So almost
everyone promises it in one way or another, either by including some sort of single
login capability in the OS itself, or by offering support for external single login envi-
ronments. Microsoft, for example, includes a form of single login in all the recent
versions of Windows, and extends that capability to untrusted networks through
their Passport offering within the .NET architecture. Since many people don’t com-
pletely trust Microsoft with their data, Microsoft has recently backed off from
Passport slightly by offering the TrustBridge system, which moves security
repositories from Microsoft servers to those owned by business partners. Sun
Microsystems is leading an initiative named Liberty Alliance, which is roughly
similar to TrustBridge in concept, but with a different cast of partners.

The Windows environment, for example, touts itself as a single login system, and
indeed it is as long as your vision doesn’t extend far beyond the Microsoft domain
system. Microsoft security domains can declare their willingness to accept users
from other Microsoft domains and, although the juggling of mutual trusts can get
very tricky indeed, it is possible to distribute the net of users widely. In fact, one of
the problems that programmers often run into is that they don’t really understand

h539663 ch12.qxd 7/25/03 9:16 AM Page 356

357Chapter 12 ✦ Understanding Java Authentication and Authorization Services

the pervasiveness of the Microsoft single-login concept. So they attempt to force
Microsoft environments to conform to the overlapping login domains of other oper-
ating systems’ environments. But allowing layered logins to let people drop in and
out of privileged states isn’t safe under Windows, which doesn’t allow ordinary
users to initiate a login. This is anathema in the Microsoft environment, because a
simple extension of this scheme can be used as an automated password cracker.
Before a user process can be allowed to do this, it must be permitted to act as part
of the operating system, which isn’t the sort of permission one wants to give to all
and sundry. A user process can request a login process from the Windows operating
system, but the OS is responsible for making sure that request is safe by enforcing a
strict login discipline. Among these disciplines is insisting on the CTRL-ALT-DELETE
interrupt sequence to return the session to a known state, which then enters the
administratively-configurable Windows Security Dialog.

Kerberos
Kerberos is a more robust example of single-login security, and has implementa-
tions on most platforms, including Windows. The latest incarnation of Kerberos
from Microsoft seems to conform closely to the Kerberos standard. Early Microsoft
implementations “extended” Kerberos slightly in ways that sometimes clashed with
what other Kerberos programmers thought reasonable. For the most part, these
proprietary extensions were created in an attempt to reconcile the disparate
philosophies underlying Microsoft security and most of the rest of the world,
especially Unix.

Kerberos was developed at the Massachusetts Institute of Technology (MIT) as part
of the Athena Project, a Unix-based campus-wide facility designed to allow seamless
access to resources on the MIT network. It takes its name from the fierce three-
headed dog that guards the gate of Hades, although the metaphor is somewhat
strained, because Kerberos only attacks people who try to escape and freely allows
anyone at all to enter. This unfortunate misunderstanding probably reflects the sad
lack of a classical liberal-arts education among many computer professionals.

Advantages of JAAS
Other single login security managers are available as well, such as the X.500
Keystore module supplied by Sun, or any of the many proprietary offerings created
by third-party vendors. But one of the great things about JAAS is that you’re not
required to choose any particular scheme. Indeed, each of these schemes may
return one or more JAAS Principals, any or all of which can be associated with a
single JAAS Subject to create as many identities as necessary. There’s an old say-
ing among programmers that the nice thing about standards is that there are so
many of them to choose from; JAAS doesn’t even ask you to make that choice. Your
application can have it all.

Using JAAS to conduct login processing, and using Java GSS-API and any of several
distributed or local password-authentication protocols, even Windows-based
Kerberos, enables system administrators to easily maintain login and password
information in central locations and allows users to maintain a single login, even
across differing security realms.

h539663 ch12.qxd 7/25/03 9:16 AM Page 357

358 Part III ✦ The Enterprise Information System Tier

Setting up for JAAS
The basic foundation of any JAAS system is four properties located in the
java.security properties file. Two properties are specifically allocated to JAAS:

✦ login.configuration.provider defines the basic security format expected
by JAAS.

✦ login config.url.n where n is a positive integer numbered consecutively
from 1 identifying each login configuration, file instance. Multiple files are
concatenated.

In addition, two properties are common to all Java security:

✦ policy.provider defines the basic security formats expected by Java.

✦ policy.url.n where n is a positive integer numbered consecutively from 1
identifying each policy file instance. Multiple files are concatenated.

If more than one url file exists in either of these four categories, the contents of
each file is joined with the others to form a union of properties.

JAAS itself needs only a handful of import statements, typically one or more of the
javax.security packages added or changed for J2 v1.4 and a callback handler
from the com.sun.security.auth.module series of packages. You might also
need an I/O package or two. Listing 12-3 shows a typical selection of imported mod-
ules you might need. Exactly what you need is dependent on what your code does,
of course. As you’ll see later in this chapter in the section “Hiding JAAS,” in many
cases you don’t actually have to change your code at all.

Listing 12-3: Typical JAAS setup code

import javax.security.auth.*;
import javax.security.auth.login.*;
import javax.security.auth.callback.*;
import com.sun.security.auth.callback.TextCallbackHandler;
import com.sun.security.auth.callback.DialogCallbackHandler;

These bring in the basic JAAS security packages plus two items identifying a toolkit
used to interact with a user. This toolkit consists of callback handlers, which are dis-
cussed next.

Callback handlers
Callback handlers manage interaction with a user. Although they can be used to ini-
tiate a login-ID/password sequence, they are by no means limited to that function.

h539663 ch12.qxd 7/25/03 9:16 AM Page 358

359Chapter 12 ✦ Understanding Java Authentication and Authorization Services

Simple APIs are provided in the com.sun.security.auth.callback package to
allow login modules to perform various interactions with the user, including a sim-
ple login sequence that prompts for a user name and password. Two classes, shown
in Table 12-2, are provided within the package to instantiate a callback handler that
performs the actual prompt routines, designed for simple text I/O on standard input
and output streams or, alternatively, graphical dialogs using the Swing package.

Table 12-2
JAAS predefined callback handlers

Callback Class Action

TextCallbackHandler This class prompts and reads from the command line,
offering a bare-bones user interface that works
everywhere.

DialogCallbackHandler This class uses Swing dialog windows to display prompts
and read from any Swing dialog element, including check
boxes, input fields, and lists, in a graphical windowing
environment, offering a slightly more attractive interface.

It’s often a good idea to provide hooks within your callback handlers for a variety of
different callbacks, even if you foresee using your code only in environments that
never use callbacks. Otherwise, if you later decide to change to an environment that
does require callbacks, your code will throw an exception. During your security
analysis, you should balance the possibility of your code breaking in unplanned-for
environments with the potential vulnerability inherent in more complex code. But
remember that your code probably shouldn’t be extensible, so you might not be
able to add features without rewriting and recompiling your code, a lengthy process
if the code is under version control.

Text callback handlers
Text is completely reliable and has the advantage of being universal; every system
supports it and it’s easily accessible for users with many sorts of disabilities. Of
course text is considered ugly and boring in some circles, but it’s probably a mis-
take to eliminate it out of hand without considering the tradeoffs.

For a critical application available to the public, or to employees who require
access in order to do their jobs, the likelihood is that you’ll have to supply text-
based access at some point. This may be a legal obligation, according to the
Americans with Disabilities Act and Section 508 of the U.S. Rehabilitation Act for
software developed by or sold to federal agencies. It might also be considered a
moral obligation for every organization. It’s neither decent nor compassionate to
ignore this need, even if you are not mandated to comply with the ADA. Although
Swing has accessibility mechanisms built into it, it isn’t available on all devices, nor
is it suitable for communicating with all disabled persons using all accessibility

h539663 ch12.qxd 7/25/03 9:16 AM Page 359

360 Part III ✦ The Enterprise Information System Tier

technologies. On the Windows platform, for example, the JAWS (Job Access With
Speech) screen reader from Freedom Scientific is the only one I know of that is fully
compatible with Java Swing.

In this chapter we’ll use text I/O exclusively, simply because it’s easier to set up, is
more universal than Swing, and allows smaller and more readily understandable
examples.

Dialog callback handlers
Java Foundation Classes (JFC) makes it easy to replace text with fancy buttons,
lists, menus, and little boxes full of words using Swing components to create a
graphical user interface (GUI). GUIs allow systems to be designed to maximize pro-
ductivity and ease of use for some, but not all, users. For most enterprises the extra
expense of providing such an interface is justified even though alternatives may
have to be provided for some users.

Although Swing gives you enormous control over the graphical look and feel of
your application, as well as a large selection of predefined widgets and tools, the
use of Swing is beyond the scope of this short chapter. So, the reader is advised to
consult any of several thorough discussions of this API in books covering JFC and
Swing. A few recent texts are listed in Appendix C.

Pluggable/stackable authentication
Pluggable Authentication Modules (PAM) is at the heart of JAAS power. Extensibility
is built into the JAAS login-configuration file, which contains a list of login modules
to be invoked when an authenticating login call is made. These modules are not
only pluggable, so you can easily swap out a login file designed for Unix and swap in
one designed for Win2K, they’re stackable, so your login sequence can consist of
several steps, each of which adds information to the description of a user’s identity
and permissions. Each file can contain one or more callback modules in order to
interact with the user on many levels, adding great flexibility and power to the
entire package.

The login-configuration file consists of one or more entries having, by default, the
format shown in Listing 12-4:

Listing 12-4: Login-File format

<application name> {
<LoginModuleName> <flag> <LoginModule options>;
<LoginModuleName> <flag> <LoginModule options>;
. . .
};

h539663 ch12.qxd 7/25/03 9:16 AM Page 360

361Chapter 12 ✦ Understanding Java Authentication and Authorization Services

The flag defines the properties of each entry and the overall control flow of the
authentication process, as shown in Table 12-3.

Table 12-3
JAAS login-module flags

Keyword Control-Flow Meaning

required This module is required but successive entries in the LoginModuleName
list will be executed whether it succeeds or fails. It can be used to
implement a multistage login sequence without giving away information
about which step in the sequence failed.

requisite This module is required, but if the module fails control immediately falls
through to the end of the list and the process returns failure. If the login
succeeds, any remaining items in the list will be executed in order.
Although this may save the user extra interactions or time, it may also give
away security information, facilitating step-by-step attempts to breach login
security.

sufficient This module isn’t required, but if it does succeed control immediately falls
to the bottom of the list and the process returns successfully.

optional This module isn’t required. Whether the login succeeds or fails, control
passes down the list.

Fairly complex login scenarios can be constructed using these options. All required
and requisite modules encountered must succeed in order for the overall login to
succeed. At least one optional or sufficient module must succeed if no required or
requisite modules are present. Each login module can have different policy files
associated with it. This allows JAAS to support users who may have varying privi-
leges. In most systems, users may carry with them not only their own individual
permissions, such as read/write access to their home directories, but also permis-
sions granted as a result of membership in certain groups, such as the database-
programming group, the administrator group, and/or the department manager’s
group.

Different LoginModule options are defined for each module, depending on
module needs. However, all the default login modules supplied by Sun take a
debug=true value to make the developer’s life easier.

Since login information is highly attractive to snoops and uniquely vulnerable, com-
munications are often handled by encryption methods — either the Generic Security
Services Application Program Interface (GSS-API) or the Java Secure Socket Extension
(JSSE). GSS-API supports Kerberos and Lightweight Directory Access Protocol
(LDAP) servers using the Simple Authentication and Security Layer (SASL). JSSE is
required by some HTTP servers because it supports Transport Layer Security (TLS,
formerly known as Secure Sockets Layer or SSL) and doesn’t yet support Kerberos.

Note

h539663 ch12.qxd 7/25/03 9:16 AM Page 361

362 Part III ✦ The Enterprise Information System Tier

It’s not difficult to imagine applications that require either or both. The “Magazine-
Publisher Example” section toward the end of this chapter describes a Kerberos
login sequence that uses GSS encryption to hide the user name/password dialog.

JAAS login modules ultimately populate a Subject with one or more Principals
that define a JAAS entity, whether that entity is an actual human or a service. The
Subject class is discussed in the next section.

Examining the Java Subject Class
JAAS handles the multiple facets of our online login personalities by creating a
Subject containing an array of Principal objects, each of which has a set of per-
missions associated with it, as well as any public and private keys or certificates
needed by the application. A Subject is any entity that makes a request to access
system or network resources.

Just like the language in a contract, the specific language used to describe users for
security purposes has implications. A JAAS Subject is the actual entity authorized
to request services from the Java security manager. However, a Subject doesn’t
correspond directly to any given identifier, but rather contains a set of Principals
that contain information about the actual user. That information might be, for an
individual, a personal name, an identifying number, a user ID, or any other pertinent
information. Each one of these Principals may contain a list of permissions with
associated permissions. So the total package of permissions may vary, depending
on which of several alternative identifiers is included in the actual login set.

Therefore, a Principal might not be unique, as a personal name might be shared
by many people. The name Jane Doe might describe hundreds, or thousands, of
individuals, and might conceivably have one or more associated permissions.
Conversely, a Social Security number should describe only one individual (absent
fraud or official error) and might have another set of permissions associated with it.

A Principal might describe any of the following entities:

An actual user

A login ID shared by one or more users such as root or Administrator

A system-level group identification carrying a specific set of permissions with
it, usually descriptive in Windows systems or a cryptic numeric under Unix or
its variants

A group identification describing a user’s status or role aside from or in addi-
tion to predefined system user groups, such as “returning student” or security
clearances, since the needs of an application may not translate directly into
system-level requirements

h539663 ch12.qxd 7/25/03 9:16 AM Page 362

363Chapter 12 ✦ Understanding Java Authentication and Authorization Services

A system service or application module

An enterprise as a whole or a department within an organization since, in a
networked world, you may know who your business partners are in a general
sense without knowing their employee roster

Since a JAAS Subject consists of the set-wise union of all its Principals, the possi-
bilities for variation and specificity are obviously very numerous.

A Subject may also contain public and private credentials such as cryptographic
keys and digital signatures. You can think of a Principal as a user name or ID
(including group membership IDs), and you can think of a Subject as a collection
of such names, any or all of which might contribute permissions and credentials
toward the fulfillment of any particular request.

Several login modules are supplied by Sun in the com.sun.security.auth.
module, as shown in Table 12-4.

Table 12-4
Sun-supplied login modules

Module Name Target Environment Typical Features

Krb5LoginModule Kerberos Supports a widespread network-security
tool from MIT. Requires initial login.

NTLoginModule WinNT and Win2K Obtains authentication and
authorization information from the
user’s environment, and so never
requires a separate login since Windows
doesn’t support nested logins.

UnixLoginModule Sun, Solaris, Unix, Obtains authentication and
and Linux authorization information from the

user’s environment, and so may not
require a separate login but does allow
them, since Unix and its variants all
support nested logins.

KeyStoreLoginModule Key store Fully supports Sun-proprietary JKS and
JCEKS key stores. Partially (read access
only) supports PKCS #12 with full
support promised in a future release.

JndiLoginModule JNDI Uses a Java Naming and Directory
Interface (JNDI) file-system-directory
service to authenticate a user.

h539663 ch12.qxd 7/25/03 9:16 AM Page 363

364 Part III ✦ The Enterprise Information System Tier

The Sun modules cover the great majority of environments available to the ordi-
nary user. Each of these login modules implements at least the methods shown in
the section named Writing your own login handler, Table 12-10, but we can ignore
these for a while as we examine the process of authenticating a user in more detail.

Authenticating Users
At its most basic, you can enforce access security by requiring users to log in sepa-
rately before using each Java service. This approach lacks flexibility, and may irri-
tate users who hop in and out of applications during their daily activities. However,
it places the least burden on the programmer and the greatest burden on the
administrator, so programmers tend to favor this idea. For an administrator,
though, this is a hideous nightmare, because each user requires entries in separate
login and policy files for each application. So adding or deleting users is an onerous
task. Users might not be thrilled either, because being forced to repeatedly log in
while going about one’s daily business is both irritating and tiresome.

When an operating system or other environment enforces a login discipline, it’s
usually sensible to use those same facilities to handle Java authentication and
authorization as well. All services will be performed using the access authoriza-
tions of a particular user and the administrator will be spared most of the task of
handling whatever duplication may exist.

In addition, predefined login mechanisms are often far more secure than anything
the average programmer is likely to be able to create easily. For example, Kerberos
uses strong cryptography to ensure secure login dialogs, even in a network environ-
ment that is not trusted. Kerberos is supplied as source code, so the canny pro-
grammer can even inspect the code to guarantee that the algorithm seems secure
and that no back doors have been inserted in the code. Kerberos has been exten-
sively tested, a prerequisite to any level of trust being bestowed on any crypto-
graphic scheme. As with any security product, it’s important to keep up with
advisories and patches, but it’s also possible to purchase Kerberos support from
outside vendors.

The rest of this section will discuss the files needed to perform basic authentication
and authorization, with simple examples offered at each step of the way. The first
example in this series is the basic code needed to perform a JAAS login, shown in
Listing 12-5.

Listing 12-5: Basic JAAS-login code

import javax.security.auth.*;
import javax.security.auth.login.*;
import javax.security.auth.callback.*;
import com.sun.security.auth.callback.DialogCallbackHandler;

h539663 ch12.qxd 7/25/03 9:16 AM Page 364

365Chapter 12 ✦ Understanding Java Authentication and Authorization Services

//
// Attempt either to authenticate user or report failure
//
public class ObtainLogin {

public static void main(String[] args) {
// Obtain a LoginContext using the login modules listed
// in the login configuration file named in the
// LoginContext() call.
// This example is chattier than most actual login
// dialogs to ease debugging by identifying the cause
// of any failure .
// In an actual login context, you should volunteer as

little
// information as possible. It would possibly be better

to
// return a single newline if any part of the login

fails.
// Note that a callbackHandler is supplied despite the

fact
// that this example will use the WinNT login module,

which
// ignores this handler. This makes it possible to change
// the security environment without changing this code.
LoginContext lc = null;
try {

lc = new LoginContext(“ObtainLogin”,
new DialogCallbackHandler());

} catch (LoginException le) {
System.err.println(“Cannot create LoginContext: “

+ le.getMessage());
System.exit(-1);

} catch (SecurityException se) {
System.err.println(“Cannot create LoginContext: “

+ se.getMessage());
System.exit(-1);

}
try {

// attempt authentication
lc.login();

} catch (LoginException le) {
System.err.println(“Authentication failed: “);
System.err.println(“ “ + le.getMessage());
System.exit(-1);

}
System.out.println();
System.out.println(“ ********************”);
System.out.println(“ * Login Successful *”);
System.out.println(“ ********************”);
System.out.println();
// Execute a bit of privileged code
Subject me = lc.getSubject();

Continued

h539663 ch12.qxd 7/25/03 9:16 AM Page 365

366 Part III ✦ The Enterprise Information System Tier

Listing 12-5 (continued)

PrivilegedAction pa = new GetOsName();
Subject.doAsPrivileged(me, pa, null);
System.out.println();

}
}

This code calls another class that performs the actual privileged actions, whose
content is displayed in Listing 12-6. Because the actual login process would be the
same for most of your modules, separating the privileged code enables you to reuse
the nuts and bolts of JAAS and also enables you to plug in different tasks as needed.
Especially note that, although the code calls a dialog callback handler, because
the code runs under Windows the requested information is read from the user’s
environment and no information is actually requested from the user.

Listing 12-6: A JAAS privileged object

import java.security.PrivilegedAction;

public class GetOsName implements PrivilegedAction {
public Object run() {

System.out.println(“ OS Name: “ +
System.getProperty(“os.name”));

System.out.println(“Java Home: “ +
System.getProperty(“java.home”));

return null;
}

}

The first action lists the operating system’s name, which is normally available even
within the sandbox. The other reveals details of the file system that are definitely
outside the sandbox. The code fails if it tries to run without this permission.
Therefore, the code as it stands has three levels of diagnostic feedback built in —
one announcement that the login portion of the code succeeded, another that the
“privileged” code section was entered, and one more that all portions of the JAAS
security features employed have worked properly.

Listing 12-7 shows the login-configuration file associated with this application.

h539663 ch12.qxd 7/25/03 9:16 AM Page 366

367Chapter 12 ✦ Understanding Java Authentication and Authorization Services

Listing 12-7: The ObtainLogin login-configuration file

ObtainLogin {
com.sun.security.auth.module.NTLoginModule required;

};

Note that module entries should be delimited by semicolons (;). This particular file
contains only one entry with a single login module. Multiple named entries can be
made containing any number of login modules. This allows different login methods
to be used by each application with varying degrees of security complexity.

Because each module may contain full knowledge of the user’s operating-system
environment, it’s relatively easy to add new environments as long as a potential
method exists of authenticating users in that particular environment. A user in a
local Solaris or Win2K context may be relatively trusted, so information on user
names and groups can be used to populate an entire login context. A user entering
the application via Telnet or the Web, however, is relatively anonymous and the
connection itself may not be reliable. A security administrator might need to per-
form one or more separate login authentications, switch to a secure communica-
tions protocol, and reference internal databases to collect information similar to
that found in a Windows user environment. It may even be necessary to perform
sophisticated profiling of the user’s online behavior and knowledge before granting
access or allowing a session to continue.

Listing 12-8 shows a more complex login-configuration file that calls several login
handlers for our little application.

Listing 12-8: A more complex login-configuration file

ObtainLogin {
com.sun.security.auth.module.NTLoginModule sufficient;
com.sun.security.auth.module.KrbLoginModule sufficient;
VendorLoginModule optional;

};
JaasSecondExample {

com.sun.security.auth.module.NTLoginModule required;
VendorTwoLoginModule required;

};
JaasThirdExample {

com.sun.security.auth.module.KrbLoginModule required;
};

h539663 ch12.qxd 7/25/03 9:16 AM Page 367

368 Part III ✦ The Enterprise Information System Tier

This file contains entries for three applications with differing needs. The first runs
under a standard Win2K or WinNT OS. It both uses and trusts security information
from the user’s environment. This file also allows both Kerberos authentication
(which it also trusts) or a proprietary vendor-authentication module to obtain an
alternative login context. If none of these modules obtains the required identity and
permissions the login fails, but it otherwise succeeds on the first module that does
succeed. The second entry uses information from both the user’s Windows environ-
ment and a proprietary vendor scheme. Both modules must succeed for the login
to succeed. The third entry depends entirely on the Sun-supplied Kerberos login.
After a login succeeds, the user’s login context is populated and execution of your
application can proceed.

Authorizing users
A JAAS-enabled application may collect information from several sources before
running code. It can obtain user names and associated permissions from a user’s
login context, and possibly credentials associated with that user. JAAS can also
incorporate information obtained from external certificate authorities or databases
associated with the code itself, allowing great flexibility in making security deci-
sions and controlling program flow patterns. External certificate authorities are
often accessed through a secure-socket connection using the Java Secure Socket
Extension (JSSE), which implements SSL and Transport Layer Security (TLS) proto-
cols. Although other secure-communications protocols are available in J2EE,
secure-socket support is the most common on the Internet.

The authorizations or permissions associated with the user during the login pro-
cess have no meaning unless they are actually used in a JAAS Policy file as
described in the section immediately following.

JAAS policy files
The JAAS policy file is very similar to the standard Java policy file but has an added
dimension — the users. The Java policy file refers only to code and signers of code,
which is fine if any user is allowed to execute a given piece of code, but the real
world doesn’t usually work like that. We have keys to our cars and houses for the
precise reason that we don’t want just anyone to walk into our kitchen and make a
sandwich, or drive to the grocery store in our car. Businesses are equally persnick-
ety about who uses their facilities. So the standard policy file doesn’t go quite far
enough.

Like the standard file, the JAAS policy file enables the administrator to grant per-
missions to specific classes and/or specific code signers, just as the standard Java
policy file does. In this sense JAAS duplicates what’s already there. But JAAS also
adds the ability to restrict sensitive code to specific users, just as the keys on your
keyring restrict access to your home and vehicle. Listing 12-9 shows two entries in
such a file — the first a code-centric permission allowing a specific class code itself
to perform certain operations, and the second a user-centric permission allowing a
named user to run a specific bit of code. We’ll use these in our demonstration.

h539663 ch12.qxd 7/25/03 9:16 AM Page 368

369Chapter 12 ✦ Understanding Java Authentication and Authorization Services

Listing 12-9: Our example policy file

grant CodeBase “file:./ObtainLogin.jar” {
permission javax.security.auth.AuthPermission

“createLoginContext.ObtainLogin”;
permission javax.security.auth.AuthPermission

“doAsPrivileged”;
};

grant CodeBase “file:./GetOsName.jar”,
Principal com.sun.security.auth.NTUserPrincipal

“Puddintane” {
permission java.util.PropertyPermission “java.home”,

“read”;
};

We’ve placed both bits of code in Java jars for verisimilitude, because many real-
world applications are bundled up for convenience and security. This approach
allows the entirety of an application to be signed as a single unit (if signed code is
advisable in a particular instance). Therefore, it becomes more difficult to substi-
tute malignant look-alikes in efforts to exploit weaknesses.

Like the standard Java policy file, the JAAS policy file partially relieves program-
mers of the need to account for their exact environments. By implementing poli-
cies, the administrator can fine-tune the security model to suit the needs of the
enterprise rather than depending entirely on what the programmer thought of in
the first place. Even code that, left to its own devices, would be impossibly insecure
and dangerous can be tamed and brought to heel.

Compiling the example
Depending on how you’ve installed Java, you may need to fully qualify the path
for the Java compiler and jar maker. We’ll assume here that you haven’t added
the Java SDK binary directory to your path and that it’s installed at the Windows
root. Listing 12-10 shows the four steps needed to create the two jars used in the
example.

Listing 12-10: Compiling the example code

\j2sdk1.4.1_01\bin\javac GetOsName.java
\j2sdk1.4.1_01\bin\jar -cvf GetOsName.jar GetOsName.class
\j2sdk1.4.1_01\bin\javac -classpath GetOsName.jar
ObtainLogin.java
\j2sdk1.4.1_01\bin\jar -cvf ObtainLogin.jar ObtainLogin.class

h539663 ch12.qxd 7/25/03 9:16 AM Page 369

370 Part III ✦ The Enterprise Information System Tier

At this point you might also sign your jar files, and could then add a SignedBy key-
word and value to the corresponding JAAS policy file entry in Listing 12-9.

This example can be run from the command line, as shown in Listing 12-11.

Listing 12-11: Running the example code

java -classpath GetOsName.jar;ObtainLogin.jar
-Djava.security.manager
-Djava.security.auth.login.config=jaas.conf
-Djava.security.policy=jaas.policy ObtainLogin

Figure 12-2 shows the code being run by an authorized user, while Figure 12-3
shows the same code being run by an unauthorized user. Looking carefully at these
figures, note that the “Login Successful” welcome message and the Windows 2000
OS name are written on the output in both cases. This shows that the login
sequence was successful, which it would have to be under Win2K, and that the non-
privileged portion of the “privileged” code was also successful whether the user
was authorized or not. It’s only in the second case, when a truly privileged attempt
is made by an unauthorized user to read the Java home directory, that failure
occurs and error messages start spilling on the screen as shown in Figure 12-3. This
proves that the failure is one of authorization rather than authentication. In real life
you’d want to catch and hide all those messy errors once out of the debugging
stage, but they have the advantage of telling you a little bit about what went wrong
during initial development, here shown for illustrative purposes.

Of course in real life we’d probably catch those error messages and present a for-
matted “not authorized” message instead of giving away our hand like this.

Login-configuration files can be arbitrarily complex, as mentioned previously, and
can contain entries for multiple applications. This enables a JAAS Subject to con-
tain a large number of certificates, login IDs, and group memberships (on systems
that support groups of users).

Next, we’ll look at strategies you might want to employ during debugging of your
code.

h539663 ch12.qxd 7/25/03 9:16 AM Page 370

371Chapter 12 ✦ Understanding Java Authentication and Authorization Services

Figure 12-2: An authorized user sees a tidy little report.

Figure 12-3: An unauthorized user sees error messages bleeding all over the screen.

h539663 ch12.qxd 7/25/03 9:16 AM Page 371

372 Part III ✦ The Enterprise Information System Tier

Debugging the Simple JAAS Module
One of the most difficult things to deal with when creating JAAS applications is the
complex interactions between the various files you absolutely need and the fact
that a tiny problem in even one of those files can cause your program to fail in
sometimes bewildering ways. Your first line of defense is a modern programming
environment such as Sun ONE Studio or Borland Enterprise Studio for Java.
However, if your budget doesn’t stretch quite that far, a good alternative is a mod-
ern programmer’s editor, such as Visual SlickEdit. This editor interfaces to your
Java development kit and knows what Java looks like, simplifying early develop-
ment and eliminating many gross coding errors.

In addition, many programmers’ editors, including SlickEdit, work closely with
JBuilder and other integrated development suites. In addition, SlickEdit is particu-
larly interesting for programmers with visual disabilities, as it is compliant with the
accessibility requirements of the U.S. Rehabilitation Act, Section 508, and supports
the JAWS screen reader. Figure 12-4 shows Java code under development with an
interactive debugging session in progress.

Figure 12-4: Use a programmer’s editor for Java development.

h539663 ch12.qxd 7/25/03 9:16 AM Page 372

373Chapter 12 ✦ Understanding Java Authentication and Authorization Services

As a general rule, during development, set up the policy file(s) to grant infinite
access, get the application running under these loose conditions, and then gradu-
ally tighten security.

You might set up a standard Java policy pile, for development only, like that shown
in Listing 12-12. You might also set up a jaas.policyjava.policy development
file like that shown in Listing 12-13. These specifically grant all permissions to the
code and allow all users to do anything, so they won’t be useful once you get your
code working properly, but they simplify the process of development by eliminating
many possibilities for initial failure.

Listing 12-12: The java.policy development file

grant {
permission java.security.AllPermission;

};

Listing 12-13: The jaas.policy development file

grant CodeBase “file:./GetOsName.jar”,
Principal com.sun.security.auth.NTUserPrincipal “Everyone”

{
permission java.util.PropertyPermission “java.home”,

“read”;
permission java.util.PropertyPermission “os.name”, “read”;

};

This approach enables you to first develop your code as if you were in the Java
sandbox, get it running, and then gradually bring it fully under JAAS security. It’s
much easier to get one or two things right at a time than to get a hundred things
right all at once.

It goes without saying, of course, that leaving the policy files in that initial state
would be unwise. Listing 12-14 and 12-15 show more fully developed versions of
these files.

h539663 ch12.qxd 7/25/03 9:16 AM Page 373

374 Part III ✦ The Enterprise Information System Tier

Listing 12-14: The finished Java policy file

grant CodeBase “file:./GetOsName.jar”,
Principal com.sun.security.auth.NTUserPrincipal

“Puddintane” {
permission java.util.PropertyPermission “java.home”,

“read”;
permission java.util.PropertyPermission “os.name”, “read”;

};

grant CodeBase “file:./GetOsName.jar”,
Principal com.sun.security.auth.NTSidGroupPrincipal

“Booking Agents” {
permission java.util.PropertyPermission “java.home”,

“read”;
permission java.util.PropertyPermission “os.name”, “read”;

};

Listing 12-15: The finished JAAS policy file

grant CodeBase “file:./ObtainLogin.jar” {
permission javax.security.auth.AuthPermission

“createLoginContext.ObtainLogin”;
permission javax.security.auth.AuthPermission

“doAsPrivileged”;
};

grant CodeBase “file:./GetOsName.jar”,
Principal com.sun.security.auth.NTUserPrincipal

“Puddintane” {
permission java.util.PropertyPermission “java.home”,

“read”;
};

When you run your development code, point to the temporary files as shown in
Listing 12-16. Note that this approach uses the Windows semicolon (;) scheme to
separate jar files in the classpath. On Unix systems, use a colon (:) to separate
these files instead.

h539663 ch12.qxd 7/25/03 9:16 AM Page 374

375Chapter 12 ✦ Understanding Java Authentication and Authorization Services

Listing 12-16: Running the simple JAAS module

java -classpath GetOsName.jar;ObtainLogin.jar
-Djava.security.manager
-Djava.security.auth.login.config=jaas.conf
-Djava.security.policy=jaas.policy ObtainLogin

The preceding discussion has assumed that you’re developing code from scratch,
but in the real world, you often inherit code from antiquity. Luckily, JAAS has tech-
niques for using old code as well as new. We’ll look at these in the next section.

Hiding JAAS
By now you’ve seen that JAAS requirements are pretty simple. The steps required
to log in are pretty much the same no matter what the application does. So why not
write one login class to perform logins for all your code modules and be done with it?

Not surprisingly, JAAS is designed to permit just that, allowing a simple login utility
to invoke other classes. This enables you to “JAAS up” your applications by a few
administrative steps, adding entries to the login configuration and JAAS policy files
and then changing the commands that invoke your application classes. While not a
perfect JAAS implementation, something like this is a definite start and can be a
useful interim measure while the total system is under revision.

Predefined JAAS login callbacks and their handlers
In the preceding sections, we’ve used standard login modules without really looking
under the hood. We’ll start this section by looking more closely at the modules that
form the standard offering. Later in this chapter, we’ll discuss what might be added
by custom work.

When a login context is not available from the environment, or when that context
doesn’t extend to special permissions used by a JAAS-enabled application, JAAS
has the ability to request a login from a user by issuing a callback. The default han-
dlers for Unix and WinNT/2K environments don’t really need callbacks because
users have to be logged in anyway. However, other environments, including
Kerberos and JNDI, may not have a useful login context available. This is because
the user may be on a machine in a different security realm, connecting to an appli-
cation over the Internet or local network.

h539663 ch12.qxd 7/25/03 9:16 AM Page 375

376 Part III ✦ The Enterprise Information System Tier

The standard callbacks enable you to request information from the user in a variety
of ways, and also provide a method for presenting announcements to the user dur-
ing the login process. This last method might be used to tell prospective users
about things they should be aware of even before logging on. It might also be used
to format a plain-language error message telling the user what went wrong. Table
12-5 lists the seven predefined callbacks you can use without writing your own,
along with short descriptions of their intended purposes.

Table 12-5
JAAS predefined callbacks

Callback Class Action

ChoiceCallcack Presents a choice to the user, optionally allowing multiple
selections

ConfirmationCallback Obtains a confirmation response from a user

LanguageCallback Obtains or sets a user locale to determine whether a
different language or display format should be used

NameCallback Obtains a user name

PasswordCallback Obtains a password

TextInputCallback Obtains unformatted text from the user

TextOutputCallback Presents a text message to the user; this facility is usually
used to present information needed by the user, or to
present warning or error messages

These seven callback choices allow wide flexibility for your callback handler
and you might consider providing stubs for each in your own interactive callback-
handler instance. You never know when an application will wind up requiring more
information from the user. Of course handlers designed for automated services
can’t use any but the most basic callback classes, usually NameCallback and
PasswordCallback. However, the cost of providing all of them is small, because
you don’t have to supply any you don’t need right then. Indeed, providing a stub
callback that does nothing at all might be a useful way of making room in your
application for support of unforeseen problems by enabling you to swap in a spe-
cialized callback when the need arises.

You simply pass the callback handler an array containing the callback methods you
want to use. The callback handler then iterates through the array looking for sup-
ported callbacks and tries to execute them. If any of your callbacks aren’t sup-
ported, the handler throws an UnsupportedCallbackException. It’s really pretty
simple except for the fact that the seven callbacks require different arguments and
need to be treated differently.

h539663 ch12.qxd 7/25/03 9:16 AM Page 376

377Chapter 12 ✦ Understanding Java Authentication and Authorization Services

Kerberos login handler
Kerberos is a good module to start with, because it works consistently across many
platforms. Also, it always does something, unlike the Win2K and Unix modules,
which merely inspect an existing user’s environment. Kerberos requires several
mandatory arguments that point to the location of the ticket server and, usually, to
the port(s) associated with it, unless these arguments are hardwired into the code.
Kerberos listens by default on well-known port 88, and responds on ephemeral
ports above 1024. Kerberos might also require several other well-known ports,
including 543, 749-754, and 2105, for various housekeeping functions. Table 12-6
shows the various arguments used to define Kerberos login behavior.

Table 12-6
Kerberos configuration options

Option Name Purpose Action

useTicketCache Set login behavior This option is Boolean — it must be
present if ticketCache is set. If this
option is set and ticketCache is also
set, use ticketCache. If it is set and
ticketCache is not set, search for a
ticketCache in default locations.

TicketCache Locate ticket cache This option specifies the location of a
ticket cache.

doNotPrompt Set login behavior This option is Boolean — if it is set, do not
prompt for a user name or password.

UseKeyTab Set login behavior This option is Boolean — if it is set, search
for a key tab using keyTab, if one is set, or
obtain the location of the file from the
Kerberos configuration file, or look in the
user’s home directory for the file krb5.
keytab.

KeyTab Set login behavior This option specifies the location and
name of a key tab file containing the
user’s secret key.

StoreKey Set login behavior This option is Boolean — it is set if the
user’s private key should be stored with
the user’s private credentials.

Principal Specify principal name This option specifies the name of the
principal.

Continued

h539663 ch12.qxd 7/25/03 9:16 AM Page 377

378 Part III ✦ The Enterprise Information System Tier

Table 12-6 (continued)

Option Name Purpose Action

UseFirstPass Set login behavior This option is Boolean — after a Subject
has logged in, retrieve the login-name and
password information from the login
module’s shared state and use that
information when re-authenticating. If re-
authentication fails, fail the authentication
and do not attempt to log in again.

TryFirstPass Set login behavior This option is Boolean — after a Subject
has logged in, retrieve the login-name and
password information from the login
module’s shared state and use that
information when re-authenticating. If re-
authentication fails, collect a new login
name and password using the callback
handler and attempt to authenticate again.

StorePass Set login behavior This option is Boolean — after
authentication and commit, store the login
name and password in the login module’s
shared state. (Note that this option must
be set to enable useFirstPass and
tryFirstPass to have any effect.)

ClearPass Set login behavior This option is Boolean — after
authentication and commit, clear the login
name and password from the login
module’s shared state. (Note that this
option makes useFirstPass and
tryFirstPass moot.)

The magazine-publisher example later in this chapter uses Kerberos to authenticate
a user, so we needn’t go into great detail about Kerberos here.

The default Kerberos login module returns a single Principal:
KerberosPrincipal

However, the possibilities are endless. Microsoft, for example, “extends” Kerberos
by allowing the user to skip the login stage if he or she already possesses a valid
credential from a trusted domain, or by permitting a Java Card holder to accom-
plish login through a card reader.

h539663 ch12.qxd 7/25/03 9:16 AM Page 378

379Chapter 12 ✦ Understanding Java Authentication and Authorization Services

WinNT/Win2K login handler
Although the callback handler should be specified in the options for this module,
its value will be ignored and the supplied handler doesn’t actually interact with the
user. This module obtains all of its information from the WinNT or Win2K environ-
ment. (Note that this means that the predefined NT/Win2K login will always suc-
ceed if the user is logged into an NT/Win2K machine.) So if you want any special
handling of the login process based on a login response, you’ll have to write your
own login module and provide a real callback handler. This doesn’t mean that the
login is only useful for authentication. You can examine the user’s Win2K environ-
ment and use it to set locale options, for example, so you know what language to
use for prompts and error messages, as well as the proper format for dates, times,
and monetary units.

The NT login-handler interface contains no options or actions.

The simple example discussed in the previous section “Authenticating Users” does
a complete WinNT/Win2K login, so we needn’t go into this login further here.

The WinNT login module may return any or all of the following Principals:

✦ NTUserPrincipal

✦ NTDomainPrincipal

✦ NTSidUserPrincipal

✦ NTSidDomainPrincipal

✦ NTSidGroupPrincipals

✦ NTSidPrimaryGroupPrincipal

✦ NTNumericCredential

Unix login handler
This module obtains all of its information from the Unix environment, much like
WinNT/2K. As with NT, the configuration options are minimal. The Unix login han-
dler contains no arguments or actions.

The Unix login module returns the following Principals:

✦ UnixPrincipal

✦ UnixNumericUserPrincipal

✦ UnixNumericGroupPrincipal

Note

h539663 ch12.qxd 7/25/03 9:16 AM Page 379

380 Part III ✦ The Enterprise Information System Tier

Key-store login handler
Like Kerberos, key-store services enable distributed login authentication but are
tailored for the LDAP /ISO X.500 environment. If you’re in such an environment you
probably know about this, but these services are encountered infrequently by most
programmers. A predefined UserPassword attribute is available in X.500 directory
entries, so the addition of any unique alias or unique CN within the DN makes a
potential user name/password pair.

X.500 values are handled by keyword/value pairs, and may look rather odd to the
uninitiated. Instead of the simple user name one might expect, or the relatively
concise flat namespace of RFC 822/2822 e-mail addresses, you’ll find something
like this: C=<Country Code>, O=<Organization Name>, OU=<Organizational Unit>,
OU=<Another Organizational Unit>, CN=<Any Name>. A real person in Germany might
be C=DE, O=”Trolls Inc.”, OU=”Weavers Division”, OU=”Straw Into
Gold Group”, CN=Rumpelstiltskin. The entire path is termed a Distinguished
Name (DN) and is order dependent, although an application can define whether to
read the path from left to right or right to left. So if you swapped the order of the
two OU entries in the DN for Rumpelstiltskin, you’d have a different DN. An interest-
ing feature of X.500 directories is that they allow multiple aliases to be defined for
every user. These directories can contain great quantities of information (including
what type of beer an individual prefers) that can be operated on in a fully relational
manner.

While this feature makes ISO directories very powerful, it also makes human inter-
actions with them tedious in the extreme. Most users wind up hating the lengthy
process of entering X.500 addresses if they have to deal with them directly. The
directory Distinguished Name is commonly hidden behind aliases guaranteed to be
unique, such as RFC-822 e-mail addresses or standard fully qualified filenames so
users may think they’re interacting with a simpler directory scheme. Thoughtful
programmers and systems administrators take pains not to disabuse their users of
this naïve notion if at all possible.

So X.500 directories are quite often used as backbones to connect disparate file sys-
tems or namespaces and are often invisible to the user. Because they are hierarchi-
cal, you can handle differences in directory or data format transparently by
knowing just where in the hierarchy a particular file or name lives. If you collect
information about local root nodes in the worldwide X.500 hierarchy, you can iden-
tify a file format or communications protocol used for that file or name by knowing
which local root it descends from. Table 12-7 shows the options that can be set for
key-store logins.

h539663 ch12.qxd 7/25/03 9:16 AM Page 380

381Chapter 12 ✦ Understanding Java Authentication and Authorization Services

Table 12-7
Key-store-configuration options

Option Name Purpose Action

KeyStoreURL Locate key-store file This option specifies the location
of the key-store file.

KeyStoreType Specify key-store type This option specifies the
key-store type. If it is absent, call
KeyStore.getDefaultType()

KeyStoreProvider Identify key-store This option specifies the key-store
provider provider. If it is absent, look for a

provider in the search path.

KeyStoreAlias Identify key-store This option specifies a login
login name (alias) name. It is required if no callback

handler is supplied.

KeyStorePasswordURL Locate key-store This option specifies the location
password of the key store password. It is

required if no callback handler is
supplied.

privateKeyPasswordURL Locate private-key This option specifies the location
password of the private-key password

required by the application to
access the private key for this
alias. If it is absent, use the key-
store password.

Because LDAP sends any required password in clear text, use of an underlying
secure-communications protocol is recommended. Possible LDAP X.500 attribute
types are listed in Table 12-8.

Table 12-8
LDAP/X.500 attribute types

X.500
Attribute String Attribute Type Description

CN commonName A personal name. Because personal
names are often shared, X.500
directories may require other
identification attributes to find a
unique entry.

Continued

h539663 ch12.qxd 7/25/03 9:16 AM Page 381

382 Part III ✦ The Enterprise Information System Tier

Table 12-8 (continued)

X.500
Attribute String Attribute Type Description

L localityName Typically, a city or other political
subdivision. There may be more than
one, since a city may be known by
different names to different people. So
L=Chicago, L=”Windy City” might
both refer to the same locality in the
USA, or L=Zurich, L=Zuerich,
L=Z\cdurich (with T.61 escape
sequence to add the umlaut) all refer to
the same German city, properly named
Z_rich.

ST stateOrProvinceName A state or province name. Outside the
USA, Canada, and a few other countries,
a major political subdivision of a country.

O organizationName A company name or other
organizational identifier.

OU organizational An organizational subdivision. There
UnitName may be more than one in a single

directory entry. X.500 attributes are
parsed in order of distance from the root,
so the corporate hierarchy is traversed
downward by each successive OU.

C countryName A country name, actually a two-letter
country code as defined in ISO 3166. In
X.500 proper, C may be supplemented
by a friendlyCountry identifier, so
relatively obscure country codes like DZ
can be supplemented by the more
recognizable “Algeria.”

STREET streetAddress A street address or postal direction.

DC domainComponent A DNS or NRS domain name. There may
be more than one.

UID userid A userid. User names are usually
unique within a single organization or
domain, but since X.500 is fully
relational, a unique ID may be
constructed from a join of almost any
fields, for example, UID and DC, which
may be used to construct or deconstruct
an RFC 822/2822 e-mail address.

h539663 ch12.qxd 7/25/03 9:16 AM Page 382

383Chapter 12 ✦ Understanding Java Authentication and Authorization Services

The key-store login module returns a single Principal, as shown here:

X500Principal

JNDI login handler
The Java Naming and Directory Interface (JNDI) is really a Sun-specific login han-
dler, as few outside the Sun environment bother with it. The options available are
shown in Table 12-9.

Table 12-9
JNDI configuration options

Argument Name Purpose Action

user.provider.url Locate JNDI provider This mandatory option points to a URI
and access protocol: ldap://<uri>
or nis://<uri>

group.provider.url Locate JNDI provider This mandatory option points to a URI
and access protocol: ldap://<uri>
or nis://<uri>

UseFirstPass Set login behavior This option is Boolean — after a
Subject has logged in, retrieve the
login name and password information
from the login module’s shared state
and use that information when re-
authenticating. If re-authentication
fails, fail the authentication and do not
attempt to log in again.

TryFirstPass Set login behavior This option is Boolean — after a
Subject has logged in, retrieve the
login name and password information
from the login module’s shared state
and use that information when re-
authenticating. If re-authentication
fails, collect a new login name and
password using the callback handler
and attempt to authenticate again.

Continued

h539663 ch12.qxd 7/25/03 9:16 AM Page 383

384 Part III ✦ The Enterprise Information System Tier

Table 12-9 (continued)

Argument Name Purpose Action

StorePass Set login behavior This option is Boolean — after
authentication and commit, store the
login name and password in the login
module’s shared state. (Note that this
argument must be set in order for
useFirstPass or tryFirstPass to
have any effect.)

ClearPass Set login behavior This option is Boolean — after
authentication and commit, clear the
login name and password from the
login module’s shared state. (Note
that this option makes the use of
useFirstPass or tryFirstPass
moot.)

The JINDI login module returns the following Principals:

✦ UnixPrincipal

✦ UnixNumericUserPrincipal

✦ UnixNumericGroupPrincipal

See Chapter 11 for a discussion of JNDI and directory services.

Custom login modules
There is, however, nothing to prevent vendors from supplying login modules with
their products, or to prevent you from writing your own login module to handle
enterprise-specific requirements. You could introduce biometric security logins,
SmartCard access (with optional PIN), or other means as they’re developed.

The former JAAS login module supporting Sun Solaris only is now deprecated and
should be replaced by the generic Unix module. We’ll see a simple login routine
later in this chapter in the section “Authenticating a Web user against a Windows
NT domain.”

An administrator might choose first to check the user’s own environment for login
and permissions information. If this succeeds, all is well, so this module might be
flagged sufficient. If not, other attempts to obtain a valid login might be made
before a particular application is executed.

Note

Cross-
Reference

h539663 ch12.qxd 7/25/03 9:16 AM Page 384

385Chapter 12 ✦ Understanding Java Authentication and Authorization Services

Alternatively, an administrator might choose first to check a distributed authentica-
tion service like Kerberos before looking at the user’s own environment for login
and permissions information. Because it’s not clear that either source of login infor-
mation is necessarily present, both login modules would probably be flagged
optional. If either succeeds, the user might then be prompted to enter further
information to verify that he or she is who he or she seems to be, or to enter a spe-
cially privileged state. By the addition of layers of security, critical or dangerous
applications can be made arbitrarily more difficult to access.

Writing your own login handler
In many situations, you might want to create your own login handler. If your
application will be distributed as a package to many different systems, you might
want to create a handler that automatically adjusts to the OS it’s used under.
Alternatively, a series of login modules can be dropped into packaged versions of
the code for each supported environment.

Because JAAS expects login modules to obey certain rules, you’ll have to imple-
ment its LoginModule interface in order to integrate your handler with JAAS. A
login module requires the methods shown in Table 12-10, shown in roughly the
order in which they might be used.

Table 12-10
JAAS login-module methods

Method Action

public void initialize(Subject This method initializes the login module,
subj, CallbackHandler callback, identifying the Subject, naming the callback
Map sharedState, Map options) handler, allocating storage for shared

information, and passing through option
arguments from the login configuration file.

public boolean login() This method tries to authenticate a Subject.

public boolean commit() This method is called if the login should be
committed. The JAAS login process has two
steps. First, the path though the module list is
tried to see whether it will succeed in its
entirety, and then the already tested login
path is committed. This prevents unscrupulous
users from attempting to race the login
process, using a security exploit to trick the
system into granting momentary access during
an operation that will later be rescinded.

Continued

h539663 ch12.qxd 7/25/03 9:16 AM Page 385

386 Part III ✦ The Enterprise Information System Tier

Table 12-10 (continued)

Method Action

public boolean abort() This method is called when the login fails any
required step, doesn’t fulfill any of the
available optional steps, or encounters
problems. Like the logout method, abort
should clean up any sensitive stored
information.

public boolean logout() This method allows a Subject to logout,
cleans up any stored Principals, and
explicitly zeros any sensitive information that
would otherwise be released for the garbage
collector.

The initialize method in particular requires a particular set of arguments
needed to properly set up the login module. This collection of arguments is shown
in Table 12-11.

Table 12-11
Login initialize arguments

Argument Name Purpose Action

Subject Identify the Subject This argument names the Subject this
login module will populate with one or
more Principals. Note that these are
not necessarily user IDs but may
reference a role or other ephemeral
identity that an authorized user or
process may take on. The Subject
may, in fact, be populated with several
Principals representing actual user
IDs, groups, and so on, in context.

callbackHandler Identify the This argument names the callback
CallbackHandler handler used with this login module.

sharedState Map the shared This argument is an array containing
LoginModule state login and authorization information

shared between modules.

Options Map the This argument contains the options
LoginModule options read in from the login-configuration file.

h539663 ch12.qxd 7/25/03 9:16 AM Page 386

387Chapter 12 ✦ Understanding Java Authentication and Authorization Services

A login module requires several characteristics besides the ability to implement the
necessary methods. Most importantly, any Principal or Subject associated with
a particular login module must be serializable. This is necessary because your
application may be used to contact a remote server. If your Principal isn’t serial-
izable, you won’t be able to present it to the remote server for authorization.

Let’s suppose that we want to write a custom login module supporting the Java
Card smart card, a physical device one can carry around in a purse or pocket.
Several APIs are written for such devices, but in the interest of keeping the example
short we’ll imagine a fictional API that listens for a card insertion and does all the
necessary housekeeping.

We’ll define a Principal class that is essentially a collection of methods used to
return information from the login context and call it JavaCardPrincipal. A simple
implementation is shown in Listing 12-17. You’ll note, as ever, that it doesn’t do
much in the way of error handling, so before using it you might want to add a few
output statements to let you know what’s happening and what might have gone
wrong. The same is true for all the code in this section. Because referring to line
numbers is awkward, we’ll often describe the code in comments within the code
itself rather than by referencing it from the outside.

Listing 12-17: JavaCardPrincipal

import java.security.*;
import java.io.*;
// Note that this code is serializable. Because JAAS is
designed
// operate in a network environment, Principals and Subjects
must
// always be serializable, or they can’t be presented to a
server.

public class JavaCardPrincipal implements Principal,
Serializable {

private String name;

public JavaCardPrincipal(String s) {
name = s;
}

public String getName() {
return name;
}

// Compare object names to determine identity
public boolean equals(Object o) {

Continued

h539663 ch12.qxd 7/25/03 9:16 AM Page 387

388 Part III ✦ The Enterprise Information System Tier

Listing 12-17 (continued)

if (o == null)
return false;

if (!(o instanceof JavaCardPrincipal))
return false;
return ((JavaCardPrincipal) o).name.equals(name);

}

public String toString() {
return name;
}

public int hashCode() {
return name.hashCode();
}

}

As you can see, the most care has been lavished on the equality test, because that
little bit is very important when you’re trying to iterate through a Subject with
several Principals.

Listing 12-18 shows an example launcher for a Java Card login. Because the classes
associated with the login are probably stored on the card itself, the code has to be
accessed before it can be run. The code must either be extracted from the card and
run on a host or initiated on the card itself. A practical example in the real world
would be far more complex, because different types of smart card exist, some of
which have no actual processing power. Also, the login methods would have to
accommodate several variations in platform.

Listing 12-18: Java Card launcher

import java.lang.reflect.Method;
import java.lang.reflect.InvocationTargetException;
import java.security.PrivilegedAction;

// Launch a Java <module> from a Java Card
public class JavaCardLauncher implements PrivilegedAction {

private Class module = null;

public JavaCardLauncher (Class module) {
this.module = module;

}

public Object run() {
invokeMain(module);

h539663 ch12.qxd 7/25/03 9:16 AM Page 388

389Chapter 12 ✦ Understanding Java Authentication and Authorization Services

return null;
}

private void invokeMain (Class javaCardClass) {
Class argArray [] = new Class [] {String[].class};
Object arg [] = {new String[0]};
Method mainMethod = null;
try {

mainMethod =
javaCardClass.getMethod(“main”,argArray);

} catch (Exception e) {
System.exit(-1);

}
try {

mainMethod.invoke(null,arg);
} catch (Exception e) {
}

}
}

Listing 12-19 shows the code that describes the virtual Java Card itself. It talks to
the card proper and uses the launcher to start up the proper module from the card.

Listing 12-19: Java Card

import java.security.Principal;
import javax.security.auth.*;
import javax.security.auth.callback.*;
import javax.security.auth.login.*;
import javax.security.auth.spi.*;
import com.sun.security.auth.*;
import java.net.URLClassLoader;
import java.net.URL;
import java.util.*;
import java.io.*;

public class JavaCard {

public static void main(String[] s) {

LoginContext lc = null;
while (true) {

try {
try {

lc = new LoginContext(“JavaCard”);
} catch (Exception e) {
}

Continued

h539663 ch12.qxd 7/25/03 9:16 AM Page 389

390 Part III ✦ The Enterprise Information System Tier

Listing 12-19 (continued)

lc.login();
break;

} catch (Exception e) {
}
try {

Thread.currentThread().sleep(0);
} catch (Exception e) {
}

}
try {

URL u[] = new URL[1];
u[0] = new URL((String)

(lc.getSubject().getPublicCredentials().toArray())[0]);
URLClassLoader ucl = new URLClassLoader(u);
Class module = null;
module = ucl.loadClass((String)

(lc.getSubject().getPublicCredentials().toArray())[1]);
Subject.doAs(lc.getSubject(),

new JavaCardLauncher(module));
} catch (Exception e) {
}
try {

lc.logout ();
} catch (Exception e) {
}
System.exit(0);

}
}

Listing 12-20 shows the skeleton of the actual login module itself. Since we can’t dis-
tribute the code for an actual proprietary Java Card API, most of the activity
needed is described in comments, or a generic approximation of actual code is
commented out.

Listing 12-20: Java Card login module

import java.util.*;
import java.io.IOException;
import javax.security.auth.*;
import javax.security.auth.callback.*;
import javax.security.auth.login.*;
import javax.security.auth.spi.*;
// import proprietary.JavaCardAPI.*;

h539663 ch12.qxd 7/25/03 9:16 AM Page 390

391Chapter 12 ✦ Understanding Java Authentication and Authorization Services

// Note that there isn’t any such thing as the above API

public class JavaCardLoginModule implements LoginModule /*,
JavaCardMonitor */ {
// Note that there isn’t any such class as
// the above “JavaCardMonitor.”
// If there were such a class, it would handle the details of
waiting
// for the insertion of a Java Card in a reader and accessing
it.
// The best part about an imaginary API is that it can do
whatever we
// want it to do. If you were actually programming for a Java
Card,
// though, you’d probably want to use a real API

// Set up initial state
private Subject subject;
private Map sharedState;
private Map options;

// Keep track of login progress.
// You have to try the entire process to be sure that it

will
// succeed before doing it “for real.”
private boolean loginOk = false;
private boolean commitOk = false;

// username
private String username;

// Java Module stuff
private String url;
private String className;

private JavaCardPrincipal userPrincipal;
// Keep track of the Java Card
private static Object monitor = “synchronization monitor”;
private JavaCard jc;

public void initialize(Subject subject,
CallbackHandler callbackHandler,
Map sharedState, Map options) {

this.subject = subject;
this.sharedState = sharedState;
this.options = options;
try {

// if (JavaCard.started () == false) {
// JavaCard.start ();
// }

} catch (Exception e) {

Continued

h539663 ch12.qxd 7/25/03 9:16 AM Page 391

392 Part III ✦ The Enterprise Information System Tier

Listing 12-20 (continued)

}
// Begin polling for CARD_INSERTED or CARD_REMOVED

events
// EventGenerator.getGenerator().addJavaCardMonitor
// (new JavaCardLoginModule());

}

// Get the url of the Java module to be launched.
public boolean login() throws LoginException {

try {
System.out.println (“Please insert your Java

Card(tm)!”);
// wait for the user insert their Java Card
// Do some magic on the card using the Java Card

API
// Get the user name
// Get the Url for the class
// Get the class name

} catch (Exception e) {
throw new LoginException(“”);

}

// verify the PIN using a magical technique found below
try {

if (verifyPIN()) {
loginOk = true;
return true;
// Assert: at this point we are ready
// to commit the login transaction

}
} catch (Exception e) {

throw new LoginException(“”);
}
loginOk = false;
throw new FailedLoginException(“”);

}

public boolean commit() throws LoginException {
if (!loginOk) {

// While we may not have verified a login,
// someone else might have, so clean up nicely.
username = null;
return false;

} else {
// Perform more magic to populate the Subject

}
// then clean up.
username = null;
commitOk = true;
shutdown ();

h539663 ch12.qxd 7/25/03 9:16 AM Page 392

393Chapter 12 ✦ Understanding Java Authentication and Authorization Services

return true;
}

public boolean abort() throws LoginException {
try {

synchronized (monitor) {
System.out.println (“Please remove your Java

Card(tm) now.”);
// Check the status of the terminal here

}
} catch (Exception e) {
}
if (!loginOk) {

return false;
} else if (loginOk && !commitOk) {

loginOk = false;
username = null;
userPrincipal = null;

} else {
logout();

}
shutdown ();
return true;

}

public boolean logout() throws LoginException {
// Clean up
// Remove the User’s Principal, URL and classname
loginOk = false;
commitOk = false;
username = null;
userPrincipal = null;
url = null;
className = null;
shutdown ();
return true;

}

// A Java card has been inserted.
// public void javaCardInserted (JavaCardTerminalEvent

jcte) {
// Perform magic
// }

// A Java card has been removed.
public void javaCardRemoved (/*JavaCardTerminalEvent

jcte*/) {
synchronized (monitor) {

monitor.notifyAll();
}

Continued

h539663 ch12.qxd 7/25/03 9:16 AM Page 393

394 Part III ✦ The Enterprise Information System Tier

Listing 12-20 (continued)

}

private static void shutdown () {
try {

// Do some magic to the card
} catch (Exception e) {
}

}

private boolean verifyPIN () {
// abracadabra();
// Perform magical communications with the Java Card

and then
return true;

}
}

Although we specified a callback handler when we called the login module, we
don’t actually use it. This is because the actual login is performed by our magic API,
which only accepts a PIN from the user to verify his or her identity. The API bases
its idea of who the user actually is, and what credentials or certificates the user
might hold, on the mere fact that he or she possesses the card and knows the PIN.

Writing your own callback handler
When a login context is not available from the environment, or when that context
doesn’t extend to special permissions used by a JAAS-enabled application, JAAS
has the ability to request a login from a user by issuing a callback. The default han-
dlers for Unix and WinNT/2K environments don’t usually need callbacks because
users have to be logged in anyway. However other environments, including
Kerberos and JNDI, may not have a useful login context available. In addition, the
default login handlers supplied by Sun are environment-specific, so you’ll have to
write your own if you want to distribute code without OS dependencies.

A callback handler may look something like the code shown in Listing 12-21, with a
simple loop checking for the presence of a given callback and calling it if needed.
Not every choice in the example is fully expanded into code, but hints are given
that makes this step a straightforward exercise left to the reader.

h539663 ch12.qxd 7/25/03 9:16 AM Page 394

395Chapter 12 ✦ Understanding Java Authentication and Authorization Services

Listing 12-21: CallbackHandler framework

import java.io.*;
import java.util.*
import javax.security.auth.callback.*;

class CBH implements CallbackHandler {
private String username;
private String password;
public void handle(Callback[] cb)
throws IOException, UnsupportedCallbackException {

// iterate through the callbacks, if any
for (int i = 0; i < cb.length; i++) {

// ChoiceCallback -- Options are supplied in the
prompt string

// The choice callback may be used to specify a
security realm,

// or any other selection or selections from a list.
if (cb[i] instanceof ChoiceCallback) {

ChoiceCallback ccb = (ChoiceCallback) cb[i];
System.out.print(ccb.getPrompt() + “ “);
System.out.flush();
String choice = new BufferedReader

(new
InputStreamReader(System.in)).readLine();

// Note that both buffered readers and readLine may
cause

// problems when used without care. Not all
environments

// allow more than one buffered read from a single
input

// stream. It may be necessary to share a single
buffer

// between your callback handlers, an advanced
technique

// slightly beyond the scope of this chapter.
}
// Confirmation Callback
else if (cb[i] instanceof ConfirmationCallback) {

ConfirmationCallback cc =
(ConfirmationCallback)cb[i];

// Typically, you’d implement a switch here for
// each type of confirmation you want to support.
// case ConfirmationCallback.YES_NO_OPTION: ...
// case

ConfirmationCallback.YES_NO_CANCEL_OPTION: ...
// and so on.

Continued

h539663 ch12.qxd 7/25/03 9:16 AM Page 395

396 Part III ✦ The Enterprise Information System Tier

Listing 12-21 (continued)

}
// LanguageCallback
else if (cb[i] instanceof LanguageCallback) {

LanguageCallback lc =
(LanguageCallback)cb[i];

// The LanguageCallback is used to get a locale
from

// the user’s environment or to set a locale based
// on the user’s response to a prompt.
// lcb.setLocale(Locale.getDefault());
// or
// lcb.setLocale(Locale.US);
// The above format uses one of the constants

defined
// in the Locale class which create common Locales
// of the form Locale(String language=”en”,
// String country=”US”)
// Inspect the Locale class in java.util

} // end LanguageCallback
// NameCallback
else if (cb[i] instanceof NameCallback) {

NameCallback ncb = (NameCallback)cb[i];
ncb.setName(username);

} // end NameCallback
// PasswordCallback
else if (cb[i] instanceof PasswordCallback) {

PasswordCallback pcb = (PasswordCallback)cb[i];
pcb.setPassword(password.toCharArray());

} // end PasswordCallback
// TextInputCallback
else if (cb[i] instanceof TextInputCallback) {

TextInputCallback tic =
(TextInputCallback)cb[i];

// proceed with a prompt and read sequence

} // end TextInputCallback
// TextOutputCallback
else if (cb[i] instanceof TextOutputCallback) {

// display the message according to the specified
type

TextOutputCallback toc = (TextOutputCallback)cb[i];
switch (toc.getMessageType()) {
case TextOutputCallback.INFORMATION:

System.out.println(toc.getMessage());
break;

case TextOutputCallback.ERROR:

h539663 ch12.qxd 7/25/03 9:16 AM Page 396

397Chapter 12 ✦ Understanding Java Authentication and Authorization Services

System.out.println(“ERROR: “ +
toc.getMessage());

break;
case TextOutputCallback.WARNING:

System.out.println(“WARNING: “ +
toc.getMessage());

break;
default:

throw new IOException(“Unsupported message type:
“ +

toc.getMessageType());
} // end TextOutputCallback

} // next callback or fall through
} // end handle

} // end CallbackHandlerFramework
}

It’s a simple matter to vary the I/O behavior of your code dynamically, by feeding it
an array of handlers and data in whatever order seems best. They’ll be executed in
sequence. For example, your code could check for the existence of an announce-
ment file when entering a login sequence. It could then present the announcement
to the user before (or instead of) allowing the login to proceed. Or it could call a
language-callback handler to see what language to use by looking at or prompting
for a user locale. It could then set an accessible locale variable, and continue the
login process with a selection of prompts and messages that make sense to your
user. This is better than assuming, as so many do, that everyone speaks English.

Authenticating a Web user against
a Windows NT domain
The magazine-publisher application will require database access to allow sub-
scribers to access their subscription accounts to check the remaining number of
issues or renew for an integral number of years. Since this information is private, a
subscriber has to supply a user name and password to access this feature. The
publisher runs a Microsoft-only shop, and insists on using Microsoft servers for
handling Web requests.

Brief security analysis
This is a low-value transaction, so it doesn’t make sense to devote a lot of resources
to it. The only significant exposures are the possibility of sniffing a user’s credit-
card information and the possibility of hacking into the subscription database
itself, possibly causing damage or economic loss. Subscribers will log in to the
server through a browser screen. They will then continue interaction with the appli-
cation through HTTPS and Java Server Pages (JSP), which are typically seen as suf-
ficient for credit-card interactions on the Web. The encrypted user-ID/password

h539663 ch12.qxd 7/25/03 9:16 AM Page 397

398 Part III ✦ The Enterprise Information System Tier

dialogue adds another layer of security to the process, since we might not want our
magazine subscriptions widely known.

Security limitations
Because the terminals live on the open Internet, the application remains vulnerable
to any exploits discovered by malicious or mischievous persons unknown to the
system. Because this is not a text on computer security, we have the luxury of
ignoring any potential impingements from the real world.

Implementation
There are several reasonable ways to implement remote logins to a Microsoft
machine. The simplest way is probably to use Microsoft’s Kerberos support, which
only requires running the built-in Win2K Server Kerberos server. Presto chango!
Windows-domain login made simple. Kerberos is well understood in the Web-
enabled-application-developer community and has a rich set of resources available.
It’s also designed to be used by a distributed user base and doesn’t have expecta-
tion possessed by native-mode Windows systems that the rest of the world consists
exclusively of Windows systems.

The code samples used in this section omit error handling and feedback for the
most part, to bring the samples down to a reasonable size. Remember to catch
exceptions and do something with them, even if it’s just silently ignoring them. And
it will be handy for debugging purposes to print out a few chatty messages at signif-
icant points, just so you know where you are.

You’ll need some server code to handle the secure-socket communication link, as
shown in Listing 12-22.

Listing 12-22: Magazine-publisher server code

import org.ietf.jgss.*;
import java.net.Socket;
import java.io.IOException;
import java.io.DataInputStream;
import java.io.DataOutputStream;

public class Subscriber {

public static void main(String[] args)
throws IOException, GSSException {

String krbServer = args[0];
String hostName = args[1];

h539663 ch12.qxd 7/25/03 9:16 AM Page 398

399Chapter 12 ✦ Understanding Java Authentication and Authorization Services

int portnumber = Integer.parseInt(args[2]);
Socket s = new Socket(hostName,

portnumber);
DataInputStream i =
new DataInputStream(s.getInputStream());
DataOutputStream o =
new DataOutputStream(s.getOutputStream());
// kerberos_v5 OID
// This OID number is predefined by Sun for Kerberos
Oid krb5Oid = new Oid(“1.2.840.113554.1.2.2”);
GSSManager m = GSSManager.getInstance();
GSSName n = m.createName(krbServer,

null);
GSSContext c = m.createContext(n,

krb5Oid,
null,
GSSContext.DEFAULT_LIFETIME);

c.requestMutualAuth(true);
c.requestConf(true);
c.requestInteg(true);
byte[] token = new byte[0];
while (!c.isEstablished()) {

token = c.initSecContext(token,
0,
token.length);

if (token != null) {
o.writeInt(token.length);
o.write(token);
o.flush();

}
if (!c.isEstablished()) {

token = new byte[i.readInt()];
i.readFully(token);

}
}
byte[] byteArray = “Wazzup?\0”.getBytes();
MessageProp mp = new MessageProp(0, true);
token = c.wrap(byteArray, 0, byteArray.length, mp);
o.writeInt(token.length);
o.write(token);
o.flush();
c.dispose();
s.close();

}
}

Then you’ll need a client to do the actual login, as shown in Listing 12-23.

h539663 ch12.qxd 7/25/03 9:16 AM Page 399

400 Part III ✦ The Enterprise Information System Tier

Listing 12-23: Magazine-publisher client code

import java.io.*;
import java.lang.reflect.*;
import java.util.Arrays;
import javax.security.auth.callback.*;
import javax.security.auth.login.*;
import javax.security.auth.Subject;
import com.sun.security.auth.callback.TextCallbackHandler;

public class Login {

public static void main(String[] args) {
LoginContext lc = null;
try {

lc = new LoginContext(args[0], new
TextCallbackHandler());

} catch (Exception e) {
System.exit(-1);

}
try {

lc.login();
} catch (Exception e) {

System.exit(-1);
}
try {

Subject.doAsPrivileged(lc.getSubject(),
new KRBPrivilegedAction(args),
null);

} catch (Exception e) {
System.exit(-1);

}
System.exit(0);

}
}

class KRBPrivilegedAction implements
java.security.PrivilegedExceptionAction {

String[] argArray;
public KRBPrivilegedAction(String[] argArray) {

this.argArray = (String[])argArray.clone();
}

public Object run() throws Exception {
ClassLoader cl =

Thread.currentThread().getContextClassLoader();
try {

Class c = Class.forName(argArray[0], true, cl);
Class[] PARAMS = { argArray.getClass()};
java.lang.reflect.Method mainMethod =

c.getMethod(“main”, PARAMS);

h539663 ch12.qxd 7/25/03 9:16 AM Page 400

401Chapter 12 ✦ Understanding Java Authentication and Authorization Services

String[] saveArgArray = new String[argArray.length -
1];

System.arraycopy(argArray, 1, saveArgArray, 0,
argArray.length - 1);

Object[] argArray = { saveArgArray};
mainMethod.invoke(null, argArray);

} catch (Exception e) {
// This class should only throw one exception type
throw new java.security.PrivilegedActionException(e);

}
return null;

}
}

And finally, you’ll need the standard JAAS configuration and policy files, as shown
grouped in Listing 12-24.

Listing 12-24: Magazine-publisher configuration
and policy files

Login Configuration File

Login {
com.sun.security.auth.module.Krb5LoginModule required;

};

Subscriber {
com.sun.security.auth.module.Krb5LoginModule required
storeKey=true

principal=”KRBServer@krb.testmag.com”;
};

Client Policy File

grant CodeBase “file:./Login.jar” {
permission java.security.AllPermission;

};

grant CodeBase “file:./Subscriber.jar”,
Principal javax.security.auth.kerberos.KerberosPrincipal

“Puddintane@krb.testmag.com” {

permission java.net.SocketPermission “*”, “connect”;

permission javax.security.auth.kerberos.ServicePermission
“krbtgt/krb.testmag.com@krb.testmag.com”,

Continued

h539663 ch12.qxd 7/25/03 9:16 AM Page 401

402 Part III ✦ The Enterprise Information System Tier

Listing 12-24 (continued)

“initiate”;

permission javax.security.auth.kerberos.ServicePermission
“KRBServer@krb.testmag.com “,
“initiate”;

};

Server Policy File

grant CodeBase “file:./Login.jar” {
permission java.security.AllPermission;

};

grant CodeBase “file:./Subscriber.jar”
Principal javax.security.auth.kerberos.KerberosPrincipal
“KRBServer@krb.testmag.com” {

permission java.net.SocketPermission “*”, “accept”;

permission javax.security.auth.kerberos.ServicePermission
“KRBServer@krb.testmag.com”, “accept”;

};

Be sure to start the server before you run the client, as the attempt to connect with
the server will fail if it’s not running. Listing 12-25 shows the Java run commands
used to start up your system. The server will ask only for the password, because
the Principal is specified in the server-policy file. The client will ask for both a
user name, which ought to be Puddintane, since I like that name, and a password.
You should have created these entries on your Kerberos server beforehand.

Listing 12-25: Magazine-publisher run command
and arguments

Start the Server

java -classpath Login.jar;Subscriber.jar
-Djava.security.manager
-Djava.security.krb5.realm=krb.testmag.com
-Djava.security.krb5.kdc=KRBKdc.testmag.com
-Djava.security.policy=KRBServer.policy
-Djava.security.auth.login.config=KRBServer.conf
Login Subscriber 6702 <or any unused port>

h539663 ch12.qxd 7/25/03 9:16 AM Page 402

403Chapter 12 ✦ Understanding Java Authentication and Authorization Services

Start the Client

java -classpath Login.jar
-Djava.security.manager
-Djava.security.krb5.realm=krb.testmag.com
-Djava.security.krb5.kdc=KRBKdc.testmag.com
-Djava.security.policy=KRBClient.policy
-Djava.security.auth.login.config=KRBServer.conf
Login Subscriber KRBServer@krb.testmag.com

gold.testmag.com 6702

If you’re running on a Unix box, the semicolon (;) used as a separator in the
classpath is replaced with a colon (:), as always. In a normal administrative
environment, the server is usually named by means of concatenating the name of
the service with the name of the machine it runs on, so the simple name in the
preceding code might be replaced with something like this: KRBServer/gold@
krb.testmag.com.

Alternative methods
The more interesting way to log in to a Windows domain is also the more difficult. It
involves using the built-in Windows security APIs to access “real” Windows login
facilities. But that’s a rather thorny problem: The APIs are not easily used from
“outside the box,” and the programmer has to account for the fact that not all of
them work in quite the manner one might expect.

But one of the nice things about the Java development community is that a great
number of excellent programmers are still dedicated to the proposition that life is
easier when we cooperate with each other. Among them are Andy Armstrong of
Tagish, Ltd. and Thomas Restrepro, who’ve come up with two essential bits of code
that make life much easier for other programmers trying to fiddle with Windows
security from the outside. This is a task that Microsoft understandably hasn’t paid a
great deal of attention to.

If you want to explore a “native-mode” Windows login technique, I highly recom-
mend the pages of Messrs. Armstrong and Restrepro, which are listed in Appendix
C. You could also use the Java Virtual Machine to issue the JAAS challenge and
response directly, or create a highly Windows-specific routine using the Windows
Active Directory as a data store.

The Connexia Airlines business case uses a directory service on a Sun server, but is
otherwise very similar to the first example.

h539663 ch12.qxd 7/25/03 9:16 AM Page 403

404 Part III ✦ The Enterprise Information System Tier

Connexia Airlines Business Case
In this example, we’ll examine the JAAS environment one might encounter when
setting up an airline scheduling system accessible over the Web or on a private
network.

Authenticating a Web user against a directory service
The airline application will require database access to obtain flight and fare infor-
mation and make reservations. Booking agents, whether in-house agents employed
by the airline or those employed by outside travel agencies, require equal and non-
preferential access to all functions of the system in order for federal regulations to
be met. In addition, provisions must be made for collecting payment by credit card
or company purchase order (for pre-qualified accounts) before confirming a book-
ing. When the booking is confirmed, the system offers a choice of an electronic
ticket or a hard-copy ticket delivered to a physical address or printed on official
ticket stock at selected remote locations. All tickets are encoded with a unique
identifier to allow confirmation of ticket validity at any point in the check-in and
boarding process.

Brief security analysis
Agents will have to log in to use the system, because they may enter transactions
with real-world value. Since the agents may not be located at secure or trusted loca-
tions, a central login service will have to be provided to ensure login-ID and pass-
word integrity.

Eavesdropping on a communications path might reveal agent login IDs and pass-
words, compromising the integrity of the ordering and payment system, so every
login transaction will have to be encrypted to make life arbitrarily difficult for
snoops. LDAP is a widely supported standard that supports encrypted communica-
tions and would be especially appropriate for this application since it will run on a
Sun Solaris server, which supports X.500 directories directly.

Also, personal information will be collected to verify passenger identity and contact
information, as well as to obtain credit-card details, which the airline is obliged to
keep secret, so this transaction chain requires encryption as well. Since it has been
determined that managing a Virtual Private Network (VPN) would be difficult, given
the very large number of potential agent/users, a Web application based on the
Secure HyperText Transfer Protocol (HTTPS) will be used for communication after
the initial login. This means that JAAS and LDAP will be used only once, to initiate
the session, and that normal Web logic can be used to continue the interaction
between the agent/user and his or her terminal.

h539663 ch12.qxd 7/25/03 9:16 AM Page 404

405Chapter 12 ✦ Understanding Java Authentication and Authorization Services

The outbound data stream may include personal information as well as confidential
authorization information, and the data required to print encoded ticket media at
remote locations, so all portions of the outbound and inbound data stream will
require encryption. HTTPS satisfies this requirement as well.

Since the airline application requires distributed access by agents in varied net-
work environments, as well as transmission of personal information, including
credit-card numbers, addresses, and telephone numbers, all incoming transactions
will have to be encrypted. Additionally, interception of ticket information would
allow duplicate tickets to be forged, possibly interfering with orderly boarding as
dozens of passengers show up, each assigned to the same seat. HTTPS satisfies this
requirement as well, since ticket media can be printed directly from a Web page dis-
played in a browser window.

No further authorization calls need be made until the agent/user signs off, which he
or she does simply by ending the secure session, because the unreliable nature of
Web sessions makes it impossible to guarantee that sessions can be ended formally.
This lack of predictability implies that Web sessions should be periodically timed
out if there is no activity, to avoid allowing an agent/user session to remain active
indefinitely, causing a security exception if the user later attempts to login to the
system twice or offering a point of attack for a hacker browsing for inactive sessions.

Security limitations
Since JAAS is not continuously “in the loop, the entire Web application must be
deployed on a single server. This means that logins will have to be periodically
timed out and there is no easy way to offer “single sign-on” to the agents if, in fact,
one or more alternative servers exist in the system. While this is a limitation, it
doesn’t seem too serious, because the alternative, retaining security context on a
user’s machine, isn’t all that attractive either. User machines are, by definition, both
unreliable and risky places to place important information about your security
techniques.

Implementation
Surprisingly, this is essentially the same problem as in the magazine-publisher
example. While we might change the communications protocol in the program,
using a key-store directory instead of a Windows directory is basically an adminis-
trative task. The appropriate login module has to be called, different arguments
passed, and different entries made in the configuration and policy files, but that’s
about it. Listings 12-26 and 12-27 show the sorts of entries required.

h539663 ch12.qxd 7/25/03 9:16 AM Page 405

406 Part III ✦ The Enterprise Information System Tier

Listing 12-26: Airline reservation configuration and
policy files

Login Configuration File

Login {
com.sun.security.auth.module.KeyStoreLoginModule required;

};

Subscriber {
com.sun.security.auth.module.KeyStoreLoginModule required
storeKey=true

principal=”KeyStoreServer@x500.testair.com”;
};

Client Policy File

grant CodeBase “file:./Login.jar” {
permission java.security.AllPermission;

};

grant CodeBase “file:./Passenger.jar”,
Principal javax.security.auth.X500.X500Principal

“cn=Puddintane” {

permission java.net.SocketPermission “*”, “connect”;
};

Server Policy File

grant CodeBase “file:./Login.jar” {
permission java.security.AllPermission;

};

grant CodeBase “file:./Subscriber.jar”
Principal javax.security.auth.X500.X500Principal
“x500server.testair.com” {

permission java.net.SocketPermission “*”, “accept”;

Permission
“x500server.testair.com”, “accept”;

};

h539663 ch12.qxd 7/25/03 9:16 AM Page 406

407Chapter 12 ✦ Understanding Java Authentication and Authorization Services

Listing 12-27: Airline reservation run command and
arguments

Start the Server

java -classpath Login.jar;Subscriber.jar
-Djava.security.manager
-Djava.security.policy=X500Server.policy
-Djava.security.auth.login.config=X500Server.conf
Login Subscriber 636 <or any unused port>

Start the Client

java -classpath Login.jar
-Djava.security.manager
-Djava.security.policy=X500Client.policy
-Djava.security.auth.login.config=X500Server.conf
Login Subscriber X500Server.testair.com

gold.testair.com 636

Summary
In this chapter we looked at the Java Authentication and Authorization Service
(JAAS) introduced in Java 2 V1.3 in the context of the Java security environment.
We’ve seen how JAAS can be used to extend standard Java security methods down
to the user level, incorporating support for user certificates, encrypted secure com-
munications, and single sign-on techniques such as Kerberos. We’ve also seen how
JAAS pluggable authentication hides environment and implementation details from
the application, allowing an administrator to easily change the system security
environment for entire classes of users. JAAS stackable authentication allows multi-
ple or alternative authentication modules to be layered and used based on applica-
tion need or environment, so users can be offered a very flexible path through the
login process or, alternatively, be locked into multiple layers of security challenge
and response protocols to ensure arbitrary levels of system security.

JAAS provides user-based authorization as opposed to code-based authorization,
which guarantees that intrinsic accountability and auditing can be incorporated
into secure systems with little chance of spoofing or later repudiation. While not a
guarantee of good security design in every system, it’s definitely an invaluable tool
in every system architect’s engineering kit or security administrator’s repertoire of
methods.

✦ ✦ ✦

h539663 ch12.qxd 7/25/03 9:16 AM Page 407

h539663 ch12.qxd 7/25/03 9:16 AM Page 408

Exploring Java
Cryptography
Extensions

The previous chapter covered Java Authentication and
Authorization Services (JAAS); this chapter is a primer

on Java Cryptography Extensions (JCE). Starting with J2SE
1.4, JCE is integrated as a part of the standard API. (Using JCE
in earlier versions of Java SDK involved downloading the JCE
package from http://www.javasoft.com/jce and integrat-
ing it into the application yourself.)

JCE provides a cryptographic framework for the Java lan-
guage. A framework usually is a set of jointly acting classes
(java term of a package) that make up a reusable design for a
specific software classification. On the same definition, a cryp-
tographic framework provides a package of classes that pro-
vides cryptographic functionality to the Java language. This
framework incorporates implementations for encryption, gen-
erating keys for encryption, and key agreement, as well as
algorithms for message-authentication codes. The various
implementations of encryption available in the JCE framework
include in alphabetical order asymmetric, block, stream
cipher and symmetric classes. JCE has a plug-and-play archi-
tecture where libraries implemented by third-party vendors
can be integrated seamlessly into the existing JCE architec-
ture. They are more like the service providers. Support for
secure streams and sealed objects are available.

Before we delve into the details of JCE, we will present the
basic terminology of cryptography, the various algorithms in
cryptography, and the widely used forms of cryptography
(shared-key cryptography, public/private-key cryptography,
and digital-certificate cryptography). We will end the chapter
with a couple of examples simulating one-way and two-way
hashes, respectively, with the JCE package.

1313C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Exploring one-way
versus two-way
encryption

Understanding
algorithms

Introducing shared
secret cryptography

Introducing public-key
cryptography

Examining digital
certificates

Reviewing the Java
cryptography
package

✦ ✦ ✦ ✦

h539663 ch13.qxd 7/25/03 9:16 AM Page 409

410 Part III ✦ The Enterprise Information System Tier

Grasping the Basic Terminology
Cryptography involves the securing of messages exchanged between a sender and
receiver. The people who specialize in this field are called cryptographers. Figure
13-1 depicts a complete process involving encryption and decryption of messages.

Figure 13-1: Standard cryptography process

In Figure 13-1, a sender wants to disguise a message that he or she sends over the
Internet to a receiver. The message is usually referred to as the cleartext or
plaintext. To become disguised, the message first undergoes a process called
encryption, which renders the actual message text invisible. (The encrypted mes-
sage is sometimes referred to as ciphertext.) When the message reaches the
receiver, a process called decryption takes place, in which the encrypted message is
converted to plaintext. A key can be used for encryption; we will discuss this
method of encryption later in the section “One-way encryption versus two-way
encryption.”

Following are the important characteristics that the process of encrypted-message
passing must have:

✦ Authentication means that the receiver must be able to determine the origin
of the message. Tapers of messages should not be able to act as senders.

✦ Integrity means that the receiver must be able to ascertain that the message
was not modified in transit and that the taperer (for example, the person
who taps the message) must not be able to substitute parts of the message
in transit.

✦ Nonrepudiation means that the sender must not at any time be able to deny
that a message was not sent by him or her. That is, the sender trying to deny
falsely that he did not send the message.

One-way encryption versus two-way encryption
Cryptographic algorithms are also referred as ciphers. Mathematically, they repre-
sent functions for encryption and decryption. A restricted algorithm is one in which
security is based on retaining the algorithm’s mechanism. These algorithms have
no quality control or standardization, and ROIs (Return on Investments) for these

Encryption

Sender Receiver

Cleartext Ciphertext Cleartext

Decryption

h539663 ch13.qxd 7/25/03 9:16 AM Page 410

411Chapter 13 ✦ Exploring Java Cryptography Extensions

algorithms are poor and insecure because if somebody leaves the group they have
to switch to a new algorithm. The other obvious reason being if somebody reveals
the logic of the algorithm then the algorithm is compromised. Restricted algorithms
are popular in low-security applications, because in low-security applications users
do not care or realize that there are security problems inherent within the system.

In modern cryptographic algorithms the problems of no quality control and no
standardization is solved with a key that holds a large number of values. The range
of the possible values of the key is called the keyspace. Both the encryption and
decryption processes use this key, as shown in Figure 13-2. The key is usually a
large number value.

Figure 13-2: Cryptography through a key

Most cryptographic algorithms can be divided into two main categories: one-way
encryption and two-way encryption. We’ll explain both of these in the following
sections.

One-way encryption and hash functions
In a one-way encryption scenario, encryption and decryption each involve a differ-
ent key. The Rivest, Shamir & Adleman (RSA) algorithm is a good example of one-
way encryption. Figure 13-3 shows how different keys are used for encrypting and
decrypting the ciphertext, respectively, in one-way encryption.

Figure 13-3: Cryptography using different keys

Encryption

Key1

Sender Receiver

Cleartext Ciphertext Cleartext

Key2

Decryption

Encryption

Key

Sender Receiver

Cleartext Ciphertext Cleartext

Key

Decryption

h539663 ch13.qxd 7/25/03 9:16 AM Page 411

412 Part III ✦ The Enterprise Information System Tier

Now, consider a one-way hash function, H(c), which operates on a ciphertext of arbi-
trary length. It also generates a hash value of fixed length c, h=H(c), where the
length of h is c. Following are the properties of the security of the algorithm, repre-
sented mathematically:

Given c, it is easy to calculate h.

Given h, it is difficult to compute c such that H(c) = h.

Given c, it is hard to find another ciphertext c1, such that H(c) = H (c1).

In addition to RSA, examples of one-way hashes include MD4, MD5 and SHA. These
algorithms are discussed later in this chapter.

Two-way encryption
In a two-way encryption, the same key is used for encryption and decryption, as
shown in Figure 13-4.

Figure 13-4: Two-way encryption

Algorithms
Let’s take a look at some of the standard algorithms used in cryptography today
that are available with the JCE package:

✦ DES

✦ Triple DES

✦ Blowfish

✦ MD5

✦ SHA

Encryption

Key1

Sender Receiver

Cleartext Ciphertext Cleartext

Key1

Decryption

h539663 ch13.qxd 7/25/03 9:16 AM Page 412

413Chapter 13 ✦ Exploring Java Cryptography Extensions

Data Encryption Standard (DES)
DES is the Federal Information Processing Standard that describes the Data
Encryption Algorithm (DEA) and also appears in ANSI standard X9.32. (Actually,
DEA is an improvement of IBM’s implementation of LUCIFER, which was developed
in the early ’70s.). The following URL is a good place to start learning about the
cryptographic algorithms: http://www.rsasecurity.com/.

DES is a block cipher; it encrypts 64-bit blocks of plaintext as cipher text. The same
key is used for both encryption and decryption of data, so DES is referred to as a
symmetric algorithm.

Two types of encryption techniques are used in this algorithm: confusion and diffu-
sion. These techniques are combined and followed by a substitution and a permuta-
tion of the plaintext based on a 56-bit key. This process is usually referred to as a
round and 16 rounds exist in DES.

Standard arithmetic and logical operations are used throughout the algorithm. Its
characteristics are as follows:

✦ Provides a high level of security

✦ Efficient, valid, complete and exportable

✦ Bases security on a key and not on algorithm secrecy

✦ Is accessible to the general public

✦ Has diverse applications

✦ Can be implemented economically in hardware

Figure 13-5 shows an implementation of the DES:

The algorithm implemented in Figure 13-5 works as follows. The plain text under-
goes a permutation and is separated into 32bits of left and right blocks. Then there
is a function that is applied 16 times on these blocks of text after which both the
blocks are combined to generate the ciphertext. Some of the primary uses of DES
are for single-user encryption and storing files in encrypted form. DES is re-certified
every five years by the National Institute of Standards and Technology (NSIT). Many
attempts have been made to crack DES and the latest succeeded in 22 hours with a
cracking machine. This hack on DES was possible because the 56-bit key is easily
broken. DES is no longer used, but instead has been replaced with triple DES.

Triple DES
Triple DES encrypts the plaintext three times using three different keys — Key1,
Key2, Key3. While Triple DES can be implemented in different ways, DES-EDE is the
most common. So far, attacks on Triple DES have been unsuccessful.

h539663 ch13.qxd 7/25/03 9:16 AM Page 413

414 Part III ✦ The Enterprise Information System Tier

Figure 13-5: Algorithmic implementation of DES

Blowfish
Blowfish was designed specifically for large microprocessors. Its creator, Bruce
Schneier, says that he designed this algorithm based on the following design
criteria:

Permutation

Combine left and
right block

64-bit plaintext

32-bit right
half-block

Right block
after

32-bit left
half-block

Ciphertext

Function f(x) F(x) performed 16 times

Left block
after

h539663 ch13.qxd 7/25/03 9:16 AM Page 414

415Chapter 13 ✦ Exploring Java Cryptography Extensions

✦ Speed

✦ Compactness

✦ Simplicity

✦ Variably Secure

In Blowfish, the key can be as many as 448 bits in length and more processor-
intensive than other algorithms that have been implemented in hardware. Analysis
has shown that the algorithm provides optimal performance in systems in which
the key does not change frequently. Like DES Blowfish is a 64 bit–block cipher.
There are two steps in the algorithm: key expansion and data encryption. In the
key-expansion phase a key is converted to 448 bits and several subkey arrays of
4,168 bytes each are created and iterated 16 times each over a function. Each
iteration step consists of key-dependent permutation and key-data substitution.

The Blowfish algorithm is most secure if implemented with more numbers of itera-
tions during the data-encryption phase of the implementation.

Message Digest 4 and Message Digest 5
This algorithm was developed by Rivest in 1991 as an improvement over MD4.
Plaintext is processed in three different steps in MD4 but undergoes four steps in
MD5. The plaintext is processed in blocks of 512 bits each. Each of these blocks is
then divided into 16 sub-blocks of 32 bits each. The output is a 128-bit hash out of
four encrypted blocks, each 32 bits in length.

Though attacks have been made on MD5, the only place where weakness has been
detected is in the compression function. This weakness does not compromise the
security of the hash function.

Secure Hash Algorithm (SHA)
SHA was developed jointly between NIST and NSA (National Security Agency).
The output of SHA is a 160-bit hash. In this algorithm the plaintext is padded out
to a multiple of 512 bits. The padding of the plaintext starts with a 1 followed
by additional zeroes until the number of bits is 64 short of a multiple of 512. In
the final step before padding a 64-bit representation of the plaintext is created.
Cryptanalysis has shown that SHA is resistant to all brute-force attacks and is
more secure because of the 160-bit hash output.

Shared-key cryptography
Shared-key cryptography is also known as secret-key cryptography and symmetric
encryption. This is a two-way encryption model because the same key is used for
both encryption and decryption. Prior to shared-key cryptography, if both the par-
ties shared communication channels, they also shared the same key. The inherited

h539663 ch13.qxd 7/25/03 9:16 AM Page 415

416 Part III ✦ The Enterprise Information System Tier

problem with this encryption scheme is the distribution of the key. If a third party
knows the key it can hack into message exchanges between the two parties.
Figure 13-6 summarizes secret-key cryptography:

Figure 13-6: Shared-key cryptography

Figure 13-6 follows these steps:

1. A secret key is shared between Nathan and James.

2. Nathan encrypts the plaintext using the secret key.

3. The ciphertext is sent to James.

4. James decrypts the ciphertext using the secret key.

5. James retrieves the plaintext that Nathan sent.

This secret-key encryption is fast and efficient and can be found in algorithms such
as DES and triple DES.

Public-key cryptography
Public-key cryptography is also known as asymmetric cryptography. In this encryption
scheme two keys (the public and private key) are used for encrypting and decrypt-
ing data, respectively. The public key is exchanged and the private key is not
exchanged.

Conceptually, public-key cryptography is a one-way hash. Some famous algorithms
that implement public-key cryptography are the RSA (Rivest, Shamir and Adleman)
algorithm and the Rjindael algorithm.

If the public key is used for encryption then the private key will be used for decryp-
tion. This solves the problem that shared-key cryptography creates, the problem of
key dispersal. However, public-key cryptography is costly, because of extensive
processor-oriented computations, and slow in execution. Optimal performance has
been realized by sending minimal bits of data in blocks. Figure 13-7 summarizes
public-key cryptography:

Encryption

Secret key

Nathan James

Plaintext Ciphertext Plaintext

Secret key

Decryption

h539663 ch13.qxd 7/25/03 9:16 AM Page 416

417Chapter 13 ✦ Exploring Java Cryptography Extensions

Figure 13-7: Public-key cryptography

Figure 13-7 follows these steps:

1. James holds the private key.

2. Nathan encrypts the plaintext using the public key.

3. The ciphertext is sent to James.

4. James decrypts the ciphertext using the private key.

5. James retrieves the plaintext that Nathan sent.

Digital certificates
These certificates are specified in the X.509 format and are useful when digital doc-
uments need to be signed. A digital certificate is based on a digest created accord-
ing to the content of the document that needs to be digitally signed.

Certificate authorities such as Verisign issue digital certificates. To validate that the
document has not been tampered with, the recipient can use an algorithm to calcu-
late the digest on the document and match that digest against the one sent with the
document. If the digests match the document has not been tampered with; other-
wise, it has been tampered with. In the first example of using one-way hash for pass-
words we will be looking at a variation of digital signatures called message digest.

Protocols
A protocol that uses cryptography is called a cryptographic protocol. Protocols for-
malize behavior and abstract the process of accomplishing a task from the mecha-
nism of how a task is accomplished.

Before we discuss some specific protocols we’ll define the roles we’re going to use
to explain the protocols in detail:

✦ Nathan — First party involved in the protocol.

✦ James — Second party involved in the protocol.

✦ Michael — Trusted lawyer.

Encryption

Public key

Nathan James

Plaintext Ciphertext Plaintext

Private key

Decryption

h539663 ch13.qxd 7/25/03 9:16 AM Page 417

418 Part III ✦ The Enterprise Information System Tier

In all the cases, let us that assume Nathan is selling a computer notebook to James.
James and Nathan do not know each other. James wants to pay Nathan by check,
but Nathan cannot validate the integrity of the check that James gives him. The
best course of action is for Nathan to have the check cleared before shipping the
notebook. Since the level of trust between James and Nathan is equivalent, James
wants the notebook before he sends the check.

Now let’s go into detail about the following general classifications of protocols rep-
resented in cryptography:

✦ Adjudicated protocol

✦ Arbitrated protocol

✦ Self-enforcing protocol

Adjudicated protocol
In this protocol Michael, the lawyer, becomes involved only if a dispute arises
between Nathan and James. Figure 13-8 sums up the adjudicated protocol between
Nathan and James:

Figure 13-8: Adjudicated protocol

This protocol can be divided into two sub-protocols, non-arbitrated and adjudi-
cated, the division is based on being executed every time and executed only on dis-
pute. The following actions take place in a non-arbitrated sub-protocol:

1. Nathan and James negotiate the terms of the contract.

2. Nathan signs the contract.

3. James signs the contract.

Adjudicated Protocol

Nathan James

Michael
Contract Contract

h539663 ch13.qxd 7/25/03 9:16 AM Page 418

419Chapter 13 ✦ Exploring Java Cryptography Extensions

If a dispute occurs between Nathan and James, lawyer Michael will settle the dis-
pute. The adjudicated sub-protocol comes into play as follows:

1. Nathan and James appear before Michael.

2. Nathan presents his contract.

3. James presents his contract.

4. Michael rules on the contract.

Arbitrated protocol
In this protocol, every transaction between Nathan and James is conducted
through Michael. This protocol is costly, therefore, because of the fees associated
with hiring an attorney. MIT’s Kerberos system architecture is based on the concept
of arbitrated protocol, which is depicted in Figure 13-9.

Figure 13-9: Arbitrated protocol

In this protocol the following steps occur:

1. Nathan gives the notebook to Michael.

2. James gives the check to Nathan.

3. Nathan deposits the check.

4. If the check clears, Michael gives the notebook to James. If the check does not
clear, Nathan shows proof of this to Michael, and Michael returns the note-
book to Nathan.

Nathan James

Michael

Arbitrated Protocol

h539663 ch13.qxd 7/25/03 9:16 AM Page 419

420 Part III ✦ The Enterprise Information System Tier

Self-enforcing protocol
In this protocol Nathan and James execute their tasks with fairness without involv-
ing Michael. This is the best type of protocol available and it ensures that no dis-
pute occurs. If a dispute does occur, the other party (for example, either James or
Nathan) can detect the cheating and the protocol can stop any further transaction.
Figure 13-10 summarizes the self-enforcing protocol.

Figure 13-10: Self-enforcing protocol

Reviewing the Java Cryptography Package
The Java platform already supports digital signatures and message digest. The JCE
framework extends the Java cryptography architecture and includes implementa-
tions of cryptography algorithms that were regulated earlier (for example, a couple
of years ago) by U.S. export restrictions. The current version of JCE is 1.2.2 and can
be exported outside of the U.S. The beauty of this version is that it has policy files
that regulate the encryption schemas that can be used and controlled by third par-
ties, so only qualified providers can be plugged into the architecture.

Following are the important features of the JCE as mentioned on Sun’s site at
http://java.sun.com/products/jce/index-122.html:

✦ 100-percent pure Java implementation

✦ Plug-and-play architecture

✦ Exportation outside the U.S. in binary form only

✦ Single distribution of the software locally and globally

✦ Ciphers, key agreements, and MACs (Message Authentication Codes) are
implemented

In addition to DES, DES-EDE, and Blowfish, which were discussed earlier in this
chapter, the following algorithms are provided out of the box by SunJCE providers:

✦ PBEWithMD5AndDES

✦ PBEWithMD5AndTripleDES

Nathan James

h539663 ch13.qxd 7/25/03 9:16 AM Page 420

421Chapter 13 ✦ Exploring Java Cryptography Extensions

✦ Diffie-Hellman key agreement among multiple parties

✦ HmacMD5

✦ HmacSHA1

Following are the packages available in JCE:

✦ javax.crypto— Contains classes and interfaces for cryptographic
operations.

✦ javax.crypto.interfaces— Provides Diffie-Hellman key, Diffie-Hellman
private-key, and Diffie-Hellman public-key encryption.

✦ javax.crypto.spec— Provides classes and interfaces for algorithm-parameter
specification and key specification.

The following classes are used by JCE in the base java.security package. The
javadoc with the classes describes the functionality of each class.

✦ Cipher

✦ Cipher InputStream

✦ Cipher OutputStream

✦ KeyAgreement

✦ Key Generator

✦ Mac

✦ SecretKeyFactory

✦ SealedObject

The next section details how to write code using the JCE framework and applies it
to the case studies in the book.

Writing a Java Program Using JCE
Following are the steps involved in writing a simple JCE program. Both of the case
studies in this chapter will follow them.

1. Get an instance of the KeyGenerator of the algorithm being used.

2. Generate the secret key.

3. Get an instance of the cipher for the algorithm to be used.

4. Initialize the Cipher object with the appropriate mode like ENCRYPT_MODE or
DECRYPT_MODE.

5. Encrypt or decrypt the plaintext or ciphertext.

h539663 ch13.qxd 7/25/03 9:16 AM Page 421

422 Part III ✦ The Enterprise Information System Tier

Magazine Publisher Business Case
This case study implements a one-way hash for user passwords. The code is well
documented and has a main main method that shows the following methods being
called:

✦ OneWayHash— A constructor setting two messages.

✦ doCalculateDigest— Calculates the digest for the two messages.

✦ MatchMessages— Compares the two digests to determine whether they
match or not.

Listing 13-1 contains the complete code for the program.

Listing 13-1: One-way hash for user passwords

/**
* Created by IntelliJ IDEA.
* User: vnathan
* Date: Jan 20, 2003
* Time: 10:31:19 PM
* This class is used to create oneway hash for user passwords
in the Magazine Publisher hash.
*/
import java.io.*;
import java.security.*;

public class OneWayHash {
private static byte[] digest1;
private static byte[] digest2;
private static String message1;
private static String message2;
//default constructor to set the messages.
public OneWayHash(String msg1, String msg2){

message1 = msg1;
message2 = msg2;

}
/**
* Method that calculates the digest based on the SHA-1

algorithm
*/
public static void doCalculateDigest(){

byte[] buf = new byte[message1.length()];
message1.getBytes(0,message1.length(),buf,0);
//
MessageDigest algorithm = null;

h539663 ch13.qxd 7/25/03 9:16 AM Page 422

423Chapter 13 ✦ Exploring Java Cryptography Extensions

try{
//get the message digest for SHA-1 algorithm
algorithm = MessageDigest.getInstance(“SHA-1”);

}catch(NoSuchAlgorithmException e){
System.out.println(e);

}
algorithm.reset();
algorithm.update(buf);
//calculate digest1
digest1 = algorithm.digest();

algorithm.reset();
buf = new byte[message2.length()];
message2.getBytes(0,message2.length(),buf,0);
algorithm.update(buf);
//calculate digest2
digest2 = algorithm.digest();

}
/**
* Method that matches the digests of the message and

prints out whether they match or not.
*/
public static void matchMessages(){

if(digest1.length != digest2.length){
System.out.println(“Digests do not match!”);
System.exit(0);

}
for (int i=0; i<digest1.length;i++){

if (digest1[i]!= digest2[i]){
System.out.println(“Digests do not match”);
System.exit(0);

}
}
System.out.println(“Digest match!”);

}
//main method of the program
public static void main(String args[]){

OneWayHash owh = new OneWayHash(“password”,”password”);
owh.doCalculateDigest();
owh.matchMessages();

}

}

Figure 13-11 shows the output when two messages do not match.

Figure 13-12 shows the output when two messages match.

h539663 ch13.qxd 7/25/03 9:16 AM Page 423

424 Part III ✦ The Enterprise Information System Tier

Figure 13-11: These two messages don’t match.

Figure 13-12: These two messages match.

Airline Reservations Business Case
This case study implements a two-way hash for credit card–number processing.
The code is well documented and has a main main method that shows the various
methods being called. Remember: Always convert to a byte array the string that
needs to be encrypted.

Listing 13-2 contains the following methods that are executed in the main main
method to set credit-card numbers, perform encryption using Blowfish, and decrypt
the data back, respectively: The source code is available from the Wiley site.

h539663 ch13.qxd 7/25/03 9:16 AM Page 424

425Chapter 13 ✦ Exploring Java Cryptography Extensions

✦ setCreditCardNumber(String creditCardNumber)

✦ doEncryption(String algorithm)

✦ doDecryption()

Listing 13-2 contains the complete code listing for the program. It is also available
as a separate Java file from the Wiley site.

Listing 13-2: Two-way hash for processing of
credit-card numbers

import java.security.*;
import javax.crypto.*;
import javax.crypto.spec.*;

public class TwoWayHash{
private byte[] creditCardNumber;

public void setCreditCardNumber(String creditCardNo){
creditCardNumber = creditCardNo.getBytes();

}
public byte[] getCreditCardNumber(){

return creditCardNumber;
}

public static void main(String args[]){
try{

KeyGenerator kGenerator = KeyGenerator.getInstance(“Blowfish”
);

System.out.println(“Generating Key ... “);
SecretKey secretKey = kGenerator.generateKey();
byte[] bytes = secretKey.getEncoded();

SecretKeySpec specKey = new SecretKeySpec(bytes,”Blowfish”);

System.out.println(“Creating cipher ...”);
Cipher cipher = Cipher.getInstance(“Blowfish”);

System.out.println(“Encrypting ... “);
cipher.init(Cipher.ENCRYPT_MODE, specKey);
String target = “Encrypt this buddy.”;
byte[] encrypted = cipher.doFinal(target.getBytes());

System.out.println(“before:” + target);
System.out.println(“after: “ + new String(encrypted));

//Decrypt
cipher.init(Cipher.DECRYPT_MODE, specKey);
byte[] decrypted = cipher.doFinal(encrypted);

Continued

h539663 ch13.qxd 7/25/03 9:16 AM Page 425

426 Part III ✦ The Enterprise Information System Tier

Listing 13-2 (continued)

System.out.println(“\n after decrypt: “ + new
String(decrypted));

}catch(Exception e){
System.out.println(“Exception caught: “ + e);

}

}

}

Figure 13-13 shows the output of the program.

Figure 13-13: Output from a two-way hash

Summary
In this chapter we covered the basics of cryptography, the differences between a
one-way versus two-way encryption. Key cryptographic algorithms like DES, Triple
DES, Blowfish, MD5, MD4 and SHA. We also talked about different cryptography key
technologies like Public key and Shared key. Digital Certificates and the various
Security Protocols were discussed. We also covered on standard data-encryption
methods, the Java cryptography extension model, and examples that implemented
the one-way and two-way hashes.

✦ ✦ ✦

h539663 ch13.qxd 7/25/03 9:16 AM Page 426

The Service Tier
✦ ✦ ✦ ✦

In This Part

Chapter 14
Understanding EJB
Architecture and
Design

Chapter 15
Explaining
Session Beans and
Business Logic

Chapter 16
Working with
Entity Beans

Chapter 17
Using Message-
Driven Beans

✦ ✦ ✦ ✦

P A R T

IVIV

i539663 PP04.qxd 7/25/03 9:16 AM Page 427

i539663 PP04.qxd 7/25/03 9:16 AM Page 428

Understanding
EJB Architecture
and Design

So far in the book we have described various components
of the J2EE architecture. In the following chapters we’re

going to consider Enterprise JavaBeans (EJB), the typical way
in which you will interact with J2EE. However, before describ-
ing EJB, we’re going to give an overview of the entire architec-
ture in this chapter. The intention is to show you some of the
J2EE components we’ve already seen fit in and lay the ground-
work for more detailed descriptions in subsequent chapters.

As well as trying to give an overview of most of the EJB archi-
tecture, we’ll also discuss some related issues such as where
the Object Management Groups CORBA architecture fits in
and what strategies application server vendors are currently
offering for their high-availability offerings (allowing them to
tolerate machine failures). We’ll also talk about some of the
performance issues related to using EJBs and try to give you
some help in addressing these if they come up in your appli-
cation development.

Explaining the EJB Component
Model

You are probably familiar with Java objects and interfaces, but
may not be so familiar with Java components. A Java compo-
nent is a set of interfaces and classes that have been assem-
bled into a single package to provide a specific functionality. A
component is typically designed to be used in a variety of dif-
ferent applications as an independent piece of software.

1414C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Learning about roles
and relationships

Understanding
portability

Explaining EJBs

Examining
persistence
transactions

Exploring CORBA
and EJB legacy
systems

Developing EJB
applications and
components

✦ ✦ ✦ ✦

j539663 ch14.qxd 7/25/03 9:16 AM Page 429

430 Part IV ✦ The Service Tier

A major advantage components offer over objects is that only the business logic of
an application needs to be addressed by a programmer; any required support ser-
vices are incorporated into the application at deployment time. Containers that host
components are responsible for providing the underlying middleware services they
require (such as persistence to ensure object durability or transactions).

It is worth examining here briefly why this component-oriented abstraction has
been considered necessary when the industry has been using object-orientation for
many years. Although object-oriented middleware provides type-checked remote
invocations and standard ways of using commonly required services (such as nam-
ing, persistence, transactions, and so on), application developers still have to
worry about application logic as well as technically complex ways of using a collec-
tion of services.

For example, using transactions on distributed objects requires concurrency control
and persistence and the transaction services have to be used in a particularly intri-
cate manner. Component-oriented middleware makes the developer’s job easier with
components that are composed of objects, and containers that host component
instances. Containers take on the responsibility of using the underlying middleware
services for communication, persistence, transactions, security, and so forth; the
developer’s task is simplified to declaring the services required by components.

Modern client-server distributed-computing systems such as EJB can be seen as
implementations of a 3-tier architecture that is organized as follows:

✦ First or client tier — This tier consists of client applications containing
browsers, stand-alone application clients, and so on (The remaining tiers
deployed within an enterprise represent the server side.)

✦ Second or business tier — This tier is capable of hosting distributed applica-
tions and is typically called the application server. Application servers host
containers.

✦ Third or enterprise information systems tier — This tier contains Enterprise
Resource Planning Systems (ERPS), mainframe-transaction-processing systems,
databases, and legacy applications of the enterprise.

An application server typically deploys a variety of object-oriented middleware ser-
vices using an object request broker (ORB). However, the application server pro-
vides applications with a higher level of abstraction than object-orientation:
component-oriented middleware.

Enterprise JavaBeans (EJB) is the component model for enterprise applications
that has quickly become the de facto standard for developing mission-critical enter-
prise software. It leverages best-of-breed technologies from standards organizations
such as the Object Management Group (OMG) and years of experience from ven-
dors such as IBM, BEA, Sun, and Oracle in building enterprise applications in other
languages. The result is a development and deployment environment that allows

j539663 ch14.qxd 7/25/03 9:16 AM Page 430

431Chapter 14 ✦ Understanding EJB Architecture and Design

scalable applications to be created without compromising performance. It enables
a clearer separation between functional and non-functional aspects of an applica-
tion’s development, such that the programmer does not typically need to worry
about issues such as security, transactions, concurrency, persistence, and resource
pooling: These are automatically taken care of by EJB, so the programmer can con-
centrate on more important issues.

This chapter is intended to lay the groundwork for the next few chapters and place
them into context within the overall J2EE framework. As a result, in the rest of this
chapter we may have to use some terms and references to method names that we
don’t fully explain. Don’t worry too much, as we will provide references to the rel-
evant chapters for you to examine if the need arises.

Enterprise applications have existed for decades in languages as diverse as COBOL
and C++, and in environments ranging from telecommunications to banking. Hence
some form of application server existed prior to Java and the development of EJB.
Unfortunately, as a result of this, and the fact that until relatively recently compa-
nies tended to purchase most software from a single vendor, it was incredibly diffi-
cult (and often impossible) to take an application, component, or object developed
to run within one vendor’s application server and deploy it within another vendor’s
application server. This situation is often known as vendor lock-in: Your application
code is tied to a particular vendor’s software, with all of the disadvantages that this
implies. What if the vendor goes out of business or does not provide bug fixes
quickly enough for you? In addition, what if you want to sell your components or
application to someone else who has already invested time and money in using an
application server from a different vendor? Persuading that customer to move ven-
dors as well as buy your component may be a tough sell! In general, removing criti-
cal dependencies on one vendor’s product is a good thing.

One of the major benefits of developing any standard is that it improves the likeli-
hood of interoperability and portability. We deliberately used the word “improves”
in that last sentence because some standards are written to allow vendors some
leeway in their implementations, so watch out. The EJB and J2EE architectures are
comprised of a set of standards that have been developed in open standards bodies
such as the Java Community Process from Sun, or leverage standards from other
bodies such as the OMG. Therefore, one of the advantages of EJB is that it provides
a framework within which applications can be developed in a portable manner. In
theory, at least, it is possible to develop a component using one vendor’s applica-
tion server and sell it to someone who is dependent upon another vendor’s applica-
tion server. Watch out for those vendor-specific enhancements to the product that
go beyond what the EJB specification defines or you could easily stray into “lock-in
land” again!

Having given an overview of why component-orientated middleware has rapidly
overtaken the more traditional object-oriented approaches, now let’s look at the
EJB architecture in more detail. In the next sections we’ll consider the application
development and deployment phases of using EJB and the various roles EJB defines
as being involved in each phase.

Note

j539663 ch14.qxd 7/25/03 9:16 AM Page 431

432 Part IV ✦ The Service Tier

Reviewing Roles, Relationships,
and Responsibilities

EJB achieves portability by defining a number of roles and responsibilities required
for the development and deployment of application components within the applica-
tion server. The interactions among these different roles are carefully laid out
through the definition of contracts (rules that are agreed to by all parties involved)
that each actor (implementer of a specific role) must follow. As in a movie or TV
production, EJB allows a given actor to play multiple roles; however, the advantage
of splitting roles is that individuals and companies can concentrate their efforts on
just those areas where they have (or wish to acquire) expertise. It is no longer nec-
essary to become dependent on a single vendor for all your enterprise needs.

In this section we will briefly consider the following roles, relationships, and
responsibilities in EJB (we will expand on some of these in subsequent sections):

✦ The deployment descriptor

✦ The bean provider

✦ The server/container provider

✦ The application assembler

✦ The EJB deployer

✦ The system administrator

The deployment descriptor
The deployment descriptor is part of the EJB contract between the EJB developer
and the EJB container. It defines the declarative information that is necessary to the
use of the bean but that is not encoded directly within the bean implementation.
For example, it defines whether the methods of the bean must be invoked within
the scope of transactions, whether or not a bean’s methods are re-entrant (whether
a thread within a specific method can invoke the same method), and so on.

A deployment descriptor is similar to traditional Java property files in that the
information contained within the descriptor may be used to configure the compo-
nent or application either when the component or application is initially deployed
or at runtime. An EJB’s deployment descriptor is represented as an XML document,
which is both human-readable and writeable by means of standard XML tools or
even text editors.

j539663 ch14.qxd 7/25/03 9:16 AM Page 432

433Chapter 14 ✦ Understanding EJB Architecture and Design

The bean provider
As its name implies, the bean provider is the source of enterprise beans (not to be
confused with EJBs!), which are essentially the software components that do appli-
cation-specific work (such as reserving a seat on a specific flight). These compo-
nents are intended to be individually deployable and can be combined into a
complete solution to a specific problem. In our 3-tier architecture, enterprise beans
are server-side components.

As we have already mentioned, it is entirely possible for a vendor to provide func-
tionality over and above what the EJB specification requires. If you use such func-
tionality then it is highly unlikely that the component will be reusable. Just
because a vendor claims to be compliant with a given specification does not mean
that its code or yours will necessarily be portable. Don’t fall into the “specification
implies portability” trap.

Designing enterprise beans is very similar to designing any software entity, whether
a component, object, or subroutine. If you want your bean to be reused within dif-
ferent applications and to have a longer useful lifetime, you need to design reusabil-
ity and reconfigurability into it from the start. For example, beans whose
functionality can be configured at runtime will be more useful to customers than
those that require recompilation.

The bean provider is responsible for creating the deployment descriptor associated
with the bean. Typically this will occur through the use of a popular graphical-
development tool. Once the deployment descriptor has been created, it and the
bean can be packaged for deployment within a Java Archive (JAR) file.

In order to ensure the portability of beans across deployment environments, the
EJB specification places certain restrictions on what the bean provider may do. We
will enumerate these restrictions in the section on EJB container functionality,
because many of them are related to portability among container implementations.

The server/container provider
This provider supplies the application-server functionality to deploy, contain, and
manage components. The container provides the environment in which your enter-
prise beans live out their lives; in general, the container is responsible for life-cycle
management, security management, deployment, transactions, threading, and so
on, on behalf of components. Recall that the benefit of containers is that bean
providers do not need to explicitly incorporate support for these types of function-
ality within their application code. A good relationship between container and com-
ponent will allow the application to be modified through the container without the
need to change the code.

Note

j539663 ch14.qxd 7/25/03 9:16 AM Page 433

434 Part IV ✦ The Service Tier

Within a deployment descriptor, the developer specifies information describing the
appropriate system services required and how they are to be applied to an EJB. A
container is responsible for hosting components and ensuring that middleware ser-
vices are made available to components at runtime as described in deployment
descriptors of components. Containers mediate all client/component interactions.
A container vendor provides automatic code-generation tools that will produce the
appropriate mechanisms to integrate a component into a container.

As shown in Figure 14-1, the relationship of server to container is similar to that of
container to bean: The server provides the runtime environment in which a con-
tainer executes, managing lower-level resources. As shown, each server may encap-
sulate more than on the container. The container is responsible for mediating all
interactions with the enterprise beans, managing the lifecycle of the beans and also
providing the various services that it requires, such as transactions or messaging.
In the figure, a persistent data store is shown because as we shall see, some types
of bean may save (and restore) their states to a durable storage system so that they
may be used over many interactions and across a long duration. As we saw in
Chapter 10, the transaction system may also use the persistent store.

Figure 14-1: The relationship between server, container
and enterprise beans

The application assembler
If a bean provider supplies the reusable components, it is the job of the application
assembler to take these components and convert them into an application that can
solve a business problem. The application assembler is the architect who has inti-
mate knowledge of the components and of the problem that needs a solution.

Container A

Container B

Enterprise beans

EJB server

Persistent
data store

j539663 ch14.qxd 7/25/03 9:16 AM Page 434

435Chapter 14 ✦ Understanding EJB Architecture and Design

Obviously, the way in which the components are “glued” together will depend upon
the application requirements: For example, there may be no inherent distribution
within the application and all of the required beans may reside within the same
JVM. As a result, the components may interact directly via other Java classes. An
example of such structuring would be an enterprise bean that represents an air-
plane that uses many individual seat enterprise beans.

Alternatively, the interactions between components may be structured as a work-
flow, whereby the result of an invocation on one distributed component may cause
an invocation on another distributed component. For example, an online travel
booking system may use an airline bean within one container, travel insurance
beans within another container (and server) and an alternative airline reservation
bean in the event the prime site fails.

All of this structuring and tying together of individual components is the domain of
the application assembler.

The EJB deployer
So far we have considered the roles that are necessary for building the entire appli-
cation. Obviously software that just sits on a hard drive or floppy disk is of very lit-
tle use in solving real-world business problems! Therefore, the EJB deployer is
responsible for converting the application into a running execution environment
such as a corporate intranet. This is obviously a distinctly different job from that of
the application assembler because the application assembler individual may not
know the specifics of the execution environment in which the application must run.
For example, where are the firewalls? What are the security restrictions placed on
business divisions?

The EJB deployer knows how to deploy enterprise beans within application servers
and how to customize the beans and/or server environment for a specific problem
domain. In addition, the deployer is responsible for mapping the access level of a
bean to fit any deployment domain’s security settings.

The system administrator
The system administrator’s role is to oversee the application once it is up and run-
ning. It is the administrator who will monitor the application and its interactions
and may make changes to the runtime deployment configuration based on feedback
from the application, the server, and the container.

In the next few sections we will concentrate more on the bean provider and con-
tainer provider, as they are the roles that you will typically encounter in your use
of EJBs.

In the next sections we’ll take a closer look at exactly what constitutes an EJB. As
we’ll see, there are a variety of different bean types, each aimed at a specific problem

j539663 ch14.qxd 7/25/03 9:16 AM Page 435

436 Part IV ✦ The Service Tier

area. We’ll also look at how some of the services offered by containers (such as per-
sistence or transactions) are used by enterprise beans.

The Enterprise JavaBean
Recall that an enterprise bean is a component that may be deployed within a con-
tainer to form part of a distributed enterprise application. Every bean has a compo-
nent interface that defines the business methods callable by the clients, and a home
interface that defines the methods with which the client can create, remove, and
find EJB components of a specific type. All client-to-entity bean and client-to-
session bean communications are normally made via the Java Remote Method
Invocation (RMI).

Three types of EJBs have been specified in J2EE:

✦ Entity beans

✦ Session beans

✦ Message-driven beans

They are discussed in the following sections.

Entity beans
Entity beans represent and manipulate the persistent data of an application, provid-
ing an object-oriented view of data that are frequently stored in relational data-
bases. This is an important advantage to users, because the underlying format in
which data may well be stored in a database is via relational tables accessed
through SQL queries and stores. Encapsulating this state behind an object isolates
the users from the implementation details of how the state is represented in mem-
ory and in the persistent store: The entity bean is then responsible for loading the
state from the store and saving it back later.

As shown in Figure 14-2, it’s much better for the user of a bean to be able to call a
reserveSeat method on an airline-reservation object than have to deal with the
persistent store directly (which will typically involve SQL) Once the state is loaded
into volatile memory — meaning that the entity bean has been activated — the
application can manipulate the bean state. However, until the state is saved back to
persistent storage it is susceptible to machine failures or application-server
crashes: The state on persistent (stable) store will survive crashes unless there is a
catastrophic failure of the persistent store, whereas the state within the entity bean
will definitely be lost. All of the interactions between the bean and the data store
are mediated by the container and hidden from the client. Imagine if this was not
the case and the user had to drive state management directly!

j539663 ch14.qxd 7/25/03 9:16 AM Page 436

437Chapter 14 ✦ Understanding EJB Architecture and Design

Figure 14-2: An example of a client’s interactions with an airline EJB

Another important point is that entity beans can be shared among multiple concur-
rent clients. Thus, in the example in Figure 14-2, different users can be calling the
reserveSeat method simultaneously. If concurrent data manipulation is not
allowed by the application, the bean should use transactions to ensure data consis-
tency. For example, as you saw in Chapter 10, if the methods of an entity bean are
called within the scope of a transaction, it is possible to set the sharing level of the
transaction such that concurrent conflicting write operations are not possible. The
transactions associated with each client invocation are serializable, such that all of
the work for one client happens before the work for the other client.

Two subtypes of entity bean exist:

✦ Bean-managed persistent (BMP)

✦ Container-managed persistent (CMP)

Bean-managed persistence (BMP)
In BMP, the persistence of an entity bean to persistent storage (called synchroniza-
tion) is the responsibility of the bean provider. An entity bean synchronizes its state
to the underlying store or, database through the ejbLoad and ejbStore methods

Container A

Load state/save
state

Container B

reserveSeat

Bespoke client, Web browser, and so on

Entity bean

EJB server

Persistent
data store

j539663 ch14.qxd 7/25/03 9:16 AM Page 437

438 Part IV ✦ The Service Tier

that are part of all entity beans. The bean provider is responsible for implementa-
tions of these methods that are relevant to the particular persistent store used. So,
for example, although databases are typically used to store a bean’s state, it is
entirely possible for implementations to use the file system provided by the operat-
ing system.

The bean provider is given flexibility in how state is managed between the persis-
tent-store representation and the bean instance. Some types of bean may have state
split across a number of different databases: For example, our airline stores specific
passenger information such as name, address, dietary habits, and so on in one
database and seat assignments in another. However, these stores might use a single
entity bean (such as the FlightBean, say) to present both sets of information to
the travel agent.

Consider the airline-reservation example and assume you have a SeatBean that
manages information about a specific seat on a flight. Further assume that the rele-
vant fields in this bean are a value, isReserved, indicating whether or not the seat
is reserved, and a name, representing the name of the person who has the seat
assignment. The SeatBean also knows the flight it is assigned to via the flightId
integer identifier. The ejbStore method for this bean would be as follows:

public void ejbStore () throws RemoteException
{

Connection conn = null;
PreparedStatement prepStmnt = null;

try
{

conn = getConnection();
prepStmnt = conn.prepareStatement(“update Seat set

reserved = ?, name = ?, where flight = ?”);

prepStmnt.setBoolean(1, isReserved);
prepStmnt.setString(2, name);
prepStmnt.setInt(3, flightId);

if (premStmnt.executeUpdate() != 1)
throw new RemoteException(“A failure occurred while

writing the flight seat!”);
}
catch (SQLException sqlExp)
{

throw new RemoteException(sqlExp.toString());
}
finally
{

try
{

if (prepStmnt != null)
prepStmnt.close();

if (conn != null)

j539663 ch14.qxd 7/25/03 9:16 AM Page 438

439Chapter 14 ✦ Understanding EJB Architecture and Design

conn.close();
}
catch (SQLException sqlExp)
{
}

}
}

Don’t worry about the fact that so far we have ignored issues such as how to
locate or create the entity bean in the first place: We’ll cover a lot of the specifics
behind entity beans in Chapter 16.

Obviously, persisting the state of an entity bean can be a complex task, especially if
the bean has a lot of state. Therefore, EJB provides container-managed persistence,
which is the means whereby the bean provider can concentrate on the functional
aspects of the bean and leave persistence to someone else.

Container-managed persistence (CMP)
With CMP, the bean provider does not take a role in persisting the state of the entity
bean: it is now the responsibility of the container to provide the code necessary to
map the bean’s state to the underlying persistence store. All that the bean provider
has to do is describe precisely what state needs to be persisted and the container
then does the necessary work. This has obvious advantages over the BMP setup as
it can save much valuable implementation time for the bean provider, and it
removes one possible area of error.

Use of container-managed persistence and transactions are strongly recom-
mended for entity beans. This is because the container and transaction service
cooperate to ensure that the state of the entity bean is loaded from and saved to
the data store automatically on transaction boundaries.

In CMP, the bean’s container-managed fields are automatically synchronized with
the persistent storage implementation. Therefore, the ejbLoad and ejbStore
methods that you used in BMP are typically not required. However, regardless of
whether CMP or BMP is being used, the container will still invoke these methods
during loading and saving of the bean’s state. As a result, it is entirely possible to
take advantage of these callbacks from the container if sophisticated synchroniza-
tion management is required.

For example, suppose the SeatBean from the previous example is extended to
include all of the information about the passenger, including name, address,
method of payment, dietary requirements, and so on. Furthermore, let’s also
assume that the bean provider decides to use CMP. Now, the information main-
tained by the bean may be large (several kilobytes, for example) and may poten-
tially be sensitive. Rather than just synchronize the state of the bean to and from
the datastore, the bean provider can use the fact that ejbStore will be called prior
to synchronization of the state to the datastore to compress and encrypt the state
(perhaps using some of the techniques we saw in Chapter 13). By means of the
ejbLoad method the state may then be decrypted and uncompressed.

Note

Cross-
Reference

j539663 ch14.qxd 7/25/03 9:16 AM Page 439

440 Part IV ✦ The Service Tier

Session beans
Session beans, on the other hand, do not use persistent data and are instantiated
on a per-client basis with an instance of a session bean available for use by only one
client, in contrast to entity beans. In general, whereas an entity bean represents
persistent data, a session bean performs calculations. Session beans are intended
to encapsulate business logic. For example, in the airline-reservation system you
might employ a session bean to help display a list of all available seats in the busi-
ness-class cabin.

Because entity beans represent business data rather than process, they typically
achieve a higher level of reuse than session beans.

A session bean may be stateless, meaning that it does not maintain conversational
state, or stateful, meaning that it maintains conversational state. Conversational
state is needed to share state information across multiple requests from a client.

We will briefly give details of these two bean subtypes next and follow up in
Chapter 15.

Stateless session beans
Stateless session beans do not maintain any state and are not specific to a particu-
lar client. Session beans can handle two types of transaction:

✦ Container-managed transactions (CMT) — In these transactions, the deploy-
ment descriptor is used to specify the transactional qualities associated with
the EJB on a per-business method basis. The bean provider does not have to
identify transactional boundaries (such as begin and commit) within the
bean’s code: The container uses the deployment descriptor to set the bound-
aries of a transaction, beginning a transaction immediately before an enter-
prise bean method starts and committing a transaction just before the
method exits.

✦ Bean-managed transactions (BMT) — In this case the container has minimal
control over transactions: The bean provider must explicitly manage transac-
tion boundaries (starting and terminating of the transactions).

Don’t worry if you want a bit more detail about transactions and beans. We’ll have
much more to say about them the section “Container Managed Transactions” later
in this chapter.

Stateful session beans
Each stateful session bean is typically allocated to a specific client. Requests are
always routed to the same session bean within the container. State information is
retained on behalf of the client across multiple bean-method invocations. Like state-
less session beans, stateful session beans support both CMT and BMT.

Cross-
Reference

Note

j539663 ch14.qxd 7/25/03 9:16 AM Page 440

441Chapter 14 ✦ Understanding EJB Architecture and Design

Stateful versus stateless session beans
You may well be asking yourself just when would you use a stateful session bean
instead of a stateless one (or vice versa). If the business process inherently
requires state to be maintained between client invocations, the use of stateful
beans seems obvious. For example, a diary bean that keeps track of a users sched-
ule will obviously require updating periodically over time.

However, you should consider one important thing before deciding to go with state-
ful session beans: application fault-tolerance. The fact that the same stateful bean is
required to service all requests from the same client can severely limit your appli-
cation’s ability to tolerate failures. Since all data are maintained by the bean, if the
application server hosting the data were to fail (for example, if the machine it runs
on were to crash), the data will obviously be lost and the client will have to start
again from scratch. Re-routing the client’s request (as can happen for stateless ses-
sion beans) won’t help the client in this situation and can even lead to application
inconsistencies!

But what if you really need to share state between invocations? The only way to do
this currently is to shift the burden of state management from the session bean to
the client. For example, you can use a stateless session bean so that a different
instance can be used for each invocation from the same client and have the client
send all state to the bean that it will require in order to deal with the client’s
request. However, this method has its own drawbacks, not least of which is the fact
that the client can obviously fail. As you will see in the Distribution Support sec-
tion, the cost of doing remote invocations from client to server is directly related to
the amount of information that must be conveyed from the client to the server. If a
lot of state must be shipped, the performance of the application will suffer
adversely.

Entity beans versus session beans
Given that more than one type of bean exists, how do you decide which type is
appropriate for a particular problem? As we have shown, the main difference
between session and entity beans is that the former represent business processes
(workflow) whereas the latter represent business data. Obviously, a session bean
may be used to interact with an entity bean.

For example, consider the airline-reservation system shown in Figure 14-3. The sys-
tem employs a session bean to enquire of the specific airline about the availability
of seats on the plane requested by the tourist; the data returned by the session
bean can then be displayed graphically at the client frontend. This particular inter-
action is a one-shot and the same client is not required to have subsequent interac-
tions with the airline system to share information.

j539663 ch14.qxd 7/25/03 9:16 AM Page 441

442 Part IV ✦ The Service Tier

Figure 14-3: Airline reservation example using session and
entity beans

Now, once the client (tourist) has chosen the seat required, the frontend attempts
to reserve that seat by invoking the reserveSeat method on the entity bean. If the
bean developer is interested in consistency and fault-tolerance then the bean will
use transactions to load in the state of the plane or individual seat from the data
store. The bean should then mark that seat as being reserved on behalf of the
tourist before committing the transaction. If the transaction commits successfully
then the transaction will force the new state back to the data store. In this case the
work is being performed directly on the persistent representation of the airline
data, and an entity bean is the only choice available to the bean developer.

Really no competition between entity and session beans exists. Each is well suited
to specific requirements. If you do not need to manipulate (read, write, or update)
persistent state, do not use entity beans: They are the heavyweight tool in terms of
overhead. Session beans are lightweight and provide a means of conversational
state-sharing.

Take a good long look at your application and its requirements before deciding
which type of bean to use. Also, remember that while you may be able to reuse
entity beans from other applications, in all likelihood you will have to write your
session beans from scratch.

Message-driven beans (MDB)
Message-driven beans were introduced in the EJB 2.0 specification to provide asyn-
chronous processing by acting as message-listeners for Java Messaging Service
(JMS). A traditional request-response procedure call is termed synchronous

EJB server

EJB container

Seat availability
session bean

Airline client
interface

Seat reservation
entity bean

Airline data
store

j539663 ch14.qxd 7/25/03 9:16 AM Page 442

443Chapter 14 ✦ Understanding EJB Architecture and Design

because the requester waits for the response before proceeding. In an asyn-
chronous model, the requester may perform other work before receiving the
response.

As we’ll see in Chapter 17, like stateless session beans, MDBs do not maintain con-
versational state for clients, although instance variables of a message-driven bean
can maintain state across multiple client messages. Unlike session and entity beans,
MDBs have no direct client-interaction interface: Clients must interact with MDBs
via JMS topics and queues.

MDBs reside in an application server’s EJB container and act as asynchronous mes-
sage listeners. They can leverage all of the facilities afforded by the container, such
as security and transactioning, while simultaneously supporting the JMS program-
ming model for message consumers. Additionally, the MDB model can support con-
current processing of a stream of messages by means of container supplied pooling
of bean instances.

Recall that MDBs are stateless and have no client visible identity. A client applica-
tion has no direct knowledge of an MDB but rather sends messages to a given JMS
destination for which the MDB acts as a message consumer. Since the bean has no
business methods that are invoked directly by EJB clients there is no need for the
home and remote interfaces required of other enterprise bean types.

Creating a message receiving application using MDBs is simpler than a pure JMS
application since the container performs a number of the required steps. While an
MDB is instantiated and initialized the container creates a message consumer
(TopicSubscriber or QueueReceiver) to receive the bean’s messages based on
the configured destination and connection factory. The bean is subsequently regis-
tered with the given message consumer.

The runtime management of messaging interactions is also simplified. The container
is responsible for handling message acknowledgement for the deployed bean. The
form of message acknowledgement is dependent on the transaction mode utilized by
the bean. If the bean is using container-managed transactions the container will per-
form the message acknowledgement as part of the transaction commit. However, if
bean managed transactions are used the container will perform the acknowledge-
ment as dictated by the mode specified in the deployment descriptor.

What does an EJB contain?
So far we have described what an enterprise bean is in terms of roles and relation-
ships. Now, take a brief look at what classes and interfaces an EJB actually contains.
The following interfaces and classes are important:

j539663 ch14.qxd 7/25/03 9:16 AM Page 443

444 Part IV ✦ The Service Tier

✦ Component interface — This defines the bean’s business methods and consti-
tutes its public representation to the outside world. Although the bean
provider specifies this interface, it is the container that creates a class that
implements it. The component interface is either remote (in which case it
extends javax.ejb.EJBObject, which also extends java.rmi.Remote) or it
is local (in which case it extends javax.ejb.EJBLocalObject). Typically
this interface is referred to as the EJB object.

✦ Home interface — This defines the bean’s lifecycle methods for creating,
removing, and finding beans. As with the component interface, this interface
comes in two flavors: remote (extending javax.ejb.EJBHome) and local
(extending javax.ejb.EJBLocalHome).

✦ Bean class — This class provides implementations of the business methods,
such as reserving a seat on a particular flight. The bean class typically does
not implement the home or component interfaces; however, it must have
matching methods for the component interface and corresponding methods
for some of the home interface. Each bean type has its own interface, all of
which extend javax.ejb.EnterpriseBean. This being the case, you won’t be
surprised to learn of the javax.ejb.SessionBean, javax.ejb.EntityBean
and javax.ejb.MessageDrivenBean interfaces.

✦ Primary key — This class is the route to uniquely identifying a bean. A pri-
mary key can be very simple and provide a pointer into a database. The only
real requirement is that it be serializable and override the equals method.
Only entity beans need a primary key, because they represent persistent
state. If two entity beans have the same home and primary keys they are con-
sidered identical.

Figure 14-4 shows the relationship among the interfaces, the EJB object, and the
EJB class; the primary key is not shown though it is used by the EJBObject.

Figure 14-4: The relationship between EJB
object and EJB home

EJB server

EJB container

EJB home EJB object

Bean class

Home interface Component interface

j539663 ch14.qxd 7/25/03 9:16 AM Page 444

445Chapter 14 ✦ Understanding EJB Architecture and Design

Now you know what comprises a bean; the remaining chapters in Part IV will
expand on these brief descriptions and give some concrete examples of how the
components interact to create a real enterprise bean.

The lifecycle methods
In the rest of Part IV, we will examine the various enterprise-bean interfaces in
much more detail and show lifecycle diagrams for each type of bean. However, for
this chapter it is sufficient to enumerate the important methods used to manage
the lifecycle of a bean instance, as shown in Table 14-1.

Table 14-1
Enterprise-Bean lifecycle methods

Message
Entity Session Driven

Name Description Bean Bean Bean

ejbCreate Creates the bean instance Yes Yes Yes

ejbPostCreate Initializes the instance Yes No No

ejbRemove Informs the instance it is no Yes (also Yes Yes
longer required used to

notify the
instance
that state
is about to
be deleted
from
datastore)

ejbLoad Indicates that state is about Yes No No
to be loaded from datastore

ejbStore Indicates that state is about Yes No No
to be saved to datastore

ejbActivate Indicates that the bean is Yes Yes Yes
about to be activated (for (conversational
example, removed from a state is to
pool) be saved)

ejbPassivate Indicates that the bean is Yes Yes Yes
about to be deactivated (conversational

state has
been loaded)

j539663 ch14.qxd 7/25/03 9:16 AM Page 445

446 Part IV ✦ The Service Tier

Every bean class must provide implementations of the methods defined in its inter-
face. However, the implementations themselves do not have to do anything mean-
ingful; it is perfectly correct to leave the bodies of some or all of these methods
empty.

The EJBContext interface
Implementations of the javax.ejb.EJBContext interface are used to provide an
enterprise bean with information about its environment, including its container,
the client using it, and the bean instance itself. Other information available through
the context includes a handle on the current transaction and the client’s security-
context information.

As with most things in EJB, there are actually three subtypes specific to the type of
bean:

✦ javax.ejb.EntityContext

✦ javax.ejb.SessionContext

✦ javax.ejb.MessageDrivenContext

The context is your bean’s route into the container that houses it — it encapsulates
the bean’s environment. The EJB context is a part of the container and in effect rep-
resents a handle on the container that can be accessed from within your beans. The
fact that beans have a reference to the environment means that they can do inter-
esting things such as determining (and modifying) their status.

A bean’s state may change over its lifetime and therefore the context object may
also change dynamically. The container is responsible for changing the context to
reflect any status changes in the bean.

We’ve described the various types of EJB and associated interfaces and classes
such as the context. Now let’s dive down into how the container drives the beans,
providing the services they require and ensuring that they are used in a consistent
manner, despite simultaneous access by many clients.

Understanding EJB Container Functionality
Recall that EJB containers are responsible for managing enterprise beans and pro-
viding an environment in which they can run. It is through the container that enter-
prise beans are made available to remote clients. In addition to threading, the
container manages the following items (this is not an exhaustive list):

Note

j539663 ch14.qxd 7/25/03 9:16 AM Page 446

447Chapter 14 ✦ Understanding EJB Architecture and Design

✦ Lifecycle for a component — The container instantiates the component
(bean) upon demand when a client invocation arrives and passivates it when
it is no longer needed.

✦ Security — The container ensures that only clients with the correct creden-
tials can access a particular bean’s methods.

✦ Transactions — The container starts a new transaction when the client invo-
cation is received.

A container is expected to provide such functionality as persistence and transac-
tions. The container provider can also assist in the construction of enterprise appli-
cations through various tools. In order to discuss the exact functionality you can
expect from an EJB container, we will consider the simplified J2EE application-
server architecture shown in Figure 14-5 in the rest of this section.

Figure 14-5: A simplified application server architecture

Restrictions on the bean provider
Recall that portability of EJB code was of paramount importance during the design-
ing of the EJB specification. Therefore, in order to achieve portability certain
restrictions were placed on the bean provider:

Naming and
binding

Container

Server

Transactions, connection pooling, and so on

Operating system

Client EJBs

Remote invocation
typically CORBA based, threading

Persistent storage

j539663 ch14.qxd 7/25/03 9:16 AM Page 447

448 Part IV ✦ The Service Tier

✦ Static data fields — If an enterprise bean has static data fields then these must
be read-only; this is to allow container implementations to distribute bean
instances across multiple JVMs (processes). If static fields could be written to,
it would be mandatory to ensure that all copies of those fields were consis-
tently updated simultaneously, regardless of which processes they resided in.
As you can imagine, this would not be a trivial problem to solve. It involves
keeping track of all copies of the objects across the distributed environment,
intercepting updates to each field no matter in which object they occur, and
then distributing these updates to all object instances; and this doesn’t even
take into account concurrent updates that might conflict!)

✦ Synchronized keyword — For the same reason just mentioned, an enterprise
bean must not use the synchronized keyword to synchronize execution of
multiple instances — otherwise deadlocks may occur.

✦ Runtime interaction — Most EJB servers do not allow runtime interaction
between an application and an input device such as a keyboard; as a result, an
EJB must not use the AWT functionality for input or output.

✦ File I/O — File I/O via the java.io package is notoriously prone to platform
and environment peculiarities. Therefore, EJBs must not manipulate the file
system through classes in this package. Rather, a resource manager such as
JDBC should be used to store and retrieve data.

✦ Networked servers — An enterprise bean may be a network-socket client, but
it is not allowed to be a network server because that would conflict with the
basic function of the EJB: to serve EJB clients. An enterprise bean must not,
therefore, listen on a socket, accept connections on a socket, or use a socket
for multicast (where the sender sends the same message to multiple recipi-
ents simultaneously). It must not attempt to set the Socket, ServerSocket,
or socket factory, or the stream-handler factory used by the URL.

✦ Reflection — An EJB must not use reflection or any other means to obtain
information about the declared members of a class that would otherwise be
inaccessible given the Java language-security rules.

✦ ClassLoader — An EJB must not create a ClassLoader, obtain the current
loader, or set the context ClassLoader or SecurityManager. In addition, it
must not attempt to change the I/O or error streams. Otherwise security and
the container’s ability to efficiently manage the runtime environment for EJBs
could be compromised.

✦ Thread management — An enterprise bean must not manage threads, includ-
ing starting, stopping, suspending, or resuming threads, or change the priority
or name of an existing thread.

✦ Security restrictions — To protect security restrictions, an enterprise bean
must not directly read or write a file descriptor. Furthermore, to prevent secu-
rity being compromised, the bean must not obtain security information for a
particular code source, load a native library, define a class in a package, or
access or modify security-configuration objects.

j539663 ch14.qxd 7/25/03 9:16 AM Page 448

449Chapter 14 ✦ Understanding EJB Architecture and Design

This may sound like quite a few restrictions on what you can do. However, if you
examine them you’ll find that you would never want to do most of the things you’re
prevented from doing anyway. So, knowing that the same restrictions holds true for
all well-behaved bean and container implementations should give you some added
feeling of security that your own enterprise beans aren’t going to be compromised
by another bean implementation.

Why restrict threading?
Writing multi-threaded applications is an inherently complex task. For example, you
must make sure that your classes are thread-safe, meaning that concurrent use of a
specific instance of the class by multiple threads does not compromise data consis-
tency. You must also be certain that deadlocks and livelocks do not occur.

In a centralized, single JVM environment it can often be difficult enough to ensure
that your application is thread-safe. In a distributed system, where components
from different vendors and implementers interact across heterogeneous deploy-
ments, it can be orders of magnitude more complex to ensure that an application
will behave as you wish in the presence of many threads.

As a result, the designers of the EJB specification tried to simplify application com-
position where threads are concerned; therefore, EJBs must be single-threaded. The
container automatically instantiates a new instance of an enterprise bean whenever
a client invocation is received. This makes the life of the bean developer easier:
They don’t need to worry about making the class thread safe, or about deadlocks
or livelocks, since each instance will only ever have a single thread running through
it. The container handles all load-balancing of client requests to multiple instances
of the single-threaded component, providing a highly scalable environment.

The disadvantage of the EJB threading model is that some problems are best han-
dled by multi-threading. Unfortunately, in these cases EJB is not the best tool.

Concurrency control and re-entrance
The restriction that all enterprise beans must be single-threaded makes the issue of
concurrency control of beans much simpler. Because multiple clients (threads) can-
not access the same bean instance at the same time, they can’t perform conflicting
operations simultaneously. So, for example, if you take your SeatBean, in the
reserveSeat method you would obviously like to prevent a situation in which one
tourist (Fred) reserves the seat and simultaneously so does another (John). Since
the container guarantees that each client (tourist) has exclusive access to the bean
instance, this situation is prevented.

Re-entrance occurs when a thread attempts to re-enter a class or procedure it has
already traversed. In the case of EJB, as shown in Figure 14-6, this situation occurs
when a thread attempts to re-enter an enterprise bean. In EJB enterprise beans are
non-re-entrant by default, and so loopbacks are not allowed. This is an important

j539663 ch14.qxd 7/25/03 9:16 AM Page 449

450 Part IV ✦ The Service Tier

concept to understand because in general it can be difficult to guarantee that loop-
backs will not occur. Formation of applications through the composition of compo-
nents (beans) that have been created by different users, possibly for other
applications, almost invariably lead to complex interactions among those compo-
nents. So, although you may not think that re-entrance is going to happen, it can.

Figure 14-6: An example of re-entrance
in an EJB

All interactions with an enterprise bean occur through remote references: Clients
and beans do not interact directly with one another, whether the client is another
bean or a bespoke frontend. The real problem with re-entrance is that the container
or bean has no way to differentiate between an invocation made by a “pure” client
(as in Figure 14-6) and a re-entrant call being made by the bean (Bean B). Thus,
allowing re-entrance is effectively the same as allowing multi-threading and the pos-
sibility of corrupting data and the application.

With session beans, if a loopback attempt is made, a RemoteException will be
thrown. Entity beans, on the other hand, can be configured at deployment time to
allow re-entrance. However, we do not recommend it.

Achieving scalability by pooling resources
Recall that EJB provides a scalable platform for the development and deployment
of enterprise applications. But how does this work? You may have seen descrip-
tions of applications using application servers that can cope with hundreds or
thousands of clients simultaneously. Surely the fact that each client has a corre-
sponding bean within the container places a limiting factor on the number of simul-
taneous client requests?

LoopbackEJB container

Bean A

Client

Bean B

j539663 ch14.qxd 7/25/03 9:16 AM Page 450

451Chapter 14 ✦ Understanding EJB Architecture and Design

To a certain extent this is true. However, as we mentioned at the start of this chap-
ter, EJB is based on the collective experiences of many companies who have
deployed many enterprise-level applications into the field in other (non-EJB) envi-
ronments. One of the common characteristics that existing applications share that
helps to make them scalable is that of resource pooling: Rather than resources being
created for each client, a smaller pool of resources is used and shared among them.
This pool typically grows and shrinks on demand to cope with changing client load.
EJB uses a similar technique to achieve its own scalability goals.

All beans have a well-defined lifecycle. Typically a bean goes from a passive state
(such as the state of the entity bean when it is on disk) to an active state when a
client uses it. Eventually it is passivated again when it is no longer required. (Recall
that the EJB container is responsible for managing and directing the lifecycle of a
bean.)

Also remember that clients interact with enterprise beans via their remote (compo-
nent) interfaces. This being the case, a client never has a direct view of the underly-
ing bean implementation. So why should the same bean instance be used for every
one of the client’s interactions? Obviously, if the bean is preserving state that must
span a given client’s invocations (because it is being used within a transaction, for
example), that client is effectively bound to that specific bean for the duration.
However, in many cases, beans are used once only or for only short periods. In
those cases, there is no reason that the instance of the bean cannot change for the
same client. This is because the client does not need to know and will not be able to
differentiate between this situation and one in which it always uses the same
instance implementation. The container need only keep a pool of beans (known as
instance pooling) and copy state into and out of them as required.

The time when a bean is not actively servicing a client’s request is unproductive,
and instance pooling minimizes this period by making the bean instance available
to as many clients as possible during its lifetime. This decreases resource use and
improves performance.

The life of an entity bean
The lifecycles of all beans are similar, but probably the most important one to con-
sider first is that of the entity bean. At any given time, an entity bean is in one of the
following states:

✦ Nonexistence — The bean has not yet been instantiated in this state.

✦ Pooled — The bean has been instantiated by the container in this state, but
has not been associated with any particular EJB object.

✦ Ready — The instance has been associated with an EJB object in this state,
and is ready to be used by a client.

j539663 ch14.qxd 7/25/03 9:16 AM Page 451

452 Part IV ✦ The Service Tier

A logical instance pool may exist for each type of bean (each class). To create an
instance pool, the container generates a number of instances of the class and
places them within the pool until they are needed. The initial size of the pool will be
vendor-specific. However, your favorite application-server implementation may
enable the system administrator to configure the size of the pool at runtime to
improve performance.

As clients make requests on the business logic, the container assigns instances
from the pool. Because all instances in the pool are equivalent, any instance may be
selected to service a particular client request. Once the EJB object no longer
requires the bean instance, the instance is returned automatically to the pool.
Obviously, the initial size of the pool may be inadequate for the throughput of client
requests. In this case the container may increase and/or decrease the size of the
pools to better suit the runtime environment.

Figure 14-7 illustrates what happens when a new client invocation arrives. When
the pool of bean instances is created, each bean is given a reference to a javax.
ejb.EJBContext instance by the container. Recall that it is through this context
that the bean can obtain information on, and interact with, its environment.

The code fragment below shows how an EJB for an airline reservation application
might be implemented. The setEntityContext method is called by the container
at initialization time.

public AirlineBean implements EntityBean
{
public void setEntityContext (EntityContext ctx) throws
RemoteException
{
myContext = ctx;
myEnvironment = ctx.getEnvironment();

}

public EntityContext myContext;
public Properties myEnvironment;
}

Initially all that exists is the EJB home object that the client can use to obtain a
remote interface to the bean. The container then creates the corresponding EJB
object, which is empty, in that it has not been assigned a bean instance.

As shown in Figure 14-8, once created, the EJB object is assigned any instance from
the pool. That instance moves from the pooled state to the ready state. At this
point the enterprise bean can receive invocations from the client on its business
logic by means of the remote interface. The container can manage this bean
further — for its persistence or transaction requirements, for example.

j539663 ch14.qxd 7/25/03 9:16 AM Page 452

453Chapter 14 ✦ Understanding EJB Architecture and Design

Figure 14-7: How the container activates an EJB
from the pool of instances

Figure 14-8: The client uses the bean instance
now that it has been activated.

When a bean instance moves from the pooled state to the ready state, the
javax.ejb.EJBContext instance it was given when it was created then allows
it to access its own EJB object and home and determine information about the
client. It is through this interface that the bean can also create, locate, and remove
beans of its own type.

Note

EJB server

EJB container

EJB home Instance in
ready state

EJB object

Client (remote reference)

EJB server

EJB container

EJB home

New instance
required

EJB object

Pool of bean
instances in
pooled state

Client (home reference)

j539663 ch14.qxd 7/25/03 9:16 AM Page 453

454 Part IV ✦ The Service Tier

When the client is finished with the bean’s remote reference, it can let the reference
pass out of scope and become garbage, or call one of the bean’s Remove methods.
Once removed or marked as not being needed, the instance is disassociated from
the EJB object and returned to the pool. Its state is therefore moved back to pooled.

The life of a session bean
Since instance pooling seems like such a good idea, can it be applied to session
beans? Fortunately the answer is yes, but as we will now show, only if those beans
are stateless session beans.

Pooling of stateless session beans
Stateless session beans can be pooled in the same way as entity beans. However,
the container can use pooling in a more powerful manner simply because the bean
instances are stateless. Furthermore, every method invocation by a client can be
serviced by a completely different stateless session-bean instance if necessary.
Therefore, the container can swap stateless session beans into and out of the pool
between each method invocation made by a client. Typically the time taken to per-
form a method invocation is much shorter than the time between method invoca-
tions. As a result, pooling of stateless session beans allows the container to keep a
much smaller number of instances in the pool than if it were pooling entity beans.

What about stateful session beans?
Earlier in this chapter you saw that stateful session beans can maintain conversa-
tional state between client invocations; this state is typically maintained in the
same datastore as your entity beans. Furthermore, this state must remain consis-
tent for the duration of the client’s interactions with a specific bean instance. As a
result, stateful session beans cannot participate in pooling techniques in the same
way that stateless session beans and entity beans do.

However, this is not to say that the EJB specification has not provided a means for
achieving scalability and performance when using stateful session beans. Instead,
the container uses a process known as activation and passivation. When the con-
tainer needs to conserve resources it can evict (passivate) those stateful session
beans from memory that are not currently servicing a client’s requests.

As shown in Figure 14-9, when the bean is instructed that it is to be passivated by
means of the ejbPassivate method, its state is serialized to secondary storage to
preserve any conversational state it has.

j539663 ch14.qxd 7/25/03 9:16 AM Page 454

455Chapter 14 ✦ Understanding EJB Architecture and Design

Figure 14-9: An illustration of a stateful session bean being passivated

The following fragment illustrates what may occur during ejbActivate and
ejbPassivate for our Airline bean (changed to a SessionBean for the purposes of
this example). In this example, the Airline has a JDBC Connection and associated
DataSource; the connection is obtained during ejbActivate (the bean needs to
supply a user and password login) and closed during ejbPassivate, since the
bean implementer knows that signifies the end of the bean’s lifecycle.

public class AirlineBean implements SessionBean
{
public void ejbActivate ()
{

conn = dataSource.getConnection(“user”, “password”);
}

public void ejbPassivate
{

try
{

conn.close();
}
catch (Exception ex)
{
}

}

private DataSource dataSource;
private Connection conn;

}

EJB server

EJB container

Bean
instance

EJB object

Client (remote reference)

Serialize
state

EJB server

EJB container

EJB object

Instance evicted
from memory

Client (remote reference)

Serialized
state

j539663 ch14.qxd 7/25/03 9:16 AM Page 455

456 Part IV ✦ The Service Tier

Importantly, this preserved state is associated with the bean’s EJB object. When a
subsequent invocation from the client arrives on the EJB object, a new bean
instance is created and its state is loaded from the previously serialized form. At
this point, the bean is activated; once it is loaded, ejbActivate is called.
Fortunately for the client, as with instance pooling, all of this activation and passi-
vation of stateful session beans happens transparently. The client continues to use
the EJB object interface and is blissfully unaware of the state changes going on
within the container.

The ejbPassivate method is called immediately prior to the state of the bean
being serialized. The bean implementation can use this method to close connec-
tions, free other resources, and so on. Likewise, ejbActivate is called immediately
after the state has been loaded from the datastore, and the bean can use this to
reset connections, transient fields (data this is not persisted), and so forth.

Transactions and EJBs
The EJB XML deployment descriptor allows session beans to be defined as having
either bean- or container-managed transactions. Transaction type is defined in the
EJB 1.1 and EJB 2.0 XML DTDs as follows:

<!ELEMENT transaction-type (#PCDATA)>

The transaction-type is also a required child element for the session element.
This means that session bean with container-managed transactions have a struc-
ture like this:

<session>
...
<transaction-type>container</transaction-type>

...

Entity beans always have container-managed transactions. If a bean is declared to
have container-managed transactions, the DTD specifies a container-transaction
element defined as follows:

<!ELEMENT container-transaction (description?, method+, trans-
attribute)>

This example indicates that the container-transaction element may have an
optional description, one or more methods specified, and a single transaction
attribute.

Container-managed transactions
Container-managed transactions (CMTs) are the core of the EJB component model.
Writing system code to create and control distributed transactions can be difficult

j539663 ch14.qxd 7/25/03 9:16 AM Page 456

457Chapter 14 ✦ Understanding EJB Architecture and Design

and error-prone. Fortunately the EJB model allows the container to handle the initi-
ation, termination, and recovery of transactions. In fact, the container still plays an
important role with beans that are labeled as bean-managed, handling error recov-
ery and management of state-transaction association in stateful session beans.

This separation of concerns is a particularly important strength of the EJB model,
because it enables developers to concentrate on the functional aspects of their
business logic and leave the transactional aspects of the code to the container writ-
ers. As you saw in Chapter 10, using the OTS isn’t exactly a trivial thing to do, and
so any help that users can get to move them further up the development stack can
only be a benefit to development efficiency and application reliability.

The declarative semantics of container-managed transactions are relatively
straightforward. The following transaction attributes may be specified for a method
on a bean that is declared as having container-managed transaction attributes for
its methods:

✦ NotSupported

✦ Supports

✦ Required

✦ RequiresNew

✦ Mandatory

✦ Never

They are defined in the following sections.

NotSupported
This attribute indicates that the container should ensure that a business method
should never be executed in the context of a transaction. However, the caller is
allowed to invoke the bean’s remote (or local) interface with an active transaction
context. In that case, the container will suspend the transaction for the duration of
the method dispatch and resume the transaction when the method completes.

Technically, the method is executed in an unspecified transaction context, which
provides the container with several options for dealing with access to underlying
resource managers from a transactional standpoint. In practice, many containers
will simply assume that no container intervention is required or desired. However,
according to the EJB specification it is entirely permissible for the container to fol-
low one of the following strategies, or a combination of two or more:

The container may invoke the method without any transaction context.

The container may treat each call of an instance to a resource manager as a
single transaction. In the case of JDBC, this means that the container would
set the auto-commit flag to true on the connection.

j539663 ch14.qxd 7/25/03 9:16 AM Page 457

458 Part IV ✦ The Service Tier

The container may merge multiple calls of an instance to a resource manager
into a single transaction.

The container may merge multiple calls of an instance to multiple resource
managers into a single transaction.

If the bean instance invokes other EJBs that run in an unspecified transaction
context, the container may merge the resource-manager calls for all EJBs into
a single transaction.

The EJB specification recommends that bean developers write beans “conserva-
tively” so as not to rely on a particular container’s behavior. Also, keep in mind that
any nested EJB calls within the business method will be executed without a current
transaction context’s being associated with the calling client.

Supports
This attribute indicates that the container should allow the invocation of the busi-
ness method within the transaction context of a caller. However, the method may
also be called with no transaction context associated with the caller. In that case
the method will be invoked in an unspecified transaction context according to the
semantics we explained for the NotSupported transaction attribute.

The Supports transaction attribute allows the calling client to control the transac-
tional characteristics of the business method. This can be a powerful construct for
gaining operational efficiency from a business method used in different contexts. On
the other hand, it means that required transactional behavior can be compromised
by client misuse — and this can lead to data inconsistencies within an application.

Some people mistakenly believe that this attribute can be used to eliminate all
interaction between the container and the transaction manager during a method
invocation in which no transactional context is associated with the client.
Regardless of the container’s strategy for handling the unspecified transaction con-
text, this is never the case; the container must still interact with the manager even
in the simplest case. The efficiency is gained in the interaction with the database
connections or Enterprise Integration System (EIS) adapters, which do not need to
involve the XA transaction manager in their interactions (as we saw in Chapter 10).

Required
This attribute indicates that the business method must be invoked in the context of
a transaction. If a transaction is associated with the caller, that transaction will be
associated with the method invocation. If the caller does not have an associated
transaction, the container will start a new transaction prior to invoking the busi-
ness method on the bean instance, and will terminate the transaction when the
business method has returned. This attribute guarantees that access to multiple
transactional resource managers will be made in the context of a single global
transaction — and helps to ensure that data consistencies are maintained across
heterogeneous systems.

j539663 ch14.qxd 7/25/03 9:16 AM Page 458

459Chapter 14 ✦ Understanding EJB Architecture and Design

RequiresNew
This indicates that the bean will always be invoked in the context of a new transac-
tion. If the caller invokes the method within a transaction, the container will sus-
pend that transaction and start a new transaction before calling the actual business
method. When the business method completes, the container will terminate the
existing transaction and resume the caller’s transaction. This means that the out-
come of the transaction associated with the business method has no effect on the
transaction of the caller.

The benefit of RequiresNew is that the business method itself is an atomic transac-
tion, independent of other business logic within the system. This quality can guar-
antee the consistency of an operation, regardless of the state of other business
methods in the system. For example, a method that enables employees to change
personal information in an Enterprise Resource Planning (ERP) system may require
success independently of the success or failure of a larger transaction in which the
personal-information update is a part.

Mandatory
In this case, callers without a transaction context will receive a subclass of java.rmi.
RemoteException, the Java Transactions API (JTA) exception javax.transaction.
TransactionRequiredException. The container will not attempt to start a trans-
action on behalf of the caller. This is useful when failure of the business method must
be correlated closely with the transactional integrity of resources associated with the
caller’s transaction. A transaction attribute like Required cannot enforce this behav-
ior. The Mandatory attribute could be used, for example, to ensure that fund trans-
fers cannot happen independently of the success of a larger business operation in an
e-commerce application.

Never
The Never attribute was added to the component model in EJB 1.1. If a Never
attribute is invoked while the caller is part of a transaction, the container will throw
a RemoteException and the bean’s method will never execute. However, if the
caller is not associated with a transaction, the container will dispatch the method
on the bean instance and it will execute normally. The bean’s method will be
invoked in an unspecified transaction context according to the semantics we
described for the NotSupported transaction attributes. The Never attribute can be
used when you want to signal a usage error to the calling client if the method is
invoked in a transaction context.

Specifying container-managed transactions
A typical container-transaction element looks like this:

<container-transaction>
<method>
<ejb-name>EmployeeBean</ejb-name>
<method-name>provideRaise</method-name>

j539663 ch14.qxd 7/25/03 9:16 AM Page 459

460 Part IV ✦ The Service Tier

</method>
<trans-attribute>Required</trans-attribute>

<container-transaction/>

It is possible to omit the transaction attribute of a method; the DTD does not
enforce rules that specify that all methods must be mapped, because technically
this mapping is the responsibility of the application assembler rather than the bean
developer. The resulting behavior may be container-dependent.

Recall that the EJB specifications go to great length to define roles for each stage of
the development and deployment lifecycle of an EJB. They do this in an attempt to
provide great flexibility and separation of concerns. This design is also aimed at try-
ing to ensure reusability of components, but often doesn’t map to real-life scenar-
ios. Bean developers should take care to ensure that beans developed for a specific
project have completed deployment descriptors. The container will generally
assume that omissions in the deployment descriptor are intended.

Bean-managed transactions
As the name implies, EJBs that use bean-managed transactions manage their own
transaction initiations and terminations. However, the container still plays an
important role, because it enforces well-defined rules that limit how bean develop-
ers can use transactions, principally to ensure that transactions initiated by bean
developers are terminated correctly. It’s critical to note that only session beans
may use the bean-managed transaction demarcation; the container always manages
transactional semantics for entity beans.

With bean-managed transactions, bean instances establish and manage transac-
tions via the JTA javax.transaction.UserTransaction interface, which can be
acquired from either the EJBContext associated with the bean instance or the envi-
ronment via a JNDI lookup. The container is responsible for ensuring enlistment of
resource-manager drivers and for the coordination of the commit or rollback. The
code looks like this:

Context initCtx = new InitialContext();
UserTransaction utx = (UserTransaction)initCtx.lookup(
“java:comp/UserTransaction”);
utx.begin();
//access resource manager(s)...
utx.commit();

When a client uses the home, remote, or local interface to invoke a business
method on a bean with bean-managed transactions, the container will always
suspend any transaction associated with the client’s request. However, with bean-
managed transactions the container has different behavior for managing transac-
tions for stateful session beans and stateless session beans.

j539663 ch14.qxd 7/25/03 9:16 AM Page 460

461Chapter 14 ✦ Understanding EJB Architecture and Design

Stateful session beans
If the bean instance for a stateful session bean previously initiated a transaction,
the transaction is associated with the request after the caller’s transaction is sus-
pended. This condition occurs when a business method completes without termi-
nating the transaction it has initiated. Remember that stateful session beans are
associated with a single client and maintain conversational state, and hence this sit-
uation is allowed. When the method returns, the container must suspend any trans-
action associated with the bean instance, and if a transaction was associated with
the original client request the container must resume the original transaction. The
container is responsible for managing and maintaining the associations, illustrating
that the container has a lot of work to do in bean-managed transaction scenarios.

Stateless session beans
On the other hand, a stateless session bean must terminate any transactions it initi-
ates within a business method prior to returning. Stateless session-bean instances
are interchangeable between business-method invocations and may, for example,
be pooled. (Pooling was discussed earlier in the Section Scalability by Pooling
Resources.) Maintaining an association between the instance and a transaction
across multiple requests would be a serious error and would damage data integrity.
For example, a pooled stateless session bean that maintains a transaction associa-
tion across requests can modify data for two clients in the context of the same
transaction. So if the container finds that a stateless session bean returns from a
business method without committing or rolling back a transaction it has initiated,
the container must do the following, in the following order:

1. Log an application error to alert the system administrator (no standard mech-
anism for doing this exists at present, but in practice containers often simply
log an error message to the console or a file).

2. Roll back the started transaction.

3. Discard the instance of the session bean because it is erroneously maintaining
state associated with a client.

4. Throw java.rmi.RemoteException to the client.

Stateful versus stateless session beans
For either stateful or stateless session beans, the container must allow the bean
instance to start and terminate any number of transactions serially within the busi-
ness method. If a bean instance attempts to start a new transaction by invoking
begin on the UserTransaction interface or any other method, the container will
throw a javax.transaction.NotSupportedException from the begin method.
This means that the container supports nested transactions, which are disallowed for
EJBs. If a bean attempts to use the setRollbackOnly() or getRollbackOnly()
methods on the EJBContext object, the container will generate a java.lang.
IllegalStateException, because these methods are reserved for beans with con-
tainer-managed transaction demarcation.

j539663 ch14.qxd 7/25/03 9:16 AM Page 461

462 Part IV ✦ The Service Tier

Examining a transactional EJB example
The main elements required for supporting transactional EJB applications deployed
in an application server are shown in Figure 14-10. An application server usually
manages a few containers, with each container hosting many (hundreds of) EJBs;
only one container, hosting three EJBs, is shown in the figure.

Figure 14-10: Illustrating the various components involved in an EJB transaction

The application server is a multi-threaded program that runs in a single process. Of
the many middleware services provided by an application server to its containers,
we explicitly show just the transaction service. A transaction manager is hosted by
the application server and assumes responsibility for enabling transactional access
to EJBs. The transaction manager does not necessarily have to reside in the same
address space as the application server, but this is frequently the case in practical
systems. At least one resource manager (persistence store) is required to maintain
persistent state of the entity beans supported by the application server; we show
two in the figure. In particular, we have shown relational database management sys-
tems (RDBMSes) as our resource managers (Entity X stores its state on RDMSA and
Entity Y does the same on RDMSB).

Communications between an RDBMS and a container takes place by means of a
Java DataBase Connectivity (JDBC) driver. Another interface is required to enable a
resource manager to participate in transactions originated in EJBs. In Chapter 10,
you saw that this is the XAResource interface (shown as XA in Figure 14-10). As you
also saw in Chapter 10, there is a clear separation of concerns between transaction
management via the XAResource interface and resource manager read/write opera-
tions via JDBC. In simple terms, the transaction manager interoperates with the
resource manager via the XAResource interface to drive the resource manager
through the two-phase commit protocol, and the application interoperates with the
resource manager via the JDBC driver.

Session

Application server

Container

Client
invocation

Transaction
manager

JDBCA
Entity X

Entity Y
XAA

JDBCB

XAB

RDBMSA

RDBMSB

j539663 ch14.qxd 7/25/03 9:16 AM Page 462

463Chapter 14 ✦ Understanding EJB Architecture and Design

We’ll now describe a sample scenario with a single transaction involving three
enterprise beans (using CMT) and two resource managers. A session bean receives
a client invocation. The reception of the client invocation results in the session
bean starting a transaction, T1, and issuing a number of invocations on two entity
beans, X and Y.

When entity beans are required by the session bean, the session bean will first have
to activate these beans via their home interfaces, which results in the container
retrieving their states from the appropriate resource managers to initialize the
instance variables of X and Y. The container is responsible for passing the transac-
tion context of T1 to the JDBC drivers in all its interactions, which in turn guarantee
that the resource managers are kept informed of transaction starts and ends. Note
the following, in particular:

Retrieving the persistent state of X (Y) from RDMSA (RDMSB) at the start of T1
will lead to the associated resource manager obtaining a write-lock on the
resource (the persistent state, stored as a row in a table); this prevents other
transactions from accessing the resource until T1 ends (commits or rolls back).

XA resources (XAA and XAB) “register” themselves with the transaction man-
ager so that they can take part in the two-phase commit.

Once the session bean has indicated that T1 is at an end, the transaction manager
attempts to carry out the two-phase commit to ensure that all participants either
commit or roll back T1. In the current example, the transaction manager will poll
RDBMSA and RDBMSB (via XAA and XAB, respectively) to ask if they are ready to
commit. If either RDBMSA or RDBMSB cannot commit, it informs the transaction
manager and rolls back its own part of the transaction. If both RDBMSA and RDBMSB
can commit, the transaction manager informs all participants to commit the trans-
action and the modified states of X and Y become the new persistent states.

In our example, all the beans are in the same container. Support for distributed
transactions involving beans in multiple containers (on possibly distinct applica-
tion servers) is straightforward if the transaction manager is built atop a CORBA
transaction service (Java Transaction Service), because such a service can coordi-
nate both local and remote XA resources. Such a transaction manager will also be
able to coordinate a transaction that is started within a client and spans EJBs, pro-
vided the client is CORBA-enabled.

Naming objects
In a distributed system it is obviously important to be able to name objects in
order to identify them and use them. All distributed systems, from the Distributed
Computing Environment (DCE) to the Common Object Request Broker Architecture
(CORBA), provide a naming service. (CORBA is discussed later the Section
Integrating with CORBA.) In J2EE, as you saw in Chapter 11, this naming service

j539663 ch14.qxd 7/25/03 9:16 AM Page 463

464 Part IV ✦ The Service Tier

is provided through the Java Naming and Directory Interface (JNDI), since JNDI sup-
ports pretty much any kind of implementation you could possibly want. Both
clients and servers, as containers and EJBs, respectively, are expected to use JNDI.
Luckily for us, the various J2EE specifications clearly define the names that ser-
vices such as JTA are expected to use in order to publish into JNDI.

In order to support interoperable access to naming services for looking up EJBHome
objects, the EJB specification requires naming implementations to be based on the
Object Management Group’s CosNaming service, which itself must follow the
CORBA Interoperable Name Service (INS) specification. As you will see in the
Section Distribution Support, all remote invocations with the naming-service imple-
mentation must occur by means of OMG’s Internet Inter-ORB Protocol (IIOP).

The security infrastructure
The EJB security infrastructure uses a role-driven access-control paradigm as
defined in the EJB 2.0 specification. Roles are mapped to an EJB’s methods using
the deployment descriptor. When a user accesses a protected resource, his or her
principal is established and associated with the role. Similarly, distributed clients
are authenticated by means of JAAS APIs, as you saw in Chapter 12. If the user
invokes an EJB method, the principal is passed with the request. If the principal’s
role is mapped to the requested method, the method is invoked. If the EJB method
subsequently invokes another EJB method, the principal is passed with the request
and will be verified by the EJB being called.

The EJB 2.0 specification ensures that any EJB type can establish a security context
prior to the execution of the bean’s methods. The EJB developer does this by set-
ting a run-as role under the security-identity section of the deployment descriptor for
a given EJB.

The Timer service
Most operating systems give you the ability to schedule tasks to be executed at cer-
tain times of day or at regular intervals. For example, you may want a housekeeping
service that archives unused files at 12:00am on the first day of every month. It is
natural therefore to expect the EJB container to provide similar functionality. With
EJB 1.4, the new Timer service provides a watchdog service that allows you to
schedule time-specific events (timed notifications) for all enterprise beans with the
exception of stateful session beans.

In order to be able to receive timer events, the enterprise bean must implement the
javax.ejb.TimedObject interface. When a timer event occurs (the timer expires),
the container invokes the ejbTimeout method of the TimedObject, which may
handle the event in an implementation specific manner (e.g., archiving your files).
The Timer that has just triggered is passed to the bean via ejbTimeout. Timers for
entity beans are associated with the specific bean instance. However, stateless ses-
sion beans and message-driven beans do not have unique timers for each bean
instance: the timer may be called on any bean instance in the pooled state.

j539663 ch14.qxd 7/25/03 9:16 AM Page 464

465Chapter 14 ✦ Understanding EJB Architecture and Design

Timers are serializable and persistent. So, if the server crashes or shuts down
cleanly, then upon restart all timers will be re-activated. Luckily for us, if a timer
goes off while the server is down, the ejbTimeout method will be called upon
re-activation.

Although the timer service appears to provide the capability of setting timer events
with a resolution of milliseconds, you shouldn’t expect this level of timer granular-
ity in practice: the timer service is meant for business applications that typically
measure events in hours or days. So, if you do try to get millisecond (or possibly
even second) resolution, don’t rely on your ejbTimeout method being invoked
precisely when you set the alarm. In addition, the container will interleave calls to
ejbTimeout with the bean’s business and lifecycle methods, so the time at
which ejbTimeout is called may not correspond exactly with the time specified
when the timer was created.

Timer creation is handled by the javax.ejb.TimerService, which has a number of
createTimer methods for different purposes (for example, create a timer to go off
after a specific duration). When the bean invokes one of the createTimer methods
of the TimerService, a timer is created and begins to count down. For example:

TimerService ourTimerService = ctx.getTimerService();
Timer theTimer =
ourTimerService.createTimer(archiveFileDuration, “archiver
timer created”);

In the example, the bean’s EJBContext is used to obtain the container’s
TimerService. Then we create a timer for our file archive bean. The additional
string that we have given can actually be any serializable object and is intended to
allow client-specific information to be passed to the timer: the bean can retrieve
this information when the timer expires to recognize the significance of the event.

We can create single-event timers (the container calls ejbTimeout once and then
cancels the timer), or multi-event timers that execute until explicitly removed. For
example, when an entity bean instance is removed, the container cancels the bean’s
timer. Alternatively when a bean invokes the Timer’s cancel method, the con-
tainer will cancel the timer.

If you use Timers then you’ll probably want your beans to be able to find out how
much time is left on a timer, when the next timeout is going to occur etc. The Timer
interface gives you access to these functions. For example, in the code fragment
below we decide to have our bean involved in a number of timers. Therefore, our
enterprise bean checks the user-supplied information on the Timer to determine
whether or not it is the archiver timer and acts accordingly.

public void ejbTimeout (Timer timer)
{

if (timer.getInfo().equals(“archiver timer created”))
{

// archive files
}

Note

j539663 ch14.qxd 7/25/03 9:16 AM Page 465

466 Part IV ✦ The Service Tier

else
// do something else

}

If you want to check Timers for equality then you must only use the equals
method to compare them.

Timers are transaction-aware. What this means is that if a bean creates a timer
within a transaction and that transaction rolls back, the timer creation will also be
rolled back. Likewise, if the bean cancels a timer within a transaction that is subse-
quently rolled back, the timer’s duration is reset as if the cancel attempt had never
happened.

In the case of CMT, the ejbTimeout method typically uses the RequiresNew
attribute, and the container starts a new transaction before calling ejbTimeout.

Persistence in BMP and CMP
You’ve already seen how persistence of entity beans and stateful session beans is
important to the EJB architecture. In BMP, the bean provider is solely responsible
for managing the reading and writing of a bean instance’s state from and to a data-
store. In CMP, the container is responsible for this and may provide a variety of
different datastore implementations to choose from (such as a file system–based
implementations, or an implementation based on a database). Whatever the under-
lying implementation for the persistence service, the container-persistence rela-
tionship must still invoke the various EJB callback methods and transactions that
you saw in the section “The Life of an Entity Bean.”

Many different implementations are possible for a persistence service and your
favorite application-server implementation may support more than one. As you
will see in the section “Persistence”, your choice of implementation can have a crit-
ical impact on your application’s performance. Your choice of implementation will
vary by vendor, but will usually involve the deployment descriptor.

Distribution support
In Chapter 4, you saw how distributed invocations occur through the use of client
and server stubs, which make the distributed application appear to be executing
locally. As shown in Figure 14-11, the client stub object (CSO) appears to the user as
if it were the real object O; however, when its methods are invoked, it performs a
remote-method invocation or Remote Procedure Call (RPC) on the server stub
object (SSO) residing on the other node. This in turn invokes the real method invo-
cation on O.

Note

Note

j539663 ch14.qxd 7/25/03 9:16 AM Page 466

467Chapter 14 ✦ Understanding EJB Architecture and Design

Figure 14-11: Client and server stub implementations using
Java RMI

In early versions of the EJB specification, the on-the-wire protocol was not man-
dated and vendors were free to use a range of different implementations, including
Java RMI and CORBA. Now, as you can imagine, the problem with this was that
interoperability between different vendor implementations was extremely hard to
set up.

For this reason, and because of other interoperability issues that we’ll cover later in
this chapter, the latest version of the EJB specification now mandates that the pro-
tocol be based on CORBA IIOP. This does not mean that your application suddenly
has to know about CORBA, an ORB, or the Interface Definition Language (IDL),
which CORBA uses: It is only the on-the-wire protocol format that is required to be
CORBA IIOP (version 1.2). CORBA is discussed in the following section.

EJB enables vendors to support other distribution protocols, but to be compliant
and to achieve interoperability they must at least support CORBA IIOP. You should
be careful when selecting a distribution protocol in case you later find that it
restricts the clients and services you can interact with.

Integrating with CORBA
Up to this point you’ve heard us mention the Object Management Group (OMG) and
the Common Object Request Broker Architecture (CORBA), but we have not yet
described fully what these things are and how they are important to J2EE and, in
particular, to the application server. In this section we will address these issues
directly.

Note

CSO

Node

Client
process

SSO O

Node

Server
process

j539663 ch14.qxd 7/25/03 9:16 AM Page 467

468 Part IV ✦ The Service Tier

Don’t worry about having to understand yet another distributed-object model.
We’re not going to go into a great deal of detail about CORBA; enough books are on
the market that can do that subject more justice than we have space for here.
Typically, you won’t need to know about CORBA in order to take advantage of the
functionality it provides within J2EE. However, it’s useful to know something about
CORBA for a number of reasons including: interoperability (two different vendor
application servers that are based on CORBA have a better chance of interoperat-
ing than not) and performance (CORBA is typically slower than Java RMI, so if
you’re not interested in interoperability you may want some way of circumventing
CORBA.)

Why is CORBA important to J2EE?
Since its inception in the late 1980s, the OMG has successfully released specifica-
tions addressing issues ranging from transactions to medical services. All of the
specifications released have had multi-vendor support and inherent interoperabil-
ity. The amount of work involved in defining any specification is immense. This is
especially true if you want to have multiple vendors endorse it without their jeopar-
dizing their existing investments and products in that area! Getting agreement from
vendors for one such specification is good work. The OMG has obtained agreement
for dozens of specifications, which is impressive to say the least.

However, one of the main problems with CORBA is its complexity. Although the
OMG is in the business of assisting in the development of open standards, these
standards are typically at a very low level in the application architecture — for
example, concerning transactions or concurrency control. Until the release of the
CORBA Component Model (which was heavily influenced by EJB), no effort had
been made to define a standard that would allow the various object services to be
composed to create applications or components. Furthermore, the OMG is not in
the business of defining APIs because these are, by their very nature, programming
language–specific.

As a result, when J2EE started, some made a conscious effort not to use the CORBA
specifications. CORBA was seen as complex, and some people believed that any-
thing tied to it must also be complex. However, it quickly became obvious that rein-
venting the wheel was a pointless and time-consuming task. This was especially
true given that many of the same companies involved in J2EE were involved in
CORBA’s development!

At roughly the same time, work began in the OMG to define a language mapping to
Java. Its purpose would be to enable CORBA applications to be written in Java and
for those applications to transparently use services, such as transactions or persis-
tence, written in other languages. Up to that point, all distributed-object invocation
in Java was conducted via Java RMI, which is explicitly a single-language protocol.
Users who needed to interact with services and systems written in other languages
had to do so in a proprietary manner. Despite what you might have been led to

j539663 ch14.qxd 7/25/03 9:16 AM Page 468

469Chapter 14 ✦ Understanding EJB Architecture and Design

believe, a lot of components out there are written in languages other than Java. In
an enterprise application you’ll typically have to interact with these components
sooner rather than later.

Therefore, in order to achieve interoperability with multi-language systems and to
benefit from the experiences of the OMG, later versions of J2EE recommend CORBA
as the interoperability platform of choice. This is not to say that services had to be
written using CORBA Interface Definition Language (IDL) or that the services you
might use had necessarily been written to use an ORB: This recommendation was
made purely for the sake of on-the-wire interoperability. As long as the wire format
for distributed invocations is identical to that specified by the CORBA standard
(currently 2.3), it does not matter whether ORBs are at the client or server: You
cannot tell the difference between them being present or not being present.

At the level of the application programmer and EJB provider, whether or not a J2EE
implementation is using CORBA is typically not apparent. However, interoperability
with legacy CORBA applications comes for free and that’s no small bonus.

When J2EE met CORBA
So you’ve seen how CORBA is important in J2EE for interoperability and for leverag-
ing previously developed open standards. But what exactly does the “CORBA-
effect” mean to you in practice? Which CORBA specifications have had an impact
on J2EE and which are going to in the future? In this section we give a brief descrip-
tion of the following components within the J2EE architecture, which owe a lot to
the OMG, and of the components that OMG specifications are likely to contribute to
its future development:

✦ Internet Inter-ORB Protocol (IIOP)

✦ Transactions

✦ Naming

✦ Security

✦ Notification service

✦ Activity service

The Internet Inter-ORB Protocol (IIOP)
IIOP is the standard remote method–invocation protocol for CORBA and was devel-
oped specifically to allow different ORB implementations to communicate and use
each other’s services. As you know, Java has its own protocol, called RMI, that was
developed to be a lightweight, language-specific invocation mechanism that sup-
ports distributed garbage collection. Its on-the-wire format is the Java Remote
Method Protocol (JRMP). Although RMI does not have multi-language support, it is
particularly well suited for distributed Java applications.

j539663 ch14.qxd 7/25/03 9:16 AM Page 469

470 Part IV ✦ The Service Tier

Despite the fact that these two protocols are intended to solve the same problem,
that of using remote objects, their on-the-wire formats and language bindings are
significantly different. So much so that a client written to use Java RMI would not be
able to interact with a corresponding service written using CORBA IIOP. They sim-
ply wouldn’t be able to understand each other, let alone locate one another.

We’ve said several times that interoperability of applications and services is impor-
tant. So the obvious solution to this mismatch would be to require every Java pro-
grammer to stop using RMI and use CORBA instead. However, this isn’t going to
happen for the following reasons:

CORBA is difficult to use and developing applications can be time-consuming.

Java programmers don’t want to have to learn CORBA IDL.

RMI is perfectly suited to pure-Java distributed applications and solves the
problem of distribution transparency for Java better than CORBA does.

No distributed garbage collection is available in CORBA: Determining which
objects are garbage and can be removed from the system is sometimes diffi-
cult enough in a single VM, but when objects can be referenced by multiple
clients/services in a distributed environment it’s a very hard problem to solve
in general and particularly if your distributed application uses different lan-
guages that might not support asynchronous garbage collection.

So the “obvious” solution isn’t going to work after all!

However, IIOP is the de facto network standard for distributed invocations. This
leaves us with the problem of how to integrate IIOP with RMI. Fortunately the OMG
and Sun Microsystems worked hard on this problem and came up with the follow-
ing solution: RMI over IIOP.

In a nutshell, RMI over IIOP replaces the JRMP protocol that RMI uses with IIOP.
Importantly, this replacement is completely transparent to users. At the client side,
the client RMI stub generates an IIOP-specific invocation by contacting a local ORB
for server communication. On the server side, the ORB receives the IIOP request. In
fact, the ORB can’t distinguish between an IIOP request and one generated by a
“pure” CORBA client, and it passes the request to the server RMI stub that can then
invoke the real object method. This flow of events is illustrated in Figure 14-12.

Although we’ve talked about Java clients and Java servers in the preceding exam-
ple, because we are using IIOP we could just as easily replace the client with a
CORBA application or the server with a legacy CORBA component written in a
completely different language. That’s the beauty of using IIOP: We don’t need to
care about the implementation at either end of the protocol.

Note

j539663 ch14.qxd 7/25/03 9:16 AM Page 470

471Chapter 14 ✦ Understanding EJB Architecture and Design

Figure 14-12: How RMI over IIOP works at the architecture level

Transaction interoperability
Transaction interoperability between application-server implementations is
achieved by means of the OMGs Object Transaction Service (OTS) specification.
Unfortunately, transaction interoperability is still only an optional feature of J2EE,
so you should be careful when choosing a vendor if interoperability is one of your
requirements.

As you saw in Chapter 10, the Java Transaction Service (JTS) is simply a mapping
into the Java language of the OTS. The OTS defines the roles and relationships for a
transaction-service implementation, such as the relationship between a coordina-
tor and participant, and the format of the transaction context. That context is an
instance of the CosTransactions::PropagationContext structure, which, in the
case of J2EE, is implicitly propagated with remote-method invocations. Containers
that support transaction interoperability must be able to produce and consume JTS
contexts in IIOP messages.

Although the JTS protocol is required for interoperability, an implementation need
not conform to the OTS interfaces. Only the on-the-wire format is required to con-
form, and as with RMI over IIOP, how the end-users in the protocol care to imple-
ment the actual services is up to them.

The Naming specification
You saw earlier in the section “Naming objects” how the CORBA CosNaming specifi-
cation has been incorporated within the EJB specification to achieve interoperable
naming. In addition, the naming service must follow all the requirements laid out in
the CORBA Interoperable Name Service (INS) specification. Security of the service

Note

RMI client
stub

Java client

ORB

RMI server
stub

(skeleton)

Object
implementation

ORB

Internet inter-ORB protocol

j539663 ch14.qxd 7/25/03 9:16 AM Page 471

472 Part IV ✦ The Service Tier

access is achieved by means of mandating that the implementation support the
CORBA security-interoperability protocol.

Secure interoperability
The secure-interoperability requirements for the latest versions of EJB are based on
Conformance Level 0 of the OMGs Common Secure Interoperability version 2
(CSIv2) Final Available specification. All EJBs, Web-client containers, and applica-
tion-client containers must support all requirements of Conformance Level 0.

The Notification Service
The CORBA Event Service provides support for the producer/consumer pattern of
interactions. It supports a channel that gives the producer the ability to create
events for any valid IDL or data type, and that gives the consumers the ability to
receive these events. The Notification Service extends the Event Service and adds
several new kinds of functionality.

There are many successful cases of companies using implementations of the notifi-
cation service either directly or embedded within other applications. However, with
the advent of J2EE and JMS users have begun to move away from CORBA for some
of their messaging requirements. Instead, many people see the notification service,
with its robustness, as providing a backbone for messaging interaction within the
enterprise, with JMS implementations “feeding off” it. This being the case, a lot of
work has recently been done on JMS notification-service interoperation.

The Activity Service
You saw in Chapter 10 how traditional transaction semantics are not sufficient for
all cases and how J2EE is attempting to address this problem through the Activity
Service. The Activity Service is a framework for supporting a wide range of
extended transaction models. Its specification was originally developed within the
OMG and has been successful there. Watch out for this service, as we believe its
incorporation into J2EE represents a significant advancement over other compo-
nent models.

So, you’ve seen the EJB architecture and the various services it offers to bean
developers. There are a lot of variables involved and as with anything, if not used
properly it’s very easy to end up with something that either doesn’t work as
expected or is less than optimal. In the following sections we’ll try to give you some
hints and tips on what pitfalls to look out for and how to avoid them when building
your EJB applications.

Performance and Scalability Issues
Application performance is important both to a developer and to an end user. In
critical areas such as business-to-business interactions it can be the deciding factor
between competing systems. In addition, while equipment costs are coming down,

j539663 ch14.qxd 7/25/03 9:16 AM Page 472

473Chapter 14 ✦ Understanding EJB Architecture and Design

so too are profit margins; hence, businesses are looking to support more users with
less equipment. In this section we will examine the following components in an
enterprise application and how they may affect performance and scalability:

✦ Application-server availability strategies

✦ Transaction concerns

✦ The threading model

✦ Performance-analysis tools

We will obviously only be able to talk about general aspects of application servers.
It would be advisable to check out any additional features your favorite imple-
mentation might provide.

Application-server availability strategies
We saw in Chapter 10 how transactions can guarantee consistency of application
data in the presence of concurrent users and failures. By using transactions, you
can make sure that your data isn’t corrupted should a machine failure occur in the
middle of an update. However, transactions can’t guarantee forward progress. A
persistent machine failure, for example, will mean that a transaction will be forced
to rollback, but each retried transaction will simply rollback too.

It is possible to improve the probability of forward progress by increasing the avail-
ability of an application’s objects by replicating them on several machines or appli-
cation servers and managing them through replica-consistency protocols. The
failure of a subset of these replicas may then be masked, allowing the application to
continue.

In addition, what happens when all of the really important beans are contained in a
single application server that is being accessed by hundreds or even thousands of
clients simultaneously? Even the most powerful of machines can only support a
finite number of client requests before you would start to see deterioration in per-
formance. Distribution client requests (processing load) across a number of
machines and application servers would help to reduce the load on a single
instance and so allow you to cope with the requests without affecting the overall
performance of your application.

Unfortunately although there have been a lot of standardization efforts in areas
such as transactions, concurrency control etc. there has been very little in the area
of load balancing or replication. There’s been even less attention paid to this in
J2EE; at the time of writing there is some effort underway in the Java Community
Process, but it could be quite a while before this comes to fruition. So, although
you’ll find vendors who offer solutions to these problems, you won’t find any that
are standards compliant: there simply aren’t any standards!

What we’ll outline in the next few sections are some of the ways in which current
vendors try to provide ways of load balancing requests or replicating application

Note

j539663 ch14.qxd 7/25/03 9:16 AM Page 473

474 Part IV ✦ The Service Tier

servers. However, although no standards exist, this is an active area for vendor dif-
ferentiation and solutions change frequently. As such, all we can do is try to offer
some insight into the types of solutions you’re likely to find. You should obviously
be aware of vendor lock-in too!

Commercial application servers make use of multiple application-server instances
deployed over a cluster of machines. In this configuration, specialist router hard-
ware masks server failures and relies on propriety replication mechanisms of
database vendors for database availability. In order to improve availability by mask-
ing individual machine failures, application servers are typically deployed over a
cluster of machines. A locally distributed cluster or set of machines with the illu-
sion of a single IP address and that is capable of working as a single unit to host a
Web site provides a practical way of scaling up processing power and sharing the
load at a given site.

Load distribution
Commercially available application-server clusters typically rely on a specially
designed gateway router to distribute the load using a mechanism known as net-
work address translation (NAT). The mechanism operates by editing the IP headers
of packets to change the destination address before the IP-to-host-address transla-
tion is performed. Similarly, return packets are edited to change their source IP
address. Such translations can be performed on a per-session basis so that all IP
packets corresponding to a particular session are consistently redirected.

Load distribution can also be performed by means of a group communication sys-
tem; The JBoss open-source application server has such a mechanism. In this
scheme multiple application server instances are formed into a group so that
requests sent to one instance are seen by all instances.

The two market leaders in the application-server space, WebSphere from IBM and
WebLogic from BEA, have very similar approaches to clustering. They typically use
clustering for the following reasons:

✦ Scalability — The proposed configuration should allow the overall system to
service more clients than the basic single-machine configuration. Ideally, it
should be possible to service any given load simply by adding the appropriate
number of machines.

✦ Load-balancing — The proposed configurations should ensure that each
machine or server in the configuration processes a fair share of the overall
client load that is being processed by the system as a whole. Furthermore, if
the total load changes over time, the system should adapt itself to maintain
this load-balancing property.

✦ Fail-over — If any one machine or server in the system fails for any reason,
the system should continue to operate with the remaining servers. The load-
balancing property should ensure that the client load is redistributed to the
remaining servers, each of which will process a slightly higher percentage of

j539663 ch14.qxd 7/25/03 9:16 AM Page 474

475Chapter 14 ✦ Understanding EJB Architecture and Design

the total load than before. Transparent fail-over, whereby failures are masked
from a client, which minimally might need to retransmit the current request,
is ideal. However, it is rarely achievable with the current technology, for rea-
sons outlined later in this section. The important consideration in current sys-
tems is that progress is possible eventually and in less time than would be the
case if only a single machine were used.

Transparent fail-over
Transparent fail-over is easy to achieve for stateless session beans. This is because
any server in the cluster can service any request and if a client makes multiple
requests in succession, each may well be serviced by a different server. Fail-over
support in this case is trivial because if the server fails while it is doing work for the
client, the client will get an exceptional response and will have to retransmit the
request.

The situation is more complicated for a stateful session, in which the same server
instance must be used for requests from the client, and in which the server failure
will lead to loss of state. The approach adopted in some commercial systems to
avoid loss of state is to use the stateless session approach with a twist. The stateful
session bean is required to serialize its state to a datastore at the end of each client
request; the subsequent bean instance in the other server must then de-serialize
the state before servicing the new request. Obviously, the servers must have access
to the same datastore.

The replication of the datastore is assumed to be the domain of the datastore itself.
This way, some of the functionality available for stateless sessions can be regained.
However, even in this case, a failure during serialization of the bean’s state (which
could result in the state being corrupted) is not addressed. A more serious limita-
tion also exists: Transactions cannot be supported. If transactional access to a bean
is used, the same server instance must be used for every invocation on that bean.

Transaction concerns
Before using transactions, think about whether you really need them. This may
sound obvious, but we have seen many enterprise applications in which transac-
tions were used “just in case,” even though they weren’t necessary. The functional-
ity provided by transactions does not come at zero cost. Atomicity, isolation, and
durability all require additional resources, CPU cycles, or disk accesses that can
quickly bring an application’s performance to its knees.

Where does the overhead come from? Just to give you an idea, we’ve outlined these
four potential bottlenecks:

Before a transaction can commit, it must execute the two-phase commit pro-
tocol to reach consensus between participants; for n participants, this obvi-
ously requires 2n remote invocations!

j539663 ch14.qxd 7/25/03 9:16 AM Page 475

476 Part IV ✦ The Service Tier

Whenever a remote invocation is made within a transaction, the transaction
context must be propagated from the caller to the entity being called. The
context represents additional information that must be carried and can, in
some circumstances, be quite large.

Some transaction-service implementations do not support interposition.
Without it, distributed transactions among many services can be costly. (See
Chapter 10 for details.)

In order to make a particular transaction tolerate failures, the transaction
coordinator must persist certain information to durable storage in the trans-
action log. Not only can the amount of information be large, but the coordina-
tor must also wait for the durable store to indicate that it has successfully
written the data. For example, if the store is based on the file system, the file
must be sync-ed.

All right, the fact that transactions make your beans tolerant of concurrent access by
users and certain types of failures sounds cool and useful. But you need to ask your-
self whether your beans need transactions. The fact that the EJB threading model lim-
its the number of threads accessing a bean to one removes some isolation problems.
However, this is the case only if your beans are used in a “one-shot” way. BMP or CMP
will give you persistence without requiring a separate transaction service.

We’re not trying to prevent you from using transactions. Like many tools, when used
correctly they can be invaluable to the reliability and availability of an application.

You should definitely look at your transaction-service implementation and deter-
mine what (if any) control it gives you over performance-affecting characteristics
such as the size of the transaction log, interposition, and so on.

Threading model
Although EJB is limited to a single-threaded model, this limit obviously only applies
at the bean level: Within a bean you can start your own threads or attempt to
access some local or remote shared object. Threads should be used with care.
Throwing more resources (in this case threads) at a problem does not necessarily
help, especially if you inadvertently run up against deadlock or livelock.

In most cases, the default threading model of EJB should be used and capitalized
on: For example, if you know that only a single thread can ever access your code,
you can remove those pesky synchronized statements. Doing so always helps
performance!

Pooling of resources
We saw earlier how resource pooling (with entity beans) can be used to improve
performance and scalability. Fortunately, the application server typically performs
pooling transparently for users. However, the initial size of the pool is often of criti-
cal important as is the quanta (“chunks”) that the container increases or decreases

j539663 ch14.qxd 7/25/03 9:16 AM Page 476

477Chapter 14 ✦ Understanding EJB Architecture and Design

it by: For example, if your pool continually has too few resources for the amount of
client requests it receives, then the container may spend more time creating
resources than servicing requests. Likewise, if the pool has too many resources in
it, then the size of the container (the amount of physical memory is requires) will
be larger than required and this will affect performance (the operating system’s vir-
tual memory manager may have to swap physical memory to disk in order to ser-
vice other processes, and disk access is extremely slow compared to main
memory).

The kinds of resources that you can typically expect to have equivalent pools
include:

✦ Threads

✦ JDBC connections

✦ Enterprise beans

Many commercial application servers allow the size of resource pools and the
quanta to be configured at runtime. Obviously one configuration may not be suit-
able for all use cases, so not only is configuration going to be an iterative process
(change it and watch the effect and then revisit your decision if necessary), but it
may well have to be done on a per usage basis as well.

Persistence
We have seen how persistence is integral to many aspects of EJBs: transactionality,
fail-over support, conversational state and entity beans, for example. Persistence
implementations are many and varied, including:

✦ The file system.

✦ A database.

✦ Non-volatile RAM (NVRAM), though even this will have a secondary storage as
backup.

✦ Replicated volatile (or non-volatile) RAM. If volatile, then a catastrophic fail-
ure of all replicas will result in loss of data unless it is backed to one of the
other implementations.

All of the implementations require a hard disk in one form or another. Unfortunately
it is a fact that disk access speed is substantially slower than main memory (RAM)
access and will continue to remain so for the foreseeable future. As a result, the per-
formance of your application or component can be affected directly by the amount
of persistence they use, either directly (for example, entity bean persistence) or
indirectly (for instance, the transaction log).

There is obviously very little you can do about other services that you require
which also require persistence. However, you should be aware that they exist and
can have an effect on your own performance. In addition, you should carefully

j539663 ch14.qxd 7/25/03 9:16 AM Page 477

478 Part IV ✦ The Service Tier

examine where you are considering using persistence and whether or not it is
appropriate. If the answer to the latter is that you do require persistence, then the
next questions are as follows:

✦ Which persistence implementation? This will obviously depend on your
deployment environment and the characteristics of the component that
requires persistence. Every system will typically possess a file system, so you
won’t necessarily need extra expense. However, does your application server
support it for CMP? If not, then you will have to look at BMP.

✦ Does the persistence implementation cache write in memory to try to
improve performance and not flush them to disk until the cache is full or
explicitly signaled to do so? If the answer is yes, then the failure characteris-
tics are significantly different. You may well think that your bean has been
made persistent and tolerant of failures when in fact it has not (yet).

✦ How much data do you really need to persist? The amount of time you
spend using the persistence service will depend upon the amount of data you
need to read/write from/to disk. Keeping this small will improve performance.
So, you should ask yourself how much of the information actually needs to be
written and how much of it can be regenerated. For example, a spreadsheet
does not need all rows and columns to be persisted, since some (the totals,
for example) can be recreated from the other cells.

Security
As with transactions, security tends to be used more often than it is actually
required. There are significant performance overheads associated with security and
you should carefully examine your requirements before assuming security should
be enabled.

CORBA
The OMG’s CORBA architecture has become the platform of choice for interoper-
ability for J2EE. Whether implementers actually use a full-blown CORBA ORB or
emulate its distribution capabilities to obtain RMI over IIOP is up to the vendor.
However, the different approaches can have a significant impact on your applica-
tion’s overall performance and scalability.

As we have seen, distributed invocations are not as fast as local method calls on an
object. This is due to the slower nature of the distribution medium (for example,
Ethernet) and to the additional costs of marshalling requests and un-marshalling
responses. Therefore, using a remote object will be slower than using the same
object when it is co-located (located in the same process/JVM as the user).

j539663 ch14.qxd 7/25/03 9:16 AM Page 478

479Chapter 14 ✦ Understanding EJB Architecture and Design

Now, the necessity for distribution is often unavoidable and the performance hit
you take will simply have to be suffered. The relative performance differences
between native CORBA and RMI over IIOP are not as significant as it once was.

Paradoxically, the real problem with application server implementations that use a
CORBA ORB is to do with local (co-located) invocations! In recent years the OMG
has spent a lot of time and effort on improving the architecture’s location trans-
parency functionality. With the advent of the Portable Object Adapter (POA) and
Portable Interceptors (PI) it is now possible to configure a purely local CORBA
application so that it behaves identically to its remote counterpart in terms of:

✦ Threading — A separate thread from the user can be used to service the
actual object request (this happens implicitly in a distributed environment
when the client’s thread blocks waiting for the remote server thread to com-
plete its work and return the result).

✦ Memory management — When doing remote invocations, parameters are
marshaled into and results un-marshaled from buffers that network friendly
(so called network byte order).

✦ Object activation — In order to use a CORBA object it must be registered with
the POA so that remote invocations can be directed to it.

Distribution transparency sounds nice in principle, but in practice it is not needed
all of the time. It also imposes a significant overhead on users when most of their
objects or services are local: imagine marshalling and un-marshalling all of your
requests to a component for a single thread and then multiply this overhead by the
actual number of clients you might expect!

If your application server implementation uses an ORB that ensures transparency
by default, and none of your objects are remote and none of the underlying sys-
tem’s services are remote (for example, transactions or security), then there is very
little point in having the potential overhead shown above. Luckily most ORB imple-
mentations allow you to turn off this feature and talk to your objects or services
directly (this is a runtime modification and no change is required to the component
code or the application server).

Tools
The more you know about the inner workings of your application and the con-
tainer(s) that host its components, the better armed you will be to tackle issues
relating to performance and scalability. In Table 14-2 we mention several tools that
you may find invaluable when tracking down bottlenecks.

j539663 ch14.qxd 7/25/03 9:16 AM Page 479

480 Part IV ✦ The Service Tier

Table 14-2
Performance-analysis tools

Tool Description

sar The sar tool is a Un*x system activity–reporter utility that gathers data on the
file system, disk I/O, CPU use, swapping, and context-switching.

vmstat This is a Un*x virtual-memory reporter, useful for obtaining queuing, paging,
scheduling, and CPU-use data.

perfmon The perfmon Windows utility monitors resource use for the CPU, disk I/O,
paging, network, threads, and so on.

netstat This useful utility provides information on network I/O, collisions, errors, and
network-related memory use.

taskmgr The taskmgr Windows utility displays information on active processes, CPU,
and memory.

iostat This Un*x utility displays disk and other I/O statistics.

For example, if you look at Figure 14-13, you’ll see a sample from perfmon on
Windows. This tool allows you to track statistics on a number of different resources
and display only those that interest you. In this example, we’re looking at the inter-
rupts that are occurring per second as the processor operates amongst other
things. By interpreting the graph, it is possible to determine where your applica-
tions are spending a lot of their time.

Figure 14-13: Sample output from perfmon.exe

j539663 ch14.qxd 7/25/03 9:16 AM Page 480

481Chapter 14 ✦ Understanding EJB Architecture and Design

If you use the Windows task manager, then you can examine the individual charac-
teristics of the processes that are executing on a specific machine. For example, if
you look at Figure 14-14 you will be able to see the name of each process on the
machine, the percentage of the processor (CPU) that it is using, how much of the
lifetime of the CPU it has used in total, and the amount of memory it is consuming.
This information can be extremely useful in determining things such as memory
leaks and performance bottlenecks.

Figure 14-14: Windows task manager output

Summary
In this chapter we looked at the fundamentals behind the EJB architecture. We
showed how it breaks down the various roles involved in implementing and deploy-
ing an EJB application. Throughout the chapter we considered the issue of applica-
tion-server portability and how EJB has attempted to achieve this for a number of
reasons, not least of which is reducing the chance of vendor lock-in.

We then gave an overview of exactly what an Enterprise JavaBean is, addressing
issues such as persistence, transactions, and security. We discussed the various
types of Enterprise bean, from the most commonly used, the entity bean, through
stateless and stateful session beans and finally the relatively new message-driven
beans. Furthermore, we saw how each bean type has been carefully developed to
offer a different kind of functionality in order to fulfill different roles for the applica-
tion developer.

We considered some of the more important issues related to developing beans,
such as restrictions on the threading model and disallowance of re-entrant code.
We considered the reasons behind these limitations. We then considered the vari-
ous component services provided by an application server and how they cooperate
to provide the fully featured application-server technology that we use today.

j539663 ch14.qxd 7/25/03 9:16 AM Page 481

482 Part IV ✦ The Service Tier

An important recent development in the EJB specification has been the adoption
for distribution of the OMG’s CORBA architecture. This allows Java applications
and components to transparently make use of other objects or services written in
non-Java languages, and provides a valuable integration point for legacy systems.

Finally, we discussed a number of different aspects of the EJB architecture and the
design of application servers that may affect the performance and scalability of your
applications. We also gave tips on finding and eliminating performance bottlenecks.

✦ ✦ ✦

j539663 ch14.qxd 7/25/03 9:16 AM Page 482

Explaining
Session Beans
and Business
Logic

Session beans represent a conversation with a client and
are intended to execute business processes. A business

process can involve searching or ordering a book online,
booking a flight, checking your bank balance, or paying your
credit-card bill online, for example.

A session bean may be stateful or stateless. Stateless session
beans are generally used to provide a service. They do not
store any conversation state between calls. If you invoke a
method on a stateless session bean, it executes the method
and returns the result without being affected by any previous
or subsequent requests. Each call to a stateless bean is con-
sidered an independent unit of work; each instance of a state-
less bean has no identity and is equivalent to any other
instance. Therefore, a small number of instances can serve a
large number of users or requests.

Stateful session beans can store a conversation state. Each
instance of a stateful session bean is associated with a partic-
ular client. They should be considered an extension of the
client application. A stateful session bean performs tasks on
behalf of the client and maintains state related to that client.

Both types of session beans are non-persistent. This means
that they are not stored in any permanent storage. They live
in the memory, and if the server or the machine dies, the
beans are destroyed too.

1515C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Introducing EJB
classes and interfaces

Understanding
stateless session
beans

Writing an EJB client

Understanding
stateful session beans

Explaining
passivation and
activation

Implementing the
SessionsSynchroniz-
ation interface

Storing a handle

Choosing between
stateless and stateful
beans

✦ ✦ ✦ ✦

j539663 ch15.qxd 7/25/03 9:16 AM Page 483

484 Part IV ✦ The Service Tier

In this chapter we will discuss session beans in detail, covering their lifecycle, what
is involved in writing a session bean, and how to invoke a session bean from a
client.

Writing a Session EJB
As per the EJB specifications, session beans have the following characteristics:

Execute on behalf of the client

Can be transaction-aware

Update shared data in an underlying database

Do not represent directly shared data in the database, although they may
access and update such data

Are relatively short lived

Are removed when the EJB container crashes (the client has to re-establish a
new object to continue computation)

If you write your business logic within an enterprise bean you implicitly get lot of
services such as location transparency, fail-over, security, and transaction manage-
ment, to name a few. But all of this doesn’t come completely free. To be able to take
advantage of it, you are expected to write a little bit more than just your logic. The
simplest of the EJBs consists of at least the following four elements:

✦ Home interface

✦ Component interface

✦ Bean class

✦ Deployment descriptor

In the following sections we are going to look into each of these elements in detail,
examining what they require and how they are bound to each other.

The home interface
The home interface is responsible for controlling the lifecycle operations of a bean.
These include the creation, removal, and location of the bean. The home interface
works as the EJB’s factory and contains only the signature for the methods. The
container provides the implementation of these methods. Enterprise beans that
provide a remote client view provide a remote home interface; enterprise beans
that provide a local client view provide a local home interface. (See the sidebar
“EJB Client Views,” later in this chapter, for details.)

j539663 ch15.qxd 7/25/03 9:16 AM Page 484

485Chapter 15 ✦ Explaining Session Beans and Business Logic

The remote home interface
The remote home interface extends the javax.ejb.EJBHome interface. A session
bean’s remote interface must define one or more create() methods. Each create()
method defined in the home interface must match one of the ejbCreate() methods
defined in the session bean’s implementation class. The matching ejbCreate()
method in the bean class must have the same number and types of arguments as the
create() method declared in the home interface. The return type for a create()
method must be the session bean’s remote-interface type. The throws clause of the
create() method must throw the javax.ejb.CreateException.

The following code illustrates the remote home interface for the FlightService bean
(defined later in the chapter):

public interface FlightServiceHome extends EJBHome {
public FlightService create() throws CreateException,

RemoteException;
}

The local home interface
The local home interface extends the javax.ejb.EJBLocalHome interface. Like a
remote home interface, a local interface must define one or more create() meth-
ods. The return type for a create() method declared in the local home interface
must be the session bean’s local interface. The throws clause of the create()
method must include the javax.ejb.CreateException.

The following code snippet shows a sample of local home interface:

public interface FlightServiceLocalHome extends EJBLocalHome {
public FlightService create() throws CreateException;

}

As we will explore later in the section ‘Writing an EJB client’, a client locates an
enterprise bean’s home interface through the standard Java Naming and Directory
Interface (JNDI) API.

The component interface
When the client calls the create() method on the home interface, it will get a refer-
ence to the component interface that implements the EJBObject or EJBLocalObject.
The component interface is the element in which the bean provider declares the busi-
ness methods callable by the client. Like the home interface, the component interface
contains only the signature of the methods. The implementation of these methods is
provided in the bean class. The component interface can be either a remote interface
or a local interface.

j539663 ch15.qxd 7/25/03 9:16 AM Page 485

486 Part IV ✦ The Service Tier

Both the remote and local interfaces are allowed to have super-interfaces.
Therefore, they can use the benefits of inheritance. We will discuss this more in
Chapter 24.

The remote interface
The remote interface extends the javax.ejb.EJBObject interface. For each
method defined in the remote interface a matching method must exist in the ses-
sion bean’s class. The matching method must have the following:

Same name

Same number and types of arguments, and same return type

Same exceptions in the throws clause; in addition, each method in the remote
interface must include the java.rmi.RemoteException in the throws clause

The following code segment illustrates a remote interface:

public interface FlightService extends EJBObject {
public FlightData[] searchFlights(String origin,

String destination,
String departureDate,
String arrivalDate)
throws RemoteException;

public boolean bookFlight(FlightData flightData,
PassengerData passengerData) throws RemoteException;

The local interface
The local interface extends the javax.ejb.EJBLocalObject interface. Unlike in
the remote interface, the throws clause of the methods defined in the local inter-
face does not include the java.rmi.RemoteException. For each method defined
in the local interface a matching method must exist in the session bean’s class. The
matching method must have the following:

Same name

Same number and types of arguments, and the same return type

Same exceptions in the throws clause

The following code segment illustrates a local interface:

public interface FlightServiceLocal extends EJBLocalObject {
public FlightData[] searchFlights(String origin,

String destination,
String departureDate,
String arrivalDate);

public boolean bookFlight(FlightData flightData,
PassengerData passengerData;

Cross-
Reference

j539663 ch15.qxd 7/25/03 9:16 AM Page 486

487Chapter 15 ✦ Explaining Session Beans and Business Logic

The session bean class
The session bean class must implement the javax.ejb.SessionBean interface.
The class is instantiated at runtime by the container and thus the class must be
defined as public and must not be an abstract class. The bean implementation con-
tains two types of methods, the callback methods required by the javax.ejb.
SessionBean interface and the business methods declared in the bean’s compo-
nent interface (local or remote). The callback methods are called by the container
at appropriate times during the lifecycle of the bean.

The following code snippet shows a sample of a bean class:

public class FlightServiceBean implements SessionBean {
//Callback methods
public void ejbRemove(){};
...

//Business methods
public boolean bookFlight(PassengerData passengerData,

FlightData flightData) {
...
}

EJB Client Views

The client view of an Enterprise JavaBean is represented by the home and component inter-
faces. Prior to the EJB 2.0 release, the specifications listed only the remote client view. In the
remote view, the client makes no assumption about the location of the EJB. A client running
in the same JVM as the bean uses the same API as a client running in a different JVM on the
same machine or a different one. The remote view does provide location transparency to
the client but behind the scenes — the container has to marshal and unmarshal the data for
each client request. Even though the client and the EJB are co-located on the same server,
the container still has to have the overhead for each client request.

EJB 2.0 specifications introduced the concept of the local client view. The local client view
assumes that the client and the bean are collocated on the same server. A local client to the
bean uses the bean’s local interface and local home interface and the arguments and the
results are passed by reference.

EJB 2.1 specifications also introduced the Web service endpoint interface for stateless ses-
sion beans in which Java clients can access the end point using JAX-RPC.

While it is possible to provide more than one client view for a session bean, typically only
one will be provided. If the client of your bean is going to be co-located within the same
container as the bean, the local client view should be considered as their performance is
likely to be better than that of the remote view.

j539663 ch15.qxd 7/25/03 9:16 AM Page 487

488 Part IV ✦ The Service Tier

The deployment descriptor
Recall that each EJB needs a deployment descriptor. The specifications require that
the deployment-descriptor file be named ejb-jar.xml and that it be placed under
a directory named META-INF. The deployment-descriptor file contains several tags
used to specify the various components that we discussed in the preceding sec-
tions. Figure 15-1 lists the elements that can be specified in the deployment descrip-
tor for a session bean.

Figure 15-1: Session-bean deployment descriptor

description

display-namei2ee: descriptionGroup

j2ee:session-beanType

j2ee:enterprise-beansType

• • •

icon

ejb-name

home

remote

local-home

1..∞

0..∞

0..∞

0..∞

0..∞

0..∞

0..∞

0..∞

0..∞

0..∞

0..∞

0..∞

0..∞

entity

session

local

service-endpoint

env-entry

ejb-ref

ejb-local-ref

i2ee:service-refGroup service-ref

resource-ref

resource-env-ref

message-destination-ref

ejb-class

session-type

transaction-type

i2ee.jndiEnvironmentRefsGroup

security-role-ref

security-identity

deployment-extension

enterprise-beans

message-driven

– –

• • • –

• • •– – • • • –

+

+

+

+

+

+

+

+

+

+

+

+

+

–

– –

–

j539663 ch15.qxd 7/25/03 9:16 AM Page 488

489Chapter 15 ✦ Explaining Session Beans and Business Logic

<home> / <local-home> elements specify the fully classified names of the classes
representing the bean’s home interface. Similarly <remote> / <local> elements are
used to specify the classes that implement the component interface of the bean.

The <service-endpoint> element contains the fully classified name of the enter-
prise bean’s Web service endpoint interface. <ejb-class> element specifies the
fully classified name of the bean class.

<session-type> describes whether the session bean is a stateful session bean
or a stateless session bean. The valid values are “Stateful” or “Stateless.”
<transaction-type> element specifies an enterprise bean’s transaction manage-
ment type. The valid values are “Bean” or “Container.”

<security-role-ref> and <security-identity> elements are used to restrict
access to the bean’s methods.

The elements in the <jndiEnvironmentRefsGroup> are used to declare references
to other resources such as data sources or other enterprise beans.

The stateless session bean
Stateless session beans are often used to perform services that are fairly generic
and reusable. These session beans are lightweight, efficient, and relatively easy to
develop. They are neither persistent not dedicated to one client, and thus they
require few server resources. They supply business logic for one client at a time
without keeping track of the state of the client across method invocations. Because
stateless session beans do not maintain the conversational state of the client, multi-
ple clients can share the same instance of a bean. However, this means that every-
thing the bean instance needs to know has to be passed via the method’s
parameters.

The stateless session bean’s lifecycle
It is important to understand that the container determines the lifecycle of a state-
less session bean. The container is allowed to create and destroy bean instances as
it deems appropriate. The stateless session bean has two primary states in its life-
cycle: Does Not Exist and Method-Ready Pool. Figure 15-2 shows the states and
transitions of a stateless session bean instance.

Does Not Exist
When a bean is in the Does Not Exist state it’s not yet instantiated and it does not
exist in memory. This is generally the case when the application server first starts
up and no call has been made to the bean. The actual behavior of the application is
dependent on the implementation and tuning parameters.

j539663 ch15.qxd 7/25/03 9:16 AM Page 489

490 Part IV ✦ The Service Tier

Figure 15-2: Stateless session bean lifecycle

Method-Ready Pool
Stateless bean instances enter the Method-Ready Pool state as the container needs
them. When a bean instance goes from the Does Not Exist state to the Method-
Ready Pool state, the following three operations are performed on it:

1. Instantiation — The container invokes the newInstance() method on the
session-bean class to create a new instance. The Class.newInstance
method requires a call to the no-argument constructor; because of this, the
bean writer should never define constructors in the bean class.

2. setSessionContext— The container calls the setSessionContext method
on the bean instance. The container passes the EJBContext as a parameter to
this method. The EJBContext can later be used by the bean for various rea-
sons. For instance, the identity of the bean’s caller can be determined by call-
ing the SessionContext.getCallerPrincipal() method.

3. Create — Finally, the container invokes the method ejbCreate() on the bean
instance.

Once an instance is in the Method-Ready Pool state it is ready to service any client
requests. When a client calls a business method on a stateless session object or
invokes a method on a stateless session bean through its Web-service client view,
the container selects an instance from the Method-Ready Pool to serve the request.

Does Not Exist

Method-Ready Pool

ejbTimeout(secs)

Business method

1. newInstance()
2. setSessionContext(sc)
3. ejbCreate()

ejbRemove()

1. newInstance()
2. setSessionContext(sc)
3. ejbCreate()

ejbRemove()

j539663 ch15.qxd 7/25/03 9:16 AM Page 490

491Chapter 15 ✦ Explaining Session Beans and Business Logic

During the execution of the method call, the instance is dedicated to the client that
invoked the method. Once the instance has finished servicing the client it is disas-
sociated from the request and returned to the Method-Ready Pool state. EJB 2.1
also introduced the concept of Timer Services (explained in Chapter 14). If the bean
instance takes a long time in serving the request, the container can call the
ejbTimeout method on the bean instance. In that case the bean instance will termi-
nate the request and be returned to the pool.

At its own discretion the container may decide to reduce the total size of the
Method-Ready Pool. It can do this by calling ejbRemove() on the bean instance.
When the ejbRemove() method is called on the bean instance that instance is
removed from the memory and goes from the Method-Ready Pool state to the Does
Not Exist state. The bean writer is still responsible for providing the implementa-
tion of the ejbRemove() method; it is generally used to perform the clean-up of
resources, such as closing any open resources.

The ejbCreate() and ejbRemove() methods
The home interface for a stateless session bean is required to have a single
create() method with no arguments, and the bean class supplies a corresponding
ejbCreate() method that takes no arguments.

When a client calls the create method on the home interface, the container does
not necessarily create an instance of the EJB. It merely needs to return an instance
of the remote interface. It can be a brand-new instance or it can be an instance from
the pool. The ejbCreate() method is invoked only once during the lifecycle of the
stateless session bean. Similarly, the ejbRemove() method is invoked only once
during the lifecycle of the bean. When a client calls the remove method on the
home interface the container might not remove the bean instance from the mem-
ory. The client’s invocation of the home interface’s remove methods is only an indi-
cation to the container that the client no longer needs the bean.

Member variables in stateless session beans
Recall that stateless session beans are not expected to maintain any client state
between method calls. Since a stateless session-bean instance is used by several
clients, any member variable that stores information (such as user ID or account
number) can cause serious problems. Stateless session beans should not store any
client-specific state, but they can still store a state if it is common to all clients,
such as, for example, if it is a bean-specific state.

For example, you might use a bean to connect to a backend legacy system. Each
instance of the bean can maintain a connection with the backend system. When the
client makes a call to the bean, it does not care what instance of the bean it
receives. Though each instance of the bean has a state (that is, a connection to the
legacy system), that state is the same for each client request.

j539663 ch15.qxd 7/25/03 9:16 AM Page 491

492 Part IV ✦ The Service Tier

Pooling stateless session bean instances
A stateless session bean instance does not take any arguments during instantiation.
Thus, each instance of the stateless session bean is exactly the same as every other
instance for the same type of stateless session bean. EJB containers can use this
characteristic and pre-create the instances of the stateless session beans. When a
client calls a method the container can retrieve the instance from the pool, serve
the request, and then return the instance back to the pool. Because of this the EJB
container can save the time required to create new instances and is able to concur-
rently serve a large number of clients.

The Web-service endpoint interface for the stateless session bean
EJB 2.1 specifications defined a new component interface for the stateless session
bean — the Web-service endpoint interface. The Web-service endpoint interface is
another type of remote client view that extends the java.rmi.Remote interface.
(See the sidebar “EJB Client Views,” earlier in this chapter.) In addition, the Web-
service endpoint interface should also follow the requirements for WSDL (Web
Services Definition Language) to Java mapping.

Refer to Chapter 21 for details about WSDL.

The argument and the return values for all the methods must be of valid types for
the JAX-RPC. From the perspective of the client, the existence of the stateless ses-
sion bean is completely hidden behind the Web-service endpoint that the bean
implements. Java clients can access the endpoint interface as a JAX-RPC service
using the JAX-RPC client-view APIs. The J2EE Web-service client uses JNDI to look
up the service object that implements the javax.xml.rpc.Service interface. The
client then uses the service object to obtain a stub or proxy that implements the
stateless session bean’s Web-service endpoint interface.

You now have a good understanding of stateless session beans. It’s time to put this
knowledge into practice. We will build on our example of Connexia Airlines and add
some functionality in the process.

Connexia Airlines Business Case
Our Connexia application enables a user to make a reservation (flight, hotel, and so
on). But before making a reservation, the user would like to search for available
flights.

We will develop a bean that will help us search for flights that best fit the itinerary
of the passenger. For the purpose of our discussion here, we will assume that the
client is remote.

Cross-
Reference

j539663 ch15.qxd 7/25/03 9:16 AM Page 492

493Chapter 15 ✦ Explaining Session Beans and Business Logic

FlightServiceHome — The home interface
The home interface of a stateless session bean must declare a single create()
method with no arguments. The method is required to return a reference to the
remote object. The create() method is required to include the CreateException
in the throws clause. It will be thrown if any error occurs during the creation of the
bean.

The following code segment illustrates the home interface for the
FlightServiceBean.

package com.connexia.ejb.FlightServiceBean
import java.rmi.CreateException;
import java.rmi.RemoteException;
public interface FlightServiceHome extends javax.ejb.EJBHome {

public FlightService create() throws CreateException,
RemoteException;
}

FlightService — The remote interface
In the remote interface of our FlightServiceBean we declare two methods,
searchFlights and bookFlight. The searchFlight method will be used to
search for flights based on the data passed as arguments. Once the user has
selected a flight he can use the method bookFlight to make a reservation. The
remote interface only lists the signature of the methods; the actual implementation
is left for the bean class. Each method defined in the remote interface is completely
independent of the others. All the data required to process the request are passed
through the method arguments.

The following code segment illustrates the remote interface for the
FlightServiceBean.

import java.rmi.RemoteException
import javax.ejb.EJBObject;
public interface FlightService extends EJBObject {

public FlightData[] searchFlights(String origin,
String destination,
String departureDate,
String arrivalDate)

throws RemoteException;
public boolean bookFlight(FlightData flightData,

PassengerData passengerData)
throws RemoteException;

FlightData and the other classes are listed in Appendix A.Cross-
Reference

j539663 ch15.qxd 7/25/03 9:16 AM Page 493

494 Part IV ✦ The Service Tier

FlightServiceBean — The bean class
Recall that stateless session beans are used to provide services that are generic
and reusable. The user of our system would like to search for available flights and
eventually book one. The FlightServiceBean thus is an excellent candidate for a
stateless session bean as it provides a reusable service and need not maintain any
state during subsequent requests.

The bean class implements the SessionBean interface. The bean-class defines all
the callback methods that are required by the SessionBean interface and the busi-
ness methods as they are listed in our remote interface.

The following code segment illustrates the bean class for the FlightServiceBean.

import javax.ejb.*;
public class FlightServiceBean implements SessionBean {

// Callback Methods
public void ejbRemove()
public void ejbActivate()
public void ejbPassivate()
public void setSessionContext(SessionContext sc) {}
public void ejbCreate() throws CreateException {}

// Business Methods

/**
* This method is used to search for flights that meet
* the user criterion for origin, destination, departure
* date and arrival date.
* @param String origin
* @param String destination
* @param String departure date
* @param String arrival date
* @return FlightData[] An array of FlightData objects.
*/
public FlightData[] searchFlights(String origin,

String destination,
String departureDate,
String arrivalDate) {

...
// Code implementation
...

}

/**
* This method is used to reserve flight for the
* passenger based on the passed arguments.
* @param PassengerData Passenger Information.

j539663 ch15.qxd 7/25/03 9:16 AM Page 494

495Chapter 15 ✦ Explaining Session Beans and Business Logic

* @param FlightData Flight Information.
* @return boolean true if the reservation was successful
*/
public boolean bookFlight(PassengerData passengerData,

FlightData flightData) {
...
// Code implementation
...
}

For the sake of simplicity the preceding example doesn’t include the actual imple-
mentation of the business logic. As our focus here is to illustrate the classes and
interfaces required to write a session bean, we are going to skip the logic required
to search and book the user’s flight.

The ejb-jar.xml deployment descriptor
The deployment descriptor is comprised of information used by the EJB compiler and
by the container at runtime. In the deployment descriptor the <home> and <remote>
tags define the home and remote interfaces, respectively, that we defined earlier. The
<ejb-class> tag defines the name of the bean class. The <session-type> declares
that the bean is stateless. And the <transaction-type> specifies that the transac-
tion will be managed by the container.

The following is a segment from the deployment descriptor of the
FlightServiceBean.

<?xml version=”1.0”?>
<!DOCTYPE ejb-jar PUBLIC ‘-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans
2.0//EN’ ‘http://java.sun.com/dtd/ejb-jar_2_0.dtd’>

<ejb-jar>
<description>Stateless Session Bean Example</description>
<enterprise-beans>
<session>
<ejb-name>FlightServiceBean</ejb-name>
<home>
com.connexia.ejb.FlightServiceBean.FlightServiceHome
</home>
<remote>
com.connexia.ejb.FlightServiceBean.FlightService
</remote>
<ejb-class>
com.connexia.ejb.FlightServiceBean.FlightServiceBean
</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>
</session>
</enterprise-beans>
</ejb-jar>

j539663 ch15.qxd 7/25/03 9:16 AM Page 495

496 Part IV ✦ The Service Tier

Deployment
Once you have written the preceding components it is time to compile and deploy
the bean. This step varies a little by application server although the basic concept
remains the same. The home interface, remote interface, bean class, deployment
descriptor, and any other files required by your application server are packaged in
a .jar file. Generally your application server will provide a tool or a script to com-
pile these files, verify the elements in the deployment descriptor, and generate the
necessary stubs and skeletons. Once you have completed these steps, deploy the
bean on the server. You may have a vendor tool to assist you in doing this; other-
wise, simply copy the files into a special directory per your application server’s
instructions.

Writing an EJB client
For a client, a session object is a non-persistent object that implements some busi-
ness logic running on the server. The session may provide a remote interface
and/or a local interface. A client needs to get a reference to the component inter-
face and execute the method call. Behind the scenes, the call is delegated to the
bean-class. Briefly, a client needs to perform the following tasks:

1. Get the initial context.

2. Look up the home interface using the bean’s JNDI name. This name is speci-
fied in the deployment descriptor for the bean. For more details on JNDI, refer
to Chapter 11.

3. Use the home object to get a reference to the component object.

4. Set up the data to call the business method on the bean.

5. Use the component object to call the business method.

6. Remove the bean.

Now that we have a bean up and running and you understand how to write a Java
client to invoke it, it’s time to put everything together. Figure 15-3 illustrates the
FlightServiceBean runtime objects.

package com.connexia.client;

import java.rmi.RemoteException;
import java.util.Properties;
import javax.ejb.CreateException;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;

import com.connexia.data.FlightData;
import com.connexia.ejb.FlightServiceBean.FlightService;
import com.connexia.ejb.FlightServiceBean.FlightServiceHome;

j539663 ch15.qxd 7/25/03 9:16 AM Page 496

497Chapter 15 ✦ Explaining Session Beans and Business Logic

public class StatelessBeanClient {
public static void main(String args[]) {
Context ctx = null;
FlightServiceHome home = null;
FlightService remote = null;

Figure 15-3: Client view

Step 1 — Get the InitialContext
Perform this task as follows:

try {
Properties props = System.getProperties();
ctx = new InitialContext(props);

} catch (NamingException ne) {
System.out.println(“Exception in getting the context”);
ne.printStackTrace();
return;

}

Step 2 — JNDI Lookup to get the bean’s home interface
Perform this task as follows:

try {
home =(FlightServiceHome) ctx.lookup(

“com.connexia.ejb.FlightServiceBean.FlightServiceHome”);
} catch (NamingException ne) {

System.out.println(“Exception in getting the home interface”);
ne.printStackTrace();
return;

}

EJB container

FlightServiceBeanClient

FlightServiceHome

FlightService

j539663 ch15.qxd 7/25/03 9:16 AM Page 497

498 Part IV ✦ The Service Tier

Step 3 — Get the remote interface of the bean
The client always accesses bean’s methods by using the component (remote or
local) interface. If there is an error in the bean creation, the client will get a
CreateException.

try {
remote = (FlightService) home.create();

} catch(CreateException ce) {
System.out.println(“CreateException while creating the bean

instance”);
ce.printStackTrace();
return;

} catch (RemoteException re) {
System.out.println(“RemoteException while creating the bean

instance”);
re.printStackTrace();
return;

}

Step 4 — Set up the data to call the bean’s business methods
In our example, these values are specified in the code itself. In reality, these values
might be retrieved from the screen (html/jsp) or by any other input means.

String origin = “Boston”;
String destination = “London”;
String departureDate = “12152003”;
String arrivalDate = “12182003”;

Step 5 — Invoke the business method on the bean using the
input data from the previous step
The searchFlight method will provide a list of FlightData objects that match
the search criterion. Note that any business method invoked on the remote inter-
face can throw a RemoteException.

try {
FlightData[] flightList = remote.searchFlights(origin,

destination, departureDate, arrivalDate);
if (flightList != null) {

for (int i = 0; i < flightList.length; i++) {
System.out.println(flightList[i]);

}
} else {

System.out.println(“No matching flight found”);
}

j539663 ch15.qxd 7/25/03 9:16 AM Page 498

499Chapter 15 ✦ Explaining Session Beans and Business Logic

} catch(RemoteException re) {
System.out.println(“Error in calling searchFlights”);
re.printStackTrace();
return;

}

Step 6 — Remove the bean
As mentioned in the earlier section on stateless session bean lifecycle, the bean
instance is moved back to the instance pool.

try {
remote.remove();

} catch (RemoveException re) {
System.out.println(“RemoveExcepton while removing the bean”);
re.printStackTrace();
return;

} catch (RemoteException e) {
System.out.println(“RemoteException while removing the bean”);
e.printStackTrace();
return;
}

} // END main
}

Stateful-session-bean model
In theory, no code change is required to convert a stateless session bean into a
stateful session bean. Both EJB types must implement the javax.ejb.SessionBean
interface and have the same basic requirements for the home and component inter-
faces. The only change required is in the deployment descriptor associated with the
EJB. However, the stateful programming model is quite different from the stateless
one. The biggest difference is that each stateful session bean is associated with a
particular client. When a client calls the create method on the home interface of the
EJB, the container instantiates a new instance and associates it with the client. In the
case of a stateless session bean, the container merely selects an instance from the
pool. Stateful session beans do not use the concept of instance pooling. As depicted
in Figure 15-4, stateful session beans are dedicated to one client for their entire lives,
and no swapping or pooling of instances takes place.

If the client makes multiple business-method calls on the bean’s component
(remote or local) interface, the container must dispatch the calls to the same
instance of the bean.

j539663 ch15.qxd 7/25/03 9:16 AM Page 499

500 Part IV ✦ The Service Tier

Figure 15-4: Stateful-session-bean model

The lifecycle of the stateful session bean
Figure 15-5 illustrates the lifecycle of the stateful session bean, which has the three
following states:

✦ Does Not Exist

✦ Method-Ready

✦ Passivated

The Does Not Exist state
This state is similar to its counterpart in the stateless session bean. When a stateful
bean instance is in the Does Not Exist state, it has not been instantiated yet and
does not exist in the memory.

The Method-Ready state
When a client invokes the create() method on the home interface of a stateful ses-
sion bean, the container does the following:

1. Invokes newInstance() on the bean class and creates a new instance.

2. Invokes setSessionContext()on the instance and passes it the reference to
the SessionContext. At this point the bean instance is assigned to its EJB
Object.

EJB container

Workflow-1Client-1

Workflow-2Client-2

Workflow-3Client-3

j539663 ch15.qxd 7/25/03 9:16 AM Page 500

501Chapter 15 ✦ Explaining Session Beans and Business Logic

3. Invokes the ejbCreate() method on the instance that matches the create()
method invoked by the client. Unlike the stateless session bean, the stateful
session bean can have multiple create methods, each with a different set of
arguments. Once ejbCreate() is completed the container returns the EJB
object’s reference to the client. The instance is not ready to service any busi-
ness method invoked by the client.

Figure 15-5: Stateful-session-bean lifecycle.

From the Method-Ready state the bean can either transfer to the Does Not Exist
state or to the Passivated state. The bean can enter the Does Not Exist state under
the following conditions:

The client application calls the remove method on the client interface (it
translates to the ejbRemove() invocation on the bean instance).

OR

The container decides to remove the bean either to preserve resources or
because the bean instance has timed out. When no client activity exists for
the particular bean instance, it becomes eligible for passivation.

Passivation is the process by which the application server removes the bean from
memory while preserving the EJB’s state on disk.

Does Not Exist

Business method

1. newInstance()
2. setSessionContext(sc)
3. ejbCreate()

ejbRemove()

1. newInstance()
2. setSessionContext()
3. ejbCreate()

ejbRemove()

Method-Ready Passivated
ejbPassivate()

ejbActivate()

ejbPassivate()

ejbActivate()

TimeoutTimeout

TimeoutTimeout

j539663 ch15.qxd 7/25/03 9:16 AM Page 501

502 Part IV ✦ The Service Tier

The passivated state
If a bean instance has not been used for a long time the container may decide to
passivate it. In the passivated state, the bean’s state is stored in a secondary stor-
age area such as a disk and the bean instance itself is removed from memory. If the
client calls a method on this bean, the container activates the bean when the bean
instance is back in the Method-Ready state and serves the request.

Let’s take a look at the concepts of passivation and activation in more detail and at
how they can be used with stateful session beans.

Passivation and activation
In the stateful programming model, the state of the client is stored in the bean as
member variables, and each client has its own associated instance of bean. The
number of clients for a large enterprise application can be high and it is not always
feasible to store a corresponding instance of the bean in memory. To help deal with
this issue, the specifications provide the concepts of passivation and activation.
Swapping out a bean out of the memory is called passivation. Before a passivated
bean can be used again, the container has to activate the instance. That process is
called activation.

Passivation
The container may passivate the bean to preserve resources or based on the time-
out parameters specified by the bean provider. During passivation the container
stores the state of the bean, including the instance variables, on a secondary stor-
age area and removes the bean instance from the memory. Before passivating the
bean the container invokes the method ejbPassivate(), alerting the bean
instance that it about to enter the passivated state. This provides time for the bean
instance to close any open resources and to do other cleanup work. The EJB speci-
fication requires that the container cannot passivate a stateful session bean while it
is in use or participating in a transaction.

Activation
When a client calls a business method on a stateful session bean’s component inter-
face, the EJB container needs to locate the corresponding bean instance. If the bean
is in memory, it is used to serve the request. If the bean has been passivated, the
container first activates the instance — it reads the state from secondary storage
and creates an instance in memory. When a bean’s conversational state has been
successfully restored the ejbActivate() method is invoked on the bean instance.
This is the EJB’s chance to reacquire any resources. Once ejbActivate() is com-
plete the bean is back in the Method-Ready state and available to service client
requests.

The processes of passivation and activation are transparent to the client. As far as
the client is concerned it calls a business method on the bean’s component inter-
face and is serviced by a bean instance in memory.

j539663 ch15.qxd 7/25/03 9:16 AM Page 502

503Chapter 15 ✦ Explaining Session Beans and Business Logic

Implementing the Session
Synchronization Interface

Session beans can use either the container-managed transactions or the bean-man-
aged transactions. Stateful session beans with container-managed transactions can
optionally implement the javax.ejb.SessionSynchronization interface. This
interface defines an additional set of callback methods that notify the bean of its
participation in transactions. This interface contains three methods: afterBegin(),
beforeCompletion() and afterCompletion(boolean). The container calls the
afterBegin() method when the stateful session bean enters a transaction. The
beforeCompletion() call occurs before the transaction is prepared to commit.
The afterCompletion(boolean) method takes a boolean as an argument. If the
container passes true to afterCompletion() method, the transaction was com-
mitted; a value of false indicates that there was a rollback.

Storing a Handle
The EJBHome interface provides a method getHomeHandle() to get a handle to
the home interface of the bean. Similarly, the EJBObject interface supports a
method getHandle() that can be used to get a handle to the bean’s remote
interface. A handle is basically a persistent reference to an object and can be
used to reconstruct the object. A handle extends the java.io.Serializable
interface and thus it is possible to serialize the handle to local storage for later
use or to pass it to another client running on a different virtual machine. The
handle acts as a ready reference and therefore if the client needs access to the
home interface, it can use the HomeHandle.getEJBHome() method and does not
need to do the JNDI lookup. Similarly, if the client application requires a reference
to the remote interface, it does not need to call the create() method and can
simply use the Handle.getEJBObject() method to do the same.

Handles are especially useful for stateful session beans. For example, our user can
use our WorkFlow bean to make flight reservations and decide to come back later
for the hotel reservations. If the user disconnects and comes back later, he can do a
JNDI lookup to get the home interface and then invoke the create() method to get
the bean instance. But in doing so, the user will get a brand new instance of the
WorkFlow bean. Storing a handle to the remote interface ensures that the user can
come back at a later time and get the same instance of the WorkFlow bean, which
knows about the user’s existing reservations.

Keep in mind, though, that the handle is only a reference to an object in memory.
Therefore, if the server goes down between the two requests, the handle is of
no use.

j539663 ch15.qxd 7/25/03 9:16 AM Page 503

504 Part IV ✦ The Service Tier

Collecting Payment Business Case
In the earlier section we developed a stateless session bean, FlightService, that
can be used to book a flight. Suppose we also have a bean, PaymentService, that
we will use to collect the payment for the flight booking. In a normal operation the
client would reserve the flight using the FlightService bean and, if the flight
reservation was successful, then use the PaymentService bean to make the pay-
ment. Between the two calls (FlightService for booking and PaymentService for
payment) the user would expect our server-side components to store the common
data — passenger information in this case. Here we develop a stateful session bean,
WorkFlow, that will do this for us.

WorkFlowHome — The home interface
Like our stateless bean from earlier in the chapter, the home interface of the state-
ful session bean extends from the EJBHome interface. But unlike the stateless bean,
the stateful bean can define a create method that can take arguments. Thus we can
pass an identity to our stateful bean at the time of creation, and the bean will main-
tain it across several business-method calls. In the following case we are going to
pass the information about the passenger:

package com.connexia.ejb.WorkFlowBean

import java.rmi.RemoteException;
import java.rmi.CreateException

public interface WorkFlowHome extends javax.ejb.EJBHome {
public WorkFlow create(PassengerData passengerData)

throws CreateException,RemoteException;
}

WorkFlow — The remote interface
Again like the FlightService bean of our earlier example, the remote interface is
derived from the EJBObject interface. The remote interface specifies only the sig-
nature of the methods; implementation is left for the bean class. In the remote inter-
face we declare the following two business methods —submitReservation and
submitPayment:

package com.connexia.ejb.WorkFlowBean;

import java.rmi.RemoteException;
import javax.ejb.EJBObject;

import com.connexia.data.CreditCardData;
import com.connexia.data.FlightData;

j539663 ch15.qxd 7/25/03 9:16 AM Page 504

505Chapter 15 ✦ Explaining Session Beans and Business Logic

public interface WorkFlow extends EJBObject {
public boolean submitReservation(FlightData flightData)

throws RemoteException;
public boolean submitPayment(CreditCardData creditCardData)

throws RemoteException;

} // END WorkFlow

WorkFlowBean — The bean class
In our WorkFlowHome interface we declared a create method that takes an argument
of PassengerData. For each create() method in our home interface we need to
provide an ejbCreate method in our bean-class. In the case of a stateful session
bean, when the client calls the create method on the home interface, the container
in turn calls the ejbCreate method on the bean class. Therefore ejbCreate can be
used to initialize a bean’s state. In our case, we assign PassengerData passed as an
argument, to the bean’s member variable passengerData. In stateful session beans
we can define member variables to store client-specific information.

Our bean provides two business methods, submitReservation() and
submitPayment(). The first method, submitReservation(), takes FlightData
as the argument and invokes the bookFlight() method on our stateless session
bean to make the flight reservations. You already know from our earlier example
how to invoke a method on the bean. In real life, submitReservation() method
will do more than just a single call to another bean’s method. For instance, it can
call the FlightService bean to make a flight reservation and invoke another bean
(say HotelService) to make hotel reservations.

Our submitPayment() method takes CreditCardData as the argument and
invokes the process() method on the PaymentService bean.

Each of the preceding invocations on the WorkFlow bean require more than what is
passed as an argument to the method call. They both require PassengerData,
which is not supplied in the request. That is the beauty of the stateful programming
model. We passed PassengerData at the creation of the bean and the bean is smart
enough to store the information during its lifecycle.

Listing 15-1 illustrates the WorkFlowBean class.

Listing 15-1: WorkFlowBean class

package com.connexia.ejb.WorkFlowBean;

import java.rmi.RemoteException;
import java.util.Properties;

Continued

j539663 ch15.qxd 7/25/03 9:16 AM Page 505

506 Part IV ✦ The Service Tier

Listing 15-1 (continued)

import javax.ejb.CreateException;
import javax.ejb.SessionBean;
import javax.ejb.SessionContext;
import javax.naming.Context;
import javax.naming.NamingException;
import com.connexia.data.CreditCardData;
import com.connexia.data.PassengerData;
import com.connexia.data.FlightData;
import com.connexia.ejb.FlightServiceBean.FlightService;
import com.connexia.ejb.FlightServiceBean.FlightServiceHome;

public class WorkFlowBean implements SessionBean {

// Callback methods. In this code snippet, these are defined as
empty methods. But they can be used to get and remove other
resources as explained in the section on stateful session bean
lifecycle.

public void ejbActivate() {}
public void ejbRemove() {}
public void ejbPassivate() {}
public void setSessionContext(SessionContext ctx) {}

// Member variable of the bean class. It is used to store
client information between method calls.

private PassengerData passengerData= null;

/**
* This method matches the create method defined in the
* home interface that accepts PassengerData. It stores
* PassengerData in the bean member variable for future
* method calls.
* @param PassengerData Passenger information.
* @throws CreateException
*/

public void ejbCreate(PassengerData passengerData)
throws CreateException {

System.out.println(“ + ejbCreate “);
this.passengerData = passengerData;
System.out.println(“ - ejbCreate “);

}

/* This method invokes the bookFlight method on the
* FlightService bean to reserve the flight.
* @param FlightData
* @return Boolean true if the reservation is successful.

j539663 ch15.qxd 7/25/03 9:16 AM Page 506

507Chapter 15 ✦ Explaining Session Beans and Business Logic

* @see FlightService
*/
public boolean submitReservation(FlightData flightData) {

System.out.println(“ + submitReservation”);
boolean result = false;
Context ctx = null;
FlightServiceHome home = null;
FlightService remote = null;

// Get the initial context
try {

Properties props = System.getProperties();
ctx = new InitialContext(props);

} catch (NamingException ne) {
System.out.println(“Exception in getting the context”);
ne.printStackTrace();
return;

}

// Get the home interface
try {

home =
(FlightServiceHome)

ctx.lookup(com.connexia.ejb.FlightServiceBean.FlightServiceHome
”);

} catch (NamingException ne) {
System.out.println(“Exception in getting the

home”);
ne.printStackTrace();
return;

}

// Get the remote interface
try {
remote = (FlightService) home.create();
} catch (CreateException ce) {

System.out.println(“CreateException while creating”);
ce.printStackTrace();
return;

} catch (RemoteException re) {
System.out.println(“RemoteException while creating”);
re.printStackTrace();
return;

}

// Call the business method on the bean’s remote interface

try {
result = remote.bookFlight(flightData, passengerData);

} catch (RemoteException e) {

Continued

j539663 ch15.qxd 7/25/03 9:16 AM Page 507

508 Part IV ✦ The Service Tier

Listing 15-1 (continued)

System.out.println(“RemoteExcepton”);
e.printStackTrace();
return;

}
System.out.println(“ - submitReservation “);
return result;

}

/**
* Method submitPayment.
* This method is used to collect the credit card
* payment. It retrieves passenger information
* from the bean’s member variable that was populated
* by ejbCreate(). It uses PaymentService bean
* services to collect the payment.
* @param CreditCardData
* @return boolean true if the operation is successful.
* @see PaymentService
*/
public boolean submitPayment(CreditCardData creditCardData) {

System.out.println(“ + submitPayment “);
boolean result = false;
Context ctx = null;
PaymentServiceHome home = null;
PaymentService remote = null;

// Get the initial context
try {

Properties props = System.getProperties();
Context ctx = new InitialContext(props);

} catch (NamingException ne) {
System.out.println(“Exception in getting the context”);
ne.printStackTrace();
return;

}

// Get the home interface
try {

home =
(PaymentServiceHome)

ctx.lookup(“com.connexia.ejb.PaymentServiceBean.PaymentServiceH
ome”);

} catch (NamingException ne) {

j539663 ch15.qxd 7/25/03 9:16 AM Page 508

509Chapter 15 ✦ Explaining Session Beans and Business Logic

System.out.println(“Exception in getting the
home”);

ne.printStackTrace();
return;

}

// Get the remote interface
try {
remote = (PaymentService) home.create();
} catch (CreateException ce) {

System.out.println(“CreateException while creating”);
ce.printStackTrace();
return;

} catch (RemoteException re) {
System.out.println(“RemoteException while creating”);
re.printStackTrace();
return;

}

// Call the business method on the bean’s remote interface
result = remote.process(creditCardData, passengerData);

} catch (RemoteException e) {
System.out.println(“RemoteExcepton”);
e.printStackTrace();

}
System.out.println(“ - submitPayment “);
return result;

}

Choosing between Stateless and
Stateful Beans

Now that you have a good understanding of stateless and stateful beans, you might
be wondering how to choose between them. This choice should be dictated by
your business requirements. If your business process requires several invocations
with common information to be shared, the stateful model fits nicely. If your busi-
ness requirement is to provide services that are independent enough of each other,
the stateless paradigm is better. In a real-world situation you would probably use a
combination of both models. One common approach is to use stateless beans to
provide services and stateful beans to control the process flow between the state-
less bean’s invocations.

j539663 ch15.qxd 7/25/03 9:16 AM Page 509

510 Part IV ✦ The Service Tier

The stateless model
The stateless model provides two big advantages. The first is the ability to scale.
With stateless beans the container is able to pool and reuse beans easily. Stateless
beans thus require fewer resources and are more efficient than stateful beans. The
second advantage is fault tolerance.

However, the stateless model has some disadvantages too. The biggest one is the
requirement to pass all client-specific data for each method invocation. Stateless
beans have no means of remembering data between calls, so even common infor-
mation such as PassengerData in the earlier stateful session bean example must be
supplied anew with every request. One way to do this is to pass the information as
method arguments. This leads to performance degradation, however, as the data
must be marshaled and unmarshaled in the process. The performance impact is
directly proportional to the amount of data being passed.

The stateful model
Because the stateful session bean caches client conversation in memory, a bean
malfunction owing to the failure of the application server or the machine results in
loss of data. In a stateful model all data are maintained by the bean; therefore the
failure of the bean essentially means that the user has to start over.

Summary
Session beans are server-side Java components that leverage the standard transac-
tion, fail-over, resource-pooling, and security services provided by the EJB con-
tainer. In this chapter, we studied the various components that comprise a session
bean. We discussed the lifecycle of both stateless and stateful session beans and
when to use one versus the other. We considered the several steps required to
invoke a method on the session bean. We also built on the Connexia Airlines busi-
ness case and created a stateless and a stateful session bean to implement its
business logic.

✦ ✦ ✦

j539663 ch15.qxd 7/25/03 9:16 AM Page 510

Working with
Entity Beans

In this chapter, we will study the lifecycle of an entity bean.
We will also examine the several callback methods that are

supported by the entity-container contract. We will explain
the container-managed persistence (CMP) model and how it
defines the persistence and relationship fields. To illustrate
the CMP model, we will develop a PassengerBean and later
enhance it to include relationships. We will write a client to
PassengerBean to demonstrate how to access an entity bean.
Finally, we will examine the bean-managed persistence (BMP)
model and develop the AircraftBean bean.

Understanding Entity Beans
In a typical multi-tier e-commerce application, the persistence
data are stored in one or more databases. The presentation
state is represented by HTML, servlets, and JSPs. Session EJBs
provide the business logic between the Web tier and the
database. As we discussed in the previous chapter, the ses-
sion beans can take advantage of the container services, such
as transactions, security, and fail-over. Although session
beans can use the Java Database Connectivity (JDBC) code to
access the database, they cannot directly represent the per-
sistent data. Java is an object-oriented language but databases
store data relationally in the form of rows and tables.
Moreover, session beans are associated with the client and
thus they cannot share state across multiple clients.

Session beans and JDBC are discussed in Chapters 15 and
18, respectively.

An entity bean represents an object-oriented view of the data.
It should be thought of as a single point of access to the data;
any client that accesses the data will go through that entity

Cross-
Reference

1616C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Understanding entity
beans

Reviewing classes
and interfaces of
entity beans

Explaining container-
managed persistence

Working with EJB QL

Explaining bean-
managed persistence

Defining exceptions

✦ ✦ ✦ ✦

j539663 ch16.qxd 7/25/03 9:17 AM Page 511

512 Part IV ✦ The Service Tier

bean. Unlike session beans, which are only accessible to a single client, entity
beans are shared among multiple clients. Thus the lifecycle of a session bean is
dependent upon the lifecycle of the client, whereas the lifespan of an entity bean is
determined by the existence of the data it represents.

Using entity beans instead of accessing the database directly provides you with
many advantages. It provides developers with a simple mechanism for accessing
and changing data. As you will see later in our PassengerBean example, it is much
easier to change the address of a passenger by calling passenger.setAddress()
than by executing an SQL command against the database.

Entity beans come in two basic types, distinguished by how they manage persis-
tence. They are as follows:

✦ Container-managed persistence beans — Here, the persistence of the bean’s
state to the underlying database is automatically managed by the container.

✦ Bean-managed persistence beans — Here, the bean provider writes the SQL
code to persist the data to the database.

Entity beans have come a long way since their first introduction. The programming
model (especially for container-managed persistence, or CMP) has changed drasti-
cally between the EJB 1.x and EJB 2.x specifications. Because most of the current
application-server vendors support the EJB 2.x specification, we will be discussing
only the EJB 2.x programming model in this chapter.

Remote and local client views
Entity beans support both the remote and local client views. The client view of an
entity bean is independent of the implementation of the entity bean and its con-
tainer. A remote client accesses an entity bean through the entity bean’s remote
and remote home interfaces. The remote client view of an entity bean is location-
independent and thus a client running in the same JVM as an entity-bean instance
uses the same API to access the entity bean as a client running in a different JVM on
the same or a different machine.

A local client, on the other hand, is co-located with the entity bean and is tightly
coupled with the bean. A local client accesses an entity bean through the entity
bean’s local and local home interfaces. The arguments for the methods of the local
interface and the local home interface are passed by reference. Later in this chapter
in the section “Introduction to CMR” we will discuss the concept of container-
managed relationships for entity beans. In order to be the target of a container-
managed relationship, an entity bean with container-managed persistence must
provide a local interface.

j539663 ch16.qxd 7/25/03 9:17 AM Page 512

513Chapter 16 ✦ Working with Entity Beans

Entity-bean components
An entity bean is comprised of the following components:

✦ Home interface (remote and/or local)

✦ Component interface (remote and/or local)

✦ Entity-bean class

✦ Primary-key class

✦ Deployment descriptors

In this section we are going to examine each of the components, the methods it pro-
vides, and its purpose in the entity-bean model.

Home interface
The home interface of an entity bean is responsible for controlling its lifecycle oper-
ations: creating, removing, and locating the bean. It acts as a factory for the entity
bean’s instances. The home interface may also provide home-business methods,
which are not specific to a particular entity-bean object.

Enterprise beans that provide a remote client view also provide a remote home
interface; enterprise beans that provide a local client view provide a local home
interface. The remote home interface extends the javax.ejb.EJBHome interface.
The local home interface extends the javax.ejb.EJBLocalHome interface.

Let’s explore the methods defined in the bean’s home interface.

Create
An entity bean’s home interface can define zero or more create() methods, one
for each way to create an entity object. The arguments of the create() methods
are typically used to initialize the state of the created entity object.

The return type of a create() method on the remote home interface is the entity
bean’s remote interface. The return type of a create() method on the local home
interface is the entity bean’s local interface.

The throws clause of every create() method on the home interface includes the
javax.ejb.CreateException. It may include additional application-level excep-
tions. For the remote home interface, the throws clause must include the javax.
rmi.RemoteException too. (We will explain more about these exceptions in the
section “Exceptions” later in this chapter.) In this chapter we will be developing a
PassengerBean to represent the passenger of Connexia Airlines.

j539663 ch16.qxd 7/25/03 9:17 AM Page 513

514 Part IV ✦ The Service Tier

The following code snippet shows the create() method for our PassengerBean

public Passenger create(Integer passengerID,
String firstName,
String lastName,
int age) throws RemoteException,

CreateException

Finder methods
An entity bean’s home interface defines one or more finder methods, one for each
way to find an entity object or collection of entity objects within the home. The
arguments of a finder method are used by the entity-bean implementation to locate
the requested entity objects. The return type of a finder method is the bean’s com-
ponent interface (remote or local) or a collection of them. Based on their return
type, the finder methods can be divided into the two following types:

✦ Single-object finders

✦ Multi-object finders

Single-object finder methods are designed to return at most one entity object. A
special type of single-object finder method is the findByPrimaryKey() method.
Each home-interface definition must include the findByPrimaryKey() method.
The implementation of this method is provided by the container.

The following code illustrates a single-object finder method for our PassengerBean:

Passenger findByPrimaryKey(Integer passengerID)
throws FinderException,

RemoteException

Finder methods that return more than one entity object are known as multi-object
finders. The result type of a multi-object finder is a collection of objects implement-
ing the bean’s component interface.

The following is an example of a multi-object finder from our PassengerBean:

java.util.Collection findFirstClassPassengers(String classCode)
throws FinderException,

RemoteException

The throws clause of every finder method includes the javax.ejb.Finder
Exception. If the method is defined on the remote home interface it must also
include the java.rmi.RemoteException.

remove methods
The remove method allows the client to remove the entity object. Remember that
in the context of entity beans, this means removing the data from the underlying

j539663 ch16.qxd 7/25/03 9:17 AM Page 514

515Chapter 16 ✦ Working with Entity Beans

data source. The throws clause of every remove() method on the home interface
must include the javax.ejb.RemoveException. For the remote home interface it
should also include the javax.rmi.RemoteException.

The following code snippet shows the remove method for our PassengerBean:

void remove(Object primaryKey) throws RemoteException,
RemoveException

home methods
An entity bean’s remote home interface may define one or more home methods.
These are methods that the bean provider supplies for business logic that is not
specific to an entity-bean instance. The arguments of a home method are used by
the entity-bean implementation in computations that do not depend on a specific
entity-bean instance.

The component interface
When the client calls the create() method on the home interface, it will get a
reference to the component interface that implements the EJBObject or
EJBLocalObject. The component interface is the element in which the bean
provider declares the business methods that are callable by the client. As with the
home interface, the component interface only contains the signature of the meth-
ods; the implementation of these methods is provided by the container. The com-
ponent interface can either be a remote interface or a local interface. Both the
remote and local interfaces are allowed to have super-interfaces.

For instance, we might want to provide a business method to upgrade the class of
our Connexia Airlines passenger. Here’s an example:

void upgrade(String class) throws java.rmi.RemoteException

The entity-bean class
The entity-bean class must implement the javax.ejb.EntityBean interface. The
class is instantiated at runtime by the container and thus the class must be defined
as public with a no-argument constructor. For a container-managed persistence
(CMP) bean, the container generates the class and thus it must be abstract.

The bean implementation contains these two types of methods:

✦ Callback methods — These are required by the javax.ejb.EntityBean
interface.

✦ Business methods — These are declared in the bean’s component interface
(local or remote).

We will explain more about the callback methods in the section ‘The entity con-
tainer contract’ when we discuss the lifecycle of an entity bean.

j539663 ch16.qxd 7/25/03 9:17 AM Page 515

516 Part IV ✦ The Service Tier

The primary-key class
Entity beans must include a primary-key class. Just like the primary-key column in a
relational database, the primary-key class for an entity bean uniquely identifies the
bean instance. The primary-key class can be either a Java primitive wrapper type
(such as Integer, Long, or String) or a custom primary-key class written by the
bean provider. Because the primary key may be used in remote invocations, the
type of the primary-key class must be a valid type in RMI-IIOP (Remote Method
Invocation — Internet Inter-ORB Protocol). The primary-key class must provide suit-
able implementations of public int hashCode() and public boolean
equals(Object).

There are two kinds of primary-key class for entity beans:

✦ Single-field primary keys

✦ Compound primary keys

Single-field primary keys
A single-field primary key maps to a single persistence field defined in the bean
class. The key can be defined as a Java primitive wrapper type such as Integer or
String. However, it cannot be defined as a Java primitive type such as int, char,
or long. The finder method on the bean’s instance is allowed to return a
Collection of primary-key instances and Collection only works with Object
types. The specifications also dictate that the primary-key class should implement
the hashCode and equals methods (to verify their uniqueness) and Java primitive
types do not have equals or hashCode method implementations because they are
not of type Object. Also, the method EJBObject.getPrimaryKey() is declared as
returning a value of type Object, so the primary keys must be Objects.

The <primkey-field> element in the deployment descriptor is used to specify the
container-managed field of the entity-bean class that contains the primary key. The
<prim-key-class> element of the deployment descriptor specifies the type of the
object used for the primary-key class.

Compound primary keys
The bean provider is allowed to create a custom object that maps to multiple fields
in the entity-bean class. This approach is used when the bean instance does not
have a field that can be used to uniquely identify the bean. The class must be
declared public and must have a public no-argument constructor. All the fields in
the primary key class must also be declared public.

The fields declared in the primary-key class must be a subset of the container-
managed fields in the bean class with matching names and data types. This is
required so that the container can match the variables declared in the compound
key to the correct CMP fields in the bean class.

j539663 ch16.qxd 7/25/03 9:17 AM Page 516

517Chapter 16 ✦ Working with Entity Beans

Unknown primary keys
The entity-bean provider may choose not to specify the primary-key class or the
primary-key fields for an entity bean with container-managed persistence. It will
usually do this when the entity bean does not have a natural primary key or when
the bean is expected to support multiple persistence data stores. In such instances
the entity bean’s primary key will be derived from the primary-key type used by the
underlying data-storage system. This model allows the bean provider to defer
declaring the primary key to the deployer. Using this model, the bean provider can
develop an entity bean that can be used with multiple backend systems even if they
require different primary-key structures.

In such cases the findByPrimaryKey method must be declared to accept the argu-
ment type of java.lang.Object, and in the deployment descriptor the element
<prim-key-class> should list java.lang.Object as the value.

The deployment descriptor
Each entity bean requires a deployment descriptor (or a set of deployment descrip-
tors, depending on the application-server vendor). It is required by the specifica-
tions that the main deployment-descriptor file should be named ejb-jar.xml and
placed under a directory named META-INF. The deployment-descriptor file consists
of several tags used to specify the various components that we discussed in the
preceding sections. For a CMP bean, it is also used to declare the fields and rela-
tionships that need to be persisted. It also defines the security roles for the applica-
tion, the authentication information, and the access-control list for the various
business methods. Figure 16-1 lists the elements that can be specified in the deploy-
ment descriptor for an entity bean.

The <persistence-type> element is used to specify the persistence type of the
entity bean. The valid values are Container or Bean.The value of Container
means that it’s a container-managed persistence (CMP) bean and that the container
will handle the persistence logic. The value of Bean indicates bean-managed persis-
tence (BMP) and that the bean provider must provide the persistence logic in the
bean class.

The <cmp-field> and <field-name> elements identify the fields that need to be
persisted. (This is only applicable for beans with container-managed persistence.)

The entity-container contract
Each entity-bean class (CMP or BMP) must implement the EntityBean interface.
The EntityBean interface defines a number of callback methods that are called
during the lifecycle of the bean. In this section we will explain each of those call-
back methods. We will also discuss the lifecycle of an entity bean.

j539663 ch16.qxd 7/25/03 9:17 AM Page 517

518 Part IV ✦ The Service Tier

Figure 16-1: Deployment descriptor — entity bean

The following code segment illustrates the EntityBean interface and lists the
methods that are required by this interface:

package javax.ejb;
import java.rmi.RemoteException;

home

remote

local-home

local

ejb-class

persistence-type

prim-key-class

reentrant

cmp-version

abstract-schema-name

cmp-field

primkey-field

entity

description

display-name

icon

0..∞

0..∞

0..∞

0..∞

ejb-name

+

+

––j2ee:descriptionGroup

j2ee:entity-beanType

j2ee:enterprise-beansType

1..∞

env-entry

0..∞

––i2ee:jndiEnvironmentRefsGroup

––

enterprise-beans –

session +

–

––i2ee:service-refGroup

+

ejb-ref

0..∞

+

ejb-local-ref

0..∞

+

service-ref

0..∞

+

resource-ref

0..∞

+

resource-env-ref

0..∞

+

message-destination-ref

0..∞

+

security-role-ref

0..∞

+

security-identity

0..∞

+

query

0..∞

+

message-driven +

j539663 ch16.qxd 7/25/03 9:17 AM Page 518

519Chapter 16 ✦ Working with Entity Beans

public interface EntityBean extends EnterpriseBean {
public abstract void ejbActivate()

throws EJBException, RemoteException;

public abstract void ejbLoad()
throws EJBException, RemoteException;

public abstract void ejbPassivate()
throws EJBException, RemoteException;

public abstract void ejbRemove()
throws EJBException, RemoteException;

public abstract void ejbStore()
throws EJBException, RemoteException;

public abstract void setEntityContext()
throws EJBException, RemoteException;

public abstract void unSetEntityContext ()
throws EJBException, RemoteException;

In addition to the preceding methods, the bean class should also define the
ejbCreate() and ejbPostCreate() methods.

The callback methods
Entity beans are object representation of the data. The main operations that could
be performed on the data are as follows:

✦ create

✦ read

✦ update

✦ delete

The EJB specifications provide the equivalent callback methods for each of these
operations, as shown here:

Create ejbCreate() and ejbPostCreate()
Read ejbLoad()
Update ejbStore()
Delete ejbRemove()

Each callback method is invoked on an entity-bean instance at a specific time dur-
ing its lifecycle. For a CMP bean most of these methods can be empty implementa-
tions, because the state of a CMP bean is automatically persisted by the container.
BMP beans, on the other hand, must use these methods to manage the bean’s per-
sistent state.

j539663 ch16.qxd 7/25/03 9:17 AM Page 519

520 Part IV ✦ The Service Tier

setEntityContext()
The setEntityContext() method is the first to be called after the bean instance is
instantiated. The container uses this method to pass a reference to the
EntityContext interface to the entity-bean instance. If the entity-bean instance
needs to use the EntityContext interface during its lifetime, it must remember the
EntityContext interface in an instance variable. It is not uncommon for a bean
provider to have an implementation like the following in the bean-implementation
code:

private EntityContext ctx;
public void setEntityContext(EntityContext ctx) {

this.ctx = ctx;
}

The bean instance can take advantage of the setEntityContext() method to
allocate any resources to be held by the instance for its lifetime. The setEntity
Context() method is called only once during the life of an instance, so the
resources cannot be specific to an entity bean’s identity because the instance
might be reused during the bean’s lifetime. An example of such a resource could
be a reference to a mainframe system or to an external resource.

unsetEntityContext()
A container invokes this method before terminating the life of the instance. The
invocation of unsetEntityContext indicates that the bean instance is about to be
evicted from memory by the container. The bean instance can take advantage of the
unsetEntityContext() method to free any resources obtained in the
setEntityContext() method.

ejbCreate()
When the client application calls a create() method on the bean’s home interface,
the container invokes a matching ejbCreate() method on the entity-bean
instance. The bean class can contain definitions for zero or more ejbCreate()
methods but each one’s signature has to match a corresponding create() method
in the bean’s home interface. The create() and ejbCreate() methods are respon-
sible for initializing the bean instance so that the container can insert a record into
the database.

Remember that invoking create() for an entity bean is equivalent to inserting a
row in the database. This is unlike what happens with session beans, with which
calling create() simply means instantiating an instance of the bean in the con-
tainer.

In the CMP model, the ejbCreate() method is called before the bean’s state is
written to the database. Arguments passed to the ejbCreate() method are used to
initialize the CMP fields of the bean instance. In the BMP model, the bean provider
must write some code to insert its data into the database.

j539663 ch16.qxd 7/25/03 9:17 AM Page 520

521Chapter 16 ✦ Working with Entity Beans

Once the record has been inserted into the database, the bean instance is ready to
be assigned to an EJB object. Once the bean is assigned to an EJB object, the bean’s
identity is available and the ejbPostCreate() method is invoked.

ejbPostCreate()
For each ejbCreate() method is a matching ejbPostCreate() method that has
the same input parameters but whose return type is void. The container invokes
the matching ejbPostCreate() method on an instance after it has invoked the
ejbCreate() method with the same arguments.

The ejbPostCreate() method gives the bean an opportunity to perform any post-
processing tasks prior to servicing the client requests. In the CMP model, it can be
used to set the values in the container-managed relationship fields. The primary
key is not available during the execution of the ejbCreate() method. To maintain
referential integrity, the primary key is required if the mapping for the relationship
uses it as a foreign key. Thus the assignment of relationships is done in the
ejbPostCreate() method, where the instance can discover its primary key by
calling the getPrimaryKey() method on its entity-context object.

ejbActivate()
The container invokes this method on the instance to notify that the entity bean
has returned from the pool, is not associated with an EJB object, and has been
assigned an identity. The ejbActivate() method gives the entity-bean instance
the chance to acquire additional resources that it needs while it is in the ready
state.

ejbPassivate()
The container invokes this method on an instance when the container decides to
disassociate the instance from an entity-object identity and to put the instance
back into the pool of available instances. Once in the pool, the instance can be
reused by some other EJB object. The ejbPassivate() method gives the instance
the chance to release any resources that it should not hold while in the pool.

ejbRemove()
When the client application calls the remove operation on the entity bean’s home
or component interface, the container invokes the ejbRemove() method on the
instance. Remember that invoking remove() method on an entity bean is equiva-
lent to deleting a row in the database. This is unlike what happens with session
beans, with which calling remove() simply means deleting the bean instance.

In the CMP model the container is responsible for deleting the data from the
database. The ejbRemove() method is called before the container actually deletes
the data, which gives the bean provider an opportunity to do any cleanup. In the
BMP model the bean provider must write some code to remove data from the
database.

j539663 ch16.qxd 7/25/03 9:17 AM Page 521

522 Part IV ✦ The Service Tier

Once the record has been inserted into the database the bean instance is ready to
be assigned to an EJB object. Once the bean is assigned to an EJB object, the bean’s
identity is available and the ejbPostCreate() method is invoked.

ejbLoad()
Entity beans are object representation of the data in the persistence-data store. The
ejbLoad() method is equivalent to the read functionality. When the container
needs to synchronize the state of an entity-bean instance with the bean’s state in
the database, the container calls the ejbLoad() method.

With container-managed persistence, the EJB container takes care of the synchro-
nization or reading of the data from the database. The ejbLoad() method is called
after the bean’s state has been loaded, and so the ejbLoad() method can be left
blank. However, the ejbLoad() method for CMP can be used to provide some cus-
tom logic. For instance, the bean might store the state in a binary or compressed
format, and the ejbLoad() method can be used to reformat or decompress the
data as appropriate to the bean’s state.

With bean-managed persistence, the bean provider is responsible for reading the
bean’s state from the database. The container is responsible for managing the
transaction and invoking the ejbLoad() method at appropriate times, but the bean
provider is expected to write the logic to read the data in the ejbLoad() method.

ejbStore()
The ejbStore() method is equivalent to the update ‘update’ functionality for
entity beans. When the container needs to synchronize the state of the entity object
in the database with the state of the enterprise bean instance, the container calls
the ejbStore() method on the instance.

With container-managed persistence the EJB container takes care of the synchro-
nization or writing the data to the database. The ejbStore() method is called
before the entity bean’s state is written to the database, so the ejbStore() method
can be left blank. But like ejbLoad(), the ejbStore() method provides an oppor-
tunity for the CMP bean developer to pre-process the data — for example, by for-
matting or compressing the data before the synchronization takes place.

With bean-managed persistence the bean provider is responsible for writing the
bean’s state to the database and must provide the logic to write the data in the
ejbStore() method.

ejbFind()
When the client application calls a finder method on the bean’s home interface, the
container invokes the corresponding ejbFind() method on the bean instance.
During the execution of the ejbFind() method the bean instance remains in the
pool; the container is not required to move it to the ready state. If the ejbFind()
method is declared to return a single primary key, the container creates a single

j539663 ch16.qxd 7/25/03 9:17 AM Page 522

523Chapter 16 ✦ Working with Entity Beans

EJB object reference for the primary key and returns it to the client. If the
ejbFind() method is declared to return a collection of primary keys, the container
creates a collection of EJB-object references for the primary key and returns the
collection to the client.

The bean provider does not provide the implementation of the finder methods for
CMP beans. Instead, the bean writer provides a query for each finder. Queries are
written in the EJB QL language and are included in the deployment descriptor. (We
will discuss the EJB QL language in the section on EJB QL later in this chapter.)

ejbHome()
Bean providers can define home methods to perform operations that are not spe-
cific to an entity-bean instance. The home methods are defined in the home inter-
face of the bean and each must have a matching ejbHome() method defined in the
bean class.

When the client application calls the home method on the bean’s home interface,
the container invokes the corresponding ejbHome() method on the bean instance.
The ejbHome() methods execute on the instance when it’s in the pooled state,
meaning that it does not have any identity. When the home method is called the
container simply picks an instance from the instance pool, executes the ejbHome()
method, and returns the instance to the pool.

ejbSelect()
A select method is a query method that is not directly exposed to the client in the
home or component interface. The bean provider typically calls a select method
within a business or home method. We will cover the details of the select method
in the section on EJB QL later in this chapter.

ejbTimeout()
The container invokes the ejbTimeout() method on the instance when a timer
with which the bean has been registered expires. The ejbTimeout() method noti-
fies the instance of the time-based event and allows the instance to execute the
business logic to handle it.

The entity-bean lifecycle
Now that you understand the basic purpose of each of the callback methods, let’s
explore the lifecycle of an entity bean. The entity bean has the three following
states in its lifecycle:

✦ Does not exist

✦ Pooled state

✦ Ready state

j539663 ch16.qxd 7/25/03 9:17 AM Page 523

524 Part IV ✦ The Service Tier

Figure 16-2 shows the states and transitions of an entity-bean instance.

Figure 16-2: Lifecycle of an entity bean

Does not exist
When a bean is in the does-not-exist state, it’s not yet instantiated and it does not
exist in the memory. This is generally the case when the application server first
starts up (the actual behavior is dependent on the implementation and tuning
parameters) and no call has been made to the bean.

Pooled
An entity-bean instance’s life starts when the container creates the instance by call-
ing the Class.newInstance() method on the bean class. The newInstance()
method creates an instance using the default constructor, which has no arguments.
The container then invokes the setEntityContext() method to pass the instance
a reference to the EntityContext interface. The EntityContext interface allows
the instance to invoke services provided by the container and to obtain the infor-
mation about the caller of a client-invoked method. After the instance has been
assigned its context, it is entered into the instance pool.

In the instance pool the bean instance is available to the container as a candidate
for servicing client requests. All instances in the pooled state are considered equiv-
alent. None of the instances is assigned to an EJB object, and none has any state.

1. newInstance()
2. setEntitiyContext()

ejbHome(...)

ejbCreate(...)
ejbPostCreate(...)

ejbActivate()

ejbLoad()

ejbTimeout(s)

1. unsetEntityContext()

ejbFind(...)

ejbRemove()

ejbStore()

business method

does not exist

pooled

ready

j539663 ch16.qxd 7/25/03 9:17 AM Page 524

525Chapter 16 ✦ Working with Entity Beans

Therefore, any instance can be assigned by the container to any entity-object iden-
tity at the transition to the ready state.

While the instance is in the pooled state, the container may use the instance to exe-
cute any of the entity bean’s finder or home methods. The instance does not move
to the ready state during the execution of a finder method or a home method.
Therefore, if a finder method returns an entity bean (or a collection of entity
beans), the instance does not move to the ready state until it is accessed directly
by the client.

The entity-bean instance can move from the pooled state to the ready state in two
ways. The first involves the following process:

1. A client application invokes a create() method on the EJB home.

2. An EJB object is created in the container.

3. An entity-bean instance is taken from the instance pool and assigned to the
EJB object.

The second occurs when an instance that had been passivated earlier is accessed
by the client application. Activation and passivation facilitates resource manage-
ment by allowing a few bean instances to service many EJB objects. In order to pre-
serve resources, or if the bean instance has not been used for a long time, the
container passivates the instance and moves it back to the pool. However, the EJB
object maintains its stub connection with the client and thus this process is com-
pletely transparent to the client application. When the client application invokes a
business method on the EJB object, the container picks an instance from the pool
and assigns it to the EJB object. When a bean instance is activated it leaves the
pooled state and moves to the ready state. The container calls the callback meth-
ods ejbActivate() and ejbLoad() on the bean instance before the instance is
ready to service the client requests.

Ready
When an entity-bean instance is in the ready state the instance is associated with a
specific entity-object identity and is ready to accept client requests. While the
instance is in the ready state the container can synchronize the state of the
instance with the state of the entity in the underlying data source. The container
does this by invoking the ejbActivate() and ejbLoad() callback methods.

A bean can move from the ready state to the pooled state in one of the following
three ways:

✦ Passivation

✦ Removal

✦ Rollback

j539663 ch16.qxd 7/25/03 9:17 AM Page 525

526 Part IV ✦ The Service Tier

Passivation
Recall that the container might decide to passivate the bean to preserve resources.
While doing so it invokes the ejbStore() and ejbPassivate() callback methods
on the bean instance. The ejbPassivate() method can be used to release any
resources. The ejbStore() method is called to synchronize the bean instance’s
state with the underlying datasource prior to the passivation of the bean.

Removal
When the client application invokes a remove() method on the entity object’s com-
ponent interface or the home interface, the container calls the ejbRemove() method
on the bean instance and removes the entity. Once the ejbRemove() method has
finished, the bean instance is moved back to the instance pool.

Rollback
The container calls ejbCreate(), ejbPostCreate(), or ejbRemove() in response
to create or remove invocations by the client. If a problem arises during the instan-
tiation or removal of the instance, the container rolls back the transaction and
moves the instance back to the pooled state.

Container-managed persistence (CMP)
One of the goals of the Enterprise JavaBeans technology is to allow the EJB compo-
nent developer to focus on the business logic of the application. The container pro-
vides the system-level services such as transaction, security, and fail-over that are
not only complex to write but also of less relevance to the main business of the
application. The CMP model follows the same paradigm and it allows the bean
provider to focus on the business logic rather than on writing SQL statements or
JDBC code. The container takes care of implementing the persistence logic. The
EJB 2.x CMP model provides a flexible object model, a full-featured standard-based
query language, and extensive support for relationships among the entities.

The abstract-programming model
With container-managed persistence, the state of the entity beans is managed by
the container. The enterprise-bean developer is responsible for defining the
attributes and relationships of the bean, and the container is responsible for man-
aging and persisting this state to the database. The bean developer defines the
state of the bean by writing the abstract methods. Abstract methods are part of
bean’s implementation class and are used to access the bean’s persistence state.
However, the bean developer cannot declare any container-managed fields in the
bean class. Instead the bean developer declares the abstract get and set methods
for each container-managed field. For instance, instead of declaring a private
String name field in the bean class, the bean provider writes public abstract
String getName() and public abstract String setName(). Abstract methods
are defined for use by the container and not by the client application. They may or
may not be exposed in the bean’s component interface. They are defined as public
and abstract because their actual implementation is provided by the EJB container.

j539663 ch16.qxd 7/25/03 9:17 AM Page 526

527Chapter 16 ✦ Working with Entity Beans

Declaring the container-managed fields
From the perspective of the bean provider, the container-managed persistent fields
and container-managed relationship fields are virtual fields and can only be
accessed through the get and set accessor methods. The bean provider is responsi-
ble for specifying the container-managed persistent fields and container-managed
relationships in the deployment descriptor and for specifying the corresponding
accessor methods in the bean class. The accessor methods must be public and
abstract and must follow JavaBean-naming conventions.

The naming convention for abstract accessors corresponds to the standard naming
convention for the JavaBean accessors. The first letter of the state-variable name is
capitalized and prefixed by either get or set. Getter methods take no arguments
and have a return type corresponding to the type of the state variable. Setter meth-
ods take one argument with a type corresponding to the type of the state variable,
and return void. Finally, a CMP field represents a persistence state, and a CMR field
represents the endpoint of a persistence relationship.

Writing a simple CMP
In this section we will write a basic CMP to demonstrate the simplicity of this
model. In the following few sections, we will enhance our CMP to illustrate other
advanced concepts.

PassengerHome — the home interface
The home interface of an entity bean is used to create, locate, and remove the enti-
ties. The home interface defines three kinds of methods:

Home business methods

Zero or more create methods

One or more finder methods

In the following example, we will write two create() methods and a find()
method. The find() method locates a specific instance of PassengerBean using
the primary key.

package com.connexia.ejb.PassengerBean;

import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.EJBHome;
import javax.ejb.FinderException;

public interface PassengerHome extends EJBHome {

public Passenger create(
Integer id,
String lastName,
String firstName,

j539663 ch16.qxd 7/25/03 9:17 AM Page 527

528 Part IV ✦ The Service Tier

int age,
String category,
String foodCode)
throws CreateException, RemoteException;

public Passenger create(
Integer id,
String lastName,
String firstName,
int age)
throws CreateException, RemoteException;

public Passenger findByPrimaryKey(Integer primaryKey)
throws FinderException, RemoteException;

}

The home interface must define a findByPrimaryKey() method that takes the
entity bean’s primary-key type as its only argument. The findByPrimaryKey()
method does not need a matching method in the bean class. At runtime the
findByPrimaryKey() method will automatically locate and return a reference to
the entity bean’s component interface with the matching primary key.

Passenger — the remote interface
The remote interface of the bean defines the business methods that clients can use
to interact with the bean. Any method defined in the remote interface must have a
corresponding method in the bean class with the same signature. When the remote-
interface methods match the persistence-field methods, the client has direct access
to the bean’s persistence fields. And thus, in our case, the client can invoke the
method setLastName() and it will change the passenger’s last name in the
database.

The remote interface can be independent of the abstract programming model and
can provide other business methods that are not mapped to the abstract accessor
methods. For instance, our remote interface defines a method upgrade() that does
not map to any accessor method. We will see the implementation of this method in
the next section.

The following code segment illustrates the remote interface:

package com.connexia.ejb.PassengerBean;

import java.rmi.RemoteException;
import javax.ejb.EJBObject;

public interface Passenger extends EJBObject {

public boolean upgrade(String category) throws
RemoteException;

j539663 ch16.qxd 7/25/03 9:17 AM Page 528

529Chapter 16 ✦ Working with Entity Beans

public String getName() throws RemoteException;
public void setFoodCode(String foodCode) throws

RemoteException;
public void setCategory(String category) throws

RemoteException;
}

PassengerBean — the bean class
The implementation class implements the EntityBean interface. The bean-
implementation class defines all the callback methods as listed in the Entity
interface and all the business methods as listed in our remote interface. The
bean class must also declare the accessor methods for each persistence and
relationship field defined in the deployment descriptor. The class is declared as
an abstract class because the container generates the concrete implementation.
The container uses the abstract methods defined in the bean class and the fields
specified in the deployment descriptor to generate a concrete entity-bean class.

Listing 16-1 shows the implementation of PassengerBean class.

Listing 16-1: PassengerBean

package com.connexia.ejb.PassengerBean;

import javax.ejb.CreateException;
import javax.ejb.EntityBean;
import javax.ejb.EntityContext;
import javax.ejb.RemoveException;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;

abstract public class PassengerBean implements EntityBean {
final static boolean VERBOSE = true;
private EntityContext ctx;

public PassengerBean() {
}

/*
* @see

javax.ejb.EntityBean#setEntityContext(javax.ejb.EntityContext)
*/
public void setEntityContext(EntityContext ctx) {

this.ctx = ctx;
}

/*

Continued

j539663 ch16.qxd 7/25/03 9:17 AM Page 529

530 Part IV ✦ The Service Tier

Listing 16-1 (continued)

* @see javax.ejb.EntityBean#unsetEntityContext()
*/
public void unsetEntityContext() {

this.ctx = null;
}

/**
* container managed fields
*/
abstract public Integer getPassengerId();
abstract public void setPassengerId(Integer val);

abstract public String getLastName();
abstract public void setLastName(String val);

abstract public String getFirstName();
abstract public void setFirstName(String val);

abstract public int getAge();
abstract public void setAge(int val);

abstract public String getCategory();
abstract public void setCategory(String val);

abstract public String getFoodCode();
abstract public void setFoodCode(String val);

/*
* @see javax.ejb.EntityBean#ejbActivate()
*/
public void ejbActivate() {
}

/*
* @see javax.ejb.EntityBean#ejbPassivate()
*/
public void ejbPassivate() {
}

/*
* @see javax.ejb.EntityBean#ejbLoad()
*/
public void ejbLoad() {
}

/* (non-Javadoc)
* @see javax.ejb.EntityBean#ejbStore()
*/
public void ejbStore() {
}

j539663 ch16.qxd 7/25/03 9:17 AM Page 530

531Chapter 16 ✦ Working with Entity Beans

public void ejbRemove() throws RemoveException {
}

/** This method creates the passenger in the database
* with the passed values.
* @param Integer id
* @param String lastName
* @param String firstName
* @param int age
* @param String category
* @param String foodCode
* @return Integer PrimaryKey
* @throws CreateException
*/
public Integer ejbCreate(

Integer id,
String lastName,
String firstName,
int age,
String category,
String foodCode)
throws CreateException {
setPassengerId(id);
setLastName(lastName);
setFirstName(firstName);
setAge(age);
setCategory(category);
setFoodCode(foodCode);

return null;
}

/** This method creates the passenger in the database
* with the passed values.
* @param Integer id
* @param String lastName
* @param String firstName
* @param int age
* @return Integer Primary Key
* @throws CreateException
*/
public Integer ejbCreate(

Integer id,
String lastName,
String firstName,
int age)
throws CreateException {
setPassengerId(id);
setLastName(lastName);
setFirstName(firstName);
setAge(age);

Continued

j539663 ch16.qxd 7/25/03 9:17 AM Page 531

532 Part IV ✦ The Service Tier

Listing 16-1 (continued)

return null;
}

/** This method gives the bean an opporutunity to
* perform any post-processing tasks.
* @param Integer id
* @param String lastName
* @param String firstName
* @param int age
* @param String category
* @param String foodCode
*/
public void ejbPostCreate(

Integer id,
String lastName,
String firstName,
int age,
String category,
String foodCode) {

}

/** This method gives the bean an opporutunity to
* perform any post-processing tasks.
* @param Integer id
* @param String lastName
* @param String firstName
* @param int age
*/
public void ejbPostCreate(

Integer id,
String lastName,
String firstName,
int age) {

}

/**This method upgrades the flight category
* for the passenger.
* @param String category
* @return boolean true if the upgrade was successful.
*/
public boolean upgrade(String category) {

// check if upgrade can be done...
setCategory(category);

return true;
}

j539663 ch16.qxd 7/25/03 9:17 AM Page 532

533Chapter 16 ✦ Working with Entity Beans

/** This method return the name (first + last) of
* the passenger.
* @return String name of the passenger
*/
public String getName() {

return getFirstName() + “ “ + getLastName();
}

}

ejb-jar.xml — the deployment descriptor
The deployment descriptor is comprised of information used by the EJB compiler and
the container at runtime. In the deployment descriptor the <home> and <remote>
tags define the home and remote interfaces, respectively, that we defined earlier. The
<ejb-class> tag defines the name of the bean class. The <persistence-type> tag
declares that the bean uses container-managed persistence. And the <cmp-field>
tag provides the list of persistent fields. Listing 16-2 shows the deployment descriptor
for the PassengerBean.

Listing 16-2: Deployment descriptor

<ejb-jar>
<enterprise-beans>

<entity>
<ejb-name>PassengerBean</ejb-name>

<home>com.connexia.ejb.PassengerBean.PassengerHome</home>

<remote>com.connexia.ejb.PassengerBean.Passenger</remote>
<ejb-class>

com.connexia.ejb.PassengerBean.PassengerBean
</ejb-class>
<persistence-type>Container</persistence-type>
<prim-key-class>java.lang.Integer</prim-key-class>
<reentrant>False</reentrant>
<cmp-version>2.x</cmp-version>
<abstract-schema-name>PassengerBean</abstract-schema-

name>
<cmp-field>

<field-name>passengerId</field-name>
</cmp-field>
<cmp-field>

<field-name>lastName</field-name>
</cmp-field>
<cmp-field>

<field-name>firstName</field-name>

Continued

j539663 ch16.qxd 7/25/03 9:17 AM Page 533

534 Part IV ✦ The Service Tier

Listing 16-2 (continued)

</cmp-field>
<cmp-field>

<field-name>age</field-name>
</cmp-field>
<cmp-field>

<field-name>category</field-name>
</cmp-field>
<cmp-field>

<field-name>foodCode</field-name>
</cmp-field>
<primkey-field>passengerId</primkey-field>

</entity>

Client — invoking the PassengerBean
A client needs to get a reference to the component interface and execute the
method call. Behind the scenes the call is delegated to the bean-implementation
class. The following code illustrates our client application. It shows how to invoke
the create(), findByPrimaryKey(), and remove() methods for an entity bean. In
summary, our client is performing the following tasks:

1. Getting the initial context.

2. Looking up the bean’s home using the bean’s JNDI name (the bean’s JNDI
name is specified in the deployment descriptor for the bean).

3. Using the home object’s create() method and the primary key to create a
bean instance.

4. Using the bean instance to call any business methods.

5. Using the primary key and the home interface to locate the entity-bean
instance.

6. Removing the bean.

For more details on JNDI, refer to Chapter 11.

Listing 16-3 displays the client application illustrating the preceding steps.

Listing 16-3: PassengerBeanClient

package com.connexia.ejb.PassengerBean;

import java.rmi.RemoteException;
import java.util.Properties;

Cross-
Reference

j539663 ch16.qxd 7/25/03 9:17 AM Page 534

535Chapter 16 ✦ Working with Entity Beans

import javax.ejb.CreateException;
import javax.ejb.FinderException;
import javax.ejb.RemoveException;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;

public class PassengerBeanClient {
private static final String URL = “t3://localhost:7001”;
public static void main(String args[]) throws

NamingException {

Context ctx = null;
PassengerHome home = null;
Passenger remote = null;

/*
* Get the initial context
*/
Properties props = System.getProperties();
try {

ctx = new InitialContext(props);
} catch (NamingException ne) {

System.out.println(“Error: NamingException”);
ne.printStackTrace();
return;

}

/*
* Get the home interface
*/
try {

home =
(PassengerHome) ctx.lookup(

“com.connexia.ejb.PassengerBean.PassengerHome”);
} catch (NamingException ne) {

System.out.println(“Error: NamingException”);
ne.printStackTrace();
return;

}

/*
* Create a passenger.
*/
Integer primaryKey = new Integer(1);
String firstName = “John”;
String lastName = “Smith”;
int age = 30;

try {

Continued

j539663 ch16.qxd 7/25/03 9:17 AM Page 535

536 Part IV ✦ The Service Tier

Listing 16-3 (continued)

remote =
(Passenger) home.create(primaryKey, firstName,

lastName, age);
remote.setFoodCode(“VEGGIE”);
remote.setCategory(“Econ”);

} catch (RemoteException re) {
System.out.println(“Error: RemoteException”);
re.printStackTrace();
return;

} catch (CreateException ce) {
System.out.println(“Error: CreateException”);
ce.printStackTrace();
return;

}

/*
* Find the passenger
*/
Integer key = new Integer(1);
Passenger passenger = null;
try {

passenger = home.findByPrimaryKey(key);

System.out.println(“Name : “ +
passenger.getName());

} catch (RemoteException re) {
System.out.println(“Error: RemoteException”);
re.printStackTrace();
return;

} catch (FinderException fe) {
System.out.println(“Error: FinderException”);
fe.printStackTrace();
return;

}

/*
* Remove the passenger
*/
try {

passenger.remove();
} catch (RemoteException re) {

System.out.println(“Error: RemoteException”);
re.printStackTrace();
return;

} catch (RemoveException rme) {
System.out.println(“Error: RemoveException”);

j539663 ch16.qxd 7/25/03 9:17 AM Page 536

537Chapter 16 ✦ Working with Entity Beans

rme.printStackTrace();
return;

}

}

}

Introduction to Container Managed Relationships (CMRs)
One of the most powerful aspects of the CMP model is its comprehensive support
for relationships. In the earlier section we discussed the abstract programming
model, and how the container can persist the fields defined by means of the
abstract accessor methods. In addition to that, two or more CMP beans can be in a
relationship and the container will handle the persistence logic necessary to man-
age the relationship. Again, the bean developer has to provide the abstract acces-
sor methods to define these relationship fields.

The following types of relationships exist:

✦ One-to-one

✦ One-to-many

✦ Many-to-many

Also, relationships may be either bidirectional or unidirectional. If a relationship is
bidirectional it can be navigated in both directions, whereas a unidirectional rela-
tionship can be navigated in one direction only. (Both of these terms are discussed
later in this section.) Before we discuss the different kind of relationships, let’s
understand the deployment descriptor that brings all this together.

The entity beans that have relationships with each other have to be defined in the
same deployment descriptor. When they share a deployment descriptor they are
deployed together and are seen as a single deployment unit, sharing the same
database and the same Java virtual machine (JVM). The bean developer is responsi-
ble for defining the beans in the relationship, their cardinality (one-to-one, one-to-
many, or many-to-many) and their direction (unidirectional or bidirectional). This
information is specified in the deployment descriptor. The deployment descriptor
for a CMP bean has a <relationships> element used to specify the persistence
schema for the entity beans in the relationship. Figure 16-3 shows the sub-elements
of the <relationships> section.

j539663 ch16.qxd 7/25/03 9:17 AM Page 537

538 Part IV ✦ The Service Tier

Figure 16-3: Deployment descriptor relationships

Defining relationship fields involves adding an <ejb-relation> element to the XML
deployment descriptor for each entity-to-entity relationship. The <ejb-relation>
element has the following sub-elements:

✦ <ejb-relation-name>— This element can be used to identify the relation-
ship for someone reading the deployment descriptor or for deployment tools.
This element is not required.

✦ <description>— This element can be used to provide more information
about the relationship. Like <ejb-relation-name>, this element is optional.

j2ee:relationshipsType

j2ee:ejbrelationType

description

0..∞

relationships – –

ejb-relation

1..∞

description

0..∞

ejb-relation-name

––

ejb-relationship-role – –

ejb-relationship-role – –

j2ee:ejb-relationship-roleType

description

multiplicity

0..∞

ejb-relationship-role-name

cascade-delete

relationship-role-source

cmr-field +

+

j2ee:ejb-relationship-roleType

description

multiplicity

0..∞

ejb-relationship-role-name

cascade-delete

relationship-role-source

cmr-field +

+

j539663 ch16.qxd 7/25/03 9:17 AM Page 538

539Chapter 16 ✦ Working with Entity Beans

✦ <ejb-relationship-role>— A relationship is defined between two entities,
and thus each <ejb-relation> has exactly two <ejb-relationship-
role> elements, one for each participant in the relationship. Each <ejb-
relationship-role> element includes a <relationship-role-source>
element that specifies the name of the entity bean in the relationship. The
name of the entity bean should match the name in the original declaration of
the entity bean in the <enterprise-beans> section. The <ejb-relationship-
role> element also declares the cardinality, or multiplicity, of the role. The
<multiplicity> element can be either One or Many.

✦ <cmr-field>— The <ejb-relationship-role> also defines the <cmr-
field> element that lists the reference of the other bean in the relationship.
The <cmr-field> element includes the <description>, <cmr-field-name>,
and <cmr-field-type> elements. For every relationship field defined using
the <cmr-field> element there must be a pair of matching abstract accessor
methods in the bean class.

✦ <cascade-delete>— When this element is specified for a particular relation-
ship, the lifetime of one entity object depends on another. When the client
application invokes a remove() method on an entity bean that bean is
removed from the underlying datasource. But if the entity is in a relationship
with other entity bean(s), they might be affected too. For example, say we
have our PassengerBean in a relationship with an AddressBean (we will
explain more about this relationship later in the section). The PassengerBean
represents our airline’s passenger and the AddressBean is used to store
the address of the passenger. If we invoke remove() method on the
PassengerBean, we may have created a situation in which we have an
AddressBean representing the address of a passenger that no longer
exists in our system. To avoid this, we can specify the <cascade-delete>
element with our relationship. This ensures that whenever we remove a
PassengerBean, the corresponding AddressBean will also be removed.

In the next few sections, we will explain different types of relationships that can be
defined using the bean’s deployment descriptor. To illustrate these relationships,
we will use PassengerBean, AddressBean and the FlightBean entities.
PassengerBean is already defined in the preceding section and stores information
about a passenger. AddressBean stores information about a passenger’s address
whereas FlightBean represents a Flight and therefore stores flight information
such as flight no, flight destination and arrival locations. In order to focus on the
relationships, we will only show the relationship section of the deployment descrip-
tor and not the complete source code of the bean.

Unidirectional relationships
Unidirectional relationships only navigate in one direction. For example, if Entity A
and Entity B are in a one-to-one, unidirectional relationship and the direction is from
Entity A to Entity B, than Entity A is aware of Entity B, but Entity B is unaware of

j539663 ch16.qxd 7/25/03 9:17 AM Page 539

540 Part IV ✦ The Service Tier

Entity A. (One-to-one relationships will be discussed shortly.) This type of relation-
ship is implemented when you specify a cmr-field deployment-descriptor element
for the entity bean from which navigation can take place and do not specify a related
cmr-field element for the target entity bean. The get method for a cmr-field
must return either the local interface of the entity bean or a collection of the same.
The set method for the relationship must take as an argument the entity bean’s
local interface or a collection of the same. Figure 16-4 represents a unidirectional
relationship.

Figure 16-4: Unidirectional relationship

Bidirectional relationships
Bidirectional relationships navigate in both directions. These types of container-
managed relationships can exist only between beans whose abstract persistence
schemas are defined in the same deployment descriptor and therefore managed by
the same container. If Entity A and Entity B are in a bidirectional relationship each
is aware of the other and the changes made to one participant in the relationship
are instantly reflected in the other participant. For instance, ReservationBean and
PassengerBean are in a bidirectional relationship with each other. Given a reserva-
tion bean, we should be able to find the passenger(s), and given a passenger we
should be able to find the details of his or her reservation. Relationships that are
bidirectional have abstract accessors for both participants in the relationship.
Figure 16-5 represents a bidirectional relationship.

Figure 16-5: Bidirectional relationship

Entity A Entity B

Entity A Entity B

j539663 ch16.qxd 7/25/03 9:17 AM Page 540

541Chapter 16 ✦ Working with Entity Beans

One-to-one relationships
A one-to-one relationship is one in which one and only one Entity B exists for each
Entity A. In database terms, a one-to-one relationship involves the physical map-
ping from the foreign key in one bean to the primary key in another bean. For exam-
ple, our PassengerBean developer from earlier in the chapter might reference an
AddressBean to store the address information for the passenger. Figure 16-6 illus-
trates a one-to-one relationship.

Figure 16-6: One-to-one relationship

Listing 16-4 shows a one-to one relationship mapped between the PassengerBean
and the AddressBean.

Listing 16-4: Deployment descriptor/one-to-one

<relationships>
<ejb-relation>
<ejb-relation-name>Passenger-Address<ejb-relation-name>
<ejb-relationship-role>

Continued

Entity A1 Entity B1

Entity A2 Entity B2

Entity A3 Entity B3

j539663 ch16.qxd 7/25/03 9:17 AM Page 541

542 Part IV ✦ The Service Tier

Listing 16-4 (continued)

<ejb-relationship-role-name>
Passenger-has-an-Address

</ejb-relationship-role-name>
<multiplicity>One<multiplicity>
<relationship-role-source>

<ejb-name>PassengerBean</ejb-name>
</relationship-role-source>
<cmr-field>
<cmr-field-name>address</cmr-field-name>

</cmr-field>
</ejb-relationship-role>
<ejb-relationship-role>

<ejb-relationship-role-name>
Address-belongs-to-Passenger

</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<relationship-role-source>
<ejb-name>AddressBean</ejb-name>

</relationship-role-source>
</ejb-relationship-role>

<ejb-relation>
</relationships>

Listing 16-5 illustrates the additional methods in the PassengerBean that set the
address of the passenger using the AddressBean.

Listing 16-5: More methods using AddressBean

/*
* Abstract methods for passenger’s address.
*/
abstract public Address getAddress();
abstract public void setAddress(Address val);

/** This method sets the address of the passenger.
* This method is also exposed in the bean’s remote
* interface. Therefore, the client can call
* PassengerBean’s setAddressData() method to set
* the address of the passenger.
* @param String passengerId
* @param Integer addressId
* @param String street

j539663 ch16.qxd 7/25/03 9:17 AM Page 542

543Chapter 16 ✦ Working with Entity Beans

* @param String city
* @param String zip
* @param String state
* @param String country
*/
public void setAddressData(

String passengerId,
String addressId,
String street,
String city,
String zip,
String state,
String country) {
try {

Context ctx = new InitialContext();
AddressHome home =

(AddressHome) ctx.lookup(

“com.connexia.ejb.PassengerBean.AddressHome”);
Address address =

home.create(
passengerId,
addressId,
street,
city,
zip,
state,
country);

this.setAddress(address);
} catch (NamingException e) {
System.out.println(“Error: NamingException”);
e.printStackTrace();

} catch (CreateException e) {
System.out.println(“Error: NamingException”);

e.printStackTrace();
}

}

One-to-many relationships
A one-to-many relationship is one in which multiple Entities B can exist for a single
Entity A. A one-to-many relationship involves the physical mapping from the foreign
key in one bean to the primary key of another. However, in a one-to-many relation-
ship the foreign key is always contained in the “many” role of the relationship.

Figure 16-7 represents a one-to-many relationship.

j539663 ch16.qxd 7/25/03 9:17 AM Page 543

544 Part IV ✦ The Service Tier

Figure 16-7: One-to-many relationship

For instance, we might allow more than one address for a passenger and change the
relationship between the PassengerBean and the AddressBean as one-to-many.
Listing 16-6 displays the deployment descriptor that defines the relationship. Note
that the <cmr-field-type> is defined as java.util.Set because a single
PassengerBean can refer to multiple AddressBean references.

Listing 16-6: Deployment descriptor/one-to-many

<relationships>
<ejb-relation>
<ejb-relation-name>Passenger-Address<ejb-relation-name>
<ejb-relationship-role>

<ejb-relationship-role-name>
Passenger-has-many-Addresses

</ejb-relationship-role-name>
<multiplicity>One<multiplicity>
<relationship-role-source>

<ejb-name>PassengerBean</ejb-name>
</relationship-role-source>

Entity A Entity B2

Entity B3

Entity B1

j539663 ch16.qxd 7/25/03 9:17 AM Page 544

545Chapter 16 ✦ Working with Entity Beans

<cmr-field>
<cmr-field-name>addressList</cmr-field-name>
<cmr-field-type>java.util.set</cmr-field-type>

</cmr-field>
</ejb-relationship-role>
<ejb-relationship-role>

<ejb-relationship-role-name>
Addresses-for-Passenger

</ejb-relationship-role-name>
<multiplicity>Many</multiplicity>
<relationship-role-source>
<ejb-name>AddressBean</ejb-name>

</relationship-role-source>
</ejb-relationship-role>

<ejb-relation>
</relationships>

Many-to-many relationships
In a many-to-many relationship both participating beans maintain a collection rela-
tionship with each other. In the database terms, a many-to-many relationship
involves the physical mapping of a join table. Each row in the join table contains
two foreign keys that map to the primary keys of the entities involved in the rela-
tionship. Consider for example the relationship between the FlightBean and the
PassengerBean. A Flight has many passengers and a passenger can be booked on
many flights. Figure 16-8 represents a one-to-many relationship.

Listing 16-7 shows a many-to-many relationship mapped between the FlightBean
and the PassengerBean.

Listing 16-7: Deployment descriptor/many-to-many

<relationships>
<ejb-relation>

<ejb-relation-name>Flight-Passenger<ejb-relation-name>
<ejb-relationship-role>

<ejb-relationship-role-name>
Flight-has-many-Passengers

</ejb-relationship-role-name>
<multiplicity>Many<multiplicity>
<relationship-role-source>

<ejb-name>FlightBean</ejb-name>
</relationship-role-source>
<cmr-field>

<cmr-field-name>passengerList</cmr-field-name>
<cmr-field-type>java.util.Collection</cmr-field-type>

</cmr-field>

Continued

j539663 ch16.qxd 7/25/03 9:17 AM Page 545

546 Part IV ✦ The Service Tier

Listing 16-7 (continued)

</ejb-relationship-role>
<ejb-relationship-role>

<ejb-relationship-role-name>
Passengers-has-many-Flights

</ejb-relationship-role-name>
<multiplicity>Many</multiplicity>
<relationship-role-source>

<ejb-name>PassengerBean</ejb-name>
</relationship-role-source>
<cmr-field>

<cmr-field-name>flights</cmr-field-name>
<cmr-field-type>java.util.Collection</cmr-field-

type>
</cmr-field>

</ejb-relationship-role>
<ejb-relation>

</relationships>

Figure 16-8: Many-to-many relationship

Entity A1

Entity A2

Entity B2

Entity B3

Entity B1

j539663 ch16.qxd 7/25/03 9:17 AM Page 546

547Chapter 16 ✦ Working with Entity Beans

The EJB Query Language (EJB QL) — An Example
The Enterprise JavaBeans Query Language (EJB QL) is used to define queries for
CMP beans. Its structure is very similar to SQL’s and thus it should look very famil-
iar to database users. Earlier in the section on callback methods, we mentioned
finder and select methods. The EJB QL is used to define queries for the finder and
select methods of the entity beans with container-managed persistence.

EJB QL queries use the abstract-persistence schema of entity beans for their data
model. Thus they are independent of the underlying data store and are portable
across databases or other persistent stores. At runtime the query methods can use
the native language of the underlying data store. As a result, query methods defined
using EJB QL are both optimizable and portable.

An EJB QL query is a string that consists of the following clauses:

✦ SELECT— This clause determines the type of the object or values to be
selected.

✦ FROM— This clause specifies the domain or entity beans to be queried.

✦ WHERE— This clause is optional and may be used to restrict the results of the
query.

✦ ORDER BY— This clause is optional and may be used to order the results of
the query.

The EJB QL query statements are specified with the <query> tag in the deploy-
ment descriptor. The <query> element contains two primary elements, the
<query-method> element that declares the finder or select method and the
<ejb-ql> element that specifies the actual query. Here’s an example:

<query>
<query-method>

<method-name>findByName</method-name>
<method-params>

<method-param>java.lang.String</method-param>
<method-params>

</query-method>
<ejb-ql>
SELECT FROM PassengerBean a WHERE a.firstName = ?1

</ejb-ql>
</query>

Query methods
Recall that the EJB QL is used for two types of query methods: finder methods and
select methods.

j539663 ch16.qxd 7/25/03 9:17 AM Page 547

548 Part IV ✦ The Service Tier

Finder methods
Finder methods are defined in the home interface (remote or local) of an entity
bean and return either entity objects or local entity objects. A finder method
defined on the remote home interface must return either an EJBObject or a collec-
tion of EJBObjects. A finder method defined on the local home interface must
return either an EJBLocalObject or a collection of EJBLocalObjects.

The query for the finder methods is specified in the deployment descriptor. The
exception is the findByPrimaryKey() method, which always returns a single
entity that matches the supplied primary key and for which the query is generated
by the container. The bean providers are expected to write the query for other
finder methods that can return either a single entity or a collection.

The following listing illustrates a query for the findByName() finder method for the
PassengerBean. The method returns a list of passengers matching the supplied
first and last name. Add this code segment to the home interface, PassengerHome.

public Passenger findByName(String lastName, String
firstName)

throws FinderException, RemoteException;

Change the deployment descriptor to include the following section:

<query>
<query-method>

<method-name>findByName</method-name>
<method-params>

<method-param>java.lang.String</method-param>
<method-param>java.lang.String</method-param>

<method-params>
</query-method>
<ejb-ql>
SELECT OBJECT(a) FROM PassengerBean a
WHERE a.firstName = ?1
AND a.lastName = ?2

</ejb-ql>
</query>

Select methods
select methods are a special type of query method not directly exposed through
the client view. The result type of a select method can be an EJBLocalObject (or
a collection of EJBLocalObjects), an EJBObject (or a collection of EJBObjects), a
cmp-field value (or a collection of cmp-field values), or the result of an aggre-
gate function.

j539663 ch16.qxd 7/25/03 9:17 AM Page 548

549Chapter 16 ✦ Working with Entity Beans

The WHERE clause and conditional expressions
The WHERE clause is used to restrict the results of a query by specifying a condi-
tional expression. Only the objects or values that satisfy the expression are
returned as the result. In this section we will look at a few constructs that you can
use in building the WHERE clause

Literals
Literals can be string literals, such as VEGGIE; numeric literals, such as 22; approxi-
mate numeric literals, such as 22.35; or boolean literals, such as TRUE.

If we want to get a list of customers that are vegetarians, we can execute a SQL like
the following:

SELECT OBJECT(a) FROM PassengerBean a
WHERE a.foodCode = ‘VEGGIE’;

Input parameters
Query methods that use EJB QL statements may specify method arguments. Input
parameters allow these method arguments to be mapped to EJB QL statements.
The input parameters are designated by a question-mark (?) prefix followed by an
integer.

For instance:

SELECT OBJECT (a) FROM PassengerBean a
WHERE a.firstName = ?1

The corresponding finder method will look like the following:

public Collection findByFirstName(String firstName)
throws FinderException

Operators
The WHERE clause can use several logical and conditional operators. They are listed
here in decreasing order of precedence:

✦ Navigation operator (.)

✦ Arithmetic operators:

• +, - (unary)

• *, / (multiplication and division, respectively)

• +, - (addition and subtraction, respectively)

✦ Comparison operators: =, >, >=, <, <=, <> (not equal to)

✦ Logical operators: NOT, AND, OR

j539663 ch16.qxd 7/25/03 9:17 AM Page 549

550 Part IV ✦ The Service Tier

For instance, the following code segment will retrieve a list of passengers with
age > 25.

SELECT OBJECT(a) from PassengerBean a
WHERE a.age > 25;

BETWEEN expressions
The BETWEEN clause can be used to specify a range. Here’s an example:

SELECT OBJECT(a) from PassengerBean a
WHERE a.age BETWEEN 25 AND 30;

Semantically this is equivalent to the following:

SELECT OBJECT(a) from PassengerBean a
WHERE a.age >= 25 AND a.age <=30 ;

The IN expression
This is used to specify the condition as a list of literal string values. Here’s an
example:

SELECT OBJECT(a) from PassengerBean a
WHERE a.firstName in (“John”, “Joe”) ;

The LIKE expression
This allows the query to select String-type CMP fields that match a specified pat-
tern. For example:

SELECT OBJECT(a) from PassengerBean a
WHERE a.firstName like ‘J%’ ;

The NULL comparison
The null comparison expression tests whether or not the single-valued path expres-
sion or input parameter is a NULL value. For instance, you would do the following
to find out which passengers do not have an address:

SELECT OBJECT(a) from PassengerBean a
WHERE a.address IS NULL;

The EMPTY comparison
The IS EMPTY operator allows the query to see whether a collection-based relation-
ship is empty. It has the same objective as a test to see whether a single CMP or CMR
field is null. For instance, here’s how you would find the flights that do not have any
reservations:

j539663 ch16.qxd 7/25/03 9:17 AM Page 550

551Chapter 16 ✦ Working with Entity Beans

SELECT OBJECT(a) from FlightBean a
WHERE a.reservations IS EMPTY;

Functional expressions
EJB QL includes the following built-in functions for String manipulations:

✦ CONCAT(String, String) returns a concatenated String.

✦ SUBSTRING(String, start, length) returns a substring of the original
String.

✦ LOCATE(String, String [, start]) returns the location of the String.

✦ LENGTH(String) returns an int indicating the length of the String.

EJB QL also includes the following built-in functions for arithmetic operations:

✦ ABS(number) returns the absolute value of the number.

✦ SQRT(double) returns the square root of a double.

✦ MOD(int, int) returns the mod value.

The SELECT clause
DISTINCT is used to specify that duplicate values must be eliminated from the
query result. The following aggregate functions can also be used in the SELECT
clause of an EJB QL query:

✦ AVG

✦ COUNT

✦ MAX

✦ MIN

✦ SUM

The ORDER BY clause
The ORDER BY clause allows the objects or values returned by the query to be
ordered. The order can be specified as ascending or descending. For instance,
here’s how we could get a list of the passengers sorted according to their last
names:

SELECT OBJECT(a) from PassengerBean a
ORDER BY a.lastName;

j539663 ch16.qxd 7/25/03 9:17 AM Page 551

552 Part IV ✦ The Service Tier

Bean-managed persistence (BMP)
The data-access protocol for transferring the state of the entity between the entity-
bean instances and the underlying database is referred to as object persistence. In
the last few sections we looked at the container-managed persistence model,
wherein entity beans rely on the container to provide the persistence logic. The EJB
specifications also support entity beans with bean-managed persistence (BMP)
wherein the entity beans write explicit code to access the persistence store. For
most users, accessing the persistence store involves writing JDBC code to access a
relational database.

From a bean provider’s perspective, this is more effort than the CMP model,
because he or she must provide the logic to create, update, and remove the bean’s
state; but bean-managed persistence is a viable choice in some circumstances. One
benefit of BMP comes when mapping a bean’s attributes to database fields proves
to be difficult. This may occur if the bean state is defined by data in different
databases. It can also occur if you are using a target data store that is a legacy sys-
tem: You will probably need to access the store using a vendor-specific protocol
rather than SQL commands, and the EJB container might not support the protocol.
Bean-managed persistence is a good alternative to container-managed persistence
when the container tools are inadequate for mapping the bean’s instance state to
the underlying data source.

One major disadvantage of using a BMP (other than that it makes more work for the
bean provider) is that it ties the bean to a specific database type and structure. Any
change in the database schema will require a coding change in the bean class and it
may not be a trivial change. With CMP, it is managed by the abstract persistence
schema and thus is easier to accommodate.

BMP gives you more flexibility in terms of how the state is managed between the
bean instance and the database, while CMP speeds up bean development and
increases bean flexibility.

Writing a BMP
In this section we will write an entity bean with the BMP model. Unlike the CMP
model, the bean provider has to write code to insert, delete, read, and update data
from the database. AircraftBean of the following example represents an aircraft
and stores information such as model number, make, year built and seating capac-
ity of the aircraft.

AircraftHome — the home interface
The home interface is used to create, remove, and locate the entity-bean instances.
The home interface must also define the findByPrimaryKey() method. For a CMP
bean the implementation of the findByPrimaryKey() method is generated by the
container, whereas in the case of BMP beans the bean provider must provide the
implementation in the bean class.

Note

j539663 ch16.qxd 7/25/03 9:17 AM Page 552

553Chapter 16 ✦ Working with Entity Beans

The following code segment illustrates the home interface for the AircraftBean:

package com.connexia.ejb.AircraftBean;
import java.rmi.RemoteException;

import javax.ejb.CreateException;
import javax.ejb.FinderException;

public interface AircraftHome extends javax.ejb.EJBHome {
public Aircraft create(

Integer serialNo,
String modelNo,
String make,
String yearBuilt,
int seatCount)
throws CreateException, RemoteException;

public Aircraft findByPrimaryKey(Integer primaryKey)
throws FinderException, RemoteException;

}

Aircraft — the remote interface
As is the case with the CMP entity beans, the remote interface must extend the
javax.ejb.EJBObject interface. It defines the business methods that clients can use
to interact with the bean. Each method defined in the remote interface should have a
matching method in the bean class. The remote interface only provides the signature,
whereas the bean class provides the actual implementation of the methods.

The following listing illustrates the remote interface for the AircraftBean:

package com.connexia.ejb.AircraftBean;
import java.rmi.RemoteException;

public interface Aircraft extends javax.ejb.EJBObject {
public String getModelNo() throws RemoteException;
public void setModelNo(String modelNo) throws

RemoteException;
public String getMake() throws RemoteException;
public void setMake(String make) throws RemoteException;
public String getYearBuilt() throws RemoteException;
public void setYearBuilt(String yearBuilt) throws

RemoteException;
public int getSeatCount() throws RemoteException;
public void setSeatCount(int seatCount) throws

RemoteException;
}

j539663 ch16.qxd 7/25/03 9:17 AM Page 553

554 Part IV ✦ The Service Tier

AircraftBean — the bean class
For a BMP bean, the bean provider is responsible for writing code to synchronize
the state of the bean with the underlying data source. As we mentioned earlier in
the section on the callback methods, using ejbCreate() is equivalent to inserting
into the database, using ejbLoad() is equivalent to reading from the database,
using ejbStore() is equivalent to updating the database, and using ejbRemove()
is equivalent to deleting a record from the database. The container calls all these
methods at the appropriate times, but the bean provider is responsible for imple-
menting them in the bean class. Listing 16-8 illustrates the bean class for
AircraftBean.

Listing 16-8: The Bean class for AircraftBean

package com.connexia.ejb.AircraftBean;

import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

import javax.ejb.*;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.sql.DataSource;

public class AircraftBean implements EntityBean {
public Integer serialNo;
public String modelNo;
public String make;
public String yearBuilt;
public int seatCount;

private static final String ORACLE_JNDI_NAME =
“examples-dataSource-demoPool”;

public EntityContext context;

/**
* This method gets a database connection and inserts a
* record in the AIRCRAFT table with the passed data.
* @param Integer serialNo
* @param String modelNo
* @param String make
* @param String yearBuilt
* @param int seatCount
* @return Integer Primary key
* @throws CreateException
*/
public Integer ejbCreate(

j539663 ch16.qxd 7/25/03 9:17 AM Page 554

555Chapter 16 ✦ Working with Entity Beans

Integer serialNo,
String modelNo,
String make,
String yearBuilt,
int seatCount)
throws CreateException {
this.serialNo = serialNo;
this.modelNo = modelNo;
this.make = make;
this.yearBuilt = yearBuilt;
this.seatCount = seatCount;

Connection conn = null;
PreparedStatement ps = null;

try {
conn = this.getConnection();
String sql =

“insert into Aircraft(serial_no, model_no,
make, year_built, seat_count) “

+ “values(?, ?, ?, ?, ?)”;
ps = conn.prepareStatement(sql);
ps.setInt(1, serialNo.intValue());
ps.setString(2, modelNo);
ps.setString(3, make);
ps.setString(4, yearBuilt);
ps.setInt(5, seatCount);

int result = ps.executeUpdate();
if (result != 1) {

throw new CreateException(“Can not create
Aircraft”);

}
return serialNo;

} catch (SQLException se) {
throw new EJBException(se);

} finally {
closeStatement(ps);
closeConnection(conn);

}
}

/**
* This method gives the bean an opportunity to perform any
* post-processing tasks.
* @param Integer serialNo
* @param String modelNo
* @param String make
* @param String yearBuilt
* @param String seatCount
* @throws CreateException
*/

Continued

j539663 ch16.qxd 7/25/03 9:17 AM Page 555

556 Part IV ✦ The Service Tier

Listing 16-8 (continued)

public void ejbPostCreate(
Integer serialNo,
String modelNo,
String make,
String yearBuilt,
int seatCount)
throws CreateException {

}

/**
* This method gets a database connection and retrieves the
* Aircraft entity matching with the passed serial no.
* @param Integer serialNo
* @return Integer Primary Key (Serial No)
* @throws FinderException
*/
public Integer ejbFindByPrimaryKey(Integer serialNo)

throws FinderException {
Connection conn = null;
PreparedStatement ps = null;
ResultSet rs = null;

try {
conn = this.getConnection();
String sql = “select serial_no from Aircraft where

serial_no = ?”;
ps = conn.prepareStatement(sql);
ps.setInt(1, serialNo.intValue());
rs = ps.executeQuery();

if (rs.next() == false) {
throw new ObjectNotFoundException(

“Can not find Aircraft with serial no: “ +
serialNo);

}
} catch (SQLException se) {

throw new EJBException(se);
} finally {

closeResultSet(rs);
closeStatement(ps);
closeConnection(conn);

}
return serialNo;

}

/**
* @see

javax.ejb.EntityBean#setEntityContext(javax.ejb.EntityContext)

j539663 ch16.qxd 7/25/03 9:17 AM Page 556

557Chapter 16 ✦ Working with Entity Beans

*/
public void setEntityContext(EntityContext ctx) {

context = ctx;
}

/** This method is invoked just before the instance is
evicted from

* memory.
* @see javax.ejb.EntityBean#unsetEntityContext()
*/
public void unsetEntityContext() {

context = null;
}

/**
* @see javax.ejb.EntityBean#ejbActivate()
*/
public void ejbActivate() {
}

/**
* @see javax.ejb.EntityBean#ejbPassivate()
*/
public void ejbPassivate() {
}

/**
* This method retrieves data from the AIRCRAFT table
* and updates the entity’s state.
* @see javax.ejb.EntityBean#ejbLoad()
*/
public void ejbLoad() {

Integer primaryKey = (Integer) context.getPrimaryKey();
Connection conn = null;
PreparedStatement ps = null;
ResultSet rs = null;

try {
conn = this.getConnection();
String sql =

“select model_no, make, year_built, seat_count
from Aircraft where serial_no = ?”;

ps = conn.prepareStatement(sql);
ps.setInt(1, serialNo.intValue());
rs = ps.executeQuery();
if (rs.next()) {

serialNo = primaryKey;
modelNo = rs.getString(“model_no”);
make = rs.getString(“make”);
yearBuilt = rs.getString(“year_built”);
seatCount = rs.getInt(“seat_count”);

Continued

j539663 ch16.qxd 7/25/03 9:17 AM Page 557

558 Part IV ✦ The Service Tier

Listing 16-8 (continued)

} else {
throw new EJBException();

}
} catch (SQLException se) {

throw new EJBException(se);
} finally {

closeResultSet(rs);
closeStatement(ps);
closeConnection(conn);

}
}

/**
* This method updates the AIRCRAFT table with the
* entity’s state.
* @see javax.ejb.EntityBean#ejbStore()
*/
public void ejbStore() {

Connection conn = null;
PreparedStatement ps = null;
try {

conn = this.getConnection();
String sql =

“update Aircraft set model_no = ?, make = ?,
year_built = ?, seat_count = ?”;

ps = conn.prepareStatement(sql);
ps.setString(1, modelNo);
ps.setString(2, make);
ps.setString(3, yearBuilt);
ps.setInt(4, seatCount);

int result = ps.executeUpdate();
if (result != 1) {

throw new EJBException(“Exception in
ejbStore”);

}
} catch (SQLException se) {

throw new EJBException(se);
} finally {

closeStatement(ps);
closeConnection(conn);

}
}

/**
* This method removes the aircraft record from the

database.
* @see javax.ejb.EntityBean#ejbRemove()
*/
public void ejbRemove() {

Connection conn = null;

j539663 ch16.qxd 7/25/03 9:17 AM Page 558

559Chapter 16 ✦ Working with Entity Beans

PreparedStatement ps = null;

try {
conn = this.getConnection();
String sql = “delete from Aircraft where serial_no

= ?”;
ps = conn.prepareStatement(sql);
ps.setInt(1, serialNo.intValue());
int result = ps.executeUpdate();
if (result != 1) {

throw new EJBException(“Exception in removing
the aircraft”);

}
} catch (SQLException se) {

throw new EJBException(se);
} finally {

closeStatement(ps);
closeConnection(conn);

}
}

/**
* This method gets a connection to the database.
* @return java.sql.Connection
* @throws SQLException
*/
private Connection getConnection() throws SQLException {

DataSource ds = null;
Connection conn = null;
try {

Context ctx = new InitialContext();
ds = (DataSource) ctx.lookup(ORACLE_JNDI_NAME);

} catch (NamingException ne) {
System.out.println(“Error: DataSource lookup

failed”);
ne.printStackTrace();

}
return ds.getConnection();

}

/**
* This method closes the Connection with the database.
* @param java.sql.Connection conn
*/
private void closeConnection(Connection conn) {

try {
if (conn != null)

conn.close();
} catch (SQLException e) {

System.out.println(“Error in closing Connection”);
e.printStackTrace();

Continued

j539663 ch16.qxd 7/25/03 9:17 AM Page 559

560 Part IV ✦ The Service Tier

Listing 16-8 (continued)

}
}

/**
* This method closes the PreparedStatement.
* @param java.sql.PreparedStatement ps
*/
private void closeStatement(PreparedStatement ps) {

try {
if (ps != null)

ps.close();
} catch (SQLException e) {

System.out.println(“Error in closing
PreparedStatement”);

e.printStackTrace();
}

}

/**
* This method closes the ResultSet.
* @param java.sql.ResultSet rs
*/
private void closeResultSet(ResultSet rs) {

try {
if (rs != null)

rs.close();
} catch (SQLException e) {

System.out.println(“Error in closing ResultSet”);
e.printStackTrace();

}
}

/*
* Business Methods. These methods are declared in
* the remote interface of the bean.
* They are used to get and set the bean’s state.
*/

public String getModelNo() {
return modelNo;

}
public void setModelNo(String val) {

modelNo = val;
}
public String getMake() {

return make;
}
public void setMake(String val) {

make = val;
}

j539663 ch16.qxd 7/25/03 9:17 AM Page 560

561Chapter 16 ✦ Working with Entity Beans

public String getYearBuilt() {
return yearBuilt;

}
public void setYearBuilt(String val) {

yearBuilt = val;
}
public int getSeatCount() {

return seatCount;
}
public void setSeatCount(int val) {

seatCount = val;
}

}

Listing 16-9 contains the deployment descriptor for the AircraftBean. The
<persistence-type> is defined as Bean and no fields are defined in the deploy-
ment descriptor. In the BMP model, the fields are defined in the bean class itself.

Listing 16-9: The deployment descriptor for AircraftBean

<ejb-jar>
<enterprise-beans>
<entity>

<description>BMP Example </description>
<ejb-name>AircraftBean</ejb-name>

<home>com.connexia.ejb.AircraftBean.AircraftHome</home>

<remote>com.connexia.ejb.AircraftBean.Aircraft</home>
<ejb-class>

com.connexia.ejb.AircraftBean.AircraftBean
</ejb-class>
<persistence-type>Bean</persistence-type>
<prim-key-class>java.lang.Integer</prim-key-class>
<reentrant>False</reentrant>

</entity>
</enterprise-beans>
<assembly-descriptor>
...
</assembly-descriptor>

</ejb-jar>

public String getMake() throws RemoteException;

j539663 ch16.qxd 7/25/03 9:17 AM Page 561

562 Part IV ✦ The Service Tier

Exceptions
The following is a list of the standard application exceptions defined by the EJB
specifications:

✦ CreateException

✦ DuplicateKeyException

✦ FinderException

✦ ObjectNotFoundException

✦ RemoveException

Each exception has its own meaning and the related methods must include these
exceptions in their throws clause. For a CMP bean, the container handles the part
of throwing these exceptions. But for a BMP, the bean provider must throw these
exceptions in the bean class as appropriate. The client application can handle these
exceptions just like any other application exception.

CreateException
CreateException indicates that an application error has occurred during the create
operation. This exception must be listed in the throws clause of the create(),
ejbCreate(), and ejbPostCreate() methods.

DuplicateKeyException
Each entity-bean instance is associated with a unique primary key. If the client
application attempts to create an entity bean with an existing primary key, the
DuplicateKeyException is thrown. DuplicateKeyException is a subclass of
CreateException, and it is thrown by the container to the client to indicate that
the entity object cannot be created because an entity object with the same key
already exists.

FinderException
The container throws the FinderException if an application error occurs during
the find or select operation. All the finder and select methods must include the
FinderException in their throws clause.

ObjectNotFoundException
If the client application invokes a single-object finder or select method and no
matching entity is found, the container throws the ObjectNotFoundException.
Only single-object finder or select methods throw this exception. If the client appli-
cation invokes a multi-object finder or select method and no matching entity is
found, the container simply returns an empty list.

j539663 ch16.qxd 7/25/03 9:17 AM Page 562

563Chapter 16 ✦ Working with Entity Beans

RemoveException
RemoveException indicates that an application error has occurred during the
remove operation.

Summary
Entity beans provide a powerful abstraction from Java objects to persistent, trans-
actional business logic. In this chapter, we studied the development of entity beans.
We looked at the lifecycle of entity beans and several callback methods. We dis-
cussed the distinction between the CMP and BMP entity beans. We developed a
CMP PassengerBean to represent a passenger for our Connexia Airlines example
and explained how to declare relationships in the CMP model. We also examined
the query language (EJB QL) and the different constructs that it supports. The CMP
model allows for rapid development, where the bean provider can focus on the
business logic while leaving the infrastructure to the EJB container. We also devel-
oped BMP AircraftBean that included the logic to access the database.

The BMP model requires more work for the bean provider but it also allows for
more flexibility than the CMP model.

✦ ✦ ✦

j539663 ch16.qxd 7/25/03 9:17 AM Page 563

j539663 ch16.qxd 7/25/03 9:17 AM Page 564

Using Message-
Driven Beans

The message-driven beans are the EJB components, which
perform one specific function — retrieve messages from a

message-oriented middleware (MOM). As opposed to session
or entity beans, client programs do not access these beans
directly. These beans use message listeners and are activated
by the EJB container when the message arrives. The client
programs could be written using Java or any other language
that can send messages to the MOM of your choice, which
makes messaging in general and MDB in particular a good
component for integration of the J2EE systems with the legacy
applications.

We’ve briefly mentioned message-driven beans (MDBs) in
Chapter 14 while discussing the Enterprise JavaBeans archi-
tecture. You also learned in Chapter 9 how Java programs
send messages to each other using the Java Messaging
Service (JMS) API. In this chapter we’ll discuss how the EJB
technology in general, and MDB in particular, fits in the J2EE
messaging architecture. But before going into details, let’s see
why the need for MDB has arisen in the EJB world.

Understanding the Need for MDB
One of the most important benefits of message-oriented sys-
tems is that the messages can be sent and received asyn-
chronously (there could be a time gap between these two
actions). This process is very similar to sending or receiving
an e-mail. A person can send an e-mail and immediately con-
tinue working on some other task without waiting for a reply.
The recipient may not have his or her mail reading program
up and running when the message is sent, but he or she will
get the message later.

1717C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Using Enterprise
JavaBeans for
messaging

Bringing together EJB
and MOM

Noting changes to
MDB in the EJB 2.1
specification

Working with EJBs
asynchronously

✦ ✦ ✦ ✦

j539663 ch17.qxd 7/25/03 9:17 AM Page 565

566 Part IV ✦ The Service Tier

Enterprise JavaBeans are controlled by an EJB container that creates, pools, acti-
vates, passivates, and removes them. Using an EJB for sending messages is straight-
forward. For example, you can create a JMS Connection object in the ejbCreate()
method and close it in the ejbRemove() method. You may also need to repeat
these operations in the methods ejbActivate() and ejbPassivate(). After
you’ve done this, any business method of an EJB can create a JMS Session, a
QueueSender, or a TopicPublisher, and send or publish a message.

See Chapter 9 for a discussion of JMS.

Things get complicated if you want a receiving session bean that will “wait” for the
messages asynchronously. Even though nothing stops you from declaring that a
session bean implement a MessageListener interface, the container’s action may
not guarantee that this listening thread will work properly because the bean is not
an independent Java program. The EJB specification in general strongly discour-
ages developers from using any threads that are not created by the container. It
also specifically states that “session and entity beans are not permitted to be mes-
sage listeners.” For details, see section 15.4.2 in the EJB specification 2.1, which can
be downloaded from http://java.sun.com/products/ejb/docs.html).

That’s why a special class called message-driven beans has been introduced in the
EJB specification 2.0. The first design of MDB supported only JMS messaging.
Starting from version 2.1, message-driven beans can be also used for other types of
messaging, such as the lightweight SOAP-based messaging which is widely used in
Web services.

Message-oriented middleware is still required for MDB. In some cases the EJB ven-
dor of your choice may provide the implementation of the MDB and the MOM. For
example, the application server WebSphere 5.0 from IBM supports EJB 2.0, and it
also provides a very robust MOM called WebSphere MQ (formerly MQSeries). The
application server WebLogic from BEA Systems also supports EJB 2.0 starting from
version 6.1. BEA also provides its own implementation of MOM. Application-server
vendors often enable you to use the MOM of another vendor even if they provide
their own. For example, WebLogic explains how to do this in its white paper called
“Using Foreign JMS Providers with WebLogic Server.” For details, see http://
dev2dev.bea.com/resourcelibrary/whitepapers/jmsproviders.jsp.

A sample scenario of ticket reservations system that uses MDB is shown in Figure
17-1. For simplicity, the same clients send orders and receive confirmations. In real
life senders and receivers could be different. The MDB receives the messages from
the Reservation queue, passes them for further processing to a session bean,
which creates a reservation and sends confirmations or rejections back to the
Confirmation queue.

Cross-
Reference

j539663 ch17.qxd 7/25/03 9:17 AM Page 566

567Chapter 17 ✦ Using Message-Driven Beans

Figure 17-1: A sample ticket reservation system

An MDB has neither home nor remote interfaces, because its clients do not need to
access the bean — it just sits in the EJB container’s memory and listens to a particular
queue or a topic. Such a bean must implement two interfaces: MessageDrivenBean
and some message listener, such as javax.jms.MessageListener. When a message
appears in the queue the EJB container picks one of the message-driven beans from
the pool and passes the message to that bean’s onMessage() method. Listing 17-1
shows how the Caterer class from Chapter 9 could be implemented as an MDB.

Listing 17-1: Message-driven bean caterer

import javax.jms.*;
import javax.ejb.*;
public class Caterer

implements MessageDrivenBean, MessageListener{
MessageDrivenContext ctx;
// A no-argument constructor is required
public Caterer() {}
public void onMessage(Message message){
try {

MapMessage mmsg = (MapMessage)msg;
System.out.println(“Meal request for flight “+

mmsg.getString(“flightNumber”)+
“ on date “+mmsg.getString(“date”));

}
catch(Exception e) {

e.printStackTrace();
}

}

Continued

Message-Oriented Middleware J2EE Application Server

EJB Container

Message-
Driven Bean

Session
Bean

Reservations Queue
Receives

Sends

Java JMS Client

Java non-JMS
Client

Non-Java Client

Confirmations Queue

j539663 ch17.qxd 7/25/03 9:17 AM Page 567

568 Part IV ✦ The Service Tier

Listing 17-1 (continued)

public void ejbRemove()throws javax.ejb.EJBException {
}
public void setMessageDrivenContext(
MessageDrivenContext ctx)throws javax.ejb.EJBException {
this.ctx = ctx;

}
public void ejbCreate() {
}

}

If you use MDB instead of independent Java message consumers, an EJB container
gives you the following excellent freebies:

✦ Transaction services — Like other beans, transactions can be handled either
in the code (bean-managed transactions) or by the container (container-
managed transactions).

✦ Automatic pooling — Because MDBs are controlled by a container, you can
easily configure the number of MDBs by specifying pool size in the deploy-
ment descriptor (described in the next section). In high-volume systems you
can easily increase the number of consumers by changing the pool size.

✦ Co-location of receivers and other beans — MDBs, session and entity beans
live in the same EJB container, which eliminates the need for the network
communication between the message receiver and the beans that implement
business processing logic.

✦ Simple association of queues or topics to an MDB in deployment
descriptors — See the section, “MDB deployment descriptors,” later in this
chapter.

✦ Security services — Security of the MDB can be specified in the deployment
descriptor of the bean.

As you see, message-driven beans become very handy for any EJB application that
needs to receive messages from another system. Existence of MDBs allows you to
perform more work inside of the EJB container. Similarly to session and entity
beans, the EJB container controls the lifecycle of MDBs as well. During the lifecycle
of an MDB, a container calls various methods on the bean, which are described in
the next section.

j539663 ch17.qxd 7/25/03 9:17 AM Page 568

569Chapter 17 ✦ Using Message-Driven Beans

Reviewing MDB Lifecycle Methods
Every MDB must implement the javax.ejb.MessageDrivenBean and the appro-
priate message-listener interface, for example javax.jms.MessageListener. As of
EJB specification 2.1, besides the JMS messaging, vendors of EJB containers must
also support MDBs based on the Java Connector Architecture 1.5.

See Chapter 19 for a discussion of the Java Connector Architecture.

An EJB container calls several methods during the lifecycle of an MDB. The
javax.ejb.MessageDrivenBean interface declares two callback methods that are
invoked by the container: ejbRemove() and setMessageDrivenContext().Each
MDB must have a no-argument ejbCreate() method. After creating an instance of
the bean’s class, the container calls the setMessageDrivenContext() method, and
then ejbCreate(). The ejbRemove() method is called when the bean’s instance is
being removed from memory by the container. The setMessageDrivenContext()
method is called to associate the bean instance with its context maintained by the
container. The bean’s context can be used for transaction management, security, and
the EJB timer services.

If an MDB implements the javax.jms.MessageListener interface it can be called
a JMS message-driven bean. In this case the bean must implement the onMessage()
method, as shown in Listing 17-1. This method is called by the EJB container when
a message has been placed into the queue or published to a topic specified in the
bean’s deployment descriptor. The onMessage() method has to contain the busi-
ness logic that handles the processing of the message.

If an MDB implements either the javax.xml.messaging.OnewayListener or
javax.xml.messaging.ReqRespListener interface, it can be called a JAXM
message-driven bean (JAXM stands for Java API for XML Messaging).

Like any other EJB, message-driven beans can implement an optional interface,
javax.ejb.TimedObject. This interface is a container-provided EJB timer service
that allows an EJB to be registered for timer callback methods that will be invoked
by the container after a specified interval. This interface has a single method,
ejbTimeout(), and if an MDB is registered with the EJB timer service this method
will be called when the timer expires.

Besides the ability to control the lifecycle of an MDB, the container needs to have
the means to associate the MDB with a particular message producer, set the
acknowledgement, mode, transactional behavior and some other configurable
attributes. Such attributes are specified in the MDB deployment descriptors that
are discussed next.

Cross-
Reference

j539663 ch17.qxd 7/25/03 9:17 AM Page 569

570 Part IV ✦ The Service Tier

Examining MDB Deployment Descriptors
Configurable attributes of message-driven beans are located in the same XML-based
deployment descriptors where the session or entity beans store their attributes.
The EJB specification 2.0 has defined the major MDB attributes, and the EJB specifi-
cation 2.1 added new functionality to MDBs and some new descriptor elements.
Let’s talk about how we can configure message-driven beans.

Deployment descriptors as per EJB 2.0
If you compare the code in Listing 17-1 with the Caterer class from Chapter 9 you’ll
notice that the MDB version does not create a JMS connection, session, or receiver,
and that the names of the queues are not specified in the code. These JMS objects
are specified in the deployment descriptors of the MDB. Some of the values have to
be specified in the ejb-jar.xml descriptor that must be implemented by all EJB
Container vendors, and some MDB parameters are listed in a vendor-specific
descriptor(s).

Listing 17-2 shows a sample deployment descriptor, ejb-jar.xml, for the Caterer
MDB. This descriptor contains the message-driven element that marks the bean as
an MDB. It also states that the Caterer MDB will use container-managed transactions,
and that the JMS messages will be acknowledged by means of the auto-acknowledge
mode explained in Table 9-2 in Chapter 9. This bean will listen to a topic in a non-
durable way: If the bean is not listening when a message is published to the topic, the
bean won’t get the message.

Listing 17-2: The deployment descriptor of the Caterer MDB

<!DOCTYPE ejb-jar PUBLIC “-//Sun Microsystems, Inc.//DTD
Enterprise JavaBeans 2.0//EN” “http://java.sun.com/dtd/ejb-
jar_2_0.dtd”>
<ejb-jar>

<enterprise-beans>
<message-driven>

<ejb-name>Caterer</ejb-name>
<ejb-class>Caterer</ejb-class>
<transaction-type>Container</transaction-type>
<transaction-scope>Local</transaction-scope>
<jms-acknowledge-mode>

auto-acknowledge
</jms-acknowledge-mode>
<message-driven-destination>
<jms-destination-type>

javax.jms.Topic
</jms-destination-type>
<jms-subscription-durability>

nondurable
</jms-subscription-durability>

j539663 ch17.qxd 7/25/03 9:17 AM Page 570

571Chapter 17 ✦ Using Message-Driven Beans

</message-driven-destination>
</message-driven>

</enterprise-beans>
<assembly-descriptor>

<container-transaction>
<method>

<ejb-name>Caterer</ejb-name>
<method-name>onMessage</method-name>
<method-params>
<method-param>
javax.jms.Message

</method-param>
</method-params>

</method>
<trans-attribute>NotSupported</trans-attribute>

</container-transaction>
</assembly-descriptor>

</ejb-jar>

The ejb-jar.xml deployment descriptor does not include queue or topic names —
these values are specified in the vendor-specific descriptors, for example in
weblogic-ejb-jar.xml, shown in Listing 17-3. The MealOrders object that repre-
sents a JMS topic has to be created, configured, and bound to the application
server’s JNDI tree in advance. Decoupling the MDB code from the consumer type
and name has another benefit; should we decide to use the same bean for getting
messages from a queue instead of a topic, we do not need to change the code. We
just modify the deployment descriptor and restart the server.

Listing 17-3: The WebLogic deployment descriptor
weblogic-ejb-jar.xml

<?xml version=”1.0”?>
<!DOCTYPE weblogic-ejb-jar PUBLIC

“-//BEA Systems, Inc.//DTD WebLogic 6.0.0 EJB//EN”
“http://www.bea.com/servers/wls600/dtd/weblogic-ejb-

jar.dtd”>
<weblogic-enterprise-bean>

<ejb-name>Caterer</ejb-name>
<message-driven-descriptor>
<destination-jndi-name>

MealOrders
</destination-jndi-name>

<pool>
<max-beans-in-free-pool>100</max-beans-in-free-pool>
<initial-beans-in-free-pool>20</initial-beans-in-free-pool>

Continued

j539663 ch17.qxd 7/25/03 9:17 AM Page 571

572 Part IV ✦ The Service Tier

Listing 17-3 (continued)

</pool>
</message-driven-descriptor>

</weblogic-enterprise-bean>

The WebLogic application server creates and maintains a pool of message-driven
beans. If the size of the pool is not specified (see the max-beans-in-free-pool
element in Listing 17-3) the number of beans in the pool is limited only by the size
of the memory.

Changes in MDB 2.1 deployment descriptors
As the step toward support for Web services, MDBs 2.1 can process not only the
JMS but also other types of messages. Please note that any particular MDB can pro-
cess only a single messaging type. Changes that allow you to specify the type of
messages have been made in some of the deployment descriptor elements. The
new <messaging-type> element defines whether the MDB uses JMS or some other
type of messaging. For JMS messages this element will look as follows:

<messaging-type>javax.jms.MessageListener</messaging-type>

For messaging other than JMS this element must contain a fully qualified name of
the appropriate class. If the <messaging-type> element is missing, the default
value javax.jms.MessageListener is used.

A new generic element, <activation-config>, has to contain the values of the
expected configuration properties of the message-driven bean — such as message
acknowledgement, message selector, expected destination type, and whatever
else might be needed by the messaging environment. The presence of the
<jms-acknowledge-mode> property is no longer a given. Properties that are spe-
cific to MOM have to be specified now with the key-value pairs <activation-
config-property-name> and <activation-config-property-value>. For exam-
ple, the <jms-acknowledge-mode> element from Listing 17-2 will look as follows:

<activation-config>
<activation-config-property>

<activation-config-property-name>
jms-acknowledge-mode

</activation-config-property-name>
<activation-config-property-value>

auto-acknowledge
</activation-config-property-value>

</activation-config-property>

</activation-config>

Note

j539663 ch17.qxd 7/25/03 9:17 AM Page 572

573Chapter 17 ✦ Using Message-Driven Beans

The message-selector values are specified in a similar fashion:

<activation-config-property-name>
messageselector

</activation-config-property-name>
<activation-config-property-value>

meal_type=’veg’

</activation-config-property-value>

The <jms-destination-type> element becomes <message-destination-type>,
as follows:

<message-destination-type>
javax.jms.Topic

<message-destination-type>

The connector-based MDBs require the URL of a remote connection factory in the
following format:

url=corbaname:iiop:server-name:1050# server -name

Let’s say that the server name is April25. The appropriate element in the descrip-
tor file will look like this:

<activation-config-property-name>
url

</activation-config-property-name>
<activation-config-property-value>

corbaname:iiop:April25:1050#April25
</activation-config-property-value>

Internal messaging within EJB applications
One of the new features of EJB 2.1 is the ability to link session and entity beans that
send messages with MDBs that consume them by matching producers and con-
sumers in the deployment descriptor. The new <message-destination-link-ref>
element specifies the usage, name, and type, and the destination to which messages
have to be sent. If this element includes the <message-destination-link> ele-
ment, the sending bean and the receiving MDB will become “linked.” This linking
can be done only for the beans in the same application. The rest of the fragment of
the deployment descriptors in this section demonstrates how the session bean
MealOrderSender can be linked with the MDB Caterer by means of the JMS topic
MealOrders.

<session>
<ejb-name>MealOrderSender</ejb-name>
...
<message-destination-ref>
<message-destination-ref-name>

j539663 ch17.qxd 7/25/03 9:17 AM Page 573

574 Part IV ✦ The Service Tier

MealOrders
</message-destination-ref-name>
<message-destination-type>

javax.jms.Topic
</message-destination-type>
<message-destination-usage>

Produces
</message-destination-usage>
<message-destination-link>

MealServiceTopic
</message-destination-link>

</message-destination-ref>
...

</session>

The EJB producer can locate and get a reference to this JMS topic by executing
code that might look like this:

Context ctx = new InitialContext();
Topic mealTopic = (Topic) ctx.lookup(“MealOrders”);

The MDB that receives meal orders must have the same value in its <message-
destination-link> descriptor element, as the sending session bean, for example:

<message-driven>
<ejb-name>Caterer</ejb-name>
...
<messaging-type>

javax.jms.MessageListener

</messaging-type>
<message-destination-link>

MealServiceTopic
</message-destination-link>

</message-destination-ref>
...

</message-driven>

The name of this link must also be specified in the <message-destination>
element, as shown here:

<assembly-descriptor>
...
<message-destination>
<message-destination-name>
MealServiceTopic
</message-destination-name>

j539663 ch17.qxd 7/25/03 9:17 AM Page 574

575Chapter 17 ✦ Using Message-Driven Beans

</message-destination>
...
</assembly-descriptor>

In general, deployment descriptors allow an easy mapping of the message-driven
beans to the message sources, specify acknowledgment modes, control the number
of message consumers and work with many other configurable bean’s attributes.
After the beans are deployed, they can be accessed by the clients, and this is the
next topic of our chapter.

Understanding Clients and MDB
Message-driven beans are special in that the clients never need to access them. The
clients just send or publish messages, and from their perspective an MDB is just a
consumer of these messages. That’s why there are no such things as home or
remote interfaces used by the clients of session or entity beans. From the perspec-
tive of the client MDBs are stateless, because they do not know who their clients
are. The only state that MDBs may store is references to other objects, for example
open database connections.

Application servers usually create and maintain a pool of MDBs, which may
improve the speed of message consumption tremendously because the beans
will retrieve messages concurrently. In some scenarios, however, this process
might present a problem for the clients that need to ensure that the messages
are retrieved in the same order in which they were sent. Imagine an online stock-
trading system that enables customers to place their orders to buy or sell securities
24 hours a day. Let’s say a customer enters an order to sell 100 shares of IBM at
8:30 a.m., and it’s placed in the application’s queue. At 8:31 a.m. some good news
about IBM is broadcast on the radio, and the customer decides to keep the stock
and places a cancel order that goes to the same queue. The message-driven beans
will start consuming the messages concurrently from this queue at 9:30 a.m. when
the stock market opens. The chances are that the cancel order will be picked up
before the order to sell! No general solution for such problems exists — each appli-
cation has to implement some processing logic specific to the business.

The fact that the clients and MDBs are decoupled makes it impossible for the beans
to know anything about the transaction context of their clients. Besides, transac-
tions lock up the system resources and should be executed quickly, but the possi-
ble time gaps between the sending and receiving messages can lead to a long
running transaction. That’s why the only options for the <trans-attribute>
element in the MDB deployment descriptor are either NotSupported or Required
(the bean can start its own transaction).

The next section will discuss the relationships between the clients, message-driven
and session beans from a different perspective — asynchronous versus synchro-
nous processing.

j539663 ch17.qxd 7/25/03 9:17 AM Page 575

576 Part IV ✦ The Service Tier

Working with EJBs Asynchronously
As opposed to asynchronous processing offered by MDBs, session and entity beans
work only in a synchronous mode. For example, a client gets a remote reference to
the OrderProcessor session bean and calls its method placeOrder() to buy 100
shares of stock with a symbol SUNW and waits till the method is complete. The pro-
cess of placing such an order can consist of the following steps:

1. Creating a new order in the database.

2. Connecting and passing the order to the system running on the stock
exchange.

3. Receiving the confirmation or a rejection of the order from the stock
exchange.

4. Updating the order status in the database.

If the method placeOrder() returns a result to the client only after all of the above
steps are complete, we call it a synchronous processing. But in a distributed appli-
cation these steps are performed on different computers and multiple clients
should to be able to place the orders fast, regardless of the delays that may happen
during any of these steps. That’s why it could be a good idea to introduce the asyn-
chronous messaging to this process. For example, instead of a direct connection to
the stock exchange, the OrderProcessor session bean can send the orders as mes-
sages to a queue, while the StockExchangeOrder MDB retrieves the messages
from this queue. Now the placeOrder() method will complete much faster, and
the orders can be accumulated in the message queue in case of delays in the stock
exchange. Another MDB (namely, StockExchangeConfirmation) will listen to the
confirmations and rejections coming back from the stock exchange and initiate the
order status update in the database.

If your application server does not support MDBs, you can arrange such asyn-
chronous work with the session or entity beans using one of the J2EE design pat-
terns called Service Activator. The service activator can be implemented as an
independent Java class that receives the client messages asynchronously, and then
locates and invokes the required business methods (namely, the session bean’s
methods) to fulfill the request. The service activator class must implement the
proper listener interface to be able to consume the messages, for example:

public class OrderServiceActivator implements
MessageListener{...}

On the message arrival this class finds the OrderProcessor session bean and calls
its placeOrder() method. You can find more information on the service-activator
pattern at http://java.sun.com/blueprints/corej2eepatterns/Patterns/
ServiceActivator.html.

j539663 ch17.qxd 7/25/03 9:17 AM Page 576

577Chapter 17 ✦ Using Message-Driven Beans

Usually J2EE application servers allow you to specify the classes that have to be
automatically instantiated on the server’s startup. If the OrderServiceActivator
class is specified as such startup class, it will be instantiated by the server and in a
daemon-like manner will listen to the incoming messages until the server is shut
down. The other alternative is to instantiate this class independently outside of the
application server’s JVM.

During your business processing the session beans could also be clients to another
session or entity beans, and you can always break this synchronous link in your
business chain by introducing either an MDB or a custom-made service activator
class.

Summary
Messaging is an elegant way to connect different components of distributed appli-
cations. Message-driven beans enable you to take advantage of the benefits of EJB
containers while integrating J2EE applications with Java-based or non-Java-based
systems.

In this chapter we’ve covered such topics as the benefits of using message-driven
beans as opposed to independent Java programs, relationships between the clients
and MDBs, and how to configure an MDB using deployment descriptors. We’ve also
discussed the asynchronous nature of the message-driven beans.

MDB should definitely be considered for real-time systems that require high-
performance and concurrent message processing. The introduction of non-JMS
message-driven beans into EJB specification 2.1 makes them even more valuable
components for distributed enterprise applications.

✦ ✦ ✦

j539663 ch17.qxd 7/25/03 9:17 AM Page 577

j539663 ch17.qxd 7/25/03 9:17 AM Page 578

The Data Tier
✦ ✦ ✦ ✦

In This Part

Chapter 18
Reviewing Java
Database
Connectivity

Chapter 19
Understanding the
J2EE Connector
Architecture

✦ ✦ ✦ ✦

P A R T

VV

k539663 PP05.qxd 7/25/03 9:17 AM Page 579

k539663 PP05.qxd 7/25/03 9:17 AM Page 580

Reviewing
Java Database
Connectivity

Business applications usually store data in databases.
Currently, relational-database-management systems

(RDBMSes) are the most popular ones. They store data in
tables that consist of rows and columns, and understand
Structured Query Language (SQL) (which is beyond the scope
of this book). The major commercial relational RDBMSes are
Oracle, DB2, SQL Server, and Sybase.

Two technologies are available for accessing relational
databases from Java programs. The first is SQLJ, which is
an American National Standards Institute (ANSI) and Inter-
national Organization for Standardization (ISO) standard
for embedding SQL in Java. Next is JDBC (Java Database
Connectivity), which is defined by the Java Community
Process.

J2SE and J2EE include the packages java.sql and javax.sql,
which contain all classes required for a Java program that
access a database by means of JDBC. Please refer to the ven-
dor’s documentation for your DBMS or J2EE application server
to see what version of JDBC drivers is implemented.

The best thing about the JDBC Application Programming
Interface (API) is that it’s the same for all databases; it does
not require any proprietary calls, and it provides easy access
to the information. If you use standard SQL or stored proce-
dures and need to switch from Oracle to SQL Server, for exam-
ple, you need change only the name of the driver or a data
source in your Java programs.

1818C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Introducing the
different types of
JDBC drivers

Working with
result sets

Using the RowSet
interface

Explaining database
connection pooling

✦ ✦ ✦ ✦

l539663 ch18.qxd 7/25/03 9:17 AM Page 581

582 Part V ✦ The Data Tier

In this chapter we’ll discuss JDBC technology and its current specification, 3.0.
We’ll also cover the following topics:

Various JDBC driver types.

Different methods of executing SQL queries and processing database result sets.

How to update the data stored in a database using SQL or stored procedures.

What are the benefits and how to use database connection pools and data
sources.

How to perform batch updates, use the savepoints and transactions.

Disconnected result sets.

All examples in this chapter have been tested against the Oracle database server,
version 9.2. An evaluation version of this product is available at http://otn.
oracle.com/software/products/oracle9i/content.html. The JDBC drivers
can be found under the installation directory in the file jdbc\lib\classes12.jar,
which must be added to the CLASSPATH variable.

Introducing JDBC Driver Types
JDBC drivers play the role of middleman between a Java program and an RDBMS.
Drivers are available from database vendors and from the vendors of J2EE applica-
tion servers. Sun also provides a reference implementation of drivers for each JDBC
specification. The list of available JDBC drivers can be found at the following URL:
http://industry.java.sun.com/products/jdbc/drivers.

Regardless of what RDBMS you use, you should understand the four following types
of JDBC drivers and be aware of their pros and cons as you decide which one is
most suitable for your application:

✦ Type 1 — This driver is a JDBC-ODBC bridge that allows Java programs to
work with a database using widely available ODBC drivers. For example, if you
have an ODBC driver for Oracle installed on your computer, no additional
Java classes are required for database access. The major drawbacks of the
ODBC drivers are that they are slower than the other types, and must be
installed and configured on each user’s machine — on Windows computers
installation and configuration are done via a special icon in the Control Panel
(see more details in the section “Configuring the JDBC-ODBC Bridge”). If you
access databases from Java applets, access to the hard disk is restricted and
type 1 drivers may not be an option.

✦ Type 2 — This driver consists of Java classes that work in conjunction with
the non-Java native drivers, provided by the database vendors, that are
installed on the client’s machines. These drivers work much faster than type 1
drivers, but they also require installation and configuration on the machine on
which the Java programs run. These drivers convert JDBC requests to calls to
the client’s portion of the native DBMS drivers.

l539663 ch18.qxd 7/25/03 9:17 AM Page 582

583Chapter 18 ✦ Reviewing Java Database Connectivity

A type 2 driver is a partly-Java driver. In the client-server applications, when
multiple clients are working directly with a database, the fact that these
drivers must be installed on each client’s machine is a downside of the type 2
drivers. In J2EE applications these drivers are installed only on the machines
that run application servers.

✦ Type 3 — This driver is a pure Java network driver (JDBC-Net driver) that is
provided by some application servers and consists of two parts. The first part
is the client’s portion, which performs a DBMS-independent SQL call. The sec-
ond part is the SQL call itself, which is then translated to a specific protocol
according to the middleware vendor. This driver has the flexibility of working
with different databases. The downside of using this driver is that you have to
deal with a middleware vendor (or application server vendor) which created
these flexible drivers, and that can be expensive. All other types of drivers are
usually provided by the database vendors for free.

✦ Type 4 — This driver is a pure Java driver, which comes as a .jar or a .zip
file containing Java classes that perform direct calls to the database server. It
does not need any configuration on the client’s machine and can be dynami-
cally downloaded to the client. The applets can be packaged with this driver
by means of the archive attribute of the <applet> HTML tag, which automat-
ically downloads the .jar file with the drivers to the user machine’s memory.

The best way to learn how to work with JDBC drivers is by writing the Java pro-
gram that accesses the data stored in the database. That’s why the next section will
show you an example of such program.

Creating Your First JDBC Program
In this section we’ll go over several simple steps that must be performed in any
Java program that works with a relational database using JDBC. We’ll identify the
required steps and then implement them in a sample program that displays the list
of registered users of Connexia Airlines (described in Appendix A).

We assume that the reader knows that in relational databases data is stored in
tables as rows and columns. One row represents one database record, for example,
one customer, one order, and so on. A column corresponds to a field from a record,
i.e. last name, age, and so on. The SQL select statement is used to retrieve data from
the database, for example:

select lastname, firstname from customer

The SQL insert statement is used to add a new row to the table, for example:

Insert into customer values(“Lee”, “Mary”)

l539663 ch18.qxd 7/25/03 9:17 AM Page 583

584 Part V ✦ The Data Tier

The SQL update statement modifies the data. The next example will change the last
name of a customer with id=123. The new last name will become Smith after execu-
tion of the following statement:

Update customer set lastname=”Smith” where custid=123

Finally, the SQL delete removes a row(s) from the database:

Delete from customer where custid=123

Our example will use the tables air_user and login that must be created in
Oracle or another relational database by means of SQL create statements, as shown
in Listing 18-1.

Listing 18-1: The database tables air_user and login

CREATE TABLE air_user (
id NUMBER NOT NULL,
lastname VARCHAR2(20) NOT NULL,
firstname VARCHAR2(20) NOT NULL,
street VARCHAR2(30) NOT NULL,
city VARCHAR2(30) NULL,
state VARCHAR2(2) NULL,
zip NUMBER(5) NOT NULL,
country VARCHAR2(10) NOT NULL,
phone VARCHAR2(10) NULL,
fax VARCHAR(12) NULL,
email VARCHAR2(40) NULL,
user_type varchar2(1) NULL,
emloyeeID VARCHAR2(10) NULL,
PRIMARY KEY (id),
FOREIGN KEY (id) references login(userID)

);
insert into air_user values (1,’Queen’,’Larry’,’123 Main St.’,
‘Princeton’,’NJ’,’08068’,’USA’,6091235566’, ‘6091235567’,
‘ql123@somemail.com’,’A’,null);
insert into air_user values (2,’Nelson’,’Mary’, ‘30 Broadway’,
‘New York’,’NY’,’10001’,’USA’,’2121035566’, ‘2121205567’,

‘nm@somemail.com’,’P’,’1398’);

CREATE TABLE login (
userID NUMBER NOT NULL,
username VARCHAR2(10) NOT NULL,
password VARCHAR2(10) NOT NULL,
hint_question VARCHAR2(50) NULL,
hint_answer VARCHAR2(50) NULL,
role VARCHAR2(10) NOT NULL

CHECK (role IN (‘A’, ‘P’, ‘C’, ‘E’)),
PRIMARY KEY (userID)

);

l539663 ch18.qxd 7/25/03 9:17 AM Page 584

585Chapter 18 ✦ Reviewing Java Database Connectivity

insert into login values(1, ‘LQueen’, ‘spring’,
‘What is the name of your pet?’,’Sharick’,’consumer’);

insert into login values(2, ‘MNelson’, ‘fall’,
‘ What is the name of your boyfriend?’,’Joe’,’employee’);

After the table is created, two rows are inserted for the logins LQueen and MNelson.
To simplify conversion to other relational DBMSes, only two data types have been
used in the tables air_user and login— all text columns have the data type
VARCHAR2, and all numeric data are represented by the type NUMBER.

Retrieving data
The following is a typical sequence of actions for a Java program to perform to
retrieve data from a database table or tables:

1. Load a JDBC driver using the method Class.forName(). You’ll have to find
out the name of the class to be loaded by using the method forName() from
the driver’s documentation. Please note that so-called XA drivers support dis-
tributed transactions and the two-phase commit — you can easily recognize
them because the name of the class always contains XA.

2. Obtain the database connection. You can do this by calling the DriverManager.
getConnection() method. Because obtaining a connection to the database is a
slow process, we recommend using database connection pools, which are
described later in this chapter in the section, “Explaining Database Connection
Pools and Data Sources.”

3. Create a Statement object by calling Connection.createStatement(). As an
alternative, you could create a PreparedStatement or a CallableStatement;
these are explained a little bit later in the sections, “The PreparedStatement
Class” and “The CallableStatement Class” respectively.

4. For SQL select statements call the Statement.executeQuery() method.
For SQL insert, update, or delete statements call the Statement.
executeUpdate() method. For SQL queries, which produce more than one
result set, use the execute() method.

5. Write a loop to process the database result set, if any. For example:

ResultSet rs=
stmt.executeQuery(“select lastname from air_user”);

while (rs.next()) {
String lastName=rs.getString(“lastname”);

}

6. Release the system resources by closing the ResultSet, Statement, and
Connection objects.

l539663 ch18.qxd 7/25/03 9:17 AM Page 585

586 Part V ✦ The Data Tier

The UserList class shown in Listing 18-2 performs all the preceding steps. This
class displays the users’ data from the table air_user shown in Listing 18-1 using
Oracle JDBC drivers of type 2 (described earlier in this chapter).

Listing 18-2: The UserList program

import java.sql.*;
class UserList {
public static void main(String argv[]) {
Connection conn=null;
Statement stmt=null;
ResultSet rs=null;

try {
// Load the Oracle JDBC driver
Class.forName(“oracle.jdbc.driver.OracleDriver”);

// Connect to locally installed Oracle database using
// JDBC driver of type 2 and default user
// credentials scott/tiger.
// Type 4 driver would have been loaded using
// “jdbc:oracle:thin:scott/tiger@”

conn = DriverManager.getConnection(
“jdbc:oracle:oci:scott/tiger@”);

String sqlQuery=
“select id,lastname,firstname from air_user”;

stmt = conn.createStatement();

// Execute SQL and get the ResultSet object
rs = stmt.executeQuery(sqlQuery);

// Process the result set - print user id and name
while(rs.next()){
int id = rs.getInt(“id”);
String lastName = rs.getString(“lastname”);
String firstName= rs.getString(“firstname”);
System.out.println(“ User Id: “ + id +

“, Last Name: “ + lastName +
“, First Name: “ + firstName + “\n”);

}

} catch(SQLException se) {
System.out.println (“SQLError: “ + se.getMessage()

+ “ code: “ + se.getErrorCode());
} catch(Exception e) {

e.printStackTrace();
} finally{

// clean up system resources
try{

l539663 ch18.qxd 7/25/03 9:17 AM Page 586

587Chapter 18 ✦ Reviewing Java Database Connectivity

rs.close();
stmt.close();
conn.close();

} catch(Exception e){
e.printStackTrace();

}
}

}
}

After compilation and running, the UserList program’s command-prompt window
should look like this:

User Id: 1, Last Name: Queen, First Name: Larry
User Id: 2, Last Name: Nelson, First Name: Mary

Database-error processing
The UserList class processes possible database errors by catching an
SQLException. You can retrieve the original database-error code by calling the
getErrorCode() method, and the error text by calling the getMessage() method.
Sometimes a DBMS will return more than one error. The following example prints all
errors that may have been returned by a database:

catch(SQLException se) {
do{

System.out.println (“SQLError: “ + se.getMessage()
+ “ code: “ + se.getErrorCode() +
+ “ SQL state: “ + se.getSQLState());

se.getNextException();
} while (se !=null);
}

You can retrieve database warning messages by calling the getWarnings()
method. This method is available in the classes Statement, PreparedStatement,
and CallableStatement.

Processing result sets
After execution of the line rs = stmt.executeQuery(sqlQuery), the cursor rs
points at the very first row of the result set in memory. Each row contains as many
columns as were specified in the SQL select statement. A program can extract
each column’s value based on the data type of the column by calling such methods
as getString(), getInt(), and so on. JDBC drivers are smart enough to convert
the data from database-specific types to the corresponding Java types; for example,
Oracle’s varchar2 becomes a Java String.

l539663 ch18.qxd 7/25/03 9:17 AM Page 587

588 Part V ✦ The Data Tier

If you know the names of columns in the result set, specify them as method argu-
ments, as in the following example:

String lastName = rs.getString(“lastname”);
String firstName= rs.getString(“firstname”);

You can get the same values by specifying the relative position of the column from
the SQL select clause, as shown here:

String lastName = rs.getString(2); // second column
String firstName= rs.getString(3); // third column

Columns are numbered from the left starting with 1. In some cases, the only choice
you have is the column numbers. For example, the following SQL query does not
produce a column name:

stmt.executeQuery(“Select count(*) from air_user”);

The UserList class just prints the retrieved data in a loop, but a result set can also
be placed in a Java collection object for further processing. The ResultSet object
holds the database connection and is not serializable. If you need to send the result
set over a network, either use a RowSet (explained later in this chapter in the sec-
tion “Using the RowSet Interface”), or create a class representing a row from the
result set (see Listing 18-3) and populate a Vector or other Java collection object
with its instances, as shown in Listing 18-3.

Listing 18-3: Creating a collection of AirUsers

class AirUser{
private int userId;
private String lastName;
private String firstName;
public void setUserId(int value){userId=value;}
public void setLastName(String value){lastName=value;}
public void setFirstName(String value){firstName=value;}
public int getUserId(){return userId;}
public String getLastName(){return lastName;}
public String getFirstName(){return firstName;}

}
class UserList2 {
// the code to connect to a database and get
// the result goes here
Vector airUsers = new Vector();
while (rs.next()){
AirUser currentUser = new AirUser();
currentUser.setEmpNo(rs.getInt(“id”));
currentUser.setEName(rs.getString(“lastName”));
currentUser.setJob(rs.getString(“firstname”));
airUsers.add(currUser);
}

l539663 ch18.qxd 7/25/03 9:17 AM Page 588

589Chapter 18 ✦ Reviewing Java Database Connectivity

// Now you can serialize the Vector airUsers to a stream
// pointing to a remote computer, if needed.

}

The ResultSetMetaData class
JDBC enables you to process a result set even if the database-table columns are not
specified in the SQL query. Imagine that you need to write a program that will
accept any SQL select statement and display the retrieved data. The java.sql.
ResultSetMetaData class can dynamically find out the structure of the underlying
database table — how many columns it contains, and the types and names of the
columns. Here’s an example:

String sqlQuery = “select * from AirUser “;
ResultSet rs = stmt.executeQuery(sqlQuery);

ResultSetMetaData rsMeta = rs.getMetaData();
int colCount = rsMeta.getColumnCount();

for (int i = 1; i <= colCount; i++) {
System.out.println(

“ Column name: “ + rsMeta.getColumnName(i) +
“ Column type: “ + rsMeta.getColumnTypeName(i));

}

The ShowAnyData class from the upcoming listing prints a result set based on any
SQL select statement passed from a command line, as in the following example:

java ShowAnyData “select * from air_user”

The output of such a command will look like this:

ID LASTNAME FIRSTNAME STREET CITY STATE ZIP COUNTRY PHONE FAX
EMAIL EMLOYEEID AGENTID
1 Queen Larry 123 Main St. Princeton NJ 8068 USA 6091235566
6091235567 ql123@somemail.com A null
2 Nelson Mary 30 Broadway New York NY 10001 USA 2121035566
2121205567 nm@somemail.com P 1398

The code for ShowAnyData.java appears in Listing 18-4.

Listing 18-4: ShowAnyData.java

import java.sql.*;
class ShowAnyData {

Continued

l539663 ch18.qxd 7/25/03 9:17 AM Page 589

590 Part V ✦ The Data Tier

Listing 18-4 (continued)

public static void main(String args[]) {
Connection conn=null;
Statement stmt=null;
ResultSet rs=null;
if (args.length==0){
System.out.println(

“Usage: java ShowAnyData SQLSelectStatement”);
System.out.println(
“For example: java ShowAnyData \”Select * from EMP\””);
System.exit(1);
}
try {

Class.forName(“oracle.jdbc.driver.OracleDriver”);
conn = DriverManager.getConnection(
“jdbc:oracle:oci:scott/tiger@”);

stmt = conn.createStatement();
rs = stmt.executeQuery(args[0]);

// Find out the number of columns , their names,
// and display the data
ResultSetMetaData rsMeta = rs.getMetaData();
int colCount = rsMeta.getColumnCount();
for (int i = 1; i <= colCount; i++) {
System.out.print(rsMeta.getColumnName(i) + “ “);
}
System.out.println();
while (rs.next()){
for (int i = 1; i <= colCount; i++) {
System.out.print(rs.getString(i) + “ “);

}
System.out.println();

}
} catch(SQLException se) {

System.out.println (“SQLError: “ + se.getMessage ()
+ “ code: “ + se.getErrorCode ());

} catch(Exception e) {
System.out.println(e.getMessage());
e.printStackTrace();

} finally{
try{

rs.close();
stmt.close();
conn.close();

} catch(Exception e){
e.printStackTrace();

}
}

}
}

l539663 ch18.qxd 7/25/03 9:17 AM Page 590

591Chapter 18 ✦ Reviewing Java Database Connectivity

Scrollable result sets
So far we’ve been navigating JDBC result sets using the next() method, which
enables us to move forward only. Another option is to create a scrollable result
set, so the cursor can navigate the result set both backward and forward. A two-
argument version of the createStatement() method exists. The first argument
specifies the type of scrolling (TYPE_FORWARD_ONLY, TYPE_SCROLL_INSENSITIVE,
or TYPE_SCROLL_SENSITIVE), and the second enables you to make the result set
either read-only or updateable (CONCUR_READ_ONLY or CONCUR_UPDATABLE, respec-
tively), as in the following example:

Statement stmt = con.createStatement(
ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_READ_ONLY);
ResultSet rs = stmt.executeQuery(“select * from air_user”);

The TYPE_FORWARD_ONLY argument allows the cursor to move forward only. By
using either TYPE_SCROLL_INSENSITIVE or TYPE_SCROLL_SENSITIVE you can
determine whether the scrolling should reflect the changes that might have been
made to the result-set data. The next example sets the cursor at the end of the
result set and moves the cursor backward:

rs.afterLast();
while (rs.previous()){

int id = rs.getInt(“id”);
String lastName = rs.getString(“lastname”);
String firstName= rs.getString(“firstname”);
System.out.println(“ User Id: “ + id +

“, Last Name: “ + lastName +
“, First Name” + firstName + “\n”);

}

You can also move the cursor to a specific row, as shown in the following examples:

rs.absolute(25); // moves the cursor to the 25th row
rs.relative(-4); // moves the cursor to the 21st row
rs.first();
rs.last();
rs.beforeFirst();

The CONCUR_UPDATABLE option makes the result set updatable and enables you to
modify the underlying database table while scrolling. For example, the following
statements will update the phone of the user based on the cursor’s current position:

rs.updateString(“phone”,”8001234567”);
rs.updateRow();

l539663 ch18.qxd 7/25/03 9:17 AM Page 591

592 Part V ✦ The Data Tier

The PreparedStatement class
This is a subclass of the Statement class: It compiles the SQL statement before
execution and can also take parameters. Let’s say we need to execute the same
query — for example select * from air_user where id=...— multiple times.
The user IDs come from the userId[] array. If we use the Statement class, this
SQL query will be compiled in each iteration of the loop, like this:

for (int i=0; i< userId.length; i++){
sqlQuery=”select * from air_user where id=” + userId[i];
stmt.executeQuery(sqlQuery);

}

The class PreparedStatement gives us a different solution:

PreparedStatement stmt=
conn.prepareStatement(“select * from air_userwhere id =?”);

for (int i=0; i< userId.length; i++){
// pass the id as a parameter to replace the question mark
stmt.setInt(1, userId [i];)
ResultSet rs=stmt.executeQuery(sqlQuery);
// Process the result set here

}

In this case the SQL statement is compiled only once and parameters are provided
by the appropriate setXXX() method, depending on the data type of the underlying
column. The first argument of such methods is the parameter number. If a query
needs to take two parameters, for example, you could arrange it as follows:

PreparedStatement stmt=conn.prepareStatement(
“ select * from air_user where lastname =? and city=?”);

for (int i=0; i < userName.length; i++){
stmt.setInt(1,userName[i];)
stmt.setString(2,”New York”);
ResultSet rs=stmt.executeQuery(sqlQuery);
}

A special method, setNull(), enables you to use the null value in a query.

Theoretically you can expect better performance from the PreparedStatement
class than from the Statement class, but in real life performance varies depending
on the vendor’s implementation of the particular JDBC driver.

The CallableStatement class
This class extends the PreparedStatement class and is used for executing
database stored procedures from a Java program. Let’s say a stored procedure
called changeEmpTitle takes two parameters: employeeId and title. Here’s the
code with which to execute this stored procedure:

l539663 ch18.qxd 7/25/03 9:17 AM Page 592

593Chapter 18 ✦ Reviewing Java Database Connectivity

CallableStatement stmt = conn.prepareCall(
(“{call changeEmpTitle(?,?) }”);

stmt.setInt(1,7566);
stmt.setString (2,”Partner”);
stmt.executeUpdate();

If a stored procedure returns some values using output parameters, each of these
values must be registered before the statement is executed. The next example
shows how to execute a stored procedure, getEmpTitle, which takes an
employee’s ID and returns her title through the second output parameter:

CallableStatement stmt = conn.prepareCall(
(“{call getEmpTitle(?,?) }”);

stmt.setInt(1, 7566);
stmt.registerOutParameter(2,java.sql.Types.VARCHAR);
stmt.executeQuery();
String title=stmt.getString(2);

In general, stored procedures should be used to encapsulate business processing
that consists of multiple steps that involves SQL. For example, to get an employee
title the stored procedure getEmpTitle may need to log this request (insert a row
into another table), and only after that execute the SQL select statement. The
stored procedure changeEmpTitle may need to update multiple tables as a single
transaction. The batch updates that are explained in the section below are yet
another way of performing multiple database updates in a transactional mode.

Performing Batch Updates
Sometimes several database modifications have to be processed as a batch; in this
case, if one of the updates fails the whole transaction has to be rolled back. A well
known definition states that transaction is a logical unit of work. You can find more
information about database transactions in Chapter 10. In batch updates database
operations must be explicitly committed in case of success or rolled back in case of
failure, as in the following example:

try{
con.setAutoCommit(false);
Statement stmt = con.createStatement();

stmt.addBatch(“insert into Flight “ +
“ values(1608,’PHL’,’MIA’,’13:45’,’18:25’”);

stmt.addBatch(“insert into pilot_flight values(1608,145”);
stmt.executeBatch();
con.commit (); // Transaction succeeded
con.setAutoCommit(true);

}catch(Exception e){
con.rollback (); // Transaction failed
e.printStackTrace();

}

l539663 ch18.qxd 7/25/03 9:17 AM Page 593

594 Part V ✦ The Data Tier

The next section shows how to execute the same SQL statements in the same trans-
action with a partial rollback in case of failure.

Using Savepoints
JDBC supports savepoints starting from version 3.0. A savepoint is a marker within
a transaction that allows you to rollback a part of the transaction. A java.sql.
Savepoint interface enables you to set designated transaction savepoints so that in
case of an error a Java program does not have to roll back the whole transaction — it
can undo changes only up to a particular savepoint without affecting the preceding
work.

Savepoints are set via the Connection.setSavePoint() class. The overloaded
version of the rollback() method takes the savepoint name as a parameter. The
following code will insert a row into the table flight even if the insert into the
table pilot_flight should fail:

con.setAutoCommit(false);

Statement stmt = con.createStatement();
stmt.executeUpdate(“insert into flight “ +
“ values(1608,’CAN’,’PHL’,’13:45’,’18:25’”);

Savepoint svpFlight = con.setSavepoint(“AfterFlight”);

try{
stmt.executeUpdate(“insert into pilot_flight “ +
“ values(1608,145”);
}catch(Exception e){
System.out.println(“Insert into pilot_flight is rolled back”
+ e.getMessage();
con.rollback(svpFlight);

}

con.commit();

At this point we’ve spent quite a bit of a time explaining various features of JDBC,
and it may be a good idea to try to compile and run these examples. You need to
have J2SE or J2EE installed, any relational database that has JDBC drivers. The next
section contains detailed instructions on how to configure the JDBC drivers of type
1 for Oracle.

Configuring the JDBC-ODBC Bridge
If you already have ODBC drivers installed on your computer, the easiest way to
start working with RDBMSes from a Java program is to configure the JDBC-ODBC
bridge or type 1 JDBC driver. Follow these steps to perform the configuration:

l539663 ch18.qxd 7/25/03 9:17 AM Page 594

595Chapter 18 ✦ Reviewing Java Database Connectivity

1. In Windows, create a new Data Source Name (DSN) by selecting ODBC Data
Sources from the Control Panel.

2. Press the Add button. You’ll see a list of the ODBC drivers installed on your
machine. To be consistent, we’ll use the Oracle example.

3. Select the Oracle ODBC driver, as shown in Figure 18-1.

Figure 18-1: How to create a new data source

4. If Oracle runs on this computer, press the Finish button. Then enter the data
source name, such as MyOracleData as shown in Figure 18-2. Press the OK
button.

Figure 18-2: How to configure the Oracle ODBC driver

5. To create a DSN pointing to a remote Oracle database, enter the name of the
computer, the port, and the remote Oracle service in the Service Name field.

l539663 ch18.qxd 7/25/03 9:17 AM Page 595

596 Part V ✦ The Data Tier

After ODBC DSN is created, the Java programs are ready to access the data from the
database. You do not need to install any additional software as long as you have
J2SE available. The following three lines of code create the connection to the newly
configured Oracle data source:

Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);
String dsn = “jdbc:odbc:MyOracleData”;
Connection con = DriverManager.getConnection(dsn,

“scott”, “tiger”);

JDBC-ODBC drivers are not widely used; they work slower than the native drivers
because they have one extra layer (an ODBC driver) between Java and the native
driver. On the other hand, the JDBC-ODBC bridge is an easy way to get you going
with JDBC technology.

In all previous examples we were getting the connection to the database using the
method getConnection() from the class DriverManager. The next section will
show you a more efficient way of managing database connections by means of con-
nection pools.

Explaining Database Connection
Pools and Data Sources

When a program works with a database, the most time-consuming operation is
creating a Connection object. When a program closes a connection this object
becomes a candidate for garbage collection, which can affect the program’s
performance.

Object pools in general enable you to reuse objects and minimize the need for Java
garbage collection. The idea of object pooling is simple: Create a collection of
objects that you’d like to reuse (such as Connection objects) and keep the refer-
ence variable that points to this collection alive for the lifetime of the application.
You also need to maintain a single instance of a class that deals with this
collection — such a class is usually called a singleton. This class should have a
method, such as getConnection(), to return the next available object from the
collection, and the close() method to return the object back to the collection. The
good news is that connection pools are usually implemented by the major database
and application-server vendors.

J2EE-compliant application servers provide a simple way to configure connection
pools. You need to create two entries in the JNDI tree used by your application
server: connection pool and data source. The process of creating these entries is
described in this section.

l539663 ch18.qxd 7/25/03 9:17 AM Page 596

597Chapter 18 ✦ Reviewing Java Database Connectivity

Configuring connection pools
Connection pools are usually configured by means of a GUI administration tool pro-
vided by the vendor (you can also manually edit the XML file with connection
attributes). For example, in WebLogic this tool is called Administration Console; in
WebSphere it’s Administrative Console. Typically you enter the pool’s name, the
minimum and maximum number of connections allowed, and the name of the
database-driver class. Figure 18-3 is a snapshot of a screen that shows a sample
configuration for a JDBC type 2 Oracle driver in WebLogic. Distributed-transaction
support requires the XA driver, such as WebLogic’s jDriver for Oracle/XA.

Figure 18-3: Configuring connection pools in WebLogic

After the connection pool is configured you should create the data source object
that will use this connection pool.

Creating Data Source objects
The JDBC specification defines the javax.sql.DataSource and javax.sql.
XADataSource classes, which represent a particular database and typically
work with database-connections pools (the latter provides connections that can

l539663 ch18.qxd 7/25/03 9:17 AM Page 597

598 Part V ✦ The Data Tier

participate in distributed transactions). The data source is usually created with the
application server’s administrative tool. If you are using WebLogic, do the following:

1. Start a default WebLogic console and select the option JDBC@>DataSources,
as shown in Figure 18-3. For distributed transactions select TxDataSources.

2. Enter the name of the data source (such as oracleDS) and the name of the
pool to be used for database connections (such as oraclePool, created in
the previous section).

After you have done this you can access the data source from a session bean,
servlet, or other Java program by performing a JNDI lookup, as demonstrated here:

Connection con = null;
ResultSet rs = null;
Statement stmt = null;
try {

ctx = new InitialContext();
DataSource ds = (DataSource) ctx.lookup (“oracleDS”);
con = ds.getConnection();

stmt = con.createStatement();
stmt.execute(“select * from air_user”);

rs = stmt.getResultSet();
while (rs.next){

// process the result set here
}

} catch(Exception e){
// error processing goes here

}
finally {

try{
rs.close();
stmt.close();

} catch(Exception e) {
e.printStackTrace();

}

// return the Connection object to the pool.
// It won’t be garbage collected!
try{
con.close();

} catch(Exception ex) {
ex.printStackTrace();
}

}

From the application viewpoint, connection pooling is transparent. The above
example just calls the getConnection() method on the DataSource object that is
implemented by the J2EE application server. Behind the scenes, the DataSource

l539663 ch18.qxd 7/25/03 9:17 AM Page 598

599Chapter 18 ✦ Reviewing Java Database Connectivity

object deals with a middle-tier’s transaction manager that in turn uses the following
classes and interfaces: ConnectionPoolDataSource, PooledConnection,
ConnectionEvent, and ConnectionEventListener.

You can call a transaction distributed if it uses two or more DataSource objects.
Distributed transactions are supported by the interfaces XADataSource and
XAConnection that allow application to process data in multiple servers as a single
transaction. Since distributed transactions are controlled by the transaction man-
ager of the application server, the application can not call commit() or rollback()
on the Connection object (this will throw a SQLException).

See the section, “Distributed Transactions,” in Chapter 10 for additional informa-
tion on this topic.

The following code fragment illustrates the use of two DataSource objects in a
session EJB:

UserTransaction tx= ejbContext.getUserTransaction();
DataSource ds1 = (DataSource) ctx.lookup (“oracleDS”);
Connection con1 = ds.getConnection();

tx.begin(); // begin transaction

DataSource ds2 = (DataSource) ctx.lookup (“sybaseDS”);
Connection con2 = ds.getConnection();

// A regular JDBC code that works with both con1 and con2
// objects goes here, i.e. con1.getStatement(),
// stmt.executeUptdate(), and so on.
// When the processing is finished,
// the distributed transaction is committed and
// changes are applied to both databases

tx.commit(); // commit the transaction

The next section contains yet another example that works with the DataSource
object.

Revisiting DBProcessor
Listing 18-5 shows the DBProcessor class, which is a modified version of the class
shown in Listing 6-15, in Chapter 6. This code obtains the pooled database connec-
tion using the previously created data source oracleDS, generates the next unique
database ID for the tables air_user and login, and inserts the data into these two
tables in one transaction (batch).

Cross-
Reference

l539663 ch18.qxd 7/25/03 9:17 AM Page 599

600 Part V ✦ The Data Tier

Listing 18-5: DBProcessor.java, Version 2

package com.connexiaair;
import java.sql.*;
import javax.sql.DataSource;
import javax.naming.*;
public class DBProcessor {

Statement stmt = null;
Connection con = null;

public DBProcessor() {
}
public void addUser(RegisterBean rb)

throws NamingException, SQLException{
Statement stmt = null;
Connection con = null;
ResultSet rs=null;
int dbId=0;
String sql=””;
try {
// Get DB Connection from a pool using the DataSource
Context ctx = new InitialContext();
DataSource ds = (DataSource) ctx.lookup(“oracleDS”);
con = ds.getConnection();
stmt = con.createStatement();
// Get the next unique user ID
rs = stmt.executeQuery(“select max(id)+1 from air_user”);
while (rs.next()){
dbId=rs.getInt(1);

}

// Perform the batch update to ensure data integrity
con.setAutoCommit(false);
// Insert statement for the login table
stmt.addBatch(“insert into login values(“+ dbId +

“,’” + rb.getUserId()+”’” +
“,’” + rb.getPwd()+”’” +
“,null,null” + // hint qst/answer
“,’” + rb.getUserType()+”’” +
“)”);

// Insert statement for the air_user table
stmt.addBatch(“insert into air_user values (“ + dbId +

“,’” + rb.getLastName()+”’” +
“,’” + rb.getFirstName()+”’” +
“,’” + rb.getStreet()+”’” +
“,’” + rb.getCity()+”’” +
“,’” + rb.getState()+”’” +
“,’” + rb.getZip()+”’” +
“,’USA’” +
“,’” + rb.getZip()+”’” +
“,null,null” + // phone, fax
“,’” + rb.getEmail()+”’” +
“,’” + rb.getUserType()+”’” +
“,’” + rb.getUserId()+”’” +

l539663 ch18.qxd 7/25/03 9:17 AM Page 600

601Chapter 18 ✦ Reviewing Java Database Connectivity

“)”);
stmt.executeBatch();
con.commit(); // success
con.setAutoCommit(true);

} finally{
try{
rs.close();
stmt.close();
con.close();
}catch (Exception e) {
con.rollback(); // // success
e.printStackTrace();}

}
}
}

All of the examples that retrieved data used JDBC ResultSet to process result sets.
The next section will introduce you to RowSet interface that will be a part of Java
1.5. as defined in the Java Specification Request (JSR) 114.

Using the RowSet Interface
The javax.sql.RowSet interface is a subclass of the ResultSet class, and also
includes some of the properties of such interfaces as Connection and Prepared
Statement. The RowSet interface decouples the tabular data from a result set,
which greatly simplifies sending data over a network. It also enables you to use the
scrollable result sets even if the underlying JDBC driver does not support them.

Look at how simple it is to get the data from a database using the RowSet interface:

rowset.setUrl (“jdbc:oracle:oci:@”);
rowset.setUsername (“scott”);
rowset.setPassword (“tiger”);
rowset.setCommand (

“select id,lastname,firstname from air_user where id= ?”);
rowset.setInt(1,2); // first parameter’s value is 2
rowset.execute();

When you work with JDBC drivers from a particular vendor, find out which classes
implement the RowSet interface, and where are they located. For example, Oracle
classes that implement the RowSet interface are located in the file ocrs12.jar.

RowSet objects come in two major flavors — connected and disconnected. The dis-
connected objects are implemented by means of the CachedRowSet or WebRowSet
classes, whereas connected objects are implemented with the help of the
JDBCRowSet class. JDBCRowSet is a wrapper for the ResultSet class.

l539663 ch18.qxd 7/25/03 9:17 AM Page 601

602 Part V ✦ The Data Tier

Working with CachedRowSet
CachedRowSet is a serializable object that keeps the result set in memory and does
not maintain a connection to the database; hence it can be sent to a remote client.
Obviously, this might not be the best system for result sets having millions of rows,
but it may come in very handy, for example, if a CEO of Connexia Airlines wants to
work with the airline’s data on the road using his or her laptop.

The following two code fragments show how to create and populate a CachedRowSet
object using Oracle drivers. Please note that these examples work with a pooled con-
nection using a DataSource.

The following example first creates an instance of the OracleCachedRowSet class,
which is Oracle’s implementation of the CachedRowSet class, and then connects to
the database and executes and processes a query.

RowSet cachedRs = new OracleCachedRowSet ();
cachedRs.setDataSourceName(“oracleDS”);
cachedRs.setUsername (“scott”);
cachedRs.setPassword (“tiger”);
cachedRs.setType (ResultSet.TYPE_SCROLL_INSENSITIVE);
cachedRs.setCommand(

“select id,lastname,firstname from air_user”);
cachedRs.execute ();
while (cachedRs.next ()) {
System.out.println(

“ User Id: “ + cachedRs.getInt(“id”) +
“, Last Name: “ + cachedRs.getString(“lastname”) +
“, First Name” + cachedRs.getString(“firstname”) + “\n”);

}
The second example populates a RowSet from an existing
ResultSet.
Context ctx=new InitialContext();

DataSource ds = (DataSource) ctx.lookup (“oracleDS”);
Connection con = ds.getConnection();

Statement stmt=con.createStatement();
ResultSet rs=stmt.executeQuery(

“select id,lastname,firstname from air_user”);
OracleCachedRowSet cachedRs = new OracleCachedRowSet ();
cachedRs.populate (rs);

After the cached row set is populated you can send it over the network, say to a
Java servlet that will prepare an HTML table and send it to a user, as in the next
code fragment:

public void doPost(HttpServletRequest req,
HttpServletResponse res){

res.setContentType(“text/html”);
PrintWriter out = res.getWriter();

l539663 ch18.qxd 7/25/03 9:17 AM Page 602

603Chapter 18 ✦ Reviewing Java Database Connectivity

// The class SomeClass encapsulates work
// with the airline’s database
RowSet cachedRs = SomeClass.getAirUsers();

StringBuffter sb=new StringBuffer();
sb.append(“<TABLE >”);
while (cachedRs.next()){
sb.append(“<TR>”);
sb.append(“<TD>”+ cachedRs.getInt(“id”)+”</TD>”);
sb.append(“<TD>”+ cachedRs.getString(“lastname”)+”</TD>”);
sb.append(“<TD>”+ cachedRs.getString(“firstname”)+”</TD>”);
sb.append(“</TR>”);
}
sb.append(“</TABLE >”);
out.println(sb);
}

Java servlets are discussed in Chapter 5.

Using Enterprise JavaBeans technology in a distributed application, you can create
a session bean with a method that returns a disconnected RowSet:

public RowSet getFlights () throws RemoteException,
SQLException {
Connection con = null;

try { DataSource ds = (DataSource) ctx.lookup
(“oracleDS”);

Connection con = ds.getConnection();
Statement stmt=con.createStatement();
ResultSet rs=stmt.executeQuery(
“select flightNo,origin,destination, departure from

flight”);
OracleCachedRowSet cachedRs = new OracleCachedRowSet ();
cachedRs.populate (rs);
return cachedRs;

} finally {
// Close JDBC resources here

}
}

Part IV, “The Service Tier” discusses EJB technology.

Using a CachedRowSet object with JSP
The following code fragment shows how to use a CachedRowSet object as a bean
within a JSP. The CachedRowSet object is populated within the <jsp:useBean> tag,
and the rest of the code just extracts the data from the bean and sends it over the
network to the Web client as an HTML table.

Cross-
Reference

Cross-
Reference

l539663 ch18.qxd 7/25/03 9:17 AM Page 603

604 Part V ✦ The Data Tier

<%@ page import=”oracle.jdbc.rowset.CachedRowSet” %>
<HTML>
<BODY>
<jsp:useBean id=”airUsers”

class=”oracle.jdbc.rowset.CachedRowSet” scope=”session”>
<%
airUsers.setUrl (“jdbc:oracle:oci:@”);
airUsers.setUsername (“scott”);
airUsers.setPassword (“tiger”);
airUsers.setCommand (

“select id,lastname,firstname from air_user”);
airUsers.execute();
airUsers.first();
%>
</jsp:useBean>
<%
StringBuffter sb=new StringBuffer();
sb.append(“<TABLE>”);
while (airUsers.next()){
sb.append(“<TR>”);
sb.append(“<TD>”+ airUsers.getInt(“id”)+”</TD>”);
sb.append(“<TD>”+ airUsers.getString(“lastname”)+”</TD>”);
sb.append(“<TD>”+ airUsers.getString(“firstname”)+”</TD>”);
sb.append(“</TR>”);
}
sb.append(“</TABLE >”);
out.println(sb);

%>
</BODY>
</HTML>

The <java:useBean> tag is discussed in Chapter 6.

Updating the database using a RowSet
Imagine a CEO of Connexia Airlines sitting in a limo with his laptop. The laptop has
a GUI program that displays in a JTable the flight schedule that came as a
CachedRowSet. The third row shows the flight from New York to Miami, but the
CEO decides to change the flight origin to Philadelphia. When the cursor has been
moved to the third row, the program performs the following line:

cachedRs.absolute(3);

When the CEO modifies the flight origin to PHL, which is the value of the column
number 2, the program performs this action:

cachedRs.updateString(2, “PHL”);
cachedRs.updateRow();

Cross-
Reference

l539663 ch18.qxd 7/25/03 9:17 AM Page 604

605Chapter 18 ✦ Reviewing Java Database Connectivity

Since we work with the disconnected RowSet object, the actual database update
will be initiated only after the program executes the following code:

cachedRs.acceptChanges();

The preceding line can be placed under actionPerformed() for the Save button.

Updatable row sets must meet certain requirements: The SQL query cannot contain
joins, the data must come from a single table, and the primary key of this table
must be included in the SQL query.

In addition to acceptChanges(), the application has to call different saving proce-
dures depending on whether the CEO works on the laptop in a stand-alone mode, or
from the office connected to the database server. In “office mode” the code has to
reconnect to the database and apply the changes. In “limo mode” the changes can
be saved in a local file, as in the following example:

FileOutputStream fos = new FileOutputStream (“flights.ser”);
ObjectOutputStream oos = new ObjectOutputStream (fos);
oos.writeObject (cachedRs);
oostream.close ();
fos.close();

The following code snippet loads a serialized RowSet from the file flights.ser:

FileInputStream fis = new FileInputStream(“flights.ser”);
ObjectInputStream ois = new ObjectInputStream(fis);
RowSet cachedRs = (RowSet) ois.readObject();
istream.close();
fis.close();

Processing RowSet events
If you have a class that has to be notified of the user’s action while the user is
browsing or updating the RowSet object, this class has to implement the
RowSetListener interface. This interface has the following three methods:

✦ rowChanged— This method will be called when the user changes a row in the
RowSet object, for example if the GUI class calls the
cachedSet.updateRow() object.

✦ rowSetChanged— This method will be called when a user changes the com-
mand string that has been used to create the RowSet object, for example if the
SQL statement has changed.

✦ cursorMoved— This method is called to notify the listener that the user has
moved the cursor on the RowSet object, for example if the method cachedRs.
next() is called.

l539663 ch18.qxd 7/25/03 9:17 AM Page 605

606 Part V ✦ The Data Tier

The addRowSetListener() method registers a class responsible for the reaction
on the updates. For example, if the flight origin has been changed, the spreadsheet
detailing the Connexia Airlines staff requirements has to be recalculated and a bar
chart has to be refreshed on the screen. If the FlightBarChart class contains the
logic to generate a spreadsheet and draw a bar chart, it has to be registered as a lis-
tener, as shown here:

cachedRs.addRowSetListener(FlightBarChart);

The WebRowSet class
Finally, the WebRowSet is a wrapper class that internally uses a servlet that sup-
ports communication between the Web clients and a database. WebRowSet stores
the data as XML and communicates with the client using HTTP.

Summary
In this chapter we’ve explained the use of JDBC technology and the types of
drivers, and provided examples of the most important database operations per-
formed via a Java program. JDBC is a generic and elegant way of accessing rela-
tional databases from Java programs. JDBC allows Java programs to execute any
SQL command or a database-stored procedure. It has an ability to control transac-
tions, process data result sets, perform batch updates and support pools of
database connections. Various types of JDBC drivers are widely available from all
major vendors of database managements systems. The vendors of J2EE application
servers also offer JDBC drivers with support of distributed transactions. JDBC is a
vital component of any J2EE application.

✦ ✦ ✦

l539663 ch18.qxd 7/25/03 9:17 AM Page 606

Understanding
the J2EE
Connector
Architecture

In the real world, a lot of enterprise applications contain
their data and functionality in enterprise information sys-

tems (EISes). Examples of EISes include enterprise resource
planning (ERP), mainframe transaction processing (TP), and
database systems. Although many of these systems are
mature and stable, they don’t necessarily provide Web enable-
ment, location transparency, failover support, and other criti-
cal functionalities that have made the J2EE domain such a
popular one. The J2EE Connector architecture defines a stan-
dard architecture for connecting the Java 2 platform to such
heterogeneous EISes. Prior to the existence of the Connector
architecture, the Java platform had no such standard architec-
ture. It was up to each of the EIS vendors and application-
server vendors to determine its own EIS-integration approach.

The J2EE Connector architecture provides a Java solution to
the problem of connectivity among the multitude of applica-
tion servers and EISes. The Connector architecture is made of
two parts. One is implemented by the application-server ven-
dors and allows them to connect seamlessly to multiple EIS
systems. If they conform to the J2EE Connector architecture,
the application-server vendors do not need to add custom
code to extend their support connectivity to a new EIS.

The other part is implemented by the EIS vendors and is
called a resource adapter. A resource adapter is a system-level
software driver that is used by a Java application to connect
to an EIS. The resource adapter is specific to the EIS and can

1919C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Examining the
system-level
lifecycle contract

Investigating the
system-level
connection
Management contract

Understanding the
system-level
transaction-
management contract

Looking at the
system-level
work-management
contract

Going over the
system-level
message-inflow
contract

Reviewing the
application-level
CCI contract

Understanding
packaging

✦ ✦ ✦ ✦

l539663 ch19.qxd 7/25/03 9:17 AM Page 607

608 Part V ✦ The Data Tier

use native calls, but it can plug into any application server that supports the
Connector architecture. Because of this it is no longer necessary for EIS vendors to
customize their products for each application server.

Version 1.5 of the Connector architecture defines several system-level contracts
and an application-level contract. In this chapter, we are going to look into each of
the contracts in detail and at how it fits into the J2EE Connector architecture.

Examining the Contracts
Figure 19-1 provides an overview of the Connector architecture and the relation-
ships among the application server, resource adapter, and EIS system.

Figure 19-1: Overview of the Connector architecture

The system-level contracts are specified between the application server and the EIS
resource adapter. An application server and an EIS collaborate to keep all system-
level mechanisms, such as transactions, security and connection management,
transparent from the application components. Therefore, the application compo-
nent provider does not need to worry about the system level issues related to the
EIS integration. The application component provider can focus on the business
logic of the application. The application server and the EIS vendors handle the con-
nectivity issues.

Container-component
contractApplication server Application

component

Enterprise Information
System

System contracts

Resource adapter

EIS-specific interface

Client API

l539663 ch19.qxd 7/25/03 9:17 AM Page 608

609Chapter 19 ✦ Understanding the J2EE Connector Architecture

The J2EE Connector architecture defines the following set of system-level contracts
between an application server and EIS, which enables outbound connectivity to
an EIS.

✦ Connection-management contract — This contract allows an application
server to pool connections to the underlying EIS and enables application com-
ponents to connect to the EIS. This leads to a scalable application environ-
ment that can support a large number of clients requiring access to EISes.

✦ Transaction-management contract — This contract allows an application
server to use a transaction manager to manage transactions across multiple
resource managers. This contract also supports transactions that are man-
aged internal to an EIS resource manager without the necessity of involving an
external transaction manager.

✦ Security contract — This contract allows for a secure access to an EIS by
extending the security model for the J2EE based applications to include EIS
integration.

The J2EE Connector architecture defines the following set of system-level contracts
between an application server and EIS, which enables inbound connectivity from an
EIS. In inbound communication, the resource adapter allows an EIS to call applica-
tion components and perform work. All communication is initiated by the EIS.

✦ Message-inflow contract — This contract allows a resource adapter to asyn-
chronously deliver messages to message endpoints residing in the application
server, independent of the specific messaging style, the messaging semantics,
and the messaging infrastructure used to deliver messages. This contract also
serves as the standard message provider pluggability contract that allows a
wide range of message providers such as Java Message Service (JMS) and
Java API for XML Messaging (JAXM) to be plugged into any J2EE compatible
application server via a resource adapter.

✦ Transaction-inflow contract — This contract allows a resource adapter to
propagate an imported transaction to an application server and ensures that
the ACID properties of the imported transaction are preserved.

For a detailed discussion of the ACID properties and other aspects of transactions,
refer to Chapter 10.

The J2EE Connector architecture defines the following set of system-level contracts
between an application server and EIS, which enables resource adapter lifecycle
management and thread management.

✦ Lifecycle-management contract — This contract allows an application server
to manage the lifecycle of a resource adapter.

✦ Work-management contract — This contract allows a resource adapter to do
work (monitor network endpoints, call application components, and so on) by
submitting work instances to an application server for execution.

Cross-
Reference

l539663 ch19.qxd 7/25/03 9:17 AM Page 609

610 Part V ✦ The Data Tier

The J2EE Connector architecture also defines an application contract between an
application component and a resource adapter. In particular, this contract defines a
client API that an application component can use to access the EIS. The client API
may be the Common Client Interface (CCI) or an API specific to a resource adapter.
The CCI defines a standard client API for application components and Enterprise
Application Integration (EAI) frameworks to drive interactions across heteroge-
neous EISes using a common client API.

If you are an application component provider, you should be able to use one of the
adapters provided by the tool vendors or EIS vendors and not worry about the inte-
gration issues between the application server and EIS. You can simply use the
adapter’s client API and get access to the underlying system. The section on CCI
provides a sample of an application accessing an EIS using a resource adapter.

However, in order to develop your own adapter, you need to define classes that
implement the interfaces as required by the several contracts listed in the J2EE
connector specification. In the following sections, we will discuss and explain each
of these contracts and interfaces. Once you have implemented these interfaces, you
can package your classes along with the deployment descriptor to generate a
deployable resource adapter. Deployment descriptors and packaging are explained
in the section, “Packaging and Deployment,” later in this chapter.

The lifecycle-management contract
The lifecycle management contract provides the means for an application server to
manage the lifecycle of a resource adapter instance. As we mentioned in the previ-
ous section, a resource adapter is a system-level software driver. A resource
adapter is the core piece of the J2EE Connector architecture. It is deployed within
the application server and is used by the application server or an application client
to connect to the EIS. The lifecycle management contract allows an application
server to bootstrap a resource adapter instance during resource adapter deploy-
ment or during the application server startup. It also provides a mechanism to
notify the resource adapter instance while it is undeployed or during an orderly
shutdown of the application server.

The ResourceAdapter JavaBean
Let’s take a quick look at the implementation class before examining the
deploy/undeploy process. To create a resource adapter, we need to define a class
that implements the ResourceAdapter interface. The specifications require this
class to follow the conventions of a JavaBean. As you will see in the section on
packaging and deployment later in this chapter, the resource adapter also needs a
deployment descriptor. The name of the class and other properties can be config-
ured in the deployment descriptor. During deployment, the resource-adapter
deployer creates a ResourceAdapter JavaBean and configures it with the appropri-
ate properties. The ResourceAdapter JavaBean represents a resource-adapter
instance and contains the configuration information pertaining to the resource-
adapter instance. At runtime, the resource-adapter instance may contain several

l539663 ch19.qxd 7/25/03 9:17 AM Page 610

611Chapter 19 ✦ Understanding the J2EE Connector Architecture

objects (for example, ManagedConnectionFactory or ActivationSpec) to do the
application processing. Such objects may be created or discarded during the life-
time of the resource-adapter instance.

Resource-adapter bootstrapping
When a resource adapter is deployed or during application-server startup, an appli-
cation server bootstraps an instance of the resource adapter in its address space.
In order to bootstrap a resource-adapter instance, the application server uses the
configured ResourceAdapter JavaBean and calls its start method. The application
server must instantiate at least one ResourceAdapter JavaBean per resource-
adapter deployment. Also, the application server must not reuse the same
ResourceAdapter JavaBean object to manage multiple incarnations of a resource
adapter. During the start method call, the following happens:

1. The application server provides a BootStrapContext instance containing ref-
erences to the application server’s facilities.

2. The resource-adapter instance initializes itself, and may use the WorkManager
to submit Work instances for execution. (The WorkManager and Work are
explained later in the section on the work-management contract.)

Resource-adapter shutdown
The application server uses a two-phase process to shut down the resource-
adapter instance. This process is invoked if the application server is being shut
down or if the resource adapter is being undeployed. During phase one, the applica-
tion server ensures that all the applications using the specific resource-adapter
instance in question are stopped. In phase two, the application server calls the
stop method on the ResourceAdapter JavaBean. This call acts as a shutdown noti-
fication from the application server to the resource-adapter instance, instructing it
to stop functioning.

The following code listing illustrates a sample implementation of a resource
adapter. It implements the start() and stop() methods to provide support for the
lifecycle management contract.

package com.connexia.adapter;

import javax.resource.spi.ResourceAdapter;
import javax.resource.spi.BootstrapContext;
import javax.resource.spi.work.*;

public class MyResourceAdapter implements ResourceAdapter {
void start(BootstrapContext context) {

// setup network points and get Work instances.
}

void stop() {
// release Work instances, do clean up and return.

}

l539663 ch19.qxd 7/25/03 9:17 AM Page 611

612 Part V ✦ The Data Tier

Figure 19-2 lists the various stages in the lifecycle of a resource adapter. The
resource adapter deployer configures the resource adapter by assembling the
required classes and deployment descriptors. In the next step, the resource
adapter is deployed in the application server. The application server vendor might
provide a tool to facilitate the deployment process. The deployed resource adapter
is still non-functional till the application server calls the start() method on the
resource adapter. Once the start() method has been called, the resource adapter
is ready for use by the application.

Figure 19-2: Resource-adapter lifecycle

Work management contract
A simple resource adapter merely functions as a passive library that executes in the
context of an application thread. But in some cases the resource adapter might
need threads to function properly — such as to listen to network endpoints, to pro-
cess incoming data, to communicate with a network peer, to do its internal work, or
to dispatch calls to application components.

It’s not a good idea to have the resource adapter create its own Java threads. An
application server is optimally designed to manage such resources. An application
server knows the overall state of its runtime environment (remember that the
resource adapter runs within the application server). Therefore it may make better

Unconfigured
resource adapter

Configured
resource adapter

Configuration

Deployment

Non-functional
resource adapter

Functional resource
adapter instance

stop()

start()

l539663 ch19.qxd 7/25/03 9:17 AM Page 612

613Chapter 19 ✦ Understanding the J2EE Connector Architecture

decisions about granting threads to a resource adapter. Using it also leads to better
manageability of its runtime environment.

The work-management contract allows a resource adapter to submit Work
instances to an application server for execution. The application server dispatches
threads to execute submitted Work instances. This allows a resource adapter to
avoid creating or managing threads directly, provides a mechanism for the resource
adapter to do its work, and allows an application server better control over its run-
time environment.

The work-management model
Figure 19-3 illustrates the work management model and the interaction between the
application server and resource adapter.

Figure 19-3: Work-management interfaces

A resource adapter obtains a WorkManager instance from the BootstrapContext
instance provided by the application server during its deployment. The resource
adapter may create Work instances to do its work and submit them to the
WorkManager along with an optional ExecutionContext for execution.

The application server has a pool of free threads waiting for a Work instance to be
submitted. When a Work instance is submitted, one of the free threads picks up the
instance, sets up an appropriate execution context, and calls the run method on

Application server Resource adapter

doWork(),startWork()

scheduleWork()

run(), release()

WorkManager

WorkEvent

getTransactionTimeout()
setTransactionTimeout()

getXid(), setXid()

workAccepted(), workStarted()

workRejected()
workCompleted()

getStartTime()
getException()

WorkEvent

ExecutionContext

WorkListener

WorkException

WorkRejectedException

WorkCompletedException

getType(), getWork()

getErrorCode()

l539663 ch19.qxd 7/25/03 9:17 AM Page 613

614 Part V ✦ The Data Tier

the Work instance. The application server is free to choose an appropriate thread to
execute the Work instance. However, the application server is required to use
threads of the same thread-priority level to process Work instances submitted by a
specific resource adapter.

If the resource adapter has implemented the WorkListener interface, the applica-
tion server sends Work processing event notifications to the WorkListener.

Interfaces and classes
Take a look at the various classes and interfaces defined as part of the work-
management contract.

✦ Work— The Work interface models a Work instance to be executed by a
WorkManager upon submission. The Work interface is implemented by the
resource adapter.

✦ WorkManager—The WorkManager interface provides a mechanism for submit-
ting Work instances for execution. It is implemented by the application server.
You can obtain a WorkManager instance by calling the getWorkManager
method on the BootstrapContext instance. The WorkManager interface sup-
ports both synchronous and asynchronous submission of Work instances. It
provides several methods (doWork(), startWork(), and scheduleWork())
with which to submit the Work instance for execution. A submitted Work
instance can go through several states: work accepted, work rejected, work
started, or work completed.

✦ WorkListener—The WorkListener interface is optionally implemented by
the resource adapter. It is supplied to the WorkManager during Work submis-
sion and provides an event-listener callback mechanism in order to be noti-
fied when the various Work-processing events (work accepted, work rejected,
work started, work completed) occur. When a WorkListener instance is pro-
vided by the resource adapter, the application server must send event notifi-
cations to it.

✦ ExecutionContext—The ExecutionContext class allows a resource adapter
to specify an execution context (transaction, for example) with which the
Work instance must be executed. It is the responsibility of the resource
adapter to populate the ExecutionContext instance with an appropriate exe-
cution context.

Work submission
Figure 19-4 depicts the work-submission procedure. The WorkManager submits a
Work instance for submission. It can do so by calling either the doWork method, the
startWork method, or the scheduleWork method. With the doWork method, the
call blocks until the Work instance completes execution. With the startWork
method, the call blocks until the Work instance starts execution. With the
scheduleWork method, the call does not block and returns immediately. When
the Work instance is submitted, it can either be accepted or rejected with a
WorkRejectedException set to an error code.

l539663 ch19.qxd 7/25/03 9:17 AM Page 614

615Chapter 19 ✦ Understanding the J2EE Connector Architecture

Figure 19-4: Work-submission procedure

Listing 19-1 enhances our sample resource adapter from the previous section by
submitting the Work instances.

Listing 19-1: Submitting the Work instances

package com.connexia.adapter;

import javax.resource.spi.ResourceAdapter;
import javax.resource.spi.BootstrapContext;
import javax.resource.spi.work.*;

public class MyResourceAdapter implements ResourceAdapter {
void start(BootstrapContext context) {

// setup network points and get Work instances.

WorkManager wm = context.getWorkManager();
Work work = new MyWork();
try {

wm.startWork(work);
} catch (WorkException we) {

// handle exception and wrap it with a
// WorkCompletedException set to an appropriate
// error code.

}
}

Continued

WorkRejectedException

doWork()

WorkCompleted-
Exception

startWork()

scheduleWork()

Work submit Work accepted Work started Work completed

l539663 ch19.qxd 7/25/03 9:17 AM Page 615

616 Part V ✦ The Data Tier

Listing 19-1 (continued)

void stop() {
// release Work instances, do clean up and return.

}

public class MyWork implements Work {
/**
* The WorkManager calls this method to hint the active Work
* instance to complete execution. This is called on a

separate
* thread other than the one actually executing the Work

instance.
*/
void release() {

// set a flag to hint the Work instance to complete.
}

void run() {
// do work (call application components, monitor network
// ports etc.)

}
}

Outbound communication
In outbound communication, the resource adapter allows an application to connect
to an EIS system and perform work. All communication is initiated by the applica-
tion. The resource adapter serves as a passive library for connecting to an EIS, and
executes in the context of the application threads. Let’s look at the following con-
tracts that are specified by the architecture pertaining to outbound communica-
tion: connection management, transaction management, and security.

The connection-management contract
Applications require connections to access the EIS resources. A connection can be
a database connection, a Java Message Service (JMS) connection, a SAP R/3 con-
nection, and so forth. An application obtains a connection, uses it to access an EIS
resource, and then closes the connection. But these connections are expensive to
create and destroy. Creating and destroying a connection each time an application
needs an EIS resource affects scalability and performance adversely. The J2EE
Connector architecture specifies the connection-management contract between the
application server and the resource adapter. The connection-management contract
defines the fundamentals for the management of connections between applications
and the underlying EISes. It provides support for connection pooling. It also pro-
vides consistent application programming for connection acquisition.

l539663 ch19.qxd 7/25/03 9:17 AM Page 616

617Chapter 19 ✦ Understanding the J2EE Connector Architecture

Connection-management classes and interfaces
Take a look at the various classes and interfaces defined as part of the connection-
management contract. For the purpose of our discussion here, we are only going to
focus on the managed environment. A managed environment defines a J2EE-based
multi-tier environment wherein the Web-enabled applications access the EIS sys-
tems. A non-managed environment defines a two-tier environment wherein an appli-
cation client directly uses a resource adapter (without the application server) to
access an EIS system.

Connection factories and connection interfaces
A connection factory provides an interface with which to get a connection to an EIS
instance. A connection provides connectivity to an underlying EIS. The javax.
resource.cci.ConnectionFactory and javax.resource.cci.Connection inter-
faces are both implemented by the resource adapter. An application can invoke the
getConnection method of the ConnectionFactory to get a connection to an
underlying EIS. The connection factory implementation class delegates the
getConnection method invocation to the associated ConnectionManager instance.
The connection factory implementation class also takes the connection-request
information and passes it to the ConnectionManager.allocateConnection
method. The ConnectionRequestInfo parameter to the ConnectionManager.
allocateConnection method enables a resource adapter to pass its own request-
specific data structure across the connection-request flow.

The following code segment illustrates the above interfaces:

public interface javax.resource.cci.ConnectionFactory
extends java.io.Serializable,

javax.resource.Referenceable {

public javax.resource.cci.Connection getConnection() {
...

}

public interface javax.resource.cci.Connection() {
public void close() throws javax.resource.ResourceException;
...

}

The connection manager
The javax.resource.spi.ConnectionManager provides a hook with which a
resource adapter can pass a connection request to an application server. The
ConnectionManager interface is implemented by the application server. Through
this interface the server provides its additional services, including security, connec-
tion-pool management, transaction management, and error logging. The
ConnectionManager interface defines the allocateConnection method. Listing
19-2 illustrates these interfaces.

l539663 ch19.qxd 7/25/03 9:17 AM Page 617

618 Part V ✦ The Data Tier

Listing 19-2: The ConnectionManager interfaces

public interface javax.resource.spi.ConnectionManager
extends java.io.Serializable {

/** The method allocateConnection gets called by the
resource

* adapter’s connection factory instance
* @param ManagedConnectionFactory
* @param ConnectionRequestInfo
* @return Object
*/

public Object allocateConnection (
ManagedConnectionFactory mcf,
ConnectionRequestInfo cxRequestInfo)
throws ResourceException;

}

public interface javax.resource.spi.ConnectionRequestInfo {

/** Checks whether this instance is equal to another.
* @param Object
* @return boolean
*/

public boolean equals(Object other);

/** Returns the hashCode of the ConnectionRequestInfo.
* @param Object
*/
public int hashCode();

}

The ManagedConnectionFactory interface
The ManagedConnectionFactory interface is a factory of both ManagedConnection
instances and connection-factory instances. The interface supports methods for
creating factory instances. It also provides methods with which to create a new
physical connection (represented by a ManagedConnection instance) to an
underlying EIS instance. The matchManagedConnection method enables the
application server to use a resource adapter–specific criterion for matching. The
ManagedConnectionFactory interface is required to be implemented by the
resource adapter. Listing 19-3 illustrates the ManagedConnectionFactory interface.

l539663 ch19.qxd 7/25/03 9:17 AM Page 618

619Chapter 19 ✦ Understanding the J2EE Connector Architecture

Listing 19-3: ManagedConnectionFactory

public interface javax.resource.spi.ManagedConnectionFactory
extends java.io.Serializable {

/** Creates a Connection Factory instance.
* @param ConnectionManager
* @return Object
* @throws ResourceException
*/
public Object createConnectionFactory(

ConnectionManager connectionManager)
throws ResourceException;

/** Creates a Connection Factory instance.
* @return Object
* @throws ResourceException
*/
public Object createConnectionFactory() throws

ResourceException;

/** Creates a new physical connection to the underlying
* EIS resource manager
* @param Subject
* @param ConnectionRequestInfo
* @return ManagedConnection
* @throws ResourceException
*/
public ManagedConnection createManagedConnection(

javax.security.auth.Subject subject,
ConnectionRequestInfo cxRequestInfo)
throws ResourceException;

/** Returns a matched connection from the candidate set
* of connections.
* @param Set
* @param Subject
* @param ConnectionRequestInfo
* @return ManagedConnection
* @throws ResourceException
*/
public ManagedConnection matchManagedConnection(

java.util.Set connectionSet,
javax.security.auth.Subject subject,
ConnectionRequestInfo cxRequestInfo)
throws ResourceException;

Continued

l539663 ch19.qxd 7/25/03 9:17 AM Page 619

620 Part V ✦ The Data Tier

Listing 19-3 (continued)

/** Check if this ManagedConnectionFactory is equal to
another

* ManagedConnectionFactory.
* @param other
* @return boolean
*/
public boolean equals(Object other);

/** Returns the hash code for the ManagedConnectionFactory
* @return int
*/
public int hashCode();

}

The ManagedConnection interface
An instance of the ManagedConnection interface represents a physical connection
to the underlying EIS. This interface provides the method getConnection to create
a new application-level connection handle. A connection handle is tied to an under-
lying physical connection represented by a ManagedConnection instance.

The interface also supports methods to add and remove the ConnectionEventListener
to the ManagedConnection. The ManagedConnection interface is implemented by
the resource adapter. The event callback mechanism (ConnectionEventListener)
enables an application server to receive notifications to manage its connection pool,
to clean up invalid or terminated connections, and to manage local transactions.
Listing 19-4 illustrates the ManagedConnection interface.

Listing 19-4: ManagedConnection

public interface javax.resource.spi.ManagedConnection {
/**
* Adds a connection event listener to the

ManagedConnection
*instance.
* @param ConnectionEventListener
*/
void addConnectionEventListener(

ConnectionEventListener listener);

/**
* Used by the container to change the association of an

l539663 ch19.qxd 7/25/03 9:17 AM Page 620

621Chapter 19 ✦ Understanding the J2EE Connector Architecture

* application-level connection handle with a
ManagedConnection

* instance.
* @param Object
*/
void associateConnection(java.lang.Object connection);

/**
* Application server calls this method to force any

cleanup
* on the ManagedConnection instance.
*/
void cleanup();

/**
* Destroys the physical connection to the underlying

resource
* manager.
*/
void destroy();

/**
* Creates a new connection handle for the underlying

physical
* connection represented by the ManagedConnection

instance.
* @param Subject
* @param ConnectionRequestInfo
* @return Object
*/
java.lang.Object getConnection(

Subject subject,
ConnectionRequestInfo cxRequestInfo);

/**
* Returns an javax.resource.spi.LocalTransaction instance.
* @return LocalTransaction
*/
LocalTransaction getLocalTransaction();

/**
* Gets the log writer for this ManagedConnection instance.
* @return PrintWriter
*/
java.io.PrintWriter getLogWriter();

/**
* Gets the metadata information for this connection’s
* underlying EIS resource manager instance.

Continued

l539663 ch19.qxd 7/25/03 9:17 AM Page 621

622 Part V ✦ The Data Tier

Listing 19-4 (continued)

* @return ManagedConnectionMetaData
*/
ManagedConnectionMetaData getMetaData();

/**
* Returns an javax.transaction.xa.XAresource instance.
* @return XAResource
*/
XAResource getXAResource();

/**
* Removes an already registered connection event listener
* from the ManagedConnection instance.
* @param ConnectionEventListener
*/
void removeConnectionEventListener(

ConnectionEventListener listener);

/**
* Sets the log writer for this ManagedConnection instance.
* @param PrintWriter
*/
void setLogWriter(java.io.PrintWriter out);

}

Error logging
The connection-management contract provides support for error logging and tracing
for both the managed and non-managed environments. This enables the application
server to detect resource-adapter errors and to use error information for debugging
purposes. The ManagedConnectionFactory interface defines two methods for
error logging. The setLogWriter method registers a character output stream, or log
writer, with a ManagedConnectionFactory instance, while the getLogWriter
method returns the current log writer for the ManagedConnectionFactory
instance.

Application steps for establishing a connection
The following is a list of steps that happens when an application establishes a con-
nection with the EIS (in a managed environment). Most of these steps are part of
the handshake between the application server and resource adapter (and the
underlying EIS). The application component has to implement only a subset of
these steps and we will examine those under the section, “Using the CCI,” later in
this chapter.

l539663 ch19.qxd 7/25/03 9:17 AM Page 622

623Chapter 19 ✦ Understanding the J2EE Connector Architecture

Figure 19-5 illustrates the following steps as well as the interaction between the
application component, resource adapter, and the application server.

Figure 19-5: Connection management interfaces

1. The application component does a JNDI lookup for the ConnectionFactory.

2. The application component calls the getConnection method on the
ConnectionFactory to get a connection to the underlying instance.

3. The ConnectionFactory delegates the connection request to the associated
ConnectionManager instance. The ConnectionFactory instance calls the
allocateConnection method on the ConnectionManager and passes the
ConnectionRequestInfo parameter.

Application server

Connection manager

Architected contract
Implementation specific

SecurityService
manager

���������������	�
�����

Pool
manager

Transaction
manager

Resource adapter

Application component

Enterprise Information System (EIS)

����������������

���������������������

���������������

����������

	������
�����

����
�����

l539663 ch19.qxd 7/25/03 9:17 AM Page 623

624 Part V ✦ The Data Tier

4. After receiving the request the ConnectionManager instance attempts to find
a suitable existing connection in the application server’s connection pool. The
interaction between a ConnectionManager instance and the Connection pool
manager is internal and specific to an application server.

5. If the application server finds a connection in the pool that it considers suit-
able, it uses that matching ManagedConnection to satisfy the application’s
connection request.

6. If the application server finds no matching ManagedConnection instance,
the application server calls the ManagedConnectionFactory.
createManagedConnection method.

7. The ManagedConnectionFactory instance creates a new physical connection
to the underlying EIS instance and returns it to the application server. This
new physical connection is represented by a ManagedConnection instance.

8. The application server registers a ConnectionEventListener instance with
the ManagedConnection instance, enabling it to receive notifications for
events on this connection.

9. The application server calls the ManagedConnection.getConnection
method to get an application-level connection handle of type javax.
resource.cci.Connection. The application server returns this connection
handle to the resource adapter, which in turn returns it to the application
component.

10. The application component uses the connection handle returned by the
resource adapter to access the EIS. When the application component com-
pletes its work with the connection, it closes the connection handle.

Transaction-management contract
The transaction-management contract is defined between an application server and
a resource adapter (and its underlying EIS resource manager). The transaction-
management contract extends the connection-management contract and provides
support for management of both local and XA transactions. A local transaction is
managed within a resource manager and does not require coordination by an exter-
nal resource manager.

An XA transaction (also called a JTA or global transaction) can span multiple
resource managers. This type of transaction requires transaction coordination by
an external transaction manager. The transaction manager also provides additional
low-level services that enable transactional context to be propagated across
systems.

Refer to Chapter 10 for more details on transactions.Cross-
Reference

l539663 ch19.qxd 7/25/03 9:17 AM Page 624

625Chapter 19 ✦ Understanding the J2EE Connector Architecture

As shown in Figure 19-6, the transaction-management contract specifies these three
key interfaces:

✦ javax.resource.spi.ManagedConnection

✦ javax.transaction.xa.XAResource

✦ javax.resource.spi.LocalTransaction

Figure 19-6: Transaction-management interfaces

A ManagedConnection interface represents a physical connection to the underlying
EIS. It defines two methods that pertain to the transaction-management contract:

✦ getLocalTransaction is used to create a new LocalTransaction instance.

✦ getXAResource is used to create a new XAResource instance.

Local-transaction management contract
Transactions managed within a resource manager are local transactions. The
application server uses the javax.resource.spi.LocalTransaction interface
to manage local transactions transparently to an application component. The
LocalTransaction interface defines the following three methods:

Application server

Enterprise Information
System (EIS)

Resource adapter

LocalTransaction
Transaction manager

Create new instance

Create new instanceXA Resource

getLocalTransaction
getXAResource
getLocalTransaction
getXAResource

ManagedConnectionManagedConnection

l539663 ch19.qxd 7/25/03 9:17 AM Page 625

626 Part V ✦ The Data Tier

✦ begin

✦ commit

✦ rollback

An application server invokes the LocalTransaction begin method to explicitly
start a local transaction. The application server can either call the commit method
to complete the transactional changes made to the EIS, or it can call the rollback
method to undo the changes.

The local-management contract also specifies the local transaction-related event
notifications. An application server implements the javax.resource.spi.
ConnectionEventListener interface. The ConnectionEventListener interface
specifies the following three methods that pertain to local-transaction management:

✦ localTransactionStarted

✦ localTransactionCommitted

✦ localTransactionRolledback

When a local transaction starts, a ManagedConnection instance calls the
localTransactionStarted method to notify its registered listeners that the
transaction has started. Similarly, a ManagedConnection instance calls the
localTransactionCommitted method to notify its listeners that the transaction
has committed, and it calls localTransactionRolledback to notify its registered
listeners that the transaction has been rolled back.

The XAResource transaction-management contract
The XAResource transaction-management contract is based on the X/Open transac-
tion model. The javax.transaction.xa.XAResource interface is a Java mapping
of the industry-standard XA interface based on the X/Open CAE (Common
Applications Environment) specification.

The XAResource interface is implemented by the resource adapter for an EIS
resource manager. This interface enables the resource manager to participate in
transactions controlled and coordinated by an external transaction manager. The
application server uses a transaction manager to support a transaction-management
infrastructure that enables an application component to perform transaction access
across the multiple EIS resource managers. The XAResource transaction-management
contract supports a two-phase commit protocol that ensures that a transaction
across the multiple resource managers either entirely commits or entirely rolls back.
If even one resource manager is not ready to commit, the transaction manager rolls
back the transaction across all the participating resource managers.

Figure 19-7 illustrates a scenario where the transaction context is propagated
across multiple resource adapters. An application client invokes EJB component X.
EJB X accesses transaction programs managed by a TP system and calls EJB Y to
access an ERP system. The resource adapters for both systems implements the

l539663 ch19.qxd 7/25/03 9:17 AM Page 626

627Chapter 19 ✦ Understanding the J2EE Connector Architecture

XAResource interface that enables the two resource managers to participate in
transactions that are coordinated by the application server’s transaction manager.
When the transaction commits, the transaction manager ensures that all read/write
access to resources managed by both TP system and ERP system is either entirely
committed or entirely rolled back.

Figure 19-7: XAResource transaction contract

Security management contract
It is critically important for an enterprise application to protect the integrity of the
business information. The J2EE security model defines the security that is applied
to client access to the Web tier, and then from the Web tier to the EJB tier.

For a detailed explanation of the J2EE security model, refer to Chapter 12.

The Connector architecture defines a security-management contract that extends
the J2EE security model to include support for secure connectivity to EISes. The
security-management contract is both security-mechanism-independent and tech-
nology-independent. Thus application servers and EISes can support the contract
regardless of their own levels of support for security. The contract provides sup-
port for both the authentication and authorization of users.

The term authentication refers to the security mechanism by which the requester
and the service provider establish their identities to one another. Authorization is
defined as a security mechanism through which it is verified that the user has the
authority to access the requested resource or service.

Cross-
Reference

X YClient

Transaction Manager

TP System ERP System

XA Resource
based contract

l539663 ch19.qxd 7/25/03 9:17 AM Page 627

628 Part V ✦ The Data Tier

When an application component requests a connection in the J2EE environment, it
is established under the security context of a resource principal. Once the connec-
tion is established all the application-level invocations occur under the same con-
text. An application component can sign on to an EIS system using one of the
following two approaches: container-managed or component-managed. As
explained later in this chapter, in the section “Packaging and Deployment,” the
application-component provider uses a deployment-descriptor element such as
res-auth for EJB to indicate the sign-on approach. A value of Container indicates
container-managed sign-on and a value of Application indicates component-
managed sign-on.

With container-managed sign-on the application component lets the container
take the responsibility of configuring and managing the EIS sign-on. The container
determines the user name and password for establishing a connection to an EIS
instance. The component code invokes the getConnection method on the
ConnectionFactory instance with no security-related parameters. Here’s an
example:

// Container Managed sign-on
Context ctx = new InitialContext();

//JNDI look up
javax.resource.cci.ConnectionFactory cxf =
(javax.resource.cci.ConnectionFactory)ctx.lookup(“java:comp/env
/eis/MyEIS”);

// No security-related parameters.
javax.resource.cci.Connection cx = cxf.getConnection();

In the component-managed sign-on the application component code manages the
EIS sign-on by including code that performs the process of signing on to an EIS. In
this case the application component must pass the security information (user
name, password) to the ConnectionFactory when invoking the getConnection
method. Here’s an example:

//Component Managed sign-on
Context ctx = new InitialContext();

//JNDI look up
javax.resource.cci.ConnectionFactory cxf =
(javax.resource.cci.ConnectionFactory)ctx.lookup(“java:comp/env
/eis/MyEIS”);

// set the security information
com.myeis.ConnectionSpecImpl properties = ..
properties.setUserName(“John”);
properties.setPassword(“Doe”);
javax.resource.cci.Connection cx =
cxf.getConnection(properties);

l539663 ch19.qxd 7/25/03 9:17 AM Page 628

629Chapter 19 ✦ Understanding the J2EE Connector Architecture

Understanding EIS sign-on
Creating a new physical connection requires signing on to the EIS instance. EIS sign-
on typically requires the execution of one or more of the following steps:

1. Determining a resource principal under whose security context a physical
connection to an EIS will be established.

2. Authenticating a resource principal if it is not already authenticated.

3. Authorizing a resource principal.

4. Establishing a secure communication between the application server and the
EIS. Once such communication is established, additional security mecha-
nisms, such as data confidentiality and data integrity, may be applied.

Let’s discuss these steps in more detail.

Setting a resource principal
When an application component requests a connection from a resource adapter,
the connection request is always made under the security context of a resource
principal. The deployer can set the resource principal using one of the following
approaches:

✦ Configured identity

✦ Principal mapping

✦ Caller impersonation

✦ Credentials mapping

With the configured-identity approach a resource principal has its own configured
identity and security attributes, and these can be independent of the identity of the
principal initiating the connection request. The connection to the mainframe is
always established under the security context of a valid EIS user account. This
account is always used, regardless of the initiating or caller principal, which is set
to be the user accessing the system.

With the principal-mapping approach the container manages the mapping of the
resource principal from the identity or security attributes of the initiating or caller
principal. When this approach is used the resource principal does not inherit the
identity or security attributes of the principal from which it is mapped. Instead the
resource principal gets its identity and security attributes based on the principal
mapping. For example, if the caller principal has identity A, a mapped resource
principal can be mapping(A, EIS1) and mapping(A, EIS2) on two different EIS
instances.

With caller impersonation a resource principal acts on behalf of an initiating/caller
principal. When a resource principal impersonates a caller principal, the caller’s
identity and credentials are delegated to the EIS instance.

l539663 ch19.qxd 7/25/03 9:17 AM Page 629

630 Part V ✦ The Data Tier

The credentials-mapping mechanism can be used when an application server and
the EIS support different authentication domains. In this case the mapped resource
principal has the same identity as the initiating/caller principal. For example, a prin-
cipal with Identity A has initial credentials cred (A, mech1) and has credentials
cred (A, mech2) after mapping. The mech1 and mech2 represent different mecha-
nism types.

Authenticating a resource principal
An application server and an EIS collaborate to ensure the proper authentication of
a resource principal that establishes a connection to an underlying EIS. Although
the Connector’s security architecture is independent of any particular security
mechanism, the architecture does identify these two commonly supported authen-
ticated mechanisms:

A basic user password–based authentication mechanism specific to an EIS

A Kerberos version 5–based authentication mechanism

Authorizing a resource principal
Authorization ensures that the principal has properly authorized access to the EIS
resources. It can be applied either at the EIS level or at the application-server level.
If it is done at the EIS level it can be done in an EIS-specific manner. Application
servers that use J2EE containers such as EJB and servlet containers can define
their security-authorization policies either programmatically or declaratively.

Establishing a secure communication
A secure association is shared security information that allows a component on the
application server to communicate securely with an EIS. The establishment of a
secure association can include the following steps:

1. Authenticating the resource principal to the EIS. (This may require mutual
authentication.)

2. Negotiating a quality of protection, such as confidentiality or integrity.

3. Establishing a shared security context using the credentials of the resource
principal, by means of a pair of communicating entities — an application
server and an EIS instance.

A secure association between an application server and an EIS is always estab-
lished by the resource-adapter implementation. The resource-adapter library runs
within the address space of the application server. Once a secure association is
established successfully the connection is associated with the security context of
the resource principal. Subsequently, all application-level invocations to the EIS
instance using the connection happen under the security context of the resource
principal.

l539663 ch19.qxd 7/25/03 9:17 AM Page 630

631Chapter 19 ✦ Understanding the J2EE Connector Architecture

Inbound communication
Version 1.5 of the J2EE Connector architecture provides support for inbound com-
munication. It enables a resource adapter initiated call to invoke EJBs (session,
entity and message-driven beans) residing in the application server. It also provides
the mechanism to propagate transaction information from an EIS to an application
residing in an EJB container. Let’s look at the following contracts that are specified
by the architecture pertaining to inbound communication: message inflow and
transaction inflow.

Message inflow and message endpoint
The-message-inflow contract between an application server and a resource adapter
allows a resource adapter to asynchronously deliver messages to message end-
points residing in the application server. It also serves as the standard message-
provider “pluggability” contract that allows a wide range of message providers to
be plugged into any J2EE-compatible application server via a resource adapter.
Figure 19-8 gives an overview of the message-inflow contract.

Figure 19-8: The message-inflow contract

The message endpoint is a message-driven bean application deployed on the appli-
cation server. The resource adapter uses the MessageEndpointFactory instance
to obtain message-endpoint instances for delivering messages. The resource
adapter also provides a configured ActivationSpec JavaBean class for each sup-
ported endpoint message–listener type. Message-endpoint lifecycle has the follow-
ing stages:

✦ Endpoint deployment — To deploy, you need to select a suitable resource
adapter (capable of delivering messages), configure the ActivationSpec
JavaBean instance obtained from the resource adapter, and pass that instance
to the endpoint application. The application server activates the message
endpoint by calling the chosen resource adapter via the endPointActivation
method, and passes a MessageEndpointFactory instance and the configured
ActivationSpec JavaBean instance.

✦ Message delivery — Once message endpoints are activated they are ready to
receive messages from a message provider. When messages arrive, the
resource adapter uses the MessageEndpointFactory to create an endpoint

Application Application
server

Resource
adapterMessage inflow

contract

Message
provider

EIS

l539663 ch19.qxd 7/25/03 9:17 AM Page 631

632 Part V ✦ The Data Tier

instance. Since the resource adapter knows the endpoint type from the
ActivationSpec, it narrows the endpoint instance to the actual message-
listener type and delivers the message to the endpoint instance.

✦ Endpoint undeployment — The application server notifies the resource
adapter, via endpointDeactivation, about the undeployment of the mes-
sage endpoint. It also passes the ActivationSpec JavaBean instance used
during endpoint activation.

EJB invocation
A resource adapter may need to call session or entity beans. The J2EE Connector
architecture suggests using the resource adapter’s bean to dispatch logic to such
invocations. The resource adapter can use the message-inflow contract to call a
message-driven bean, and use the message-driven bean to dispatch calls to session
and entity beans using the EJB client-view model. Thus, the message-driven bean
can be used as a replaceable unit of the resource adapter that serves the job of a
bean dispatcher. The message-inflow contract allows the creation of multiple end-
point instances (message-driven beans) at runtime, so it is possible to do concur-
rent bean dispatches.

The transaction-inflow contract
The transaction-inflow contract provides a mechanism with which a resource
adapter can propagate an imported transaction to an application server. It also
allows transaction completion (two-phase commit) and crash recovery, and
ensures that the atomicity, consistency, isolation, and durability (ACID) properties
of the imported transaction are preserved.

For a detailed discussion on the ACID properties of a transaction, refer to Chapter 10.

Transaction propagation
When the EIS makes a transaction call to the resource adapter, the resource adapter
imports the transaction context and represents it in a standard form using the
javax.transaction.xa.Xid instance. It creates a Work instance and an
ExecutedContext instance containing the constructed Xid instance. It then sub-
mits the Work instance to the application server. The application server’s
WorkManager accepts the submitted Work instance and recreates the execution
context for the Work instance and calls the run method on the Work object.

Transaction completion
On receiving the prepare message from the EIS, the resource adapter obtains an
XATerminator instance from the application server. The resource adapter then
calls the prepare method on the XATerminator instance with an appropriate Xid
instance, and returns the outcome of the prepare operation to the EIS. When the EIS
sends a commit message for the transaction, the resource adapter calls the commit
method on the XATerminator instance with an appropriate Xid instance.

Cross-
Reference

l539663 ch19.qxd 7/25/03 9:17 AM Page 632

633Chapter 19 ✦ Understanding the J2EE Connector Architecture

The Common Client Interface (CCI)
So far we have looked at the system contracts between the application server and
the resource adapter. The Connector architecture also defines an application con-
tract between the application components and the resource adapters. This contract
is referred to as the Common Client Interface (CCI). The CCI simplifies the problem
of writing code to connect to an EIS. The CCI provides an API that is common
across heterogeneous EISes. It provides a set of interfaces and classes whose meth-
ods allow a client to perform typical EIS connection, remote-function execution, and
data-access operations in a generic way not specific to any particular EIS.

The EIS vendors can use the CCI to write a generic interface to their products. With
this one interface, an application deployed on any J2EE compliant platform will be
able to access their product. Likewise, application developers only need to learn
one API to connect to any EIS system. Additionally, even if the enterprise changes
its underlying EIS system, the application code does not need to change.

Functionally, the CCI interfaces and classes are divided into the four following
categories:

✦ Connection

✦ Interaction

✦ Data

✦ Metadata

Table 19-1 lists the four categories and the supported interfaces.

Table 19-1
Categories and supported interfaces for CCI

Categories Description Interfaces

Connection This category includes javax.resource.cci.
the interfaces to ConnectionFactory
represent connection, javax.resource.cci.Connection
specifically a connection javax.resource.cci.
factory and an application ConnectionSpec
level connection. javax.resource.cci.

LocalTransaction

Continued

l539663 ch19.qxd 7/25/03 9:17 AM Page 633

634 Part V ✦ The Data Tier

Table 19-1 (continued)

Categories Description Interfaces

Interaction This category includes the javax.resource.cci.Interaction
interfaces, which enables a javax.resource.cci.
component to execute or drive InteractionSpec
an interaction with an EIS
instance.

Data This category includes the javax.resource.cci.Record
interfaces that represent the javax.resource.cci.
data structures involved in an MappedRecord
interaction with an EIS instance. javax.resource.cci.

IndexedRecord
javax.resource.cci.
RecordFactory

javax.resource.cci.Streamable
javax.resource.cci.ResultSet
javax.sql.ResultSetMetaData

Metadata This category includes the javax.resource.cci.
interfaces that provide basic ConnectionMetaData
metadata information about a javax.resource.cci.
resource adapter implementation ResourceAdapterMetaData
and an EIS connection. javax.resource.cci.

ResultSetInfo

Connection interfaces
Connection interfaces encompass the following connection-related interfaces:

✦ ConnectionFactory— The ConnectionFactory interface provides an appli-
cation component with an interface for getting a connection to an EIS instance.
An application component uses JNDI APIs first to look up a ConnectionFactory
instance from the JNDI namespace and then to get a connection to the EIS
instance. It provides the method getConnection to obtain a connection to the
EIS instance. It supports two variants of the getConnection method — one
used if the application is using the container-managed sign-on and the other
one used if the application is using the component-managed sign-on.

✦ Connection— The Connection interface represents an application-level con-
nection handle for accessing an EIS instance. It only represents a logical con-
nection to the EIS; the actual physical connection is represented by a
ManagedConnection. It provides the method createInteraction to create
an Interaction instance. An Interaction enables a component to access
EIS data and functions. It also provides the method getLocalTransaction,
which enables the application components to use their own transactions.

l539663 ch19.qxd 7/25/03 9:17 AM Page 634

635Chapter 19 ✦ Understanding the J2EE Connector Architecture

✦ ConnectionSpec— The ConnectionSpec interface is used to pass properties
specific for a connection request to the getConnection method. The CCI
specification defines two standard properties for the ConnectionSpec inter-
face: UserName and Password. A resource adapter that implements the
ConnectionSpec interface can add its own additional properties.

Interaction interfaces
The following interaction interfaces enable a component to drive an interaction
with an EIS instance:

✦ Interaction— The Interaction interface defines methods that enable an
application component to execute EIS functions. It provides two variants of
the execute method. One takes three parameters, an input Record, an output
Record and an InteractionSpec instance. This method executes the EIS
function represented by the InteractionSpec and updates the output
Record. The other variant takes two parameters, an input Record and an
InteractionSpec. This method executes the EIS function represented by
InteractionSpec and produces the output Record as a return value.

✦ InteractionSpec— The InteractionSpec instance is used to hold the
properties that are used by the Interaction instance to interact with the EIS.
The CCI defines a set of standard properties for the InteractionSpec inter-
face, but the implementation class is only required to support a property if
the property is relevant to the underlying EIS. Standard properties include
FunctionName (a string representing the name of the EIS function) and
InteractionVerb (an integer representing the mode of interaction with an
EIS instance).

Data interfaces
The following data-related interfaces represent the data structures involved in an
interaction with an EIS instance:

✦ RecordFactory— Just as the ConnectionFactory interface is used to create
connections, a RecordFactory interface is used to create Record instances.
It provides methods for creating the MappedRecord and IndexedRecord. The
methods only take the name of the Record as the parameter. The name of the
Record acts as a pointer to the meta information. The implementation class
uses the meta information to create the Record instance.

✦ Record— A Record interface acts as a data structure used to pass the data
between the application component and the EIS. It is a base interface and can
be implemented by a MappedRecord, an IndexedRecord, or a ResultSet.
The MappedRecord represents a key-value map based collection of Record
elements and is based on the java.util.Map. IndexedRecord is an ordered
and indexed collection of Record elements and is based on the java.util.
List. ResultSet represents tabular data and is based on the java.sql.
ResultSet.

l539663 ch19.qxd 7/25/03 9:17 AM Page 635

636 Part V ✦ The Data Tier

Metadata interfaces
The following interfaces provide basic meta information about a resource adapter
implementation and an EIS instance:

✦ ConnectionMetaData— The ConnectionMetaData interface provides basic
meta information about the EIS connection. An application component that
has a connection with the EIS instance can call the method getMetaData()
on the Connection instance to get a ConnectionMetaData instance. The
ConnectionMetaData interface holds information like the EIS name, EIS ver-
sion, and the name of the user for the connection.

✦ ResourceAdapterMetaData—The ResourceAdapterMetaData interface pro-
vides information about the capabilities of a resource-adapter implementa-
tion. An active connection to the EIS instance is not required to retrieve this
information. The interface provides information about the version of the spec-
ifications implemented by the resource adapter, the variants of execute (on
Interaction interface) implemented, and whether the resource adapter sup-
ports local-transaction demarcation.

Using the CCI
A client or application component that uses the CCI to interact with an underlying
EIS does so in a prescribed manner. The following basic programming steps are
required to use the CCI API:

1. Perform a JNDI lookup to locate the ConnectionFactory for the resource
adapter.

2. Call the getConnection() method of the ConnectionFactory to obtain a
connection. The Connection instance represents a connection handle to the
EIS and is used for subsequent interactions with the EIS.

3. Call the createInteraction() method on the Connection instance to cre-
ate a new Interaction instance.

4. Instantiate an object representing the InteractionSpec interface. The
InteractionSpec object is used to specify properties related to the target
interaction with the EIS.

5. Call the getRecordFactory() method of the ConnectionFactory to get a
reference to the RecordFactory.

6. Use the RecordFactory create methods to create Record instances. The
application components read and write data to the EIS using a particular type
of Record (MappedRecord, IndexedRecord, or ResultSet).

7. Start the transaction if the application component is managing its own
transaction.

8. Perform the desired operation.

l539663 ch19.qxd 7/25/03 9:17 AM Page 636

637Chapter 19 ✦ Understanding the J2EE Connector Architecture

9. Close the transaction (commit or rollback), if the application component is
managing its own transaction.

10. Close the connection to the EIS.

Listing 19-5 illustrates an application example that uses the CCI to access an EIS.

Listing 19-5: Accessing an EIS with the CCI

package com.connexia.client;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.resource.ResourceException;
import javax.resource.cci.*;
import javax.resource.cci.Connection;
import javax.resource.cci.ConnectionFactory;
import javax.resource.cci.Interaction;
.
.
.

public void connecttoEIS() {

ConnectionFactory connectionFactory = null;
Connection conn = null;
Interaction interx = null;
RecordFactory recordFactory = null;
IndexedRecord inputRecord = null;
IndexedRecord outputRecord = null;

// 1. Obtain a ConnectionFactory.
// Establish a JNDI initialcontext and use the lookup

method
// to locate the ConnectionFactory for the resource

adapter.

try {
Context context = new InitialContext();
connectionFactory =

(ConnectionFactory)
context.lookup(“java:comp/env/CCIEIS”);

} catch (NamingException e) {

e.printStackTrace();
// clean up...
return;

}

Continued

l539663 ch19.qxd 7/25/03 9:17 AM Page 637

638 Part V ✦ The Data Tier

Listing 19-5 (continued)

// 2. Obtain a Connection.
// Call the getConnection() method to get a connection

to
// the EIS instance. You can also call
// getConnection(ConnectionSpec) method and pass
// user/password information in the ConnectionSpec

object.

try {
conn = connectionFactory.getConnection();

} catch (ResourceException re) {
System.out.println(

“ResourceException thrown: Could not
create connection”);

re.printStackTrace();
return;

}

// 3. Create a Interaction object to enable the
// application to execute EIS functions.

try {
interx = conn.createInteraction();

} catch (ResourceException re) {
System.out.println(

“ResourceException thrown: Could not create
interaction”);

re.printStackTrace();
// clean up...
return;

}

// 4. Create an object implementing the InteractionSpec
// interface.
// This object will hold properties such as schema name

and
// function name. The interaction object will use these
// properties to interact with the EIS instance.

MyInteractionSpec myInteractionSpec = new
MyInteractionSpec();

myInteractionSpec.setFunctionName(“Search”);

// 5. Get a RecordFactory

try {
recordFactory =

connectionFactory.getRecordFactory();
} catch (ResourceException re) {

System.out.println(

l539663 ch19.qxd 7/25/03 9:17 AM Page 638

639Chapter 19 ✦ Understanding the J2EE Connector Architecture

“ResourceException thrown: Could not create
RecordFactory”);

re.printStackTrace();
// clean up...
return;

}

// 6. Get a Record instance to pass the input data.

try {
inputRecord =

recordFactory.createIndexedRecord(“InputRecord”);
} catch (ResourceException re) {

System.out.println(
“ResourceException thrown: Could not create

Record”);
re.printStackTrace();
// clean up...
return;

}

// 7. Start a transaction.
// This step is optional. If the application is using

the
// container managed transaction, then this step is not
// needed. If the application is managing the

transaction
// itself, then get the LocalTransaction object from

the
//connection object and start the transaction.

// for example :
// transaction = conn.getLocalTransaction();
// transaction.begin();

.

.

.

// 8. Perform the operation
// myInteraction is used to pass the properties and
// inputRecord is used to pass the data for the

operation.
// outputRecord contains the result of the operation.

try {
outputRecord =

(IndexedRecord)
interx.execute(myInteractionSpec, inputRecord);

} catch (ResourceException re) {

Continued

l539663 ch19.qxd 7/25/03 9:17 AM Page 639

640 Part V ✦ The Data Tier

Listing 19-5 (continued)

System.out.println(
“ResourceException thrown: Could not create get

the transaction”);
re.printStackTrace();
// clean up...
return;

}

// 9. Close the transaction.
// If you used the transaction in the earlier step, you

need
// to close the transaction (commit or rollback)
// for example: transaction.rollback() or
// transaction.commit();

// 10. Close the connection
try {

conn.close();
} catch (ResourceException re) {

System.out.println(
“ResourceException thrown: Could not close

connection”);
re.printStackTrace();

}

}

Packaging and Deployment
In most regards a resource-adapter module is just like any other J2EE module, such
as an enterprise-bean module or a Web-application module. It must be deployed on
the application server before it can be accessed by other J2EE components and
applications. The J2EE Connector architecture supports the modular and portable
deployment of a resource adapter. The resource-adapter module can be deployed
either as a stand-alone unit or as part of a J2EE enterprise application. When it is
deployed as a stand-alone unit, multiple J2EE applications running on the same
application server can share a single resource adapter. When it is deployed as part
of a J2EE enterprise application, the resource adapter is available only to modules
and components within the same application.

l539663 ch19.qxd 7/25/03 9:17 AM Page 640

641Chapter 19 ✦ Understanding the J2EE Connector Architecture

Typically, a resource adapter module includes the following elements:

Java classes and interfaces that implement the contracts and the functionality
of the resource adapter

Utility Java classes for the resource adapter

Platform-dependent native libraries required by the resource adapter

Help files and documentation

A deployment-descriptor file containing meta information about the resource
adapter

A resource adapter is packaged into a Resource Adapter Archive (RAR) format. The
RAR format uses the standard Java archive (JAR) format. A RAR file is identified by
the .rar file extension. The following is a sample directory structure for a resource
adapter module:

META-INF/ra.xml
readme.html
Images/icon.jpg
eis.jar
utilities.jar
windows.dll
solaris.so

The ra.xml deployment descriptor contains the meta information about the
resource adapter. The J2EE model dictates that the file should be under the direc-
tory META-INF. The files ra.jar and cci.jar contain the Java interfaces and
implementation classes for the resource adapter. The win.dll and solaris.so
libraries are examples of native libraries.

Let’s examine some of the important elements that can be configured in the deploy-
ment descriptor. The deployment descriptor specifies the interfaces and the imple-
mentation classes for the resource adapter.

The element <resourceadapter-class> specifies the fully qualified name of the
Java class that implements the javax.resource.spi.ResourceAdapter interface.
The elements related to the connection contract specify the fully qualified names of
the Java classes that implement their respective interfaces. Listing 19-6 provides an
example.

Listing 19-6: <resourceadapter-class> implementing
javax.resource.spi.ResourceAdapter

<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE connector PUBLIC ‘-//Sun Microsystems, Inc.//DTD
Connector 1.5//EN’

Continued

l539663 ch19.qxd 7/25/03 9:17 AM Page 641

642 Part V ✦ The Data Tier

Listing 19-6 (continued)

‘http://java.sun.com/j2ee/dtds/connector_1_5.dtd’>

<connector>
<display-name>MyJCA</display-name>
<vendor-name>MyJCA</vendor-name>
<spec-version>1.5</spec-version>
<eis-type>My Data</eis-type>
<version>1.0</version>
<resourceadapter>

<resourceadapter-class>
com.connexia.adapter.MyResourceAdapter
</resourceadapter-class>
<outbound-resourceadapter>
<connection-definition>
<managedconnectionfactory-class>

com.connexia.adapter.MyManagedConnectionFactory
</managedconnectionfactory-class>
<connectionfactory-interface>

javax.sql.DataSource
</connectionfactory-interface>
<connectionfactory-impl-class>

com.connexia.adapter.MyDataSource
</connectionfactory-impl-class>
<connection-interface>

java.sql.Connection
</connection-interface>
<connection-impl-class>

com.connexia.adapter.MyConnection
</connection-impl-class>

</connection-definition>

.

.

.
</outbound-resourceadapter>
<inbound-resourceadapter>
...
</inbound-resourceadapter>

</resourceadapter>
</connector>

The resource adapter can be configured to provide appropriate transaction
support. The valid values for transaction level are NoTransaction, Local
Transaction and XATransaction. Here’s an example:

<transaction-support>LocalTransaction</transaction-support>

l539663 ch19.qxd 7/25/03 9:17 AM Page 642

643Chapter 19 ✦ Understanding the J2EE Connector Architecture

The deployment-descriptor also specifies the authentication mechanism that the
resource adapter supports. The valid values for the authentication types are
BasicPassword and Kerbv5. Here’s an example:

<authentication-mechanism>
<authentication-mechanism-type>

BasicPassword
</authentication-mechanism-type>
<credential-interface>

javax.resource.security.PasswordCredential
</credential-interface>
</authentication-mechanism>

The inbound resource adapter section of the deployment descriptor allows specify-
ing the attributes for the messaging resource adapter. Here is an example:

<inbound-resourceadapter>
<messageadapter>

<messagelistener>
<messagelistener-type>

javax.jms.MessageListener
</messagelistener-type>

<activationspec “>
<activationspec-class>

com.connexia.adapter.MyActivationSpec
</activationspec-class>

</activationspec>
</messagelistener>

</messageadapter>
</inbound-resourceadapter>

During resource adapter deployment, the deployer configures the resource adapter
based on the properties defined in the deployment descriptor. Generally, you pack-
age and deploy a resource adapter using the tools that are provided with your
application server.

Summary
The J2EE Connector architecture defines a standard architecture for connecting the
J2EE platform to heterogeneous EISes. It defines contracts and responsibilities for
various roles for standard bi-directional connectivity to an EIS. The J2EE Connector
architecture extends the benefits of J2EE beyond the application server and pro-
vides a way for the EIS vendors to plug into the J2EE space. In this chapter, we
examined the system-level contracts between the J2EE server and the resource
adapter. By adhering to the terms of these contracts when developing their compo-
nents, EIS vendors no longer need to customize their product for each application
server. Application server vendors who conform to the J2EE Connector architec-
ture do not need to add custom code when they add connectivity to a new EIS. We

l539663 ch19.qxd 7/25/03 9:17 AM Page 643

644 Part V ✦ The Data Tier

also looked at the Common Client Interface (CCI), a common client API for access-
ing multiple heterogeneous EISes. The CCI sample code illustrated how to use the
different interfaces and classes defined by CCI to access a resource adapter for an
underlying EIS.

The Connector architecture is currently supported by a significant number of J2EE
compliant application servers and EIS vendors. The J2EE Connector architecture
provides a very flexible API. But in order to provide support for flexibility, it has
also become a complex API and is more oriented towards commercial software ven-
dors. A lot of companies have taken the initiative of implementing adapters for vari-
ous EISes. You can either leverage an off-the-shelf adapter to connect to your legacy
system or implement your own. If your enterprise changes the backend legacy sys-
tem, you only need to replace the adapter.

✦ ✦ ✦

l539663 ch19.qxd 7/25/03 9:17 AM Page 644

Web Services
✦ ✦ ✦ ✦

In This Part

Chapter 20
Introducing Web
Services

Chapter 21
Digging Deeper
into SOAP, WSDL,
and UDDI

Chapter 22
Understanding J2EE
Web Services

✦ ✦ ✦ ✦

P A R T

VIVI

m539663 PP06.qxd 7/25/03 9:17 AM Page 645

m539663 PP06.qxd 7/25/03 9:17 AM Page 646

Introducing
Web Services

There was once a time when an 8 megahertz CPU and a
300 baud modem was all you needed to spend an entire

day playing games, sending e-mail, or participating in a news-
group. Your friendly Bulletin Board System (BBS) was your
portal to education, adventure, and mischief, and everything
was quite simple. Then in the mid-’90s, the Internet exploded
and changed the face of computing, information exchange,
and eventually business, forever.

While Hypertext Markup Language (HTML), JavaScript, and
Common Gateway Interface (CGI) were relatively powerful
technologies, they were not easy to work with, and they were
limited in their flexibility. In the late ‘90s, technologies like
Microsoft’s Active Server Pages (ASP), and Sun’s Java Servlets
and JavaServer Pages (JSP) offered more flexible, more effi-
cient, and more dynamic frameworks for building Web sites.
The next evolutionary phase was from marking data for dis-
play (HTML) to marking data for content by means of the
eXtensible Markup Language (XML). XML is more intelligent
than HTML because it is capable of describing data context
and data types, as well as describing the meaning, or purpose
of a particular piece of data. Additionally, the structure of an
XML document is more tightly defined and is capable of being
understood by any application with access to an appropriate
XML parser. XML has thus paved the way for mobile devices
and other embedded systems to join the World Wide Web.

In the same way that XML represents a more intelligent and
more flexible evolution of HTML, Web services can be thought
of as a more intelligent and more flexible evolution of XML. In
this chapter we will introduce you to Web services and the
effect they are having on the industry. We will also discuss a
high-level view of the technologies behind Web services,
Simple Object Access Protocol (SOAP), Web Services
Definition Language (WSDL), and Universal Description,
Discovery, and Integration (UDDI).

2020C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Defining
Web services

Explaining why we
need Web services

Examining some
Web-service
scenarios

Understanding the
technologies behind
Web services

✦ ✦ ✦ ✦

n539663 ch20.qxd 7/25/03 9:17 AM Page 647

648 Part VI ✦ Web Services

Defining Web Services
Web services extend the Extensible Markup Language (XML) that enables us to
share data and functionality. That’s right, you can use existing applications that
expose methods as Web services to create new applications. Web services are quite
complex and provide more flexibility than this definition implies. Let’s take a look at
a more detailed definition of the term Web service:

The W3C Web Services Architecture group refers to a Web service as a soft-
ware system identified by a URI, whose public interfaces and bindings are
defined and described using XML. Its definition can be discovered by other
software systems. These systems may then interact with the Web service in a
manner prescribed by its definition, using XML-based messages conveyed by
Internet protocols.

We believe this is the most complete definition available. It captures the dynamic
nature of a Web service and mentions the use of open technologies, XML, and
Internet protocols. However, it can be confusing, so let’s take a closer look at it.

Universal Resource Identifiers
Webopedia.com defines a Universal Resource Identifier (URI) as “The generic term
for all types of names and addresses that refer to objects on the World Wide Web.”
Currently there are two types of URIs, Universal Resource Locators (URLs) and
Universal Resource Names (URNs). These terms are defined as follows:

✦ URLs — Uniform Resource locators point to a specific location or address and
have a prefix such as ftp, http, or mailto. You must know the entire URL in
order to obtain the information you are looking for.

✦ URNs — Universal Resource names require only the name of the resource in
order to work.

XML-based technologies
Communication via XML-based messages is commonly achieved by means of the
Simple Object Access Protocol (SOAP) and HTTP. It is important to note that SOAP,
WSDL, UDDI, and HTTP are not required in a Web-service environment. We will dis-
cuss SOAP, WSDL, and UDDI in more detail later in the chapter.

Finally, because XML-based technologies and HTTP make up a Web-service environ-
ment, you do not need to specify a programming language or platform. Web ser-
vices are language-independent and vendor-neutral. These are very important
points because historically the most popular technologies and protocols for dis-
tributed computing have been proprietary in some way. They have not fully met the
needs of the distributed-computing industry; we will discuss these problems in the
next section.

n539663 ch20.qxd 7/25/03 9:17 AM Page 648

649Chapter 20 ✦ Introducing Web Services

Why Do We Need Web Services?
Traditional distributed-computing environments have been tightly coupled, mean-
ing that they do not deal with a changing environment well. For instance, if the pur-
pose of an application is to exchange data, it might not be able to dynamically
handle the varying data types of new applications across multiple platforms with-
out a considerable change in architecture. Let’s take a look at some of the common
problems associated with traditional architectures in a real-world situation.

Let’s say our company has software that handles monetary transactions for an air-
line-reservation system. A customer decides to purchase a ticket for $10,000. The
client software that handles purchases sends the request to the server. The server
receives the request and the order is placed. The server may or may not send a
response back. How does the requestor know that the order was placed? What if
one of the servers failed, possibly causing total application failure? Errors can
prove to be very costly.

The most popular “I’m not sure I understand what you mean” technologies for tra-
ditional computing are the following:

✦ Remote Method Invocation (RMI)

✦ Distributed Component Object Model (DCOM)

✦ Common Object Request Broker Architecture (CORBA)

RMI, CORBA, and DCOM all have one common theme: dependency. Whether the
technology is dependent on the vendor or language doesn’t matter; the result is the
same. Systems made with these technologies do not interoperate or communicate
effectively with multiple systems in varying environments. The lack of effective
communication usually means that a developer will take on the role of watchdog to
make sure everything goes smoothly. Most importantly, the traditional architec-
tures for distributed computing use RMI, CORBA, and DCOM, and thus do not take
full advantage of the Internet because they were created before the Internet became
mainstream. The Internet provides standards that are recognized worldwide and
any technologies that incorporate these standards can be used to create highly
interoperable applications.

Let’s take a closer look at RMI, DCOM, and CORBA.

Remote Method Invocation
RMI allows applications to communicate across a network by allowing Java objects
to remotely invoke each other. RMI is a great technology but it requires every appli-
cation in the environment that wants to communicate to use Java.

For more information on RMI, please refer to Chapter 4 or visit http://java.
sun.com/products/jdk/rmi/.

Cross-
Reference

n539663 ch20.qxd 7/25/03 9:17 AM Page 649

650 Part VI ✦ Web Services

DCOM
DCOM is Microsoft’s distributed version of the Component Object Model (COM). You
can use the language of your choice; the only requirement is that you implement the
COM interfaces. This technology is a “Microsoft-standard,” meaning that you can use
it on most Windows platforms with no problems. Overall, support for COM is limited
to specific platforms. For more information please visit http://www.microsoft.
com/com/tech/DCOM.asp.

CORBA
The Common Object Request Broker Architecture (CORBA) was created by the
Object Management Group to help increase interoperability within distributed-
computing environments. CORBA is platform- and language-independent. Sounds
great, huh? Unfortunately, CORBA requires each application in an environment to
have the same Object Request Broker. An ORB facilitates communication between
a client seeking a service and servers that host a service, so interacting with many
different applications can become very expensive and inefficient. Lastly, CORBA
does not interact well with firewalls, primarily because it was created before the
WWW was widely used. Currently, CORBA does have some support for firewall
interaction, but with the emergence of Web services, focus has shifted away from
CORBA. For more information on CORBA please visit http://www.corba.org/.

Web-service architecture
By now we have taken enough shots at the prominent technologies for distributed
computing. We can’t blame the current state of distress solely on the technologies;
after all, they are only part of a larger architecture. In this section we’ll take a look
at two of the most important architectures for current distributed computing,
remote procedure call–based architectures and message-based architectures. We
will also examine the architecture that Web services use.

Remote procedure call–based architecture
As you may know, a remote procedure call–based architecture allows an application
to use the functionality of an application on an RPC server. During the application
request the required arguments are passed to the RPC server, the arguments are
processed, and a value is returned to the requesting application. The RPC architec-
ture does not allow an application to discover services or information about the
type of service provided. The requestor has to know the required information in
order to make a call, which severely limits interoperability.

Message-based architecture
A message-based architecture tends to handle load balancing and fail-over much
better than an RPC-based architecture. Typically, message-based architectures use
asynchronous messaging, by means of which data are transferred using messages
that are sent to a queue. The queue handles processing from there. There’s no need

n539663 ch20.qxd 7/25/03 9:17 AM Page 650

651Chapter 20 ✦ Introducing Web Services

for the requestor to wait for a response. Message-based architectures are usually
created with proprietary middleware products, and you know the problem with
using proprietary products; however, in a J2EE application this can be mitigated
using JMS-compliant products. All participants must have the messaging software
and any other software required to communicate with other messaging environ-
ments. So what happens when you are communicating with 100 different environ-
ments? That can become very expensive!

If you haven’t noticed, I haven’t mentioned HTTP, XML, or any other open standard.
Why? Because the traditional software architecture does not take full advantage of
Internet standards. Traditional software architectures are primarily object-based
models and use proprietary protocols. Web services typically use the open stan-
dard of HTTP and a service-oriented architecture.

Service-oriented architectures
The service-oriented architecture (SOA) consists of these three parts:

✦ Requestor — This role is responsible for discovering a service by searching
through the service descriptions given by the service broker. It is also respon-
sible for binding to services provided by the service provider.

✦ Provider — This role allows access to services, creates a description of a ser-
vice, and publishes the service to the service broker.

✦ Broker — This role hosts a registry of service descriptions. It is responsible
for linking a requestor to a service provider.

Figure 20-1 illustrates the service-oriented architecture.

Figure 20-1: A service-oriented architecture

Service
broker

Bind

Find Publish

Service
provider

Service
requestor

n539663 ch20.qxd 7/25/03 9:17 AM Page 651

652 Part VI ✦ Web Services

Some of the advantages of an SOA are that it is loosely coupled, dynamic, and effi-
cient. For instance, if a requestor requests a service from a service provider, and
the provider’s system fails, the requestor can dynamically find a new provider
through the broker. The provider may also redirect the requestor to a backup sys-
tem. Below is a list of some of the principles of a software-oriented architecture.

✦ Platform independence — In an SOA, the platforms that are used are not as
important as you might think. The main focus is on finding, binding, and pub-
lishing services. The platform doesn’t matter because the services are
accessed via a common interface.

✦ Flexibility — An SOA must be flexible enough to handle a changing environ-
ment and changing business requirements.

✦ Design independence — The design of a service and the system that hosts or
accesses a service should not be dependent upon each other.

We have examined the drawbacks of using some of the traditional architectures for
distributed computing, and looked at the advantages of implementing a service-
oriented architecture. In the next section we will take a look at some of the advan-
tages of Web services.

Advantages of Web services
Web services provide several significant benefits for distributed enterprise sys-
tems. Some of the most notable benefits include the following:

✦ Interoperability

✦ Efficiency

✦ Standardization

We will briefly explore each of these in this section.

Interoperability
Interoperability is the ability of software on different systems to communicate by
sharing data and functionality. Above all, Web services are built with interoperabil-
ity in mind. Most companies will have numerous business partners; instead of writ-
ing a new addition to your applications every time you gain a new partner, you can
write one interface using Web-service technologies like SOAP. Now your partners
can dynamically find the services they need using UDDI, and bind to them using
SOAP. (UDDI and SOAP are discussed in greater detail later in this chapter.)

You can also extend the interoperability of your systems by implementing Web ser-
vices within your corporate intranet. With the addition of Web services to your
intranet systems and to your extranet, you can reduce the cost of integration and

n539663 ch20.qxd 7/25/03 9:17 AM Page 652

653Chapter 20 ✦ Introducing Web Services

increase communication. It is also important to note that the industry has estab-
lished the Web Services Interoperability Organization (WS-I).

The WS-I consists of approximately 51 vendors, including IBM, Microsoft,
Accenture, BEA, HP, and Oracle. It determines whether a Web service conforms to
WS-I standards as well as industry standards. In order to establish integrity and
acceptance, companies will seek to build their Web services in compliance with the
WS-I standards. You can visit the WS-I at www.ws-i.org.

In addition to the WS-I, the Organization for the Advancement of Structured
Information Standards (OASIS) helps promote standardization within the realm of
Web services. The organization consists of more than 600 members including IBM,
Sun Microsystems, Microsoft, BEA Systems and Computer Associates. The OASIS is
involved in the development of UDDI, ebXML, CMG Open, LegalXML, and PKI.

Quality attributes
When we think of quality attributes, we think of saving money, time, and energy. Web
services enable you to save all these things. Web services enable you to increase
scalability by allowing you to reuse your existing applications: Instead of creating
totally new applications “from scratch”, you can create new applications using vari-
ous combinations of services exposed by your existing applications. Developers
can be more efficient because they can focus on learning industry-standard technol-
ogy, instead of wasting time learning every new technology that arises. Web ser-
vices are also fairly simple to learn and implement; for a manager this means a
reduction in the cost of buying new software. Web services enable developers to
meet changing business requirements and complete projects faster.

Standardization
For something to be a true standard, it must be accepted and used by the majority
of the industry. One vendor or small group of vendors must not control the evolu-
tion of the technology or specification in question. Most if not all of the industry
leaders are involved in the development of Web-service specifications. Almost all
businesses use the Internet and World Wide Web (WWW) in one form or another.
The underlying protocol for the WWW is of course the Hypertext Transfer Protocol
(HTTP). Web services are built upon a foundation of HTTP and XML.

Examining Some Web-Service Scenarios
So far we have determined what Web services are and we have looked at some of
the benefits of using them. In this section we will look at when and where you
should implement them. Currently many companies are focused on implementing
Web services for the following:

n539663 ch20.qxd 7/25/03 9:17 AM Page 653

654 Part VI ✦ Web Services

✦ Enterprise-application integration

✦ Application-service providers

✦ Smart Web services

✦ Mobile e-services

Enterprise-application integration (EAI)
Whether because of a merger or a partnership with a company that runs on
“dinosaur technology,” we have all had to deal with the pain of enterprise-application
integration, or EAI. For the IT staff it can prove to be a nightmare. You may be dealing
with older, tightly coupled systems that can go down with the slightest change in
code. You may also have to deal with systems built with differing technologies and
data types.

Many companies are finding that Web services are complementary to enterprise-
application integration. In an EAI environment you generally have varying systems
such as Customer Relationship Management (Peoplesoft), Enterprise Resource
Planning (Siebel), databases, and legacy applications interacting to share data and
business processes. They all connect to a common EAI system that allows the
actual communication to take place. Typically, the EAI system is created with old
proprietary technology that requires mirror integration, meaning that once integra-
tion is achieved, changes on one end must be made on the other end. With Web ser-
vices you don’t have to worry about this. The requestor of the Web service is
accessing an XML-based interface to a system and not the system directly. If
changes are made to the system, the requestor doesn’t malfunction and does not
need to make the same change made by the system providing the service.

Another benefit of using Web services in an EAI environment is that they give you
the ability to create wrappers for the individual application components. (In the
past, EAI systems weren’t able to provide this type of functionality; they could only
provide application-level services.

Application-service providers (ASPs)
In the past, an ASP would typically allow consumers to use an application that was
hosted by the ASP or downloaded. For many ASPs the cost of building an infrastruc-
ture to host all the applications could become very expensive. In many situations
you would have to pay a fee for the use of a complete application even when you
only needed certain parts of it.

Frequently, there was also the problem that one application could not adequately
cater to all industries. An ASP must respond to the needs of consumers by building
additional functionality into its application. ASPs spent a lot of money trying to cus-
tomize applications and consumers couldn’t find one application that fit all their
needs. Web services are having a tremendous effect on the way ASPs do business.
Web services allow an ASP to provide component services. With a Web
service–based model, an ASP can expand its offerings.

n539663 ch20.qxd 7/25/03 9:17 AM Page 654

655Chapter 20 ✦ Introducing Web Services

The term component services refers to businesses exposing various components
within their applications as services. With Web services an ASP can now offer a sin-
gle application composed of a variety of interchangeable services. ASPs can also
offer individual services and allow consumers to assemble their own customized
applications. Figure 20-2 depicts a service-oriented architecture that can be used by
a news service.

Figure 20-2: Architecture for an ASP-style Web service

Currently, if a community portal wants to display breaking news on its Web site, it
must find a company that sells access to a news-information system. In order to
gain access to those, the news portal must use the particular programming lan-
guage and API the system requires. If the news company were to provide an inter-
face described by WSDL and accessible by SOAP, any XML-capable consumer would
be able to access the news information systems.

Smart Web services
So far we have discussed the ability of a consumer to dynamically find services
published to a registry by the service provider; the interaction among the Web-
service components has been simple. What happens when you introduce Web ser-
vices into a real-time environment, one in which things are constantly changing?
Sun Microsystems is currently addressing this issue with smart Web services that
are context-sensitive. For instance, if you, your doctor and dentist make your elec-
tronic scheduler accessible via smart Web services, the schedulers can automati-
cally schedule appointments with each other. Smart services will surely boost
competition and improve the end value received by consumers.

ASP

News Service

Tech news

Business news

Political news

SOAP

SOAP
NewsWeek

Business news

Politics Weekly

Political news

TechTV

Tech news

SOAP
Community

portal

SOAP

n539663 ch20.qxd 7/25/03 9:17 AM Page 655

656 Part VI ✦ Web Services

Mobile e-services
In the U.S., many mobile devices do not have the memory or processing power to
run robust applications locally. In Europe, some manufacturers have enabled cellu-
lar telephones to purchase snacks from vending machines, and to purchase various
products online. In the future mobil e-services may enable doctors to perform real-
time queries to compare a patient’s symptoms with known diagnoses, and provide
access to your home’s computer system, your bank account, and your travel
arrangements. These examples are depicted in Figure 20-3.

Figure 20-3: A wireless Web services mobile e-services environment

Ultimately, Web services will enable the entire wireless industry to provide the end
user with the ability to access rich applications regardless of manufacturer plat-
form. So far we have examined the advantages of Web services in general and in
specific scenarios. In the next section we will take a closer look at the actual tech-
nologies that make the advantages of Web services possible.

Understanding the Technologies
behind Web Services

In Web services, The Universal Distribution, Discovery and Integration (UDDI) reg-
istry serves as the service broker. The publish, find, and bind interactions are typi-
cally performed with the Simple Object Access Protocol (SOAP). The Web-service

SOAP
SOAP

SOAP
Bank

Account services

SOAP

Doctor

Mobile

Patient
information

Vending Machine

Payment
processing

Payment
processing

n539663 ch20.qxd 7/25/03 9:17 AM Page 656

657Chapter 20 ✦ Introducing Web Services

requestor can be any client with the ability to find Web-service descriptions and
invoke these services using the parameters and protocol supported by the service.
The Web-service provider is responsible for creating a description for the service,
generally using the Web Service Description Language (WSDL), and for publishing
that description to the registries of the discovery agency.

Now let’s take a look at the following technologies behind Web services:

✦ Simple Object Access Protocol (SOAP)

✦ Web Services Description Language (WSDL)

✦ Universal Distribution, Discovery, and Interoperability (UDDI)

SOAP
According to the W3C, SOAP is “a lightweight protocol for exchange of information
in a decentralized, distributed environment.” The latest version of the SOAP specifi-
cation can be found at http://www.w3c.org/TR/soap12-part1 /

SOAP is the key to the binding operation between the service requestor and the
service provider. According to the SOAP 1.1 note, SOAP consists of these three
parts:

✦ SOAP envelope — The envelope contains the message exchanged between
providers. It also contains information needed to process a message. Within
the envelope are a header and a body. The header is optional and enables a
SOAP message to have additional functionality such as support for security or
transactions. The body is not optional and contains the actual data being
requested.

✦ SOAP encoding rules — According to the W3C, these rules define “a serializa-
tion mechanism that can be used to exchange instances of application-defined
data types” (see www.w3.org). The encoding rules are built around XML
Schema structures and XML Schema data types.

✦ SOAP RPC — The SOAP RPC allows remote procedure calls and responses
via XML.

Now we have looked at SOAP and how it is used to access Web services. In order
for SOAP to access the correct services, the services need a way of describing
themselves. That’s where WSDL comes in.

WSDL
WSDL provides a way for Web services to be described. The WSDL document
provides a description of the service, which helps the service requestor to find a

n539663 ch20.qxd 7/25/03 9:17 AM Page 657

658 Part VI ✦ Web Services

compatible service from the discovery agency. A WSDL document provides the
following information as a service description:

The functionality provided by the service

The information needed to access the service (such as encoding and trans-
port information)

Location information

The latest version of the WSDL specification can be found at http://www.w3.org/
TR/wsdl.

A WSDL document is composed of the following elements:

✦ Data types — These contain information about the data types needed to access
the service. A WSDL document typically uses XML schemas as the type system.

✦ Message — The message is an abstract description of the data being accessed
or requested.

✦ Operation — This describes what a service can do and is comprised of mes-
sages. It is similar to a function.

✦ Port type — The port type is used to map a set of operations to one or more
endpoints.

✦ Binding — This enables you to specify a concrete protocol (such as HTTP)
and a data format (such as SOAP) to bind a port type.

✦ Port — The port is a combination of a binding and a physical network address.

✦ Service — The service is a collection of related ports.

UDDI
UDDI is like the Yellow Pages for Web services. It enables service discovery through
queries to the UDDI registry at design time or at runtime. It also enables providers
to publish descriptions of their services to the registry. The registry typically con-
tains a URL that locates the WSDL document for the Web services and contact infor-
mation for the service provider. Within UDDI business information is placed into
these three categories:

✦ White pages — The white pages contain general information (such as name,
address, and other contact information) about the company providing the
service.

✦ Yellow pages — The yellow pages list businesses according to the industries
their services cater to.

✦ Green pages — The green pages are primarily for you hardcore techies! They
provide technical information that will enable a client to bind to the service
being provided.

n539663 ch20.qxd 7/25/03 9:17 AM Page 658

659Chapter 20 ✦ Introducing Web Services

The latest version of the UDDI specification can be found at http://www.uddi.
org/specification.html

So far we have looked at the key technologies behind individual Web services, but
how do they interact? We’ll explore this topic in the next section.

Web services in a service-oriented architecture
To better understand how the technologies behind Web services interact, take a
look at the services in the context of the service-oriented architecture depicted in
Figure 20-4. We will also examine the following Web-service stacks:

✦ Wire stack

✦ Description stack

✦ Discovery stack

Figure 20-4: SOAP, WSDL, and UDDI combine to create a
robust, service-oriented systems architecture.

SOAP
Bind

WSDL + UDDI
Find

WSDL + UDDI
Register/Publish

Service
provider

UDDI registry

Service
requestor

Client

Service
description

(WSDL)

Service
description

(WSDL)

Service
description

(WSDL)

Service
description

(WSDL)

Service
description

(WSDL)

n539663 ch20.qxd 7/25/03 9:17 AM Page 659

660 Part VI ✦ Web Services

The wire stack
The wire stack, illustrated in Figure 20-5, contains the technologies that enable com-
munication among the UDDI registry, the Web-service provider, and the client
requesting the service. It consists of the following three layers:

✦ Transport layer

✦ Packaging layer

✦ Extensions layer

Figure 20-5: The Web-services wire stack

Transport
The transport layer consists of the network protocols that can be used to send or
receive services. Some of the protocols that can be used include Hypertext Transfer
Protocol (HTTP), SMTP (Simple Mail Transfer Protocol), Transmission Control
Protocol (TCP) and File Transfer Protocol (FTP). Also, if your system requires the

SOAP
Bind Service

provider

UDDI registry

Service
requestor

Client

Service
description

(WSDL)

Service
description

(WSDL)

Service
description

(WSDL)

Service
description

(WSDL)

ExtensionsWire

Packaging

Transport

SOAP Features

MIME, DIME, SOAP...

HTTP, SMTP, TCP...

WSDL + UDDI
Find

WSDL + UDDI
Register/Publish

n539663 ch20.qxd 7/25/03 9:17 AM Page 660

661Chapter 20 ✦ Introducing Web Services

use of proprietary technologies, protocols like Internet Inter-ORB Protocol (IIOP)
and IBM MQseries can be used as well.

Packaging
The packaging layer consists of the technologies used to encapsulate the data used
to find, bind, and publish services. Packaging is typically handled by SOAP, which
takes care of the XML messaging and data encoding.

Extensions
The extensions layer provides the ability to support additional functionality that
allows Web services to adapt and evolve. There are numerous things that the layer
can provide, I’m not sure about functionality being singular. Of course, the exten-
sions layer is handled by SOAP.

The description stack
The description stack, shown in Figure 20-6, is key to the success of Web services.
Within this are the following layers:

✦ XML schema — This layer sits at the base of the stack because it defines the
entire stack.

✦ Interface description — This layer describes the functionality supported by a
service and provides binding information.

✦ Implementation description — This layer describes the location of a service
and how the provider implements the service.

✦ Policy — This layer allows the stack to include business-specific information,
as well as information about such things as security, quality of service, and
management.

✦ Presentation — This layer allows the stack to describe how a service should
be presented or rendered to the client. This layer is great for addressing a
user base that consists of multiple devices.

All the layers consist of XML-based description documents (typically WSDL).

The discovery stack
The discovery stack, illustrated in Figure 20-7, contains the mechanisms that facili-
tate the discovery of services. It consists of these layers:

✦ Inspection layer

✦ Publication layer

✦ Discovery layer

n539663 ch20.qxd 7/25/03 9:17 AM Page 661

662 Part VI ✦ Web Services

Figure 20-6: The Web-services description stack

Inspection
The inspection layer allows services to be discovered in areas other than a single
UDDI registry. For instance, you can find a service directly from a provider. One of
the most popular technologies for inspection is the Web Service Inspection
Language (WSIL).

Publication
Publication can occur in various ways. For instance, a service provider can e-mail a
description to a requestor or provide it by other means; this is called a direct pub-
lish. Of course you can use WSIL to retrieve the description via a URL. Recall that
you can also publish the service to a UDDI registry.

SOAP
Bind

Description Stack

Service
provider

UDDI registry

Service
requestor

Client

Service
description

(WSDL)

Service
description

(WSDL)

Service
description

(WSDL)

Service
description

(WSDL)

Presentation

Policy

Implementation Description

Interface Description

XML Schema

WSDL + UDDI
Find

WSDL + UDDI
Register/Publish

n539663 ch20.qxd 7/25/03 9:17 AM Page 662

663Chapter 20 ✦ Introducing Web Services

Figure 20-7: The Web-services discovery stack

Discovery
Discovery can occur at design time or at runtime. At runtime, a requestor will
search a registry or access it from a Web site. At design time, the description can be
hard-coded or possibly stored in a separate local file.

Summary
We’ve come a long way since ancient times (circa 1990-1995). Now CPUs are mea-
sured in gigahertz, modem speeds in thousands of baud per second, and the
Internet is being used for everything from commerce, to research, to communica-
tion, to entertainment. Initially, the Internet was used to fulfill very simple tasks.

SOAP
Bind Service

provider

UDDI registry

Service
requestor

Client

Service
description

(WSDL)

Service
description

(WSDL)

Service
description

(WSDL)

Service
description

(WSDL)

Discovery
Discovery
Agencies

Publication

Inspection

WSDL + UDDI
Find

WSDL + UDDI
Register/Publish

n539663 ch20.qxd 7/25/03 9:17 AM Page 663

664 Part VI ✦ Web Services

Content was valued over graphics because the Web’s primary purpose was informa-
tion exchange. Now, the order of the day is on-demand, distributed enterprise com-
puting, that is delivered via a vendor, language, and platform-neutral,
service-oriented architecture. In short, Web services.

In this chapter we discussed the downfall of older technologies that are used in tra-
ditional distributed computing environments. We introduced you to Web services
and the interoperability, efficiency and standardization that Web services provide.
We also looked at the advantages of implementing Web service solutions in various
scenarios such as ASP, EAI and mobile phone scenarios. Finally, we gave you a brief
overview of the technologies behind Web services.

In the next chapter, we will take our general knowledge of Web services and service-
oriented architecture, and overlay this with the Java 2 Enterprise computing plat-
form and architectural design model.

✦ ✦ ✦

n539663 ch20.qxd 7/25/03 9:17 AM Page 664

Digging Deeper
into SOAP,
WSDL, and UDDI

In this chapter we dig deeper into the three core Web-
service specifications: the Simple Object Access Protocol

(SOAP), the Web Services Description Language (WSDL), and
the Universal Description and Discovery Interface (UDDI).
Each section stands independently, so you can use this
chapter as a reference for finding details about these three
technologies.

We’ll begin with the Web-service message layer by exploring
SOAP. In the SOAP section we will examine the architecture of
SOAP messages and the role of XML schema in defining SOAP
data types. We will also look at SOAP message styles and,
finally, introduce SOAP intermediaries.

Next, we will turn our attention to describing services with
WSDL. We’ll begin this section by looking at a WSDL document
for our Connexia Airlines case study. After examining that
sample document, we will address the various WSDL bindings.

We will conclude the chapter with a section on UDDI. This sec-
tion will begin with an assessment of the evolution of UDDI
from version 1 to version 3, followed by an examination of the
UDDI data model. We will explore the application-programming
interfaces (APIs) and then look at the integration between
WSDL and UDDI. Finally, we will pull all the information in the
chapter together by applying it to our Connexia Airlines case
study.

2121C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Understanding the
SOAP message
architecture

Explaining the Web
Services Description
Language (WSDL)

Examining the
Universal Description
and Discovery
Interface (UDDI)

✦ ✦ ✦ ✦

n539663 ch21.qxd 7/25/03 9:18 AM Page 665

666 Part VI ✦ Web Services

Understanding the SOAP Message
Architecture

A SOAP message is comprised of these three elements:

✦ Envelope

✦ Header

✦ Body

These elements are discussed in the following sections.

The SOAP envelope is the root element of a SOAP message. The envelope tag itself
consists of an xml namespace, and optional encodingStyle attribute. The SOAP
message also contains the header and body elements. (The header element is also
optional.) Here’s an example of an envelope:

<?xml version=”1.0”?>
<soap:Envelope
xmlns:soap=” http://schemas.xmlsoap.org/soap/encoding/”
soap:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”>
</soap:Envelope>

The namespace must have a value of http://www.w3.org/2001/12/soap-envelope
or an error will be generated.

For more information on namespaces, take a look at Chapter 2.

The value of the optional encodingStyle “Deleted, if so WHY?---JG”
attribute — the Uniform Resource Identifier (URI) — specifies the serialization
rules for the SOAP message and therefore defines the data types used within the
message.

The header
Recall that the SOAP header is an element within the SOAP message. The SOAP
header is optional but plays a very important role customizing messages. It enables
you to include elements that relate to your specific application. Additionally, the
SOAP header must be namespace qualified. More importantly, the header allows
the SOAP message to extend its capabilities by enabling features like security and
transaction handling. Any elements within the header element are part of the SOAP
header block.

Cross-
Reference

n539663 ch21.qxd 7/25/03 9:18 AM Page 666

667Chapter 21 ✦ Digging Deeper into SOAP, WSDL, and UDDI

The header block contains these four main attributes:

✦ mustUnderstand— This attribute is another very important part of process-
ing. It determines whether a header entry is mandatory or optional. When its
value is 0, this means that the processing is optional, if its value is 0, the recip-
ient must process the header entry. (See “SOAP Messaging” later in this chap-
ter for an example of its use.)

✦ Actor— This attribute indicates which SOAP node a header block points to.

✦ encodingStyle— This attribute functions as in the envelope element.

In the following example, the actor attribute is using a special URI. When this par-
ticular URI is used, the first application that processes the message will receive the
header element. The value of the mustUnderstand attribute equals 1, which indi-
cates that the receiver of the message is required to process the reservation ele-
ment. The reservation and passenger elements consist of their respective
namespaces in order to prevent conflict with element names. The remaining ele-
ments contain the actual data that will be exchanged.

<SOAP-ENV:Header>
<m:reservation xmlns:m=”http://www.j2eebible.com/reservation”

SOAP-
ENV:actor=”http://schemas.xmlsoap.org/soap/actor/next”

SOAP-ENV:mustUnderstand=”1”>
<m:reference>uuid:abc123-def456-ghi789</m:reference>
<m:dateTime>2003-06-01T13:20:00.000-05:00</m:dateTime>
</m:reservation>
<n:passenger xmlns:n=”http://mycompany.example.com/employees”

SOAP-ENV:
actor=”http://schemas.xmlsoap.org/soap/actor/next”

SOAP-ENV:mustUnderstand=”1”>
<n:name>Jason Gordon</n:name>
</n:passenger>
</SOAP-ENV:Header>

The body
The SOAP body contains the main and mandatory information that must be trans-
ported from sender to receiver. In Listing 21-1, the body contains the arrival and
departure information — which is the most important information when you’re flying.
The two main elements are the itinerary and lodging elements. The itinerary element
contains the departure and return elements. The departure and return elements con-
tain the seating preference, departure dates, departure times, departing, and arriving
cities. The lodging element contains the hotel preference of the passenger.

n539663 ch21.qxd 7/25/03 9:18 AM Page 667

668 Part VI ✦ Web Services

Listing 21-1: A sample body

<SOAP-ENV:Body>
<p:itinerary
xmlns:p=”http://www.j2eebible.com/reservation/travel”>
<p:departure>
<p:departing>Dallas </p:departing>
<p:arriving>New York</p:arriving>
<p:departureDate>2003-06-01</p:departureDate>
<p:departureTime>late afternoon</p:departureTime>
<p:seatPreference>aisle</p:seatPreference>

</p:departure>
<p:return>
<p:departing> New York </p:departing>
<p:arriving>Dallas</p:arriving>
<p:departureDate>2003-06-15</p:departureDate>
<p:departureTime>mid-morning</p:departureTime>
<p:seatPreference/>

</p:return>
</p:itinerary>
<q:lodging
xmlns:q=”http://www.j2eebible.com/reservation/hotels”>
<q:preference>none</q:preference>
</q:lodging>
</SOAP-ENV:Body>

XML schemas and SOAP data types
An XML schema describes and defines the elements, attributes, data types, and
overall structure of an XML document. Take a look at Listing 21-2, which should
give you an idea of what a typical XML-schema document looks like.

Listing 21-2: An XML schema

<?xml version=”1.0”?>
<schema targetNamespace=”http://www.j2eebible.com/”
xmlns=”http://www.w3.org/2001/XMLSchema”
xmlns:Conexia=”http://www.j2eebible.com/”
elementFormDefault=”qualified”>
<element name=’
</xs:schema>

Now take a look at how XML schema documents are used in SOAP.

n539663 ch21.qxd 7/25/03 9:18 AM Page 668

669Chapter 21 ✦ Digging Deeper into SOAP, WSDL, and UDDI

SOAP encoding and data types
Encoding is one of the most important topics in creating interoperable Web ser-
vices. The SOAP specifications include encoding rules that define how data types
are to be formatted or expressed within SOAP messages. According to the SOAP 1.1
specifications, SOAP encoding provides the following:

✦ Simple-type values

✦ Polymorphic accessors

✦ Compound-type values

Simple-type values
Simple types can include strings, decimals, integers, enumerations, array of bytes
and doubles. Here’s an example of a string:

<airlineName>Eagle Airlines </airlineName>

This is an example of a decimal:

<flightCost>234.09 </flightCost>

Enumeration can be described as a set of names related to a base type. In the
following example, the FlightClass element contains a simpleType element
that contains three enumeration elements. The elements are related to the
FlightClass element in that they are different kinds of flight classes.

<xs:schema xmlns:xs=http://www.w3.org/2001/XMLSchema>
<xs:element name=”FlightClass”>
<xs:simpleType base=”xsd:string”>

<xs:enumeration value=”First”/>
<xs:enumeration value=”Business”/>
<xs:enumeration value=”Coach”/>

</simpleType>
</xs:element>
</xs:schema>

Array of Bytes
Section 5.2.3 of the SOAP 1.1 specifications recommends that you use base64 to rep-
resent an opaque array of bytes, as shown here:

<confirmation xsi:type=”enc:base64”>
wHsdfF64534vdFb45m544233m2

</confirmation >

Polymorphic accessor
The polymorphic accessor enables you to use polymorphism to access values at
runtime.

n539663 ch21.qxd 7/25/03 9:18 AM Page 669

670 Part VI ✦ Web Services

In order for you to successfully use the polymorphic accessor, an instance must
contain a xsi:type attribute, as shown here:

<flightmiles xsi: type= “xsd:float”>4567.08</ flightmiles>

Compound-type values
In SOAP, structures and arrays are kinds of compound-type values. Structures are
accessors that are distinguished by their names. The following sequence element
simply implies that the data must be in a certain order. Structures support simple
and complex member interaction. Different members can interact, or rather refer-
ence each other, by using the href attribute. The href attribute functions as a link
that points to a corresponding id attribute of the member being referenced. Listing
21-3 shows an XML schema for a structure.

Listing 21-3: An XML schema for a structure

<xs:element
name=”ReturnInfo”xmlns:xs=”http://www.w3.org/2001/XMLSchema”>
<xs:complexType>
<xs:sequence>

<xs:element name=” departing “ type=”xsd:string”/>
<xs:element name=” arriving “ type=”xsd:string”/>
<xs:element name=” departureDate” type=”xsd:date”/>
<xs:element name=” departureTime” type=”xsd:string”/>

</xs:sequence>
</xs:complexType>
</xs:element>

Listing 21-4 shows an example of an XML instance for a structure.

Listing 21-4: XML instance for structure

<p:departing> New York </p:departing>
<p:arriving>Dallas</p:arriving>
<p:departureDate>2003-06-15</p:departureDate>
<p:departureTime>mid-morning</p:departureTime>

Arrays
As in most programming languages, arrays in SOAP are referred to as arrayTypes
and are used to deal with large amounts of information. Table 21-1 lists various

n539663 ch21.qxd 7/25/03 9:18 AM Page 670

671Chapter 21 ✦ Digging Deeper into SOAP, WSDL, and UDDI

arrayType values and their descriptions. For the remainder of the array section we
will take a look at the various ways arrays function in SOAP.

Table 21-1
arrayType values and descriptions

arrayType Value Description

A:Airline[10] An array of ten airlines

xsd:int[3] An array of three integers

xsd:int[,][3] An array of three two-dimensional arrays of integers

xsd:float[4,5] A four-by-five, four-dimensional array of floats

The array types available in SOAP 1.1 include the following:

✦ Single-dimensional arrays

✦ Multidimensional arrays

✦ Partially-transmitted arrays

✦ Sparse arrays

These array types are discussed in the following sections.

Single-dimensional Arrays
The following XML schema fragment provides an example of a single-dimensional
array:

<element name=”FlightNumbers”type=”SOAP-ENC:Array”/>

XML
<FlightNumbers SOAP-ENC:arrayType=”xsd:int[2]”>

<flight>1191</flight>
<flight>788</flight>

</FlightNumbers>

Multidimensional arrays
Here is an example of a multidimensional array consisting of three rows and three
columns. This particular array contains strings.

<SOAP-ENC:Array SOAP-ENC:arrayType=’xsd:string[3,3]’>
<Item>1stRow 1stColumn</Item>
<Item>1stRow 2ndColumn</Item>
<Item>1stRow 3rdColumn</Item>

n539663 ch21.qxd 7/25/03 9:18 AM Page 671

672 Part VI ✦ Web Services

<Item>2ndRow 1stColumn</Item>
<Item>2ndRow 2ndColumn</Item>
<Item>2ndRow 3rdColumn</Item>
<Item>3rdRow 1stColumn</Item>
<Item>3rdRow 2ndColumn</Item>
<Item>3rdRow 3rdColumn</Item>
</SOAP-ENC:Array>

Partially-transmitted arrays
Partially-transmitted arrays include the SOAP-ENC:offset attribute. So how does
this offset work? Let’s take a look at the example below. In this example you have an
array of size 8 and an offset of 4.

In this case data are only transmitted after the fourth position in the array.
Remember that the first element is zero, not one.

<SOAP-ENC:Array SOAP-ENC:arrayType=’xsd:string[8]’
SOAP-ENC:offset=’[4]’>

<Item>Fourth String </Item>
<Item>Fifth String </Item>
<Item>Sixth String </Item>
<Item>Seventh String</Item>

</SOAP-ENC:Array>

Sparse arrays
If you hadn’t noticed, the syntax for different arrays only differs according to the
type of attribute used. With sparse arrays that attribute is SOAP-ENC:position.
The position attribute indicates which elements will be provided. In the following
code fragment elements 2, 4, and 9 are available, and their corresponding values
are returned.

<SOAP-ENC:Array SOAP-ENC:arrayType=’xsd:int[8]’>
<Item SOAP-ENC:position=”[2]”>Two</Item>
<Item SOAP-ENC:position=”[4]”>Fourth </Item>
<Item SOAP-ENC:position=”[9]”>Ninth</Item>

</SOAP-ENC:Array>

SOAP RPC
The SOAP 1.1 specifications define a mechanism for encapsulating and exchanging
remote procedure calls (RPCs) using XML. As you may already know, in SOAP
remote procedure calling involves the following components:

✦ Client application

✦ Client SOAP implementation

✦ Server application

✦ The server’s SOAP implementation

n539663 ch21.qxd 7/25/03 9:18 AM Page 672

673Chapter 21 ✦ Digging Deeper into SOAP, WSDL, and UDDI

Figure 21-1 illustrates the entire process of SOAP remote procedure calling.

Figure 21-1: The SOAP RPC process

So here’s what you need to use SOAP RPC:

✦ The URI of the target object

✦ A method name

✦ A method signature (optional)

✦ Parameters

✦ Header data and contextual information, such as security (optional)

Here’s what’s required for the request:

The compound-type value, struct, represents the method invocation within
the SOAP message. Because struct represents the method invocation it must
have the same name and return value as the method.

SOAP uses child elements to represent method parameters. The child ele-
ments’ names and data types are identical to the parameters’. Note that the
parameters can be in or in/out parameters.

SOAP Server
Implementation

SOAP Client
Implementation

Client
Application

Server
Application

3. SOAP Server
 deserializes call

2. SOAP client
 serializes call

1. Application
 makes RPC call

4. Server application
 returns response

5. SOAP Server
 serializes response

6. SOAP client
 deserializes response

n539663 ch21.qxd 7/25/03 9:18 AM Page 673

674 Part VI ✦ Web Services

The response requires the following:

A struct also represents the response; its name really doesn’t matter but the
specifications encourage naming it after the method and appending
“Response”. More specifically, the first child element contains the return
value followed by the out or in/out parameters in the same order as in the
method signature.

The out or in/out parameters must have the same name and type as the
method.

If an error occurs during the request, the SOAP Fault element must be
returned. We will get to SOAP faults later in the “Soap Binding” section.

Here is a sample SOAP RPC request:

<SOAP-ENV:Envelope
xmlns: SOAP-ENV =”http://schemas.xmlsoap.org/soap/envelope/”
SOAP-
ENV:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”>
<SOAP-ENV:Body xmlns:m=”http://www.wiley.com/fare”>
<m:GetFlightPrice>
<m:FlightName>DFW TO LAX</m:FlightName>

</m:GetFlightPrice>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The preceding example is a SOAP RPC request in which GetFlightPrice is used to
retrieve the price of a flight called “DFW TO LAX”. The price is retrieved from a
SOAP server with a namespace of “http://www.wiley.com/fare”.

The following example is a SOAP RPC response, which in this scenario will process
the SOAP request from GetFlightPrice and return the price of the flight using the
price parameter.

<SOAP-ENV:Envelope
xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”
SOAP-ENV:encodingStyle=”
http://schemas.xmlsoap.org/soap/encoding/”>
<SOAP-ENV:Body >
<m:GetFlightPriceResponse

xmlns:m=”http://www.wiley.com/fare”>
<m:Price>300.00</m:Price>

</m:GetFlightPriceResponse>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

n539663 ch21.qxd 7/25/03 9:18 AM Page 674

675Chapter 21 ✦ Digging Deeper into SOAP, WSDL, and UDDI

SOAP messaging
SOAP messaging is another form of communication that involves transferring SOAP
messages that contain XML documents within the envelope. A SOAP message con-
sists of a sender and a receiver and must have identical schemas for the envelope,
the optional encoding, and the application-specific data.

SOAP intermediaries enable additional processing to take place between the
requestor and the provider of the service. Intermediaries are able to manipulate the
SOAP message themselves or forward it to another destination. SOAP headers allow
SOAP intermediaries to be included in the processing of the message. Before send-
ing or forwarding a message to the next destination, an intermediary must remove
any header entry that was intended for it. Figure 21-2 illustrates how intermediaries
fit into a SOAP message exchange model.

Figure 21-2: Intermediaries are part of the
SOAP message exchange model.

The actor attribute of the SOAP header has a URI whose value indicates either
an intermediary or an ultimate destination. Also, if the URI is equal to http://
schemas.xmlsoap.org/soap/actor/next the header element is intended for the
first SOAP application that will process the message. The following example shows
the actor attribute in use. It also tells you what section of the SOAP header entry
will be sent and who should handle it.

<SOAP-ENV:Header>
<c:Flight
xmlns:m=”http:// www.j2eebible.com /conexiaws/”

SOAP
Intermediary A

SOAP
Intermediary B

Web Service
Provider

Web Service
Client

n539663 ch21.qxd 7/25/03 9:18 AM Page 675

676 Part VI ✦ Web Services

SOAP-ENV:actor=”http://www.j2eebible.com/flightinfo/” SOAP-
ENV:mustUnderstand=”0”>
7779311
</c:Flight>
</ SOAP-ENV:Header >

The mustUnderstand attribute is very important in processing. It determines
whether a header entry is mandatory or optional. When its value is 0 the process-
ing is optional; if its value is 0 the recipient must process the header entry.

SOAP and Java
As you know, SOAP is language independent, which means that implementation and
integration with a programming language and its environment is the responsibility
of the developer. There are many Java-based SOAP implementations. One of the
most popular open-source implementations is Apache Axis by the Apache Software
Foundation. In the upcoming example we will use the Java API for XML-Based RPC
(JAX-RPC) through Axis. As with many APIs, JAX-RPC provides a layer of abstrac-
tion for implementing SOAP-based Web services. Simply put, as a developer you
won’t have to deal directly with SOAP itself. The runtime environments provided by
JAX-RPC takes care of the mapping between SOAP and remote procedure calls.

Listing 21-5 consists of the Search for Flights, List Connections and Book Flights
operations. The Reservation constructor accesses Flight.java and creates an
array of Flight objects. This array includes three Flight objects, each containing
one or more Connection objects from Connection.java. The search method
takes depart and arrive as strings and searches arrays of flights for a match. In
our simple example, the constructor populates the flight arrays. The book method
passes in the necessary information needed to purchase tickets and generates a
reservationID. The list method takes an id and matches it with the
connexiaID of the flightArray.

Listing 21-5: The Connexia Reservation service
(Reservation.java)

package com.wiley.j2eebible.services;

import java.util.ArrayList;
import java.util.Date;
import java.util.Iterator;
import java.util.Vector;

public class Reservation {

Connection connect, connect2;
Flight flight;
Flight[] flightArray = new Flight[3];

n539663 ch21.qxd 7/25/03 9:18 AM Page 676

677Chapter 21 ✦ Digging Deeper into SOAP, WSDL, and UDDI

ArrayList reservations = new ArrayList();

public Reservation() {

connect = new Connection(123456, “Dallas”, “New
York”,

“Boeing 757”, “6:35am”, “10:00am”);
flight = new Flight();
flight.addConnection(connect);
flight.setPrice(356.00);
flight.setConnexiaID(13579);
flightArray[0] = flight;

connect = new Connection(246810, “Sacramento”,
“Phoenix”,

“Faulker 100”, “10:06am”, “12:00pm”);
connect2 = new Connection(289213, “Phoenix”,

“Denver”,
“Faulker 100”, “12:42pm”, “2:39pm”);
flight = new Flight();
flight.addConnection(connect);
flight.addConnection(connect2);
flight.setPrice(289.00);
flight.setConnexiaID(67538);
flightArray[1] = flight;

connect = new Connection(1497365, “Detroit”,
“Chicago”,

“Faulker 100”, “3:11pm”, “4:24pm”);
connect2 = new Connection(3395641, “Chicago”, “Salt

Lake
City”, “Boeing 737”, “4:52pm”, “6:29pm”);
flight = new Flight();
flight.addConnection(connect);
flight.addConnection(connect2);
flight.setPrice(265.00);
flight.setConnexiaID(23850);
flightArray[2] = flight;

}

public Flight[] search(String depart, String arrive) {

Flight[] searchResults = null;

for(int x = 0; x < flightArray.length; x++) {
Vector connections =

flightArray[x].getConnections();
Iterator iterate = connections.iterator();
boolean connectDepart = false, connectArrive =

false;

while(iterate.hasNext()) {

Continued

n539663 ch21.qxd 7/25/03 9:18 AM Page 677

678 Part VI ✦ Web Services

Listing 21-5 (continued)

Connection c = (Connection)iterate.next();
if(c.getDepartCity().equals(depart))

connectDepart = true;
if(c.getArriveCity().equals(arrive))

connectArrive = true;
}//end while(iterate.hasNext())

if(connectDepart && connectArrive) {
searchResults = new Flight[0];
searchResults[0] = flightArray[x];
break; // This simple implementation

returns
the first match

}//end while
}//end for()

return searchResults;
}

public String book(long departID, long arriveID, int
numPassengers, long ccNum) {

String reservationID = “ABC” + (new Date()
).getTime();

reservations.add(reservationID);
return reservationID;

}

public Connection[] list(long id) {
Flight flight = new Flight();

for(int x = 0; x < flightArray.length; x++) {
if(flightArray[x].getConnexiaID() == id)

flight = flightArray[x];
}

return
(Connection[])flight.getConnections().toArray();
}

}

In Listing 21-6, we see the ConnexiaClient.java file. This file is responsible for
defining the endpoint of the service, creating the actual instance of the service that
will be used and creating the SOAP request call. It is also responsible for invoking
the service, sending the request and retrieving the results. For a line-by-line expla-
nation, please view the comments in the code. All of the files required to run the
example including deployment descriptors can be found on the CD.

n539663 ch21.qxd 7/25/03 9:18 AM Page 678

679Chapter 21 ✦ Digging Deeper into SOAP, WSDL, and UDDI

Listing 21-6: The Connexia Client for the Reservation Service
(ConnexiaClient.java)

package com.wiley.j2eebible.services;

import org.apache.axis.client.Call;
import org.apache.axis.client.Service;
import org.apache.axis.encoding.ser.BeanSerializerFactory;
import org.apache.axis.encoding.ser.BeanDeserializerFactory;
import javax.xml.namespace.QName;
import javax.xml.rpc.ParameterMode;
import java.util.Date;
import java.util.Vector;

public class ConnexiaClient {
public static void main(String [] args) {
System.out.print(“\nSearching for a flight from Sacramento

to Denver... “);

try {
String endpoint =

“http://localhost:8080/axis/services/ReservationService”;
//Endpoint definition of the service

Service service = new Service();
//Creating the new service

Call call = (Call) service.createCall();
//SOAP request call creation

call.setTargetEndpointAddress(new
java.net.URL(endpoint));
//Setting the target of the provider location.

call.setOperationName(new QName(
“http://www.wiley.com/j2eebible/connexia”, “search”));
//The service operation name and methods are set.

QName qname = new QName(
“http://www.wiley.com/j2eebible/connexia”);

call.registerTypeMapping(Flight.class,
new QName(

“http://www.wiley.com/j2eebible/connexia”, “flight”),
new

BeanSerializerFactory(Flight.class, qname),
new

BeanDeserializerFactory(Flight.class, qname));
//The service operation name and methods are set for Flight.

Continued

n539663 ch21.qxd 7/25/03 9:18 AM Page 679

680 Part VI ✦ Web Services

Listing 21-6 (continued)

call.registerTypeMapping(Connection.class,
new QName(

“http://www.wiley.com/j2eebible/connexia”, “connection”),
new

BeanSerializerFactory(Connection.class, qname),
new

BeanDeserializerFactory(Connection.class, qname));
//The service operation name and methods are set for
Connection.

Object[] flights = (Object[]) call.invoke(new
Object[]{ “Sacramento”, “Denver” });
//Service invocation occurs and a Java object is returned.

Connection[] connects;
Flight f;

call.setOperationName(new QName(
“http://www.wiley.com/j2eebible/connexia”, “list”));
//The service operation name and methods are set

for(int x = 0; x < flights.length; x++) {
f = (Flight)flights[x];
System.out.println(“flight FOUND”);
System.out.println(“--Flight “ + x + 1 + “--”

);
System.out.println(“ConnexiaID - “ +
f.getConnexiaID());

System.out.println(“Price - $” + f.getPrice()
);

connects = (Connection[]) call.invoke(new
Object[] { new Long(f.getConnexiaID()) });

for(int y = 0; y < connects.length; y++) {
System.out.println(“-Connection “ + x +

1);
System.out.println(“Departure “ +

connects[x].getDepartCity() + “ -- “ +
connects[x].getDepartTime());

System.out.println(“Arrival “ +
connects[x].getArriveCity() + “ -- “ +
connects[x].getArriveTime());

}
//Itinerary displayed to user at command line.

}

System.out.print(“Booking Flight... “);

call.setOperationName(new QName(
“http://www.wiley.com/j2eebible/connexia”, “book”));

n539663 ch21.qxd 7/25/03 9:18 AM Page 680

681Chapter 21 ✦ Digging Deeper into SOAP, WSDL, and UDDI

//The service operation name and methods are set
String reservation = (String) call.invoke(new

Object[]{ new Long(12345), new Long(67890),
new

Integer(1), new Long(123456) });

if(reservation != null)
System.out.println(“flight RESERVED”);

else {
System.out.println(“reservation failed”);
System.exit(0);

}

} catch(Exception e) {
e.printStackTrace();

}
}

}

Explaining WSDL
As discussed in the previous chapter, a Web Services Description Language (WSDL)
document consists of the following elements:

✦ Definition — The definition element is the root element of the WSDL docu-
ment, containing the namespaces to be used and the name of the Web service.

✦ Types — This element contains information about the data types needed to
access the service. It typically uses XML schemas as the type system.

✦ Message — This is an abstract description of the data being accessed or
requested.

✦ Operation — This element describes what a service can do and is comprised
of messages. It’s similar to a function.

✦ Port type — This is used to map a set of operations to one or more endpoints.

✦ Binding — This element enables you to specify a concrete protocol, such as
HTTP, and a data format, such as soap, to bind a port type. The WSDL 1.1
specifications provide support for HTTP, MIME, and SOAP.

✦ Port — This is a combination of a binding and a physical network address.

✦ Service — A collection of related ports.

Now, let’s take a look at Listing 21-7. Reservation.wsdl gives an example of how a
WSDL document could look for Connexia Airlines. The actual code is available on
the accompanying CD. The definition element is self-explanatory; it contains the
namespaces to be used in the document.

n539663 ch21.qxd 7/25/03 9:18 AM Page 681

682 Part VI ✦ Web Services

Listing 21-7: The Reservation.wsdl Document for
Connexia Airlines

<?xml version=”1.0” encoding=”UTF-8”?>
<wsdl:definitions
targetNamespace=”http://localhost:8080/axis/services/Reservatio
nService” xmlns=”http://schemas.xmlsoap.org/wsdl/”
xmlns:apachesoap=”http://xml.apache.org/xml-soap”
xmlns:impl=”http://localhost:8080/axis/services/ReservationServ
ice”
xmlns:intf=”http://localhost:8080/axis/services/ReservationServ
ice” xmlns:soapenc=”http://schemas.xmlsoap.org/soap/encoding/”
xmlns:tns1=”http://www.wiley.com/j2eebible/connexia”
xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”
xmlns:wsdlsoap=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<wsdl:types>
<schema
targetNamespace=”http://www.wiley.com/j2eebible/connexia”
xmlns=”http://www.w3.org/2001/XMLSchema”>

<import
namespace=”http://schemas.xmlsoap.org/soap/encoding/” />

<complexType name=”connection”>
<sequence>

<element name=”aircraftType” nillable=”true”
type=”xsd:string” />

<element name=”arriveCity” nillable=”true”
type=”xsd:string” />

<element name=”arriveTime” nillable=”true”
type=”xsd:string” />

<element name=”connectID” type=”xsd:long” />

<element name=”departCity” nillable=”true”
type=”xsd:string” />

<element name=”departTime” nillable=”true”
type=”xsd:string” />

</sequence>
</complexType>

<complexType name=”flight”>
<sequence>

<element name=”connections” nillable=”true”
type=”apachesoap:Vector” />

<element name=”connexiaID” type=”xsd:long” />

<element name=”price” type=”xsd:double” />

n539663 ch21.qxd 7/25/03 9:18 AM Page 682

683Chapter 21 ✦ Digging Deeper into SOAP, WSDL, and UDDI

</sequence>
</complexType>

<complexType name=”flightArray”>
<complexContent>

<restriction base=”soapenc:Array”>
<attribute ref=”soapenc:arrayType”

wsdl:arrayType=”tns1:flight[]” />
</restriction>

</complexContent>
</complexType>

</schema>

<schema targetNamespace=”http://xml.apache.org/xml-soap”
xmlns=”http://www.w3.org/2001/XMLSchema”>

<import
namespace=”http://schemas.xmlsoap.org/soap/encoding/” />

<complexType name=”Vector”>
<sequence>

<element maxOccurs=”unbounded” minOccurs=”0”
name=”item” type=”xsd:anyType” />

</sequence>
</complexType>

</schema>
</wsdl:types>

<wsdl:message name=”confirmRequest”>
<wsdl:part name=”in0” type=”xsd:string” />

</wsdl:message>

<wsdl:message name=”searchResponse”>
<wsdl:part name=”searchReturn” type=”tns1:flightArray” />

</wsdl:message>

<wsdl:message name=”bookResponse”>
<wsdl:part name=”bookReturn” type=”xsd:string” />

</wsdl:message>

<wsdl:message name=”searchRequest”>
<wsdl:part name=”in0” type=”xsd:string” />

<wsdl:part name=”in1” type=”xsd:string” />

<wsdl:part name=”in2” type=”xsd:dateTime” />

<wsdl:part name=”in3” type=”xsd:dateTime” />
</wsdl:message>

<wsdl:message name=”bookRequest”>
<wsdl:part name=”in0” type=”xsd:long” />

Continued

n539663 ch21.qxd 7/25/03 9:18 AM Page 683

684 Part VI ✦ Web Services

Listing 21-7 (continued)

<wsdl:part name=”in1” type=”xsd:long” />

<wsdl:part name=”in2” type=”xsd:int” />

<wsdl:part name=”in3” type=”xsd:long” />
</wsdl:message>

<wsdl:message name=”confirmResponse”>
<wsdl:part name=”confirmReturn” type=”tns1:flightArray” />

</wsdl:message>

<wsdl:portType name=”Reservation”>
<wsdl:operation name=”search” parameterOrder=”in0 in1 in2

in3”>
<wsdl:input message=”intf:searchRequest”

name=”searchRequest” />

<wsdl:output message=”intf:searchResponse”
name=”searchResponse” />

</wsdl:operation>

<wsdl:operation name=”book” parameterOrder=”in0 in1 in2
in3”>

<wsdl:input message=”intf:bookRequest”
name=”bookRequest” />

<wsdl:output message=”intf:bookResponse”
name=”bookResponse” />

</wsdl:operation>

<wsdl:operation name=”confirm” parameterOrder=”in0”>
<wsdl:input message=”intf:confirmRequest”

name=”confirmRequest” />

<wsdl:output message=”intf:confirmResponse”
name=”confirmResponse” />

</wsdl:operation>
</wsdl:portType>

<wsdl:binding name=”ReservationServiceSoapBinding”
type=”intf:Reservation”>

<wsdlsoap:binding style=”rpc”
transport=”http://schemas.xmlsoap.org/soap/http” />

<wsdl:operation name=”search”>
<wsdlsoap:operation soapAction=”” />

<wsdl:input name=”searchRequest”>
<wsdlsoap:body encodingStyle=”http://schemas

.xmlsoap.org/soap/encoding/” namespace=”http://localhost:8080/
axis/services/ReservationService” use=”encoded” />

n539663 ch21.qxd 7/25/03 9:18 AM Page 684

685Chapter 21 ✦ Digging Deeper into SOAP, WSDL, and UDDI

</wsdl:input>

<wsdl:output name=”searchResponse”>
<wsdlsoap:body

encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”
namespace=”http://localhost:8080/axis/services/Reservation
Service” use=”encoded” />

</wsdl:output>
</wsdl:operation>

<wsdl:operation name=”book”>
<wsdlsoap:operation soapAction=”” />

<wsdl:input name=”bookRequest”>
<wsdlsoap:body

encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”
namespace=”http://localhost:8080/axis/services/Reservation
Service” use=”encoded” />

</wsdl:input>

<wsdl:output name=”bookResponse”>
<wsdlsoap:body

encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”
namespace=”http://localhost:8080/axis/services/Reservation
Service” use=”encoded” />

</wsdl:output>
</wsdl:operation>

<wsdl:operation name=”confirm”>
<wsdlsoap:operation soapAction=”” />

<wsdl:input name=”confirmRequest”>
<wsdlsoap:body

encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”
namespace=”http://localhost:8080/axis/services/Reservation
Service” use=”encoded” />

</wsdl:input>

<wsdl:output name=”confirmResponse”>
<wsdlsoap:body

encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”
namespace=”http://localhost:8080/axis/services/Reservation
Service” use=”encoded” />

</wsdl:output>
</wsdl:operation>

</wsdl:binding>

<wsdl:service name=”ReservationService”>
<wsdl:port binding=”intf:ReservationServiceSoapBinding”

name=”ReservationService”>
<wsdlsoap:address location=”http://localhost:8080/

axis/services/ReservationService” />

Continued

n539663 ch21.qxd 7/25/03 9:18 AM Page 685

686 Part VI ✦ Web Services

Listing 21-7 (continued)

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

The Types element contains five complexType elements, including Connection,
flight, flightArray, and vector.

Now let’s look at the message elements. ConfirmRequest serves as the input
message for the confirm operation. The confirm operation references the
confirmRequest message via parameter “in0”. ConfirmResponse is the output
for the confirm operation. SearchRequest and searchResponse are the input
and output for the search operation.

As you can see, the search operation has the attribute parameterOrder=”in0
in1 in2 in3”. This attribute specifies which parts of the messages will be pro-
cessed and in what order. The book operation works the same way. All operations
are contained within the portType element.

The next major element in the binding element is ReservationServiceSoapBinding.
It tells you that in order to bind to the service you can use SOAP-RPC. It also gives
you specific information about which namespace and encoding style will be used for
each individual operation.

The last element is the service element, which tells you that the service is located
at http://localhost:8080/axis/services/ReservationService.

SOAP binding
SOAP binding enables the developer to specify which protocol will be used to send
the message and the style of communication that will be used. Take a look at the
following example:

<wsdl:binding name=”ReservationServiceSoapBinding”
type=”intf:Reservation”>

<wsdlsoap:binding style=”rpc”
transport=”http://schemas.xmlsoap.org/soap/http” />

</wsdl:binding>

The style attribute specifies that RPC will be used. The value of the style
attribute can be set to rpcRPC or document. Of course with rpcRPC you will send
parameters and return values. With document documents will be sent.

The transport attribute indicates that HTTP will be used as a transport.

n539663 ch21.qxd 7/25/03 9:18 AM Page 686

687Chapter 21 ✦ Digging Deeper into SOAP, WSDL, and UDDI

<soap:operation>
The operation element gives you information about SOAP action headers and can
contain the style attribute to reveal the type of communication to be used (RPC or
document).

<soap:body>
This element provides information about how the parts of a message will be dis-
played in the body element of the SOAP message. The required use attribute can be
set to “literal” or “encoded”. You specify “literal” when you want the parts
in the <soap:body> to conform to the specified schema; “encoded” if you want the
parts of the <soap:body> to be serialized in some manner.

<soap:fault>
This element gives you information about how the fault element fits into SOAP.

<soap:address>
This element enables you to specify a port address.

Only one address may be indicated if you are using SOAP binding.

HTTP GET and POST binding
It is common for Web-based applications to use a browser to access information. Of
course HTTP is usually the choice of transport and information is sent and received
using the GET and POST verbs. For example, a user may fill out a form to make reser-
vations. The user information is processed through some parameters passed by
means of a form or through the query string. The process is just that easy for con-
suming Web services as well, but not all the applications you build will be Web-
based. This is where the HTTP GET and POST binding elements come in. They allow
applications that are not browser-based to take advantage of the GET and POST
verbs by allowing the binding of port types to SOAP.

Here is an example of what a partial GET implementation might look like:

<binding name=”ReservationServiceHTTPBinding” type=”ReservationServicePortType” >
<http:binding verb=”GET”/>
<operation name=”search” >

<http:operation location=”search”/>
<input>

<http:urlencoded/>
</input>
<output>

<mime:content type=”text/xml”/>
</output>

</operation>
</binding>

Note

n539663 ch21.qxd 7/25/03 9:18 AM Page 687

688 Part VI ✦ Web Services

MIME binding
WSDL also provides support for binding for various Multipurpose Internet Mail
Extensions (MIME) types, such as gifs and jpegs within the binding elements. The
WSDL 1.1 specifications define the following MIME bindings:

✦ multipart/related

✦ text/xml

✦ application/x-www-form-urlencoded

✦ Others supported through the use of MIME-type strings

In order for the search portion of Reservation.wsdl to support the MIME type jpeg,
we will need to change the searchResponse message element as follows:

<wsdl:message name=”searchResponse”>
<wsdl:part name=”searchReturn” type=”tns1:flightArray” />
<wsdl:part name=”photo” type=”xsd:binary” />
</wsdl:message>

Now take a look at Listing 21-8, which shows how the binding element itself will
change.

Listing 21-8: MIME binding

<wsdl:binding name=”ReservationServiceSoapBinding”
type=”intf:Reservation”>

<wsdlsoap:binding style=”rpc”
transport=”http://schemas.xmlsoap.org/soap/http” />

<wsdl:operation name=”search”>
<wsdlsoap:operation soapAction=”” />

<wsdl:input name=”searchRequest”>
<wsdlsoap:body
encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”

namespace=”http://localhost:8080/axis/services/ReservationServi
ce” use=”encoded” />
</wsdl:input>

<wsdl:output name=”searchResponse”>

<mime:multipartRelated>
<mime:part>

<wsdlsoap:body
encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”
namespace=”http://localhost:8080/axis/services/ReservationServi
ce” use=”encoded” />

n539663 ch21.qxd 7/25/03 9:18 AM Page 688

689Chapter 21 ✦ Digging Deeper into SOAP, WSDL, and UDDI

</mime:part>
<mime:part>
<mime:content part=”photo” type=”image/jpg”>
</mime:part>
</mime:multipartRelated>
</wsdl:output>
</wsdl:operation>

</wsdl:binding>

In the preceding listing, the only element that changes is the searchReponse ele-
ment. We have added the <mime:multipartRelated> and <mime:part> elements
in order to support the JPEG format.

WSDL and Java
You’re probably wondering why we haven’t talked much about Java in the WSDL
section. Well, the truth is that you rarely deal with WSDL directly. For instance, the
WSDL document above was generated using the Java2WSDL utility available with
Axis. The Web service implementation was created first and then the WSDL docu-
ment was generated. With some tools it is actually possible to generate Java classes
from WSDL documents. For more information, check out WASP by Systinet at www.
systinet.com/wasp, IBM Web Services Toolkit at www.alphaworks.ibm.com/
tech/webservicestoolkit/.

Examining UDDI
The Universal Description, Discovery and Integration (UDDI) specification has
undergone some substantial changes during its short life. Consequently, we will
begin this section with a brief overview of the three versions of UDDI and the rele-
vant differences among them. Afterwards we will examine the data model, the
query, publish, and subscription APIs, and the integration between WSDL and UDDI.
Finally, we will pull all the information together by applying this knowledge to our
Connexia Airlines case study.

UDDI versions 1, 2, and 3
Versions 2 and 3 of the UDDI specification have really expanded to incorporate
more of its broader enterprise-level features and capabilities.

The following sections certainly do not cover every feature defined within the UDDI
specification, but they do identify the key aspects of each version. With the release
of UDDI version 3, many Web-services experts now regard UDDI as having reached
an important stage of maturity within the marketplace. As best practices continue

n539663 ch21.qxd 7/25/03 9:18 AM Page 689

690 Part VI ✦ Web Services

to be refined and tool vendors bring their development, management, and registry
tools up to date with the latest UDDI spec, the adoption of UDDI is expected to grow
steadily.

Versions 1 and 2 of the UDDI spec were originally released by the UDDI organiza-
tion (www.uddi.org). In the summer of 2002 the UDDI project was absorbed by
OASIS (www.oasis-open.org) and version 3 of the specification was made
available as well.

UDDI version 1
UDDI version 1, which went into effect in September 2000, includes the following
features:

✦ Essential XML grammar

✦ Definition of core registry entry types: business organizations, business ser-
vices, service bindings, and technical models

✦ Basic Inquiry “Okay — JG” API

✦ Basic Publish API

UDDI version 1 established a foundation that addressed the need for a central reg-
istry for various business services. UDDI version 1 provides us with an Inquiry API
that allows us to find basic information about businesses and services as well as
more detailed information. This version of UDDI also provides us with a Publish API
that gives the ability to save and delete information about businesses and services.
Basic security such as authentication, and establishing credentials is also provided.

These APIs and the operations within them are listed in Table 21-2. While very
advantageous, it is important to note that UDDI version 1was not flexible enough to
address the need of large businesses to relate to their partners or to individual enti-
ties within the company. UDDI version 2 takes care of this issue.

Table 21-2
Inquiry and Publishing APIs available in UDDI version 1

Inquiry Operations Publishing Operations

Find Save

find_business save_business

find_service save_service

find_binding save_binding

find_tModel save_tModel

Note

n539663 ch21.qxd 7/25/03 9:18 AM Page 690

691Chapter 21 ✦ Digging Deeper into SOAP, WSDL, and UDDI

Inquiry Operations Publishing Operations

Get Details Delete

get_businessDetail delete_business

get_serviceDetail delete_service

get_bindingDetail delete_binding

get_tModelDetail delete_tModel

get_registeredInfo

Security

get_authToken

discard_authToken

UDDI version 2
UDDI version 2, which went into effect in June 2001, includes the following features:

Definition of an additional registry-entry type: publisher assertions

Support for publishing and querying these relationships

The UDDI information model (introduced in UDDI version 2) supports defining
relationships between businesses.

Recall that one of the most important enhancements available in UDDI version 2 is
the support for relationships within and between businesses. The Publishing API in
version 2 features publisher assertions. Publisher assertions allow businesses to
define and manipulate relationships with each other. The Inquiry API includes the
find_relatedBusinesses operation, which allows you to search the relationships
that are established. Version 2 also allows a business to feature services of other
businesses as if the services were its own, a concept referred to as service projec-
tions. Some other enhancements include the ability to describe services in different
languages, improved categorization and improved searching options. Table 21-3
lists the APIs. The asterisks (*) denote new operations.

Table 21-3
Inquiry and Publishing APIs available in UDDI version 2

Inquiry Operations Publishing Operations

Find Save

find_business save_business

Continued

n539663 ch21.qxd 7/25/03 9:18 AM Page 691

692 Part VI ✦ Web Services

Table 21-3 (continued)

Inquiry Operations Publishing Operations

find_service save_service

find_binding save_binding

find_tModel save_tModel

*find_relatedBusinesses

Get Details Delete

get_businessDetail delete_business

get_serviceDetail delete_service

get_bindingDetail delete_binding

get_tModelDetail delete_tModel

get_registeredInfo

*get_businessDetailExt Security

get_authToken

discard_authToken

Publisher Assertions

*add_publisherAssertions

*delete_publisherAssertions

*get_publisherAssertions

*set_publisherAssertions

UDDI version 3
UDDI version 3, which went into effect in July 2002, includes the following features:

✦ Definition of an additional registry-entry type: operational info

✦ Introduction of the subscription API

✦ Support for tracking, monitoring, and responding to changes made to registry
entries

✦ Support for user-defined registry keys

✦ Introduction of new key format: domain keys

✦ Support of key derivation from existing keys

✦ Support for organizations defining policies for domain-key generation and
derivation

✦ Support for digital signatures

n539663 ch21.qxd 7/25/03 9:18 AM Page 692

693Chapter 21 ✦ Digging Deeper into SOAP, WSDL, and UDDI

The enhancements in UDDI version 3 focus on concepts of how registries in the
public, private, and shared domains interact and maintain the integrity of informa-
tion efficiently. It also defines roles for publishing and subscribing services.

The UDDI information model
As we discussed in the previous chapter, UDDI is used to publish and discover ser-
vices. The UDDI information model consists of the following basic data structures:

✦ businessEntity

✦ businessService

✦ bindingTemplate

✦ tModel

Figure 21-3 identifies the relationships among the four basic data structures and
publisher assertions. We will define and analyze each structure in turn. (We will
address the UDDI version 3 operational-info structures separately.)

The businessEntity data structure
This top-level structure provides information about the business or service
provider. The information given about a service provider can vary from simple con-
tact information to a description of what the provider’s line of business is. This is
the type of information that is defined as “White Pages level” information. Here is
the businessEntity-structure according to uddi.org:

<element name=”bindingTemplate” type=”uddi:bindingTemplate” />

<complexType name=”bindingTemplate”>

<sequence>

<element ref=”uddi:description” minOccurs=”0”
maxOccurs=”unbounded” />

<choice>

<element ref=”uddi:accessPoint” />

<element ref=”uddi:hostingRedirector” />

</choice>

<element ref=”uddi:tModelInstanceDetails” />

</sequence>

<attribute name=”serviceKey” type=”uddi:serviceKey” use=
”optional” />

n539663 ch21.qxd 7/25/03 9:18 AM Page 693

694 Part VI ✦ Web Services

<attribute name=”bindingKey” type=”uddi:bindingKey”
use=”required” />

</complexType>

Figure 21-3: The relationship between the basic UDDI data structures

publisherAssertion

fromKey
toKey
keyedReference

bindingTemplate

bindingKey
serviceKey
description
accessPoint
(or) hostingRedirector
tModel InstanceDetails

businessEntity

businessKey
. . .

businessService

businessKey
serviceKey
name
description
bindingTemplates
categoryBag

tModel

tModelKey
authorizedName
operator
name
description
overviewBag
identifierBag
categoryBag

businessEntity

businessKey
authorizedName
operator
discoveryURLs
name
description
contacts
businessServices
identifierBag
categoryBag

n539663 ch21.qxd 7/25/03 9:18 AM Page 694

695Chapter 21 ✦ Digging Deeper into SOAP, WSDL, and UDDI

The businessService data structure
This data structure represents the services offered by a provider. It provides infor-
mation such as the service name or a description of the service; this is typically
referred to as “Yellow Pages level” information. A businessService data structure
is also the logical child of a businessEntity structure.

Since a business can offer more than one service, the businessEntity structure
can contain more than one businessService. Each businessService can also be
used by more than one businessEntity. Here is the businessService-structure
according to uddi.org:

<element name=”businessService” type=”uddi:businessService” />

<complexType name=”businessService”>

<sequence>

<element ref=”uddi:name” minOccurs=”0”
maxOccurs=”unbounded” />

<element ref=”uddi:description” minOccurs=”0”
maxOccurs=”unbounded” />

<element ref=”uddi:bindingTemplates” minOccurs=”0” />

<element ref=”uddi:categoryBag” minOccurs=”0” />

</sequence>

<attribute name=”serviceKey” type=”uddi:serviceKey”
use=”required” />

<attribute name=”businessKey” type=”uddi:businessKey”
use=”optional” />

</complexType>

The bindingTemplate data structure
This structure is found within the businessService data structure. It gives you
technical descriptions such as the address information required for accessing the
service. Here is the bindingTemplate-structure according to uddi.org:

<element name=”bindingTemplate” type=”uddi:bindingTemplate” />

<complexType name=”bindingTemplate”>

<sequence>

<element ref=”uddi:description” minOccurs=”0”
maxOccurs=”unbounded” />

n539663 ch21.qxd 7/25/03 9:18 AM Page 695

696 Part VI ✦ Web Services

<choice>

<element ref=”uddi:accessPoint” />

<element ref=”uddi:hostingRedirector” />

</choice>

<element ref=”uddi:tModelInstanceDetails” />

</sequence>

<attribute name=”serviceKey” type=”uddi:serviceKey”
use=”optional” />

<attribute name=”bindingKey” type=”uddi:bindingKey”
use=”required” />

</complexType>

The tModel data structure
A tModel defines flexible, reusable data structures that are roughly equivalent to a
WSDL type. This data structure appears all over UDDI-registry data. In binding tem-
plates tModels identify the interface and protocol to be expected, in category tags
they define the specific taxonomy, in identifier tags they define the type of identi-
fier. The tModel is even used within publisher assertions to define the type of rela-
tionship the assertion represents. Here is the tModel-structure according to
uddi.org:

<element name=”tModel” type=”uddi:tModel” />

<complexType name=”tModel”>

<sequence>

<element ref=”uddi:name” />

<element ref=”uddi:description” minOccurs=”0”
maxOccurs=”unbounded” />

<element ref=”uddi:overviewDoc” minOccurs=”0” />

<element ref=”uddi:identifierBag” minOccurs=”0” />

<element ref=”uddi:categoryBag” minOccurs=”0” />

</sequence>

<attribute name=”tModelKey” type=”uddi:tModelKey”
use=”required” />

n539663 ch21.qxd 7/25/03 9:18 AM Page 696

697Chapter 21 ✦ Digging Deeper into SOAP, WSDL, and UDDI

<attribute name=”operator” type=”string” use=”optional” />

<attribute name=”authorizedName” type=”string” use=”optional”
/>

</complexType>

Additions to the UDDI information model (UDDI v3)
Although UDDI version 3 has been out for a while now, many vendors will still lag
behind in supporting the latest bells and whistles laid out in the specification. And
even if your vendor supports version 3, you may not have any need for the addi-
tional features it defines. If the diagram and registry data described in the previous
pages are sufficient to meet your needs, you don’t need to concern yourself with
this last section. If, however, you are interested in taking full advantage of the UDDI
version 3 specification, then keep reading.

The subscription API provides clients, known as subscribers, with the ability to regis-
ter their interest in one or more entries within a UDDI registry. When changes are
made to an entry, an operationalInfo element is created that represents the
changes made. The subscription API can then be used by the subscriber to retrieve
any changes that have been made to subscribed entries. Alternatively, the API can be
used to set up an asynchronous notification. The subscription API will be discussed
in greater detail later in this chapter under the section “Subscribing with UDDI”.

Figure 21-4 illustrates how the operationalInfo registry entry relates to the other
registry entries.

Figure 21-4: The operationalInfo registry entry relates to the other
registry entries.

operationalInfo

businessEntity businessEntity

publisherAssertion

operationalInfo

. . . businessService

bindingTemplate

n539663 ch21.qxd 7/25/03 9:18 AM Page 697

698 Part VI ✦ Web Services

When UDDI data structures are published, information about the change is cap-
tured and an operationalInfo element is created. The element includes data such
as the identity of the publisher, the date and time that the data structure was cre-
ated and modified, and the identifier of the UDDI node that was published. Here is
the operationalInfo-structure according to uddi.org:

<element name=”operationalInfo”
type=”uddi:operationalInfo”final=”restriction”/>
<complexType name=”operationalInfo” final=”restriction”>

<sequence>
<element name=”created”

type=”uddi:timeInstant”minOccurs=”0”/>
<element name=”modified”

type=”uddi:timeInstant”minOccurs=”0”/>
<element

name=”modifiedIncludingChildren”type=”uddi:timeInstant”

minOccurs=”0”/>
<element name=”nodeID” type=”uddi:nodeID” minOccurs=”0”/>
<element name=”authorizedName” type=”xsd:string”

minOccurs=”0”/>
</sequence>

<attribute name=”entityKey” type=”uddi:uddiKey”
use=”required”/>
</complexType>

Searching with UDDI
UDDI defines an inquiry API to support the programmatic discovery of registry data
contained within a UDDI registry. This API primarily consists of finder methods and
retriever methods. The finder methods (find_XXXX) are used to return result sets
based upon general criteria, while retriever methods (get_XXXX) return detailed
information about a specific registry entry. Table 21-4 lists the finder methods that
are available and Table 21-5 displays the retriever methods.

Table 21-4
Finder methods

Method Action

find_binding Locates specific bindings within a registered business service

find_business Locates one or more business entities

find_relatedBusiness Locates one or more business entities based upon
relationships asserted within publisherAssertion
elements

find_service Locates one or more business services

find_tModel Locates one or more tModels

n539663 ch21.qxd 7/25/03 9:18 AM Page 698

699Chapter 21 ✦ Digging Deeper into SOAP, WSDL, and UDDI

Here are some examples of the finder methods:

find_service

<find_business generic=”2.0” xmlns=”urn:uddi-org:api”>
<name>IBM</name>

</find_business>

find_service

<find_service businessKey=”6112-4T17-8X” generic=”2.0”
xmlns=”urn:uddi-org:api”>

<name>delayed stock quotes</name>
</find_service>

Table 21-5
Retriever methods

Method Action

get_bindingDetail Returns the runtime binding-template information

get_businessDetail Returns one or more complete business-entity objects

get_operationInfo Returns operational information pertaining to one or more
entities

get_serviceDetail Returns a complete service object

get_tModelDetail Returns a complete tModel object

Here are some examples of the retriever methods:

get_bindingDetail

<get_bindingDetail generic=”2.0” xmlns=”urn:uddi-org:api”>
<bindingKey>RJ12-6397-B2</bindingKey>

</get_bindingDetail>

get_businessDetail

<get_businessDetail generic=”2.0” xmlns=”urn:uddi-org:api”>
<businessKey>6112-4T17-8X</businessKey>

</get_businessDetail>

get_serviceDetail

<get_serviceDetail generic=”2.0” xmlns=”urn:uddi-org:api”>
<serviceKey>38AN-4E98-Q77</serviceKey>

</get_serviceDetail>

n539663 ch21.qxd 7/25/03 9:18 AM Page 699

700 Part VI ✦ Web Services

The UDDI specification also defines three usage patterns for use with the finder and
retriever methods. These three patterns are often used in combination with each
other; the first two are particularly complementary.

✦ Browse — The browse pattern is familiar to many of us. Its use typically
involves starting with some broad information such as a subject, category, or
geographic location, performing a search that produces general result sets,
and then retrieving more specific information via the drill-down pattern. This
scenario commonly plays out during searches through large quantities of
information such as browsing through book categories on Amazon or through
chat-room categories on Yahoo. In UDDI, finder methods return result sets
with corresponding unique identifiers, enabling you to use the drill-down pat-
tern to get more complete information.

✦ Drill-down — The drill-down pattern allows specific information to be
retrieved based upon some type of key or unique identifier. On Amazon this
would be the equivalent of retrieving book information via an International
Standard Book Number (ISBN), rather than by browsing through the
Information Technology (IT) category. In a Web-based search the unique iden-
tifier would be a URL, in a UDDI registry a UDDI key. With the key, all the rele-
vant registry data can be retrieved.

✦ Invocation — The invocation pattern is easily the least commonly used of the
three usage patterns, but it is potentially the most powerful. One of the
dreams of Web services from the beginning has been the concept of discover-
ing and binding to a service at runtime, rather than coding a static client
application and then accessing a service. The bindingTemplate element for
a service contains sufficient information for a client application to bind to a
Web service and invoke its operations. The binding information can be
obtained from the registry by means of the browse and drill-down patterns
and then cached on the client and used to contact the Web service at the reg-
istered address whenever it needs to communicate with the service instance.

Publishing with UDDI
UDDI defines a publishing API to support the programmatic publication of registry
data to a UDDI registry. This API consists of four sets of methods used for the fol-
lowing purposes:

Adding or updating registry entries (save_XXXX)

Removing registry entries (delete_XXXX)

Managing publisherAssertions (add_XXXX and set_XXXX)

Retrieving the status of published entries (get_XXXX).

Table 21-6 lists the methods used to add or update registry entries.

n539663 ch21.qxd 7/25/03 9:18 AM Page 700

701Chapter 21 ✦ Digging Deeper into SOAP, WSDL, and UDDI

Table 21-6
Methods for adding or updating registry entries

Method Action

save_binding Registers new bindingTemplate or updates existing one

save_business Registers new businessEntity or updates existing one

save_service Registers new businessService or updates existing one

save_tModel Registers new tModel information or updates existing information

Here are some method examples for adding and updating registry entries:

save_binding
<save_binding generic=”2.0” xmlns=”urn:uddi-org:api”>
<bindingTemplate>

<accessPoint useType=”endpoint”>
https://connexia.example/reservation.html

</accessPoint>
<tModelInstanceDetails>

<tModelInstanceInfo
tModelKey=”uddi:ubr.uddi.org:transport:http”>

</tModelInstanceInfo>
</tModelInstanceDetails>

</bindingTemplate>
<categoryBag>
<keyedReference

tModelKey=”uddi:uddi.org:categorization:general_keywords”

keyName=”connexia.example:categorization:transportation”
keyValue=”c”/>

</categoryBag>
</save_binding>

save_business

<save_business generic=”2.0” xmlns=”urn:uddi-org:api”>
<businessEntity businessKey=”1764a-0c20”>

<name>IBM</name>
</businessEntity>

</save_business>

save_service

<save_service generic=”2.0” xmlns=”urn:uddi-org:api”>
<businessService>

<name> </name>
</businessService>

</save_service>

n539663 ch21.qxd 7/25/03 9:18 AM Page 701

702 Part VI ✦ Web Services

Table 21-7 lists the methods used to remove registry entries.

Table 21-7
Methods for removing registry entries

Method Action

delete_binding Removes existing bindingTemplate entry

delete_business Removes existing businessEntity entry

delete_service Removes existing businessService entry

delete_tModel Removes existing tModel entry

Here are some method examples for removing registry entries:

delete_binding

<delete_binding generic=”2.0” xmlns=”urn:uddi-org:api”>
<bindingKey>RJ12-6397-B2</bindingKey>

</delete_binding>

delete_business

<delete_business generic=”2.0” xmlns=”urn:uddi-org:api”>
<businessKey>6112-4T17-8X</businessKey>

</delete_business>

delete_service

<delete_service generic=”2.0” xmlns=”urn:uddi-org:api”>
<serviceKey>38AN-4E98-Q77</serviceKey>

</delete_service>

Table 21-8 lists the methods used to modify publisher assertions.

Table 21-8
Methods for modifying publisher assertions

Method Action

add_publisherAssertions Adds a new relationship assertion to the current set
of assertions

delete_publisherAssertions Removes a specific publisherAssertion

set_publisherAssertions Saves a new complete set of assertions for a publisher,
completely replacing any previous assertions

n539663 ch21.qxd 7/25/03 9:18 AM Page 702

703Chapter 21 ✦ Digging Deeper into SOAP, WSDL, and UDDI

Table 21-9 lists the methods used to retrieve status information about registry data.

Table 21-9
Methods for retrieving status information about registry data

Method Action

get_assertionStatusReport Retrieves a report identifying all registered assertions
and their current status for the request publisher

get_publisherAssertions Retrieves a list of all assertions for a particular
publisher

get_registeredInfo Saves a new complete set of assertions for a
publisher, completely replacing any previous
assertionsgetInfo

Subscribing with UDDI
UDDI defines an optional subscription API to enable clients to monitor changes to
specified registry entries. Because the API is optional, support is determined on a
node-by-node basis. Table 21-10 lists the methods defined by the specification.

Table 21-10
Methods provided by Subscription API

Method Action

delete_subscription Removes (cancels) one or more subscriptions

get_subscriptionResults Synchronously returns registry data related to a
particular subscription

get_subscriptions Returns current list of subscriptions associated
with the subscriber

notify_subscriptionListener Receives asynchronous notifications of changes
to data that the subscriber is monitoring (this
method is optional for a client)

save_subscription Registers a new subscription, or modifies or
renews an existing one

n539663 ch21.qxd 7/25/03 9:18 AM Page 703

704 Part VI ✦ Web Services

Here are some method examples:

delete_subscription

<delete_subscription generic=”2.0” xmlns=”urn:uddi-org:api”>
<subscriptionKey>RY67-1009-4</subscriptionKey>

</delete_subscription>

save_subscription

<save_subscription generic=”2.0” xmlns=”urn:uddi-org:api”>
<subscription>

<subscriptionFilter>
<find_service businessKey=”6112-4T17-8X” generic=”2.0”

xmlns=”urn:uddi-org:api”>
<name>delayed stock quotes</name>

</find_service>
</subscriptionFilter>

</subscription>
</save_subscription>

Finally, the subscription API supports two monitoring patterns:

✦ Asynchronous notification — This pattern is sometimes referred to as sub-
scriber listener. It enables subscribers to inform the UDDI node that they wish
to be directly notified when subscribed registry data changes.

✦ Synchronous notification — This pattern is sometimes referred to as change
tracking. It enables subscribing clients to issue a synchronous request to
retrieve registry changes that match their subscription preferences.

UDDI and Java
Support for UDDI in Java can be achieved through the use of the Java API for XML
Registries (JAXR). JAXR provides a way to interact with XML registries without hav-
ing to deal with the complexity of UDDI. The JAXR information model (the type of
information supported by a registry) is primarily based upon ebXML’s information
model but provides support for UDDI. The architecture of JAXR also allows the
developer to create one client application that will work with a variety of registries.

JAXR Architecture
The JAXR architecture consists of the following:

✦ JAXR client — This client uses the JAXR API to access a registry through the
JAXR provider.

✦ JAXR provider — This provider consists of a JAXR pluggable provider that
allows interaction with any registry. The JAXR provider also consists of a
JAXR registry-specific provider that supplies a JAXR implementation for a par-
ticular registry. The registry-specific provider usually plugs into the pluggable

n539663 ch21.qxd 7/25/03 9:18 AM Page 704

705Chapter 21 ✦ Digging Deeper into SOAP, WSDL, and UDDI

provider and transforms client requests so that the intended registry under-
stands the request. The registry-specific provider also transforms registry-
specific responses to JAXR responses and sends the response to the client.
The JAXR Bridge provider is similar to the registry-specific provider but
adheres to a registry specification such as UDDI or ebXML.

Figure 21-5 illustrates the JAXR architecture.

Figure 21-5: The JAXR architecture

JAXR capability profiles
In order to support a wide variety of registries the JAXR API defines capabilities and
capability profiles. A capability is a set of similar features and a capability profile is
a categorization of API methods that have the same level. The JAXR defines level 1
and level 0 capability profiles. Level 0 is required and provides basic registry capa-
bilities. Level 1 is optional, and provides advanced registry capabilities and support
for Level 0 capabilities. It is also important to note that each API method is
assigned a capability level.

JAXR API
The JAXR API consists of two main packages, javax.xml.registry and
javax.xml.registry.infomodel. The javax.xml.registry.infomodel con-
tains interfaces that control the relationship between registry objects and what
type of objects are in the registry. The javax.xml.registry package contains access
interfaces that define how registry objects are handled. Figure 21-6 and Figure 21-7
illustrate some of the primary interfaces in JAXR API. A brief description of the
offerings of the two main packages follows.

UDDI Provider Other ProviderebXML Provider

JAXR Client

ebXML/
SOAP

UDDI/
SOAP ???

Registry-Specific
JAXR Provider

JAXR API
Capability-Specific Interfaces

UDDI Other Diverse RegistriesebXML

n539663 ch21.qxd 7/25/03 9:18 AM Page 705

706 Part VI ✦ Web Services

Figure 21-6: The primary interfaces of the JAXR API

javax.xml.registry consists of the following elements:

✦ Connection represents a session that a client has with the registry provider.

✦ BusinessLifeCycleManager- allows the saving or updating of information in
a registry and generally consists of level 1methods.

✦ LifeCycleManager- supports the creating, updating, deprecating and delet-
ing of registry objects and generally consists of level 0 methods.

ConnectionFactory

creates creates

interface
Connection

interface
FindQualifier

interface
Query

processes

uses

interface
FederatedConnection

interface
RegistryService

interface
CapabilityProfile

interface
LifeCycleManager

interface
BusinessLifeCycleManager

interface
DeclarativeQueryManager

QueryManager

interface
BusinessQueryManager

QueryManager

n539663 ch21.qxd 7/25/03 9:18 AM Page 706

707Chapter 21 ✦ Digging Deeper into SOAP, WSDL, and UDDI

✦ BusinessQueryManager- supports for basic searching of the JAXR informa-
tion model and generally consists of level 1 methods.

✦ DeclarativeQueryManager- supports searching of the JAXR information
model via SQL queries and generally consists of level 0 methods.

javax.xml.registry.infomodel consists of these elements:

✦ RegistryObject provides metadata for registry objects and is a base class
used by most classes in the JAXR information model.

✦ Organization provides information about organizations, the services offered
and can have relationships with other organization types.

✦ Service provides information on services offered by an organization.

✦ ServiceBinding provides technical details about how to access service
interfaces.

✦ Association defines associations between objects.

Figure 21-7: Inheritance within the javax.xml.registry.infomodel package

Listing 21-9 is an example of a JAXR client. It will give you a better idea of how some
of the interfaces we discussed work together. First, we create an instance of the
ConnectionFactory class. Next, we specify which registry we will be accessing

interface
Versionable

interface
Classification

interface
Concept

interface
Association

interface
ExternalLink

interface
ExternalIdentifier

interface
User

interface
SpecificationLink

interface
ServiceFinding

interface
Organization

interface
AuditableEvent

interface
Service

interface
ClassificationScheme

interface
RegistryPackage

interface
ExtrinsicObject

interface
RegistryEntry

interface
ExtensibleObject

interface
RegistryObject

Serializable

n539663 ch21.qxd 7/25/03 9:18 AM Page 707

708 Part VI ✦ Web Services

and set the connection configuration properties. Then, we obtain access to the
RegistryService object and BusinessQueryManager in order to prepare for a
query. After that, we define find qualifiers and name patterns, then execute the
query. Finally, we obtain the search results.

Listing 21-9: A sample JAXR client

package wiley.simplejaxr;

import javax.xml.registry.*;
import java.util.*;

public class JAXRClient {

public static void main(String[] args) throws Exception {
//Creating an instance of ConnectionFactory

ConnectionFactory connFactory =
ConnectionFactory.newInstance();
//Specify registry access

Properties props = new Properties();
props.setProperty(

“javax.xml.registry.queryManagerURL”,
“http://localhost/registry-

server/RegistryServerServlet”);
props.setProperty(

“javax.xml.registry.lifeCycleManagerURL”,
“http://localhost/registry-

server/RegistryServerServlet”);
//Set connection properties

connFactory.setProperties(props);
Connection connection = connFactory.createConnection();

//Get access to the RegistryService object and
BusinessQueryManager to prepare for a query
BusinessQueryManager

BusinessQueryManager bqm;

bqm =
connection.getRegistryService().getBusinessQueryManager();

// Define find qualifiers and name patterns
Collection findQualifiers = new ArrayList();
findQualifiers.add(FindQualifier.SORT_BY_NAME_DESC);
Collection namePatterns = new ArrayList();
namePatterns.add(“Connexia”);

// Find using the name
BulkResponse response =

bqm.findOrganizations(

n539663 ch21.qxd 7/25/03 9:18 AM Page 708

709Chapter 21 ✦ Digging Deeper into SOAP, WSDL, and UDDI

findQualifiers,
namePatterns,
null,
null,
null,
null);

// obtain the search results.
Collection orgs = response.getCollection();
System.out.println(“orgs returned “ + orgs.size());

}

}

In this section, we looked at the evolution of UDDI from version 1 to version 3 and
discussed the internal workings of UDDI. Version 1 serves as a basic foundation that
provides a central location for services to be published and searched.

Version 2 includes enhancements to the Inquiry API and Publishing API. The
enhancements focus on the ability to make complex relationships between and
within businesses. We examined how version 3 focuses on the interaction with reg-
istries. We looked at the UDDI information model and its basic data structures. We
also examined tracking changes within the registry with the operationalInfo
entry. We discussed the subscription API and the monitoring patterns it supports.
Finally, we examined how UDDI and Java interact by introducing the JAXR API.

Summary
In this chapter, we took a closer look at SOAP, WSDL and UDDI. We began this chap-
ter by discussing the architecture of SOAP messages, the encoding and the process-
ing of SOAP messages. We looked at the datatypes available and the structures that
handle them. We learned that RPC based communication in SOAP can occur by
using SOAP-RPC. SOAP also provides the ability to communicate by exchanging
SOAP messages that contain XML documents. Next we discussed the basics of
WSDL and examined an actual wsdl document. We then walked through the WSDL
bindings. We ended our discussion with an in-depth look at UDDI and its evolution.

✦ ✦ ✦

n539663 ch21.qxd 7/25/03 9:18 AM Page 709

n539663 ch21.qxd 7/25/03 9:18 AM Page 710

Understanding
J2EE Web
Services

The intersection between the world of Java 2 Enterprise
Edition and the newly forming world of Web services is a

vast expanse of opportunities, possibilities, and potential con-
flicts. This chapter provides a general overview and
addresses the matter of building Web service–enabled J2EE
architectures.

We will begin by looking at how Web services fit into the J2EE
platform. Next we will look at howvarious J2EE components
(servlets, EJBs, and JMS) can participate in a Web-services
exchange. This discussion will be a very general one in which
a high-level architectural perspective of J2EE Web services
will be provided. In the second half of the chapter we will drill
down into the details of J2EE Web services as we explore JSR
109, which is a specification that explains how to incorporate
Web services into a J2EE architecture in a consistent and stan-
dardized way.

Integrating J2EE and Web Services
SOAP is designed to address only the description and basic
delivery of a message. The protocol was intentionally
designed without any details regarding higher-level concerns
like security, session handling, transactions, or guaranteed
delivery.

See Chapter 21 for a discussion of SOAP.Cross-
Reference

2222C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Using servlets in a
Web-services
architecture

Exposing EJBs as
Web services

Using JMS as a
transport layer

Exploring products
and tools for
Web Services

Locating Web-service
components via JNDI

Examining JSR 109

Explaining the
client-side
programming model

Explaining the
server-side
programming model

Reviewing Web-
service deployment
descriptors

✦ ✦ ✦ ✦

n539663 ch22.qxd 7/25/03 9:18 AM Page 711

712 Part VI ✦ Web Services

In order to build truly enterprise-grade Web services you need to combine
lightweight XML Web-service components with robust enterprise components. This
is not always easy. Some components are better suited for this task than others. As
we address various J2EE components throughout this section, you will notice that
they have different strengths and weaknesses within a Web services context. We
will identify those strengths and weaknesses on a component-by-component basis
within each subsection.

Using Java servlets in a Web-services architecture
Java servlets are by far the most popular J2EE technology for building Web-service
applications, for the following reasons:

Web services require accessibility via lightweight, standardized Internet pro-
tocols such as HTTP. Java servlets were designed as a server-side component
model for communicating by means of such protocols.

Web services are typically implemented by means of a request/response-
programming model. Java servlets were designed to support this model.

Applications exposing Web-service interfaces must be able to respond simul-
taneously to multiple requests. The Java-servlet architecture incorporates an
inherently lightweight threading model that easily scales to handle increasing
demand for services.

The majority of J2EE developers are much more proficient with Java servlets
than with some of the more complex components such as EJB or JMS. Thus
developers are generally more inclined to use servlets for implementing Web-
service applications.

The last factor is mitigated to some extent by tools (BEA Workshop, IBM’s WSAD,
Cape Clear Studio, and so forth) that make it fairly easy to expose EJBs or JMS com-
ponents as Web services. Some of the tools that support Web services are listed in
the “Web Services Tools” section. Taking advantage of these tools still presumes that
developers have enough knowledge of these more advanced J2EE components to
create the J2EE business logic that exists behind the XML interface. Consequently,
many teams choose to implement their XML service layers using Java servlet
technology.

As far as the programming model is concerned, having servlets process Web ser-
vice requests is quite simple. A servlet can be set up to do the following:

1. Receive an HTTP request (containing an XML SOAP request in the POST body)
at a particular URL on a given port

2. Parse the SOAP request somewhere within the servlet’s doPost() method
(this often involves passing the SOAP request to a helper component as a Java
string and having the component handle the parsing of the message)

n539663 ch22.qxd 7/25/03 9:18 AM Page 712

713Chapter 22 ✦ Understanding J2EE Web Services

3. Execute the request locally and access one or more business services, or even
other Web services, to fulfill the client’s request

4. Finally, synchronous services package the response as a SOAP message and
return it to the client; asynchronous services might send the response data as
a new SOAP request to a Web service exposed by the client of the original
request or might not send the response at all

One drawback of servlets is that they are somewhat limited in terms of enterprise
capabilities such as security, transactions, legacy-resource integration, and so on.
These tasks are best handled by JMS and/or EJB components. The catch is that
Web-service requests are typically sent over HTTP, but HTTP is not required.
Because servlets are the only components designed to handle HTTP requests, they
will often wrap EJB and JMS components when such enterprise business services
are required.

In short, Java servlets are ideally suited to process Web-service requests and inter-
act with the Web-service client. It is often a good idea to delegate processing to
helper components. In some cases, doing this may even involve accessing the EJB
container and/or a JMS messaging provider.

Exposing EJBs as Web services
Enterprise JavaBeans provide a robust framework for encapsulating business logic
and enterprise services.

EJB technology provides the following key benefits:

Developers can focus upon writing business logic without regard for the
deployment platform or for the semantics of accessing enterprise services.

Enterprise beans are portable across platforms. They are managed and main-
tained by the EJB container that is supplied by the EJB vendor. The con-
tainer’s interfaces are specified; the implementation is left to the vendor.

Deployment information — such as security settings, property values,
database locations, component references, and transaction semantics — are
all declared within an XML file that is read at deployment time.

Because developers are writing business-logic components that run in a stan-
dard container environment, EJB vendors can fine-tune their tools to provide
optimizations for loading and managing beans as well as the resources that
those beans access.

EJBs are capable of smoothly scaling to handle increasing demand.

From a Web-services standpoint, EJBs are most useful for fulfilling complicated
backend business processes requiring transactions and communication with multi-
ple enterprise resources. Currently no EJB is capable of directly handling an HTTP

n539663 ch22.qxd 7/25/03 9:18 AM Page 713

714 Part VI ✦ Web Services

request, so most companies choose to use a servlet to handle the HTTP and SOAP
side of the communication and then delegate the fulfillment of the client’s request
to an EJB whenever enterprise-grade functionality is required.

With the advent of message-driven beans, the door has been opened to allow EJBs
to interact directly with Web services via SOAP.

For a discussion of message-driven beans see Chapter 17.

So EJBs provide the robust enterprise functionality that some Web services may
need. Currently Web services do not often require this level of sophistication and
so using EJB can introduce an unnecessary layer of complexity. This lack of sophis-
tication is largely because of the immaturity of the Web-services specifications and
a lack of standardization for handling higher-level-service semantics such as trans-
actions, sessions, and advanced security concepts like authorization, federation,
privacy and trust. Until these issues are resolved, EJBs will be used less extensively
than servlets for fulfilling Web-service requests.

Using JMS as a transport layer
The Java Message Service (JMS) is a robust enterprise-messaging technology sup-
ported across the industry by companies like IBM, Sun, BEA, and Sonic Software.

JMS defines a standard way to send and receive enterprise messages from the Java
platform. Enterprise messaging requires the following:

✦ Reliable messaging

✦ Security

✦ Transaction support

✦ Guaranteed message delivery

✦ Multiple message-delivery paradigms

SOAP has none of these features. JMS, on the other hand, does.

The SOAP protocol is designed to facilitate a binding to any transport layer. The
most common layers are the Hypertext Transfer Protocol (HTTP) and the Simple
Mail Transport Protocol (SMTP). Although JMS is technically an application-layer
technology and not a lower-level transportation-layer technology, from the perspec-
tive of a SOAP message it looks like the transport layer because JMS shields the
SOAP protocol from the lower-level transportation issues.

When SOAP uses JMS as the transport mechanism, many more options are avail-
able for the messaging architecture. Because JMS can operate on top of message-
oriented middleware products, SOAP messages sent via JMS can be sent using a

Cross-
Reference

n539663 ch22.qxd 7/25/03 9:18 AM Page 714

715Chapter 22 ✦ Understanding J2EE Web Services

point-to-point paradigm, a publish-subscribe paradigm, or any other paradigm sup-
ported by the product. The flexibility of SOAP as a messaging format is one of the
reasons it has gained so much popularity in such a short period of time.

In sum, if you are looking to build asynchronous Web services, JMS and SOAP make
a perfect combination. JMS can provide the transport layer and manage the mes-
saging semantics, while SOAP can be used to encode the payload of the message
itself. So far we have discussed how Web services can be integrated with various
components of the J2EE platform. In the next section, we will discuss some of the
products and tools that support the integration and development of Web services
in a J2EE environment.

Exploring Products and Tools for Web Services
We will discuss the following products and tools in this section:

✦ AXIS

✦ BEA WebLogic

✦ Sun’s offerings

✦ WebSphere

✦ Cape Clear Studio and Cape Connect

AXIS
AXIS is an open source tool that is an ongoing project maintained by the Apache
Software Foundation. Some of the features of Axis 1.1 (release candidate 2 version)
are listed here:

JavaBeans can be automatically serialized or de-serialized.

Availability of support for JMS-based and HTTP-servlet-based transport.

Allows access to EJBs as Web services.

Provides the functionality to generate proxies and skeletons from WSDL
documents.

Inclusion of a SOAP 1.1–compliant engine. Partial support for SOAP 1.2 is
included.

For more information on Axis please visit the Axis Web site at http://ws.apache.
org/axis/.

BEA WebLogic
WebLogic Server 8.1 is includes support for Web service ANT tasks, an implementa-
tion for SAAJ, portable stubs, JMS transport protocol, SOAP 1.2, reliable SOAP mes-
saging, digital signatures and encryption.

n539663 ch22.qxd 7/25/03 9:18 AM Page 715

716 Part VI ✦ Web Services

Sun’s offerings
Sun provides a variety of support for Web services. The foundation of Sun’s offer-
ings includes the Java APIs for XML. The Java Web Services Developer Pack version
1.1 includes support for the following:

✦ Java Server Pages Standard Tag Library (JSTL)

✦ Apache Tomcat 4.1.2 container

✦ Ant Build Tool 1.5.1

✦ SOAP with Attachments API for Java (SAAJ) v1.1.1

✦ Java Architecture for XML Binding (JAXB) v1.0

✦ Java API for XML Registries (JAXR) v1.0.3

✦ Java API for XML Messaging (JAXM) v1.1.1

✦ Java API for XML Processing (JAXP) v1.2.2

✦ Java API for XML-based RPC (JAX-RPC) v1.0.3

✦ Java WSDP Registry Server v1.0_04

✦ Tomcat the Java Architecture for XML Binding

Sun also offers the Sun Open Net Environment (Sun One) Application server 7.0 and
Studio 4.0. Together, the application server and studio offer an environment to
develop enterprise applications and Web services.

IBM’s WebSphere
IBM offers WebSphere Application server version 5. WebSphere supports J2EE 1.3,
XML, WSDL, SOAP and JMS. WebSphere Application server currently provides sup-
port for transforming existing applications into Web service-based applications.
IBM also provides the WebSphere SDK for Web services (WSDK) for creating Web
services with existing Java components. Here is a partial list of components and
features included in the WSDK:

Support for Web services of J2EE (JSR109), SOAP 1.1, UDDI 2.0, WSDL 1.1, JAX-
RPC 1.0, WSDL4J, UDDI4J and EJB 2.0

The WebSphere Application Server-Express, version 5 is included.

The ability to publish stateless-session EJBs and JavaBeans as Web services.

A private registry that supports UDDI 2.

For more information on IBM’s WebSphere, please visit http://www-3.ibm.com/
software/info1/websphere/index.jsp?tab=highlights.

n539663 ch22.qxd 7/25/03 9:18 AM Page 716

717Chapter 22 ✦ Understanding J2EE Web Services

Cape Clear Studio and Cape Connect
Cape Clear Studio allows you to build both client and server interfaces to new and
pre-existing business logic. It also allows developers to develop applications that
reference external WSDL documents and allows you to expose their interfaces.
Cape Connect is a server that allows you to deploy, test, and host Web services.
Some of the key benefits of Cape Clear products are as follows:

XML Schema support for WSDL

Point and click business integration.

The ability to expose J2EE, MQSeries, CORBA, database, and COBOL systems
as Web services without changing your existing code.

Fast implementation and modular architecture

In this section we introduced various products and tools that facilitate the integra-
tion of J2EE and Web services. In the next section, we will take a look at the overall
architectural aspects of integrating Web services and J2EE.

JSR 109 — J2EE Web Services
Web Services for J2EE (Java Specification Request 109) defines an architectural rela-
tionship of technologies for the J2EE platform that is designed to facilitate the use
of Web services. The specification defines client- and server-side programming
models. It also outlines standard procedures for describing Web service–enabled
J2EE components and ultimately how to deploy those components based upon
declarative statements embedded in deployment descriptors.

We will begin our study of JSR 109 with a brief overview of the specifications goals
and a high-level look at the overall architecture of J2EE Web services. Once this
foundation is laid we will examine the client-side programming model, the server-
side programming model, and finally the deployment of J2EE Web services.

Before diving into the gory details, it is helpful to begin with an understanding of
the goals that the specification’s authors had when crafting JSR 109. Here are some
of the main objectives of JSR 109, according to the specification:

Providing a basic model for defining and deploying a Web service onto a J2EE
application server

Using current Web-service standards like WSDL and SOAP as a foundation

Defining the interaction between the J2EE platform roles and the roles that are
specific to JSR 109

n539663 ch22.qxd 7/25/03 9:18 AM Page 717

718 Part VI ✦ Web Services

Taking advantage of existing J2EE technology

Specifying the functions that must be provided by the J2EE application
vendors

Making sure that the various vendor implementations of the specification
interoperate

According to the specification, a Web service can be as simple as a Java class run-
ning in the Web container. A more sophisticated example is an implementation of a
stateless EJB that lives in the EJB container. Figure 22-1 illustrates the typical con-
tents of the Web, application, applet, and EJB containers.

Figure 22-1: The J2EE platform supports Web services, and various APIs fit into the
J2EE architecture.

Applet container

Client container

JAF

JDBC
RM

M
/OP

Java
Mail

JAX-RPC
JN

DI

J2EE server core

JSP

Port

Servlet

JAF

JDBC
RM

M
/OP

Java
Mail

JTA
JN

DI
JAX-RPC

J2EE server core

Web container

EJB

Port

JAF

JDBC
RM

M
/OP

Java
Mail

JTA
JN

DI
JAX-RPC

J2EE server core

EJB container

HTTP/
SSL

RMMOP

RMMOP

n539663 ch22.qxd 7/25/03 9:18 AM Page 718

719Chapter 22 ✦ Understanding J2EE Web Services

Figure 22-1also shows how the Web service specific APIs fit into the J2EE 1.4 archi-
tecture. The J2EE 1.4 platform architecture provides an excellent environment for
developing, accessing and providing Web services. J2EE 1.4 includes the Java API
for XML-based RPC (JAX-RPC) to develop SOAP based Web service clients. It also
includes SOAP with attachments API for Java (SAAJ) for creating and consuming
messages according to the SOAP 1.1 and the SOAP with Attachments note. J2EE 1.4
provides the Java API for XML Registries for UDDI manipulation and the Web
Services for J2EE specifications (JSR 109). As in earlier versions of J2EE, the rest of
the Java APIs for XML processing are included.

The client-side programming model
The client programming indicated in the Web services for J2EE specification dis-
cusses the use of the JAX-RPC client-programming model in the context of a J2EE
environment. In this model, a client should interact with a Web service through
methods accessible via a service-endpoint interface.

So what actually happens in this model? A service implements the service interface
by means of a client using JNDI lookup. The service generates a stub or proxy that
functions as an instance of the Web service. An instance of a Web service is referred
to as a port.

Finding a service
The Java Naming and Directory Interface (JNDI) is used to look up Web services
according to the JSR 109 specifications. The developer creates a JNDI name that is
used as a service reference and used in the deployment descriptor. In the following
code fragment the name of the service reference is ReservationService. The job
of the container is to make sure that the location specified in the JNDI namespace
has an implementation of the Service interface bound to it.

InitialContext ic = new InitialContext();
Service res = (Service)ic.lookup

(“java:comp/env/service/ReservationService”);

The following code fragment doesn’t require the container to do the same work
that is required by the preceding fragment. It provides access to an object that
implements a Generated Service interface. In our case the interface is
ReservationService.

InitialContent ic = new InitialContext();
ReservationService res = (ReservationService)ic.lookup

(“java:comp/env/service/ReservationService”);

See Chapter 11 for a discussion of JNDI.Cross-
Reference

n539663 ch22.qxd 7/25/03 9:18 AM Page 719

720 Part VI ✦ Web Services

The Service interface
The Service interface provides us with what we need in order to bind to the ser-
vice. It represents a Web Services Description Language (WSDL) document that has
been deployed. Recall that the interface supplies the client with a dynamic proxy, a
stub, or a Dynamic Invocation Interface (DII) for a port. The Service interface has
many methods to provide clients with a variety of features.. The methods available
for the Service interface are as follows:

Call createCall()
Call createCall(Qname portName)
Call createCall(Qname portName, String operationName)
Call createCall(Qname portName, Qname operationName)
Call[] getCalls(Qname portName)

HandlerRegistry getHandlerRegistry()
TypeMappingRegistry getTypeMappingRegistry()

Iterator getPorts()
Remote getPort(Class SEI)
Remote getPort(Qname port Class SEI)

QName getServiceName()

URL getWSDLDocumentLocation()

See Chapter 21 for a discussion of WSDL.

If a client wants dynamic port access and to obtain a Call object DII, he or she can
use the following methods:

Call createCall()
Call createCall(Qname portName)
Call createCall(Qname portName, String operationName)
Call createCall(Qname portName, Qname operationName)
Call[] getCalls(Qname portName)

In compliance with JSR 109, the container has to give support for the methods
found in the Generated Service interface by providing one or more dynamic
proxies or static stubs. The container must make sure that it can handle an environ-
ment in which ports cannot be determined at the time of development. It must also
be able to handle multiple WSDL ports with the same invoking information. In order
for the client to actually receive a stub or proxy, it can access the following meth-
ods of the Service interface:

java.rmi.Remote getPort(java.lang.class
serviceEndpointInterface) throws ServiceException;

java.rmi.Remote getPort(Qname portName, Class
serviceEndpointInterface) throws ServiceException;

Cross-
Reference

n539663 ch22.qxd 7/25/03 9:18 AM Page 720

721Chapter 22 ✦ Understanding J2EE Web Services

The Service interface has methods that behave differently depending on their
deployment configurations. Table 22-1 is from the specifications. It shows some of
the differences between using full, partial, and no WSDL.

Table 22-2
Service-interface method behavior

Method Full Partial None

Call createCall() Normal Normal Normal

Call createCall(Qname portName) Normal Unspecified Unspecified

Call createCall(Qname portName, Normal Unspecified Unspecified
String operationName)

Call createCall(Qname portName, Normal Unspecified Unspecified
Qname operationName)

Call [] getCalls(Qname portName) Normal Unspecified Unspecified

HandlerRegistry getHandlerRegistry() Exception* Exception* Exception*

Remote getPort(Class SEI) Normal Normal Unspecified

Remote getPort(Qname port Class SEI) Normal Unspecified Unspecified

Iterator getPorts() Bound ports Bound ports Unspecified

QName getServiceName() Bound Bound Unspecified
service service
name name

TypeMappingRegistry Exception* Exception* Exception*
getTypeMappingRegistry()

URL getWSDLDocumentLocation() Bound Bound Unspecified
WSDL WSDL
location location

The server-side programming model
Currently Web services for J2EE gives support for services that run in the Web con-
tainer and in the EJB container. If you want to use Web services in the Web con-
tainer you can use the JAX-RPC servlet-container-based Java-class-programming
model. In the JAX-RPC servlet-container-based model, a JAX-RPC service endpoint
is used and the service implementation is a Java class in the Web container. EJB
requires the stateless-session EJB programming model. In the EJB model, an EJB
service endpoint is used and the service implementation is a stateless session bean
in the EJB container. The two models supply support for port components — or ports
for short — which provide the server view of a Web service. Here are some of the
things that port components do:

n539663 ch22.qxd 7/25/03 9:18 AM Page 721

722 Part VI ✦ Web Services

✦ Take advantage of the current J2EE-container offerings as well as using popu-
lar programming models

✦ Ensure a set plan for growing into more complex runtime service requirements

✦ Present a common client view by hiding the details of how the service is actu-
ally implemented

✦ Ensure a Web-services programming model that is portable

Now let’s take a look at the following important sections that are defined by the Port:

✦ WSDL

✦ Service-implementation bean

✦ EJB container

✦ Web container

WSDL
As you know, WSDL actually describes the service and includes binding informa-
tion, providing a platform and language-neutral declaration of the service interface
and how to invoke the service. It essentially serves as the contract between clients
and the service. So long as the service upholds the contract by not changing the
interface, clients can access the service without regard for changes that may have
been made to the service implementation.

Service Endpoint interface
The Service Endpoint interface defines the methods of a Web service. The meth-
ods are implemented by the service-implementation bean and are accessible to var-
ious clients.

Service-implementation bean
The service-implementation bean is best described as a Java class that describes
the contract a port has for a container. It is similar to the Service Endpoint inter-
face (SEI) but it doesn’t have to implement the SEI. The service-implementation
bean also handles the interaction between the services provided by the container
and the actual business logic. The service-implementation bean can be imple-
mented by a JAX-RPC service endpoint or a stateless session EJB.

EJB container
An EJB container is a Java environment (either part of the main JVM, or a separate
JVM instance) designed to manage enterprise beans and provide them with man-
aged access to enterprise resources. You will only have an EJB container if your
architecture includes Enterprise JavaBeans.

n539663 ch22.qxd 7/25/03 9:18 AM Page 722

723Chapter 22 ✦ Understanding J2EE Web Services

Here is a list of the requirements for establishing a service-implementation bean
(SIB) as a stateless session EJB:

A default public constructor is required.

All the method signatures of the Service Endpoint interface must be
implemented.

None of the business methods can be final or static and have to be declared
as public.

Any state relating to the client cannot be saved throughout method calls; an
SIB must be a stateless object.

The class cannot define the finalize() method and the class has to be
declared as public.

An SIB also has to implement the ejbRemove() and ejbCreate() methods.
Empty implementations can be used as well. Following is an example of an
EJB-service-endpoint implementation.

If you plan on exposing an existing EJB, the exposed business methods of the
EJB must meet the requirements for SIB (discussed earlier). According to the speci-
fications, the SEI methods have to be a subset of the remote-interface methods of
the EJB.

The JAX-RPC specification for Java-to-WSDL mapping defines requirements that the
Service Endpoint interface must adhere to. The SEI methods have transaction
attributes that cannot include Mandatory.

Lastly, the port in the Web-services deployment descriptor needs an ejb-link to
your EJB and the entire Web service has to be packaged as defined in Section 5.4 of
the Web services for J2EE specifications. For more detailed coverage of implement-
ing EJBs and Web services please refer to Chapter 15.

The Web container
A J2EE Web container is similar to an EJB container in that it is a Java environment
(part of the main JVM, or a separate instance) designed to manage Java components.
J2EE Web containers do not manage EJBs. Instead, they manage the lifecycles of
servlets and JSPs. You will only have a Web container if your architecture includes
servlets, JSPs, or both.

The JAX-RPC service endpoint is used for Web services that run within the Web
container. The requirements are very similar to those of the EJB container. Here is
the only major difference that the specifications note in the requirements:

n539663 ch22.qxd 7/25/03 9:18 AM Page 723

724 Part VI ✦ Web Services

“The Service Implementation Bean may implement the Service Endpoint
Interface as defined by the JAX-RPC Servlet model. The bean must implement
all the method signatures of the SEI. In addition, a Service Implementation
Bean may be implemented that does not implement the SEI. This additional
requirement provides the same SEI implementation flexibility as provided by
EJB service endpoints. The business methods of the bean must be public and
must not be static. If the Service Implementation Bean does not implement
the SEI, the business methods must not be final. The Service Implementation
Bean may implement other methods in addition to those defined by the SEI,
but only the SEI methods are exposed to the client.”(Java Specification
Request 109, section 5.3.2.2).”

The following is an example of a Service interface:

import java.rmi.Remote:
import.java.rmi.RemoteException;
public interface FlightName extends Remote {

public String sendName() throws RemoteException;
}

An optional but important part of the Web-container environment is the ability to
implement the ServiceLifeCycle interface. The ServiceLifeCycle interface
informs the service-implementation bean when there are changes in its state. If
ServiceLifeCycle is implemented, the container has to call the init method
before making requests. If the container wants to delete an instance of the bean
from the working set, it must call the destroy method. The following example is a
JAX-RPC servlet-endpoint implementation of the FlightName interface:

import java.rmi.*;
import javax.xml.rpc.*;
import javax.xml.rpc.server*;

public class FlightNameService implements FlightName,
ServiceLifecycle {

public void init(Object context) throws JAXRPCException {}

public String sendName()throws RemoteException {

return (“DFWtoLAX”);

}
public void destroy(){}
}

So far we have discussed the server and client programming models. In the next
section we will discuss the important topic of Web-service deployment descriptors.

n539663 ch22.qxd 7/25/03 9:18 AM Page 724

725Chapter 22 ✦ Understanding J2EE Web Services

Web-service deployment descriptors
The Web-services deployment descriptor describes the Web services that will be
deployed in the container. It may include the following information:

✦ Port name — A unique port name needs to be created for use in the
<port-component-name> element.

✦ Bean class — The <service-impl-bean> element holds the implementation
information. The bean identified here must refer to a class that implements
methods of the Service Endpoint interface. As you know, the JAX-RPC ser-
vice endpoint can be implemented for Web (servlet) applications and the
stateless session bean for EJB.

✦ Service Endpoint interface — The class name of the Service Endpoint
interface is specified here in the <service-endpoint-interface> element.

✦ WSDL definition for port — The <wsdl-file> element contains the location
of the WSDL description.

✦ QName for port — Allows the QName for each individual <wsdl-port> to be
described.

✦ JAX-RPC mapping — This is where the association between the WSDL definition
and the interfaces is specified. The element used is <jaxrpc-mapping-file>.

✦ Handler — The handler element enables you to specify optional handlers.

✦ Servlet mapping — For a JAX-RPC service endpoint, a servlet mapping may be
specified in the deployment descriptor.

The Web Services for J2EE v1 specifications provide a DTD for the Web-services
deployment descriptor that can help explain the descriptor in detail. For more
information, download JSR 109 at ftp://www-126.ibm.com/pub/jsr109/
spec/1.0/websvcs-1_0-fr.pdf. The DTD is found in Section 7.1.5.

Summary
We began this chapter by observing how various J2EE components can participate
in a Web-services exchange. We showed that HTTP servlets are a natural choice for
exposing Web-service interfaces because they already understand HTTP, incorpo-
rate a request-response programming model, scale easily and smoothly to handle an
increasing load, and enjoy the widest support among the development community in
terms of skills, tools, and best practices. We also discussed JMS as an excellent Web
service–enabling component. The enterprise messaging aspects of JMS (guaranteed
delivery, message delivery models like publish-subscribe, and the inherent support
for asynchronous communication) make it a particularly compelling choice if you

n539663 ch22.qxd 7/25/03 9:18 AM Page 725

726 Part VI ✦ Web Services

need to support asynchronous service exchanges and/or adopt a message-delivery
model. Finally, we introduced the idea of directly exposing EJBs as Web-service com-
ponents. We identified the strength that EJBs provide with respect to accessing
enterprise resources, but also recognized the lack of an HTTP-handling mechanism,
and the increased complexity that EJBs introduce into a J2EE architecture. We also
discussed various tools that facilitate the integration of Web services and J2EE.

In this chapter we also introduced one of the first significant milestones in the for-
mation of J2EE Web services, JSR 109, the first significant attempt by the industry to
specify how to incorporate Web services into a J2EE architecture in a standardized
way. We identified the goals of JSR 109, as well as the various programming models,
significant components, and architectural concepts defined by the specification.

The Web-services landscape is in a state of constant transition. The J2EE world,
although dynamic, is much more mature, and thus not as fluid. In this chapter we
have identified the current way in which Web services fit into the J2EE platform.
While this is an accurate picture of how J2EE systems currently participate in a
Web-services exchange, the picture is likely to change in the following months and
years as Web services begin to mature.

✦ ✦ ✦

n539663 ch22.qxd 7/25/03 9:18 AM Page 726

Patterns
✦ ✦ ✦ ✦

In This Part

Chapter 23
Reviewing
Presentation-Tier
Patterns

Chapter 24
Working with
Service-Tier Patterns

Chapter 25
Using Data-Tier
Patterns

✦ ✦ ✦ ✦

P A R T

VIIVII

o539663 PP07.qxd 7/25/03 9:18 AM Page 727

o539663 PP07.qxd 7/25/03 9:18 AM Page 728

Reviewing
Presentation-
Tier Patterns

This chapter and the subsequent ones introduce you to
design patterns that can be used for developing J2EE

applications. Design patterns are efficient solutions for recur-
ring problems. Enterprise applications designed with design
patterns provide a common vocabulary to the team members,
and they help to leverage a proven solution by constraining
the solution space. We are going to start with a definition of
the word pattern. We will then review when patterns were
used first. Finally, we will define our model of the Web and
apply patterns to the different components of the Web model
that we propose.

Providing an Overview of Patterns
According to The American Heritage Dictionary, a pattern is “A
plan, diagram, or model to be followed in making things.”
Leonard Da Vinci’s Notebook captures some of the patterns
used in his time for civil engineering. The inspiration for soft-
ware design patterns stems from the documentation of archi-
tectural patterns used in Civil Engineering and Architecture in
the classic work by Christopher Alexander, A Pattern
Language: Towns, Buildings, Construction (Alexander, Ishikawa,
and Silverstein 1977, Oxford Press). This book strongly influ-
enced the book Design Patterns Elements of Reusable Object-
Oriented Software (Erich Gamma, Richard Helm, Ralph
Johnson, John Vlissides, 1995, Addison-Wesley), by the so-
called Gang of Four (GOF). The Gang of Four (Erich Gamma,
Richard Helm, Ralph Johnson, and John Vlissides) are interna-
tionally recognized experts in the field of Object Oriented
Technology. Dr. John Vlissides currently serves as the series
editor for The Software Pattern Series (Addison-Wesley
publications).

2323C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Providing an
overview of patterns

Explaining the
session pattern

Understanding the
router pattern

Reviewing the model-
view-controller
pattern

Using the front-
controller pattern

Working with the
view-helper pattern

Using the composite-
view pattern

Explaining the
intercepting-filter
pattern

✦ ✦ ✦ ✦

p539663 ch23.qxd 7/25/03 9:18 AM Page 729

730 Part VII ✦ Patterns

As we use the concept of patterns in designing software systems hence the name
design patterns. A design pattern describes a problem, which occurs consistently
in the domain of the problem and describes the core solution of the problem
enabling the reuse of this solution across similar problems encountered in the
domain without reinventing the wheel.

There are many books on design patterns including finitely countable for Java
Programming Language. Different authors have classified design patterns according
to the intent of the pattern. We are going to classify design patterns based on the
simplified view of the Web-tier model as depicted in Figure 23-1. As you can see, this
figure simplifies the overall Web tier into three tiers.

Figure 23-1: Simplified Web-tier model

The terms pattern and design pattern will be used interchangeably throughout
this book.

Presentation-tier patterns represent solutions to the most common problems in the
presentation tier of a Web model. Therefore, they can be used as blueprints for
solving those problems. Some of the common presentation-tier problems are con-
trolling code in multiple views, exposing data structures in presentation tier
directly to service tier, allowing duplicate submission of forms and exposing sensi-
tive resources to direct client access.

We will present the following patterns in this chapter:

✦ Session pattern — Helps in the creation of an association of state between
client-server systems communication.

✦ Router pattern — Decouples multiple information sources from the informa-
tion target.

✦ Model-view-controller pattern — Helps in breaking the enterprise system into
three logical parts, namely model, view, and controller, for maintainability and
extensibility.

✦ Front-controller pattern — Helps in coordinating access to system services,
content views and navigation views across multiple requests in a centralized
or decentralized manner.

✦ View-helper pattern — Helps in designing systems in which the presentation
content must process dynamic business data and in which the intermingling
of presentation and business processing must be avoided.

Note

Presentation Tier Service Tier Data Tier

p539663 ch23.qxd 7/25/03 9:18 AM Page 730

731Chapter 23 ✦ Reviewing Presentation-Tier Patterns

✦ Composite-view pattern — Helps enterprise applications containing Web
pages, which gather data from numerous sources and use multiple views that
map to a single Web page by providing multiple atomic sub-views where each
sub-view can be included dynamically into the whole Web page and the page
layout can be maintained independently of the content.

✦ Intercepting-filter pattern — Provides a mechanism for intercepting requests
and responses and does pre-processing and post-processing actions before
passing them to the appropriate handler.

The patterns covered in this chapter and the next two are organized into the follow-
ing sections:

✦ Forces — Describes the considerations you need to take into account while
documenting the pattern. These considerations include environmental, lin-
guistic, organizational, and platform issues. Recognizing forces that cause the
problem is an extremely complex process.

✦ Implementation — Deals with the solution to the problem in context.

✦ Strategies — Describes the various collaborations that can be implemented in
using the pattern apart from the regular way.

✦ Results — Includes any issues that still need to be resolved after the pattern is
applied.

✦ Sample code — Describes through a skeleton sample code of how to imple-
ment the pattern or sometimes the class diagram is presented on how the pat-
tern can be modeled or designed.

✦ Related patterns — Describes other patterns that are related to this pattern.
Sometimes you can use a combination of patterns to resolve a recurring prob-
lem. You might even form a new pattern.

Having provided the template on how we are going to catalog the patterns in this
and subsequent chapters, we are going to present next the patterns that can be
used in the presentation tier. Sessions are an important concept in any client-server
enterprise system. We continue with the discussion of the session pattern.

Explaining the Session Pattern
Most enterprise client-server and peer-to-peer (P2P) systems need to differentiate
between clients and requests. This distinction becomes more challenging when the
client-server is a distributed system. The session pattern enables you to associate
state between the server and client for enterprise client-server and P2P systems
using the Web as their infrastructure.

p539663 ch23.qxd 7/25/03 9:18 AM Page 731

732 Part VII ✦ Patterns

The session pattern also maintains an association of state between client-server
communications or requests.

Forces
The following forces encourage the use of the session pattern:

If multiple clients are updating the information on the server, the server needs
a way to track and to service different client requests.

Updates to information by different clients can create a state of flux on the
server, and results in the server making wrong updates to different client
information.

The need to distinguish clients in a multi-user environment

Client-server communications are transactional.

The persistence of data between client-server communications

Implementation
The session pattern provides a means by which the server can differentiate among
different clients. In a transaction, this pattern helps the server track information
about the client; for performance improvement on the server this pattern can
cache the user information.

Figures 23-2 and 23-3 depict the structure of the session pattern. Figure 23-2 depicts
a client-managed session, and Figure 23-3 depicts a server-managed session.

Figure 23-2: Client-maintained session

Server

Client

session

p539663 ch23.qxd 7/25/03 9:18 AM Page 732

733Chapter 23 ✦ Reviewing Presentation-Tier Patterns

Figure 23-3: Server-managed session

Figure 23-2 represents how clients track their session with the server and Figure
23-3 is the opposite and it represents how servers manage sessions across from
multiple clients.

Figure 23-4 shows the sequence diagram for the interaction between different com-
ponents involved in a session pattern.

Figure 23-4: Sequence diagram for a session pattern

ClientComponent Server

1. Logs in

2. Creates session

3. Updates information

Maintains session

Server

Client

session

p539663 ch23.qxd 7/25/03 9:18 AM Page 733

734 Part VII ✦ Patterns

ClientComponent
ClientComponent is the client piece of client-server architecture; it can be an
HTML document, a JavaServer page (JSP), or a servlet presenting information to
the user, and the user can use it to update any information to the server.

Server
The server can be a Web server or an application server that services the requests
of a client and maintains identification among different clients. It is the server part
of the client-server architecture.

Strategies
According to the system requirements, the session pattern can be implemented as
a stateful or stateless communication.

Stateful communication
The best example of stateful communication is the File Transfer Protocol (FTP) pro-
gram, in which a socket connection is set up between the FTP client and the FTP
server. Not every step in this transaction is sequential, and the server is aware of
the client calls.

Session patterns and stateful communication occur when multiple interactions
between client and server take place and information from the client is updated on
the server. You can implement a session by setting an ID on the client browser or
the machine. This ID is called a session cookie and it is sent across to the server
with each client request. The cookie allows the server to identify the client for
which it is fulfilling the request. An example of this procedure is Hotmail, where
cookies are used for maintaining user sessions with the server. Banking sites are
another good example.

Stateful communication can be implemented through session identification and rep-
resentation. For session identification the server needs to maintain the state of the
session over the lifetime of the application. For example, if somebody accesses
Yahoo mail, session identification takes place through the user-provided login id.
Session representation represents the state of the application. For example, the
user might be in the state of a shopping cart.

Stateless communication
In stateless communication the server does not know which client it serviced. The
HTTP protocol of the Web is an example of stateless communication. This imple-
mentation is good when a Web site is made of static pages and session tracking
need not be implemented.

p539663 ch23.qxd 7/25/03 9:18 AM Page 734

735Chapter 23 ✦ Reviewing Presentation-Tier Patterns

Results
The session pattern enables the following consequences:

The important advantage is servicing requests and maintaining states of the
application.

If the client identity is established, the Session can assume the role of manag-
ing accountability and prioritize any access to the server side access need to
process the request of the client.

The main drawback of this pattern is an increase in the server workload. This
workload can arise from different cases, the most common being validation of
each client for each request. This kind of scenario is common in Web services
in which the user accesses a portal and is connected to another site to track
his or her 401(K) options, for example.

Session pattern — UML diagram and sample code
The UML class diagram shown in Figure 23-5 shows how a session can be used to
create and destroy sessions. Notice how SessionHandler can create either zero or
more sessions’ objects of the session class.

Figure 23-5: Class diagram for
implementing the session pattern

Related patterns
No related patterns exist for the session pattern.

SessionHandler

-sessions

+createSession() : void
+deleteSession(in id : long) : void

Session

-sessionid : long

p539663 ch23.qxd 7/25/03 9:18 AM Page 735

736 Part VII ✦ Patterns

With the session pattern we have seen how we can provide state between client
and server requests. Next, we move to the router pattern whose functionality is
similar to the router in a network switch.

Understanding the Router Pattern
A router pattern helps to decouple multiple information sources from their informa-
tion targets. A router pattern is used much like the network router that routes traf-
fic based on the message and its intended recipient.

Forces
The following forces encourage the use of the router pattern:

Multiple sources of information exist for an enterprise application.

Multiple destinations have to receive information from these sources.

Implementation
The router pattern incorporates logic to route requests from their sources to the
appropriate destinations. The function of the router pattern is similar to that of the
router in the network traffic. The router usually captures the mapping between dif-
ferent sources and destination. Based on the incoming message from a source, the
router directs it to the appropriate destination. The router pattern, rather than the
source, can provide methods with which to add and remove different destinations.

Multiple sources can have different destinations.

Figure 23-6 depicts the structure of the router pattern. The router pattern is used to
process the client requests. Based on what needs to be collected from which data
storage source, this pattern routes requests to the appropriate type of data storage.

Figure 23-7 shows the sequence diagram for the interaction among different compo-
nents involved in a router pattern.

ClientComponent
ClientComponent can be any HTML, JSP, or servlet requesting information from
two different data sources.

Note

p539663 ch23.qxd 7/25/03 9:18 AM Page 736

737Chapter 23 ✦ Reviewing Presentation-Tier Patterns

Figure 23-6: Implementing the router pattern

Figure 23-7: Sequence diagram for the router pattern

Router
Based on client requests the router has logic built in to route the requests to both
the Oracle and the Lightweight Directory Access Protocol (LDAP) data stores and
present the information back to the client.

ClientComponent Router OracleDataStore

1. Requests

4. Response

LDAPDataSource

2. Oracle data

3. LDAP data

Client RouterRequests

Response

OracleDataStore

LDAPDataStore

Routes

Routes

p539663 ch23.qxd 7/25/03 9:18 AM Page 737

738 Part VII ✦ Patterns

OracleDataStore
OracleDataStore has information stored in an Oracle database. It also has a busi-
ness component that processes router requests and sends back the information.

LDAPDataStore
LDAPDataStore has information stored in the LDAP database. It also has a business
component that processes router requests and sends back the information.

Strategies
The router can track the sources and their destinations through a mapping.
Methods can be provided to add destinations and delete destinations rather than
registering the destinations with the source. Based on the bytes of information
passed, the throughput of the information should be handled as fast as possible. If
throughput is not handled fast, the application slows down. The router should have
the intelligence built in to drop target if failure in throughput occurs. This guaran-
tees the quality of service (QOS) for other destinations that do not have this
problem.

A variation of the router pattern involves making the mapping between arbitrary
key and destinations. In a normal implementation of the router pattern for any
source one route always exists. By registering an arbitrary key with the router, it is
possible to have more than one route for a source.

Results
The router pattern enables the following consequences:

Source and destination can be decoupled, enabling the input to know the
router and not the destination.

Trouble in one channel does not affect the other channels in the system.

The router can associate a new thread with a channel.

Client logic is simplified because of the message-distribution role assumed by
the router.

Reliability in messaging is enhanced.

The router pattern — sample code
The skeleton code in Listing 23-1 shows how to implement a router pattern.

p539663 ch23.qxd 7/25/03 9:18 AM Page 738

739Chapter 23 ✦ Reviewing Presentation-Tier Patterns

Listing 23-1: Code for the router pattern

public class RouterPattern implements OutputChannel{
//constructor

public RouterPattern(){
}
public synchronized void deliverMessage(Message msg){
}
//can store a internal HashMap to store these destinations.

public void addRoute(InputChannel source, OutputChannel[]
destinations){
}

}

Listing 23-2 includes the code for the interface implemented by the Router class.

Listing 23-2: Code for OutputChannel

public class OutputChannel extends Remote{
public void deliverMessage(Message msg);

}

Listing 23-3 includes the code for the InputChannel that is used by the Message
class.

Listing 23-3: Code for InputChannel

public interface InputChannel extends Serializable{;}

As shown in Listing 23-4, the Message class creates the instance of the
InputChannel and returns it whenever the getSource method is called.

Listing 23-4: Code for Message

//as EJB 2.0 requires data store classes to implement
serializable interface
public class Message implements Serializable{

Continued

p539663 ch23.qxd 7/25/03 9:18 AM Page 739

740 Part VII ✦ Patterns

Listing 23-4 (continued)

private InputChannel src;
private String message;
//constructor

public Message(InputChannel source, String msg){
//set the InputChannel and message attributes here.
}
//method to return the source.
public InputChannel getSource(){

return src;
}
//method to return the msg
public String getMessage(){

return message;
}

}

Related patterns
Patterns that can be used in combination with this pattern include the following:

✦ Mediator

✦ Observer

✦ WorkerThread

More information about the patterns is available in Applied Java Patterns by
Stephen Stelting (Olav Maassen, 2002, PH PTR).

The next section describes the model-view-controller pattern, which is also known
as the Web2 pattern. This pattern is primarily useful for designing client-server sys-
tems as separate components.

Reviewing the Model-View-Controller Pattern
A model-view controller (MVC) enables an enterprise system to be broken into
these three logical parts:

✦ Model

✦ View

✦ Controller

p539663 ch23.qxd 7/25/03 9:18 AM Page 740

741Chapter 23 ✦ Reviewing Presentation-Tier Patterns

This scheme greatly enhances maintenance, code extensibility, scalability, and
modifiability of enterprise systems. Interweaving presentation, business logic, and
data access is better for a single type of client, but given the way the Internet has
evolved, Figure 23-8 suggests the requirements for developing an enterprise system
nowadays.

Figure 23-8: Example of the model-view-controller pattern

Nowadays we have to develop applications for different lines of users, such as Web
browsers, Wireless Devices and Web services. Having a single monolithic system do
all the processing is cumbersome, so the MVC approach is called for.

An enterprise system can be broken into three logical parts, model, view, and con-
troller, for maintainability and extensibility. The software team doing design, imple-
mentation, and maintenance will be comprised of individuals with different skills.

Forces
The following forces encourage the use of the model-view-controller pattern:

Components or subsystems can be viewed in different ways, for example as
HTML, as WML, as XML, and so on.

Multiple sources can invoke different behavior on the same component.

The behavior of the component changes with the use of the component.

Representation of the component changes with the use of the component.

Client

Enterprise application

Internet
access

p539663 ch23.qxd 7/25/03 9:18 AM Page 741

742 Part VII ✦ Patterns

The component can be reused with minimum recoding.

Supporting multiple views and interactions should not affect components that
process and provide the core functions in the enterprise system.

Implementation
MVC provides decoupling of business components from the view or presentation
and the controller, which uses the business component. Different presentation mod-
els can use the same underlying data model so that multiple clients like Hypertext
Markup Language (HTML), Wireless Markup Language (WML), and the eXtensible
Markup Language (XML) can all be implemented and easily maintained.

Figure 23-9 depicts the structure of the model-view-controller pattern. The
Controller component provides different views based on what data needs to be
shown.

Figure 23-9: Example of model-view-controller pattern

Figure 23-10 shows the sequence diagram for the interaction among different com-
ponents involved in an MVC pattern.

View
The view displays the model. Push or pull technology can be used with the view to
show the updated model. In the push model, as in the delegation model of AWT
(Abstract Window Toolkit), the view can register with the model and the model will
notify the view whenever there is an update. In the pull model, the view can get
updates from the model whenever necessary.

34% Human Resources 13% General
Government

27% Current Military
20% Past Military

View

Controller

Model

p539663 ch23.qxd 7/25/03 9:18 AM Page 742

743Chapter 23 ✦ Reviewing Presentation-Tier Patterns

Figure 23-10: Sequence diagram for the MVC pattern

Controller
The controller manages the flow between the view and the model. Based on the
action in the view the controller translates it to the action that is to be performed
by the model. For example let us consider a Web application form where a partici-
pant of the Web application is updating his personal information. Hitting an update
button on participant information can cause the controller to notify the participant
model to fetch the data for the database.

Model
The model represents both the business logic and the data used to represent the
view. Business logic manipulates data and the view queries the model in order to
display information to the user.

Strategies
The view can be implemented using HTML, JavaServer Pages (JSP), or servlets. The
controller can be a servlet that translates the requests from the view to the model.
The model can be split into two components: a business-logic component, often
implemented as an EJB, and data represented in a database like Oracle.

Results
The MVC pattern enables the following consequences:

View Controller Model

View selection

LDAPDataSource

State change

State query

Change notification

User responses

p539663 ch23.qxd 7/25/03 9:18 AM Page 743

744 Part VII ✦ Patterns

Separating the various components of the application into layers enables the
reuse of the model components across applications. Teams can also work
independently in completing the layer and integrate it later. The MVC pattern
works well with Xtreme programming. Xtreme programming is a software
methodology that is applied in projects involving small teams. One of the
main principles of this methodology is splitting the team on a role-based activ-
ity. Sub-teams then interact with each other in a way that all the members of
the development team have a hands-on experience with the different parts of
the application. In a way, this is effective because all the members of the team
own the application. It was developed to provide collaboration within the
team.

Any new client can be easily wired into the architecture, as only the view and
some logic for the controller need be written.

The complexity of the design and architecture increase with the additional
layers.

The model-view-controller pattern — sample code
The skeleton code in Listing 23-5 shows how a controller for a MVC pattern can be
implemented.

Listing 23-5: Code for the controller

public class Controller extends HttpServlet{
Map actionClasses = new HashMap();
Map routingClasses = new HashMap();
static{
//wire code for mapping action classes for example
actionClasses.put(“Login” ,”LoginServlet”);
// wire code for the routing class for example
routingClasses.put(“ChangePassword”,”ChangePasswordSpecificActions”);

}
public void init() throws ServletException{
}
public void service(HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {
String pgActions = actionClasses.get(“Login”);
//invoke the logic for model class as below.
Class actionClass = Class.forName(pgActions);
//note that the LoginServlet implements a common interface.
actionClass.process(request,response);
}

}

p539663 ch23.qxd 7/25/03 9:18 AM Page 744

745Chapter 23 ✦ Reviewing Presentation-Tier Patterns

Listing 23-6 provides the code for the model part of the model-view-controller
pattern.

Listing 23-6: Code for the model

public class LoginServlet implements RequestHandler{
//default constructor
public LoginServlet(){
}
//method in the RequestHandler interface
public void process(HttpRequest request, HttpResponse response){
//write processing code here.
}

}

In the sample code in Listing 23-6, look at how LoginServlet is called. LoginServlet
implements an interface, which is a strategy pattern. The Controller servlet func-
tions as the gateway for the application forwarding requests to the needed models
from the view, which is a JSP page; the code is not shown here. (More details on the
strategy pattern can be found in the book Design Patterns Elements of Reusable Object-
Oriented Software by Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides,
1995, Addison-Wesley.)

Listing 23-7 provides the method for the Request Handler that is implemented by
the Model component in Listing 23-6.

Listing 23-7: Code for the interface

public interface RequestHandler{
public void process(HttpRequest request, HttpResponse response){
}

}

Related patterns
Patterns that can be used in combination with this pattern include the following:

✦ Observer

✦ Strategy

Please refer to the Design Patterns by GOF for more details.

p539663 ch23.qxd 7/25/03 9:18 AM Page 745

746 Part VII ✦ Patterns

Next, we move to discussing another important pattern of the presentation tier
namely, the front-controller pattern, which forms the controller part of the MVC
pattern.

Using the Front-Controller Pattern
The front-controller pattern plays the controller role in the MVC pattern. Consider
the following scenario: An airline reservation Web site, with views for flight arrivals,
flight reservations, and so on as menu items. The view navigation is going to be the
same across these different views. If each view were to maintain its own system ser-
vices and navigation then there would be duplication of code across different
views. This would mean that a change in navigation would have to be updated in
the view. A front-controller pattern is used to avoid this scenario. It coordinates
processing of multiple requests for each user accessing the site in a centralized or
decentralized manner.

The front-controller pattern coordinates access to system services, view content,
and view navigation across multiple requests in a centralized or decentralized man-
ner based on how you want to design the access coordination.

Forces
The following forces encourage the use of front-controller pattern:

Common application processing is made per request.

Processing logic can be centralized in a single controller rather than duplica-
tion occurring across numerous views.

Request handling is centralized.

System services and view management are complex.

Different views might have code duplication for the same navigation items
that is same across all these views.

Implementation
The front controller acts as the gateway to the enterprise application. It can handle
authentication, delegate business processing, manage views (based on servlet or
JSP), handle errors, and log access. Usually a dispatcher pattern can be used in
conjunction with the front controller; in such a scenario the dispatcher will main-
tain view management and navigation. An enterprise application can have multiple
controllers, each providing a distinct set of system services. For example, a con-
troller might provide role-based access to a system, and a controller might log mes-
sages within the application.

p539663 ch23.qxd 7/25/03 9:18 AM Page 746

747Chapter 23 ✦ Reviewing Presentation-Tier Patterns

Figure 23-11 depicts the structure of the front-controller design pattern. Note the
front controller to which all the client requests are forwarded and which generates
based on whether it is a flight arrival or a flight reservation.

Figure 23-11: Example of the front-controller pattern

Figure 23-12 shows the sequence diagram for the interaction between different com-
ponents involved in a front-controller pattern.

Figure 23-12: Sequence diagram for the front-controller pattern

The various components that participate in the sequence diagram are explained next.

Client Front Controller View

Request

Request

Helper

Dispatch request

Process request

Get content

Client
Request

AR Flight Arrival AR Flight Reservation

Front Controller

p539663 ch23.qxd 7/25/03 9:18 AM Page 747

748 Part VII ✦ Patterns

Front controller
The front controller is the gateway to handle the entire request to any views or
backend systems. It may implement a dispatcher to delegate requests to a helper to
complete system services or retrieve information.

View
The view corresponds to the view component in a MVC. The view may retrieve data
from a model and display the information. Helpers encapsulate the data model and
help the view use the model for presentation.

Helper
The helper helps either a front controller or a view complete requests. The helper
encapsulates the underlying data model and provides data to the view and the view
can manipulate and display data. For example, in an application the Extensible
Stylesheet Language Transformations (XSLT) template serves as the view and the
servlet can generate the XML, which is raw data. The template engine can merge
the XML data with the XSLT template and render the HTML page.

Strategies
Several different strategies for implementing a controller are possible. We list all of
them but will be discussing only a couple of important ones.

✦ The multiplexed-resource-mapping strategy

✦ The command-and-controller strategy

✦ The servlet-front strategy

✦ The physical-resource-mapping strategy

✦ The logical-resource-mapping strategy

The multiplexed-resource-mapping strategy
In this strategy the front-controller pattern can be used to map two different
resources to the same servlet. For example, a servlet serves information for a per-
son within the U.S. and also for a person sitting on the other side of the globe, say
in Germany like an offshore client. Then the servlet can be given two different
names, such as USProcessServlet and OffshoreProcessServlet, but can be
mapped to the same underlying class in both instances.

The command-and-controller strategy
This is a combination of the command-pattern and front-controller patterns. It is a
very powerful pattern that provides a generic interface to which the front controller
may delegate the responsibility. Using the command pattern requires minimal or no
changes to the controller and the helper. As command processing and invocation
are decoupled the command processor can be used with various clients.

p539663 ch23.qxd 7/25/03 9:18 AM Page 748

749Chapter 23 ✦ Reviewing Presentation-Tier Patterns

The servlet-front strategy
In this strategy the front controller is implemented as a servlet. This servlet man-
ages request handling, business logic, and application flow. Display formatting is
separate. This strategy has a drawback: It does not leverage automatic population
of request parameters into helper properties.

Results
The front-controller pattern enables the following consequences:

Improves security management; thereby controlling hacks into the Web appli-
cation. Auditing is made simple.

All the request-handling processes are managed by a centralized control
access. This enables easy tracking and logging of requests.

Promotes code reusability.

The front-controller pattern — sample code
The skeleton code in Listing 23-8 shows how to implement a front controller using
the command-and-controller strategy.

Listing 23-8: Code for the command-and-front-controller
strategy

public class FrontController extends HttpServlet{
public void init() throws ServletException{
}
public void service(HttpServletRequest request,

HttpServletResponse response) throws
ServletException, IOException {

String displayPage;

try{
Helper h = new Helper(request);
CommandPattern cmd = h.getCommandPattern();
displayPage = cmd.execute(request,response);

}catch(Exception e){
//a wrapper for log4j.jar from apache open source.
Log4jWrapper.log(“FrontController Pattern”, e);
//take the user to a error page.

}
dispatch(request, response, displayPage);

}
}

p539663 ch23.qxd 7/25/03 9:18 AM Page 749

750 Part VII ✦ Patterns

The front-controller servlet calls the command pattern to process the command.
The command pattern in turn creates the corresponding display page that is to be
passed to the dispatcher. The output result is sent to the dispatcher to display the
appropriate view.

Related patterns
Patterns that can be used in combination with this pattern include the following:

✦ View helper

✦ Intercepting filter

✦ Dispatcher view and service to worker

The intercepting-filter and view-helper patterns are discussed in this chapter. For
more details on the dispatcher-view and service-to-worker patterns, consult Core
J2EE Patterns by Deepak Alur, John Crupi and Dan Malks (Sun Microsystems Press,
2001).

Next, we will move on the view-helper pattern. As the name suggests, this pattern
solves the problem of views that change frequently. For example, in a Web site the
look and feel might change based on different users of the system.

Working with the View-Helper Pattern
In an enterprise system, in which presentation and business processing are com-
bined, changes occur frequently and are costly to maintain when the presentation
formatting changes. This makes the enterprise application less reusable, less modu-
lar, and less flexible to changes. No clear distinction exists between Web-production
and software-development teams.

The view-helper pattern is useful in places in which presentation content must pro-
cess dynamic business data, and in which the intermingling of presentation and
business processing needs to be avoided.

Forces
The following forces encourage the use of the view-helper pattern:

View (each) processes a specific business request.

The business-data-requirement-gathering process is complex.

p539663 ch23.qxd 7/25/03 9:18 AM Page 750

751Chapter 23 ✦ Reviewing Presentation-Tier Patterns

Differentiate between roles in an application team like the Web-production
team and the software-development team.

A maintenance problem exists because of the intermingling of presentation
and business followed by code duplication all over the system.

Implementation
The view usually contains code for formatting and presenting data. It may delegate
the processing of data to the view-helper pattern. This pattern stores the intermedi-
ate data model and serves the purpose of a business-data adapter. It makes code
more reusable, modular, and flexible to changes. A front controller can be used with
this pattern to handle requests; otherwise the view handles them.

Figure 23-13 depicts the structure of the view-helper design pattern.

Figure 23-13: Example of view-helper pattern

Figure 23-14 shows the sequence diagram for the interaction among different com-
ponents involved in a view-helper pattern.

Figure 23-14: Sequence diagram for the view-helper pattern

Client View

Request data

Presents data

Helper

Delegates

Sends data

Client View View Helper

p539663 ch23.qxd 7/25/03 9:18 AM Page 751

752 Part VII ✦ Patterns

Client
The client is typically a Web browser that requests the view to format and
display data.

View
The view formats and displays the data to the client. The business data to display is
retrieved from the underlying data model.

Helper
The helper is responsible for helping the viewer or controller complete processing.
The helper gathers data and formats them as necessary for the Web content.
Helpers can service requests for data from the view by providing raw data either as
XML or as format data.

Strategies
Several different strategies can be used to implement a view-helper pattern. We list
all of them but will be discussing only a couple of important ones.

✦ The JSP-view strategy

✦ The servlet-view strategy

✦ The JavaBean-helper strategy

✦ The custom-tag-helper strategy

✦ The business-delegate-helper strategy

✦ The transformer-helper strategy

The JSP-view strategy
In this strategy a JSP is the view component. Both Java code and markup language
are intermingled. The only problem with this strategy is that no clear distinction is
made between roles, and consequently it is easier to introduce problems into the
system.

The servlet-view strategy
The servlet-view strategy uses servlets for a view. Intermingling of Java and markup
code is done within the servlet. JSP is preferred over the servlet because of the
compilation efforts.

The JavaBean-helper strategy
In this strategy a JavaBean is used in the JSP or servlet view and can be directly
called to get data from the backend systems. This strategy is easier to construct
because less development effort is required to construct a JavaBean. This results in
a cleaner separation of code between business logic and application.

p539663 ch23.qxd 7/25/03 9:18 AM Page 752

753Chapter 23 ✦ Reviewing Presentation-Tier Patterns

Results
The view-helper pattern enables the following consequences:

All applications can be easily partitioned, reused and maintained. Business
logic is factored out of JSPs (Java Server Pages) into the view-helper pattern.

Separating business logic enables clear distinction among roles in an enter-
prise-development team.

The view-helper pattern — sample code
The skeleton code in Listing 23-9 shows how to implement a view helper using the
JSP and the JavaBean-helper strategy.

Listing 23-9: Implementing a view helper using JSP and the
JavaBean-helper strategy

<jsp:useBean id=”loginHelper” scope=”request”
class=”LoginHelper” />
<HTML>
<head>
<title>Welcome Message</title>
</head>
<body>
<% if (loginHelper.isValidUser())
{
%>
<center><H2>Hi
<jsp:getProperty name=”loginHelper” property=”name”/>

<H2></center>
%>
<H3><p align = center>Welcome to the world of Java Patterns

Site !</p></H3>
</body>
</html>

The JSP-view strategy is combined with the JavaBean-helper strategy to display
messages to a valid user logging into a virtual Java-patterns site. If people are using
the Apache Struts framework for development they can see a combination of the
MVC and View-Helper strategies spread across the framework.

Related patterns
Patterns that can be used in combination with this pattern include the following:

p539663 ch23.qxd 7/25/03 9:18 AM Page 753

754 Part VII ✦ Patterns

✦ Business delegate

✦ Dispatcher view and service to worker

✦ Front controller

The business-delegate pattern is discussed in more detail in Chapter 24. The front
controller is discussed in this chapter. More details on the dispatcher-view and ser-
vice-to-worker patterns can be found in Core J2EE Patterns by Deepak Alur, John
Crupi and Dan Malks, Sun Microsystems Press, 2001.

The next section covers the composite-view pattern, which creates an aggregrate
view from subcomponents.

Using the Composite-View Pattern
Enterprise applications contain Web pages, which gather data from numerous
sources and use multiple views that map to a single Web page. The enterprise-
development team involves people with different skills to the development and
hosting of the Web pages within the enterprise application.

In a composite-view pattern, the modules and atomic portions of a view are com-
bined and embed directly into the view the code used to format the data. The
important reason for using this pattern is because of the duplication of code for the
same context across different views and fixing an error at one view has to be dupli-
cated to other views.

Forces
The following forces encourage the use of the composite-view pattern:

Embedding the frequently changing code in the enterprise system, such as
changing the header and footer on a view, affects the administration of the
system. As a result of embedding the code the server has to be shut down and
restarted for the changes to take place.

In Enterprise applications, atomic portions of the view change frequently.

Layout changes are difficult to maintain when they are embedded directly into
the code, as these changes involves duplication of the code.

Implementation
In the composite-view pattern the views are composed of multiple sub-views that
involve atomic contents of the enterprise application. This enables you to decouple
the page layout from the content. This pattern also enables prototyping the layout
for a site by plugging in static data and later replacing it with the actual contents for
the site.

p539663 ch23.qxd 7/25/03 9:18 AM Page 754

755Chapter 23 ✦ Reviewing Presentation-Tier Patterns

Figure 23-15 depicts the structure of the composite-view design pattern.

Figure 23-15: Example of the composite-view pattern

Figure 23-16 shows the sequence diagram for the interaction among different com-
ponents involved in a composite-view pattern.

Figure 23-16: Sequence diagram for the composite-view pattern

Client
The client is typically a Web browser that requests view to format and display data.

Composite view
The composite view is a combination of different atomic components viewed in an
enterprise application.

Client Composite View Header View

Request data

Display data

Footer View

getHeader

sendFooter

sendHeader

getFooter

Base Template

Composite View Template

p539663 ch23.qxd 7/25/03 9:18 AM Page 755

756 Part VII ✦ Patterns

Header view
The header view is responsible for serving the static header data to the
composite view.

Footer view
The footer view is responsible for serving the static footer data to the
composite view.

Strategies
Several different strategies can be used to implement a composite-view pattern. We
list all of them here but will be discussing only a couple of important ones:

✦ JSP-view strategy

✦ Servlet-view strategy

✦ Custom-tag-view-management strategy

✦ JavaBean-view-management strategy

✦ Standard-tag-view-management strategy

✦ Transformer-view-management strategy

✦ Early-binding-resource strategy

✦ Late-binding-resource strategy

The JSP-view strategy
In this strategy a JSP is the view component. Both Java code and markup language
are intermingled. The only problem with this strategy is that no clear distinction is
made between roles, and consequently it is easier to introduce problems into the
system.

The servlet-view strategy
The servlet-view strategy uses servlets for a view. Intermingling of Java and markup
code is done within the servlet. JSP is preferred over the servlet because of the
compilation efforts.

The custom-tag-view-management strategy
In this strategy the management of the view is implemented through the custom
tags in JSP. View layout and composition are controlled by the code within the cus-
tom tags. Based upon the user roles and security policies, page layout and compo-
sition can be designed. Building this strategy involves more development effort and

p539663 ch23.qxd 7/25/03 9:18 AM Page 756

757Chapter 23 ✦ Reviewing Presentation-Tier Patterns

more complexity is involved with respect to code integration and management. But
this is the preferred strategy of all the strategies we have mentioned so far.

Results
The composite-view pattern enables the following consequences:

There is an increase in the flexibility of the content display, as it can be based
on rules and roles within the security model used in the enterprise system.

Portions of the template can be easily changed, thereby increasing maintain-
ability and manageability.

The pattern also promotes reuse and modularity within the existing code.

A runtime overhead is associated with this pattern because of the cohesion of
different display pieces, which may also reduce manageability.

The composite-view pattern — sample code
The skeleton code in Listing 23-10 shows how to implement a composite-view pat-
tern using the custom-tag-view-management strategy.

Listing 23-10: Custom-tag-view-management strategy

<region:render template=’/classes/login.jsp’>
<region:put section=’header’ content=’/classes/header.jsp’>
<region:put section=’footer’ content=’/classes/footer.jsp’>
<region put section=’mainContent’
content=’/classes/maincontent.jsp’>

This example can be used with the Airline Reservation system in which the com-
posite-view pattern can be used to present different atomic-content views within
one single view using the custom-tag strategy.

Related patterns
Patterns that can be used in combination with this pattern include the following:

✦ View helper

✦ Composite

p539663 ch23.qxd 7/25/03 9:18 AM Page 757

758 Part VII ✦ Patterns

We next move to the last design pattern in the chapter — the intercepting-filter
pattern. Filters are a new concept that were introduced with the Servlet API 2.3
specification.

Using the Intercepting-Filter Pattern
Client requests and responses have to be pre-processed and sometimes post-
processed too. Typical checking mechanisms involve validating sessions, checking
the content length, encoding types, version of the browser used by the client mak-
ing the request, and so on. Most of these checks are usually performed by means of
a typical if/else logic block. Some of the request headers need to be parsed before
they are sent for further request handling, so an intercepting-filter pattern can be
used. It provides a simple mechanism for adding and removing the processing of
components. Each of these processing requests is associated with a filter-specific
action.

The presentation tier gets different requests; some are to be handled as is, while
others need to be modified. The intercepting-filter pattern can be applied in situa-
tions in which a request must be modified before being sent to a handler. Note
that the introduction of filters in servlet API 2.3 is a good example of the use of the
intercepting-filter pattern.

Forces
The following forces encourage the use of intercepting-filter pattern:

Some of the common application-request-checking mechanisms like logging,
checking for appropriate headers, validating user sessions, and so on.

Common logic across the application needs to be centralized such as parsing
header information to validate each request from a client.

Components can be easily added and removed. This in-turn helps to group a
wide variety of components together.

Implementation
In the intercepting-filter pattern, incoming requests and outgoing responses are
intercepted and pre- and post-processing actions are done. Using this filter pattern
creates a pluggable architecture and they can be removed without any change to
the rest of the application code. For example, it is possible in WebLogic Server to
define a set of filters that map to URLs; when a request matches, one of these filters
will be called before the appropriate handler processes the request.

p539663 ch23.qxd 7/25/03 9:18 AM Page 758

759Chapter 23 ✦ Reviewing Presentation-Tier Patterns

Figure 23-17 depicts the structure of the intercepting-filter design pattern.

Figure 23-17: Example of the intercepting-filter pattern

Figure 23-18 shows the sequence diagram for the interaction between different com-
ponents involved in an intercepting-filter pattern.

Figure 23-18: Sequence diagram for the intercepting-filter pattern

Client
The client is typically a Web browser that requests view to format and display data.

FilterManager
FilterManager manages filter processing, and usually creates the filter chain and
loads the appropriate filters.

FilterManager FilterChain

Request data

Handler

Creates

PathFilter

Process request

Applies

Forwards

Client

FilterManager Handler

PathFilter

Client

p539663 ch23.qxd 7/25/03 9:18 AM Page 759

760 Part VII ✦ Patterns

FilterChain
FilterChain contains the collection of filters for the application.

PathFilter
PathFilter checks for the path validation of incoming requests before forwarding
the request to the handler.

Handler
The handler processes the client request.

Strategies
Several different strategies can be used to implement a custom-filter pattern. We list
all of them but will be discussing only the important ones.

✦ The standard-filter strategy

✦ The base-filter strategy

✦ The custom-filter strategy

✦ The template-filter strategy

The standard-filter strategy
Filters can be declared in a deployment descriptor and added or removed just by
means of modifying this deployment descriptor. In the standard-filter strategy fil-
ters are built around interfaces.

The base-filter strategy
A base filter serves as an abstraction for all common functionality across different
filters in an application. This functionality can be shared across all filters. The base
filter can include default behavior for all the servlet-container callback methods.

Results
The intercepting-filter pattern enables the following consequences:

Using filters creates a cleaner partition of application and promotes reusabil-
ity of these filters across different applications. For example, an authentica-
tion filter checking for valid sessions and content length can be used across
different applications.

Configuring filters is easy and centralizes control logic.

Sharing of information across filters is inefficient.

p539663 ch23.qxd 7/25/03 9:18 AM Page 760

761Chapter 23 ✦ Reviewing Presentation-Tier Patterns

The intercepting-filter pattern — sample code
Listing 23-11 shows how to implement an intercepting-filter pattern using the base-
filter strategy.

Listing 23-11: Code for the base-filter strategy

public class BaseFilter implements javax.servlet.Filter{
private javax.servlet.FilterConfig filterConfig;

//constructor
public BaseFilter(){
}

//code for setting default container behavior
public void doFilter(ServletRequest req, ServletResponse res,
FilterChain fchain) throws IOException, ServletException{
fchain.doFilter(req,res);

}
//get method
public FilterConfig getFilterConfig(){
return filterConfig;

}
//set method
public void setFilterConfig(FilterConfig fconfig){
filterConfig = fconfig;

}

}

This code is from a base filter that can be used in the airline reservation site for
abstracting all the common filters used in the site.

Related patterns
Patterns that can be used in combination with this pattern include the following:

✦ Front controller

✦ Decorator

✦ Template method

✦ Interceptor

✦ Pipes and filters

p539663 ch23.qxd 7/25/03 9:18 AM Page 761

762 Part VII ✦ Patterns

Summary
In this chapter we discussed the presentation tier. Presentation-tier patterns play
an important role in managing the presentation logic, providing a single control
point for various systems, providing a decoupled Web design through MVC (which
is the basis for the Apache’s Struts framework), and using the composite view to
manage different atomic contents in sub-views in a single Web page. More details on
the Struts framework can be found from the Apache site at www.apache.org.

✦ ✦ ✦

p539663 ch23.qxd 7/25/03 9:18 AM Page 762

Working with
Service-Tier
Patterns

In the previous chapter, we briefly explained the simplified
Web model that we will be using for all the chapters on

design patterns. We also provided a template that we have
used to catalog the different patterns. This chapter is about
service-tier patterns, which form the second layer in the sim-
plified Web model. We present the simplified Web model in
this chapter again as a handy reference.

Introducing Service-Tier Patterns
Some of the bad design practices in the service tier include
the following:

✦ Mapping the object model directly to entity beans.

✦ Mapping the relational model directly to entity beans.

✦ Mapping use cases in an enterprise application to a ses-
sion bean.

✦ Embedding lookup services in clients. The best way to
do this is to provide a service-locator pattern, which will
be discussed in this chapter.

✦ Using entity beans as read-only and fine-grained objects.

✦ Designing complex security mechanisms for authentica-
tion between Web services.

Service-tier patterns represent solutions to the most common
problems encountered in the service tier of a Web model.
These patterns can be used as a blueprint for solving those

2424C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Introducing service-
tier patterns

Using the business-
delegate pattern

Understanding the
value-object pattern

Exploring the session-
facade pattern

Explaining the
composite-entity
pattern

Utilizing the service-
locator pattern

Working with the
half-object-plus-
protocol pattern

✦ ✦ ✦ ✦

p539663 ch24.qxd 7/25/03 9:18 AM Page 763

764 Part VII ✦ Patterns

problems. We are going to classify design patterns based on the simplified view of
the Web depicted in Figure 24-1.

Figure 24-1: Simplified Web-tier model

We will use the terms pattern and design pattern interchangeably throughout this
book.

We are going to present the following patterns in this chapter:

✦ Business-delegate — This pattern helps in decoupling presentation and ser-
vice tiers.

✦ Value-object — This pattern helps establish data exchange between tiers and
helps network performance.

✦ Session-facade — This pattern provides a centralized way to access EJB’s
complex workflow.

✦ Composite-entity — This pattern helps to construct coarse-grained beans
from dependent beans.

✦ Service-locator — This pattern helps to segregate EJB lookup and creation.

✦ Half-object-plus-protocol — This pattern provides a single object that can live
in more than two address spaces and, with a combination of methods, can be
invoked locally and executed remotely.

✦ Session-authenticator — This pattern provides a mechanism for authentica-
tion in portal sites that use Web service to exchange messages.

✦ Stateless-service-provider — This pattern provides a mechanism for stateless
communication between sites exchanging information through Web services.

Session authenticator and stateless service provider are the author’s own creation
and were created as part of a Web-services design for an electronic commerce site.
We already presented our own template pattern to describe all the patterns in the
previous chapter and the next two chapters.

We are going to start this chapter with the business-delegate pattern, which helps
to couple the presentation and service tiers. Enterprise applications need to be
coupled loosely because if tight coupling were introduced, the application would

Note

Service Tier Data TierPresentation Tier

p539663 ch24.qxd 7/25/03 9:18 AM Page 764

765Chapter 24 ✦ Working with Service-Tier Patterns

lose scalability, maintainability, and reusability. The business-delegate pattern also
provides interfaces to the underlying services in the enterprise application.

Using the Business-Delegate Pattern
Most of the presentation-tier clients that need to use business services’ application
programming interface (API) must directly invoke remote methods; the lack of a
proper caching mechanism on the presentation tier can therefore cause network
traffic. As the remote method interfaces (RMIs) change frequently, the presentation-
tier pattern must be updated. This causes a tight coupling between the presenta-
tion tier and business services. To prevent this tight coupling, a business-delegate
pattern can be used.

In multi-tiered enterprise applications, methods usually have to be invoked
remotely on server objects, and the data that is generated as a result of these meth-
ods’ execution must be received across tiers. Because of this, clients need to deal
with the complexity of these method invocations.

Forces
The following forces encourage the use of the business-delegate pattern in enter-
prise applications:

The presentation tier needs access to business services.

The business-processing interface changes with the business requirements.

Coupling between presentation tier and service tier has to be minimal.

In-built caching mechanisms must be incorporated in clients so that clients
can avoid making frequent calls. This will reduce network traffic.

Implementation
The business-delegate pattern reduces coupling between the presentation tier and
business services. This pattern encapsulates the lookup and access to the business
services. In addition, the business-delegate pattern acts as an abstraction for the
presentation tier (that is, the clients). Finally, the business-delegate pattern can
cache business-service-call result sets.

Structure
Figure 24-2 depicts the structure of the business-delegate pattern:

p539663 ch24.qxd 7/25/03 9:18 AM Page 765

766 Part VII ✦ Patterns

Figure 24-2: Example of the business-delegate pattern

The presentation tier would correspond to the any of the front-end HTML or Java
server pages. The business-delegate class implements the business-delegate pat-
tern and provides methods to access the business service. The business service
component usually represents entity beans that have methods for querying the
database. They can be either bean-managed or container-managed entity beans.
The business-delegate implementation class does incorporate LookupService to
look up the needed entity beans. The lookup-service pattern is discussed in detail
later in this chapter. Figure 24-3 shows the sequence diagram for the interaction
among the different components involved in a business-delegate pattern:

Figure 24-3: Sequence diagram for the business-delegate pattern

The various components in the sequence diagram are explained briefly in the fol-
lowing sections.

PresentationTier BusinessDelegate LookupService

Create

Lookup

Invoke

BusinessService

Invoke

GetService

ReturnService

PresentationTier BusinessDelegate LookupService BusinessService

p539663 ch24.qxd 7/25/03 9:18 AM Page 766

767Chapter 24 ✦ Working with Service-Tier Patterns

PresentationTier
PresentationTier is typically a client, like JSP pages, that creates
BusinessDelegate and calls business-service methods.

BusinessDelegate
BusinessDelegate provides control and protection for the business services. It
encapsulates the lookup and invocation of business methods.

LookupService
BusinessDelegate uses LookupService to locate the business services.

BusinessService
BusinessService is a service-tier component, such as an EJB, that provides the
required service.

Strategies
The business-delegate pattern can be implemented through one of two strategies:

✦ The delegate-proxy strategy

✦ The delegate-adapter strategy

The delegate-proxy strategy
Here the business-delegate pattern acts as a proxy, providing a wrapper for the
methods provided by the remote business interface. Any request of the client is
proxied by the business-delegate pattern. Here for the lookup the business-delegate
pattern can either use lookup or provide its own lookup.

The delegate-adapter strategy
In this scenario, a B2B adapter acts between the B2B client and BusinessDelegate.
A common XML language can be used as the communication mechanism between
the client and BusinessDelegate. In the Stateless-Service-Provider pattern (this
pattern is the author’s own creation and is explained in detail at the end of this chap-
ter), we provide a combination of this B2B (Business-to-Business) and the business-
delegate pattern. This kind of strategy is useful in Web-service applications.

Results
Using the business-delegate pattern has the following consequences:

p539663 ch24.qxd 7/25/03 9:18 AM Page 767

768 Part VII ✦ Patterns

This pattern reduces coupling between the presentation tier and the business
service. This pattern also reduces coupling in other tiers.

Business-service expectations are converted to more user-friendly messages
for the presentation-tier patterns.

Because of built-in caching services this pattern affects performance but
hides remoteness (looking up and invoking services).

This pattern implements automatic failure recovery and thread-synchroniza-
tion mechanisms.

Business-delegate pattern — sample code
Listing 24-1 shows how a business-delegate pattern can be implemented.

Listing 24-1: Implementing the business-delegate pattern

public class BusinessDelegate{
//constructor
public BusinessDelegate() {
}

//method used to create beneficiary accounts using account
number.
public static int createBene (String actno) {
int actID = -1;
InitialContext ctx = null;
try{
ctx = new InitialContext();
// get ejb
Enrollment enrol = ((EnrollmentHome)

ctx.lookup(“EnrollmentHome”)).create();
actID = enrol.createBene(actno);
} catch (Exception e){
//handle exception
}finally {

try{
ctx.close();

}catch(NamingException ne){;}
}

return actID;

}
}

In the preceding code, an interface to the creation of a beneficiary account is pro-
vided through the class implementing the business-delegate pattern. Inside the
method, the Enrollment Bean entity bean method is used to create the benefi-
ciary account.

p539663 ch24.qxd 7/25/03 9:18 AM Page 768

769Chapter 24 ✦ Working with Service-Tier Patterns

Related patterns
The business-delegate pattern can be used in combination with the following
patterns:

✦ Service locator

✦ Proxy

✦ Adapter

✦ Broker

✦ Stateless-service provider

The service-locator and stateless-service-provider patterns are cataloged in this
chapter. A proxy pattern is often used to represent another object. The Remote
Method Invocation (RMI) services within the Java kit are a good example of using
proxy patterns. The Stubs and Skeletons that are used in RMI to communicate
between the client and server are good examples of proxy objects. The adapter pat-
tern acts as an intermediary between two classes converting the interfaces of one
class so that it can be used with the other class. A broker pattern — more like the
meaning attached to the word broker — performs the role of a broker between pre-
sentation and service tiers.

Next, we are going to catalog the value-object pattern, which facilitates the
exchange of data as a result of querying the databases between the entity beans.

Understanding the Value-Object Pattern
When a client makes a request to an enterprise bean it usually invokes multiple
calls through attributes for executing the front-end logic to get the data it needs.
Each of these calls is costly and could have an effect on network traffic and perfor-
mance. Using a value-object pattern it is possible to group certain attributes into a
class, use this class to store all the needed values for the client, and invoke the
class through a single method call to the enterprise bean.

Presentation-tier components need to exchange data with EJBs because presenta-
tion tier components can capture data through Web forms and this data needs to be
sent to the backend system for storing. For example, in the airline reservation sys-
tem a passenger can provide his information for booking tickets, and this needs to
be stored in the backend database.

Forces
The following forces encourage the use of the value-object pattern:

p539663 ch24.qxd 7/25/03 9:18 AM Page 769

770 Part VII ✦ Patterns

Access to EJBs is provided through bean remote interfaces.

Read transactions are more than update transactions in an enterprise
application.

The client may need more than one attribute and can invoke multiple remote
calls.

Multiple calls made by the client to the remote object result in decreased net-
work performance.

Implementation
In a value-object pattern a single method call is used to send information to and
retrieve information from the Enterprise JavaBean using a value object. The
Enterprise bean can create the value object or the client can pass the value object
to the bean method and the method can populate the values for the object.

Figure 24-4 depicts the usage structure of the value-object pattern.

Figure 24-4: Example of a value-object pattern

Figure 24-5 shows the sequence diagram for the interaction among different compo-
nents involved in a value-object pattern.

The various components depicted in the sequence diagram are explained in the fol-
lowing sections:

PresentationTier
PresentationTier is typically a client, such as JSP, which creates BusinessDelegate
and calls business-service methods.

PresentationTier BusinessDelegate

ValueObject

BusinessService

creates

p539663 ch24.qxd 7/25/03 9:18 AM Page 770

771Chapter 24 ✦ Working with Service-Tier Patterns

Figure 24-5: Sequence diagram for value-object pattern

BusinessDelegate
BusinessDelegate provides control and protection for the business services. It
encapsulates the lookup and invocation of business methods.

LookupService
BusinessDelegate uses LookupService to locate the business services.

BusinessService
BusinessService is a service-tier component, such as an EJB, that provides the
required service.

ValueObject
ValueObject encapsulates some of the common attributes that can be returned as
part of a remote-method call, thus making unnecessary numerous requests to
retrieve different attributes.

Strategies
The following strategies can be used in variance with the value-object pattern:

✦ The updateable-value-objects strategy

✦ The multiple-value-objects strategy

PresentationTier BusinessDelegate LookupService

Create

Lookup

Invoke

BusinessService

Invoke

GetService

ReturnService

ValueObject

Creates

Gets Value Object

p539663 ch24.qxd 7/25/03 9:18 AM Page 771

772 Part VII ✦ Patterns

✦ The entity-inherits-value-object strategy

✦ The value-object-factory strategy

The first two strategies are applicable when the EJB is either a session or an entity
bean. The last two are applicable when the EJB is an entity bean. We will discuss
only the updateable and value-object-factory strategies, as they are the most com-
mon in enterprise applications.

Updateable-value-objects strategy
In this strategy, the client can call a getData method on the EJB to get the value
object and uses a SetData method to update the value object. The value object
must provide set methods with which the client can update attributes. Field-level
validations can be performed in these methods. A flag can be set to notify the entity
bean, which attributes to update, rather than comparing against the already exist-
ing values to see which attributes have changed. The only problem with this strat-
egy is the creation of stale value objects that do not contain updated attribute
values.

Value-object-factory strategy
In this strategy, the EJB creates value objects on demand using reflection. This is a
more dynamic strategy than the updateable option. The best way to implement this
approach is to have an interface and have all the value objects implement this han-
dler. In the client call use the instance of operator to check for the particular
instance of the value object and then invoke the appropriate methods on the value
object.

Results
Using the value-object pattern has the following consequences:

Simplifies the calls to the EJBs by transferring more data in a single method call

Reduces network traffic and code duplication

Increases complexity with synchronization and version control

Clients can usually update value objects and invoke methods on EJBs to update the
database, but other similar value objects may have outdated values, resulting in
more stale value objects.

Value-object pattern — sample code
Listing 24-2 shows how a value object can be implemented.

p539663 ch24.qxd 7/25/03 9:18 AM Page 772

773Chapter 24 ✦ Working with Service-Tier Patterns

Listing 24-2: Implementing a value object

public class Beneficiary implements java.io.Serializable {
private int beneId=0;
private String beneSSN=””;
private String beneFirstName=””;
private String beneMiddleInitial=””;
private String beneLastName=””;
private Date birthDate;
//other attributes
public void setBeneId(String beneId) throws

BeneIdNotFoundException{
if (beneId == null){

throw new BeneIdNotFoundException(“Bene ID not
found”);

}
this.beneId = beneId;

}
//define other set methods.
//............
}

In the preceding code, we define a class that implements a value-object and pro-
vides set and get methods to set the attributes and get method to query the values
of the attributes. This value-object can be used in an entity bean to be populated
with values or use the values that are in the object to do updates to the database.

Related patterns
Patterns that can be used in the combination with this pattern include the following:

✦ Session facade

✦ Value-object assembler

✦ Value-list handler

✦ Composite entity

The session-facade and composite-entity patterns are discussed in this chapter. A
value object assembler helps to build composite value objects from different data
sources it is more like a factory pattern. The value-list-handler pattern is used to
provide lists of dynamically constructed value objects.

The session facade is the next pattern that is cataloged. It is used to expose com-
plex underlying distributed services. These services are implemented as entity
beans to the presentation tier.

p539663 ch24.qxd 7/25/03 9:18 AM Page 773

774 Part VII ✦ Patterns

Exploring the Session-Facade Pattern
In enterprise applications a tight coupling exists between the client and business
objects. As the whole application is implemented as EJBs, too many method invoca-
tions from the client to the server occur, the chattiness of the application increases,
and severe network performance problems result. Besides, no uniform strategy
exists for accessing the EJBs. Using a session-facade pattern decreases the com-
plexity described above by providing a simple interface to these services.

Enterprise JavaBeans expose their interfaces, encapsulate business logic, and per-
sist business data, increasing the complexity for clients in a distributed-enterprise
system.

Forces
The following forces encourage the use of session-facade pattern:

Reducing the number of business objects exposed to the client over the
network

Hiding from the client the internal intricacies of various interactions between
the business components, thus making a centralized strategy to these busi-
ness objects

Providing an abstraction between business-service abstractions from busi-
ness service implementation

Reducing coupling between the client and the business objects

Implementation
A session-facade pattern provides a uniform centralized service-access layer to
clients, encapsulating the complexity of interactions between various business
objects.

Structure
Figure 24-6 depicts the structure of the session-facade pattern.

Figure 24-7 shows the sequence diagram for the interaction among the different
components involved in a session-facade pattern.

The different components participating in the sequence diagram for session facade
are discussed below:

p539663 ch24.qxd 7/25/03 9:18 AM Page 774

775Chapter 24 ✦ Working with Service-Tier Patterns

Figure 24-6: Example of the session-facade pattern

Figure 24-7: Sequence diagram for the session-facade pattern

PresentationTier
PresentationTier is the client that needs access to business services.

SessionFacade
SessionFacade is usually implemented as a session bean. It manages relationships
among different business objects and provides coarse-grained access to the under-
lying business objects.

PresentationTier SessionFacade BusinessObject

Call Method

GetData

SessionBean

GetData

Invoke Method

PresentationTier SessionFacade

EntityBeanSessionBean

BusinessObject

p539663 ch24.qxd 7/25/03 9:18 AM Page 775

776 Part VII ✦ Patterns

BusinessObject
BusinessObject is a role that can be constructed with various strategies; it can
also be used to construct a session facade. It provides data access and services to
the SessionFacade.

Strategies
SessionFacade can be implemented by means of two strategies:

✦ The stateless-session-facade strategy

✦ The stateful-session-facade strategy

The stateless-session-facade strategy
When a client needs only one method call to complete the business transaction, a
stateless session bean can be applied. Usually using cases and scenarios in a UML
diagram enables you to decide when a stateless-session-facade strategy should be
applied.

The stateful-session-facade strategy
When a client needs multiple method calls to complete a business transaction, a
stateful session facade can be used. In this strategy the conversational state
between the client and the bean must be saved for each method invocation.

Results
The session-facade pattern enables the following consequences:

Increases manageability, reduces coupling by providing a uniform interface

Improves network performance by providing coarse-grained access

Centralizes security management and transaction control

Session-facade pattern — sample code
Listing 24-3 shows how to implement a session-facade pattern.

Listing 24-3: Implementing a session-facade pattern as a
stateless strategy

public class WebServicesBean extends SessionBean {
//encapsulates method to authenticate the web service
public String authenticateWebServiceUser(String username,

String password){

p539663 ch24.qxd 7/25/03 9:18 AM Page 776

777Chapter 24 ✦ Working with Service-Tier Patterns

//internally calls another EJB to complete the webservice
call.
}
//retrieve service call
public String getNewsService (String newsId){
//internally calls another EJB to complete the news service

call.
}

}

In the preceding code, a simple Web services class provides the Web service call
getNewsService; the underlying complexity of calling the entity bean that pro-
vides the service is hidden.

Related patterns
Patterns that can be used in the combination with this pattern include the following:

✦ Facade

✦ Data-access object

✦ Service locator

✦ Business delegate

✦ Broker

The data-access-object pattern is catalogued in Chapter 25. The service-locator and
business-delegate patterns are explained in this chapter. The broker pattern is
explained in the “Related Patterns” section of the business-delegate coverage in
this chapter. A facade pattern is used to provide a simplified interface to a complex
subsystem.

The composite entity is the next pattern that we are going to catalog. It enables us
to design coarse-grained entity beans by grouping objects dependent on the parent
bean into a single entity bean.

Explaining the Composite-Entity Pattern
The composite-entity pattern is a solution to the common problem of mapping
object to EJB model. Entity beans represent coarse-grained objects. The mapping of
back-end (namely, database objects) objects to EJB model does not take into consid-
eration the concept of coarse-grained versus dependent objects. Not recognizing
these dependent objects affects areas such as entity relationships, manageability,
network performance, and database-schema dependency. Entity beans form a better
implementation for coarse-grained persistent objects, though not for every object.

p539663 ch24.qxd 7/25/03 9:18 AM Page 777

778 Part VII ✦ Patterns

Forces
The following forces encourage the use of the composite-entity pattern:

Enterprise applications that directly map each row in a table to an entity-bean
instance

Mapping directly data objects to EJB model does not distinguish between
coarse-grained beans and dependent beans

Clients need not know the underlying complexity involved with lookup, invo-
cation, and execution of entity beans

Increase in chattiness because of communication among dependent beans;
this can be noted among the beans as well as between the client and the
beans

Implementation
The composite-entity pattern enables representation and management of a set of
interrelated persistent objects. It is usually a graph of these interrelated persistent
objects.

Figure 24-8 depicts the structure of the composite-entity design pattern.

Figure 24-8: Example of the composite-entity pattern

Figure 24-9 shows the sequence diagram for the interaction between different com-
ponents involved in a composite-entity pattern.

The different components in the sequence diagram are explained next.

CompositeEntity
This is the coarse-grained entity bean. It may hold references to other coarse-
grained objects.

CompositeEntity CoarseGrainedObject FineGrainedObject
contains contains contains

p539663 ch24.qxd 7/25/03 9:18 AM Page 778

779Chapter 24 ✦ Working with Service-Tier Patterns

Figure 24-9: Sequence diagram for the composite-entity pattern

CoarseGrainedObject
This object has its own lifecycle and maintains the relationships with other objects
on its own. CoarseGrainedObject can hold dependent objects or fine-grained
objects.

FineGrainedObject
Manages the lifecycle of the Fine-Grained Object, is managed by the Coarse-Grained
object, and depends on CoarseGrainedObject.

Strategies
Several different strategies can be used to implement a composite-entity pattern.
We will be discussing the most important ones:

✦ The lazy-loading strategy

✦ The composite-value-object strategy

✦ The composite-entity-contains-coarse-grained-object strategy

✦ The-composite-entity-implements-coarse-grained-object strategy

✦ The dirty-marker strategy

PresentationTier CompositeEntity CoarseGrainedObject

Get/SetData

Get/SetData

FineGrainedObject

Get/SetData

p539663 ch24.qxd 7/25/03 9:18 AM Page 779

780 Part VII ✦ Patterns

The lazy-loading strategy
In this strategy the composite-entity pattern can be thought of as a tree of objects.
Loading all the dependent objects during the ejbLoad() method can be costly and
time-consuming. So for the call of ejbLoad() only the important ones are loaded;
all the other objects are loaded as needed from the database. Any subsequent calls
to ejbLoad must include those dependent objects to synchronize any change with
the persistent storage.

The composite-value-object strategy
In this strategy the client can request information in one method remote call. As the
composite-entity pattern holds the graph of coarse-grained objects and dependent
objects it can create the required value object and return it to the client.

Results
The composite-entity pattern enables the following consequences:

Relationships existing internally between entities are eliminated and the rela-
tionships become more manageable because of the elimination

Reduces database-schema dependency and increases object granularity

There is overhead in multi-level dependent objects in the tree structure

Composite-entity pattern — sample code
Listing 24-4 shows how to implement a composite entity using the composite-value-
object strategy.

Listing 24-4: Implementing a composite entity using the
composite-value-object strategy

public class CompositeValueObject{
private CompositeVO cvo;
private Collection plans;
private Collection funds;

// value object constructors

// mutator and accessor methods.
}

p539663 ch24.qxd 7/25/03 9:18 AM Page 780

781Chapter 24 ✦ Working with Service-Tier Patterns

//creating the Composite Value Object
public CompositeValueObject getPlanDetails(){
CompositeValueObject cvo = new

CompositeValueObject(getCompositeVO(),getPlans(),getFunds());
return cvo;

}

In the preceding code, the composite value object is being used to combine get
plans and funds that corresponds to these plans in a single call.

Related patterns
Patterns that can be used in combination with this pattern include the following:

✦ Value object

✦ Session facade

✦ Value-object assembler

The value-object and session-facade patterns are cataloged in this chapter. The
value object assembler is discussed in the “Related Patterns” section of the value-
object coverage in this chapter.

The service-locator pattern is the next one that we will catalog.

Using the Service-Locator Pattern
When clients need to invoke entity beans in an enterprise system, they need to
locate the service component and then do a lookup. Usually, clients do this through
the Java Naming and Directory Interface (JNDI). As this JNDI lookup is available
across the whole system, code is duplicated in a lot of places. In addition, this
lookup involves a significant amount of resources. It is the case of using Java
Messaging Service components. Looking up and creating components involves ven-
dor-supplied implementation, and this creates a dependency on a vendor. Using a
service-locator pattern simplifies the lookup services for entity beans.

See Chapter 11 for a discussion of JNDI.

Service lookup and the creation of enterprise beans are complex and involve heavy
network operation.

Cross-
Reference

p539663 ch24.qxd 7/25/03 9:18 AM Page 781

782 Part VII ✦ Patterns

Forces
The following forces encourage the use of the service-locator pattern:

EJB clients use the JNDI API to lookup the registered EJBs.

The initial context factory used to look up an EJB Home Interface is vendor-
provided, so a dependency is created.

The lookup and creation process is complex and resource-consuming.

Clients need to reestablish connections for a previously accessed bean
instance.

Implementation
The service-locator pattern abstracts all JNDI-specific complexities, including EJB-
home lookup and re-creation. Multiple clients can use the service locator, as it pro-
vides a single point of control and can improve performance by providing a caching
facility. Figure 24-10 depicts the structure of the service-locator design pattern:

Figure 24-10: Example of the service-locator pattern

Figure 24-11 shows the sequence diagram for the interaction between different com-
ponents involved in a service-locator pattern.

The various components involved in the sequence diagram for a service-locator
pattern are discussed next.

Client
Client is typically a Web browser that requests access to business services
through ServiceLocator.

Client ServiceLocator InitialContext
uses creates

looksup

BusinessServiceuses

p539663 ch24.qxd 7/25/03 9:18 AM Page 782

783Chapter 24 ✦ Working with Service-Tier Patterns

Figure 24-11: Sequence diagram for the service-locator pattern

ServiceLocator
ServiceLocator abstracts the JNDI lookup access, encapsulates lookup complexi-
ties and business-service creation, and provides a simple interface to the client.

InitialContext
This is the first step in the lookup and creation process. Service providers usually
provide this context object, which is used for lookup and creating service.

Strategies
There are several different strategies for implementing a service-locator pattern. We
list all of them as follows but will be discussing only the important one.

✦ The EJB-service-locator strategy

✦ The JMS-queue-service-locator strategy

✦ The JMS-topic-service-locator strategy

✦ The combined EJB and JMS service-locator strategy

✦ The type-checked service-locator strategy

✦ The service-locator-properties strategy

Client ServiceLocator InitialContext

GetInstance

Create/Lookup

BusinessService

Create

p539663 ch24.qxd 7/25/03 9:18 AM Page 783

784 Part VII ✦ Patterns

The EJB-service-locator strategy
In this strategy, the service locator can be used to get a reference to the
EJBHomeEJB Home object and can be cached in the service locator for future use,
thus rendering JNDI lookup unnecessary. This Home object can be used by the client
to look up, create, and remove EJBs. Otherwise the service locator can act as a
proxy for all client requests.

Results
The service-locator pattern enables the following consequences:

Abstracts complexity, providing clients with centralized access to services

Enables easy addition of new lookup for business components, which
improves network performance

Enhances client performance by providing caching mechanisms

Service-locator pattern — sample code
Listing 24-5 shows how to implement a service locator. Observe the different ways
in which EJBs are looked up.

Listing 24-5: Implementing a service locator

import javax.naming.*;
import java.rmi.RemoteException;
import java.util.Hashtable;
public class ServiceLocator{
public ServiceLocator(Hashtable env) throws

javax.naming.NamingException{
//set up all the environment variables.

}
public ServiceLocator throws javax.naming.NamingException(){

}
public ProviderHome getProviderHome(){

try{
return

(ProviderHome)lookup(“example.application.ejb. ProviderHome”);
}catch(javax.naming.NamingException ne){

ne.printStackTrace();
}

return null;
}

p539663 ch24.qxd 7/25/03 9:18 AM Page 784

785Chapter 24 ✦ Working with Service-Tier Patterns

public PortalAuthenticatorHome getPortalAuthenticatorHome(){
try{

return
(PortalAuthenticatorHome)lookup(“example.application.ejb.Portal
AuthenticatorHome”);

}catch(javax.naming.NamingException ne){
ne.printStackTrace();

}
return null;

}
//other ejb lookup....

}

In the preceding sample code, the method PortalAuthenticatorHome internally
looks up the entity bean PortalAuthenticator and returns the home context.

Related patterns
Patterns that can be used in combination with this pattern include the following:

✦ Business delegate

✦ Session facade

✦ Value-object assembler

The business-delegate and session-facade patterns are cataloged in this chapter.
The value-object-assembler pattern is discussed under the “Related patterns” sec-
tion of the value object coverage.

The half-object-plus-protocol is the next pattern that we are going to catalog. As the
name suggests, this pattern acts as a half-object and half- protocol mechanism.

Working with the Half-Object-Plus-Protocol
Pattern

In a typical RMI application, clients invoke methods locally on the stub of the
server, which passes across the network to be executed on the server, and the
requests go through the skeleton of the server before the actual execution takes
place on the server. In this model all method calls are sent to the server. Sometimes
certain methods can be executed locally without being sent to the server. A half-
object-plus-protocol pattern enables you to implement this behavior.

p539663 ch24.qxd 7/25/03 9:18 AM Page 785

786 Part VII ✦ Patterns

Forces
The following forces encourage the use of half-object-plus-protocol pattern:

An entity needs to be in two different address spaces and cannot be split
according to functionality.

Some methods must be invoked locally and others must be executed
remotely.

The acts of caching and combining multiple requests into one single network
call should made transparent to the client.

Implementation
The half-object-plus protocol creates an object implementing the remote interface
of the server and also has reference to the original stub of the remote object. The
new object handles methods that are to be executed locally and the server handles
remote methods. Figure 24-12 depicts the structure of the half-object-plus-protocol
pattern.

Figure 24-12: Example of the half-object-plus-protocol pattern

<<interface>>
HalfObjectPlusProtocol

implementsim
plements

LocalObject RemoteObject

RemoteObjectProxy

p539663 ch24.qxd 7/25/03 9:18 AM Page 786

787Chapter 24 ✦ Working with Service-Tier Patterns

Figure 24-13 shows the sequence diagram for the interaction between different com-
ponents involved in a half-object-plus-protocol pattern:

Figure 24-13: Sequence diagram for the
half-object-plus-protocol pattern

The various components that participate in the sequence diagram of the pattern
are described next.

LocalObject
LocalObject implements the HalfObjectPlusProtocol interface; some of the
methods are executed locally and some remotely.

RemoteObject
RemoteObject implements the HalfObjectPlusProtocol interface and imple-
ments methods that will be executed remotely.

Strategies
This is how the half-object-plus-protocol pattern must be implemented:

LocalObject RemoteObject

Call Remote Method

Call methods locally

p539663 ch24.qxd 7/25/03 9:18 AM Page 787

788 Part VII ✦ Patterns

1. Create an object that implements the required remote interfaces and that con-
tains a reference to the generated stub of the remote object.

2. Make this object implement any local methods necessary.

3. Send remote method calls to the remote server, which will implement the
HalfObjectPlusProtocol interface. This new object will execute all the
local methods.

Results
The half-object-plus-protocol pattern enables the following consequences:

Each object resides in two address spaces.

Provides transparency for the client using one part of the pattern.

Each part of the pattern has the capacity to decide when and how to commu-
nicate with the other half.

Duplication of code exists between the two halves.

Half-object-plus-protocol pattern — sample code
Figure 24-14 depicts how the half-object-plus-protocol pattern can be implemented.
RemoteObjectProxy contains the protocol and forwards all the remote calls to the
remote object.

Figure 24-14: Class diagram for the
half-object-plus-proxy pattern

Related patterns
Patterns that can be used in the combination with this pattern include the following:

✦ Session authenticator

✦ Stateless-service provider

✦ Mediator

✦ Proxy

RemoteObjectProxy

+remoteMethod()
+localMethod()

p539663 ch24.qxd 7/25/03 9:18 AM Page 788

789Chapter 24 ✦ Working with Service-Tier Patterns

We are going to look at two new patterns straight out of the author’s own pattern
catalog. These two patterns are solutions to common problems in Web services and
have been implemented successfully in several Web-services-architecture designs.

Session authenticator
One of the common problems that portal sites face is that of authenticating the
user requesting data when that user has logged in and authenticated on one portal
and is trying to retrieve information from another portal. Things become more com-
plex when these portals are in different domains and the validity and authenticity of
the user must be determined before the user can be allowed to access information.

Consider the scenario depicted in Figure 24-15, in which the client authenticates on
Domain A and requests Domain B. Say the client is signed with an online bank. He
or she signs on to the bank domain. However, the bank has an agreement with a
statement provider to supply statements for its user based on the user’s account
number. So when the client wants to retrieve his or her bank statement the request
has to be forwarded to Domain B. Now, Domain B acts as a Web-service host and
must somehow validate the authenticity of the request and the user, and determine
whether the session is still valid for the user.

Figure 24-15: Example of the session-authenticator pattern

Client

authenticates Requests information

Domain B

Domain A

p539663 ch24.qxd 7/25/03 9:18 AM Page 789

790 Part VII ✦ Patterns

Using a session-authenticator pattern Domain B can authenticate the user from
Domain A and enable the user to access statements on its server. The session-
authenticator pattern can be implemented in the following way:

1. The client session ID in Domain A is encrypted and sent as a part of the
request to Domain B.

2. Domain B makes a HTTP request to Domain A with the encrypted session ID
to validate the authenticity of the client.

3. Domain A’s permission program takes the incoming requests, decrypts the
session ID, and validates the session and credentials of the client. It then
sends a XML response to Domain B.

4. Based on the response, Domain B decides whether to allow the client to
retrieve or show the necessary information.

Figure 24-16 shows the communication mechanism.

Figure 24-16: Implementation of the session-authenticator pattern

Client

authenticates

Requests information
by passing encrypted
session id

Sends an XML
stream of client
credentials

Domain B

Domain A

Requests validity of client
by passing encrypted

session id back

Decrypts session id
and validates client

p539663 ch24.qxd 7/25/03 9:18 AM Page 790

791Chapter 24 ✦ Working with Service-Tier Patterns

If this mechanism is implemented in Java it works on a single machine as well as in
a cluster. To establish and encrypt a session there will one servlet and for decrypt-
ing and forwarding the requesting to the session establishing servlet there will be a
separate servlet. Because the servlet API does not allow a servlet to call itself pass-
ing an ID, servlets can be chained while verifying the credentials of the client from
the request sent from Domain B to Domain A.

Listings 24-6 and 24-7 show the usage of the session-authenticator pattern. They
show two JSPs called gateway.jsp and permission.jsp, respectively. The gateway.jsp
page acts as the gateway to the application-establish session and cookie and permis-
sion.jsp calls the gateway to validate the user session and displays appropriate infor-
mation. These two pages act as different domains. The gateway.jsp contains code to
create a session and parses the session when a call is made by the permission.
jsp. The gateway.jsp acts as an authenticator of the session that it created for the
permission.jsp code.

Listing 24-6: gateway.jsp

<html>
<%
String password = request.getParameter(“password”);
String action = request.getParameter(“act”);

if (action != null && action.equals(“session”)){
String pwd = (String)session.getValue(“password”);
out.println(“Request for session...
”);
out.println(“password=” + pwd + “
”);
return;
}

if (action != null && action.equals(“proxy”)){
Cookie [] cooks = request.getCookies();
String val = null;

for (int i=0; i<cooks.length; i++){
Cookie c = cooks[i];
if (c.getName().equals(“sessionauthenticator”)){
val = c.getValue();
String aid = val.substring(3);
out.println(“aid=” + aid + “
”);

String theurl = “http://” + localhost +
“:7001/j2eebible/gateway.jsp?action=session”;

out.println(“Calling “ + theurl + “ from j2eebible
server
”);
java.net.URL url = new java.net.URL(theurl);
java.net.HttpURLConnection conn =

(java.net.HttpURLConnection) url.openConnection();
conn.setRequestProperty(“Cookie”, “exampleUser=” + aid);
int rtnCode = conn.getResponseCode();
if (rtnCode == 200){

Continued

p539663 ch24.qxd 7/25/03 9:18 AM Page 791

792 Part VII ✦ Patterns

Listing 24-6 (continued)

java.io.InputStream is = conn.getInputStream();
byte [] chunk = new byte[1024];
StringBuffer buf = new StringBuffer(1024);
int num = -1;
while ((num = is.read(chunk, 0, chunk.length)) != -1)
{
buf.append(new String(chunk, 0, num));

}
is.close();
out.println(buf.toString());

} else
out.println(“return code = “ + rtnCode);

}
}

return;
}

if (password != null && password.equals(“test”)){
String sid = session.getId();
String newsid = “jinx” + sid;
session.putValue(“password”,password);
Cookie c = new Cookie(“sessionauthenticator”,newsid);
//set your appropriate domain here.
//c.setDomain(“.test.com”);
//c.setPath(“/”);
response.addCookie(c);
out.print(“Session id = “ + sid + “
\n”);
out.print(“Session authenticator cookie is: “ + newsid + “
\n”);
out.print(“<a target=\”localhost\”
href=\”http://localhost:7001/j2eebible/permission.jsp\”>Go to
localhost\n”);
} else {

Cookie [] cooks = request.getCookies();
out.print(“
Printing all cookies:
\n”);
String val = null;

for (int i=0; i<cooks.length; i++){
Cookie c = cooks[i];
if (c.getName().equals(“sessionauthenticator”)){
val = c.getValue();

String wsid = val.substring(3);
out.println(“aid=” + aid + “
”);

}
out.println(c.getName() + “ = “ + c.getValue() + “
\n”);
}

}

p539663 ch24.qxd 7/25/03 9:18 AM Page 792

793Chapter 24 ✦ Working with Service-Tier Patterns

%>
</html>

Listing 24-7: permission.jsp

<html>
<%

String val = null;
Cookie [] cooks = request.getCookies();
for (int i=0; i<cooks.length; i++){
Cookie c = cooks[i];
if (c.getName().equals(“sessionauthenticator”)){
val = c.getValue();

}
out.print(c.getName() + “ = “ + c.getValue() + “
\n”);
}

out.println(“
 Here is the output from localhost
”);

java.net.URL url = new
java.net.URL(“http://localhost:7001/j2eebible/gateway.jsp?actio
n=proxy”);

java.net.HttpURLConnection conn =
(java.net.HttpURLConnection) url.openConnection();

conn.setRequestProperty(“Cookie”, “sessionauthenticator=” +
val);

int rtnCode = conn.getResponseCode();
if (rtnCode == 200){

java.io.InputStream is = conn.getInputStream();
byte [] chunk = new byte[1024];
StringBuffer buf = new StringBuffer(1024);
int num = -1;
while ((num = is.read(chunk, 0, chunk.length)) != -1)
{
buf.append(new String(chunk, 0, num));

}
is.close();
out.println(buf.toString());

} else
out.println(“return code = “ + rtnCode);

%>

</html>

p539663 ch24.qxd 7/25/03 9:18 AM Page 793

794 Part VII ✦ Patterns

Certainly, this pattern can benefit Web sites that exist in different domains and want
to share information based on user credentials.

The stateless-service-provider pattern
The other common problem with Web sites using Web-service architecture is
exchange of data between the two sites in a seamless way. Enough complexity is
involved in this data-exchange mechanism in terms of proprietary ways to pass
messages and parse them and display them to the user.

As XML is the lingo for Web services, the stateless-service-provider pattern pro-
vides a means of exchanging mechanisms seamlessly with little development effort
and a lot of portability. This pattern can be used in scenarios in which the user logs
in to a portal and wants to access information from another portal. When the user
selects a link on the information page, that page will be served from the other
portal.

To facilitate exchange of information through the stateless-service-provider pattern
you should define a stateless session bean with the needed methods. The caller
portal will call the authentication method followed by the service method.
Finally, when deploying the stateless session bean deploy it as a Web service and
the descriptor file for the EJB will need to be configured as shown in Listings 24-8
and 24-9. In Listing 24-8, see how the stateless-session bean is used to provide the
authentication between Web portals when one portal passes the user information.
In Listing 24-9, note how we define an admin role that has access to the methods.
Nobody outside the admin role can invoke this method.

Listing 24-8: The stateless-service-provider pattern EJB

public class StatelessServiceProviderBean extends
javax.ejb.SessionBean{
//method to authenticate the user can be based on any input

parameter specific to the site.
public String authenticateUser(String username, String

password){
}
//retrieves user information from ldap providing a username.
public String getUserInformation(String username){
}

}

p539663 ch24.qxd 7/25/03 9:18 AM Page 794

795Chapter 24 ✦ Working with Service-Tier Patterns

Listing 24-9: The EJB deployment descriptor

<!DOCTYPE ejb-jar PUBLIC ‘-//Sun Microsystems, Inc.//DTD
Enterprise JavaBeans 2.0//EN’ ‘http://java.sun.com/dtd/ejb-
jar_2_0.dtd’>
<!-- Generated XML! -->
<ejb-jar>
<enterprise-beans>
<session>
<ejb-name>example.j2eebible.ejb.

StatelessServiceProviderHome</ejb-name>
<home>example.j2eebible.ejb.

StatelessServiceProviderHome</home>
<remote>example.j2eebible.ejb.

StatelessServiceProvider</remote>
<ejb-class>example.j2eebible.ejb.

StatelessServiceProviderBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>
<env-entry>
<env-entry-name>realm</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>j2eebible</env-entry-value>

</env-entry>
<env-entry>
<env-entry-name>pool</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>j2eebiblePool</env-entry-value>

</env-entry>
<env-entry>
<env-entry-name>acl</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>j2eebible.admin</env-entry-value>

</env-entry>
</session>

</enterprise-beans>

<assembly-descriptor>
<security-role>
<role-name>j2ee_user</role-name>

</security-role>

<method-permission>
<role-name>j2ee_user</role-name>

<method>
<ejb-

name>example.j2ee.session.StatelessServiceProviderHome
</ejb-name>

Continued

p539663 ch24.qxd 7/25/03 9:18 AM Page 795

796 Part VII ✦ Patterns

Listing 24-9 (continued)

<method-intf>Remote</method-intf>
<method-name>*</method-name>

</method>
</method-permission>

<container-transaction>
<method>
<ejb-name>

example.j2ee.session.StatelessServiceProviderHome </ejb-name>
<method-intf>Remote</method-intf>
<method-name>*</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
</assembly-descriptor>

</ejb-jar>

The two Web-services patterns have been tested in several Web-portals that have
been designed as information providers. These patterns have worked effectively for
both authentication and service providing. The two things that are often over-
worked in Web-service portal design are the authentication mechanism and provid-
ing of information. When one conducts a study on Web portals in the Internet
space, they can see how many portals have been re-designed to fit themselves in
the Web service space because they provided proprietary mechanism for Web ser-
vice. Now Simple Object Access Protocol (SOAP) has simplified and has provided a
common protocol mechanism for Web services.

Summary
In this chapter we discussed service-tier patterns and the important role they play
in decoupling presentation and service logic, facilitating data exchange among dif-
ferent tiers, providing a centralized means of accessing complex EJB workflows,
helping to construct coarse-grained beans, helping to segregate EJB lookup and cre-
ation, constructing a single object that exists in multiple addresses, creating an
authentication mechanism for portal sites, and providing a mechanism for stateless
communication between two portal sites.

✦ ✦ ✦

p539663 ch24.qxd 7/25/03 9:18 AM Page 796

Using Data-Tier
Patterns

The data tier is the last tier in the simplified Web-tier
model that we first presented in Chapter 23. We will dis-

cuss some of the problems that occur commonly in this tier.
Some of the problems happen when the application has to
access multiple datasources. Other problems are the result of
having to introduce asynchronous activation without the use
of Java Messaging Service (JMS) in the already existing EJB
model. Another example of a typical problem involves appli-
cations that have to access related attributes.

Introducing the
Data-Access-Object Pattern

For your convenience, we present the diagram highlighting
the data tier.

The following patterns will be discussed in this chapter:

✦ Data-access-object pattern — This pattern provides a
core solution to the problem of applications that have to
access multiple datasources in order to present and pro-
cess information.

✦ Service-activator pattern — This pattern provides a
core solution to the problem of applications that already
have their business services built using EJBs and wants
to use the concept of asynchronous activation.

✦ Transfer-object pattern — This pattern provides a core
solution to the problem of applications that want to
access a group of related attributes from database calls.

2525C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Introducing the data-
access-object pattern

Using the service-
activator pattern

Examining the
transfer-object pattern

✦ ✦ ✦ ✦

p539663 ch25.qxd 7/25/03 9:18 AM Page 797

798 Part VII ✦ Patterns

Figure 25-1: Simplified Web-tier model

Enterprise applications need to access data from various sources. The mechanism
for accessing data across the various sources varies with the vendor API and type
of storage. The data-access-object pattern provides a core solution to this problem
for applications having to access different datasources to process and present
information. The data-access-object pattern (DAO) abstracts access to datasources.

For example, an enterprise application may use Netscape’s Directory Server to
store user-related information to allow user access to the system and store enter-
prise-related system data in a relational database. The core of the problem arises
because the system data were stored in Sybase and now need to be moved to an
Oracle database. SQL implementations and data-access mechanisms, such as appli-
cation-programming interfaces (APIs) vary between these databases. Even access-
ing data from legacy systems involves programming in proprietary APIs. Including
code in business components like EJBs would necessitate reengineering of the code
when deployed to a different datasource, for example, like moving from an Oracle
database to a Sybase database. To avoid such underlying deficiencies the data-
access-object pattern abstracts the concept of accessing data across different
sources and provides a core solution to the problem of data-source access.

Access to different sources of data is dependent on the data-storage type (flat files,
RDBMS, ODBMS, LDAP, and so on) and vendor implementation. Data-storage and
-access implementations vary across vendors providing data-source software.

The data-access-object pattern has the following characteristics:

Enables transparency for the presentation or business component. These
components can then use the datasource without having knowledge of the
underlying vendor implementation or access mode.

Makes migration between datasources easier, as only the underlying imple-
mentation of the data-access object layer, not the interface, must be changed.

Adds a layer to the business model and reduces code complexity. This layer-
ing feature centralizes access to different datasources within one unified fac-
tory model. A factory pattern helps to define an interface for creating an
object and has control on which class needs to be instantiated. A detailed cat-
alog of this pattern can be found in Design Patterns by Erich Gamma et al.

Note

Data TierService TierPresentation Tier

p539663 ch25.qxd 7/25/03 9:18 AM Page 798

799Chapter 25 ✦ Using Data-Tier Patterns

The data-access-object pattern is not useful for container-managed persistence
because the container controls access to the datasource.

Keep in mind the following facts that pertain to using the data-access-object pattern:

Presentation-tier components such as Java Server Pages, servlets, and busi-
ness-tier components like EJBs (both entity and session) need to access data
from multiple sources.

Components that access data from datasources and use proprietary APIs
need to be designed to be portable.

Access needs to be transparent between components accessing datasources.
Transparency allows easy migration from one datasource to another data-
source.

Implementation
The data-access-object pattern also encapsulates all access mechanisms to the
datasource, including connectivity, querying the database, and creating different
data-access objects based upon the datasource needed for the application. The
interface that DAO provides to its clients does not change when data migrate from
one datasource to another. The role of DAO is like that of the adapter pattern acting
as an intermediary between two participating classes, converting the interface of
one class to be used with the other participating class. This promotes reusability of
older functionality. The adapter pattern provides the interface a client expects, uti-
lizing the services provided by a class that implements a different interface.

Figure 25-2 depicts the usage structure of the data-access-object pattern, and
abstracts the access to the underlying datasource. It also creates transfer objects
for the business component and presentation component. Both these components
can use the transfer object for processing.

Figure 25-2: Example of the data-access-object pattern

BusinessComponent

PresentationComponent

DataAccessObject

TransferObject

uses

abstracts

uses

creates

data
store

Note

p539663 ch25.qxd 7/25/03 9:18 AM Page 799

800 Part VII ✦ Patterns

Figure 25-3 shows the sequence diagram for the interaction among different compo-
nents. For simplicity we use one view of the sequence diagram as seen by the pre-
sentation component:

Figure 25-3: Sequence diagram for the data-access-object pattern

The following elements of this figure are discussed in the subsequent sections:

✦ PresentationComponent

✦ DataAccessObject

✦ DataStorage

✦ TransferObject

PresentationComponent
PresentationComponent is mainly the frontend component, such as JSP or
servlets, that processes the data and presents information to the user. Note that
BusinessComponent, a business component, can replace PresentationComponent,
a presentation component here. The Business component refers to any component
from the service tier, and the presentation component represents any component
from the presentation tier. The presentation component acts as the client for the
data-access object.

DataAccessObject
DataAccessObject is the primary component of the data-access-object pattern. It
abstracts datasource access. Also, it encapsulates the mechanism to access data,
enabling transparent access to data by the presentation or business component.

PresentationComponent DataAccessObject DataStorage TransferObject

a. Create

b.3.return TransferObject

b. getData b.1. getData

b.2. Create

p539663 ch25.qxd 7/25/03 9:18 AM Page 800

801Chapter 25 ✦ Using Data-Tier Patterns

DataStorage
DataStorage can be an RDBMS, flat file, ODBMS, or native-XML database providing
data to the presentation or business component.

TransferObject
TransferObject is the data carrier. In Figure 25-3 the data-access object uses the
transfer object TransferObject to send a group of related attributes so that the
presentation component could process the necessary data and present data to the
client requesting the data.

Implementing the Data-Access-Object Pattern
Two different strategies can be used for implementing this pattern, depending on
whether or not the datasource is going to be the same across different enterprise-
application implementations. When the datasource is the same, the base implemen-
tation uses the factory Design pattern to make the data-access-object pattern
produce a finite number of DAOs. Those DAOs are based on the requirement of the
enterprise application, as illustrated in Figure 25-4.

Figure 25-4: Example implementation of the
data-access-object pattern (XML Source)

DAOFactoryGenerator

XMLDAO1

XMLDAOFactory Generator

XMLDAO2

createscreates

<<interface>>
DAO1

<<interface>>
DAO2

p539663 ch25.qxd 7/25/03 9:18 AM Page 801

802 Part VII ✦ Patterns

Figure 25-4 shows an XMLDAOFactoryGenerator that creates concrete objects
XMLDAO1 and XMLDAO2. These objects are based on the DAOs and can be created by
means of a descriptor file or can introspect the native-XML database to construct
these objects. The interfaces are implemented by the DAO objects and are specific
to the objects. For example, in the Airline Reservation business case there could be
a DAO object for Flight Arrival times and another for Flight Reservations and each
could implement an interface that defines specific methods that are used for the
DAO objects.

When the datasources are different across enterprise applications, using a combi-
nation of abstract factory along with factory design pattern carries the base imple-
mentation. Figure 25-5 shows how the data-access-object pattern can be
implemented if the connection is between two different datasources. More details
of abstract factory pattern can be found in the book, Design Patterns by Erich
Gamma et al.

Figure 25-5: The data-access-object pattern accessing multiple data
sources

DAOFactoryGenerator

createscreates

<<interface>>
DAO1

<<interface>>
DAO2

LDAPDAO1 LDAPDAO2 XMLDAO2XMLDAO1

createscreates

XMLDAOFactoryGenerator LDAPDAOFactoryGenerator

p539663 ch25.qxd 7/25/03 9:18 AM Page 802

803Chapter 25 ✦ Using Data-Tier Patterns

Figure 25-5 is an example of the data-access-object pattern accessing multiple data-
sources. Here, an LDAP and an XML datasource are being accessed.

Applying the data-access-object pattern
Listings 25-1 through 25-4 use the DAOFactoryGenerator abstract factory pattern
with the XMLDAOFactoryGenerator concrete factory pattern to generate
XMLAccountOwnerDAO. Both the interface and AccountOwnerDAO will be common
between the two factories, which is also the case with LDAPFactoryGenerator.

Listing 25-1: Abstract DAOFactory class

public abstract class DAOFactoryGenerator{
//available datasource
public static final int LDAP = 1;
public static final int ORACLE = 2;

//generate the necessary DAO’s to be implemented by the
specific DAO generators.
public abstract AccountOwnerDAO getAccountOwnerDAO();
public abstract BeneficiaryDAO getBeneficiaryDAO();

//method to get the concrete DAO factories
public static DAOFactoryGenerator getDAOFactory(int

dataSourceIndicator){
switch(dataSourceIndicator){

case ORACLE:
return new XMLDAOFactoryGenerator();

case LDAP:
return new LDAPDAOFactoryGenerator();

default:
return null;

}
}

}

Listing 25-2: Concrete DAOFactory class

//import all the necessary libraries
public class XMLDAOFactoryGenerator extends
DAOFactoryGenerator{
public static Connection createConnection(){

//code to connect to oracle database.
}

Continued

p539663 ch25.qxd 7/25/03 9:18 AM Page 803

804 Part VII ✦ Patterns

Listing 25-2 (continued)

//implement methods of the abstract class
public AccountOwnerDAO getAccountOwnerDAO(){

return new AccountOwnerDAO();
}
public BeneficiaryDAO getBeneficiaryDAO(){

return new BeneficiaryDAO();
}

} OK

Listing 25-3: Interface for the Account Owner

// interface for the account owner
public interface AccountOwnerDAO{
public int insertAccountOwner();
public int getAccountOwnerSSN();
public int insertAccountOwnerAddress(AccountOwner

accountOwner);
//other needed methods.

} OK

Listing 25-4: Implementation of AccountOwnerDAO

//implementation of accountowner DAO
public class XMLAccountOwnerDAO implements AccountOwnerDAO{\
//default constructor
public XMLAccountOwnerDAO(){
}
//implement methods of the interface.
public int insertAccountOwner(){
}
public int getAccountOwnerSSN(){
}
public int insertAccountOwnerAddress(AccountOwner

accountOwner){
}

}

p539663 ch25.qxd 7/25/03 9:18 AM Page 804

805Chapter 25 ✦ Using Data-Tier Patterns

Applying related patterns
Following are the patterns used in combination with the data-access-object pattern:

✦ Abstract factory pattern

✦ Factory pattern

✦ PresentationComponent

✦ BusinessComponent

✦ TransferObject

The abstract factory and factory patterns are discussed in more detail in Design
Patterns by Erich Gamma et al.

Using the Service-Activator Pattern
Consider the typical EJB call, in which a lookup gets a remote-interface reference to
the necessary EJB and then calls the methods on that EJB. The process is syn-
chronous, meaning that one follows the other. Some clients may need asynchronous
access to data. The existing EJB model, 1.0 (or) 1.1, does not allow asynchronous
calls. Therefore, if the existing application needs the functionality for asynchronous
calls you can use the service-activator pattern. With EJB 2.0, message-driven beans
solve the problem of having asynchronous models (asynchronous means not hap-
pening at the same time, but happening later) built into enterprise applications.
EJBs coded with the version 1.0 and version 1.1 specification need to be invoked
asynchronously by means of message-driven beans without the existing code’s
being converted to an EJB 2.0 model.

The service-activator pattern has the following characteristics:

Allows the JMS and EJB 1.0 and 1.1 version implementations to interact.

Provides the concept of asynchronous message processing, which is available
only from EJB 2.0 onward, to the EJB 1.0 and 1.1 implementations through
message-driven beans.

Can be used either as a stand-alone component, or can be used as a plug-and-
play pattern into the current EJB 1.0 and 1.1 implementations, or as a part of
the application-server services.

See Chapter 17 for a discussion of message-driven beans.Cross-
Reference

p539663 ch25.qxd 7/25/03 9:18 AM Page 805

806 Part VII ✦ Patterns

Keep in mind the following facts that pertain to using the service-activator pattern:

Existing EJB models enable invoking them by means of a method invocation
after a lookup for remote reference.

Implementation of the JMS model is not possible because it would cause a vio-
lation of the EJB specification and the EJB container controls access to the
EJBs.

The EJB 2.0 model supports message-driven beans for asynchronous EJB invo-
cation and existing models must have similar functionality.

EJB containers may make EJBs inactive, usually to conserve resources. The
client will need to go through a lookup followed by method invocation to acti-
vate the EJB.

Clients want to use the JMS but the EJB container does not support it.

Implementation
The service-activator pattern can process asynchronous calls from the client. This
pattern locates the necessary business component, such as an EJB, and invokes
methods to fulfill the requests of the client.

This pattern is a JMS (Java Messaging Service) listener and delegation service that
implements the JMS message-listener interface. The service-activator pattern
receives the message from the client, unmarshals the client request, activates the
necessary business component, and finally sends acknowledgement to the client.
You might notice the influence of the Abstract Window Toolkit (AWT) delegation-
design model in this service-activator design pattern because both use the delega-
tion process in their model. In case you’re curious, this is what happens in the AWT
delegation model: Clients register with listeners and listeners notify the clients
once events are triggered. For a brief description of the AWT event-delegation
model refer to Java in a Nutshell by David Flanagan (O’Reilly and Associates; 4th
Edition, March 2002).

Figure 25-6 depicts the structure of the service-activator pattern:

In Figure 25-6, the Presentation Component sends an Asynchronous request and the
Request class implements the Java Messaging Service (JMS) message and the ser-
vice-activator pattern receives it and invokes the necessary Business Component,
asynchronously.

p539663 ch25.qxd 7/25/03 9:18 AM Page 806

807Chapter 25 ✦ Using Data-Tier Patterns

Figure 25-6: Example of the service-activator pattern

Figure 26-7 shows a snapshot of the sequence diagram for the service activator:

The word Create in Figure 25-7 refers to the creation of the appropriate object.

The following elements of this figure are discussed in the subsequent sections:

✦ PresentationComponent

✦ Request

✦ ServiceActivator

✦ BusinessComponent

✦ Acknowledgment

PresentationComponent
PresentationComponent is mainly the front-end component, like JSP or servlets,
that needs to call BusinessComponent. So it creates a Request to use the services
offered by the service-activator pattern.

PresentationComponent

<<interface>>
javax.jam.Message

BusinessComponent

ServiceActivatorPattern

Request

implements

invokesreceives
Sends asynchronous

message

p539663 ch25.qxd 7/25/03 9:18 AM Page 807

808 Part VII ✦ Patterns

Figure 25-7: Sequence diagram for the service-activator pattern

Request
The Request is an implementation of the Message object that is created by
PresentationComponent so that the service activator can process client requests.

ServiceActivator
ServiceActivator unmarshals the message sent, the client looks up the neces-
sary business component and invokes the message. If successful, Service Activator
object creates an instance of the Acknowledgment object and acknowledges the
requesting client. Note that ServiceActivator implements the javax.jms.
MessageListener interface as defined by the JMS specs.

BusinessComponent
This component is an EJB that processes the request sent by ServiceActivator.

PresentationComponent Request ServiceActivator

Acknowledgement

a. Create

c. Invoke

e. Send Acknowledgement

b. Send Request

d. Create

<<interface>>
javax.jms.Message

BusinessComponent

b.1 Msg Parse

p539663 ch25.qxd 7/25/03 9:18 AM Page 808

809Chapter 25 ✦ Using Data-Tier Patterns

Acknowledgment
Acknowledgment corresponds to the acknowledgement created by
ServiceActivator to acknowledge client requests.

Implementing the Service-Activator Pattern
The service-activator pattern can be implemented in a few different ways. We will
discuss the following in order:

✦ The service-activator-server strategy

✦ The EJB-server strategy

✦ The EJB-client strategy

The service-activator-server strategy
This pattern can be implemented either as a stand-alone application or as part of
the application-server services. The main advantage of this strategy comes when
you implement it as an application-server service. This is because the server can
monitor and control the state of the pattern (that is, start, stop, and restart)
through manual or automatic configuration.

The EJB-server strategy
The business-component element of the service-activator pattern can use either a
session or an entity bean. For simple-flow applications an entity bean can be the
business component. For complex applications a session-facade-design pattern can
provide access for the service-activator pattern. For invoking multiple methods on
the business component it is advisable to use a stateful session bean instead of a
stateless session bean because stateful session is needed.

See Chapter 24 for a discussion of the session-facade design pattern. See Chapter
15 for an explanation of session beans.

The EJB-client strategy
The client need not be a presentation component; it can also be another business
component such as an EJB. For integration with legacy systems, the client should
generate the message based on the transaction with the legacy system. The service
activator can unmarshal the message and invoke the necessary business compo-
nent for processing the legacy system’s request.

Cross-
Reference

p539663 ch25.qxd 7/25/03 9:18 AM Page 809

810 Part VII ✦ Patterns

Applying the service-activator pattern
Figure 25-8 shows a high-level class diagram depicting how the service-activator
pattern can be used to glue JMS and EJB together to provide asynchronous busi-
ness invocation. One real-life scenario in which this can be used is an online shop-
ping mall taking orders from clients and sending the requests to companies that
completes the process. The online shopping mall acts as a placeholder with which
different stores can set up their businesses.

Figure 25-8: Class diagram for implementing the
service-activator pattern

InvoiceDispatcher creates an invoice along with the store that needs to process it.
The invoice-service activator receives the invoice and invokes InvoiceProcessor to
create an e-mail based on the invoice and sends it to the necessary store so that store
will process the invoice.

Applying related patterns
Following are the patterns that can be used in combination with the data-access-
object pattern:

✦ Session facade

✦ Business delegate

✦ Service locator

✦ Half-sync/half-async [POSA2]

The session-facade, business-delegate, and service-locator patterns are cataloged in
Chapter 24. A discussion of the half sync half-async discussion can be found in

<<interface>>
Invoice

InvoiceServiceActivator

InvoiceDispatcher

a. creates

+createInvoice() : long

InvoiceProcessor

+processInvoice()

c. invokes

b. receives
+startListener()
+onMessenger()

p539663 ch25.qxd 7/25/03 9:18 AM Page 810

811Chapter 25 ✦ Using Data-Tier Patterns

Pattern-Oriented Software Architecture, Volume 2: Patterns for Concurrent and
Networked Objects by Douglas Schmidt, Michael Stal, Hans Rohnert and Frank
Buschmann (Wiley Press, 2000.)

Examining the Transfer-Object Pattern
Every call to an EJB involves a lookup to get a reference to the remote interface and
then execute the necessary method. It is costly every time the EJB method is
invoked to get a value and heavy network overhead is associated with such calls.
Applications must exchange data with the EJBs and data must be available at differ-
ent points within the application.

It is a good design principle to group related attributes and populate them all at
once during a method call. A transfer-object pattern helps you do this by providing
access to related attributes.

The transfer-object pattern has the following characteristics:

More data are transferred between the presentation tier and business tier
components.

Network overhead and code duplication are reduced because of fewer EJB calls.

Stale TransferObjects can result from the updateable strategy of this pattern.
These are components that have old copies of the TransferObject values.

TransferObject provides concurrent access and transactions.

The transfer-object pattern introduces complexity for synchronization of data; the
best way to resolve this problem is to use version-control numbers during updating
of data by the business component.

Keep in mind the following facts that pertain to using the transfer-object pattern:

EJB method calls to get values from database tables are costly as they involve
a lookup and an invocation. Several calls could cause network overhead in
bandwidth and productivity.

Enterprise applications involve read, delete, and update transactions. Read-
only access is needed for presentation components. Business components
need read, delete, and update transactions in any combination.

Enterprise applications require more than one attribute and this involves
invoking multiple calls on the business component to get different attribute
values.

Enterprise applications involving more data being transferred across the pre-
sentation and business components can cause overhead and network perfor-
mance bottlenecks.

p539663 ch25.qxd 7/25/03 9:18 AM Page 811

812 Part VII ✦ Patterns

Implementation
TransferObject is a serializable class grouping related attributes and encapsulat-
ing the business data. A single method can be used to send and retrieve
TransferObject. The EJB can take a transfer object already created or create a
new transfer object TransferObject, and populate it with values from the data-
source for attributes within the TransferObject, and send the TransferObject.
Figure 25-9 depicts the structure of the transfer-object pattern:

Figure 25-9: Example of the transfer-object pattern

Figure 25-10 shows a snapshot of the sequence diagram for TransferObject:

Figure 25-10: Sequence diagram for the transfer-object pattern

PresentationComponent DataAccessObject TransferObject

c. return TransferObject

a. getData

b. Create

PresentationComponent BusinessComponent

TransferObject

creates

getData

p539663 ch25.qxd 7/25/03 9:18 AM Page 812

813Chapter 25 ✦ Using Data-Tier Patterns

The following elements of this figure are discussed in the subsequent sections:

✦ PresentationComponent

✦ BusinessComponent

✦ TransferObject

PresentationComponent
PresentationComponent is mainly the frontend component, like JSP or servlets,
that calls the business component to get related data attributes.

BusinessComponent
BusinessComponent is typically an EJB that creates a TransferObject, populates
it with necessary data, and sends it to PresentationComponent.

TransferObject
TransferObject is a serializable class that contains groups of related attributes
filled with data as a result of the call to BusinessComponent.

We can add one more layer through a data-access-object pattern, which generates
TransferObject. Figure 25-2 shows how a business component requests data
through a data-access-object pattern. The data-access-object pattern in turn con-
structs the transfer object.

Implementing the transfer-object pattern
The transfer-object pattern can be implemented in a few different ways. We will dis-
cuss the following in order:

✦ The updateable TransferObject strategy

✦ The multiple-TransferObjects strategy

✦ The TransferObject-factory strategy

The updateable TransferObject strategy
This strategy is useful when PresentationComponent wants to update the data in
TransferObject. Instead of using the JavaBeans way of having mutator and access
methods, PresentationComponent can directly update the data in TransferObject
and pass them to BusinessComponent, which can then update the row in the
database.

Note

p539663 ch25.qxd 7/25/03 9:18 AM Page 813

814 Part VII ✦ Patterns

The multiple TransferObjects strategy
Sometimes PresentationComponent may need multiple TransferObjects. For
example, say PresentationComponent needs an AccountOwner transfer object
and a SuccessorOwner transfer object. Then BusinessComponent can provide
separate methods for generating both TransferObjects.

The TransferObject-factory strategy
In this strategy, PresentationComponent invokes BusinessComponent, which
calls a TransferObject factory that generates the needed TransferObject. For
example, a factory can generate both the AccountOwner and SuccessorOwner
TransferObjects.

Applying the transfer-object pattern
Listing 25-5 presents the transfer-object pattern and entity bean code with which to
provide TransferObject to the calling PresentationComponent:

Listing 25-5: Account Owner interface

//Transfer Object Pattern
public interface AccountOwner extends java.io.Serializable{
public String getFirstName();
public String getLastName();
public String getAddress();
public void setFirstName(String firstName);
public void setLastName(String lastName);
public void setAddress(String address);

}

//Transfer Object Pattern implementing the AccountOwner
Interface.
public class AccountOwnerTransferObject implements
AccountOwner{
public String firstName;
public String lastName;
public String address;

//implement the interface methods
public void setFirstName(String firstName){

this.firstName = firstName;
}
public void setLastName(String lastName){

this.lastName = lastName;
}
public void setAddress(String address){

this.address = address;
}
public String getFirstName(){

p539663 ch25.qxd 7/25/03 9:18 AM Page 814

815Chapter 25 ✦ Using Data-Tier Patterns

return firstName;
}
public String getLastName(){

return lastName;
}
public String getAddress(){

return address;
}

}

//EJB code to populate the AccountOwner Transfer Object Pattern
object
public class AccountOwnerEntity implements EntityBean{
public String firstname;
public String lastname;
public String address;

//method to get the AccountOwner Transfer Object.
public AccountOwnerTransferObject getAccountOwnerData(){

return createAccountOwnerTransferObject();
}

public AccountOwnerTransferObject
createAccountOwnerTransferObject(){

private AccountOwnerTransferObject tobj = new
AccountOwnerTransferObject();

tobj.firstName = firstname;
tobj.lastName = lastname;
tobj.address = address;

}
}

In the preceding code, we define an Account Owner encapsulating the common
attributes used to gather account owner details from the database. We use it within
an Account Owner entity bean to populate the account owner attributes as a part
of a single method call rather than calling each time to get an attribute.

Applying related patterns
Following are the patterns that can be used in combination with the transfer-object
pattern:

✦ Session facade

✦ The value-object assembler

✦ The value-list handler

✦ The composite entity

✦ The data object access

p539663 ch25.qxd 7/25/03 9:18 AM Page 815

816 Part VII ✦ Patterns

The session-facade and composite-entity patterns are cataloged in Chapter 24. The
value-object assembler and value-list handler are cataloged in Core J2EE Patterns by
Deepak Alur, John Crupi, and Dan Malks (Sun Microsystems Press, 2001). The Data-
Object-Access pattern is discussed in this chapter.

Summary
Data-tier patterns play an important role in managing access to datasources, trans-
ferring data through grouping of related attributes, and enabling asynchronous
invocations on business components.

✦ ✦ ✦

p539663 ch25.qxd 7/25/03 9:18 AM Page 816

Advanced Topics
✦ ✦ ✦ ✦

In This Part

Chapter 26
Exploring
Frameworks and
Application
Architecture

Chapter 27
Using ANT to Build
and Deploy
Applications

Chapter 28
Creating High-
Performance Java
Applications

✦ ✦ ✦ ✦

P A R T

VIIIVIII

q539663 PP08.qxd 7/25/03 9:18 AM Page 817

q539663 PP08.qxd 7/25/03 9:18 AM Page 818

Exploring
Frameworks and
Application
Architecture

Sun and the Java Community Process have vastly
improved the world of distributed computing by defining

the Java 2 Enterprise Edition. Software vendors have been gra-
cious enough to implement the J2EE specification, providing a
variety of fully-functional application servers from which to
choose. All that is left is for someone to acquire one of those
application servers and nothing would stand in their way of
successfully creating new business applications . . . right?
Unfortunately, that is not the case.

J2EE improves the runtime environment for applications by
standardizing a large part of the infrastructure, much of what
used to be either developed by companies internally or pro-
vided by a proprietary single vendor product. There are many
benefits of this standardization. Vendor neutral applications
can be deployed in one application server today and rede-
ployed in a different application server tomorrow. Companies
providing other enterprise products, such as databases or
security systems, only need to provide one integration with
their technology that all application servers can use. This
openness that comes from standardization gives J2EE
adopters much freedom and creates a good market for J2EE
technology.

While J2EE does do some great things, it has one big problem:
it is not easy for inexperienced developers to successfully cre-
ate applications. And even for experienced developers it is not
trivial to have continued success, especially if the experienced

2626C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Explaining
frameworks

Understanding the
pains of J2EE and
why developers need
more than just the
J2EE application
server and an IDE to
be successful

Reviewing
application
architectures

Building frameworks

Exploring alternatives
to frameworks

Predicting the future
of frameworks

Evaluating
frameworks

✦ ✦ ✦ ✦

r539663 ch26.qxd 7/25/03 9:19 AM Page 819

820 Part VIII ✦ Advanced Topics

and inexperienced are mixed together on the development team. What is needed is
an approach to make success with J2EE less of an art and more of a science — an
approach that an entire team can adopt and with it consistently deliver quality J2EE
applications.

In this chapter we will introduce frameworks — what they are, why they are needed,
and how to make them part of your environment. We will also discuss other tech-
nologies that include alternatives to frameworks or advancements beyond frame-
works. By the end of the chapter, you should have a good understanding of the
options available to help you be successful with J2EE.

What are Frameworks?
The software industry is notorious for having multiple definitions for the same
terms. If you have tried having a discussion about frameworks, components, or ser-
vices, before defining the concept up front, you’re probably familiar with the confu-
sion that can ensue. So it is very important to come to a common understanding of
what is meant by framework before we can move forward. It is also important to
understand that the definition we agree upon here isn’t one that you can assume in
another conversation. We will use the following definition for our purposes:

Frameworks provide a set of classes that interact in a predefined manner to
address a particular problem area.

That is the simplest explanation of what a framework is. It is often the assumed
default definition because it is the lowest-common-denominator definition with the
broadest applicability. The problem is that frameworks come in many flavors, but
the ones we’re interested in for this chapter are the business-application frameworks.
So we’re going to take it a step further and provide the following, richer definition of
this particular type of framework:

Business-application frameworks the creation of business applications and
control the execution of the applications built on that structure. The structure
includes defining interfaces, providing classes, and employing external configu-
ration that interact in a well-known manner. The classes, interfaces, and config-
uration are extended to create the business application. Business-application
frameworks apply the principles of inversion of control, separation of concerns,
and loose coupling to provide flexibility, increase reusability, and improve pro-
ductivity. (These concepts are discussed in the “Understanding Framework
Principles” section in this chapter.) Most importantly, these frameworks are
aligned with business-developer skills and business requirements.

In this chapter we will use the terms framework and business-application framework
interchangeably. However, it is important to keep the distinction between generic
“framework” and “business-application framework” in mind when you discuss
frameworks with a larger audience.

r539663 ch26.qxd 7/25/03 9:19 AM Page 820

821Chapter 26 ✦ Exploring Frameworks and Application Architecture

Now, maybe you’re wondering about the other types of frameworks. Here are a few
examples:

✦ Technical frameworks (such as a logging or distribution framework) solve
low-level problems

✦ Industry-vertical frameworks (such as a retail-banking or airline framework)
solve a category of high-level business problems

This chapter covers business-application frameworks because J2EE is most widely
used for business applications and adopting a business-application framework
would have the biggest impact on the success of J2EE.

Frameworks versus class libraries
How does a framework differ from a class library? A business-application frame-
work is implemented as a collection of classes that are packaged together, so in
that one way the two are similar. Other than that, however, frameworks are as dif-
ferent from class libraries as J2EE application servers (which also share the packag-
ing commonality).

Two qualities that can quickly distinguish a class library from a framework are com-
pleteness and extendibility. A class library performs a complete task, such as open-
ing a file or calculating the area of a circle. A business-application framework
provides the structure but not the complete solution for a category of problems.
The complete solution is formed when the user adds behavior to the framework.
Examples of the application areas business-application frameworks might focus on
are presentation, business logic, and persistence.

Extendibility is useful for distinguishing between broadly defined “frameworks”
(not just business-application frameworks) and class libraries. Log4J is an open-
source framework from Apache that does logging. Even though Log4J is a complete
solution, which you can install and start using immediately, it is not a class-library
because it is extendable. Log4J allows you to create custom classes and modify
configurations to extend the behavior of the framework. Class libraries are usually
used as-is with a “black-box” nature that does not expose the workings of the class
library and is not extendable. Before we go into more detail about the framework
qualities, we’ll take a look at why frameworks are needed.

The pains of J2EE
Frameworks have been around since early in the adoption of object-oriented-soft-
ware. They are definitely not new and are not only applicable to J2EE development.
But you may be asking yourself, “Why do I need frameworks when I have J2EE?”
Early on in the history of J2EE that might have been a more common question: J2EE
was new and was such a large improvement over what had existed previously (for
example, complex CORBA systems, vendor dependent application servers such as
Kiva, or custom in-house built application servers) that those adopting it thought it

r539663 ch26.qxd 7/25/03 9:19 AM Page 821

822 Part VIII ✦ Advanced Topics

was all they needed. However, the mere fact that you are reading this book implies
that J2EE is not the easiest technology to understand and use correctly. For all of
the problems that J2EE does address, there are still places where frameworks can
add value.

J2EE is infrastructure technology for creating distributed applications, an inher-
ently difficult task that requires much expertise. Many different people acting in a
variety of roles are usually involved in creating an enterprise J2EE application.
Satisfying the needs of this audience is the source of many pains that frameworks
can eliminate. Table 26-1 provides a glimpse of what these pains might be.

Table 26-1
The pains of J2EE

Role Pain

New J2EE developer Fear of the unknown in adopting J2EE

Too much to learn too quickly

Steps to successfully using J2EE are not clear

Experienced J2EE Bored with repetitive tasks
developer

Drained from extensive mentoring of new team members

Architect Wants uniform way to address similar problem areas across multiple
projects (as an example, Struts demonstrates the need for more
structure in the presentation layer)

Fear of making wrong decisions that will be expensive to change by
the time decisions are validated (or invalidated) late in development

Needs to be able to accommodate constantly changing
requirements

Project manager Not sure how to divide up work among team members

Not sure how to determine quality of work

Not sure how to determine work progress

Too long a delay before any progress can be shown to business
owner

Business owner Success with J2EE development requires team of expensive J2EE
experts

Every change is a slow, expensive redevelopment effort

Doesn’t realize economies of scale in building suite of J2EE
applications (applications do not go down in cost to create even
though company continues to build more)

r539663 ch26.qxd 7/25/03 9:19 AM Page 822

823Chapter 26 ✦ Exploring Frameworks and Application Architecture

The first step in solving many problems is first admitting that the problem exists.
Although ideally you would have had great success with J2EE, it is very likely that
some of the pains we mentioned resonate with your experiences. We have already
introduced frameworks and now we will go into more detail on business-application
frameworks and why they can help companies succeed with J2EE.

Understanding Framework Principles
In this section we are going to delve into more detail about the following principles
and concepts related to frameworks:

✦ Inversion of control

✦ Separation of concerns

✦ Loose coupling

✦ Extensibility

✦ Configurability

✦ Alignment

✦ Design patterns

Inversion of control
Inversion of control, sometimes referred to as the Hollywood Principle (“don’t call
us, we’ll call you”), refers to the flow of control and how it passes through the
framework. Frameworks distinguish themselves by retaining control of the applica-
tion execution, calling out in a pre-determined manner to be custom defined by the
framework structure. In contrast, a class library is called in to perform a particular
function before returning control back to the caller. An analogy would be an EJB
container: The container is in control and administers calls to EJBs, which are the
custom components. It is this principle that allows the framework to define the
environment and that lays the foundation for creating reusable classes that are
“plug-and-play.” Adopting the inversion-of-control principle makes the following two
principles much easier to adhere to.

Separation of concerns
This principle refers to the need to compartmentalize deliverables by the skills
required to create them. The three main benefits of applying this principle to frame-
work design are as follows:

r539663 ch26.qxd 7/25/03 9:19 AM Page 823

824 Part VIII ✦ Advanced Topics

People with particular skills can be assigned to the deliverable where they will
be most productive.

Work on the deliverables, instead of being sequential, can happen
simultaneously.

The deliverables created should be more reusable because they address par-
ticular needs, as opposed to coarse-grained results that address many
requirements. Components that address many requirements become more
complex, making them difficult to understand and more dependent on the
exact scenario for which they were originally built — both of which lead to
less reuse.

An application of this principle that you may be familiar with is the model-view-
controller (MVC) design pattern. Very briefly, the model-view-controller design pat-
tern describes an approach for cleanly separating those three areas related to cre-
ating user interfaces. That clean distinction enables the people with the most
relevant skills to create views, models, and controllers, and to work independently
of each other. Views and models are reusable and all three can be changed with
minimal (or at least known) impact on each other.

Loose coupling
This principle describes the need for independence among the classes involved in
the framework. This independence involves late binding among the classes
involved, meaning that the relationship among the classes is established at run-
time. Loose coupling is the opposite of tight coupling, wherein the relationship is
established during the compile. Loose coupling and late binding are powerful con-
cepts that enable the framework to be fluid and to accommodate the changing
requirements that are a natural part of application development and maintenance.

Extensibility
Extensibility is the ability to significantly change or enhance the behavior of the
framework by providing new classes for the framework to use. These classes can be
subclasses of existing classes or new implementations of the interfaces defined by
the framework. By supporting extensibility, the framework opens itself to the vari-
ety of customizations that may be required initially or in the future. This openness
to change is critical if the framework is to have a long life — no matter how com-
pletely or exactly a framework fulfills current requirements, those requirements are
destined to change.

Configurability
Configurability is the capacity of the framework to use external metadata to affect
the behavior of the framework. Unlike extensibility, configurability is not used to
change the core algorithm employed by the framework but rather to influence or

r539663 ch26.qxd 7/25/03 9:19 AM Page 824

825Chapter 26 ✦ Exploring Frameworks and Application Architecture

provide input to the algorithm to reflect the desired application behavior. This con-
figuration should not become so complex as to become a replacement for coding;
that kind of extreme customization should be accomplished through extensibility.

One of the challenges of trying to make a framework configurable is knowing where
it is best applied. A process can be applied to determine those areas. The process is
similar to determining equations from story problems in algebra, when you attempt
to find an algorithm that contains variables and produces the correct results when
values for those variables are plugged in. In the case of configurability, the algo-
rithm is captured in code while the value for the variables comes from external
metadata.

The process consists of following these straightforward steps:

1. Find classes that contain behaviors that are identical except for slight vari-
ances. Often those variances will be based on data (that is, variables or con-
stants) as opposed to code variances, although that is not always the case.

2. Attempt to derive a common algorithm that could be used to replace the cus-
tom code with the variables now being read in from some external source
(usually an XML configuration file).

3. Test and refine your algorithm if necessary. This is also the point at which you
can use your experience to decide whether the configuration makes sense. Is
it something that would actually be used in a real application? Does it make
sense — is the goal of the configurability evident?

4. Be wary of configurations that actually make things more complicated and
cumbersome as opposed to simplifying the problem — sometimes extensibil-
ity, even though it seems repetitive, is the better approach.

The benefits of configurability are as follows:

Less custom code to write, debug, and maintain

Easier to review and maintain configuration than custom code

Ensures that the algorithm remains consistently applied; this is in contrast to
extensions, where the algorithm can be drastically modified by the user (for
better or worse)

Alignment
One of the most important principles of a business-application framework is that it
must be aligned with developer skill sets and business requirements. One of the
biggest challenges in adopting J2EE is that not many J2EE experts are available,
especially not when compared to the large numbers of developers for legacy appli-
cations (such as COBOL) or departmental-level applications (such as Visual Basic,
Web CGI, and so on). A business-application framework should enable a team of

r539663 ch26.qxd 7/25/03 9:19 AM Page 825

826 Part VIII ✦ Advanced Topics

non-J2EE experts to successfully map their business requirements to the functional-
ity that satisfies those requirements. This happens when the framework makes it
very clear, almost in a step-by-step fashion, how specific requirements are imple-
mented and when the framework makes the most of the existing developer skills.

You may be thinking that J2EE should be the source for this alignment. However,
J2EE is usually focused on solving lower-level technical problems, not aligning with
the developer skills or business application requirements. An easy example of
where J2EE is not aligned with developers creating business applications is the
complexity of both session and entity Enterprise JavaBeans (EJBs). Session and
entity EJBs are some of the core components of J2EE where developers will spend
much of their time, yet it is much easier to make mistakes with them than it is to
use them correctly. These mistakes originate both in design (for example, how
many EJBs should be used, what should the interface be) and development (for
example, correctly developing the Home Interface, Remote Interface, EJB
Implementation, and deployment descriptors).

Java ServerPages (JSPs) are an example of where J2EE is more aligned with the
developer skills. JSPs were added to J2EE because much servlet (of which JSPs are
a subclass) development was being done to output HTML. Before JSPs were intro-
duced, creating an HTML user interface from servlets involved coding in Java to
output HTML strings. This coding required Java developers and the code itself is
difficult to create and maintain because the format of the code doesn’t match the
traditional HTML file. With JSPs the user interface files are formatted like traditional
HTML files. HTML developers with existing skills can be more successful, eliminat-
ing the need to train HTML developers Java or Java developers HTML. However,
even with the benefits of JSPs, it is not clear how page navigation, data validation,
and business logic should be structured. The Struts framework (discussed shortly)
builds on JSPs and servlets by making it easier to translate business application
requirements directly to the required implementation. So even though JSPs are bet-
ter aligned with developer skills than servlets, more is needed to create alignment
with application requirements.

Design patterns
At this point it is useful to mention design patterns and how they apply to frame-
works. Frameworks are a valuable source of industry best practices; using design
patterns can only improve the quality of the framework.

See Chapters 23 through 25 for discussions of patterns.

In addition to the design patterns discussed in Part VII of this book, object-oriented
(OO) design patterns are also available, such as those listed in Design Patterns by
the Gang of Four (Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides;
Addison-Wesley, 1995). In the context of a framework for J2EE applications, the J2EE
and OO categories of design patterns have different purposes. The framework

Cross-
Reference

r539663 ch26.qxd 7/25/03 9:19 AM Page 826

827Chapter 26 ✦ Exploring Frameworks and Application Architecture

should employ OO design patterns in its construction, and it should apply J2EE
design patterns to the problems it solves.

This is an important distinction best illustrated by a quick example. If you were
using more than one framework, let’s say one for navigation and one for persis-
tence, they could both employ the same OO patterns — such as facade, flyweight,
and singleton — in their construction. However, because these frameworks are
addressing different application areas, they would use different J2EE design pat-
terns. The navigation framework might use the model-view-controller pattern while
the persistence framework might use the value-object and data-access-object
patterns.

Codifying design patterns in a framework results in several benefits, including the
following:

Consistent implementation of the design pattern will be used by everyone, as
opposed to each person using his or her own implementation

Team members can all benefit from the design pattern without having to be
experts in design patterns or going through the effort of translating the con-
cepts into practice

Team members will benefit from the understanding of the design patterns
gained by using an expert implementation

Examining the Struts framework example
The best way to illustrate the framework principles is to go through an example of
their implementation. We will be using Struts as an example because it is an open-
source product that you can download and go through in more detail on your own.
For those not familiar with Struts, it is a framework for the presentation layer of a
Web application. Struts is available from Apache as part of the Jakarta Project. For
more information go to http://jakarta.apache.org/struts/index.html.

Design patterns
We will first cover the design patterns that Struts implements because that will
make it easier to discuss the other aspects of the framework. Struts is an implemen-
tation of the model-view-controller (MVC) design pattern as it applies to Web appli-
cations. Using the MVC design pattern for server side based user interfaces is
informally known as MVC2 or Model 2. The MVC design pattern was introduced
briefly earlier in this chapter in the section “Separation of concerns.” It is an old
design pattern that originated in the Smalltalk graphical user interface (GUI) world.
It describes how a user interface should be divided into the following components:

✦ Model represents the data for the user interface

✦ View determines how those data will be displayed

✦ Controller orchestrates the user interaction with the views and models

r539663 ch26.qxd 7/25/03 9:19 AM Page 827

828 Part VIII ✦ Advanced Topics

You can read about this design pattern by going to the Sun site at http://java.
sun.com/blueprints/patterns/MVC-detailed.html.

Inversion of control
When you are using Struts, all incoming Hypertext Transfer Protocol (HTTP)
requests are intercepted by a controller servlet. This servlet has the following
responsibilities:

✦ Analyzing the request

✦ Accessing the Struts configuration

✦ Determining which action class to execute

This combined behavior is the logical controller described as part of MVC. It is a
classic example of the inversion-of-control design principle. (Inversion of control
was introduced earlier in this chapter in the section of the same name.) The incom-
ing request is handed off to the Struts framework, which determines which custom
class is the correct one to execute. Figure 26-1 shows this flow of control and illus-
trates how the Struts controller retains control, even though it calls out to custom
classes determined by its configuration. Figure 26-2 goes into more detail by show-
ing a sequence diagram that identifies specific Struts classes and where they are
involved in the execution flow.

Figure 26-1: This high-level Struts-processing flow shows the
interaction of the model, view, and controller, with the Struts
controller retaining control throughout.

Separation of concerns
Struts provides an easy example of the separation of concerns introduced earlier in
this chapter because its guiding MVC design pattern is based on that concept. The
model, view, and controller are distinguished entities that should have minimal or
no knowledge of each other. That allows them to be created independently by the

Struts
controller

Custom
configuration

Custom model

Custom view

(2) Load
configuration

(3) Execute
model

(4) Display
view

(1) Incoming
HTTP request

r539663 ch26.qxd 7/25/03 9:19 AM Page 828

829Chapter 26 ✦ Exploring Frameworks and Application Architecture

respective expert in each area as well as leading to greater reuse. In Struts, the con-
troller expert will be responsible for organizing the struts-config.xml; the view
expert will spend time creating JavaServer Pages (JSPs), and the model expert will
work with the Struts Action classes. The skills required in the different areas of
Struts are shown at a high level in Figure 26-3.

Figure 26-2: The behavior that takes place when processing a request is shown in
this simplified sequence diagram of Struts.

Figure 26-3: Different skills are required to develop in the various areas
of Struts.

Skills: XML
and struts
expertise

Skills: JSP,
tag libraries

Struts
controller

Custom
configuration

Custom model
Skills: Java
and some
J2EE

Custom view

ActionServlet

Struts controller Custom
configuration

Custom
view

Custom
model

HttpRequest

RequestProcessor struts-config.xml JSP

Action, ActionForm,
and/or

ActionForwardActionMapping

process

process

determining mapping

process (determined by ActionMapping)

instantiate

display (determined by ActionMapping)

r539663 ch26.qxd 7/25/03 9:19 AM Page 829

830 Part VIII ✦ Advanced Topics

Loose coupling
Loose coupling was introduced earlier in this chapter and Struts achieves it by
using the controller as a mediator. The controller is the component that determines
which models and views are involved in a user interaction. Because the compo-
nents (the JSPs, actions, and so on) do not directly refer to each other, they can
easily be changed and reused. And because the controller uses the configuration to
determine which custom classes to load, and only refers to the Struts defined
superclass, the custom classes can be changed without this change affecting the
controller.

However, Struts does not provide loose coupling with the controller mechanism. If
you want to change the behavior of the Struts controller you need to delve into the
Struts source code and make somewhat invasive modifications. If the controller
logic is encapsulated you can potentially change the logic of the controller by plug-
ging in a new implementation instead of directly modifying the Struts source code.

Listing 26-1 is from the RequestProcessor class and shows the controller-execu-
tion path, how the controller only refers to base classes (and not specific classes),
and how the flow is determined by the configuration.

Listing 26-1: Struts RequestProcessor code snippet

/**
* <p>Process an <code>HttpServletRequest</code> and create the
* corresponding <code>HttpServletResponse</code>.</p>
*
* @param request The servlet request we are processing
* @param response The servlet response we are creating
*
* @exception IOException if an input/output error occurs
* @exception ServletException if a processing exception occurs
*/
public void process(HttpServletRequest request,

HttpServletResponse response)
throws IOException, ServletException {

.... code removed from example

// Identify the mapping for this request
ActionMapping mapping = processMapping(request, response, path);
if (mapping == null) {

return;
}

// Check for any role required to perform this action
if (!processRoles(request, response, mapping)) {

return;
}

r539663 ch26.qxd 7/25/03 9:19 AM Page 830

831Chapter 26 ✦ Exploring Frameworks and Application Architecture

// Process any ActionForm bean related to this request
ActionForm form = processActionForm(request, response, mapping);
processPopulate(request, response, form, mapping);
if (!processValidate(request, response, form, mapping)) {

return;
}

// Process a forward or include specified by this mapping
if (!processForward(request, response, mapping)) {

return;
}
if (!processInclude(request, response, mapping)) {

return;
}

// Create or acquire the Action instance to process this request
Action action = processActionCreate(request, response, mapping);
if (action == null) {

return;
}

// Call the Action instance itself
ActionForward forward =

processActionPerform(request, response,
action, form, mapping);

// Process the returned ActionForward instance
processActionForward(request, response, forward);

}

Extensibility
You should be able to extend frameworks by changing classes or adding new imple-
mentations of interfaces. Struts enables you to do this by providing classes, such as
Action or ActionForm, that can be subclassed and then used by Struts once they
are added to the configuration.

One way in which Struts could improve is by using more interfaces as an extension
mechanism as opposed to just subclassing. In Java requiring subclassing as an
extension approach is an especially constraining limitation: In Java an object can
only have one superclass because of the single-inheritance restriction.

Listing 26-2 is from a Struts example and shows a custom Action class that extends
the Struts Action class.

r539663 ch26.qxd 7/25/03 9:19 AM Page 831

832 Part VIII ✦ Advanced Topics

Listing 26-2: Custom Action-class code snippet

public final class LogonAction extends Action {
... code removed ...

/**
* Process the specified HTTP request, and create the corresponding HTTP
* response (or forward to another web component that will create it).
* Return an <code>ActionForward</code> instance describing where and how
* control should be forwarded, or <code>null</code> if the response has
* already been completed.
*
* @param mapping The ActionMapping used to select this instance
* @param form The optional ActionForm bean for this request (if any)
* @param request The HTTP request we are processing
* @param response The HTTP response we are creating
*
* @exception Exception if business logic throws an exception
*/
public ActionForward execute(ActionMapping mapping,

ActionForm form,
HttpServletRequest request,
HttpServletResponse response)

throws Exception {

// Extract attributes we will need
Locale locale = getLocale(request);
MessageResources messages = getResources(request);
User user = null;

// Validate the request parameters specified by the user
ActionErrors errors = new ActionErrors();
String username = (String)

PropertyUtils.getSimpleProperty(form, “username”);
String password = (String)

PropertyUtils.getSimpleProperty(form, “password”);
UserDatabase database = (UserDatabase)
servlet.getServletContext().getAttribute(Constants.DATABASE_KEY);

if (database == null)
errors.add(ActionErrors.GLOBAL_ERROR,

new ActionError(“error.database.missing”));
else {

user = getUser(database, username);
if ((user != null) && !user.getPassword().equals(password))

user = null;
if (user == null)

errors.add(ActionErrors.GLOBAL_ERROR,
new ActionError(“error.password.mismatch”));

}

r539663 ch26.qxd 7/25/03 9:19 AM Page 832

833Chapter 26 ✦ Exploring Frameworks and Application Architecture

// Report any errors we have discovered back to the original form
if (!errors.isEmpty()) {

saveErrors(request, errors);
return (mapping.getInputForward());

}

// Save our logged-in user in the session
HttpSession session = request.getSession();
session.setAttribute(Constants.USER_KEY, user);

if (log.isDebugEnabled()) {
log.debug(“LogonAction: User ‘“ + user.getUsername() +

“‘ logged on in session “ + session.getId());
}

// Remove the obsolete form bean
if (mapping.getAttribute() != null) {

if (“request”.equals(mapping.getScope()))
request.removeAttribute(mapping.getAttribute());

else
session.removeAttribute(mapping.getAttribute());

}

// Forward control to the specified success URI
return (mapping.findForward(“success”));

}

.... code removed
}

Configurability
The Struts configuration plays a central role in how the framework executes. (We
have talked about it already in the earlier sections “Loose coupling” and
“Extensibility.”) The control Struts provides through configuration as opposed to
coding is probably the most important factor in the popularity of Struts. Note is
that it is not making everything a configuration parameter that matters, but under-
standing which aspects of the framework to make configurable.

Another aspect of configuration is the tradeoffs between human readability and
complexity — this tradeoff places an emphasis on a quality configuration design. It
is very easy to have configuration that is so complex that working with the configu-
ration directly is at best very error prone and at worst almost impossible. While
that complexity may allow a dramatic improvement in capabilities, it may not be
worth the tradeoff in successfully managing the configuration. Unless the frame-
work comes with a tool for creating and managing its configuration, the design of
the configuration format itself is just as important as the functional-class and inter-
action designs.

r539663 ch26.qxd 7/25/03 9:19 AM Page 833

834 Part VIII ✦ Advanced Topics

Listing 26-3 is a snippet of the struts-config.xml file. From this action mapping, you
can see how an Action class, LogonAction, is configured to handle a request for
the “/logon” URL. If an exception takes place, the mapping routes the user to
changePassword.jsp.

Listing 26-3: Struts struts-config.xml configuration snippet

... config removed ...
<!-- Process a user logon -->
<action path=”/logon”

type=”org.apache.struts.webapp.example.LogonAction”
name=”logonForm”
scope=”session”
input=”logon”>

<exception
key=”expired.password”
type=”org.apache.struts.webapp.example.ExpiredPasswordException”
path=”/changePassword.jsp”/>

</action>
... config removed ...

Alignment
The alignment of Struts with the functional requirements and the requirements of
the business developer is a reflection of its core MVC design pattern as well as the
quality of the implementation. When using Struts, it is easy for a novice J2EE devel-
oper to successfully translate user-interface specifications into a working applica-
tion. Imagine making that attempt with nothing but the servlet and JSP J2EE
specifications. It is not that servlets and JSPs are flawed — on the contrary, they are
essential to the Struts framework — but they are not aligned with the needs of the
business developer. Figure 26-4 shows the alignment provided by Struts between
the business requirements that Struts addresses and the skills possessed by the
development team.

This concludes our discussion of framework principles and the walkthrough of
Struts as an example of those principles. Struts was chosen as an example because
it can be easily downloaded from the Apache Web site and because it is an open-
source framework. An open-source framework allows scrutinizing of both the user
experience with the framework and also the framework implementation internals.
Going through Struts in more detail on your own will provide a thorough under-
standing of framework principles.

r539663 ch26.qxd 7/25/03 9:19 AM Page 834

835Chapter 26 ✦ Exploring Frameworks and Application Architecture

Figure 26-4: Struts aligns business requirements with the skills of the
development team.

Understanding Framework Objectives
and Benefits

So far we have described frameworks and covered some of the pains of J2EE that a
framework might address. Now we will bring those two topics together by detailing
the objectives of a framework. We will do this by categorizing the objectives based
on the following stages in the software lifecycle:

✦ Design

✦ Development and testing

✦ Production and maintenance

These objectives are discussed in the following sections.

Design
Adopting a framework streamlines the design process. Because the framework is
aligned with the business requirements, the designs are vastly simplified. Much of
what would have had to be designed now comes as part of the framework. As a
result, the designs are focused on the business problem and business details, and
less complicated by the mapping of those requirements to the underlying technology.

Development team member:
Architect

Development team member:
Java developer

Development team member:
User interface developer

Requirements: site navigation
and determination of what

logic to execute

Requirements: business data
structure and business logic

Requirements: user interface
presentation and behavior

Custom
configuration

Custom model

Custom view

r539663 ch26.qxd 7/25/03 9:19 AM Page 835

836 Part VIII ✦ Advanced Topics

Development and testing
Frameworks improve development and testing by providing the following benefits:

✦ Greater developer productivity — A framework aligns with the business
developer and requirements to enable the developer to be productive
immediately.

✦ Less coding — Much of what was custom code is now replaced entirely by the
framework or has become framework configuration; this is a benefit in terms
of development as well as testing, as there is less code to test.

✦ Greater consistency — Many similar development challenges are usually
encountered by different team members and solved in different ways; by
employing a framework you create a consistent approach for use across the
application.

✦ Immediate results — By streamlining the mapping of requirements to func-
tionality, you reduce the time necessary for development. This allows for
more and faster iterations, which produce a higher-quality product.

✦ Greater flexibility — The loose coupling provided by the framework creates
flexibility, in response to both changing business requirements and a changing
technology landscape.

✦ More effective architects — The structure provided by the framework enables
the architects to spend their time making critical decisions instead of being
stretched thin in an effort to enforce best practices (which the framework
does for them).

✦ More effective managers — A big challenge for a project manager is dividing
up the work and assigning the right resources to the right people, both of
which are more easily done within the structure of the framework.

Production and maintenance
Frameworks are valuable for production and maintenance because of the flexibility
and consistency they provide. If you employ a framework, the application can eas-
ily respond to changing business requirements and technology. Changes to produc-
tion applications have historically required finding out how an individual developer
solved a particular problem and then invasively changing that behavior. A common
solution to the invasive historical approach is to use members of the original devel-
opment team to maintain the application in production, which is not a very efficient
use of resources. With a framework in place, a consistent approach is used across
the application and has flexibility as one of its core principles. This means that it is
easy to locate the part of an application that is affected by new requirements and,
just as important, to make changes in a controlled manner.

r539663 ch26.qxd 7/25/03 9:19 AM Page 836

837Chapter 26 ✦ Exploring Frameworks and Application Architecture

Application portfolios
The previous objectives are relevant to a single application going through the
development lifecycle. But what if your company has many applications that are
being slated for development? The benefits of employing a business-application
framework are greatly amplified when the framework is applied across a portfolio of
applications. These benefits increase because of the vastly lowered development
and production costs and more importantly because of the improved ability of the
applications to respond to business changes.

Frameworks are grounded in their objectives and it is hard to argue that the bene-
fits they propose are worthwhile. This is because frameworks are often a few steps
ahead of the application development; they are often based on applying yesterday’s
experience to tomorrow’s projects. How to take a leap forward with architecture is
the next topic.

Reviewing Application Architecture
beyond Frameworks

While frameworks provide a great advantage over using J2EE alone, they are not the
end of the evolution of best practices. Architecture is growing in prominence and
promises to raise the bar for the benefits already achievable with frameworks. In this
section we will introduce architecture and discuss two application architectures.

Overview of architectures
Like framework, architecture is a word that has many definitions or levels of mean-
ing. In general, it refers to the guiding principles that form the foundation of how
elements are organized. You can think of the architecture of a bridge, which is the
design and structure that keeps the bridge from crumpling into an unorganized
mass of steel and concrete.

In our industry, architecture by itself is not a specific enough term because it is
applied to many concepts. Two that everyone may be familiar with are enterprise
architecture and application architecture. Enterprise architecture is concerned with
detailing the whole of an enterprise’s information-technology resources and configu-
rations, including such things as network topology, security, production applications,
and data-center hardware. The Zachman Framework for Enterprise Architecture is
one of the most renowned attempts to define enterprise architecture. The Software
Productivity Consortium provides an overview of the Zachman Framework on their
Web site (http://www.software.org/sysmigweb/framework/fwk-home.asp).
Application architecture, on the other hand, is concerned with the needs of a particu-
lar application. Application architecture is the topic of this section.

r539663 ch26.qxd 7/25/03 9:19 AM Page 837

838 Part VIII ✦ Advanced Topics

When discussing architectures it is necessary to distinguish between architectures
as concepts described on paper and architectures that have been realized (or are
realizable) in a software implementation. Both types of architecture are necessary
and they are equally important. Even when the architecture is a software product it
should be fully documented and described so that the architecture can be under-
stood and communicated. The Zachman Framework for Enterprise Architecture
mentioned earlier is an example of an architecture that exists only as a documented
concept. The application architectures discussed in this section are software
products.

A common question here may be “Isn’t J2EE an application architecture?” J2EE is an
infrastructure technology that will definitely play a part in helping to define your
application architecture, but by itself it is not an application architecture. Already
in this chapter we have discussed some of the pains of adopting J2EE. We discussed
them in the context of frameworks but they also apply to application architecture.
These pains do not illustrate that J2EE is not a solid infrastructure, but they do
illustrate that there is a gap between what J2EE provides and the needs of the
teams who are using J2EE. This gap is addressed by application architecture.

The next two sections will explain the following architectures:

✦ Traditional application architecture

✦ Services-oriented architecture (SOA)

Traditional application architecture
The first architecture we want to discuss is traditional application architecture. This
architecture is concerned with the design, development, and production character-
istics of a traditional all-in-one application — usually an application with a user
interface, transactional business logic, and backend data stores.

Building a traditional application architecture requires:

1. Layering the application so that the user interface is separate from the busi-
ness logic, which is separate from the data-access functionality

2. Structuring the user interface; a typical approach applied here is the use of
the model-view-controller design pattern

3. Structuring the business logic so going from design requirements to imple-
mentation is easy

4. Creating reusable components

5. Structuring the data access and persistence behavior to isolate the intricacies
of the data handling from the business logic; the data-access layer also needs
to take into account transactional and object-relational mapping concerns;
ideally the data layer will be reusable across applications

r539663 ch26.qxd 7/25/03 9:19 AM Page 838

839Chapter 26 ✦ Exploring Frameworks and Application Architecture

6. Supporting partitioning the application between multiple tiers that may be
deployed in different physical locations

7. Providing an approach for integrating with legacy or third-party applications;
the details of this integration should be encapsulated

8. Defining the application components and the interfaces among those compo-
nents where necessary in the previous requirements

9. Describing an approach for unit-testing and integration-testing the application

10. Describing how the application will be monitored in production

11. Describing how the application can be upgraded in production

12. Describing how security can be applied to the application

13. Describing how other applications will integrate with the application

Even from this brief list, it is easy to see that the requirements for building a tradi-
tional application architecture are very comprehensive. These requirements are
beyond the scope of a business-application framework. Later in this section we will
go over those differences in more detail.

Services-oriented architecture
Services-oriented architecture (SOA) is a relatively new incarnation of application
architecture. It is sometimes also referred to as Web-services architecture or services-
oriented application architecture. SOA is distinct from the traditional application
architecture in that it regards a service, as opposed to the entire application, as the
deliverable. Individual services may be federated to form what is traditionally
thought of as an application. (Services in this context refers to software functional-
ity that has a network-addressable interface; Web services may be one technology
approach to building services but you can use other approaches as well, such as
Common Object Request Broker Architecture (CORBA), Enterprise JavaBean (EJB),
or Java Message Service (JMS)-based services.)

An example of decomposing an application into services should make things more
clear. Say an airline has services for searching for available flights, booking flights,
checking in for flights, and determining current flight status. Many different types of
interfaces could then be built to access these services, such as a Web-based inter-
face for the customer or a thick-client application for the airline agents.

Advantages of SOA
SOA provides much more than just the architecture for a single application. One of
the biggest advantages of SOA is that it enables you to break away from the mindset
of traditional applications and instead start thinking in terms of services. SOA more
closely aligns the application architecture with the enterprise architecture. With
traditional application architecture, the development process emphasizes the

r539663 ch26.qxd 7/25/03 9:19 AM Page 839

840 Part VIII ✦ Advanced Topics

requirements and design of the application above all else. The first concern is
building and delivering the application; determining how the application fits into
the enterprise is secondary. The result is an enterprise comprised of many dis-
parate applications with fragile integration or no integration at all. Reuse in that
environment is nearly impossible, which causes the enterprise to make redundant
investments in similar functionality. This slows information-technology (IT) respon-
siveness to changing requirements, which reduces the agility of the business,
resulting in lost opportunities. Instead of being an asset, the enterprise’s growing
portfolio of applications becomes an anchor, which slows the business down.

SOA, on the other hand, is focused on providing services. Services are defined by
contracts; contracts describe the interface of the service, how to call it, where it
resides, and other details. The implementation of a contract is called a service
provider. The user of that contract is called a service consumer. The idea of provid-
ing services is not confined to the scope of a single application, but applies to all of
the IT software assets. SOA can be alternately thought of as an application architec-
ture, an enterprise architecture, or an integration architecture. This should not
cause confusion, but rather reinforce how an SOA reflects the true concerns of
building IT assets. Integration cannot be an afterthought and the enterprise cannot
afford to invest in monolithic all-in-one applications that slow down the business.

Web-service implementation
We mentioned how services can be implemented as Web services or using other
technologies. A Web-service implementation refers to services that use the Simple
Object Access Protocol (SOAP), Web Services Definition Language (WSDL), and
Universal Description, Discovery, and Integration (UDDI) protocol standards. In the
Java environment, programmers often have questions about services and how they
relate to the J2EE connector architecture. Is the connector architecture a good
technology to use as the basis for an SOA or is it an alternative to an SOA? The
answer has to do with granularity and coupling. Most discussions about SOA
revolve around document-centric (course-grained) business services that are
loosely coupled. Loose coupling is when a service consumer can use a service
provider even though they are not using the same platform or development lan-
guage and they were probably built with no knowledge of each other.

The connector architecture is used for building API-centric (fine-grained), J2EE-
specific resource adapters for point-to-point integration with non-Java systems. This
integration is usually tightly coupled in the sense that the connector architecture
supports strict transaction, security, and connection management, which are not
normally part of the loosely coupled SOA environment.

Here is an example of how they might work together. In an SOA you might have a
Java-based service provider that in its own implementation uses the connector
architecture to integrate with a backend legacy system. A consumer of that service
wouldn’t care that the service provider was written in Java or that it uses the con-
nector architecture.

r539663 ch26.qxd 7/25/03 9:19 AM Page 840

841Chapter 26 ✦ Exploring Frameworks and Application Architecture

Application architecture versus frameworks
Now that you have a better understanding of application architecture, we can form
a comparison with frameworks. Two common distinctions exist between business-
application architectures and business-application frameworks. The first is the cov-
erage of functional requirements. Frameworks usually address a small slice of the
application functionality while architecture provides a holistic structure for build-
ing the entire application. The second distinction is the breadth of the offering.
Frameworks are usually focused on the development of the application while archi-
tecture is not only concerned with improving development but also with all the
other facets of the application-development lifecycle, even when the application is
in production and maintenance.

One effect of the framework only supporting a slice of the requirements is that in
order to address the entire application, you will probably need more than one busi-
ness-application framework. While this is a common situation, it is not ideal for two
reasons. First, a lot of work can be involved in integrating the frameworks. This
integration should not be taken lightly because the frameworks may have differ-
ences that cause them to be less than compatible. Second, the resulting application
may look like a collage assembled from different materials. This can result in
increased development costs and higher ongoing maintenance costs.

In the fast moving world of application development, we often look just one step
ahead because we have our heads down doing the demanding work of today. The
intention of this discussion of application architecture was to shed some light on
the landscape ahead of frameworks. You won’t start looking for a better solution
until you know it is out there! Now we continue forward and discuss how you can
come to have a framework.

Building Your Own Framework
If you are familiar with IT, it should not be a surprise that many frameworks are
built in house. This is a reflection of the ingenuity of software engineers faced with
a completely custom technology stack. Remember that frameworks have been
around for a long while, much longer than J2EE. Before J2EE, many enterprises also
built their own runtime infrastructures in lieu of using J2EE application servers. In
that completely custom environment, the likelihood of finding a framework on the
open market that could be brought in was minimal if not nonexistent. However, now
that Java and J2EE comprise the common enterprise infrastructure, the market-
place can deliver frameworks based on a standard foundation.

Building versus buying
So the question becomes, “Do you build your own framework (or possibly continue
to invest in one you’ve already built) or do you bring in a framework from the out-
side?” This isn’t necessarily a buy-versus-build decision, because some open-source

r539663 ch26.qxd 7/25/03 9:19 AM Page 841

842 Part VIII ✦ Advanced Topics

options do not have an initial price tag. You can answer this question in two
ways — either from the business point of view or from the technology point of view.
On the business side, you have to ask yourself if building frameworks is one of your
differentiators. If it is not, then why spend time there when you should be spending
it on features with which you can create differentiation. On the technology side, you
have two factors to consider: Is there something unique about your requirements
or your environment such that you don’t think you’re a fit for a framework from the
outside, and just as importantly, do you have the time it takes to design, develop,
test, document, maintain, and train resources on your own frameworks in addition
to performing all your other tasks?

A healthy comparison exists between the build-versus-buy considerations for
frameworks and those for application servers. In the early days of the Internet, a
demand existed for a platform for building Web applications. In the absence of any
products, many enterprises built their own platforms. Once J2EE emerged as the
standard for this platform vendors started offering productized application servers.
At that point enterprises switched from considering building their own application
servers to determining which application server they should bring in from outside.
This same evolution also occurred with operating systems, office-productivity
applications, and databases, and will continue to occur in the future.

So while it may be possible to build your own framework, the wise decision is to do
some research and find a product on the market that satisfies your needs. This
enables you to spend your time and effort where they add the most value to your
business. If you decide to bring in a framework, there are three sources for obtain-
ing them: open-source development, software vendors, and included with the offer-
ings of a system integrator. In the following sections we’ll cover the pros and cons
of each of these sources.

Open source
Struts and Log4J were introduced earlier in this chapter in the section “Frameworks
versus Class Libraries.” Recall that they are a couple of open-source frameworks.
Also recall that even though Log4J is a framework, it is not a business-application
framework. Open-source frameworks are similar to other open-source products
such as the Linux operating system or the JBoss application server. In order for a
product to be considered open source you must be able to download and use it for
free, as well as have access to the source code. The most obvious indication that a
product is open source is that it subscribes to either the GNU General Public
License (GPL, http://www.gnu.org/copyleft/gpl.html) or Apache Software
License (http://www.apache.org/LICENSE.txt). As always, the buyer should
beware of unscrupulous vendors who claim their product is open source but who
have not made that status official through the adoption of an open-source license.
This may lead you to adopt what you thought to be an open-source product only to
have the vendor later recant.

r539663 ch26.qxd 7/25/03 9:19 AM Page 842

843Chapter 26 ✦ Exploring Frameworks and Application Architecture

Advantages of open source
Let’s first discuss some of the positive qualities of the open source movement.
Open source products have the advantage of becoming ubiquitous because they
carry no upfront cost. Download the open-source framework and start using it.
With this easy availability, open-source frameworks that are useful become popular
and are adopted by the community. This means that books are written about them,
developers contribute to their continued evolution, they can have further influence
on the evolution of the J2EE specification, and people off the street may already be
able to work with them.

Disadvantages of open source
Now let’s cover some of the downsides of using open-source products. A couple of
times now we have referred to open source as having no “initial” or “upfront” costs.
This is because some cost is always involved in bringing in a product. This cost is
incurred when you need to support the open-source product. This support can take
the form of training people, making enhancements, debugging, and handling pro-
duction problems. While having access to the source code sounds like a good thing
(because it gives you the feeling of full control over your destiny), it can cause its
own problems.

It is possible to take an open-source product and enhance it in such a way that you
can no longer use new versions as they become available, or worse yet, different
departments in the enterprise can enhance it independently until it essentially
becomes two different products. Either way, you have gone from “build versus
bring in,” to “bring in and then build.” The end result is that you now “own” the
open-source product and have to continue to invest in its support and evolution.

A final concern with regard to open source is that, because there is no price tag,
these products often slip by a company’s official process for bringing in third-party
software. While this can be a good thing from the point of view of the developer
(who may need the software right away and be unable to afford a lengthy approval
process), it can often come back to haunt you for the reasons we mentioned earlier.

Software vendor
Next is the option of purchasing a framework from a software vendor. Vendors offer-
ing frameworks for J2EE have been increasing in number as J2EE has matured and
become more widely adopted. Some of these vendors have grown up around Java
and J2EE and others have made the transition from a previous technology.

Advantages of using software vendors
The pros of going with a vendor are that you will get a fully documented product
supported by the vendor and the vendor will continue to invest in the product evo-
lution. The vendor should also articulate a product road map, support old product
versions, and maintain backward compatibility as you move from one version to
the next.

r539663 ch26.qxd 7/25/03 9:19 AM Page 843

844 Part VIII ✦ Advanced Topics

Disadvantages of using software vendors
The con of using a vendor offering is that you have to pay to license the product.
Justifying this upfront cost can require some work but is usually worth it in the long
run. If nothing else, going through the process should clarify your requirements,
which are themselves valuable for whichever framework option you decide upon.
Something you should keep in mind when contemplating a vendor offering is that
the product should be usable without requiring extensive use of the vendor’s con-
sultants. In other words, make sure that the product is actually a product, and not
just a sales tool for the vendor’s professional-services group.

System Integrators (SIs)
Finally, framework offerings are available from system integrators (SIs). From the
small SIs to the big ones (such as IBM and Accenture), professional-services teams
may bring to the table a framework that they built in house. These frameworks may
appear as line items on the project proposal with an associated cost, they may be
used as talking points to differentiate the SI from their competition, or the SI may
just use them behind the scenes. One big variable is whether or not a real frame-
work exists. Often the framework may be a conglomeration of code that the SI takes
from one project to the next and that exists as a framework only in his or her sales
and marketing.

Advantages of using SIs
Using an SI framework has two pros. Let’s make the assumption that the SI actually
has a quality framework. Under that assumption, the quality of the deliverables
from the SI will probably be better than they would have been had the SI not used a
framework. In addition, the SI should be more productive with his or her frame-
work. The end result is that you get a higher-quality product for less money. While
this may sound great, the cons may outweigh these pros.

Disadvantages of using SIs
The cons of this situation depend on a single factor. Does the SI make the frame-
work product available on the open market, either as a product that can be pur-
chased or as open source? If the answer is yes, then refer to the previous sections
on those sources for frameworks. Otherwise, you should have serious doubts about
using the framework. Why? First, the quality and competitiveness of the framework
cannot be verified unless a developer engages with the SI. Second, using the SI
framework will build a dependence on the SI. To realize many of the benefits of a
framework you should use it uniformly on all projects. This will not be possible if
the only way to obtain the product is to use the SI services — unless you are willing
to make that commitment.

Third, products take serious commitment to build and support; if the SI hasn’t
made this investment, you may be getting a shell of a framework that is really just a
selling point for services.

r539663 ch26.qxd 7/25/03 9:19 AM Page 844

845Chapter 26 ✦ Exploring Frameworks and Application Architecture

Finally, if the product isn’t available on the open market, the only source for exper-
tise and support for the framework will be the SI. There is very little likelihood that
you will find someone who knows the framework to join your company or that you
will find other SIs who know the framework.

As you can see, there are many ways to acquire a framework. Which one is right for
you depends on your environment. What are the costs and benefits and risks on
which you are willing to trade off? One of the risks for any technology is the future;
once you bring in frameworks and make them part of your application, you will
have to live with them for some time. This is the topic of the next section where we
look into the future of frameworks.

Predicting the Future of Frameworks
Predicting the future is always a gamble. But as with anything else, it helps to have
some foresight, or at least an educated guess, as to what will happen in the near
and long term. Frameworks are here today, but will they be around tomorrow? And
if not, what happens to the features they offer?

At least two possible occurrences might start to chip away at frameworks. One is
the inclusion of framework features in the J2EE specification. The other is the large
application-server vendors, such as IBM and BEA, expanding their offerings beyond
standard J2EE and including frameworks.

The Java Community Process (JCP), the standards body that guides the evolution
of Java and J2EE, could continue to develop the specifications for J2EE and include
features that were previously part of custom frameworks. Once part of the J2EE
specification, these features would be provided as part of the standard application
server. While this may happen with small features that are refinements of existing
specifications, it is not likely that J2EE will branch into new areas where frame-
works currently exist. This is because JCP is focused on standardizing the infras-
tructure, not with trying to completely specify everything involved with business
applications.

The JCP realizes that J2EE can be used for many purposes and that too much speci-
fication might limit its broad applicability, and also that room needs to be made for
value-added offerings in the marketplace. As an example, database-connection pool-
ing is likely to become part of the J2EE specification; however, user-interface con-
struction the likes of which Struts provides is not likely to be standardized.

In addition, large application-server vendors may begin to offer frameworks in their
products. These vendors are not restricted to offering just the application server.
Much consolidation has already taken place and the application-server vendors
have broadened their offerings to include integrated developer environments
(IDEs), portals, workflow, personalization, and the like. Because you are already get-
ting your application server from these vendors, why not get your frameworks from

r539663 ch26.qxd 7/25/03 9:19 AM Page 845

846 Part VIII ✦ Advanced Topics

them as well? The immediate reaction to this line of thinking is to wonder why the
vendor would offer frameworks. Would they be competitive products that benefit
the consumer or just a tactic to lock the consumer into the vendor’s line of prod-
ucts? Enforcing this suspicion is the big vendors’ need to create some lock-in. Their
application-server offerings make it easy for the consumer to switch to another ven-
dor’s products, because the application-server products must conform to the J2EE
specification and applications are meant to be portable among different applica-
tion-server implementations.

The application-server vendors seem to have chosen to pursue comprehensive
Integrated Development Environments (IDEs) as a solution to the problems
addressed by frameworks: BEA has Workshop, Oracle has JDeveloper/BC4J, and
IBM has the WebSphere product line. You can read more about this alternative in
the following Alternatives to Frameworks section.

The future of application architecture may also be of value if you are taking that
approach. While the future is always uncertain, application architecture has a good
chance of becoming another well-established layer in the application stack in its
own right. A good analogy is to draw parallels with the establishment of the appli-
cation server layer. Both the application architecture and application server are func-
tions that used to be mixed in with the application development. As we gain more
experience with building applications it only makes sense to evolve our operating
environment.

Alternatives to Frameworks
Those familiar with the challenges of J2EE or who are pondering them for the first
time may be wondering if they have other options. Sure, frameworks are good, but
isn’t there a better approach? One alternative that we already covered is applica-
tion architecture. In this section we’ll briefly cover the following J2EE alternatives:

✦ All-in-one proprietary environments

✦ Model-driven architecture (MDA)

✦ Minimal J2EE

✦ Advanced IDEs

All-in-one proprietary environments
If you’re looking on the market for a commercial product, you’ll find no shortage of
companies who claim they’ll solve all your problems if you adopt their product
stacks. These product stacks encompass everything from the tools down to the
execution environment. Often they introduce a new development methodology and
language. The resulting application will run within a J2EE application server, but
that may be the only thing it has in common with an application not developed

Note

r539663 ch26.qxd 7/25/03 9:19 AM Page 846

847Chapter 26 ✦ Exploring Frameworks and Application Architecture

using the vendor’s product. Examples of vendors with this type of approach include
Versata, AltoWeb, and M7.

Usually these products give an initial boost to the application development. Results
can be seen immediately for the “standard” parts of an application — creating a new
user interface or accessing a database. These products excel with the 80 percent of
your application that is similar to all other applications.

Products in this category have two critical shortcomings: vendor lock-in and appli-
cation coverage. Vendor lock-in occurs because the applications developed and the
team skills acquired are only useful in the context of that vendor; if the vendor goes
away, you’ll have to rebuild your applications using another technology with a team
whose skills are no longer useful. Application coverage refers to the vendor’s sup-
port for the unique 20 percent of your application. The 80/20 rule is helpful in
understanding the impact of this 20 percent; the 80/20 rule when applied to soft-
ware development states how it is common to spend 80 percent of your time in 20
percent of the application. With the poor coverage of the unique application
requirements, developers will find themselves spending 80 percent of their time in
that unique 20 percent of the application, because they’ll have to dig their way out
of the proprietary environment before they can begin the real work.

Model-driven architecture
Model-driven architecture (MDA) is a standard that the Object Management Group
(OMG) is driving forward. The emphasis in this method is on creating a valid model
of the application that then becomes the enterprise’s most valuable asset; this tech-
nology-independent model can then be translated into a working application for a
particular technology stack, in our case J2EE. Coming from the OMG, the model
would be described in the Unified Modeling Language (UML).

Modeling is an important phase of enterprise software development and the models
should be treated as a valued asset that isn’t immediately outdated once develop-
ment begins. That being said, good (or even great) modeling alone isn’t going to
overcome the challenges presented by J2EE. The best result will come from a com-
bination of frameworks and MDA. MDA will make modeling more useful while frame-
works will improve the development and execution environments.

At this point, you may be asking how MDA compares with the Computer Aided
Software Engineering (CASE) approaches of the past. This is a typical first reaction
that often hides some negativity. CASE wasn’t successful, so why will MDA be any
different? The distinguishing factor between CASE and MDA is that MDA is being
driven in an open standard process through the OMG. The primary focus of MDA is
on modeling information and the mechanisms for translating that modeling infor-
mation into an application. Depending on which translator was chosen, the applica-
tion created could be for the J2EE, Microsoft .Net, or some other standard or
proprietary environment. CASE products, on the other hand, were all proprietary:
The focus was on creating a proprietary model that could be used to create an

r539663 ch26.qxd 7/25/03 9:19 AM Page 847

848 Part VIII ✦ Advanced Topics

application that only ran in a proprietary environment. MDA is (we hope) creating a
lasting foundation for increasing the value of modeling that also has some benefits
in the short term.

Minimal J2EE
One of the knee-jerk reactions to the challenges of J2EE is to only use the minimal
required parts. An example is a Web-based application that only uses JSPs and
JDBC — the minimal requirement for creating a user interface that needs to commu-
nicate with the database. While this minimalist approach is not really an effective
response, it is so common that it should be addressed. As attested to by this book,
J2EE has many technology offerings, from Java database connectivity (JDBC) to
servlets for Web connectivity to EJBs for distributed objects. Using all of them can
be daunting, so why not use just the minimum? You’re building a Web application
that uses a relational database, the required technologies are servlets and JDBC —
why go any further?

Stopping there may be a valid option if what you want is a small departmental
application. However, if the objective is a large-scale long-term enterprise appli-
cation, it is an injustice to what J2EE has to offer. The sacrifices of application
development and production quality aspects such as flexibility, reuse, ease of
maintenance, scalability, performance, and manageability can end up being very
costly. If the application server was purchased for a large dollar amount, you are
probably not realizing the benefits of that investment — benefits that come with
leveraging the entire application server feature set. Are these tradeoffs you are
willing to make?

Advanced Integrated Development Environments
More and better tooling has always been viewed as a valid response to the com-
plexities of software development. Tool suites, which usually include code editors,
step-by-step wizards, and debugging facilities, are referred to as Integrated
Development Environments (IDEs). IDEs are not new; they have been around for
quite a while in other technologies. A couple that you may have used are Microsoft
Visual Basic tools and Sun SPARCworks tools for C and C++. In the Java and J2EE
environment, IDEs have been maturing and growing in features.

Are IDEs really a replacement for frameworks? That is a good question. On one
hand, if you decide to use frameworks, you’ll still need to use some editor to write
your code. That editor can be something as simple as EditPlus on Windows or vi on
Unix, but you can also use an IDE if you want. So if you know you want to use frame-
works, you can still use an IDE as well.

On the other hand, you could decide that all you want to use is an IDE, not a frame-
work. Feature-rich IDEs can provide wizards to automate the construction of stan-
dard J2EE components (for example, to create Enterprise JavaBeans or JavaServer
Pages) and model environments that enable you to drag and drop design patterns.
You can think of these features as providing the same development-time benefits as

r539663 ch26.qxd 7/25/03 9:19 AM Page 848

849Chapter 26 ✦ Exploring Frameworks and Application Architecture

a framework, so why do you need a framework at all? The answer is that using an
IDE, even a very feature-rich IDE, is not a replacement for frameworks. First, frame-
works are not just about development improvements. In “Understanding
Frameworks Objectives and Benefits” we discussed the benefits of frameworks for
design, development, testing, and production.

Second, even in the development phase frameworks are not about rapid develop-
ment, they are about taking a consistent approach that should minimize coding but,
more importantly, that incorporates best practices. Using an IDE may let you do
“more coding faster,” but is it going to lead your team to provide a high-quality result?

Finally, even though IDEs can do wonders in the hands of an expert, they do not
translate to a uniform approach for the whole team. Individual experts can cor-
rectly drag and drop design patterns and use the wizards, but the resulting applica-
tion will be a quilt of the experts’ work stitched together. That does not lead to
lower maintenance or repeatability.

A continuing trend in the IDE market is that of J2EE application-server vendors pro-
viding IDEs as part of their product suites. The major application-server vendors
and their tools are BEA with Workshop, IBM with WebSphere Studio, and Oracle with
JDeveloper. The IDEs from these vendors stray from the traditional IDE by incorpo-
rating some features that require runtime components. These features, such as
Business Components for Java (BC4J) from Oracle or the Workshop runtime from
BEA, cannot be independently compared with frameworks because they can only be
used through the IDE. Also very important is that these features and their associated
runtimes can only be used with the respective vendor’s application server.

The resulting combination of IDE, runtime components, and application server
makes an offering similar to the all-in-one proprietary environment that we already
discussed. Is this a bad path to choose? That depends on your requirements for
independence — both from the IDE and from the application server. You can always
stop using any given traditional IDE because all the artifacts, such as classes and
deployment descriptors, are usable in different IDEs or with no IDE at all. When you
use an IDE with custom extensions, you build a dependency on that IDE that you
can only break by starting from scratch with a different IDE. The custom extensions
also result in vendor lock-in.

If you don’t think you’ll ever need to change the application server, none of this may
be a problem. However, many enterprises may use one application server in devel-
opment (possibly one with low or zero cost) and a different one in production (pos-
sibly a high-end one with clustering behavior); some enterprises are also shifting to
open-source application servers (such as JBoss) in production. Do you really want
your choice of IDE to limit your ability to choose these options? That is up to you.

Some might put MDA in this category; however, MDA is distinct in that it is about
a new paradigm for software development that may require some new tools, as
opposed to IDEs in which the tools themselves are the focus. Please refer to the
previous section on MDA for details.

Note

r539663 ch26.qxd 7/25/03 9:19 AM Page 849

850 Part VIII ✦ Advanced Topics

It is obvious from this discussion that software development is difficult. Otherwise,
there wouldn’t be so many options for improving the experience! However, maybe it
isn’t so obvious, which is the best option for your environment; much of that deci-
sion rests on the tradeoffs only you can make. If you do decide to continue with
frameworks (which is a great choice) the next section will help you in the process
of framework evaluations.

Evaluating Frameworks
If you have decided that frameworks are a good fit for your environment, you’ll
need to decide which ones make sense. This decision should be based on an under-
standing of your requirements, your price range and the costs of the frameworks,
the quality of the framework products, and the position of the framework vendor. In
this section, we will cover those topics to help you make an educated decision.

Requirements
Recall that frameworks are focused on a slice of the application. Frameworks are
available for Web-user interfaces, object-relational mapping, data validation and
transformation, and many more. Only you understand the requirements of your
application. By taking the effort to gather, document, and analyze your require-
ments you can decide which frameworks you need for your application. Doing some
market research will provide you with a list of potential candidates for your
required framework categories. Once you have that list, you can begin going
through the rest of this section to determine the framework(s) that are the best fit.

Cost
When you’re shopping for frameworks, it is not as simple as “I have x dollars to
spend, therefore I can only get a product that costs y (which is less than x).” While
the equation in this story problem would be simple if we were shopping for a new
CD or a pair of jeans, with software it is not so easy. Lets talk about each variable in
the equation.

Estimating cost
Say you know that you have x dollars to spend. To get the value for x you simply
look at your development budget (or possibly your lack thereof), and come back
with a number greater than or equal to zero, right? Not so fast. The number for x
should really reflect the full value of getting a product that meets your require-
ments. Since a framework has benefits for design, development, testing, production,
and maintenance, shouldn’t you look beyond the development budget to determine
what it is worth? If your development budget has only a few spare dollars, but your
testing budget is pretty high because historically your applications are buggy,
wouldn’t it be wise to take some of those testing dollars and purchase a framework

r539663 ch26.qxd 7/25/03 9:19 AM Page 850

851Chapter 26 ✦ Exploring Frameworks and Application Architecture

that could lower testing costs? Applying this line of thinking, shifting the potential
savings from using a framework to apply towards the purchase of the framework,
will probably give you more money to spend.

Determining the true cost
Say you know that you can only get a product that costs y. Once you know how
much you can spend, the next part is easy: You just need to find a product that
costs less than your limit. What is so obscure about that? Well, the tricky part is
determining the true cost of the framework. This is especially important consider-
ing the popularity of open source in today’s environment. Many might think that
using open source means bringing in a product with zero cost. However, that is not
the case.

The true cost of a product is a reflection not just of the dollars you spend (or in the
case of open source, don’t spend) to get a product license, but also of the invest-
ment you need to make in the successful implementation of a product. That invest-
ment could include marketing the product internally to get buy-in and clearance to
use it, training the people who will use the product, development-team support, pro-
duction support, product-upgrade support, and many other costs. Understanding all
these investments and determining which ones come with the product, which ones
you can hire someone else to do, and which ones you will end up doing yourself will
help you arrive at the true cost of the product.

Framework checklist
This section contains a list of categories for qualifying the framework. Because
these categories are meant to apply to all frameworks, specifics about application
layers such as user interface, persistence, and so on are not included. The following
detailed questions will most likely apply to those application layers, but new cate-
gories may need to be added for your particular situation:

✦ Extensible (business-application framework principle) — Can you extend the
framework through subclassing framework classes, or (preferably) through
implementing framework interfaces?

✦ Configurable (business-application framework principle) — Does the frame-
work use external configuration that replaces custom code, allows strong con-
trol of framework behavior, and allows tuning of the often-changed aspects of
the business requirements?

✦ Loosely coupled (Business-application framework principle) — Are the dif-
ferent elements of the framework loosely coupled so that you can make
changes in one area without affecting other areas?

✦ Separation of concerns (business-application framework principle) — Is the
framework structure separated along the boundaries of skill requirements, so
that everybody doesn’t have to know everything about how things work and
can focus only on his or her area of expertise?

r539663 ch26.qxd 7/25/03 9:19 AM Page 851

852 Part VIII ✦ Advanced Topics

✦ Alignment with business requirements and developers (business-applica-
tion framework principle) — Does the framework make it easy to see how you
are going to turn your requirements and designs into framework components
and how you are going to assign team members to the work to be done?

✦ Design patterns — Does the framework leverage object-oriented design pat-
terns and include implementations of the J2EE design patterns that are partic-
ular to your domain (such as a persistence framework that includes an
implementation of the data-access-object design pattern)?

✦ Documentation — Does the framework include up-to-date API-level documen-
tation (often in the Javadoc format) as well as more comprehensive external
documentation such as architect and developer-level user guides?

✦ Samples and examples — Does the framework come with sample applications
and more focused partial examples that can be used to illustrate how to use
the framework?

✦ Kick-start — Is there any kick-start approach to using the framework so that
you don’t have to read documentation and reach inner enlightenment before
you are productive with the framework?

✦ Upgradeability — What approach does the framework provide for upgrading
to new versions of the framework or new versions of dependent software
(such as JDK or J2EE)?

✦ Maturity and stability — Has the framework been used in a variety of environ-
ments for long enough for the framework to reflect the incorporation of use in
multiple environments and over long durations into a mature API and struc-
ture that does not change, and a quality implementation that is not buggy?

✦ Testability — Does the framework provide an approach for determining the
quality of the functionality you build with it? The more proprietary the frame-
work, the more important this is.

✦ Performance and scalability — Was the framework designed to meet your
performance and scalability requirements?

✦ Production impact — Does the framework impose new requirements on your
production environment and/or provide production benefits? How will you
manage the framework once it is in your production environment?

✦ Integrations — Does the framework come with integrations to products that
you already have in your environment or that you think may be introduced
into your environment later on? Does the framework have a structure that
supports integration?

✦ Technological concurrency — Is the framework concurrent with recent ver-
sions of dependent technology (such as application servers and JDKs)?

✦ Currency with best practices — Does the framework incorporate mature best
practices from the industry, where appropriate (possibly including design pat-
terns that we have already mentioned but also such things as XML)?

r539663 ch26.qxd 7/25/03 9:19 AM Page 852

853Chapter 26 ✦ Exploring Frameworks and Application Architecture

✦ J2EE-compliance — Does the framework leverage your investment and the
features of your J2EE application server? Does the framework allow you to use
all of J2EE? Does the framework violate any of the J2EE specifications or prin-
ciples? Was the framework built for J2EE or ported to J2EE? Ports can be a
source of concern because the framework may include behavior that is redun-
dant with what J2EE offers, or because the problems that existed in the previ-
ous environment are not the same ones that exist in J2EE.

✦ Reusability — Does the framework promote reusability (including reuse of the
framework across projects, of framework components in development, and of
runtime functionality that has already been built and deployed)?

✦ Consistency — Is the structure of the framework consistent, such that once
one aspect of the framework is understood, the structure of other aspects
makes sense?

Vendor questions
While evaluating the framework is essential to determining if it is a good product
that meets your requirements, evaluating the vendor is just as important. The ven-
dor is essential to your success with the framework today, and can also mitigate
your risks for the future. If the framework you are considering is from a systems
integrator (SI), the SI is considered the vendor. If you are looking at an open-source
framework, the vendor could be the open-source community, a specific vendor you
engage to assist you with the framework, or a combination of the two. Consider the
following questions as you make decisions about working with vendors:

✦ Support — Does the vendor have a responsive support system for develop-
ment as well as production issues?

✦ Training — How will the vendor train your team once the framework has been
adopted? Does the vendor have onsite or Web-based training or both? (Web-
based training is good because it is quicker and cheaper, but onsite training is
good for getting access to experts.)

✦ Community — Do you have access to a community of framework users?
Establishing an open community has proven to provide significant benefits
when combined with official vendor support for resolving issues, exchanging
ideas, or learning more about the framework.

✦ Process to evaluate — Does the vendor have a process for evaluating just the
framework? Is the evaluation free and without obligation? Is there a way to
engage the vendor (sometimes for a fee) to do a more in-depth evaluation?

✦ Product versus consulting — Is the framework a product you can adopt with-
out being required to use vendor services? This is very important, even if you
are thinking about using the vendor services, because once adopted, the
framework may be beneficial for other projects on which you are not going to
use those services.

r539663 ch26.qxd 7/25/03 9:19 AM Page 853

854 Part VIII ✦ Advanced Topics

✦ Customer references — Can the vendor provide customer references and/or
case studies?

✦ Industry involvement — Is the vendor involved in the industry, whether stan-
dards bodies or other groups? If the vendor is on the front lines and staying
abreast of current developments, few surprises and a better product should
be the result.

✦ Thought leadership — Is the vendor a thought leader in his or her field, as
reflected by press coverage, published articles, and/or book authoring? This
reinforces that the vendor is not only aware of what the industry is doing, but
is active in giving it direction.

✦ Product road map — Does the vendor have a product road map that he or she
will share with you and that is aligned with your visions of the direction the
product should be taking? This helps ensure that the framework you bring in
today will be one that you’ll be happy using in the future.

✦ Backward compatibility — What are the vendor’s plans for backward compat-
ibility among releases? A mature product should be backward-compatible
with only a few exceptions. Those exceptions, as well as the process for mov-
ing from the old approach to the new approach, should be made explicit by
the vendor.

✦ Sunsetting plans — What is the vendor’s approach to ceasing to support old
product versions? Does that plan align with your schedules and needs?

✦ Product management — Does the vendor incorporate your feedback, with
regard to both improving existing features and introducing new features, into
the framework?

✦ Engineering — Does the vendor have an engineering team working on the
product? This reflects an investment in improving the product.

✦ Company viability — Does the vendor have a viable business that will be
around after you’ve adopted the framework and are using it in production?
Does the vendor run a profitable business or a venture-funded business? Does
he or she have other paying customers?

Summary
In this chapter we looked at frameworks — what they are and the value they bring
to the table. We clarified that although many types of frameworks are available,
both historically and for Java and J2EE, the one type that we are interested in is
business-application frameworks. What distinguishes this type from the others is
that it provides structure for building business applications — structure that needs
custom components before it can do anything useful — and that the framework is
aligned with the requirements and skills of the business developer, as opposed to
frameworks that expose technical details and require an expert in order to be used
correctly.

r539663 ch26.qxd 7/25/03 9:19 AM Page 854

855Chapter 26 ✦ Exploring Frameworks and Application Architecture

We introduced architecture, with its many shapes and variances, and emphasized
that if frameworks are good, architecture represents advancement to the next level.
While business-application frameworks address only a slice of the problem, archi-
tectures address the breadth of the application-development lifecycle and all the
application layers. The architectures we discussed were application architecture
and services-oriented architecture. Application architecture is for traditional appli-
cations that encompass everything from the user interface to the database access
and are often deployed as a single unit. Services-oriented architecture focuses on
creating discrete, reusable business services that can then be orchestrated to cre-
ate federated applications.

Finally, we discussed how to determine which framework is the right framework for
you. This involves determining your requirements, your budget, and the framework
cost, and evaluating the framework and the framework vendor. Only by understand-
ing each of these areas can you make a decision about which is the right product
for your situation.

✦ ✦ ✦

r539663 ch26.qxd 7/25/03 9:19 AM Page 855

r539663 ch26.qxd 7/25/03 9:19 AM Page 856

Using ANT to
Build and
Deploy
Applications

Once in a while, a utility such as (ANT) comes along and
becomes essential to your toolbox. The name ANT is

attributed to it being a tiny thing that is capable of building
grand applications, while ANT is also often referred to as a
short form for “Another Neat Tool”. Take your pick. What is
also remarkable in this day of the graphical user interface
(GUI), ANT is largely a command-line tool. This chapter pro-
vides an overview of this utility, including a very straightfor-
ward example. You will also learn the vocabulary of ANT, and
finally, you will look at some of the ways in which ANT can
benefit you as a developer. The chapter also covers many of
the ANT tasks that you are required to understand to be able
to create your own ANT build files.

Introducing ANT
ANT is a Java-based make utility, although this definition cov-
ers only a small fraction of what it is capable of. Before the
advent of the Integrated Development Environment (IDE),
code was developed with basic text editors, with custom-built
shell scripts taking the source code and compiling it into the
necessary executable. These shell scripts soon grew into a
more formal approach known as the makefile, which became
associated with all variants of Unix. The makefile enabled the
designer to describe the necessary compilation logic that
allowed code to be compiled successfully. In the days when
compilation order was important, these makefiles allowed

2727C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Introducing ANT

Getting comfortable
with ANT vocabulary

Understanding tasks

Putting it all together

✦ ✦ ✦ ✦

r539663 ch27.qxd 7/25/03 9:19 AM Page 857

858 Part VIII ✦ Advanced Topics

user control over the processing order for the compiler. The makefile itself was just
a series of commands, closely resembling a shell script.

ANT is a lot more than just a Java alternative to make. It provides all the functional-
ity of make while not suffering from the drawbacks of it. ANT is a drastic improve-
ment over make as regards the ease of use and the minimal learning curve. With
ANT, all that a Java developer needs to understand is Java and some basic XML;
this wasn’t true with makefiles. Makefiles involved quite a lot of non-Java learning
on the part of the developer, something that is not really expected of him/her. As
ANT uses Java, it can also boast of platform independence, something that was
missing with makefiles.

Like many projects controlled by Apache, ANT was the result of necessity, not the
desire for luxury. ANT’s creator, James Duncan Davidson, the man behind Sun’s ref-
erence implementation of the Servlet/JSP specifications known as Tomcat, needed a
reliable means of compiling the source files over a variety of different platforms.
Since Davidson didn’t use any IDE, shell scripts were performing all compilation.
Realizing that this was introducing more problems than it solved, he set out to
write a tool that would enable him to easily control the process. This tool was intro-
duced to the Apache group of projects in January 2000, where it was formally
known as ANT.

The first release of the tool as a stand-alone Apache project was the following sum-
mer in July 2000. From that point forward it has become enormously popular, with
developers from all over the world contributing to its core feature set. ANT is used
in all areas of development and has become the de facto standard for multi-teamed
projects, particularly open-source projects. Once you have experienced the power
ANT can add to your development you’ll wonder how you ever worked without it.

The actual compilation of a single Java class file isn’t the most difficult task that has
to be done; simply throw it at the javac compiler and a .class file is easily pro-
duced. However, it doesn’t take long for this process to get a little more complicated.

Add in package paths and dependent JAR files with external code, and before you
know it you need to create a custom shell script to speed up the whole process. Now
consider the fact that you may need to do this in both Microsoft Windows and Unix
environments, even though path-name separators in the two are different, and you
need to start looking at supporting a whole suite of shell scripts. This is before you
consider the problems that come when someone decides to change the directory
where all the source code lives, or wishes to build to another location or JAR file.

You may argue that your present IDE is taking care of all these problems for you,
and for the most part it probably is. However, in a team environment you have to
assume that everyone is using the IDE in order for you to share project files, which
of course assumes that the actual IDE makes it easy for you to do that. But even if
everyone in the team is using the same IDE, everyone may not be using the same

r539663 ch27.qxd 7/25/03 9:19 AM Page 858

859Chapter 27 ✦ Using ANT to Build and Deploy Applications

directory structure to store source files. Before you know it, each of your team is
building JAR files of different sizes and you can’t fully trust any of them to be the
correct build.

Finally, anyone who has been involved with manual J2EE deployment also knows
the joys that come from building a Web application archive (WAR), which requires
strict adherence to known path names and naming conventions. A well written ANT
build file can get you this, consistent deployment adhering to any standards you
have set for the project.

These are the sorts of problems ANT can solve, without introducing a huge admin-
istration cost to manage it.

ANT can be used on any Java 1.1+ system, which makes it extremely portable to
pretty much any operating system in use today. ANT is a command line–driven pro-
gram that uses an eXtensible Markup Language (XML) file to describe the build pro-
cess. This file is known as the build file, and is just an XML file that describes the
various tasks ANT has to complete. If you leave off the filename, the default is to
look for the file build.xml in the present directory.

The key to ANT’s success is the fact it was built in Java. So an important cause for
ANT’s popularity is the support it has received from the strong Java developer and
open source Java community worldwide. Developers from around the world have
contributed a rich array of new tasks that makes ANT go way beyond what it began
with. ANT is an official Apache open-source project that is freely available from
Apache’s main Web site at http://ant.apache.org/.

Without further ado let us take a whistle-stop tour of a typical ANT project. In this
section we’ll perform the following tasks:

1. Download and install ANT.

2. Build a simple build.xml file for compilation and JAR-file packaging.

3. Run ANT.

This will give you a feel for what ANT can do. Subsequent sections will delve deeper
into the specifics.

Installing ANT
The first thing you must do is retrieve the latest version of ANT from the main
Apache Web site at http://ant.apache.org/. Follow the Download link and
select the correct binary for your system. (Typically this will be either a .ZIP or
.TAR.GZ file.) Installation is a simple matter of unpacking the downloaded archive
into a directory and setting up these two environment variables:

r539663 ch27.qxd 7/25/03 9:19 AM Page 859

860 Part VIII ✦ Advanced Topics

✦ ANT_HOME— This environment variable points to the directory to which you
unpacked ANT. It is also a good idea to add $ANT_HOME\bin to your system
path. This enables you to easily call the ant script that encapsulates all the
calls to Java.

✦ JAVA_HOME— This environment variable points to the directory in which you
installed JDK. It is a very handy variable to enable anyway, as it enables you to
easily upgrade your JDK without having to go around and change all your
scripts.

That’s it. To test your installation, simply enter the command ant -version and you
should see the following output:

C:\>ant -version
Apache Ant version 1.5

This verifies that ANT is correctly installed and you are ready to use it. If for any
reason this command does not work, make sure you have your environment vari-
ables set correctly. Depending on your operating system you may have to restart
your console session.

Simple build.xml
Now that you have ANT installed, the next stage is to use it. If you simply enter ant
you’ll receive the following output:

C:\>ant
Buildfile: build.xml does not exist!
Build failed

ANT gets its instructions from a build file, usually named build.xml. You can spec-
ify a different name for your build file and simply pass it in as an argument to the
script. For example, to use a file named test.xml as your build file, you can either
of the options -buildfile, -file, and -f. All three work in a similar fashion. You
could use any of the following three commands, where the file test.xml is located
in the same directory.

ant -buildfile test.xml
ant -file test.xml
ant -f test.xml

Before you take a look at this file, let’s define exactly what it is you are attempting
to do. Assume you have a directory underneath the current directory, /src/, that
contains all your Java source files. You want to keep the source files separate from
the class files, and to make things easier, you want to compile into the /classes/
directory that also sits within the current directory. Therefore, to complete a suc-
cessful compile you probably want to clean out the /classes/ folder from any pre-
vious compiles, and then run the Java compiler (javac) on all the files in the source
directory.

r539663 ch27.qxd 7/25/03 9:19 AM Page 860

861Chapter 27 ✦ Using ANT to Build and Deploy Applications

The build file is an XML file with blocks of instructions meant to run in a specific
order. The basic build file for this basic scenario is shown in Listing 27-1.

Listing 27-1: Simple ANT build file build.xml

<project name=”antbook” default=”compile” basedir=”.”>
<property name=”src” value=”.\src\”/>
<property name=”build” value=”.\classes\”/>

<target name=”init”>
<mkdir dir=”${build}”/>

</target>

<target name=”compile” depends=”init”>
<javac srcdir=”${src}”

destdir=”${build}”
optimize=”on”
debug=”on”>

<classpath>
<pathelement location=”${build}”/>

</classpath>
</javac>

</target>

<target name=”clean”>
<delete dir=”${build}”/>

</target>
</project>.

Let’s look at this code from the inside out, starting with the <target> blocks. As
you can see you name each one, and for one you’ll notice the depends attribute.
Each target represents a logical block of tasks, which is treated as a single unit. The
depends attribute controls the order in which these blocks are executed. For exam-
ple, before you compile the source code, you may wish to make sure that the out-
put directory actually exists and create it if it doesn’t.

Near the top of the file you will notice the <property> elements, which define
some variables that will be used throughout the build process. Here you are defin-
ing the source and output directory. The ability to do this is a particularly powerful
feature of ANT, as you can easily change the output directory without having to
manually edit the whole file for every occurrence. When you run this file through
ANT, here’s what happens:

C:\>ant
Buildfile: build.xml

r539663 ch27.qxd 7/25/03 9:19 AM Page 861

862 Part VIII ✦ Advanced Topics

init:
[mkdir] Created dir: C:\classes

compile:
[javac] Compiling 1 source file to C:\classes

BUILD SUCCESSFUL
Total time: 6 seconds

So the first thing ANT printed out was the name of the build file it was processing.
By default, the ANT script will look for a build.xml file in the current directory. If it
doesn’t find one, it will stop any further processing.

Then ANT started running through the targets. Which one did it know to run first?
Looking back at the build.xml file you will notice that in the top-level tag,
<project>, is an attribute, default, that defined the target to be run first.
However, this attribute had the value “compile”, but “init” was the first target
that was actually run. How come?

You have just witnessed the power of ANT and its ability to have dependencies
based on the order in which targets are run. If you look at the “compile” target you
will notice that the depends=”init” attribute is defined. This states that before
this target executes, the target “init” should be run. This is good for the purpose
of the current example, as you want to ensure that the output directory exists
before you compile your Java source files into it.

As you can see from the rest of the output, the directory for the class files is cre-
ated, and then the source file is compiled. But what if you run the build file again?
See what happens this time:

C:\>ant
Buildfile: build.xml

init:

compile:

BUILD SUCCESSFUL
Total time: 2 seconds

It starts out the same, but notice how the “init” target output has nothing written
in it this time? This is because the default action of the <mkdir> task within the
“init” target is to not do anything if the directory already exists. The next target
processed is the “compile” target, which again has no output. This is because the
timestamp on the class file is the same as the timestamp on the source file, so there
is no need to recompile, according to the rules of the javac task.

However, what if you wish to force a compilation? How do you signal that? That is
where the final target in the build file, the “clean” target, comes into play. As you

r539663 ch27.qxd 7/25/03 9:19 AM Page 862

863Chapter 27 ✦ Using ANT to Build and Deploy Applications

can probably guess from its name, this target deletes the files in the directory
defined by the property ${build}. But how do you run it? Simple — you pass in the
name of the target you want to trigger to the ANT script, like this:

C:\>ant clean
Buildfile: build.xml

clean:
[delete] Deleting directory C:\classes

BUILD SUCCESSFUL
Total time: 2 seconds

This will override the default target defined in the project element and run the
“clean” target. After you have done this you can then run the ant script again to
compile your Java code. Alternately, you could stack up the trigger targets in one
call at the command line, as shown here:

C:\>ant clean compile

This will run the “clean” target and then the “compile” target immediately
afterwards.

That’s it — your first ANT project file. ANT is made up of a series of targets, each of
which defines a sequence of tasks that make up the whole build process for a par-
ticular project. Depending on the circumstances you can change the execution
order of these targets, which in turn enables you to move around the building
blocks of your development process.

The real power of ANT is in its ability to marry the flexibility of its core/optional
tasks with the framework that controls the overall flow. The section Common Ant
Tasks will take you through the more common tasks with which you can control
the J2EE development environment.

Getting Comfortable with ANT Vocabulary
You might already be familiar with the following ANT vocabulary:

✦ Projects

✦ Properties

✦ Targets

✦ File matching

✦ Tasks

Just in case they are new to you, this section will run through these top-level terms.

r539663 ch27.qxd 7/25/03 9:19 AM Page 863

864 Part VIII ✦ Advanced Topics

Projects
A project defines one or more targets and any number of properties. (Properties and
targets will be discussed shortly.) Only one project block exists in any one build file.

Table 27-1 details the attributes associated with the project tag.

Table 27-1
Project attributes

Attribute Description

name The name of the project

default The default target that will be run if none is specified in the command line
(The default is main)

basedir The directory from which all the relative paths are calculated (The default is
the directory from which the script was run).

<project name=”antbook” default=”compile” basedir=”.”>

The project tag used in Listing 27-1 denotes that the project name is antbook, and
the default target is compile. The value “.” for the attribute basedir denotes the
directory in which the build file resides. This would be taken as the base directory,
irrespective of where the build file is executed from.

Properties
One of the most powerful features of the ANT framework is the ability to define
properties inside or outside the project file. These properties can then be used in
any attribute throughout the project file. A property has a name and a value and
can be defined as follows:

<property name=”build” value=”classes\”/>

The property can then be accessed by means of the notation ${<propertyname>},
for example:

${build}

Be careful when defining and using properties, as they are case-sensitive. In addi-
tion to this, if a property is defined inside the main project element and outside a
target, it is evaluated before any targets are executed.

Note

r539663 ch27.qxd 7/25/03 9:19 AM Page 864

865Chapter 27 ✦ Using ANT to Build and Deploy Applications

ANT defines a number of built-in properties, listed in Table 27-2, which can be
accessed just like any user-defined properties.

Table 27-2
Built-in properties

Name Value

basedir The absolute directory the ANT script is running from

ant.file The absolute path of the current build file

ant.version The present version of the ANT build

ant.project.name The name of the project, as defined in the name attribute of the
project tag

ant.java.version The version of the JDK from which this ANT session is running

Some tasks can be triggered that will result in properties being defined. For exam-
ple, </tstamp> results in the properties DSTAMP, TSTAMP, and TODAY being created
with the current date and time as the value. In addition to the properties defined by
ANT and the project you can also access any of the Java system properties using
the full property name ${file.separator}.

Targets
The target defines a sequence or block of tasks that are to be executed. The target
block is a very powerful part of the ANT framework, as it is from the target block
that dependencies occur. For example, in the previous example you wanted to make
sure the directories existed before you made any attempt to compile. You therefore
made the “compile” target dependent on the “init” target.

A project can have any number of targets contained within it, thus there can be any
number of possible combinations of target execution. It is important to note that no
matter how many times a target is asked to run in any given pass, it is only exe-
cuted once per session.

Take a look at the following more complicated example adapted from the core ANT
documentation. It will serve to illustrate the power of the dependency feature of ANT.

<target name=”A”>
<echo message=”I am Target A”/>

</target>
<target name=”B” depends=”A”>
<echo message=”I am Target B”/>

</target>

r539663 ch27.qxd 7/25/03 9:19 AM Page 865

866 Part VIII ✦ Advanced Topics

<target name=”C” depends=”B”>
<echo message=”I am Target C”/>

</target>
<target name=”D” depends=”C,B,A”>
<echo message=”I am Target D”/>

</target>

What if you choose to run Target-D? What will be echoed out?

C:\>ant D
Buildfile: build.xml

A:
[echo] I am Target A

B:
[echo] I am Target B

C:
[echo] I am Target C

D:
[echo] I am Target D

BUILD SUCCESSFUL
Total time: 2 seconds

This is a tiered dependency tree, so when it is traced back you can see that every
target ultimately needs A to be run, then B, and so on until D is successfully run.
While this method is very powerful, using it is not the only way you can control the
flow of execution through the targets.

In addition to the depends attribute, two more attributes enable you to execute a
target depending on the status of variables. These attributes are if and unless.
The if attribute will look for a given property. If that property has been defined the
target will be triggered for execution. Conversely, if the property defined in unless
is not found, the target will be triggered for execution. Here’s an example:

<target name=”B” if=”somePropertyName”>
<echo message=”I am Target B”/>

</target>
<target name=”C” unless=”somePropertyName2”>
<echo message=”I am Target C”/>

</target>

Please refer to Table 27-3 for a complete list of attributes that can be associated
with a target.

r539663 ch27.qxd 7/25/03 9:19 AM Page 866

867Chapter 27 ✦ Using ANT to Build and Deploy Applications

Table 27-3
Target attributes

Attribute Description

name This is the case-sensitive name of the target.

depends This is a comma-separated list of targets that must be executed before
the target is executed.

if This means that if the given property has been defined the target will
be executed.

unless This means that if the given property has not been defined the target
will be executed.

description This determines whether or not the target is defined as internal. An
internal target is one that is not publicly available when queried
from the script command line.

File matching
At the heart of ANT’s power and flexibility is the ease with which it handles files
and directories. With extreme ease you can include or exclude any combination of
files based on relatively simple rules. Many of the tasks act on files or directories;
we’ll take a quick look at the sort of techniques you can employ to control which
files are considered for use.

You can specify which files are used by defining include or exclude (or both) fil-
ters. Files (or directories) are matched if they satisfy the include filter and do not
match the exclude filter. Consider the following scenario, in which you want to
compile all the Java files underneath the com/wiley/j2ee package except for the
Java files within the com/wiley/j2ee/javamail package.

<javac srcdir=”${src}”
destdir=”${build}”
includes=”com/wiley/j2ee/**”
excludes=”com/wiley/j2ee/javamail/**”/>

You can specify the includes attribute to match the com/wiley/j2ee package and
everything underneath it. The double asterisk (**) is a special wildcard used to
match directories and any subdirectories. The normal directory-listing wildcards
can be used to filenames — one asterisk (*) for any number of characters and a
question mark (?) for a single character.

The mastering of these simple techniques will ensure that you will be able to
customize ANT tasks to include the precise files you want and exclude the ones
you do not.

r539663 ch27.qxd 7/25/03 9:19 AM Page 867

868 Part VIII ✦ Advanced Topics

Tasks
The task is where all the real work is performed. This is the actual command exe-
cuted inside the target. A task can take any number of attributes, and can be any
legally formatted XML tag. ANT has three different types of tasks:

✦ Core tasks — These are tasks that are shipped with the core distribution of
ANT. They include all common tasks normally associated with the core JDK
and the build process in general. For example, <javac> is used for general
compilation, <jar> for packaging up JAR files.

✦ Optional tasks — These are official tasks that require additional JAR files in
order to be executed. For example, <ftp> is used to upload files to or down-
load files from a remote FTP server.

✦ User-defined tasks — These are unofficial tasks that have been developed by
users.

Although these task distinctions do exist, in all probability you would not need to
go beyond the common tasks that we will delve into in the next section.

Over 100 core and optional tasks are available and they cover a wide range of tasks
and activities. We’ll highlight the following in this section:

✦ javac

✦ jar

✦ junit

✦ war

✦ cvs

javac
One of the most common tasks to be invoked is the command to compile the
source. You saw it briefly in Listing 27-1, but now take a closer look at this task. The
javac task will take a given set of source files and compile them into a specified
output directory. This task will compile all source files that do not have corre-
sponding class files or that have class files older than the source files themselves.

The most basic example is to give javac a directory in which all the source files
are located, and the corresponding output directory. Let’s use (${src} and
${build} as two properties that refer to the source directory and the build direc-
tory respectively.

<javac srcdir=”${src}” destdir=”${build}”/>

r539663 ch27.qxd 7/25/03 9:19 AM Page 868

869Chapter 27 ✦ Using ANT to Build and Deploy Applications

In this example, javac will recursively go through all the .java files in the direc-
tory specified by ${src} and compile them, creating the class files in the directory
that the property build refers to. Naturally there is a little more to compilation,
such as classpath rules, warnings, and selective compilation of files (as opposed to
blindly compiling the whole tree). The javac task has many properties to control
all of these.

The classpath attribute enables you to specify a comma-separated list of directo-
ries and JAR files in which to find classes for use in compilation. For example,
assume that the current example requires the JavaMail JAR file mail.jar. You
would modify the example as follows:

<javac srcdir=”${src}” destdir=”${build}”
classpath=”mail.jar”/>

It is not difficult to see that this type of modification can get out of hand very
quickly as more JAR files are linked in. Fortunately ANT is a step ahead of you on
that front and provides a mechanism to enable you to group together all the neces-
sary classpath parameters in one place and address them from javac using a sym-
bolic reference as shown in Listing 27-2.

Listing 27-2: Using <path> to specify the classpath

<path id=”class.path”>
<pathelement location=”${build}”/>
<pathelement location=”${jarpath}servlet23.jar”/>
<pathelement location=”${jarpath}crimson.jar”/>
<pathelement location=”${jarpath}activation.jar”/>
<pathelement location=”${jarpath}mail.jar”/>
<pathelement location=”${jarpath}junit.jar”/>

</path>

<javac srcdir=”${src}” destdir=”${build}”
classpathref=”class.path”/>

This enables you to specify all the necessary components that make up the class-
path without cluttering up the javac task, which reduces the chances of making an
error. The classpath information is used by a number of components in the Java
process. (We’ll demonstrate a similar technique with the junit task later in this
section.) Notice how the JAR-file locations in the path reference aren’t even hard-
coded. You merely reference their names with the actual locations of the files, using
the ${jarpath} property. Again, doing this gives you only one item in the build file
to change should you move the JAR files.

r539663 ch27.qxd 7/25/03 9:19 AM Page 869

870 Part VIII ✦ Advanced Topics

With the classpath now sorted, take a look at pulling together source files from
various locations as opposed to just blindly compiling everything under one source
tree. You can specify the locations to be compiled by using the include attribute
with the task. However, a cleaner way is to use the nested tags src and include, as
shown in Listing 27-3.

Listing 27-3: Specifying different Java source locations

<javac destdir=”${build}” classpathref=”class.path”>
<src path=”${src}”/>
<src path=”${srctocustomlibrary}”/>
<include name=”com/wiley/j2ee/**/”/>
<exclude name=”com/wiley/swing/**/”/>

</javac>

Here you specify the two separate directories where your source is located, making
sure you include all the “.java.” files in the package com.wiley.j2ee. Notice the
exclude tag. It is used just like the include tag, but instructs the javac task to leave
out all files that match the specified pattern, in this instance the com.wiley.swing
package. (Typically you use the exclude tag to remove, for example, all the testing
classes from a final build.)

Many more options are associated with the javac task, including simple attributes
to turn on the debug information or to suppress warnings. The javac task has a
very cool feature that enables you to compile for different versions of the JDK by
specifying different compilers. This may be useful if you have to support an older
application server that is still using an older application-programming interface
(API).

jar
The jar task is used to create archive files. It makes the creation of JARs, including
the insertion of any manifest files you wish to use, a trivial matter. The jar task
takes at least two attributes: the file you wish to create and the directory in which
to create the jar file. Here’s an example:

<jar destfile=”${lib}/wiley.jar” basedir=”${build}”/>

As with the javac task, you can use the include and exclude nested tags to con-
trol which files make it to the final JAR file and which do not. For example, you can
use the include task to ensure that you only place .class files in your archive. By
default the jar task will compress all the files it places in the archive, but you can
turn this behavior off by specifying an attribute named compress, with the
value as false.

r539663 ch27.qxd 7/25/03 9:19 AM Page 870

871Chapter 27 ✦ Using ANT to Build and Deploy Applications

You can create a manifest file for your JAR file by including the manifest nested
tag, as shown in Listing 27-4.

Listing 27-4: Creating a JAR file with a manifest file

<jar destfile=”${lib}/wiley.jar” basedir=”${build}”>
<manifest>
<attribute name=”Built-By” value=”${user.name}”/>
<section name=”common”>
<attribute name=”Specification-Title” value=”Ant

Chapter”/>
<attribute name=”Specification-Version”

value=”${version}”/>
<attribute name=”Specification-Vendor” value=”Wiley”/>

</section>
</manifest>

</jar>

This will place a manifest file inside the jar file created. The manifest file will con-
tain the following information:

Manifest-Version: 1.0
Built-By: alan
Created-By: Apache Ant 1.5

Name: common
Specification-Title: Ant Chapter
Specification-Version: 1.9
Specification-Vendor: Wiley

There isn’t much more to the jar task, which makes using it an absolute breeze.

junit
As the complexity of software increases, so do the possible number of different exe-
cution paths through the system. Although the notion of unit testing isn’t new, what
is relatively new is the introduction of this practice into mainstream programming.

One of the biggest problems with asking a developer to test his or her code is more
social than technical. Developers don’t like to admit that they are developing bad
or buggy code. Most take the moral high ground, claiming that their code is above
testing. In order that code can be tested, the framework has to be very easy and
nonintrusive. Enter junit (http://www.junit.org/), an open-source initiative
that makes creating tests a very trivial task, but adds in a whole a new level for con-
formance testing that should bring a smile to any project manager’s face.

r539663 ch27.qxd 7/25/03 9:19 AM Page 871

872 Part VIII ✦ Advanced Topics

For those of you not familiar with any unit-testing methodologies, junit is a great
place to start, and its integration into ANT makes the whole process completely
painless. An in-depth review of junit is outside the scope of this book, but Listing
27-5 shows a quick example of how you might use it, and then how you would use it
to test a completely contrived example. The class in the example will simply main-
tain an integer, but badly: When we ask it to decrement the value it will decrement 2
instead of 1.

Listing 27-5: A very poorly implemented class

public class integerClass extends Object {
int X;

public integerClass(int X){
this.X = X;
}

public int getX(){ return X; }

public void decrement(){
X += 2;

}
}

Granted this is the sort of thing that you can easily spot when the code is laid out
like this, but such a fundamental error can be missed if a class has many methods
inside it. Compiling this class will not throw any errors because, syntax-wise, it is
correct. What you must do now is create a separate class that will test this class in
a runtime scenario.

Using the junit framework you can simply create a class, as shown in Listing 27-6.
Simply extend the junit.framework.TestCase class and create a constructor that
will pass the given string down to the base class.

Listing 27-6: Test class for integerClass

import junit.framework.*;

public class integerClassTest extends TestCase {
public integerClassTest(String _string){
super(_string);

}

public void testDecrement(){
corruptClass cC = new integerClass(4);
cC. decrement();

r539663 ch27.qxd 7/25/03 9:19 AM Page 872

873Chapter 27 ✦ Using ANT to Build and Deploy Applications

assertEquals(cC.getX(), 3);
}

}

The junit framework uses Java Reflection to determine the tests that must be
run. You define a series of tests by declaring a separate method with the following
signature:

public void testXXX()

where XXX is any valid method. Inside these methods you place your test cases.

So, how do you signal when something isn’t right? You use the underlying
assertXXX(...) methods to perform tests on various conditions. In the current
example, you want the test to fail if the return value isn’t equal to 3. Now that you
have your testing class, you need to integrate it into ANT using the junit task, as
shown in Listing 27-7. The first thing to do is set up a simple target that will manage
the compilation of your tests. Because you don’t want to compile everything, you
limit the compilation to the classes that begin with the pattern integerClass.

Listing 27-7: ANT tasks for controlling junit

<target name=”compiletests”>
<javac srcdir=”${src}” destdir=”${build}”

includes=”intergerClass*.java” optimize=”off”
debug=”on”/>
</target>

<target name=”junit1” depends=”compiletests”>
<junit printsummary=”on” showoutput=”yes”>
<classpath>
<pathelement path=”${build}”/>

</classpath>
<test name=”integerClassTest”/>

</junit>
</target>

When we run this task it will inevitably fail, with junit reporting the line number it
failed on.

One of features of the junit task is the ability it gives you to run your test in a
separate JVM from the one controlling ANT. This has a number of advantages,
specifically that you can run tests in a clean environment with a controlled class-
path. Also, if something should go completely wrong with your test classes, it
won’t crash the ANT build process.

Note

r539663 ch27.qxd 7/25/03 9:19 AM Page 873

874 Part VIII ✦ Advanced Topics

One of the great features of the junit task is its ability to collate information per-
taining to the tests that it has just run. It can format these data in an XML format for
later use with the junitreport task. This task is very useful for consolidating the
entire XML file set, generated by the junit task, into viewable HTML files for easy
dissemination. If you feel that wading through reams of log files to look at the
results of your testing is a little tedious, you will thoroughly enjoy the output from
this task.

The example illustrated in Listing 27-7 only tested one class. The junit task
enables you to group together class files for batch testing using the batchtest
nested tag. Consider Listing 27-8, which runs all the available test classes, collating
the output in XML files to be passed onto the task junitreport for final HTML pro-
duction of a report.

Listing 27-8: Batch test

<target name=”junit” depends=”compiletests”>
<delete dir=”${junit.output}”/>
<mkdir dir=”${junit.output}”/>

<junit fork=”yes” printsummary=”yes” showoutput=”yes”>
<classpath>
<path refid=”class.path”/>
<pathelement location=”${jarpath}xalan.jar”/>

</classpath>

<formatter type=”xml”/>
<batchtest haltonfailure=”yes” todir=”${junit.output}”>
<fileset dir=”${src}”>

<include name=”com/wiley/junit/**Test.java” />
</fileset>

</batchtest>
</junit>

<junitreport todir=”${junit.output}”>
<fileset dir=”${junit.output}”>

<include name=”TEST-*.xml”/>
</fileset>
<report format=”frames” todir=”${junit.output}/html”/>

</junitreport>
</target>

This target starts off by deleting any log files from previous tests by removing and
creating the directory. Then you fork a new JVM to run the tests.. You set the out-
put of the junit task to XML, which will be used when the report is produced. You
then create a series of tests using the batchtest nested tag that looks for all class
names that end in Test.java. Finally you run the junitreport task, which will run

r539663 ch27.qxd 7/25/03 9:19 AM Page 874

875Chapter 27 ✦ Using ANT to Build and Deploy Applications

through all the log files and produce all the HTML files, which you can then view
with the full results of your recently run test.

The junit tool is very powerful and it should be used throughout the development
process, not just near the end of a project. It is a great tool for making sure that
nothing will get broken during any future development or refactoring.

The use of the junit tasks will require that you download the junit and the
X-alan JAR files for use within your ANT distribution.

war
A WAR file is basically just a ZIP file with special directories placed inside it so the
application server can deploy it successfully. ANT makes creating WAR files very
easy. The war task takes input for the specific positions in the structure /WEB-INF/
web.xml, /WEB-INF/lib/, /WEB-INF/classes/, and /WEB-INF/web.xml and pro-
duces the resulting WAR file, which is then ready for deployment.

The war task makes it easy to build the WAR file from a variety of disparate parts.
For example, your main web.xml file may be created out of a file that might not
even be named web.xml; thus you are able to build up WAR files using different tar-
gets. Listing 27-9 depicts and example of creating a WAR file using the war task.

Listing 27-9: Building up a WAR file

<war destfile=”myapp.war” webxml=”src/metadata/myapp.xml”>
<fileset dir=”src/html/myapp”/>
<fileset dir=”src/jsp/myapp”/>
<lib dir=”thirdparty/libs”>
<exclude name=”jdbc1.jar”/>

</lib>
<classes dir=”build/main”/>
<zipfileset dir=”src/graphics/images/gifs”

prefix=”images”/>
</war>

One of the major advantages of the war task is that it builds a legal file. For exam-
ple, the specification insists that the name of the directory /WEB-INF/ be in upper-
case, but sometimes Windows will not maintain the case of the directory when you
manually create the archive.

cvs
The majority of developers maintain their code in Concurrent Versions System
(CVS); those who do not should consider it. CVS is one of the more popular version-
control systems, largely because it comes preinstalled in the majority of Unix-
distribution systems and because of its easy-to-use interface. Developers use CVS

Note

r539663 ch27.qxd 7/25/03 9:19 AM Page 875

876 Part VIII ✦ Advanced Topics

differently depending on the policy of the particular project each is working on.
Generally speaking, the rule of thumb is never to check in buggy code or half-
complete code. Following this rule enables you to build ANT scripts, for example, to
build the latest WAR file for a particular project. The ANT script can automatically
pull the latest source code from a CVS repository.

ANT provides a couple of tasks that enable interaction with the CVS server. The
first and most important task, cvs, sends commands straight to the CVS server
specified by means of the CVS root. If you are familiar with CVS commands you will
have no problems integrating CVS operations into your ANT script. For example, if
you want to check out the module com/wiley/j2ee from your CVS root we can
include the following command:

<cvs cvsroot=”:pserver:${cvsuser}@myserver.com:/home/src”
command=’checkout com/wiley/j2ee’ dest=”${checkout.dir}”/>

As you can see, by doing this you are simply passing the CVS command to the
server and specifying the output directory as an ANT property.

Now take a quick look at a more practical example. Assume that you want to extract
the latest revision number from a given source file that has the CVS $Revision: $
tag in it somewhere. You can write an ANT target to pull the latest version from
CVS, extract it, and then set it as an ANT property for later use. Listing 27-10 illus-
trates the ANT target for this operation.

Listing 27-10: Extracting the revision

<target name=”getrevision”>
<cvspass cvsroot=”:pserver:${cvsuser}@myserver.com:/home/src”

password=”${cvspassword}”/>
<cvs cvsroot=”:pserver:${cvsuser}@myserver.com:/home/src”

command=’update ${src}/com/wiley/j2ee/main.java’
output=”cvsoutput.txt”/>

<replaceregexp byline=”false”
match=”(.)+\n(.)+\n(new revision:) (.+);(.)+\n(.)+”
replace =”buildversion=\4” file=”cvsoutput.txt”/>

<property file=”cvsoutput.txt”/>
</target>

The first thing you will notice is the cvspass task. If your CVS server requires a pass-
word for access, this task sets the necessary .cvspass file with the given password.
Next you pull out the latest version of the com/wiley/j2ee/main.java file, with the
output of that operation saved into the file cvsoutput.txt. Taking the contents of

r539663 ch27.qxd 7/25/03 9:19 AM Page 876

877Chapter 27 ✦ Using ANT to Build and Deploy Applications

cvsoutput.txt, you run a regular expression on it, using the replaceregexp task,
which finds the revision and replaces it with the single line “buildversion=x”.
Finally you pass the file cvsoutput.txt to the property task, which parses this file
as a set of key/data pairs and makes those pairs available in the ANT file.

Putting It All Together
We have taken a look at the most common tasks and techniques of ANT with this
chapter. This chapter is by no means an exhaustive look at what ANT can do; it is
an overview of ANT’s most common uses. To round this off, take a look at a typical
build file (Listing 27-11) that you may use during various parts of a project’s devel-
opment cycle.

Listing 27-11: A sample build.xml file

<project name=”wiley” default=”compile” basedir=”.”>

<!-- Define the properties for this project -->
<property name=”src” value=”.\src”/>
<property name=”build” value=”.\classes”/>
<property name=”dest” value=”.\lib”/>
<property name=”jarpath” value=”.\jars”/>
<property name=”junit.output” value=”.\junitreport\”/>

<path id=”project.class.path”>
<pathelement location=”${build}”/>
<pathelement location=”${jarpath}activation.jar”/>
<pathelement location=”${jarpath}mail.jar”/>
<pathelement location=”${jarpath}xalan.jar”/>

</path>

<!-- initialise some directories -->
<target name=”init”>
<tstamp/>
<mkdir dir=”${build}”/>
<mkdir dir=”${junit.output}”/>

</target>

<target name=”clean”>
<delete dir=”${build}”/>

</target>

<!-- Compile the java code from ${src} into ${build} -->
<target name=”compile” depends=”init”>

Continued

r539663 ch27.qxd 7/25/03 9:19 AM Page 877

878 Part VIII ✦ Advanced Topics

Listing 27-11 (continued)

<javac srcdir=”${src}”
destdir=”${build}”
includes=”com/wiley/j2ee/**”
optimize=”off” debug=”on”
classpathref=”project.class.path”/>

</target>

<!-- JUnit tests: Compilation -->
<target name=”compiletests” depends=”init”>
<javac srcdir=”${src}”

destdir=”${build}”
includes=”com/wiley/junit/j2ee/**”
optimize=”off”
debug=”on”
classpathref=”project.class.path”/>

</target>

<!-- JUnit tests: Running and producing output -->
<target name=”runtests” depends=”compiletests”>
<delete dir=”${junit.output}”/>
<mkdir dir=”${junit.output}”/>

<junit fork=”yes” printsummary=”yes” showoutput=”yes”>
<classpath>

<path refid=”project.class.path”/>
</classpath>

<formatter type=”xml”/>
<batchtest haltonfailure=”yes” todir=”${junit.output}”>
<fileset dir=”${src}”>
<include name=”com/wiley/junit/j2ee/**Test.java” />

</fileset>
</batchtest>

</junit>

<junitreport todir=”${junit.output}”>
<fileset dir=”${junit.output}”>

<include name=”TEST-*.xml”/>
</fileset>

<report format=”frames” todir=”${junit.output}/html”/>
</junitreport>

</target>

<!-- Build JAR file -->
<target name=”buildjar” depends=”compile”>
<jar destfile=”${dist}wiley_j2ee.jar”>
<fileset dir=”${build}”

includes=”com/wiley/j2ee/**/*.class”/>
</jar>
</target>

</project>

r539663 ch27.qxd 7/25/03 9:19 AM Page 878

879Chapter 27 ✦ Using ANT to Build and Deploy Applications

As you glance through the build file you will quickly see how it all comes together.
You set up all your properties at the top of the build file, which ensures that you
won’t have to hardcode any directory paths anywhere. It is important that you stay
away from hard coding any paths, filenames, directory names, etc. into your ANT
tasks; as otherwise you are not seeing the full benefit ANT can bring to your devel-
opment environment.

You define all your paths from the basedir=”.”, which is the directory in which
the build.xml file is saved. Then you define some simple housekeeping-type
targets that ensure that the necessary directories exist before you try compiling
into them.

You run the main targets, compile, runtests, and buildjar, by specifying the tar-
get name as a command-line argument to ANT when you trigger the script. There is
no limit to the number of targets you can have in one file. However, the key thing is
to document your targets well so that anyone maintaining your build file can do so
with relative ease.

Summary
In this chapter we had a quick look at ANT and saw how you can make use of it in
your own development environment. We tried to understand the structure of an
ANT build file and also touched on some of the commonly used ANT tasks and
ANT’s possible integration with JUnit and CVS.

ANT can minimize the housekeeping activities involved in managing your J2EE envi-
ronment, and free you to get on with building robust and scalable enterprise applica-
tions. ANT has revolutionized J2EE deployment, and considering the ever-growing
complexity of J2EE, ANT can only get more relevant and more useful in the future.

✦ ✦ ✦

r539663 ch27.qxd 7/25/03 9:19 AM Page 879

r539663 ch27.qxd 7/25/03 9:19 AM Page 880

Creating High-
Performance
Java
Applications

One of the marvelous things about Java is that it is a
very resilient runtime environment. Because no direct

access to memory is available via pointers, and because mem-
ory is not manually de-allocated, many problems that would
crash programs written in other languages will not crash a
Java application. This doesn’t mean that Java is immune to
problems — what happens instead is what computer scien-
tists call graceful degradation, where the performance gets
worse over time although the application doesn’t crash
outright.

Understanding Different
Types of Problems

This section discusses some of the most common types of
problems that occur in Java applications, how to identify
them, and how to isolate them. It’s not possible to describe
every possible solution to every possible problem, but once a
problem has been clearly identified and isolated the solution
is usually straightforward.

Before we can start looking at techniques for diagnosing and
fixing problems, we need to understand what kinds of prob-
lems we can encounter in J2EE applications. When we talk
about applications in this chapter, we mean distributed J2EE
applications — ones that are built using servlets, JSPs, EJBs,
or JMS. These applications are all similar in that they are

2828C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Understanding
performance metrics
for J2EE

Introducing J2EE
performance tools

Logging

Managing memory-
usage problems

✦ ✦ ✦ ✦

r539663 ch28.qxd 7/25/03 9:19 AM Page 881

882 Part VIII ✦ Advanced Topics

accessed via some network protocol, like the Hypertext Transfer Protocol (HTTP)
for servlets and JavaServer Pages (JSPs), or remote method invocation (RMI) for
Enterprise JavaBeans (EJBs).

All of these systems have a similar basic setup — some component provides a
response to requests coming in from a remote user. In many cases there may be a
chain of these requests, as with a servlet calling one or more EJBs that in turn make
Java Database Connectivity (JDBC) queries. In these cases the exact source of the
problem can be difficult to identify. However, the basic performance-tuning princi-
ples hold true for each component in the system as well as for the system overall.
Performance-tuning desktop GUI applications is similar, but many of the perfor-
mance metrics discussed in this chapter don’t apply to them.

See Chapter 18 for a discussion of JDBC.

It’s worth noting that from a performance standpoint J2EE systems are quite similar
to other types of distributed applications, like client-server systems and mainframe
transaction-processing systems. All these systems have multiple pieces that com-
municate over a network and deal with multiple simultaneous users. If you are
familiar with performance testing and tuning on these types of systems, some of
this chapter will be familiar to you.

Functional problems
First of all we can have functional problems. Every developer is familiar with func-
tional errors. They happen when your application gives you the wrong result.
Functional errors are easy enough to identify once they occur — the trouble is the
process of rigorously going through every possible use case and verifying that the
correct results are produced. It’s impossible for this book to even scratch the sur-
face of the subject of doing functional testing. Suffice it to say that the field of soft-
ware quality assurance is broad and deep, and that most developers have some
familiarity with it.

Performance problems
Once we’re past functional problems we get into the more difficult-to-diagnose realm
of performance problems. These problems affect applications in the following ways:

Requests complete too slowly.

Slow-downs occur as the number of users increases

Requests arrive faster than they can be completed

Cross-
Reference

r539663 ch28.qxd 7/25/03 9:19 AM Page 882

883Chapter 28 ✦ Creating High-Performance Java Applications

Let’s define and then discuss the following performance metrics:

✦ Response time

✦ Throughput

✦ Scalability

Response time
Response time is the amount of time it takes to complete a single request. Request
time can be defined a number of ways. For example, does the response time include
the amount of time it takes to transmit the request from the client browser to the
server? In most cases this end-to-end user-centric view of the system is the metric
we use to measure response time. When users and developers talk about poor per-
formance, a poor response time is usually what they mean. Sometimes poor
response time is the result of some sort of inefficiency or problem in the applica-
tion. More often, however, a poor response time is a symptom of some other prob-
lem that has yet to be revealed.

When looking at response time it is useful to think of it as a statistical measure. The
response time for one request in isolation says next to nothing about the system’s
overall performance. In most systems you’ll want to use a load-testing tool to help
generate a large number of requests to simulate real-world usage patterns. (Load
testing is discussed later in this chapter.)

Once you have a large number of requests you’ll be able to talk about average
response time (ART), maximum response time, and various other statistical mea-
sures such as standard deviation. Some people also calculate the aggregate average
response time (AART) of a set of load tests to compare test suites with respect to
the total amount of load they generate (see J2EE Performance Testing by Peter
Zadrozny, Expert Press, 2002).

Throughput
Throughput refers to the number of requests that can be processed by the applica-
tion in some period of time. Throughput is typically measured in requests per sec-
ond, or kilobytes per second if the size of the requests is highly variable.

Throughput can be measured at any point in time, but what most people are usu-
ally interested in is the maximum throughput. At any given point in time the current
throughput is usually lower than the maximum because there’s some unused pro-
cessing capacity in the system.

Scalability
Scalability refers to the number of users who can access the application before
response time starts to increase. In an ideal world your application maintains a uni-
form response time regardless of how many users are accessing it. In reality an

r539663 ch28.qxd 7/25/03 9:19 AM Page 883

884 Part VIII ✦ Advanced Topics

application can handle only a finite number of requests before its performance
starts to degrade. No separate measure of scalability exists — a system’s maximum
possible throughput determines its scalability.

In an ideal world response time is zero, maximum throughput is infinite, and scala-
bility is a non-issue. However, in reality, this is never the case. No simple, linear
relationship exists among response time, current throughput, and maximum
throughput (scalability), but in most applications we can observe the behavior
depicted in Figure 28-1.

Figure 28-1: The relationship between load and response time, throughput,
and utilization

The way to interpret this graph is to watch what happens to the various perfor-
mance metrics as users connect to the system (moving right on the x-axis). The
x-axis can be described as either the number of connected users or the request
arrival rate. However, the most common term for it is simply load. This term has
been used for a long time in engineering as an indicator of how much work the sys-
tem is trying to do.

We see that at the beginning response time is constant as the number of users
increases. The larger the light-load zone, the better the system’s scalability.

Response time doesn’t usually start to increase until the system enters the heavy-
load zone, wherein the system is processing at the maximum possible rate (in other
words, the throughput line has leveled off). The response time isn’t increasing

Light load

Heavy load

Buckle Zone

Concurrent users (Load)

Resource saturated

Response tim
e

Throughput

Utilization

r539663 ch28.qxd 7/25/03 9:19 AM Page 884

885Chapter 28 ✦ Creating High-Performance Java Applications

because we’ve reached the maximum throughout for our application — instead
they’re both correlated to a hidden third factor: resource use.

Finally we get to the point where the system spends more time coordinating the
access to this shared resource than it spends actually using it — the buckle zone. In
some cases the system will recover once the rate of request arrivals drops, but in
many cases the system will crash.

Resource use refers to any number of resources shared among users in the applica-
tion. For example, most applications have only one database, so all the users have
to compete to access it. Other examples of shared resources are as follows:

✦ Threads — Most application servers have a finite number of threads available
to handle incoming HTTP, RMI, and JMS requests.

✦ Memory — While it is not typically viewed as a resource, many Java Virtual
Machines have a single shared heap, which means that only one thread at a
time can allocate objects, leading to contention.

✦ CPU time — While most applications are limited by the network bandwidth
available or by the speed of the database, some applications need to do heavy
processing and the CPU can become a bottleneck.

✦ EJB instances — Many application servers pool stateless session beans, so a
finite number are available to respond to requests.

✦ Locks — Any synchronized method or synchronized block in your code repre-
sents a resource that can be used by only one thread at a time. If the code
block is very small this probably won’t be a problem, but as the size of the
code block grows, so does the possibility for conflict. Many hidden locks are
also present in your application, like the one used to manage the shared
servlet session-management data structures.

✦ Database connections — These are also typically pooled by the application
server.

✦ Disk bandwidth — Some application servers will passivate EJBs directly to
disk, queue JMS messages on disk, and so on, making the disk a potential
bottleneck.

So with this model for application performance, what can we do to improve the per-
formance of our application? If response times are slow, two possible reasons exist.
First, our application could be moving into the heavy-load zone or the buckle zone
too quickly. This means the problem is really a scalability problem. Or, more proba-
bly, the response-time line is simply too high on the graph. Even under low load, the
response time is poor. In either case what we need to do is streamline the applica-
tion, and determine which resource is becoming saturated and in turn limiting our
throughput or reducing the maximum throughput. Determining where the problem
occurs and what resource is involved is not easy, but some structured approaches
and tools can help us. Let’s look at some techniques that can help us track down
the source of performance problems.

r539663 ch28.qxd 7/25/03 9:19 AM Page 885

886 Part VIII ✦ Advanced Topics

Isolating Problems
We can use the following techniques to try and identify where problems are
coming from:

✦ Guessing

✦ Critical-path analysis

✦ Load testing

✦ Benchmarking

✦ Profiling

The first technique, guessing, doesn’t merit a lot of discussion for technical rea-
sons, but it is certainly popular. Anytime you don’t have enough data to make a
complete diagnosis of the problem, anytime you make a code change based on a
“hunch,” you’re really just guessing. Developers can be pretty good guessers and
their guesses can be right sometimes, but when you have a few million lines of code
and deadlines to worry about it’s not a sufficiently reliable technique.

Critical-path analysis
Critical-path analysis is a technique in which you analyze application code statically.
You identify certain use cases based on the application requirements or on
whichever use cases are presenting performance problems. Then you manually trace
through the sequence of system components and method calls, looking for potential
problems and generally optimizing the code along those paths of execution.

Critical-path analysis is slow, tedious and error-prone. It is, however, a more rigor-
ous method than simply guessing and will yield better results. The key first step is
identifying the use case to be analyzed, as well as every method executed during
that use case. Extensive use of logging (discussed later) is very helpful in this
regard, as it can be difficult to statically trace every possible path of execution
through the code.

Load testing
Here is where we enter the world of tools. Not every problem can be solved by a
smart developer and a text editor alone. Most developers are fully aware of this, of
course, and love using the wide variety of debugging and analysis tools at their dis-
posal. As the old saying goes, however, “A fool with a tool is still a fool.” You need
to have a clear understanding of what tools are capable of doing for you and what
information you expect them to provide.

A load-testing tool simulates a large number of users connecting to the system and
using the application. It’s a critical part of final system tests to determine the over-
all capability of the system and help with capacity planning. Some examples of

r539663 ch28.qxd 7/25/03 9:19 AM Page 886

887Chapter 28 ✦ Creating High-Performance Java Applications

commercial load-testing tools are Benchmark Factory from Quest Software
(http://benchmarkfactory.com), LoadRunner from Mercury Interactive
(http://www-svca.mercuryinteractive.com/products/loadrunner/), and
SilkPerformer from Segue (http://www.segue.com/html/s_solutions/
s_performer/s_performer.htm). Freely available tools include The Grinder
(http://grinder.sourceforge.net/) and Apache JMeter (http://jakarta.
apache.org/jmeter/). Some of these tools are not only capable of generating
HTTP requests but can also test EJBs over RMI or generate JMS messages. Some
may also have support for testing Web services via SOAP.

These tools are useful not only because they can simulate anywhere from a dozen
to thousands of users connecting to your system, but also because they’re script-
able so that they can replay complex series of requests and change their behavior
dynamically. For example, in an e-commerce application users might be required to
log in with unique user names before they can add items to their shopping carts.
Tests wouldn’t be realistic if all 200 simulated users were logging in using the same
user name, so many tools can parameterize their test scripts and bring in a list of
user names from a file, spreadsheet, or database.

What is a load-testing tool going to tell you? It depends on the complexity of the
tool. At the very least a load-testing tool is going to give you a response-time
curve — the response time versus time, or the response time versus number of con-
nected users. More complex tools can monitor other aspects of the application and
provide other metrics versus time or user load. For example, IBM WebSphere has
its own monitoring API called PMI. The JMX application-programming interface
(API) makes a number of internal application-server metrics available for applica-
tion servers that support it. Possible JMX metrics are things like number of pooled
EJB instances, number of HTTPSession instances, number of JMS messages in a
queue, and other metrics as well. More information is available at http://java.
sun.com/products/JavaManagement/.

What a load tester isn’t going to do is tell you why. Why is the problem you’re see-
ing occurring? If the response time is unacceptable, what is the root cause of the
problem? For this you’re going to have to go back to critical-path analysis or move
on to using a profiling tool that will identify bottlenecks within the application.
Load-testing individual components (like EJBs and databases) in the system can be
a help in this regard — at least you can pin the performance problem down to a spe-
cific component in the system. Then you’ll be able to move on and use a more spe-
cific tuning tool.

Benchmarking
One issue that faces J2EE development teams is choosing what application server
to use. This is partly a non-technical issue; some developers may prefer to use
open-source products like Tomcat and JBoss. Other developers may choose to
select a commercial vendor because of improved support or support for specific
operating systems, or because the salesperson took them out for lunch. While the

r539663 ch28.qxd 7/25/03 9:19 AM Page 887

888 Part VIII ✦ Advanced Topics

J2EE specification attempts to make application servers into interchangeable com-
modities, significant technical differences still exist among them. Which application
server will run your code the fastest? How can you tune and configure the applica-
tion server to run your code as fast as possible?

The first question is mostly unanswerable. If you remove all other variables from the
system you may be able to make a fair comparison, but this is often difficult to do. If
you compare several app servers all on identical hardware with the same applica-
tion with the same load tests and the same database, one application server will be
better than the others according to some metric. Of course, you have to choose
your performance criteria as well. Perhaps one application server provides more
consistent and lower response times while another provides higher throughput.

Application-server vendors are fond of publishing benchmark statistics using
industry-standard benchmarks. Various vendors use benchmark applications like
SPECjAppServer2002 and SPECjvm98 to tout their technical superiority. (Visit the
site at www.specbench.org/ for details about these applications.) Of course, no
two vendor benchmarks are ever run on the same hardware platform.

Also consider how closely the execution profile of the benchmark application
matches the characteristics of your application. Benchmark numbers provided by
vendors, while interesting, are ultimately useless for the practical job of making
your particular application run faster.

Lastly, the question of what application server to choose is often out of any individ-
ual developer’s hands. The decision has often already been made by management
or some technical-selection committee, and the developer’s task is to take the envi-
ronment at hand and make the best of it.

So the second question is much more relevant to most developers: How can you
tune and configure the application server to make your code run as fast as possible?
This sort of performance tuning is, without a doubt, an art, not a science. Anywhere
from a few dozen to several hundred settings exist on a commercial J2EE application
server. The vendor’s documentation will provide you with some guidance as to what
you can change, but these settings are very application server specific.

You cannot simply blindly change values and expect to see performance improve-
ments. Also, the optimal value for these settings will vary from application to appli-
cation. You can’t just copy what’s working well for another development group.
How can you determine which values are optimal for your application? You can
embark on the long, slow process of benchmarking.

A typical benchmarking setup consists of hardware that resembles that which will
actually be used in production, the same Java Virtual Machine (JVM), the same
application server, the same database (although not necessarily the same data,
although the data should be realistic), and a load-generation tool with some scripts
to exercise the application. You’ll need to define what metric you’re trying to
optimize — response time, throughput, perhaps peak memory usage.

r539663 ch28.qxd 7/25/03 9:19 AM Page 888

889Chapter 28 ✦ Creating High-Performance Java Applications

You run an initial test with the default settings for everything to create a baseline.
Then you change the value of a single parameter (or a very small number of param-
eters), rerun the test, and compare the results to your baseline. Were the new set-
tings better or worse? In many cases optimal values for configuration settings are
neither the maximum nor the minimum value but somewhere in between. If increas-
ing the maximum heap memory from 512MB to 1024MB resulted in a 5 percent
improvement in response time, that doesn’t necessarily mean that increasing it fur-
ther to 2GB or 3GB will be better still. In some cases extremely large heaps result in
garbage collections that, although they take a very long time, happen less fre-
quently; this can reduce the average response time.

Tunable parameters
Aside from changing application code, you can often improve overall system perfor-
mance by tuning various parameters on your application server and Java Virtual
Machine.

Application-server parameters
Unfortunately, there are too many application server parameters to get into in this
book. Even more frustratingly, the parameters vary greatly between different appli-
cation servers as the tunable parameters reflect the unique internal architecture of
the different application servers.

However, some common parameters include the following:

✦ Execute Thread Pool Size — This is equal to the number of requests that the
application server will process at once–any other requests will be queued.
Note that there’s a limit to the improvement you get from increasing this
value.

✦ JDBC Connection Pool Size — This is the number of connections the applica-
tion server will open to the database. This value should typically be equal to
or greater than the number of execute threads.

✦ Stateful Session EJB Pool Sizes — Depending on the number of beans used in
each request this value will typically be some multiple of the thread pool size.
The value will usually have to be adjusted for each type of EJB used in the
application.

For more detailed information, refer to the performance documentation for your
application server.

JVM parameters
The JVM may require some tuning, depending on which JVM you’re using and what
features it supports. The three major commercial JVM vendors are Sun, IBM, and
BEA with its JRockit JVM. The set of available parameters varies among vendors
and from release to release so it’s difficult to state exactly what options will be
available on the JVM you’re using.

r539663 ch28.qxd 7/25/03 9:19 AM Page 889

890 Part VIII ✦ Advanced Topics

It’s worth noting that in the future we’ll see JVMs becoming more and more “self-
aware” and capable of automatically determining the optimal values for the differ-
ent parameters described here. This is roughly analogous to what has happened
with cars over the last 50 years: The user-adjustable choke has disappeared, and
many cars come with automatic transmissions, automatic traction-control systems,
anti-lock brakes, and climate-control-luxury automobiles that will even tell you via
GPS where you are and how to get where you’re going. We can only hope that it
doesn’t take JVM designers 50 years to make analogous progress.

Here are some of the major tunable elements in current-generation JVMs:

✦ The bytecode compiler

✦ Heap size

✦ The garbage-collection algorithm

These elements are discussed in the following sections.

The bytecode compiler
The bytecode compiler is the engine that translates Java bytecodes into native
machine instructions. This is in contrast to javac and similar tools that translate
source code into Java bytecodes. All the optimizations are done at runtime in the
JVM and not by javac. It’s therefore important to use a highly optimizing bytecode
compiler.

Early bytecode compilers were referred to as “JITs” because they performed what is
known as just-in-time compilation, wherein the bytecode is recompiled when the
class is loaded into the JVM. Newer JVMs, like Sun’s HotSpot, use more sophisti-
cated techniques. This product starts by interpreting the bytecodes and collecting
runtime data, which allows it to decide more intelligently than a simple JIT, which
methods need to be compiled. It’s also capable of performing more aggressive opti-
mizations that result in faster code. Most JVMs only come with a single bytecode
compiler, but Sun’s HotSpot comes with two versions, referred to as client and
server. While the server version is designed for J2EE applications, some developers
have reported that their applications run faster in the client version. You will have
to benchmark your own code to find out.

The command-line options for the Sun JVM since Sun’s JDK 1.2 are -client and
-server. These options actually affect a number of settings, including how heap
memory is configured, so performance differences resulting from using one option
or the other may not be the result of the different compiler alone.

Heap size
Heap size is probably the single most important JVM setting. While the JVM will
allocate more heap memory from the operating system when it’s required, it is con-
servative in doing so and may not allocate the optimal amount. Setting the initial

r539663 ch28.qxd 7/25/03 9:19 AM Page 890

891Chapter 28 ✦ Creating High-Performance Java Applications

heap size improves the startup time for your application and can improve steady-
state performance as well. Setting the initial size of the heap too large can cause
problems, however: If the heap gets paged out this can cause virtual memory
thrashing and slow down memory access for garbage collection. Setting the maxi-
mum size of the heap prevents the JVM from consuming excessive system
resources. Additionally, you may be required to set the maximum size if you set the
minimum size to a large value, as the default maximum size may be lower than the
initial size you’ve set.

In some cases you may want or need to set the size of other memory regions as
well. Some JVMs enable you to adjust the size of the stacks that are associated with
each thread. If your application has a shallow call-tree structure and does not store
a lot of data in local variables you can save some memory by reducing the size of
the stacks. Some JVMs enable you to adjust the size of the permanent area, or
method area, wherein bytecode and static variables are stored. This may be
required for very large applications in which the size of all the loaded classes
exceeds the default maximum amount of permanent-area space. This is, however,
perhaps a bug and not a feature.

Some heaps use more complex structures, such as a generational heap. In genera-
tional heaps the heap is broken down into two regions: one for the allocation of
new objects and another for objects that have been around for a while. These are
usually referred to as the “new” and “old” regions respectively. The new region allo-
cates and disposes of objects more quickly but is less efficient in its use of space.
The old region uses space efficiently but is slow to allocate and garbage collect.
Some J2EE applications that create large numbers of transient objects benefit from
having the size of the new region increased from the default. Doing this is usually
more expedient than trying to reduce object allocation activity.

In Sun’s JVM the overall heap size is controlled via the -Xms and -Xmx flags — for
example, java –Xms128m –Xmx512m.

The garbage-collection algorithm
Some JVMs have multiple garbage collectors available. The difference between
them is usually some sort of tradeoff between pause time and throughput. Some
garbage collectors require that all threads in the system be suspended when
garbage is being collected (these are referred to as stop-the-world collectors). This
results in a pause in the application’s processing of anywhere from a few millisec-
onds to several seconds. The pause time is proportional to the number of objects
on the heap, which is in turn usually proportional to the overall size of the heap —
so as a rule of thumb, the bigger the heap, the longer the pause. While small pauses
typically do not cause problems for J2EE systems, large pauses can cause problems
like transaction failures or browser timeouts.

In order to reduce the pause time a number of different strategies are available.
Parallel garbage collectors distribute the GC activity across multiple processors
concurrently. This is only a benefit in multiprocessor systems, however. Other

r539663 ch28.qxd 7/25/03 9:19 AM Page 891

892 Part VIII ✦ Advanced Topics

garbage collectors are concurrent where the garbage collector does not require
that other threads have to be suspended for the entire time the garbage collector is
running. In both cases the reduction in pause time comes at a price: throughput.
Although the individual pauses are smaller, more time is spent overall in garbage
collection than would be spent with a stop-the-world collector.

Not all garbage collectors are equal — you get to pick two out of three: low pause
time, high throughput, and simple architecture. As JVM vendors spend more time
implementing better and more complex garbage collectors, performance improves
for both pause time and throughput. Again, it’s difficult to make specific statements
about garbage-collector performance outside the context of a particular JVM and a
particular application. If you have a choice of multiple garbage collectors, it’s
worthwhile to benchmark them and see if there is any difference.

The following documents have some useful performance-tuning information, but
may not be the most up to date. It is often difficult to find information on new JVM
features, but these documents should provide a good starting point:

✦ http://java.sun.com/docs/performance/

✦ http://wireless.java.sun.com/midp/articles/garbagecollection2/

✦ www-106.ibm.com/developerworks/ibm/library/i-garbage1/

✦ www-106.ibm.com/developerworks/library/i-gctroub/

✦ www-106.ibm.com/developerworks/ibm/library/j-berry/

✦ http://edocs.bea.com/wljrockit/docs70/tuning/

Profiling
A profiler is a tool that measures how much time is spent in each method in your
applications. The most popular profiler is probably Quest Software’s JProbe (found
at http://java.quest.com/jprobe), but profilers are also available from Borland
and Compuware among others.

Profiling is an essential part of any performance-tuning strategy, because without it
you’re reduced to guessing which methods are causing performance problems or to
going through the laborious process of tracing through the critical path(s) by hand.
With a profiler you can see exactly which methods are executed for a particular use
case and how much time is spent in each of them. Some profilers can also monitor
object-allocation activity so you can make correlations between excessive object
creation and excessive timing values.

One thing that profiling is not good at is correlating the internal activity of an appli-
cation with the user’s perception of it. That is, you can not simply run through a

r539663 ch28.qxd 7/25/03 9:19 AM Page 892

893Chapter 28 ✦ Creating High-Performance Java Applications

random series of operations in your application, collect some profiling data, tune
the most expensive method, and expect to see any significant improvement. A good
performance-tuning strategy identifies specific application-use cases to be analyzed
and collects data on just those use cases. Profiling information that isn’t collected
in the context of some operation that’s relevant to the end user is just useless data.

Profiling, like benchmarking, works well in conjunction with an organized load-
testing strategy. Load testing will identify which use cases are problematic and a
profiler will provide the data that break down what’s happening inside the applica-
tion in those situations. Profilers are sometimes referred to as white-box tools,
which is a reference to the contrast between their approach and the black-box
approach of a load tester.

In many cases, however, you’ll be forced into situations where you’re trying to diag-
nose a problem that’s already occurred without an easy way to reproduce it or eval-
uate it within a tool like a profiler. What you need in those situations is a record of
what happened — a log.

Logging
One way to isolate problems is to carefully track every activity in your application.
Recording every action taken in an application is referred to as logging and it is an
extremely powerful debugging technique.

The concept behind logging is as old as software development — every time an
application does something it also prints a message saying what it just did. The
trouble then becomes adding these statements to and removing them from the
source code. You don’t want customers or users to see all the details of the applica-
tion’s internal operation, but sometimes it’s useful to have the information available
to help diagnose difficult-to-reproduce bugs. What’s needed is a technique that
enables you to turn debugging output on and off dynamically without having to
recompile the application.

Finally, developers do sometimes want to display messages to the end user — for
example, if the network is unavailable the user should receive a message letting him
or her know that the application hasn’t failed at random but for a specific reason.
The logging APIs available for Java provide all of these features.

One issue that faces developers who decide to use logging in their applications is
the question of what to log. How can you make sure you’re logging every piece of
information you will want to see? There is no easy answer to this question. Here are
some approaches:

r539663 ch28.qxd 7/25/03 9:19 AM Page 893

894 Part VIII ✦ Advanced Topics

✦ Log everything — This is usually impractical. In certain critical sections of an
application, however, it may be the best approach to help make sure every-
thing is working perfectly.

✦ Log every method — This is a useful approach, as it helps the developer track
chains of method calls at runtime. Often the exact sequence of method calls
may be difficult to determine a priori because of dependencies on the inputs
to the system. The major difficulty with logging every method call is that it
requires a lot of discipline to log each and every method. Once you start mak-
ing exceptions for small or “unimportant” methods you lose the certainty of
being able to see everything that’s going on.

✦ Log the border — By border I mean the entry points to major components of
your system. For J2EE applications the border would consist of servlets, JPSs,
and EJB methods. JDBC calls would also be a logical border point, but modify-
ing JDBC-driver code to add logging statements isn’t usually possible. In some
cases you may want to take the less convenient path of logging every call to
JDBC method call. Monitoring the border is a good tactic, though, as it is an
easy way to identify the entry points into the major components of your appli-
cation.

✦ Log critical operations — With this approach you log only those operations
that are deemed “critical” by some measure. The problem is that often meth-
ods that seem innocuous during development end up playing a major role in
some problem that occurs once the application is deployed. There’s really no
way to effectively define “critical” for every possible set of circumstances.
Being selective about what you log does, however, cut down on both the
amount of logging code in the application and the amount of logging output.

The most common approach is to log most, but not all, methods. The problem is
that too much logging information is generated when developers choose to log
every method call. However, by using the concept of logging levels, developers can
get the best of border logging as well as method logging.

Logging APIs
Two logging APIs are available. One is the standard logging API provided with JDK 1.4
and higher, defined in JSR 47 and found at www.jcp.org/en/jsr/detail?id=47.
The other API is the Apache Jakarta project’s Log4J, found at http://jakarta.
apache.org/log4j. Why do two logging APIs exist when one of them is a standard?
Partly for historical reasons — Log4J was developed before JSR 47 was finalized and
became popular enough that many developers didn’t switch to the new standard API
when it became available. The other reason is that the two APIs provide different
capabilities and in some cases developers have found that the extra features pro-
vided by Log4J are worth the trouble of including another third-party library in the
application.

r539663 ch28.qxd 7/25/03 9:19 AM Page 894

895Chapter 28 ✦ Creating High-Performance Java Applications

The JSR 47 logging specification was first implemented in the Java 2 SDK (JDK) 1.4
release. No official release of the JSR 47 logging classes exists for earlier JDK
releases. However, an open-source package called Lumberjack can be found at
http://javalogging.sourceforge.net/. This package provides the JSR 47 for
JDK 1.2 and JDK 1.3. All the JSR 47 logging classes are defined in the
java.util.logging package.

Log4J has been under development for a long time (since 1999). It originated as a
project at IBM, though it is now a fully open-source member of the Apache Jakarta
project. The Log4J classes are defined in the org.apache.log4j package.

If the two APIs seem similar, it’s because the architecture of JSR 47 was influenced
by Log4J and other hierarchical logging packages. Because many concepts are
shared by both APIs, it’s easy to explain them both at the same time. Choosing one
is not really a technical issue — if you’re using JDK 1.4 or higher exclusively, use the
JSR 47 logging classes that come in the JDK standard library. If you need to support
earlier JDK releases, Log4J may be a better choice.

Logging is all about messages. A message is some piece of information that you
want to record for the purpose of monitoring the activity of your application. Figure
28-2 shows how messages are processed by the logging framework with Loggers,
Handlers and Formatters.

Figure 28-2: Logging architecture

The JSR 47 specification represents messages using strings with optional extra
objects that are provided as arguments to the message. Log4J represents messages
using any type of object and converts them into some sort of human-readable for-
mat via a formatter. In practice you’ll primarily log single-string messages when
using either API. Messages can optionally have a Throwable object associated with
them to encapsulate call-stack information about where the message was generated.

The important thing about logging APIs is that they’re not going to simply print out
every logging message generated by the application — messages also have a prior-
ity level associated with them. This enables you to dynamically adjust which mes-
sages are being logged by monitoring only certain levels of messages. The following
priority levels are defined in JSR 47 and Log4J:

Handler’s
destination

(optional)

logging
messages FormatterHandler

Filter

Logger

Filter

Note

r539663 ch28.qxd 7/25/03 9:19 AM Page 895

896 Part VIII ✦ Advanced Topics

JSR 47/JDK 1.4 Log4J

Most Detail FINEST n/a
Least Important FINER n/a
Lowest FINE DEBUG

CONFIG INFO
INFO WARN

Least Detail WARNING ERROR
Most Important SEVERE FATAL
Highest

These priority levels are simply mapped to integer values, so you can define addi-
tional levels if you wish. So when we talk about high priority messages, these are
messages that we always want to log because they’re very important. Low priority
messages may be logged, but we might also want to disable them to prevent an
excessive number of messages from being logged when the system is functioning
normally.

Once you’ve created a message you want to log and have decided what priority it
is, what do you do with it? You pass it to a logger. The logger is responsible for tak-
ing the message, checking its priority level to see if it should be logged, and, if so,
sending it to some destination. Every logger has a priority level associated with it
and will automatically discard messages with lower priority levels. In both JSR 47
and Log4J the logger class is simply called Logger— either java.util.Logger or
org.apache.log4j.Logger.

Loggers are hierarchical and this is a very powerful feature. Every logger has a
name in a hierarchical namespace associated with it, just as classes are organized
into packages in Java. Most applications create a logger for each class with the
same name as the class, although any structure can be used. This hierarchical
setup enables you to easily filter or sort through messages according to where they
were generated, on either a per-package or per-class basis. For example, we might
have two code packages com.acme.foo and com.acme.bar, as shown in Figure
28-3. By changing the priority for the logger named com.acme you implicitly change
the priority associated with both the com.acme.foo and com.acme.bar loggers
that correspond to the two code packages.

Priority levels are inherited, so if you don’t set a priority level for a logger explicitly,
the priority level will be inherited from the nearest parent that has its level set. In
this example, if there is already a logger for com.acme with its priority level set to
INFO, the com.acme.Foo logger will automatically inherit the same priority level
(INFO). Also, messages sent to a child logger are sent to the parent as well, so mes-
sages can be handled at any point in the hierarchy.

r539663 ch28.qxd 7/25/03 9:19 AM Page 896

897Chapter 28 ✦ Creating High-Performance Java Applications

Figure 28-3: A possible logger hierarchy
mirrors class names.

One important difference between the two logging APIs is how they handle the
order of initialization. The following code will work the same in both APIs:

Logger parent = Logger.getLogger(“com.acme”);
Logger child = Logger.getLogger(“com.acme.Foo”);

parent.setLevel(HIGHER); // where HIGHER is FATAL or SEVERE
child.setLevel(LOWER); // where LOWER is DEBUG or FINE

But the following code will work differently:

Logger parent = Logger.getLogger(“com.acme”);
Logger child = Logger.getLogger(“com.acme.Foo”);

child.setLevel(LOWER); // where LOWER is DEBUG or FINE
parent.setLevel(HIGHER); // where HIGHER is FATAL or SEVERE

In JSR 47 new children copy the parent’s level until their own level is changed.
When the level is changed on a parent logger, the level of all children loggers will be
changed. In contrast, Log4J dynamically walks the logger tree each time a level
determination is required.

In JDK 1.4, order of configuration for loggers matters — always configure parents
before children.

The Logger class in both APIs has a number of methods to handle messages. Each
class has Logger.log methods that take a priority level and a message and option-
ally a Throwable object. Here’s an example:

// JSR 47 / JDK 1.4
// these classes are in java.util.logging

Caution

com

acme

foo bar

r539663 ch28.qxd 7/25/03 9:19 AM Page 897

898 Part VIII ✦ Advanced Topics

Logger logger = Logger.getLogger(“com.acme.Foo”);
Logger.log(Level.WARNING, “A message”);
Logger.log(Level.FINE, “Another message”, new
RuntimeException());

// Log4J
// these are different classes in org.apache.log4j
Logger logger = Logger.getLogger(“com.acme.Foo”);
Logger.log(Level.ERROR, “A message”);
Logger.log(Level.DEBUG, “Another message”, new
RuntimeException());

You can see the similarity between these two APIs. Convenience methods such as
the following, which have the same names as the priority levels, are also available.

Logger logger = Logger.getLogger(“com.acme.Foo”);

// in JSR 47
Logger.config(“A CONFIG priority message”);
Logger.fine(“A FINE priority message”);

// in Log4J
Logger.info(“A INFO priority message”);
Logger.debug(“A DEBUG priority message”);

When a message is sent to a logger, the message’s priority level is compared to the
logger’s priority level. If the message’s priority is equal to or higher than the logger’s
priority level, the logger generates a LogRecord (in JSR 47) or LoggingEvent (in
Log4J) object. This is an internal logging object that generally isn’t visible to the
developer. It is in turn passed to a Handler (in JSR 47) or Appender (in Log4J), which
takes the new log entry and puts it in the log. LogRecords (and LoggingEvents) are
also sent to the parent logger so that in a typical application you need to attach
only a Handler (or Appender) to the root logger (whose name is an empty string).
Loggers can also have multiple Handlers attached, allowing them to log messages of
different priority levels to different destinations.

JSR 47 Handlers
In JSR 47 the following Handlers are included:

✦ StreamHandler

✦ ConsoleHandler

✦ FileHandler

✦ SocketHandler

✦ MemoryHandler

You can also define your own Handlers by subclassing Handler or StreamHandler.

r539663 ch28.qxd 7/25/03 9:19 AM Page 898

899Chapter 28 ✦ Creating High-Performance Java Applications

StreamHandler
StreamHandler is a base class that provides common functionality to the Handlers
that send output to some subclass of java.io.OutputStream. ConsoleHandler,
FileHandler, and SocketHandler are all subclasses of StreamHandler.

ConsoleHandler
ConsoleHandler sends output to the OutputStream provided by System.err.
This means that the messages will usually show up in the console that started the
JVM. In some application servers the System.err output will be collected in a spe-
cial application-server log that can be viewed in the application server’s administra-
tion console.

FileHandler
FileHandler sends logging output to a file or a set of files. This code fragment
demonstrates writing to a single file:

// in some initialization code
Logger rootLogger = Logger.getLogger(“”);
Logger logger = Logger.getLogger(“com.acme.Foo”);
FileHandler handler = new FileLogger(“logfile”);
rootLogger.addHandler(handler);

// later on
logger.log(Level.INFO, “A Message”);

Note also that in this example the Handler is attached to the root logger so that
even though no logger is explicitly attached to the com.acme.Foo logger the output
will still be logged. FileLogger can also automatically start a new log file when the
current file reaches a certain size. This feature is useful as it can be used to prevent
the log files from filling up all the available drive space.

// in some initialization code
Logger rootLogger = Logger.getLogger(“”);
Logger logger = Logger.getLogger(“com.acme.Foo”);
// use 3 files of 50K each
FileHandler handler = new FileLogger(“logfile”, 50*1024, 3);
rootLogger.addHandler(handler);

// later on
logger.log(Level.INFO, “A Message”);

SocketHandler
SocketHandler writes all its output to a socket. You’ll need to specify a machine
name and a destination port in its constructor. No corresponding server classes are
provided — you’ll have to write your own classes that listen on a ServerSocket
and process the incoming messages.

r539663 ch28.qxd 7/25/03 9:19 AM Page 899

900 Part VIII ✦ Advanced Topics

MemoryHandler
MemoryHandler is a terminal destination for messages — a proxy that buffers a
finite number of LogRecords in memory using a circular buffer until a predefined
condition is met. This condition is typically met when a message arrives that has a
priority level higher than the MemoryHandler’s (set in the pushLevel property). So
the Memoryhandler will buffer messages, discarding old ones as new ones arrive,
until something important happens.

Log4J Appenders
In Log4J Appenders serve the same role that Handlers do in JSR 47. Log4J is much
more powerful than JSR 47 in one way — it provides a large number of Appenders
“out of the box.” It’s difficult to imagine a situation in which one of the provided
Appenders isn’t sufficient. Another difference between JSR 47 and Log4J is that
Log4J makes no assumptions about where you want logging output to go, so no
default Appenders exist. You’ll have to explicitly create an Appender, either by
instantiating one or placing one in the configuration file. See the sections on JSR 47
configuration and Log4J configuration, later in this chapter.

Log4J provides the following wide variety of Appenders:

✦ AsynchAppender collects LoggingEvents in a separate thread and then dis-
patches them to other Appenders asynchronously.

✦ JDBCAppender sends LoggingEvents to a database.

✦ JMSAppender sends LoggingEvents out via a JMS topic (such as
publish/subscribe).

✦ LF5Appender sends messages to a Swing-based console application.

✦ NTEventLogAppender sends messages to the NT Event Log service.

✦ SMTPAppender sends an e-mail.

✦ SocketAppender transmits a serialized LoggingEvent object via a socket.

✦ SocketHubAppender listens on a socket as opposed to opening a remote
server.

✦ SyslogAppender sends events to a syslog daemon.

✦ TelnetAppender creates a socket you can telnet into to monitor logging mes-
sages. It defaults to port 23, the telnet port.

✦ ConsoleAppender logs to System.out or System.err.

✦ FileAppender sends messages to a file.

✦ RollingFileAppender backs up the log file automatically when it reaches a
certain size.

✦ DailyRollingFileAppender rolls over the log file at a fixed frequency.

r539663 ch28.qxd 7/25/03 9:19 AM Page 900

901Chapter 28 ✦ Creating High-Performance Java Applications

Consult the Log4J documentation for more details about how to use each of these dif-
ferent Appenders, http://jakarta.apache.org/log4j/docs/documentation.
html.

Formatting output
The last thing that both logging frameworks do is format the messages into some-
thing suitable for saving. They do this via a Formatter (JSR 47) or Layout (Log4J)
that transforms the message into an appropriate binary or human-readable format.

In JSR 47 the two available Formatters are SimpleFormatter and XMLFormatter.
SimpleFormatter, the default formatter, formats a LogRecord into a simple,
human-readable one- or two-line output. XMLFormatter outputs a standard XML
format as defined in the DTD supplied in Appendix A of JSR 47 (www.jcp.org/
aboutJava/communityprocess/review/jsr047/spec.pdf).

Consider, for example, in JDK 1.4.1, a SimpleFormatter configured like this:

// create a Logger & a ConsoleHandler
Logger logger = Logger.getLogger(“com.acme.Foo”);
Handler handler = new ConsoleHandler();
// This next step is optional as SimpleHandler is the default
handler.setFormatter(new SimpleFormatter());
logger.addHandler(handler);

logger.severe(“Whoa!”);

This produces the following output:

Feb 18, 2003 9:47:25 PM LogTest main
SEVERE: Whoa!
Feb 18, 2003 9:47:25 PM LogTest main
SEVERE: Whoa!

Why is the message printed out twice? Because a ConsoleHandler is already
attached to the root logger by default. The logging classes are configured so that
you will get logging output without having to do any more than create a logger. One
message comes from the root logger’s ConsoleHandler and the other from the
com.acme.Foo logger’s ConsoleHandler.

You can define new Formatters simply by subclassing the Formatter class and
overriding the format(LogRecord) method.

Log4J layouts
Log4J comes with a much wider variety of pre-defined layouts. This is because Log4J
uses the more general approach of allowing any type of object to be logged as a
message. The defined Log4J layouts are as follows:

r539663 ch28.qxd 7/25/03 9:19 AM Page 901

902 Part VIII ✦ Advanced Topics

✦ DateLayout formats Date objects.

✦ HTMLLayout outputs messages in an HTML table.

✦ PatternLayout uses a pattern string to generate message output.

✦ SimpleLayout prints only the message priority and the message as a string.

✦ XMLLayout is similar to JSR 47’s XMLLayout, but has a different DTD.

New layouts can be defined by means of subclassing Layout and overriding
format(LoggingEvent).

Multi-threaded logging
Logging messages in a complex multi-threaded system is a challenge. Messages may
arrive in any order and are not necessarily logged in the order in which they
arrived. Additionally, many threads may be executing the same method (as in a
servlet or EJB container) and it may be difficult to distinguish one thread’s activity
from another. Also, you may want to distinguish all the activity coming from one
client machine separate from activity generated by other machines, which may be
handled by multiple threads on the server.

Log4J makes this last task easy with the Nested Diagnostic Context (NDC) class.
The NDC is set up like a stack: Whenever you enter a new context you push the con-
text information onto the stack and when you leave the context you pop it off again.
What defines a context? You could set up a servlet’s doGet() method as a new con-
text and call push() at the beginning and pop() at the end. The entry point for an
important EJB method might be another possible context. The power of nested con-
texts lies in their ability to let you track the activity from the servlet to the EJB and
back again. You do this by watching the NDC information that’s automatically
included in each logged message.

All the NDC methods are static and the data structures inside the NDC class man-
age the information on a per-thread basis. This all happens transparently to the
developer.

Here’s a code fragment showing how to use a NDC:

public class StockServlet extends HttpServlet {
Logger logger = Logger.getLogger(“StockServlet”);

public void init() {
logger.setLevel(org.apache.log4j.Level.INFO);
org.apache.log4j.BasicConfigurator.configure();

}

public void doGet(...) {
NDC.push(“From: “+request.getRemoteHost());

r539663 ch28.qxd 7/25/03 9:19 AM Page 902

903Chapter 28 ✦ Creating High-Performance Java Applications

// do some stuff
logger.info(“some message”);

NDC.pop();
}

This code fragment would produce output like this:

0 [HttpProcessor[8080][4]] INFO StockServlet From: 127.0.0.1 – some message

The message includes the following elements:

✦ [0] is a timestamp.

✦ [HttpProcessor[8080][4]] is the thread name.

✦ [INFO] is the logging level.

✦ [StockServlet] is the logger name.

✦ [From: 127.0.0.1] is the NDC message.

✦ [some message] is the actual message logged.

Runtime configuration
The final advantage of using a structured logging API instead of plain old
println() statements is that you can dynamically change the amount of data
being logged without having to recompile — or in some cases restart — your
application.

JSR 47 configuration
In JSR 47 logging configuration is managed via the LogManager class. By default the
LogManager reads its initial configuration from the properties file lib/logging.
properties in the JRE directory. If you edit that property file you can change the
default logging configuration for all uses of that JRE. In addition, the LogManager
uses the two following optional system properties that give you more control in
reading the initial configuration:

✦ java.util.logging.config.class

✦ java.util.logging.config.file

These two properties may be set via command-line property definitions to the java
command, as shown here:

java –Djava.util.logging.config.file=logging.config SomeClass

The configuration file uses the simple key/value format shown in Listing 28-1.

r539663 ch28.qxd 7/25/03 9:19 AM Page 903

904 Part VIII ✦ Advanced Topics

Listing 28-1: JSR47 configuration file

“handlers” specifies a comma separated list of log Handler
classes. In this case, a single ConsoleHandler is
configured
handlers= java.util.logging.ConsoleHandler

To also add the FileHandler, use the following
line instead.
#handlers= java.util.logging.FileHandler,
java.util.logging.ConsoleHandler

Default global logging level.
This specifies the priority level of the root logger
Note that the ConsoleHandler also has a separate level
setting to limit messages printed to the console.
.level= FINEST

default file output is in user’s home directory.
java.util.logging.FileHandler.pattern = %h/java%u.log
java.util.logging.FileHandler.limit = 50000
java.util.logging.FileHandler.count = 1
java.util.logging.FileHandler.formatter =
java.util.logging.XMLFormatter

Limit the messages that are printed on the console
to INFO and above.
java.util.logging.ConsoleHandler.level = INFO
java.util.logging.ConsoleHandler.formatter =
java.util.logging.SimpleFormatter

##
Facility specific properties.
Provides extra control for each logger.
##

For example, set the com.acme.Foo logger to only log SEVERE
messages:
com.acme.Foo.level = SEVERE

These properties can also be defined in any location accessible by an
InputStream and passed to the LogManager class at runtime via LogManager.
readConfiguration(InputStream).

Different properties are available for the different classes. The properties are set up
to mirror the Java class names like java.util.logging.ConsoleHandler, but
with the limitation that only one instance of each class can exist because of naming
conflicts.

r539663 ch28.qxd 7/25/03 9:19 AM Page 904

905Chapter 28 ✦ Creating High-Performance Java Applications

Log4J configuration
Log4J configuration is managed via a Configurator. The Configurator interface
has two primary implementations, which allow the configuration settings to come
from a file, a Properties object (PropertyConfigurator), or a XML DOM
(DOMConfigurator).

PropertyConfigurator works much like JSR 47’s LogManager, with one interest-
ing additional feature: It can be configured to open a file and re-check it at whatever
interval you define. This is very useful, as it enables you to change the logging
properties without even having to restart your application — you can start getting
extra logging information about problems on the fly without having to try to repro-
duce the problem.

Listing 28-2 is an example of a servlet that monitors a local configuration file for log-
ging settings.

Listing 28-2: Log4J configuration file

public class MyServlet extends HttpServlet {

Logger logger;

public void init() {
// configure Log4J
// check for changes every 60 seconds
PropertyConfigurator.configureAndWatch(“local_config_file”,

60);
// convenience method to create a logger with the same
// name as a class
logger = Logger.getLogger(this.class);
}

public void doGet(HttpServletRequest request,
HttpServletReponse response) {

// do some stuff
logger.info(“INFO Message”);
// etc
}
}

Note that you don’t want to invoke PropertyConfigurator in the init method for
every servlet in your system — this would result in the logging system being initial-
ized multiple times, which may not be what you want. Tomcat will automatically ini-
tialize Log4J as part of its startup procedure, but in other systems you’ll want to
create a class that tracks whether logging has been initialized and makes sure that

r539663 ch28.qxd 7/25/03 9:19 AM Page 905

906 Part VIII ✦ Advanced Topics

it only happens once. Alternatively, you can avoid the problem of multiple initializa-
tions by creating the appenders and layouts you want to use in your initialization
code and not using a Configurator.

Having looked at logging, let’s move on and look at a separate topic related to man-
aging the performance of your applications — memory management.

Managing Memory-Usage Problems
While the garbage-collection system in Java makes memory management much eas-
ier to deal with for developers, garbage collection is not a panacea. The potential to
waste memory still exists. Memory-management problems can manifest a number
of symptoms ranging from benign excessive memory usage and performance loss
owing to excessive garbage collections all the way to application failures owing to
an out-of-memory condition.

Before we can discuss memory problems in Java, let’s discuss how memory man-
agement and the garbage collector work. Objects are allocated on the heap by
means of the new operator and accessed via references. Probably the easiest way
to think about memory in Java is to picture the heap forming a directed graph,
wherein objects form the nodes and the references between objects make the
edges. This is shown in Figure 28-4.The garbage collector sees the memory this
way, as a graph of objects and references.

Figure 28-4: Memory in Java

The purpose of the garbage collector is to remove from memory objects that are no
longer needed. But how does it determine which objects are no longer needed?
This is a hard problem to solve — the garbage collector can’t tell whether or not
you need any particular object, so it uses an approximation and looks for objects
that are no longer reachable. If we use the directed-graph analogy, it looks for

A reference

An object

r539663 ch28.qxd 7/25/03 9:19 AM Page 906

907Chapter 28 ✦ Creating High-Performance Java Applications

objects that can’t be reached by any path starting from a root. Roots are the start-
ing points for the garbage collector, fixed places that are always guaranteed to
exist. In Java, the roots include static fields in classes and locals on the stack. This
is shown in Figure 28-5. Anything that the garbage collector can’t reach from one of
the program’s roots by any path is considered garbage.

Figure 28-5: Memory regions and roots in Java

For an example of how the garbage collector evaluates what is and isn’t garbage
look at the following code:

Public void useless() {
MyObject m1 = new MyObject(); // object A
MyObject m2 = new MyObject(); // object B
m1.ref = m2;
global.ref = m2;
return;
}

This method has two local references on the stack, m1 and m2. Another variable,
called global is also created, outside the scope of this method. m1 and m2 are, tem-
porarily at least, two roots for the garbage collector. Two objects, A and B, are cre-
ated and two references, or edges, are created to them from the locals on the stack
(m1 and m2). Another reference is added from m1 to m2 and a reference is added
from the global object to m2. When the method returns, m1 and m2 are no longer

Method
area

Thread
stack

Thread
stack

Heap

Reference
from a
static field

References
from local
variables

r539663 ch28.qxd 7/25/03 9:19 AM Page 907

908 Part VIII ✦ Advanced Topics

on the stack, so object A is no longer reachable while object B can still be reached
via the reference global See Figure 28-6 for an illustration of this.

Because the garbage collector can no longer reach that object by some path it will,
at some point in the future, clean up that object. It’s important to note that garbage
collection does not happen immediately, but at some indeterminate point in the
future. In practice the garbage collector runs every few seconds but there are no
guarantees if and when it will run. Even though the object will stay in memory for
some period of time until the garbage collector releases it, it remains unreachable
and can’t be reused.

Figure 28-6: Determining reachability for garbage
collection

Loiterers
Now that we’ve talked about what the garbage collector is and what it does, let’s
look at what it means to have a memory leak in Java. An object can exist in any of
the three following states:

✦ Allocated

✦ Reachable

✦ Live

Figure 28-7 shows objects on the heap and the references between them, dividing
objects into the three states. The set of allocated objects contains all objects that
have been created but not yet removed by the garbage collector. Reachable objects
are all the allocated objects that can be reached from one of the garbage collector
roots. Live objects are reachable objects that are being actively used by your
program.

m1

Unreachable
after method exit

“global”

m2

r539663 ch28.qxd 7/25/03 9:19 AM Page 908

909Chapter 28 ✦ Creating High-Performance Java Applications

Figure 28-7: Finding memory leaks in Java

The garbage collector takes care of the allocated but unreachable objects for you,
so a Java memory leak is an object that’s reachable but not live. Even though you
have a reference to that object somewhere and a path to that object from some root
exists, the object isn’t needed by the program and could be disposed of — if there
wasn’t a reference to it.

Memory leak
in Java

allocated

reachable

live

Root set

Dispelling Myths About Garbage Collection in Java

Some common myths about garbage collection in Java are worth “cleaning up.” The first is
that the garbage collector can’t handle cycles — it can. That is, if you have three objects, A, B,
and C, with references from A to B, from B to C, and from C to A, and if these are the only
references to those objects, the garbage collector will clean those objects up. In this respect
Java is unlike other systems that use reference-counting techniques, such as Microsoft’s
COM, that do have problems handling cycles in the object-reference graph.

The second myth (and this is really for people who’ve moved to Java from C++) is that the
finalizer is the same as a C++ destructor. A number of subtle differences exist, but the most
important one is that the finalizer is not guaranteed to be called, unlike a destructor in C++,
which is always called when the object is removed. You can’t reliably depend on the finalizer
in Java. One interesting piece of trivia, however, is that if the finalizer is called, it’s possible for
it to “resurrect” the object by making a reference to the object that’s about to be garbage-
collected from another object, thus making it reachable again. While this is a bad thing to do
in practice, the garbage collector is aware of the fact that it can, in theory, happen.

r539663 ch28.qxd 7/25/03 9:19 AM Page 909

910 Part VIII ✦ Advanced Topics

One possible complication is that while the object itself can be reached, the code
that manages the object may not be accessible to you — for example, the reference
to the unneeded object might be from a private field in a class for which you don’t
have the source code. On the other hand, if the reference itself is accessible the
program should be able to take some action to remove all the references to the
object, thus making it unreachable and eligible for garbage collection.

When an object is being unnecessarily held in memory it’s rarely the case that a sin-
gle object is there alone. That object will have references to other objects, which
will have more references, and so on, forming a large subgraph of objects that are
leaked just because one reference wasn’t properly cleared. For example, in Swing or
AWT programming containers, such as panels or frames, include other child com-
ponents, such as buttons, text fields, and so on. The container can reach all of its
children, as it has references to them (to lay them out), and at the same time each
component has a reference back to its parent. A path, therefore, exists from every
object in the user interface to every other object. Compounding the problem, user
interface (UI) objects are often subclassed, adding additional references and
objects to the subgraph. The result is that the memory leak is not just a small set of
components; a very large collection of objects may be leaking.

It has become popular to refer to these unused objects in Java as loiterers, as
opposed to memory leaks, which denotes a different problem in C/C++ development
community. The Dictionary.com definitions of loitering are “to delay an activity with
aimless idle stops and pauses” (which will happen as the garbage collector has
more and more objects to check on each pass) and “to remain in an area for no
obvious reason” (you’re not using them, so why are they there?), both fairly apt
descriptions of what’s going on. Another good reason to use a different term is that
the Java virtual machine and many of the libraries have native code in them, writ-
ten in C++, and that code may have memory leaks in it, leading to confusion as to
whether a leak is in Java code or C++ code underneath the Java.

Loiterer anti-patterns
So, knowing what a loiterer is, what are some common situations that lead to loiter-
ing objects? Here are a few examples:

✦ Lapsed listeners

✦ Large sessions

✦ Lingerers

✦ Limbo

Lapsed listeners
A lapsed listener refers to an object being added to a collection and never removed.
The most common example of this is an event listener in Swing or AWT, where the

r539663 ch28.qxd 7/25/03 9:19 AM Page 910

911Chapter 28 ✦ Creating High-Performance Java Applications

object is added to a listener list but never removed once it is no longer needed. The
object’s usefulness has lapsed because although it’s still in the list, receiving
events, it no longer performs any useful function.

One of the side effects of lapsed listeners is that the collection of listeners may be
growing without bound. You can keep adding listeners to a collection, but they are
never removed. This causes the program to slow down as events have to be propa-
gated to more and more listener objects, causing each event to take longer and
longer to process. This is probably the most common memory-usage problem in
Java — Swing and AWT are very susceptible to this problem and it can occur easily
in any large framework.

Large sessions
Configuring your application server for long session timeouts can lead to excessive
memory consumption, which is much like a loitering-object problem. The good
news is that this is an easy problem to fix — simply reduce the session timeout
period. If you’re allowing sessions to persist for several hours before they’re
removed you’re going to require a lot of extra memory to hold the session data.

Alternately, sometimes large sessions are caused by programmer carelessness and
not long timeouts — perhaps an object was stored in a session that had a reference
to some other large set of objects that weren’t being used. In this case you’ll need
to analyze what exactly is being stored in the HttpSession objects and remove any
unnecessary objects.

Stateful session beans can also lead to excessive memory consumption if not man-
aged properly. A common occurrence is that as users connect to the system, a
stateful session bean is created for each new user. As users leave the system the
beans are not removed immediately — they have to time out. Before the timeout
limit is reached, however, more users connect, so the application server needs to
reuse that memory, so the beans are passivated, which means that their data are
written to persistent storage, typically disk. This passivation can be a time- and
resource-consuming activity and is only necessary if the same user is going to
return to the system and expect to see it in the same state as when he or she left it.
When HttpSessions are removed via timeout any stateful session beans associ-
ated with that user should be manually removed from the system as well.

Lingerers
A lingerer is an object that hangs on for a while after the program is finished with it.
Specifically, it appears when a reference is used transiently by a long-lived object
but isn’t cleared when finished with. The next time the reference is used it will
probably be reset to refer to a different object, but in the meantime the previous
object loiters about.

r539663 ch28.qxd 7/25/03 9:19 AM Page 911

912 Part VIII ✦ Advanced Topics

The following print service in an application is one example of a lingerer:

public class PrintService {

static PrintService singleton;
Printable target;

public PrintService getPrintService() {
return singleton;

}

public void setTarget(Printable p){
target = p;

}

public void doPrint() {
// set stuff up
// print target

}
}

The print service can be implemented as a singleton because there isn’t usually any
need to have multiple print services in an application (at least for the sake of this
example). The print service contains a field called target, and when the program
calls doPrint() the print service goes and prints the object referred to by target.
The important thing is that when the print service is done printing the target refer-
ence is not set to null. The object that was being printed can’t be garbage-collected
now, as a reference to it from the printer object is still lingering. You have to make
sure that transient references are set to null once you’ve finished using them.

Here’s another example of a lingerer in a class that implements a stack:

public class Stack {
Object stack[] = new Object[10];
int index = 0;

public void push(Object o) {
stack[index] = o;
index++;

}

public Object pop() {
index--;
return stack[index];

}
}

So, if we ignore the possibility for ArrayIndexOutOfBounds exceptions, what’s
wrong with this code? Imagine what happens after you push three objects on the
stack and then pop them off. While the stack is empty, it still contains the references
to those three objects, preventing those objects from being garbage-collected.

r539663 ch28.qxd 7/25/03 9:19 AM Page 912

913Chapter 28 ✦ Creating High-Performance Java Applications

One strategy for dealing with lingerers is to encapsulate state in a single object as
opposed to having a number of objects maintaining state information. This makes
changing state easier, as you have only one reference to deal with. Lingerers often
occur when objects with multiple states hold onto references unnecessarily when
the object is in a quiescent or inactive state, so you have to carefully consider the
state-based behavior of your objects.

Another strategy is to avoid early exits in methods — you should set up methods so
that they do their setup first, then the processing, and finally any cleanup neces-
sary. If you exit before the method has a chance to clean up, references may be left
holding onto objects that are no longer needed.

Limbo
In our final anti-pattern, things in limbo are caught between two places, occupying
neither of them fully. Objects in limbo may not be long-term loiterers, but they can
take up a lot of memory at times when you don’t want them to.

Limbos occur when an object being referenced from the stack is pinned in memory
by a long-running thread. The problem is that the garbage collector can’t perform
liveness analysis, by which it would be able to find out that an object won’t be used
anywhere in the rest of a method, thus making it eligible for garbage collection.

Consider this code fragment, in which the method is supposed to read through a
file, parse items out of it, and deal with certain elements in it:

Void method() {
// this creates a large object
// perhaps a XML DOM tree
Biggie big = readIt();

// this condenses it
// assume item has no references to big
Item item = findIt(big);

// we’d really like to reuse big’s memory
// this method is going to run a long time
parseIt(item);

}

This might happen if you were looking for a specific piece of data in an XML file, for
instance. So the first thing the method does is call readIt(), which reads in the
whole file, which would consume a lot of memory. Then the method findIt() goes
through and searches for the particular information you’re looking for, condensing
all the information from the big object into something much smaller. From this
point on you don’t need big anymore and you’d probably like to reuse the memory
it’s occupying. But when you call parseIt(), which may take a long time, the mem-
ory for big can’t be reused because there’s still a reference to it from the stack in

r539663 ch28.qxd 7/25/03 9:19 AM Page 913

914 Part VIII ✦ Advanced Topics

method()’s stack frame —big can’t be garbage-collected until method() returns.
You need to help the garbage collector out by setting the reference to big to null
before the call to parseIt().

One way to deal with limbos is to be aware of long-running methods and to watch
where large allocations are occurring, to make sure that you’re not creating large
objects that are being held on the heap by a reference on the stack. Tools such as
profilers and memory debuggers can help determine what methods take a long time
to run and what objects are very large.

Explicitly adding statements to set references to null in cases where large objects
are being needlessly held can make a big difference by allowing objects to be
garbage collected earlier. While it’s not practical or necessary to null out every ref-
erence after you’re done with it, it helps where appropriate.

Finally, a blocked thread can also be a problem; for example, when a thread is
blocked waiting on I/O, no object referenced from the stack in that thread can be
garbage-collected. In these cases, resolving the thread blockage will also resolve a
loitering object problem.

Summary
Overall this chapter has touched on a number of different topics all relating back to
the core idea of creating high-performance applications. When analyzing perfor-
mance problems, or any type of problem, you need to go through three steps:
detect, diagnose, and resolve.

Detecting the problem can be difficult, especially since you, the developer, want to
detect problems before your users do. Various types of testing tools, like load test-
ing tools, can help to detect problems before your application is deployed into
production.

Diagnosing the problem requires another set of tools — things profilers and logs of
application activity generated via a structured logging API. The information pro-
vided by these tools helps you to determine where exactly the problem originates.

Finally, resolving the problem requires an understanding of what the root cause of
the problem is — in some cases it may be obvious, but in other cases, like excessive
memory usage (“Loiterers”), the problem may be more difficult to track down and
you’ll need knowledge of how the garbage collector operates to help fix the issue. In
other cases it may be quicker to make a change to the execution environment by
tuning parameters associated with the JVM or the application server.

Using the tools and concepts explained in this chapter you should be well equipped
to detect, diagnose and resolve performance problems in Java applications.

✦ ✦ ✦

r539663 ch28.qxd 7/25/03 9:19 AM Page 914

Airline
Reservations
Business Case

Any examples of companies, organizations, products,
domain names, e-mail addresses, people, places, or

events depicted herein are fictitious. No association with any
real company, organization, product, domain name, e-mail
address, person, place, or event is intended or should be
inferred.

Executive Summary
Connexia Airlines is a new startup consumer airline that will
take advantage of a specific gap in the short-haul domestic-
travel market. This gap exists in low-cost service in the follow-
ing metros:

✦ Hartford/Springfield, Connecticut

✦ Milwaukee, Wisconsin

✦ Toledo, Ohio

✦ Atlantic City, New Jersey

✦ Wilmington, Delaware

✦ Baltimore, Maryland

The lack of availability of cheap service in and out of these
locations, coupled with the demand for such service, indi-
cates that a new airline could capture a significant market
share of current air travel in and out of these locations.

AAA P P E N D I X

✦ ✦ ✦ ✦

s539663 AppA.qxd 7/25/03 9:19 AM Page 915

916 Appendixes

Management-consulting firm Aspectsoft.com has conducted extensive market
research and predicts that air travel to and from the preceding destinations is suffi-
cient to provide a new carrier with annual revenues of $250 million in its first year
of operation. The sales figures are based on two factors: first, achieving a load fac-
tor of 65 percent in the first year, and second, achieving a 75 percent booking rate
for tickets through electronic means.

Based on the stated revenue, Connexia can produce a net profit of between $1 mil-
lion and $2 million in its first year of operations, and $16 million dollars in its sec-
ond year. The first year of operations will drain cash until revenue can commence,
because of regulatory and organizational obligations in the first year for any new
carrier.

Mission Statement
Connexia Airlines has the following mission statement:

We will provide safe, low-cost, on-time consumer air travel. We will stress
safety as our highest priority. Connexia will operate the newest aircraft and
best information-technology systems available. We will never shortcut mainte-
nance at any time for any reason. We will make every effort to operate our
flights on time. We will provide friendly and courteous no-frills service.

The Management Team
These are the members of Connexia’s management team:

Mattie Lee Mitchell, president and CEO — Mattie Lee successfully founded
three different regional airlines in a fifteen-year period. She is an accom-
plished pilot and businessperson. Prior to starting airlines she was the corpo-
rate pilot for United Express, Kelon Piano Company, Planet Fruit, and Flute
Bank. Mattie Lee attended the University of Carlisle.

Fong Sai Yuk, chief financial officer — Fong Sai Yuk was the vice president
and treasurer for Roti Resorts Limited. He previously was president of a $40
million martial-arts-film company. Sai Yuk has successfully raised capital for
two different public companies and has written strategic growth plans as both
an executive and a member of the board of directors. Fong has a BA in finance
from the College of Plumitan and an MBA in finance from Biche University.

Sherry Ann Rattan, chief technology officer — Sherry Ann has over seven
years of information-technology experience, including distinguished military
service. She has been director of operations, chief architect, and a technical
writer. She has also served as chief information officer for Rio Claro Airlines.

s539663 AppA.qxd 7/25/03 9:19 AM Page 916

917Appendix A ✦ Airline Reservations Business Case

Technology Overview
The key to obtaining profitable customers and keeping expenses in line is using
information technology to obtain competitive advantage. Connexia’s CTO, Sherry
Ann Rattan, has asked her team to focus their primary efforts on making the reser-
vations process more efficient.

Sabre and Apollo are the two predominant reservations systems used in the airline
industry today, but they are outmoded and obsolete. The major airline carriers are
slow to change their information systems because of the huge expense involved.
Hence, they keep operating with old and outdated systems.

Sabre is in the process of testing a new system that leverages Java Messaging
Service (JMS), and Apollo is testing a new system that uses Web services. Sherry
Ann would like to support these new interfaces in pilot mode but would require the
older RMI and proprietary interfaces to be supported. Since Sabre is a mainframe
system, she wants the team to consider using the Java Connector Architecture
(JCA) to encapsulate all Sabre logic.

The Connexia reservations system will have the three following advantages, which
will contribute to reduced expenses:

✦ Speed

✦ Learning curve

✦ Easy integration with current and future business partners

Since many of its business partners’ systems were developed more than 20 years
ago, Connexia constantly needs to retransmit records from one system to another.
Retransmission should happen without human intervention.

One of the biggest issues facing Connexia is compliance. The Federal Aviation
Administration (FAA) requires exacting record keeping. Connexia will be periodi-
cally audited and must have clearly defined procedures and documented internal
accountability.

Examples in this Book
This book contains the following examples.

Developing a login page — JSP Basics (Chapter 6)
This will demonstrate a simple login page that prompts the user to enter his or her
user ID, password, and role (agent, partner, consumer, employee). Each user is

s539663 AppA.qxd 7/25/03 9:19 AM Page 917

918 Appendixes

given five attempts to login. After the fifth failed attempt a user is locked out of the
system and redirected to a page that will let him or her contact an administrator.

Developing a lost-password page —
JSP Basics (Chapter 6)
This screen will prompt users to enter hints. Employees will enter their employee
IDs; all others will enter their e-mail addresses. If they are known to Connexia, they
will be redirected to a page that will tell them that their IDs and passwords will be
e-mailed to them.

Developing a registration screen —
JSP Basics (Chapter 6)
This screen will enable agents, partners, consumers and employees to register their
Web sites. Users will enter their names, e-mail addresses, and phone numbers.
Simple validation will occur. Employees will be required to enter their employee
IDs, agents will be required to enter their agent IDs, and partners will be required to
enter their partner IDs.

Sending e-mail — JavaMail (Chapter 8)
The marketing department will have a screen that will enable its members to enter
a subject and a message and to select a group of recipients (agents, partners, con-
sumers, employees) to whom to send a message. When the composer of the mes-
sage clicks Send, the system will display a page that shows how many recipients
were e-mailed and how many initially known failures occurred.

Sending e-mail to newsgroups —
Java e-mail (Chapter 8)
The marketing department would like a screen that enables its members to enter a
subject and a message and to select a group of Usenet newsgroups to which to send
a marketing message. Members will be able to select up to five newsgroups at any
one time.

Sending a request for food to the caterer —
JMS (Chapter 9)
Every time a reservation request is booked, the airline will send a request for food
based on the passenger’s dietary requirements (regular, low salt, vegetarian,
kosher, halal, or diabetic) along with the itinerary to the caterer that serves the
flight.

s539663 AppA.qxd 7/25/03 9:19 AM Page 918

919Appendix A ✦ Airline Reservations Business Case

Receiving a request to book a ticket —
Java Transactions (Chapter 10)
Sometimes a customer will have an itinerary that involves airlines other than
Connexia. In this scenario, we want to make sure that all airlines in the itinerary
accept any reservation requests; otherwise, the customer may be left stranded. Of
course, each partner may use different connection mechanisms.

Storing registration information in LDAP —
JNDI and Directory Services (Chapter 11)
All registration information is stored within an LDAP-based directory service and
replicated between its two data centers (Bloomfield, Connecticut and Biche,
Trinidad).

Authenticating requests against the directory —
JAAS (Chapter 12)
Connexia would like to validate all incoming requests from JMS, servlets, and RMI
calls against LDAP. It has expressed a preference to tie this functionality into the
J2EE container it uses.

Encrypting Credit-Card Information — JCE (Chapter 13)
Connexia requires payment information for all reservations booked through its con-
sumer and agent Web site whereby the customer is required to enter credit-card
information. It is important that credit-card information be stored in an encrypted
format to avoid breaches. Connexia also requires support for pluggable encryption
algorithms, as computers get faster over time and that increases the odds that any
one algorithm will eventually be broken. Connexia stores all credit-card information
using reversible encryption, and the key is based on the user ID and role (agent,
consumer, and so on).

Searching for the cheapest flight —
Session Beans and Business Logic (Chapter 15)
Connexia has standardized on the use of stateless session beans for its architecture
wherever practical. It uses one session bean that holds the business logic for
searching for flight information for a customer’s itinerary. It also interacts with
other session beans to determine pricing and tax information to develop the total
itinerary.

s539663 AppA.qxd 7/25/03 9:19 AM Page 919

920 Appendixes

Receiving a request from another airline to book —
Message-Driven Beans (Chapter 17)
Several of Connexia’s airline partners have the ability to send reservation requests
in a transactional manner via JMS. One of their partners sends a serialized object
while another uses a prearranged textual format to indicate flight information.
When a request is received, it first checks that the information is correct and then
makes the reservation.

Storing reservation information — JDBC (Chapter 18)
When a reservation request enters the system, the system updates multiple data-
sources including passenger/flight tables, the general ledger (payment informa-
tion), and frequent-flyer-information systems.

Booking accompanying car rental —
Java Connector Architecture (Chapter 19)
Sometimes a customer would like to book a hotel room and/or rental car at his or
her destination. Connexia gives customers the ability to do this through its main-
frame links with Sabre, Apollo, and Worldspan.

Sending a message to various law-enforcement
agencies — SOAP (Chapter 21)
Because of recent terrorist acts all airlines are required to send passenger informa-
tion to various law-enforcement agencies, including the Federal Aviation
Administration (FAA), the Federal Bureau of Investigation (FBI), the state police of
the state in which the departure takes place, and customs and immigration officials
at the flight’s destination. Each of the government agencies has exposed its systems
via Web services.

Creating WSDL for the reservation system —
WSDL (Chapter 21)
Connexia would like to create WSDL for its reservation system so that external part-
ners can interact with the system’s various functionalities to search for flights,
book tickets, and so on. Agents would like to determine their monthly commissions
online.

s539663 AppA.qxd 7/25/03 9:19 AM Page 920

921Appendix A ✦ Airline Reservations Business Case

Concierge services — UDDI (Chapter 21)
In the future Connexia would like to add concierge services as part of the reserva-
tion process. This service may enable a user to make reservations at restaurants,
arrange for cabs and limousines, or get tickets to sports venues and theaters at his
or her destination. Connexia publishes services information in a public UDDI reg-
istry based on industry classification and geographic location.

✦ ✦ ✦

s539663 AppA.qxd 7/25/03 9:19 AM Page 921

s539663 AppA.qxd 7/25/03 9:19 AM Page 922

Magazine
Publisher
Business Case

Any examples, companies, organizations, products,
domain names, e-mail addresses, people, places, or

events depicted herein are fictitious. No association with any
real company, organization, product, domain name, e-mail
address, person, place, or event is intended or should be
inferred.

Executive Summary
J2EE Publishers is the publisher of multiple technology maga-
zines including Hackers Daily, Agile Architect’s Journal, and
J2EE Standard. Each of its magazines is directed at the infor-
mation-technology community at all levels of business
throughout the United States, Canada, the United Kingdom,
and Easter Island. All of its publications have a combined total
circulation of 2,222,000 copies and it hopes to reach the three
million mark by the end of the next fiscal year. Each of the
magazines is published bimonthly. To increase exposure and
build subscription volume, J2EE Publishers will use sample
distribution and direct mail to targeted lists of information-
technology professionals.

Publishing magazines is highly profitable and has a high mar-
gin. Success depends on successful marketing. J2EE
Publishers maintains a multidimensional sales and marketing
plan to increase its circulation quickly. Successful execution
of the J2EE Publishers business plan will produce an annual
revenue of $35 million this fiscal year. Margins are in excess of
40 percent after taxes.

BBA P P E N D I X

✦ ✦ ✦ ✦

s539663 AppB.qxd 7/25/03 9:19 AM Page 923

924 Appendixes

Mission Statement
J2EE Publishers is for the technologist who is capable of designing and developing
at any level in any language. The company’s mission statement is as follows:

Our magazines are committed to be a voice for technologists who represent
the creative and technical vision in the marketplace and who can give confi-
dence to other information-technology professionals. J2EE Publishers,
through its books, magazines and syndicated editorial content, will be a
vehicle for informing and enlightening the world about technology principles
in everyday business. Our prime directive is to promote the concept of
“community” in society.

Technology Overview
J2EE Publishers is looking to further increase its competitive lead and margin by
using state-of-the-art information-technology systems. The executive team has
decided the following are priorities in making the information system meet the
strategic business goals:

Learn more about the subscribers by storing preferences within the
databases to their buying habits.

Integrate the subscription-management system and accounts-receivable sys-
tem so that all financial information can be analyzed up to the minute and
nightly batch feeds can be eliminated.

Reduce the amount of fraudulent orders placed for magazine subscriptions.

Examples in this Book
This book contains the following examples.

Develop a login page —
Servlet Programming (Chapter 5)
This will demonstrate a simple login page that prompts the user to enter his or her
user ID, password, and role (agent, partner, consumer, employee). Each user is
given five attempts to login. After the fifth failed attempt a user is locked out of the
system and redirected to a page that will let him or her contact an administrator.

s539663 AppB.qxd 7/25/03 9:19 AM Page 924

925Appendix B ✦ Magazine Publisher Business Case

Develop a lost password page —
Servlet Programming (Chapter 5)
This screen will prompt users to enter hints. Employees will enter their employee
IDs; all others will enter their e-mail addresses. If they are known to Connexia, they
will be redirected to a page that will tell them that their IDs and passwords will be
e-mailed to them.

Demonstrating required and optional fields —
JSP Tag Extensions (Chapter 7)
The user-interface group for J2EE Publishers requires that for Web sites all required
fields be preceded by a green oval and all optional fields by an orange diamond.

Showing how long a user has been logged in —
JSP Tag Extensions (Chapter 7)
The user-interface group for J2EE Publishers requires that all pages display in the
upper right-hand corner of the screen the date and the time the user has been
logged in, as well as how much time he or she has before the session expires.

Sending a message to the accounting system —
JMS (Chapter 9)
Whenever J2EE Publishers receives an order, it is required to send additional infor-
mation via JMS to its general ledger, indicating customer information, amount
received, payment method, and items ordered.

Checking for fraud using DNS —
JNDI and Directory Services (Chapter 11)
J2EE Publishers frequently receives fraudulent orders from people using stolen
credit cards. One of the steps it has decided to take is to look at referrer informa-
tion and use DNS to reverse the host name and IP address to see if they match. This
will help the company determine potential fraudulent activities.

s539663 AppB.qxd 7/25/03 9:19 AM Page 925

926 Appendixes

Authenticating requests against the directory —
JAAS (Chapter 12)
J2EE Publishers would like to validate all incoming requests servlets against an
internally maintained database. It wants to tie this functionality in to the J2EE con-
tainer it uses.

Password encryption — JCE (Chapter 13)
J2EE Publishers wants to have all passwords stored in its database by means of
one-way non-reversible encryption. It will use a fixed key for all operations.

Publications, authors, and orders —
Entity Beans (Chapter 16)
The persistence mechanism of choice for J2EE Publishers is the use of entity beans.
Each publication can have one or more authors. Authors can work on one or more
publications. An order can include one or more publications.

✦ ✦ ✦

s539663 AppB.qxd 7/25/03 9:19 AM Page 926

Additional
Reading and
References

The author team has collated a listing of additional books
and references that we believe should make a good addi-

tion to any J2EE book collection. This list is not meant to be
complete, as there are more books than we could possibly
list, and is only meant to point one in the right direction.

Architecture
Fowler, M.; Rice, D.; Foemmel, M.; Hieatt, E.
Patterns of Enterprise Application Architecture
Addison Wesley, November 2002

McGovern, J.; Ambler, S.; Stevens, M.; Linn, J.;
Sharan, V.; Jo, E.
Practical Guide to Enterprise Architecture
Prentice Hall, May 2003

BEA WebLogic
Mueller, S.; Weber, S.
BEA WebLogic Server Administrator’s Guide
John Wiley & Sons, May 2003

Zuffoletto, J.; Wells, G.; Gill, B.; Schneider, G.; Tucker, B.;
Helton, R.; Madrid, M.; Makhijani, S.
BEA WebLogic Server Bible
John Wiley & Sons, February 2002

CCA P P E N D I X

✦ ✦ ✦ ✦

s539663 AppC.qxd 7/25/03 9:19 AM Page 927

928 Appendixes

Corba
Bolton, F.
Pure Corba
Sams Publishing, July 2001

Pritchard, J.
COM and Corba Side by Side: Architectures, Strategies and Implementations
Addison Wesley, July 1999

Slama, D.; Garbis, J.; Russell, P.
Enterprise Corba
Prentice Hall, March 1999

Frameworks
Husted, T.
Struts in Action: Building Web Applications with the Leading Java Framework
Manning Publications, November 2002

IBM WebSphere
Kelly, B.
Getting Started with WebSphere
29th Street Press, March 2002

Kataoka, B.; Ramirez, D.; Sit, A.
WebSphere Application Server Bible
John Wiley & Sons, July 2002

Jakarta
Goodwill, J.
Apache Jakarta-Tomcat
APress, December 2001

Goodwill, J.
Mastering Jakarta Struts
John Wiley & Sons, September 2002

Hightower, R.; Lesiecki, N.
Java Tools for Extreme Programming: Mastering Open Source Tools including
Ant, JUnit and Cactus
John Wiley & Sons, December 2001

s539663 AppC.qxd 7/25/03 9:19 AM Page 928

929Appendix C ✦ Additional Reading and References

Husted, T.; Dumoulin, C.; Franciscus, G.; Winterfeldt, D.; McClanahan, C.
Struts in Action: Building Web Applications with the Leading Java Framework
Manning Publications, November 2002

Java
Bloch, J.
Effective Java
Addison Wesley, June 2001

Grosso, W.
Java RMI
O’Reilly & Associates, October 2001

Melton, J.; Eisenberg, A.; Cattell, R.
Understanding SQL and Java Together
Morgan Kaufmann Publishers, May 2000

Neward, T.
Server-Based Java Programming
Manning Publications, July 2000

Shirazi, J.
Java Performance Tuning
O’Reilly & Associates, January 2000

Tate, B.
Bitter Java
Manning Publications, April 2002

J2EE
Bayern, S.
JSTL in Action
Manning Publications, July 2002

Fleury, M.; Lindfors, J.
JMX: Managing J2EE Applications with Java Management Extensions
Sams Publishing, January 2002.

Hunter, J.
Java Servlet Programming
O’Reilly & Associates, January 2001

Price, J.
Oracle 9i JDBC Programming
McGraw Hill, May 2002

s539663 AppC.qxd 7/25/03 9:19 AM Page 929

930 Appendixes

Roman, E.; Ambler, S.; Jewell, T.; Marinescu, F.
Mastering Enterprise JavaBeans
John Wiley & Sons, December 2001

Sharma, R.; Stearns, B.; Ng, T.; Dietzen, S.
J2EE Connector Architecture and Enterprise Application Integration
Addison Wesley, December 2001

Singh, I.; Stearns, B.; Johnson, M.
Designing Enterprise Applications with the J2EE Platform
Addison Wesley, June 2002

JMS
Erdogan, L.
Java Message Service (JMS) for J2EE
New Riders Publishing, August 2002

Haefel, R.; Chappell, D.
Java Message Service
O’Reilly & Associates, December 2000

Terry, S.
Enterprise JMS Programming
John Wiley & Sons, February 2002

Patterns
Alur, D.; Crupi, J.; Malks, D.
Core J2EE Patterns: Best Practices and Design Strategies
Prentice Hall, June 2001

Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J.
Design Patterns
Addison Wesley, January 1995

Marinescu, F.; Roman, E.
EJB Design Patterns: Advanced Patterns, Processes and Idioms
John Wiley & Sons, February 2002

UML
Ambler, S.
The Elements of UML Style
Cambridge University Press, December 2002

s539663 AppC.qxd 7/25/03 9:19 AM Page 930

931Appendix C ✦ Additional Reading and References

Fowler, M.; Scott, K.
UML Distilled
Addison Wesley, August 1999

Schmuller, J.
Teach Yourself UML in 24 Hours, 2nd Edition
Sams Publishing, August 2001

Web Services
Apshankar, K.; Sadhwani, D.; Samtani, G.; Siddiqui, B.; Clark, M.; Fletcher, P.;
Hanson, J.; Irani, R.; Waterhouse, M.; Zhang, L.
Web Services Business Strategies and Architectures
Expert Press, August 2002

McGovern, J.; Tyagi, S.; Stevens, M.; Mathew, S.
Java Web Services Architecture
Morgan Kaufmann Publishers, April 2003

XML
McGovern, J.; Bothner, P.; Cagle, K.; Linn, J.; Nagarajan, V.
XQuery Kick Start
Sams Publishing, March 2003

Ray, E.
Learning XML
O’Reilly & Associates, February 2001

Miscellaneous Java Books
Brill, G.
Codenotes for Web Based UI
Random House, January 2002

Pepperdine, K.; Williamson, A.; Gibson, J.; Wu, A.
Ant Developer’s Handbook
Sams Publishing, October 2002

Vermeulen, A.; Ambler, S.; Bumgardner, G.; Metz, E.; Misfeldt, T.; Shur, J.;
Thompson, P.
The Elements of Java Style
Cambridge University Press, January 2000

s539663 AppC.qxd 7/25/03 9:19 AM Page 931

932 Appendixes

Other
Adams, S.
Dogbert’s Top Secret Management Handbook
Harper Collins, October 1997

Buckingham, M.; Coffman, C.
First, Break all the Rules: What the World’s Greatest Managers Do Differently
Simon & Schuster, May 1999

Collins, J.; Porras, J.
Built to Last: Successful Habits of Visionary Companies
Harper Collins, September 1994

Lundin, S.; Paul, H.; Christensen, J.
Fish! A Remarkable Way to Boost Morale and Improve Results
G K Hall & Co, December 2001

Pirsig, R.
Zen and the Art of Motorcycle Maintenance: An Inquiry into Values
Bantam Books, April 1984

Spencer, J.
Who Moved My Cheese?
Putnam Publications, November 2001

Covey, S.
Seven Habits of Highly Effective People
Simon & Schuster, January 1989

References by Chapter
For your convenience, we have organized the following resources by chapter.

Chapter 4, “Understanding Remote
Method Invocation”

✦ RMI specification —http://java.sun.com/products/j2se/1.4/
docs/guide/rmi/spec/rmiTOC.html

✦ RMI tutorial —http://java.sun.com/docs/books/tutorial/rmi

s539663 AppC.qxd 7/25/03 9:19 AM Page 932

933Appendix C ✦ Additional Reading and References

Chapter 5, “Studying Servlet Programming”
✦ HTML Tutorial —http://www.w3schools.com/html/

✦ Servlets Tutorial from Sun Microsystems —http://java.sun.com/docs/
books/tutorial/servlets/

✦ Java BluePrints — session state in the client tier —http://java.sun.com/
blueprints/qanda/client_tier/session_state.html

✦ Java Servlet 2.4 Specification (Proposed Final Draft) —http://jcp.org/
aboutJava/communityprocess/first/jsr154/

Chapter 6, “Going Over JSP Basics”
✦ JSP Tutorial —http://java.sun.com/products/jsp/docs.html

✦ JSP Fundamentals by jGuru —http://developer.java.sun.com/
developer/onlineTraining/JSPIntro

✦ JSP specification —http://java.sun.com/products/jsp/download.html

Chapter 11, “Examining JNDI and
Directory Services”

✦ RFCs (Request for Comments — Internet standards documents) referenced in
this chapter are available at http://www.faqs.org/rfcs/.

✦ A comprehensive tutorial on using JNDI is available from Sun at http://
java.sun.com/products/jndi/tutorial/.

✦ OpenLDAP, a free LDAP directory server, is available at http://www.
openldap.org. Compiled binaries for Windows 2000 are available at
http://www.fivesight.com/downloads/openldap.asp.

Chapter 12, “Understanding Java
Authentication and Authorization Services”

✦ The Sun Java Web site —http://java.sun.com/

✦ Gamelan.com —http://www.gamelan.com/

✦ MIT Kerberos Web site —http://web.mit.edu/kerberos/www/

s539663 AppC.qxd 7/25/03 9:19 AM Page 933

934 Appendixes

✦ Kerberos from outside the USA and Canada —http://www.
crypto-publish.org/

✦ Andy Thompson —http://free.tagish.net/jaas/doc-1.0.3/

✦ Tomas Restrepo —http://www.mvps.org/windev/security/sspi.html

✦ Section 508 Accessibility Requirements —http://www.section508.gov/

✦ JAWS Screen Reader —http://www.freedomscientific.com/

✦ Swing by Matthew Robinson and Pavel Voroblev, Manning Publications,
February, 2003.

✦ Java Swing, Second Edition, Marc Loy, Robert Eckstein, David Wood, James
Elliott, and Brian Cole, O’Reilly and Associates, 2002.

Chapter 17, “Using Message-Driven Beans”
✦ A message-driven bean example —http://java.sun.com/j2ee/
tutorial/1_3-fcs/doc/MDB.html

✦ Using foreign JMS providers with a WebLogic server —http://dev2dev.
bea.com/resourcelibrary/whitepapers/jmsproviders.jsp

✦ Core J2EE Patterns — Service Activator —http://java.sun.com/
blueprints/corej2eepatterns/Patterns/ServiceActivator.html

Chapter 18, “Reviewing Java
Database Connectivity”

✦ JDBC driver from Sun Microsystems —http://java.sun.com/
products/jdbc

✦ SQL Tutorial —www.sqlcourse.com

✦ JDBC Tutorial —http://java.sun.com/docs/books/tutorial/jdbc/
basics/index.html

Chapter 20, “Introducing Web Services”
For more in-depth coverage of Web services, you can check out “Developing Java
Web Services” by Wiley. Some Web sites you may want to check out include IBM
Developer Works (http://www-106.ibm.com/developerworks/webservices/)
and http://www.webservices.org.

✦ ✦ ✦

s539663 AppC.qxd 7/25/03 9:19 AM Page 934

SYMBOLS AND NUMERICS
<> (angle brackets)

enclosing XML prologue, 20
for HTML comments (<!- -), 119
for JSP comments (<%- -), 119
for JSP declarations (<%!), 117
for JSP directives (<%@), 118
for JSP expressions (<%=), 114, 117
for JSP scriptlets (<%), 119

* (asterisk) in DTDs, 24
@ (at sign) for JSP directives (<%@), 118
[] (brackets) in DTDs, 24
, (comma) concatenating e-mail addresses, 204
= (equals sign) for JSP expressions (<%=), 114, 117
! (exclamation mark)

for HTML comments (<!- -), 119
for JSP declarations (<%!), 117

500 error code, 124
404 error code, 124
9iAS application server (Oracle), 49
(number sign) in #PCDATA keyword, 25
% (percent sign)

for JSP comments (<%- -), 119
for JSP declarations (<%!), 117
for JSP directives (<%@), 118
for JSP expressions (<%=), 114
for JSP scriptlets (<%), 119

+ (plus sign) in DTDs, 24
? (question mark) in DTDs, 24

A
A DNS record type, 329
abort() method, 386
AbstractDAOFactory class, 803
abstract-programming model (CMP), 526
acceptChanges() method, 605
Account Owner interface, 814–815
ACID transaction properties, 256–257
acknowledgement modes (JMS), 244–245
Acknowledgment component, 809
Action class (Struts), 831–833
actionPerformed() method

RowSet object and, 605
of Send button, 108

actions (JSP)
forward, 120, 121
include, 120
overview, 120–121
param, 120
plugin, 120, 121
useBean, 125–126

activation of stateful session beans, 502
Activity coordinator, 281, 282–283
Activity Service for CORBA, 472

actor attribute of SOAP header, 675–676
ADD_ATTRIBUTE operation of DirContext interface, 328
addBodyPart() method, 198
addFrom() method, 192
add_publisherAssertions method, 702
addRecipients() method, 193
Address class, 203–205
AddressBean bean class

CMR examples, 541–546
methods, 542–543

addresses for JavaMail messages, 203–205
addRowSetListener() method, 606
adjudicated cryptographic protocol, 418–419
Aircraft remote interface, 553
AircraftBean bean class, 554–561
AircraftHome home interface, 552–553
Airline Reservations application

Airline User JavaBean, 124–125
airline-registration screen, 133–141
authenticating Web users against directory

service, 404–407
BMP, 552–561
business case, 915–921
client policy file, 406
CMP, 527–537
CMRs, 539–546
delivering messages between systems, 27–28
entity beans for, 436–437, 438–439, 452
entity beans versus session beans for, 441–442
error page (JSP), 123
executive summary, 915–916
external DTD specification, 26
internal DTD specification, 25
JAAS security for, 404–407
JCE for, 424–426
JMS point-to-point messaging, 240–248
JNDI for, 337–341
login configuration file, 406
management team, 916
mission statement, 916
namespace examples, 28–30, 33–34
OpenLDAP configuration file, 337–340
password verification method, 341
payment collection stateful session bean, 504–509
pushing data from the RMI server, 68–72
registering objects in RMI, 62–63
remote interface for RMI, 57–60
resource adapter (Connector architecture), 615–616
RMI Flight Server application, 65–68
security analysis, 404–405
security limitations, 405
SOAP for, 676–681

Continued

Index

t539663 Index.qxd 7/25/03 9:19 AM Page 935

936 Index ✦ A

Airline Reservations application (continued)
starting the login client, 407
starting the login server, 407
stateless session beans, 492–499
summary of examples, 917–921
technology overview, 917
transactions in, 297–301
WML document, 38–40
WSDL for, 681–686
XML Schema for, 32–34
XSLT for, 35–38

Airline User JavaBean
instantiating, 125–126
overview, 124–125

airline-registration screen
DBProcessor class for database, 138–139
deploying using Tomcat, 141
error page, 139–140
overview, 133
registerBean.java JavaBean, 137–138
register.html registration page, 133–135
register.jsp controller, 135–137

AirUser class, 588
air_user database table, 584
Alexander, Christopher (A Pattern Language), 729
algorithms (cryptography)

block ciphers, 413, 415
Blowfish, 414–415
DES, 413, 414
Message Digest, 415
one-way hash function, 412
restricted, 410–411
RSA, 411
SHA, 415
SunJCE, 420–421
symmetric, 413
Triple DES, 413

alignment
frameworks for, 825–826
Struts framework, 834–835

all-in-one proprietary environments, 846–847
allocateConnection() method, 617
Alur, Deepak (Core J2EE Patterns), 750, 754
angle brackets (<>)

enclosing XML prologue, 20
for HTML comments (<!- -), 119
for JSP comments (<%- -), 119
for JSP declarations (<%!), 117
for JSP directives (<%@), 118
for JSP expressions (<%=), 114, 117
for JSP scriptlets (<%), 119

ANT
core tasks, 868
cvs task, 875–877
development of, 858
downloading, 859
environment variables, 860
file matching, 867
installing, 859–860

jar task, 870–871
javac task, 868–870
junit task, 871–875
optional tasks, 868
overview, 857–859
projects, 864
properties, 864–865
simple build.xml file for, 860–863
targets, 865–867
tiered dependency tree, 866
typical build.xml file for, 877–879
user-defined tasks, 868
war task, 875
Web site, 859

ant.file built-in property (ANT), 865
ANT_HOME environment variable, 860
ant.java.version built-in property (ANT), 865
ant.project.name built-in property (ANT), 865
ant.version built-in property (ANT), 865
Apache. See also ANT; Log4J logging API; Tomcat

servlet containers
AXIS Web services tool, 715
JMeter, 887
Taglibs, 145

APIs. See also specific APIs
application component APIs, 13
implementing the J2EE platform, 43–45
J2EE standard services, 11–13
J2EE XML-based APIs, 40
overview, 10–13

Appenders (Log4J), 900–901
APPLET property (JNDI), 314
applets

applet-servlet communication, 107–111
overview, 7
RMI clients, 65
servlets versus, 77–78

applet-servlet communication
code examples, 109–111
design considerations, 107
receiving data from servlets, 107–108
steps for applet/servlet object serialization, 108

application architecture. See also SOA (service-
oriented architecture)

defined, 837
frameworks versus, 841
overview, 837–838
traditional, 838–839
Zachman Framework for Enterprise Architecture, 837

application assembler
defined, 8
EJB, 434–435

application clients
J2EE APIs required for, 12–13
overview, 6

application component provider, 8
application components. See also specific components

APIs, 13
overview, 6–7

t539663 Index.qxd 7/25/03 9:19 AM Page 936

937Index ✦ A–B

application contract, 610
application coverage, 847
application fault-tolerance, 441
application portfolios, 837
application scope of JavaBeans, 127
application servers. See also servers

architecture for EJB container examples, 447
availability strategies, 473–475
avoiding vendor lock-in, 53–54
client agnosticism, 46
clustering, 474–475
development support, 47
EJB, 430
fail-over, 474–475
features provided by, 45
full implementations, 47–50
load distribution, 474–475
load-balancing, 474
methods native to, 53
partial implementations, 51–53
proxy interface for, 53–54
resource pooling and, 477
scalability, 46, 474
server management, 47
service providers, 334–335
transparent fail-over, 475
tunable parameters, 889

application variable (JSP), 122
application-service providers (ASPs), 654–655
Applied Java Patterns (Stelting, John), 740
arbitrated cryptographic protocol, 419
architecture

EJBs, 430
further information, 927
JAXR, 704–705
JTA, 289
J2EE, 5, 6
logging, 895
Web services, 650–652

array of bytes (SOAP), 669
arrays (SOAP)

arrayType values and descriptions, 671
multidimensional, 671–672
overview, 670–671
partially-transmitted, 672
single-dimensional, 671
sparse, 672

ASPs (application-service providers), 654–655
asterisk (*) in DTDs, 24
asymmetric cryptography, 416–417
asynchronous messages, MDB and, 565–566
asynchronous notification pattern (UDDI), 704
asynchronous processing (MDB), 576–577
asynchronous versus synchronous request-response,

442–443
at sign for JSP directives (<%@), 118
atomic transactions. See transactions
atomicity

in ACID properties of transactions, 257
two-phase commit protocol and, 259–262

attachments (e-mail)
receiving, 227–229
sending, 221

attribute method (TLD), 150
attributes

ANT projects, 864
ANT targets, 867
CMT, 457–459
DirContext attribute-modification operations, 328
dynamic (JSP), 174–176
HashMap attributes of TagSupport classes, 169
InetOrgPerson schema, 337
JNDI, 310–311
LDAP, 308–309
printing for LDAP lookups, 317
storing object data as directory attributes, 325–328
XML, 21, 25

authentication. See also JAAS (Java Authentication and
Authorization Service)

defined, 627
encrypted, 316
encrypted-message passing and, 410
JAAS services, 353
LDAP implementation by JNDI, 316
Pluggable Authentication Modules, 360–363
of resource principal, 630
SASL, 316
of users with JAAS, 364–371

Authenticator class, 188–190
authorization. See also JAAS (Java Authentication and

Authorization Service)
defined, 627
JAAS services, 353
JavaMail sessions and, 186
of resource principal, 630
of users with JAAS, 368

auto-commit mode of transactions, 262–264
autonomous messages (JMS), 252
AXIS Web services tool (Apache), 715

B
basedir

built-in property (ANT), 865
project attribute (ANT), 864

BasicTag.java tag handler, 157–159
batch updates using JDBC, 593–594
BCC JavaMail header field, 192–193
BEA jRockit JVM, 48
BEA WebLogic. See WebLogic application server
bean provider for EJBs

overview, 433
restrictions on, 447–449

bean-managed persistence. See BMP
bean-managed transactions. See BMTs
begin() method, 291
Benchmark Factory (Quest Software), 887
benchmarking, 887–889
BETWEEN clause (EJB QL), 550
bidirectional relationships (CMR), 537, 540

t539663 Index.qxd 7/25/03 9:19 AM Page 937

938 Index ✦ B–C

bind() method
JNDI, 324, 327
RMI, 61

binding
JNDI, 311
registering objects in RMI, 61–63

bindingTemplate data structure (UDDI), 695–696
block ciphers, 413, 415
Blowfish algorithm, 414–415
BluePrints, 9
BMP (bean-managed persistence). See also entity beans

Airline Reservations application, 552–561
bean class, 554–561
CMP versus, 466, 512
deployment descriptor, 561–562
disadvantages, 552
home interface, 552–553
overview, 437–439, 552
remote interface, 553
writing a BMP, 552–561

BMTs (bean-managed transactions)
CMTs versus, 440
defined, 440
JTA and, 460
overview, 460
stateful session beans and, 461
stateless session beans and, 461
stateless versus stateful session beans, 461

body (SOAP), 667–668
<body-content> element (TLD), 151
body-content method (TLD), 150
BodyPart class, 199
BodyTag interface

constant, 163
JSP for, 165
methods, 163
TLD for, 164–165
TryBodyTag.java tag handler, 165–167

BodyTagSupport class
HashMap attributes, 169
methods, 169
need for, 167–168

bookFlight() method, 493
BookOrder class, 248–249
BootStrapContext instance, 611
bootstrapping a resource adapter, 611
Borland

Enterprise AppServer Edition, 48
Enterprise Studio for Java, 372
reactive login, 356

bottom-up recovery for transactions, 274

 (line break) tags (HTML), 21
brackets ([]) in DTDs, 24
browse pattern (UDDI), 700
B2B (business-to-business) messaging, 232
build.xml files (ANT)

defined, 859
simple, 860–863
typical, 877–879

Buschmann, Frank (Pattern-Oriented Software
Architecture, Volume 2), 810–811

business methods
Airline Reservations application, 504, 505
BMTs and, 460–461
CMTs and, 457–459
EJB client and, 498–499
EJB component interface, 436, 444
entity-bean class, 515
FlightServiceBean session bean, 494
MDB bean class, 444
session bean component interface, 485
session-bean class, 487
stateful session beans, 499, 501, 502
stateless session beans, 440, 490

business processes, 483
business tier (EJBs), 430
business-application frameworks. See frameworks
BusinessComponent component

service-activator pattern, 808
transfer-object pattern, 813

BusinessDelegate component
business-delegate pattern, 767
value-object pattern, 771

business-delegate pattern
BusinessDelegate component, 767
BusinessService component, 767
described, 764
forces, 765
implementation, 765–767, 768
LookupService component, 767
overview, 764–765
PresentationTier component, 767
related patterns, 769
results, 767–768
sample code, 768
sequence diagram, 766
strategies, 767
structure, 765–766

businessEntity data structure (UDDI), 693–694
BusinessObject component, 776
BusinessService component

business-delegate pattern, 767
value-object pattern, 771

businessService data structure (UDDI), 695
business-to-business (B2B) messaging, 232
bytecode compiler (JVM), 890
bytecodes, 4

C
c LDAP attribute, 308
CachedRowSet object

with JSP, 603–604
overview, 602–603
processing RowSet events, 605–606
updating the database, 604–605

CallableStatement class, 592–593
callback handlers (JAAS). See also login handlers (JAAS)

dialog, 360
framework, 395–397

t539663 Index.qxd 7/25/03 9:19 AM Page 938

939Index ✦ C

operating systems and, 394
overview, 358–359
predefined callback handlers, 359
predefined login callbacks, 375–376
text, 359–360
writing your own, 394–397

callback methods (entity beans)
ejbActivate(), 521
ejbCreate(), 520–521
ejbFind(), 522–523
ejbHome(), 523
ejbLoad(), 522
ejbPassivate(), 521
ejbPostCreate(), 521
ejbRemove(), 521–522
ejbSelect(), 523
ejbStore(), 522
ejbTimeout(), 523
overview, 515, 519
setEntityContext(), 520
unsetEntityContext(), 520

callback methods (MDB), 569
callbackHandler login initialize argument, 386
capability profiles (JAXR), 705
Cape Clear

Connect tool, 717
Studio tool, 717

Cascading StyleSheets (CSS), 34–35
case-sensitivity of XML, 21
Caterer class

deployment descriptor (MDB), 570–571
JMS, 246–248
MDB, 567–568

Caucho Technology’s Resin servlet container, 51, 52
CC JavaMail header field, 192–193
CCI (Common Client Interface)

categories and interfaces, 633–634
Connection interfaces, 633, 634–635
Data interfaces, 634, 635
EIS access with, 637–640
Interaction interfaces, 634, 635
Metadata interfaces, 634, 636
overview, 633
programming steps, 636–637

CDATA keyword, 25
CertPath security mechanism, 352
chaining servlet filters, 98, 106
checkCredentials() method, 129
ChoiceCallback class (JAAS), 376
ciphers. See algorithms (cryptography)
class diagrams

service-activator pattern, 810
user-created servlet, 80

class libraries versus frameworks, 821
classes. See also specific classes

classic tag handlers as, 153
connection-management, 616–622
EJB, 444
entity beans, 515–517

JAAS predefined callbacks, 376
JCE, 421
thread-safe, 449
work-management, 614

classic tag handlers
BodyTag interface, 163–167
BodyTagSupport class, 167–169
defined, 153
IterationTag interface, 159–163
JSP versions and, 153
Tag interface, 154–159
TagSupport class, 167–169

ClassLoader, bean provider restrictions for, 448
ClearPass

JDNI configuration option, 384
Kerberos configuration option, 378

client agnosticism in application servers, 46
Client class, 109–110
client tier (EJBs), 430
ClientComponent component

router pattern, 736
session pattern, 734

client-maintained session, 732
clients

CMP entity bean, 534–537
composite-view pattern, 755
entity bean views, 512
intercepting-filter pattern, 759
JAXR, 704, 707–709
MDB and, 575
scalability and number of, 46
session bean views, 487
thin client advantages, 77–78
view-helper pattern, 752
writing an EBJ client, 496–499
writing RMI clients, 63–65

client-side programming model (Web services)
JNDI lookup for services, 719
overview, 718
Service interface, 720–721, 724

clone() method, overriding, 351
cloning security vulnerability

described, 349
overriding the clone() method, 351

close() method, 211
closing folders (JavaMail), 211
closing tags (XML), 21
clustering application servers, 474–475
CMP (container-managed persistence). See also CMRs

(Container Managed Relationships); EJB QL
(EJB Query Language); entity beans

abstract-programming model, 526
Airline Reservations application, 527–537
bean class, 529–533
BMP versus, 466, 512
client, 534–537
Container Managed Relationships, 537–546
data-access-object pattern and, 799

Continued

t539663 Index.qxd 7/25/03 9:19 AM Page 939

940 Index ✦ C

CMP (continued)
declaring container-managed fields, 527
deployment descriptor, 533–534
EJB QL, 547–551
home interface, 527–528
overview, 439
remote interface, 528–529
writing a simple CMP, 527–537

CMRs (Container Managed Relationships), 537
Airline Reservations application, 539–546
bidirectional, 537, 540
deployment descriptors, 537–539, 541–542, 544–546
many-to-many, 545–546
one-to-many, 543–545
one-to-one, 541–543
overview, 537
unidirectional, 537, 539–540

CMTs (container-managed transactions)
advantages of, 456–457
BMTs versus, 440
declarative semantics, 457
defined, 440
Mandatory attribute, 459
Never attribute, 459
NotSupported attribute, 457–458
Required attribute, 458
RequiresNew attribute, 459
specifying, 459–460
Supports attribute, 458

cn attribute (InetOrgPerson schema), 337
cn LDAP attribute, 309
CNAME DNS record type, 329
CoarseGrainedObject component, 779
comma (,) concatenating e-mail addresses, 204
comments

in JSPs, 119
in XML Schema, 31

commit() method
auto-commit mode and, 263
JAAS login process and, 354
JAAS login-module, 385
TransactionManager interface, 291
UserTransaction interface, 290

Common Client Interface. See CCI
Common Object Request Broker Architecture.

See CORBA
Common Object Services (COS) naming for

CORBA, 333
communications-resource manager (CRM), 285
ComparisonTerm object, 216
Compatibility Test Suite (CTS), 45
compiling

JAAS login code, 369–370
javac task (ANT) for, 868–870

component interface
entity beans, 515
session beans, 485–486

component services, 655
component-managed sign-on, 628

CompositeEntity component, 778
composite-entity pattern

CoarseGrainedObject component, 779
CompositeEntity component, 778
described, 764
FineGrainedObject component, 779
forces, 778
implementation, 778–779, 780–781
overview, 777
related patterns, 781
results, 780
sample code, 780–781
sequence diagram, 778, 779
strategies, 779–780
structure, 778

composite-view pattern
client, 755
composite view, 755
described, 731
footer view, 756
forces, 754
header view, 756
implementation, 754–756
overview, 754
related patterns, 757
results, 757
sample code, 757
sequence diagram, 755
strategies, 756–757
structure, 755

compound primary keys, 516
compound-type values (SOAP), 670
com.sun.jndi.dns.recursion property (DNS), 330
com.sun.jndi.lookup.attr property (DNS), 330
com.sun.security.auth.callback package

(JAAS), 359
concurrency

EJB concurrency control, 449
entity beans and, 437
optimistic versus pessimistic concurrency control,

269–270
Concurrency Control Service for OTS, 287
Concurrent Versions System (CVS), 875–877
conditional expressions (EJB QL), 549–551
conditional operators (EJB QL), 549–550
config variable (JSP), 122
configurability

frameworks for, 824–825
Struts framework, 833–834

ConfirmationCallback class (JAAS), 376
connect() method, 205–206
Connect tool (Cape Clear), 717
connection factories

Connector architecture, 617
JMS, 237–238

Connection interface (CCI), 634
connection interfaces (CCI), 633, 634–635
connection pools (JDBC), 596–597, 889
ConnectionFactory interface (CCI), 634

t539663 Index.qxd 7/25/03 9:19 AM Page 940

941Index ✦ C

connection-management contract
application steps for establishing connections,

622–624
classes, 616–622
connection factories, 617
connection interfaces, 617
ConnectionManager interfaces, 617–618
described, 609
error logging, 622
ManagedConnection interface, 620–622
ManagedConnectionFactory interface, 618–620
overview, 616

ConnectionManager interfaces, 617–618
ConnectionMetadata interface (CCI), 636
connections (JMS), 237
ConnectionSpec interface (CCI), 635
Connector architecture. See also CCI (Common Client

Interface); specific contracts
application contract, 610
client API, 610
Common Client Interface, 633–640
connection-management contract, 609, 616–624
contracts overview, 608–610
inbound communication, 609, 631–632
as J2EE standard service, 11, 12
lifecycle-management contract, 609, 610–612
message-inflow contract, 609, 631–632
outbound communication, 609, 616–630
overview, 607–608
packaging and deployment, 640–643
resource adapter, 607–608, 610–612
security-management contract, 609, 627–630
system-level contracts, 608–609
transaction-inflow contract, 609, 632
transaction-management contract, 609, 624–627
work-management contract, 609, 612–616

Connexia Airlines example. See Airline Reservations
application

ConnexiaClient.java SOAP example, 678–681
consistency property of transactions

defined, 257
overview, 267–268

ConsoleHandler (JSR 47), 899
constants

BodyTag interface, 163
IterationTag interface, 160
Tag interface, 155

consumers (JMS), 238–239
Container Managed Relationships. See CMRs
container-managed persistence. See CMP
container-managed sign-on, 628
container-managed transactions. See CMTs
containers

J2EE platform, 44
servlet, 51–53

context
distributed transactions and, 264
JNDI, 311, 312

JNDI environment properties, 313–315
servlet, 84–85, 95–96

Context interface (JNDI), 312
contracts (Connector architecture). See also specific

contracts
application, 610
connection-management, 609, 616–624
lifecycle-management, 609, 610–612
message-inflow, 609, 631–632
overview, 608–610
security-management, 609, 627–630
system-level, 608–609
transaction-inflow, 609, 632
transaction-management, 609, 624–627
work-management, 609, 612–616

Control role (OTS), 287
controller in MVC pattern

defined, 827
JSPs for, 116, 135–137
overview, 10, 743
sample code, 744

controllers
airline-registration screen JSP, 135–137
online store servlet, 132–133

cookies, 88–89
copying messages (JavaMail), 215
copyMessages() method, 215
CORBA (Common Object Request Broker

Architecture)
Activity Service, 472
complexity of, 468
COS naming for, 333
CosNaming naming specification, 471
distribution transparency, 479
EJB integration, 467–472
Event Service, 472
further information, 928
IIOP protocol for, 469–471
importance of, 468–469
limitations of, 650
Notification Service, 472
performance and, 478–479
RMI versus, 56, 73, 468–469
RMI-IIOP and, 11, 72–73
secure interoperability, 472
transaction interoperability, 471
Web site, 650

Core J2EE Patterns (Alur, Deepak and Crupi, John and
Malks, Dan), 750, 754

core library (JSTL), 147
core tasks (ANT), 868
CosNaming naming specification for CORBA, 471
counters, instance variable for, 172
create() method

Airline Reservations application, 493
home interface for entity beans, 513–514
local home interface for session beans, 485

Continued

t539663 Index.qxd 7/25/03 9:19 AM Page 941

942 Index ✦ C–D

create() method (continued)
PassengerHome home interface, 527–528
remote home interface for session beans, 485
stateful session beans, 500–501

createCall() method, 720, 721
CreateException EJB exception, 562
createInteraction() method, 636
createStatement() method, 585, 591
createTimer() method, 465
critical-path analysis, 886
CRM (communications-resource manager), 285
Crupi, John (Core J2EE Patterns), 750, 754
cryptography. See also encryption; JCE (Java

Cryptography Extensions)
algorithms, 411–415
characteristics of encrypted message-passing, 410
decryption, 410
defined, 410
digital certificates, 417
keys for encryption, 411
keyspace, 411
one-way versus two-way encryption, 410–412
protocols, 417–420
public-key, 416–417
shared-key, 415–416

CSS (Cascading StyleSheets), 34–35
CTS (Compatibility Test Suite), 45
Current role (OTS), 287
cursorMoved() method, 605
custom tags (JSP). See JSP tag extensions
CVS (Concurrent Versions System), 875–877
cvs task (ANT), 875–877

D
Data Encryption Algorithm (DEA), 413
Data Encryption Standard, 413, 414
data interfaces (CCI), 634, 635
data types

SOAP, 669–670
XML Schema, 31
XML Schema versus DTDs, 31

DataAccessObject component, 800
data-access-object pattern

AbstractDAOFactory class, 803
accessing multiple data sources, 802–803
AccountOwnerDAO implementation, 804
applying, 803–804
characteristics, 798
CMP and, 799
ConcreteDAOFactory class, 803–804
DAOs, 801–802
DataAccessObject component, 800
DataStorage component, 801
described, 797
further information, 802, 805
implementation, 799–804
interface for AccountOwner, 804
overview, 798–799
PresentationComponent component, 800
related patterns, 805

sample code, 803–804
sequence diagram, 800
structure, 799
TransferObject component, 801

database-error processing (JDBC), 587
databases. See also JDBC (Java Database

Connectivity); relational databases
DBProcessor class, 138–139, 599–601
EJB transactional example, 462–463
J2EE platform requirement, 44

data-centric XML documents, 20
DataHandler class, 195–197
DataSource objects (JDBC), 597–599
DataStorage component, 801
data-tier patterns. See also patterns; specific patterns

data-access-object, 797–805
overview, 797
service-activator, 797, 805–811
transfer-object, 797, 811–816

Date JavaMail header field, 194
Davidson, James Duncan (ANT creator), 858
DBProcessor class, 138–139, 599–601
dc LDAP attribute, 309
DCOM, 650
DEA (Data Encryption Algorithm), 413
debugging JAAS, 372–375
declaring

container-managed fields (CMP), 527
JSP variables and methods, 117
remote interfaces for RMI, 57–58
XML attributes in DTDs, 25
XML elements in DTDs, 24–25

decryption, 410
default project attribute (ANT), 864
Delete statement (SQL), 584
delete_binding method, 702
delete_business method, 702
delete_publisherAssertions method, 702
delete_service method, 702
deleteSingleMessage() method, 227
delete_subscription method, 703, 704
delete_tModel method, 702
deleting

e-mail (JavaMail), 227
LDAP directory entries with JNDI, 322

delistResource() method, 295–296
depends target attribute (ANT), 867
deployer

defined, 8
EJB, 435

deploying
airline-registration screen, 141
FlightServiceBean session bean, 496
login JSP, 129–130
RMI Flight Server application, 68
servlets, 103

deployment descriptors. See also web.xml
deployment descriptor

BMP entity bean, 561–562
CMP entity bean, 533–534

t539663 Index.qxd 7/25/03 9:19 AM Page 942

943Index ✦ D

for CMRs (many-to-many), 545–546
for CMRs (one-to-many), 544–545
for CMRs (one-to-one), 541–542
for CMRs (overview), 537–539
EJB, 336, 432, 456, 464, 795–796
EJB QL and, 547
entity beans, 517, 518
error page implementation, 124
internal messaging with EJB applications, 573–575
MDB (EJB 2.0), 570–572
MDB (EJB 2.1), 572–575
property files and, 432
resource adapter, 641–643
session beans, 488–489
Web service, 725

DES (Data Encryption Standard), 413, 414
description method (TLD), 150
description stack (SOA), 661
description target attribute (ANT), 867
deserialization security vulnerability

described, 349
overriding the writeObject() and readObject()

methods, 351
design patterns. See patterns
Design Patterns (Gamma, Erich and Helm, Richard and

Johnson, Ralph and Vlissides, John), 729,
745, 802, 805

design streamlining, frameworks for, 835
destinations (JMS), 237
destroy() method

of servlet Filter interface, 98
of servlets, 81

development
application server support for, 47
frameworks and, 836

dialog callback handlers (JAAS), 360
digital certificates, 417
DirContext interface (JNDI), 312, 326, 328
directives (JSP)

overview, 118
taglib, 146, 147, 152

directories
adding in LDAP with JNDI, 322
hierarchical organization of, 304
JavaMail folders, 207–213
JNDI, 310
removing from LDAP with JNDI, 322
for TLD files, 151, 156
WAR directory structure, 103–104
Web application, 155

directory services. See also JNDI (Java Naming and
Directory Interface); LDAP (Lightweight
Directory Access Protocol)

adding objects in LDAP with JNDI, 323–328
advantages of, 304–305
authenticating Web users against, 404–407
data structured by, 304
defined, 303
distributed, 305
hierarchical organization of, 304

importance of, 304
naming services and, 303–304
read-only optimization, 304
relational databases versus, 304–305, 340
sorting of directories in, 305
storing object data as directory attributes, 325–328
storing objects as references, 323–325
storing serialized data, 323
X.500 standard, 305

Directory Services Markup Language (DSML), 334
dirty reads, 271
discovery layer (discovery stack), 663
discovery stack (SOA), 661–663
displaySingleMessage() method, 226
distributed directories, 305
distributed transactions

context and, 264
interposition, 265–267
overview, 264–265
proxy coordinators, 266

distribution support for EJBs, 466–467
distribution transparency for CORBA, 479
dn LDAP attribute, 309
DNS (Domain Name System)

connecting to a server, 329
double reverse lookups, 343–346
environment properties, 330
JNDI with, 328–332
lookups, 331
naming conventions in JNDI, 311
overview, 328–329
record types, 329
reverse lookups, 332, 342–343
use as naming service, 304

doAfterBody() method
IterationTag interface, 159, 160, 165
TagSupport class, 168

doCalculateDigest() method, 422–423
Document Object Model (DOM) parsers, 22–23
document-centric XML documents, 20
doDecryption() method, 425
doEncryption() method, 425
doEndTag() method

Tag interface, 155
TagSupport class, 168

Does Not Exist state
stateful session beans, 500
stateless session beans, 489–490

does-not-exist state (entity beans), 524
doFilter() method

Filter interface, 98
FilterChain interface, 99
wrappers for, 100–102

doGet() method
destroy() method and, 81
Get method (HTML) and, 84
println() method in, 113
service() method and, 81
session tracking using, 92

t539663 Index.qxd 7/25/03 9:19 AM Page 943

944 Index ✦ D–E

doInitBody() method
BodyTag interface, 163, 165
BodyTagSupport class, 169

DOM (Document Object Model) parsers, 22–23
Domain Name System. See DNS
doNotPrompt Kerberos configuration option, 377
doPost() method

destroy() method and, 81
if statement in, 97
of LoginServlet class, 82
parsing SOAP requests in, 712
Post method (HTML) and, 84
service() method and, 81

doStartTag() method
BodyTagSupport class, 169
Tag interface, 155, 165
TagSupport class, 168

doTag() method
SimpleTag interface, 170, 173
SimpleTagSupport class, 173

downloading ANT, 859
doWork() method, 614
drill-down pattern (UDDI), 700
DSML (Directory Services Markup Language), 334
DTDs (Document Tag Definitions)

external specification, 26
implementing, 24–26
internal specification, 25
special characters in, 24
valid XML documents and, 18, 24
web.xml deployment descriptor element for, 104
XML Schema versus, 30, 31

DuplicateKeyException EJB exception, 562
durability property of transactions

defined, 257
overview, 272–273

DynaAttribs.jsp JSP tag extension example, 175
dynamic attributes, 174–176
DynamicAttributes interface

JSP for, 175
method, 174
TLD for, 175
TrySimpleDynamic tag handler, 175–176

dynamic-attributes method (TLD), 150

E
EAI (enterprise-application integration)

messaging in, 232
Web services for, 654–656

Eclipse development environment (IBM), 49
EIS (enterprise information systems)

access with the CCI, 637–640
EJB tier, 430
JMS for messaging, 714–715
sign-on, 629

EJB client
data setup for business methods, 498
getting the InitialContext, 497
getting the remote interface, 498
invoking the business method, 498–499

JNDI lookup for home interface, 497
removing the bean, 499
runtime objects, 496–497
tasks, 496

EJB QL (EJB Query Language)
BETWEEN clause, 550
conditional expressions, 549–551
deployment descriptors and, 547
EMPTY comparison, 550–551
finder methods, 548
FROM clause, 547
functions, 551
IN expression, 550
LIKE expression, 550
NULL comparison, 550
ORDER BY clause, 547, 551
overview, 547
SELECT clause, 547, 551
select methods, 548
WHERE clause, 547, 549–551

ejbActivate() method
entity bean callback, 521
overview, 445
stateful session beans, 455

ejbCreate() method
entity bean callback, 520–521
MDB, 569
overview, 445
remote home interface and, 485
service-implementation bean, 723
stateful session beans, 501, 505
stateless session beans, 490, 491

ejbFind() callback method, 523
ejbHome() callback method, 523
EJBHome interface, 485, 503
ejb-jar.xml deployment descriptor

BMP entity bean, 561–562
CMP entity bean, 533–534
for CMRs (many-to-many), 545–546
for CMRs (one-to-many), 544–545
for CMRs (one-to-one), 541–542
for CMRs (overview), 537–539
EJB QL and, 547
entity beans, 517, 518
FlightServiceBean session bean, 495
internal messaging with EJB applications, 573–575
MDB (EJB 2.0), 570–571
MDB (EJB 2.1), 572–575
session beans, 488–489

ejbLoad() method
entity bean callback, 522
overview, 445

ejbPassivate() method
entity bean callback, 521
overview, 445
stateful session beans, 454–456

ejbPostCreate() method
entity bean callback, 521
overview, 445

t539663 Index.qxd 7/25/03 9:19 AM Page 944

945Index ✦ E

ejbRemove() method
entity bean callback, 521–522
MDB, 569
overview, 445
service-implementation bean, 723
stateful session beans, 501
stateless session beans, 491

EJBs (Enterprise JavaBeans). See also entity beans;
MDB (message-driven beans); session beans

advantages for Web services, 713–714
application assembler, 434–435
as application component APIs, 13
application-server availability strategies, 473–475
bean class, 444
bean provider, 433, 447–449
client views, 487, 512
component interface, 444
component model, 429–431
conservative recommendation for, 458
container functionality, 446–447
CORBA integration, 467–472
deployer, 435
deployment descriptor, 336, 432, 456, 464, 795–796
distribution support, 466–467
EJBContext interface, 446
exceptions, 562–563
home interface, 444
interoperability and portability of, 431
invocation, 632
JNDI with, 335–337, 463–464
J2EE APIs required for, 12–13
lifecycle methods, 445–446
load distribution for, 474–475
naming objects, 463–464
overview, 13
performance and scalability issues, 472–481
performance-analysis tools, 479–481
persistence and, 466, 477–478
primary key class, 444
resource pooling for, 450–451, 476–477
restrictions on bean provider, 447–449
roles, 432–436
scalability, 450–451
security and, 478
security infrastructure, 464
as server components, 7
server/container provider, 433–434
system administrator, 435–436
threading model and, 476–479
3-tier architecture, 430
TimedObject interface, 464–466
timer service, 464–466
TimerService interface, 465
transactional example, 462–463
transactional objects and, 258
transactional participants and, 258
transactions and, 456
transactions and performance, 475–476

transparent fail-over for, 475
types of, 13, 436
Web service-implementation bean, 722
Web services using, 713–714
writing an EBJ client, 496–499

ejbSelect() callback method, 523
ejbStore() method

entity bean callback, 522
overview, 445
SeatBean entity bean, 438–439

ejbTimeout() method
entity bean callback, 523
MDB, 569
TimedObject interface, 464–466

elements
declaring XML, in DTDs, 24–25
of JSPs, 116–122
of XML documents, 20–21, 24–25

e-mail. See JavaMail
embedded trade secrets, 350
employeeNumber attribute (InetOrgPerson

schema), 337
employeeType attribute (InetOrgPerson

schema), 337
EMPTY comparison (EJB QL), 550–551
encryption. See also cryptography; JCE (Java

Cryptography Extensions)
algorithms, 411–415
for authentication, 316
decryption, 410
defined, 410
filters for servlet parameters, 100
keys for, 411
login methods, 361–362
one-way versus two-way, 410–412
terminology, 410–420

end() method, 294–295
enlistResource() method, 295
enterprise applications, 430–431
Enterprise AppServer Edition (Borland), 48
enterprise information systems. See EIS
Enterprise JavaBeans. See EJBs
Enterprise Studio for Java (Borland), 372
enterprise-application integration. See EAI
entity beans. See also BMP (bean-managed

persistence); CMP (container-managed
persistence); EJBs (Enterprise JavaBeans)

advantages of, 436–437
Airline Reservations application, 436–437, 438–439
callback methods, 519–523
component interface, 515
components, 513–517
defined, 436
deployment descriptor, 517, 518
does-not-exist state, 524
EJB transactional example, 462–463
entity-bean class, 515

Continued

t539663 Index.qxd 7/25/03 9:19 AM Page 945

946 Index ✦ E–F

entity beans (continued)
EntityBean interface, 517–519
entity-container contract, 517–526
EntityContext interface, 446
exceptions, 562–563
home interface, 513–515
instance pooling, 452, 453, 524–525
lifecycle, 451–454, 523–526
lifecycle methods, 445–446
local client view, 512
overview, 511–512
passivation, 526
pooled state, 524–525
primary-key class, 516–517
ready state, 525–526
remote client view, 512
removal, 526
rollback, 526
session beans versus, 441–442

entity-bean class, 515
EntityBean interface, 517–519
entries (JNDI), 310
envelope (SOAP), 657, 666
environment properties

DNS, 330
for EJBs with JNDI, 336–337
JNDI, 313–316

equality of transactions, 297
equals() method, 297
equals sign for JSP expressions (<%=), 114, 117
error logging, 622
error pages (JSP)

for airline-registration screen, 139–140
overview, 123–124

error processing (JDBC), 587
EVAL_BODY_AGAIN constant, 160
EVAL_BODY_BUFFERED constant, 163, 164
EVAL_BODY_INCLUDE constant, 155
EVAL_PAGE constant, 155
event listeners. See listeners (servlet)
Event Service (CORBA), 472
exception variable (JSP), 121, 123
exceptions

entity beans, 562–563
JSP error pages for, 123–124, 137, 139–140

exclamation mark (!)
for HTML comments (<!- -), 119
for JSP declarations (<%!), 117

execute thread pool size, 889
executeQuery() method, 585, 587
ExecutionContext interface, 614
expressions in JSPs, 115, 117–118
extended transaction models with J2EE Activity

Service
Actions, 281–283
Activities, 280–281
Activity coordinator, 281, 282–283
extended transactions, 279–280
long-running transactions and, 278–279

Signals, 281–283
SignalSets, 281–283

extensibility
frameworks for, 824
Struts framework, 831–833

eXtensible Markup Language. See XML
eXtensible Stylesheet Language Transformations.

See XSLT
extensions layer (wire stack), 661
external DTD specification, 26

F
fail-over, 474–475
failure recovery for transactions, 273–274
fault isolation, 277
FetchProfile class, 214–215, 226
FetchProfile.Item.CONTENT_INFO field, 214
FetchProfile.Item.ENVELOPE field, 214
FetchProfile.Item.FLAGS field, 214
File I/O, bean provider restrictions for, 448
file matching (ANT), 867
file systems (JNDI), 311, 333
FileHandler (JSR 47), 899
Filter interface, 98
FilterChain interface, 99, 760
FilterConfig interface, 98
FilterManager component, 759
filters (servlet)

chaining, 98, 106
for encrypting parameters, 100
for intercepting and logging requests, 99–100
interfaces, 98–99
introduction of, 97
response wrapper, 100–102
reusable tasks for, 98
Servlet Specification 2.4 and, 111
web.xml deployment descriptor elements, 106–107

finalize() method, 723
find() method, 527–528
findAncestorWithClass() method

SimpleTagSupport class, 173
TagSupport class, 168

find_binding method, 698
find_business method, 698, 699
findByPrimaryKey() method

EJB QL, 548
entity beans, 514

finder methods
EJB QL, 548
entity beans, 514
UDDI, 698–699

FinderException EJB exception, 562
find_relatedBusiness method, 698
find_service method, 698, 699
find_tModel method, 698
FineGrainedObject component, 779
500 error code, 124
flags

JAAS login-module, 361
JavaMail message, 201–203

t539663 Index.qxd 7/25/03 9:19 AM Page 946

947Index ✦ F

Flags class, 201–202
Flags.Flag.ANSWERED system flag, 202
Flags.Flag.DELETED system flag, 202
Flags.Flag.DRAFT system flag, 202
Flags.Flag.FLAGGED system flag, 202
Flags.Flag.RECENT system flag, 202
Flags.Flag.SEEN system flag, 202
Flags.Flag.USER system flag, 202
Flanagan, David (Java in a Nutshell), 806
FlightBean bean class, 545–546
FlightClient class, 62–63
FlightClient2 class, 69–70
FlightServer interface (RMI), 57–58
FlightServerImpl class, 58–60
FlightServerImpl_skel class, 61
FlightServerImpl_stub class, 61
FlightService remote interface, 493
FlightServiceBean stateless session bean

bean class, 494–495
deploying, 496
deployment descriptor, 495
EJB client, 496–499
home interface, 493
remote interface, 493
runtime objects, 496–497

FlightServiceHome interface, 493
Folder class

listing messages, 211–212
methods for folder content, 212
methods for folders, 207–208
opening and closing folders, 211
overview, 210–211

folders (JavaMail)
accessing, 207–210
advanced message fetching, 213–215
copying and moving messages, 215
listing in a hierarchy, 209–210
listing messages, 211–213
methods dealing with content, 212
methods for accessing, 207–208
opening and closing, 211
overview, 210–211
searching messages, 215–216

FooterFilter class, 101–102
forces for patterns

business-delegate pattern, 765
composite-entity pattern, 778
composite-view pattern, 754
defined, 731
front-controller pattern, 746
half-object-plus-protocol pattern, 786
intercepting-filter pattern, 758
MVC pattern, 741–742
router pattern, 736
service-locator pattern, 782
session pattern, 732
session-facade pattern, 774
value-object pattern, 769–770
view-helper pattern, 750–751

<FORM> tag (HTML), 78, 84
formatNumber tag (JSTL), 146
formatting library (JSTL), 147
forName() method, 585
forward action (JSP), 120, 121
forward() method

JSP forward action and, 120
of RequestDispatcher class, 86, 120
sendRedirect() method versus, 86, 87

404 error code, 124
frameworks. See also JAF (JavaBeans Activation

Framework)
alignment, 825–826, 834–835
alternatives to, 846–850
application architecture versus, 841
for application portfolios, 837
building your own, 841–845
business-application, 820
buying versus building, 841–842
callback handlers (JAAS), 395–397
checklist for, 851–853
class libraries versus, 821
configurability, 824–825, 833–834
costs, 850–851
defined, 820
design patterns, 826–828
for design process streamlining, 835
for development and testing, 836
e-mail reception (JavaMail), 223–225
evaluating, 850–854
extensibility, 824, 831–833
further information, 928
future of, 845–846
inversion of control, 823, 828
loose coupling, 824, 830–831
need for, 819–820, 821–823
objectives and benefits, 835–837
open source, 842–843
principles, 823–827
for production and maintenance, 836
requirements, 850
separation of concerns, 823–824, 828–829
from software vendors, 843–844
Struts example, 827–835
from system integrators (SIs), 844–845
types of, 821
vendor questions, 853–854

FROM clause (EJB QL), 547
From JavaMail header field, 192
front-controller pattern

described, 730
forces, 746
front controller, 748
further information, 750
helper, 748
implementation, 746–748
overview, 746
related patterns, 750

Continued

t539663 Index.qxd 7/25/03 9:19 AM Page 947

948 Index ✦ F–G

front-controller pattern (continued)
results, 749
sample code, 749–750
sequence diagram, 747
strategies, 748–749
structure, 747
view, 748

function method (TLD), 150
functional problems, 882
function-class method (TLD), 150
functions (EJB QL), 551
function-signature method (TLD), 150

G
Gamma, Erich (Design Patterns), 729, 745, 802, 805
Gang of Four (GOF), 729, 745
garbage collection (Java). See also memory-usage

problems (Java)
algorithm (JVM), 891–892
myths about, 909
overview, 906–908

gateway.jsp authenticator, 791–793
Generic Security Services Application Program

Interface (GSS-API), 361–362
Get method (HTML), 84
GET verb (HTTP), 687
getAllRecipients() method, 192
getArrivalTime() method, 57–58
get_assertionStatusReport method, 703
getAttribute() method, 85
getAttributeNames() method, 85
getAttributes() method

DirContext interface, 317, 318, 326
for DNS lookups, 331

get_bindingDetail method, 699
getBodyContent() method, 169
getBodyPart() method, 198
get_businessDetail method, 699
getCalls() method, 720, 721
getConnection() method, 585, 598–599, 636
getContent() method, 196
getContentType() method, 199–200

DataHandler class, 196
Multipart class, 199

getCount() method, 199
getDefaultFolder() method, 207
getDefaultInstance() method, 188
getDepartureTime() method, 57–58
getDescription() method, 200
getDisposition() method, 200
getEJBObject() method, 503
getEmployee() method, 125
getFileName() method, 201
getFilterName() method, 98
getFlags() method, 203
getFlightArrivals() method, 60
getFolder() method, 207
getFrom() method, 192
getHeader() method, 194

getHomeHandle() method, 503
getID() method, 168
getInitParameter() method

init() method and, 81
of servlet FilterConfig interface, 98

getInitParameterNames() method, 98
getInputStream() method, 196
getInstance() method, 188
getJspBody() method, 174
getJspContext() method, 174
getLineCount() method, 201
getMessage() method, 212
getMessageCount() method, 212
getMessageDrivenContext() method, 569
getMessageID() method, 194
getMessages() method, 212
getNewMessageCount() method, 212, 213
get_operationInfo method, 699
getOutputStream() method, 196
getParameter() method, 83
getParameterNames() method, 83
getParameterValues() method, 83
getParent() method

BodyPart class, 199
Multipart class, 199
SimpleTag interface, 170
SimpleTagSupport class, 174
Tag interface, 155
TagSupport class, 168

getPasswordAuthentication() method, 189–190
getPermanentFlags() method, 202
getPersonalNamespaces() method, 208
getPort() method, 720, 721
getPorts() method, 720, 721
getPreviousOut() method, 169
getProperties() method, 187
get_publisherAssertions method, 703
getRecipient() method, 192
getReference() method, 324, 325
get_registeredInfo method, 703
getReplyTo() method, 193
getSentDate() method, 194
get_serviceDetail method, 699
getServiceName() method, 720, 721
getServletContext() method, 98
getSession() method, 91–92
getSharedNamespaces() method, 208
getSize() method, 201
getStatus() method

Transaction interface, 293
TransactionManager interface, 291

getStore() method, 205
getSubject() method, 193
get_subscriptionResults method, 703
get_subscriptions method, 703
get_tModelDetail method, 699
getTransaction() method

Transaction interface, 293
TransactionManager interface, 291

t539663 Index.qxd 7/25/03 9:19 AM Page 948

949Index ✦ G–I

getTransactionManager() method, 294
getType() method, 209
getTypeMappingRegistry() method, 720, 721
getUnreadMessageCount() method, 212
getUserNamespaces() method, 208
getValue() method, 168
getValues() method, 168
getWorkManager() method, 614
getWSDLDocumentLocation() method, 720, 721
givenname LDAP attribute, 309
GOF (Gang of Four), 729, 745
green pages (UDDI), 658
The Grinder, 887
group.provider.url JDNI configuration option, 383
GSS-API (Generic Security Services Application

Program Interface), 361–362

H
half-object-plus-protocol pattern

described, 764
forces, 786
implementation, 786–787
LocalObject component, 787
overview, 785
related patterns, 788
RemoteObject component, 787
results, 788
sample code, 788
sequence diagram, 787
strategies, 787–788
structure, 786

handler (intercepting-filter pattern), 760
Handlers (JSR 47), 898–900
handlesPost() method, 81
HashMap attributes of TagSupport classes, 169
hasNewMessages() method, 212
header fields (JavaMail), 191–194
header (SOAP), 666–667
heap size (JVM), 890–891
Hello.jsp JSP tag extension example, 157
HelloWorld e-mail example, 181–183
HelloWorld Web page, 113, 114
Helm, Richard (Design Patterns), 729, 745, 802, 805
helper

front-controller pattern, 748
view-helper pattern, 752

heuristic outcomes of two-phase commit protocol,
261–262

home interface for entity beans
BMP bean, 552–553
CMP bean, 527–528
create() method, 513–514
finder methods, 514
home() methods, 515
overview, 513–515
remove() method, 514–515

home interface for session beans
Airline Reservations application, 493, 504
JNDI lookup for EJB client, 497

local home interface, 485
overview, 484
remote home interface, 485

home() methods, 515
<HR> (horizontal line) tags (HTML), 21
HTML (HyperText Markup Language)

bad example, 19
data entry elements and components, 78–79
HelloWorld page, 113
hidden fields, 90–91
JSP versus, 114
limitations of, 19–20
login screen, 79–84, 127–128
producing documents with XSLT, 34–38
register.html page, 133–135
well-formed document, 19
XML roots in, 18

HTTP (HyperText Transfer Protocol)
as J2EE standard service, 11, 12
servlets and HTTP requests, 712, 713
Struts framework and, 828
WSDL GET and POST binding, 687

HttpServletResponse class, 86–87
HttpSession object

creating or finding, 91
getSession() method, 91–92
servlet listeners for events, 94, 95, 96–97
session tracking using, 91–93

HttpSessionAttributeListener interface, 95
HttpSessionBindingEvent class, 95
HttpSessionEvent class, 95
HttpSessionListener interface, 95
human-readable documents, 34
HyperText Markup Language. See HTML
HyperText Transfer Protocol. See HTTP
HyperText Transfer Protocol Secure (HTTPS), 11, 12

I
IBM

Eclipse development environment, 49
LUCIFER algorithm, 413
Web Services Toolkit, 689
WebSphere application servers, 48, 335, 474–475,

716, 928
IDEs (Integrated Development Environments), 846,

848–850, 858–859
IDL (Interface Definition Language), 72
if statement in doPost() method, 97
if target attribute (ANT), 867
IIOP (Internet Inter-Orb Protocol)

overview, 469–471
RMI-IIOP, 11, 12, 72–73, 470–471

IMAP (Internet Message Access Protocol), 184–185
implementation

business-delegate pattern, 765–767, 768
composite-entity pattern, 778–779, 780–781
composite-view pattern, 754–756
data-access-object pattern, 799–804

Continued

t539663 Index.qxd 7/25/03 9:19 AM Page 949

950 Index ✦ I

implementation (continued)
DTDs, 24–26
error pages (JSP), 124
front-controller pattern, 746–748
half-object-plus-protocol pattern, 786–787
intercepting-filter pattern, 758–760
J2EE platform, 43–45
MVC pattern, 742–743
persistence, 477
remote interfaces for RMI, 58–60
ResourceAdapter interface, 641–643
router pattern, 736–738
service-activator pattern, 806–810
service-implementation bean, 722, 723
service-locator pattern, 782–783, 784–785
session pattern, 732–734
session-authenticator pattern, 790
session-facade pattern, 774–777
SOA for Web services, 840
transfer-object pattern, 812–815
value-object pattern, 770–771, 772–773
view-helper pattern, 751–752, 753

implementation description layer (description
stack), 661

implicit objects (JSP), 121–122
importing

JSP page directives for, 118
JSTL tag libraries, 147–148

IN expression (EJB QL), 550
include action (JSP), 120
include directive (JSP)

jsp:include action versus, 120
online store example, 131
overview, 118

in-doubt transactions, 274
InetOrgPerson schema, 337–340
init() method

Filter interface, 98
of servlets, 81

InitialContext component, 783
INITIAL_CONTEXT_FACTORY property (JNDI), 313
initialize() method, 385
input parameters for EJB QL, 549
Insert statement (SQL), 583
inspection layer (discovery stack), 662
installing

ANT, 859–860
RMI Flight Server application, 66

instance pooling. See also resource pooling
entity beans, 524–525
overview, 451
stateless session beans, 492

instance scope of variables (JSP), 122
instantiating

Airline User JavaBean, 125–126
stateless session beans, 490

Integrated Development Environments (IDEs), 846,
848–850, 858–859

integrity, encrypted-message passing and, 410

Interaction interface (CCI), 635
interaction interfaces (CCI), 634, 635
InteractionSpec interface (CCI), 635
intercepting-filter pattern

client, 759
described, 731
FilterChain component, 760
FilterManager component, 759
forces, 758
handler, 760
implementation, 758–760
overview, 758
PathFilter component, 760
related patterns, 761
results, 760
sample code, 761
sequence diagram, 759
strategies, 760
structure, 759

Interface Definition Language (IDL), 72
interface description layer (description stack), 661
interfaces

application server proxy, 53–54
BodyTag (JSP tag handler), 163–167
CCI, 633–634
Connection (JMS), 237
ConnectionFactory (JMS), 238
connection-management (Connector architecture),

616–622, 623
Context (JNDI), 312
Destination (JMS), 237
DirContext (JNDI), 312, 326, 328
EJB, 444, 464
EJBContext, 446
EntityBean, 517–519
IterationTag (JSP tag handler), 159–163
JAXR, 706–708
MDB, 569
Message (JMS), 234–235
MessageConsumer (JMS), 238–239
MessageProducer (JMS), 238, 251–252
MVC pattern, 745
Part (JavaMail), 190, 194–195
Referenceable (JNDI), 324
ResourceAdapter (Connector architecture), 610
RMI RefreshScreen, 68–69
RMI registry, 64
RMI remote, 57–60
RowSet (JDBC), 601–606
Service Endpoint (Web services), 722, 723
Service (Web services), 720–721, 724
ServiceLifeCycle (Web services), 724
servlet filter, 98–99
servlet listener, 95
session bean component, 485–486
session bean home, 484–485
Session (JMS), 238
SessionBean (EJB), 487

t539663 Index.qxd 7/25/03 9:19 AM Page 950

951Index ✦ I

SessionSynchronization (stateful session
beans), 503

SimpleTag (JSP tag handler), 170–173
stateless session beans Web-service endpoint, 492
Synchronization (JTA), 296
TagSupport (JSP tag handler), 167–169
TimedObject (EJB), 464
Transaction (JTS), 293–294
transaction-management (Connector

architecture), 625
TransactionManager (JTA), 291
UserTransaction (JTA), 290–291
work-management (Connector architecture),

613, 614
XAResource (JTA), 294–295
XID (JTA), 297
X/Open Distributed Transaction Processing, 284

internal DTD specification, 25
International Standards Organization (ISO), 305
International Telecommunications Union (ITU-T), 305
Internet Inter-Orb Protocol. See IIOP
Internet Message Access Protocol (IMAP), 184–185
Internet resources

ANT, 859
Apache Taglibs, 145
Apache Tomcat, 52
AXIS (Apache), 715
BEA WebLogic, 48
Borland Enterprise AppServer Edition, 48
Caucho Technology Resin servlet container, 52
CORBA information, 650
COS naming service provider, 333
cryptographic algorithms, 413
DCOM, 650
DNS record types RFC, 329
DSML, 334
IBM Eclipse development environment, 49
IBM WebSphere information, 48, 716
IMAP information, 185
JAAS information, 933–934
Java Adventure Builder, 9
Java Verification Program, 45
JBoss application server, 49
JCE, 420
JCP, 15
JDBC drivers, 582
JDBC information, 934
JNDI information, 933
JNDI search filter RFC, 319
JNDI-provider classes, 333
JProbe (Quest Software), 892
JSP information, 933
JSR 47 (logging specification), 894
JSTL specification, 145
load-testing tools, 887
Log4J, 894
MDB information, 934
MIME information, 185
MVC information, 828
New Atlanta ServletExec servlet container, 52

OpenLDAP information, 306
Oracle 9iAS application server, 49
Orion application server, 50
POP3 RFC, 184
resources by chapters in this book, 932–934
RMI information, 932
SASL specification, 316
security-policy file information, 65
servlet information, 933
SMTP RFC, 184
Software Productivity Consortium, 837
Struts framework, 827, 828
Sun Java Security site, 353
Sun ONE application server, 50
UDDI specification, 659
vendors providing J2EE implementations, 54
WASP (Systinet), 689
Web services information, 934
Web services specification (JSR 109), 725
Web Services Toolkit (IBM), 689
WSDL specification, 658
Zachman Framework for Enterprise Architecture,

837
InternetAddress class, 203–204
interoperability

CORBA and, 469, 471, 472
EJBs and, 431
transaction, 471
as Web services advantage, 652–653

invalidating sessions, 92–93
inversion of control

frameworks for, 823
Struts framework, 828

invocation pattern (UDDI), 700
invoke() method, 173
iostat performance-analysis tool, 480
isEmployee() method, 125
isExpunged() method, 203
isMimeType() method, 200
ISO (International Standards Organization), 305
isolation property of transactions

cascade rollback and, 269
defined, 257, 268
degrees of isolation, 270–272
optimistic versus pessimistic concurrency control,

269–270
overview, 268–269
two-phase locking policy for, 268–269

isSet() method, 203
IterateBuf.jsp JSP tag extension, 165
Iterate.jsp JSP tag extension, 160
IterateSimple.jsp JSP tag extension, 171
IterationTag interface

constant for, 160
JSP for, 160
method for, 159
overview, 159
TLD for, 160
TryIterationTag tag handler, 161–163

t539663 Index.qxd 7/25/03 9:19 AM Page 951

952 Index ✦ I–J

itrArray tag
BodyTag interface, 164–167
IterationTag interface, 160–163

ITU-T (International Telecommunications Union), 305

J
JAAS (Java Authentication and Authorization Service)

advantages of, 357
Airline Reservations application, 404–407
authenticating users, 364–371
authenticating Web users against directory

service, 404–407
authenticating Web users against WinNT domain,

397–403
authentication services, 353
authorization services, 353
basic login code, 364–366
callback handlers, 358–360, 394–397
compiling the login code, 369–370
custom login modules, 384–385
debugging, 372–375
dialog callback handlers, 360
functions of JAAS-enabled applications, 354
import statements, 358
JNDI login handler, 383–384
as J2EE standard service, 12
Kerberos login handler, 377–378
key-store login handler, 380–383
login initialize arguments, 386
login process, 354
login-configuration files, 360–361, 367–368
login-module flags, 361
login-module methods, 385–386
Magazine Publisher application, 397–403
operating systems and authentication, 353
overview, 353–354
Pluggable Authentication Modules, 360–363
policy files, 368–369, 373–374
portability and, 353
predefined login callbacks, 375–376
privileged object, 366
reactive login (Borland), 356
running the login code, 370–371
running the module, 375
setup, 358
single login across security domains, 356–357
single login class for all modules, 375
Subject class, 362–364
Sun-supplied login modules, 363
text callback handlers, 359–360
Unix login handler, 379
Web sites, 933–934
WinNT/Win2K login handler, 379
writing a callback handler, 394–397
writing a login handler, 385–394

jaas.policy file, 373–374
JACC (Java Authorization Service Provider Contract

for Containers), 12, 13

JAF (JavaBeans Activation Framework)
JavaMail and, 195–197
as J2EE standard service, 11, 12

Jakarta, 928–929
JAR files

jar task (ANT) for, 870–871
TLDs in, 151

jar task (ANT), 870–871
Java

further information, 929, 931
history, 3–4
J2SE, 5
policy files, 373–374
sandbox, 350, 353
SOAP and, 676–681
UDDI and, 704–709
WSDL and, 689

Java Adventure Builder application, 9
Java API for XML Binding (JAXB), 40
Java API for XML Messaging. See JAXM
Java API for XML Parsing. See JAXP
Java API for XML Registries. See JAXR
Java API for XML-RPC. See JAX-RPC
Java Authorization Service Provider Contract for

Containers (JACC), 12, 13
Java BluePrints, 9
Java Community Process. See JCP
Java Cryptography Extensions. See JCE
Java Database Connectivity. See JDBC
Java Development Kit (JDK), 5
Java in a Nutshell (Flanagan, David), 806
Java Management Extensions (JMX), 12, 13
Java Messaging Service. See JMS
Java Naming and Directory Interface. See JNDI
Java Secure Socket Extension (JSSE), 361–362
Java Specification Requests. See JSRs
Java Transaction API. See JTA
Java 2 Standard Edition (J2SE), 5
Java Verification Program, 45
Java Web Services Developer Pack, 716
JavaBeans. See also EJBs (Enterprise JavaBeans)

Airline User JavaBean, 124–125
for airline-registration screen, 137–138
defined, 124
in JSP, 124–130
login JSP using, 127–130
login screen using JSP, 127–130
scope, 127
ShoppingCartBean, 131

JavaBeans Activation Framework. See JAF
javac task (ANT), 868–870
JavaCard class, 389–390
JavaCardLauncher class, 388–389
JavaCardPrincipal class, 387–388
JAVA_HOME environment variable, 860
JavaMail. See also sessions (JavaMail)

accessing folders, 207–210
Address class, 203–205

t539663 Index.qxd 7/25/03 9:19 AM Page 952

953Index ✦ J

addresses for messages, 203–205
advanced message fetching, 213–215
authenticating connections, 188–190
Authenticator class, 188–190
BodyPart class, 199
ComparisonTerm object, 216
components, 185–186
controlling message delivery, 217
copying and moving messages, 215
core protocol parameters, 187–188
DataHandler class, 195–197
deleting mail, 227
FetchProfile class, 214–215, 226
flags, 201–203
Flags class, 201–202
Folder class, 207–213
framework for e-mail reception, 223–225
integrating into J2EE, 229–230
InternetAddress class, 203–204
JAF, 11, 12, 195–197
javamail_send class, 218
as J2EE standard service, 11, 12
listing folders in a hierarchy, 209–210
listing messages, 211–213
looking up the Session object, 229–230
mail storage and retrieval, 186, 205–216
Message class, 190
message content, 199–205
message manipulation, 186, 190–199
message storage and retrieval, 186, 205–216
MIME content-type descriptions, 199–201
MimeMessage class, 191–194
Multipart class, 197–199
NewsAddress class, 204–205
opening and closing folders, 211
parsing e-mail addresses, 204
Part interface, 190, 194–195
protocols, 183–185
receiving attachments, 227–229
receiving e-mail, 223–227
searching messages, 215–216
SearchTerm class, 215–216
sending e-mail and attachments, 218–223
Session class, 186–188
session management, 186–190
setting up sessions to the server, 218–220
Store class, 205–206
Transport class, 216–218
transportation, 186, 216–218
try...catch block for sending messages, 217,

220–221
URLName class, 206–207
using the API, 218–229

javamail_send class, 218
java.naming.authoritative property (DNS), 330
java.naming.factory.initial property (DNS), 330
java.naming.factory.object property (DNS), 330
java.naming.provider.url property (DNS), 330
java.policy file, 373–374

java.rmi.registry.Registry interface, 64
java.rmi.Remote interface, 57, 60
java.rmi.RemoteException declaration, 57, 60
java.security properties file, 358
JavaServer Pages. See JSPs
java.sql.ResultSetMetaData class, 589–590
java.util.Properties class, 187–188
javax.activation.DataHandler class, 195–197
javax.crypto package (JCE), 421
javax.crypto.interfaces package (JCE), 421
javax.crypto.spec package (JCE), 421
javax.ejb.EJBContext interface, 446
javax.ejb.EJBHome interface, 485, 503
javax.ejb.EJBLocalHome interface, 485
javax.ejb.EJBLocalObject interface, 485, 486
javax.ejb.EJBObject interface, 485, 486
javax.ejb.SessionBean interface, 487
javax.ejb.TimedObject interface, 464
javax.ejb.TimerService interface, 465
javax.jms.BytesMessage interface, 234–235
javax.jms.Connection interface, 237
javax.jms.ConnectionFactory interface, 238
javax.jms.Destination interface, 237
javax.jms.MapMessage interface, 234–235
javax.jms.Message interface, 234–235
javax.jms.MessageConsumer interface, 238–239
javax.jms.MessageProducer interface, 238, 251–252
javax.jms.Session interface, 238
javax.jms.StreamMessage interface, 234–235
javax.jms.TextMessage interface, 234–235
javax.jsp.SessionSynchronization interface, 503
javax.mail.Address class, 203–205
javax.mail.Authenticator class, 188–190
javax.mail.BodyPart class, 199
javax.mail.FetchProfile class, 214–215, 226
javax.mail.Flags class, 201–202
javax.mail.Folder class. See Folder class
javax.mail.internet.InternetAddress class,

203–204
javax.mail.internet.MimeMessage class. See

MimeMessage class
javax.mail.internet.NewsAddress class, 204–205
javax.mail.Message class, 190, 202–203
javax.mail.Multipart class, 197–199
javax.mail.Part interface, 190, 194–195
javax.mail.Session class, 186–188
javax.mail.Store class, 205–206
javax.mail.Transport class, 216–218
javax.mail.URLName class, 206–207
javax.naming package (JNDI), 310
javax.naming.directory package (JNDI), 310
javax.naming.event package (JNDI), 310
javax.naming.ldap package (JNDI), 310
javax.naming.spi package (JNDI), 310
javax.sql.RowSet interface. See RowSet interface
javax.transaction.Synchronization interface, 296
javax.transaction.Transaction interface, 293–294
javax.transaction.TransactionManager

interface, 291

t539663 Index.qxd 7/25/03 9:19 AM Page 953

954 Index ✦ J

javax.transaction.UserTransaction interface,
290–291

javax.transaction.xa.XAResource interface,
294–295

javax.transaction.xa.XID interface, 297
javax.xml.registry package (JAXR), 705–707
javax.xml.registry.infomodel package (JAXR),

705, 707
JAXB (Java API for XML Binding), 40
JAXM (Java API for XML Messaging)

described, 40
JAXM MDB, 569

JAXP (Java API for XML Parsing)
described, 40
as J2EE standard service, 11, 12

JAXR (Java API for XML Registries)
API, 705–708
architecture, 704–705
capability profiles, 705
client, 704, 707–709
described, 40
interfaces, 706–708
as J2EE standard service, 12, 13
packages, 705–708
provider, 704–705

JAX-RPC (Java API for XML-RPC)
described, 40
as J2EE standard service, 12, 13
Service Endpoint interface and, 723

JBoss application server, 49, 335, 474
JBuilder programmer’s editor, 372
JCE (Java Cryptography Extensions). See also

cryptography; encryption
Airline Reservations application, 424–426
classes, 421
cryptography terminology, 410–420
features, 420
Magazine Publisher application, 422–424
overview, 409
packages, 421
policy files, 420
steps for writing programs, 421
Sun Web site, 420
SunJCE algorithms, 420–421

JCP (Java Community Process)
frameworks and, 845
overview, 14
Web site, 15

JDBC (Java Database Connectivity)
AirUser class, 588
batch updates, 593–594
CallableStatement class, 592–593
connection pools, 596–597, 889
creating a program, 583–593
database-error processing, 587
DataSource objects, 597–599
DBProcessor class, 599–601
driver types, 582–583
EJB transactional example, 462

JDBC-ODBC bridge configuration, 594–596
J2EE platform requirement, 44
as J2EE standard service, 11, 12
loading a driver, 585
overview, 581–582
PreparedStatement class, 592
processing result sets, 587–589
ResultSetMetaData class, 589–590
retrieving data, 585–587
RowSet interface, 601–606
savepoints, 594
scrollable result sets, 591
ShowAnyData.java example, 589–590
UserList class, 586–587
UserList2 class, 588–589
Web sites, 934

JDK (Java Development Kit), 5
JMeter (Apache), 887
JMS (Java Messaging Service). See also MDB (message-

driven beans); point-to-point (p2p)
messaging; publish-and-subscribe
messaging

acknowledgement modes, 244–245
autonomous messages, 252
BookOrder class, 248–249
Caterer class, 246–248
components, 236–239
configuring, 239–240
connection factories, 237–238
Connection interface, 237
ConnectionFactory interface, 238
connections, 237
consumers, 238–239
Destination interface, 237
destinations, 237
enterprise messaging using, 714–715
further information, 930
interfaces, 234–235, 237–238
JNDI lookup and, 237–238
as J2EE standard service, 11, 12
MealService class, 241–246
message headers, 246
Message interface, 234–235
message structure, 233–234
message types, 233
MessageConsumer interface, 238–239
message-driven beans and, 254
message-driven beans introduced for, 442–443
MessageProducer interface, 238, 251–252
messaging overview, 231–232
OrderProcessor class, 249–251
overview, 232
persistent messages, 252
point-to-point example, 240–248
point-to-point messaging model, 235
producers, 238
publish-and-subscribe example, 248–252
publish-and-subscribe messaging model, 236
queues, 237

t539663 Index.qxd 7/25/03 9:19 AM Page 954

955Index ✦ J

reliability features, 252–253
RMI versus, 232–233
Session interface, 238
sessions, 238
synchronous acknowledgments, 253
transactions support, 253
versions, 233
as Web services transport layer, 714–715

JMSDeliveryMode message header, 246
JMSDestination message header, 246
JMSExpiration message header, 246
JMSMessageID message header, 246
JMSPriority message header, 246
JMSRedelivered message header, 246
JMSTimestamp message header, 246
JMX (Java Management Extensions), 12, 13
JNDI (Java Naming and Directory Interface). See also

LDAP (Lightweight Directory Access
Protocol)

adding directory entries with LDAP, 322
adding objects to LDAP directories, 323–328
Airline Reservations application, 337–341
attributes, 310–311
authentication in LDAP, 316
binding, 311
callback handler for, 394–397
connecting to LDAP server, 312–313
Context interface, 312
contexts and subcontexts, 311
DirContext interface, 312, 326, 328
directories, 310
DNS double reverse lookups, 343–346
DNS lookups, 331
DNS naming conventions, 311
DNS reverse lookups, 332, 342–343
DNS with, 328–332
EJBs with, 335–337, 463–464
entries, 310
environment properties, 313–316, 336–337
file systems, 311, 333
JMS and JNDI lookup, 237–238
jndi.properties file, avoiding, 316
as J2EE standard service, 11, 12
LDAP lookups, 316–318
LDAP mapping, 312
LDAP with, 312–328
login handler for JAAS, 383–384
lookup for home interface, 497
Magazine Publisher application, 342–346
mapping in JNDI, 312
names, 310–311
overview, 303
packages, 310
Referenceable interface, 324
references, 311
removing directory entries in LDAP, 322
SearchControls class, 320–322
searching for entries in LDAP, 318–322
service component lookup, 781

service providers, 332–335
storing object data as directory attributes, 325–328
storing objects as references, 323–325
storing serialized data in directories, 323
structure, 309–312
Sun-supplied login module, 363
for Web services lookup, 719
Web sites, 933

JndiLoginModule login module, 363
jndi.properties file, avoiding, 316
Johnson, Ralph (Design Patterns), 729, 745, 802, 805
JProbe (Quest Software), 892
jRockit JVM (BEA), 48
JSP Standard Tag Library. See JSTL (JSP Standard Tag

Library)
JSP tag extensions. See also JSTL (JSP Standard Tag

Library)
advantages of, 143–144
BodyTag interface, 163–167
difficulties developing custom tags, 145
dynamic attributes, 174–176
importing a tag library, 147–148
IterationTag interface, 159–163
overview, 144
tag handlers, 145, 153–174
Tag interface, 154–159
taglib mapping, 152
TLDs, 145, 148–150

jsp:forward action (JSP), 120, 121
JspFragment interface, 173
jsp:include action (JSP), 120
jsp:param action (JSP), 120
jsp:plugin action (JSP), 120, 121
JSPs (JavaServer Pages)

actions, 120–121
airline-registration screen using, 133–141
as application component APIs, 13
BodyTag example, 165
CachedRowSet object with, 603–604
comments, 119
declarations, 117
directives, 118, 146
DynamicAttributes example, 175
elements, 116–122
error pages, 123–124
expressions, 115, 117–118
HelloWorld example, 113–114
HTML versus, 114
implicit objects, 121–122
IterationTag example, 160
Java expressions in, 115
JavaBeans in, 124–130
login screen using JavaBeans, 127–130
MVC pattern and, 115–116
MyFirstJSPPage.jsp example, 114–115
online store design using, 130–133
overview, 13, 113
register.jsp controller, 135–137

Continued

t539663 Index.qxd 7/25/03 9:19 AM Page 955

956 Index ✦ J–K

JSPs (continued)
repeating headers for, 118
scriptlets, 119
SimpleTag example, 171
Tag interface example, 156–157
version 2.0, 115
as Web components, 7
Web sites, 933

jspService() method
automatic generation of, 114
scriptlets and, 119

jsp:useBean action (JSP), 125–126
JSR 47 (logging specification). See also logging

formatting output, 901
Handlers, 898–900
initialization order and, 897
Log4J versus, 894–895, 896, 897
Logger class methods, 897–898
messages, 895, 898
priority levels, 895–896
runtime configuration, 903–904
Web site, 894

JSR 109 (Web services specification)
client-side programming model, 719–721
goals, 717–718
server-side programming model, 721–724
Web service APIs, 718–719
Web service deployment descriptors, 725

JSRs (Java Specification Requests)
JCP process for, 14–15
logging specification (JSR 47), 894–901, 903–904
Web services (JSR 109), 717–725

JSSE (Java Secure Socket Extension), 361–362
JSTL (JSP Standard Tag Library)

Apache Taglibs reference implementation, 145
core library, 147
formatting library, 147
importing a tag library, 147–148
JSP versions and, 145
NumberFormat.jsp example, 146
specification, 145
SQL library, 147
taglib mapping, 152
TLDs, 145, 148–150
XML library, 147

JTA (Java Transaction API). See also transactions
architecture, 289
BMTs and, 460
enrolling participants, 295–296
JTS and, 289
as J2EE standard service, 11, 12
suspending and resuming transactions, 292
Synchronization interface, 296
transaction equality, 297
Transaction interface, 293–294
transaction synchronization, 296
TransactionManager interface, 291
UserTransaction interface, 290–291
XAResource interface, 294–295

XID interface, 297
X/Open DTP model and, 288

JTS, JTA and, 289
J2EE Connector architecture. See Connector

architecture
J2EE (Java 2 Enterprise Edition). See also specific APIs

APIs, 10–13
application components, 6–7
architecture, 5, 6
avoiding vendor lock-in, 53–54
Compatibility Test Suite, 45
components and services, 44
containers, 44
CORBA’s importance to, 468–469
full implementations, 47–50
further information, 929–930
future of, 14
implementing the platform, 43–45
improvements in version 1.4, 13–14
JavaMail integration, 229–230
licensees, 44
minimal, 848
origin of, 5
pains of, 821–823
partial implementations, 51–53
standard services APIs, 11–13
Web services integration with, 711–717

J2EE product provider, 7
j2eebible.ldif file (OpenLDAP), 306–308
j2eebible-taglib.tld file, 156
junit task (ANT), 871–875
JVMs (Java Virtual Machines)

applets and, 7
bytecode compiler, 890
garbage-collection algorithm, 891–892
heap size, 890–891
RMI and, 55, 56
tunable parameters, 889–892

K
Kerberos

advantages for authentication, 364
callback handler for, 394–397
login handler for JAAS, 377–378
Microsoft implementation, 357
security realm, 357
Sun-supplied login module, 363

key store
LDAP/X.500 attribute types for, 381–382
login handler for JAAS, 380–383
login-handler configuration options, 381
Sun-supplied login module, 363

keys for encryption
keyspace, 411
overview, 411
public-key cryptography, 416–417
shared-key cryptography, 415–416

keyspace, 411
KeyStoreAlias key-store configuration option, 381

t539663 Index.qxd 7/25/03 9:19 AM Page 956

957Index ✦ K–L

KeyStoreLoginModule login module, 363
KeyStorePasswordURL key-store configuration

option, 381
KeyStoreProvider key-store configuration

option, 381
KeyStoreType key-store configuration option, 381
KeyStoreURL key-store configuration option, 381
KeyTab Kerberos configuration option, 377
Krb5LoginModule login module, 363

L
LanguageCallback class (JAAS), 376
launcher for JAAS login handler, 388–389
LDAP Directory Interchange Format (LDIF) file,

306–308, 338–340
LDAP (Lightweight Directory Access Protocol). See

also JNDI (Java Naming and Directory
Interface)

adding directory entries with JNDI, 322
adding objects to directories with JNDI, 323–328
attribute types for key-store login module, 381–382
attributes, 308–309
authentication, 316
development of, 305
environment properties for JNDI, 313–316
implementations, 305–306
JNDI with, 312–328
lookups by JNDI, 316–318
mapping in JNDI, 312
OpenLDAP configuration, 306–308
removing directory entries with JNDI, 322
schema, 308–309
search filters, 319–320
search operators, 319–320
searching for entries by JNDI, 318–322
server connection by JNDI, 312–313
storing object data as directory attributes, 325–328
storing objects as references, 323–325
storing serialized data in directories, 323
X.500 standard and, 305

LDAPDataStore component, 738
LDIF (LDAP Directory Interchange Format) file,

306–308, 338–340
licensees (J2EE), 44
lifecycle

EJB container functionality, 447
EJB lifecycle methods, 445–446
EJB resource pooling and, 451
of entity beans, 451–454, 523–526
MDB lifecycle methods, 569
resource adapter (Connector architecture), 612
servlet lifecycle methods, 80–81
of session beans, 454–456
of simple tag handler, 170
stateful session beans, 500–502
of stateless session beans, 489–491

lifecycle-management contract
described, 609
overview, 610

resource-adapter bootstrapping, 611
ResourceAdapter JavaBean, 610–611
resource-adapter shutdown, 611–612

Lightweight Directory Access Protocol. See LDAP
LIKE expression (EJB QL), 550
line break (
) tags (HTML), 21
Linux login module, 363
list() method, 208–209
listeners (servlet)

defined, 94
event classes, 95
for HttpSession events, 94, 95, 96–97
interfaces, 95
introduction of, 94
Servlet Specification 2.4 and, 111
for ServletContext events, 94–96
web.xml deployment descriptor elements, 105

listing
folders in a hierarchy (JavaMail), 209–210
messages (JavaMail), 211–213

literals in EJB QL, 549
load

defined, 884
load testing, 886–887
performance and, 474–475, 884–885

LoadRunner (Mercury Interactive), 887
local client view

entity beans, 512
session beans, 487

local interface for session beans
local component interface, 486
local home interface, 485

local scope of variables (JSP), 122
local transactions

auto-commit mode, 262–264
defined, 262
disabling auto-commit mode, 263

LocalObject component, 787
LocalTransaction interface, 625–626
local-transaction management contract, 625–626
LogFilter class, 99
Log4J logging API (Apache). See also logging

Appenders, 900–901
development of, 894, 895
initialization order and, 897
JSR 47 versus, 894–895, 896, 897
layouts, 901–902
Logger class methods, 897–898
messages, 895, 898
multi-threaded logging, 902–903
Nested Diagnostic Context (NDC), 902–903
priority levels, 895–896
runtime configuration, 905–906
Web site, 894

logging. See also JSR 47 (logging specification); Log4J
logging API (Apache)

architecture, 895
deciding what to log, 893–894

Continued

t539663 Index.qxd 7/25/03 9:19 AM Page 957

958 Index ✦ L–M

logging (continued)
defined, 893
JSR 47 (logging specification), 894–901, 903–904
Log4J, 900–903, 905–906
messages, 895
multi-threaded, 902–903
security vulnerability, 350

logical operators
EJB QL, 549–550
for searching messages (JavaMail), 215–216

login database table, 584–585
login handlers (JAAS). See also callback handlers

(JAAS)
Java Card module, 390–394
JNDI, 383–384
Kerberos, 377–378
key-store, 380–383
launcher, 388–389
login initialize arguments, 386
login-module methods, 385–386
Principal class, 387–388
Unix, 379
virtual Java Card, 389–390
WinNT/Win2K, 379
writing your own, 385–394

login() method, 385
login screen (HTML)

deploying JSP version using Tomcat, 129–130
HTTP Get and Post requests, 84
Login.html screen, 127–128
pub_login.html screen, 79–80
servlet structure and lifecycle methods, 80–81
using JSP and JavaBeans, 127–130
writing the servlet, 81–83

login security. See authentication; authorization; JAAS
(Java Authentication and Authorization
Service)

login.configuration.provider property
(JAAS), 358

login.config.url.n property (JAAS), 358
Login.java JavaBean, 127, 128–129
LoginServlet class

with access counter, 93–94
creating, 81–83

logout() method, 386
lookup() method

for directory objects, 323
java.rmi.Naming class, 64

lookups
in DNS with JNDI, 331–332
for home interface with JNDI, 497
in LDAP with JNDI, 316–318
for Magazine Publisher application, 342–346
service component with JNDI, 781
for Web services with JNDI, 719

LookupService component
business-delegate pattern, 767
value-object pattern, 771

loopbacks, EJB single-thread restriction and, 449–450

loose coupling
frameworks for, 824
Struts framework, 830–831

LostPasswordServlet example, 87–88

M
machine-readable documents, 34
Magazine Publisher application

applet-servlet communication, 107–111
authenticating Web users against WinNT domain,

397–403
business case, 923–926
client code for login, 399–401
client policy file, 401–402
client side, 79
creating using servlets, 77–84
double reverse lookup for, 343–346
executive summary, 923
JAAS security for, 397–403
JCE for, 422–424
JMS publish-and-subscribe messaging, 248–252
JNDI for, 342–346
login configuration file, 401
mission statement, 924
reverse lookup for, 342–343
security analysis, 397–398
security limitations, 398
server code for secure-socket communication link,

398–399
server policy file, 402
server side, 78–79
servlet filter for logging requests, 99–100
servlet-context listener, 95–96
servlet-session listener, 96–97
starting the login client, 403
starting the login server, 402
summary of examples, 924–926
technology overview, 924

MagPublisherContextListener class, 96
MagPublisherSessionListener class, 96–97
mail attribute (InetOrgPerson schema), 337
mail LDAP attribute, 309
mail storage and retrieval (JavaMail)

accessing folders, 207–210
advanced message fetching, 213–215
copying and moving messages, 215
Folder class, 207–213
listing folders in a hierarchy, 209–210
listing messages, 211–213
opening and closing folders, 211
overview, 186
searching messages, 215–216
Store class, 205–206
URLName class, 206–207

mail.debug parameter (JavaMail), 188
mail.from parameter (JavaMail), 187
mail.host parameter (JavaMail), 187
mail.protocol.host parameter (JavaMail), 188
mail.protocol.user parameter (JavaMail), 188

t539663 Index.qxd 7/25/03 9:19 AM Page 958

959Index ✦ M

mail.store.protocol parameter (JavaMail), 187
mail.transport.protocol parameter (JavaMail), 187
mail.user parameter (JavaMail), 187
maintenance, frameworks and, 836
make utility. See ANT
Malks, Dan (Core J2EE Patterns), 750, 754
ManagedConnection interface, 620–622, 625
ManagedConnectionFactory interface, 618–620
Mandatory CMT attribute, 459
many-to-many relationships (CMR), 545–546
matchManagedConnection() method, 618
matchMessages() method, 422, 423
MDA (model-driven architecture), 847–848
MDB (message-driven beans). See also EJBs

(Enterprise JavaBeans); JMS (Java
Messaging Service)

advantages of, 568
asynchronous messages and, 565–566
asynchronous processing, 576–577
Caterer class, 567–568
clients and, 575
deployment descriptors (EJB 2.0), 570–572
deployment descriptors (EJB 2.1), 572–575
interfaces, 569
internal messaging with EJB applications, 573–575
JAXM, 569
lifecycle methods, 445–446, 569
MessageDrivenContext interface, 446
need for, 565–568
overview, 442–443
ticket reservation example, 566–567
Web sites, 934

MD4 and MD5 algorithms, 415
MemoryHandler (JSR 47), 900
memory-usage problems (Java)

garbage collector and, 906–908, 909
lapsed listeners, 910–911
large sessions, 911
limbo, 913–914
lingerers, 911–913
loiterer anti-patterns, 910–914
loiterers, 908–910

Mercury Interactive LoadRunner, 887
Message class, 190, 202–203
message content (JavaMail)

Address class, 203–205
addresses for messages, 203–205
flags, 201–203
Flags class, 201–202
InternetAddress class, 203–204
NewsAddress class, 204–205

Message Digest algorithms, 415
message endpoint, 631–632
message flags (JavaMail)

core system flags, 202
Message class methods that work with, 203
overview, 201–202

message headers (JMS), 246

message manipulation (JavaMail)
BodyPart class, 199
DataHandler class, 195–197
JavaBeans Activation Framework, 195–197
Message class, 190
MimeMessage class, 191–194
Multipart class, 197–199
overview, 186, 190
Part interface, 194–195

message-based Web-service architecture, 650–651
message-driven beans. See MDB
Message-ID JavaMail header field, 194
message-inflow contract

described, 609
EJB invocation, 632
endpoint deployment, 631
endpoint undeployment, 632
message delivery, 631–632
message endpoint, 631–632
overview, 631

message-oriented middleware (MOM), 231, 233, 566
messages. See JavaMail; JMS (Java Messaging Service)
messaging (SOAP), 675–676
metadata interfaces (CCI), 634, 636
Method-Ready Pool state (stateless session beans),

490–491
Method-Ready state (stateful session beans), 500–501
methods. See also specific methods

for accessing folders (JavaMail), 207–208
BodyTag interface, 163
BodyTagSupport class, 169
CMT attributes and business methods, 457–459
DataHandler class, 196
DynamicAttributes interface, 174
EJB lifecycle, 445–446
EJB QL, 547–548
entity bean callback methods, 515, 519–523
for folder content handling (JavaMail), 212
home interface for entity beans, 513–515
IterationTag interface, 159
JAAS login-module methods, 385–386
JspFragment interface, 173
MDB lifecycle methods, 569
Message class, for flags, 203
Multipart class, 198–199
native to application servers, 53
RowSetListener interface, 605–606
Service interface, 720–721
servlet lifecycle, 80–81
SimpleTag interface, 170
SimpleTagSupport class, 173–174
Tag interface, 154–155
TagSupport class, 168–169
TLD, 150
Transaction interface (JTA), 293–294
TransactionManager interface (JTA), 291, 292
UDDI finder methods, 698–699

Continued

t539663 Index.qxd 7/25/03 9:19 AM Page 959

960 Index ✦ M–O

methods (continued)
UDDI publishing API, 701–703
UDDI retriever methods, 699
UDDI subscription API, 703–704
UserTransaction interface (JTA), 290–291
WorkManager interface, 614
XAResource interface (JTA), 294–295

Microsoft
Kerberos implementation, 357
single-login concept, 356–357

MIME (Multipurpose Internet Mail Extension)
content-type descriptions, 199–201
MimeMessage class, 191–194
Multipart class, 197–199
multipart messages, 190, 194–195, 197–199, 200–201
overview, 185
WSDL binding, 688–689

MimeMessage class, 191–194
minimal J2EE, 848
mirror integration, 654
mobile e-services, 656
model in MVC pattern

defined, 827
JSPs and, 116
overview, 9–10, 743
sample code, 745

model-driven architecture (MDA), 847–848
model-view-controller pattern. See MVC pattern
modularity, 277
MOM (message-oriented middleware), 231, 233, 566
moving messages (JavaMail), 215
multidimensional arrays (SOAP), 671–672
Multipart class, 197–199
Multipurpose Internet Mail Extension. See MIME
mustUnderstand attribute of SOAP header, 676
MVC (model-view-controller) pattern

controller in, 10, 743
described, 730
forces, 741–742
further information, 745
implementation, 742–743
Java Swing components and, 116
JSPs and, 115–116
long-lived applications and, 9
model in, 9–10, 743
overview, 9, 740–741
related patterns, 745
results, 743–744
sample code, 744–745
sequence diagram, 743
strategies, 743
Struts framework, 827
view in, 10, 742
Web applications and, 115–116
Web site, 828
XSLT and, 34

MX DNS record type, 329
myErrors.jsp error page, 137, 139–140
MyFirstJSPPage.jsp example, 114–115

N
name

project attribute (ANT), 864
target attribute (ANT), 867

name method (TLD), 150
NameCallback class (JAAS), 376
name-given method (TLD), 150
names (JNDI), 310–311
namespaces (XML)

Airline Reservations application, 28–30, 33–34
defined, 26
for grouping tags using URIs, 28
identification in prologue, 28
including in tags, 29–30
in XSL files, 36–37

naming services. See also JNDI (Java Naming and
Directory Interface)

defined, 303
directory services and, 303–304
for EJBs, 463–464
overview, 303–304
RMI registry, 56, 61–63

NAT (network address translation), 474
NDC (Nested Diagnostic Context), 902–903
nested transactions

overview, 276
top-level, 277–278
uses for sub-transactions, 277

netstat performance-analysis tool, 480
network address translation (NAT), 474
Network Information System (NIS), 333
networked servers, 448
Never CMT attribute, 459
New Atlanta

ServletExec Debugger, 53
ServletExec servlet container, 51, 52–53

NewsAddress class, 204–205
newsgroup addressing (JavaMail), 204–205
9iAS application server (Oracle), 49
NIS (Network Information System), 333
non-repeatable reads, 271
nonrepudiation, 410
Notification Service for CORBA, 472
notify_subscriptionListener method, 703
NotSupported CMT attribute, 457–458
NS DNS record type, 329
NTLoginModule login module, 363
NULL comparison (EJB QL), 550
number sign (#) in #PCDATA keyword, 25
NumberFormat.jsp JSTL example, 146

O
o attribute (InetOrgPerson schema), 337
o LDAP attribute, 308
Object Management Group (OMG), 467–469, 847
object persistence, 552
object pools (JDBC), 596
object request broker (ORB), 430
Object Transaction Service. See OTS
ObjectNotFoundException EJB exception, 562

t539663 Index.qxd 7/25/03 9:19 AM Page 960

961Index ✦ O–P

ObtainLogin login-configuration file, 367–368
ODBC driver configuration for JDBC-ODBC bridge,

594–596
OMG (Object Management Group), 467–469, 847
ONE application server (Sun), 50
ONE Studio programming environment (Sun), 372
one-phase optimization of two-phase commit, 260
one-to-many relationships (CMR), 543–545
one-to-one relationships (CMR), 541–543
one-way encryption

hash function for, 412
Magazine Publisher application, 422–424
RSA algorithm, 411

OneWayHash() constructor, 422
online store

actions needed for, 130
designing using JSP, 130–133
partial controller servlet, 132–133
ShoppingCartBean, 131

onMessage method (MDB), 569
The Open Group (API standards developers), 284
open() method, 211, 227
opening folders (JavaMail), 211
OpenLDAP

Airline Reservations configuration file, 337–340
configuring, 306–308
InetOrgPerson schema, 337
Internet resources, 306
LDIF file for, 306–308, 338–340
slapd.conf file for, 306
starting the server, 306

OpenLDAP 2.1 Administrator’s Guide (OpenLDAP
publication), 306

open-source frameworks, 842–843
operationalInfo element (UDDI v3), 697–698
optimistic concurrency control, 270
optional login-module flag (JAAS), 361
optional tasks (ANT), 868
Options login initialize argument, 386
Oracle

JDBC-ODBC bridge configuration, 594–596
9iAS application server, 49

OracleCachedRowSet class, 602
OracleDataStore component, 738
ORB (object request broker), 430
ORDER BY clause (EJB QL), 547, 551
OrderProcessor class, 249–251
OrderProcessor session bean, 576–577
OrderServlet class, 110–111
Orion application server, 50
OTS (Object Transaction Service)

cooperating services, 287
development of, 285–286
participating within, 288
recoverable objects, 286
roles, 287
transactional objects, 286

ou LDAP attribute, 308
out variable (JSP), 121

P
packages

JAAS callback handlers, 359
JAXR, 705–708
JCE, 421
JNDI, 310

packaging layer (wire stack), 661
packaging TLDs in JARs, 151
page directive (JSP)

error pages and, 123
overview, 118

page scope of JavaBeans, 127
page variable (JSP), 121
PageContext class, 122
pageContext variable (JSP), 121
pains of J2EE, 821–823
PAM (Pluggable Authentication Modules), 360–363
param action (JSP), 120
parsers (XML). See XML parsers
parsing e-mail addresses (JavaMail), 204
partially-transmitted arrays (SOAP), 672
Passenger remote interface, 528–529
PassengerBean bean class

CMR examples, 539–546
overview, 529–533

PassengerBeanClient CMP entity bean client,
534–537

PassengerHome home interface, 527–528
passivation

ejbPassivate method, 445, 454–456
entity beans, 526
stateful session beans, 454–456, 502

PasswordCallback class (JAAS), 376
passwords

LostPasswordServlet example, 87–88
verification method, 341

PathFilter component, 760
A Pattern Language (Alexander, Christopher), 729
Pattern-Oriented Software Architecture, Volume 2

(Schmidt, Douglas and Stal, Michael and
Rohnert, Hans and Buschmann, Frank),
810–811

patterns. See also specific patterns
business-delegate, 764–769
composite-entity, 764, 777–781
composite-view, 731, 754–757
data-access-object, 797–805
defined, 729
forces defined, 731
frameworks and, 826–827
front-controller, 730, 746–750
further information, 729, 930
half-object-plus-protocol, 764, 785–788
implementation defined, 731
intercepting-filter, 731, 758–761
MVC (model-view-controller), 9–10, 34, 115–116,

730, 740–745
overview, 729–731

Continued

t539663 Index.qxd 7/25/03 9:19 AM Page 961

962 Index ✦ P

patterns (continued)
proxy, 769
related patterns defined, 731
results defined, 731
router, 730, 736–740
sample code defined, 731
service-activator, 797, 805–811
service-locator, 764, 781–785
servlet filters for Wrapper pattern, 101–102
session, 730, 731–736
session-authenticator, 764, 789–794
session-facade, 764, 773–777
stateless-service-provider, 764, 794–796
strategies defined, 731
Struts framework, 827–828
transfer-object, 797, 811–816
value-object, 764, 769–773
view-helper, 730, 750–754
Web-tier model, 730

#PCDATA keyword, 25
percent sign (%)

for JSP comments (<%- -), 119
for JSP declarations (<%!), 117
for JSP directives (<%@), 118
for JSP expressions (<%=), 114
for JSP scriptlets (<%), 119

perfmon performance-analysis tool, 480–481
performance (EJBs)

analysis tools, 479–481
application-server availability strategies, 473–475
CORBA and, 478–479
importance of, 472–473
load distribution for, 474–475
persistence and, 477–478
resource pooling for, 476–477
security and, 478
threading model and, 476–479
transaction concerns, 475–476
transparent fail-over for, 475

performance (Java applications)
benchmarking, 887–889
common problems, 881–885
critical-path analysis, 886
functional problems, 882
isolating problems, 886–893
load testing, 886–887
logging for analyzing, 893–906
memory-usage problems, 906–914
profiling, 892–893
response time problems, 883
scalability problems, 883–885
shared resources and, 885
throughput problems, 883
tunable parameters, 889–892

permission.jsp JSP example, 791, 793
persistence

bean-managed (BMP), 437–439, 466, 512
container-managed (CMP), 439, 466, 512

durable transactions, 257, 272–273
implementations, 477
JMS messages, 252
object, 552
performance and, 477–478
session beans and, 483

Persistence and Recovery Service for OTS, 287
pessimistic concurrency control, 269
phantom reads, 271
PI (Portable Interceptors), 479
placeOrder() method, 576
Pluggable Authentication Modules (PAM), 360–363
plugin action (JSP), 120, 121
plus sign (+) in DTDs, 24
POA (Portable Object Adapter), 479
point-to-point (p2p) messaging (JMS)

Airline Reservations application, 240–248
Caterer class, 246–248
creating a message, 241–246
JMS acknowledgement modes, 244–245
JMS message headers, 246
MealService class, 241–246
overview, 235
push model, 235
receiving messages, 241
setting up objects on sending side, 240–241
steps for sending messages, 241

policy files
Airline Reservations application, 406
JAAS, 368–369, 373–374
Java, 373–374
JCE, 420
Magazine Publisher application, 401–402
RMI, 65

policy layer (description stack), 661
policy.provider property (JAAS), 358
policy.url.n property (JAAS), 358
polymorphic accessor (SOAP), 669–670
pooled state (entity beans), 524–525
POP3 (Post Office Protocol), 184
Portable Interceptors (PI), 479
Portable Object Adapter (POA), 479
ports (RMI registry), 64
Post method (HTML), 84
Post Office Protocol. See POP3
POST verb (HTTP), 687
prefix attribute of taglib directive, 147
prepare phase of two-phase commit protocol, 259
PreparedStatement class, 592
presentation layer (description stack), 661
PresentationComponent component

data-access-object pattern, 800
service-activator pattern, 807
transfer-object pattern, 813

PresentationTier component
business-delegate pattern, 767
session-facade pattern, 775
value-object pattern, 770

t539663 Index.qxd 7/25/03 9:19 AM Page 962

963Index ✦ P–R

presentation-tier patterns. See also patterns; specific
patterns

composite-view, 731, 754–757
front-controller, 730, 746–750
intercepting-filter, 731, 758–761
MVC (model-view-controller), 9–10, 34, 115–116,

730, 740–745
overview, 730–731
router, 730, 736–740
session, 730, 731–736
view-helper, 730, 750–754

presumed rollback optimization of two-phase
commit, 260

primary-key class of entity beans
compound primary keys, 516
overview, 516
single-field primary keys, 516
unknown primary keys, 517

Principal class for JAAS login handler, 387–388
Principal Kerberos configuration option, 377
Principal objects

for JAAS login modules, 362–363
for JNDI login module, 384
for Kerberos login module, 378
for key-store login module, 383
for Unix login module, 379
for WinNT login module, 379

println() method
in doGet() method, 113
of PrintWriter object, 82

privateKeyPasswordURL key-store configuration
option, 381

processors (XML). See XML parsers
producers (JMS), 238
ProductCatalog class, 133
production, frameworks and, 836
profiling, 892–893
projects (ANT), 864
prologue

namespaces in, 28
of XML documents, 20, 28
of XSL files, 36

Properties class, 187–188
provider (JAXR), 704–705
PROVIDER_URL property (JNDI), 313, 315
proxy coordinators for distributed transactions, 266
proxy interface for application servers, 53–54
proxy patterns, 769
PTR DNS record type, 329
p2p messaging. See point-to-point messaging (JMS)
publication layer (discovery stack), 662
public-key cryptography, 416–417
publish-and-subscribe messaging (JMS)

BookOrder class, 248–249
durable subscriptions, 236
Magazine Publisher application, 248–252
OrderProcessor class, 249–251
overview, 236

send() method parameters, 251–252
setup, 248

publishing with UDDI, 700–703
pub_login.html HTML login screen, 79–80
pub/sup messaging. See publish-and-subscribe

messaging (JMS)

Q
quality attributes as Web services advantage, 653
query methods (EJB QL), 547–548
Quest Software

Benchmark Factory, 887
JProbe, 892

question mark (?) in DTDs, 24
queues (JMS), 237

R
RAR (Resource Adapter Archive) files, 641
ra.xml deployment descriptor, 641–643
RDBMS. See relational databases
reactive login (Borland), 356
read committed transaction isolation, 272
read uncommitted transaction isolation, 271
readObject() method, overriding, 351
read-only optimization of two-phase commit, 260
ready state (entity beans), 525–526
rebind() method (RMI), 62
receiving

attachments (JavaMail), 227–229
e-mail (JavaMail), 223–227
messages (JMS), 241

Record interface (CCI), 635
RecordFactory interface (CCI), 635
RecoveryCoordinator role (OTS), 287
re-entrance, EJB single-thread restriction and, 449–450
Referenceable interface (JNDI), 324
references (JNDI)

overview, 311
storing objects as, 323–325

reflection, bean provider restrictions for, 448
refreshFlightInfo() method, 69
RefreshScreen interface (RMI), 68–69
registerBean.java JavaBean, 137–138
registerClient() method, 70, 71
register.html airline-registration page, 133–135
register.jsp controller, 135–137
registerUser() method, 137
registry (RMI), 56, 61–63, 64
relational databases. See also databases; JDBC (Java

Database Connectivity)
directory services versus, 304–305, 340
EJB transactional example, 462–463
JDBC and, 581

release() method
Tag interface, 155
TagSupport class, 168

remote client view
entity beans, 512
session beans, 487

t539663 Index.qxd 7/25/03 9:19 AM Page 963

964 Index ✦ R

Remote interface, 57, 60
remote interface for entity beans

BMP bean, 553
CMP bean, 528–529

remote interface for session beans
Airline Reservations application, 493, 504–505
getting for EJB client, 498
remote component interface, 486
remote home interface, 485

Remote Method Invocation to Internet Inter-ORB
Protocol. See RMI-IIOP

remote procedure call-based Web-service
architecture, 650

RemoteObject component, 787
remove() method

EJB client, 499
entity beans, 526
home interface for entity beans, 514–515

removeAttribute() method, 85
REMOVE_ATTRIBUTE operation of DirContext

interface, 328
removeBodyPart() method, 199
RemoveException EJB exception, 563
removeValue() method, 169
repeatable read transaction isolation, 272
REPLACE_ATTRIBUTE operation of DirContext

interface, 328
reply() method (JavaMail), 191
Reply-To JavaMail header field, 193
Request component, 808
request scope of JavaBeans, 127
request variable (JSP), 121
RequestDispatcher class, 86, 120
RequestProcessor class (Struts), 830–831
Required CMT attribute, 458
required login-module flag (JAAS), 361
required method (TLD), 150
RequiresNew CMT attribute, 459
requisite login-module flag (JAAS), 361
ReservationErrors.jsp error page, 123
Reservation.java SOAP example, 676–678
Reservation.wsdl WSDL example, 681–686
Reset button (HTML), 79
Resin servlet container (Caucho Technology), 51, 52
Resource Adapter Archive (RAR) files, 641
resource adapters, 607–608

Airline Reservations application, 615–616
bootstrapping, 611
deployment descriptor, 641–643
EJB invocation, 632
elements, 640–641
lifecycle, 612
packaging, 641
ResourceAdapter JavaBean, 610–611
shutdown, 611–612
submitting Work instances, 615–616

resource manager (RM), 285
resource pooling. See also instance pooling

EJB, 451
entity beans, 451, 452, 453, 524–525

instance pooling, 451
performance and, 476–477
scalability and number of, 450–451
stateless session beans, 454, 492

resource principal, 629–630
Resource role (OTS), 287, 288
resource use and performance, 885
ResourceAdapter interface, 610, 641–643
ResourceAdapter JavaBean, 610–611
ResourceAdapterMetadata interface (CCI), 636
response time, 883, 884
response variable (JSP), 121
response wrapper, servlet filter for, 100–102
restricted cryptography algorithms, 410–411
result sets (JDBC)

processing, 587–589
ResultSetMetaData class, 589–590
scrollable, 591

results from patterns
business-delegate pattern, 767–768
composite-entity pattern, 780
composite-view pattern, 757
defined, 731
front-controller pattern, 749
half-object-plus-protocol pattern, 788
intercepting-filter pattern, 760
MVC pattern, 743–744
router pattern, 738
service-locator pattern, 784
session pattern, 735
session-facade pattern, 776
value-object pattern, 772
view-helper pattern, 753

ResultSetMetaData class, 589–590
resume() method, 292
resuming transactions, 292
retriever methods (UDDI), 699
retrieving data using JDBC, 585–587
reverse DNS lookups, 332
RFCs

DNS record types, 329
IMAP, 185
InetOrgPerson schema, 337
JNDI search filters, 319
POP3, 184
SMTP, 184

Rivest, Shamir & Adelman (RSA) algorithm, 411
RM (resource manager), 285
RMI Flight Server application

components, 66
deploying within Connexia Airlines, 68
installing, 66
overview, 65
running, 66–68

RMI (Remote Method Invocation)
compiler (rmic), 56, 61, 70
components, 56
CORBA versus, 56, 73, 468–469
declaring remote interfaces, 57–58
defined, 55

t539663 Index.qxd 7/25/03 9:19 AM Page 964

965Index ✦ R–S

Flight Server application, 65–68
implementing remote interfaces, 58–60
JMS versus, 232–233
JVMs and, 55, 56
limitations of, 649
overview, 55–56
pushing data from the server, 68–72
RefreshScreen interface, 68–69
registering remote objects, 61–63
remote exceptions, 57, 60
RMI over IIOP, 11, 12, 72–73
rules for remote interfaces, 57
security-policy files, 65
skeletons, 60–61
steps in developing applications, 57
stubs, 60, 61
typical applications, 56
wait mode of servers, 56
Web sites, 932
writing RMI clients, 63–65

rmic (RMI compiler), 56, 61, 70
RMI-IIOP (Remote Method Invocation to Internet

Inter-ORB Protocol)
as J2EE standard service, 11, 12
overview, 72–73, 470–471

Rohnert, Hans (Pattern-Oriented Software Architecture,
Volume 2), 810–811

roles
application assembler, 8
application component provider, 8
defined, 7
deployer, 8
J2EE product provider, 7
model-view-controller pattern and, 9
system administrator, 8
system-component provider, 8
tool provider, 8

rollback() method
auto-commit mode and, 263
JDBC, 594
TransactionManager interface, 291
UserTransaction interface, 290

router pattern
ClientComponent component, 736
described, 730
forces, 736
further information, 740
implementation, 736–738
LDAPDataStore component, 738
OracleDataStore component, 738
overview, 736
related patterns, 740
results, 738
sample code, 738–740
sequence diagram, 737
strategies, 738

rowChanged() method, 605
RowSet interface

CachedRowSet object, 602–606
getting data from a database, 601

overview, 601
processing events, 605–606
updating the database using, 604–605
WebRowSet class, 606

rowSetChanged() method, 605
RowSetListener interface, 605–606
RSA (Rivest, Shamir & Adelman) algorithm, 411
rtexprvalue method (TLD), 150
running

JAAS login code, 370–371
JAAS module, 375
RMI Flight Server application, 66–68

runtime interaction, bean provider restrictions for, 448

S
SAAJ (SOAP for attachments API for Java), 12, 13
sandbox (Java), 350, 353
sar performance-analysis tool, 480
SASL (Simple Authentication and Security Layer), 316,

361–362
saveAttachment() method, 227–228
save_binding method, 701
save_business method, 701
savepoints (JDBC), 594
save_service method, 701
save_subscription method, 703, 704
save_tModel method, 701
saving e-mail attachments to disk (JavaMail), 227–229
SAX (Simple API for XML) parsers, 22–23
scalability

in application servers, 46
clustering application servers and, 474
defined, 46, 883
EJB resource pooling and, 450–451
performance problems, 883–885

scheduleWork() method, 614
schemata

LDAP, 308–309
XML Schema, 18, 31–34, 668–670

Schmidt, Douglas (Pattern-Oriented Software
Architecture, Volume 2), 810–811

Schneier, Bruce (Blowfish creator), 414
scope

JavaBeans, 127
for SearchControls object, 321
variables (JSP), 122

scriptlets (JSP), 119
search() method

Folder class, 215
for LDAP in JNDI, 318–319

SearchControls class, 320–322
searchFlights() method, 493
searching

LDAP entries with JNDI, 318–322
LDAP search operators, 319–320
messages (JavaMail), 215–216

SearchTerm class, 215–216
SeatBean entity bean, 438, 439
secret-key cryptography, 415–416
Secure Hash Algorithm (SHA), 415

t539663 Index.qxd 7/25/03 9:19 AM Page 965

966 Index ✦ S

security. See also JAAS (Java Authentication and
Authorization Service)

bean provider restrictions for, 448
CORBA secure interoperability, 472
EJB container functionality, 447
EJB infrastructure, 464
importance of, 348–349
Java advantages for, 347–348
Java sandbox, 350, 353
Java security environment, 351–352
Java vulnerabilities, 349–353
LDAP authentication by JNDI, 316
performance and, 478
policy files for RMI, 65
SASL specification, 316
security realms, 355–357
Sun Java Security site, 353

security realms
defined, 355
JAAS advantages, 357
Kerberos, 357
overview, 355–356
reactive login (Borland), 356
single login across security domains, 356–357

SECURITY_AUTHENTICATION property (JNDI), 313
SECURITY_CREDENTIALS property (JNDI), 314
security-management contract

authenticating a resource principal, 630
authentication defined, 627
authorization defined, 627
authorizing a resource principal, 630
component-managed sign-on, 628
container-managed sign-on, 628
described, 609
EIS sign-on, 629
establishing secure communication, 630
overview, 627–628
setting a resource principal, 629–630

security-policy files, 65
SECURITY_PRINCIPAL property (JNDI), 314
Segue SilkPerformer, 887
SEI (Service Endpoint interface), 722, 723
SELECT clause (EJB QL), 547, 551
select methods (EJB QL), 548
select statement (SQL), 583
self-enforcing cryptographic protocol, 420
send() method

MessageProducer interface, 251–252
Transport class, 216–218

sending
e-mail and attachments (JavaMail), 218–223
messages (JMS), 241

sendRedirect() method
forward() method versus, 86, 87
of HttpServletResponse class, 86–87

separation of concerns
frameworks for, 823–824
Struts framework, 828–829

sequence diagrams
business-delegate pattern, 766
composite-entity pattern, 778, 779
composite-view pattern, 755
data-access-object pattern, 800
front-controller pattern, 747
half-object-plus-protocol pattern, 787
intercepting-filter pattern, 759
MVC pattern, 743
router pattern, 737
service-activator pattern, 807, 808
service-locator pattern, 782, 783
session pattern, 733
session-facade pattern, 774, 775
Struts framework, 829
transfer-object pattern, 812
value-object pattern, 770, 771
view-helper pattern, 751

serializable transaction isolation, 272
serialization

applet/servlet object, 108
isolation property of transactions, 257, 268–272
security vulnerability, 349, 351
storing serialized data in directories, 323

server/container provider for EJBs, 433–434
server-managed session, 733
servers. See also application servers

components, 7
EJB, 444
EJBs as components, 7
JNDI connection to LDAP server, 312–313
pushing data from (RMI), 68–72
session pattern, 734
setting up JavaMail sessions, 218–220
starting OpenLDAP server, 306
wait mode (RMI), 56

server-side programming model (Web services)
EJB container, 722–723
overview, 721–722
Service Endpoint interface (SEI), 722, 723
service-implementation bean, 722
Web container, 723–724
WSDL port section, 722

Service Endpoint interface (SEI), 722, 723
Service interface, 720–721, 724
service() method of servlets

jspService() method and, 114
overview, 81

ServiceActivator component, 808
service-activator pattern

Acknowledgment component, 809
applying, 810
asynchronous data access and, 805
BusinessComponent component, 808
characteristics, 805
class diagram, 810
described, 797
further information, 806, 810–811

t539663 Index.qxd 7/25/03 9:19 AM Page 966

967Index ✦ S

implementation, 806–810
overview, 805–806
PresentationComponent component, 807
related patterns, 810
Request component, 808
sequence diagram, 807, 808
ServiceActivator component, 808
strategies, 809–810
structure, 806–807

service-implementation bean (SIB), 722, 723
ServiceLifeCycle interface, 724
ServiceLocator component, 783
service-locator pattern

described, 764
forces, 782
implementation, 782–783, 784–785
InitialContext component, 783
overview, 781
related patterns, 785
results, 784
sample code, 784–785
sequence diagram, 782, 783
ServiceLocator component, 783
strategies, 783–784
structure, 782

service-oriented architecture. See SOA
service-tier patterns. See also patterns; specific patterns

bad design practices, 763
business-delegate, 764–769
composite-entity, 764, 777–781
half-object-plus-protocol, 764, 785–788
overview, 763–764
service-locator, 764, 781–785
session-authenticator, 764, 789–794
session-facade, 764, 773–777
stateless-service-provider, 764, 794–796
value-object, 764, 769–773

ServletContext class
servlet listeners for events, 94–96
using the servlet context, 84–85

ServletContextAttributeEvent class, 95
ServletContextAttributeListener interface, 95
ServletContextEvent class, 95
ServletContextListener interface, 95
ServletExec servlet container (New Atlanta), 51, 52–53
servlets

access counter example, 93–94
advantages for Web services, 711
applets versus, 77–78
applet-servlet communication, 107–111
as application component APIs, 13
browser/servlet interaction, 83
cached row sets with, 602–603
class diagram for user-created servlet, 80
context, using, 84–85
cookies with, 88–89
deploying, 103
encrypting parameters sent to, 100

filters, 97–102
HTML login screen using, 79–84
HTTP requests and, 712, 713
JSP generation of, 114
JSP page directives for, 118
JSP scriptlets and, 119
listeners, 94–97
Lost Password screen example, 87–88
Magazine Publisher application using, 77–84
online store controller, 132–133
overview, 13, 77
response wrapper, 100–102
servlet engines, 51–53
Servlet Specification 2.4, 111
session tracking using, 88–94
structure and lifecycle methods, 80–81
URL redirection using, 85–88
WAR file for, 103–104
in Web services architecture, 711–712
Web sites, 933
web.xml deployment descriptor, 104–107

session beans. See also EJBs (Enterprise JavaBeans);
stateful session beans; stateless session
beans

Airline Reservations application, 492–499
application fault-tolerance and, 441
characteristics, 484
component interface, 485–486
defined, 440
deployment descriptor, 488–489
EJB transactional example, 462–463
elements, 484
entity beans versus, 441–442
home interface, 484–485
lifecycle, 454–456
lifecycle methods, 445–446
returning a disconnected RowSet object, 603
SessionBean interface, 487
SessionContext interface, 446
stateful versus stateless, 441, 461, 483, 509–510
storing a handle, 503
writing, 484–492
writing an EBJ client, 496–499

Session class, 186–188
session management (JavaMail)

Authenticator class, 188–190
core protocol parameters, 187–188
overview, 186
Session class, 186–188
session defined, 186

Session object, looking up, 229–230
session pattern

ClientComponent component, 734
client-maintained session, 732
described, 730
forces, 732
implementation, 732–734

Continued

t539663 Index.qxd 7/25/03 9:19 AM Page 967

968 Index ✦ S

session pattern (continued)
overview, 731–732
results, 735
sample code, 735
sequence diagram, 733
server, 734
server-managed session, 733
stateful communication, 734
stateless communication, 734
strategies, 734
UML diagram, 735

session scope of JavaBeans, 127
session tracking

closing sessions, 92
cookies for, 88–89
defined, 88
hidden fields for, 90–91
HttpSession object for, 91–93
in LoginServlet with access counter, 93–94
overview, 88
servlets for, 88–94
servlet-session listeners, 96–97
timeout for sessions, 93
URL rewriting for, 90

session variable (JSP), 121
session-authenticator pattern

communication mechanism, 790–791
described, 764
example, 789
implementation, 790
overview, 789–790, 796
sample code, 791–794

Session.AUTO_ACKNOWLEDGE mode (JMS), 244
SessionBean interface, 487
Session.CLIENT_ACKNOWLEDGE mode (JMS), 245
Session.DUPS_OK_ACKNOWLEDGE mode (JMS), 245
SessionFacade component, 775
session-facade pattern

BusinessObject component, 776
described, 764
forces, 774
implementation, 774–777
overview, 773–774
PresentationTier component, 775
related patterns, 777
results, 776
sample code, 776–777
sequence diagram, 774, 775
SessionFacade component, 775
strategies, 776
structure, 774, 775

sessions (JavaMail)
authorization and, 186
core protocol parameters, 187–188
defined, 186
looking up the Session object, 229–230
obtaining private instances, 186, 187
obtaining shared instances, 187

passing parameters, 187
setting up to the server, 218–220

sessions (JMS), 238
sessions (JSP), 118
SessionSynchronization interface, 503
setAttribute() method, 85
setAutoCommit() method, 263
setBodyContent() method

BodyTag interface, 163
BodyTagSupport class, 169

setCreditCardNumber() method, 425
setDescription() method, 200
setDisposition() method, 200
setDynamicAttribute() method, 174
setEntityContext() entity bean callback

method, 520
setFileName() method, 201
setFlags() method, 203
setFrom() method, 192
setHeader() method, 194
setID() method, 169
setJspBody() method

SimpleTag interface, 170
SimpleTagSupport class, 174

setJspContext() method
SimpleTag interface, 170
SimpleTagSupport class, 174

setMessageDrivenContext() method, 569
setNull() method, 592
setOutput() method, 82
setPageContext() method, 154
setParent() method

Multipart class, 199
SimpleTag interface, 170
SimpleTagSupport class, 174
Tag interface, 154
TagSupport class, 169

set_publisherAssertions method, 702
setRecipient() method, 192
setReplyTo() method, 193
setRollbackOnly() method, 291
setSavePoint() method, 594
setSentDate() method, 194
setSessionContext method, 490
setSubject() method, 193
setValue() method, 169
SGML (Standard Generalized Markup Language), 18
SHA (Secure Hash Algorithm), 415
shared resources, 885
shared-key cryptography, 415–416
sharedState login initialize argument, 386
ShoppingCartBean JavaBean, 131
short-name method (TLD), 150
ShowAnyData.java JDBC example, 589–590
SIB (service-implementation bean), 722, 723
Signals, 281–283
SignalSets, 281–283
signed code, security vulnerability from, 350

t539663 Index.qxd 7/25/03 9:19 AM Page 968

969Index ✦ S

SilkPerformer (Segue), 887
Simple API for XML (SAX) parsers, 22–23
Simple Authentication and Security Layer (SASL), 316,

361–362
Simple Mail Transport Protocol. See SMTP
Simple Object Access Protocol. See SOAP
simple tag handlers

defined, 153
JspFragment interface, 173
SimpleTag interface, 170–173
SimpleTagSupport class, 173–174

SimpleExample.xsd XML Schema, 30
SimpleTag interface

JSP for, 171
methods, 170
overview, 170
tag handler lifecycle, 170
TLD for, 171
TrySimpleTag tag handler, 171–173

SimpleTagSupport class, 173–174
simple-type values (SOAP), 669
single-dimensional arrays (SOAP), 671
single-field primary keys for entity beans, 516
SIs (system integrators), 844–845
skeletons (RMI), 60–61
SKIP_BODY constant, 155
SKIP_PAGE constant, 155
slapd.conf file for OpenLDAP, 306
SlickEdit programmer’s editor (Visual), 372
smart Web services, 655
SMTP (Simple Mail Transport Protocol)

overview, 183–184
sending a mail message using, 181–183
try...catch block for, 220–221

sn attribute (InetOrgPerson schema), 337
sn LDAP attribute, 309
SOA DNS record type, 329
SOA (service-oriented architecture). See also

Web-service architecture
advantages of, 652, 839–840
broker role, 651
description stack, 661
discovery stack, 661–663
overview, 839
provider role, 651
requester role, 651
SOAP, WSDL, and UDDI in, 659
Web-service implementation, 840
wire stack, 660–661

SOAP for attachments API for Java (SAAJ), 12, 13
SOAP RPC

components, 672
defined, 657
process, 673
request example, 674
request requirements, 673
requirements for using, 673
response example, 674
response requirements, 674

SOAP (Simple Object Access Protocol)
Airline Reservations application, 676–681
arrays, 670–672
binding in WSDL, 686–687
body, 667–668
ConnexiaClient.java example, 678–681
data types, 669–670
encoding rules, 657
envelope, 657, 666
header, 666–667
header attributes, 675–676
intentional limitations of, 711
Java and, 676–681
JMS as transport mechanism, 714–715
messaging, 675–676
overview, 657
request parsing by servlets, 712–713
Reservation.java example, 676–678
SOAP RPC, 657, 672–676
XML instance for structure, 670
XML schema for structure, 670
XML schema (typical), 668

<soap:address> element (WSDL), 687
<soap:body> element (WSDL), 687
<soap:fault> element (WSDL), 687
<soap:operation> element (WSDL), 687
SocketHandler (JSR 47), 899
software design patterns. See patterns
Software Productivity Consortium, 837
software-vendor frameworks, 843–844
Solaris (Sun) login module, 363
sparse arrays (SOAP), 672
SQL library (JSTL), 147
SQLJ, 581
Stal, Michael (Pattern-Oriented Software Architecture,

Volume 2), 810–811
Standard Generalized Markup Language (SGML), 18
standard services APIs, 11–13. See also specific APIs
standardization as Web services advantage, 653
start() method

resource-adapter shutdown, 611–612
XAResource interface, 294–295

StartFlightServer class, 62
starting

Airline Reservations application login client, 407
Airline Reservations application login server, 407
Magazine Publisher application login client, 403
Magazine Publisher application login server, 402
OpenLDAP server, 306

startWork() method, 614
stateful communication (session pattern), 734
stateful session beans. See also session beans

activation, 502
Airline Reservations application, 504–509
BMTs and, 461
defined, 440, 483
Does Not Exist state, 500
lifecycle, 454–456, 500–502

Continued

t539663 Index.qxd 7/25/03 9:19 AM Page 969

970 Index ✦ S

stateful session beans (continued)
Method-Ready state, 500–501
model, 499–500, 510
as non-persistent, 483
overview, 440
passivated state, 502
passivation, 454–455, 502
pool size, 889
SessionSynchronization interface, 503
stateless session beans versus, 441, 461, 483,

509–510
stateless communication (session pattern), 734
stateless session beans. See also BMTs (bean-managed

transactions); CMTs (container-managed
transactions); session beans

Airline Reservations application, 492–499
BMTs and, 461
CMTs versus BMTs, 440
defined, 440, 483
Does Not Exist state, 489–490
ejbCreate() method, 490, 491
ejbRemove() method, 491
instance pooling, 492
instantiation, 490
lifecycle, 454, 489–491
member variables, 491
Method-Ready Pool state, 490–491
model, 510
as non-persistent, 483
resource pooling, 454
setSessionContext method, 490
stateful session beans versus, 441, 461, 483, 509–510
uses, 489
Web-service endpoint interface, 492

stateless-service-provider pattern
described, 764
EJB, 794
EJB deployment descriptor, 795–796
overview, 794, 796
sample code, 794–796

static data fields, bean provider restrictions for, 448
Stelting, John (Applied Java Patterns), 740
stop() method, 611–612
Store class, 205–206
store-and-forward messaging. See publish-and-

subscribe messaging
StoreKey Kerberos configuration option, 377
StorePass

JDNI configuration option, 384
Kerberos configuration option, 378

strategies for using patterns
base-filter, 760, 761
business-delegate pattern, 767
command-and-controller, 748, 749–750
composite-entity pattern, 779–780
composite-value-object, 780
composite-view pattern, 756–757
custom-tag-view-management, 756–757

defined, 731
delegate-adapter, 767
delegate-proxy, 767
EJB-client, 809
EJB-server, 809
EJB-service-locator, 784
front-controller pattern, 748–749
half-object-plus-protocol pattern, 787–788
intercepting-filter pattern, 760
JavaBean-helper, 752
JSP-view, 752, 756
lazy-loading, 780
multiple TransferObjects, 814
multiplexed-resource-mapping, 748
MVC pattern, 743
router pattern, 738
service-activator pattern, 809–810
service-activator-server, 809
service-locator pattern, 783–784
servlet-front, 749
servlet-view, 752, 756
session pattern, 734
session-facade pattern, 776
standard-filter, 760
stateful-session-facade, 776
stateless-session-facade, 776
transfer-object pattern, 813–814
TransferObject-factory, 814
updateable TransferObject, 813
updateable-value-objects, 772
value-object pattern, 771–772
value-object-factory, 772
view-helper pattern, 752

StreamHandler (JSR 47), 899
string data type (XML Schema), 31
Struts framework example

Action class, 831–833
alignment, 834–835
configurability, 833–834
design patterns, 827–828
extensibility, 831–833
inversion of control, 828
loose coupling, 830–831
processing flow, 828
RequestProcessor class, 830–831
separation of concerns, 828–829
sequence diagram, 829
struts-config.xml configuration file, 834
Web sites, 827, 828

struts-config.xml configuration file, 834
stubs (RMI), 60, 61
Studio tool (Cape Clear), 717
stylesheets. See also XSLT (eXtensible Stylesheet

Language Transformations)
CSS versus XSLT, 34–35
defined, 34

Subject class, 362–364
Subject JavaMail header field, 193

t539663 Index.qxd 7/25/03 9:19 AM Page 970

971Index ✦ S–T

Subject login initialize argument, 386
Submit button (HTML), 79
submitPayment() method, 504–505
submitReservation() method, 504–505
subordinate coordinators for distributed

transactions, 266
subscribing with UDDI, 703–704
SubscriptionOrder class, 108, 109
SubtransactionAwareResource role (OTS), 287, 288
sufficient login-module flag (JAAS), 361
Sun

COS naming service provider, 333
file-system service provider, 333
Java Security site, 353
JCE site, 420
login modules supplied by, 363
NIS, 333
ONE application server, 50
ONE Studio programming environment, 372
Web services support, 716

Supports CMT attribute, 458
suspend() method, 292
suspending transactions, 292
symmetric encryption, 415–416
synchronization

in BMP, 437
of transactions, 296

Synchronization interface, 296
synchronized keyword, 448
synchronous acknowledgments (JMS), 253
synchronous notification pattern (UDDI), 704
synchronous versus asynchronous request-response,

442–443
system administrator

defined, 8
EJB, 435–436

system integrators (SIs), 844–845
system-component provider, 8
system-level contracts. See Connector architecture
Systinet WASP, 689

T
tag extensions. See JSP tag extensions
tag handlers. See also specific interfaces

BasicTag.java example, 157–159
BodyTag interface, 163–167
BodyTagSupport class, 167–169
classic, 153–169
defined, 145, 153
dynamic attributes, 174–176
IterationTag interface, 159–163
JSP versions and, 153
JspFragment interface, 173
lifecycle of simple tag handler, 170
overview, 153
simple, 153
SimpleTag interface, 170–173
SimpleTagSupport class, 173–174
Tag interface, 154–159
TagSupport class, 167–169

TryBodyTag.java example, 165–167
TryIterationTag example, 161–163
TrySimpleDynamic example, 175–176
TrySimpleTag example, 171–173

Tag interface
BasicTag.java tag handler, 157–159
constants, 155
hierarchy and support classes, 154
JSP for, 156–157
methods, 154–155
overview, 154
simple example, 155–159
TLD for, 156
Tomcat output for example, 159

tag libraries, 145. See also JSTL (JSP Standard Tag
Library)

tag method (TLD), 150
tag-class method (TLD), 150
taglib directive (JSP)

mapping, 152
NumberFormat.jsp example, 146
prefix attribute, 147

tag-library descriptors. See TLDs (tag-library
descriptors)

Taglibs (Apache), 145
tags (XML)

case-sensitivity, 21
closing, 21
including namespaces in, 29–30
xsd:element tags, 31

TagSupport class
HashMap attributes, 169
methods, 168–169
need for, 167–168

targetNamespace keyword, 34
targets (ANT), 865–867
taskmgr performance-analysis tool, 480
telephoneNumber attribute (InetOrgPerson

schema), 337
templates (XSLT), 37
testing

ANT installation, 860
frameworks and, 836
J2EE Compatibility Test Suite, 45
junit task (ANT) for unit-testing, 871–875

text callback handlers (JAAS), 359–360
text fields (HTML), 78
TextInputCallback class (JAAS), 376
TextOutputCallback class (JAAS), 376
thin clients, 77–78
threading

bean provider restrictions on, 448, 449
CORBA distribution transparency and, 479
execute thread pool size, 889
multi-threaded logging, 902–903
performance concerns, 476–479
persistence and, 477–478
re-entrance and, 449–450
resource pooling and, 476–477
security and, 478

t539663 Index.qxd 7/25/03 9:19 AM Page 971

972 Index ✦ T

thread-safe classes, 449
3-tier architecture (EJBs), 430
throughput, 883, 884
TicketCache Kerberos configuration option, 377
tiered dependency tree (ANT), 866
TimedObject interface (EJB), 464, 569
timeout values, 290
timer service for EJBs, 464–466
TimerService interface (EJB), 465
TLDs (tag-library descriptors)

<body-content> element, 151
BodyTag example, 164–165
defined, 145
DynamicAttributes example, 175
example, 149–151
as independent files, 151
IterationTag example, 160
in JARs, 151
JSP versions and, 149
location of, 151
methods, 150
role of, 148
SimpleTag example, 171
Tag interface example, 156

TM (transaction manager), 285
tModel data structure (UDDI), 696–697
To JavaMail header field, 192–193
Tomcat servlet containers (Apache)

default exception output, 140
deploying airline-registration screen using, 141
features comparison, 51
login JSP deployment using, 129–130
overview, 52
tag handler output, 159

tool provider, 8
top-down recovery for transactions, 274
top-level transactions

nested, 277–278
overview, 275

TPMs (transaction-processing monitors), 274–275
trade secrets, embedded, 350
traditional application architecture, 838–839
Transaction interface, 293–294
transaction manager (TM), 285
transaction models

extended models with J2EE Activity Service, 278–283
nested top-level transactions, 277–278
nested transactions, 276–277
top-level transactions, 275

transactional objects/services, 258
transactional participants/resources

defined, 258
EJBs and, 258
enrolling participants, 295–296
heuristic decisions by, 261–262

transaction-inflow contract, 609, 632
transaction-management contract

described, 609
interfaces, 625

local transactions, 624
local-transaction management contract, 625–626
overview, 624–625
XA transactions, 624
XAResource transaction-management contract,

626–627
transaction-processing monitors (TPMs), 274–275
transactions. See also BMTs (bean-managed

transactions); CMTs (container-managed
transactions); JTA (Java Transaction API)

ACID properties, 256–257
Airline Reservations application, 297–301
atomic, defined, 255–257
atomicity and the two-phase commit protocol,

259–262
auto-commit mode, 262–264
consistency, 257, 267–268
dirty reads, 271
distributed, 264–265
durability, 257, 272–273
EJB container functionality, 447
EJB transactional example, 462–463
EJBs and, 456
enrolling participants, 295–296
equality, 297
extended models with J2EE Activity Service,

278–283
failure recovery, 273–274
in-doubt, 274
interoperability, 471
interposition, 265–267
isolation, 257, 268–272
Java Transaction API, 288–297
JMS support for, 253
local, 262–264
long-running, 278
models, 275–283
nested, 276–277
nested top-level, 277–278
non-repeatable reads, 271
optimistic versus pessimistic concurrency control,

269–270
OTS, 285–288
performance concerns, 475–476
phantom reads, 271
suspending and resuming, 292
synchronizing, 296
top-level, 275
transactional objects and participants, 257–258
transaction-processing monitors, 274–275
transaction-processing system, 257
two-phase locking policy, 268–269
X/Open Distributed Transaction Processing,

284–285
TransferObject component

data-access-object pattern, 801
transfer-object pattern, 813

t539663 Index.qxd 7/25/03 9:19 AM Page 972

973Index ✦ T–U

transfer-object pattern
Account Owner interface, 814–815
applying, 814–815
BusinessComponent component, 813
characteristics, 811
described, 797
further information, 816
implementation, 812–815
overview, 811
PresentationComponent component, 813
related patterns, 815–816
sample code, 814–815
sequence diagram, 812
strategies, 813–814
structure, 812
TransferObject component, 813

transparent fail-over, 475
Transport class, 216–218
transport layer (wire stack), 660–661
Travelinfo_External.xml listing, 26
Travelinfo_InternalDTD.xml DTD specification, 25
Travelinformation.dtd DTD specification, 26
TravelinformationNS.xml namespace, 28–29
TravelinformationNS2.xml namespace, 29–30
TravelinformationSchema.xml XML Schema, 32–33
TravelinformationSchema.xsd namespace, 33–34
Travelinformation.xsl XSLT stylesheet, 35–38
Triple DES, 413
try, 5
TryBodyTag.java tag handler, 165–167
try...catch block for JavaMail messages, 217, 220–221
TryFirstPass

JDNI configuration option, 383
Kerberos configuration option, 378

TryIterationTag tag handler, 161–163
TrySimpleDynamic tag handler, 175–176
TrySimpleTag tag handler, 171–173
tunable performance parameters

application-server, 889
JVM, 889–892

two-phase commit protocol
heuristic outcomes, 261–262
optimizations, 260
overview, 259–260
prepare phase, 259
transaction log, 259

two-phase locking policy for transactions, 268–269
two-way encryption

Airline Reservations application, 424–426
overview, 412

TX transaction-demarcation API, 285
TXT DNS record type, 329
Type 1 through 4 JDBC drivers, 582–583

U
UDDI (Universal Description and Discovery

Interface), 694
additions to information model (version 3),

697–698

asynchronous notification pattern, 704
bindingTemplate data structure, 695–696
browse pattern, 700
businessEntity data structure, 693–694
businessService data structure, 695
drill-down pattern, 700
finder methods, 698–699
green pages, 658
information model, 693–698
inquiry and publishing APIs (version 1), 690–691
inquiry and publishing APIs (version 2), 691–692
invocation pattern, 700
Java and, 704–709
methods, 701–704
operationalInfo element (version 3), 697–698
overview, 658–659
publishing with, 700–703
relationship between data structures, 694
retriever methods, 699
searching with, 698–700
specification, 659
subscribing with, 703–704
synchronous notification pattern, 704
tModel data structure, 696–697
versions, 689–693
white pages, 658
yellow pages, 658

uid attribute (InetOrgPerson schema), 337
uid LDAP attribute, 309
UML, 930–931
unbind() method (RMI), 62
unidirectional relationships (CMR), 537, 539–540
unit-testing with junit task (ANT), 871–875
Universal Description and Discovery Interface.

See UDDI
Universal Resource Identifiers. See URIs
Universal Resource Locators. See URLs
Universal Resource Names (URNs), 648
Unix

callbacks not needed for, 394
login handler for JAAS, 379
Sun-supplied login module, 363

UnixLoginModule login module, 363
unknown primary keys for entity beans, 517
unless target attribute (ANT), 867
unsetEntityContext() entity bean callback

method, 520
Update statement (SQL), 584
updateFlightInfo() method, 69, 70–72
uri method (TLD), 150
URIs (Universal Resource Identifiers). See also URLs

(Universal Resource Locators)
defined, 648
grouping tags in namespaces using, 28
overview, 648
taglib mapping and, 152
URNs, 648

urlEncode() method, 86–87
URLName class, 206–207

t539663 Index.qxd 7/25/03 9:19 AM Page 973

974 Index ✦ U–W

URLs (Universal Resource Locators)
defined, 648
for JavaMail addressing, 206–207
for JSPs, 114
redirection using servlets, 85–88
URL rewriting, 90

URNs (Universal Resource Names), 648
useBean action (JSP), 125–126
UseFirstPass

JDNI configuration option, 383
Kerberos configuration option, 378

UseKeyTab Kerberos configuration option, 377
user-defined tasks (ANT), 868
UserList class, 586–587
UserList2 class, 588–589
userPassword attribute (InetOrgPerson

schema), 337
user.provider.url JDNI configuration option, 383
users

authenticating with JAAS, 364–368
authorizing with JAAS, 368
verification (security vulnerability), 350

UserTransaction interface, 290–291
useTicketCache Kerberos configuration option, 377

V
valid XML documents

defined, 18
DTD implementation for, 24–26

ValueObject component, 771
value-object pattern

BusinessDelegate component, 771
BusinessService component, 771
described, 764
forces, 769–770
implementation, 770–771, 772–773
LookupService component, 771
overview, 769
PresentationTier component, 770
related patterns, 773
results, 772
sample code, 772–773
sequence diagram, 770, 771
strategies, 771–772
structure, 770
ValueObject component, 771

variable method (TLD), 150
variables

environment variables for ANT, 860
for implicit JSP objects, 121–122
instance variable for counters, 172
scopes in JSP, 122
stateless session bean member variables, 491
uninitialized, as security vulnerability, 350

Vector class, 131
vendor lock-in

all-in-one proprietary environments and, 847
avoiding, 53–54
enterprise applications and, 431

vendors
frameworks from, 843–844, 853–854
for full J2EE implementations, 47–50
for partial J2EE implementations, 51–53
Web site for J2EE vendors, 54

version method (TLD), 150
view

front-controller pattern, 748
MVC pattern, 10, 116, 742, 827
view-helper pattern, 752

view-helper pattern
client, 752
described, 730
forces, 750–751
further information, 754
helper, 752
implementation, 751–752, 753
overview, 750
related patterns, 753–754
results, 753
sample code, 753
sequence diagram, 751
strategies, 752
structure, 751
view, 752

virtual Java Card, 389–390
virtual machine, 4. See also JVMs (Java Virtual

Machines)
Visual SlickEdit programmer’s editor, 372
Vlissides, John (Design Patterns), 729, 745, 802, 805
vmstat performance-analysis tool, 480

W
war task (ANT), 875
WAR (Web-application archive)

directory structure, 103–104
for servlets, 103–104
war task (ANT) for, 875

WASP (Systinet), 689
Web applications

MVC pattern and, 115–116
standard directories for, 155

Web browser interaction with servlets, 83
Web components. See also JSPs (JavaServer Pages);

servlets
J2EE APIs required for, 12–13
overview, 7

Web services. See also specific protocols
advantages of, 652–653
APIs in J2EE architecture, 718–719
architecture, 650–652
ASPs, 654–655
client-side programming model, 719–721
defined, 648
deployment descriptors, 725
for EAI, 654–656
EJB container, 722–723
EJBs, exposing for, 713–714
intelligence of, 647

t539663 Index.qxd 7/25/03 9:19 AM Page 974

975Index ✦ W

JMS as transport layer for, 714–715
JNDI lookup for, 719
J2EE integration with, 711–717
mobile e-services, 656
need for, 649
products and tools, 715–717
scenarios, 653–656
server-side programming model, 721–724
Service Endpoint interface (SEI), 722, 723
Service interface, 720–721, 724
service-implementation bean, 722, 723
ServiceLifeCycle interface, 724
service-oriented architecture, 659–663
servlets for, 711–712
smart, 655
SOA implementation, 840
SOAP for, 657, 666–681
specification (JSR 109), 717–725
support as J2EE standard service, 12
technologies behind, 656–663
UDDI for, 658–659, 693–709
Web container, 723–724
Web site, 934
WSDL for, 657–658, 681–689
as XML extension, 648

Web Services Architecture Group (W3C), 648
Web Services Description Language. See WSDL
Web Services Toolkit (IBM), 689
Web sites. See Internet resources
Web-application archive. See WAR
WEB-INF directory

taglib mapping and, 152
TLD files in, 151

WebLogic application server (BEA)
clustering, 474–475
connection pool configuration, 597
further information, 927
obtaining naming context, 334
overview, 48
Web services support, 715

weblogic-ejb-jar.xml deployment descriptor,
571–572

WebRowSet class, 606
Web-service architecture. See also SOA (service-

oriented architecture)
message-based, 650–651
remote procedure call-based, 650
service-oriented, 651–652

Web-service endpoint interface, 492
WebSphere application servers (IBM)

clustering, 474–475
further information, 928
obtaining naming context, 335
overview, 48

web.xml deployment descriptor
DOCTYPE element, 104
error page implementation, 124
mandatory servlet elements, 104–105

optional XML tags, 105
servlet filter elements, 106–107
servlet listener elements, 105
Servlet Specification 2.4 and, 111
for servlets, 104–107
taglib mapping in, 152

Welcome.jsp JSP page, 127, 128
well-formed XML documents, 18
WHERE clause (EJB QL), 547, 549–551
white pages (UDDI), 658
WinNT/Win2K

authentication for WinNT domain, 397–403
callbacks not needed for, 394
login handler for JAAS, 379
Sun-supplied login module, 363
using built-in security APIs for login, 403–404

wire stack (SOA), 660–661
WML (Wireless Markup Language), 38–40
Work interface, 614
WorkFlow remote interface, 504–505
WorkFlowBean stateful session bean

bean class, 505–509
home interface, 504
overview, 504
remote interface, 504–505

WorkFlowHome home interface, 504
WorkListener interface, 614
work-management contract

classes, 614
described, 609
interfaces, 613, 614
overview, 612–613
work-management model, 613–615
work-submission procedure, 614–616

WorkManager interface, 614
World Wide Web Consortium. See W3C
wrapper classes, servlet filters for, 101–102
writeObject() method, overriding, 351
writeTo() method, 196
WSDL (Web Services Description Language)

Airline Reservations application, 681–686
document elements, 658
elements, 681
HTTP GET and POST binding, 687
Java and, 689
MIME binding, 688–689
overview, 657–658
Reservation.wsdl example, 681–686
Service interface and, 720–721
SOAP binding, 686–687
<soap:address> element, 687
<soap:body> element, 687
<soap:fault> element, 687
<soap:operation> element, 687
specification, 658

W3C (World Wide Web Consortium)
Web Services Architecture Group, 648
XML standard adoption, 17

t539663 Index.qxd 7/25/03 9:19 AM Page 975

976 Index ✦ X–Z

X
XA transaction processing, 285
XA+ transaction processing, 285
XAResource interface, 294–295, 625, 626–627
XAResource transaction-management contract, 626–627
X.500

attribute types for key-store login module, 381–382
LDAP and, 305

XID interface, 297
XML (eXtensible Markup Language)

attributes, 21
case-sensitivity, 21
closing tags, 21
data-centric documents, 20
document structure, 20–21
document-centric documents, 20
elements, 20–21
further information, 931
human-readable versus machine-readable

documents, 34
implementing DTDs, 24–26
importing a tag library, 148
J2EE XML-based APIs, 40
namespaces, 26–30
overview, 17–18
parsers, 21–23
prologue of documents, 20
roots of, 18
terminology misuse for, 18
valid documents, 18
Web services as extension of, 648
well-formed documents, 18
W3C standard, 17

XML library (JSTL), 147
XML parsers

defined, 21
DOM, 22, 23
DOM versus SAX, 23
overview, 21–22
SAX, 22–23

XML Schema
Airline Reservations application, 32–34
comments in, 31
data types, 31
DTDs versus, 30, 31
overview, 30–34
simple example, 30–31
SOAP data types and, 668–670
using in XML documents, 31–32
valid XML documents and, 18

XML schema layer (description stack), 661
XML-based technologies, 648
X/Open Distributed Transaction Processing, 284, 285
xsd:annotation tag, 31
xsd:documentation tag, 31
xsd:element XML tags, 31
xsl:output tag (XSLT), 37, 40
xsl:stylesheet tag (XSLT), 36, 40
XSLT (eXtensible Stylesheet Language

Transformations)
Airline Reservations application, 35–38
applying XSL files to documents, 35
CSS versus, 34–35
MVC pattern and, 34
namespace specification, 36–37
output method specification, 37
overview, 34–40
producing simple HTML with, 35–38
producing WML documents with, 38–40
templates, 37

xsl:template tag (XSLT), 37, 40

Y
yellow pages (UDDI), 658

Z
Zachman Framework for Enterprise Architecture, 837

t539663 Index.qxd 7/25/03 9:19 AM Page 976

	Java 2 Enterprise Edition 1.4 (J2EE 1.4) Bible
	Cover

	Foreword
	Acknowledgments
	Contents
	Introduction
	Part I: Introduction
	Chapter 1: Understanding Java and the J2EE Platform
	Reviewing a Brief History of Java
	Understanding J2SE
	Examining the Origin of (J2EE)
	Application components
	Roles

	Working with the Model-View-Controller
	The model
	The view
	The control

	Understanding J2EE APIs
	J2EE standard services
	Application component APIs

	Discovering What's New in J2EE 1.4
	Looking toward the Future of J2EE
	Understanding the Java Community Process (JCP)
	Summary

	Chapter 2: Reviewing XML Fundamentals
	Explaining XML
	Well-formed XML
	Valid XML

	Understanding XML Document Structure
	Prologue
	Elements
	Attributes

	Examining XML Parsers
	DOM parsers
	SAX parsers
	DOM versus SAX

	Implementing XML DTDs
	Understanding XML Namespaces
	Exploring XML Schema
	Working with eXtensible Stylesheet Language Transformations (XSLT)
	Producing simple HTML with XSLT
	Producing a Wireless Markup Language (WML) Document with XML

	Introducing J2EE XML–Based APIs
	Summary

	Chapter 3: Introducing Application Servers
	Implementing the J2EE Platform
	Understanding the Features of an Application Server
	Scalability
	Client agnosticism
	Server management
	Development

	Examining Full J2EE Implementations
	BEA WebLogic
	Borland Enterprise Server
	IBM WebSphere
	JBoss
	Oracle 9iAS
	Orion
	Sun ONE Application Server

	Examining Partial J2EE Implementations
	Apache Tomcat
	Resin
	ServletExec

	Avoiding Vendor Lock-In
	Summary

	Chapter 4: Understanding Remote Method Invocation
	Providing an Overview of RMI
	Developing Applications with RMI
	Declaring remote interfaces
	Implementing remote interfaces
	Stubs and skeletons
	Registering remote objects
	Writing RMI clients
	Setting up the Flight Server example

	Pushing Data from the RMI Server
	RMI over Inter-ORB Protocol (IIOP)
	Summary

	Part II: The Presentation Tier
	Chapter 5: Studying Servlet Programming
	Creating a Magazine Publisher Application Using Servlets
	The server side
	The client side
	Creating an HTML login screen

	Using the Servlet Context
	Performing URL Redirection
	Using RequestDispatcher
	Using sendRedirect()
	The Lost Password screen example
	Session tracking with servlets
	Cookies
	URL rewriting
	Hidden fields
	The session-tracking API with HttpSession object
	Example of a LoginServlet with an access counter
	Listeners
	Filters
	Deploying servlets
	The Web-application archive

	Examining the web.xml Deployment Descriptor
	Mandatory servlet elements
	Servlet listener elements
	Servlet filter elements
	Applet-servlet communication

	What's New in the Servlet 2.4 Specification
	Summary

	Chapter 6: Going Over JSP Basics
	Introducing JSP
	Examining MVC and JSP
	JSP Scripting Elements and Directives
	Declarations
	Expressions
	Directives
	Scriptlets
	Comments
	Actions
	Implicit JSP objects

	Working with Variable Scopes
	Error Pages
	Using JavaBeans
	Using JavaBeans in JSP
	The scope of JavaBeans
	Creating a login JSP using a JavaBean
	Deploying the Login JSP example using Tomcat

	Designing an Online Store with JSP
	Airline Reservations Business Case
	Summary

	Chapter 7: Using JSP Tag Extensions
	Why Use Tag Extensions?
	Explaining Custom-Tag Concepts
	Working with the JSP Standard Tag Library
	Importing a tag library
	The Tag Library Descriptor
	The tag-library-descriptor location

	Explaining taglib Mapping
	Understanding Tag Handlers
	Classic tag handlers
	Simple tag handlers

	Exploring Dynamic Attributes
	Summary

	Part III: The Enterprise Information System Tier
	Chapter 8: Working with JavaMail
	Exploring the "Hello World" of JavaMail
	Understanding the Protocols for JavaMail
	SMTP
	POP3
	IMAP
	MIME

	JavaMail Components
	Session management
	Message manipulation
	Message content
	Mail storage and retrieval
	Transportation with javax.mail.Transport

	Using the JavaMail API
	Sending e-mail and attachments
	Receiving e-mail

	Integrating JavaMail into J2EE
	Summary

	Chapter 9: Understanding the Java Messaging Service
	Explaining Messaging
	Introducing JMS
	JMS versus RMI
	Message structure

	Examining Messaging Models
	Point-to-point messaging
	Publish-and-subscribe messaging

	Understanding the Major JMS Components
	Destinations
	Connections
	Connection factories
	Sessions
	Producers
	Consumers

	Configuring JMS
	Connexia Airlines Point-to-Point Messaging Business Case
	Magazine-Publisher Publish-Subscribe Messaging Business Case
	Explaining Reliable Messaging
	Autonomous messages
	Persistent messages
	Synchronous acknowledgments
	Transactions

	Introducing Message-Driven Enterprise JavaBeans
	Summary

	Chapter 10: Introducing Java Transactions
	What Are Atomic Transactions?
	Examining Transactional Objects and Participants
	Reviewing Atomicity and the Two-Phase Commit Protocol
	Optimizations
	Heuristics and removing the two-phase block

	Understanding Local and Distributed Transactions
	Local transactions
	Distributed transactions
	Interposition

	Understanding Consistency
	Introducing Isolation (Serializability)
	Optimistic versus pessimistic concurrency control
	Degrees of isolation

	Understanding the Role of Durability
	Performing Failure Recovery
	Using Transaction-Processing Monitors
	Transaction Models
	Nested transactions
	Nested top-level transactions
	Extended transaction models and the J2EE Activity Service

	Understanding Transaction Standards
	X/Open Distributed Transaction Processing
	The Object Transaction Service

	Understanding the Java Transaction API
	The JTA's relationship to the JTS
	The UserTransaction interface
	The TransactionManager interface
	Suspending and resuming a transaction
	The Transaction interface
	The XAResource interface
	Enrolling participants with the transaction
	Transaction synchronization
	Transaction equality
	The XID interface

	Airline Reservation Using Transactions Business Case
	Summary

	Chapter 11: Examining JNDI and Directory Services
	Explaining Naming Services and Directory Services
	Providing an Overview of X.500 and LDAP
	LDAP implementations
	Configuring OpenLDAP
	LDAP schema

	Reviewing the JNDI Structure
	Directories and entries
	Names and attributes
	Binding and references
	Contexts and subcontexts
	File systems
	DNS naming conventions
	LDAP mapping

	Using JNDI and LDAP
	Connecting to the server
	Specifying environment properties
	Implementing authentication
	Performing simple LDAP lookups
	Performing searches and comparing entries
	Modifying the directory
	Adding objects to a directory

	Connecting to DNS
	DNS environment properties
	DNS lookups
	Reverse DNS lookups

	Considering Other JNDI Service Providers
	File systems
	COS naming for CORBA
	Network Information System
	Directory Services Markup Language
	Application-server providers

	Exploring the Enterprise JavaBean Environment
	Airline Reservations Business Case
	Magazine Publisher Business Case
	Summary

	Chapter 12: Understanding Java Authentication and Authorization Services
	Examining the Importance of Java Security
	Typical Java security weaknesses
	Providing an overview of JAAS

	Understanding Security Realms
	Single login across security domains
	Setting up for JAAS
	Callback handlers
	Pluggable/stackable authentication

	Examining the Java Subject Class
	Authenticating Users
	Authorizing users
	JAAS policy files
	Compiling the example

	Debugging the Simple JAAS Module
	Hiding JAAS
	Predefined JAAS login callbacks and their handlers
	Custom login modules
	Writing your own login handler
	Writing your own callback handler
	Authenticating a Web user against a Windows NT domain
	Brief security analysis
	Security limitations
	Implementation
	Alternative methods

	Connexia Airlines Business Case
	Authenticating a Web user against a directory service
	Brief security analysis
	Security limitations
	Implementation

	Summary

	Chapter 13: Exploring Java Cryptography Extensions
	Grasping the Basic Terminology
	One-way encryption versus two-way encryption
	Algorithms
	Shared-key cryptography
	Public-key cryptography
	Digital certificates
	Protocols

	Reviewing the Java Cryptography Package
	Writing a Java Program Using JCE
	Magazine Publisher Business Case
	Airline Reservations Business Case
	Summary

	Part IV: The Service Tier
	Chapter 14: Understanding EJB Architecture and Design
	Explaining the EJB Component Model
	Reviewing Roles, Relationships, and Responsibilities
	The deployment descriptor
	The bean provider
	The server/container provider
	The application assembler
	The EJB deployer
	The system administrator

	The Enterprise JavaBean
	Entity beans
	Session beans
	Entity beans versus session beans
	Message-driven beans (MDB)
	What does an EJB contain?

	Understanding EJB Container Functionality
	Restrictions on the bean provider
	Achieving scalability by pooling resources
	The life of an entity bean
	The life of a session bean
	Transactions and EJBs
	Container-managed transactions
	Examining a transactional EJB example
	Naming objects
	The security infrastructure
	The Timer service
	Persistence in BMP and CMP
	Distribution support

	Integrating with CORBA
	Why is CORBA important to J2EE?
	When J2EE met CORBA

	Performance and Scalability Issues
	Application-server availability strategies
	Transaction concerns
	Threading model
	Tools

	Summary

	Chapter 15: Explaining Session Beans and Business Logic
	Writing a Session EJB
	The home interface
	The component interface
	The session bean class
	The deployment descriptor
	The stateless session bean

	Connexia Airlines Business Case
	FlightServiceHome-The home interface
	FlightService-The remote interface
	FlightServiceBean-The bean class
	The ejb-jar.xml deployment descriptor
	Deployment
	Writing an EJB client
	Stateful-session-bean model
	The lifecycle of the stateful session bean
	Passivation and activation

	Implementing the Session Synchronization Interface
	Storing a Handle
	Collecting Payment Business Case
	WorkFlowHome-The home interface
	WorkFlow-The remote interface
	WorkFlowBean-The bean class

	Choosing between Stateless and Stateful Beans
	The stateless model
	The stateful model

	Summary

	Chapter 16: Working with Entity Beans
	Understanding Entity Beans
	Remote and local client views
	Entity-bean components
	The entity-container contract
	Container-managed persistence (CMP)
	Bean-managed persistence (BMP)
	Exceptions

	Summary

	Chapter 17: Using Message-Driven Beans
	Understanding the Need for MDB
	Reviewing MDB Lifecycle Methods
	Examining MDB Deployment Descriptors
	Deployment descriptors as per EJB 2.0
	Changes in MDB 2.1 deployment descriptors
	Internal messaging within EJB applications

	Understanding Clients and MDB
	Working with EJBs Asynchronously
	Summary

	Part V: The Data Tier
	Chapter 18: Reviewing Java Database Connectivity
	Introducing JDBC Driver Types
	Creating Your First JDBC Program
	Retrieving data
	Database-error processing
	Processing result sets
	The ResultSetMetaData class
	Scrollable result sets
	The PreparedStatement class
	The CallableStatement class

	Performing Batch Updates
	Using Savepoints
	Configuring the JDBC-ODBC Bridge
	Explaining Database Connection Pools and Data Sources
	Configuring connection pools
	Creating Data Source objects

	Revisiting DBProcessor
	Using the RowSet Interface
	Working with CachedRowSet
	The WebRowSet class

	Summary

	Chapter 19: Understanding the J2EE Connector Architecture
	Examining the Contracts
	The lifecycle-management contract
	Work management contract
	Outbound communication
	Inbound communication

	The Common Client Interface (CCI)
	Connection interfaces
	Interaction interfaces
	Data interfaces
	Metadata interfaces
	Using the CCI

	Packaging and Deployment
	Summary

	Part VI: Web Services
	Chapter 20: Introducing Web Services
	Defining Web Services
	Universal Resource Identifiers
	XML-based technologies

	Why Do We Need Web Services?
	Remote Method Invocation
	DCOM
	CORBA
	Web-service architecture
	Advantages of Web services

	Examining Some Web-Service Scenarios
	Enterprise-application integration (EAI)

	Understanding the Technologies behind Web Services
	SOAP
	WSDL
	UDDI
	Web services in a service-oriented architecture

	Summary

	Chapter 21: Digging Deeper into SOAP, WSDL, and UDDI
	Understanding the SOAP Message Architecture
	The header
	The body
	XML schemas and SOAP data types
	Arrays
	SOAP RPC
	SOAP messaging
	SOAP and Java

	Explaining WSDL
	SOAP binding
	HTTP GET and POST binding
	MIME binding
	WSDL and Java

	Examining UDDI
	UDDI versions 1, 2, and 3
	Searching with UDDI
	Publishing with UDDI
	Subscribing with UDDI
	UDDI and Java

	Summary

	Chapter 22: Understanding J2EE Web Services
	Integrating J2EE and Web Services
	Using Java servlets in a Web-services architecture
	Exposing EJBs as Web services
	Using JMS as a transport layer
	Exploring Products and Tools for Web Services

	JSR 109-J2EE Web Services
	The client-side programming model
	The server-side programming model
	Web-service deployment descriptors

	Summary

	Part VII: Patterns
	Chapter 23: Reviewing Presentation-Tier Patterns
	Providing an Overview of Patterns
	Explaining the Session Pattern
	Forces
	Implementation
	Strategies
	Results
	Session pattern-UML diagram and sample code
	Related patterns

	Understanding the Router Pattern
	Forces
	Implementation
	Strategies
	Results
	The router pattern-sample code
	Related patterns

	Reviewing the Model-View-Controller Pattern
	Forces
	Implementation
	Strategies
	Results
	The model-view-controller pattern-sample code
	Related patterns

	Using the Front-Controller Pattern
	Forces
	Implementation
	Strategies
	Results
	The front-controller pattern-sample code
	Related patterns

	Working with the View-Helper Pattern
	Forces
	Implementation
	Strategies
	Results
	The view-helper pattern-sample code
	Related patterns

	Using the Composite-View Pattern
	Forces
	Implementation
	Strategies
	Results
	The composite-view pattern-sample code
	Related patterns

	Using the Intercepting-Filter Pattern
	Forces
	Implementation
	Strategies
	Results
	The intercepting-filter pattern-sample code
	Related patterns

	Summary

	Chapter 24: Working with Service-Tier Patterns
	Introducing Service-Tier Patterns
	Using the Business-Delegate Pattern
	Forces
	Implementation
	Structure
	Strategies
	Results
	Business-delegate pattern-sample code
	Related patterns

	Understanding the Value-Object Pattern
	Forces
	Implementation
	Strategies
	Results
	Value-object pattern-sample code
	Related patterns

	Exploring the Session-Facade Pattern
	Forces
	Implementation
	Structure
	Strategies
	Results
	Session-facade pattern-sample code
	Related patterns

	Explaining the Composite-Entity Pattern
	Forces
	Implementation
	Strategies
	Results
	Composite-entity pattern-sample code
	Related patterns

	Using the Service-Locator Pattern
	Forces
	Implementation
	Strategies
	Results
	Service-locator pattern-sample code
	Related patterns

	Working with the Half-Object-Plus-Protocol Pattern
	Forces
	Implementation
	Strategies
	Results
	Half-object-plus-protocol pattern-sample code
	Related patterns

	Summary

	Chapter 25: Using Data-Tier Patterns
	Introducing the Data-Access-Object Pattern
	Implementation

	Implementing the Data-Access-Object Pattern
	Applying the data-access-object pattern
	Applying related patterns

	Using the Service-Activator Pattern
	Implementation

	Implementing the Service-Activator Pattern
	The service-activator-server strategy
	The EJB-server strategy
	The EJB-client strategy
	Applying the service-activator pattern
	Applying related patterns

	Examining the Transfer-Object Pattern
	Implementation
	Implementing the transfer-object pattern
	Applying the transfer-object pattern
	Applying related patterns

	Summary

	Part VIII: Advanced Topics
	Chapter 26: Exploring Frameworks and Application Architecture
	What are Frameworks?
	Frameworks versus class libraries
	The pains of J2EE

	Understanding Framework Principles
	Inversion of control
	Separation of concerns
	Loose coupling
	Extensibility
	Configurability
	Alignment
	Design patterns
	Examining the Struts framework example

	Understanding Framework Objectives and Benefits
	Design
	Development and testing
	Production and maintenance
	Application portfolios

	Reviewing Application Architecture beyond Frameworks
	Overview of architectures
	Traditional application architecture
	Services-oriented architecture
	Application architecture versus frameworks

	Building Your Own Framework
	Building versus buying
	Open source
	Software vendor
	System Integrators (SIs)

	Predicting the Future of Frameworks
	Alternatives to Frameworks
	All-in-one proprietary environments
	Model-driven architecture
	Minimal J2EE
	Advanced Integrated Development Environments

	Evaluating Frameworks
	Requirements
	Cost
	Framework checklist
	Vendor questions

	Summary

	Chapter 27: Using ANT to Build and Deploy Applications
	Introducing ANT
	Getting Comfortable with ANT Vocabulary
	Projects
	Properties
	Targets
	File matching
	Tasks

	Putting It All Together
	Summary

	Chapter 28: Creating High-Performance Java Applications
	Understanding Different Types of Problems
	Functional problems
	Performance problems

	Isolating Problems
	Critical-path analysis
	Load testing
	Benchmarking
	Tunable parameters
	Profiling

	Logging
	Logging APIs

	Managing Memory-Usage Problems
	Loiterers
	Loiterer anti-patterns

	Summary

	Appendix A: Airline Reservations Business Case
	Appendix B: Magazine Publisher Business Case
	Appendix C: Additional Reading and References
	Index
	Team DDU

