

@WILEY i TIMELY. PRACTICAL. RELIABLE.

More la\la
Pitfalls

50 New Time-Saving
Solutions and
Workarounds

Michael C. Daconta
Kevin T. Smith
Donald Avondolio
W. Clay Richardson

More Java" Pitfalls

50 New Time-Saving
Solutions and Workarounds

More Java Pitfalls

50 New Time-Saving
Solutions and Workarounds

Michael C. Daconta
Kevin T. Smith
Donald Avondolio
W. Clay Richardson

%)

WILEY
Wiley Publishing, Inc.

Publisher: Joe Wikert

Executive Editor: Robert M. Elliott

Assistant Developmental Editor: Emilie Herman
Managing Editor: Micheline Frederick

New Media Editor: Angela Denny

Text Design & Composition: Wiley Composition Services

This book is printed on acid-free paper.

Copyright © 2003 by Michael C. Daconta, Kevin T. Smith, Donald Avondolio, and W. Clay
Richardson. All rights reserved.

Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or
otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rose-
wood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8700. Requests to the Pub-
lisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc.,
10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447, E-mail:
permcoordinator@wiley.com.

Limit of Liability /Disclaimer of Warranty: While the publisher and author have used their
best efforts in preparing this book, they make no representations or warranties with respect
to the accuracy or completeness of the contents of this book and specifically disclaim any
implied warranties of merchantability or fitness for a particular purpose. No warranty may
be created or extended by sales representatives or written sales materials. The advice and
strategies contained herein may not be suitable for your situation. You should consult with
a professional where appropriate. Neither the publisher nor author shall be liable for any
loss of profit or any other commercial damages, including but not limited to special, inci-
dental, consequential, or other damages.

Wiley, the Wiley Publishing logo and related trade dress are trademarks or registered trade-
marks of Wiley Publishing, Inc., in the United States and other countries, and may not be
used without written permission. Java is a trademark or registered trademark of Sun
Microsystems, Inc.. All other trademarks are the property of their respective owners. Wiley
Publishing, Inc., is not associated with any product or vendor mentioned in this book.

For general information on our other products and services please contact our Customer
Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data:
ISBN: 0-471-23751-5
Printed in the United States of America

109 87 654321

This book is dedicated to the memory of Edsger W. Dijkstra who said,

“I mean, if 10 years from now, when you are doing something quick and
dirty, you suddenly visualize that | am looking over your shoulders and
say to yourself, ‘Dijkstra would not have liked this’, well that would be

enough immortality for me.”

We humbly disagree: 10 years of Dijkstra is just not long enough,; may
he happily haunt our consciousness for 10'° years. Such an increase is
more befitting his stature.

Contents

Introduction xi
Acknowledgments xvii
Part One The Client Tier 1
Item 1: When Runtime.exec() Won't 4
Item 2: NIO Performance and Pitfalls 17

Canonical File Copy 20

Little-Endian Byte Operations 21

Non-Blocking Server 10 26
Item 3: I Prefer Not to Use Properties 34
Item 4: When Information Hiding Hides Too Much 39
Item 5: Avoiding Granularity Pitfalls In java.util.logging 44
Item 6: When Implementations of Standard APIs Collide 53
Item 7: My Assertions are Not Gratuitous! 59

How to Use Assertions 59
Item 8: The Wrong Way to Search a DOM 66
Item 9: The Saving-a-DOM Dilemma 73
Item 10: Mouse Button Portability 80
Item 11: Apache Ant and Lifecycle Management 88
Item 12: JUnit: Unit Testing Made Simple 100

vii

Contents

Item 13:

Item 14:
Item 15:

Item 16:
Item 17:

Item 18:
Item 19:
Item 20:
Item 21:
Item 22:

Part Two

Item 23:
Item 24:

Item 25:
Item 26:
Item 27:
Item 28:
Item 29:
Item 30:

The Failure to Execute
Deploying Java Applications
The Java Extension Mechanism
Sealed Packages
Security

What Do You Collect?

Avoiding Singleton Pitfalls
When Multiple Singletons in Your VM Happen
When Singletons are Used as Global Variables, or Become
Non-Singletons

When setSize() Won't Work

When Posting to a URL Won't
Connecting via HTTP with the java.net Classes
An Alternative Open Source HTTP Client

Effective String Tokenizing
JLayered Pane Pitfalls

When File.renameTo() Won't
Use Iteration over Enumeration

J2ME Performance and Pitfalls

The Web Tier

Cache, It's Money

JSP Design Errors
Request/Response Paradigm
Maintaining State
JSP the Old Way
JSP Development with Beans (Model 1 Architecture)
JSP Development in the Model 2 Architecture

When Servlet HttpSessions Collide

When Applets Go Bad

Transactional LDAP—Don’t Make that Commitment
Problems with Filters

Some Direction about JSP Reuse and Content Delivery

Form Validation Using Regular Expressions

108
109
110
111
112

112
117
119
120
122

126
126
137

140
146
151
157
162

199

200

208
208
209
210
214
220

220
227
235
244
255
261

Contents ix
Item 31: Instance Variables in Servlets 269
Item 32: Design Flaws with Creating Database Connections
within Servlets 279
Item 33: Attempting to Use Both Output Mechanisms in Servlets 291
Item 34: The Mysterious File Protocol 297
Item 35: Reading Files from Servlets 302
Web Application Deployment Descriptors 308
Item 36: Too Many Submits 312
Preventing Multiple Submits 314
Handling Multiple Submits 316
Part Three The Enterprise Tier 327
Item 37: J2EE Architecture Considerations 329
Item 38: Design Strategies for Eliminating Network
Bottleneck Pitfalls 335
A Scenario 336
General Design Considerations 336
EJB Design Considerations 340
Item 39: I'll Take the Local 341
Item 40: Image Obsession 348
Item 41: The Problem with Multiple Concurrent Result Sets 353
Item 42: Generating Primary Keys for EJB 359
A Simple Scenario 359
A “Client Control” Approach 360
The Singleton Approach 362
The Networked Singleton Approach 363
An Application Server-Specific Approach 363
Database Autogeneration Approaches 363
Other Approaches 364
Item 43: The Stateful Stateless Session Bean 365
Message-Driven Beans 366
Entity Bean 366
Stateful Session Bean 368
Stateless Session Bean 368
Item 44: The Unprepared PreparedStatement 372

Contents

Item 45: Take a Dip in the Resource Pool 378

Item 46: JDO and Data Persistence 385

Item 47: Where’s the WSDL? Pitfalls of Using JAXR with UDDI 398

Where’s the WSDL? 404

Item 48: Performance Pitfalls in JAX-RPC Application Clients a7

Example Web Service 418

A Simple Client That Uses Precompiled Stub Classes 420

A Client That Uses Dynamic Proxies for Access 421

Two Clients Using the Dynamic Invocation Interface (DII) 423

Performance Results 427

Conclusion 428

Item 49: Get Your Beans Off My Filesystem! 429
Item 50: When Transactions Go Awry, or Consistent State in

Stateful Session EJBs 433

The Memento Pattern 438

Index 443

Introduction

“Sometimes we discover unpleasant truths. Whenever we do so, we are in difficul-
ties: suppressing them is scientifically dishonest, so we must tell them, but telling

”

them, however, will fire back on us.
Edsger W. Dijkstra, “How do we tell truths that might hurt?”

Good programming is difficult. It is especially arduous for new programmers given
the pace of change and the ever-expanding size of the software engineering body of
knowledge (www.swebok.org) that they must master. The authors of this book have
found that experience and in-depth understanding are key factors in both programmer
productivity and reliable software. The bottom line is that experienced programmers
don’t stumble around in the dark. They know the lay of the land, they recognize pat-
terns, and they avoid the hazardous areas. This book presents our experience and
guidance on 50 discrete topics to assist you in avoiding some of those hazards.

What Is a Pitfall?

The formal definition, given in the first Java Pitfalls (Wiley, 2000) book, is as follows:

“A pitfall is code that compiles fine but when executed produces unintended and some-
times disastrous results.”

This rather terse definition covers what we consider the “basic” pitfall. There are many
variations on this theme. A broader definition could be any language feature, API, or
system that causes a programmer to waste inordinate amounts of time struggling with
the development tools instead of making progress on the resulting software.

The causes of pitfalls can be loosely divided into two groups: the fault of the platform
designer or the fault of the inexperienced programmer. This is not to cast blame, but
rather to determine the source of the pitfall in the construction of a pitfall taxonomy. For
the same reason we create a formal definition of pitfalls, we present the pitfall taxonomy
in Figure i.1 in order to attempt to better understand the things that trip us up.

Introduction

Designer's Programmer's
Fault Fault
Non-Intuitive Weak Shallow Invalid
API Implementation Knowledge Assumptions

Incomplete Impedance _— Incorrect

Facilities Mismatch Compilation Extrapolation
Level of Unaware of Misunderstanding @
Abstraction Alternatives Internals

Figure i.1 A pitfall taxonomy.

The categories of pitfalls associated with the system designer are as follows:

Nonintuitive Application Programming Interfaces (APIs). The Java platform has
thousands of classes and tens of thousands of methods. The sheer size of the
platform has become a complexity pitfall. Some of these classes are well
designed, like servlets, IO streams (excluding performance ramifications), and
collections. Unfortunately, many APIs are nonintuitive for the following reasons:

m Wrong level of abstraction. Many APIs are layered over other software (like
the operating system or native code) in order to simplify or aggregate func-
tions. In layering, you must make a trade-off between simplicity and granu-
larity of control. Thus, when setting the abstraction level, you must balance
these appropriately for the particular context and target audience. Too high a
level of abstraction (like URLConnection, Item 17) frustrates users with
weak control mappings, while a too low level of abstraction reduces the
average user’s efficiency by over-cluttering the most common case.

m Weak separation of concerns. When an API tries to do too much, it often
mixes metaphors and addresses its multiple concerns in a mediocre fashion.
An example of this is the JAXR API that attempts to combine the diverse
information models of UDDI and ebXML (Item 47).

m Other deficiencies. Too many method invocation sequences and dependen-
cies will lead to incorrect ordering. Poor naming and weak parameters
(object instead of a specific type) steer programmers toward dead ends.

Introduction

Language Complexity. The Java language has many improvements over its predeces-
sors yet also struggles with its own set of tradeoffs and idiosyncrasies. The cleanest
language features are its strict object orientation, automatic memory management,
and interfaces; while some overly complex areas are threading and synchronization,
the tension between primitives and objects, and the effective use of exceptions.

Weak Implementation of Platform Areas. The most oft-cited example is poor per-
formance. An example of this is the rewrite of the input/output facilities in the
NIO package for performance reasons. Besides performance, there are thin APIs
that ruin the Write Once, Run Anywhere (WORA) guarantee like the
File.renameTo() (Item 20) method and the Runtime.exec() method (Item 1).
There are also incomplete APIs where the programmer assumes complete func-
tionality exists. These problems are fixable and often are resolved with each new
release of the Java Development Kit (JDK).

The categories of pitfalls associated with the programmer are as follows:

Shallow Knowledge. Experience increases the depth of one’s knowledge. It takes
time to learn the underlying concepts, interactions, and nuances of a system.
This is often manifest in choosing a weak implementation when a better alterna-
tive exists (like applets versus Web Start, Item 26), misunderstanding the inter-
nal workings of an API (like the consequence of instance variables in servlets,
Item 31), and shock when implementations fail to meet your expectations of
behavior (characterized as an impedance mismatch in Figure i-1). Such an
impedance mismatch can occur with multiple concurrent result sets (Item 41).

Bias. Without many years of experience, a programmer can weigh previous experi-
ence too heavily to the point where it unfavorably biases him or her in a particu-
lar direction. Examples of this are to not take advantage of tools to automate the
development process like Ant (Item 11) and JUnit (Item 12). Another example is
to stick with legacy APIs over new ones for collections (Item 21) and regular
expressions (Item 30). Lastly, one more effect of bias is to bring past habits into a
new context like J2ME programming (Item 22).

Invalid Assumptions. A programmer can incorrectly base decisions on invalid
assumptions—for example, assuming the most direct path to the solution is the
best path. This often arises in designing larger systems with JSP (Item 24) and
J2EE (Item 37).

Pitfalls can be extremely frustrating to programmers. We’ve experienced first hand

this frustration. Our goal is to help you to avoid some situations we struggled through.
So now that we understand pitfalls, let’s see our method for exploring them.

Dissecting a Pitfall

There are three distinct parts of a pitfall:

The Symptom or Problem. The medium by which the pitfall manifests itself. We
demonstrate this with a program entitled “BadXXX java,” where “XXX" refers to
the type of pitfall in question.

xiv Introduction

The Root cause of the Problem. By far, this is the most important part of revealing
the pitfall. Here, we go under the hood and explain the detailed internal work-
ings, invalid assumptions, or API deficiencies that cause programmers to stum-
ble into the trap. Usually this explanation is supported with a diagram.

The Solution or Workaround. The final part of the pitfall is to demonstrate a fix
for the problem. This is done with a program entitled “GoodXXX java” that is
the reciprocal of the “Bad XXX java” program. The solution program will often
be accompanied with a run of the results, or a table or graph, which proves the
problem was indeed solved.

This method of dissecting a pitfall has proven an effective way to present these pro-
gramming hazards.

How This Book Differs from Java Pitfalls

This book borrows all the good features from the first book and improves upon it in
three ways:

Broader Coverage. The first book focused on the lang, util, io, and GUI packages,
whereas this book covers the J2ME, J2SE, and J2EE platforms.

New Features. This book covers the majority of new features like regular expres-
sions, NIO, assertions, JAXR, JAXM, JAX-RPC, and many more.

Better Coverage. The authors followed the “pitfall dissection” model more consis-
tently and thoroughly, producing pitfalls with more detail and analysis.

In general, the authors strove to outdo the first book in every regard. We sincerely
hope that we succeeded and encourage your feedback.

Organization of the Book

Like the first one, this book has 50 items. Unlike the first book, in this one they are
divided into three parts corresponding to the three-tiered architecture:

Part One: The Client Tier. This part covers both J2ME and J2SE and explores pit-
falls in developing both networked and standalone clients. Topics covered
include preferences, application deployment, logging, IO performance, and
many more. This part has 22 pitfalls.

Part Two: The Web Tier. This part examines pitfalls in components that run inside
the Web container, like servlets and JavaServer Pages (JSPs). These applications
generate dynamic Web pages or communicate with applets, JNLP, or standalone
clients. This parts covers topics like JSP design, caching, servlet filters, database
connections, form validation, and many others. This part includes 14 pitfalls.

Part Three: The Enterprise Tier. Here we look at components that are part of the
J2EE platform or execute inside an Enterprise Java Beans (EJB) container, like
session, entity, and message-driven beans. These components interact with other
enterprise systems, legacy systems, the Web tier, or directly to clients. Because

Introduction

XV

Web services play a key role in the enterprise tier, pitfalls related to some of the
Web services APIs (JAXR and JAX-RPC) are in this section. Some other topics in
this part are J2EE design errors, session beans, Java Data Objects (JDO), security,
transactions, and many more. This part includes 14 pitfalls.

How to Use the Book

This book can be used in three primary ways: as a reference manual on specific prob-
lems, as a tutorial on the topics exposed by the problems, or as a catalyst to your orga-
nization’s technical mentoring program. Let’s discuss each in detail:

As a Reference Manual. You can use the table of contents to examine a specific
solution to a problem you are facing. The majority of readers use this book in
this manner. Some readers reported using the first book as a corporate resource
in the technical library.

As a Tutorial. You can read the book cover—to-cover to learn about the underlying
cause of each pitfall. Another way to approach the book this way is to browse
the contents or pages and then read the pitfalls that interest you. Lastly, another
use is to treat each pitfall as a bite-sized tutorial to present at a “brown-bag
lunch” internal training session or technical exchange meeting.

As Part of a Mentoring Program. You can use the book as a starting point for a
technical mentoring program in your organization. This book is founded on the
principle of peer mentoring. The dictionary definition of a mentor is a “wise and
trusted counselor.” This often miscasts a mentor as having great age or experi-
ence. I disagree with this definition because it leads to an extreme scarcity of
good mentors. At its essence, mentoring is one aspect in the search for truth. Thus,
the key quality for being a mentor is a deep understanding of at least one
domain that you are willing to share with others. Anyone can participate in this
process, and I encourage you to be involved in peer mentoring. Working
together, I believe we can solve the software quality crisis.

What's on the Companion Web Site?

The companion Web site will contain four key elements:
Source Code. The source code for all listings in the book will be available in a
compressed archive.

Errata. Any errors discovered by readers or the authors will be listed with the
corresponding corrected text.

Examples. Sample chapters, the table of contents and index will be posted for
people who have not yet purchased the book to get a feel for its style and content.

Contact Addresses. The email addresses of the authors will be available as well
as answers to any frequently asked questions.

Introduction

Comments Welcome

This book is written by programmers for programmers. All comments, suggestions, and
questions from the entire computing community are greatly appreciated. It is feedback
from our readers that both makes the writing worthwhile and improves the quality of
our work. I'd like to thank all the readers who have taken time to contact us to report
errors, provide constructive criticism, or express appreciation.

I can be reached via email at mike@daconta.net or via regular mail:

Michael C. Daconta
c/o Robert Elliott
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030

Best wishes,

Michael Daconta
Sierra Vista, Arizona

.m About the code: In many of the code listings you will find a wrap
character at the far right of some lines of code. We have used this character,
O, to indicate turnovers where the space available did not allow for all the
characters to set on the same line. The line of code directly belowa D is a
direct unbroken continuation of the line above it, where the D appears.

Acknowledgments

This book has been a difficult journey. It survived through three co-author changes,
several delays, and a move to a new state. Along the way, the vision of the book never
faded, and in some way it willed itself into existence. All the authors believe that
uncovering pitfalls helps programmers produce better programs with less frustration.
I'would like to thank those people who helped me through this challenge: my family—
Lynne, CJ, Greg, and Samantha; my editors at Wiley Publishing, Inc.—Bob Elliott and
Emilie Herman; my co-authors—Kevin, Clay, and Donnie; Al Saganich for contribut-
ing two pitfalls; my supervisors, customer and coworkers on the Virtual Knowledge
Base project—Ted Wiatrak, Danny Proko, Joe Broussard, Joe Rajkumar, Joe Vitale,
Maurita Soltis, and Becky Smith; my editor at Javaworld—Jennifer Orr; my friends at
Oberon—TJodi Johnson and Dave Young; and finally, I would like to thank our readers
who share our goal of producing great programs. Thanks and best wishes!

Michael C. Daconta

First of all, I would like to thank my co-authors—Mike, Clay, and Don. Your hard work
on this project, and our many brainstorming sessions together at Cracker Barrel,
helped create a good book full of our Java experiences and lessons learned. Second, I
would like to thank my other new friends at McDonald Bradley and our entire VKB
team. What a team of incredible folks.

I would like to give special thanks to a few people who suggested pitfalls and ideas
for this book—John Sublett from Tridium, Inc. in Richmond, Virginia, Kevin Moran
from McDonald Bradley, and Jeff Walawender from Titan Systems. Lois G. Schermer-
horn and Helen G. Smith once again served as readability editors for some of my mate-
rial. Special thanks to Stan and Nicole Schermerhorn for allowing me to use their
company’s name, Lavender Fields Farm, in a fictional scenario in this book. Also,
thanks to Al Alexander, who granted me permission to use DevDaily’s DDConnec-
tionBroker to demonstrate a solution to a common programming pitfall.

Acknowledgments

My experience on Java projects with many software engineers and architects over
the years helped me in writing this book: Ralph Cook, Martin Batts, Jim Johns, John
Vrankovich, Dave Musser, Ron Madagan, Phil Collins, Jeff Thomason, Ken Pratt,
Adam Dean, Stuart Gaudet, Terry Bailey, JoAnn White, Joe Pecore, Dave Bishop, Kevin
Walmsley, Ed Kennedy, George Burgin, Vaughn Bullard, Daniel Buckley, Stella
Aquilina, Bill Flynn, Charlie Lambert, and Dave Cecil III. I would also like to thank Bill
Lumbergh, and the TPS Report support team at Initech—Peter, Samir, and Michael.

I would like to express thanks to my dad, who jump-started my career in computer
science by buying me a Commodore Vic-20 in 1981. Making the most of the 5 KB of
memory on that box, I learned not to use memory-consuming spaces in my code—per-
haps contributing to “readability” pitfalls when I started writing code in college.
Thanks to my former teachers who helped me in my writing over the years—Audrey
Guengerich-Baylor and Rebecca Wright-Reynolds.

Over the last year, | have been blessed with many new friends at New Hanover Pres-
byterian Church and neighbors in Ashcreek in Mechanicsville, Virginia. Special thanks
to the guys in last year’s Wednesday night Bible study—Rich Bralley, Billy Craig, Matt
Davis, Dan Hulen, Chuck Patterson, Ben Roberson, Keith Scholten, Todd Tarkington,
and Matt Van Wie. I would also like to thank folks who helped me take a break to focus
on playing the trumpet this year—Ray Herbek, Jeff Sigmon, Rita Smith, and Kenny
Stockman.

Finally, I would like to thank my wonderful wife Gwen. Without her love and sup-
port, this book would never have been possible!

Kevin T. Smith

All of my material for this book is drawn largely from an object-oriented class I teach
and a lot of great developers I've worked with over the years. Specifically, I'd like to
thank these people who inspired me with their probity and hard work: Peter Len, Joe
Vitale, Scot Shrager, Mark “Mojo” Mitchell, Wendong Wang, Chiming Huang, Feng
Peng, Henry Chang, Bin Li, Sanath Shetty, Henry, John and Andy Zhang, Swati Gupta,
Chi Vuong, Prabakhar Ramakrishnan, and Yuanlin Shi.

Special thanks goes to my beloved wife Van and her support and assistance during
the writing of this book and the three coauthors of this book who are really progressive
thinkers and great guys to hang with.

Donald Avondolio

First, I would like to thank my wife Alicia for all of her patience and understanding
while I wrote this book. You truly are the greatest and I love you more than you under-
stand. To Jennifer, my baby doll, you are the greatest gift a father could ever receive. To
Stephanie, I love you and I will never forget you. I would like to thank my parents, Bill
and Kay, for being, well, my parents. Nothing I could write here could express the
impact you have had on my life.

I would like to thank my fellow authors, Mike, Kevin, and Don, for being patient
while I got up to speed. You guys are not only exceptional technical talents, but also
exceptional people. To my team—Mark Mitchell (aka Mojo), Mauro Marcellino (Tre,
who saw us here when we were riding ambulances together), Peter Len, Marshall
Sayen, Scot Schrager, Julie Palermo/Hall/Bishop, and Joe Vitale, you guys are the

Acknowledgments

greatest and it was a privilege to serve as your lead. Mojo, it has been enjoyable to
watch you progress from apprentice to master. Vic Fraenckel and Mike Shea, you aren’t
on my team, but you are certainly on the team, in spite of being part of the Borg. To
Becky Smith, my fellow warrior, we have been through a lot of battles (some with each
other), but it has been a pleasure working with you and your team.

To all the guys who have served with me on Gainesville District VFD Duty Crew A
(and particularly its leader, Captain Bob Nowlen)—Patrick Vaughn, Marshall Sayen,
Gary Sprifke, Mike Nelson, Matt Zalewski, Doug Tognetti, Frank Comer; we have seen
some crazy things together, and I have been happy to be the one to drive you there. Chief
Richard Bird, I would like to thank you for your leadership of our department and ser-
vice to our community, which has been ongoing since before I was born. To the guys at
the Dumfries-Triangle VFD, now you know where I went (writing this book): Brian
Thomason, Tim Trax, Brian Kortuem, Brian Lichty, Nick Nanna, Scott Morrison, Brian
Martin, Jack Hoffman, Craig Johnson, and Randy Baum—I wish I could name all of you.
Volunteer firefighters truly are the salt of the earth, and I am happy to be among you.

To those who have served as mentors of mine through the years (in no particular
order): Tom Bachmann, Seth Goldrich, Don Avondolio, Danny Proko, Burr Datz, Kevin
McPhilamy, Shawn Bohner, John Viega, Pat Wolfe, Alex Blakemore (nonpolitical mat-
ters), Sam Redwine, and many others that I will kick myself for forgetting later. To Ted
Wiatrak and Major Todd Delong, I would like to thank you guys for believing in us and
giving us a shot to help some very important people. In closing, I would like to thank two
of my Brother Rats, Matt Tyrrell and Jeff Bradford, for being, well, like brothers to me.

W. Clay Richardson

| I
[

The Client Tier

“Now, if we regard a programming language primarily as a means of feeding prob-
lems into a machine, the quality of a programming language becomes dependent

4

on the degree in which it promotes ‘good use of the machine’

Edsger W. Dijkstra,
“On the Design of Machine Independent Programming Languages”

There have been a number of high-profile failures with using Java for major client-side
applications. Corel developed an office suite in Java but scrapped the project after an
early beta release. Netscape embarked on a pure Java version of a Web browser
(referred to as “Javagator”), but the project was canceled before any code was released.
Although these were the early days of client-side Java, in the 1997 to 1998 time frame,
it was enough to cast a pall over client-side Java, and the momentum shifted to server-
side Java. Yet, even under that shadow of server-side Java, the client tier continued to
improve. Richer user interfaces, faster virtual machines, a fine-grained security model,
and easier network deployment came to the platform piecemeal with each new release.
So, borrowing a play from the Microsoft playbook, client-side Java has continued to
address its shortcomings and improve with each release. Today we have high-profile
and successful commercial applications in Java like ThinkFree Office, Borland’s
JBuilder, TIBCO’s Turbo XML editor, and TogetherSoft’s Together Control Center UML
modeling tool. So, it is possible to develop rich client applications in Java. This part will
assist you in that endeavor.

This part explores pitfalls in three general areas of client-side development: perfor-
mance, nonintuitive application programming interfaces (APIs), and better alterna-
tives. Here are some highlights of pitfalls in each area.

Performance has long been the bane of client-side Java. The first book, Java Pitfalls:
Time-Saving Solutions and Workarounds to Improve Programs, had numerous pitfalls on
performance, and many other books and Web sites have come out on Java performance
tuning. This part has two pitfalls on performance:

2

Part 1

NIO Performance and Pitfalls (Item 2). This pitfall examines the IO performance
improvements of the New 1O package (NIO). The pitfall examines file channels,
ByteBuffers, and non-blocking server 10.

J2ME Performance and Pitfalls (Item 22). This pitfall ports a Swing application
to the]2ME platform and uncovers both API pitfalls and over 20 optimizations
for these small footprint devices.

Nonintuitive APIs cause hours of frustration, and the majority of pitfalls in this part
are in this area. We carefully dissect the APIs, examine the internal workings of the
software, and offer workarounds to the problem. The workarounds sometimes involve
a proper sequence of operations, the use of a different class, or the abandonment of the
standard API for an open-source alternative.

When Runtime.exec () Won't (Item 1). This pitfall is a canonical example of a
mismatch between user expectations and the capability of an incomplete API.

Avoiding Granularity Pitfalls in java.util.logging (Item 5). The new
java.util.logging API has some hidden complexities and relationships
that affect the level of reporting granularity. You must understand the relation-
ship between loggers and handlers to effectively use this APL

The Wrong Way to Search a DOM (Item 8). With JDK 1.4, the Java platform pro-
vided native support for XML with the javax.xml package. Unfortunately, the
most intuitive representation of a Document Object Model (DOM) is not the cor-
rect representation, and this pitfall goes under the hood to see why.

The Saving-a-DOM Dilemma (Item 9). While JAXP introduced standard ways
to create and manipulate XML DOM trees, it provides weak capabilities for per-
sisting them—forcing developers to use implementation-specific methods. This
pitfall discusses those challenges.

The Failure to Execute (Item 13). Java Archives or JAR files are the primary
binary distribution for Java components. Unfortunately, there is great confusion
about how these files work and how to make them executable. This pitfall
explores those problems and provides an explanation of the best practices in
using JAR files.

When Posting to a URL Won't (Item 17). The URL and URLConnection classes
in the java.net API were designed at a very high level of abstraction that can
be confusing. This pitfall demonstrates several incorrect ways to use the API, the
reasons behind the deficiencies, and both a solution and open-source alternative
to the problem.

The existence of better alternatives is an ever-growing problem as the platform ages
and poor alternatives are kept to maintain backward compatibility. In addition to new
APIs in the platform, again, open-source alternatives are proving themselves to be the
best solution for many services.

I Prefer Not to Use Properties (Item 3). This pitfall demonstrates some weaknesses
of the Properties class and how java.util.prefs package offers a better solution.

When Information Hiding Hides Too Much (Item 4). A frequent problem with
abstracting things from developers is that it can hide important information

The Client Tier

from developers. Exceptions are a classic example and this pitfall demonstrates
how the new JDK 1.4 chained exception facility solves it.

When Implementations of Standard APIs Collide (Item 6). With XML becoming
part of JDK 1.4, an immediate issue arose from the fact that the XML standards
do not synchronize with JDK releases. This pitfalls address how JDK 1.4 sup-
ports upgrades to these endorsed standards.

My Assertions Are Not Gratuitous! (Item 7). There is often a lag between the
introduction of a new feature and adoption of that feature by the majority of
programmers. For key reliability enhancements like assertions, this adoption
gap is a serious pitfall. This item walks you through this important facility.

Apache Ant and Lifecycle Management (Item 11). Though most pitfalls in this
part occur at the language and API level, this pitfall takes a broader look at a
better alternative for the software lifecycle. For team development, not using a
build tool like Ant is a serious pitfall.

JUnit: Unit Testing Made Simple (Item 12). Much like the Ant build tool, JUnit
is a critical tool in assuring the quality of code through unit tests. This pitfall
demonstrates how to effectively use JUnit and why failing to use it is bad.

Use Iteration over Enumeration (Item 21). The Collection APIs have
proven themselves both effective and popular. This pitfall uncovers a weakness
in the Enumeration implementation, examines the internals to uncover the
source of the problem, and reveals how Iteration solves the problem.

There are 22 pitfalls in this part of the book, covering a wide array of client-side traps
to avoid. Using these workarounds and techniques will enable you to build robust
client-side applications that make “good use of the machine.” The remainder of the pit-
falls in this section are:

Mouse Button Portability (Item 10). Java is an outstanding choice for cross
development application development. Unfortunately, not all platforms are the
same, especially when it comes to the most popular input device—the mouse.
This pitfall shows the challenges involved in working with these different input
devices.

What Do You Collect? (Item 14). The issue of over abstraction can be particularly
acute when dealing with the Collection APIs. This pitfall shows examples of
not knowing the type contained in a collection and discusses emerging strate-
gies for solving this problem.

Avoid Singleton Pitfalls (Item 15). The Singleton pattern is a widely used pat-
tern in Java development. Unfortunately, there are numerous mistakes that
developers make in how they use a Singleton. This pitfall addresses these mis-
takes and suggests some remedies.

When setSize () Won't Work (Item 16). Frequently, developers, especially
new developers, use methods without understanding the overall API associated
with them. A perfect example is the use of setSize () which leads to unex-
pected results. This pitfall examines not only the mistaken use of setSize ()
but also the concepts of layout mangers.

Item 1

Effective String Tokenizing (Item 18). The operation of the StringTokenizer
class is frequently misunderstood. Interesting problems occur with multiple
character delimiting strings. This pitfall examines those problems, and explains
how they can be avoided.

JLayered Pane Pitfalls (Item 19). This pitfall examines issues with using
Swing’s JLayered Pane, particularly related to the use of layout mangers with it.

When File.renameTo () Won't (Item 20). The interaction with files in Java can pro-
duce unexpected results, particularly in working across filesystems or platforms. This
pitfall examines those unexpected results and offers solutions for resolving them.

Item 1: When Runtime.exec() Won't'

The class java.lang.Runtime has a static method called getRuntime () to retrieve
the current Java runtime environment. This is the only way to get a reference to the
Runtime object. With that reference you can run external programs by invoking the
exec () method of the Runtime class. One popular reason to do this is to launch a
browser to display some kind of help page in HTML. There are four overloaded ver-
sions of the exec () command. Those method prototypes are:

m public Process exec (String command) ;
m public Process exec(String [] cmdArray) ;
m public Process exec (String command, String [] envp);

m public Process exec(String [] cmdArray, String [] envp);

The general idea behind all of the methods is that a command (and possible a set of
arguments) are passed to an operating system-specific function call to create an oper-
ating system-specific process (a running program) with a reference to a Process class
returned to the Java Virtual Machine (VM). The Process class is an abstract class
because there will be a specific subclass of Process for each operating system. There
are three possible input parameters to these methods: a single String that represents
both the program to execute and any arguments to that program, an array of Strings
that separate the program from its arguments, and an array of environment variables.
The environment variables are passed in the form name=value. It is important to note
that if you use the version of exec () with a single String for both the program and
its arguments, the String is parsed using whitespace as the delimiter via the
StringTokenizer class.

The prevalent first test of an APl is to code its most obvious methods. For example,
to exec a process that is external to the JVM, we use the exec () method. To see the
value that the external process returns, we use the exitValue ()method on the
Process class. In our first example, we will attempt to execute the Java compiler
(javac.exe). Listing 1.1 is a program to do that.

! This pitfall was first printed by JavaWorld (www.javaworld.com) in “When Runtime.exec() won't”,
December 2000 (http://www.javaworld.com/javaworld /jw-12-2000/jw-1229-traps.html?) and is
reprinted here with permission. The pitfall has been updated from reader feedback.

When Runtime.exec() Won't

01: package org.javapitfalls.iteml;
02:

03: import java.util.*;

04: import java.io.*;

05:

06: public class BadExecJavac

07: {

08: public static void main(String argsl[])

09: {

10: try

11: {

12: Runtime rt = Runtime.getRuntime();
gy Process proc = rt.exec("javac");
14: int exitVal = proc.exitValue();
153 System.out.println("Process exitValue: " + exitVval);
16: } catch (Throwable t)

17: {

18: t.printStackTrace() ;

19: }

20: }

21: }

Listing 1.1 BadExeclavac.java

A run of BadExec]Javac produces the following;:

E:\classes\org\javapitfalls\iteml >java :)
org.javapitfalls.iteml.BadExecJavac
java.lang.IllegalThreadStateException: process has not exited

at java.lang.Win32Process.exitValue (Native Method)

at BadExecJavac.main (BadExecJavac.java:13)

The program failed to work because the exitvalue () method will throw an
IllegalThreadStateException if the external process has not yet completed.
While this is stated in the documentation, it is strange in that it begs the question: why
not just make this method wait until it can give me a valid answer? A more thorough
look at the methods available in the Process class reveals a waitFor () method that
does precisely that. In fact, the waitFor () method returns the exit value, which
means that you would not use both methods in conjunction. You choose one or the
other. The only possible reason for you to use the exitValue () method over the
waitFor () method is that you do not want to have your program block waiting on an
external process that may never complete. Personally, I would prefer a boolean param-
eter called waitFor be passed into the exitValue () method to determine whether
or not the current thread should wait. I think a boolean would be better because the
name exitValue () is a better name for this method and it is unnecessary to have two
methods perform the same function under different conditions. Such simple “condi-
tion” discrimination is the domain of an input parameter.

Item 1

So, the first pitfall relating to Runtime.exec () is beware the I1legalThread-
StateException and either catch it or wait for the process to complete. Now, let’s fix
the problem in the above program and wait for the process to complete. In Listing 1.2,
the program again attempts to exec the program javac.exe and then waits for the exter-
nal process to complete.

01: package org.javapitfalls.iteml;
02:

03: import java.util.*;

04: import java.io.*;

05¢

06: public class BadExecJavac2

07: {

08: public static void main(String argsl[])

09: {

10: try

il g {

12: Runtime rt = Runtime.getRuntime () ;
13: Process proc = rt.exec("javac") ;
14: int exitVal = proc.waitFor();

15: System.out.println("Process exitValue: " + exitVval);
16: } catch (Throwable t)

17: {

18: t.printStackTrace() ;

19¢ }

20: }

21: }

Listing 1.2 BadExeclavac2.java

Unfortunately, a run of BadExecJavac2 produces no output. The program hangs and
never completes! Why is the javac process never completing? The javadoc documenta-
tion provides the answer. It says, “Because some native platforms only provide limited
buffer size for standard input and output streams, failure to promptly write the input
stream or read the output stream of the subprocess may cause the subprocess to block,
and even deadlock.” So, is this just a case of programmers not following “RTFM” (read
the f-ing manual)? The answer is partially yes. In this case, reading the manual would
get you halfway there. It tells you that you need to handle the streams to your external
process but does not tell you how. Besides RTFM, there is another variable at play here
that cannot be ignored when you examine the large number of programmer questions
and errors over this API in the newsgroups. The Runtime.exec () and Process
APIs seem extremely simple, but that simplicity is deceiving, because the simple
(translate to obvious) use of the API is prone to error.

When Runtime.exec() Won't

The lesson here for the API designer is to reserve simple APIs for simple operations.
Operations prone to complexities and platform-specific dependencies should reflect
the domain accurately. It is possible for an abstraction to be carried too far. An example
of a more complete API to handle these operations is the JConfig library (available at
http:/ /www.tolstoy.com /samizdat/jconfig.html). So, now let’s follow the documen-
tation and handle the output of the javac process. When you run javac without any
arguments, it produces a set of usage statements that describe how to run the program
and the meaning of all the available program options. Knowing that this is going to the
stderr stream, it is easy to write a program to exhaust that stream before waiting on the
process to exit. Listing 1.3 does just that. While that approach will work, it is not a good
general solution. That is why the program in Listing 1.3 is named MediocreExecJavac;
it is only a mediocre solution. A better solution would empty both the standard error
stream and the standard output stream. And the best solution would empty these
streams simultaneously (this is demonstrated later).

01: package org.javapitfalls.iteml;
02:

03: import java.util.*;

04: import java.io.*;

05:

06: public class MediocreExecJavac

07: {

08: public static void main(String argsl[])

09: {

10: try

11: {

12: Runtime rt = Runtime.getRuntime() ;

13: Process proc = rt.exec("javac");

14: InputStream stderr = proc.getErrorStream() ;
15: InputStreamReader isr = new InputStreamReader (stderr) ;
16: BufferedReader br = new BufferedReader (isr) ;
17: String line = null;

18: System.out.println ("<ERROR>") ;

19: while ((line = br.readLine()) != null)

20: System.out.println(line) ;

21: System.out.println ("</ERROR>") ;

22: int exitVal = proc.waitFor () ;

23: System.out.println("Process exitValue: " + exitVval);
24: } catch (Throwable t)

253 {

26: t.printStackTrace() ;

27 : }

28: }

29: }

Listing 1.3 MediocreExeclavac.java

Item 1

A run of MediocreExec]Javac produces the following:

E:\classes\org\javapitfalls\iteml>java :)
org.javapitfalls.iteml.MediocreExecJavac
<ERROR>
Usage: javac <options> <source files>
where <options> includes
-g Generate all debugging info
-g:none Generate no debugging info
-g:{lines,vars, source} Generate only some debugging info

-0 Optimize; may hinder debugging or enlarge class
files
-nowarn Generate no warnings

some output removed for brevity
</ERROR>
Process exitValue: 2

So, MediocreExecJavac works and produces an exit value of 2. Normally, an exit
value of 0 means success and nonzero means error. Unfortunately, the meaning of
these exit values is operating system-specific. The Win32 error code for a value of 2 is
the error for “file not found.” This makes sense, since javac expects us to follow the
program with the source code file to compile. So, the second pitfall to avoid with Run-
time.exec () is ensuring you process the input and output streams if the program
you are launching produces output or expects input.

Going back to windows, many new programmers stumble on Runtime.exec ()
when trying to use it for nonexecutable commands like dir and copy. So, we replace
"javac" with "dir" as the argument to exec () like this:

Process proc = rt.exec("dir");

This line is replaced in the source file called BadExecWinDir, which when run pro-
duces the following:

E:\classes\org\javapitfalls\iteml>java :)
org.javapitfalls.iteml.BadExecWinDir
java.io.IOException: CreateProcess: dir error=2

at java.lang.Win32Process.create (Native Method)

at java.lang.Win32Process.<init> (Unknown Source)

at java.lang.Runtime.execInternal (Native Method)

at BadExecWinDir.main (BadExecWinDir.Jjava:12)

As stated earlier, the error value of 2 means file not found—meaning that the exe-
cutable named dir.exe could not be found. That is because the directory command is
part of the window command interpreter and not a separate executable. To run the
window command interpreter, you execute either command.com or cmd.exe depend-
ing on the windows operating system you are using. Listing 1.4 runs a copy of the Win-
dows Command Interpreter and then executes the user-supplied command (like dir).

When Runtime.exec() Won't

01: package org.javapitfalls.iteml;
02:

03: import java.util.*;

04: import java.io.*;

05:

06: class StreamGobbler extends Thread

07: {

08: InputStream is;

095 String type;

10:

11: StreamGobbler (InputStream is, String type)

12: {

13: this.is = is;

14: this.type = type;

153 }

16:

17: public void run/()

18: {

19: try

20: {

21: InputStreamReader isr = new InputStreamReader (is) ;
223 BufferedReader br = new BufferedReader (isr) ;
23: String line=null;

24: while ((line = br.readLine()) != null)
25: {

26: System.out.println(type + ">" + line);
27 : System.out.flush() ;

28: }

29: } catch (IOException ioe)

30: {

31: ioce.printStackTrace() ;

32: }

338 }

34: }

35:

36: public class GoodWindowsExec

37: {

38: public static void main(String argsl[])

39: {

// ... command line check omitted for brevity

45:

46: try

47 : {

48: String osName = System.getProperty("os.name");
49: System.out.println("osName: " + osName) ;
50: String[] cmd = new Stringl[3];

Listing 1.4 GoodWindowsExec.java (continued)

10 Item 1

5il g

52} if (osName.equals ("Windows NT") ||

53¢ osName.equals ("Windows 2000"))

54: {

55: cmd[0] = "cmd.exe"

56: cmd[1l] = "/C"

573 cmd[2] = args[0];

58: }

59: else if(osName.equals("Windows 95"))
60: {

61: cmd[0] = "command.com"

62: cmd[1] = "/C"

63: cmd[2] = args[0];

64: }

65:

66: Runtime rt = Runtime.getRuntime () ;

67: System.out.println("Execing " + cmd[0] + " " + cmd[1]
68: + " " + cmd[2]);

69: Process proc = rt.exec (cmd) ;

70: // any error message-?

71: StreamGobbler errorGobbler = new

72 StreamGobbler (proc.getErrorStream(), "ERROR") ;
73:

74 : // any output?

753 StreamGobbler outputGobbler = new

76: StreamGobbler (proc.getInputStream(), "OUTPUT") ;
77 :

78: // kick them off

793 errorGobbler.start () ;

80: outputGobbler.start () ;

81:

82: // any error???

83: int exitVal = proc.waitFor () ;

84: System.out.println("ExitValue: " + exitval);
85:

86: } catch (Throwable t)

87: {

88: t.printStackTrace() ;

89: }

90: }

91: }

Listing 1.4 (continued)

When Runtime.exec() Won't

Running GoodWindowsExec with the dir command produces:

E:\classes\org\javapitfalls\iteml>java
org.javapitfalls.iteml.GoodWindowsExec "dir *.java"

Execing cmd.exe /C dir *.java

OUTPUT> Volume in drive E has no label.

OUTPUT> Volume Serial Number is 5C5F-0CC9

OUTPUT>

OUTPUT> Directory of E:\classes\com\javaworld\jpitfalls\article2
OUTPUT>

OUTPUT>10/23/00 09:01p 805 BadExecBrowser.java

OUTPUT>10/22/00 09:35a 770 BadExecBrowserl.java
(some output omitted for brevity)

OUTPUT>10/09/00 05:47p 23,543 TestStringReplace.java

OUTPUT>10/12/00 08:55p 228 TopLevel.java

OUTPUT> 22 File(s) 46,661 bytes

OUTPUT> 19,678,420,992 bytes free

ExitValue: 0

Running GoodWindowsExec with any associated document type will launch the
application associated with that document type. For example, to launch Microsoft
Word to display a Word document (a .doc extension), you type

>java org.javapitfalls.iteml.GoodWindowsExec "yourdoc.doc"

Notice that GoodWindowsExec uses the os.name system property to determine
which Windows operating system you are running in order to use the appropriate
command interpreter. After execing the command interpreter, we handle the standard
error and standard input streams with the StreamGobbler class. The StreamGob-
bler class empties any stream passed into it in a separate thread. The class uses a sim-
ple String type to denote which stream it is emptying when it prints the line just read
to the console. So, the third pitfall to avoid is to know whether you are executing a
standalone executable or an interpreted command. At the end of this section, I will
demonstrate a simple command-line tool that will help you with that analysis.

It is important to note that the Process method used to get the output stream of the
process is called get InputStream (). The thing to remember is that the perspective
is from the Java program and not the external process. So, the output of the external
program is the input to the Java program. And that logic carries over to the external
programs input stream, which is an output stream to the Java program.

One final pitfall to cover with Runtime.exec () is not to assume that the exec ()
accepts any String that your command line (or shell) accepts. It is much more limited
and not cross-platform. The primary cause of this pitfall is users attempting to use the
exec () method that accepts a single String just like a command line. This confusion
may be due to the parameter name for the exec () method being command. The

12

Item 1

programmer incorrectly associates the parameter command with anything he or she
can type on a command line instead of associating it with a single program and its
arguments, for example, a user trying to execute a program and redirect its output in
one call to exec (). Listing 1.5 attempts to do just that.

01: package org.javapitfalls.iteml;
02:

03: import java.util.*;

04: import java.io.*;

05:

// StreamGobbler removed for brevity

32:

33: public class BadWinRedirect

34: {

35: public static void main(String argsl[])

36: {

37: try

38: {

39: Runtime rt = Runtime.getRuntime () ;
40: Process proc = rt.exec(:)

"java jecho 'Hello World' > test.txt");
// remaining code same as GoodWindowsExec.java
63: 1}

Listing 1.5 BadWinRedirect.java

Running BadWinRedirect produces:

E:\classes\org\javapitfalls\Iteml>java :)
org.javapitfalls.Iteml.BadWinRedirect

OUTPUT>'Hello World' > test.txt

ExitValue: 0

The program BadWinRedirect attempted to redirect the output of a simple Java ver-
sion of an echo program into the file test.txt. Unfortunately, when we check to see if the
file test.txt is created, we find that it does not exist. The jecho program simply takes its
command-line arguments and writes them to the standard output stream. The source
for jecho is available on the Web site. The user assumed you could redirect standard
output into a file just like you do on a DOS command line. Unfortunately, that is not the
way you redirect the output. The incorrect assumption here is that the exec () method
acts like a shell interpreter, and it does not. The exec () method executes a single exe-
cutable (a program or script). If you want to process the stream to either redirect it or
pipe it into another program, you must do that programmatically using the java.io
package. Listing 1.6 properly redirects the standard output stream of the jecho process
into a file.

When Runtime.exec() Won't

13

01: package org.javapitfalls.iteml;

02:

03: import java.util.*;

04: import java.io.*;

05:

06: class StreamGobbler extends Thread

07: {

08: InputStream is;

0937 String type;

10: OutputStream os;

11:

12: StreamGobbler (InputStream is, String type)

i3s3 {

14: this(is, type, null);

153 }

16:

17: StreamGobbler (InputStream is, String type, OutputStream :)
redirect)

18: {

158 this.is = is;

20: this.type = type;

21l g this.os = redirect;

22: }

238

24 public void run/()

253 {

26: try

27 : {

28: PrintWriter pw = null;

29: if (os != null)

30: pw = new PrintWriter (os) ;

31:

32: InputStreamReader isr = new InputStreamReader (is) ;
BSH BufferedReader br = new BufferedReader (isr) ;
34: String line=null;

355 while ((line = br.readLine()) != null)
36: {

37: if (pw != null)

38: {

39: pw.println(line) ;

40: pw.flush() ;

41 : }

42 System.out.println(type + ">" + line);
43: }

44 : if (pw != null)

45: pw.flush() ;

46: } catch (IOException ioe)

Listing 1.6 GoodWinRedirect.java (continued)

14 Item 1

47 : {

48: ioe.printStackTrace() ;

49: }

50: }

5is }

52 ¢

53: public class GoodWinRedirect

54: {

55: public static void main(String argsl[])

56: {

// ... command argument check omitted for brevity

62:

63: try

64: {

65: FileOutputStream fos = new FileOutputStream(args([0]);
66: Runtime rt = Runtime.getRuntime() ;

67: Process proc = rt.exec("java jecho 'Hello World'");
68: // any error message-?

69: StreamGobbler errorGobbler = new

70: StreamGobbler (proc.getErrorStream(), "ERROR") ;
71:

72: // any output?

Bk StreamGobbler outputGobbler = new

74: StreamGobbler (proc.getInputStream(), "OUTPUT", fos);
75:

76: // kick them off

77 errorGobbler.start () ;

78: outputGobbler.start () ;

78

80: // any error???

81: int exitVal = proc.waitFor () ;

82: System.out.println("ExitvValue: " + exitval);

83: fos.flush();

84: fos.close();

85: } catch (Throwable t)

86: {

87: t.printStackTrace() ;

88: }

89: }

90: 1}

Listing 1.6 (continued)

When Runtime.exec() Won't

15

Running GoodWinRedirect produces

E:\classes\org\javapitfalls\iteml>java :)
org.javapitfalls.iteml.GoodWinRedirect test.txt

OUTPUT>'Hello World'

Exitvalue: 0

After running GoodWinRedirect, we find that test.txt does exist. The solution to the
pitfall was to simply handle the redirection by handling the standard output stream of
the external process separate from the Runtime.exec () method. We create a sepa-
rate OutputStream, read in the filename to redirect the output to, open the file, and
write the output we receive from the standard output of the spawned process to the
file. In Listing 1.7 this is accomplished by adding a new constructor to our Stream-
Gobbler class. The new constructor takes three arguments: the input stream to gob-
ble, the type String, which labels the stream we are gobbling, and lastly the output
stream to redirect the input to. This new version of StreamGobbler does not break
any of the previous code it was used in, since we have not changed the existing public
API (just extended it). A reader of the JavaWorld article, George Neervoort, noted an
important improvement to GoodWinRedirect is to ensure that the streams have com-
pleted reading input from the process. This is necessary because it is possible for the
process to end before the threads have completed. Here is his solution to that problem
(thanks George!):

int exitVal = proc.waitFor();
errorGobbler.join() ;
outputGobbler.join() ;

Since the argument to Runtime.exec () is operating system-dependent, the
proper commands to use will vary from one operating system to another. So, before
finalizing arguments to Runtime.exec (), it would be valuable to be able to quickly
test the arguments before writing the code. Listing 1.7 is a simple command-line utility
to allow you to do just that.

01: package org.javapitfalls.iteml;
02:

03: import java.util.*;

04: import java.io.*;

05:

Listing 1.7 TestExec.java (continued)

16

Item 1

// Class StreamGobbler omitted for brevity

323

33: public class TestExec

34:. {

353 public static void main (String argsl[])
36: {

// argument check omitted for brevity

42

43 try

44 . {

45: String cmd = args[0];

46: Runtime rt = Runtime.getRuntime();
47 Process proc = rt.exec(cmd);

48: // remaining code
Identical to GoodWindowsExec.java

68: }

69: 1}

70:

Listing 1.7 (continued)

Running TestExec to launch the Netscape browser and load the Java help documen-
tation produces:

E:\classes\org\javapitfalls\iteml>java org.javapitfalls.iteml.TestExec :)
"e:\java\docs\index.html"

java.io.IOException: CreateProcess: e:\javaldocs\index.html error=193

at
at
at
at

java.lang.Win32Process.create (Native Method)
java.lang.Win32Process.<init> (Unknown Source)
java.lang.Runtime.execInternal (Native Method)
TestExec.main (TestExec.java:45)

So, our first test failed with an error of 193. The Win32 Error for value 193 is “not a
valid Win32 application.” This tells us that there is no path to an associated application
(like Netscape) and the process cannot run an HTML file without an associated appli-
cation. So, we can try the test again, this time giving it a full path to Netscape (or
we could have added Netscape to our PATH environment variable). A second run of
TestExec produces:

E:\classes\com\javaworld\jpitfalls\article2>java TestExec :)

"e:\program files\netscape\program\netscape.exe e:\java\docs\index.html"

ExitValue:

0

This worked! The Netscape browser was launched, and it then loaded the Java help
documentation.

NIO Performance and Pitfalls

17

One useful exercise would be to modify TestExec to redirect the standard input or
standard output to a file. When you are executing the javac compiler on Windows 95
or Windows 98, this would solve the problem of error messages scrolling off the top of
the limited command-line buffer. Here are the key lines of code to capture the standard
output and standard error to a file:

FileOutputStream err = new FileOutputStream("stderror.txt");
FileOutputStream out = new FileOutputStream("stdout.txt");
Process proc = Runtime.getRuntime () .exec (args) ;

// any error message?
StreamGobbler errorGobbler
= new StreamGobbler (proc.getErrorStream(), "ERR", err);
// any output?
StreamGobbler outputGobbler
= new StreamGobbler (proc.getInputStream(), "OUT", out);

One other improvement to TestExec would be a command-line switch to accept
input from standard-in. This input would then be passed to the spawned external pro-
gram using the Process.getOutputStream() method. This pitfall has explored
several problems in using the Runtime.exec () method and supplied workarounds
to assist you in executing external applications.

Item 2: NIO Performance and Pitfalls

The NIO packages represent a step forward for input/output (I0) performance and
new features; however, these enhancements do not come without some cost in
complexity and potential pitfalls. In this item, we examine some of the benefits and
deficiencies in this new package. Before we examine specific features, let’s get a high-
level view of the package and its features. There are four major abstractions in the NIO
packages:

Channels. A channel represents a connection to entities capable of performing IO
operations like files and sockets. Thus, channels are characterized by the thing
they are connected to like FileChannel or SocketChannel. For fast 10, chan-
nels work in conjunction with buffers to read from the source or write to the
sink. There are also interfaces for different roles a channel can play like Gath-
eringByteChannel or ScatteringByteChannel, which can write or read
from multiple sequences of buffers. Lastly, you can get a channel from the
FileInputStream, FileOutputStream, ServerSocket, Socket, and
RandomAccessFile classes. Unfortunately, adding these new 10 metaphors to
the existing crowded field (streams, pipes, readers, writers) is extremely confus-
ing to most programmers. Also, the metaphors overlap and their APIs are inter-
twined. Overall, the complexity and overlapping functionality of the numerous
IO classes is its biggest pitfall.

18

Item 2

Buffers. Buffers are generic data containers for random access manipulation

of a single data type. These are integrated with the Charsets and Channels
classes. Each buffer contains a mark, position, limit, and capacity value (and cor-
responding methods for manipulation). The position can be set to any point in
the buffer. Buffers are set in a mode (reading or writing) and must be “flipped”
to change the mode.

Charsets. A charset is a named mapping between bytes and 16-bit Unicode char-

acters. The names of these character sets are listed in the IANA charset registry
(http:/ /www.iana.org/assignments/character-sets).

Selectors. A Selector is a class that multiplexes a SelectableChannel. A

SelectableChannel has a single subclass called AbstractSelec-
tableChannel. The AbstractSelectableChannel has four direct sub-
classes: DatagramChannel, Pipe.SinkChannel, Pipe.SourceChannel,
ServerSocketChannel, and SocketChannel. In network communications,
a multiplexer is a device that can send several signals over a single line. The
Selector class manages a set of one or more “selectable” channels and provides a
single point of access to input from any of them.

Table 2.1 lists all the key classes and interfaces in the NIO packages.

Table 2.1 Key NIO Classes and Interfaces
PACKAGE CLASS/INTERFACE DESCRIPTION

java.nio Buffer Random access data container for

temporary data storage and
manipulation.

java.nio ByteBuffer, Buffer that stores the specific data

CharBuffer, type represented in its name.
DoubleBuffer,

FloatBuffer,

IntBuffer,

LongBuffer,

ShortBuffer

java.nio MappedByteBuffer A ByteBuffer whose content

is @ memory-mapped region of
a file. These are created via the
FileChannel.map () method.

java.nio ByteOrder A typesafe enumeration of byte

orders: LITTLE_ENDIAN Or
BIG_ENDIAN.

java.nio.channels Channel An interface that represents an open

or closed connection to an 10 device.

java.nio.channels Channels A class that contains utility methods

for working with channels.

NIO Performance and Pitfalls

19

Table 2.1 (Continued)

PACKAGE

java.nio.channels

CLASS/INTERFACE

FileChannel, Pipe,
DatagramChannel,
SocketChannel,
ServerSocketChannel,
SelectableChannel

DESCRIPTION

Specific channel types to work
with specific devices like files and
sockets. A DatagramChannel

is a channel for working with
DatagramSockets (sockets
that use User Datagram Protocol,
or UDP). A pipe performs com-
munication between threads.

java.nio.channels

FileLock

A class that represents a lock on
a region of a file. An object of
this type is created by calling
either 1ock () or tryLock ()
on a FileChannel.

java.nio.channels

Selector,
SelectionKey

As stated before, a Selector is
a class that multiplexes one or
more SelectableChannels.
A SelectionKey is used to
specify specific operations to
listen for (or select) on a specific
SelectableChannel.

java.nio.charset

Charset

An abstract class that provides a
mapping between 16-bit Uni-
code characters and sequences
of bytes. The standard character
sets are US-ASCII (7-bit ASCII),
ISO-8859-1 (ISO Latin), UTF-8,
UTF-16BE (big endian order),
UTF-16LE (little endian order),
UTF-16 (uses a byte order mark).

java.nio.charset

CharsetEncoder,
CharsetDecoder

A CharsetEncoder is an engine
that encodes (or transforms) a
set of 16-bit Unicode characters
into a specific sequence of bytes
specified by the specific character
set. A CharsetDecoder per-
forms the opposite operation.

java.nio.charset

CoderResult

A class that reports the state of an
encoder or decoder. It reports any

of five states: error, malformed, un-
derflow, overflow, or unmappable.

java.nio.charset

CodingActionError

A class that is a typesafe enumer-
ation that specifies how an en-
coder or decoder should handle
errors. It can be set to IGNORE,
REPLACE, Of REPORT.

20

Item 2

Unfortunately, we cannot demonstrate all of the functionality in the NIO package.
Instead, we examine three examples: a canonical file copy, little endian byte operations,
and non-blocking server IO.

Canonical File Copy

Our first example is a canonical file copy operation. The old way to implement the
copy would be to loop while reading and writing from a fixed-size byte buffer until we
had exhausted the bytes in the file. Listing 2.1 demonstrates that method.

01: package org.javapitfalls.item2;
02:

03: import java.io.*;

04: import java.nio.*;

05: import java.nio.channels.*;

06:

07: public class SlowFileCopy

08: {

09: public static void main(String argsl[])

10: {

// ...command line check omitted for brevity ...

16:

17: try

18: {

19¢ long start = System.currentTimeMillis() ;
20: // open files

21: FileInputStream fis =

223 new FileInputStream(args[0]) ;
23: FileOutputStream fos =

24: new FileOutputStream(args[1l]);
25:

26: int bufSize = 4096;

27: byte [] buf = new byte[bufSize];

28:

29: int cnt = 0;

30: while ((cnt = fis.read(buf)) >= 0)
3HINS fos.write(buf, 0, (int) cnt);
32:

33: fis.close();

34: fos.close();

353 long end = System.currentTimeMillis() ;
36: System.out.println("Elapsed Time: " :)
+ (end - start) + " milliseconds.");

37: } catch (Throwable t)

38: {

39: t.printStackTrace() ;

40: }

41 : }

42 }

Listing 2.1 SlowFileCopy.java

NIO Performance and Pitfalls

21

In line 26 of Listing 2.1 we set the buffer size to be 4 KB. Obviously, given the simple
space/time trade-off, we can increase the speed of this for large files by increasing the
buffer size. A run of Listing 2.1 on a 27-MB file produces:

E:\classes\org\javapitfalls\item2>java
org.javapitfalls.item2.SlowFileCopy j2sdk-1_4_l-beta-windows-1586.exe :)
j2sdk-copyl.exe

Elapsed Time: 13971 milliseconds.

Lines 30 and 31 of Listing 2.1 are the key workhorse loop of the program where
bytes are transferred from the original file to the buffer and then are written from the
buffer to a second file (the copy). The FileChannel class includes a method called
transferTo () that takes advantage of low-level operating system calls specifically
to speed up transfers between file channels. So, the loop in 26 to 31 can be replaced by
the following code:

FileChannel fcin = fis.getChannel();
FileChannel fcout = fos.getChannel();
fcin.transferTo(0, fcin.size(), fcout);

The above snippet is from the program called FastFileCopy.java, which is identical
to SlowFileCopy.java except for the lines above that replace the while loop. A run of
FastFileCopy on the same large file produces:

E:\classes\org\javapitfalls\item2>java
org.javapitfalls.item2.FastFileCopy j2sdk-1_4_1-beta-windows-1586.exe :)
j2sdk-copy?2.exe

Elapsed Time: 2343 milliseconds.

The performance of FastFileCopy is very fast for all large files, but slightly slower
for smaller files.

Little-Endian Byte Operations

Anice feature of the NIO Buffer class is the ability to perform reads and writes of the
numeric data types using either Big Endian or Little Endian byte order. For those not
familiar with the difference, for multibyte data types like short (2 bytes), integer and
float (4 bytes), and long and double (8 bytes), Little Endian stores the bytes starting
from the least significant byte (“littlest” number) toward the most significant. Of
course, Big Endian stores bytes in the opposite direction. Processors from Motorola and
Sun use Big Endian order, while Intel uses Little Endian. Prior to JDK 1.4, you would
have to perform the byte-swapping yourself. I created a class called LittleEndian-
OutputStream to do just that for a BMP Image encoder. Listing 2.2 demonstrates the
byte swapping. This is necessary because the only order available for DataOutput-
Streamis Big Endian.

22 Item 2

008: class LittleEndianOutputStream extends OutputStream

009: {

010: OutputStream os;

011:

012: public LittleEndianOutputStream(OutputStream os)
013: {

014: this.os = os;

015: }

016:

017: public void write(int b) throws IOException
018: {

019: os.write(b);

020: }

021:

022: public void writeShort (short s) throws IOException
023: {

024: int is = (int) s; // promote

025: int maskBl = Oxff;

026: int maskB2 = 0xff00;

027:

028: byte [] b = new byte[2];

029: b[0] = (byte) (s & maskBl) ;

030: b[l] = (byte) ((s & maskB2) >>> 8);
031:

032: os.write(b);

033: }

034:

035: public void writeInt (int i) throws IOException
036: {

037: byte [] b = new bytel[4];

038: int maskBl = Oxff;

039: int maskB2 = 0xf£00;

040: int maskB3 = 0xf£f0000;

041: int maskB4 = 0xf£f000000;

042:

043: b[3] = (byte) ((i & maskB4) >>> 24);
044: b[2] = (byte) ((i & maskB3) >>> 16);
045: b[1l] = (byte) ((i & maskB2) >>> 8);
046: b[0] = (byte) (i & maskBl) ;

047:

048: os.write(b);

049: }

050: }

Listing 2.2 LittleEndianOutputStream.java

NIO Performance and Pitfalls

23

The LittleEndianOutputStream was used in combination with a DataOut-
putStream to write integers and shorts in a BMP encoder. Note how we manually
swap the bytes when writing an integer to the underlying OutputStream in the
writeInt () method. We swap the bytes by masking the byte in the original integer
(Big Endian format), shifting it down to the lowest byte position and assigning it to its
new byte position. LittleEndianOutputStream is now obsolete, as Listing 2.3 shows the
encoder rewritten using NIO Buffers.

001: /** BmpWriter3.java */

002: package org.javapitfalls.item2;
003:

004: import java.awt.*;

005: import java.awt.image.*;

006: import java.io.*;

007: import java.nio.*;

008: import java.nio.channels.*;

009:

010: public class BmpWriter3

011: {

012: // File Header - Actual contents (14 bytes):

013: short fileType = 0x4d42;// always "BM"

014: int fileSize; // size of file in bytes

015: short reservedl = 0; // always 0

016: short reserved2 = 0; // always 0

017: int bitmapOffset = 54; // starting byte position of image data
018:

019: // BMP Image Header - Actual conents (40 bytes):

020: int size = 40; // size of this header in bytes

021: int width; // image width in pixels

022: int height; // image height in pixels (if < 0, "top-down")
023: short planes = 1; // no. of color planes: always 1

024 : short bitsPerPixel = 24;// number of bits per pixel: 1, 4, 8, :)
or 24 (no color map)

// Some data members omitted for brevity -- code available online.

037:

038: public void storeImage (Image img, String sFilename) throws :)
IOException

039: {

// ... getting Image width and height omitted for brevity

056:

057 : width = imgWidth;

058: height = imgHeight;

059:

Listing 2.3 BmpWriter3.java (continued)

24 Item 2

060: imgPixels = new int[imgWidth * imgHeight];

061: // pixels are stored in rows

062: try

063: {

064: PixelGrabber pg = new

PixelGrabber (img, 0,0, imgWidth, imgHeight, imgPixels,

065: 0,imgWidth) ;
066: pg.grabPixels () ;

067: } catch (Exception e)

068: {

069: throw new IOException ("Exception. Reason: "

+ e.toString());

070: }

071:

072: // now open the file

073: FileOutputStream fos = new FileOutputStream(sFilename) ;
074: FileChannel fc = fos.getChannel();

075:

076: // write the "header"

077 : boolean padded=false;

078: // first calculate the scanline size

079: iScanLineSize = 3 * width;

080: if (iScanLineSize % 2 != 0)

081: {

082: iScanLineSize++;

083: padded = true;

084: }

085:

086: // now, calculate the file size

087: fileSize = 14 + 40 + (iScanLineSize * imgHeight) ;
088: sizeOfBitmap = iScanLineSize * imgHeight;
089:

090: // create a ByteBuffer

091: ByteBuffer bbuf = ByteBuffer.allocate(fileSize);
092: bbuf.order (ByteOrder.LITTLE ENDIAN) ;

093: bbuf.clear();

094:

095: // now put out file header

096: bbuf.putsShort (fileType) ;

097: bbuf.putInt (fileSize);

098: bbuf.putShort (reservedl) ;

099: bbuf.putShort (reserved2) ;

100: bbuf.putInt (bitmapOffset) ;

101:

// ... some output to buffer code omitted for brevity

Listing 2.3 (continued)

NIO Performance and Pitfalls 25

113:

114: // put the pixels

1i5s for (int i= (imgHeight - 1); i >= 0; i--)

116: {

117: byte pad = 0;

118: for (int 3j=0; j < imgWidth; Jj++)

119: {

120: int pixel = imgPixels[(i * width) + jl;
121: byte alpha = (byte) ((pixel >> 24) & O0xff);
122: byte red = (byte) ((pixel >> 16) & Oxff);
123: byte green = (byte) ((pixel >> 8) & O0xff);
124: byte blue = (byte) ((pixel) & Oxff);
125:

126: // put them bgr

127: bbuf .put (blue) ;

128: bbuf.put (green) ;

129: bbuf.put(red);

130: }

131: if (padded)

132: bbuf.put (pad) ;

133: }

134:

135: bbuf.flip();

136: fc.write(bbuf) ;

137: fos.close();

138: }

139:

140: public static void main(String args[])

141: {

// method omitted for brevity - available on Web site.

171:

172: 1}

173:

Listing 2.3 (continued)

The key lines of Listing 2.3 are as follows:

m At lines 64 and 65, we grab the image pixels (as integers) using the Pixel-
Grabber class.

m At lines 73 and 74, we first create the FileOutputStream for the BMP output
file and then get the FileChannel using the getChannel () method. This
demonstrates the integration between the existing IO packages (FileOutput-
Stream) and the new IO packages (FileChannel).

26

Item 2

m Atline 91, we create a ByteBuffer via the static allocate () method. It
is important to note that there is also an allocateDirect () method, which
allows you to create DirectBuffers. ADirectBuffer is a buffer allocated
by the operating system to reduce the number of copies between the virtual
machine and the operating system. How DirectBuffers are implemented
differs for each operating system. Additionally, a direct buffer may be more
expensive to create because of the interaction with the operating system, so
they should be used for long-standing buffers.

m There are three values associated with all buffers: position, limit, and capacity.
The position is the current location to read from or write to. The limit is the
amount of data in the array. The capacity is the size of the underlying array.

m Atline 92, we use the order () method to set the endian order to
LITTLE_ENDIAN.

m At lines 96 and 97, we use putInt ()and putShort () to write integers and
shorts, respectively, in Little Endian order, to the byte buffer.

m At line 135, we flip the buffer from reading to writing using the £1ip ()
method. The £1ip () method sets the limit to the current position and the
position back to 0.

m At line 136, we write the byte buffer to the underlying file.

Now we can finish our discussion of NIO by examining how the package imple-
ments non-blocking IO.

Non-Blocking Server IO

Before NIO, Java servers would create a thread to handle each incoming client connec-
tion. You would see a code snippet like this:

while (true)

{
Socket s = serverSocket.accept();
Thread handler = new Thread(new SocketHandler(s));
handler.start () ;

More experienced programmers would reuse threads via a thread pool instead of
instantiating a new thread each time. So, the first key new feature of NIO is the ability
to manage multiple connections by way of a multiplexer class called a Selector. Multi-
plexing is a networking term associated with protocols like the User Datagram Protocol
(UDP) that multiplexes communication packets to multiple processes. Figure 2.1
demonstrates multiplexing.

NIO Performance and Pitfalls 27

Figure 2.1 UDP multiplexing example.

So, after hearing about Selectable channels and deciding that they are a good thing,
we set out to use them. We examine the JDK documentation and study the example
programs like NBTimeServer.java. The “non-blocking time server” demonstrates non-
blocking IO by creating a simple server to send the current time to connecting clients.
For our demonstration program, we will write a server that is the start of a collabora-
tive photo space. In that space we need to share images and annotations. Here we only
scratch the surface of the application by creating a server to receive the images and
annotations from clients. Listing 2.4 has the initial attempt at a non-blocking server:

001: /* ImageAnnotationServerl.java */
002: package org.javapitfalls.item2;
003:

004: import java.util.*;

005: import java.io.*;

006: import java.nio.*;

007: import java.net.*;

008: import java.nio.channels.*;

Listing 2.4 ImageAnnotationServer1.java (continued)

28 Item 2

009:
010:
011:
012:
013:
014:
015:
0l16:
017:
018:
019:
020:
021:
022:
023:
024:
025¢
026:
027:
028:
029:

public class ImageAnnotationServerl

{
public static final int DEFAULT IAS_PORT = 8999;
boolean done;

public ImageAnnotationServerl() throws Exception
{
this (DEFAULT_ IAS_PORT) ;

public ImageAnnotationServerl (int port) throws Exception
{

acceptConnections (port) ;

public void acceptConnections (int port) throws Exception

{
// get the ServerSocketChannel
ServerSocketChannel ssc = ServerSocketChannel.open();
System.out.println("Received a: " +

ssc.getClass () .getName ()) ;

030:
031:
032
033:
034:
035:
036:

// get the ServerSocket on this channel
ServerSocket ss = ssc.socket();

// bind to the port on the local host
InetAddress address = InetAddress.getLocalHost() ;

InetSocketAddress sockAddress = new

InetSocketAddress (address, port);

037: ss.bind (sockAddress) ;

038:

039: // set to non-blocking

040: ssc.configureBlocking (false) ;

041:

042: // create a Selector to multiplex channels on
043: Selector theSelector = Selector.open();

044:

045: // register this channel (for all events) with the
Selector

046: // NOTE -- how do we know which events are OK????
047: SelectionKey theKey = ssc.register(theSelector,

SelectionKey.OP_ACCEPT |

Listing 2.4 (continued)

NIO Performance and Pitfalls 29

048: SelectionKey.OP_READ |
049: SelectionKey.OP_CONNECT |
050: SelectionKey.OP_WRITE) ;
051:

052: while (theSelector.select() > 0)

053: {

054: // get the ready keys

055: Set readyKeys = theSelector.selectedKeys();

056 : Iterator i = readyKeys.iterator();

057:

058: // Walk through the ready keys collection and :)
process datarequests.

059: while (i.hasNext ())

060: {

061: // get the key

062: SelectionKey sk = (SelectionKey)i.next():;
063:

064: if (sk.isConnectable())

065: {

066: System.out.println("is Connectable.");
067: }

// ... other checks removed for brevity

083: }

084: }

085: }

086:

087: public static void main(String [] args)

088: {

// ... argument check removed for brevity

094 :

095: try

096: {

097: int p = Integer.parselnt (args[0]);

098: ImageAnnotationServerl iasl = new :)
ImageAnnotationServerl (p) ;

099: } catch (Throwable t)

100: {

101: t.printStackTrace() ;

102: }

103: }

104: }

105:

Listing 2.4 (continued)

30

Item 2

Let’s walk through the logic in this program one step at a time. These follow the bold
lines in Listing 2.4. The steps are as follows:

1. Atline 28, the program opens the ServerSocketChannel. You do not
directly instantiate a ServerSocketChannel. Instead, you get an instance of
one from the Service Provider Interface classes for this channel type.

2. Atline 32, the program gets the ServersSocket from the ServerSock-
etChannel. The connection between the original java.net classes (Socket
and ServerSocket) and their respective channels is more intertwined than
the relationship between the original IO streams and their respective channels.
In this case, a ServerSocketChannel is not a bound connection to a port;
instead, you must retrieve the ServerSocket and bind it to the network
address and port. Without you blindly copying the example code, it is unintu-
itive when you must switch from channels to their IO counterparts.

3. Atline 37, the program binds the local host and port to the server socket.

4. Atline 40, we configure the ServersSocketChannel to be non-blocking. This
means that a call to read or write on a socket from this channel will return
immediately whether there is data available or not. For example, in blocking
mode, the program would wait until there was data available to be read before
returning. It is important to understand that you can use these selectable chan-
nels on both clients and servers. This is the chief benefit of non-blocking IO—
your program never waits on the IO but instead is notified when it occurs. This
concept of the program reacting to multiplexed data instead of waiting until it
occurs is an implementation of the Reactor pattern [Schmidt 96]. Figure 2.2 is a
UML diagram of the Reactor pattern.

Reactor Handle

-void select()
-void register_handler(h:h)
-void handle_events()

<<interface>> ConcreteEventHandler
EventHandler

Figure 2.2 The Reactor pattern.

NIO Performance and Pitfalls

31

The Reactor pattern demultiplexes concurrent events to one or more event handlers.
The key participants in the pattern are handles and a synchronous event demulti-
plexer. A handle represents the object of the event. In the NIO package implementation
of this pattern, the handle is represented by the SelectionKey class. Thus, in relation
to network servers, a handle represents a socket channel. The synchronous event
demultiplexer blocks awaiting for events to occur on a set of handles. A common
example of such a demultiplexer is the Unix select () system call. In the NIO pack-
age implementation of this pattern, the Selector class performs the synchronous event
demultiplexing. Lastly, the Event Handler interface (and specific implementation)
implements an object hook for a specific event handling. In the NIO implementation,
the SelectionKey performs the object hook operation by allowing you to attach an
object via the attach() method and retrieve the object via the attachment ()
method. Here is an example of attaching a Callback object to a key:

sk.attach(new Callback(sk.channel()));

1. Atline 43, we create a Selector object (by calling the Selector.open ()
method) to multiplex all registered channels.

2. Atline 47, we register the SelectableChannel with the Selector and
specify which operations in the channel we want to be notified about. Here lies
are first potential pitfall. If we do not register the correct operations for this
channel object (which is provided by a Service Provider and not instantiated),
an exception will be thrown. The operations that you can register for are
OP_ACCEPT, OP_CONNECT, OP_READ, and OP_WRITE. In fact, in Listing 2.4,
since we did not check which operations are valid on this channel with the
validOps () method, an exception will be thrown.

3. Atline 52, we call select () on the Selector to wait for operations on the
registered channels.

4. Atline 55, the select () method returns the number of SelectionKeys
ready for processing. If the number is greater than 0, you can retrieve the set of
selected SelectionKeys. A SelectionKey represents the registration and
state of a Channel registered with a Selector. Once you have the Selec-
tionKey, you can test its state and act accordingly.

Running Listing 2.4 produces:

E:\classes\org\javapitfalls\item2>java :)
org.javapitfalls.item2.ImageAnnotationServerl 5544
Received a: sun.nio.ch.ServerSocketChannelImpl

java.lang.IllegalArgumentException at
java.nio.channels.spi.AbstractSelectableChannel.register :)
(AbstractSelectableChannel.java:170)

The IllegalArgumentException is thrown because we attempted to register
operations that were not valid on the ServersocketChannel. The only operation we
can register on that channel is OP_ACCEPT. Listing 2.5 registers the correct operation,

32 Item 2

accepts the channel, and receives a file from the client. Listing 2.5 presents the changes
to the acceptConnections () method.

025: public void acceptConnections (int port) throws Exception

026: {

// ... omitted code Identical to Listing 2.4

053: SelectionKey theKey = ssc.register(theSelector, :)
SelectionKey.OP_ACCEPT) ;

054:

0553 int readyKeyCnt = 0;

056: while ((readyKeyCnt = theSelector.select()) > 0)

057: {

058: System.out.println("Have " + readyKeyCnt + " ready keys...");
059:

060: // get the ready keys

061: Set readyKeys = theSelector.selectedKeys() ;

062: Iterator i = readyKeys.iterator();

063:

064: // Walk through the ready keys collection and process the :)
requests.

065: while (i.hasNext())

066: {

067: // get the key

068: SelectionKey sk = (SelectionKey)i.next():;

069: i.remove() ;

070:

071: if (sk.isAcceptable())

072: {

073: System.out.println("is Acceptable.");

074: // accept it

075:

076: // get the channel

077: ServerSocketChannel channel = (ServerSocketChannel) :)
sk.channel();

078:

079: // using method in NBTimeServer JDK example

080: System.out.println ("Accepting the connection.");

081: Socket s = channel.accept () .socket():;

082:

083: DataInputStream dis = new :)

DataInputStream(s.getInputStream()) ;

U

084: DataOutputStream dos = new
DataOutputStream(s.getOutputStream()) ;

085:

086: // Code to read file from the client
112: }

113: }

114: }

115:}

Listing 2.5 Changes to acceptConnections () method

NIO Performance and Pitfalls

33

After working our way through the simple incorrect event registration pitfall, we
can create a non-blocking server that properly accepts a socket connection. Here are the
key changes highlighted in Listing 2.5:

m At line 53, we register the single operation OP_ACCEPT on the server socket
channel.

m At line 56, we call select () to wait on any events on the registered channel.

m Atline 69, we remove the SelectionKey from the set of SelectionKeys
returned from the select () method. This is a potential pitfall, because if you
do not remove the key, you will reprocess it. So, it is the programmer’s respon-
sibility to remove it from the set. This is especially dangerous if you have mul-
tiple threads processing the selection keys.

m At line 71, we test if the key isAcceptable () ,which is the only operation we
registered for. However, it is important to understand that once accepted, you
get a channel for each incoming connection (each a separate key), which can in
turn be registered with the Selector for other operations (reads and writes).

m At line 77, we get the registered channel (in this case the ServerSock-
etChannel) from the SelectionKey via the channel () method.

m Atline 81, we call the accept () method to accept the socket connection and
get a SocketChannel object. Given this object we can either process the chan-
nel (which is the approach of our simple server) or register it with the Selector
like this:

SocketChannel sockChannel = channel.accept();
sockChannel.configureBlocking(false);
SelectionKey readKey =
sockChannel .register (theSelector,
SelectionKey.OP_READ|SelectionKey.OP_WRITE);

Arun of Listing 2.5 (ImageAnnotationServer2) accepts a single connection, receives
the file, and then exits. The problem is in line 56 where the while loop (which follows
Sun’s NBTimeServer example) only continues if there are greater than 0 events
returned from select (); however, the documentation clearly states that 0 events may
be returned. Therefore to fix this pitfall, it is necessary to loop forever in the server and
not assume select () will block until at least one event is ready, like this:

int readyKeyCnt = 0;
// loop forever (even if select() returns 0 ready keys)
while (true)
{
readyKeyCnt = theSelector.select();
//
}

With the above change made, ImageAnnotationServer3.java is ready to continually
accept files from clients. This pitfall has introduced you to some of the major features
of the NIO package. The package has some clear benefits at the cost of some additional
complexity. Readers should be ready for more changes to Java’s IO packages. The most

34

Item 3

glaring pitfall with this package is its separation from the IO package and the addition
of brand-new metaphors. Having said that, most programmers will overlook that
incongruity for the benefits of the new features. Overall, the performance improve-
ments offered by NIO make up for the minor pitfalls mentioned here. All programmers
should be encouraged to learn and use the NIO package.

Item 3: | Prefer Not to Use Properties

I have worked in a number of places where all development was done on an isolated
network and a set of machines was used for office automation tasks like email, Web
browsing, word processing, and time charging.

In this case, I really have two sets of properties that I need to handle. First, I have the
set of properties that handle configuring the system in general. Examples of this would
be the mail server that needs to be referenced, the network file server to point toward,
and the timecard server. These are things that are clearly independent of any user and
have more to do with the system than the individual user accessing the system.

Second, a multitude of user properties are required. It starts by being arranged by
functional application, and then it is further organized by functional areas within the
application.

Consider this properties file:

server=timecard.mcbrad.com
server=mail.mcbrad.com
server=ftp.mcbrad.com

This obviously wouldn’t work, but it illustrates a simple problem in a properties file.
You cannot give a common name to a particular property. Notice that naming a prop-
erty “server” is remarkably appropriate in each of these cases. Furthermore, if you
wanted to use a common piece of code to make a TCP/IP connection for all three apps
listed, you couldn’t do it without either writing custom code to parse out of three dif-
ferent files (a maintenance nightmare) or parsing the server subproperty.

This properties file shows a more typical example to avoid namespace collision:

timecard.server=timecard.mcbrad.com
mail.server=mail.mcbrad.com
ftp.server=ftp.mcbrad.com

Notice that these property names imply a sense of hierarchy. In fact, there is no hier-
archy. There are only further qualified property names to make them more unique.
However, our earlier example gave us the idea of being able to take the server subnode
off of all of the primary nodes. There are no nodes since the properties file is not stored
as a tree. This is where the Preferences API comes in handy. Listing 3.1 is an example of
a preferences file.

I Prefer Not to Use Properties

35

01: <?xml version="1.0" encoding="UTF-8"?>

02: <!DOCTYPE preferences SYSTEM :D
'http://java.sun.com/dtd/preferences.dtd'>

03:

04: <preferences EXTERNAL_XMI,_ VERSION="1.0">

05:

06: <root type="user">

07: <map />

08: <node name="com">

09: <map>

10: <entry key="addr" value="8200 Greensboro Dr." />
11: <entry key="pi" value="3.1416" />

12: <entry key="number" value="23" />

133 </map>

14: <node name="mcbrad">

15: <map />

16: <node name="prefs">

17: <map>

18: <entry key="mail" value="mail" />

19: <entry key="ftp" value="shortbus" />

20: <entry key="timecard" value="spectator" />
21l 3 </map>

223 </node>

23: </node>

24 </node>

253

26: </root>

27: </preferences>
28:

Listing 3.1 A preferences file

This preferences file shows the hierarchical organization of its XML format. It is very
helpful when organizing multiple preferences under a particular user’s settings.

Hang on, though. This just jumped from a discussion of system properties to user
properties. Being able to do that in a single file is probably the best example of how we
benefit from a hierarchical format. Now that we have a tree structure, not only can we
separate nodes between different parts of the system, but we can also make a separa-
tion between the system and the user. Once that separation can be defined, we can
make a distinction between users. This makes it easier to maintain a large number of
users, all separated on the tree.

Using properties, you must store user properties within the context of the user’s
home directory, and then you almost always need to store those values in a file that is
hard-coded into the system. This adds an additional problem with trying to ensure
consistent access to these hard-coded locations. Listing 3.2 is an example of how a
developer might use properties.

36

Item 3

01: package org.pitfalls.prefs;

02:

03: import java.util.Properties;

04: import java.io.*;

0553

06: public class PropertiesTest {

07:

08: private String mailServer;

09: private String timecardServer;

10: private String userName;

11: private String ftpServer;

123

13:

14: public PropertiesTest () {

155 }

16:

17: [GETTER AND SETTER METHODS FOR MEMBER VARIABLES...]
18:

19: public void storeProperties() {

20:

21: Properties props = new Properties();
228

233 props.put ("TIMECARD", getTimecardServer()) ;
24 : props.put ("MAIL", getMailServer());

253 props.put ("FTP", getFtpServer());

26: props.put ("USER", getTimecardServer()) ;
27 :

28: try {

29:

30: props.store(new FileOutputStream("myProps.properties")
"Properties") ;

31:

32: } catch (IOException ex) {

33:

34: ex.printStackTrace() ;

353

36: }

37:

38: }

393

Listing 3.2 Storing user properties

Here is the example of the properties file that is produced:

#Properties

#Sun Feb 24 23:16:09 EST 2002
TIMECARD=time.mcbrad.com
FTP=ftp.mcbrad.com
USER=time.mcbrad.com

MAIL=mail .mcbrad.com

)

I Prefer Not to Use Properties 37

Instead, Listing 3.3 shows the same example with preferences:

package org.pitfalls.prefs;

import java.util.prefs.Preferences;

public class PreferencesTest {
private String mailServer;
private String timecardServer;
private String userName;

private String ftpServer;

public PreferencesTest () {

[GETTER AND SETTER METHODS FOR MEMBER VARIABLES...]

public void storePreferences () {
Preferences prefs = Preferences.userRoot () ;
prefs.put ("timecard", getTimecardServer()) ;
prefs.put ("MAIL", getMailServer());
prefs.put ("FTP", getFtpServer()) :;
prefs.put ("user", getTimecardServer());

public static void main(String[] args) {

PreferencesTest myPFTest = new PreferencesTest() ;
myPFTest.setFtpServer ("ftp.mcbrad.com") ;
myPFTest.setMailServer ("mail .mcbrad.com") ;
myPFTest .setTimecardServer ("time.mcbrad.com") ;
myPFTest.setUserName ("Jennifer Richardson") ;

myPFTest.storePreferences() ;

Listing 3.3 Storing user preferences

Figure 3.1 shows the preferences stored, in this case, in the Windows Registry.
Notice the slashes prior to each of the capital letters? This is due to the implementation
on the Windows Registry, which does not support case-sensitive keys. The slashes sig-
nify a capital letter.

38

Item 3

7= Registry Editor - [HKEY_CURRENT_USER on Local Machine] [_ =] x|
[Registry Edit Tree View Security Options Window Help NEE

3] BasicScript Frogram Settings :l ETiF REG_SZ : pmchrad.com

-2 Borland MAisAL: REG_SZ : mail.mcbrad com

&3 Bradbun, fimecard : BEG_SZ ima.mchrad.com

-0 Claseas ucar REG_SZ ime mcbrad.com

-0 Claudmark

-G8 Owsnt

22 Cydoor

-G Cydoor Services
-0 eFmccom

&0 e2ula

68 Google

-0 Grokster

-G Hilgroewve Inc
8 Intel

- InterTrust

~C0 Irverse

& JavaSaoft

08 Karaa

08 Kadak

~CJ LeachFTF

08 Local AppWizard-Genersted Applicetions

08 Macromedia

-G8 Microzoft

8 Marphaus

-0 Mazilla

G mozilla.org

G0 Metscape

58 Mico Mak Camputing

G0 coedc

-5 Palicies

3 Primax

GO FRISMES

G0 Frodioy j
. L e

Figure 3.1 Preferences stored in the Windows Registry.

So is the hierarchical nature of preferences the reason to use them instead of proper-
ties? While that is certainly a great reason, it is not the only reason. Properties files have
no standardized way of placing configuration information within the filesystem. This
means that you need a configuration file to find your configuration file! Furthermore,
you must have a filesystem available, so a lot of devices cannot use the Properties
APL

What about using JNDI? JNDI is a hierarchical structure. JNDI is a solid choice for
maintaining information about users, applications, and distributed objects. Two things
run against JNDI, however:

m [t doesn’t give any indication of how the hierarchy is structured. Just because
you can access the naming or directory service through JNDI doesn’t give the
information necessary to find the root of your specific context.

m [t can seem like driving a tack with a sledgehammer. JNDI requires a directory
server to be available. Often the directory server is maintained by a separate
organization, which may not see value in maintaining the fact that a guy
named Marshall likes to have his email messages display their text in hot pink.
No matter what your application, there is likely to be something that should be
maintained in a more simple fashion.

Why not have a solution that handles properties in a hierarchical fashion and is
independent of the back end storage mechanism? This is what the Preferences API
gives you.

When Information Hiding Hides Too Much

39

Item 4: When Information Hiding Hides Too Much

When you are developing a framework that will be used by a large project, it is some-
times helpful to abstract the details of another API from the developers using your
framework. For example, in an access control system, it may not be necessary to tell the
users of your API that you are using database access control, directory server access
control, or your own homegrown method of access control. Instead, you may simply
hide the fact of what mechanism you are using and provide a public class (or interface)
called AccessControl. When you write the implementation class, you will handle
the mechanism of access control.

Many times, when API developers abstract the implementation of these classes,
sometimes foo much is abstracted where implementation-specific exceptions are
involved. As an example, see Listing 4.1, which is an implementation of an access con-
trol mechanism with a Lightweight Directory Access Protocol (LDAP)-based directory
server.

01: package org.javapitfals.item4;
02: import netscape.ldap.*;
03: public class AccessControl

04: {

05: private String m_host = null;
06: private int m_port = 389;
07: private int m_ldapversion = 3;
08: private LDAPConnection m_ld = null;
09:

10:

// 1 and 2 argument constructors removed for brevity...
20: public AccessControl (String hostname, int portnumber,
int ldapversion)

21: {

22: m_host = hostname;

23: m_port = portnumber;

24: m_ldapversion = ldapversion;

25: }

26: private void createConnection() throws LDAPException
27: {

28: m_1d = new LDAPConnection() ;

29: m_1d.connect (m_host, m_port) ;

30: }

31: /**

32: * The purpose of this function is to authenticate to
33: * the Directory Server with credentials.

34: &

35: * @param uname the user name

36: * @param pw the password

37: * @return successful authentication

38: */

Listing 4.1 A bad example of abstracting details (continued)

40

Item 4

39: public boolean authenticate(String uname, String pw)

40: {

41: boolean result = false;

42: String dn = "uid=" + uname + ",ou=People,dc=pitfalls.org";
43: try

44: {

45: createConnection() ;

46: m_1ld.authenticate(m_ldapversion, dn, pw);

47: result = true;

48: }

49: catch (LDAPException e)

50: {

51: //here, result is originally set to false, so do nothing
52: }

53: return (result);

54: }

55: }

Listing 4.1 (continued)

In lines 39 through 54 of Listing 4.1, there exists a method called authenticate ()
that returns a boolean value, denoting a successful login to the access control mecha-
nism. In line 42, the username is turned into a LDAP distinguished name, and in lines
45 and 46, the method creates a connection and attempts to authenticate the user. If an
LDAPException is thrown, the method simply returns false.

This is a good example of how ignoring exceptions for the purpose of hiding detail
can cause hours and hours of pain for developers using this code. Of course, this
class compiles fine. If the infrastructure is in place for this example (network connec-
tivity, a directory server, the correct username and password), the method will return
a boolean true value, and everything will work correctly. However, if there is another
problem, such as a directory server problem or network connectivity problems, it
will return false. How does the implementer using this API handle the problem or
know what the problem is? The original API used by this class throws an LDAPEx-
ception, but the authenticate method in listing 4.1 simply ignores it and returns
false.

What is the API developer of this class to do? First of all, a simple design change to
use an interface that has the authenticate () method could be used along with a
creational design pattern. This way, multiple implementation classes could be written
(LDAPAccessControl, DatabaseAccessControl, etc.) that can realize this inter-
face, depending on which mechanism we are using. The developer using the API
would still not need to know the internals but would have to handle an exception
thrown by that method, as shown in the code segment below.

When Information Hiding Hides Too Much

41

public interface iAccessControl

{
public boolean authenticate(String user, String passwd) throws
AccessException;

The inclusion of a new exception brings up another possible pitfall, however. We have
created a new AccessException class because we do not want the API user to have to
handle exceptions such as LDAPException that are dependent on our hidden imple-
mentation. In the past, developers have handled this in a way shown in Listing 4.2.

01: public boolean authenticate(String uname, String pw)
throws AccessException

02: {

03: boolean result = false;

04: String dn = "uid=" + uname + ",ou=People,dc=pitfalls.org";
05: try

06: {

07: createConnection() ;

08: m_ld.authenticate(m_ldapversion, dn, pw);
09: result = true;

10: }

11: catch (LDAPException e)

128 {

133 throw new AccessException(e.getMessage());
14: }

15: return (result);

16: }

17: 1}

Listing 4.2 Losing information with a new exception

On line 13 of Listing 4.2, we throw a new AccessException class to hide the
LDAP-specific exception from the API user. Unfortunately, sometimes this complicates
debugging because we lose a lot of information about the original cause of the excep-
tion, which was contained in our original LDAPException. For example, perhaps
there was an actual bug in the LDAP API we are using. We lose a vast majority of
debugging information by discarding the “causative exception,” which was LDAPEx -
ception in our example.

Prior to JDK 1.4, situations like these presented quite a few problems for debugging.
Thankfully, JDK 1.4 released much-needed enhancements to allow “chained excep-
tions.” Changes to the java.lang.Throwable class can be seen in Table 4.1, and the
implementation of Throwable.printStackTrace ()was also changed to show the
entire “causal” chain for debugging purposes. As you can see by looking at Table 4.1,
Throwable classes can now be associated as the “cause” for other Throwable classes.

42 Item 4

Table 4.1

New Chained Exception Capabilities Added to Throwable in JDK 1.4

METHOD DESCRIPTION

public Throwable getCause () Returns the cause of this throwable

or null if the cause is nonexistent or
unknown. (The cause is the throwable
that caused this throwable to get

thrown.)
public Throwable Initializes the cause of this
initCause (Throwable c) throwable to the specified value.

(The cause is the throwable that
caused this throwable to get thrown.)

public Throwable (Throwable cause) Constructs a new throwable with

the specified cause.

public Throwable (String message, Constructs a new throwable with the

Throwable cause) specified detail message and cause.

Of course, java.lang.Exception and java.lang.Error are subclasses of
Throwable, so now we can make minor adjustments to our code, passing in the cause
of the exception to our new AccessException class. This is seen in Listing 4.3.

01: public boolean authenticate(String uname, String pw)

throws AccessException

02: {
03:
04:
05:
06:
07:
08:
09:
10:
11:
12:
13:
14:
15:
16:
17: 1}

boolean result = false;
String dn = "uid=" + uname + ",ou=People,dc=pitfalls.org";
try
{
createConnection () ;
m_ld.authenticate(m_ldapversion, dn, pw);
result = true;
}
catch (LDAPException e)
{
throw new AccessException(e);
}

return (result);

Listing 4.3 Modifying authenticate (), passing causality

When Information Hiding Hides Too Much 43

Listing 4.3 shows a simple way to handle our exception without losing information.
Finally, Listing 4.4 shows the resulting class that replaces the listing in 4.1. As you can
see in line 3 of Listing 4.4, we create a class that implements our iAccessControl
interface, and we have modified our authenticate() method to throw an
AccessException, passing the causal exception to the constructor in lines 39 to 55.

01:
02:
03:
04:
05:
06:
07:
08:
09:
10:
11:
12:
133
14:
15:
16:
17:
18:
193
20:

21:
223
233
24:
25:
26:
27:
28:
293
30:
31:
BN
33:
34:
35:
36:
37:

package org.javapitfals.itemd;
import netscape.ldap.*;
public class LDAPAccessControl implements iAccessControl

{

private String m_host = null;
private int m_port = 389;
private int m_ldapversion = 3;

private LDAPConnection m_1d

null;

public LDAPAccessControl (String hostname)

{
this (hostname, 389, 3);

public LDAPAccessControl (String hostname, int portnumber)
{
this (hostname, portnumber, 3);
}
public LDAPAccessControl (String hostname, int portnumber,
int ldapversion)

m_host = hostname;

m_port = portnumber;

m_ldapversion = ldapversion;
}
private void createConnection() throws LDAPException
{

m_1d = new LDAPConnection() ;

m_1d.connect (m_host, m_port) ;

* The purpose of this function is to authenticate to
* the Directory Server with credentials.

* @param uname the user name
* @param pw the password
* @return successful authentication

Listing 4.4 The better implementation (continued)

44 Item 5

38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52§
583
54:
5512
56:

public boolean authenticate(String uname, String pw)

throws AccessException

{

boolean result = false;
String dn = "uid=" + uname + ",ou=People,dc=pitfalls.org";
try
{
createConnection();
m_ld.authenticate(m_ldapversion, dn, pw);
result = true;
}
catch (LDAPException e)
{
throw new AccessException(e);
}
return (result);

Listing 4.4 (continued)

This pitfall showed the traps that can present themselves when you try to hide the
implementation details when creating an API for use by other developers. The key
points that you should keep in mind are as follows:

m Take advantage of interfaces when hiding your implementation details.

m Be wary of not handling exceptions properly. Instead of returning a value from

a method (such as false or null), think about the cause of your returning these
values. If there could be multiple causes, throw an exception.

Instead of taking some information from one exception and placing it a new
exception, take advantage of the new JDK 1.4 changes to Throwable and add
the original exception to your new exception.

Item 5: Avoiding Granularity
Pitfalls in java.util.logging

The release of J2SDK 1.4 brought us a new logging API—java.util.logging. For
those of us who have been frustrated by our own implementations of logging over the
years, this can be a powerful package that comes out of the box with the J2SE. An appli-
cation can create a logger to log information, and several handlers (or objects that “log”
the data) can send logging information to the outside world (over a network, to a file,
to a console, etc.) Loggers and handlers can filter out information, and handlers can
use Formatter objects to format the resulting output of the Handler object.

Avoiding Granularity Pitfalls in java.util.logging

45

Level.OFF

Level.SEVERE /N

Level. WARNING

Level.INFO

Level. CONFIG

SHOWS

Level.FINE

Level.FINER

Level.FINEST

Level ALL

Figure 5.1 Levels of granularity.

At first glance, adding a logging solution into your application looks incredibly easy
and quite intuitive. When you start changing the granularity of logging, however,
there are some potential pitfalls that lie in your path. Figure 5.1 shows the levels of
granularity from the class java.util.logging.Level, with the lowest level of
granularity being Level . FINEST. The key point to know is that when a logger is set
to show messages at a level of granularity, it will show messages labeled at that level
and above. For example, a logger set to the FINEST level of granularity will show all
messages labeled Level .FINEST and above in Figure 5.1. When a logger is set to
show messages at Level.INFO, it will show messages labeled Label.INFO,
Label .WARNING, and Label.SEVERE. Of course, as Figure 5.1 shows, the Level
class also includes “ALL” for logging all messages and “OFF” for logging no messages.

A first attempt at using this log package, experimenting with levels of granularity,
can be shown in Listing 5.1.

01: package org.javapitfalls.item5;
02:

03: import java.io.*;

04: import java.util.logging.*;

05:

06: public class BadLoggerExamplel

07: {

08: private Logger m_log = null;

095

10: public BadLoggerExamplel (Level 1)

Listing 5.1 BadLoggerExample 1 (continued)

46 Item 5

11: {

123

13:

14: //This creates the logger!

155 m_log =

Logger .getLogger ("org.pitfalls.BadLoggerExamplel.logger") ;
16:

17: m_log.setLevel (1) ;

18: }

19: /*

20: * This tests the levels of granularity!

21: 2y

22: public void test()

23: {

24: System.out.println("The level for the log is: "
25: + m_log.getLevel());
26: m_log.finest ("This is a test for finest");
27 : m_log.finer("This is a test for finer");
28: m_log.fine("This is a test for fine");

285 m_log.info("This is a test for info");

30: m_log.warning ("This is a warning test");
31: m_log.severe("This is a severe test");

32: }

33:

34: VA

35: * A very simple example, where we will optionally
36: * pass in the level of granularity to our application
37: */

38: public static void main(String[] args)

39: {

40: Level loglevel = Level.INFO;

41 :

42 if (args.length !=0)

43 {

44 : if (args([0].equals("ALL"))

45 {

46: loglevel = Level.ALL;

47 }

48: else if (args[0].equals ("FINE"))

49: {

50: loglevel = Level.FINE;

51: }

52: else if (args[0].equals ("FINEST"))
53: {

54: loglevel = Level.FINEST;

55: }

56: else if (args[0].equals ("WARNING"))
57: {

583 loglevel = Level.WARNING;

Listing 5.1 (continued)

Avoiding Granularity Pitfalls in java.util.logging

47

59: }

60: else if (args([0].equals("SEVERE")
61: {

62: loglevel = Level.SEVERE;

63: }

64:

653 }

66: BadLoggerExamplel logex = new BadLoggerExamplel (loglevel) ;
67: logex.test () ;

68: }

69:}

Listing 5.1 (continued)

In Listing 5.1, you can see that we create a simple logger and call a test function that
tests the levels of granularity. In the main () method of this class, we pass it an argu-
ment pertaining to the level of granularity (ALL, FINE, FINEST, WARNING, SEVERE),
or if there is no argument, the loglevel defaults to INFO. If you run this program with-
out an argument, you will see the following printed to standard error, which is correct
output:

The level for the log is: INFO

Feb 16, 2002 3:42:08 PM org.pitfalls.logging.BadLoggerExamplel test
INFO: This is a test for info

Feb 16, 2002 3:42:08 PM org.pitfalls.logging.BadLoggerExamplel test
WARNING: This is a warning test

Feb 16, 2002 3:42:08 PM org.pitfalls.logging.BadLoggerExamplel test
SEVERE: This is a severe test

Additionally, if you pass SEVERE as an argument, you will see the following correct
output:

The level for the log is: SEVERE
Feb 16, 2002 3:42:09 PM org.pitfalls.logging.BadLoggerExamplel test
SEVERE: This is a severe test

However, if you run this program with the argument FINE, you will see the following;:

The level for the log is: FINE

Feb 16, 2002 3:42:10 PM org.pitfalls.logging.BadLoggerExamplel test
INFO: This is a test for info

Feb 16, 2002 3:42:10 PM org.pitfalls.logging.BadLoggerExamplel test
WARNING: This is a warning test

Feb 16, 2002 3:42:10 PM org.pitfalls.logging.BadLoggerExamplel test
SEVERE: This is a severe test

48

Item 5

What happened? Where are the “fine” messages? Is something wrong with the Log-
ger? We set the level of granularity to FINE, but it still acts as if its level is INFO. We
know that is wrong, because we printed out the level with the Logger’s getLevel ()
method. Let us add a FileHandler to our example, so that it will write the log to a
file, and see if we see the same output. Listing 5.2 shows the BadLoggerExample2,
where we add a FileHandler to test this. On lines 20 and 21 of Listing 5.2, we create
anew FileHandler to write to the log file log.xml, and we add that handler to our
Logger object.

01: package org.javapitfalls.item5;
02:

03: import java.io.*;

04: import java.util.logging.*;

05:

06: public class BadLoggerExample2

07: {

08: private Logger m_log = null;

09:

10: public BadLoggerExample2 (Level 1)
11: {

12: FileHandler fh = null;

13:

14: //This creates the logger!

15: m_log = :)

Logger .getLogger ("org.pitfalls.BadLoggerExample2.logger") ;
16:

17: //Try to create a FileHandler that writes it to file!
18: try

1953 {

20: fh = new FileHandler ("log.xml");

21: m_log.addHandler (fh) ;

223 }

23: catch (IOException ioexc)

24 : {

258 ioexc.printStackTrace () ;

26: }

27 :

28: m_log.setLevel (1) ;

IOE }

30: /*

2l g * This tests the levels of granularity!

32: */

33: public void test()

34: {

353 System.out.println("The level for the log is: "

Listing 5.2 BadlLoggerExample2.java (continued)

Avoiding Granularity Pitfalls in java.util.logging 49

36:
37:
38:
393
40:
41:
42
43:
44 :
45:
46:
47 :
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
593
60:
61:
62:
63:
64 :
65:
66:
67:
68:
693
70:
71:
72:
73:
74:
75:
76:
77 3
78:
79:
80:

+ m_log.getLevel ()) ;

m_log.finest("This is a test for finest");

m_log.finer ("This is a test for finer");

m_log.fine("This is a test for fine");

m_log.info("This is a test for info");

m_log.warning ("This is a warning test");

m_log.severe("This is a severe test");

/*

* A very simple example, where we will optionally

* pass in the level of granularity to our application

*/

public static void main(String[] args)

{

Level loglevel = Level.INFO;

if

{

}

(args.length !=0)

if (args([0].equals("ALL"))
{
loglevel = Level.ALL;
}
else if (args([0].equals("FINE"))
{
loglevel = Level.FINE;
}
else if (args[0].equals("FINEST"))
{
loglevel = Level.FINEST;
}
else if (args[0].equals ("WARNING"))
{
loglevel = Level.WARNING;
}
else if (args([0].equals("SEVERE"))
{
loglevel = Level.SEVERE;

BadLoggerExample2 logex = new BadLoggerExample2 (loglevel) ;

logex.test () ;

Listing 5.2 (continued)

Item 5

This time, we see the same output as before when we pass in the FINE argument,
but a log file is generated, showing the XML output, shown in Listing 5.3! Now, stan-
dard error prints out the same seemingly incorrect thing as before, not showing the
FINE test, and the FileHandler seems to write the correct output. What is going on?
Why does the file output not match the output written to standard error?

<?xml version="1.0" encoding="windows-1252" standalone="no"?>
<!DOCTYPE log SYSTEM "logger.dtd"s>
<log>
<record>
<date>2002-02-16T15:51:00</date>
<millis>1013892660502</millis>
<sequence>0</sequence>
<logger>org.pitfalls.BadLoggerExample2.logger</logger>
<level>FINE</level>
<class>org.pitfalls.logging.BadLoggerExample2</class>
<method>test</method>
<thread>10</thread>
<message>This is a test for fine</message>
</record>
<record>
<date>2002-02-16T15:51:00</date>
<millis>1013892660522</millis>
<sequence>1</sequence>
<level>INFO</level>
<logger> <class>, <method> and <thread> elements same as above
<message>This is a test for info</message>
</record>
<record>
<date>2002-02-16T15:51:00</date>
<millis>1013892660612</millis>
<sequence>2</sequence>
<level>WARNING</level>
<message>This is a warning test</message>
</record>
<record>
<date>2002-02-16T15:51:00</date>
<millis>1013892660622</millis>
<sequence>3</sequence>
<level>SEVERE</level>
<message>This is a severe test</message>
</record>
</log>

Listing 5.3 XML-formatted output from FileHandler

Avoiding Granularity Pitfalls in java.util.logging 51

Log Messages
Parent Logger higher than and equal to Handler

: Granularity A are sent to :
Granularity A Handlers Granularity C Level.SEVERE

|
>

Level. WARNING
Log Messages

higher than and equal to Log Messages higher than Level.INFO
Granularity B are sent to and equal to Granularity C >
Logger Parent are logged Level. CONFIG Z
=}
Level.FINE g
Log Messages 5

New Logger higher than and equal to Handler Level.FINER

: Granularity B are sent to :
Granularity B Hayndlers Granularity D Level.FINEST
l | Level. ALL

Log Messages higher than
and equal to Granularity D
are logged

Figure 5.2 Logger/handler relationship diagram.

This behavior is quite strange. What happened? There are actually three things that
we need to understand in order to understand this strange behavior:

Default Configurations of Loggers and Handlers. Loggers and handlers have
default configurations, read from a preference file in your JRE’s lib directory. A
key thing to understand is that granularities may be set for each, using the
setLevel () method.

Inheritance of Loggers. Another key thing to understand about the logging API
is that each logger has a parent, and all data sent to a logger will go to its parent
as well. The top parent is always the Root Logger, and you can create an inheri-
tance tree descending from the Root Logger. In our initial example in Listing 5.1,
we did not set a handler, but we still had output. Why? The reason is the Root
Logger had a ConsoleHandler, whose default content level is Level . INFO.
You can disable sending log messages to your parent’s handler by calling the
setUseParentHandlers (false) on the Logger class.

The Relationship between Handlers and Loggers. As we mentioned before,
there are default levels of handlers. By default, all ConsoleHandlers log at the
Level.INFO level, and all FileHandlers log at the Level . ALL level. The log-
ger itself can set its level, and you can also set the level of the handlers. The key is
that the level of the handler can never show a lower level of granularity than the
logger itself. For example, if the logger’s level is set to Level . INFO, the attached
handlers will only see Level . INFO levels and above (from our diagram in Fig-
ure 5.1). In our example in Listing 5.2, we set our logger level to Level . FINE,
and because the FileHandler’s level was the default level (Level . ALL), it
only saw what the logger was able to pass through (FINE and below).

52

Item 5

Confusing? We have presented this graphically in Figure 5.2 for your convenience.
In our earlier example tests with BadLoggerExamplel.java in Listing 5.1, everything
seemed to work when we set the level to Level . INFO and Level . SEVERE, because
those levels were higher than Level.INFO, the default level for the parent logger.
However, when we set the level to Level . FINE, the parent’s logger’s handler was
only passed messages higher than and equal to Level . INFO.

Luckily, it is very simple to set the levels for your handlers and loggers with the
setLevel () method, and it is possible to not send messages to your logger’s parent
with the logger’s setUseParentsHandlers (false) method. Listing 5.4 shows our
changes to Listing 5.2, where we modify the constructor to set all of the handlers at the
same level.

10: public GoodLoggerExample (Level 1)

11: {

12: FileHandler fh = null;

13: ConsoleHandler ch = new ConsoleHandler();

14:

155 //This creates the logger!

16: m_log = :)
Logger .getLogger ("org.pitfalls.GoodLoggerExample.logger") ;
17: m_log.addHandler (ch);

18: //Try to create a FileHandler that writes it to file!
19¢ try

20: {

21: fh = new FileHandler ("log.xml") ;

22: m_log.addHandler (fh) ;

233 }

24: catch (IOException ioexc)

25: {

26: ioexc.printStackTrace () ;

27: }

28:

29: /* This will set everything to the same level! */
30: m_log.setLevel(l);

31: m_log.setUseParentHandlers (false);

32: fh.setLevel(l);

SIS ch.setLevel(l);

34: }

Listing 5.4 Better constructor—GoodLoggerExample.java

In Listing 5.4, we want to create our own ConsoleHandler to log user-friendly
messages to standard error, and we will continue to have our own FileHandler to
write XML messages to file. On line 13, we instantiate a new ConsoleHandler, and
on line 17, we add it to our logger. Finally, lines 29 to 33 fix the rest: we set the level of
the logger (and every handler) to the same level, and we set our logger to not send
messages to our parent’s handler. The result of this program is the expected output.

When Implementations of Standard APIs Collide

53

Understanding the relationships of loggers and handlers and levels of granularity,
shown in Figure 5.2, is very important. Our examples in this pitfall were created to give
you an understanding of these relationships, and often, you will not want the same
levels of granularity for every handler. Most of the time, logs to the console will be
“user-friendly” warning messages, and log files may be debugging information for
programmers and system administrators. The fact that you can create your own han-
dlers, and set your logging levels at runtime, is very powerful. Studying this pitfall
should lead to a better understanding of the java.util.logging package.

Item 6: When Implementations of
Standard APIs Collide

Over the past three years, a plethora of XML processing software packages were
released. First there were proprietary APIs, and then as the SAX and DOM standards
evolved, vendors developed Java toolkits for developers to use. Developers began
writing programs with these APIs, and as the standards evolved, you changed your
code. As different toolkits used different levels of DOM compliancy, and as you inte-
grated more software into your baseline, you had to go through your entire codebase,
trying to determine which DOM API was needed for which application, and trying to
determine if two modules using different levels of DOM compliancy could run
together in the same application, since both used the org.w3c.dom. * classes, but
some were based on different underlying implementations and different levels of
DOM compliancy. If you started using one implementation of the DOM and later
switched to another implementation of the DOM, sometimes your code needed to be
tweaked. If you were one of the early adopters of processing XML in Java, you know
our pain.

The release of JDK 1.4 brought a little complexity to the issue, because classes such
as org.w3c.dom. * and org.xml.sax.* are now in the standard runtime environ-
ment, and thus read before your classpath which is chock full of your favorite XML JAR
files. Because of this, if you use a later implementation of SAX or DOM than the classes
in the JDK, or if you use a method that is implementation-specific, you may run into
problems. A good example can be seen in Listing 6.1, ScheduleSwitcherjava. Here we
simply parse an XML “schedule file,” with an example schedule shown in Listing 6.2.

001: package org.javapitfalls.item6;

002: import org.w3c.dom.*;

003: import javax.xml.parsers.*;

004: :

05 /%=

006: * A simple class that demonstrates different functionality
007: * between DOM implementations

008: */

009: public class ScheduleSwitcher

010: {

011: /* The DOM document loaded in memory */

Listing 6.1 ScheduleSwitcher.java (continued)

54 Item 6

012: Document m_doc = null;

013: public ScheduleSwitcher (String filename)

014: {

015: /* Parse a file */

016: try

017: {

018: DocumentBuilderFactory factory =

019: DocumentBuilderFactory.newInstance() ;

020: DocumentBuilder builder = factory.newDocumentBuilder () ;
021: m_doc = builder.parse(filename) ;

022: }

023: catch (Exception e)

024: {

025: System.err.println ("Error processing " +

026: filename + "." +

027: "Stack trace follows:");
028: e.printStackTrace() ;

029: }

030: }

031:

032: /*

033: * A very simple method that switches values of
034: * days in an XML document and prints it out.

035: &

036: * @param a the value for one day

037: * @param b the value for another day

038: * @param keep a boolean value, designating if you
039: & want to keep this version of the DOM tree.
040: */

041: public void showSwitchedDays(String a , String b,
042: boolean keep)

043: {

044: Document newdoc = null;

045:

046: if (m_doc == null)

047: {

048: System.out.println ("Error - no document.. ");
049: return;

050: }

051:

052: /**

053: * If the keep variable was set, do the manipulation
054: * to the instance variable m_doc.. Otherwise, just
055: * do the manipulation of the copy of the tree.
056: w3

057: */

058: if (!'keep)

059: newdoc = (Document)m_doc.cloneNode (true) ;

060: else

Listing 6.1 (continued)

When Implementations of Standard APIs Collide

55

061:
062:
063:
064:
065:
066:
067:
068:
069:
070:
071:
072:
073:
074:
075:
076:
077 :
078:
079:
080:
081:
082:
083:
084:
085:
086:
087:
088:
089:
090:
091:
092:
093:
094:
095:
096:
097:
098:
099:
100:
101:
102:
103:
104:
105:
106:
107:
108:
109:

Listing 6.1

newdoc = m_doc;

/* Use the DOM API to switch days */

NodeList nl = newdoc.getElementsByTagName ("day") ;
int len = nl.getLength() ;

for (int i = 0; 1 < len; i++)

{
Element e = (Element)nl.item(i);

if (e.getAttribute("name") .equals(a))
{
e.setAttribute ("name",b) ;
} else if (e.getAttribute("name").equals(b))
{

e.setAttribute ("name", a);

System.out.println(
newdoc .getDocumentElement () . toString ()
) 5

/* Print out the DOM Tree */
public void showDays ()
{
System.out.println
m_doc.getDocumentElement () . toString ()
)8

public static void main(String[] args)
{
if (args.length < 1)
{
System.err.println("Usage: Argument must be the " +
"filename of an XML file");
System.exit (-1) ;
}

String filename = args[0];
ScheduleSwitcher switcher = new ScheduleSwitcher (filename);
System.out.println("\nIf you switched " +

" the Wed & Thurs meetings ");

System.out.println("this is what it would " +
"1°°k 1ike= \n*******ll) :

(continued)

56

Item 6

110:

111: switcher.showSwitchedDays ("wednesday", "thursday", false);
112:

113: System.out.println("\nHere is the current " +

114: " schedule: \n****x*x*xxun) .

1153 switcher.showDays () ;

116:

117: }

118: }

Listing 6.1 (continued)

In our simple example, we have written a method, showSwitchedDays () , on line
41 of Listing 6.1, that switches the name attribute on the <day/> tag of an XML file by
manipulating the DOM and prints the resulting XML file to standard out. If the
boolean value keep is true, then the DOM manipulation affects the DOM tree instance
variable. If the Boolean value keep is false, then the method simply prints out a copy
of the switched schedule but keeps the original DOM in memory. On lines 106-109 of
Listing 6.1, we tell the class to print the meetings as if Wednesdays and Thursdays
were switched, but to not permanently alter the schedule. Listing 6.3 shows the output
of this program using the XML file in Listing 6.2, when we ran this with JDK 1.3.1, and
implementations of the DOM in the crimson jar file.

<?xml version="1.0"?>
<meetings>
<day name="wednesday">
<meeting desc="romans">
<member name="ben"/><member name="billy"/><member name="chuck"/>
<member name="dan"/><member name="keith"/><member name="kevin"/>
<member name="matt d."/><member name="matt v."/><member :)
name="rich"/>
<member name="todd" />
</meeting>
</day>
<day name="thursday">
<meeting desc="all">
<member name="avery"/><member name="catherine"/><member :)
name="dawn" />
<member name="doverly"/><member name="gwen"/><member name="heidi"/>
<member name="holly"/><member name="jenny"/><member name="patrice"/>
<member name="sandy b."/><member name="sandy c."/><member :)
name="sarah" />
<member name="shelly"/><member name="suzanne"/>
</meeting>
</day>

</meetings>

Listing 6.2 XML schedule file (schedule.xml)

When Implementations of Standard APIs Collide

57

C:\pitfalls\week5>c:\jdkl.3.1\bin\java -classpath .;crimson.jar;jaxp.jar
ScheduleSwitcher schedule.xml

If you switched the Wed & Thurs meetings,
this is what it would look like:
* k k k ok Kk Kk
<meetings>
<day name="thursday">
<meeting desc="romans">
<member name="ben" /><member name="billy" /><member name="chuck" />
<member name="dan" /><member name="keith" /><member name="kevin" />
<member name="matt d." /><member name="matt v." :)
/><member name="rich" />
<member name="todd" />
</meeting>
</day>
<day name="wednesday">
<meeting desc="all">
<member name="avery"/><member name="catherine" :)
/><member name="dawn" />
<member name="doverly"/><member name="gwen" /><member name="heidi" />
<member name="holly"/><member name="jenny"/><member name="patrice"/>
<member name="sandy b."/><member name="sandy c."/><member
name="sarah" />
<member name="shelly" /><member name="suzanne" />
</meeting>
</day>
</meetings>

Here is the current schedule:
* ok k k ok Kk k ok
<meetings>
<day name="wednesday">
<meeting desc="romans">
<member name="ben" /><member name="billy" /><member name="chuck" />
<member name="dan" /><member name="keith" /><member name="kevin" />
<member name="matt d." /><member name="matt v." /><member :)
name="rich" />
<member name="todd" />
</meeting>
</day>
<day name="thursday">
<meeting desc="all">

V)

<member name="avery" /><member name="catherine"

/><member name="dawn" />

Y,

<member name="doverly" /><member name="gwen"
/><member name="heidi" />

V)

<member name="holly" /><member name="jenny"
/><member name="patrice" />

Listing 6.3 Output with JDK 1.3 and DOM implementation (continued)

58

Item 6

<member name="sandy b."/><member name="sandy c."/><member :)
name="sarah" />
<member name="shelly" /><member name="suzanne" />
</meeting>
</day>

</meetings>

Listing 6.3 (continued)

Listing 6.3 has the expected output, and it ran correctly. As you can see, the
“Wednesday” and “Thursday” meetings were switched, but when the final schedule
was printed, the original DOM tree was printed out. However, when we upgraded our
application to JDK 1.4, we ran into problems. The result of running this in JDK 1.4 is
shown in Listing 6.4. As you can see, what ran fine in an earlier version of the JDK now
throws an exception. When we call cloneNode () on org.w3c.dom.Document on
line 27, we get a “HIERARCHY_REQUEST_ERR:” message! Looking into the docu-
mentation on the cloneNode () method, it is inherited from org.w3c.dom.Node,
and the documentation says that cloning Document, DocumentType, Entity, and
Notation nodes is implementation dependent.

C:\pitfalls\week5>java -classpath . ScheduleSwitcher schedule.xml

If you switched the Wed & Thurs meetings,

this is what it would look like:

* Kk k ok k kK

org.apache.crimson.tree.DomEx: HIERARCHY_REQUEST ERR: This node isn't

allowed there. at

org.apache.crimson. tree.XmlDocument .changeNodeOwner (XmlDocument.java:115

6)

at

org.apache.crimson. tree.XmlDocument .changeNodeOwner (XmlDocument.java:117

7)

at org.apache.crimson.tree.XmlDocument.cloneNode (XmlDocument.java:1101)
at ScheduleSwitcher.showSwitchedDays (ScheduleSwitcher.java:27)

at ScheduleSwitcher.main (ScheduleSwitcher.java:68)

Exception in thread "main"

Listing 6.4 Output with JDK 1.4, with built-in DOM

So what should we do in a situation like this? Since there are many implementations
of DOM and SAX APIs, we are bound to run into these problems. Added to this
dilemma is the fact that standards and new implementations evolve quickly, and we
may want to use newer implementations of these standards before they are integrated

My Assertions Are Not Gratuitous!

59

into the JDK. Luckily, with the release of JDK 1.4, there is the Endorsed Standards
Override Mechanism (ESOM), which is used to replace implementations of these stan-
dard classes. Following is the complete list of the packages that can be overriden:

javax.rmi.CORBA

org.omg.CORBA, org.omg.CORBA.DynAnyPackage, org.omg.CORBA.ORBPackage,
org.omg.CORBA.portable, org.omg.CORBA. TypeCodePackage, org.omg.CORBA_2_3,
org.omg.CORBA_2_3.portable, org.omg.CosNaming,
org.omg.CosNaming.NamingContextExtPackage,
org.omg.CosNaming.NamingContextPackage, org.omg.Dynamic,
org.omg.DynamicAny, org.omg.DynamicAny.DynAnyFactoryPackage,
org.omg.DynamicAny.DynAnyPackage, org.omg.IOP ,
org.omg.IOP.CodecFactoryPackage, org.omg.IOP.CodecPackage,
org.omg.Messaging,

org.omg.PortableInterceptor,
org.omg.PortableInterceptor.ORBInitInfoPackage, org.omg.PortableServer,
org.omg.PortableServer.CurrentPackage,
org.omg.PortableServer.POAManagerPackage,
org.omg.PortableServer.POAPackage, org.omg.PortableServer.portable,
org.omg.PortableServer.ServantLocatorPackage, org.omg.SendingContext,
org.omg.stub.java.rmi, org.w3c.dom, org.xml.sax, org.xml.sax.ext,
org.xml.sax.helpers

As you can see, these include standard classes from the Object Management Group
(OMG) as well as the W3C. To take advantage of the ESOM, follow these steps:

1. Create a directory called endorsed in the jre/lib directory.
2. Copy your JAR file implementations of your APIs into that directory.

3. Run your application.
In our simple example, we followed these steps, and the application worked per-
fectly. It is sometimes difficult to stay away from methods that are implementation-

specific—as Document.cloneNode () was in this example. Remembering how to
override the standards with the use of the ESOM will make your life a lot easier!

Item 7: My Assertions Are Not Gratuitous!

In Java Pitfalls, we finished the book by discussing the emerging JSR concerning a Java
Assertion Facility. At the time, we suggested a mechanism that would allow an asser-
tion-like facility. As of JDK 1.4, the language now includes an assertion facility.

Many developers do not understand why or how to use assertions, and this has
caused them to go widely unused. Some developers use them improperly, causing
them to be ineffective or counterproductive to the development effort.

How to Use Assertions

When writing code, we make assumptions all of the time. Assertions are meant to cap-
ture those assumptions in the code. By capturing those assumptions, you move closer
to implementing a significant concept in quality software: design by contract.

60

Item 7

Design by Contract holds there are three concepts embodied in any piece of code:
preconditions, postconditions, and invariants. Preconditions involve the assumptions
about the state prior to the execution of code. Postconditions involve the assumptions
about the state after the execution of the code. Invariants capture the underlying
assumptions upon which the execution occurs.

Consider the following method signature:

public String lookupPlayer (int number)

In this method, I provide a service to look up a player by his number. In explaining
this signature, I have already specified a set of assumptions. The first assumption is
players do not have numbers greater than 99 (they don’t fit on a jersey well, and most
teams don’t have more than 100 players on their roster). Also, players do not have neg-
ative numbers either. Therefore, the preconditions are that we have a number provided
that is less than or equal to zero and less than or equal to 99. An invariant is to assume
that the list of players and numbers actually exists—that is, it has been initialized and
is properly available (note that this action is subject to its own set of assumptions). The
assumption on the postcondition is that there will be an actual String value returned
from the method (and not a null).

How many times have you seen a problem with the code being debugged by a set of
System.out.println() statements? This is because, essentially, the developer is
going back in and creating visibility to check against assumptions that are made in
writing the code. This can be relatively painless and easy for the developer who wrote
the code—at the time he or she wrote the code. However, this becomes quite painful for
others who may not understand what is going on inside the code.

Assertions can be thought of as automatic code checks. By writing assertions, you
capture your assumptions, so that an error will be thrown at the incorrect assumption
when the code is running. Even if a bug occurs that does not throw an Assertion-
Error, they still enable the developer to eliminate many possible assumptions as
causes of error.

There are really four conditions you should meet in order to determine that you do
not need to use assertions:

m You wrote and maintain all of the code in question.
m You will always maintain every piece of that code.

m You have analyzed to perfection all of the different scenarios that your code
may experience through some method like a formal code proof.

m You like and can afford to operate without a net.

With the exception of the last condition, if you have done all of these, you have
already realized that you need some assertionlike capability. You probably have
already littered your code with System.out.println()or log ()statements trying
to give yourself places to start like that demonstrated in Listing 7.1.

My Assertions Are Not Gratuitous! 61

01: package org.javapitfalls.item7;

02:

03: public class AssertionExample {

04:

05: public AssertionExample() { }

06:

07: private void printLeague (String abbreviation) {

09: if (abbreviation.equals("AL")) {

10:

11: System.out.println("I am in the American League!");
12:

i3} g } else if (abbreviation.equals ("NL")) {

14:

153 System.out.println("I am in the National League!");
16:

17: } else {

19: // I should never get here...

20: assert false;

22: }

23: }

24:

25: public static void main (String [] args) {

27: String al = "AL";

28: String nl = "NL";

29: String il = "IL";

31: AssertionExample myExample = new AssertionExample () ;

33: myExample.printLeague(al) ;
34: myExample.printLeague(il);
35: myExample.printLeague (nl) ;
37: }
39: }

Listing 7.1 AssertionExample.java

So, we compile this code and the following happens:

C:\pitfallsBook\#7>javac AssertionExample.java
AssertionExample.java:20: warning: as of release 1.4, assert is a
keyword, and may not be used as an identifier

assert false ;
AssertionExample.java:20: not a statement

assert false ;

62 Item 7

AssertionExample.java:20: ';' expected
assert false ;
2 errors

1 warning

What happened? I thought assertions were supported in JDK 1.4! I am using JDK
1.4. Well, as it turns out, for backward compatibility purposes, you have to specify a
flag in order to compile source with assertions in it.

So, you would want to compile it like this instead:

javac -source 1.4 AssertionExample.java
Now that I have successfully compiled my example, here is what I do to run it:

C:\pitfallsBook\#7>java -cp . org.javapitfalls.item7.AssertionExample
I am in the American League!
I am in the National League!

Notice that it didn’t throw an AssertionError when I passed in the “IL” abbrevi-
ation. This is because I didn’t enable assertions. The requirement to enable assertions is
so that your code will not have any performance defect by having the assertions within
the code when you choose not to use them. When assertions are not switched on, they
are effectively the same as empty statements.

C:\pitfallsBook\#7>java -ea -cp . :)
org.javapitfalls.item7.AssertionExample
I am in the American League!
Exception in thread "main" java.lang.AssertionError

at org.javapitfalls.item7.AssertionExample.printLeague (Unknown :)
Source)

at org.javapitfalls.item7.AssertionExample.main (Unknown Source)

Now the assertion is thrown, but it is not very descriptive as to which assertion was
the cause of the problem. In this simple example, this is not a problem; it is still very
easy to tell which assertion caused the problem. However, with many assertions (as is
good practice), we need to better distinguish between assertions. So if we change line
20 to read

assert false : "What baseball league are you playing in?";

this will give us a more descriptive response:

C:\pitfallsBook\#7>java -ea -cp . :)
org.javapitfalls.item7.AssertionExample
I am in the American League!

My Assertions Are Not Gratuitous!

63

Exception in thread "main" java.lang.AssertionError: What baseball :D
league are you playing in?

at org.javapitfalls.item7.AssertionExample.printLeague (Unknown :)
Source)

at org.javapitfalls.item7.AssertionExample.main (Unknown Source)

An important thing to note is that printLeague ()is declared private. While the
example was meant to show assertions to mark unreachable conditions, it was
declared private in order to avoid confusion about an important point: You should never
use assertions to do precondition checks for public methods. When assertions are turned off,
you will not receive the benefit of any precondition checking. Furthermore, the
AssertionError is a relatively simple methodology for returning errors, and more
sophisticated mechanisms like typed exceptions would serve the cause better.

In Listing 7.2, we show how to use assertions to check postconditions.

01: package org.javapitfalls.item7;

02:

03: public class AnotherAssertionExample {

05: private double taxRate;

06:

07: public AnotherAssertionExample (double tax) {

09: taxRate = tax;

11: 1}

12:

13: private double returnMoney (double salary) {

15: double originalSalary = salary;

17: if (salary > 10000) salary = salary * (1 - taxRate);
19: if (salary > 25000) salary = salary * (1 - taxRate);
21: if (salary > 50000) salary = salary * (1 - taxRate);

23: assert salary > 0 : "They can't take more than you have?";

25: assert salary <= originalSalary : "You can't come out ahead!";

27 g return salary;

2938 J

30:

31: public static void main (String [] args) {

33: AnotherAssertionExample myExample = new :)

AnotherAssertionExample (.3) ;

34: System.out.println("Tax Rate of 30%\n");
35: System.out.println("Salary of 5000:"+myExample.returnMoney (5000)) ;
36: System.out.println("Salary of
24000: "+myExample.returnMoney (24000)) ;
37: System.out.println("Salary of
35000: "+myExample.returnMoney (35000)) ;
38: System.out.println("Salary of
75000 : "+myExample.returnMoney (75000)) ;

U u u u

39: // System.out.println("Salary of
75000 : "+myExample.returnMoney (-75000)) ;
40:

Listing 7.2 AnotherAssertionExample.java (continued)

64

Item 7

41: myExample = new AnotherAssertionExample(-.3);

42 System.out.println("\n\nTax Rate of -30%\n");

43 System.out.println("Salary of 5000:"+myExample.returnMoney (5000)) ;
44: System.out.println("Salary of

24000: "+myExample.returnMoney (24000)) ;

45: System.out.println("Salary of :)
35000: "+myExample.returnMoney (35000)) ;

47: }

49: }

Listing 7.2 (continued)

This shows how to check postconditions with an assertion. Here is the output from

this example:

C:\pitfallsBook\#7>java -ea -cp
org.javapitfalls.item7.AnotherAssertionExample

Tax Rate of 30%

Salary of 5000:5000.0
Salary of 24000:16800.0
Salary of 35000:24500.0
Salary of 75000:36750.0

Tax Rate of -30%

Salary of 5000:5000.0
Exception in thread "main" java.lang.AssertionError: You can't come out
ahead!
at
org.javapitfalls.item7.AnotherAssertionExample.returnMoney (Unknown Source)
at org.javapitfalls.item7.AnotherAssertionExample.main (Unknown
Source)

You can see that there are two assertions about the postconditions. First, we assert

that you cannot return with less than zero money, and then we assert that you cannot
return with more money than you started. There are examples of how to break both
assertions: a negative salary (commented out) and a negative tax rate. The first exam-
ple is commented out, because execution stops after the assertion error, and we wanted
to demonstrate that the second assertion would also work.

Now that we have covered the assertion basics, we will go over some other interest-

ing things about assertions. First, you can enable and disable assertions as desired by
specifying them in the switches to the JVM. Here are some more examples:

m Enable all assertions:
java -ea org.javapitfalls.item7.MyClass
m Enable system assertions only:

java -esa org.javapitfalls.item7.MyClass

My Assertions Are Not Gratuitous! 65

m Enable all assertions in the org. javapitfalls package and its sub-packages:

java -ea:org.javapitfalls org.javapitfalls.item7.MyClass

m Enable all assertions in the org. javapitfalls package and its sub-packages,
but disable the ones in AnotherAssertionExample:

java -ea:org.javapitfalls -da:
org.javapitfalls.item7.AnotherAssertionExample

org.javapitfalls.item7.MyClass

Also, there are situations where you want to require that assertions be enabled in
your class. An example would be if you had some safety-sensitive class that should
operate only if the assertions are true (in addition to normal control checking). Listing
7.3 shows our previous example with assertions always on.

01: package org.javapitfalls.item7;

02:

03: public class AnotherAssertionExample {
04:

05: static {

06: Dboolean assertions = false;

07: assert assertions = true;

08:

09: if (assertions==false)

10: throw new RuntimeException ("You must enable assertions :)
to use this class.");

11: 3}

i12g

13: private double taxRate;
14: // [...] remaining code Identical to listing 7.2

Listing 7.3 AnotherAssertionExample.java (modified)

So, if you run this example without assertions enabled, you receive the following
message:

C:\pitfallsBook\#7>java -cp . :)
org.javapitfalls.item7.AnotherAssertionExample
Exception in thread "main" java.lang.ExceptionInInitializerError
Caused by: java.lang.RuntimeException: You must enable assertions to use
this class.

at org.javapitfalls.item7.AnotherAssertionExample.<clinit> (Unknown
Source)

66 Item 8

In closing, there are a few rules to follow in dealing with assertions:

m DO use assertions to test postconditions on methods.
DO use assertions to test places where you believe control flow should not execute.
DO NOT use assertions to test preconditions on public methods.

DO use assertions to test preconditions on helper methods.

DO NOT use assertions that affect the normal operation of the code.

Item 8: The Wrong Way to Search a DOM?

All well-formed XML files have a tree structure. For example, Listing 8.1 can be repre-
sented by a tree with two ADDRESS nodes:

01: <?xml version="1.0"?>

02: <!DOCTYPE ADDRESS_BOOK SYSTEM "abml.dtd">
03: <ADDRESS_BOOK>

04: <ADDRESS>

05: <NAME>Joe Jones </NAME>

06: <STREET>4332 Sunny Hill Road </STREET>
07: <CITY>Fairfax</CITY>

08: <STATE>VA</STATE>

09: <ZIP>21220</ZIP>

10: </ADDRESS>
11: <ADDRESS>

12: <NAME>Sterling Software </NAME>
13: <STREET> 7900 Sudley Road</STREET>
14: <STREET> Suite 500</STREET>

15: <CITY>Manassas</CITY>

16: <STATE>VA </STATE>

17: <ZIP>20109 </ZIP>

18: </ADDRESS>
19: </ADDRESS_BOOK>

Listing 8.1 myaddresses.xml

The pitfall is assuming the DOM tree will look exactly like your mental picture of
the XML document. Let’s say we have a task to find the first NAME element of the first
ADDRESS. By looking at Listing 8.1, you may say that the third node in the DOM (line
05) is the one we want. Listing 8.2 attempts to find the node in that way.

? This pitfall was first printed by JavaWorld (www.javaworld.com) in the article, “An API’s looks can
be deceiving”, June 2001, (http:/ /www.javaworld.com/javaworld /jw-06-2001/jw-0622-traps.html?)
and is reprinted here with permission. The pitfall has been updated from reader feedback.

The Wrong Way to Search a DOM

67

01:
02:
03:
04:
05:
06:
07:
08:
09:
10:
11:
123
13:
14:
15:
16:
17:
18:
193
20:
21:
223
233
24:
25:
26:
27:
28:
293
30:
31:
32:
33:

package org.javapitfalls.item8;
import javax.xml.parsers.*;
import java.io.*;

import org.w3c.dom. *;

public class BadDomLookup

{
public static void main(String args[])
{
try
{

if (args.length < 1)
{
System.out.println ("USAGE: " +
"org.javapitfalls.item8.BadDomLookup xmlfile") ;
System.exit (1) ;

DocumentBuilderFactory dbf =
DocumentBuilderFactory.newInstance() ;

DocumentBuilder db = dbf.newDocumentBuilder () ;

Document doc = db.parse(new File(args[0]));

// get first Name of first Address

NodeList nl = doc.getElementsByTagName ("ADDRESS");

int count = nl.getLength() ;

System.out.println("# of \"ADDRESS\" elements: " + count) ;

if (count > 0)
{
Node n = nl.item(0);
System.out.println("This node name is: " + :)

n.getNodeName ()) ;

34:
BI5E
36:
37:
38:
39:
40:
41:
42:
43:
44 :
45:

// get the NAME node of this ADDRESS node
Node nameNode = n.getFirstChild();
System.out.println("This node name is: "
+ nameNode.getNodeName ()) ;
}
} catch (Throwable t)
{
t.printStackTrace() ;

Listing 8.2 BadDomLookup.java

68

Item 8

The simple program, BadDomLookup, uses the Java API for XML Processing (JAXP)
to parse the DOM (this example was tested with both Xerces and Sun’s default JAXP
parser). After we get the W3C Document object, we retrieve a NodeList of ADDRESS
elements (line 26) and then look to get the first NAME element by accessing the first
child under ADDRESS (line 35).

Upon executing Listing 8.2, we get

e:\classes\org\javapitfalls\>java org.javapitfalls ... BadDomLookup :)
myaddresses.xml

of "ADDRESS" elements: 2

This node name is: ADDRESS

This node name is: #text

The result clearly shows that the program fails to accomplish its task. Instead of an
ADDRESS node, we get a text node. What happened? Unfortunately, the complexity of
the DOM implementation is different from our simple conceptual model. The primary
difference is that the DOM tree includes text nodes for what is called “ignorable white-
space,” which is the whitespace (like a return) between tags. In our example, there is a
text node between the ADDRESS and the first NAME element. The W3C XML specifica-
tion states, “An XML processor must always pass all characters in a document that are
not markup through to the application. A validating XML processor must also inform
the application which of these characters constitute white space appearing in element
content.”® To visualize these whitespace nodes, Figure 8.1 displays all the DOM nodes
in myaddresses.xml in a JTree.

There are three solutions to this problem, and our rewrite of the program demon-
strates two of them. Listing 8.3, GoodDomLookup java, fixes the problem demonstrated
above in two ways.

Egji'myaddlesses.xml [_ (O] =]
File
3 [ADDRESS_EOOK: null
[ptest o]
% [*DDRESS: null]
[pttext 0oDO)
& 3 MNAME: null]
D [#text: Joe Jones]
[y ptext ooo)
©- 3 [STREET: null]
[pttext 0oDO)
@ O3 [CITY: null]
[pext ooo)
& [[STATE: null
[pttext 0oDO)
@ 3 [@IF: null]
[y ptext oo]
[ptest o]
©- [[*DDRESS: null]
[mttext: o)

Figure 8.1 Display of all DOM nodes in myaddresses.xml.

3 Extensible Markup Language (XML) 1.0 (Second Edition). W3C recommendation; October 6, 2000;
http:/ /www.w3.org/TR/REC-xml.

The Wrong Way to Search a DOM

69

001:
002:
003:
004:
005:
006:
007:
008:

009

010:
011:
012:
013:
014:
015:
016:
017:
018:
019:
020:
021:
022:
023:
024:
025:
026:
027:
028:
029:
030:
031:
032:
033:

034
035
036
037
038
039

040:
041:
042:
043:
044:
045:
046:
047:
048:

package org.javapitfalls.item8;

import javax.xml.parsers.*;
import java.io.*;
import org.w3c.dom.*;

class DomUtil
{
public static boolean isBlank(String buf)
{
if (buf == null)
return false;

int len = buf.length();
for (int i=0; 1 < len; i++)
{
char ¢ = buf.charAt(i);
if (!Character.isWhitespace(c))
return false;

return true;

public static void normalizeDocument (Node n)
{
if (!n.hasChildNodes())
return;

NodeList nl = n.getChildNodes() ;
for (int i = 0; i < nl.getLength(); i++)
{
Node cn = nl.item(i);
if (cn.getNodeType() == Node.TEXT NODE &&
isBlank (cn.getNodeValue()))

{
n.removeChild(cn);
i--;

}

else

normalizeDocument (cn) ;

public static Element getFirstChildElement (Element elem)
{
if (!elem.hasChildNodes())
return null;

Listing 8.3 GoodDomLookup.java (continued)

70 Item 8

049:

050: for (Node cn = elem.getFirstChild(); cn != null;

051: cn = cn.getNextSibling())

052: {

053: if (cn.getNodeType() == Node.ELEMENT NODE)

054: return (Element) cn;

055: }

056:

057 ¢ return null;

058: }

059: }

060:

061: public class GoodDomLookup

062: {

063: public static void main (String argsl[])

064 : {

065: try

066: {

// ... command line check omitted for brevity

073:

074: DocumentBuilderFactory dbf =

075: DocumentBuilderFactory.newInstance() ;

076: DocumentBuilder db = dbf.newDocumentBuilder () ;

077 : Document doc = db.parse(new File(args[0]));

078:

079: // get first Name of first Address

080: System.out.println("Method #1: Skip Ignorable White :D
space...");

081: NodeList nl = doc.getElementsByTagName ("ADDRESS") ;

082: int count = nl.getLength() ;

083: System.out.println("# of \"ADDRESS\" elements: " + count) ;
084:

085: if (count > 0)

086: {

087: Node n = nl.item(0);

088: System.out.println("This node name is: " + :)
n.getNodeName ()) ;

089: // get the NAME node of this ADDRESS node

090: Node nameNode = :)
DomUtil.getFirstChildElement ((Element)n) ;

091: System.out.println("This node name is: " +

092: nameNode . getNodeName ()) ;

093: }

094:

095: // get first Name of first Address

096: System.out.println("Method #2: Normalize document...");
097: DomUtil.normalizeDocument (doc.getDocumentElement ());
098: // Below is exact code in BadDomLookup

Listing 8.3 (continued)

The Wrong Way to Search a DOM

71

099: nl = doc.getElementsByTagName ("ADDRESS") ;

100: count = nl.getLength() ;

101: System.out.println("# of \"ADDRESS\" elements: " +
count) ;

102:

103: if (count > 0)

104: {

105: Node n = nl.item(0);

106: System.out.println("This node name is: " +
107 : n.getNodeName ()) ;

108: // get the NAME node of this ADDRESS node
109: Node nameNode = n.getFirstChild();

110: System.out.println("This node name is: " +
111: nameNode .getNodeName ()) ;
112: }

113:

114: } catch (Throwable t)

15 {

116: t.printStackTrace() ;

117: }

118: }

119: 1}

120:

Listing 8.3 (continued)

The key class in GoodDomLookup is the DomUtil class that has three methods.
Those three methods solve the DOM lookup problem in two ways. The first method is
to retrieve the first child element (and not the first node) when performing a lookup.
The implementation of the getFirstChildElement () method will skip any inter-
mediate nodes that are not of type ELEMENT_NODE. The second approach to the prob-
lem is to eliminate all “blank” text nodes from the document. While both solutions will
work, the second approach may remove some whitespace not considered ignorable.

A run of GoodDomLookup .java gives us the following:

e:\classes\org\javapitfalls >java org.javapitfalls.item8.GoodDomLookup
myaddresses.xml

Method #1: Skip Ignorable White space...

of "ADDRESS" elements: 2

This node name is: ADDRESS

This node name is: NAME

Method #2: Normalize document...

of "ADDRESS" elements: 2

This node name is: ADDRESS

This node name is: NAME

72

Item 8

A better way to access nodes in a DOM tree is to use an XPath expression. XPath is
a W3C standard for accessing nodes in a DOM tree. Standard API methods for evalu-
ating XPath expressions are part of DOM Level 3. Currently, JAXP supports only DOM
Level 2. To demonstrate how easy accessing nodes is via XPath, Listing 8.4 uses the
DOMA4] open source library (which includes XPath support) to perform the same task
as GoodDomLookup.java.

01:
02:
03:
04:
05:
06:
07:
08:
09:
10:
11:
123
13:
14:
15:
16:
17:
18:
195
20:
213
223
23:
24:
253
26:
27 3
28:

29
30

31:
32:
33:
34:
35:
36:
37:
38:
393

package org.

javapitfalls.item8;

import javax.xml.parsers.*;

import java.

i@, ¥ g

import org.w3c.dom. *;

import org.domédj.*;

import org.dom4j.io.*;

public class XpathLookup

{

public static void main (String argsl[])

{
try
{

if (args.length < 1)
{
System.out.println ("USAGE: " +
"org.javapitfalls.item8.BadDomLookup xmlfile") ;
System.exit (1) ;

DocumentBuilderFactory dbf =

7

DocumentBuilderFactory.newInstance ()
DocumentBuilder db = dbf.newDocumentBuilder () ;
org.w3c.dom.Document doc = db.parse(new File(args[0]));
DOMReader dr = new DOMReader () ;
org.dom4j.Document xpDoc = dr.read(doc) ;
org.domd4j.Node node = xpDoc.selectSingleNode (

" /ADDRESS BOOK/ADDRESS[1] /NAME") ;
System.out.println("Node name : " + node.getName());
System.out.println("Node value: " + node.getText());

} catch (Exception e)

{

}

e.printStackTrace() ;

Listing 8.4 XpathLookup.java

The Saving-a-DOM Dilemma

73

A run of XpathLookup.java on myaddresses.xml produces the following output:

E:\classes\org\javapitfalls>javaorg.javapitfalls.item8.XpathLookup :)
myaddresses.xml

Node name : NAME
Node value: Joe Jones

The XpathLookup.java program uses the selectSingleNode () method in the
DOM4] API with an XPath expression as its argument. The XPath recommendation can
be viewed at http:/ /www.w3.org/TR/xpath. It is important to understand that eval-
uation of XPath expressions will be part of the org.w3c.dom API when DOM Level 3 is
implemented by JAXP. In conclusion, when searching a DOM, remember to handle
whitespace nodes, or better, use XPath to search the DOM, since its robust expression
syntax allows very fine-grained access to one or more nodes.

Item 9: The Saving-a-DOM Dilemma

One of the motivations for JAXP was to standardize the creation of a DOM. A DOM can
be created via parsing an existing file or instantiating and inserting the nodes individ-
ually. JAXP abstracts the parsing operation via a set of interfaces so that different XML
parsers can be easily used. Figure 9.1 shows a simple lifecycle of a DOM.

Figure 9.1 focuses on three states of a DOM: New, Modified, and Persisted. The New
state can be reached either by instantiating a DOM object via the new keyword or by
loading an XML file from disk. This “loading” operation action invokes a parser to
parse the XML file. An edit, insert, or delete action moves the DOM to the modified

Modified

Save*
Edit, Ins, Del

Create Destroy

Save*

Figure 9.1 DOM lifecycle.

74

Item 9

F"g% myaddresses.xml

@ NAME

|McDonmd“ lley, Inc.
@ STREET

|82DIJ Greensharo Drive
@ STREET

[uite 805
Luing
@ STATE
@ z1p

Figure 9.2 DomEditor saving a DOM.

state. The Save action transitions the DOM to the Persisted state. The asterisk by the
save operation indicates that Save is implemented by saving the DOM to an XML file
(the “save” operation without the asterisk). An enhancement to the DomViewer pro-
gram demonstrated in Item 8 is to allow editing of the DOM nodes and then save the
modified DOM out to a file (persist it). Figure 9.2 is a screen shot of the DomEditor pro-
gram that implements that functionality.

When implementing the save operation in the DomEditor, we run into a dilemma
on how to implement saving the DOM. Unfortunately, we have too many ways to save a
DOM, and each one is different. The current situation is that saving a DOM depends on
which DOM implementation you choose. The dilemma is picking an implementation
that will not become obsolete with the next version of the parser. In this item, we will
demonstrate three approaches to saving a DOM. Each listing will perform the same
functionality: load a document from a file and save the DOM to the specified output file.
The toughest part of this dilemma is the nonstandard and nonintuitive way prescribed
by Sun Microsystems and implemented in JAXP to perform the save. The JAXP method
for saving a DOM is to use a default XSLT transform that copies all the nodes of the
source DOM (called a DOMSource) into an output stream (called a StreamResult). List-
ing 9.1 demonstrates saving an XML document via JAXP.

01l: package org.javapitfalls.item9;
02:
03: import javax.xml.parsers.*;

Listing 9.1 JaxpSave.java

The Saving-a-DOM Dilemma 75

04:
05:
06:
07:
08:
09:
10:
11:
123
13:
14:
15:
//

22:
23:
24:
25:
26:
27:
28:
283
30:
31:
32:
33:
34:
35:
36:
37:
38:

import
import
import
import

import

javax.xml.transform. *;

javax.xml .transform.dom. *;

javax.xml.transform.stream. *;

java.io.*;

org.w3c.dom. *;

class JaxpSave

{

public static void main(String argsl[])

{

try

{

command-line check omitted for brevity

// load the document

DocumentBuilderFactory dbf =
DocumentBuilderFactory.newInstance() ;

DocumentBuilder db = dbf.newDocumentBuilder () ;

Document doc = db.parse(new File(args[0]));

String systemValue = doc.getDoctype () .getSystemId() ;

// save to output file
File f = new File(argsI[l]);
FileWriter fw = new FileWriter (f);

/* write method USED To be in Sun's XmlDocument class.
The XmlDocument class preceded JAXP. */

// Currently only way to do this is via a transform
TransformerFactory tff = :)

TransformerFactory.newInstance();

39:
40:
41:

systemValue) ;

42:
43:
44:
45:
46:
47 :
48:
49:
50:
51:

Listing 9.1

// Default transform is a copy
Transformer tf = tff.newTransformer():;
tf.setOutputProperty (OutputKeys.DOCTYPE SYSTEM, PD)

DOMSource ds = new DOMSource (doc.getDocumentElement());
StreamResult sr = new StreamResult (fw);
tf.transform(ds, sr);

fw.close() ;

} catch (Throwable t)

{

t.printStackTrace() ;

(continued)

76

Item 9

While JAXP is the “official” API distributed with Sun’s JDK, using a transform to
save a DOM is not recommended. It is nonintuitive and not close to the proposed W3C
DOM Level 3 standard discussed next. The method to perform the save via JAXP uses
the XSLT classes in JAXP. Specifically, a TransformerFactory is created, which in turn is
used to create a transformer. A transform requires a source and a result. There are var-
ious different types of sources and results. Line 40 of Listing 9.1 is the key to under-
standing the source, since it creates the default transformer. This line is key because
normally an XSLT transform is performed via an XSLT script; however, since we are
only interested in a node-for-node copy, we don’t need a script, which is provided by
the no-argument newTransformer () method. This way the “default” transformer
provides the copy functionality. There is another newTransformer (Source s) that
accepts an XSLT source script. To sum up, once we have a transformer, a source, and a
result, the transform operation will perform the copy and thus serialize the DOM. One
extra step is necessary if we want to preserve the Document Type declaration from the
source document. Line 41 sets an output property on the transformer to add a Docu-
ment Type declaration to the result document, which we set to be the same value as the
source document.

Why has JAXP not defined the standard for saving a DOM? Simply because the
DOM itself is not a Java standard but a W3C standard. JAXP currently implements
DOM Level 2. The W3C is developing an extension to the DOM called DOM Level 3 to
enhance and standardize the use of the DOM in multiple areas. Table 9.1 details the
various parts of the DOM Level 3 specification.

Table 9.1 DOM Level 3 Specifications

DOM LEVEL 3 SPECIFICATIONS DESCRIPTION

DOM Level 3 Core Base set of interfaces describing the
document object model. Enhanced in this
third version.

DOM Level 3 XPath Specification A set of interfaces and methods to access a
DOM via XPATH expressions.

DOM Level 3 Abstract Schemas This specification defines two sub-specifi-

and Load and Save Specification catons: the Abstract Schemas specification

and the Load and Save specification. The
Abstract Schemas specification represents
abstract schemas (DTDs and schemas) in
memory. The Load and Save specification
specifies the parsing and saving of DOMs.

DOM Level 3 Events Specification This specification defines an event
generation, propagation, and handling
model for DOM events. It builds on the
DOM Level 2 event model.

DOM Level 3 Views and Formatting This specification defines interfaces to
represent a calculated view (presentation)
of a DOM. It builds on the DOM Level 2
View model.

The Saving-a-DOM Dilemma 77

Table 9.2 DOM Level 3 Load and Save Interfaces

W3C DOM LEVEL 3 LS INTERFACES DESCRIPTION

DOMImplementationLS

A DOMImplementation interface
that provides factory methods for
creating the poMwiriter,
DOMBuilder, and
DOMInputSource objects.

DOMBuilder A parser interface.

DOMInputSource An interface that encapsulates
information about the document to
be loaded.

DOMEntityResolver An interface to provide a method for
applications to redirect references to
external entities.

DOMBuilderFilter An interface to allow element nodes
to be modified or removed as they
are encountered during parsing.

DOMWriter An interface for serializing DOM
Documents.

DocumentL$S An extended document interface
with built-in load and save methods.

ParseErrorEvent Event fired if there is an error in

parsing.

The part of the DOM specification that solves our dilemma is the specification to
Load and Save a DOM. Table 9.2 details the interfaces defined in the specification. It is
important to note that JAXP will even change its method for bootstrapping parsers,
since its current method is slightly different than the DOM Level 3 load interfaces
(specifically, DOMBuilder versus DocumentBuilder).

The Xerces parser implements the DOM Level 3 specification. Listing 9.2 uses the
Xerces parser to demonstrate both the loading and saving of a DOM via the DOM

Level 3 standard.

01: package org.javapitfalls.item9;

02:

03: import org.apache.xerces.jaxp.*;
04: import org.apache.xerces.dom3.ls.*;

05: import org.apache.xerces.dom.DOMImplementationImpl ;

06: import org.apache.xerces.dom3.ls.DOMImplementationLS;

Listing 9.2 XercesSave.java (continued)

78 Item 9

07:

08: import javax.xml.parsers.*;
09: import java.io.*;

10: import org.w3c.dom.*;

11:

12: class XercesSave

13: {

14: public static void main(String argsl[])

15: {

16: try

17: {

// ... command line check omitted for brevity

24

253 // Xerces 2 implements DOM Level 3

26: // get DOM implementation

27: DOMImplementationLS domImpl =

28: (DOMImplementationLsS) :)
DOMImplementationImpl.getDOMImplementation () ;

2893

30: // Create a DOM Level 3 - DOMBuilder

3% DOMBuilder db =

32: domImpl.createDOMBuilder (:)
DOMImplementationLsS.MODE_SYNCHRONOUS) ;

33: DOMInputSource dis = domImpl.createDOMInputSource() ;
34: dis.setByteStream(new FileInputStream(args([0])) ;

35: Document doc = db.parse(dis);

36:

37: // save to output file

38: FileOutputStream fos = new FileOutputStream(args([l]);
BISE

40: // create a DOM Writer

41: DOMWriter writer = domImpl.createDOMWriter();

42: writer.writeNode (fos, doc);

43:

44: fos.close();

A5 s } catch (Throwable t)

46: {

47 : t.printStackTrace() ;

48: }

49: }

50: 1}

51:

Listing 9.2 (continued)

XercesSavejava uses the “LS” (which stands for Load and Save) version of the
DOMImplemenation to create the DOMBuilder (line 31) and DOMMWriter (line 41)

The Saving-a-DOM Dilemma

79

objects. Once created, the DOMBuilder creates the DOM via the parse () method, and
the DOMWriter saves the DOM via the writeNode () method. The writeNode ()
method can write either all or part of a DOM.

One final implementation worth mentioning is the load and save operations in the
Java Document Object Model (JDOM). JDOM is a reimplementation of DOM for Java
and is optimized for seamless integration into the Java platform. JDOM stresses ease of
use for Java developers, whereas the W3C DOM is designed to be language-neutral
(specified in CORBA IDL) and then provides bindings to specific languages. Of all the
examples in this item, the JDOM implementation is the simplest; however, its func-
tionality often lags behind the W3C DOM,; its Document class is not a subclass of the
W3C Document class and is thus incompatible with third-party software that expects
a W3C DOM as an argument (although conversion is provided). Listing 9.3 demon-
strates the load and save operations in JDOM.

01: package org.javapitfalls.item9;
02:

03: import org.jdom.*;

04: import org.jdom.input.*;

05: import org.jdom.output.*;

06: import java.io.*;

07:

08: class JdomSave

09: {

10: public static void main(String argsl[])

11: {

12: try

13: {

// ... command line check omitted for brevity ...

20:

21: // load the document

22: DOMBuilder db = new DOMBuilder();

23: Document doc = db.build(new File(args[0])):
24:

25: // save to output file

26: FileOutputStream fos = new FileOutputStream(args[1l]);
27: XMLOutputter xout = new XMLOutputter():;
28: xout .output (doc, fos);

29: fos.close() ;

30: } catch (Throwable t)

31: {

32: t.printStackTrace() ;

33: }

34: }

35s 3

36:

Listing 9.3 JdomSave.java

Item 10

Like the W3C Load and Save specification, JDOM also uses a DOMBuilder class
(but bootstraps it differently) and then builds an org. jdom. Document (line 23). It is
important to note that a JDOM Document is NOT a W3C Document. To save the JDOM
Document, an XMLOutputter class is instantiated that can output () (line 28) a document.

All three implementations of the program (JaxpSave, XercesSave, and JdomSave)
produce nearly identical outputs, and thus it is not necessary to list them here. In con-
clusion, at this time of rapid evolution of the DOM, the safest bet is to align your code
to the W3C standards and implementations that follow them. Thus, to save a DOM, the
Xerces implementation is currently the best choice.

Item 10: Mouse Button Portability

Unfortunately for cross-platform computing, all computer mice are not created equal.
There are one-button mice, two-button mice, three-button mice, and two-button-with-
mouse-wheel mice. Like the AWT, to cover all of these options, Java initially took a
least common denominator (LCD) approach that supported receiving a single mouse
event and using modifiers and modifier keys to differentiate between the different
types. A second problem Java programmers encounter regarding the mouse is that the
Java platform evolves its mouse support with each major release, adding support for
new features (like mouse wheels) and new convenience methods. Table 10.1 lists the
interfaces and methods for capturing mouse events.

Table 10.1 Mouse Event Interfaces
INTERFACE METHOD DESCRIPTION

MouseListener mouseClicked Invoked when a mouse is
clicked on a component

mousePressed Invoked when a mouse is
pressed

mouseReleased Invoked when a mouse is
released

mouseEntered Invoked when a mouse

enters a component’s bounds

mouseExited Invoked when a mouse exits
a component's bounds

MouseMotionListener mouseDragged Invoked when a mouse
button is pressed on a
component and then dragged

mouseMoved Invoked when a mouse is
moved around a component

MouseWheelListener mouseWheelMoved Invoked when the mouse
wheel is rotated

Mouse Button Portability

£ Bad Right Mouse Button [E3

Right Mouse Click here.

ege Bad Right Mouse Button |

Right Mouse Click here.

Figure 10.1 BadRightMouseButton on Windows (top) and Mac OS X (bottom).

A common problem is an application that needs to process clicks from a right mouse
button across platforms. For example, say we had an application that captured right
mouse clicks to both display a context-sensitive popup menu and change the mode of
a tool from select, on the left mouse click, to select and execute for a right mouse click.
Figure 10.1 displays the user interface of a simple application to capture these two
activities of a right mouse click. Figure 10.1 shows the application run on both Win-
dows NT and Mac OSX, since our Java application supports both operating systems.

Listing 10.1 displays the source code for BadRightMouseButton.java.

01: /* BadRightMouseButton.java */

02: import java.awt.event.*;

03: import java.awt.*;

04: import javax.swing.*;

053

06: public class BadRightMouseButton extends JFrame implements

MouselListener

07: {

08: public BadRightMouseButton ()

09: {

10: super ("Bad Right Mouse Button") ;

11:

12: JLabel 1 = new JLabel ("Right Mouse Click here.");
13: getContentPane() .add ("Center", 1);

14:

15: addMouseListener (this) ;

16:

17: setSize(400,200) ;

18: setLocation(100,100) ;

19: setVisible (true) ;

20: addWindowListener (new WindowAdapter ()

2l g {

22: public void windowClosing (WindowEvent evt)

Listing 10.1 BadRightMouseButton.java (continued)

82 Item 10

23: {

24: System.exit (1) ;

25: }

26: 1)

27 :

28: }

IOE

30: public static void main(String [] args)

31: {

32: try

33: {

34: BadRightMouseButton win = new BadRightMouseButton() ;
35:

36: } catch (Throwable t)

37: {

38: t.printStackTrace() ;

38¢ }

40: }

41 :

42: public void mouseClicked (MouseEvent e)

43 {

44 . int modifiers = e.getModifiers() ;

45: if ((modifiers & InputEvent.BUTTONl MASK) == o)
InputEvent .BUTTON1_MASK)

46: System.out.println("Button 1 clicked.");

47

48: if ((modifiers & InputEvent.BUTTON2_ MASK) == :)
InputEvent .BUTTON2_ MASK)

49: System.out.println ("Button 2 clicked.");

50:

51: if ((modifiers & InputEvent.BUTTON3_ MASK) == D)
InputEvent .BUTTON3_MASK))

52 System.out.println ("Button 3 clicked.");

53:

54: // modifier keys

55: System.out.println("isControlDown? " + e.isControlDown()):;
56: System.out.println("isMetaDown? " + e.isMetaDown());

572 System.out.println("isAltDown? " + e.isAltDown());

58: System.out.println("isSshiftDown? " + e.isShiftDown());

59: System.out.println("isAltGraphDown? " + e.isAltGraphDown()):;
60:

61: /* 1.4 methods

62: int buttonNumber = e.getButton() ;

63: System.out.println("Button # is : " + buttonNumber) ;

64:

@55 int mods = e.getModifiersEx() ;

66: System.out.println("Modifiers: " + :)
InputEvent.getModifiersExText (mods)) ;

67: */

Listing 10.1 (continued)

Mouse Button Portability

83

68:

69: // is this a Popup Trigger?

70: System.out.println("In mouseClicked(), isPopupTrigger? " + :)
e.isPopupTrigger());

71: }

72

VEE public void mousePressed (MouseEvent e)
74 {1}

753 public void mouseReleased (MouseEvent e)
76: {1}

77 : public void mouseEntered (MouseEvent e)
78: {1}

79: public void mouseExited (MouseEvent e)
80: {1}

81l: }

Listing 10.1 (continued)

JDK 1.4 has added some new methods as demonstrated (but commented out) in
lines 62 and 65. These are additional convenience methods that enable you to eliminate
the need for ANDing the modifier integer with the constant flags (lines 45, 48, and 51).

Here is a run of BadRightMouseButton on Windows with a two-button mouse with
a mouse wheel. When the program was executed, the right mouse button was clicked,
followed by the left mouse button and then the mouse wheel. This produced the fol-
lowing println statements:

>>>java BadRightMouseButton (on Windows NT with 2 button mouse with
mousewheel)

Button 3 clicked.

isControlDown? false

isMetaDown? true

isAltDown? false

isShiftDown? false

isAltGraphDown? false

In mouseClicked(), isPopupTrigger? false

Button 1 clicked.

isControlDown? false

isMetaDown? false

isAltDown? false

isShiftDown? false

isAltGraphDown? false

In mouseClicked(), isPopupTrigger? false

Button 2 clicked.
isControlDown? false
isMetaDown? false
isAltDown? true

84

Item 10

isShiftDown? false
isAltGraphDown? false
In mouseClicked(), isPopupTrigger? false

Here is a run of BadRightMouseButtonjava on Mac OSX with a single-button
mouse. When the program was executed, the single mouse button was clicked (which
maps to button 1), then the Ctrl key was held and the mouse button clicked, then the
special “apple” key was held and the mouse button clicked.

>>>java BadRightMouseButton (on MacOSX with a single mouse button)
Button 1 clicked.

isControlDown? false

isMetaDown? false

isAltDown? false

isshiftDown? false

isAltGraphDown? false

In mouseClicked (), isPopupTrigger? false

Button 2 clicked.

isControlDown? true

isMetaDown? false

isAltDown? true

isShiftDown? false

isAltGraphDown? false

In mouseClicked(), isPopupTrigger? false

Button 3 clicked.

isControlDown? false

isMetaDown? true

isAltDown? false

isShiftDown? false

isAltGraphDown? false

In mouseClicked (), isPopupTrigger? false

There are two problems you should notice when examining the results from both
operating systems besides the fact that they are not consistent. First, there is no clear
indication of a right mouse button click even though we know that the Windows
mouse clearly has a right and left mouse button. Instead of “sides” of the mouse, we
have the ability in the InputEvent class (which is the parent class of MouseEvent) to
check which button was clicked: button 1, 2, or 3. Unfortunately, there is no way to cor-
relate a button with a side for a cross-platform application. The second problem is that
the call to isPopupTrigger ()has always returned false when we know that a right-
button mouse click is the trigger on Windows for a popup and the Ctrl-mouse click
combination is the trigger on the Mac. Listing 10.2, GoodRightMouseButton.java,
solves both of these problems.

Mouse Button Portability 85

01l: /* GoodRightMouseButton.java */
02: import java.awt.event.*;

03: import java.awt.*;

04: import javax.swing.*;

05:
06: public class GoodRightMouseButton extends JFrame implements :)
MouselListener
07: {
08: public GoodRightMouseButton ()
09: {
// ... constructor identical to Listing #10.1
28: }
29 ¢
30: public static void main(String [] args)
31: {
323 try
BEE {
34: GoodRightMouseButton win = new GoodRightMouseButton() ;
35:
36: } catch (Throwable t)
37: {
38: t.printStackTrace() ;
39: }
40: }
41 :
42: public void mouseClicked (MouseEvent e)
43: {
// ... getModifiers() code Identical to listing 10.1
68:
69: // is this a Popup Trigger?
70: System.out.println("In mouseClicked(), isPopupTrigger? " + :)
e.isPopupTrigger()) ;
71:
722 // Use SwingUtilities to disambiguate
73: boolean 1lb = SwingUtilities.isLeftMouseButton(e);
74: boolean mb = SwingUtilities.isMiddleMouseButton(e);
75: boolean rb = SwingUtilities.isRightMouseButton(e);
76:
77 : System.out.println("Left button? " + 1lb);
78: System.out.println("Middle button? " + mb);
VCE System.out.println("Right button? " + rb);
80: }
81:
82: public void mousePressed(MouseEvent e)

Listing 10.2 GoodRightMouseButton.java (continued)

86

Item 10

83: {

84: // is this a Popup Trigger?

85: System.out.println("In mousePressed(), isPopupTrigger? " + :)
e.isPopupTrigger());

86: }

87: public void mouseReleased (MouseEvent e)

88: {

89: // is this a Popup Trigger?

90: System.out.println("In mouseReleased(), isPopupTrigger? " + :)
e.isPopupTrigger()):

G g }

62 ¢

93: public void mouseEntered (MouseEvent e)

94 : {1}

95: public void mouseExited(MouseEvent e)

96: {1}

97: 1}

98:

Listing 10.2 (continued)

Here is a run of GoodRightMouseButton on Windows. When executing the pro-

gram, the right mouse button was clicked, followed by the left mouse button and then
the mouse wheel. This produced the following println statements:

>>>java GoodRightMouseButton (on Windows NT with 2 button mouse with
mousewheel)

In mousePressed(), isPopupTrigger? false
In mouseReleased (), isPopupTrigger? true
Button 3 clicked.

isControlDown? false

isMetaDown? true

isAltDown? false

isShiftDown? false

isAltGraphDown? false

In mouseClicked(), isPopupTrigger? false
Left button? false

Middle button? false

Right button? true

In mousePressed(), isPopupTrigger? false
In mouseReleased (), isPopupTrigger? false
Button 1 clicked.

isControlDown? false

isMetaDown? false

isAltDown? false

isshiftDown? false

isAltGraphDown? false

Mouse Button Portability 87

In mouseClicked(), isPopupTrigger? false
Left button? true

Middle button? false

Right button? false
In mousePressed(), isPopupTrigger? false
In mouseReleased (), isPopupTrigger? false
Button 2 clicked.

isControlDown? false

isMetaDown? false

isAltDown? true

isShiftDown? false

isAltGraphDown? false

In mouseClicked(), isPopupTrigger? false
Left button? false

Middle button? true

Right button? false

Here is a run of GoodRightMouseButton.java on Mac OSX. When the program was
executed, the single mouse button was clicked, then the Ctrl key was held and the
mouse button clicked, then the special “apple” key was held and the mouse button
clicked.

>>>java GoodRightMouseButton (on MacOSX with a single mouse button)
In mousePressed(), isPopupTrigger? false

In mouseReleased (), isPopupTrigger? false

Button 1 clicked.

isControlDown? false

isMetaDown? false

isAltDown? false

isShiftDown? false

isAltGraphDown? false

In mouseClicked(), isPopupTrigger? false

Left button? true

Middle button? false

Right button? false
In mousePressed(), isPopupTrigger? true
In mouseReleased(), isPopupTrigger? false
Button 2 clicked.

isControlDown? true

isMetaDown? false

isAltDown? true

isShiftDown? false

isAltGraphDown? false

In mouseClicked(), isPopupTrigger? false
Left button? false

Middle button? true

Right button? false

In mousePressed(), isPopupTrigger? false
In mouseReleased (), isPopupTrigger? false

Item 11

Button 3 clicked.

isControlDown? false

isMetaDown? true

isAltDown? false

isShiftDown? false

isAltGraphDown? false

In mouseClicked (), isPopupTrigger? false
Left button? false

Middle button? false

Right button? true

The new results show that we can determine which mouse button (left, right, or
middle) was clicked and whether that click is the popup trigger event. The solution has
two parts: first, the SwingUtilities class contains a set of methods that allow you
to test a mouse event to determine which side of the mouse was clicked. It is slightly
nonintuitive to have these separated from the other test methods in InputEvent or
MouseEvent; however, that could change in a future release. Second, you should
notice how you have to test for the popupTrigger in the mousePressed() and
mouseReleased () to accurately determine the trigger event. It is interesting to note
that the Ctrl-mouse combination on the Macintosh is considered the middle mouse
button and not the right mouse button. It would be better if the popup trigger was con-
sistent on Windows and the Mac (both being considered a “right click”).

In conclusion, using the SwingUtilities class and understanding when to call
isPopupTrigger ()allows us to better process mouse events in cross-platform appli-
cations.

Item 11: Apache Ant and Lifecycle Management

The software lifecycle process describes the life of a software product from its concep-
tion to its implementation and deployment. An important aspect of this process is the
need to impose consistency and structure on all lifecycle activities that can guide
actions through development to deployment. This practice is often compared to a
cookbook, where knowledge is captured and then transferred to others so that they can
emulate similar actions. Unfortunately, most projects incorporate inconsistent prac-
tices where developers create and deploy on disparate platforms and apply their indi-
vidual techniques for building and testing code, which becomes problematic during
integration when disparities between scripts make them difficult to understand and
implement.

An important solution to this problem is a utility available through the Apache Soft-
ware Foundation called Ant (“Another Neat Tool”). Ant’s main purpose is to facilitate
application builds and deployments. This is achieved by combining Java program-
ming language applications and XML build files, which can be run on multiple plat-
forms and offer open-architecture flexibility. By maintaining applications and program
builds with Ant, consistency levels can be achieved by disparate groups of developers,
and the best practices can be propagated throughout a project.

With Ant, targets are generated in project files for compilation, testing, and deploy-
ment tasks. The aim of the Ant build file which follows is to highlight some useful

Apache Ant and Lifecycle Management

89

target generation tasks that can facilitate software lifecycle activities so that manual
development processes can be automated, which will free up developers’ time for
greater creativity in their own applications rather than being tied down with mundane
build and deployment activities.

Most Ant scripts start with the initialization of application properties demonstrated
in lines 11 to 23. These same properties could also be established from the command
line and delivered to the Ant build script in the same manner as Java programs with
the -D parameter during the Ant build invocation. One important thing to consider
about properties that are set in an Ant script is that these are immutable constants that
cannot be changed once declared. Line 31 shows the depends tag that signals that the
target "compile" depends on the "init" target being run prior to its execution.
Most scripts will use the depends tag to execute sequential build processes.

001: <?xml version="1.0"?>
002: <project name="lifecycle management">

003:

004: <!--

005. LRSS S S S S S ESEEEREEEEEE SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE S ST
006: ** Initialize global properties.

007: **__>

008: <target name="init" description="initialize lifecycle properties.">
009:

010: <tstamp/>

011l: <property name="testdir" value="." />

012: <property name="rootdir" value="."/>

013: <property name="builddir" value="build"/>

014: <property name="driver" value="org.gjt.mm.mysqgl.Driver" />
015: <property name="url" value="jdbc:mysqgl://localhost/States" />
016: <property name="userid" value="" />

017: <property name="password" value="" />

018: <property name="destdir" value="bugrat" />

019: <property name="zip.bugrat" value="bugrat.zip" />

020: <property name="destdir.bugrat" value="${destdir}/test" />
021: <property name="catalina.home" value="c:\apache\tomcat403"/>

022: <property name="cvs.repository" :)
value=":pserver:<username>@<hostname>:c:\cvsrep" />

023: <property name="cvs.package" value="tests"/>

024:

025: </target>

026:

027: <!--

028: LRSS S S S S SRR R R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE SRS S S ST

029: ** Java compilation

030: **__>

031: <target name="compile" depends="init">

032: <javac srcdir="." destdir="." classpath="junit.jar" />
033: </target>
034:

Listing 11.1 lifecycle_build.xml (continued)

90

Item 11

Lines 39 to 57 illustrate how Ant can be used to run JUnit tests on your Java appli-
cations. JUnit is an open-source testing framework that allows developers to build test
suites so that unit testing can be performed on Java components. Personally, we like
to use them to create unit tests on JavaBean applications to ensure that developers on
our team do not corrupt these files during development activities. If a developer is
experiencing a problem with some code, we run some tests that were crafted during
development to verify that no bugs have been introduced into an application.

035: <!--

036. R R R EE RS EEEE RS R R RS EEEE SRR R EEREEEEEEEEEEEEEEEEEEEEESES
037: ** JUnit tests

038: **__>

039: <target name="test" depends="compile">

040:

041: <echo message="Running JUnit tests." />

042: <junit printsummary="true">

043: <!-- <formatter type="plain" usefile="false" /> -->
044: <formatter type="xml" />

045: <test name="AllTests2" />

046: <classpath>

047: <pathelement location="." />
048: </classpath>

049: </junit>

050: <junitreport todir=".">

051: <fileset dir=".">

052: <include name="TEST-*.xml" />
053: </fileset>

054: <report format="frames" todir="." />
055: </junitreport>

056:

057: </target>

058:

Listing 11.1 (continued)

Obviously, the setting of appropriate classpath properties is paramount when run-
ning Ant and compiling individual Java code. This is accomplished by setting the
paths and their components on lines 63 to 69.

059: <l==

O60: R SRR SR RS S EEEEEEEE RS EE SRS E SRR EEEEEEEREEEEEEEEEEEEEESE]
061: ** Classpath properties.

062: **_->
063: <path id="classpath.path">

064: <pathelement location="${builddir}"/>

065: <fileset dir="cache/lib">

066: <include name="*.jar"/>

067: </fileset>

068: <pathelement location="cache/lib/servlet.jar"/>
069: </path>

070:

Listing 11.1 (continued)

Apache Ant and Lifecycle Management

91

Additionally, directory creation scripts on lines 75 to 104 are needed to move source
code to proper deployment areas so that they are accessible to other Ant targets.

071: <!l--

072: RS SRS S S S SRR R R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE S ST
073: ** Create the output directory structure.

074: **,,>'
075: <target name="prepare">

076:

077: <mkdir dir="${builddir}"/>

078: <mkdir dir="${builddir}/tests"/>

079: <mkdir dir="${builddir}/WEB-INF/1lib"/>

080: <mkdir dir="${builddir}/WEB-INF/classes/cache"/>

081:

082: <copy todir="${builddir}/WEB-INF/classes/cache">

083: <fileset dir="cache/beans"/>

084: </copy>

085: <copy todir="${builddir}">

086: <fileset dir="cache/src"/>

087: </copy>

<!-- some copy elements deleted for brevity ... -->

104: </target>

105:

Listing 11.1 (continued)

All Ant scripts should provide Help targets to assist end users in their build opera-
tions as verified on lines 110 to 115. Cleanup targets should be created to remove
unwanted files and directories, and to ensure that legacy code that is no longer pertinent
does not get added to production builds, which is demonstrated on lines 121 to 125.

106: <!l--

107: RS SRS S S S EEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE S E ST
108: ** Help

109: ***,,>
110: <target name="help" description="Lifecycle Help">.

111:

112: <echo message="Lifecycle Help"/>

113: <echo message="Type 'ant -projecthelp' for more :)
assistance..."/>

114:

115: </target>

116:

117: <!--

118: RS SRS S S S EE RS S ST
119: ** Remove the (build/release) directories

120: ***,,>
121: <target name="clean">.

122:

123: <delete dir="${builddir}"/>

124:

125: </target>

126:

Listing 11.1 (continued)

92

Item 11

On many development efforts, code repositories and versioning systems are
deployed to share code among programmers and to save modifications for redistribu-
tion. Often, an open-source application called Concurrent Versioning System (CVS) is
used to perform these tracking and coordination activities. With CVS, check-in and
checkout procedures allow users to access source code repositories to ensure that
proper builds are deployed and archived. Source code control is an absolute necessity
during multiple developer projects because it prevents inconsistencies in program
updates and automates coordination among developers. A very simple glimpse of a
CVS update operation embedded in Ant is shown on lines 131 to 139.

The combination of these three open-source applications, CVS/JUnit/Bugrat, can
be an effective configuration management toolset that developers can integrate with
Ant to facilitate their development activities. Configuration management systems are
important in that they minimize risk and promote traceability through source control,
test coordination, bug tracking, and resolution. Normal CVS operations and JUnit test
scripts can be embedded in Ant scripts. The BugRat tracking tool can be built or
deployed by using an Ant script to place the zipped Web Archive BugRat file in your
J2EE Web container. Lines 146 to 179 show how to initialize, deploy, and clean up a
BugRat installation.

127: <!--

128: R SRR SRS S EE SRS SRR SRR EEESEREEEEEEEEEEREEEEEEEEEEEEEERES

128 ** CVS

130: ***__>

131: <target name="cvs" description="Check out CVS files...">

132:

133: <echo message="Check out CVS files..."/>

134: <cvs cvsRoot=":pserver:anoncvs@cvs.apache.org: /home/cvspublic"
135: package="jakarta-ant"

136: dest="c:\Java_Pitfalls\Antidote\jakarta-ant-antidote" />
137: <cvs command="update -A -4"/>

138:

139: </target>

140:

141: <!--

142: IR E SRR SRS E R SRS RS SR SR SRS R R SRS RS EE SR SRR EEEEEEEEEEREEEEESEESSE]

143: ** Bugrat - Bug Tracking Tool

144: ***__)

145:

146: <target name="initBugrat">

147:

148: <!-- Create the time stamp -->

149: <tstamp/>

150: <!-- Create the build directory structure used by compile -->
151: <available property="haveBugrat" type="dir" :)
file="${destdir.bugrat}"/>

152:

153: </target>

154:

Listing 11.1 (continued)

Apache Ant and Lifecycle Management

93

155: <target name="prepareBugrat" depends="initBugrat">
156:

157: <mkdir dir="${destdir}"/>

158:

159: </target>

160:

161: <target name="installBugrat" depends="prepareBugrat" :)

unless="haveBugrat">
162: <unzip src="${zip.bugrat}" dest="${destdir}"/>
163: </target>

164:

165: <target name="deployBugrat" depends="installBugrat" :)
description="Install Bugrat">

166:

167: <pathconvert targetos="windows" property="bugrat_home">

168: <path location="${destdir.bugrat}"/>

169: </pathconvert>

170:

171: </target>

172:

173: <target name="cleanBugrat">

174:

175: <!-- Delete the ${build} and ${dist} directory trees -->

176: <delete dir="${destdir}" />

177 <!-- For the sake of brevity, I've omitted the SQL scripts that :)
need to be run to build the Bugrat repository. These files include: :)

defconfig.sql, defproperties.sql, examplecats.sql, and mysqglschema.sql -->
178:
179: </target>

Listing 11.1 (continued)

As in life, with software, increasing complexity leads to the natural occurrence of
more problems. During software development, source code needs to be consistently
reviewed to determine where code can be refactored, or rewritten, to improve efficien-
cies. Refactoring increases quality through design improvements and the reduction of
defects. Two open-source Java utilities, JDepend and JavaNCSS, can be used within an
Ant script to provide metrics so that program behaviors can be observed and improve-
ments can be tested.

The JDepend application reads Java class and source file directories to generate met-
ric measurements that can be used to determine software quality. Designs are more
extensible when they are independent of implementation details, which allows them to
adapt to new modifications without breaking the entire system. JDepend isolates pro-
gram couplings to determine where dependencies lie and where migrations can occur
among lower levels of software hierarchies to higher levels so that redundancies can be
decreased. JavaNCSS provides noncommented source code measurements so that
large, cumbersome programs can be discovered and possibly be rewritten to improve
readability or performance.

Certainly, measurements from both JDepend and JavaNCSS should be used only to
gauge software quality and not be deemed absolute predictors as to what needs to be
performed in order to make code more efficient.

94

Item 11

181: <!--

182. RS RS SRS S EE SRS SRR SRR SRS SRR RS EEEEREEEEEEEEEEEEEEES
183: ** JDepend

184. ***,,>

185: <target name="jdepend">

200: <jdepend outputfile="docs/jdepend-report.txt">

201: <sourcespath>

202: <pathelement location="./ant/src" />

203: </sourcespath>

204 : <classpath location="." />

206: </jdepend>

208: </target>

209:

210: <!--

211: RS SRR SRS SR SR SRS SR SR SRR R SR SRS EE SRR EEEEEEEESEREEEEESEESSE]
2123 ** JavaNCSS

213: ***__>
214: <target name="javancss">

223: <taskdef name="javancss" classname="javancss.JavancssAntTask" :)
classpath="${CLASSPATH}" />

231: <javancss srcdir="./ant/src"

232: generateReport="true"

233: outputfile="javancss_metrics.xml"

234: format="xml"/>

236: </target>

Listing 11.1 (continued)

Developers can include a splash screen target to signal that something is actually
occurring during an Ant command-line build operation by adding lines 242 to 248.

238: <!--

239. R EEEE SRR EEEE SRS EEEEEESEEEESESEEEEEEEEEEEEEEESEREEEEESESSE]
240: ** Splash screen

241. ***__>

242: <target name="splash" description="Display splash screen...">
243:

244: <echo message="Display splash screen..."/>
245: <splash imageurl="./ant/images/ant_logo_large.gif"
246: showduration="5000" />

248: </target>

Listing 11.1 (continued)

Checkstyle is a Java development tool that helps programmers write Java code that
adheres to a recognized coding standard. It automates the process of visually checking
through Java code to ensure that previously established coding rules are incorporated
into individual source code components.

Some of the useful standards that Checkstyle looks for are unused or duplicate
import statements, that Javadoc tags for a method match the actual code, the incor-
poration of specified headers, that @author tags exist for class and interface Javadoc

Apache Ant and Lifecycle Management

95

comments, that periods (.) are not surrounded by whitespace, that brackets ({}) are
used for if /while/for/do constructs, that lines do not contain tabs, and that files are
not longer than a specified number of lines. To implement Checkstyle, a user would
need to use lines 254 to 263.

250: <!--

251. hhkhkhkhhkkhkhkhkhkrhhkhkhkhkhkhkhhkhkhkhkhkhkhrhkhkhkhkddhrhkhkdkhkdhrhkhkdkhkhrhrhhkhxkx*k
252 3 ** Checkstyle

253. ***__>

254: <target name="checkStyle" description="Coding standard met?...">

256: <taskdef name="checkstyle"

257: PD)
classname="com.puppycrawl.tools.checkstyle.CheckStyleTask"/>

258: <echo message="Coding standard met?..."/>

259: <checkstyle allowTabs="yes">

260: <fileset dir="./ant/src" includes="**/*_ java"/>

261: </checkstyle>

263: </target>

Listing 11.1 (continued)

Document preparation is an important but often overlooked activity during soft-
ware implementation. Users often need to understand what APIs are being used to
propagate data across systems. Javadoc provides hyperlinked documents for Web
browser viewing, which allows users to share copies and facilitates distribution.
Javadocs are easily updateable, which helps maintain consistency.

266: <!--

267: IR EE SRS SR EE S
268: ** Javadoc

269: ***__>
270: <target name="javadoc" description="Generate Javadoc :)
artifacts">

272: <echo message="Generating Javadoc artifacts..."/>

273: <javadoc packagenames="*"

274 : sourcepath="./ant/src"

275: sourcefiles="./ant/src/**"

276: excludepackagenames="com.dummy.test.doc-files.*"
277 : defaultexcludes="yes"

278: destdir="docs/api"

279: author="true"

280: version="true"

281: use="true"

282: windowtitle="Test API">

283: <doctitle><! [CDATA[<hl>Test</hl>]]></doctitle>

284 : <bottom><! [CDATA [<i>Copyright © 2002 Java :)
Pitfalls II All Rights Reserved.</i>]]></bottom>

285: </javadoc>

286:

287: </target>

Listing 11.1 (continued)

96 Item 11

In the Servlet/JavaServer Page model, Web ARchive (WAR) files are portable com-
ponents that can be deployed across a wide range of J2EE Web containers. The code
below shows how Java source is compiled and packaged for deployment.

288:
289: <l--
290: PR SRR SRS S EEE RS SRR SRR RS S SRS R EEREEEEEEEREEEEEEEEEEEEEERS
291: ** Build WAR file
292: ***__>
293: <target name="distribute" depends="prepare">
294:
295: <echo message="Compiling source..."/>
296:
297: <javac srcdir="cache/beans" destdir="${builddir} /WEB- :)
INF/classes/">
298: <classpath><path
refid="classpath.path"/></classpath>
2983 </javac>
300:
301: <echo message="Creating WAR file [cache.war]..."/>
302: <war warfile="${builddir}/cache.war" :)
webxml="cache/deployment/web.xml">
303: <fileset dir="${builddir}">
304:
<patternset id="_source">
305: <include name="*.jsp"/>
306: </patternset>
307: <patternset id="_stylesheet">
308: <include name="*.css"/>
309: </patternset>
310: </fileset>
311: <webinf dir="${builddir}/WEB-INF">
312: <patternset id="_tld">
313: <include name="*.tld"/>
314: </patternset>
315: </webinf>
316: <classes dir="s${builddir}/WEB-INF/classes" >
317: <patternset id="_classes">
318: <include name="**"/>
319: </patternset>
320: </classes>
321: <lib dir="s{builddir}/WEB-INF/1lib" />
3223 </war>
324: </target>

Listing 11.1 (continued)

Database creation, population, and destruction can also be accomplished with Ant
scripts. Prior to discovering this capability, our development team was experiencing
great difficulties in performing these operations on both Intel and Unix platforms.
Different scripts needed to be maintained in order to run the SQL commands, which
proved quite cumbersome. By employing Ant, we were able to use the same script on
both platforms, which allowed us to facilitate operations.

Apache Ant and Lifecycle Management

97

326: <l--

327: R E R R R SRS E R SRS RS SR SRR SRR SRS RS EE SRS E R EEEEEEEEEEEEEEEEESSE]
328: ** SQL - table creation, population and deletion

329: ***__>
330:

331: <target name="createMySQLCacheTables">

333: <sqgl driver="${driver}" url="${url}" userid="S${userid}" :)
password="$ {password} ">

334: <classpath>

335: <fileset dir=".">

336: <include name="mm.mysqgl-2.0.4-bin.jar" />

337: </fileset>

338: </classpath>

339:

340: <l--

341: NOTE: Could logon to MySQL thru URL mysgl :)
(default database) and create the States dB instance

342: or do this manually through this step: create database :)
States;

343: -——>

345: CREATE TABLE GeneralInfo (

346: State VARCHAR (40) NOT NULL,

347: Flower VARCHAR(50),

348: Bird VARCHAR(50),

349: Capital VARCHAR(40),

350: PRIMARY KEY (State)

351:) 2

352:

BOBE CREATE TABLE Topics (

354: State VARCHAR (40) NOT NULL,

BE AutomobileDealers VARCHAR (40),

356: BikeTrails VARCHAR(50),

BOVE Gyms VARCHAR (50) ,

BISE Hospitals VARCHAR(50),

359: Laundromats VARCHAR(50),

360: Parks VARCHAR(50),

361: Physicians VARCHAR (50),

362: PetStores VARCHAR(50),

363: Restaurants VARCHAR(50),

364: RestAreas VARCHAR(50),

365: Supermarkets VARCHAR (50),

366: PRIMARY KEY (State)

367:) 2

369: </sgl>
371: </target>

372:

373: <target name="dropMySQLCacheTables">

375: <sqgl driver="S${driver}" url="S${url}" userid="S${userid}" :)
password="$ {password} ">

376: <classpath>

377: <fileset dir=".">

378: <include name="mm.mysqgl-2.0.4-bin.jar" />

379: </fileset>

Listing 11.1 (continued)

Item 11

380: </classpath>
382: DROP TABLE GeneralInfo;
383: DROP TABLE Topics;

385: </sqgl>

386: </target>

387:

388: <target name="populateMySQLCacheTables">

390: <sqgl driver="${driver}" url="${url}" userid="S${userid}"
password="$ {password} ">

BICNE <classpath>

392: <fileset dir=".">

393: <include name="mm.mysqgl-2.0.4-bin.jar" />
394: </fileset>

BIOBE </classpath>

396:

397: INSERT INTO GeneralInfo VALUES ('Alabama', 'Camellia', :)
'Yellowhammer', 'Montgomery');

399 INSERT INTO Topics VALUES ('Alabama', 'KIA', 'Bama Path',
'Mr. Muscles', 'St. Lukes', 'Mr. Clean', 'Tuscaloosa', 'Dr. Nick', 'Mr.
Pickles', 'Joes Pizzaria', 'Selma', 'Mr. Goodshoes');

401: </sgl>
402: </target>

Listing 11.1 (continued)

The key to having efficient operations during development is predicated on the
automation of tedious operations, especially testing. An open-source offering called
CruiseControl can be embedded in Ant scripts to allow developers to check out source
code from CVS so that release builds can be made and modules can be tested. This is
an important component of all software operations. Batch scripts can be used to create
nightly builds with CruiseControl so that daily software modifications can be tested
for defects overnight and addressed by developers before they are forgotten and
remain undetected on a system.

404: <!--

405: RS RS SRS S EE SRS SRR E SRS SRS SRR EREEEEEEEREEEEEEEEEEEEEEES
406: ** Cruise control

407: ***,,>
408: <target name="all" depends="clean, compile, javadoc, :)
distribute, junit" description="prepare application for CruiseControl"/>
410: <target name="cruise" description="Start the automated build :)
process with CruiseControl">

412: <copy todir="${catalina.home}/webapps/" :)
file="Cruisecontrol/cruisecontrol/buildservlet.war" />

414: <java classname="net.sourceforge.cruisecontrol.MasterBuild" :)
fork="yes" >

415: <arg line="-properties cruisecontrol.properties - :)
lastbuild 20020901010101 -label test 1"/>

416: <classpath>

Listing 11.1 (continued)

Apache Ant and Lifecycle Management

99

417: <pathelement :)
location="Cruisecontrol\cruisecontrol\cruisecontrol.jar"/>

418: <pathelement path="${java.class.path}"/>

419: <pathelement path="${compile.classpath}"/>

420: <pathelement location="."/>

421 : </classpath>

422 </java>

424 : </target>

425:

426 <target name="checkout" description="Update package from CVS">
427 : <cvs cvsroot="${cvs.repository}" package="S${cvs.package}" :D
dest="." passfile="etc\.passwd" />

428: </target>

429:

430: <target name="modificationcheck" depends="prepare" :)
description="Check modifications since last build">

431 :

432: <taskdef name="modificationset"
classname="net.sourceforge.cruisecontrol .ModificationSet" />

433: <echo message="Checking for modifications..."/>

434 : <modificationset lastbuild="${lastGoodBuildTime}" :)
quietperiod="30" dateformat="yyyy-MMM-dd HH:mm:ss">

435: <cvselement cvsroot="${cvs.repository}" :)
localworkingcopy="." />

436: </modificationset>

437: </target>

438:

439: <target name="masterbuild" :)
depends="modificationcheck, checkout,all" description="Cruise Control :)
master build"/>

440: <target name="cleanbuild" depends="clean,masterbuild" :)

description="Cruise Control clean build"/>
442: </project>

Listing 11.1 (continued)

Let’s face it, the Internet has made it difficult for all software companies to keep up
with platform and tool evolutions. Many integrated development environments
(IDEs), both proprietary and open-source, have implemented Ant in their applications,
but disparities in Ant versions and proprietary tag extensions in these applications
have made these tools less desirable for application builds and deployments. These
inconsistencies make Ant a much more powerful tool when run from the command
line and not from an IDE application that could introduce incompatibility problems.

.m The lifecycle build script shown above highlights Ant’s ability to ease
the construction and deployment of Java projects by automating source code
packaging, integration, script execution, and production system deployment.
Hopefully, users can use these Ant build techniques to make their lifecycle
activities more efficient.

100

Item 12

Item 12: JUnit: Unit Testing Made Simple

My wife is a good cook, a really good cook, but she drives me crazy sometimes with
experiments on existing recipes that I like and expect to taste a certain way. Sometimes
she does this because she’s run out of some ingredient or she just feels like trying some-
thing new. Me, I don't like to try new things and prefer consistency in what I eat. My
wife has made several suggestions on what I should do about this problem, the clean-
est version being that I cook for myself. Rather than taking a chance that I might actu-
ally learn how to cook, I've graciously learned to accept her unpredictable ways.

Software testing exhibits these same qualities and inconsistencies. Many times
developers don’t write proper tests because they feel that they don’t have the time to
do so, and when they do, they often introduce their own programming biases in their
manual tests, making them irrelevant. Software testers often don’t understand what
they are testing because developers don’t communicate very well what exactly needs
to be tested. Growing code repositories and deadline pressures complicate this matter,
as well as the attrition of developers on many projects.

To address this problem, development teams need to enforce some order into their
systems to prevent the chaos that habitually occurs, and that can be accomplished by
implementing the JUnit framework to test logic boundaries and to ensure that the
overall logic of your software components is correct.

JUnit is an open-source unit-testing framework written in Java that allows users to
create individual test cases that are aggregated in test suites for deployment. Lines 16
and 17 illustrate this. The test case for my unit test is called OneTestCase.class, and my
test suite is “test”. If a test class does not define a suite method, then the TestRunner
application will extract a suite and fill it with all methods that start with “test” using
the Java reflection mechanism.

01:
02: import junit.framework.*;

03: import junit.runner.BaseTestRunner;

04:

053 [J=%

06: * TestSuite that runs all the sample tests

07: &3

08: */

09: public class AllTests {

10:

11: public static void main(String[] args) {

12: junit.textui.TestRunner.run(suite()) ;
13: }

14:

15: public static Test suite() {

16: testsuite suite= new testsuite("Framework Tests");
17: suite.addTestSuite (OneTestCase.class);
18: return suite;

19¢ }

20: }

Listing 12.1 AllTests.java

JUnit: Unit Testing Made Simple

101

Since we develop Web applications on many of our projects, our unit tests focus
primarily on JavaBean components to ensure that our program logic is sound and
consistent. In the code below, an employee form validates user inputs from a Web
page. Lines 59 to 71 demonstrate how to add JUnit test code to our JavaBean applica-
tions for unit testing.

01:

02: import java.util.*;

03: import junit.framework.*;

04: import junit.runner.BaseTestRunner;
053

06: public class employeeFormBean {

07: private String firstName;

08: private String lastName;

09: private String phone;

10: private Hashtable errors;

11:

12: public boolean validate() {

133 boolean allOk=true;

14:

15: if (firstName.equals("")) {

16: errors.put ("firstName", "Please enter your first name") ;
17: firstName="";

18: allOk=false;

19z }

20: if (lastName.equals("")) {

21: errors.put ("lastName", "Please enter your last name") ;
22: lastName="";

23: allOk=false;

24 : }

253 return allOk;

26: }

27 8

28: public String getErrorMsg(String s) {

29: String errorMsg =(String)errors.get(s.trim()) ;
30: return (errorMsg == null) ? "":errorMsg;

31: }

32:

33: public employeeFormBean () {

34: firstName="";

35: lastName="";

36: // errors

37: errors = new Hashtable() ;

38: }

39¢

dQg // GEIr MEEhEES ===sssssossoosssosoosoosoosoosoossoosoosoosoosooss
41: public String getFirstName () {

42 return firstName;

43: }

Listing 12.2 employeeFormBean.java (continued)

102 Item 12

44

45: public String getLastName () {
46: return lastName;

47 }

48:

49g /) S MEEhEEE ==—ssscsccsccssossosoosssssssssss s s s s s e s e
50: public void setFirstName (String fname) {

5il ¢ firstName =fname;

52: }

53:

54: public void setLastName (String lname) {

5553 lastName =lname;

56: }

57:

58: /* main */

59: public static void main(String[] args) {

60: junit.textui.TestRunner.run(suite());
61: }

62:

63: /**

64: * TestSuite that runs all the sample tests
65: &

66: */

67: public static Test suite() {

68: TestSuite suite= new TestSuite("Employee Form Unit Tests");
69: suite.addTestSuite (employeeFormBeanTestCase.class);
70: return suite;

71: }

73: }

Listing 12.2 (continued)

Listing 12.3 illustrates how a test case should be written to test the JavaBean that was
created. Notice the assert statements that check the getter/setter methods in the employ-
eeFormBean component. These asserts ensure that expected behavior is maintained in
our code and that bugs that might be introduced to this application are captured and
resolved easily. One thing to be aware of when you do create unit tests with JUnit is that
if you insert System.out.println() statements in your test cases, it does not print
the text output to the console when you run your test from the command line.

01l: import junit.framework.TestCase;

02:

03: public class employeeFormBeanTestCase extends TestCase {
04: public employeeFormBeanTestCase (String name) {

Listing 12.3 employeeFormBeanTestCase.java

JUnit: Unit Testing Made Simple

103

05:
06:
07:
08:
093
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
283
30:
31:
32:
33:
34:
35:
36:
37:
38:
393
40:
41:
42
43:
44 :
45:
46:
47 :
48:
49:
50:
51:

super (name) ;

}

public void noTestCase() {

}

public void testCasel () {
employeeFormBean eForm = new employeeFormBean () ;
assertTrue (eForm != null);

}

public void testCase2 () {
employeeFormBean eForm = new employeeFormBean () ;
assertTrue (eForm != null);

eForm.setFirstName ("Steven") ;
assertTrue("Steven" == eForm.getFirstName()) ;

}

public void testCase3 () {
employeeFormBean eForm = new employeeFormBean () ;
assertTrue (eForm != null);

eForm.setLastName ("Fitzgerald") ;
assertTrue ("Fitzgerald" == eForm.getLastName()) ;
}
public void testCased () {
employeeFormBean eForm = new employeeFormBean () ;
assertTrue (eForm != null);

7

eForm.setFirstName ("John")
eForm.setLastName ("Walsh") ;
assertTrue (eForm.validate()) ;
}
public void testCase5() {

employeeFormBean eForm = new employeeFormBean() ;

assertTrue (eForm != null);

String s = eForm.getErrorMsg ("firstName") ;
assertTrue(!s.equals ("Please enter your first name")) ;
}
public void testCase6() {
employeeFormBean eForm = new employeeFormBean () ;
assertTrue (eForm != null);

String s = eForm.getErrorMsg("lastName") ;
assertTrue(!s.equals ("Please enter your last name")) ;
}
public void testCase(int arg) {

}

Listing 12.3 (continued)

104

Item 12

Additionally, unit tests can be created to ensure that data in a database remains con-
sistent and has not been corrupted during testing and integration operations. This is
accomplished by creating unit tests that validate JDBC connections and user queries on
database data.

01:
02:
03:
04:
05:
06:
07:
08:
09:
10:
11:
123
13:
14:
15:
16:
17:
18:
195
20:
213
223
23:
24:
253

26:
27:
28:
293
30:
31:
BYE
33:
34:
35:
36:
37:
38:
39:
40:
41 :
42

import java.sqgl.*;

import java.util.*;

import junit.framework.*;

import junit.runner.BaseTestRunner;

public class dbQueryBean {

private
private
private
private
private

static
static
static
static
static

final
final
final
final
final

String DRIVER_NAME="org.gjt.mm.mysqgl.Driver";
String DB_URL="jdbc:mysqgl://localhost/States";
String USERNAME="";

String PASSWORD="";

String QUERY="Select * from Topics";

Connection conn = null;

Statement stmt
ResultSet rslt

= null;

= null;

public dbQueryBean ()

public void closeDb()

{

try {

}

{

// get driver

Class.

forName (DRIVER_NAME) ;

// connect to the MySQL db
Connection conn = :)
DriverManager .getConnection (DB_URL, USERNAME, PASSWORD) ;

Statement stmt = conn.createStatement () ;
ResultSet rslt = stmt.executeQuery (QUERY) ;

catch (Exception e) {

}

try {

}

// get driver

this.conn.close();

catch (Exception e) {

}

Listing 12.4 dbQueryBean.java

JUnit: Unit Testing Made Simple

105

43:
44:
45:
46:
47 :
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
593
60:
61:
62:
63:
64 :
65:
66:
67:
68:
70:

public ResultSet getResultSet () {
return this.rslt;

public Connection getConnection() {
return this.conn;

public Statement getStatement () {
return this.stmt;

/* main */
public static void main(String[] args) {
junit.textui.TestRunner.run(suite()) ;

/‘k‘k
* TestSuite that runs all the sample tests
*
*/
public static Test suite() {
TestSuite suite= new TestSuite("DB Query Unit Tests");
suite.addTestSuite (dbQueryBeanTestCase.class) ;
return suite;

Listing 12.4 (continued)

The dbQueryBeanTestCase in Listing 12.5 demonstrates how to assess database con-
nections and result sets that are returned from database queries. In most cases, a sim-
ple instantiation of your bean followed by an assert after the invocation of your bean’s
methods is the way to unit test your code. In this example, static database information
is tested; on many enterprise systems the data is dynamic and tests like this would not

be proper.
01l: import java.sql.*;
02: import junit.framework.TestCase;
03:
04: public class dbQueryBeanTestCase extends TestCase {
05: public dbQueryBeanTestCase (String name) {
06: super (name) ;
07: }

Listing 12.5 dbQueryBeanTestCase.java (continued)

106 Item 12

08: public void noTestCase() {

09: }

10: public void testCasel() {

11: employeeFormBean eForm = new employeeFormBean () ;
123 assertTrue (eForm != null);

13: }

14: public void testCase2() {

153

16: try {

17:

18: dbQueryBean db = new dbQueryBean() ;

19: assertTrue (db != null);

20:

21: // Get the resultset meta-data

22: ResultSet rslt = db.getResultSet() ;

23: ResultSetMetaData rmeta = rslt.getMetaDatal() ;
24

253 // Use meta-data to determine column #'s in each row
26: int numColumns = rmeta.getColumnCount () ;
27 : String[] s = new String[numColumns];

28:

29: for (int i=1; i < numColumns; i++) {

30: s[i] = rmeta.getColumnName (i) ;
31: }

BPE

33: // check to see if db columns are correct
34: assertTrue(s[1l].equals ("State")) ;

353 assertTrue(s[2] .equals ("AutomobileDealers")) ;
36: assertTrue(s[3].equals("BikeTrails")) ;
37: assertTrue(s[4].equals("Gyms")) ;

38: assertTrue(s[5].equals ("Hospitals"));
395 assertTrue(s[6].equals ("Laundromats")) ;
40: assertTrue(s[7] .equals ("Parks")) ;

41 : assertTrue(s[8] .equals ("Physicians")) ;
42 assertTrue(s[9].equals ("PetStores")) ;
43 assertTrue(s[10] .equals ("Restaurants")) ;
44 assertTrue(s[1ll].equals ("RestAreas")) ;
45: }

46 catch (Exception e) {}

47 }

48: public void testCase3 () {

49:

50: try {

513

52 ¢ dbQueryBean db = new dbQueryBean() ;

53 g assertTrue(db != null);

54:

55: // Get the resultset meta-data

Listing 12.5 (continued)

JUnit: Unit Testing Made Simple 107

56 3 ResultSet rslt = db.getResultSet() ;

57: ResultSetMetaData rmeta = rslt.getMetaDatal() ;
58:

59: // Use meta-data to determine column #'s in each row
60: int numColumns = rmeta.getColumnCount () ;

61: String[] s = new String[numColumns];

62:

63: for (int i=1; i < numColumns; i++) {

64 : s[i] = rmeta.getColumnName (i) ;

65: }

66:

67: while (rslt.next()) {

68: for (int i=1; i < numColumns; ++1i) {

69: if (rslt.getString (i) .trim().equals("Alabama"))
70: assertEquals (rslt.getString (i) .trim(),
"Alabama") ;

71: assertEquals (rslt.getString (i+1l) .trim(),
"KIA") ;

723 assertEquals (rslt.getString (i+2) .trim(),
"Bama Path") ;

73: assertEquals (rslt.getString (i+3) .trim(),
"Mr. Muscles") ;

74 : assertEquals (rslt.getString (i+4) .trim(),
"St. Lukes");

753 assertEquals (rslt.getString (i+5) .trim(),

"Mr. Clean");

76: assertEquals (rslt.getString (i+6) .trim(),
"Tuscaloosa") ;

77 : assertEquals (rslt.getString (i+7) .trim(),
"Dr. Nick");

78: assertEquals (rslt.getString (i+8) .trim(),
"Mr. Pickles");

79 g assertEquals (rslt.getString (i+9) .trim(),
"Joes Pizzaria");

80: assertEquals (rslt.getString (i+10) .trim(),
"Selma") ;

vy uvyvuuvyvuuyvuuyvuuyvuuyuuyuuyuuyuu

81: assertEquals (rslt.getString (i+11) .trim(),
"Mr. Goodshoes") ;

82: break;
83: }

84: }

85: }

87: }

88: catch (Exception e) {}

89: 1}

90: public void testCase(int arg) {

91: 1}

92: }

Listing 12.5 (continued)

108

Item 13

JUnit allows developers and testers to assess module interfaces to ensure that infor-
mation flows properly in their applications. Local data structures can be examined to
verify that data stored temporarily maintains its integrity, boundaries can be checked
for logic constraints, and error handling tests can be developed to ensure that potential
errors are captured. All developers should implement the JUnit framework to test their
software components and to make certain that development teams don’t accept incon-
sistencies in their programs.

Item 13: The Failure to Execute

Executable JAR files, CLASSPATHs, and JAR conflicts challenge developers as they
deploy their Java applications. Frequently, developers run into problems because of
inadequate understanding of the Java extension mechanism. This pitfall costs a devel-
oper time and effort, and it can lead to substantial configuration control issues. I have
seen numerous developers have problems with executable JAR files. They build desk-
top applications and deploy them via executable JAR files. However, for some reason,
sometimes the JAR file will not execute.

When executed using the conventional java classname command, the code runs
fine. The developer adds all of the classes to a JAR file and sets the main class attribute.
Executing the java -jar jarname command, the following error returns:

Exception in thread "main" java.lang.NoClassDefFoundError:
com/borland/jbcl/layout/XYLayout
at execution.application.ExecFrame.<init> (ExecFrame.java:23)
at execution.application.ExecApp.<init> (ExecApp.java:11)
at execution.application.ExecApp.main (ExecApp.java:40)

This is one example of this familiar error for these developers. It is unable to find a
particular class, in this case, com.borland. jbcl.layout.XYLayout. In this case,
the developer did not select the proper JAR packaging for the JBuilder IDE. This is not
unique to JBuilder, though, nor IDEs. This is part of a bigger issue in regard to tracking
the classpath of applications.

Another classic example of this issue, prior to JDK 1.4, was the use of XML libraries
like Xerces. This instance is not a problem in JDK 1.4, because XML is now part of the
JVM, but developers cannot wait for every additional JAR to be bundled into the JDK.

So since these developers still haven’t learned the underlying problem, they try
something else. They try to ensure that the JAR was made correctly, the CLASSPATH is
correct, and the JAR is uncompressed and executed in the conventional manner. Every-
thing works right. Recompress it and it no longer works.

Manifest-Version: 1.0
Main-Class: Example
Created-By: 1.3.1

Why doesn’t this work? First, it is important to recognize that the command-line
(“java Example”) invocation of the JVM uses the same CLASSPATH as the compiler. So,
obviously, if it compiled then, it will run.

The Failure to Execute

109

However, double-clicking on a JAR file, or executing java -jar (exceptin the JDK
HOMEN\bin directory), attempts to use the JRE, which has its own CLASSPATH. So, the
additional necessary JARs can be placed in the JRE HOME\lib\ext directory. Note that
it is not the lib directory itself, unlike the JDK.

However, unless you want to install the classes into that directory, you should add
them into your JAR file and reference them in the JAR’s manifest file.

Manifest-Version: 1.0

Main-Class: Example

Class-Path: jaxp.jar xalan.jar xerces.jar
Created-By: 1.3.1

Deploying Java Applications

A tremendous number of problems in installing, configuring, and running Java appli-
cations has to do with the misunderstanding of how to specify how the JVM should
find classes to load. The first method used looks like the one found in Listing 13.1.

01: APPDATA=C:\Documents and Settings\crichardson\Application Data
02: CLASSPATH=D:\soap-2_2;C:\Program Files\Apache Tomcat
4.0\webapps\soap\WEB-INF\classes;D:\soap-2_2\1lib\mail.jar;D:\soap-
2_2\lib\activation.jar;D:\soap-2_2\lib\mailapi.jar

03: CommonProgramFiles=C:\Program Files\Common Files

04: COMPUTERNAME=CLAYSVAIO

05: ComSpec=C:\WINNT\system32\cmd.exe

06: HOMEDRIVE=C:

07: HOMEPATH=\

08: OS=Windows_NT

09: [...]

Listing 13.1 Environment variables

This shows the classic and traditional way of handling the Java CLASSPATH. Set an
environment variable, or rather, add to the already existing environment variable. A
number of other environment variables were left in this example to highlight how
broad the spectrum of things stored in the environment is and the number of applica-
tions that must make use of it.

Furthermore, we have one CLASSPATH that all applications use. This provides a
major issue for deploying applications, because there are possible conflicts that can
occur among executable JAR files. This is just the Java version of the “DLL hell” phe-
nomenon—not only for the presence or absence of JAR files, but also the difference in
versions of JAR files.

Another mechanism that is used for assembling a CLASSPATH is the -cp switch in
executing the Java Virtual Machine execution.

110

Item 13

C:\j2sdkl.4.0\jre\bin\javaw -cp
"D:\pkoDev\beans\classes;C:\dom4j\1lib\dom4j.jar;D:\java_xml_pack-winter-
0l-dev\jaxp-1l.2-eal\xalan.jar;D:\java_xml_pack-winter-0l-dev\jaxp-1.2-
eal\xerces.jar;D:\java_xml_pack-winter-0l-dev\jaxm-1.0.1-
eal\lib\activation.jar;D:\java_xml_pack-winter-01-dev\jaxm-1.0.1-
eal\lib\dom4j.jar;D:\java_xml_pack-winter-0l-dev\jaxm-1.0.1-
eal\lib\jaxm.jar;D:\java_xml_pack-winter-0l-dev\jaxm-1.0.1-
eal\lib\log4j.jar;D:\java_xml_pack-winter-0l-dev\jaxm-1.0.1-
eal\lib\mail.jar;D:\jaxpack\java_xml_pack-fall0l\jaxm-
1.0\jaxm\client.jar" org.javapitfalls.jar.Example

While this option allows for a more explicit and direct way to control the CLASSPATH
for your application, it still is neither very user-friendly nor very configuration-friendly.
In effect, this is what happens with a lot of applications; everyone packages their own
JAR files and references them using the CLASSPATH JVM option in order to control
what is available in their applications.

However, this can lead to a great deal of redundancy. For example, I searched for
“xerces*jar” on my development machine. This would capture all of the versions of
the popular Apache XML parsing API Xerces. Granted, a development box is not
exactly the most representative example of a deployment machine, but I got 73
instances of Xerces. Basically, every Java application running on my machine that uses
XML, some of which are not development tools or APIs, has a copy of Xerces to process
XML. Those 73 instances take up 108 MB of disk space, to do essentially the same thing.

What if there is a bug fix out for Xerces that needs to be integrated into my applica-
tions, or even bigger, a performance improvement. I have to copy it to 73 different
places in my application. Furthermore, with the introduction of XML into JDK 1.4,
there is a potential for class conflicts. This is because the Java platform has evolved to
the point where it provides new features, and XML processing is part of it.

So, why not be able to extend the platform? Earlier, we discussed an example of
what people do wrong in creating an executable JAR file. Those mistakes are due to
poor understanding of the Java extension mechanism.

The Java Extension Mechanism

The Java Extension Mechanism is how developers can extend the Java platform with-
out having to worry about the issues concerning the CLASSPATH. The most obvious
way to create an extension is to copy a JAR file into the JRE HOME/lib/ext directory.
Furthermore, Java Plug-in and Java Web Start provide facilities for installing exten-
sions on demand and automatically.

Figure 13.1 shows the architecture of the Java Extension Mechanism. There are sets
of classes that make up the core system classes, and developers can provide the ability
to add their own classes into the Java Runtime Environment. These are called “optional
packages” (formerly known as “standard extensions”).

The Failure to Execute

No CLASSPATH Required

Java 2 Platform

1

1

1

1

1

1

1

1

1

1

1

1

1 . .
1 Java Runtime Environment
1

1

1

1

1

1

1

1

1

1 . .

1 | Extension | Extension
1

1

Extension

Figure 13.1 Java Extension Mechanism.

We should note that in our previous example, there were references to three optional
packages: jaxp.Jjar, xerces.jar, and xalan.jar. When the executable JAR file
shown in that example is executed, the Java Runtime Environment knows to look in
those JAR files for classes needed to execute the application. It should be noted that it
checks those only if they are not already available in the system class loader; therefore,
redundant references to JAR files are not a problem. Class loading from the JAR files is
lazy, or as needed.

Sealed Packages

Developers can choose to seal their optional packages. The purpose of sealing a pack-
age is to ensure consistency among versions of a particular JAR file. When a package is
sealed, it means that every class defined in this JAR must originate from this JAR.
Therefore, a sealed Xerces package would assume precedence over other xerces. jar
files. This can cut both ways, and it requires that developers are cognizant of which of
the optional packages may be controlling the loading of classes.

A perfect example of this is when it becomes necessary to change the order in which
JAR files are placed in the CLASSPATH. If a sealed package is loaded first, and then a

112

Item 14

newer version is loaded later in the sequence, the newer version will not be used; in
fact, ClassNotFoundExceptions and ClassCastExceptions are common
symptoms. Tomcat 3.x versions are known to have this problem in regard to XML. It
should be noted that this is addressed in another pitfall regarding the endorsed stan-
dards override mechanism.

Listing 13.2 gives an example of the Java Versioning Specification combined with
the optional package sealing mechanism.

01: Name: org/javapitfalls/

02: Sealed: true

03: Extension-List: ThisClass ThatClass

04: ThisClass-Extension-Name: org.javapitfalls.ThisClass

05: ThisClass-Specification-Version: 1.2

06: ThisClass-Implementation-Version: 1.2

07: ThisClass-Implementation-Vendor-Id: org.javapitfalls

08: ThisClass-Implementation-URL: http://javapitfalls.org/ThisClass.jar
09: ThatClass-Extension-Name: org.javapitfalls.ThatClass

10: ThatClass-Specification-Version: 1.2

11: ThatClass-Implementation-Version: 1.2

12: ThatClass-Implementation-Vendor-Id: org.javapitfalls

13: ThatClass-Implementation-URL: http://javapitfalls.org/ThatClass.jar
14:

Listing 13.2 Versioning and sealing an optional package

This shows that any files in the org. javapitfalls package will be sealed—that
is, they must all come from this JAR file. The rest shows the appropriate information to
allow ClassLoaders to understand the versioning of extensions. The Plug-in is an
example of an application that will use this to determine the need to download this
version of the package.

Security

These installed optional packages are restricted to the sandbox unless they are from a
trusted source. This requires a signing of the JAR file and appropriate permissions
being handled in the Java security policy for the application that uses the extension.
Executable JAR files, CLASSPATHS, JAR conflicts—these are all things that challenge
developers as they deploy their Java applications. Frequently, developers run into prob-
lems because of inadequate understanding of the Java extension mechanism. This pitfall
costs a developer time and effort and can lead to substantial configuration control issues.

Item 14: What Do You Collect?

We are building a system that provides a “virtual file cabinet” to browse articles available
all over the World Wide Web. The Web site provides a hierarchical format that organizes

What Do You Collect?

113

knowledge for visibility. The topics can be nested inside each other to go as deeply as the
content organizer desires. Each topic maps over to one or more categories. Furthermore, a
category can appear in multiple topics. This scenario might seem a bit confused, but it is
based on a real system. Essentially, the topics refer to how the Web site wants to organize
content, and the categories refer to how content syndicates tag their documents.

As the folders are opened, subfolders are displayed below it on the tree, and the
appropriate documents for the categories are displayed in the right pane. Users can
browse down the hierarchy to view the data that they want.

This whole logic is based on an XML file that maintains the nesting of topics and
mappings to categories. Listing 14.1 shows an excerpt of the XML document that the
Web site uses.

01: <?xml version = "1.0" encoding = "UTF-8"?>

02: <navigation>

03: <taxonomy text = "Donnie's Subscription Service" value = "default">
04: <topic value = "1" text = "Computer Technology News">

05: <topic value = "3" text = "Software Technology">
06: <topic value = "4" text = "J2SE">

07: <category>26ll</category>

08: </topic>

09: <topic value = "5" text = "J2EE">

10: <category>2612</category>

11: </topic>

12: <topic value = "6" text = "J2ME">

13: <category>2613</category>

14: </topic>

<!-- ... some topics omitted for brevity ... -->

32: </topic>

33: <topic value = "13" text = "Network Technology">
34: <category>2612</category>

35: <category>2700</category>

46: </topic>

47 : <topic value = "22" text = "Hardware">

48: <topic value = "23" text = "Server Technology">
49: <category>1511</category>

50: </topic>

5l g <topic value = "24" text = "Desktop Technology">
52 8 <category>1512</category>

53: </topic>

54 : <topic value = "25" text = "Wireless Technology">
55: <category>1513</category>

56: </topic>

57: Koo o>

58: </taxonomy>

59: </navigation>

Listing 14.1 Navigation.xml

114 Item 14

Listing 14.2 demonstrates the code that is used to process the Navigation.xml file for
supporting the Web site. It has been stripped down to show the necessary methods and
the one of interest (1istCategories).

001: package org.javapitfalls;
002:

003: import java.io.*;

004: import java.net.*;

005: import java.util.*;

006: import org.dom4j.Document;

// ... some dom4j Imports removed for brevity ... Code available on Web
site

014:

015: public class BadNavigationUtils {

017: private Document document;

018:

019: public BadNavigationUtils () {

020: try {

021: setFile(getClass () .getResource("/Navigation.xml")) ;
022: setDates () ;

023: } catch (Exception e) { e.printStackTrace(); }

024: }

025:

026: public void setFile (String path) throws DocumentException {
027: SAXReader reader = new SAXReader () ;

028: document = reader.read(path) ;

029: }

030:

031: public void setFile (URL path) throws DocumentException {
032: SAXReader reader = new SAXReader () ;

033: document = reader.read(path);

034: }

035:

036:

037: public void writeFile (String path) {

039: try {

040:

041: // write to a file

042: XMLWriter writer = new XMLWriter (

043: new FileWriter(path), :)
OutputFormat.createPrettyPrint ());

044: writer.write(document) ;

045: writer.close() ;

046:

047: } catch (IOException ioe) {

048:

049: ioe.printStackTrace() ;

051: }

Listing 14.2 BadNavigationUtils.java

What Do You Collect?

115

052: }

053:

054:

055: public List listCategories (String[] topics) {

057: HashSet mySet = new HashSet() ;

060: for (int i=0; i < topics.length - 1; i++) {

062: List list = document.selectNodes("//topic[@value='" + :)
topics[i] + "']l/category");

064: mySet.addall (list) ;

066: }

067:

068: ArrayList thelList = new ArrayList();

070: theList.addAll (mySet) ;

073: return theList;

074:

075: }

076:

077 : public static void main(String[] args) {

079: try {

080:

081: String [] topics = new String[3];

083: topics[0] = "4";

084: topics[1l] = "5";

085: topics[2] = "13";

086:

087: BadNavigationUtils topicCategory = new BadNavigationUtils :)
()

089: topicCategory.setFile("Navigation.xml") ;

091: List categories = topicCategory.listCategories (topics) ;
092: for (int i = 0; i < categories.size(); i++) {

093: Element myElement = (Element) categories.get (i) ;
094: System.out.println (myElement.getText ()) ;

096: }

099: } catch (Exception e) { e.printStackTrace();}

101:

102:

103:

Listing 14.2 BadNavigationUtils.java (continued)

BadNavigationUltils.java uses DOM4] to parse an XML file into a DOM tree, and
then uses an XPath expression to pull back a List of category nodes (in the 1istCat-
egories method). This is the result of executing this code:

01:
02:
03:

2611
2612
2612

116

Item 14

04:
05:
06:
07:
08:
09:
10:
11:
12:
13:
14:

2700
2710
2711
2712
2713
2714
2715
2720
2730
2740
2750

The idea was to filter out the duplicates in the list, but it is clear that this didn’t work.
The category “2612” is shown twice. Why didn’t this work? After all, HashSet is sup-
posed to not allow duplicates in the collection.

As it turns out, this method returns a list of nodes to the user. Those nodes represent
the location of that particular element on the tree. Therefore, there is a distinction
between the 2612 in the topic with id of 5 and the 2612 in the topic with id of 13.
When we print out the text of each of the nodes, we find that there are duplicate values.

So, if we want to make sure we have a true Set, we need to pay more careful atten-
tion to the type of object being stored in the collection. To handle this problem, we
modify the code to actually store the text value of the nodes. Listing 14.3 shows how
we do that.

01:
03:
06:
08:

topics[i] +

0953
10:
{

11:
123
14:
153
16:
18:
20:
22:

public List listCategories (String[] topics) {

TreeSet mySet = new TreeSet () ;

for (int i=0; i < topics.length - 1; i++) {

List list = document.selectNodes("//topic[@value='" + :)
"']/descendant-or-self::*/category");

for (Iterator it = list.listIterator(); it.hasNext();)

mySet.add(((Element) it.next()).getText());

ArrayList theList = new ArrayList();
theList.addall (mySet) ;
return theList;

Listing 14.3 GoodNavigationUtils.java (listCategories)

Notice in this example we are calling the getText () method on the Element
returned in the Tterator. The returned String is then added to the HashSet.

An interesting development has evolved in the Java Community Process program
(JCP). JSR 14, “Add Generic Types to the Java Programming Language,” offers a

Avoiding Singleton Pitfalls

117

mechanism for providing parameterized classes (JSR stands for “Java Specification
Request”). In this case, we have a List being returned to us, which we were unable to
determine what type was in the list without closely consulting the API documentation.
Of course, since all code is well documented in excruciating detail, we always know
the types that are returned to us. In reality, the only documentation on which you can
ever truly count (and frequently the only documentation that is read) is the method
signature. Of course, if you were up on XML libraries, you would understand that a
method called selectNodes is going to return Node objects.

This gets to the essence of the problem: The Collection classes are a very popular fea-
ture in the Java platform. Their power, efficiency, and flexibility are highly valued.
However, as this example has shown, it is very difficult to know precisely how collec-
tions are handled. This requires that numerous casts and type checks are needed in
order to handle something generically.

That is what JSR 14 hopes to accomplish. Now, you would be able to pass a type to
the List class. For example, you could declare a vector like this:

Vector<String> x = new Vector<String>();
Generics are a feature to be added to the Java 2 Standard Edition 1.5, code-named

“Tiger.” Until then, developers will have to be aware of what types are being held in
their collections.

Item 15: Avoiding Singleton Pitfalls

As programmers, we love design patterns! They allow us to use repeatable solutions
to problems, and they offer us an easy way to communicate in software engineering
projects. Used wisely, these patterns offer us the capability to quickly build elegant,
flexible designs. Using them without fully understanding their purpose and impact
could lead to a brittle software architecture. More importantly, creating an incorrect
implementation of existing patterns could lead to disastrous results.

The Singleton design pattern, presented by Gamma, Helm, Johnson, and Vlissides
in Design Patterns: Elements of Reusable Software, is a creational pattern that ensures that
a class has one instance and provides a global point of access to it.* In the Java pro-
gramming language, a correct implementation of a Singleton ensures that there will be
one instance of a class per JVM. There are many Singleton classes throughout the Java
API itself, with a few examples being java.util.Calendar and java.util. DateFormat. The
Singleton is useful in cases where you want a single point of access to a resource. In
Item 32, we created a Singleton class that was a single point of access to a database.
Listings 15.1 and 15.2 show two common ways of implementing a Singleton class. The
constructors in both classes are private, so that only the static getInstance()
method can instantiate the class. In Listing 15.1, the Singleton’s constructor is called
when the class is first loaded, on line 4. When a class calls the getInstance ()
method shown in lines 16 to 18, the static m_instance variable is returned.

*Gamma, Helm, Johnson, Vlissides, Design Patterns: Elements of Reusable Software, Addison-Wesley,
Reading, Massachusetts, 1984.

118

Item 15

01: public class ClassLoadSingleton

02: {

033 //called at class-load time

04: private static ClassLoadSingleton

05¢ m_instance = new ClassLoadSingleton() ;
06:

07: private ClassLoadSingleton ()

08: {

09: //implementation details go here

10: }

11:

123 VA

13: * point of entry to this class

14: */

15: public static ClassLoadSingleton getInstance()
16: {

17: return m_instance;

18: }

20: }

Listing 15.1 Singleton instantiated at class loading time

Listing 15.2 shows a different approach. Instead of calling the constructor at class
load time, the class uses lazy instantiation—-that is, the constructor is not called until
getInstance () is called the first time. Lines 14 to 20 of Listing 15.2 show the logic of
returning the FirstCallSingleton class from the getInstance () method.

01: public class FirstCallSingleton

02: {

03:

04: private static FirstCallSingleton m_instance = null;
05:

06: private FirstCallSingleton ()

07: {

08: //implementation details go here

09: }

10:

11: VA

12: * point of entry to this class

13: */

14: public static synchronized FirstCallSingleton getInstance()
=g {

16: if (m_instance == null)

17: m_instance = new FirstCallSingleton();

Listing 15.2 Singleton instantiated at first call

Avoiding Singleton Pitfalls

119

18:

19: return m_instance;
20: }

21: }

Listing 15.2 (continued)

Now that we’ve provided a review of the Singleton design pattern, let’s discuss
what could go wrong. The following sections discuss bad practices that we have com-
monly seen and provide suggestions on resolving the resulting dilemmas that occur.

When Multiple Singletons in Your VM Happen

Right now, you're thinking, “What? Isn’t this contrary to the definition of a Singleton?”
Yes, you're absolutely correct. However, if a Singleton class is not written correctly in a
one-VM multithreaded system, problems can arise.

Consider a Singleton designed to use lazy instantiation, as implemented in Listing
15.2. If the get Instance () method is not synchronized, the following could happen:
Two threads could call get Instance () simultaneously, and two different versions of
FirstCall could be returned. Figure 15.1 shows a pictorial representation of how this
could occur in one virtual machine. At time t=30, two threads in one virtual machine
call FirstCall.getInstance (), and two different objects are returned. This could
be extremely dangerous if, for example, the Singleton is supposed to guarantee a sin-
gle point of access to an external resource. If the Singleton class is writing data to a file,
for example, several problems could arise, ranging from corrupted data to unintended
mutual exclusion problems.

Thread 1 FirstCall.getInstance()

m_instance is null,
so return new
FirstCallSignleton();

Thread 2 FirstCall.getInstance()

m_instance is null,
so return new
FirstCallSignleton();

TIME
t:o t=30

v

Figure 15.1 The synchronization problem.

120

Item 15

Like most concurrency issues, this is a difficult problem to debug. The key point here
is to make certain that your get Instance () method is synchronized when you are using the
lazy instantiation Singleton strategy shown in Listing 15.2.

When Singletons are Used as Global Variables,
or Become Non-Singletons

Sometimes the Singleton class is abused. One example that we’ve unfortunately seen
quite a bit is when a Singleton class is used as a “global variable” to eliminate parame-
ter passing. Using a Singleton in this manner is poor practice, and it may affect the flex-
ibility of your project’s software architecture. One example that we have seen is where
a code author placed his main application’s GUI object in a Singleton with synchro-
nized setGUI () and getGUI () methods, to avoid passing the user interface compo-
nent to other objects in the system. The strategy worked well, until the software
customer requested multiple applications per VM. Because some of the classes got a
handle to the application’s user interface with the getGUI () method in the Singleton,
this had to be rewritten.

We shudder to even show this next example, but an extreme case is shown in List-
ing 15.3.

01: public class GlobalVarSingleton

02: {

03:

04: private static GlobalVarSingleton

05¢ m_instance = new GlobalVarSingleton() ;
06:

07: //The use of this class is NOT recommended!
08: public int x = 0;

09: public int y = 1;

10: public int z = 2;

11:

12: private void GlobalVarSingleton ()

13: {

14: }

15:

16: /**

17: * point of entry to this class

18: */

19: public static synchronized GlobalVarSingleton getInstance ()
20: {

21: return m_instance;

223 }

23:

24: public static void main(String[] args)

253 {

26: //Bad usage example:

27:

Listing 15.3 Singleton as global variable

Avoiding Singleton Pitfalls

121

28: GlobalvVarSingleton globals =

29: GlobalvVarSingleton.getInstance();

30: globals.x = 333;

31: globals.y = 40803;

32: globals.z = 21;

228

34: /1**

35: At this point, the offender calls other classes
36: who call GlobalVarSingleton.getInstance() to get
37: (and change) values of x, y, and z.

38: *x/

39¢

40: }

41: }

Listing 15.3 (continued)

Listing 15.3 shows the poor choice of using a Singleton to hold variables. In lines 8,
9, and 10, there are public instance variables x, y, and z. The main () method of Listing
15.3 shows an example usage of this, where a class in the VM gets the Singleton, alters
the variables, and calls another class, which gets the values of those variables and
changes them. It goes without saying that there will be synchronization issues in this
example, and it also goes without saying that this is poor design. Of course, many Sin-
gletons are not as blatant as this; some are designed correctly, but somewhere along the
road, an unenlightened programmer could add things to it to accomplish ends like
this. Please be aware that this is poor practice, and keep an eye on your existing Sin-
gleton classes.

Over time, a code base evolves. Software engineers modify classes, and every once
in a while, we have seen times where Singletons, accidentally or intentionally, stop
being Singletons. One of the most common events that we have seen is when a novice
programmer changes the private constructor to a public one, leading to havoc through-
out the baseline. Watch your baseline!

In conclusion, when you are deciding whether to create a Singleton class, first ask
yourself the following questions:

m Does there need to be one global entry point to this class?

m Should there be only one instance to this class in the VM?

If your answer is yes, then use a Singleton. If no, don’t use this design pattern.

If you do use the Singleton design pattern, be sure to implement your Singleton
classes correctly—use a private constructor, and synchronize methods that need to be
synchronized, looking at the code skeletons in Listing 15.1 and 15.2. Finally, again,
watch your baseline! Poor practices, such as using Singletons as global variables, as
well as the evolution of your Singletons into non-Singletons, can cause problems that
will keep you up too late at night.

122

Item 16

Item 16: When setSize() Won't Work®

Most developers stumble upon pitfalls sequentially, based on their experience level with
Java. The setSize () pitfall usually presents itself shortly after Java developers begin
serious GUI development, specifically when they try to set the size of their first newly
created custom components. BadSetSize, as follows, creates a simple custom button
that we want to size to 100 by 100 pixels. Here is the code to create our custom button:

class CustomButton extends Button
{
public CustomButton (String title)
{
super (title) ;
setSize(100,100) ;

In the constructor, developers often mistakenly assume that they can use set-
Size() (width, height) in the same way they do when sizing a frame. The prob-
lem arises when the developer hasn’t yet gained the knowledge of the Abstract
Windowing Toolkit’s (AWT) inner workings to understand that this code will only
work under certain situations. He or she has no idea that setSize () will fail to cor-
rectly size the component. For example, when we place our custom button in the frame
with other components using a simple grid layout, we get the results in Figure 16.1.
Our button is 66 by 23, not 100 by 100! What happened to our call to setSize ()? The
method was executed, of course. However, it did not give the final word on the size of
our component.

Listing 16.1 shows the source code for BadSetSize java.

£ Bad Set Size M[=] B3

Atton size hefare display: java.awt.Dimensionwidth=1 DD,height:;l
Atton size after display: java.awt.Dimensionfwidth=66 height=23]

1 | o
Figure 16.1 Run of BadSetSize.class.

® This pitfall was first published by JavaWorld (www.javaworld.com) in the article “Steer clear
of Java Pitfalls”, September 2000 (http://wwwjavaworld.com/javaworld/jw-09-2000
/jw-0922-javatraps.html?) and is reprinted here with permission. The pitfall has been updated
from reader feedback.

When setSize() Won't Work

123

01: package org.javapitfalls.iteml6;

02:

03: import java.awt.*;

04: import java.awt.event.*;

05:

06: class CustomButton extends Button

07: {

08: public CustomButton (String title)

09: {

10: super (title) ;

11: setSize(100,100) ;

12: }

13: 1}

14:

15: public class BadSetSize extends Frame

16: {

17: TextArea status;

18:

19: public BadSetSize ()

20: {

21l g super ("Bad Set Size");

22:

23: setLayout (new GridLayout(2,0,2,2));
24: Panel p = new Panel();

25: CustomButton button = new CustomButton("Press Me");
26: p.add (button) ;

278 add (p) ;

28: status = new TextArea (3, 50);

29: status.append ("Button size before display: " + :)
button.getSize() + "\n");

30: add(status) ;

31: addWindowListener (new WindowAdapter ()
32: {

33: public void windowClosing (WindowEvent we)
34: { System.exit(1l); }

35:)i

36: setLocation(100,100) ;

37: pack () ;

38: setVisible (true) ;

39: status.append ("Button size after display: " + :)
button.getSize()) ;

40: }

41:

42: public static void main(String args [])
43: {

44 new BadSetSize();

45: }

46: }

Listing 16.1 BadSetSize.java

124

Item 16

Let’s examine the correct approach to sizing a component. The key to understand-
ing why our code failed is to recognize that after we create the component, the layout
manager—called GridLayout—reshapes the component in accordance with its own
rules. This presents us with several solutions. We could eliminate the layout manager
by calling setLayout (null), but as the layout manager provides numerous benefits
to our code, this is a poor remedy. If the user resizes the window, we still want to be
able to automatically resize our user interface, which is the layout manager’s chief
benefit. Another alternative would be to call setSize () after the layout manager has
completed its work. This only provides us with a quick fix: By calling repaint (), the
size would change, yet again when the browser is resized. That leaves us with only one
real option: Work with the layout manager only to resize the component. Below we
rewrite our custom component:

class CustomButton2 extends Button

{
public CustomButton2 (String title)

{
super (title) ;
// setSize(100,100); - unnecessary

public Dimension getMinimumSize ()
{ return new Dimension(100,100); }

public Dimension getPreferredSize()
{ return getMinimumSize(); }

Our custom component overrides the getMinimumSize () and getPreferred-
Size () methods of the Component class to set the component size. The layout man-
ager invokes these methods to determine how to size an individual component. Some
layout managers will disregard these hints if their pattern calls for that. For example, if
this button was placed in the center of a BorderLayout, the button would not be 100
by 100, but instead would stretch to fit the available center space. GridLayout will
abide by these sizes and anchor the component in the center. The GoodSetSize class
below uses the CustomButton?2 class.

01: package org.javapitfalls.iteml6;
02:

03: import java.awt.*;

04: import java.awt.event.*;

05:
06: class CustomButton2 extends Button
07: {

Listing 16.2 GoodSetSize.java

When setSize() Won't Work

125

08: public CustomButton2 (String title)

09: {

10: super (title) ;

idl g System.out.println("Size of button is : " + this.getSize());
12: }

133

14: public Dimension getMinimumSize ()

15 { return new Dimension(100,100); }

16:

17: public Dimension getPreferredSize()

18: { return getMinimumSize(); }

19: }

20:

21: public class GoodSetSize extends Frame

22: |

238 TextArea status;

24:

253 public GoodSetSize()

26: {

27 : super ("Good Set Size");

28:

29: setLayout (new GridLayout (2,0)) ;

30: Panel p = new Panel();

31: CustomButton2 button = new CustomButton2 ("Press Me") ;
323 p.add (button) ;

33: add (p) ;

34: status = new TextArea(3,50);

353 status.append("Button size before display: " +
button.getSize() + "\n");

36: add (status) ;

37: addwWwindowListener (new WindowAdapter ()

38: {

39: public void windowClosing (WindowEvent we)
40: { System.exit(1l); }

41 : 1)

42 setLocation(100,100) ;

43: pack() ;

44: setVisible (true) ;

45: status.append("Button size after display: " +
button.getSize());

46: }

47 :

48: public static void main(String args [1)

49: {

50: new GoodSetSize() ;

5il g }

525 3

Listing 16.2 (continued)

126

Item 17

£ Good Set Size M= B3

Fress hle

Buttan size hefore display: java.awt.Dimensionfwidth=0,height=0] ;I
Button size after display: java.awt.Dimensionwidth=100 height=100]

4 |

Figure 16.2 Run of GoodSetSize.class.

Running GoodSetSize.java results in Figure 16.2.

It is interesting to note that our solution to setting the size of a component involved
not using the setSize () method. This pitfall is caused by the design complexity of a
cross-platform user interface and a developer’s unfamiliarity with the chain of events
necessary to display and resize an interface. Unfortunately, the supplied documenta-
tion of setSize () fails to suggest these prerequisites.

This solution also highlights the importance of properly naming methods and para-
meters. Should you use setSize () when you only need to set some internal values that
may or may not be used by your display mechanisms? A better choice would be
setInternalvValues (), which at least clearly warns a developer of the limited guar-
antee this method offers.

Item 17: When Posting to a URL Won't®

Now that the Simple Object Access Protocol (SOAP) and other variants of XML Remote
Procedure Calls (RPC) are becoming popular, posting to a Uniform Resource Locator
(URL) will be a more common and more important operation. While implementing a
standalone SOAP server, I stumbled across multiple pitfalls associated with posting to
a URL; starting with the nonintuitive design of the URL-related classes and ending
with specific usability pitfalls in the URLConnection class.

Connecting via HTTP with the java.net Classes

To perform a Hypertext Transfer Protocol (HTTP) post operation on a URL, you would
hope to find a simple Ht tpClient class to do the work, but after scanning the java.net
package, you would come up empty. There are several open-source HTTP clients avail-
able, and we examine one of them after examining the built-in classes. As an aside, it is
interesting to note that there is an Ht tpClient in the sun.net. www.http package that
is shipped with the JDK (and used by HttpURLConnection) but not part of the

¢ This pitfall was first published by JavaWorld (www.javaworld.com) in the article, “Dodge the
traps hiding in the URLConnection Class”, March 2001 (http://www.javaworld.com
/javaworld /jw-03-2001/jw-0323-traps.html?)and is reprinted here with permission. The pitfall
has been updated from reader feedback.

When Posting to a URL Won't

127

public API Instead, the java.net URL classes were designed to be extremely generic
and take advantage of dynamic class loading of both protocols and content handlers.
Before we jump into the specific problems with posting, let’s examine the overall struc-
ture of the classes we will be using (either directly or indirectly). Figure 17.1 is a UML
diagram (created with ArgoUML downloadable from www.argouml.org) of the URL-
related classes in the java.net package and their relationships to each other. For brevity,
the diagram only shows key methods and does not show any data members.

The main class this pitfall centers around is the URLConnection class; however,
you cannot instantiate that class directly (it is abstract) but only get a reference to a spe-
cific subclass of URLConnection via the URL class. If you think that Figure 17.1 is com-
plex, I would agree. The general sequence of events works like this: A static URL
commonly specifies the location of some content and the protocol needed to access it.
The first time the URL class is used, a URLStreamHandlerFactory Singleton is created.
This factory will generate the appropriate URLStreamHandler that understands the
access protocol specified in the URL. The URLStreamHandler will instantiate the
appropriate URLConnection class that will then open a connection to the URL and
instantiate the appropriate ContentHandler to handle the content at the URL. So,
now that we know the general model, what is the problem? The chief problem is that
these classes lack a clear conceptual model by trying to be overly generic. Donald Nor-
man’s book The Design of Everyday Things states that one of the primary principles of
good design is a good conceptual model that allows us to “predict the effects of our
actions.”” Here are some problems with the conceptual model of these classes:

m The URL class is conceptually overloaded. A URL is merely an abstraction for an
address or an endpoint. In fact, it would be better to have URL subclasses to dif-
ferentiate static resources from dynamic services. What is missing conceptually is
a URLClient class that uses the URL as the endpoint to read from or write to.

m The URL class is biased toward retrieving data from a URL. There are three
methods you can use to retrieve content from a URL and only one way to write
data to a URL. This disparity would be better served with a URL subclass for
static resources that only has a read operation. The URL subclass for dynamic
services would have both read and write methods. That would provide a clean
conceptual model for use.

m The naming of the protocol handlers “stream” handlers is confusing because
their primary purpose is to generate (or build) a connection. A better model to
follow would be the one used in the Java API for XML Parsing (JAXP) where a
DocumentBuilderFactory produces a DocumentBuilder that produces a
Document. Applying that model to the URL classes would yield a URLCon-
nectorFactory that produces a URLConnector that produces a URLCon-
nection.

Now that we have the general picture, we are ready to tackle the URLConnection
class and attempt to post to a URL. Our goal is to create a simple Java program that
posts some text to a Common Gateway Interface (CGI) program. To test our programs,
I created a simple CGI program in C that echoes (in an HTML wrapper) whatever is
passed in to it. Listing 17.1 is the source code for that CGI program called echocgi.c.

" Norman, Donald A., The Design of Everyday Things, Doubleday, 1988, page 13.

128

Item 17

URL

URLConnection openConnection()
InputStream openStream()

Object getContent()

URLStreamHandler getURLStreamHandler()

Figure 17.1

Factory
K>—
URLStreamHandler createURLStreamHandler(String protocol)
j
<<realize>>!
;

uses

<<interface>>
URL StreamHandler URLStreamHandlerFactory

URLConnection openConnection(URL u)

|0€atesperconnecﬁon

L'sun.net.www.protocol.ftp.HandIer |

URLConnection

sun.net.www.protocol.jar.Handler |

Object getContent()

void setRequestProperty(string p, string v)
InputStream getlnputStream()
OutputStream getOutputStream()
ContentHandler getContentHandler()

sun.net.www.protocol.http.Handler |

g gy

HttpURLConnection JarURLConnection

ContentHandler

Object getContent(URLConnection urlc)

HttpURLConnection| | JarURLConnection jpeg Plain

01: #include <stdio.h>
02: #include <stdlib.h>
03: #include <string.h>
04:

URL Classes in the java.net package.

05: void main(int argc, char **argv)

06: {

07: char *request_method
08: char *content_length
09: char *content_type =
10: int length=0;

11: char *content = NULL;
12: int read = 0;

33

Listing 17.1 echocgi.c

= NULL;
= NULL;
NULL;

When Posting to a URL Won't

129

14: /* get the key environment variables. */

15¢ request_method = getenv ("REQUEST_METHOD") ;

16: if (!request_method)

17: {

18: printf ("Not being run as a CGI program.\n") ;

19: exit (1) ;

20: }

2l g

22: // set outgoing content type

23: printf("Content-type: text/html\n\n");

24:

2553 if (strcmp(request_method, "POST") == 0)

26: {

27 : content_length = getenv ("CONTENT_LENGTH") ;

28: content_type = getenv ("CONTENT_TYPE") ;

295

30: length = atoi (content_length) ;

il s if (length > 0)

32: {

333 content = (char *) malloc(length + 1);

34: read = fread(content, 1, length, stdin);
353 content[length] = '\0'; /* NUL terminate */
36: }

37:

38: printf ("<HEAD>\n") ;

39: printf ("<TITLE> Echo CGI program </TITLE>\n") ;
40: printf ("</HEAD>\n") ;

41 : printf ("<BODY BGCOLOR='#ebebeb'>") ;

42 printf ("<CENTER>\n") ;

43 printf ("<H2> Echo </H2>\n") ;

44 : printf ("</CENTER>\n") ;

45: if (length > 0)

46: {

47 : printf ("Length of content: %d\n", length);
48: printf ("Content: %s\n", content);

49: }

50: else

5l g printf ("No content! ERROR!\n");

52 8 printf ("</BODY>\n") ;

53 3 printf ("</HTML>\n") ;

54: }

55: else

56: {

57: // print out HTML error

58: printf ("<HTML> <HEAD> <TITLE> Configuration Error :)
</TITLE></HEAD>\n") ;

583 printf ("<BODY> Unable to run the Echo CGI Program.
\n");
60: printf ("Reason: This program only tests a POST method. :)

\n") ;

Listing 17.1 (continued)

130

Item 17

61: printf ("Report this to your System Administrator. </BR>\n");
62: printf ("</BODY> </HTML>\n") ;

63: exit (1) ;

64 : }

66: 1}

Listing 17.1 (continued)

Testing the CGI program requires two things: a Web server and a browser or pro-
gram to post information to the program. For the Web server, I downloaded and
installed the Apache Web server from www.apache.org. Figure 17.2 displays the sim-
ple HTML form used to post information (two fields) to the CGI program. When the
“Submit your vote” button is clicked in the HTML form, the two values are posted to
the CGI program (on the localhost) and the response page is generated as is shown in
Figure 17.3.

Now that we have a simple CGI program to echo data posted to it, we are ready to
write our Java program to post data. To send data to a URL, we would expect it to be
as easy as writing data to a socket. Fortunately, by examining the URLConnection
class we see that it has getOutputStream() and getInputStream () methods, just
like the Socket class. Armed with that information and an understanding of the
HTTP protocol, we write the program in Listing 17.2, BadURLPost.java.

@ A Java survey - Netscape IS[=] B3
b [b = I

il' & A Java survey] % |

A Silly Java Survey

Please enter your name and answer the question.

| Use submit to send your results.

MNADME: |Bill Gates
Do you love Java programming? ¢ Yes ¢ MNo

Submityour vote I Clearfurml

© & & ©FEHA | Document: Done {0.12 secs) | S

Figure 17.2 HTML Form to test echocgi.exe.

When Posting to a URL Won't 131

@& Echo CGI program - Netscape Mi[=] E3
.3 ¥ ¥
£l | & Echo CGI program] [X|
Echo

I Length of content: 32 Content: thelame=Bil+Gates&question1=Yes

@ & & 2FEJ | Document: Done (0.2 secs) == =5

Figure 17.3 HTML response from echocgi.exe.

01: /** BadURLPost.java */

02: package org.javapitfalls.iteml7;
03:

04: import java.net.*;

05: import java.io.*;

06:

07: public class BadURLPost

08: {

09: public static void main(String args[])

10: {

11: // get an HTTP connection to POST to

12: if (args.length < 1)

13: {

14: System.out.println ("USAGE: java :)
GOV.dia.mditds.util.BadURLPost url") ;

15z System.exit (1) ;

16: }

17:

18: try

qok {

20: // get the url as a string

21: String surl = args([0];

22]2 URL url = new URL(surl);

238

24: URLConnection con = url.openConnection();
25: System.out.println("Received a : " + :)
con.getClass () .getName ()) ;

26:

Listing 17.2 BadURLPost.java (continued)

132 Item 17

27 : con.setDoInput (true) ;

28: con.setDoOutput (true) ;

29: con.setUseCaches (false) ;

30:

31: String msg = "Hi HTTP SERVER! Just a quick hello!";
32: con.setRequestProperty ("CONTENT LENGTH", "5"); // Not :)
checked

BEE con.setRequestProperty ("Stupid", "Nonsense");

34:

35: System.out.println("Getting an input stream...");
36: InputStream is = con.getInputStream();

37:

38: System.out.println("Getting an output stream...");
39: OutputStream os = con.getOutputStream();

40:

41 : /*

42: con.setRequestProperty ("CONTENT LENGTH", "" + :)
msg.length());

43: Illegal access error - can't reset method.

44 Y/

455

46: OutputStreamWriter osw = new OutputStreamWriter (os) ;
47 osw.write (msg);

48: /** REMEMBER THIS osw.flush(); **/

49: osw.flush() ;

50: osw.close();

513

523 System.out.println("After flushing output stream. ");
53:

54: // any response?

55: InputStreamReader isr = new InputStreamReader (is) ;
56: BufferedReader br = new BufferedReader (isr) ;

573 String line = null;

58:

59: while ((line = br.readLine()) != null)

60: {

61: System.out.println("line: " + line);

62: }

63: } catch (Throwable t)

64: {

65: t.printStackTrace() ;

66: }

67: }

68: }

Listing 17.2 (continued)

When Posting to a URL Won't

133

A run of Listing 17.2 produces the following;:

E:\classes\org\javapitfalls\Iteml7>java
org.javapitfalls.iteml7.BadURLPost http://localhost/cgi-bin/echocgi.exe :)
Received a : sun.net.www.protocol.http.HttpURLConnection
Getting an input stream...
Getting an output stream...
java.net.ProtocolException: Cannot write output after reading input.
at
sun.net.www.protocol.http.HttpURLConnection.getOutputStream (HttpURLCoO
nnection.java:507)
at
com.javaworld.jpitfalls.article3.BadURLPost.main (BadURLPost.java:39)

When trying to get the output stream of the Ht t pURLConnection class, the pro-

gram informed me that I cannot write output after reading input. The strange thing
about this error message is that we have not tried to read any data yet. Of course, that
assumes the get InputStream () method behaves in the same manner as in other 10
classes. Specifically, there are three problems with the above code:

m The setRequestProperty () method parameters are not checked. This is
demonstrated by setting a property called “stupid” with a value of “non-
sense.” Since these properties actually go into the HTTP request and they are
not validated by the method (as they should be), you must be extra careful to
ensure the parameter names and values are correct.

m The getOutputStream() method causes the program to throw a
ProtocolException with the error message “Can’t write output after read-
ing input.” By examining the JDK source code, we find that this is due to the
getInputStream () method having the side effect of sending the request
(whose default request method is “GET”) to the Web server. As an aside, this is
similar to a side effect in the ObjectInputStream and ObjectOutput-
Stream constructors that are detailed in my first pitfalls book. So, the pitfall is
the assumption that the get InputStream()and getOutputStream () meth-
ods behave just like they do for a Socket connection. Since the underlying
mechanism for communicating to the Web server actually is a socket, this is not
an unreasonable assumption. A better implementation of Ht tpURLConnec-
tion would be to postpone the side effects until the initial read or write to
the respective input or output stream. This could be done by creating an
HttpInputStreamand HttpOutputStream. That would keep the socket
metaphor intact. One could argue that HTTP is a request/response stateless
protocol and the socket metaphor does not fit. The answer to that is that the
API should fit the conceptual model. If the current model is identical to a
socket connection, it should behave as such. If it does not, you have stretched
the bounds of abstraction too far.

134 Item 17

m Although it is commented out, it is also illegal to attempt to set a request
property after getting an input or output stream. The documentation for
URLConnection does state the sequence to set up a connection, although it
does not state this is a mandatory sequence.

If we did not have the luxury of examining the source code (which definitely should
not be a requirement to use an API), we would be reduced to trial and error (the
absolute worst way to program). Neither the documentation nor the API of the
HttpURLConnection class afford us any understanding of how the protocol is imple-
mented, so we feebly attempt to reverse the order of calls to get InputStream() and
getOutputStream (). Listing 17.3, BadURLPostl.java, is an abbreviated version of
that program.

01: package org.javapitfalls.iteml7;
02:

03: import java.net.*;

04: import java.io.*;

0553

06: public class BadURLPostl

07: {

08: public static void main (String argsl[])

09: {

// removed for brevity

35: System.out.println("Getting an output stream...");
36: OutputStream os = con.getOutputStream() ;

37:

38: System.out.println("Getting an input stream...");
BloE InputStream is = con.getInputStream() ;

// removed for brevity
67: }
68: }

Listing 17.3 BadURLPost1.java

Arun of Listing 17.3 produces the following;:

E:\classes\org\javapitfalls\Iteml7>java org.javapitfalls. :)
iteml7.BadURLPostl http://localhost/cgi-bin/echocgi.exe

Received a : sun.net.www.protocol.http.HttpURLConnection

Getting an output stream...

Getting an input stream...

After flushing output stream.

line: <HEAD>

line: <TITLE> Echo CGI program </TITLE>

line: </HEAD>

line: <BODY BGCOLOR='#ebebeb'><CENTER>

When Posting to a URL Won't 135

line: <H2> Echo </H2>
line: </CENTER>

line: No content! ERROR!
line: </BODY>

line: </HTML>

Although the program compiles and runs, the CGI program reports that no data
was sent! Why? Again we were bitten by the side effects of getInputStream(),
which caused the POST request to be sent before anything was put in the post’s output
buffer, thus sending an empty post request.

Now, after having failed twice, we understand that the get InputStream()is the
key method that actually writes the requests to the server. Therefore, we must perform
the operations serially (open output, write, open input, read) as we do in Listing 17.4,
GoodURLPost.java.

01: package org.javapitfalls.iteml7;
02:

03: import java.net.*;

04: import java.io.*;

05:

06: public class GoodURLPost

07: {

08: public static void main(String args([])

09: {

10: // get an HTTP connection to POST to

il g if (args.length < 1)

12: {

13: System.out.println ("USAGE: java :)
GOV.dia.mditds.util.GoodURLPost url") ;

14: System.exit (1) ;

15: }

16:

17: try

18: {

19: // get the url as a string

20: String surl = args([0];

21: URL url = new URL(surl) ;

22:

23: URLConnection con = url.openConnection();

24: System.out.println("Received a : " + :)
con.getClass () .getName()) ;

253

26: con.setDoInput (true) ;

27 : con.setDoOutput (true) ;

28: con.setUseCaches (false) ;

29 ¢

30: String msg = "Hi HTTP SERVER! Just a quick hello!";

Listing 174 GoodURLPost.java (continued)

136 Item 17

31: con.setRequestProperty ("CONTENT_ LENGTH", "" +
msg.length()); // Not checked

323 System.out.println("Msg Length: " + msg.length());
33:

34: System.out.println("Getting an output stream...");
35: OutputStream os = con.getOutputStream() ;

36:

37: OutputStreamWriter osw = new OutputStreamWriter (os);
38: osw.write (msg);

BIOE /** REMEMBER THIS osw.flush(); **/

40: osw. flush() ;

41 : osw.close() ;

42

43: System.out.println("After flushing output stream. ");
44

458 System.out.println("Getting an input stream...");
46: InputStream is = con.getInputStream();

47 :

48: // any response?

49: InputStreamReader isr = new InputStreamReader (is) ;
50: BufferedReader br = new BufferedReader (isr) ;

5il g String line = null;

52:

53: while ((line = br.readLine()) != null)

54: {

55: System.out.println("line: " + line);

56: }

57: } catch (Throwable t)

58: {

59: t.printStackTrace() ;

60: }

61: }

62: }

Listing 17.4 (continued)

A run of Listing 17.4 produces the following:

E:\classes\
org\javapitfalls\Iteml7>javaorg.javapitfalls.iteml7.GoodURLPost
http://localhost/cgi-bin/echocgi.exe

Received a : sun.net.www.protocol.http.HttpURLConnection

Msg Length: 35

Getting an output stream...

After flushing output stream.

Getting an input stream...

line: <HEAD>

line: <TITLE> Echo CGI program </TITLE>

When Posting to a URL Won't

137

line: </HEAD>

line: <BODY BGCOLOR='#ebebeb'><CENTER>

line: <H2> Echo </H2>

line: </CENTER>

line: Length of content: 35

line: Content: Hi HTTP SERVER! Just a quick hello!
line: </BODY>

line: </HTML>

Finally, success! We now can post data to a CGI program running on a Web server. To
summarize, to avoid the HTTP post pitfall, do not assume the methods behave as they
do for a socket. Instead, the get InputStream () method has the side effect of writing
the requests to the Web server. Therefore, the proper sequence must be observed.

One final note on this class is to understand the complexity of writing characters to the
Web server. In the above programs, I use the default encoding when writing the String
to the underlying socket. You could explicitly write bytes instead of characters by first
retrieving the bytes via getBytes () of the String class. Additionally, you could
explicitly set the encoding of the characters using the OutputStreamwriter class.

An Alternative Open Source HTTP Client

A more intuitive open source package called HTTPClient can be downloaded from
http:/ /www.innovation.ch/java/HTTPClient. We will use two classes in this pack-
age, HITPConnection and HITPResponse, to accomplish the same functionality in
GoodURLPost.java. Listing 17.5 demonstrates posting raw data using this package.

01: package org.javapitfalls.iteml7;
02:

03: import HTTPClient.*;

04:

05: import java.net.*;

06: import java.io.*;

07:

08: public class HTTPClientPost

09: {

10: public static void main(String args([])

11: {

12: // get an HTTP connection to POST to

i13s if (args.length < 2)

14: {

153 System.out.println ("USAGE: java :)
org.javapitfalls.net.mcd.il .HTTPClientPost host cgi-program") ;
16: System.exit (1) ;

17: }

Listing 17.5 HTTPClientPost.java (continued)

138 Item 17

18:

18¢ try

20: {

21: // get the url as a string

22: String sHost = args[0];

23: String sfile = args[1l];

24

25: HTTPConnection con = new HTTPConnection(sHost);
26:

27: String msg = "Hi HTTP SERVER! Just a quick hello!";
28:

29: HTTPResponse resp = con.Post(sfile, msg);

30: InputStream is = resp.getInputStream();

31:

32: // any response?

33: InputStreamReader isr = new InputStreamReader (is) ;
34: BufferedReader br = new BufferedReader (isr) ;
353 String line = null;

36:

37: while ((line = br.readLine()) != null)

38: System.out.println("line: " + line);

39: } catch (Throwable t)

40: {

41 : t.printStackTrace() ;

42 }

43: }

44: }

Listing 17.5 (continued)

A run of the HttpClientPost program produces:

E:\classes\org\javapitfalls>java org.javapitfalls.Iteml7.HTTPClientPost
localhost /cgi-bin/echocgi.exe

line: <HEAD>

line: <TITLE> Echo CGI program </TITLE>

line: </HEAD>

line: <BODY BGCOLOR='#ebebeb'><CENTER>

line: <H2> Echo </H2>

line: </CENTER>

line: Length of content: 35

line: Content: Hi HTTP SERVER! Just a quick hello!
line: </BODY>

line: </HTML>

As you can see, the results are the same as with GoodURLPost. Instead of raw data,
you may want to send form input. Listing 17.6 is an example that sends the same form
input as demonstrated in Figure 17.1.

When Posting to a URL Won't

139

01: package org.javapitfalls.iteml7;
02:

03: import HTTPClient.*;

04:

05: import java.net.*;

06: import java.io.*;

07:

08: public class HTTPClientPost2

09: {

10: public static void main(String argsl[])

11: {

12: // get an HTTP connection to POST to

13: if (args.length < 2)

14: {

1153 System.out.println ("USAGE: java
org.javapitfalls.net.mcd.il.HTTPClientPost2 host cgi-program") ;
16: System.exit (1) ;

17: }

18:

19: try

20: {

21: // get the url as a string

22: String sHost = args[0];

23: String sfile = args[l];

24:

753 HTTPConnection con = new HTTPConnection(sHost);
26:

27: NVPair form data[] = new NVPair[2];

28: form data[0] = new NVPair("theName",
29: form data[l] = new NVPair("questionl",
30:

31: HTTPResponse resp = con.Post(sfile,

32: InputStream is = resp.getInputStream();
33:

34: // any response-?

353 InputStreamReader isr = new InputStreamReader (is) ;
36: BufferedReader br = new BufferedReader (isr) ;
37: String line = null;

38:

39: while ((line = br.readLine()) != null)
40: System.out.println("line: "

41: } catch (Throwable t)

42: {

43: t.printStackTrace() ;

44: }

45 }

46: }

Listing 17.6 HTTPClientPost2.java

"Bill Gates");

form_data);

140

Item 18

A run of the program HTTPClientPost2 produces the following:

E:\classes\org\javapitfalls\net\mcd\il>java org.javapitfalls.net :)
.mcd.i11.HTTPClientPost2 localhost /cgi-bin/echocgi.exe
line: <HEAD>

line: <TITLE> Echo CGI program </TITLE>

line: </HEAD>

line: <BODY BGCOLOR='#ebebeb'><CENTER>

line: <H2> Echo </H2>

line: </CENTER>

line: Length of content: 31

line: Content: theName=Bill+Gates&questionl=No

line: </BODY>

line: </HTML>

The results of HTTPClientPost2 are identical to the results in Figure 17.3. In conclu-
sion, while you can use URLConnection to post data to Web servers, you will find it
more intuitive to use an open-source alternative.

Item 18: Effective String Tokenizing®

This pitfall revealed itself when a junior developer needed to parse a text file that
used a three-character delimiter (###) between tokens. His first attempt used the
StringTokenizer class to parse the input text. He sought my advice after he dis-
covered what he considered to be strange behavior. The run of the program below
demonstrates code similar to his:

>java org.javapitfalls.util.mcd.il.BadStringTokenizer
input: 123###4#5###678###thellof#fiwor1d###9

delim: ###

If '###' treated as a group delimiter expecting 6 tokens...
tok[0]: 123

tok[1l]: 4

tok[2]: 5

tok[3]: 678

tok[4]: hello

tok[5]: wo

tok[6]: rld

tok[7]: 9

of tokens: 8

As is demonstrated in the above listing, the developer expected six tokens, but if a
single “#” character was present in any token, he received more. The junior developer
wanted the delimiter to be the group of three pound characters, not a single pound

® This pitfall was first published by JavaWorld (www.javaworld.com) in the article, “Steer clear
of Java Pitfalls”, September 2000 (http://www.javaworld.com/javaworld/jw-09-2000
/jw-0922-javatraps-p2.html) and is reprinted here with permission. The pitfall has been updated
from reader feedback.

Effective String Tokenizing

141

character. BadStringTokenizer.java in Listing 18.1 is the incorrect way to parse with a
delimiter of “###”.

01: package org.javapitfalls.iteml$8;

02:

03: import java.util.*;

04:

05: public class BadStringTokenizer

06: {

07: public static String [] tokenize(String input, String delimiter)
08: {

09: Vector v = new Vector();

10: StringTokenizer t = new StringTokenizer (input, delimiter) ;
11: String cmd[] = null;

123

133 while (t.hasMoreTokens ())

14: v.addElement (t.nextToken ()) ;

15:

16: int cnt = v.size();

17: if (cnt > 0)

18: {

19: cmd = new Stringl[cnt];

20: v.copyInto(cmd) ;

21: }

223

23: return cmd;

24: }

253

26: public static void main(String args[])

27: {

28: try

29 ¢ {

30: String delim = "###";

I g String input = "123###4#5###678###hello#fH#wotrld###9";
32: System.out.println("input: " + input);

33: System.out.println("delim: " + delim);

34: System.out.println("If '###' treated as a group :)
delimiter expecting 6 tokens...");

353 String [] toks = tokenize(input, delim) ;

36: for (int i=0; 1 < toks.length; i++)

37: System.out.println("tok[" + i + "]: " + toks[i]);
38: System.out.println("# of tokens: " + toks.length);
383 } catch (Throwable t)

40: {

41: t.printStackTrace() ;

42 }

43: }

44: }

Listing 18.1 BadStringTokenizer.java

142

Item 18

The tokenize () method is simply a wrapper for the StringTokenizer class.
The StringTokenizer constructor takes two String arguments: one for the input
and one for the delimiter. The junior developer incorrectly inferred that the delimiter
parameter would be treated as a group of characters instead of a set of single charac-
ters. Is that such a poor assumption? I don’t think so. With thousands of classes in the
Java APIs, the burden of design simplicity rests on the designer’s shoulders and not on
the application developer’s. It is not unreasonable to assume that a String would be
treated as a single group. After all, that is its most common use: a String represents a
related grouping of characters.

A correct StringTokenizer constructor would require the developer to provide
an array of characters, which would better signify that the delimiters for the current
implementation of StringTokenizer are only single characters—though you can
specify more than one. This incompletion is an example of API laziness. The API
designer was more concerned with rapidly developing the API implementation than
the intuitiveness of the implementation. We have all been guilty of this, but it is some-
thing we should be vigilant against.

To fix the problem, we create two new static tokenize () methods: one that takes an
array of characters as delimiters, the other that accepts a Boolean flag to signify whether
the String delimiter should be regarded as a single group. The code for those two
methods (and one additional utility method) is in the class GoodStringTokenizer:

01: package org.javapitfalls.iteml8;

02:

03: import java.util.*;

04:

05: public class GoodStringTokenizer

06: {

07: // String tokenizer with current behavior

08: public static String [] tokenize(String input, char [] :)
delimiters)

09: {

10: return tokenize (input, new String(delimiters), false);

11: }

12:

13: public static String [] tokenize(String input, String :)
delimiters, boolean delimiterAsGroup)

14: {

i15¢ String [] result = null;

16: List 1 = toksToCollection (input, delimiters, :)
delimiterAsGroup) ;

17: if (l.size() > 0)

18: {

19 result = new String[l.size()];

20: 1l.toArray(result) ;

21: }

Listing 18.2 GoodStringTokenizer.java

Effective String Tokenizing

143

22:
23: }
24:

return result;

25: public static List toksToCollection(String input, String :)

delimiters,

26: {
27:
28:
29:
30:
31:
323
BEE
34:
35:
36:
37:
38:
383
40:
41:
42
43:
44 :
45:
46:
47 :
48:
49:
50:
51:
572 3
53:
delimIdx) ;
54:
55:
56:
57:
58:
59:
60:
61: }
62:

boolean delimiterAsGroup)

ArrayList 1 = new ArrayList();

String cmd[] = null;

if (!delimiterAsGroup)
{
StringTokenizer t = new StringTokenizer (input, delimiters) ;
while (t.hasMoreTokens())
1.add(t.nextToken()) ;

else

int start = 0;
int end = input.length() ;

while (start < end)
{
int delimIdx = input.indexOf (delimiters, start) ;
if (delimIdx < 0)
{
String tok = input.substring(start);
1.add(tok) ;
start = end;

else
String tok = input.substring(start, :)

1.add(tok) ;
start = delimIdx + delimiters.length() ;

return 1;

63: public static void main(String args([])

64: {
65:
66:

try
{

Listing 18.2 (continued)

144

Item 18

67: String delim = "###";

68: String input = "123###4#5###678###thello##wotr1d###9";
69: // expecting 1 2 3 4 5 6 O
tokens

70: System.out.println("input: " + input);

71: System.out.println("delim: " + delim);

72 System.out.println("If '###' treated as a group :)
delimiter expecting 6 tokens...");

73: String [] toks = tokenize (input, delim, true);

74: for (int i=0; i < toks.length; i++)

75: System.out.println("tok[" + i + "]: " + toks[i]);

76: System.out.println("# of tokens: " + toks.length);

77 } catch (Throwable t)

78: {

79: t.printStackTrace() ;

80: }

81: }

82: }

83:

Listing 18.2 (continued)

Following is run of GoodStringTokenizer that demonstrates the new static
method, tokenize (), that treats the token String “###” as a single delimiter:

>java org.javapitfalls.util.mcd.il.GoodStringTokenizer
input: 123###4#5###678###thellof#tworld###9

delim: ###

If '###' treated as a group delimiter expecting 6 tokens...
tok[0]: 123

tok[1]: 4#5

tok[2]: 678

tok[3]: hello

tok[4]: wo#rld

tok[5]: 9

of tokens: 6

Beyond solving the “delimiter as a group” problem, GoodStringTokenizer adds a
utility method to convert the set of tokens into a java Collection. This is important,
as StringTokenizer is a pre-Collection class that has no built-in support for
collections. By returning a collection, we can take advantage of the utility methods,
specifically, those for sorting and searching, in the Collections class. The class below,
TokenCollectionTester.java, demonstrates the benefits of a Collection of
tokens.

Effective String Tokenizing 145

01: package org.javapitfalls.iteml8;

02:

03: import java.util.*;

04:

05: public class TokenCollectionTester

06: {

07: public static void main(String argsl[])

08: {

09: try

10: {

idl g String input = "zuchinni, apple, beans, hotdog, :)
hamburger, " +

12: "wine, coke, drink, rice, fries, chicken";
133 String delim = ", ";

14: List 1 = GoodStringTokenizer.toksToCollection (input,
15: delim, false);

16: String top = (String) Collections.max (1) ;

17: System.out.println("Top token is: " + top);

18: Collections.sort (1) ;

19: System.out.println("Sorted list: ");

20: Iterator 1 = l.iterator();

21l 3 while (i.hasNext())

223 System.out.println(i.next());

233

24 } catch (Throwable t)

25: {

26: t.printStackTrace() ;

27 }

28: }

2% §

Listing 18.3 TokenCollectionTester.java

Running TokenCollectionTester produces the following output:

>java org.javapitfalls.util.mcd.il.TokenCollectionTester
Top token is: zuchinni

Sorted list:

apple

beans

chicken

coke

drink

fries

hamburger

146

Item 19

wine
hotdog
rice

zuchinni
In this item, we have carefully examined the workings of the StringTokenizer

class, highlighted some shortcomings, and created some utility methods to improve
the class.

Item 19: JLayered Pane Pitfalls®

While working on the jXUL project (an open-source effort to integrate XUL, or Exten-
sible User-Interface Language, with Java) for the book Essential XUL Programming, 1
ported a Pacman arcade game clone called Pagman to a Java-based XulRunner plat-
form. XulRunner is a Java class that executes XUL applications; it’s similar to the
JDK’s AppletRunner. Figure 19.1 provides a screen shot of Pagman port’s current
version, which successfully allows the ghost sprites to move on a JLayeredPane’s
top layer. The sprites move over the background images, which exist in a layer
beneath. (Many thanks to my coauthor Kevin Smith, who worked through these pit-
falls with me to bring Pagman to fruition.)

Instead of examining this pitfall in the XulRunner code, which is rather large, we
will examine a simpler example that demonstrates the problem. Those interested in the
Pagman code can download it from the jXUL Web site (http://www.sourceforge
net/jxul).

Our simple BadLayeredPane example in Listing 19.1 attempts to create a frame
that has a colored panel in a background layer and a button in a foreground layer with
a JLayeredPane:

=10/ x|
1UP HIGH SCORE 2Up
0ooon 000on 0o0on

®
®

CREDITD

Figure 19.1 Pagman using a JlayeredPane.
Graphics © Dan Addix, Brian King, and David Boswell.

° This pitfall was first published by JavaWorld (www.javaworld.com) in the article, “Practice makes
perfect” November 2001 (http://www.javaworld.com/javaworld/jw-11-2001/jw-1116-traps
.html?) and is reprinted here with permission. The pitfall has been updated from reader feedback.

JLayered Pane Pitfalls

147

01:
02:
03:
04:
05:
06:
07:
08:
09:
10:
11:

12

13:
14:
15:
16:
17:
18:
193
20:
21l g
223
233

24

258
26:
27 3
28:

29

30:
31:
323
33:
34:
35:
36:
37:
38:
39:
40:
41 :
42:
43:
44
45:
46:
47 :
48:
49:

package org.javapitfalls.iteml9;

import java.awt.*;
import javax.swing.*;
import java.awt.event.*;

public class BadLayeredPane extends JFrame
{
public BadLayeredPane ()
{
// Error 1l: using the Root layered pane
JLayeredPane lp = getLayeredPane();

// set the size of this pane
lp.setPreferredSize (new Dimension (100,100)) ;

// add a Colored Panel

JPanel jpnl = new JPanel () ;
jpnl.setSize(100,100) ;
jpnl.setOpaque (true) ;
jpnl.setBackground (Color.red) ;

// Error 2: these MUST be of type Integer.
lp.add(jpnl, 2);

// put a Button on top

Button b = new Button("Hi!");
// Error 3: adding button wrong
lp.add(b, 1);

public static void main(String [] args)

{

JFrame frame = new BadLayeredPane () ;

frame.addWindowListener (
new WindowAdapter ()
{
public void windowClosing (WindowEvent e)
{
System.exit (0) ;

)

frame.pack() ;
frame.setVisible(true) ;

Listing 19.1 BadLayeredPane.java

148

Item 19

g mum

Figure 19.2 Run of BadLayeredPane.

When Listing 19.1 runs, it produces the screen in Figure 19.2.

Not only is our JLayeredPane not working properly, it has no size! We must first
work through the size problem before we can approach the heart of our pitfall. Listing
19.1 features three errors (called out in the comments); I'll tackle the first two now and
address the third later. First, the JLayeredPane that is part of the JFrame’s JRoot Pane
causes our size problem. When you examine the source code for JRoot Pane, you see that
the JRootPane’s RootLayout does not use the JLayeredPane to calculate its size;
JLayeredPane only calculates the size of the content pane and the menu bar. Second,
when adding components to our JLayeredPane, we use integers instead of Integer
objects.

With this knowledge, let’s examine our second attempt at displaying our two sim-
ple layers. Listing 19.2 fixes two of our problems.

01: package org.javapitfalls.iteml9;
02:

03: import java.awt.*;

04: import javax.swing.*;

05: import java.awt.event.*;

06:

07: public class BadLayeredPane2 extends JFrame
08: {

09: public BadLayeredPane?2 ()

10: {

il s // Fix 1: Create a JLayeredPane

12: JLayeredPane lp = new JLayeredPane() ;
13:

14: // set the size of this pane

15: lp.setPreferredSize (new Dimension (100,100)) ;
16:

17 // add a Colored Panel

18: JPanel jpnl = new JPanel () ;

19: jpnl.setSize(100,100) ;

20: jpnl.setOpaque (true) ;

2i g jpnl.setBackground (Color.red) ;

223

23: // Fix 2: using Integer objects

24: lp.add(jpnl, new Integer(2));

Listing 19.2 BadLayeredPane2.java

JLayered Pane Pitfalls

149

253

26: // put a Button on top

27 3 Button b = new Button("Hi!");
28: lp.add (b, new Integer(l));
29 ¢

30: // Part of Fix 1

31: getContentPane() .add (1p) ;

32: }

33:

// main method() Identical to BadLayeredPane.java
50: }

Listing 19.2 (continued)

We'll first study the fixes applied and then the results. There are two fixes in Listing 19.2
(called out in the comments):

m First, we create a new JLayeredPane, which we add to the ContentPane.
The RootLayout manager uses the ContentPane to calculate the frame’s
size, so now the JFrame is packed properly.

m Second, we correctly add components to the JLayeredPane using an Integer
object to specify the layer.

Figure 19.3 shows the result of these fixes.

Figure 19.3 clearly demonstrates that we have not yet accomplished our goal.
Though the colored panel displays, the button fails to appear on the layer above the
panel. Why? Because we assume we add components to a JLayeredPane the same
way we add components to Frames and Panels. This assumption is our third error
and the JLayeredPane pitfall. Contrary to Frame and Panel, the JLayeredPane
lacks a default LayoutManager; thus, the components have no sizes or positions pro-
vided for them by default. Instead, a component’s size and position must be explicitly
set before adding them to the JLayeredPane, which Fix 1 achieves in Listing 19.3.

Figure 19.3 Run of BadLayeredPane2.

150 Item 19

01: package org.javapitfalls.iteml9;
02:

03: import java.awt.*;

04: import javax.swing.*;

05: import java.awt.event.*;

06:

07: public class GoodLayeredPane extends JFrame
08: {

09: public GoodLayeredPane ()

10: {

11: JLayeredPane lp = new JLayeredPane() ;
12:

13: // set the size of this pane

14: 1lp.setPreferredSize (new Dimension(100,100)) ;
15:

16: // add a Colored Panel

17: JPanel jpnl = new JPanel () ;

18: jpnl.setSize(100,100) ;

19: jpnl.setOpaque (true) ;

20: jpnl.setBackground (Color.red) ;

21:

223 lp.add(jpnl, new Integer(1l));

233

24: // put a Button on top

253 Button b = new Button("Hi!");

26: // Fix 1: set the size and position
27 b.setBounds (10,10, 80, 40);

28: lp.add (b, new Integer(2));

219K

30: getContentPane () .add (1p) ;

31: }

32:

// main() method Identical to BadLayeredPane.java
49: }

Listing 19.3 GoodLayeredPane.java

When run, Listing 19.3 produces the correct result, shown in Figure 19.4.

Figure 19.4 Run of GoodLayeredPane.

When File.renameTo() Won't

151

In summary, the key pitfall in our JLayeredPane example is wrongly assuming
that the JLayeredPane has a default LayoutManager like JFrame and JPanel.
Experience tells us to eliminate that assumption and position and size the components
for each layer. Once we do so, the JLayeredPane works fine.

Item 20: When File.renameTo() Won't"

The File class and specifically the File.renameTo () method suffers from pitfalls in
both design and implementation. Many pitfalls stem from confusion regarding the
expected behavior of classes in the Java libraries. Unfortunately, the input/output (IO)
classes in Java have been prone to significant revision as the Java platform has evolved.
An early overhaul added readers and writers to the input and output streams to distin-
guish between character-based IO and byte-based I0. With JDK 1.4, another overhaul has
taken place, adding a lower layer of high-performance access via Channel classes. Figure
20.1 displays the major file-related classes in the java.io and java.nio packages.

Unfortunately, just the fact that there are five classes and two interfaces all pertain-
ing to different facets of a file increases the complexity of using these classes properly.
That is especially true if the distinction between classes is small or if the role of the class
is ill defined. Let’s examine each class and its purpose:

java.io java.nio.channels
<<interface>> File FileChannel FileLock
FileFilter
<<interface>> FileDescriptor
FilenameFilter

RandomAccessFile FilePermission

Figure 20.1 File-related classes in the Java class libraries.

10 This pitfall was first published by JavaWorld (www.javaworld.com) in the article, “Practice
makes perfect” November 2001 (http://www.javaworld.com/javaworld/jw-11-2001
/jw-1116-traps-p2.html) and is reprinted here with permission. The pitfall has been updated from
reader feedback.

152 Item 20

File. Present since JDK 1.0, a class that represents a file or directory pathname. This
class contains a wide array of methods to test characteristics of a file, delete a
file, create directories, and, of course, rename a file. Unfortunately, this class
suffers from a vague scope in that it incorporates behaviors of a directory entry,
like isFile(), isDirectory (), and lastModified (), and behaviors of a
physical file like createNewFile (), delete(), and renameTo (). We will
discuss this more later.

FilenameFilter. Present since JDK 1.0, an interface to test the occurrence of a list of
File objects via the File.1list () method and FileDialog.setFilename-
Filter () method. The confusion over scope stated above is evident in the con-
tradiction between this interface and the next one (FileFilter) in terms of
their names. This interface has a single method called accept () that receives a
File object representing a directory and a String representing the name of the
file to filter on.

FileFilter. Added in JDK 1.2, an interface to filter in the same manner as File-
nameFilter except that the accept () method receives only a single File
object. Unfortunately, this interface is a prime example of a superfluous conve-
nience interface that does more harm than good because of the new name. It
would have been far better to follow the precedent of the awt package where
LayoutManager?2 extends LayoutManager to add methods. The difference
between the two design strategies is that the LayoutManager interfaces are
clearly semantically congruent, whereas FilenameFilter and FileFilter
are not.

FileDescriptor. A class to provide an opaque handle to the operating system-
specific File data structure. As its name implies, this class is a very thin abstrac-
tion over an operating system structure. The class only has two methods. As a
general design rule, it would be preferable to combine our abstractions of a
physical file into a single class. Unfortunately, the requirements of backward
compatibility cause future developers to suffer with multiple abstractions. Since
the New IO package (NIO), split IO operations at the package level (which also
spoils the platform’s cohesiveness), there is an opportunity to start from scratch
with new classes in the NIO package.

FilePermission. A class to represent access to a file directory. This was part of the
1.2 fine-grained security mechanisms—again, a nice candidate for conceptual
consolidation.

RandomA ccessFile. Present since JDK 1.0, a class that represents the characteris-
tics and behaviors (taken from the C standard library) of a binary file. This
allows low-level reading and writing of bytes to a file from any random file
position. This class stands on its own and does not fit in to the IO stream
metaphor and does not interact with those classes. It is interesting to note that
the word “File” in this class name actually refers to a physical file and not just
its name. Unfortunately, this package lacks such consistency.

FileChannel. Added to JDK 1.4, a class to provide a high-performance pathway for
reading, writing, mapping, and manipulating a file. You get a FileChannel
from a FileInputStream, FileOutputStream, or RandomAccessFile
class. A key benefit of this class is the ability to map a file to memory. Item 2

When File.renameTo() Won't

153

examined the NIO performance improvements. Lastly, a region of the file (or the
whole file) may be locked to prevent access or modification by other programs
via methods that return a FileLock object.

FileLock. Added to JDK 1.4, a class to represent a lock on a region of a file. A lock
can be either exclusive or shared. These objects are safe for use by multiple
threads but only apply to a single virtual machine.

Now let’s narrow our focus to the File class. Listing 20.1 demonstrates some File
class behaviors and pitfalls.

01:

02:

03:

04:

05:
06:
07:
08:
093
10:

{

{
try
{

11:
12:
13:
14:
153
16:
17:

18:
193
20:
21l g
223
233
24:
25:
26:
27 3
28:
293
30:
31:
323
33:
34:
35:
36:

Listing 20.1

package org.

import java.

javapitfalls.item20;

i@, ¥ g

public class BadFileRename

public static void main(String args|[])

// check if test file in current dir
File f = new File("dummy.txt");

String name = f.getName () ;
if (f.exists())
System.out.println(f.getName() + " exists.");
else
System.out.println (f.getName () + :)

does not exist.");

// Attempt to rename to an existing file
File f2 = new File("dummy.bin") ;
// Issue 1l: boolean status return instead of Exceptions
if (f.renameTo (£f2))
System.out.println(
"Rename to existing File Successful.");
else
System.out.println(
"Rename to existing File Failed.");

// Attempt to rename with a different extension
int dotIdx = name.indexOf('.");
if (dotIdx >= 0)
name = name.substring (0, dotIdx);
name = name + ".tst";
String path = f.getAbsolutePath() ;
int lastSep = path.lastIndexOf (File.separator) ;
if (lastSep > 0)

BadFileRename.java (continued)

154 Item 20

37: path = path.substring (0, lastSep) ;

38: System.out.println("path: " + path);

395 File f3 = new File(path + File.separator + name) ;
40: System.out.println("new name: " + f3.getPath());
41: if (f.renameTo(£f3))

42: System.out.println (

43: "Rename to new extension Successful.");
44 else

455 System.out.println (

46 "Rename to new extension failed.");

47 :

48: // delete the file

49: // Issue 2: Is the File class a file?

50: if (f.delete())

5il g System.out.println("Delete Successful.");
523 else

533 System.out.println("Delete Failed.");

54:

553 // assumes program not run from c drive

56: // Issue 3: Behavior across operating systems?
573 File f4 = new File("c:\\" + f3.getName()) ;

58: if (f3.renameTo (f4))

59: System.out.println (

"Rename to new Drive Successful.");

60: else

61: System.out.println("Rename to new Drive failed.");
62: } catch (Throwable t)

63: {

64: t.printStackTrace() ;

65: }

66: }

67: }

68:

Listing 20.1 (continued)

When this code is run from a drive other than C, and with the file dummy.txt in the
current directory, it produces the following output:

E:\classes\org\javapitfalls\Item20>java :)
org.javapitfalls.item20.BadFileRename

dummy . txt exists.

Rename to existing File Failed.

path: E:\classes\org\javapitfalls\Item20

new name: E:\classes\org\javapitfalls\Item20\dummy.tst

Rename to new extension Successful.

Delete Failed.

Rename to new Drive Successful.

When File.renameTo() Won't

155

Listing 20.1 raises three specific issues, which are called out in the code comments.
At least one is accurately characterized as a pitfall, and the others fall under poor
design:

m First, returning a Boolean error result does not provide enough information
about the failure’s cause. That proves inconsistent with exception use in other
classes and should be considered poor design. For example, the failure above
could have been caused by either attempting to renameTo () a file that already
exists or attempting to renameTo () an invalid filename. Currently, we have no
way of knowing.

m The second issue is the pitfall: attempting to use the initial File object after a
successful rename. What struck me as odd in this APl is the use of a File
object in the renameTo () method. At first glance, you assume you only want
to change the filename. So why not just pass in a String? In that intuition lies
the source of the pitfall. The pitfall is the assumption that a File object repre-
sents a physical file and not a file’s name. In the least, that should be consid-
ered poor class naming. For example, if the object merely represents a filename,
then it should be called Filename instead of File. Thus, poor naming directly
causes this pitfall, which we stumble over when trying to use the initial File
object in a delete () operation after a successful rename.

m The third issue is File.renameTo ()’s different behavior between operating
systems. The renameTo () works on Windows even across filesystems (as
shown here) and fails on Solaris (reported in Sun’s Bug Parade and not shown
here). The debate revolves around the meaning of “Write Once, Run Anywhere”
(WORA). Sun programmers verifying reported bugs contend that WORA sim-
ply means a consistent API. That is a cop-out. A consistent API does not deliver
WORA; there are numerous examples in existing APIs where Sun went beyond
a consistent API to deliver consistent behavior. The best-known example of this
is Sun’s movement beyond the Abstract Windowing Toolkit’s consistent API to
Swing’s consistent behavior. If you claim to have a platform above the operating
system, then a thin veneer of an API over existing OS functionality will not suf-
fice. A WORA platform requires consistent behavior; otherwise, “run anywhere”
means “maybe run anywhere.” To avoid this pitfall, you check the “os.name”
System property and code renameTo () differently for each platform.

Out of these three issues, we can currently only fix the proper way to delete a file
after a successful rename, as Listing 20.2 demonstrates. Because the other two issues
result from Java’s design, only the Java Community Process (JCP) can initiate these
fixes.

01: package org.javapitfalls.item20;

02:

03: import java.io.*;

04:

05: public class GoodFileRename
06: {

Listing 20.2 GoodFileRename.java (continued)

156

Item 20

07:
08:
095
10:
11:
123
13:
14:
153
16:
17:

public static void main (String argsl[])

{
try

// check if test file in current dir
File f = new File("dummy2.txt") ;
String name = f.getName () ;
if (f.exists())
System.out.println(f.getName() + " exists.");
else
System.out.println(f.getName () +

" does not exist.");

18:
195
203
21:
223
23:
24:
25:
263
27 :
28:
29:
30:
31:
BYE
33:
34:
35:
36:
37:
38:
BIOE
40:
41 :
42
43:
44:
45
46:
47 :
48:
49: 1}
50:

// Attempt to rename with a different extension
int dotIdx = name.indexOf('."');
if (dotIdx >= 0)
name = name.substring(0, dotIdx) ;
name = name + ".tst";
String path = f.getAbsolutePath() ;
int lastSep = path.lastIndexOf (File.separator) ;
if (lastSep > 0)
path = path.substring (0, lastSep) ;
System.out.println("path: " + path);
File f3 = new File(path + File.separator + name) ;
System.out.println("new name: " + f3.getPath());
if (f.renameTo(£f3))
System.out.println (
"Rename to new extension Successful.");
else
System.out.println (
"Rename to new extension failed.");

// delete the file
// Fix 1: delete via the "Filename" not File
if (f3.delete())

System.out.println("Delete Successful.");
else

System.out.println("Delete Failed.");

} catch (Throwable t)

{

t.printStackTrace () ;

Listing 20.2 (continued)

Use Iteration over Enumeration 157

A run of Listing 20.2 produces the following output:

E:\classes\org\javapitfalls\Item20> java org.javapitfalls.item20 :)
.GoodFileRename

dummy?2 . txt exists.

path: E:\classes\org\javapitfalls\Item20

new name: E:\classes\org\javapitfalls\Item20\dummy2.tst

Rename to new extension Successful.

Delete Successful.

Thus, don’t use the File class as if it represents a file instead of the filename. With
that in mind, once the file is renamed, operations such as delete () only work on the
new filename.

Item 21: Use Iteration over Enumeration’

Enumeration is the original interface, available since JDK 1.0, to iterate over (step
through) all the elements in a collection. In terms of semantics, it would have been bet-
ter to call the interface “Enumerator,” as it expresses the role a class is “putting on” by
implementing the interface, instead of “Enumeration,” which specifies an occurrence of
the activity. This is in line with all the more recent interfaces in the java.util package
like Observer, Comparator, and Iterator. Table 21.1 compares the Enumeration
interface to the Tterator interface.

Table 21.1 Enumeration versus Iterator

ENUMERATION DESCRIPTION ITERATOR DESCRIPTION
METHODS METHODS
boolean Checks if this boolean Checks if this
hasMoreElements () ; enumeration has hasNext () iterator has
more elements. more elements.
Object Returns the next Object next () Returns the next
nextElement () ; element in the element in the
enumeration if there iterator if there is
is at least 1 more. at least one more.

void remove () Removes from
the underlying
collection the last
element returned.
(optional)

! This pitfall was first published by JavaWorld (wwwjavaworld.com) in the article, “Practice makes
perfect” November 2001, (http://www.javaworld.com/javaworld/jw-11-2001/jw-1116-traps-p2
-html) and is reprinted here with permission. The pitfall has been updated from reader feedback.

158 Item 21

The idiom for using both an Enumeration and Iterator is the same:

while (i.hasNext())

{
Object o = i.next();
// do something with o

As is evident in Table 21.1, both Iterator and Enumeration are functionally
identical except for two differences:

m [terators allow you to safely remove an element from the underlying collection
in a well-defined way.

m The iterator method names have been simplified.

There is a removal of elements pitfall in the Enumeration implementation class of
Vector where its behavior differs from Iteration. Listing 21.1 demonstrates the
behavior in question.

01: package org.javapitfalls.item2l;

02:

03: import java.util.*;

04:

05: public class BadvVisitor

06: {

07: public static void main (String argsl[])
08: {

09: Vector v = new Vector();

10: v.add("one"); v.add("two"); v.add("three"); v.add("four");
11:

12: Enumeration enum = v.elements() ;
13: while (enum.hasMoreElements())

14: {

15: String s = (String) enum.nextElement () ;
16: if (s.equals("two"))

17 g v.remove ("two") ;

18: else

19¢ {

20: // Visit

21: System.out.println(s) ;

22: }

23: }

24 :

253 // see what's left

Listing 21.1 BadVisitor,java

Use Iteration over Enumeration 159

26: System.out.println("What's really there...");
27 : enum = v.elements() ;

28: while (enum.hasMoreElements())

29: {

30: String s = (String) enum.nextElement () ;
31 System.out.println(s) ;

312k }

33: }

34: }

Listing 21.1 (continued)

When run, Listing 21.1 produces the following;:

E:\classes>java org.javapitfalls.item2l.BadVisitor
one

four

What's really there...

one

three

four

You would expect to have visited elements "one", "three", and "four", but
instead only visited elements "one" and "four" . The problem is that we are assum-
ing that the Enumeration implementation and the Vector class work in sync, which
is not the case. What has happened is the index integer (called count) is not modified
when the Vector.remove () method is called. This is demonstrated in Figure 21.1.
Listing 21.2 demonstrates how an iterator handles this situation.

Before remove() After remove()

O n " 0 n
one one

1 1

Index (1) > "two" "three"
2 2

"three" Index (2) > "four"

"four"

"

Figure 21.1 Under the hood of a vector.

160

Item 21

01: package org.javapitfalls.item2l;

02:

03: import java.util.*;

04:

05: public class BadvVisitor2

06: {

07: public static void main(String argsl[])
08: {

09: Vector v = new Vector();

10: v.add("one"); v.add("two"); v.add("three"); v.add("four");
11:

12: Iterator iter = v.iterator();

13 g while (iter.hasNext())

14: {

15: String s = (String) iter.next();
16: if (s.equals("two"))

17: v.remove ("two") ;

18: else

19: {

20: // Visit

21: System.out.println(s) ;

22: }

EE }

24

253 // see what's left

26: System.out.println ("What's really there...");
27 3 iter = v.iterator();

28: while (iter.hasNext())

293 {

30: String s = (String) iter.next();
31: System.out.println(s) ;

32: }

33: }

34: 1}

Listing 21.2 BadVisitor2.java

When run, Listing 21.2 produces the following;:

E:\classes>java org.javapitfalls.item2l.BadvVisitor2

one

Exception in thread "main" java.util.ConcurrentModificationException
at

java.util.AbstractList$SItr.checkForComodification (AbstractList.java:445)
at java.util.AbstractList$Itr.next (AbstractList.java:418)
at

com. javaworld.jpitfalls.article5.BadVisitor2.main (BadvVisitor2.java:15)

Use Iteration over Enumeration

161

As the output shows, the class implementing the Iterator interface specifically
checks for this type of concurrent modification (modification outside of the iteration
implemenation class while we are iterating) and throws an exception. It would be nice
if the Enumeration implementation class was upgraded with this same behavior.
Now let’s examine the correct way to do this. Listing 21.3 demonstrates both visiting
and modifying with an Iterator.

01: package org.javapitfalls.item2l;

02:

03: import java.util.*;

04:

05: public class GoodVisitor

06: {

07: public static void main(String argsl[])
08: {

09: Vector v = new Vector();

10: v.add("one"); v.add("two"); v.add("three"); v.add("four");
11:

1123 Iterator iter = v.iterator();

13: while (iter.hasNext())

14: {

15: String s = (String) iter.next();
16: if (s.equals("two"))

17: iter.remove() ;

18: else

19z {

20: // Visit

21: System.out.println(s) ;

22: }

23: }

24:

25z // see what's left

26: System.out.println("What's really there...");
27 iter = v.iterator();

28: while (iter.hasNext/())

29: {

30: String s = (String) iter.next();
31: System.out.println(s) ;

32: }

33: }

34: }

Listing 21.3 GoodVisitorjava

When Listing 21.3 is run, it produces the following:

E:\classes>java org.javapitfalls.item2l.GoodVisitor
one

162

Item 22

three

four

What's really there...
one

three

four

Notice that the remove method is performed via the Iterator class and not using
the Vector class. So, in general, for classes that support it, use an Iterator over
Enumeration. All classes that implement the Collection interface support itera-
tion through the following method:

public Iterator iterator();

The classes that implement the Collection interface are AbstractCollection,
AbstractList, AbstractSet, ArrayList, BeanContextServicesSupport,
BeanContextSupport, HashSet, LinkedHashSet, LinkedList, TreeSet, and
Vector. Some classes like Hashtable and HashMap (all the classes that implement
the Map interface) indirectly support iteration by returning a Collection via the
values () method. There are still some classes that only implement Enumeration like
StringTokenizer, java.security.Permissions, and classes in Swing and JNDL

Item 22: J2ME Performance and Pitfalls

The Java 2 Micro Edition (J2ME) is a subset of the Java platform created for developing
applications on small footprint devices, like personal digital assistants (PDAs) and cell
phones. These devices are significantly constrained in terms of processor speed, mem-
ory, and storage space. While the amounts vary between devices, you can easily expect
several orders of magnitude difference between your desktop PC and these devices.
There are three main classes of pitfalls associated with the J2ME platform: memory
consumption pitfalls, performance pitfalls, and API differences. Both memory con-
sumption and performance pitfalls have more to do with programming habit than the
J2ME platform. The fact is our habits have developed around creating reusable, mod-
ular, and readable J2SE/J2EE programs where memory and processing speed are
abundant. Unfortunately, those very habits deemed “good style” for J2SE/]2EE lead to
either nonperforming or poor-performing J2ME applications. The API pitfalls relate to
different method calls for classes implemented in both J2SE and J2ME.

My approach to exploring these]2ME pitfalls is to port a J2SE application to the
J2ME platform. First, we take the most direct approach and then optimize our
approach. Unfortunately, to demonstrate a nontrivial application (which we do)
requires significant amounts of code. To reduce the size of the code listings, I have
deleted simple, similar, and redundant code. Additionally, to avoid long runs of unin-
terrupted code, I have interspersed the code descriptions and explanations for all
major methods instead of putting it all after the code.

J2ME Performance and Pitfalls

163

The J2SE application we will port is called SwinginAmazonSearch. The main frame
of the application is displayed in Figure 22.1.

The purpose of the application is to enable you to query Amazon.com’s database
using a Representational State Transfer (REST) approach. REST is an architectural
style that describes how the World Wide Web (WWW) works. The term was coined by
Roy Fielding in his Ph.D. thesis (available at http:// www.ics.uci.edu/~fielding/pubs
/dissertation/top.htm). The Web uses Uniform Resource Identifiers (URIs) to retrieve
representation and to change state by transferring to other representations. Amazon
implemented this by encoding all query parameters in the URI and returning an XML
document as the resulting representation.

The layout of the main interface in Figure 22.1 is divided into two halves: the top
half to select and enter search terms and the bottom half to display the results after
clicking “Search.” After the results are displayed, you can examine more detail on a sin-
gle entry by clicking “Details” or receive an additional “page” of results by clicking
“Next Results.” Amazon.com limits all queries to a single “page” of 10 hits and requires
all queries to include a page number. Table 22.1 lists and defines the key parameters in
an Amazon.com query.

-0l

Amazon.com Search Assistant

~Search Terms

Operation: | AuthorSearch hd |

search For: |daconta

Category: | books hd

Search

~Results

C++ Pointers and Dynamic Memory Management/Book and Disk

Java Pitfalls: Time-Saving Solutions and Workarounds to Improve Programs
Java 2 and JavaScript for C and C++ (Programmers, Revised Edition)

C Pointers and Dynamic Memory Management/Book and Disk

More Java Pitfalls: 50 New Time-Saving Solutions and VWorkarounds
Essential XUL Programming

C Pointers and Dynamic Memory Management/Book and Disk

¥ML Development with Java 2

Essential Xul Programming

Essential XUL Programming

Details || Next Results

|Received results! Formatting ... | | || |J

Figure 22.1 A Swing-based Amazon search application.

164 Item 22

Table 22.1 Amazon.com Query parameters

FIELD TYPE FIELD NAME FIELD VALUES DEFINITION
Operation KeywordSearch, Free text with The type of search to

BrowseNodeSearch, keywords, authors, perform.

AsinSearch, UpcSearch, etc. corresponding

AuthorSearch, to the search type.

ArtistSearch,

ActorSearch,

DirectorSearch,

ManufacturerSearch,

ListManiaSearch,
SimilaritySearch

Mode mode baby, books, A taxonomy of areas
classical, dvd, to search. Would be
electronics, garden, better to have been
kitchen, magazines, called category.
music, pc-hardware,
photo, software,
toys, universal, vhs,

videogames
Return Type type lite, heavy The DTD of the
returned XML where
the heavy version
contains many more
elements than the
lite version.
Page # page An integer The page of 10 hits to
return (if available).
Format f xml or URI to an A return in XML or any
XSLT stylesheet format generated by

the XSLT stylesheet.

Now let’s examine the source code in Listing 22.1 that implements the application.

001: /* SwinginAmazonSearch.java */
002: package org.javapitfalls.item22;

003:

// - removed Import statements

015:

016: class SwinginAmazonSearch extends JFrame implements ActionListener
017: {

018: public static final boolean debug;

019:

// - removed static block to set debug variable

Listing 22.1 SwinginAmazonSearch.java

J2ME Performance and Pitfalls

0353

036: public static final String CMD_SEARCH = "Search";

// - removed CMD_DETAILS, CMD_NEXT_TEN, and ELEMENT PRODUCT_NAME Strings
040:

041: JButton searchButton = new JButton(CMD_ SEARCH) ;

042: JButton detailsButton = new JButton (CMD_DETAILS) ;

043: JButton nextResultsButton = new JButton (CMD_NEXT_TEN) ;

044: JList results = new JList();

045: JComboBox opsCombo = new JComboBox (AmazonHttpGet.legalOps);
046: JComboBox modeCombo = new JComboBox (AmazonHttpGet.legalModes) ;
047 : JTextField targetTF = new JTextField(40) ;

048: StatusPanel status = new StatusPanel();

049: AmazonHttpGet getter = new AmazonHttpGet():;

050: int page = 1;

051:

052: DocumentBuilderFactory dbf;

053: DocumentBuilder db;

054: Document doc;

055: NodeList productNodes;

056:

Listing 22.1 (continued)

The class SwinginAmazonSearch extends a Swing JFrame and implements the
Action Listener interface to receive events from the buttons on the main window. Lines
16-56 of the code contain the class declaration and class data members. The data mem-
bers consist of some static constants, GUI components (JBut ton, JList, JComboBox),
a reference to a class performing the HTTP networking functions called Amazon-
HttpGet, and references to XML parsing and the W3C Document class to manipulate
the returned XML. It is important to note the use of static constants for all fixed
Strings (like in line 36 and those deleted) in case the protocol changes at a later date.
This then makes it easy to modify the protocol by only changing the string in one loca-
tion instead of hunting down the occurrence of each String where it is used. Such
“future proofing” is a good habit for J2SE/J2EE development, but one that wastes pre-
cious heap space in J2ME. We will see workarounds for this later. The constructor
(below) creates and displays the main frame.

057: public SwinginAmazonSearch() throws ParserConfigurationException
058: {

059: super ("Amazon Search Tool") ;

060:

061: dbf = DocumentBuilderFactory.newInstance() ;

062: db = dbf.newDocumentBuilder () ;

063:

064 : // USE a vertical box for north Panel

065: Box northwithTitle = new Box (BoxLayout.Y_AXIS) ;

066: this.getContentPane () .add("North", northwWithTitle) ;

Listing 22.1 (continued)

166 Item 22

067:

068: // add label first

069: // add label up north

070: JPanel title = new JPanel (new FlowLayout (FlowLayout.CENTER)) ;
071: JLabel titleLabel = new JLabel ("Amazon.com Search :)
Assistant") ;

072: titleLabel.setForeground (Color.green.darker ()) ;

073: title.add(titleLabel) ;

074: northWithTitle.add(title) ;

075:

076: Box northPanel = new Box (BoxLayout.Y_AXIS) ;

077: northWithTitle.add (northPanel) ;

078: northPanel . setBorder (new TitledBorder (new EtchedBorder (), :)
"Search Terms")) ;

079:

080: // add operation drop down

081: JPanel panell = new JPanel (new FlowLayout (FlowLayout.LEFT)) ;
082: northPanel .add (panell) ;

083: panell.add (new JLabel ("Operation:")) ;

084: opsCombo.setEditable (false) ;

085: panell.add (opsCombo) ;

086:

// - removed adding most of the GUI components for brevity

// - removed adding status panel and WindowListener

132:

133: this.setSize(600,400) ;

134: this.setLocation(100,100) ;

135: this.setVisible(true) ;

136:

137: }

Listing 22.1 (continued)

The constructor (lines 57 to 137) instantiates the components, groups them in
JPanels, adds them to LayoutManagers, and then sizes and shows the window.
Unfortunately, the GUI components in the J2ME platform are different from (but simi-
lar to) those used in Swing:

139: public void actionPerformed (ActionEvent aevt)
140: {

141: String command = aevt.getActionCommand() ;
142: if (command.equals(CMD_SEARCH))

143: {

144: // check we have the valid parameters\
145: String targets = targetTF.getText():;
146: if (targets.length() == 0)

147 : {

148: status.setText ("'Search For' text field cannot be :)
empty.");

149: }

Listing 22.1 (continued)

J2ME Performance and Pitfalls 167

150: else

151: {

152: try

153: {

154: page = 1; // reset

LS5 g doAmazonSearch(page, targets);
156: } catch (MalformedURLException mue)

// - removed exception handling, simply displayed an error message
164: }

165: }

166: else if (command.equals(CMD_DETAILS))

167: {

168: // popup a new window with the details for this product
169: String selectedProductName = (String) :)
results.getSelectedvalue () ;

170:

171: // get the parent ELEMENT node of the node with a :)
ProductName with this Value

172: if (productNodes != null)

173: {

174: Node n = :)
findNodeWithContent (productNodes, selectedProductName) ;

175:

176: // get the Details element parent

177: Node parent = n.getParentNode() ;

178:

179: if (debug) System.out.println("parent: " + :)
parent .getNodeName ()) ;

180: if (parent != null)

181: {

182: // display a Details Window

183: new DetailsDialog(this, parent, :)
selectedProductName) ;

184: }

185: }

186: else

187 : {

188: status.setText ("Internal error. Try another search.");
189: }

190: }

// - removed handling NEXT_TEN for brevity

207: }

Listing 22.1 (continued)

The Action event handler responds to the various button clicks generated by the
GUI. Notice that I use the String.equals () method to determine which button was
pressed. This will need to be changed, as string comparisons are slow. The two key
events to respond to are the search request (line 142) and a details request (line 166). To
respond to either event, some parameters are gathered (like the search term, line 145,
or the XML node to report details on, line 174), and then doAmazonSearch() is
invoked (line 155) or a new DetailsDialog window instantiated (line 183). Notice

168

Item 22

the DetailsDialog is instantiated as an anonymous reference and not saved in a
variable for reuse. Such an assumption of abundant memory and trust in the efficiency
of the garbage collector is a pitfall for J2ME programming;:

209: private void doAmazonSearch(int page, String targets) throws :D
Exception

210: {

211: getter.newBaseURL(); // reset

212:

213: // get the operation

214: String op = (String) opsCombo.getSelectedItem() ;

215:

216: // get the mode

217: String mode = (String) modeCombo.getSelectedItem() ;
218:

219: status.setText ("Contacting Amazon.com...");

220:

221: getter.addOperation(op, targets);

222: getter.addMode (mode) ;

223: getter.addType("lite");

224: getter.addPage("" + page);

225: getter.addFormat () ;

226:

227: // GET it

228: String response = getter.httpGet():;

2293 if (response != null && response.length() > 0)

230: status.setText ("Received results! Formatting ...");
231:

232: if (debug) System.out.println("response: " + response) ;
233:

234: // parse the XML, extract ProductNames

235: String [] productNames = null;

236: ByteArrayInputStream bais = new :)
ByteArrayInputStream (response.getBytes());

237: doc = db.parse(bais);

238: if (doc != null)

239: removeBlankNodes (doc.getDocumentElement ()) ;

240:

241: productNodes = :)
doc.getElement sByTagName (ELEMENT PRODUCT NAME) ;

242 : if (productNodes != null)

243 {

244: int len = productNodes.getLength() ;

245: productNames = new String[len];

246: for (int i=0; i < len; i++)

247 {

248: Node n = productNodes.item(1) ;

249: Node t = n.getFirstChild();

250: if (t.getNodeType() == Node.TEXT_NODE)

251: productNames[i] = t.getNodeValue();

252: }

253: }

Listing 22.1 (continued)

J2ME Performance and Pitfalls

254 :

255: if (productNames != null && productNames.length > 0)
256: {

257 : // populate the list

258: results.setListData (productNames) ;

259: }

// - removed else error condition handling for brevity

267: }

// - removed utility method isBlank()

// - removed utility method removeBlankNodes ()

// - removed utility method findNodeWithContent ()
// - removed main() which merely Instantiates SwinginAmazonSearch
333: 1}

Listing 22.1 (continued)

The method doAmazonSearch () (lines 209 to 267) has four key functions:

Format a URL.
Send an HTTP GET request to xml.amazon.com.

|
-
m Parse the resulting XML to extract the product names.
|

Populate the JList with the product names.

Both formatting the URL and “getting” it are performed in conjunction with the
AmazonHt tpGet class discussed later. It is important to note the modularity of the for-
matting operation for the URL displayed in lines 221 to 225. The formatting of a URL is
broken into separate functions to assemble the URL in any order or length you want.
Such modularity and the building of “generic code” will have to be sacrificed in our
J2ME implementation for speed. At line 228, the ht tpGet () method is invoked which
returns a String containing an XML document. Here is a portion of a sample return
document:

<Details url="http://www.amazon.com/exec/obidos/redirect?tag=webservices-
20%26creative=D3AG4L7PI53LPH%26camp=2025%261ink code=xm2%26path=ASIN/047
1237515">
<Asin>0471237515</Asin>
<ProductName>More Java Pitfalls: 50 New Time-Saving Solutions and :)
Workarounds</ProductName>
<Catalog>Book</Catalog>
<Authors>
<Author>Michael C. Daconta</Author>
<Author>Kevin T. Smith</Author>
<Author>Donald Avondolio </Author>
<Author>W. Clay Richardson</Author>
</Authors>
<ReleaseDate>03 February, 2003</ReleaseDate>
<Manufacturer>John Wiley & Sons</Manufacturer>
<ListPrice>$40.00</ListPrice>
<OurPrice>$40.00</OurPrice>
</Details>

170

Item 22

The XML response is then fed into the standard JDK XML Parser, and a Document
Object Model (DOM) is constructed (the org.w3c.Document class) at line 237. All the
elements with a tag of “ProductName” are retrieved (line 241) and their text content
extracted. Since the XML document is guaranteed to be only 10 products at a time, this
Swing application can comfortably construct a DOM even though it requires more mem-
ory than a SAX Parser or Pull Parser approach; however, this approach proves to use too
much memory in our J2ME port. Several utility methods were created to search and
manipulate the DOM, like removeBlankNodes ()and findNodeWithContent (),
but were deleted since they do not pertain to J2ME pitfalls:

335: class DetailsDialog extends JDialog

336: {

337: JTextArea textArea = new JTextArea(5,60);

338: public DetailsDialog(Frame f, Node detailsNode, String :)
productName)

339: {

340: super (f, "Details for " + productName, false);
341:

342: getContentPane () .setLayout (new BorderLayout(2,2)) ;
343: JScrollPane scroller = new JScrollPane (textArea) ;
344: getContentPane() .add ("Center", scroller);

345:

346: // initialize the text Area

347: textArea.setEditable (false) ;

3438: textArea.setBackground (Color.lightGray) ;

349:

350: NodeList children = detailsNode.getChildNodes () ;
351: int len = children.getLength() ;

BEVE for (int i=0; i < len; i++)

BEEE {

354: // display element children with a text node
3553 Node child = children.item(1i) ;

356: if (child.getNodeType () == Node.ELEMENT_NODE)
BEVE {

358: Node txt = child.getFirstChild() ;

359: if (txt != null && txt.getNodeType() == Node.TEXT_NODE)
360: {

361: String label = child.getNodeName() ;

362: String value = txt.getNodeValue():;

363:

364: if (value.length() > 0)

365: textArea.append("" + label + ": " + value +
"\n") ;

366: }

367: }

368: }

369:

// - removed setting window size and location

372: this.setVisible (true) ;

373: }

374: 1}

Listing 22.1 (continued)

J2ME Performance and Pitfalls

171

375:
// - removed StatusPanel Class for brevity
439:

Listing 22.1 (continued)

The DetailsDialog presents a frame with a single JTextArea where each tag
name becomes the label (line 361) and each node value of the XML element is pre-
sented as the labels value separated by a colon (line 365). This approach relies on
detailed knowledge of the XML format.

Now let’s examine Listing 22.2 that presents the utility class, AmazonHt tpGet, that
performs the networking operations of the application.

001: package org.javapitfalls.item22;
002:

003: import java.net.*;

004: import java.io.*;

005:

006: class AmazonHttpGet

007: {

008: public static final boolean debug;

009:

// - removed static block that sets debug variable

025:

026: public static final String DEVTAG = "YOUR-DEV-TAG-HERE";

027: public static final String [] legalOps = { "KeywordSearch", :)
// - removed other keywords listed In Table 22.1 :)
"SimilaritySearch", };

031:

032: public static final String OP_KEYWORD_SEARCH = "KeywordSearch";
033: public static final String OP_BROWSE_NODE_SEARCH =
"BrowseNodeSearch";

// - removed remaining "operation" constants

043:

044 : public static final String [] legalModes = { "baby", "books",
// - removed other keywords listed In Table 22.1

047 : "videogames", };

048:

049: public static final String MODE_BABY = "baby";

050: public static final String MODE_BOOKS = "Books";

// - removed remaining "mode" constants

065:

066 : public static final String KEYWORD_MODE = "mode";

// - removed other KEYWORD constants

069:

070: public static final String TYPE_LIGHT = "lite";

071: public static final String TYPE_HEAVY = "heavy";

072:

// - removed stringExists() utility method

092:

093: private StringBuffer urlBuf;

Listing 22.2 AmazonHttpGet.java (continued)

172

Item 22

This class was designed with modularity and reusability in mind. The class data
members consist mostly of static constants (though many have been removed for
brevity). The key data members are the DEVTAG provided when you register at Ama-
zon.com and the urlBuf StringBuffer. In fact, this class does not go far enough in
terms of composability of the various queries and additional checking of parameter
combinations. Unfortunately, as you will see, most of this flexibility will be eliminated
in the J2ME port to reduce the number of method invocations. Throughout this pitfall,
you should notice the recurring theme of a mind set shift required to program for small
devices. The StringBuffer contains a string representation of the URL we will GET:

// - removed urlBuf accessor method

097:

098: public AmazonHttpGet ()

099: {

100: newBaseURL () ;

101: }

102:

103: public void newBaseURL()

104 : {

105: urlBuf = new StringBuffer ("http://xml.amazon.com/ :)
onca/xml?v=1.0&t=webservices-20&dev-t=" + DEVTAG) ;
106: }

107 :

108: public boolean validOp(String op)

109: {

110: if (stringExists(op, legalOps, false))

111: return true;

112: else

113: return false;

114: }

1155

// - removed validMode () as it is similar to validOp()
// - removed validType() as it is similar to validOp()
// - removed validPage() as it is similar to validOp()
145:

146: public void addOperation(String operation, String target) :)
throws MalformedURLException

147: {

148: // validate the operation

149: if (validOp (operation))

150: {

151: urlBuf.append('&"');

152: urlBuf.append(operation) ;

153: urlBuf.append('="');

154: if (target != null)

155¢ {

156: target.trim() ;

157 g target = replaceString(target, " ", "%20", 0);
158:

159: urlBuf.append(target) ;

Listing 22.2 (continued)

J2ME Performance and Pitfalls 173

160: }

161: else

162: throw new MalformedURLException("Invalid target");
163: }

164: else

165: throw new MalformedURLException("Invalid operation.");
166: }

167:

// - removed addMode () as it is similar to addOperation/()

// - removed addType() as it is similar to addOperation()

// - removed addPage() as it is similar to addOperation/()

206:

207: public void addFormat ()

208: {

209: urlBuf.append("&f=xml"); // TBD: allow XSLT stylesheet
210: }

211:

// - removed replaceString() utility method
Listing 22.2 (continued)

The formatting of the URL involves validating and then appending name/value pairs
to the urlBuf StringBuffer. The addOperation () (line 146), addMode (), and
addType () methods add the parameters discussed in Table 22.1 to the StringBuffer.
Two utility methods were removed for brevity: stringExists () checked for the exis-
tence of a String in an array of Strings and replaceString () replaces a portion of
a String with supplied replacement text:

233: public String httpGet () throws IOException
234: {

235: if (debug) System.out.println("URL: " + urlBuf.toString()) ;
236:

237: // Create a URL object

238: URL url = new URL(urlBuf.toString()):;
239: // get the connection object

240: URLConnection con = url.openConnection();
241 :

242: con.setDoOutput (true) ;

243: con.setUseCaches (false) ;

244 :

245: InputStream in = con.getInputStream();
246: BufferedReader br = new BufferedReader (new :)
InputStreamReader (in)) ;

247

248: // read response

249: String line = null;

250: StringWriter sw2 = new StringWriter () ;
251l g PrintWriter pw2 = new PrintWriter (sw2) ;
252: while ((line = br.readLine()) != null)

Listing 22.2 (continued)

174

Item 22

253: {

254: pw2.println(line);

2553 }

256:

257: String response = sw2.toString():;
258: return response;

259: }

260:

// - removed main() method (used for testing)
323: }

Listing 22.2 (continued)

The httpGet () method instantiates a URL object from theur1Buf StringBuffer
(line 238), opens a connection to the URL (line 240) and then reads lines of text from the
Web server (line 252) and prints them to a PrintWriter/StringWriter buffer.
Lastly, the contents of the StringWriter are retrieved as a single String (line 257).

To examine the API differences between J2SE and J2ME, we attempt a straightfor-
ward port of the code to J2ME, changing as little code as necessary. Listing 22.3 is our
direct port of SwinginAmazonSearch.java to J2ME. We will examine specific API dif-
ferences as we cover each section of code.

001: package org.javapitfalls.item22;
002:

003: import java.io.*;

004: import java.util.*;

005: import javax.microedition.midlet.*;
006: import javax.microedition.lcdui.*;
007: import org.kxml.*;

008: import org.kxml.kdom.*;

009: import org.kxml.parser.*;

010:

011: public class BadMicroAmazonSearch extends MIDlet implements :)
CommandListener

012: {

013: public static final String CMD_SEARCH = "Search";
014: public static final String CMD_DETAILS = "Details";
015: public static final String CMD_NEXT TEN = "More";
// - removed other static constant Strings

019:

020: // commands

021: private Command searchCommand;

022: private Command detailsCommand;

// - removed other Command references for brevity

026:

027: // display

028: private Display display;

029:

030: // screens

Listing 22.3 BadMicroAmazonSearch.java

J2ME Performance and Pitfalls

175

031: private Form searchScreen;
032: private List resultsScreen;
033: private TextBox detailsScreen;
034:

035: // screen components

036: ChoiceGroup opsChoice;

037: ChoiceGroup modeChoice;

038: TextField targetTF;

039: BadMicroAmazonHttpGet getter = new BadMicroAmazonHttpGet () ;
040: int page = 1;

041:

042: Vector productNodes;

043:

044: boolean debug = true;

045: Timer ticker = new Timer () ;
046:

Listing 22.3 (continued)

The class BadMicroAmazonSearch extends MIDlet and implements CommandLis-
tener (instead of implementing ActionListener). A MIDlet is a Mobile Information
Device Profile (MIDP) application. The MIDlet is an abstract class with three abstract
methods that must be overridden by the subclass: startApp (), pauseipp (), and
destroyApp (). In this sense, a MIDlet is similar to an applet in that it has a lifecycle con-
trolled by an external Management application.

Before we examine the details of the class, notice the import statements: two pack-
ages are the same as J2SE packages (java.ioand java.util), although they are lim-
ited in scope, and the two javax packages are new (javax.midlet, which has the
MIDlet class, and javax.lcdui, which has the GUI classes). The kxml package is an
open-source package available at http:/ /kxml.enhydra.org/. We will discuss the kxm1
package in more detail later. Now let’s examine the GUI differences apparent in the
BadMicroAmazonSearch class definition. Since we are dealing with such a small
screen size, as shown in Figure 22.2, I divided the single Swing Frame into three
“displayable” screens (Screen objects).

Figure 22.2 MIDP screen size on a Motorola phone.
Motorola and the Motorola logo are trademarks of Motorola, Inc.

176

Item 22

A major difference between Swing and J2ME GUIs is that there are no Frames in
J2ME. In essence, there is only a single Display (line 28) and you can switch the
Display to any subclass of Screen. Our Screen subclasses are a Form for the search
screen, a List for the results screen, and a TextBox for the details screen. One other
important difference is that there are no JButton or Button classes in J2ME; instead,
there is a Command class. You add your commands to the appropriate screen. You will
also notice that we shortened the "Next Results" label to "More" (line 15) to take
into account the smaller screen size. The last difference is that ComboBox has been
replaced by ChoiceGroup (lines 36 and 37).

047: public BadMicroAmazonSearch ()

048: {

049: // Create GUI components here...

050: display = Display.getDisplay(this);

051 g

052: // commands

053: searchCommand = new Command (CMD_SEARCH, Command.SCREEN, 1);
054 : detailsCommand = new Command (CMD_DETAILS, Command.SCREEN, 1);
// - removed the Instantiation of other Commands

058:

059: // Create 3 screens: 1. Search, 2. Results, 3. Details

060: // search form

061: searchScreen = new Form("Search Terms");

062: opsChoice = new ChoiceGroup ("Operation:", Choice.EXCLUSIVE, :)
BadMicroAmazonHttpGet.legalOps, null) ;

063: searchScreen.append (opsChoice) ;

064 : targetTF = new TextField("Search For:", "", 20, :)
TextField.ANY) ;

065: searchScreen.append (targetTF) ;

066: modeChoice = new ChoiceGroup ("Category:", Choice.EXCLUSIVE, :)
BadMicroAmazonHttpGet.legalModes, null);

067: modeChoice.setSelectedIndex (1, true);

068: searchScreen. append (modeChoice) ;

069: searchScreen.addCommand (searchCommand) ;

070: searchScreen.addCommand (exitCommand) ;

071: searchScreen.setCommandListener (this) ;

072:

073: // results list

074: resultsScreen = new List("Results", List.EXCLUSIVE);

075: resultsScreen.addCommand (detailsCommand) ;

// - removed adding other commands to resultsScreen

080:

081: // details text box

082: detailsScreen = new TextBox("Details", "", 1024, :D
TextField.ANY) ;

// - removed adding commands to detailsScreen

086: }

Listing 22.3 (continued)

The constructor for BadMicroAmazonSearch performs three key functions:

m Gets the Display object via Display.getdisplay () (line 50)

J2ME Performance and Pitfalls 177

m Instantiates the Commands (lines 53 to 57) and Screens (lines 61, 74, and 82)

m Adds the Commands and subcomponents (for the Form) to the screens

There are many minor differences in a MIDP GUI compared to a J2SE GUI, such as
not adding the screens to the Display (as we would to a JFrame); instead, we call
Display.setCurrent () toaDisplay object (as we will in the startApp () method
below):

088: public void startApp()

089: {

090: display.setCurrent (searchScreen) ;
091: }

092:

// - removed pauseApp () and destroyApp() as they did nothing
102:

103: public void commandAction(Command c, Displayable s)
104: {

105: String cmd = c.getLabel () ;

106: if (cmd.equals (CMD_EXIT))

107: {

108: destroyApp (false) ;

109: notifyDestroyed() ;

110: }

111: else if (cmd.equals (CMD_SEARCH))

112: {

113: // check we have the valid parameters)\

114: String targets = targetTF.getString();

115: if (targets.length() == 0)

116: {

117: display.setCurrent (new Alert ("Search Error", "'Search :)
For' text field cannot be empty.", null, AlertType.ERROR));
118: }

119: else

120: {

121: try

122: {

123: page = 1; // reset

124: doAmazonSearch(page, targets);

125: } catch (Exception e)

126: {

127: e.printStackTrace () ;

128: display.setCurrent (new Alert ("SearchError", :)
"ERROR: reason: " + e.toString(),null, AlertType.ERROR));
129: }

130: }

131: }

// - removed handling CMD_DETAILS for brevity

136: }

Listing 22.3 (continued)

The commandAction () method is analogous to the actionPerformed () method
in J2SE. Note that instead of the getActionCmd (), we call getLabel () to retrieve

178

Item 22

the text label of the Command. Although this is similar to the method used in the Swing
application, it is a classic pitfall, since it is much slower than comparing the Command
references passed in with the references of our predefined Command objects (like
searchCommand). We make this optimization in the next version of the program. The
rest of the method is nearly identical to the actionPerformed () method, except the
error reporting requires the creation of an Alert screen. Although here in this “bad”
version we create temporary objects (lines 117 and 128), hopefully, you noticed this
waste and the opportunity for optimization:

138: private void doAmazonSearch(int page, String targets) throws :D
Exception, IOException

139: {

140: ticker.reset ("Started Timer in doAmazonSearch()") ;
141: getter.newBaseURL(); // reset

142:

143: // get the operation

144: int idx = opsChoice.getSelectedIndex();

145: String op = (String) opsChoice.getString(idx);

146:

// - removed getting the mode as it is similar to getting the op
150:

// - removed getter.addXXX methods -- no change.

156:

157 3 // GET it

158: byte [] response = getter.httpGet();

159: System.out.println ("Have response. Size is: " +

response. length) ;

160:

161: // parse the XML, extract ProductNames

162: // Kxml required ~ 200k for a full parse.

163: String [] productNames = null;

164: ByteArrayInputStream bais = new :)
ByteArrayInputStream (response) ;

165: InputStreamReader isr = new InputStreamReader (bais) ;
166: XmlParser parser = new XmlParser (isr);

167: Document doc = new Document () ;

168: doc.parse(parser) ;

169:

170: productNodes = new Vector() ;

171: getProductNames (doc.getRootElement (), productNodes) ;
172 if (productNodes != null)

173: {

174 : int len = productNodes.size() ;

Listing 22.3 (continued)

J2ME Performance and Pitfalls 179

175: System.out.println("# of products found: " + len);
176: productNames = new String[len];

177: for (int i=0; i < len; i++)

178: {

179: Node n = (Node) productNodes.elementAt (i) ;
180: productNames[i] = n.getText();

181: }

182: }

183:

184: if (productNames != null && productNodes.size() > 0)
185: {

186: // populate the list

187: for (int i=0; i < productNames.length; i++)
188: resultsScreen.append (productNames[i], null) ;
189:

190: // set the display to the results

191: display.setCurrent (resultsScreen) ;

192: }

// - removed the else block for brevity

200: ticker.printStats ("Method doAmazonSearch()") ;
201: }

202:

203: public void getProductNames (Node root, Vector v)
204: {

205 s int cnt = root.getChildCount () ;

206: for (int i=0; i < cnt; i++)

207: {

208: Object o = root.getChild(i);

209: if (o instanceof Node)

210: {

211: Node n = (Node) o;

212: String name = n.getName();

213: if (name.equals (ELEMENT_PRODUCT_NAME))
214: {

215: v.addElement (n) ;

216: }

217:

218: // element?

219: if (n.getChildCount() > 0)

220: getProductNames (n, V);

221: }

222: }

223: }

224: 1}

Listing 22.3 (continued)

180

Item 22

The doAmazonSearch () method is similar to its Swing counterpart with a few
exceptions. For example, you cannot directly get a selected item (like with the getSe-
lectedItem()method)fromaChoiceGroup or List;instead, you must get the index
(line 144) and then call getString () (line 144). Such minor API changes can be frus-
trating, though in this case the purpose is to eliminate the need for casting (in this direct
port it was accidentally left in but is corrected in the next version). On line 158 notice that
the httpGet () method returns a byte array (which is required by the kxml parser).
Lines 164 to 167 represent the parsing of the XML document using the kxml package. At
line 171, we call the utility method, getProductNames (), to recursively traverse the
document tree and extract the product Nodes. Unfortunately, this was necessary because
the kdom package does not have a getElementsByTagName () method.

Like the minor API changes in the javax.microedition packages, the kdom
package has a slightly different API than the w3c DOM package. Such API changes only
cause a serious pitfall when such a change eliminates any implicit guarantee of the for-
mer abstraction. For the DOM, a tree of Nodes represents the “flattened view” where
every object is of type Node. This uniformity makes traversal easy and consistent.
Unfortunately, kxml breaks the metaphor by mixing Nodes and other objects (like
Strings). This nonuniformity led to runtime ClassCastExceptions (due to the
assumption of uniformity—a classic pitfall) and required explicit testing (line 209).
Additionally, the kxml changed the method names from getNodeName () to
getName () and from getNodeValue () togetText ().

Figure 22.3 displays the Network Monitor application, which is part of Sun
Microsystems J2ME Wireless Toolkit. This toolkit allows you to emulate J2ME on a
personal computer or workstation and enabled the writing and testing of this pitfall.
Sun Microsystems did a real service to developers in delivering such a high-quality
emulation environment for Java programmers. You can download the kit from
http:/ /java.sun.com/products/j2mewtoolkit/.

The Network Monitor application captures all communication between your
MIDlet and the Web server. The left pane shows a tree with all HTTP requests and
responses. Clicking on a request or response displays the details of the communication
in the right pane in both hexadecimal and ASCIL. Now we can examine the port of
AmazonHttpGet to the J2ME platform in Listing 22.4.

EMNMetwork Monitor-RIMJavaHandheld - Wireless Toolkit -0| x|
File Edit
[~ Fiter T Filter Settings | | Clear | | Sart By: I'I'ime d Show By: lSIatus LinELI
~ RL: | famnl.amazon.comfoncalxmi?v=1.0&t=webservices-20&dev-t=D3AG4L TPIS 3L PHRKeywor dSearch=dacontatmode. ..
& [THETE GET joncafxmizyel.Oitmy P28 8083
.o Body 4a0: [5c 4t 75 72 50 72 60 63 65 3e 24 33 31 Ze 34 38| [KOurPricers3l. 49 N
= HITE HTTP{1.1 200 OK 4h0: 3c 2f 4F 75 72 50 72 69 63 65 3e Oa 20 20 20 20| k/OurPrices.
----- oo | 4ci: 20 20 3c 55 73 65 64 50 72 69 63 65 3e 24 32 34|| <UsedPrice»szd —
4d0: 22 39 35 3c 2f 55 73 65 64 50 T2 69 63 65 3e Oa||. 895</UsedPrice>.
del: 20 20 20 3c 2f 44 65 74 61 69 6c 73 3e 0a 20 20 </Details>.
4£0: 20 3c 44 65 74 61 6% 6c 73 20 75 72 6c 3d ZZ 68| <Details url="h
500 74 74 70 3a 2E 2E 77 77 77 2Ze 61 6d 61 Ta 6f Se|[ctp://vww. amazon
5103 ze 53 6f 54 2f 65 78 65 63 2f 6f 62 69 64 6f 73| |.comsexec/obidos
5208 2t 72 65 54 69 72 65 63 74 3£ 74 61 67 3d 77 65| [/redirectrtageve
T 2 =
Murnber of shown messages: 2 out of 2

Figure 22.3 The J2ME Wireless Toolkit Network Monitor.

J2ME Performance and Pitfalls 181

001: /* BadMicroAmazonHttpGet.java */
002: package org.javapitfalls.item22;
003:

004: import javax.microedition.io.*;

005: import java.io.*;

006: import java.util.*;

007:

008: public class BadMicroAmazonHttpGet

009: {

// - deleted static constants -- No change

056:

057 : static Timer ticker = new Timer () ;

058:

// - deleted stringExists() method -- No change
076:

077 : private StringBuffer urlBuf;

078:

079: public StringBuffer getUrlBuf ()

080: { return urlBuf; }

081:

082: public BadMicroAmazonHttpGet ()

083: {

084: newBaseURL () ;

085: }

086:

// - deleted method newBaseURL() -- No change

// - deleted all validation methods -- No change

// - deleted all addXXX methods -- No change

// - deleted replaceString() -- No change

216:

217: public byte [] httpGet() throws IOException
218: {

219: ticker.reset ("Started Timer in httpGet ()");
220: // get the connection object

221: String surl = urlBuf.toString();

222: surl.trim() ;

223: System.out.println("url: " + surl);

224:

225: HttpConnection con = (HttpConnection) Connector.open(surl);
226: int respCode = con.getResponseCode() ;
227: System.out.println("Response code: " + respCode) ;
228:

229: InputStream in = con.openInputStream();
230: ByteArrayOutputStream baos = new ByteArrayOutputStream() ;
231:

232: // read response

233: int b = 0;

234: while ((b = in.read()) != -1)

235: {

Listing 22.4 BadMicroAmazonHttpGet.java (continued)

182 Item 22

236: baos.write(b);

237: }

238:

239: ticker.printStats ("Method httpGet()") ;
240: return baos.toByteArray():;

241: }

// - deleted main() method -- No change.

Listing 22.4 (continued)

In the BadMicroAmazonHt tpGet class, all of the URL formatting methods remained
unchanged (and thus were removed for brevity); however, the httpGet ()method
underwent significant changes. The porting changes are as follows:

m Thereisno java.net package;instead, the networking classes are in
javax.microedition.io (line 4). Not only does this confuse it with the
J2ME version of java. io, this limits future differentiation between IO and
networking support in the platform. This is a prime example of change for the
sake of change that slows productivity by forcing a context switch without
good reason.

m There is no Mal formedURLException or URL class; instead, the Ht tpCon-
nection class accepts a String (line 225).

m There is no URLConnection class; instead, you use an Ht tpConnection
(line 225).

m There is no getInputStream () method for the connection; instead, you use
openInputStream (). Another example of useless incompatibility.

m There was no Buf feredReader class, so instead we read in bytes (instead of
Strings) and wrote into a ByteArrayOutputStream (line 236). This then led
to returing a byte array (line 240).

With the memory limit set at 128 KB, a run of BadMicroAmazonSearch produces:

Started Timer in doAmazonSearch(). Free Memory: 73076
Started Timer in httpGet(). Free Memory: 71628
url: http://xml.amazon.com/onca/xml?v=1.0&t=webservices-20&dev-
t=D3AG4L7PI53LPH&KeywordSearch=daconta&mode=books&type=1ite&page=1&f=xml
Response code: 200
Method httpGet(): 5678. Free Memory: 63924
Have response. Size is: 8085
java.lang.OutOfMemoryError at
javax.microedition.lcdui.DisplaySDisplayAccessor.commandAction (+165)

at com.sun.kvem.midp.lcdui.EmulEventHandler$EventLoop.run (+459)

J2ME Performance and Pitfalls 183

When I increased the memory to 200 KB the program was able to run and produced
the following:

Started Timer in doAmazonSearch(). Free Memory: 141096

Started Timer in httpGet (). Free Memory: 139648

url: http://xml.amazon.com/onca/xml?v=1.0&t=webservices-20&dev-
t=D3AG4L7PI53LPH&KeywordSearch=daconta&mode=books&type=1ite&page=1&f=xml
Response code: 200

Method httpGet(): 5718. Free Memory: 139152

Have response. Size is: 8085

of products found: 8

Method doAmazonSearch(): 36082. Free Memory: 46240

Started Timer in doAmazonSearch(). Free Memory: 65044

Even though the BadMicroAmazonSearch ran within 200 KB, you should also notice
the poor performance of the method (a noticeably long pause after selecting the Search
command). The output of the run shows that the method took 36,082 milliseconds to
run. The Wireless Toolkit also provides a Memory Monitor application, as shown in
Figure 22.4. As you can seg, the large peak in the memory graph occurs when the kxm1l
package is parsing the XML document.

Unfortunately, we could not afford to allow the application to run within 200 KB in
order to run it in the Palm emulator. At the time of this writing, the Palm emulator only
allowed a Java application to have 64 KB of memory. Figure 22.5 shows our goal with
the final code running under the Palm emulator.

!EiMemory Monitor Extension - Wireless Toolkit - 10l =l

File Utilities View

J Open Session | Save || W RunGe |

Graph | objects |

Current: 97324 bytes
Maximurn: 155588 bytes

Objects: 3062 Used: 97324 bytes Free: 107476 bytes Total: 204800 bytes

Figure 22.4 The Wireless Toolkit Memory Monitor.

184

Item 22

MicroAmazon...Search Terms

Operation: w KeywordSearch
Search For: Robert Hej
Category:

Figure 22.5 MicroAmazonSearch running in a Palm emulator.
© 2002 Palm, Inc. All rights reserved.

Now we are ready to optimize our J2ME application to get it to have both ade-
quate performance and memory consumption. Listing 22.5 is the optimized code for
MicroAmazonSearch.java. We will not discuss the functionality of MicroAmazon-
Search, since that has been covered in the preceding pages; instead, we will focus only
on the optimizations.

001: /* MicroAmazonSearch.java */

002: package org.javapitfalls.item22;

003:

004: import java.io.*;

005: import java.util.*;

006: import javax.microedition.midlet.*;

007: import javax.microedition.lcdui.*;

008:

009: public class MicroAmazonSearch extends MIDlet implements

CommandListener

010: {

011: public static final int MAX RECORDS = 10;
012:

Listing 22.5 MicroAmazonSearch.java

J2ME Performance and Pitfalls 185

013: // commands

014: private Command searchCommand;
015: private Command detailsCommand;
// - removed additional Command references for brevity
019:

020: // Alerts

021: Alert searchAlert;

022: Alert detailAlert;

// - removed other Alert references for brevity
025:

026: // display

027 : private Display display;

028:

029 ¢ // screens

030: private Form searchScreen;
031: private List resultsScreen;
032: private TextBox detailsScreen;
033:

034: // screen components

035: ChoiceGroup opsChoice;

036: ChoiceGroup modeChoice;

037: TextField targetTF;

038: int page = 1;

039:

040: Vector products;

041: String xmlBuf;

042: int [] detailIndexes;

043: boolean updatelIndexes;

044:

045: boolean debug = true;

046: Timer ticker = new Timer () ;

Listing 22.5 (continued)

Here are the optimizations in the class definition:

Guess the Size of Vectors. Resizing Vectors is expensive. This is demonstrated
by using the constant in line 11.

Use Local Variables. Local variables are accessed faster than class members. You
will notice that we have eliminated all of the public static Strings. This opti-
mization could be used further in this code.

Avoid string Comparisons. Notice in lines 14 to 18 that the Command references
are declared as class members, and these will be compared against in the event
handler instead of comparing Strings.

Avoid Temporary Objects. In lines 21 to 24 we use class data members for the
Alert references and thus reuse the objects after instantiating them lazily.

186

Item 22

048: public MicroAmazonSearch ()

049: {

050: final String [] legalOps = { "KeywordSearch", :)
"BrowseNodeSearch", "AsinSearch",

051: "UpcSearch", "AuthorSearch", :)
"ArtistSearch",

052 ¢ /* reduce to work in 64k

053: "ActorSearch", "DirectorSearch", :)
"ManufacturerSearch",

054 : "ListManiaSearch", "SimilaritySearch",
055: Y/

056: 5 g

057:

058: final String [] legalModes = { "baby", "books", D)
"classical", "dvd", "electronics",

059: /* reduce to conserve memory (< 64k)...
060: "garden", "kitchen", "magazines", :)
"music", "pc-hardware",

061: "photo", "software", "toys", :)
"universal", "vhs",

062: "videogames",

063: */

064 : b

065: final String CMD_SEARCH = "Search";

// - removed remaining final Strings for brevity

070:

071: // Create GUI components here...

072: display = Display.getDisplay(this) ;

073:

074: // commands

075: searchCommand = new Command (CMD_SEARCH, Command.SCREEN, 1);
076: detailsCommand = new Command (CMD_DETAILS, Command.SCREEN,
1);

077 : nextResultsCommand = new Command (CMD_NEXT TEN,
Command.SCREEN, 1);

078: backCommand = new Command (CMD_BACK, Command.SCREEN, 2);
079: exitCommand = new Command (CMD_EXIT, Command.SCREEN, 2);
080:

081: // Create 3 screens: 1. Search, 2. Results, 3. Details

082: // search form

083: searchScreen = new Form("Search Terms") ;

// removed the construction of the searchScreen — no change.
094:

095: // other screens, lazy instantiated

096: }

Listing 22.5 (continued)

The MicroAmazonSearch constructor has three optimizations:

Use Local Variables. The arrays for operations (lines 50 to 63) and modes were

moved to become local variables so the memory is reclaimed at method return.

J2ME Performance and Pitfalls

187

Declare Variables and MethodsFinal. Final references are accessed faster and

declaring both final and static is the fastest. Both the arrays and line 65 demon-

strate this.

UseLazy Instantiation. Line 95 no longer contains the other screens, as we wait
until they are needed by the user to create them.

098: public void startApp()

099: {

100: display.setCurrent (searchScreen) ;

101: // clean up as User decides what to do

102: System.gc () ;

103: }

104:

// - removed pauseApp () and destroyApp as they do nothing
114:

1153 public void commandAction (Command c, Displayable s)
116: {

117: String targets = null;

118: try

119: {

120: if (c == exitCommand)

121: {

122: destroyApp (false) ;

123: notifyDestroyed() ;

124: }

{2518 else if (¢ == searchCommand)

126: {

127: // check we have the valid parameters\
128: targets = targetTF.getString() ;

129: if (targets.length() == 0)

130: {

131: // lazy instantiation!

132: if (searchAlert == null)

133: searchAlert = new Alert("Search Error",
"'Search For' text field cannot be empty.", null, AlertType.ERROR) ;
134: display.setCurrent (searchAlert) ;

135: }

136: else

137: {

138: page = 1; // reset

139: xmlBuf = null;

140: updateIndexes = true;

141: // memory intensive, so get as much as we can
142: System.gc () ;

143: doAmazonSearch (page, targets) ;

144: System.gc () ;

145: }

146: }

147 : else if (¢ == detailsCommand)

148: {

149: // get item selected in list

Listing 22.5 (continued)

188 Item 22

150: int selected = resultsScreen.getSelectedIndex() ;

151: if (selected >= 0)

152: {

d53): String product = :)
resultsScreen.getString (selected) ;

154: showDetails (product, xmlBuf) ;

155: }

156: else

157: {

158: if (detailAlert == null)

159: detailAlert = new Alert("Error", "Must :)
select a product to see details.", null, AlertType.ERROR) ;

160: display.setCurrent (detailAlert) ;

161: }

162: }

// - removed handling of backCommand and nextResultsCommand for brevity
182: } catch (Throwable t)

183: {

184: if (debug) t.printStackTrace() ;

185: if (genericAlert == null)

186: genericAlert = new Alert ("Error", "ERROR: reason: :)
" + t.toString(),null, AlertType.ERROR);

187: else

188: genericAlert.setString ("ERROR: reason: " + :)
t.toString());

189: display.setCurrent (genericAlert) ;

190: if (t instanceof OutOfMemoryError)

191: {

192: Runtime r = Runtime.getRuntime () ;

193: long free = 0, freed = 0;

194: int trys = 0;

195: while ((freed += (r.freeMemory() - free)) > 0 && ¢
trys < 20)

196: {

197: free = r.freeMemory() ;

198: System.gc () ;

199: trys++;

200: }

201: if (debug) System.out.println("Freed " + freed + :)
" bytes.");

202:

203: }

204: }

205: }

Listing 22.5 (continued)

The event handler demonstrates three optimizations:

Reduce string Comparisons. Lines 120 and 125 demonstrate comparing against
a reference instead of using String comparison.

Lines 132 and 185 again demonstrate using lazy instantiation.

J2ME Performance and Pitfalls

189

Handle OutOfMemoryError. This error is much more common in small footprint
devices and must be handled explicitly, like in lines 190 to 200.

207: private final void showDetails(String product, String xmlBuf)
208:

209: final String ELEMENT_DETAILS = "Details";

210: final String ELEMENT AUTHORS = "Authors";

211:

212: // lazy instantiation

213: if (detailsScreen == null)

214: {

2153 // details text box

216: detailsScreen = new TextBox("Details", "", 1024, :)
TextField.ANY) ;

// - removed adding the Commands to detailsScreen — no change.
220: }

221:

222: ticker.reset ("Started Timer in showDetails()");
AA3 3

224 // clear the text box

2253 detailsScreen.delete (0, detailsScreen.size());
226:

227: // display tagName : value

228: // first, find the product

229: int prodIdx = xmlBuf.indexOf (product) ;

230: if (prodIdx >= 0)

231: {

232: int productCount = products.size();

233: if (updateIndexes)

234: {

235: if (detailIndexes == null)

236: detailIndexes = new int[MAX RECORDS] ;
237: int tmpIdx = 0;

238: // this loops needs to count up

239: for (int i=0;i < productCount; i++)

240: {

241 : String tgt = "<" + ELEMENT DETAILS;
242: detailIndexes[i] = xmlBuf.indexOf (tgt, tmpIdx) ;
243: tmpIdx = detailIndexes[i] + 1;

244 }

245: }

246:

247: updateIndexes = false;

248: int detaillIdx = -1;

249: for (int i=productCount-1; i >= 0; i-)

250: {

251: if (detailIndexes[i] < prodIdx)

252: {

2153} 8 detailldx = 1i;

254: break;

255: }

256: }

Listing 22.5 (continued)

190

Item 22

257:

258: int startIdx = detaillIndexes[detailIdx];

259: int endIdx = ((detailIdx + 1) < detailIndexes.length :)
)? detailIndexes[detailIdx + 1] : xmlBuf.length();

260:

261: int traverseldx = startIdx + 1;

262: while (traverseIdx < endIdx)

263: {

264: // find a tag

265: int tagStartIdx = xmlBuf.indexOf('<', traverseIdx);
266: int tagEndIdx = xmlBuf.indexOf('>', tagStartIdx);
267: String tag = xmlBuf.substring(tagStartIdx+l,
tagEndIdx) ;

268: if (tag.equals("/" + ELEMENT_DETAILS))

269: break;

270:

271:

2723 // now get the tag contents

273: int endTagStartIdx = xmlBuf.indexOf("</" + tag, :)
tagEndIdx) ;

274: String contents = xmlBuf.substring(tagEndIdx + 1, :)
endTagStartIdx) ;

2753

276: if (!tag.equals (ELEMENT_AUTHORS))

277

278: detailsScreen.insert(tag + ":", :)
detailsScreen.size());

279: detailsScreen.insert (contents + "\n", :)
detailsScreen.size()) ;

280: }

281:

282: traverseldx = endTagStartIdx+1;

283: }

284:

285: // set the display to the results

286: display.setCurrent (detailsScreen) ;

287: }

288: ticker.printStats ("Method showDetails()") ;

289: }

Listing 22.5 (continued)

The method showDetails() contains five optimizations:

Line 207 demonstrates declaring methods as final for faster access.
Line 213 again demonstrates lazy instantiation.

Use ArraysInstead of Objects. Line 236 uses an integer array instead of a Vector
to store indexes, and it also guesses the maximum size so as to not have to resize
the array. These optimizations could be used further in the code to gain addi-
tional speed and memory conservation.

Iterate Loops Down to Zero. Comparing against zero is the fastest, so coding loops
to count down instead of up is more efficient. Lines 249 and 259 demonstrate this.

J2ME Performance and Pitfalls 191

Only Code the Necessary Functionality. We have abandoned the kxml DOM
implementation for performing the minimal number of string comparisons and
substrings that we need. You will see this again used in doAmazonSearch ().

291: private final void doAmazonSearch(int page, String targets) :)
throws Exception, IOException

292: {

293: final String ELEMENT PRODUCT NAME = "ProductName";
294: final String LITE FORMAT = "lite";

20155

296: ticker.reset ("Started Timer in doAmazonSearch()");
297:

298: // get the operation

299: int idx = opsChoice.getSelectedIndex () ;

300: String op = opsChoice.getString (idx) ;

301:

302: // get the mode

303: idx = modeChoice.getSelectedIndex() ;

304: String mode = modeChoice.getString (idx) ;

305: // static method is fastest

306: String sURL = MicroAmazonHttpGet.createURL(op, targets, :)
mode, LITE_FORMAT, "" + page);

307:

308: // GET it via static method

309: xmlBuf = MicroAmazonHttpGet.httpGet (SURL) ;

310:

311: // very lazy instantiation

312: if (resultsScreen == null)

313: {

314: // results list

315: resultsScreen = new List ("Results", List.EXCLUSIVE) ;
// removed adding Commands to resultsScreen — no change.

321: }

322:

323: String [] productNames = null;

324: if (products == null)

3253 {

326: products = new Vector(10); // Amazon returns 10 entries
327: }

328: else

329: {

330: products.setSize(0);

331: int rcnt = resultsScreen.size();

332: if (rcnt > 0)

333: {

334: // clear it

335: for (int i=rcnt - 1; i >= 0; i-)

336: resultsScreen.delete(i);

337: }

338: }

339:

340: int index = 0;

Listing 22.5 (continued)

192

Item 22

341: String productName = null;

342: while ((index = xmlBuf.indexOf (ELEMENT PRODUCT_ NAME, D
index)) > 0)

343: {

344: int endIdx = xmlBuf.indexOf (ELEMENT PRODUCT_NAME, :)
index + 1);

345: if (endIdx > index)

346: {

347: productName = xmlBuf.substring(index + :)
ELEMENT_PRODUCT NAME.length() + 1, endIdx - 2);

348: products.addElement (productName) ;

349: }

350: index = endIdx + 1;

23513 }

352: productName = null;

3538

354: int productCount = products.size();

3553 if (products != null && productCount > 0)

356: {

357: // populate the list

358: for (int i=productCount - 1; 1 >= 0; i-)

359: resultsScreen.append ((String)products.elementAt (i), :)
null) ;

360:

361: // set the display to the results

362: display.setCurrent (resultsScreen) ;

363: }

// - removed the else block for brevity

370: ticker.printStats ("Method doAmazonSearch()") ;

371: }

372: }

Listing 22.5 (continued)

The method doAmazonSearch () contains five optimizations:

Line 291 declares the method final for faster access.

Lines 293 and 294 use local variables.

Line 326 sets the size of the Vector.

Line 330 avoids instantiating a new Vector by reusing it.

Set References to Null. This will assist the garbage collector in more efficiently

reclaiming unused memory. Line 352 makes the productName String avail-
able for reclamation.

Listing 22.6 presents the optimized version of BadMicroAmazonHttpGet. This
version has changed drastically to increase performance and conserve memory. There
are even further improvements available, like ensuring that the data returned from the
Web server can be stored in memory (or pared down to do so).

J2ME Performance and Pitfalls 193

001: /* MicroAmazonHttpGet.java */
002: package org.javapitfalls.item22;

003:

// - removed Import statements -- no change.

007:

008: public class MicroAmazonHttpGet

009: {

010: public static final String DEVTAG = "D3AG4L7PIS53LPH";
011: static Timer ticker = new Timer () ;

012:

013: // Memory saving but not thread safe

014: private static StringBuffer urlBuf;

015: private static ByteArrayOutputStream baos;
016: private static byte [] buf;

017:

Listing 22.6 MicroAmazonHttpGet.java

The Class definition of MicroAmazonHttpGet has two optimizations. First, most
of the static Strings have been eliminated to conserve memory. Second, all of the data
members have been declared as class data members (to eliminate instantiation) but
declared as static for fast access. This means that the class is no longer thread safe, but
this is okay because only a single thread uses it. In fact, another improvement may be
to just eliminate the class and roll the methods into MicroAmazonSearch:

018: public static final String createURL(String operation, String :)
target, String mode, String type,

019: String page) throws Exception
020: {

021: final String KEYWORD_ MODE = "mode";

022: final String KEYWORD_TYPE = "type";

023: final String KEYWORD_PAGE = "page";

024:

025: if (urlBuf == null)

026: {

027: urlBuf = new

StringBuffer ("http://xml.amazon.com/onca/xml?v=1.0&t=webservices-20& :)
dev-t=");

028: urlBuf.append (DEVTAG) ;

029: }

030: else

031: {

032: urlBuf.setLength(0);

033:

urlBuf.append ("http://xml.amazon.com/onca/xml?v=1.0&t=webservices- :)
20&dev-t=") ;

034: urlBuf.append (DEVTAG) ;

Listing 22.6 (continued)

194 Item 22

035: }

036:

037: urlBuf.append('&') ;

038: urlBuf.append (operation) ;

039: urlBuf.append('=");

040: if (target != null)

041: {

042: target.trim() ;

043: target = replaceString(target, " ", "%20", 0);
044:

045: urlBuf.append(target) ;

046: }

047: else

048: throw new Exception("Invalid target") ;
049:

050: // add Mode

051: urlBuf.append('&');

052: urlBuf.append (KEYWORD_ MODE) ;

053: urlBuf.append('=");

054: urlBuf.append (mode) ;

055:

// removed code for adding Type and Page -- no change, just Inlined
069: }

Listing 22.6 (continued)

The createURL method is a brand-new method that replaced all of the addxxx
methods in the previous class. This class demonstrates six optimizations:

Line 18 demonstrates declaring a method both final and static for the fastest access.
Lines 21 to 23 demonstrate using local variables.
Lines 25 to 29 demonstrate lazy instantiation.

Manually Inline Methods. Lines 51 to 54 were previously in the addMode () method,
and instead we inlined the method within the createURL method.

Minimize Method Calls. Inlining all of the addxxxX methods demonstrates mini-
mizing method calls. This should especially be followed for any method calls
inside of loops (like a call to check length() orsize()).

// - deleted replaceString() — No Change.

091:

092: public static final String httpGet (String sURL) throws :)
IOException

093: {

094: ticker.reset ("Started Timer in httpGet ()");

095: // get the connection object

Listing 22.6 (continued)

J2ME Performance and Pitfalls 195

096: System.out.println("url: " + sURL);

097:

098: HttpConnection con = (HttpConnection) Connector.open (sURL) ;
099: int respCode = con.getResponseCode () ;

100: System.out.println("Response code: " + respCode) ;
101: InputStream in = con.openInputStream() ;
102:

103: // lazy instantiate!

104: if (baos == null)

105: baos = new ByteArrayOutputStream(1024);
106: else

107: baos.reset () ;

108: if (buf == null)

109: buf = new byte[1024];

110: String response = null;

111: int cnt=0;

alilzig while ((cnt = in.read(buf)) != -1)

113: {

114: baos.write(buf,0,cnt);

1i5¢ }

116: response = baos.toString():;

117: ticker.printStats ("Method httpGet()") ;
118: return response;

119: }

120: }

Listing 22.6 (continued)

The httpGet () method demonstrates three optimizations:

Line 92 declares the method final and static.

Lines 104 and 108 demonstrate lazy instantiation. Also, lines 105 and 109 guess
the size of objects to avoid resizing—though ByteArrayOutputStream could
be better sized with better sampling of average query sizes.

Read More than 1 Byte from a Stream at a Time. All network connections will
buffer more than a single byte so reading larger chunks of data is more efficient.

Here are some additional optimization tips:

Avoid string Concatenation. String concatenation has been proven extremely
slow, so use StringBuffers or streams to avoid this. This can be better taken
advantage of in this application.

Avoid Synchronization. Synchronization is slow because of the overhead of
implementation the thread controls.

If adding by 1, int++ is the fastest operation. This is faster than expressions like
“1=1+1,".

Improve Perceived Performance. Use progress meters to inform the user that the
computer is active.

196

Item 22

Only Include Necessary Classes. To conserve memory required to store your
application, only include necessary classes in the deployment archive.

Use Shift Operator to Multiply by 2. The shift operator is faster than the multipli-
cation operator.

Avoid Casting. Casting is expensive, so have methods return only one type.

Use int as Much as Possible. Other types like byte, short, and character are
promoted to an int. So eliminate the promotion by using ints directly.

Avoid Using Exceptions. Exceptions require additional checking by the VM, so
your code will be faster using more traditional procedural programming (with
status returns).

The new, optimized code runs extremely well within 128 KB. Here is a run of the

code demonstrating that by performing three queries and multiple showing of details:

Started Timer in doAmazonSearch(). Free Memory: 108760

Started Timer in httpGet (). Free Memory: 102160

url: http://xml.amazon.com/onca/xml?v=1.0&t=webservices-20&dev-
t=D3AG4L7PI53LPH&KeywordSearch=daconta&mode=books&type=1ite&page=1&f=xml
Response code: 200

Method httpGet(): 8572. Free Memory: 35372

Method doAmazonSearch(): 8773. Free Memory: 32792
Started Timer in showDetails (). Free Memory: 75040
Method showDetails(): 20. Free Memory: 68768

// - removed second query for brevity

Started Timer in doAmazonSearch(). Free Memory: 63284
Started Timer in httpGet (). Free Memory: 60692

url: http://xml.amazon.com/onca/xml?v=1.0&t=webservices-20&dev-
t=D3AG4L7PI53LPH&AuthorSearch=Robert%20Heinlein&mode=books&type=1ite&pag
e=1&f=xml

Response code: 200

Method httpGet (): 8502. Free Memory: 23512

Method doAmazonSearch(): 9143. Free Memory: 21244

Started Timer in showDetails (). Free Memory: 63736

Method showDetails(): 1082. Free Memory: 57560

Execution completed successfully

1578454 bytecodes executed

750 thread switches

324 classes in the system (including system classes)

2491 dynamic objects allocated (344132 bytes)

600 garbage collections (283784 bytes collected)

Total heap size 131072 bytes (currently 56276 bytes free)

Figure 22.6 displays MicroAmazonSearch being emulated on a BlackBerry device.

J2ME Performance and Pitfalls 197

EERIMJavaHandheld ;lglil

BLACKBERRY

Figure 22.6 MicroAmazonSearch emulated on a BlackBerry.
Copyright © 2002 Research In Motion Limited.

In conclusion, this pitfall has ported a Swing application to the J2ME platform in
order to reveal two categories of pitfalls: a bias to programming for the J2SE platform
and pitfalls caused by API differences. Lastly we covered and demonstrated over
20 techniques for optimizing J2ME code.

| I
[

The Web Tier

“The original impulse for modularity came from a desire for flexibility, in particular
how to subdivide a sizeable program text into ‘modules’. . . But the emphasis has
shifted from such mere replaceability to the question of how to break down the
whole task most effectively: the demands are such that elegance is no longer a dis-

”

pensable luxury, but decides between success and failure.
Edsger W. Dijkstra, “On a Cultural Gap”

It is difficult to overstate the transforming nature of Java on the server side. While the
adoption of Enterprise JavaBeans and other parts of the J2EE platform has been suc-
cessful, there is no mistaking how transforming Java has been in the Web tier space.

The accessibility of Java has provided many developers and would-be developers
with the opportunity to jump right in to building Web applications with the Java plat-
form. The strong technological advantages contained in servlets, filters, JSPs, and tag
libraries have caused many developers to become early adopters.

The early adoption and ease of use of the Java technologies is at the root of many of
the Web tier pitfalls. Many developers have found things that work for them and have
not understood the underlying implementation concerns. Furthermore, the nature of
Web applications having multiple concurrent users is not readily apparent to many
developers. Some notable pitfalls in this section:

Cache, It's Money (Item 23). One of the overriding principles of Web applications
is the latency of the data being served by these applications. Many Web apps are
built to query a database on every request despite the fact that the data has not
changed.

JSP Design Errors (Item 24). JavaServer Pages are very powerful—combining the
flexibility of scripting and the power of compilation. However, this can have
unseen impact in the areas of readability, maintenance, and reuse.

199

200

Item 23

When Servlet HTTPSessions Collide (Item 25). The nature of the Web is such that
users jump from site to site with impunity. This can cause issues with systems
that rely on the integrity of variables in the HTTPSession class. Collisions
between these can cause interesting issues in Web applications.

When Applets Go Bad (Item 26). Any developer that has developed and deployed
applet-based Web applications is well aware of the nightmares involved. Java
Web Start has proven to be a terrific redesign for all of the problems of applets.

Transactional LDAP—Don’t Make That Commitment (Item 27). The delivery of
personalized Web content to authenticated users is a complicated process that
involves tough questions about proper profile data storage operations needed to
perform this activity. This pitfall addresses the decision to store profile attributes
in a Relational Database Management System (RDBMS), an LDAP directory, or a
combination of both.

Problems with Filters (Item 28). The Servlet 2.3 specification introduced a new
Web component called the filter. This pitfall addresses problems encountered in
the use of this new component.

Some Direction about JSP Reuse and Content Delivery (Item 29). JavaServer
Pages are important visualization components because of their ability to be
reused in Web applications. An important aspect of this reusability is their abil-
ity to swap in dynamic content from both default application contexts as well as
remote contexts. This pitfall will show you how to do both.

Form Validation Using Regular Expressions (Item 30). A new feature of the JDK
1.4 is support for regular expressions. This new support greatly extends the
capabilities of Web applications to perform validation of entered data.

Item 23: Cache, It's Money

Every developer’s nightmare is developing code on a local development environment
and migrating to a different enterprise deployment platform, only to discover substan-
dard latency times during back-end document queries. This problem often occurs
because of disparities between development and deployment systems, and because soft-
ware developers and database administrators tend to work separately from one another.
Unfortunately, this “Big Bang” theory, where all forces are expected to come together
during integration and work as expected, is a common delusion for most projects.

A recent development effort we were part of exemplified this when we were con-
fronted with latency issues on our front-end portal application that performed SOAP
requests and XSLT translations on data received from a back-end database that was
managed by a different contractor. Our customer’s concerns about protracted query
results forced us to take a fresh look at the problem. We knew that the database had doc-
uments that were updated roughly every month and had been relatively stable, and the
user community was estimated to be between 1,000 and 5,000 concurrent users.

Our analysis led us to the conclusion that our document queries had to be cached,
which would alleviate the strains that a relatively large user community might place on
our database. This was possible because of the nature of our data that remained stable

Cache, It's Money

201

until the end of every month. The downside of this solution was our understanding that
the relevance of the document data could be diminished if older, less significant data was
cached and rendered on user queries. Our final solution involved the implementation of
two innovative open-source applications: the OSCache tag library from OpenSymphony
and the JMeter application from the Apache Software Foundation. OSCache tags were
used to cache database queries, and JMeter was used to emulate user requests.

Our aim was to cache the sections of our code where database queries were per-
formed so that repeat trips back to the database could be avoided, thereby increasing
performance. During normal operations, any new documents that were added to the
database repository would be cached upon insertion. The caching process would be
facilitated by implementing JMeter scripts with URL parameters that emulated all the
different combinations of user responses. We determined that our entire site could be
cached in 45 minutes every month.

To demonstrate this process, some example JavaServer Pages (JSPs) and JMeter
XML ThreadGroup scripts were developed to cache query data from a simple MySQL
database. The Web page shown in Figure 23.1 demonstrates two portlet-like tables
with information items: Bike Trails, Gyms, and so on, and the 50 different U.S. states
where these information items can be found, which would total 550 different link com-
binations. The caching process could have been performed manually by hitting each
page with the OSCache tags, but this would take too much time and effort. We felt that
a more efficient process would involve the creation of a test generation application and
the implementation of JMeter to run those tests.

<3 Cache Example - Microsoft Internet Explorer provided b @Home
2l Cache E ple - M ftl Expl i ded by @H

I File Edit View Favorites Tools Help |
| wBack v = v (D (2] A QSeach [ijFavores @Hmﬂ%vgi.@;},@

IMdress @ hitpe Aocalhost 8080/ cache/home. p?ést kanzasktopicld=F j @Go “ Links *
I Google - I J &b Searchweb W Seaich Sile | PageRark o Page lnfo ~ [E)Up + 4P Hihfight

Cache Example

Apple Blossom
Bird Mockingbird
Capital Little Rock

State: Arkansas
Restaurants Larrys BBQ

California

_‘gg‘;ﬂﬁcut J L;l
|@] Done || [Local intranet
#start|||) @& =9) | Gyite.. | Bco. | BTo. |[&Ca... BCo.. | BCo. | DB T 532 AM

Figure 23.1 Cache example application.

202

Item 23

The main focus of our implementation (see Listing 23.1) is a JSP named home jsp
because it renders dynamic query information to the user display and uses the
OSCache tag library to cache that data. In the home.jsp code below, the tag library
OSCache is specified on line 07. The URI for this class is specified in the deployment
descriptor (web.xml). Please note that the <cache: cache></cache:cache> tags on
lines 31 to 40 surround the content.jsp page include, which actually performs the data-
base query. On line 31, we set the cache duration using the ISO-8601 format (YYYY-
MM-DD). We could have also set the caching duration using the t ime attribute, whose
default value is 3600 seconds, which is 1 hour.

01l: <%@page import="java.util.*" %>

02: <%@page import="java.io.*" %>

03: <%@page import="java.sgl.*" %>

04:

05: <jsp:useBean id="cacheHelper"

06: class="org.javapitfalls.item23.cacheHelper" scope="request"/>
07: <%@ taglib uri="OSCache" prefix="cache" %>

08:

09: <%

10: String topicId = request.getParameter ("topicId") ;
11: String state = request.getParameter ("state");

12: if (topicId == null) topicId = "";
13: if (state == null) state = "";

14: %>

15:

16: <title>

17: Cache Example

18: </title>

18¢

20: <jsp:include page="header.jsp" >

21: <jsp:param name="topicId" value="<%= topicId %>" />
22: <jsp:param name="state" value="<%= state %>" />
23: </jsp:include>

24

25: <table border="1" width="100%">

26: <tr valign="top">

27: <td width="25%" valign="top">

28: <jsp:include page="leftNav.jsp" />

29: </td>

30: <td width="75%" valign="top">

31: <cache:cache scope="session" duration="2002-01-31">

323 <% try { %>

33: <jsp:include page="content.jsp"/>

34: <jsp:param name="topicId" value="<%= topicId %>" />
255 <jsp:param name="state" value="<%= state %>" />

36: </Jjsp:include>

37: <% } catch (Exception e) { %>

Listing 23.1 home,jsp

Cache, It's Money 203

38: <cache:usecached />
393 <% } %>

40: </cache:cache>

41 : </td>

42: </tr>

43: </table>

44:

45:

46: <jsp:include page="footer.jsp" />
47 :

48:

Listing 23.1 (continued)

The OSCache tag library implementation includes a properties file that is installed
in the /WEB-INF/classes directory, which allows the user to set attributes for opera-
tional preferences. We’ve included only the properties that are pertinent to our imple-
mentation in Listing 23.2. The cache . path property points to the location where we
want to place our cache files. The cache . debug property specifies that we want to see
debugging messages, and the cache.unlimited property ensures that the cache
disk space is unlimited.

CACHE DIRECTORY

01:#

02:# This is the directory on disk where caches will be stored.
03:# it will be created if it doesn't already exist, but OSCache
04:# must be able to write to here.

05:#

06: cache.path=c:\\cachetagscache

07:

08 :# DEBUGGING

09:#

10:# set this to true if you want to see log4j debugging messages
11:#

12:cache.debug=false

133

14:

15:# CACHE UNLIMITED DISK

16:# Use unlimited disk cache or not
17:cache.unlimited_disk=false

Listing 23.2 oscache.properties

204

Item 23

P apache JMeter

File Edit Run Report Options Help

= B

ezt Plan

" Thread Group Automobile Dealers

) Cache Test forAlabamaid=Adomabile Deslers)
18 Cache Test for&laska(d=Automobile Deslers)|

W Cache Test forArizona(id=Automobile Dealers)

& Cache Test fordrkansas(id=2Automobile Dealers)

Cache Test forFloridald=Automobile Deslers)
¥ Cache Test forGeorgialid=Automobis Dealers)
Cache Test forHswaiild=24utomobile Deslers)

HTTP Request

Name: |Canhs Test forAlaskalid=Autornobile Dealers)

~Web Server

Server Name or IP: |I0ca|h ost

Cache Test forCalifornia(id=Automobile Dealers) Port Number: (3080 |
& Cache Test forColorado(id=Automabile Desers)
B Cache Test forConnecticut(d=Automobile Deslers HTTP Request

¢ Cache Test forDelawaralid=~Automobile Dealers)

Protocol: ® HTTP ! HTTPS

Method: ® GET) POST

Path: |Jc achefmome. jsp

¢ Cache Test forldahofid=Autormokile Deslers) Send P eters With the Reg
W cache Test forllinais(id=ALtomabile Deslers) i Marne: lAI » Walue
-' 5 sta aska
¢ Cache Test forlnd icls Sutomobile Deal . .
p- ache Test forn ’"_’U =ufomobile Dealers) topicld Autormobile Dealers
¢ Cache Test fofowsalid=~Automobie Dealers) -
' Cache Test forkansas(ids Automobis Dealers)
¥ Cache Test forkentucky(id=Automobile Deslers) Add Delete
¢ Cache Test forLovisianad=~2utomobile Dealers)
) Cache Test forisineid=Automohile Deslers:
() Send a File With the Request:

W Cache Test forMarviand(id=sutomobile Deslers)
¥ Cache Test forMassachuselts(id=Automobie Deal
) Cache Test forMichigan(id=A140mobile Deslers)

) Cache Test forMinnesota(id=4utomobie Dealers)

N mlil
astann _ger_-:,aj ”] ghm Eic | G |@c |mc_]mc | &ac |[iza..

Figure 23.2 Run of Apache JMeter.

|| Browse.. |

%6!3] 8:36 A

After properly inserting the cache tag library tags in the source code, we generated
JMeter ThreadGroup scripts to replicate a user hitting each page with the state and
topicId parameters.

The JMeter application, as shown in Figure 23.2, is a Java desktop tool that performs
automated load testing and user activity measurements, and it comes with visualiza-
tion tools that provide test feedback and performance metrics. Our application uses
this tool to hit all possible user selections so that these pages could be cached. By
caching these pages, user queries do not have to go to the back end to draw back data.

Users can generate these ThreadGroup tests manually using the JMeter GUI, but
we felt that a more efficient option was to write a program called generateTests.java to
build these tests automatically. Listing 23.3 hard-codes the state and topicId data,
but an optimal solution would use a file or a database to store these values so that the
data would not be tightly coupled with the application and changes could be accom-
modated more easily. In the generateTests java program, lines 81 to 85 show a constant
timer tag that will kick off a test every second or 1,000 milliseconds. Once these tests
are generated, users can use the JMeter GUI to execute these tests, or they can run them
manually from the command line using the nongui script:

prompt> nongui -o my_test.jmx -h <servername> -p <port #>

Cache, It's Money

205

01l: import java.io.*;

02: import java.util.*;

03:

04: class generateTests

05: {

06: public static void main(String[] args) throws IOException

07: {

08: if (args.length != 0) {

09: System.out.println ("USAGE: java generateTests") ;

10: } else {

11: String[] states = { "Alabama", "Alaska", "Arizona", "Arkansas",
123 "California", "Colorado", "Connecticut", "Delaware",

13: "Florida", "Georgia", "Hawaii", "Idaho", "Illinois",

14: "Indiana", "Iowa", "Kansas", "Kentucky", "Louisiana",
153 "Maine", "Maryland", "Massachusetts", "Michigan",

16: "Minnesota", "Mississippi", "Missouri", "Montana",

17: "Nebraska", "Nevada", "New Hampshire", "New Jersey",

18: "New Mexico", "New York", "North Carolina", "North Dakota",
195 "Ohio", "Oklahoma", "Oregon", "Pennsylvania",

20: "Rhode Island", "South Carolina", "South Dakota",

21: "Tennessee", "Texas", "Utah", "Vermont", "Virginia",

22: "Washington", "West Virginia", "Wisconsin", "Wyoming" };
238

24 String[] topicIds = { "Automobile Dealers", "Bike Trails",
258 "Gyms", "Hospitals", "Laundromats", "Parks",

26: "Physicians", "Pet Stores", "Restaurants",

27 : "Rest Areas", "Supermarkets" };

28:

29: for (int x=0; x < topicIds.length; x++) {

30:

31: PrintWriter pw = new PrintWriter (new

32: FileOutputStream("Cache_Test_" + topicIds([x] + ".jmx"));
33: pw.write("<?xml version=\"1.0\"?>\n");

34: pw.write("<TestPlan>\n") ;

35: pw.write ("<threadgroups>\n") ;

36: pw.write ("<ThreadGroup name=\"Thread Group " + topicIds[x] + "\"
37: numThreads=\"1\" rampUp=\"0\">");

38: pw.write("<controllers>\n") ;

393 pw.write ("<LoopController

40: type=\"org.apache.jmeter.control.LoopController\"
41 : name=\"Loop Controller\" iterations=\"1\">");

42 pw.write ("<configElements>\n") ;

43 pw.write("</configElements>\n") ;

44 . pw.write("<controllers>\n") ;

45:

46: for (int y=0; y < states.length; y++) {

Listing 23.3 generateTests.java (continued)

206 Item 23

47 : pw.write ("<HttpTestSample

48: type=\"org.apache.jmeter.protocol.http.control.HttpTestSample\"
49: name=\"Cache Test for" + statesl[y] +

50: "(id=" + topicIds[x] + ")" + "\" getImages=\"false\">\n");
5il 5 pw.write("<defaultUrl>\n") ;

52 pw.write ("<ConfigElement type=\"

533 org.apache.jmeter.protocol.http.config.MultipartUrlConfig\ ">
54: \n") ;

553 pw.write ("<property name=\"port\">8080</property>\n") ;

56: pw.write ("<property name=\"PROTOCOL\">http</property>\n") ;
57 3 pw.write ("<property name=\"domain\">localhost</property>\n") ;
58: pw.write ("<property name=\"arguments\">\n") ;

59: pw.write ("<Arguments>\n") ;

60: pw.write ("<argument name=\"state\"> " + statesl[y] +

61: "</argument>\n") ;

62: pw.write ("<argument name=\"topicId\">" + topicIds([x] +

63: "</argument>\n") ;

64: pw.write ("</Arguments>\n") ;

65: pw.write("</property>\n");

66: pw.write ("<property name=\"path\">

67: /cachePage/home. jsp</property>\n") ;

68: pw.write ("<property name=\"method\">GET</property>\n") ;
69: pw.write("</ConfigElement></defaultUrl>\n") ;

70: pw.write ("<configElements>\n") ;

7/L3 pw.write("</configElements>\n") ;

72 pw.write ("<controllers>\n") ;

VEE pw.write("</controllers>\n");

74 : pw.write("</HttpTestSample>\n") ;

753 }

76:

7713 pw.write("</controllers>\n") ;

78: pw.write("</LoopController>\n");

79: pw.write("</controllers>\n");

80: pw.write("<timers>\n") ;

81: pw.write("<Timer type=\"org.apache.jmeter.timers.ConstantTimer\"
82: name=\"Constant Timer\">\n");

83: pw.write("<delay>1000</delay>\n") ;

84: pw.write("<range>0.0</range>\n") ;

85: pw.write("</Timer>\n");

86: pw.write("</timers>\n") ;

87: pw.write("<listeners>\n") ;

88: pw.write("</listeners>\n") ;

89: pw.write ("</ThreadGroup>\n") ;

90: pw.write("</threadgroups>\n") ;

91: pw.write("<configElements>\n") ;

92: pw.write("</configElements>\n") ;

Listing 23.3 (continued)

Cache, It's Money 207

933 pw.write("</TestPlan>\n") ;

94 : pw.close() ;

95: System.out.println("Finished writing: " + topicIds[x]);
96: }

97 : }

98: }

99: }

Listing 23.3 (continued)

Figure 23.3 demonstrates what occurs in our Web application when we use the [Me-
ter test scripts to cache our database queries. These scripts ping the database with the
query operations indicated by the number 1 in the figure and cache the pages to the
cache repository so that future database queries hit the cached scripts as indicated by
the number 2.

In the end, our scripts allowed us to cache our entire site and reduce query result
times, which pleased our customer. Additionally, the knowledge we acquired from our
JMeter implementation allowed us to engage our test personnel earlier in our next pro-
gram, which facilitated our integration efforts between our front-end and database
developers.

In all Web development efforts, it is paramount that developers pay some consider-
ation to the implementation of a caching strategy so that pertinent data can be deliv-
ered in a timely fashion and database server overloads can be avoided. If your site
serves up document artifacts that don’t change regularly, it will serve you well. Con-
sider that at the JavaOne 2002 Conference there was significant discussion of the
JCACHE specification (JSR 107), whose purpose is to standardize caching of Java
objects. Feature enhancements with existing tag libraries like OSCache, along with
new implementations like JCACHE, will continue to produce faster Web page
response times and make Web content queries a much more pleasant experience.

Server Application Database

JMeter scripts = 1

Data queries (JDBC) |

Data

Cached scripts

Figure 23.3 Cache architecture.

208

Item 24

Item 24: JSP Design Errors

The evolution of Web applications followed two different paths: scripts and compiled
executables. Servlets provided a strong improvement on the compiled code examples
but suffered their own limitations in terms of presentation. The arrival of JSP caused
many people to use them as self-compiling scripts. They saw the flexibility of script
programming combined with the power of compiled code. Unfortunately, this can
cause significant problems in maintenance, reuse, and flexibility.

My development team was assigned a task of building a Web-based workflow sys-
tem that persisted information to a conventional relational database. Having built sys-
tems like this with a few different technologies, including most recently a servlet
implementation of a similar system, we were eager to try JSP to eliminate our endless
println statements, as well as eliminate the fundamental maintenance nightmare of
trying to maintain HTML code inside our servlets.

JSP turned out to be a set of challenges in its own right. Before discussing the blow
by blow, let’s quickly review the basics of Web application development.

Request/Response Paradigm

Web applications, independent of technological implementation, come down to a few
fundamental concepts. Having built quite a few of these systems with a number of
technological solutions, we’ve found that it boils down to a simple process:

m Parse parameters from request.
m Apply business logic (query/update the database in our case).

m Present results to the user in the response.

Listing 24.1 is an example of what this looks like in a servlet implementation.

01: public void doPost (HttpServletRequest request, HttpServletResponse

02: response) throws ServletException, IOException {
03:

04: // Parse parameters from the request

05: String salary = request.getParameter ("salary") ;

07:

08: // Execute Business Logic (query a DB in this case)

09: try {

11: statement.setFloat (1, Float.parseFloat (salary));

12:

13: // statement is a PreparedStatement initialized in the init () :)
method

14: ResultSet results =

53 statement.executeQuery () ;

Listing 24.1 doPost() from SalaryServlet

JSP Design Errors

209

16:
17:
18: // Present the results to the user in the response
1932 response.setContentType ("text/html") ;
20:
21: PrintWriter out = response.getWriter () ;
22: out.println("<html>") ;
233 out.println("<head><title>SalaryServlet</title></head>");
24: out.println ("<body>") ;
253 out.println("<table>") ;
26: out.println("<tr>");
27: out.println ("<td>Employee</td></tr>");
28:
29: while (results.next()) {
30: out.println("<tr>");
il g out.println("<td>");
32: out.println(results.getString (1)) ;
333 out.println("</td>");
34: out.println("</tr>");
358 }
36:
373 out.println("</table>") ;
38: out.println("</body></html>") ;
40: } catch (SQLException sgle) {
41:
42 sgle.printStackTrace() ;
44 }
45
46: }
Listing 24.1 (continued)

Maintaining State

The other issue that comes up in building Web applications is that HTTP is a stateless
protocol—that is, one request is independent of the next. Therefore, some method must
be chosen to determine how to maintain information about what was done prior to and
after this request. A classic example of maintaining state is the user login. A user should
not need to provide a login credential with each request. Therefore, there must be some
way of keeping track of whether or not this user has been authenticated. There are a
few options for how to do this:

Passing parameters. Obviously, the Web application can pass the parameters with
each request and embed “hidden” form elements in the response, so that the
user doesn’t need to re-enter these parameters. The obvious problem is that this
can become quite burdensome, involving continuously passing information that
is essentially passed through and not really relevant to this particular screen.

210 Item 24

Cookies. Cookies provide the ability to store pieces of information on the remote
machine; therefore, the application can check to determine if it has previously
set information on that machine. However, obviously, major concerns arise out
of whether the user will allow such information to be set on his or her machine
and how long such information can be counted on being available.

Session variables. HTTP actually provides the ability to put variables in the HTTP
session; this was the mechanism that HTTP uses for its basic authentication
scheme. Session variables can be helpful but can be problematic—especially
with regard to maintaining the session and avoiding other variables with the
same name.

JSP the Old Way

Let’s take a second to discuss the evolution of Web applications. Originally, Web appli-
cations came in two forms: compiled executables (usually written in C or C++) and
server scripts (usually written in Perl). They both used the Common Gateway Interface
(CGI) to execute requests. To make Web applications easier to build, other scripting
languages evolved like server-side JavaScript, JScript, and VBScript. The choice
seemed to boil down to power (compiled code was always faster) versus ease of use.

The servlet implementation of my Web application brings me a number of advan-
tages. Itis compiled, so I get a performance increase. It operates in a shared process, the
servlet engine, so it scales particularly well. Also, the shared process allows for the
creation of shared resources like database connections. This is a particular advantage
over previously compiled options, which would create new processes (and resources)
to handle each request. This caused problems with scalability and with security (the
command executed in its own space, without any managing thread to contain malig-
nant or runaway code).

The problem with compiled code is that it is just that, compiled. Notice that I have
embedded a great deal of HTML code into my servlet. That means any changes to the
presentation require a recompile of the code. Furthermore, anyone who has created
these out .println () commands of HTML understands the pain of escape sequences.

Along comes JSP, which allows the developer to invert his or her servlet and embed
the logic into the presentation code. This proves very helpful to script writers who suf-
fer from limited-capability scripting languages and convoluted programming struc-
tures (like conditional loops and iterators). Furthermore, a JSP is compiled into a
servlet, so you receive the benefits of compiled code in a script-driven programming
environment.

Listing 24.2 is an example JSP implementation of the previous salary servlet.

01: <%@ page import="java.util.*"%>
02: <%@ page import="java.sqgl.*"%>
03: <HTML>

04: <HEAD>

05: <TITLE>

06: Salary Jsp

Listing 24.2 BadSalarylsp.jsp

JSP Design Errors

211

07: </TITLE>

08: </HEAD>

09: <BODY>

10: <H1>

11: Here are the people who make over $<%= :)
request.getParameter ("salary") %>:

12: <%

i3s3 // Database config information

14: String driver = "oracle.jdbc.driver.OracleDriver";
153 String url = "jdbc:oracle:thin:@joemama:1521:0RACLE";
16: String username = "scott";

17: String password = "tiger";

18:

193 String salary = request.getParameter ("salary");

20:

21: // Establish connection to database

228 try {

23: Class. forName (driver) ;

24: Connection connection =

25: DriverManager.getConnection (url, username, password) ;
26:

27 g PreparedStatement statement

28: = connection.prepareStatement ("SELECT ename FROM emp :)
WHERE sal > ?");

293

30: statement.setFloat (1, Float.parseFloat (salary)) ;
31:

BYE ResultSet results =

338 statement.executeQuery () ;

34: %>

35: </H1>

36: <table>

37: <tr>

38: <td>Employee</td>

39: </tr>

40:

41: <% while (results.next()) { %>

42: <tr>

43: <td>

44: <%= results.getString(l) %>

45: </td>

46: </tr>

47: </table>

48: <% }

49:

50 s } catch(ClassNotFoundException cnfe) {

5l g System.err.println("Error loading driver: " + cnfe);
52 3

53 } catch(SQLException sgle) {

Listing 24.2 (continued)

212

Item 24

54: sgle.printStackTrace() ;
55: }

56:

57: %>

58: </BODY>

59: </HTML>

60:

Listing 24.2 (continued)
This approach looks a lot like the servlet pulled inside out. In fact, to demonstrate

how close this is to reality, Listing 24.3 shows a snippet of the source generated by
Apache Tomcat to compile the JSP.

01: // HTML // begin
[file="/BadSalaryJdsp.jsp";from=(0,31);to=(1,0)]

02: out.write("\r\n");

03:

04: // end

05: // HTML // begin :)
[file="/BadSalaryJdsp.jsp";from=(1,30);to=(10,35)]

06: out.write("\r\n<HTML>\r\n<HEAD>\r\n<TITLE>\r\nSalary:)

Jsp\r\n</TITLE>\r\n</HEAD>\r\n<BODY>\r\n<Hl>\r\nHere are the people who :)
make over $");

07:

08: // end

09: // begin :)
[file="/BadSalaryJdsp.jsp"; from=(10,38);to=(10,70)]

10: out.print(request.getParameter ("salary"));

11: // end

12: // HTML // begin PD)
[file="/BadSalaryJsp.jsp"; from=(10,72);to=(11,0)]

13: out.write(":\r\n");

14:

15: // end

16: // begin :)
[file="/BadSalaryJsp.jsp"; from=(11,2);to=(33,0)]

17:

18: // Database config information

195 String driver = :)
"oracle.jdbc.driver.OracleDriver";

20: String url = :)
"jdbc:oracle:thin:@joemama: 1521 :0RACLE";

21: String username = "scott";

22: String password = "tiger";

Listing 24.3 Apache Tomcat-generated BadSalarylsp.jsp

JSP Design Errors

213

233

24: String salary = request.getParameter ("salary");
25:

26: // Establish connection to database

27: try {

28: Class. forName (driver) ;

295z Connection connection =

30: DriverManager.getConnection (url, username,:)
password) ;

31:

32z PreparedStatement statement

33: = connection.prepareStatement ("SELECT :)
ename FROM emp WHERE sal > ?");

34:

35: statement.setFloat (1, :)
Float.parseFloat (salary)) ;

36:

37: ResultSet results =

38: statement.executeQuery () ;

39: // end

40: // HTML // begin :)
[file="/BadSalaryJsp.jsp"; from=(33,2);to=(40,0)]

41:
out.write("\r\n</Hl>\r\n<table>\r\n<tr>\r\n<td>Employee</td>\r\n</:)
tr>\r\n\r\n") ;

42

43: // end

44 : // begin :)
[file="/BadSalaryJsp.jsp"; from=(40,2);to=(40,32)]

A5 g while (results.next()) {

46: // end

Listing 24.3 (continued)

So what is wrong with that? The user gets the ease of scripting combined with the
power of compilation. This seems like the best of both worlds. However, the example
JSP shows the most obvious problem. Why do I want to put database configuration
information in each of my pages? This is a maintenance nightmare. A fundamental of
good software development, particularly object-oriented development, is the separa-
tion of concerns. The database is a common piece that should be accessible to numer-
ous JSP pages.

While it is possible to do some of this by creating an independent JSP, this kind of
issue—accessing an enterprise resource—screams for a programmatic implementation.
The solution to this came almost immediately with the JSP specification: Use JavaBeans—
now known as the Model 1 Architecture—to encapsulate your business logic.

214 Item 24

— — Interact with
Request |:|— Pass/ D: other systems as Business
> — [« - > — > :
Response | ———_— | Retrieve data | ——_—| necessary to handle Enterprise
_—|:| _—|:| business logic

Java Server Page Business Logic
(JavaBean)

Figure 24.1 Model 1 Architecture.

JSP Development with Beans (Model 1 Architecture)

Figure 24.1 shows the JSP Model 1 Architecture.
The architecture features the following;:

m Beans provide encapsulated data structure and logic.

m External resources (databases, Web services, etc.) are abstracted from presenta-
tion layer.

Although this is an improvement, the following drawbacks still exist:

m Control logic is still tied to presentation.

m Maintenance is better but still poor—too closely coupled to presentation logic.

Listing 24.4 shows the logic from the previous JSP in a bean.

01l: public class SalaryServletBean {

02: private String salary = "30000";

03: private LinkedList nameList;

04: private Connection connection;

05: private PreparedStatement statement;

06:

07: public SalaryServletBean() {

08:

09: // Database config information

10: String driver = "oracle.jdbc.driver.OracleDriver";
11: String url = "jdbc:oracle:thin:@joemama:1521:0RACLE";
123 String username = "scott";

135 String password = "tiger";

14:

15: // Establish connection to database

16: try {

17: Class.forName (driver) ;

18: connection =

19 DriverManager .getConnection (url, username, password) ;
20:

21: PreparedStatement statement

Listing 24.4 SalaryServletBean.java

JSP Design Errors 215

228 = connection.prepareStatement ("SELECT ename FROM emp :D
WHERE sal > ?");

233

24: } catch(ClassNotFoundException cnfe) {

25: System.err.println("Error loading driver: " + cnfe);
26:

27: } catch(SQLException sgle) {

28: sgle.printStackTrace() ;

30: }

31: }

32:

33: /**Retrieve the List of Names*/

34: public LinkedList getNameList () {

36: return nameList;

373 }

38:

39: /**Specify the salary level for getting the list of names*/
40: public void setSalary (String newValue) {

41: if (newvValue!=null) {

42 salary = newValue;

43: }

44 :

Al s statement.setFloat (1, Float.parseFloat (salary)) ;
46:

47 ResultSet results =

48: statement.executeQuery () ;

49:

505 nameList.clear () ;

51:

52: while (results.next()) {

533 nameList.add(results.getString(1l)) ;

54: }

56: }

57: }

58:

Listing 24.4 (continued)

Listing 24.5 shows the accompanying JSP that uses the bean.

01: <%@ page import="java.util.*"%>

02: <HTML>
03: <HEAD>
04: <jsp:useBean id="mySalaryServletBean" scope="session" :)

class="SalaryServletBean" />

Listing 24.5 Salarylsp.jsp (continued)

216

Item 24

05: <jsp:setProperty name="mySalaryServletBean" property="*" />
06: <TITLE>

07: Salary Servlet Jsp

08: </TITLE>

09: </HEAD>

10: <BODY>

11: <H1>

12: Salary Jsp

13: </H1>

14: <table>

15: <tr>

16: <td>Employee</td>

17: </tr>

18:

19: <%

20: LinkedList myList = mySalaryServletBean.getNameList () ;
21: ListIterator 1i = myList.listIterator();
22: while (1li.hasNext()) {

25: %>

26: <tr>

27: <td>

28: <%= (String)li.next () %>

29: </td>

30: </tr>

31: <% } %>
32: </table>
33:
34: </BODY>
35: </HTML>
36:

Listing 24.5 (continued)

Another way to abstract business logic out of the JSP code is through the use of JSP
custom tag libraries. This approach allows for component reuse of particular code and
also allows content developers to have access to complex Java code programming logic
in a form that is familiar to them: HTML-like tags.

Listing 24.6 is an example of our salary business logic in a custom tag library. Notice
this tag library has not been designed for the purpose of reuse, but rather to show the
same logic expressed in a different manner.

01: package mypackage;
02: import javax.servlet.jsp.tagext.TagSupport;
03: import javax.servlet.jsp.tagext.BodyContent;

Listing 24.6 SalaryTag.java

JSP Design Errors

217

04:
05:
06:
07:
08:
09:
10:
11:
123
13:
14:
15:
16:
17:
18:
193
20:
21:
223
233
24:
25:
26:
27:
28:
293
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44
45:
46:
47 :
49:
50:
51:
52:
53:

import javax.servlet.jsp.JspException;

import javax.servlet.jsp.JspTagException;

import javax.servlet.jsp.JspWriter;

import javax.servlet.jsp.PageContext;

import javax.servlet.ServletRequest;

import java.io.PrintWriter;

public class salarytag extends TagSupport

{

/*
tag attribute: salary

*/
private String salary = "30000";
/**

* Method called at start of tag.

* @return SKIP_BODY

*/
public int doStartTag() throws JspException
{

try

{

JspWriter out = pageContext.getOut () ;

SalaryServletBean mySalaryBean = new SalaryServletBean() ;
mySalaryBean.setSalary (salary) ;

LinkedList myList = mySalaryBean.getNameList () ;
ListIterator 1li = myList.listIterator();

while (1li.hasNext()) {

out.println("<tr><td>");
out.println((String)li.next());
out.println("</td></tr>");

}
catch (Exception e)
{

e.printStackTrace() ;

return SKIP_BODY;

/**
* Method called at end of tag.
* @return SKIP_PAGE
*/

public int doEndTag ()

Listing 24.6 (continued)

218 Item 24

54 {

555 return SKIP_PAGE;

56: }

57:

58: public void setSalary(String value)
59: {

60: salary = value;

61: }

62:

63: public String getSalary ()
64: {

653 return salary;

66: }

67:

68: }

69:

Listing 24.6 (continued)

To deploy this tag library, you need to define it using a tag library descriptor (see

Listing 24.7).
01: <?xml version = '1.0' encoding = 'windows-1252'?>
02: <!DOCTYPE taglib PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag :)
Library 1.1//EN" "http://java.sun.com/j2ee/dtds/web- :)

jsptaglibrary_ 1_1.dtd">
03: <taglib>

04: <tlibversion>1.0</tlibversion>

053 <jspversion>1.1</jspversion>

06: <shortname>salary</shortname>

07: <uri>javapitfalls </uri>

08: <info>Shows how to encapsulate the salary business logic in a :)
taglib.</info>

09: <tag>

10: <name>salarytag</name>

11: <tagclass>mypackage.SalaryTag</tagclass>
12: <bodycontent>empty</bodycontent>

13: <attribute>

14: <name>salary</name>

15: <required>true</required>

16: <rtexprvalue>true</rtexprvalue>

17: </attribute>

18: </tag>

19: </taglib>

20:

Listing 24.7 Salary.tld

JSP Design Errors

219

However, neither of these shows the tag library in action. All of the complexity is
gone, so your developer has an easy task. Listing 24.8 is an example of a JSP using our
tag library.

01: <%@ page contentType="text/html;charset=windows-1252"%>
02: <%@ page import="java.util.*"$%>

03: <%@ taglib uri="javapitfalls" prefix="jp" %>

04: <HTML>

05: <HEAD>

06: <TITLE>

07: Salary Servlet Jsp

08: </TITLE>

09: <META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=windows—:)
1252">

10: </HEAD>

11: <BODY>

12: <H1>

13: Salary Jsp

14: </H1>

15: <table>

16: <tr>

17: <td>Employee</td>
18: </tr>

193

20: <!-- Down to this simple line -->
213

22: <jp:salary salary="<%= request.getParameter ("salary") %>" />
23:

24: </table>

253

26: </BODY>

27: </HTML>

28:

Listing 24.8 SalaryTag.jsp

All of this modularization has not addressed the fundamental problem we found in
our workflow system. While we successfully separated logic from presentation, we
had not separated out the flow control of the application. This is critical in most Web
systems, but particularly in our workflow system.

The solution to this problem is the Model 2 Architecture.

220

Item 25

!

Request f— Invoke
—

I

Controller Servlet

A,

D — Interact with

Response D: Pass data D: other systems as Business
«— — |« — (€ > .
—— ———— | necessary to handle { Enterprise
_—|:| _—|:| business logic
Java Server Page Business Logic
(JavaBean)

Figure 24.2 Model 2 Architecture.

JSP Development in the Model 2 Architecture

Figure 24.2 shows the Model 2 Architecture. This architecture is a JSP/servlet imple-
mentation of the popular and powerful Model-View-Controller pattern. Included is
the controller, which is a servlet that responds to a request and dispatches it to the
appropriate business logic component. The JavaBean wraps the business logic that
needs to be executed to handle the request. From there, the bean hands off to a
JavaServer Page, which controls the presentation returned in the response.

It seems like a great idea, but is it realistic to expect Web applications to build this
entire infrastructure, especially considering the history of ad hoc Web development?
The good thing is that you don’t have to build this infrastructure. The Apache Software
Foundation’s Jakarta project has a rather sophisticated implementation of the Model 2
Architecture, called the Struts framework (http:/ /jakarta.apache.org/struts).

Item 25: When Servlet HttpSessions Collide

Picture this scenario. A user is on the Internet, shopping at Stockman’s Online Hard-
ware Store, where there is an electronic commerce user interface with “shopping cart”
functionality. As he browses the Web site, he decides to put a belt sander, a drill press,
and an air compressor in his shopping cart. Instead of checking out what he has put in
his shopping cart, he decides that he’d better buy something for his wife to ease the
pain when she discovers his hardware purchases. He quickly goes to “Lace Lingerie
Online,” where they also have an e-commerce interface. There, he builds a shopping
cart consisting of “Sensual Bubble Bath,” the “Romantic Lunch Box Package for Two,”
and the “Lace Gift Certificate.” He checks out of the lingerie store, enters his credit
card information, and leaves the Web site. Now that his conscience is cleared, the

When Servlet HttpSessions Collide

221

user goes back to the hardware store Web site. He clicks on the “Check out” button,
but, to his surprise, his shopping cart at the Stockman Hardware store is filled with
“Sensual Bubble Bath,” the “Romantic Lunch Box Package for Two,” and the “Lace Gift
Certificate.” The user is confused. Frankly, the folks processing orders at the hardware
store are baffled and are calling the programmers who designed the Web site. What
could have happened?

Believe it or not, that could be a feasible user scenario when this pitfall relating to the
HttpSession class is introduced into Java servlets. HttpSession is a wonderful
class for persisting state on the server. It is an interface that is implemented by services
to provide an association (session) between a browser and the Web server’s servlet
engine over a period of time. Using the Ht tpSession class, you can store a great deal
of information without the use of browser client-side cookies and hidden fields. In fact,
you can store very complex data structures of information with the API of the
HttpSession, which is shown in Table 25.1.

Table 25.1 HttpSession Interface

METHOD DESCRIPTION

long getCreationTime () Returns the time at which this session
was created.

String getId() Returns the unique identifier assigned
to this session.

long getLastAccessedTime () Returns the last time the current client
requested the session.

int getMaxInactiveInterval () Returns the maximum interval between
requests that the session will be kept by
the server.

Object getvValue (String) Returns a data object stored in the

session represented by the parameter
String. See putValue ().

String[] getValueNames () Returns an array of all names of data
objects stored in this session.

void invalidate() Causes this session to be invalidated
and removed.

boolean isNew () Returns true if the session has been
created by the server but the client
hasn’t acknowledged joining the
session; otherwise, it returns false.

void putValue (String, Object) Assigns (binds) a data object to
correspond with a String name. Used
for storing session data.

(continues)

222

Item 25

Table 25.1 HttpSession Interface (Continued)

METHOD DESCRIPTION

void removeValue (String) Removes the data object bound by the
String-represented name created with
the putvalue () method.

void setMaxInactiveInterval () Sets the maximum interval between
requests that the session will be kept by
the server.

The API of the interface is quite simple. The most-used methods are getvValue ()
and putValue (), where it is possible to save any Java object to the session. This is
very helpful if you are developing an application that needs to save state information
on the server between requests. In discussing this pitfall, we will discuss the use of this
class in depth.

How does a servlet get access to the HttpSession object? The servlet’s request
object (Ht tpRequest) that is passed into the servlet’s doGet () and doPost () meth-
ods contains a method called getSession() that returns a class that implements
HttpSession. Listing 25.1 shows a good example of the doGet () method in a servlet
using the HttpSession class. This block of code originates from our hardware store
scenario discussed at the beginning of this pitfall. Notice that in line 6 of the listing, the
servlet calls getSession() with the boolean parameter true. This creates an
HttpSessionifitdoesn’t already exist. On line 13, the user checks to see if the session
is a new one (or if the client has never interacted with the session) by calling the
isNew () method on HttpSession.

01l: public void doGet (HttpServletRequest request,

02: HttpServletResponse response)

03: throws ServletException, IOException

04: {

05: PrintWriter out;

06: HttpSession session = request.getSession(true);

07: Vector shoppingcart = null;

08:

09: response.setContentType ("text/html") ;

10: out = response.getWriter() ;

11: out.println ("<HTML><TITLE>Welcome!</TITLE>") ;

12 g out. println ("<BODY BGCOLOR='WHITE'>") ;

133 if (session.isNew())

14: {

i15¢ out.println("<Hl>Welcome to Stockman Hardware!</H1>") ;
16: out.println("Since you're new.. we'll show you how ") ;
17: out.println(" to use the site!");

Listing 25.1 Block of servlet code using HttpSession

When Servlet HttpSessions Collide 223

18: VA

19: }

20: else

21: {

22: String name = (String)session.getValue("name") ;

23: shoppingcart = (Vector)session.getValue ("shoppingcart") ;
24: if (name != null && shoppingcart != null)

25 ¢ {

26: out.println("<Hl>Welcome back, " + name + "!</H1>");
27: out.println("You have " + shoppingcart.size() + " left "
28: + " in your shopping cart!");

29: VA

30: }

Jils }

32: //more code would follow here..

32: }

Listing 25.1 (continued)

On line 23, we see that the getValue () method is called on HttpSession to
retrieve a String representing the name of the user and also a vector representing the
user’s shopping cart. This means that at one time in the session, there was a scenario
that added those items to the session with session.putValue (), similar to the fol-
lowing block of code:

String myname="Scott Henry";

Vector cart = new Vector();
cart.add("Belt sander ID#21982");
cart.add("Drill press ID#02093");
cart.add("Air compressor ID#98983");

session.putValue ("name", myname) ;
session.putValue ("shoppingcart", cart);

In fact, the preceding block of code was made to follow the scenario we discussed at
the beginning of this pitfall. Everything seems to follow the way the documentation
describes the HttpSession APl in Table 25.1. What could go wrong?

As we discussed earlier, an Ht tpSession exists between a browser and a servlet
engine that persists for a period of time. If the values name and shoppingcart are
placed to represent data objects in the HttpSession, then this session will exis