

More Java™ Pitfalls
50 New Time-Saving

Solutions and Workarounds

Michael C. Daconta
Kevin T. Smith

Donald Avondolio
W. Clay Richardson

More Java™ Pitfalls

50 New Time-Saving
Solutions and Workarounds

Publisher: Joe Wikert
Executive Editor: Robert M. Elliott
Assistant Developmental Editor: Emilie Herman
Managing Editor: Micheline Frederick
New Media Editor: Angela Denny
Text Design & Composition: Wiley Composition Services

This book is printed on acid-free paper. ∞

Copyright  2003 by Michael C. Daconta, Kevin T. Smith, Donald Avondolio, and W. Clay
Richardson. All rights reserved.

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or
otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rose-
wood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8700. Requests to the Pub-
lisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc.,
10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447, E-mail:
permcoordinator@wiley.com.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their
best efforts in preparing this book, they make no representations or warranties with respect
to the accuracy or completeness of the contents of this book and specifically disclaim any
implied warranties of merchantability or fitness for a particular purpose. No warranty may
be created or extended by sales representatives or written sales materials. The advice and
strategies contained herein may not be suitable for your situation. You should consult with
a professional where appropriate. Neither the publisher nor author shall be liable for any
loss of profit or any other commercial damages, including but not limited to special, inci-
dental, consequential, or other damages.

Wiley, the Wiley Publishing logo and related trade dress are trademarks or registered trade-
marks of Wiley Publishing, Inc., in the United States and other countries, and may not be
used without written permission. Java is a trademark or registered trademark of Sun
Microsystems, Inc.. All other trademarks are the property of their respective owners. Wiley
Publishing, Inc., is not associated with any product or vendor mentioned in this book.

For general information on our other products and services please contact our Customer
Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data:

ISBN: 0-471-23751-5

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

This book is dedicated to the memory of Edsger W. Dijkstra who said,

“I mean, if 10 years from now, when you are doing something quick and
dirty, you suddenly visualize that I am looking over your shoulders and
say to yourself, ‘Dijkstra would not have liked this’, well that would be

enough immortality for me.”

We humbly disagree: 10 years of Dijkstra is just not long enough; may
he happily haunt our consciousness for 1010 years. Such an increase is

more befitting his stature.

Introduction xi

Acknowledgments xvii

Part One The Client Tier 1

Item 1: When Runtime.exec() Won’t 4

Item 2: NIO Performance and Pitfalls 17
Canonical File Copy 20
Little-Endian Byte Operations 21
Non-Blocking Server IO 26

Item 3: I Prefer Not to Use Properties 34

Item 4: When Information Hiding Hides Too Much 39

Item 5: Avoiding Granularity Pitfalls In java.util.logging 44

Item 6: When Implementations of Standard APIs Collide 53

Item 7: My Assertions are Not Gratuitous! 59
How to Use Assertions 59

Item 8: The Wrong Way to Search a DOM 66

Item 9: The Saving-a-DOM Dilemma 73

Item 10: Mouse Button Portability 80

Item 11: Apache Ant and Lifecycle Management 88

Item 12: JUnit: Unit Testing Made Simple 100

Contents

vii

Item 13: The Failure to Execute 108
Deploying Java Applications 109
The Java Extension Mechanism 110
Sealed Packages 111
Security 112

Item 14: What Do You Collect? 112

Item 15: Avoiding Singleton Pitfalls 117
When Multiple Singletons in Your VM Happen 119
When Singletons are Used as Global Variables, or Become

Non-Singletons 120

Item 16: When setSize() Won’t Work 122

Item 17: When Posting to a URL Won’t 126
Connecting via HTTP with the java.net Classes 126
An Alternative Open Source HTTP Client 137

Item 18: Effective String Tokenizing 140

Item 19: JLayered Pane Pitfalls 146

Item 20: When File.renameTo() Won’t 151

Item 21: Use Iteration over Enumeration 157

Item 22: J2ME Performance and Pitfalls 162

Part Two The Web Tier 199

Item 23: Cache, It’s Money 200

Item 24: JSP Design Errors 208
Request/Response Paradigm 208
Maintaining State 209
JSP the Old Way 210
JSP Development with Beans (Model 1 Architecture) 214
JSP Development in the Model 2 Architecture 220

Item 25: When Servlet HttpSessions Collide 220

Item 26: When Applets Go Bad 227

Item 27: Transactional LDAP—Don’t Make that Commitment 235

Item 28: Problems with Filters 244

Item 29: Some Direction about JSP Reuse and Content Delivery 255

Item 30: Form Validation Using Regular Expressions 261

viii Contents

Item 31: Instance Variables in Servlets 269

Item 32: Design Flaws with Creating Database Connections
within Servlets 279

Item 33: Attempting to Use Both Output Mechanisms in Servlets 291

Item 34: The Mysterious File Protocol 297

Item 35: Reading Files from Servlets 302
Web Application Deployment Descriptors 308

Item 36: Too Many Submits 312
Preventing Multiple Submits 314
Handling Multiple Submits 316

Part Three The Enterprise Tier 327

Item 37: J2EE Architecture Considerations 329

Item 38: Design Strategies for Eliminating Network
Bottleneck Pitfalls 335

A Scenario 336
General Design Considerations 336
EJB Design Considerations 340

Item 39: I’ll Take the Local 341

Item 40: Image Obsession 348

Item 41: The Problem with Multiple Concurrent Result Sets 353

Item 42: Generating Primary Keys for EJB 359
A Simple Scenario 359
A “Client Control” Approach 360
The Singleton Approach 362
The Networked Singleton Approach 363
An Application Server-Specific Approach 363
Database Autogeneration Approaches 363
Other Approaches 364

Item 43: The Stateful Stateless Session Bean 365
Message-Driven Beans 366
Entity Bean 366
Stateful Session Bean 368
Stateless Session Bean 368

Item 44: The Unprepared PreparedStatement 372

Contents ix

Item 45: Take a Dip in the Resource Pool 378

Item 46: JDO and Data Persistence 385

Item 47: Where’s the WSDL? Pitfalls of Using JAXR with UDDI 398
Where’s the WSDL? 404

Item 48: Performance Pitfalls in JAX-RPC Application Clients 417
Example Web Service 418
A Simple Client That Uses Precompiled Stub Classes 420
A Client That Uses Dynamic Proxies for Access 421
Two Clients Using the Dynamic Invocation Interface (DII) 423
Performance Results 427
Conclusion 428

Item 49: Get Your Beans Off My Filesystem! 429

Item 50: When Transactions Go Awry, or Consistent State in
Stateful Session EJBs 433

The Memento Pattern 438

Index 443

x Contents

Good programming is difficult. It is especially arduous for new programmers given
the pace of change and the ever-expanding size of the software engineering body of
knowledge (www.swebok.org) that they must master. The authors of this book have
found that experience and in-depth understanding are key factors in both programmer
productivity and reliable software. The bottom line is that experienced programmers
don’t stumble around in the dark. They know the lay of the land, they recognize pat-
terns, and they avoid the hazardous areas. This book presents our experience and
guidance on 50 discrete topics to assist you in avoiding some of those hazards.

What Is a Pitfall?

The formal definition, given in the first Java Pitfalls (Wiley, 2000) book, is as follows:

“A pitfall is code that compiles fine but when executed produces unintended and some-
times disastrous results.”

This rather terse definition covers what we consider the “basic” pitfall. There are many
variations on this theme. A broader definition could be any language feature, API, or
system that causes a programmer to waste inordinate amounts of time struggling with
the development tools instead of making progress on the resulting software.

The causes of pitfalls can be loosely divided into two groups: the fault of the platform
designer or the fault of the inexperienced programmer. This is not to cast blame, but
rather to determine the source of the pitfall in the construction of a pitfall taxonomy. For
the same reason we create a formal definition of pitfalls, we present the pitfall taxonomy
in Figure i.1 in order to attempt to better understand the things that trip us up.

Introduction
“Sometimes we discover unpleasant truths. Whenever we do so, we are in difficul-
ties: suppressing them is scientifically dishonest, so we must tell them, but telling

them, however, will fire back on us.”

Edsger W. Dijkstra, “How do we tell truths that might hurt?”

xi

Figure i.1 A pitfall taxonomy.

The categories of pitfalls associated with the system designer are as follows:

Nonintuitive Application Programming Interfaces (APIs). The Java platform has
thousands of classes and tens of thousands of methods. The sheer size of the
platform has become a complexity pitfall. Some of these classes are well
designed, like servlets, IO streams (excluding performance ramifications), and
collections. Unfortunately, many APIs are nonintuitive for the following reasons:

■■ Wrong level of abstraction. Many APIs are layered over other software (like
the operating system or native code) in order to simplify or aggregate func-
tions. In layering, you must make a trade-off between simplicity and granu-
larity of control. Thus, when setting the abstraction level, you must balance
these appropriately for the particular context and target audience. Too high a
level of abstraction (like URLConnection, Item 17) frustrates users with
weak control mappings, while a too low level of abstraction reduces the
average user’s efficiency by over-cluttering the most common case.

■■ Weak separation of concerns. When an API tries to do too much, it often
mixes metaphors and addresses its multiple concerns in a mediocre fashion.
An example of this is the JAXR API that attempts to combine the diverse
information models of UDDI and ebXML (Item 47).

■■ Other deficiencies. Too many method invocation sequences and dependen-
cies will lead to incorrect ordering. Poor naming and weak parameters
(object instead of a specific type) steer programmers toward dead ends.

Pitfall

Designer's
Fault

Programmer's
Fault

Non-Intuitive
API

Weak
Implementation

Shallow
Knowledge

Invalid
Assumptions

BiasLanguage

Level of
Abstraction

Separation
Of

Concerns

Complexity

Performance

Incomplete
Facilities

Unaware of
Alternatives

Impedance
Mismatch

Misunderstanding
Internals

Compilation
Incorrect

Extrapolation

Haste

xii Introduction

Language Complexity. The Java language has many improvements over its predeces-
sors yet also struggles with its own set of tradeoffs and idiosyncrasies. The cleanest
language features are its strict object orientation, automatic memory management,
and interfaces; while some overly complex areas are threading and synchronization,
the tension between primitives and objects, and the effective use of exceptions.

Weak Implementation of Platform Areas. The most oft-cited example is poor per-
formance. An example of this is the rewrite of the input/output facilities in the
NIO package for performance reasons. Besides performance, there are thin APIs
that ruin the Write Once, Run Anywhere (WORA) guarantee like the
File.renameTo() (Item 20) method and the Runtime.exec() method (Item 1).
There are also incomplete APIs where the programmer assumes complete func-
tionality exists. These problems are fixable and often are resolved with each new
release of the Java Development Kit (JDK).

The categories of pitfalls associated with the programmer are as follows:

Shallow Knowledge. Experience increases the depth of one’s knowledge. It takes
time to learn the underlying concepts, interactions, and nuances of a system.
This is often manifest in choosing a weak implementation when a better alterna-
tive exists (like applets versus Web Start, Item 26), misunderstanding the inter-
nal workings of an API (like the consequence of instance variables in servlets,
Item 31), and shock when implementations fail to meet your expectations of
behavior (characterized as an impedance mismatch in Figure i-1). Such an
impedance mismatch can occur with multiple concurrent result sets (Item 41).

Bias. Without many years of experience, a programmer can weigh previous experi-
ence too heavily to the point where it unfavorably biases him or her in a particu-
lar direction. Examples of this are to not take advantage of tools to automate the
development process like Ant (Item 11) and JUnit (Item 12). Another example is
to stick with legacy APIs over new ones for collections (Item 21) and regular
expressions (Item 30). Lastly, one more effect of bias is to bring past habits into a
new context like J2ME programming (Item 22).

Invalid Assumptions. A programmer can incorrectly base decisions on invalid
assumptions—for example, assuming the most direct path to the solution is the
best path. This often arises in designing larger systems with JSP (Item 24) and
J2EE (Item 37).

Pitfalls can be extremely frustrating to programmers. We’ve experienced first hand
this frustration. Our goal is to help you to avoid some situations we struggled through.
So now that we understand pitfalls, let’s see our method for exploring them.

Dissecting a Pitfall

There are three distinct parts of a pitfall:

The Symptom or Problem. The medium by which the pitfall manifests itself. We
demonstrate this with a program entitled “BadXXX.java,” where “XXX” refers to
the type of pitfall in question.

Introduction xiii

The Root cause of the Problem. By far, this is the most important part of revealing
the pitfall. Here, we go under the hood and explain the detailed internal work-
ings, invalid assumptions, or API deficiencies that cause programmers to stum-
ble into the trap. Usually this explanation is supported with a diagram.

The Solution or Workaround. The final part of the pitfall is to demonstrate a fix
for the problem. This is done with a program entitled “GoodXXX.java” that is
the reciprocal of the “BadXXX.java” program. The solution program will often
be accompanied with a run of the results, or a table or graph, which proves the
problem was indeed solved.

This method of dissecting a pitfall has proven an effective way to present these pro-
gramming hazards.

How This Book Differs from Java Pitfalls

This book borrows all the good features from the first book and improves upon it in
three ways:

Broader Coverage. The first book focused on the lang, util, io, and GUI packages,
whereas this book covers the J2ME, J2SE, and J2EE platforms.

New Features. This book covers the majority of new features like regular expres-
sions, NIO, assertions, JAXR, JAXM, JAX-RPC, and many more.

Better Coverage. The authors followed the “pitfall dissection” model more consis-
tently and thoroughly, producing pitfalls with more detail and analysis.

In general, the authors strove to outdo the first book in every regard. We sincerely
hope that we succeeded and encourage your feedback.

Organization of the Book

Like the first one, this book has 50 items. Unlike the first book, in this one they are
divided into three parts corresponding to the three-tiered architecture:

Part One: The Client Tier. This part covers both J2ME and J2SE and explores pit-
falls in developing both networked and standalone clients. Topics covered
include preferences, application deployment, logging, IO performance, and
many more. This part has 22 pitfalls.

Part Two: The Web Tier. This part examines pitfalls in components that run inside
the Web container, like servlets and JavaServer Pages (JSPs). These applications
generate dynamic Web pages or communicate with applets, JNLP, or standalone
clients. This parts covers topics like JSP design, caching, servlet filters, database
connections, form validation, and many others. This part includes 14 pitfalls.

Part Three: The Enterprise Tier. Here we look at components that are part of the
J2EE platform or execute inside an Enterprise Java Beans (EJB) container, like
session, entity, and message-driven beans. These components interact with other
enterprise systems, legacy systems, the Web tier, or directly to clients. Because

xiv Introduction

Web services play a key role in the enterprise tier, pitfalls related to some of the
Web services APIs (JAXR and JAX-RPC) are in this section. Some other topics in
this part are J2EE design errors, session beans, Java Data Objects (JDO), security,
transactions, and many more. This part includes 14 pitfalls.

How to Use the Book

This book can be used in three primary ways: as a reference manual on specific prob-
lems, as a tutorial on the topics exposed by the problems, or as a catalyst to your orga-
nization’s technical mentoring program. Let’s discuss each in detail:

As a Reference Manual. You can use the table of contents to examine a specific
solution to a problem you are facing. The majority of readers use this book in
this manner. Some readers reported using the first book as a corporate resource
in the technical library.

As a Tutorial. You can read the book cover–to-cover to learn about the underlying
cause of each pitfall. Another way to approach the book this way is to browse
the contents or pages and then read the pitfalls that interest you. Lastly, another
use is to treat each pitfall as a bite-sized tutorial to present at a “brown-bag
lunch” internal training session or technical exchange meeting.

As Part of a Mentoring Program. You can use the book as a starting point for a
technical mentoring program in your organization. This book is founded on the
principle of peer mentoring. The dictionary definition of a mentor is a “wise and
trusted counselor.” This often miscasts a mentor as having great age or experi-
ence. I disagree with this definition because it leads to an extreme scarcity of
good mentors. At its essence, mentoring is one aspect in the search for truth. Thus,
the key quality for being a mentor is a deep understanding of at least one
domain that you are willing to share with others. Anyone can participate in this
process, and I encourage you to be involved in peer mentoring. Working
together, I believe we can solve the software quality crisis.

What’s on the Companion Web Site?

The companion Web site will contain four key elements:

Source Code. The source code for all listings in the book will be available in a
compressed archive.

Errata. Any errors discovered by readers or the authors will be listed with the
corresponding corrected text.

Examples. Sample chapters, the table of contents and index will be posted for
people who have not yet purchased the book to get a feel for its style and content.

Contact Addresses. The email addresses of the authors will be available as well
as answers to any frequently asked questions.

Introduction xv

Comments Welcome

This book is written by programmers for programmers. All comments, suggestions, and
questions from the entire computing community are greatly appreciated. It is feedback
from our readers that both makes the writing worthwhile and improves the quality of
our work. I’d like to thank all the readers who have taken time to contact us to report
errors, provide constructive criticism, or express appreciation.

I can be reached via email at mike@daconta.net or via regular mail:

Michael C. Daconta
c/o Robert Elliott
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030

Best wishes,

Michael Daconta
Sierra Vista, Arizona

NOTE About the code: In many of the code listings you will find a wrap
character at the far right of some lines of code. We have used this character,
Æ, to indicate turnovers where the space available did not allow for all the
characters to set on the same line. The line of code directly below a Æ is a
direct unbroken continuation of the line above it, where the Æ appears.

xvi Introduction

This book has been a difficult journey. It survived through three co-author changes,
several delays, and a move to a new state. Along the way, the vision of the book never
faded, and in some way it willed itself into existence. All the authors believe that
uncovering pitfalls helps programmers produce better programs with less frustration.
I would like to thank those people who helped me through this challenge: my family—
Lynne, CJ, Greg, and Samantha; my editors at Wiley Publishing, Inc.—Bob Elliott and
Emilie Herman; my co-authors—Kevin, Clay, and Donnie; Al Saganich for contribut-
ing two pitfalls; my supervisors, customer and coworkers on the Virtual Knowledge
Base project—Ted Wiatrak, Danny Proko, Joe Broussard, Joe Rajkumar, Joe Vitale,
Maurita Soltis, and Becky Smith; my editor at Javaworld—Jennifer Orr; my friends at
Oberon—Jodi Johnson and Dave Young; and finally, I would like to thank our readers
who share our goal of producing great programs. Thanks and best wishes!

Michael C. Daconta

First of all, I would like to thank my co-authors—Mike, Clay, and Don. Your hard work
on this project, and our many brainstorming sessions together at Cracker Barrel,
helped create a good book full of our Java experiences and lessons learned. Second, I
would like to thank my other new friends at McDonald Bradley and our entire VKB
team. What a team of incredible folks.

I would like to give special thanks to a few people who suggested pitfalls and ideas
for this book—John Sublett from Tridium, Inc. in Richmond, Virginia, Kevin Moran
from McDonald Bradley, and Jeff Walawender from Titan Systems. Lois G. Schermer-
horn and Helen G. Smith once again served as readability editors for some of my mate-
rial. Special thanks to Stan and Nicole Schermerhorn for allowing me to use their
company’s name, Lavender Fields Farm, in a fictional scenario in this book. Also,
thanks to Al Alexander, who granted me permission to use DevDaily’s DDConnec-
tionBroker to demonstrate a solution to a common programming pitfall.

Acknowledgments

xvii

My experience on Java projects with many software engineers and architects over
the years helped me in writing this book: Ralph Cook, Martin Batts, Jim Johns, John
Vrankovich, Dave Musser, Ron Madagan, Phil Collins, Jeff Thomason, Ken Pratt,
Adam Dean, Stuart Gaudet, Terry Bailey, JoAnn White, Joe Pecore, Dave Bishop, Kevin
Walmsley, Ed Kennedy, George Burgin, Vaughn Bullard, Daniel Buckley, Stella
Aquilina, Bill Flynn, Charlie Lambert, and Dave Cecil III. I would also like to thank Bill
Lumbergh, and the TPS Report support team at Initech—Peter, Samir, and Michael.

I would like to express thanks to my dad, who jump-started my career in computer
science by buying me a Commodore Vic-20 in 1981. Making the most of the 5 KB of
memory on that box, I learned not to use memory-consuming spaces in my code—per-
haps contributing to “readability” pitfalls when I started writing code in college.
Thanks to my former teachers who helped me in my writing over the years—Audrey
Guengerich-Baylor and Rebecca Wright-Reynolds.

Over the last year, I have been blessed with many new friends at New Hanover Pres-
byterian Church and neighbors in Ashcreek in Mechanicsville, Virginia. Special thanks
to the guys in last year’s Wednesday night Bible study—Rich Bralley, Billy Craig, Matt
Davis, Dan Hulen, Chuck Patterson, Ben Roberson, Keith Scholten, Todd Tarkington,
and Matt Van Wie. I would also like to thank folks who helped me take a break to focus
on playing the trumpet this year—Ray Herbek, Jeff Sigmon, Rita Smith, and Kenny
Stockman.

Finally, I would like to thank my wonderful wife Gwen. Without her love and sup-
port, this book would never have been possible!

Kevin T. Smith

All of my material for this book is drawn largely from an object-oriented class I teach
and a lot of great developers I’ve worked with over the years. Specifically, I’d like to
thank these people who inspired me with their probity and hard work: Peter Len, Joe
Vitale, Scot Shrager, Mark “Mojo” Mitchell, Wendong Wang, Chiming Huang, Feng
Peng, Henry Chang, Bin Li, Sanath Shetty, Henry, John and Andy Zhang, Swati Gupta,
Chi Vuong, Prabakhar Ramakrishnan, and Yuanlin Shi.

Special thanks goes to my beloved wife Van and her support and assistance during
the writing of this book and the three coauthors of this book who are really progressive
thinkers and great guys to hang with.

Donald Avondolio

First, I would like to thank my wife Alicia for all of her patience and understanding
while I wrote this book. You truly are the greatest and I love you more than you under-
stand. To Jennifer, my baby doll, you are the greatest gift a father could ever receive. To
Stephanie, I love you and I will never forget you. I would like to thank my parents, Bill
and Kay, for being, well, my parents. Nothing I could write here could express the
impact you have had on my life.

I would like to thank my fellow authors, Mike, Kevin, and Don, for being patient
while I got up to speed. You guys are not only exceptional technical talents, but also
exceptional people. To my team—Mark Mitchell (aka Mojo), Mauro Marcellino (Tre,
who saw us here when we were riding ambulances together), Peter Len, Marshall
Sayen, Scot Schrager, Julie Palermo/Hall/Bishop, and Joe Vitale, you guys are the

xviii Acknowledgments

greatest and it was a privilege to serve as your lead. Mojo, it has been enjoyable to
watch you progress from apprentice to master. Vic Fraenckel and Mike Shea, you aren’t
on my team, but you are certainly on the team, in spite of being part of the Borg. To
Becky Smith, my fellow warrior, we have been through a lot of battles (some with each
other), but it has been a pleasure working with you and your team.

To all the guys who have served with me on Gainesville District VFD Duty Crew A
(and particularly its leader, Captain Bob Nowlen)—Patrick Vaughn, Marshall Sayen,
Gary Sprifke, Mike Nelson, Matt Zalewski, Doug Tognetti, Frank Comer; we have seen
some crazy things together, and I have been happy to be the one to drive you there. Chief
Richard Bird, I would like to thank you for your leadership of our department and ser-
vice to our community, which has been ongoing since before I was born. To the guys at
the Dumfries-Triangle VFD, now you know where I went (writing this book): Brian
Thomason, Tim Trax, Brian Kortuem, Brian Lichty, Nick Nanna, Scott Morrison, Brian
Martin, Jack Hoffman, Craig Johnson, and Randy Baum—I wish I could name all of you.
Volunteer firefighters truly are the salt of the earth, and I am happy to be among you.

To those who have served as mentors of mine through the years (in no particular
order): Tom Bachmann, Seth Goldrich, Don Avondolio, Danny Proko, Burr Datz, Kevin
McPhilamy, Shawn Bohner, John Viega, Pat Wolfe, Alex Blakemore (nonpolitical mat-
ters), Sam Redwine, and many others that I will kick myself for forgetting later. To Ted
Wiatrak and Major Todd Delong, I would like to thank you guys for believing in us and
giving us a shot to help some very important people. In closing, I would like to thank two
of my Brother Rats, Matt Tyrrell and Jeff Bradford, for being, well, like brothers to me.

W. Clay Richardson

Acknowledgments xix

1

There have been a number of high-profile failures with using Java for major client-side
applications. Corel developed an office suite in Java but scrapped the project after an
early beta release. Netscape embarked on a pure Java version of a Web browser
(referred to as “Javagator”), but the project was canceled before any code was released.
Although these were the early days of client-side Java, in the 1997 to 1998 time frame,
it was enough to cast a pall over client-side Java, and the momentum shifted to server-
side Java. Yet, even under that shadow of server-side Java, the client tier continued to
improve. Richer user interfaces, faster virtual machines, a fine-grained security model,
and easier network deployment came to the platform piecemeal with each new release.
So, borrowing a play from the Microsoft playbook, client-side Java has continued to
address its shortcomings and improve with each release. Today we have high-profile
and successful commercial applications in Java like ThinkFree Office, Borland’s
JBuilder, TIBCO’s Turbo XML editor, and TogetherSoft’s Together Control Center UML
modeling tool. So, it is possible to develop rich client applications in Java. This part will
assist you in that endeavor.

This part explores pitfalls in three general areas of client-side development: perfor-
mance, nonintuitive application programming interfaces (APIs), and better alterna-
tives. Here are some highlights of pitfalls in each area.

Performance has long been the bane of client-side Java. The first book, Java Pitfalls:
Time-Saving Solutions and Workarounds to Improve Programs, had numerous pitfalls on
performance, and many other books and Web sites have come out on Java performance
tuning. This part has two pitfalls on performance:

The Client Tier
“Now, if we regard a programming language primarily as a means of feeding prob-

lems into a machine, the quality of a programming language becomes dependent
on the degree in which it promotes ‘good use of the machine’.”

Edsger W. Dijkstra,
“On the Design of Machine Independent Programming Languages”

PA R T

One

NIO Performance and Pitfalls (Item 2). This pitfall examines the IO performance
improvements of the New IO package (NIO). The pitfall examines file channels,
ByteBuffers, and non-blocking server IO.

J2ME Performance and Pitfalls (Item 22). This pitfall ports a Swing application
to the J2ME platform and uncovers both API pitfalls and over 20 optimizations
for these small footprint devices.

Nonintuitive APIs cause hours of frustration, and the majority of pitfalls in this part
are in this area. We carefully dissect the APIs, examine the internal workings of the
software, and offer workarounds to the problem. The workarounds sometimes involve
a proper sequence of operations, the use of a different class, or the abandonment of the
standard API for an open-source alternative.

When Runtime.exec() Won’t (Item 1). This pitfall is a canonical example of a
mismatch between user expectations and the capability of an incomplete API.

Avoiding Granularity Pitfalls in java.util.logging (Item 5). The new
java.util.logging API has some hidden complexities and relationships
that affect the level of reporting granularity. You must understand the relation-
ship between loggers and handlers to effectively use this API.

The Wrong Way to Search a DOM (Item 8). With JDK 1.4, the Java platform pro-
vided native support for XML with the javax.xml package. Unfortunately, the
most intuitive representation of a Document Object Model (DOM) is not the cor-
rect representation, and this pitfall goes under the hood to see why.

The Saving-a-DOM Dilemma (Item 9). While JAXP introduced standard ways
to create and manipulate XML DOM trees, it provides weak capabilities for per-
sisting them—forcing developers to use implementation-specific methods. This
pitfall discusses those challenges.

The Failure to Execute (Item 13). Java Archives or JAR files are the primary
binary distribution for Java components. Unfortunately, there is great confusion
about how these files work and how to make them executable. This pitfall
explores those problems and provides an explanation of the best practices in
using JAR files.

When Posting to a URL Won’t (Item 17). The URL and URLConnection classes
in the java.net API were designed at a very high level of abstraction that can
be confusing. This pitfall demonstrates several incorrect ways to use the API, the
reasons behind the deficiencies, and both a solution and open-source alternative
to the problem.

The existence of better alternatives is an ever-growing problem as the platform ages
and poor alternatives are kept to maintain backward compatibility. In addition to new
APIs in the platform, again, open-source alternatives are proving themselves to be the
best solution for many services.

I Prefer Not to Use Properties (Item 3). This pitfall demonstrates some weaknesses
of the Properties class and how java.util.prefs package offers a better solution.

When Information Hiding Hides Too Much (Item 4). A frequent problem with
abstracting things from developers is that it can hide important information

2 Part 1

from developers. Exceptions are a classic example and this pitfall demonstrates
how the new JDK 1.4 chained exception facility solves it.

When Implementations of Standard APIs Collide (Item 6). With XML becoming
part of JDK 1.4, an immediate issue arose from the fact that the XML standards
do not synchronize with JDK releases. This pitfalls address how JDK 1.4 sup-
ports upgrades to these endorsed standards.

My Assertions Are Not Gratuitous! (Item 7). There is often a lag between the
introduction of a new feature and adoption of that feature by the majority of
programmers. For key reliability enhancements like assertions, this adoption
gap is a serious pitfall. This item walks you through this important facility.

Apache Ant and Lifecycle Management (Item 11). Though most pitfalls in this
part occur at the language and API level, this pitfall takes a broader look at a
better alternative for the software lifecycle. For team development, not using a
build tool like Ant is a serious pitfall.

JUnit: Unit Testing Made Simple (Item 12). Much like the Ant build tool, JUnit
is a critical tool in assuring the quality of code through unit tests. This pitfall
demonstrates how to effectively use JUnit and why failing to use it is bad.

Use Iteration over Enumeration (Item 21). The Collection APIs have
proven themselves both effective and popular. This pitfall uncovers a weakness
in the Enumeration implementation, examines the internals to uncover the
source of the problem, and reveals how Iteration solves the problem.

There are 22 pitfalls in this part of the book, covering a wide array of client-side traps
to avoid. Using these workarounds and techniques will enable you to build robust
client-side applications that make “good use of the machine.” The remainder of the pit-
falls in this section are:

Mouse Button Portability (Item 10). Java is an outstanding choice for cross
development application development. Unfortunately, not all platforms are the
same, especially when it comes to the most popular input device—the mouse.
This pitfall shows the challenges involved in working with these different input
devices.

What Do You Collect? (Item 14). The issue of over abstraction can be particularly
acute when dealing with the Collection APIs. This pitfall shows examples of
not knowing the type contained in a collection and discusses emerging strate-
gies for solving this problem.

Avoid Singleton Pitfalls (Item 15). The Singleton pattern is a widely used pat-
tern in Java development. Unfortunately, there are numerous mistakes that
developers make in how they use a Singleton. This pitfall addresses these mis-
takes and suggests some remedies.

When setSize() Won’t Work (Item 16). Frequently, developers, especially
new developers, use methods without understanding the overall API associated
with them. A perfect example is the use of setSize() which leads to unex-
pected results. This pitfall examines not only the mistaken use of setSize()
but also the concepts of layout mangers.

The Client Tier 3

Effective String Tokenizing (Item 18). The operation of the StringTokenizer
class is frequently misunderstood. Interesting problems occur with multiple
character delimiting strings. This pitfall examines those problems, and explains
how they can be avoided.

JLayered Pane Pitfalls (Item 19). This pitfall examines issues with using
Swing’s JLayered Pane, particularly related to the use of layout mangers with it.

When File.renameTo()Won’t (Item 20). The interaction with files in Java can pro-
duce unexpected results, particularly in working across filesystems or platforms. This
pitfall examines those unexpected results and offers solutions for resolving them.

Item 1: When Runtime.exec() Won’t1

The class java.lang.Runtime has a static method called getRuntime() to retrieve
the current Java runtime environment. This is the only way to get a reference to the
Runtime object. With that reference you can run external programs by invoking the
exec() method of the Runtime class. One popular reason to do this is to launch a
browser to display some kind of help page in HTML. There are four overloaded ver-
sions of the exec() command. Those method prototypes are:

■■ public Process exec(String command);

■■ public Process exec(String [] cmdArray);

■■ public Process exec(String command, String [] envp);

■■ public Process exec(String [] cmdArray, String [] envp);

The general idea behind all of the methods is that a command (and possible a set of
arguments) are passed to an operating system-specific function call to create an oper-
ating system-specific process (a running program) with a reference to a Process class
returned to the Java Virtual Machine (VM). The Process class is an abstract class
because there will be a specific subclass of Process for each operating system. There
are three possible input parameters to these methods: a single String that represents
both the program to execute and any arguments to that program, an array of Strings
that separate the program from its arguments, and an array of environment variables.
The environment variables are passed in the form name=value. It is important to note
that if you use the version of exec() with a single String for both the program and
its arguments, the String is parsed using whitespace as the delimiter via the
StringTokenizer class.

The prevalent first test of an API is to code its most obvious methods. For example,
to exec a process that is external to the JVM, we use the exec()method. To see the
value that the external process returns, we use the exitValue()method on the
Process class. In our first example, we will attempt to execute the Java compiler
(javac.exe). Listing 1.1 is a program to do that.

4 Item 1

1 This pitfall was first printed by JavaWorld (www.javaworld.com) in “When Runtime.exec() won’t”,
December 2000 (http://www.javaworld.com/javaworld/jw-12-2000/jw-1229-traps.html?) and is
reprinted here with permission. The pitfall has been updated from reader feedback.

01: package org.javapitfalls.item1;

02:

03: import java.util.*;

04: import java.io.*;

05:

06: public class BadExecJavac

07: {

08: public static void main(String args[])

09: {

10: try

11: {

12: Runtime rt = Runtime.getRuntime();

13: Process proc = rt.exec(“javac”);

14: int exitVal = proc.exitValue();

15: System.out.println(“Process exitValue: “ + exitVal);

16: } catch (Throwable t)

17: {

18: t.printStackTrace();

19: }

20: }

21: }

Listing 1.1 BadExecJavac.java

A run of BadExecJavac produces the following:

E:\classes\org\javapitfalls\item1 >java Æ
org.javapitfalls.item1.BadExecJavac

java.lang.IllegalThreadStateException: process has not exited

at java.lang.Win32Process.exitValue(Native Method)

at BadExecJavac.main(BadExecJavac.java:13)

The program failed to work because the exitValue() method will throw an
IllegalThreadStateException if the external process has not yet completed.
While this is stated in the documentation, it is strange in that it begs the question: why
not just make this method wait until it can give me a valid answer? A more thorough
look at the methods available in the Process class reveals a waitFor() method that
does precisely that. In fact, the waitFor() method returns the exit value, which
means that you would not use both methods in conjunction. You choose one or the
other. The only possible reason for you to use the exitValue() method over the
waitFor()method is that you do not want to have your program block waiting on an
external process that may never complete. Personally, I would prefer a boolean param-
eter called waitFor be passed into the exitValue()method to determine whether
or not the current thread should wait. I think a boolean would be better because the
name exitValue() is a better name for this method and it is unnecessary to have two
methods perform the same function under different conditions. Such simple “condi-
tion” discrimination is the domain of an input parameter.

When Runtime.exec() Won’t 5

So, the first pitfall relating to Runtime.exec() is beware the IllegalThread-
StateException and either catch it or wait for the process to complete. Now, let’s fix
the problem in the above program and wait for the process to complete. In Listing 1.2,
the program again attempts to exec the program javac.exe and then waits for the exter-
nal process to complete.

01: package org.javapitfalls.item1;

02:

03: import java.util.*;

04: import java.io.*;

05:

06: public class BadExecJavac2

07: {

08: public static void main(String args[])

09: {

10: try

11: {

12: Runtime rt = Runtime.getRuntime();

13: Process proc = rt.exec(“javac”);

14: int exitVal = proc.waitFor();

15: System.out.println(“Process exitValue: “ + exitVal);

16: } catch (Throwable t)

17: {

18: t.printStackTrace();

19: }

20: }

21: }

Listing 1.2 BadExecJavac2.java

Unfortunately, a run of BadExecJavac2 produces no output. The program hangs and
never completes! Why is the javac process never completing? The javadoc documenta-
tion provides the answer. It says, “Because some native platforms only provide limited
buffer size for standard input and output streams, failure to promptly write the input
stream or read the output stream of the subprocess may cause the subprocess to block,
and even deadlock.” So, is this just a case of programmers not following “RTFM” (read
the f-ing manual)? The answer is partially yes. In this case, reading the manual would
get you halfway there. It tells you that you need to handle the streams to your external
process but does not tell you how. Besides RTFM, there is another variable at play here
that cannot be ignored when you examine the large number of programmer questions
and errors over this API in the newsgroups. The Runtime.exec() and Process
APIs seem extremely simple, but that simplicity is deceiving, because the simple
(translate to obvious) use of the API is prone to error.

6 Item 1

The lesson here for the API designer is to reserve simple APIs for simple operations.
Operations prone to complexities and platform-specific dependencies should reflect
the domain accurately. It is possible for an abstraction to be carried too far. An example
of a more complete API to handle these operations is the JConfig library (available at
http://www.tolstoy.com/samizdat/jconfig.html). So, now let’s follow the documen-
tation and handle the output of the javac process. When you run javac without any
arguments, it produces a set of usage statements that describe how to run the program
and the meaning of all the available program options. Knowing that this is going to the
stderr stream, it is easy to write a program to exhaust that stream before waiting on the
process to exit. Listing 1.3 does just that. While that approach will work, it is not a good
general solution. That is why the program in Listing 1.3 is named MediocreExecJavac;
it is only a mediocre solution. A better solution would empty both the standard error
stream and the standard output stream. And the best solution would empty these
streams simultaneously (this is demonstrated later).

01: package org.javapitfalls.item1;

02:

03: import java.util.*;

04: import java.io.*;

05:

06: public class MediocreExecJavac

07: {

08: public static void main(String args[])

09: {

10: try

11: {

12: Runtime rt = Runtime.getRuntime();

13: Process proc = rt.exec(“javac”);

14: InputStream stderr = proc.getErrorStream();

15: InputStreamReader isr = new InputStreamReader(stderr);

16: BufferedReader br = new BufferedReader(isr);

17: String line = null;

18: System.out.println(“<ERROR>”);

19: while ((line = br.readLine()) != null)

20: System.out.println(line);

21: System.out.println(“</ERROR>”);

22: int exitVal = proc.waitFor();

23: System.out.println(“Process exitValue: “ + exitVal);

24: } catch (Throwable t)

25: {

26: t.printStackTrace();

27: }

28: }

29: }

Listing 1.3 MediocreExecJavac.java

When Runtime.exec() Won’t 7

A run of MediocreExecJavac produces the following:

E:\classes\org\javapitfalls\item1>java Æ
org.javapitfalls.item1.MediocreExecJavac

<ERROR>

Usage: javac <options> <source files>

where <options> includes

-g Generate all debugging info

-g:none Generate no debugging info

-g:{lines,vars,source} Generate only some debugging info

-O Optimize; may hinder debugging or enlarge class

files

-nowarn Generate no warnings

... some output removed for brevity ...

</ERROR>

Process exitValue: 2

So, MediocreExecJavac works and produces an exit value of 2. Normally, an exit
value of 0 means success and nonzero means error. Unfortunately, the meaning of
these exit values is operating system-specific. The Win32 error code for a value of 2 is
the error for “file not found.” This makes sense, since javac expects us to follow the
program with the source code file to compile. So, the second pitfall to avoid with Run-
time.exec() is ensuring you process the input and output streams if the program
you are launching produces output or expects input.

Going back to windows, many new programmers stumble on Runtime.exec()
when trying to use it for nonexecutable commands like dir and copy. So, we replace
“javac” with “dir” as the argument to exec() like this:

Process proc = rt.exec(“dir”);

This line is replaced in the source file called BadExecWinDir, which when run pro-
duces the following:

E:\classes\org\javapitfalls\item1>java Æ
org.javapitfalls.item1.BadExecWinDir

java.io.IOException: CreateProcess: dir error=2

at java.lang.Win32Process.create(Native Method)

at java.lang.Win32Process.<init>(Unknown Source)

at java.lang.Runtime.execInternal(Native Method)

at BadExecWinDir.main(BadExecWinDir.java:12)

As stated earlier, the error value of 2 means file not found—meaning that the exe-
cutable named dir.exe could not be found. That is because the directory command is
part of the window command interpreter and not a separate executable. To run the
window command interpreter, you execute either command.com or cmd.exe depend-
ing on the windows operating system you are using. Listing 1.4 runs a copy of the Win-
dows Command Interpreter and then executes the user-supplied command (like dir).

8 Item 1

01: package org.javapitfalls.item1;

02:

03: import java.util.*;

04: import java.io.*;

05:

06: class StreamGobbler extends Thread

07: {

08: InputStream is;

09: String type;

10:

11: StreamGobbler(InputStream is, String type)

12: {

13: this.is = is;

14: this.type = type;

15: }

16:

17: public void run()

18: {

19: try

20: {

21: InputStreamReader isr = new InputStreamReader(is);

22: BufferedReader br = new BufferedReader(isr);

23: String line=null;

24: while ((line = br.readLine()) != null)

25: {

26: System.out.println(type + “>” + line);

27: System.out.flush();

28: }

29: } catch (IOException ioe)

30: {

31: ioe.printStackTrace();

32: }

33: }

34: }

35:

36: public class GoodWindowsExec

37: {

38: public static void main(String args[])

39: {

// ... command line check omitted for brevity ...

45:

46: try

47: {

48: String osName = System.getProperty(“os.name”);

49: System.out.println(“osName: “ + osName);

50: String[] cmd = new String[3];

Listing 1.4 GoodWindowsExec.java (continued)

When Runtime.exec() Won’t 9

51:

52: if(osName.equals(“Windows NT”) ||

53: osName.equals(“Windows 2000”))

54: {

55: cmd[0] = “cmd.exe” ;

56: cmd[1] = “/C” ;

57: cmd[2] = args[0];

58: }

59: else if(osName.equals(“Windows 95”))

60: {

61: cmd[0] = “command.com” ;

62: cmd[1] = “/C” ;

63: cmd[2] = args[0];

64: }

65:

66: Runtime rt = Runtime.getRuntime();

67: System.out.println(“Execing “ + cmd[0] + “ “ + cmd[1]

68: + “ “ + cmd[2]);

69: Process proc = rt.exec(cmd);

70: // any error message?

71: StreamGobbler errorGobbler = new

72: StreamGobbler(proc.getErrorStream(), “ERROR”);

73:

74: // any output?

75: StreamGobbler outputGobbler = new

76: StreamGobbler(proc.getInputStream(), “OUTPUT”);

77:

78: // kick them off

79: errorGobbler.start();

80: outputGobbler.start();

81:

82: // any error???

83: int exitVal = proc.waitFor();

84: System.out.println(“ExitValue: “ + exitVal);

85:

86: } catch (Throwable t)

87: {

88: t.printStackTrace();

89: }

90: }

91: }

Listing 1.4 (continued)

10 Item 1

Running GoodWindowsExec with the dir command produces:

E:\classes\org\javapitfalls\item1>java

org.javapitfalls.item1.GoodWindowsExec “dir *.java”

Execing cmd.exe /C dir *.java

OUTPUT> Volume in drive E has no label.

OUTPUT> Volume Serial Number is 5C5F-0CC9

OUTPUT>

OUTPUT> Directory of E:\classes\com\javaworld\jpitfalls\article2

OUTPUT>

OUTPUT>10/23/00 09:01p 805 BadExecBrowser.java

OUTPUT>10/22/00 09:35a 770 BadExecBrowser1.java

... (some output omitted for brevity)

OUTPUT>10/09/00 05:47p 23,543 TestStringReplace.java

OUTPUT>10/12/00 08:55p 228 TopLevel.java

OUTPUT> 22 File(s) 46,661 bytes

OUTPUT> 19,678,420,992 bytes free

ExitValue: 0

Running GoodWindowsExec with any associated document type will launch the
application associated with that document type. For example, to launch Microsoft
Word to display a Word document (a .doc extension), you type
>java org.javapitfalls.item1.GoodWindowsExec “yourdoc.doc”
Notice that GoodWindowsExec uses the os.name system property to determine

which Windows operating system you are running in order to use the appropriate
command interpreter. After execing the command interpreter, we handle the standard
error and standard input streams with the StreamGobbler class. The StreamGob-
bler class empties any stream passed into it in a separate thread. The class uses a sim-
ple String type to denote which stream it is emptying when it prints the line just read
to the console. So, the third pitfall to avoid is to know whether you are executing a
standalone executable or an interpreted command. At the end of this section, I will
demonstrate a simple command-line tool that will help you with that analysis.

It is important to note that the Processmethod used to get the output stream of the
process is called getInputStream(). The thing to remember is that the perspective
is from the Java program and not the external process. So, the output of the external
program is the input to the Java program. And that logic carries over to the external
programs input stream, which is an output stream to the Java program.

One final pitfall to cover with Runtime.exec() is not to assume that the exec()
accepts any String that your command line (or shell) accepts. It is much more limited
and not cross-platform. The primary cause of this pitfall is users attempting to use the
exec() method that accepts a single String just like a command line. This confusion
may be due to the parameter name for the exec() method being command. The

When Runtime.exec() Won’t 11

programmer incorrectly associates the parameter command with anything he or she
can type on a command line instead of associating it with a single program and its
arguments, for example, a user trying to execute a program and redirect its output in
one call to exec(). Listing 1.5 attempts to do just that.

01: package org.javapitfalls.item1;

02:

03: import java.util.*;

04: import java.io.*;

05:

// StreamGobbler removed for brevity

32:

33: public class BadWinRedirect

34: {

35: public static void main(String args[])

36: {

37: try

38: {

39: Runtime rt = Runtime.getRuntime();

40: Process proc = rt.exec(Æ
“java jecho ‘Hello World’ > test.txt”);

// remaining code same as GoodWindowsExec.java

63: }

Listing 1.5 BadWinRedirect.java

Running BadWinRedirect produces:

E:\classes\org\javapitfalls\Item1>java Æ
org.javapitfalls.Item1.BadWinRedirect

OUTPUT>’Hello World’ > test.txt

ExitValue: 0

The program BadWinRedirect attempted to redirect the output of a simple Java ver-
sion of an echo program into the file test.txt. Unfortunately, when we check to see if the
file test.txt is created, we find that it does not exist. The jecho program simply takes its
command-line arguments and writes them to the standard output stream. The source
for jecho is available on the Web site. The user assumed you could redirect standard
output into a file just like you do on a DOS command line. Unfortunately, that is not the
way you redirect the output. The incorrect assumption here is that the exec() method
acts like a shell interpreter, and it does not. The exec() method executes a single exe-
cutable (a program or script). If you want to process the stream to either redirect it or
pipe it into another program, you must do that programmatically using the java.io
package. Listing 1.6 properly redirects the standard output stream of the jecho process
into a file.

12 Item 1

01: package org.javapitfalls.item1;

02:

03: import java.util.*;

04: import java.io.*;

05:

06: class StreamGobbler extends Thread

07: {

08: InputStream is;

09: String type;

10: OutputStream os;

11:

12: StreamGobbler(InputStream is, String type)

13: {

14: this(is, type, null);

15: }

16:

17: StreamGobbler(InputStream is, String type, OutputStream Æ
redirect)

18: {

19: this.is = is;

20: this.type = type;

21: this.os = redirect;

22: }

23:

24: public void run()

25: {

26: try

27: {

28: PrintWriter pw = null;

29: if (os != null)

30: pw = new PrintWriter(os);

31:

32: InputStreamReader isr = new InputStreamReader(is);

33: BufferedReader br = new BufferedReader(isr);

34: String line=null;

35: while ((line = br.readLine()) != null)

36: {

37: if (pw != null)

38: {

39: pw.println(line);

40: pw.flush();

41: }

42: System.out.println(type + “>” + line);

43: }

44: if (pw != null)

45: pw.flush();

46: } catch (IOException ioe)

Listing 1.6 GoodWinRedirect.java (continued)

When Runtime.exec() Won’t 13

47: {

48: ioe.printStackTrace();

49: }

50: }

51: }

52:

53: public class GoodWinRedirect

54: {

55: public static void main(String args[])

56: {

// ... command argument check omitted for brevity ...

62:

63: try

64: {

65: FileOutputStream fos = new FileOutputStream(args[0]);

66: Runtime rt = Runtime.getRuntime();

67: Process proc = rt.exec(“java jecho ‘Hello World’”);

68: // any error message?

69: StreamGobbler errorGobbler = new

70: StreamGobbler(proc.getErrorStream(), “ERROR”);

71:

72: // any output?

73: StreamGobbler outputGobbler = new

74: StreamGobbler(proc.getInputStream(), “OUTPUT”, fos);

75:

76: // kick them off

77: errorGobbler.start();

78: outputGobbler.start();

79:

80: // any error???

81: int exitVal = proc.waitFor();

82: System.out.println(“ExitValue: “ + exitVal);

83: fos.flush();

84: fos.close();

85: } catch (Throwable t)

86: {

87: t.printStackTrace();

88: }

89: }

90: }

Listing 1.6 (continued)

14 Item 1

Running GoodWinRedirect produces

E:\classes\org\javapitfalls\item1>java Æ
org.javapitfalls.item1.GoodWinRedirect test.txt

OUTPUT>’Hello World’

ExitValue: 0

After running GoodWinRedirect, we find that test.txt does exist. The solution to the
pitfall was to simply handle the redirection by handling the standard output stream of
the external process separate from the Runtime.exec() method. We create a sepa-
rate OutputStream, read in the filename to redirect the output to, open the file, and
write the output we receive from the standard output of the spawned process to the
file. In Listing 1.7 this is accomplished by adding a new constructor to our Stream-
Gobbler class. The new constructor takes three arguments: the input stream to gob-
ble, the type String, which labels the stream we are gobbling, and lastly the output
stream to redirect the input to. This new version of StreamGobbler does not break
any of the previous code it was used in, since we have not changed the existing public
API (just extended it). A reader of the JavaWorld article, George Neervoort, noted an
important improvement to GoodWinRedirect is to ensure that the streams have com-
pleted reading input from the process. This is necessary because it is possible for the
process to end before the threads have completed. Here is his solution to that problem
(thanks George!):

int exitVal = proc.waitFor();

errorGobbler.join();

outputGobbler.join();

Since the argument to Runtime.exec() is operating system-dependent, the
proper commands to use will vary from one operating system to another. So, before
finalizing arguments to Runtime.exec(), it would be valuable to be able to quickly
test the arguments before writing the code. Listing 1.7 is a simple command-line utility
to allow you to do just that.

01: package org.javapitfalls.item1;

02:

03: import java.util.*;

04: import java.io.*;

05:

Listing 1.7 TestExec.java (continued)

When Runtime.exec() Won’t 15

// Class StreamGobbler omitted for brevity

32:

33: public class TestExec

34: {

35: public static void main(String args[])

36: {

// argument check omitted for brevity

42:

43: try

44: {

45: String cmd = args[0];

46: Runtime rt = Runtime.getRuntime();

47: Process proc = rt.exec(cmd);

48: // remaining code

Identical to GoodWindowsExec.java

68: }

69: }

70:

Listing 1.7 (continued)

Running TestExec to launch the Netscape browser and load the Java help documen-
tation produces:

E:\classes\org\javapitfalls\item1>java org.javapitfalls.item1.TestExec Æ
“e:\java\docs\index.html”

java.io.IOException: CreateProcess: e:\java\docs\index.html error=193

at java.lang.Win32Process.create(Native Method)

at java.lang.Win32Process.<init>(Unknown Source)

at java.lang.Runtime.execInternal(Native Method)

at TestExec.main(TestExec.java:45)

So, our first test failed with an error of 193. The Win32 Error for value 193 is “not a
valid Win32 application.” This tells us that there is no path to an associated application
(like Netscape) and the process cannot run an HTML file without an associated appli-
cation. So, we can try the test again, this time giving it a full path to Netscape (or
we could have added Netscape to our PATH environment variable). A second run of
TestExec produces:

E:\classes\com\javaworld\jpitfalls\article2>java TestExec Æ
“e:\program files\netscape\program\netscape.exe e:\java\docs\index.html”

ExitValue: 0

This worked! The Netscape browser was launched, and it then loaded the Java help
documentation.

16 Item 1

One useful exercise would be to modify TestExec to redirect the standard input or
standard output to a file. When you are executing the javac compiler on Windows 95
or Windows 98, this would solve the problem of error messages scrolling off the top of
the limited command-line buffer. Here are the key lines of code to capture the standard
output and standard error to a file:

FileOutputStream err = new FileOutputStream(“stderror.txt”);

FileOutputStream out = new FileOutputStream(“stdout.txt”);

Process proc = Runtime.getRuntime().exec(args);

// any error message?

StreamGobbler errorGobbler

= new StreamGobbler(proc.getErrorStream(), “ERR”, err);

// any output?

StreamGobbler outputGobbler

= new StreamGobbler(proc.getInputStream(), “OUT”, out);

One other improvement to TestExec would be a command-line switch to accept
input from standard-in. This input would then be passed to the spawned external pro-
gram using the Process.getOutputStream() method. This pitfall has explored
several problems in using the Runtime.exec() method and supplied workarounds
to assist you in executing external applications.

Item 2: NIO Performance and Pitfalls

The NIO packages represent a step forward for input/output (IO) performance and
new features; however, these enhancements do not come without some cost in
complexity and potential pitfalls. In this item, we examine some of the benefits and
deficiencies in this new package. Before we examine specific features, let’s get a high-
level view of the package and its features. There are four major abstractions in the NIO
packages:

Channels. A channel represents a connection to entities capable of performing IO
operations like files and sockets. Thus, channels are characterized by the thing
they are connected to like FileChannel or SocketChannel. For fast IO, chan-
nels work in conjunction with buffers to read from the source or write to the
sink. There are also interfaces for different roles a channel can play like Gath-
eringByteChannel or ScatteringByteChannel, which can write or read
from multiple sequences of buffers. Lastly, you can get a channel from the
FileInputStream, FileOutputStream, ServerSocket, Socket, and
RandomAccessFile classes. Unfortunately, adding these new IO metaphors to
the existing crowded field (streams, pipes, readers, writers) is extremely confus-
ing to most programmers. Also, the metaphors overlap and their APIs are inter-
twined. Overall, the complexity and overlapping functionality of the numerous
IO classes is its biggest pitfall.

NIO Performance and Pitfalls 17

Buffers. Buffers are generic data containers for random access manipulation
of a single data type. These are integrated with the Charsets and Channels
classes. Each buffer contains a mark, position, limit, and capacity value (and cor-
responding methods for manipulation). The position can be set to any point in
the buffer. Buffers are set in a mode (reading or writing) and must be “flipped”
to change the mode.

Charsets. A charset is a named mapping between bytes and 16-bit Unicode char-
acters. The names of these character sets are listed in the IANA charset registry
(http://www.iana.org/assignments/character-sets).

Selectors. A Selector is a class that multiplexes a SelectableChannel. A
SelectableChannel has a single subclass called AbstractSelec-
tableChannel. The AbstractSelectableChannel has four direct sub-
classes: DatagramChannel, Pipe.SinkChannel, Pipe.SourceChannel,
ServerSocketChannel, and SocketChannel. In network communications,
a multiplexer is a device that can send several signals over a single line. The
Selector class manages a set of one or more “selectable” channels and provides a
single point of access to input from any of them.

Table 2.1 lists all the key classes and interfaces in the NIO packages.

Table 2.1 Key NIO Classes and Interfaces

PACKAGE CLASS/INTERFACE DESCRIPTION

java.nio Buffer Random access data container for
temporary data storage and
manipulation.

java.nio ByteBuffer, Buffer that stores the specific data
CharBuffer, type represented in its name.
DoubleBuffer,
FloatBuffer,
IntBuffer,
LongBuffer,
ShortBuffer

java.nio MappedByteBuffer A ByteBuffer whose content
is a memory-mapped region of
a file. These are created via the
FileChannel.map() method.

java.nio ByteOrder A typesafe enumeration of byte
orders: LITTLE_ENDIAN or
BIG_ENDIAN.

java.nio.channels Channel An interface that represents an open
or closed connection to an IO device.

java.nio.channels Channels A class that contains utility methods
for working with channels.

18 Item 2

Table 2.1 (Continued)

PACKAGE CLASS/INTERFACE DESCRIPTION

java.nio.channels FileChannel, Pipe, Specific channel types to work
DatagramChannel, with specific devices like files and
SocketChannel, sockets. A DatagramChannel
ServerSocketChannel, is a channel for working with
SelectableChannel DatagramSockets (sockets

that use User Datagram Protocol,
or UDP). A pipe performs com-
munication between threads.

java.nio.channels FileLock A class that represents a lock on
a region of a file. An object of
this type is created by calling
either lock() or tryLock()
on a FileChannel.

java.nio.channels Selector, As stated before, a Selector is
SelectionKey a class that multiplexes one or

more SelectableChannels.
A SelectionKey is used to
specify specific operations to
listen for (or select) on a specific
SelectableChannel.

java.nio.charset Charset An abstract class that provides a
mapping between 16-bit Uni-
code characters and sequences
of bytes. The standard character
sets are US-ASCII (7-bit ASCII),
ISO-8859-1 (ISO Latin), UTF-8,
UTF-16BE (big endian order),
UTF-16LE (little endian order),
UTF-16 (uses a byte order mark).

java.nio.charset CharsetEncoder, A CharsetEncoder is an engine
CharsetDecoder that encodes (or transforms) a

set of 16-bit Unicode characters
into a specific sequence of bytes
specified by the specific character
set. A CharsetDecoder per-
forms the opposite operation.

java.nio.charset CoderResult A class that reports the state of an
encoder or decoder. It reports any
of five states: error, malformed, un-
derflow, overflow, or unmappable.

java.nio.charset CodingActionError A class that is a typesafe enumer-
ation that specifies how an en-
coder or decoder should handle
errors. It can be set to IGNORE,
REPLACE, or REPORT.

NIO Performance and Pitfalls 19

Unfortunately, we cannot demonstrate all of the functionality in the NIO package.
Instead, we examine three examples: a canonical file copy, little endian byte operations,
and non-blocking server IO.

Canonical File Copy

Our first example is a canonical file copy operation. The old way to implement the
copy would be to loop while reading and writing from a fixed-size byte buffer until we
had exhausted the bytes in the file. Listing 2.1 demonstrates that method.

01: package org.javapitfalls.item2;

02:

03: import java.io.*;

04: import java.nio.*;

05: import java.nio.channels.*;

06:

07: public class SlowFileCopy

08: {

09: public static void main(String args[])

10: {

// ...command line check omitted for brevity ...

16:

17: try

18: {

19: long start = System.currentTimeMillis();

20: // open files

21: FileInputStream fis =

22: new FileInputStream(args[0]);

23: FileOutputStream fos =

24: new FileOutputStream(args[1]);

25:

26: int bufSize = 4096;

27: byte [] buf = new byte[bufSize];

28:

29: int cnt = 0;

30: while ((cnt = fis.read(buf)) >= 0)

31: fos.write(buf, 0, (int) cnt);

32:

33: fis.close();

34: fos.close();

35: long end = System.currentTimeMillis();

36: System.out.println(“Elapsed Time: “ Æ
+ (end - start) + “ milliseconds.”);

37: } catch (Throwable t)

38: {

39: t.printStackTrace();

40: }

41: }

42: }

Listing 2.1 SlowFileCopy.java

20 Item 2

In line 26 of Listing 2.1 we set the buffer size to be 4 KB. Obviously, given the simple
space/time trade-off, we can increase the speed of this for large files by increasing the
buffer size. A run of Listing 2.1 on a 27-MB file produces:

E:\classes\org\javapitfalls\item2>java

org.javapitfalls.item2.SlowFileCopy j2sdk-1_4_1-beta-windows-i586.exe Æ
j2sdk-copy1.exe

Elapsed Time: 13971 milliseconds.

Lines 30 and 31 of Listing 2.1 are the key workhorse loop of the program where
bytes are transferred from the original file to the buffer and then are written from the
buffer to a second file (the copy). The FileChannel class includes a method called
transferTo() that takes advantage of low-level operating system calls specifically
to speed up transfers between file channels. So, the loop in 26 to 31 can be replaced by
the following code:

FileChannel fcin = fis.getChannel();

FileChannel fcout = fos.getChannel();

fcin.transferTo(0, fcin.size(), fcout);

The above snippet is from the program called FastFileCopy.java, which is identical
to SlowFileCopy.java except for the lines above that replace the while loop. A run of
FastFileCopy on the same large file produces:

E:\classes\org\javapitfalls\item2>java

org.javapitfalls.item2.FastFileCopy j2sdk-1_4_1-beta-windows-i586.exe Æ
j2sdk-copy2.exe

Elapsed Time: 2343 milliseconds.

The performance of FastFileCopy is very fast for all large files, but slightly slower
for smaller files.

Little-Endian Byte Operations

A nice feature of the NIO Buffer class is the ability to perform reads and writes of the
numeric data types using either Big Endian or Little Endian byte order. For those not
familiar with the difference, for multibyte data types like short (2 bytes), integer and
float (4 bytes), and long and double (8 bytes), Little Endian stores the bytes starting
from the least significant byte (“littlest” number) toward the most significant. Of
course, Big Endian stores bytes in the opposite direction. Processors from Motorola and
Sun use Big Endian order, while Intel uses Little Endian. Prior to JDK 1.4, you would
have to perform the byte-swapping yourself. I created a class called LittleEndian-
OutputStream to do just that for a BMP Image encoder. Listing 2.2 demonstrates the
byte swapping. This is necessary because the only order available for DataOutput-
Stream is Big Endian.

NIO Performance and Pitfalls 21

008: class LittleEndianOutputStream extends OutputStream

009: {

010: OutputStream os;

011:

012: public LittleEndianOutputStream(OutputStream os)

013: {

014: this.os = os;

015: }

016:

017: public void write(int b) throws IOException

018: {

019: os.write(b);

020: }

021:

022: public void writeShort(short s) throws IOException

023: {

024: int is = (int) s; // promote

025: int maskB1 = 0xff;

026: int maskB2 = 0xff00;

027:

028: byte [] b = new byte[2];

029: b[0] = (byte) (s & maskB1);

030: b[1] = (byte) ((s & maskB2) >>> 8);

031:

032: os.write(b);

033: }

034:

035: public void writeInt(int i) throws IOException

036: {

037: byte [] b = new byte[4];

038: int maskB1 = 0xff;

039: int maskB2 = 0xff00;

040: int maskB3 = 0xff0000;

041: int maskB4 = 0xff000000;

042:

043: b[3] = (byte) ((i & maskB4) >>> 24);

044: b[2] = (byte) ((i & maskB3) >>> 16);

045: b[1] = (byte) ((i & maskB2) >>> 8);

046: b[0] = (byte) (i & maskB1);

047:

048: os.write(b);

049: }

050: }

Listing 2.2 LittleEndianOutputStream.java

22 Item 2

The LittleEndianOutputStream was used in combination with a DataOut-
putStream to write integers and shorts in a BMP encoder. Note how we manually
swap the bytes when writing an integer to the underlying OutputStream in the
writeInt() method. We swap the bytes by masking the byte in the original integer
(Big Endian format), shifting it down to the lowest byte position and assigning it to its
new byte position. LittleEndianOutputStream is now obsolete, as Listing 2.3 shows the
encoder rewritten using NIO Buffers.

001: /** BmpWriter3.java */

002: package org.javapitfalls.item2;

003:

004: import java.awt.*;

005: import java.awt.image.*;

006: import java.io.*;

007: import java.nio.*;

008: import java.nio.channels.*;

009:

010: public class BmpWriter3

011: {

012: // File Header - Actual contents (14 bytes):

013: short fileType = 0x4d42;// always “BM”

014: int fileSize; // size of file in bytes

015: short reserved1 = 0; // always 0

016: short reserved2 = 0; // always 0

017: int bitmapOffset = 54; // starting byte position of image data

018:

019: // BMP Image Header - Actual conents (40 bytes):

020: int size = 40; // size of this header in bytes

021: int width; // image width in pixels

022: int height; // image height in pixels (if < 0, “top-down”)

023: short planes = 1; // no. of color planes: always 1

024: short bitsPerPixel = 24;// number of bits per pixel: 1, 4, 8, Æ
or 24 (no color map)

// Some data members omitted for brevity -- code available online.

037:

038: public void storeImage(Image img, String sFilename) throws Æ
IOException

039: {

// ... getting Image width and height omitted for brevity ...

056:

057: width = imgWidth;

058: height = imgHeight;

059:

Listing 2.3 BmpWriter3.java (continued)

NIO Performance and Pitfalls 23

060: imgPixels = new int[imgWidth * imgHeight];

061: // pixels are stored in rows

062: try

063: {

064: PixelGrabber pg = new Æ
PixelGrabber(img,0,0,imgWidth,imgHeight,imgPixels,

065: 0,imgWidth);

066: pg.grabPixels();

067: } catch (Exception e)

068: {

069: throw new IOException(“Exception. Reason: “

+ e.toString());

070: }

071:

072: // now open the file

073: FileOutputStream fos = new FileOutputStream(sFilename);

074: FileChannel fc = fos.getChannel();

075:

076: // write the “header”

077: boolean padded=false;

078: // first calculate the scanline size

079: iScanLineSize = 3 * width;

080: if (iScanLineSize % 2 != 0)

081: {

082: iScanLineSize++;

083: padded = true;

084: }

085:

086: // now, calculate the file size

087: fileSize = 14 + 40 + (iScanLineSize * imgHeight);

088: sizeOfBitmap = iScanLineSize * imgHeight;

089:

090: // create a ByteBuffer

091: ByteBuffer bbuf = ByteBuffer.allocate(fileSize);

092: bbuf.order(ByteOrder.LITTLE_ENDIAN);

093: bbuf.clear();

094:

095: // now put out file header

096: bbuf.putShort(fileType);

097: bbuf.putInt(fileSize);

098: bbuf.putShort(reserved1);

099: bbuf.putShort(reserved2);

100: bbuf.putInt(bitmapOffset);

101:

// ... some output to buffer code omitted for brevity ...

Listing 2.3 (continued)

24 Item 2

113:

114: // put the pixels

115: for (int i= (imgHeight - 1); i >= 0; i--)

116: {

117: byte pad = 0;

118: for (int j=0; j < imgWidth; j++)

119: {

120: int pixel = imgPixels[(i * width) + j];

121: byte alpha = (byte) ((pixel >> 24) & 0xff);

122: byte red = (byte) ((pixel >> 16) & 0xff);

123: byte green = (byte) ((pixel >> 8) & 0xff);

124: byte blue = (byte) ((pixel) & 0xff);

125:

126: // put them bgr

127: bbuf.put(blue);

128: bbuf.put(green);

129: bbuf.put(red);

130: }

131: if (padded)

132: bbuf.put(pad);

133: }

134:

135: bbuf.flip();

136: fc.write(bbuf);

137: fos.close();

138: }

139:

140: public static void main(String args[])

141: {

// method omitted for brevity - available on Web site.

171:

172: }

173:

Listing 2.3 (continued)

The key lines of Listing 2.3 are as follows:

■■ At lines 64 and 65, we grab the image pixels (as integers) using the Pixel-
Grabber class.

■■ At lines 73 and 74, we first create the FileOutputStream for the BMP output
file and then get the FileChannel using the getChannel() method. This
demonstrates the integration between the existing IO packages (FileOutput-
Stream) and the new IO packages (FileChannel).

NIO Performance and Pitfalls 25

■■ At line 91, we create a ByteBuffer via the static allocate() method. It
is important to note that there is also an allocateDirect() method, which
allows you to create DirectBuffers. A DirectBuffer is a buffer allocated
by the operating system to reduce the number of copies between the virtual
machine and the operating system. How DirectBuffers are implemented
differs for each operating system. Additionally, a direct buffer may be more
expensive to create because of the interaction with the operating system, so
they should be used for long-standing buffers.

■■ There are three values associated with all buffers: position, limit, and capacity.
The position is the current location to read from or write to. The limit is the
amount of data in the array. The capacity is the size of the underlying array.

■■ At line 92, we use the order()method to set the endian order to
LITTLE_ENDIAN.

■■ At lines 96 and 97, we use putInt()and putShort()to write integers and
shorts, respectively, in Little Endian order, to the byte buffer.

■■ At line 135, we flip the buffer from reading to writing using the flip()
method. The flip() method sets the limit to the current position and the
position back to 0.

■■ At line 136, we write the byte buffer to the underlying file.

Now we can finish our discussion of NIO by examining how the package imple-
ments non-blocking IO.

Non-Blocking Server IO

Before NIO, Java servers would create a thread to handle each incoming client connec-
tion. You would see a code snippet like this:

while (true)

{

Socket s = serverSocket.accept();

Thread handler = new Thread(new SocketHandler(s));

handler.start();

}

More experienced programmers would reuse threads via a thread pool instead of
instantiating a new thread each time. So, the first key new feature of NIO is the ability
to manage multiple connections by way of a multiplexer class called a Selector. Multi-
plexing is a networking term associated with protocols like the User Datagram Protocol
(UDP) that multiplexes communication packets to multiple processes. Figure 2.1
demonstrates multiplexing.

26 Item 2

Figure 2.1 UDP multiplexing example.

So, after hearing about Selectable channels and deciding that they are a good thing,
we set out to use them. We examine the JDK documentation and study the example
programs like NBTimeServer.java. The “non-blocking time server” demonstrates non-
blocking IO by creating a simple server to send the current time to connecting clients.
For our demonstration program, we will write a server that is the start of a collabora-
tive photo space. In that space we need to share images and annotations. Here we only
scratch the surface of the application by creating a server to receive the images and
annotations from clients. Listing 2.4 has the initial attempt at a non-blocking server:

001: /* ImageAnnotationServer1.java */

002: package org.javapitfalls.item2;

003:

004: import java.util.*;

005: import java.io.*;

006: import java.nio.*;

007: import java.net.*;

008: import java.nio.channels.*;

Listing 2.4 ImageAnnotationServer1.java (continued)

Process 1 Process 2

UDP

Process 3

NIO Performance and Pitfalls 27

009:

010: public class ImageAnnotationServer1

011: {

012: public static final int DEFAULT_IAS_PORT = 8999;

013: boolean done;

014:

015: public ImageAnnotationServer1() throws Exception

016: {

017: this(DEFAULT_IAS_PORT);

018: }

019:

020: public ImageAnnotationServer1(int port) throws Exception

021: {

022: acceptConnections(port);

023: }

024:

025: public void acceptConnections(int port) throws Exception

026: {

027: // get the ServerSocketChannel

028: ServerSocketChannel ssc = ServerSocketChannel.open();

029: System.out.println(“Received a: “ + Æ
ssc.getClass().getName());

030:

031: // get the ServerSocket on this channel

032: ServerSocket ss = ssc.socket();

033:

034: // bind to the port on the local host

035: InetAddress address = InetAddress.getLocalHost();

036: InetSocketAddress sockAddress = new Æ
InetSocketAddress(address, port);

037: ss.bind(sockAddress);

038:

039: // set to non-blocking

040: ssc.configureBlocking(false);

041:

042: // create a Selector to multiplex channels on

043: Selector theSelector = Selector.open();

044:

045: // register this channel (for all events) with the Æ
Selector

046: // NOTE -- how do we know which events are OK????

047: SelectionKey theKey = ssc.register(theSelector, Æ
SelectionKey.OP_ACCEPT |

Listing 2.4 (continued)

28 Item 2

048: SelectionKey.OP_READ |

049: SelectionKey.OP_CONNECT |

050: SelectionKey.OP_WRITE);

051:

052: while (theSelector.select() > 0)

053: {

054: // get the ready keys

055: Set readyKeys = theSelector.selectedKeys();

056: Iterator i = readyKeys.iterator();

057:

058: // Walk through the ready keys collection and Æ
process datarequests.

059: while (i.hasNext())

060: {

061: // get the key

062: SelectionKey sk = (SelectionKey)i.next();

063:

064: if (sk.isConnectable())

065: {

066: System.out.println(“is Connectable.”);

067: }

// ... other checks removed for brevity

083: }

084: }

085: }

086:

087: public static void main(String [] args)

088: {

// ... argument check removed for brevity

094:

095: try

096: {

097: int p = Integer.parseInt(args[0]);

098: ImageAnnotationServer1 ias1 = new Æ
ImageAnnotationServer1(p);

099: } catch (Throwable t)

100: {

101: t.printStackTrace();

102: }

103: }

104: }

105:

Listing 2.4 (continued)

NIO Performance and Pitfalls 29

Let’s walk through the logic in this program one step at a time. These follow the bold
lines in Listing 2.4. The steps are as follows:

1. At line 28, the program opens the ServerSocketChannel. You do not
directly instantiate a ServerSocketChannel. Instead, you get an instance of
one from the Service Provider Interface classes for this channel type.

2. At line 32, the program gets the ServerSocket from the ServerSock-
etChannel. The connection between the original java.net classes (Socket
and ServerSocket) and their respective channels is more intertwined than
the relationship between the original IO streams and their respective channels.
In this case, a ServerSocketChannel is not a bound connection to a port;
instead, you must retrieve the ServerSocket and bind it to the network
address and port. Without you blindly copying the example code, it is unintu-
itive when you must switch from channels to their IO counterparts.

3. At line 37, the program binds the local host and port to the server socket.

4. At line 40, we configure the ServerSocketChannel to be non-blocking. This
means that a call to read or write on a socket from this channel will return
immediately whether there is data available or not. For example, in blocking
mode, the program would wait until there was data available to be read before
returning. It is important to understand that you can use these selectable chan-
nels on both clients and servers. This is the chief benefit of non-blocking IO—
your program never waits on the IO but instead is notified when it occurs. This
concept of the program reacting to multiplexed data instead of waiting until it
occurs is an implementation of the Reactor pattern [Schmidt 96]. Figure 2.2 is a
UML diagram of the Reactor pattern.

Figure 2.2 The Reactor pattern.

1..*

1..* <<interface>>
EventHandler

ConcreteEventHandler

HandleReactor

-void select()
-void register_handler(h:h)
-void handle_events()

30 Item 2

The Reactor pattern demultiplexes concurrent events to one or more event handlers.
The key participants in the pattern are handles and a synchronous event demulti-
plexer. A handle represents the object of the event. In the NIO package implementation
of this pattern, the handle is represented by the SelectionKey class. Thus, in relation
to network servers, a handle represents a socket channel. The synchronous event
demultiplexer blocks awaiting for events to occur on a set of handles. A common
example of such a demultiplexer is the Unix select() system call. In the NIO pack-
age implementation of this pattern, the Selector class performs the synchronous event
demultiplexing. Lastly, the Event Handler interface (and specific implementation)
implements an object hook for a specific event handling. In the NIO implementation,
the SelectionKey performs the object hook operation by allowing you to attach an
object via the attach() method and retrieve the object via the attachment()
method. Here is an example of attaching a Callback object to a key:

sk.attach(new Callback(sk.channel()));

1. At line 43, we create a Selector object (by calling the Selector.open()
method) to multiplex all registered channels.

2. At line 47, we register the SelectableChannel with the Selector and
specify which operations in the channel we want to be notified about. Here lies
are first potential pitfall. If we do not register the correct operations for this
channel object (which is provided by a Service Provider and not instantiated),
an exception will be thrown. The operations that you can register for are
OP_ACCEPT, OP_CONNECT, OP_READ, and OP_WRITE. In fact, in Listing 2.4,
since we did not check which operations are valid on this channel with the
validOps() method, an exception will be thrown.

3. At line 52, we call select() on the Selector to wait for operations on the
registered channels.

4. At line 55, the select() method returns the number of SelectionKeys
ready for processing. If the number is greater than 0, you can retrieve the set of
selected SelectionKeys. A SelectionKey represents the registration and
state of a Channel registered with a Selector. Once you have the Selec-
tionKey, you can test its state and act accordingly.

Running Listing 2.4 produces:

E:\classes\org\javapitfalls\item2>java Æ
org.javapitfalls.item2.ImageAnnotationServer1 5544

Received a: sun.nio.ch.ServerSocketChannelImpl

java.lang.IllegalArgumentException at

java.nio.channels.spi.AbstractSelectableChannel.register Æ
(AbstractSelectableChannel.java:170)

The IllegalArgumentException is thrown because we attempted to register
operations that were not valid on the ServerSocketChannel. The only operation we
can register on that channel is OP_ACCEPT. Listing 2.5 registers the correct operation,

NIO Performance and Pitfalls 31

accepts the channel, and receives a file from the client. Listing 2.5 presents the changes
to the acceptConnections() method.

025: public void acceptConnections(int port) throws Exception

026: {

// ... omitted code Identical to Listing 2.4

053: SelectionKey theKey = ssc.register(theSelector, Æ
SelectionKey.OP_ACCEPT);

054:

055: int readyKeyCnt = 0;

056: while ((readyKeyCnt = theSelector.select()) > 0)

057: {

058: System.out.println(“Have “ + readyKeyCnt + “ ready keys...”);

059:

060: // get the ready keys

061: Set readyKeys = theSelector.selectedKeys();

062: Iterator i = readyKeys.iterator();

063:

064: // Walk through the ready keys collection and process the Æ
requests.

065: while (i.hasNext())

066: {

067: // get the key

068: SelectionKey sk = (SelectionKey)i.next();

069: i.remove();

070:

071: if (sk.isAcceptable())

072: {

073: System.out.println(“is Acceptable.”);

074: // accept it

075:

076: // get the channel

077: ServerSocketChannel channel = (ServerSocketChannel) Æ
sk.channel();

078:

079: // using method in NBTimeServer JDK example

080: System.out.println(“Accepting the connection.”);

081: Socket s = channel.accept().socket();

082:

083: DataInputStream dis = new Æ
DataInputStream(s.getInputStream());

084: DataOutputStream dos = new Æ
DataOutputStream(s.getOutputStream());

085:

086: // Code to read file from the client ...

112: }

113: }

114: }

115:}

Listing 2.5 Changes to acceptConnections()method

32 Item 2

After working our way through the simple incorrect event registration pitfall, we
can create a non-blocking server that properly accepts a socket connection. Here are the
key changes highlighted in Listing 2.5:

■■ At line 53, we register the single operation OP_ACCEPT on the server socket
channel.

■■ At line 56, we call select()to wait on any events on the registered channel.

■■ At line 69, we remove the SelectionKey from the set of SelectionKeys
returned from the select()method. This is a potential pitfall, because if you
do not remove the key, you will reprocess it. So, it is the programmer’s respon-
sibility to remove it from the set. This is especially dangerous if you have mul-
tiple threads processing the selection keys.

■■ At line 71, we test if the key isAcceptable(),which is the only operation we
registered for. However, it is important to understand that once accepted, you
get a channel for each incoming connection (each a separate key), which can in
turn be registered with the Selector for other operations (reads and writes).

■■ At line 77, we get the registered channel (in this case the ServerSock-
etChannel) from the SelectionKey via the channel()method.

■■ At line 81, we call the accept() method to accept the socket connection and
get a SocketChannel object. Given this object we can either process the chan-
nel (which is the approach of our simple server) or register it with the Selector
like this:

SocketChannel sockChannel = channel.accept();

sockChannel.configureBlocking(false);

SelectionKey readKey =

sockChannel.register(theSelector,

SelectionKey.OP_READ|SelectionKey.OP_WRITE);

A run of Listing 2.5 (ImageAnnotationServer2) accepts a single connection, receives
the file, and then exits. The problem is in line 56 where the while loop (which follows
Sun’s NBTimeServer example) only continues if there are greater than 0 events
returned from select(); however, the documentation clearly states that 0 events may
be returned. Therefore to fix this pitfall, it is necessary to loop forever in the server and
not assume select() will block until at least one event is ready, like this:

int readyKeyCnt = 0;

// loop forever (even if select() returns 0 ready keys)

while (true)

{

readyKeyCnt = theSelector.select();

// ...

}

With the above change made, ImageAnnotationServer3.java is ready to continually
accept files from clients. This pitfall has introduced you to some of the major features
of the NIO package. The package has some clear benefits at the cost of some additional
complexity. Readers should be ready for more changes to Java’s IO packages. The most

NIO Performance and Pitfalls 33

glaring pitfall with this package is its separation from the IO package and the addition
of brand-new metaphors. Having said that, most programmers will overlook that
incongruity for the benefits of the new features. Overall, the performance improve-
ments offered by NIO make up for the minor pitfalls mentioned here. All programmers
should be encouraged to learn and use the NIO package.

Item 3: I Prefer Not to Use Properties

I have worked in a number of places where all development was done on an isolated
network and a set of machines was used for office automation tasks like email, Web
browsing, word processing, and time charging.

In this case, I really have two sets of properties that I need to handle. First, I have the
set of properties that handle configuring the system in general. Examples of this would
be the mail server that needs to be referenced, the network file server to point toward,
and the timecard server. These are things that are clearly independent of any user and
have more to do with the system than the individual user accessing the system.

Second, a multitude of user properties are required. It starts by being arranged by
functional application, and then it is further organized by functional areas within the
application.

Consider this properties file:

server=timecard.mcbrad.com

server=mail.mcbrad.com

server=ftp.mcbrad.com

This obviously wouldn’t work, but it illustrates a simple problem in a properties file.
You cannot give a common name to a particular property. Notice that naming a prop-
erty “server” is remarkably appropriate in each of these cases. Furthermore, if you
wanted to use a common piece of code to make a TCP/IP connection for all three apps
listed, you couldn’t do it without either writing custom code to parse out of three dif-
ferent files (a maintenance nightmare) or parsing the server subproperty.

This properties file shows a more typical example to avoid namespace collision:

timecard.server=timecard.mcbrad.com

mail.server=mail.mcbrad.com

ftp.server=ftp.mcbrad.com

Notice that these property names imply a sense of hierarchy. In fact, there is no hier-
archy. There are only further qualified property names to make them more unique.
However, our earlier example gave us the idea of being able to take the server subnode
off of all of the primary nodes. There are no nodes since the properties file is not stored
as a tree. This is where the Preferences API comes in handy. Listing 3.1 is an example of
a preferences file.

34 Item 3

01: <?xml version=”1.0” encoding=”UTF-8”?>

02: <!DOCTYPE preferences SYSTEM Æ
‘http://java.sun.com/dtd/preferences.dtd’>

03:

04: <preferences EXTERNAL_XML_VERSION=”1.0”>

05:

06: <root type=”user”>

07: <map />

08: <node name=”com”>

09: <map>

10: <entry key=”addr” value=”8200 Greensboro Dr.” />

11: <entry key=”pi” value=”3.1416” />

12: <entry key=”number” value=”23” />

13: </map>

14: <node name=”mcbrad”>

15: <map />

16: <node name=”prefs”>

17: <map>

18: <entry key=”mail” value=”mail” />

19: <entry key=”ftp” value=”shortbus” />

20: <entry key=”timecard” value=”spectator” />

21: </map>

22: </node>

23: </node>

24: </node>

25:

26: </root>

27: </preferences>

28:

Listing 3.1 A preferences file

This preferences file shows the hierarchical organization of its XML format. It is very
helpful when organizing multiple preferences under a particular user’s settings.

Hang on, though. This just jumped from a discussion of system properties to user
properties. Being able to do that in a single file is probably the best example of how we
benefit from a hierarchical format. Now that we have a tree structure, not only can we
separate nodes between different parts of the system, but we can also make a separa-
tion between the system and the user. Once that separation can be defined, we can
make a distinction between users. This makes it easier to maintain a large number of
users, all separated on the tree.

Using properties, you must store user properties within the context of the user’s
home directory, and then you almost always need to store those values in a file that is
hard-coded into the system. This adds an additional problem with trying to ensure
consistent access to these hard-coded locations. Listing 3.2 is an example of how a
developer might use properties.

I Prefer Not to Use Properties 35

01: package org.pitfalls.prefs;

02:

03: import java.util.Properties;

04: import java.io.*;

05:

06: public class PropertiesTest {

07:

08: private String mailServer;

09: private String timecardServer;

10: private String userName;

11: private String ftpServer;

12:

13:

14: public PropertiesTest() {

15: }

16:

17: [GETTER AND SETTER METHODS FOR MEMBER VARIABLES...]

18:

19: public void storeProperties() {

20:

21: Properties props = new Properties();

22:

23: props.put(“TIMECARD”, getTimecardServer());

24: props.put(“MAIL”, getMailServer());

25: props.put(“FTP”, getFtpServer());

26: props.put(“USER”, getTimecardServer());

27:

28: try {

29:

30: props.store(new FileOutputStream(“myProps.properties”), Æ
“Properties”);

31:

32: } catch (IOException ex) {

33:

34: ex.printStackTrace();

35:

36: }

37:

38: }

39:

Listing 3.2 Storing user properties

Here is the example of the properties file that is produced:

#Properties

#Sun Feb 24 23:16:09 EST 2002

TIMECARD=time.mcbrad.com

FTP=ftp.mcbrad.com

USER=time.mcbrad.com

MAIL=mail.mcbrad.com

36 Item 3

Instead, Listing 3.3 shows the same example with preferences:

package org.pitfalls.prefs;

import java.util.prefs.Preferences;

public class PreferencesTest {

private String mailServer;

private String timecardServer;

private String userName;

private String ftpServer;

public PreferencesTest() {

}

[GETTER AND SETTER METHODS FOR MEMBER VARIABLES...]

public void storePreferences() {

Preferences prefs = Preferences.userRoot();

prefs.put(“timecard”, getTimecardServer());

prefs.put(“MAIL”, getMailServer());

prefs.put(“FTP”, getFtpServer());

prefs.put(“user”, getTimecardServer());

}

public static void main(String[] args) {

PreferencesTest myPFTest = new PreferencesTest();

myPFTest.setFtpServer(“ftp.mcbrad.com”);

myPFTest.setMailServer(“mail.mcbrad.com”);

myPFTest.setTimecardServer(“time.mcbrad.com”);

myPFTest.setUserName(“Jennifer Richardson”);

myPFTest.storePreferences();

}

Listing 3.3 Storing user preferences

Figure 3.1 shows the preferences stored, in this case, in the Windows Registry.
Notice the slashes prior to each of the capital letters? This is due to the implementation
on the Windows Registry, which does not support case-sensitive keys. The slashes sig-
nify a capital letter.

I Prefer Not to Use Properties 37

Figure 3.1 Preferences stored in the Windows Registry.

So is the hierarchical nature of preferences the reason to use them instead of proper-
ties? While that is certainly a great reason, it is not the only reason. Properties files have
no standardized way of placing configuration information within the filesystem. This
means that you need a configuration file to find your configuration file! Furthermore,
you must have a filesystem available, so a lot of devices cannot use the Properties
API.

What about using JNDI? JNDI is a hierarchical structure. JNDI is a solid choice for
maintaining information about users, applications, and distributed objects. Two things
run against JNDI, however:

■■ It doesn’t give any indication of how the hierarchy is structured. Just because
you can access the naming or directory service through JNDI doesn’t give the
information necessary to find the root of your specific context.

■■ It can seem like driving a tack with a sledgehammer. JNDI requires a directory
server to be available. Often the directory server is maintained by a separate
organization, which may not see value in maintaining the fact that a guy
named Marshall likes to have his email messages display their text in hot pink.
No matter what your application, there is likely to be something that should be
maintained in a more simple fashion.

Why not have a solution that handles properties in a hierarchical fashion and is
independent of the back end storage mechanism? This is what the Preferences API
gives you.

38 Item 3

Item 4: When Information Hiding Hides Too Much

When you are developing a framework that will be used by a large project, it is some-
times helpful to abstract the details of another API from the developers using your
framework. For example, in an access control system, it may not be necessary to tell the
users of your API that you are using database access control, directory server access
control, or your own homegrown method of access control. Instead, you may simply
hide the fact of what mechanism you are using and provide a public class (or interface)
called AccessControl. When you write the implementation class, you will handle
the mechanism of access control.

Many times, when API developers abstract the implementation of these classes,
sometimes too much is abstracted where implementation-specific exceptions are
involved. As an example, see Listing 4.1, which is an implementation of an access con-
trol mechanism with a Lightweight Directory Access Protocol (LDAP)-based directory
server.

01: package org.javapitfals.item4;

02: import netscape.ldap.*;

03: public class AccessControl

04: {

05: private String m_host = null;

06: private int m_port = 389;

07: private int m_ldapversion = 3;

08: private LDAPConnection m_ld = null;

09:

10:

// 1 and 2 argument constructors removed for brevity...

20: public AccessControl(String hostname, int portnumber,

int ldapversion)

21: {

22: m_host = hostname;

23: m_port = portnumber;

24: m_ldapversion = ldapversion;

25: }

26: private void createConnection() throws LDAPException

27: {

28: m_ld = new LDAPConnection();

29: m_ld.connect(m_host, m_port);

30: }

31: /**

32: * The purpose of this function is to authenticate to

33: * the Directory Server with credentials.

34: *

35: * @param uname the user name

36: * @param pw the password

37: * @return successful authentication

38: */

Listing 4.1 A bad example of abstracting details (continued)

When Information Hiding Hides Too Much 39

39: public boolean authenticate(String uname, String pw)

40: {

41: boolean result = false;

42: String dn = “uid=” + uname + “,ou=People,dc=pitfalls.org”;

43: try

44: {

45: createConnection();

46: m_ld.authenticate(m_ldapversion, dn, pw);

47: result = true;

48: }

49: catch (LDAPException e)

50: {

51: //here, result is originally set to false, so do nothing

52: }

53: return (result);

54: }

55: }

Listing 4.1 (continued)

In lines 39 through 54 of Listing 4.1, there exists a method called authenticate()
that returns a boolean value, denoting a successful login to the access control mecha-
nism. In line 42, the username is turned into a LDAP distinguished name, and in lines
45 and 46, the method creates a connection and attempts to authenticate the user. If an
LDAPException is thrown, the method simply returns false.

This is a good example of how ignoring exceptions for the purpose of hiding detail
can cause hours and hours of pain for developers using this code. Of course, this
class compiles fine. If the infrastructure is in place for this example (network connec-
tivity, a directory server, the correct username and password), the method will return
a boolean true value, and everything will work correctly. However, if there is another
problem, such as a directory server problem or network connectivity problems, it
will return false. How does the implementer using this API handle the problem or
know what the problem is? The original API used by this class throws an LDAPEx-
ception, but the authenticate method in listing 4.1 simply ignores it and returns
false.

What is the API developer of this class to do? First of all, a simple design change to
use an interface that has the authenticate() method could be used along with a
creational design pattern. This way, multiple implementation classes could be written
(LDAPAccessControl, DatabaseAccessControl, etc.) that can realize this inter-
face, depending on which mechanism we are using. The developer using the API
would still not need to know the internals but would have to handle an exception
thrown by that method, as shown in the code segment below.

40 Item 4

public interface iAccessControl

{

public boolean authenticate(String user, String passwd) throws

AccessException;

}

The inclusion of a new exception brings up another possible pitfall, however. We have
created a new AccessException class because we do not want the API user to have to
handle exceptions such as LDAPException that are dependent on our hidden imple-
mentation. In the past, developers have handled this in a way shown in Listing 4.2.

01: public boolean authenticate(String uname, String pw)

throws AccessException

02: {

03: boolean result = false;

04: String dn = “uid=” + uname + “,ou=People,dc=pitfalls.org”;

05: try

06: {

07: createConnection();

08: m_ld.authenticate(m_ldapversion, dn, pw);

09: result = true;

10: }

11: catch (LDAPException e)

12: {

13: throw new AccessException(e.getMessage());

14: }

15: return (result);

16: }

17: }

Listing 4.2 Losing information with a new exception

On line 13 of Listing 4.2, we throw a new AccessException class to hide the
LDAP-specific exception from the API user. Unfortunately, sometimes this complicates
debugging because we lose a lot of information about the original cause of the excep-
tion, which was contained in our original LDAPException. For example, perhaps
there was an actual bug in the LDAP API we are using. We lose a vast majority of
debugging information by discarding the “causative exception,” which was LDAPEx-
ception in our example.

Prior to JDK 1.4, situations like these presented quite a few problems for debugging.
Thankfully, JDK 1.4 released much-needed enhancements to allow “chained excep-
tions.” Changes to the java.lang.Throwable class can be seen in Table 4.1, and the
implementation of Throwable.printStackTrace()was also changed to show the
entire “causal” chain for debugging purposes. As you can see by looking at Table 4.1,
Throwable classes can now be associated as the “cause” for other Throwable classes.

When Information Hiding Hides Too Much 41

Table 4.1 New Chained Exception Capabilities Added to Throwable in JDK 1.4

METHOD DESCRIPTION

public Throwable getCause() Returns the cause of this throwable
or null if the cause is nonexistent or
unknown. (The cause is the throwable
that caused this throwable to get
thrown.)

public Throwable Initializes the cause of this
initCause(Throwable c) throwable to the specified value.

(The cause is the throwable that
caused this throwable to get thrown.)

public Throwable(Throwable cause) Constructs a new throwable with
the specified cause.

public Throwable(String message, Constructs a new throwable with the
Throwable cause) specified detail message and cause.

Of course, java.lang.Exception and java.lang.Error are subclasses of
Throwable, so now we can make minor adjustments to our code, passing in the cause
of the exception to our new AccessException class. This is seen in Listing 4.3.

01: public boolean authenticate(String uname, String pw)

throws AccessException

02: {

03: boolean result = false;

04: String dn = “uid=” + uname + “,ou=People,dc=pitfalls.org”;

05: try

06: {

07: createConnection();

08: m_ld.authenticate(m_ldapversion, dn, pw);

09: result = true;

10: }

11: catch (LDAPException e)

12: {

13: throw new AccessException(e);

14: }

15: return (result);

16: }

17: }

Listing 4.3 Modifying authenticate(), passing causality

42 Item 4

Listing 4.3 shows a simple way to handle our exception without losing information.
Finally, Listing 4.4 shows the resulting class that replaces the listing in 4.1. As you can
see in line 3 of Listing 4.4, we create a class that implements our iAccessControl
interface, and we have modified our authenticate() method to throw an
AccessException, passing the causal exception to the constructor in lines 39 to 55.

01: package org.javapitfals.item4;

02: import netscape.ldap.*;

03: public class LDAPAccessControl implements iAccessControl

04: {

05: private String m_host = null;

06: private int m_port = 389;

07: private int m_ldapversion = 3;

08: private LDAPConnection m_ld = null;

09:

10:

11: public LDAPAccessControl(String hostname)

12: {

13: this(hostname, 389, 3);

14: }

15:

16: public LDAPAccessControl(String hostname, int portnumber)

17: {

18: this(hostname, portnumber, 3);

19: }

20: public LDAPAccessControl(String hostname, int portnumber,

int ldapversion)

21: {

22: m_host = hostname;

23: m_port = portnumber;

24: m_ldapversion = ldapversion;

25: }

26: private void createConnection() throws LDAPException

27: {

28: m_ld = new LDAPConnection();

29: m_ld.connect(m_host, m_port);

30: }

31: /**

32: * The purpose of this function is to authenticate to

33: * the Directory Server with credentials.

34: *

35: * @param uname the user name

36: * @param pw the password

37: * @return successful authentication

Listing 4.4 The better implementation (continued)

When Information Hiding Hides Too Much 43

38: */

39: public boolean authenticate(String uname, String pw)

40: throws AccessException

41: {

42: boolean result = false;

43: String dn = “uid=” + uname + “,ou=People,dc=pitfalls.org”;

44: try

45: {

46: createConnection();

47: m_ld.authenticate(m_ldapversion, dn, pw);

48: result = true;

49: }

50: catch (LDAPException e)

51: {

52: throw new AccessException(e);

53: }

54: return (result);

55: }

56: }

Listing 4.4 (continued)

This pitfall showed the traps that can present themselves when you try to hide the
implementation details when creating an API for use by other developers. The key
points that you should keep in mind are as follows:

■■ Take advantage of interfaces when hiding your implementation details.

■■ Be wary of not handling exceptions properly. Instead of returning a value from
a method (such as false or null), think about the cause of your returning these
values. If there could be multiple causes, throw an exception.

■■ Instead of taking some information from one exception and placing it a new
exception, take advantage of the new JDK 1.4 changes to Throwable and add
the original exception to your new exception.

Item 5: Avoiding Granularity
Pitfalls in java.util.logging

The release of J2SDK 1.4 brought us a new logging API—java.util.logging. For
those of us who have been frustrated by our own implementations of logging over the
years, this can be a powerful package that comes out of the box with the J2SE. An appli-
cation can create a logger to log information, and several handlers (or objects that “log”
the data) can send logging information to the outside world (over a network, to a file,
to a console, etc.) Loggers and handlers can filter out information, and handlers can
use Formatter objects to format the resulting output of the Handler object.

44 Item 5

Figure 5.1 Levels of granularity.

At first glance, adding a logging solution into your application looks incredibly easy
and quite intuitive. When you start changing the granularity of logging, however,
there are some potential pitfalls that lie in your path. Figure 5.1 shows the levels of
granularity from the class java.util.logging.Level, with the lowest level of
granularity being Level.FINEST. The key point to know is that when a logger is set
to show messages at a level of granularity, it will show messages labeled at that level
and above. For example, a logger set to the FINEST level of granularity will show all
messages labeled Level.FINEST and above in Figure 5.1. When a logger is set to
show messages at Level.INFO, it will show messages labeled Label.INFO,
Label.WARNING, and Label.SEVERE. Of course, as Figure 5.1 shows, the Level
class also includes “ALL” for logging all messages and “OFF” for logging no messages.

A first attempt at using this log package, experimenting with levels of granularity,
can be shown in Listing 5.1.

01: package org.javapitfalls.item5;

02:

03: import java.io.*;

04: import java.util.logging.*;

05:

06: public class BadLoggerExample1

07: {

08: private Logger m_log = null;

09:

10: public BadLoggerExample1(Level l)

Listing 5.1 BadLoggerExample 1 (continued)

Level.OFF

Level.SEVERE

Level.WARNING

Level.INFO

Level.CONFIG

Level.FINE

Level.FINER

Level.FINEST

Level.ALL

SH
O

W
S

Avoiding Granularity Pitfalls in java.util.logging 45

11: {

12:

13:

14: //This creates the logger!

15: m_log = Æ
Logger.getLogger(“org.pitfalls.BadLoggerExample1.logger”);

16:

17: m_log.setLevel(l);

18: }

19: /*

20: * This tests the levels of granularity!

21: */

22: public void test()

23: {

24: System.out.println(“The level for the log is: “

25: + m_log.getLevel());

26: m_log.finest(“This is a test for finest”);

27: m_log.finer(“This is a test for finer”);

28: m_log.fine(“This is a test for fine”);

29: m_log.info(“This is a test for info”);

30: m_log.warning(“This is a warning test”);

31: m_log.severe(“This is a severe test”);

32: }

33:

34: /*

35: * A very simple example, where we will optionally

36: * pass in the level of granularity to our application

37: */

38: public static void main(String[] args)

39: {

40: Level loglevel = Level.INFO;

41:

42: if (args.length !=0)

43: {

44: if (args[0].equals(“ALL”))

45: {

46: loglevel = Level.ALL;

47: }

48: else if (args[0].equals(“FINE”))

49: {

50: loglevel = Level.FINE;

51: }

52: else if (args[0].equals(“FINEST”))

53: {

54: loglevel = Level.FINEST;

55: }

56: else if (args[0].equals(“WARNING”))

57: {

58: loglevel = Level.WARNING;

Listing 5.1 (continued)

46 Item 5

59: }

60: else if (args[0].equals(“SEVERE”))

61: {

62: loglevel = Level.SEVERE;

63: }

64:

65: }

66: BadLoggerExample1 logex = new BadLoggerExample1(loglevel);

67: logex.test();

68: }

69:}

Listing 5.1 (continued)

In Listing 5.1, you can see that we create a simple logger and call a test function that
tests the levels of granularity. In the main() method of this class, we pass it an argu-
ment pertaining to the level of granularity (ALL, FINE, FINEST, WARNING, SEVERE),
or if there is no argument, the loglevel defaults to INFO. If you run this program with-
out an argument, you will see the following printed to standard error, which is correct
output:

The level for the log is: INFO

Feb 16, 2002 3:42:08 PM org.pitfalls.logging.BadLoggerExample1 test

INFO: This is a test for info

Feb 16, 2002 3:42:08 PM org.pitfalls.logging.BadLoggerExample1 test

WARNING: This is a warning test

Feb 16, 2002 3:42:08 PM org.pitfalls.logging.BadLoggerExample1 test

SEVERE: This is a severe test

Additionally, if you pass SEVERE as an argument, you will see the following correct
output:

The level for the log is: SEVERE

Feb 16, 2002 3:42:09 PM org.pitfalls.logging.BadLoggerExample1 test

SEVERE: This is a severe test

However, if you run this program with the argument FINE, you will see the following:

The level for the log is: FINE

Feb 16, 2002 3:42:10 PM org.pitfalls.logging.BadLoggerExample1 test

INFO: This is a test for info

Feb 16, 2002 3:42:10 PM org.pitfalls.logging.BadLoggerExample1 test

WARNING: This is a warning test

Feb 16, 2002 3:42:10 PM org.pitfalls.logging.BadLoggerExample1 test

SEVERE: This is a severe test

Avoiding Granularity Pitfalls in java.util.logging 47

What happened? Where are the “fine” messages? Is something wrong with the Log-
ger? We set the level of granularity to FINE, but it still acts as if its level is INFO. We
know that is wrong, because we printed out the level with the Logger’s getLevel()
method. Let us add a FileHandler to our example, so that it will write the log to a
file, and see if we see the same output. Listing 5.2 shows the BadLoggerExample2,
where we add a FileHandler to test this. On lines 20 and 21 of Listing 5.2, we create
a new FileHandler to write to the log file log.xml, and we add that handler to our
Logger object.

01: package org.javapitfalls.item5;

02:

03: import java.io.*;

04: import java.util.logging.*;

05:

06: public class BadLoggerExample2

07: {

08: private Logger m_log = null;

09:

10: public BadLoggerExample2(Level l)

11: {

12: FileHandler fh = null;

13:

14: //This creates the logger!

15: m_log = Æ
Logger.getLogger(“org.pitfalls.BadLoggerExample2.logger”);

16:

17: //Try to create a FileHandler that writes it to file!

18: try

19: {

20: fh = new FileHandler(“log.xml”);

21: m_log.addHandler(fh);

22: }

23: catch (IOException ioexc)

24: {

25: ioexc.printStackTrace();

26: }

27:

28: m_log.setLevel(l);

29: }

30: /*

31: * This tests the levels of granularity!

32: */

33: public void test()

34: {

35: System.out.println(“The level for the log is: “

Listing 5.2 BadLoggerExample2.java (continued)

48 Item 5

36: + m_log.getLevel());

37: m_log.finest(“This is a test for finest”);

38: m_log.finer(“This is a test for finer”);

39: m_log.fine(“This is a test for fine”);

40: m_log.info(“This is a test for info”);

41: m_log.warning(“This is a warning test”);

42: m_log.severe(“This is a severe test”);

43: }

44:

45: /*

46: * A very simple example, where we will optionally

47: * pass in the level of granularity to our application

48: */

49: public static void main(String[] args)

50: {

51: Level loglevel = Level.INFO;

52:

53: if (args.length !=0)

54: {

55: if (args[0].equals(“ALL”))

56: {

57: loglevel = Level.ALL;

58: }

59: else if (args[0].equals(“FINE”))

60: {

61: loglevel = Level.FINE;

62: }

63: else if (args[0].equals(“FINEST”))

64: {

65: loglevel = Level.FINEST;

66: }

67: else if (args[0].equals(“WARNING”))

68: {

69: loglevel = Level.WARNING;

70: }

71: else if (args[0].equals(“SEVERE”))

72: {

73: loglevel = Level.SEVERE;

74: }

75:

76: }

77: BadLoggerExample2 logex = new BadLoggerExample2(loglevel);

78: logex.test();

79: }

80: }

Listing 5.2 (continued)

Avoiding Granularity Pitfalls in java.util.logging 49

This time, we see the same output as before when we pass in the FINE argument,
but a log file is generated, showing the XML output, shown in Listing 5.3! Now, stan-
dard error prints out the same seemingly incorrect thing as before, not showing the
FINE test, and the FileHandler seems to write the correct output. What is going on?
Why does the file output not match the output written to standard error?

<?xml version=”1.0” encoding=”windows-1252” standalone=”no”?>

<!DOCTYPE log SYSTEM “logger.dtd”>

<log>

<record>

<date>2002-02-16T15:51:00</date>

<millis>1013892660502</millis>

<sequence>0</sequence>

<logger>org.pitfalls.BadLoggerExample2.logger</logger>

<level>FINE</level>

<class>org.pitfalls.logging.BadLoggerExample2</class>

<method>test</method>

<thread>10</thread>

<message>This is a test for fine</message>

</record>

<record>

<date>2002-02-16T15:51:00</date>

<millis>1013892660522</millis>

<sequence>1</sequence>

<level>INFO</level>

... <logger> <class>, <method> and <thread> elements same as above ...

<message>This is a test for info</message>

</record>

<record>

<date>2002-02-16T15:51:00</date>

<millis>1013892660612</millis>

<sequence>2</sequence>

<level>WARNING</level>

<message>This is a warning test</message>

</record>

<record>

<date>2002-02-16T15:51:00</date>

<millis>1013892660622</millis>

<sequence>3</sequence>

<level>SEVERE</level>

<message>This is a severe test</message>

</record>

</log>

Listing 5.3 XML-formatted output from FileHandler

50 Item 5

Figure 5.2 Logger/handler relationship diagram.

This behavior is quite strange. What happened? There are actually three things that
we need to understand in order to understand this strange behavior:

Default Configurations of Loggers and Handlers. Loggers and handlers have
default configurations, read from a preference file in your JRE’s lib directory. A
key thing to understand is that granularities may be set for each, using the
setLevel()method.

Inheritance of Loggers. Another key thing to understand about the logging API
is that each logger has a parent, and all data sent to a logger will go to its parent
as well. The top parent is always the Root Logger, and you can create an inheri-
tance tree descending from the Root Logger. In our initial example in Listing 5.1,
we did not set a handler, but we still had output. Why? The reason is the Root
Logger had a ConsoleHandler, whose default content level is Level.INFO.
You can disable sending log messages to your parent’s handler by calling the
setUseParentHandlers(false) on the Logger class.

The Relationship between Handlers and Loggers. As we mentioned before,
there are default levels of handlers. By default, all ConsoleHandlers log at the
Level.INFO level, and all FileHandlers log at the Level.ALL level. The log-
ger itself can set its level, and you can also set the level of the handlers. The key is
that the level of the handler can never show a lower level of granularity than the
logger itself. For example, if the logger’s level is set to Level.INFO, the attached
handlers will only see Level.INFO levels and above (from our diagram in Fig-
ure 5.1). In our example in Listing 5.2, we set our logger level to Level.FINE,
and because the FileHandler’s level was the default level (Level.ALL), it
only saw what the logger was able to pass through (FINE and below).

G
RA

N
U

LA
RI

TY

Level.SEVERE

Level.WARNING

Level.INFO

Level.CONFIG

Level.FINE

Level.FINER

Level.FINEST

Level.ALL

Parent Logger

Granularity A

New Logger

Granularity B

Handler

Granularity C

Handler

Granularity D

Log Messages
higher than and equal to
Granularity B are sent to
Logger Parent

Log Messages higher than
and equal to Granularity C

are logged

Log Messages
higher than and equal to

Granularity A are sent to
Handlers

Log Messages
higher than and equal to

Granularity B are sent to
Handlers

Log Messages higher than
and equal to Granularity D

are logged

Avoiding Granularity Pitfalls in java.util.logging 51

Confusing? We have presented this graphically in Figure 5.2 for your convenience.
In our earlier example tests with BadLoggerExample1.java in Listing 5.1, everything
seemed to work when we set the level to Level.INFO and Level.SEVERE, because
those levels were higher than Level.INFO, the default level for the parent logger.
However, when we set the level to Level.FINE, the parent’s logger’s handler was
only passed messages higher than and equal to Level.INFO.

Luckily, it is very simple to set the levels for your handlers and loggers with the
setLevel() method, and it is possible to not send messages to your logger’s parent
with the logger’s setUseParentsHandlers(false) method. Listing 5.4 shows our
changes to Listing 5.2, where we modify the constructor to set all of the handlers at the
same level.

10: public GoodLoggerExample(Level l)

11: {

12: FileHandler fh = null;

13: ConsoleHandler ch = new ConsoleHandler();

14:

15: //This creates the logger!

16: m_log = Æ
Logger.getLogger(“org.pitfalls.GoodLoggerExample.logger”);

17: m_log.addHandler(ch);

18: //Try to create a FileHandler that writes it to file!

19: try

20: {

21: fh = new FileHandler(“log.xml”);

22: m_log.addHandler(fh);

23: }

24: catch (IOException ioexc)

25: {

26: ioexc.printStackTrace();

27: }

28:

29: /* This will set everything to the same level! */

30: m_log.setLevel(l);

31: m_log.setUseParentHandlers(false);

32: fh.setLevel(l);

33: ch.setLevel(l);

34: }

Listing 5.4 Better constructor—GoodLoggerExample.java

In Listing 5.4, we want to create our own ConsoleHandler to log user-friendly
messages to standard error, and we will continue to have our own FileHandler to
write XML messages to file. On line 13, we instantiate a new ConsoleHandler, and
on line 17, we add it to our logger. Finally, lines 29 to 33 fix the rest: we set the level of
the logger (and every handler) to the same level, and we set our logger to not send
messages to our parent’s handler. The result of this program is the expected output.

52 Item 5

Understanding the relationships of loggers and handlers and levels of granularity,
shown in Figure 5.2, is very important. Our examples in this pitfall were created to give
you an understanding of these relationships, and often, you will not want the same
levels of granularity for every handler. Most of the time, logs to the console will be
“user-friendly” warning messages, and log files may be debugging information for
programmers and system administrators. The fact that you can create your own han-
dlers, and set your logging levels at runtime, is very powerful. Studying this pitfall
should lead to a better understanding of the java.util.logging package.

Item 6: When Implementations of
Standard APIs Collide

Over the past three years, a plethora of XML processing software packages were
released. First there were proprietary APIs, and then as the SAX and DOM standards
evolved, vendors developed Java toolkits for developers to use. Developers began
writing programs with these APIs, and as the standards evolved, you changed your
code. As different toolkits used different levels of DOM compliancy, and as you inte-
grated more software into your baseline, you had to go through your entire codebase,
trying to determine which DOM API was needed for which application, and trying to
determine if two modules using different levels of DOM compliancy could run
together in the same application, since both used the org.w3c.dom.* classes, but
some were based on different underlying implementations and different levels of
DOM compliancy. If you started using one implementation of the DOM and later
switched to another implementation of the DOM, sometimes your code needed to be
tweaked. If you were one of the early adopters of processing XML in Java, you know
our pain.

The release of JDK 1.4 brought a little complexity to the issue, because classes such
as org.w3c.dom.* and org.xml.sax.* are now in the standard runtime environ-
ment, and thus read before your classpath which is chock full of your favorite XML JAR
files. Because of this, if you use a later implementation of SAX or DOM than the classes
in the JDK, or if you use a method that is implementation-specific, you may run into
problems. A good example can be seen in Listing 6.1, ScheduleSwitcher.java. Here we
simply parse an XML “schedule file,” with an example schedule shown in Listing 6.2.

001: package org.javapitfalls.item6;

002: import org.w3c.dom.*;

003: import javax.xml.parsers.*;

004: :

005: /**

006: * A simple class that demonstrates different functionality

007: * between DOM implementations

008: */

009: public class ScheduleSwitcher

010: {

011: /* The DOM document loaded in memory */

Listing 6.1 ScheduleSwitcher.java (continued)

When Implementations of Standard APIs Collide 53

012: Document m_doc = null;

013: public ScheduleSwitcher(String filename)

014: {

015: /* Parse a file */

016: try

017: {

018: DocumentBuilderFactory factory =

019: DocumentBuilderFactory.newInstance();

020: DocumentBuilder builder = factory.newDocumentBuilder();

021: m_doc = builder.parse(filename);

022: }

023: catch (Exception e)

024: {

025: System.err.println(“Error processing “ +

026: filename + “.” +

027: “Stack trace follows:”);

028: e.printStackTrace();

029: }

030: }

031:

032: /*

033: * A very simple method that switches values of

034: * days in an XML document and prints it out.

035: *

036: * @param a the value for one day

037: * @param b the value for another day

038: * @param keep a boolean value, designating if you

039: * want to keep this version of the DOM tree.

040: */

041: public void showSwitchedDays(String a , String b,

042: boolean keep)

043: {

044: Document newdoc = null;

045:

046: if (m_doc == null)

047: {

048: System.out.println(“Error - no document.. “);

049: return;

050: }

051:

052: /**

053: * If the keep variable was set, do the manipulation

054: * to the instance variable m_doc.. Otherwise, just

055: * do the manipulation of the copy of the tree.

056: *

057: */

058: if (!keep)

059: newdoc = (Document)m_doc.cloneNode(true);

060: else

Listing 6.1 (continued)

54 Item 6

061: newdoc = m_doc;

062:

063: /* Use the DOM API to switch days */

064: NodeList nl = newdoc.getElementsByTagName(“day”);

065: int len = nl.getLength();

066: for (int i = 0; i < len; i++)

067: {

068:

069: Element e = (Element)nl.item(i);

070:

071: if (e.getAttribute(“name”).equals(a))

072: {

073: e.setAttribute(“name”,b);

074: } else if (e.getAttribute(“name”).equals(b))

075: {

076: e.setAttribute(“name”, a);

077: }

078: }

079:

080: System.out.println(

081: newdoc.getDocumentElement().toString()

082:);

083:

084: }

085:

086: /* Print out the DOM Tree */

087: public void showDays()

088: {

089: System.out.println(

090: m_doc.getDocumentElement().toString()

091:);

092: }

093:

094: public static void main(String[] args)

095: {

096: if (args.length < 1)

097: {

098: System.err.println(“Usage: Argument must be the “ +

099: “filename of an XML file”);

100: System.exit(-1);

101: }

102: String filename = args[0];

103:

104: ScheduleSwitcher switcher = new ScheduleSwitcher(filename);

105:

106: System.out.println(“\nIf you switched “ +

107: “ the Wed & Thurs meetings “);

108: System.out.println(“this is what it would “ +

109: “look like:\n*******”);

Listing 6.1 (continued)

When Implementations of Standard APIs Collide 55

110:

111: switcher.showSwitchedDays(“wednesday”, “thursday”, false);

112:

113: System.out.println(“\nHere is the current “ +

114: “ schedule:\n********”);

115: switcher.showDays();

116:

117: }

118: }

Listing 6.1 (continued)

In our simple example, we have written a method, showSwitchedDays(),on line
41 of Listing 6.1, that switches the name attribute on the <day/> tag of an XML file by
manipulating the DOM and prints the resulting XML file to standard out. If the
boolean value keep is true, then the DOM manipulation affects the DOM tree instance
variable. If the Boolean value keep is false, then the method simply prints out a copy
of the switched schedule but keeps the original DOM in memory. On lines 106-109 of
Listing 6.1, we tell the class to print the meetings as if Wednesdays and Thursdays
were switched, but to not permanently alter the schedule. Listing 6.3 shows the output
of this program using the XML file in Listing 6.2, when we ran this with JDK 1.3.1, and
implementations of the DOM in the crimson.jar file.

<?xml version=”1.0”?>

<meetings>

<day name=”wednesday”>

<meeting desc=”romans”>

<member name=”ben”/><member name=”billy”/><member name=”chuck”/>

<member name=”dan”/><member name=”keith”/><member name=”kevin”/>

<member name=”matt d.”/><member name=”matt v.”/><member Æ
name=”rich”/>

<member name=”todd”/>

</meeting>

</day>

<day name=”thursday”>

<meeting desc=”all”>

<member name=”avery”/><member name=”catherine”/><member Æ
name=”dawn”/>

<member name=”doverly”/><member name=”gwen”/><member name=”heidi”/>

<member name=”holly”/><member name=”jenny”/><member name=”patrice”/>

<member name=”sandy b.”/><member name=”sandy c.”/><member Æ
name=”sarah”/>

<member name=”shelly”/><member name=”suzanne”/>

</meeting>

</day>

</meetings>

Listing 6.2 XML schedule file (schedule.xml)

56 Item 6

C:\pitfalls\week5>c:\jdk1.3.1\bin\java -classpath .;crimson.jar;jaxp.jar

ScheduleSwitcher schedule.xml

If you switched the Wed & Thurs meetings,

this is what it would look like:

<meetings>

<day name=”thursday”>

<meeting desc=”romans”>

<member name=”ben” /><member name=”billy” /><member name=”chuck” />

<member name=”dan” /><member name=”keith” /><member name=”kevin” />

<member name=”matt d.” /><member name=”matt v.” Æ
/><member name=”rich” />

<member name=”todd” />

</meeting>

</day>

<day name=”wednesday”>

<meeting desc=”all”>

<member name=”avery”/><member name=”catherine” Æ
/><member name=”dawn” />

<member name=”doverly”/><member name=”gwen” /><member name=”heidi” />

<member name=”holly”/><member name=”jenny”/><member name=”patrice”/>

<member name=”sandy b.”/><member name=”sandy c.”/><member

name=”sarah” />

<member name=”shelly” /><member name=”suzanne” />

</meeting>

</day>

</meetings>

Here is the current schedule:

<meetings>

<day name=”wednesday”>

<meeting desc=”romans”>

<member name=”ben” /><member name=”billy” /><member name=”chuck” />

<member name=”dan” /><member name=”keith” /><member name=”kevin” />

<member name=”matt d.” /><member name=”matt v.” /><member Æ
name=”rich” />

<member name=”todd” />

</meeting>

</day>

<day name=”thursday”>

<meeting desc=”all”>

<member name=”avery” /><member name=”catherine” Æ
/><member name=”dawn” />

<member name=”doverly” /><member name=”gwen” Æ
/><member name=”heidi” />

<member name=”holly” /><member name=”jenny” Æ
/><member name=”patrice” />

Listing 6.3 Output with JDK 1.3 and DOM implementation (continued)

When Implementations of Standard APIs Collide 57

<member name=”sandy b.”/><member name=”sandy c.”/><member Æ
name=”sarah” />

<member name=”shelly” /><member name=”suzanne” />

</meeting>

</day>

</meetings>

Listing 6.3 (continued)

Listing 6.3 has the expected output, and it ran correctly. As you can see, the
“Wednesday” and “Thursday” meetings were switched, but when the final schedule
was printed, the original DOM tree was printed out. However, when we upgraded our
application to JDK 1.4, we ran into problems. The result of running this in JDK 1.4 is
shown in Listing 6.4. As you can see, what ran fine in an earlier version of the JDK now
throws an exception. When we call cloneNode() on org.w3c.dom.Document on
line 27, we get a “HIERARCHY_REQUEST_ERR:” message! Looking into the docu-
mentation on the cloneNode()method, it is inherited from org.w3c.dom.Node,
and the documentation says that cloning Document, DocumentType, Entity, and
Notation nodes is implementation dependent.

C:\pitfalls\week5>java -classpath . ScheduleSwitcher schedule.xml

If you switched the Wed & Thurs meetings,

this is what it would look like:

org.apache.crimson.tree.DomEx: HIERARCHY_REQUEST_ERR: This node isn’t

allowed there. at

org.apache.crimson.tree.XmlDocument.changeNodeOwner(XmlDocument.java:115

6)

at

org.apache.crimson.tree.XmlDocument.changeNodeOwner(XmlDocument.java:117

7)

at org.apache.crimson.tree.XmlDocument.cloneNode(XmlDocument.java:1101)

at ScheduleSwitcher.showSwitchedDays(ScheduleSwitcher.java:27)

at ScheduleSwitcher.main(ScheduleSwitcher.java:68)

Exception in thread “main”

Listing 6.4 Output with JDK 1.4, with built-in DOM

So what should we do in a situation like this? Since there are many implementations
of DOM and SAX APIs, we are bound to run into these problems. Added to this
dilemma is the fact that standards and new implementations evolve quickly, and we
may want to use newer implementations of these standards before they are integrated

58 Item 6

into the JDK. Luckily, with the release of JDK 1.4, there is the Endorsed Standards
Override Mechanism (ESOM), which is used to replace implementations of these stan-
dard classes. Following is the complete list of the packages that can be overriden:

javax.rmi.CORBA

org.omg.CORBA,org.omg.CORBA.DynAnyPackage, org.omg.CORBA.ORBPackage,

org.omg.CORBA.portable,org.omg.CORBA.TypeCodePackage,org.omg.CORBA_2_3,

org.omg.CORBA_2_3.portable,org.omg.CosNaming,

org.omg.CosNaming.NamingContextExtPackage,

org.omg.CosNaming.NamingContextPackage, org.omg.Dynamic,

org.omg.DynamicAny,org.omg.DynamicAny.DynAnyFactoryPackage,

org.omg.DynamicAny.DynAnyPackage, org.omg.IOP ,

org.omg.IOP.CodecFactoryPackage, org.omg.IOP.CodecPackage,

org.omg.Messaging,

org.omg.PortableInterceptor,

org.omg.PortableInterceptor.ORBInitInfoPackage, org.omg.PortableServer,

org.omg.PortableServer.CurrentPackage,

org.omg.PortableServer.POAManagerPackage,

org.omg.PortableServer.POAPackage, org.omg.PortableServer.portable,

org.omg.PortableServer.ServantLocatorPackage, org.omg.SendingContext,

org.omg.stub.java.rmi, org.w3c.dom, org.xml.sax, org.xml.sax.ext,

org.xml.sax.helpers

As you can see, these include standard classes from the Object Management Group
(OMG) as well as the W3C. To take advantage of the ESOM, follow these steps:

1. Create a directory called endorsed in the jre/lib directory.

2. Copy your JAR file implementations of your APIs into that directory.

3. Run your application.

In our simple example, we followed these steps, and the application worked per-
fectly. It is sometimes difficult to stay away from methods that are implementation-
specific—as Document.cloneNode() was in this example. Remembering how to
override the standards with the use of the ESOM will make your life a lot easier!

Item 7: My Assertions Are Not Gratuitous!

In Java Pitfalls, we finished the book by discussing the emerging JSR concerning a Java
Assertion Facility. At the time, we suggested a mechanism that would allow an asser-
tion-like facility. As of JDK 1.4, the language now includes an assertion facility.

Many developers do not understand why or how to use assertions, and this has
caused them to go widely unused. Some developers use them improperly, causing
them to be ineffective or counterproductive to the development effort.

How to Use Assertions

When writing code, we make assumptions all of the time. Assertions are meant to cap-
ture those assumptions in the code. By capturing those assumptions, you move closer
to implementing a significant concept in quality software: design by contract.

My Assertions Are Not Gratuitous! 59

Design by Contract holds there are three concepts embodied in any piece of code:
preconditions, postconditions, and invariants. Preconditions involve the assumptions
about the state prior to the execution of code. Postconditions involve the assumptions
about the state after the execution of the code. Invariants capture the underlying
assumptions upon which the execution occurs.

Consider the following method signature:

public String lookupPlayer (int number)

In this method, I provide a service to look up a player by his number. In explaining
this signature, I have already specified a set of assumptions. The first assumption is
players do not have numbers greater than 99 (they don’t fit on a jersey well, and most
teams don’t have more than 100 players on their roster). Also, players do not have neg-
ative numbers either. Therefore, the preconditions are that we have a number provided
that is less than or equal to zero and less than or equal to 99. An invariant is to assume
that the list of players and numbers actually exists—that is, it has been initialized and
is properly available (note that this action is subject to its own set of assumptions). The
assumption on the postcondition is that there will be an actual String value returned
from the method (and not a null).

How many times have you seen a problem with the code being debugged by a set of
System.out.println() statements? This is because, essentially, the developer is
going back in and creating visibility to check against assumptions that are made in
writing the code. This can be relatively painless and easy for the developer who wrote
the code—at the time he or she wrote the code. However, this becomes quite painful for
others who may not understand what is going on inside the code.

Assertions can be thought of as automatic code checks. By writing assertions, you
capture your assumptions, so that an error will be thrown at the incorrect assumption
when the code is running. Even if a bug occurs that does not throw an Assertion-
Error, they still enable the developer to eliminate many possible assumptions as
causes of error.

There are really four conditions you should meet in order to determine that you do
not need to use assertions:

■■ You wrote and maintain all of the code in question.

■■ You will always maintain every piece of that code.

■■ You have analyzed to perfection all of the different scenarios that your code
may experience through some method like a formal code proof.

■■ You like and can afford to operate without a net.

With the exception of the last condition, if you have done all of these, you have
already realized that you need some assertionlike capability. You probably have
already littered your code with System.out.println()or log()statements trying
to give yourself places to start like that demonstrated in Listing 7.1.

60 Item 7

01: package org.javapitfalls.item7;

02:

03: public class AssertionExample {

04:

05: public AssertionExample() { }

06:

07: private void printLeague (String abbreviation) {

09: if (abbreviation.equals(“AL”)) {

10:

11: System.out.println(“I am in the American League!”);

12:

13: } else if (abbreviation.equals(“NL”)) {

14:

15: System.out.println(“I am in the National League!”);

16:

17: } else {

19: // I should never get here...

20: assert false;

22: }

23: }

24:

25: public static void main (String [] args) {

27: String al = “AL”;

28: String nl = “NL”;

29: String il = “IL”;

31: AssertionExample myExample = new AssertionExample();

33: myExample.printLeague(al);

34: myExample.printLeague(il);

35: myExample.printLeague(nl);

37: }

39: }

Listing 7.1 AssertionExample.java

So, we compile this code and the following happens:

C:\pitfallsBook\#7>javac AssertionExample.java

AssertionExample.java:20: warning: as of release 1.4, assert is a

keyword, and may not be used as an identifier

assert false ;

^

AssertionExample.java:20: not a statement

assert false ;

My Assertions Are Not Gratuitous! 61

^

AssertionExample.java:20: ‘;’ expected

assert false ;

2 errors

1 warning

What happened? I thought assertions were supported in JDK 1.4! I am using JDK
1.4. Well, as it turns out, for backward compatibility purposes, you have to specify a
flag in order to compile source with assertions in it.

So, you would want to compile it like this instead:

javac -source 1.4 AssertionExample.java

Now that I have successfully compiled my example, here is what I do to run it:

C:\pitfallsBook\#7>java -cp . org.javapitfalls.item7.AssertionExample

I am in the American League!

I am in the National League!

Notice that it didn’t throw an AssertionError when I passed in the “IL” abbrevi-
ation. This is because I didn’t enable assertions. The requirement to enable assertions is
so that your code will not have any performance defect by having the assertions within
the code when you choose not to use them. When assertions are not switched on, they
are effectively the same as empty statements.

C:\pitfallsBook\#7>java -ea -cp . Æ
org.javapitfalls.item7.AssertionExample

I am in the American League!

Exception in thread “main” java.lang.AssertionError

at org.javapitfalls.item7.AssertionExample.printLeague(Unknown Æ
Source)

at org.javapitfalls.item7.AssertionExample.main(Unknown Source)

Now the assertion is thrown, but it is not very descriptive as to which assertion was
the cause of the problem. In this simple example, this is not a problem; it is still very
easy to tell which assertion caused the problem. However, with many assertions (as is
good practice), we need to better distinguish between assertions. So if we change line
20 to read

assert false : “What baseball league are you playing in?”;

this will give us a more descriptive response:

C:\pitfallsBook\#7>java -ea -cp . Æ
org.javapitfalls.item7.AssertionExample

I am in the American League!

62 Item 7

Exception in thread “main” java.lang.AssertionError: What baseball Æ
league are you playing in?

at org.javapitfalls.item7.AssertionExample.printLeague(Unknown Æ
Source)

at org.javapitfalls.item7.AssertionExample.main(Unknown Source)

An important thing to note is that printLeague()is declared private. While the
example was meant to show assertions to mark unreachable conditions, it was
declared private in order to avoid confusion about an important point: You should never
use assertions to do precondition checks for public methods. When assertions are turned off,
you will not receive the benefit of any precondition checking. Furthermore, the
AssertionError is a relatively simple methodology for returning errors, and more
sophisticated mechanisms like typed exceptions would serve the cause better.

In Listing 7.2, we show how to use assertions to check postconditions.

01: package org.javapitfalls.item7;

02:

03: public class AnotherAssertionExample {

05: private double taxRate;

06:

07: public AnotherAssertionExample(double tax) {

09: taxRate = tax;

11: }

12:

13: private double returnMoney (double salary) {

15: double originalSalary = salary;

17: if (salary > 10000) salary = salary * (1 - taxRate);

19: if (salary > 25000) salary = salary * (1 - taxRate);

21: if (salary > 50000) salary = salary * (1 - taxRate);

23: assert salary > 0 : “They can’t take more than you have?”;

25: assert salary <= originalSalary : “You can’t come out ahead!”;

27: return salary;

29: }

30:

31: public static void main (String [] args) {

33: AnotherAssertionExample myExample = new Æ
AnotherAssertionExample(.3);

34: System.out.println(“Tax Rate of 30%\n”);

35: System.out.println(“Salary of 5000:”+myExample.returnMoney(5000));

36: System.out.println(“Salary of Æ
24000:”+myExample.returnMoney(24000));

37: System.out.println(“Salary of Æ
35000:”+myExample.returnMoney(35000));

38: System.out.println(“Salary of Æ
75000:”+myExample.returnMoney(75000));

39: // System.out.println(“Salary of Æ
75000:”+myExample.returnMoney(-75000));

40:

Listing 7.2 AnotherAssertionExample.java (continued)

My Assertions Are Not Gratuitous! 63

41: myExample = new AnotherAssertionExample(-.3);

42: System.out.println(“\n\nTax Rate of -30%\n”);

43: System.out.println(“Salary of 5000:”+myExample.returnMoney(5000));

44: System.out.println(“Salary of Æ
24000:”+myExample.returnMoney(24000));

45: System.out.println(“Salary of Æ
35000:”+myExample.returnMoney(35000));

47: }

49: }

Listing 7.2 (continued)

This shows how to check postconditions with an assertion. Here is the output from
this example:

C:\pitfallsBook\#7>java -ea -cp .

org.javapitfalls.item7.AnotherAssertionExample

Tax Rate of 30%

Salary of 5000:5000.0

Salary of 24000:16800.0

Salary of 35000:24500.0

Salary of 75000:36750.0

Tax Rate of -30%

Salary of 5000:5000.0

Exception in thread “main” java.lang.AssertionError: You can’t come out

ahead!

at

org.javapitfalls.item7.AnotherAssertionExample.returnMoney(Unknown Source)

at org.javapitfalls.item7.AnotherAssertionExample.main(Unknown

Source)

You can see that there are two assertions about the postconditions. First, we assert
that you cannot return with less than zero money, and then we assert that you cannot
return with more money than you started. There are examples of how to break both
assertions: a negative salary (commented out) and a negative tax rate. The first exam-
ple is commented out, because execution stops after the assertion error, and we wanted
to demonstrate that the second assertion would also work.

Now that we have covered the assertion basics, we will go over some other interest-
ing things about assertions. First, you can enable and disable assertions as desired by
specifying them in the switches to the JVM. Here are some more examples:

■■ Enable all assertions:

java -ea org.javapitfalls.item7.MyClass

■■ Enable system assertions only:

java -esa org.javapitfalls.item7.MyClass

64 Item 7

■■ Enable all assertions in the org.javapitfalls package and its sub-packages:

java -ea:org.javapitfalls org.javapitfalls.item7.MyClass

■■ Enable all assertions in the org.javapitfalls package and its sub-packages,
but disable the ones in AnotherAssertionExample:

java -ea:org.javapitfalls -da:

org.javapitfalls.item7.AnotherAssertionExample

org.javapitfalls.item7.MyClass

Also, there are situations where you want to require that assertions be enabled in
your class. An example would be if you had some safety-sensitive class that should
operate only if the assertions are true (in addition to normal control checking). Listing
7.3 shows our previous example with assertions always on.

01: package org.javapitfalls.item7;

02:

03: public class AnotherAssertionExample {

04:

05: static {

06: boolean assertions = false;

07: assert assertions = true;

08:

09: if (assertions==false)

10: throw new RuntimeException(“You must enable assertions Æ
to use this class.”);

11: }

12:

13: private double taxRate;

14: // [...] remaining code Identical to listing 7.2

Listing 7.3 AnotherAssertionExample.java (modified)

So, if you run this example without assertions enabled, you receive the following
message:

C:\pitfallsBook\#7>java -cp . Æ
org.javapitfalls.item7.AnotherAssertionExample

Exception in thread “main” java.lang.ExceptionInInitializerError

Caused by: java.lang.RuntimeException: You must enable assertions to use

this class.

at org.javapitfalls.item7.AnotherAssertionExample.<clinit>(Unknown

Source)

My Assertions Are Not Gratuitous! 65

In closing, there are a few rules to follow in dealing with assertions:

■■ DO use assertions to test postconditions on methods.

■■ DO use assertions to test places where you believe control flow should not execute.

■■ DO NOT use assertions to test preconditions on public methods.

■■ DO use assertions to test preconditions on helper methods.

■■ DO NOT use assertions that affect the normal operation of the code.

Item 8: The Wrong Way to Search a DOM2

All well-formed XML files have a tree structure. For example, Listing 8.1 can be repre-
sented by a tree with two ADDRESS nodes:

01: <?xml version=”1.0”?>

02: <!DOCTYPE ADDRESS_BOOK SYSTEM “abml.dtd”>

03: <ADDRESS_BOOK>

04: <ADDRESS>

05: <NAME>Joe Jones </NAME>

06: <STREET>4332 Sunny Hill Road </STREET>

07: <CITY>Fairfax</CITY>

08: <STATE>VA</STATE>

09: <ZIP>21220</ZIP>

10: </ADDRESS>

11: <ADDRESS>

12: <NAME>Sterling Software </NAME>

13: <STREET> 7900 Sudley Road</STREET>

14: <STREET> Suite 500</STREET>

15: <CITY>Manassas</CITY>

16: <STATE>VA </STATE>

17: <ZIP>20109 </ZIP>

18: </ADDRESS>

19: </ADDRESS_BOOK>

Listing 8.1 myaddresses.xml

The pitfall is assuming the DOM tree will look exactly like your mental picture of
the XML document. Let’s say we have a task to find the first NAME element of the first
ADDRESS. By looking at Listing 8.1, you may say that the third node in the DOM (line
05) is the one we want. Listing 8.2 attempts to find the node in that way.

66 Item 8

2 This pitfall was first printed by JavaWorld (www.javaworld.com) in the article, “An API’s looks can
be deceiving”, June 2001, (http://www.javaworld.com/javaworld/jw-06-2001/jw-0622-traps.html?)
and is reprinted here with permission. The pitfall has been updated from reader feedback.

01: package org.javapitfalls.item8;

02:

03: import javax.xml.parsers.*;

04: import java.io.*;

05: import org.w3c.dom.*;

06:

07: public class BadDomLookup

08: {

09: public static void main(String args[])

10: {

11: try

12: {

13: if (args.length < 1)

14: {

15: System.out.println(“USAGE: “ +

16: “org.javapitfalls.item8.BadDomLookup xmlfile”);

17: System.exit(1);

18: }

19:

20: DocumentBuilderFactory dbf =

21: DocumentBuilderFactory.newInstance();

22: DocumentBuilder db = dbf.newDocumentBuilder();

23: Document doc = db.parse(new File(args[0]));

24:

25: // get first Name of first Address

26: NodeList nl = doc.getElementsByTagName(“ADDRESS”);

27: int count = nl.getLength();

28: System.out.println(“# of \”ADDRESS\” elements: “ + count);

29:

30: if (count > 0)

31: {

32: Node n = nl.item(0);

33: System.out.println(“This node name is: “ + Æ
n.getNodeName());

34: // get the NAME node of this ADDRESS node

35: Node nameNode = n.getFirstChild();

36: System.out.println(“This node name is: “

37: + nameNode.getNodeName());

38: }

39: } catch (Throwable t)

40: {

41: t.printStackTrace();

42: }

43: }

44: }

45:

Listing 8.2 BadDomLookup.java

The Wrong Way to Search a DOM 67

The simple program, BadDomLookup, uses the Java API for XML Processing (JAXP)
to parse the DOM (this example was tested with both Xerces and Sun’s default JAXP
parser). After we get the W3C Document object, we retrieve a NodeList of ADDRESS
elements (line 26) and then look to get the first NAME element by accessing the first
child under ADDRESS (line 35).

Upon executing Listing 8.2, we get

e:\classes\org\javapitfalls\>java org.javapitfalls ... BadDomLookup Æ
myaddresses.xml

of “ADDRESS” elements: 2

This node name is: ADDRESS

This node name is: #text

The result clearly shows that the program fails to accomplish its task. Instead of an
ADDRESS node, we get a text node. What happened? Unfortunately, the complexity of
the DOM implementation is different from our simple conceptual model. The primary
difference is that the DOM tree includes text nodes for what is called “ignorable white-
space,” which is the whitespace (like a return) between tags. In our example, there is a
text node between the ADDRESS and the first NAME element. The W3C XML specifica-
tion states, “An XML processor must always pass all characters in a document that are
not markup through to the application. A validating XML processor must also inform
the application which of these characters constitute white space appearing in element
content.”3 To visualize these whitespace nodes, Figure 8.1 displays all the DOM nodes
in myaddresses.xml in a JTree.

There are three solutions to this problem, and our rewrite of the program demon-
strates two of them. Listing 8.3, GoodDomLookup.java, fixes the problem demonstrated
above in two ways.

Figure 8.1 Display of all DOM nodes in myaddresses.xml.

68 Item 8

3 Extensible Markup Language (XML) 1.0 (Second Edition). W3C recommendation; October 6, 2000;
http://www.w3.org/TR/REC-xml.

001: package org.javapitfalls.item8;

002:

003: import javax.xml.parsers.*;

004: import java.io.*;

005: import org.w3c.dom.*;

006:

007: class DomUtil

008: {

009: public static boolean isBlank(String buf)

010: {

011: if (buf == null)

012: return false;

013:

014: int len = buf.length();

015: for (int i=0; i < len; i++)

016: {

017: char c = buf.charAt(i);

018: if (!Character.isWhitespace(c))

019: return false;

020: }

021:

022: return true;

023: }

024:

025: public static void normalizeDocument(Node n)

026: {

027: if (!n.hasChildNodes())

028: return;

029:

030: NodeList nl = n.getChildNodes();

031: for (int i = 0; i < nl.getLength(); i++)

032: {

033: Node cn = nl.item(i);

034: if (cn.getNodeType() == Node.TEXT_NODE &&

035: isBlank(cn.getNodeValue()))

036: {

037: n.removeChild(cn);

038: i--;

039: }

040: else

041: normalizeDocument(cn);

042: }

043: }

044:

045: public static Element getFirstChildElement(Element elem)

046: {

047: if (!elem.hasChildNodes())

048: return null;

Listing 8.3 GoodDomLookup.java (continued)

The Wrong Way to Search a DOM 69

049:

050: for (Node cn = elem.getFirstChild(); cn != null;

051: cn = cn.getNextSibling())

052: {

053: if (cn.getNodeType() == Node.ELEMENT_NODE)

054: return (Element) cn;

055: }

056:

057: return null;

058: }

059: }

060:

061: public class GoodDomLookup

062: {

063: public static void main(String args[])

064: {

065: try

066: {

// ... command line check omitted for brevity ...

073:

074: DocumentBuilderFactory dbf =

075: DocumentBuilderFactory.newInstance();

076: DocumentBuilder db = dbf.newDocumentBuilder();

077: Document doc = db.parse(new File(args[0]));

078:

079: // get first Name of first Address

080: System.out.println(“Method #1: Skip Ignorable White Æ
space...”);

081: NodeList nl = doc.getElementsByTagName(“ADDRESS”);

082: int count = nl.getLength();

083: System.out.println(“# of \”ADDRESS\” elements: “ + count);

084:

085: if (count > 0)

086: {

087: Node n = nl.item(0);

088: System.out.println(“This node name is: “ + Æ
n.getNodeName());

089: // get the NAME node of this ADDRESS node

090: Node nameNode = Æ
DomUtil.getFirstChildElement((Element)n);

091: System.out.println(“This node name is: “ +

092: nameNode.getNodeName());

093: }

094:

095: // get first Name of first Address

096: System.out.println(“Method #2: Normalize document...”);

097: DomUtil.normalizeDocument(doc.getDocumentElement());

098: // Below is exact code in BadDomLookup

Listing 8.3 (continued)

70 Item 8

099: nl = doc.getElementsByTagName(“ADDRESS”);

100: count = nl.getLength();

101: System.out.println(“# of \”ADDRESS\” elements: “ +

count);

102:

103: if (count > 0)

104: {

105: Node n = nl.item(0);

106: System.out.println(“This node name is: “ +

107: n.getNodeName());

108: // get the NAME node of this ADDRESS node

109: Node nameNode = n.getFirstChild();

110: System.out.println(“This node name is: “ +

111: nameNode.getNodeName());

112: }

113:

114: } catch (Throwable t)

115: {

116: t.printStackTrace();

117: }

118: }

119: }

120:

Listing 8.3 (continued)

The key class in GoodDomLookup is the DomUtil class that has three methods.
Those three methods solve the DOM lookup problem in two ways. The first method is
to retrieve the first child element (and not the first node) when performing a lookup.
The implementation of the getFirstChildElement()method will skip any inter-
mediate nodes that are not of type ELEMENT_NODE. The second approach to the prob-
lem is to eliminate all “blank” text nodes from the document. While both solutions will
work, the second approach may remove some whitespace not considered ignorable.

A run of GoodDomLookup.java gives us the following:

e:\classes\org\javapitfalls >java org.javapitfalls.item8.GoodDomLookup

myaddresses.xml

Method #1: Skip Ignorable White space...

of “ADDRESS” elements: 2

This node name is: ADDRESS

This node name is: NAME

Method #2: Normalize document...

of “ADDRESS” elements: 2

This node name is: ADDRESS

This node name is: NAME

The Wrong Way to Search a DOM 71

A better way to access nodes in a DOM tree is to use an XPath expression. XPath is
a W3C standard for accessing nodes in a DOM tree. Standard API methods for evalu-
ating XPath expressions are part of DOM Level 3. Currently, JAXP supports only DOM
Level 2. To demonstrate how easy accessing nodes is via XPath, Listing 8.4 uses the
DOM4J open source library (which includes XPath support) to perform the same task
as GoodDomLookup.java.

01: package org.javapitfalls.item8;

02:

03: import javax.xml.parsers.*;

04: import java.io.*;

05: import org.w3c.dom.*;

06: import org.dom4j.*;

07: import org.dom4j.io.*;

08:

09: public class XpathLookup

10: {

11: public static void main(String args[])

12: {

13: try

14: {

15: if (args.length < 1)

16: {

17: System.out.println(“USAGE: “ +

18: “org.javapitfalls.item8.BadDomLookup xmlfile”);

19: System.exit(1);

20: }

21:

22: DocumentBuilderFactory dbf =

23: DocumentBuilderFactory.newInstance();

24: DocumentBuilder db = dbf.newDocumentBuilder();

25: org.w3c.dom.Document doc = db.parse(new File(args[0]));

26:

27: DOMReader dr = new DOMReader();

28: org.dom4j.Document xpDoc = dr.read(doc);

29: org.dom4j.Node node = xpDoc.selectSingleNode(

30: “/ADDRESS_BOOK/ADDRESS[1]/NAME”);

31: System.out.println(“Node name : “ + node.getName());

32: System.out.println(“Node value: “ + node.getText());

33: } catch (Exception e)

34: {

35: e.printStackTrace();

36: }

37: }

38: }

39:

Listing 8.4 XpathLookup.java

72 Item 8

A run of XpathLookup.java on myaddresses.xml produces the following output:

E:\classes\org\javapitfalls>javaorg.javapitfalls.item8.XpathLookup Æ
myaddresses.xml

Node name : NAME

Node value: Joe Jones

The XpathLookup.java program uses the selectSingleNode()method in the
DOM4J API with an XPath expression as its argument. The XPath recommendation can
be viewed at http://www.w3.org/TR/xpath. It is important to understand that eval-
uation of XPath expressions will be part of the org.w3c.dom API when DOM Level 3 is
implemented by JAXP. In conclusion, when searching a DOM, remember to handle
whitespace nodes, or better, use XPath to search the DOM, since its robust expression
syntax allows very fine-grained access to one or more nodes.

Item 9: The Saving-a-DOM Dilemma

One of the motivations for JAXP was to standardize the creation of a DOM. A DOM can
be created via parsing an existing file or instantiating and inserting the nodes individ-
ually. JAXP abstracts the parsing operation via a set of interfaces so that different XML
parsers can be easily used. Figure 9.1 shows a simple lifecycle of a DOM.

Figure 9.1 focuses on three states of a DOM: New, Modified, and Persisted. The New
state can be reached either by instantiating a DOM object via the new keyword or by
loading an XML file from disk. This “loading” operation action invokes a parser to
parse the XML file. An edit, insert, or delete action moves the DOM to the modified

Figure 9.1 DOM lifecycle.

Modified

PersistedNew

XML
File

Load

XML
File

Save

Create Destroy

Save*

Edit, Ins, Del

Save*

The Saving-a-DOM Dilemma 73

Figure 9.2 DomEditor saving a DOM.

state. The Save action transitions the DOM to the Persisted state. The asterisk by the
save operation indicates that Save is implemented by saving the DOM to an XML file
(the “save” operation without the asterisk). An enhancement to the DomViewer pro-
gram demonstrated in Item 8 is to allow editing of the DOM nodes and then save the
modified DOM out to a file (persist it). Figure 9.2 is a screen shot of the DomEditor pro-
gram that implements that functionality.

When implementing the save operation in the DomEditor, we run into a dilemma
on how to implement saving the DOM. Unfortunately, we have too many ways to save a
DOM, and each one is different. The current situation is that saving a DOM depends on
which DOM implementation you choose. The dilemma is picking an implementation
that will not become obsolete with the next version of the parser. In this item, we will
demonstrate three approaches to saving a DOM. Each listing will perform the same
functionality: load a document from a file and save the DOM to the specified output file.
The toughest part of this dilemma is the nonstandard and nonintuitive way prescribed
by Sun Microsystems and implemented in JAXP to perform the save. The JAXP method
for saving a DOM is to use a default XSLT transform that copies all the nodes of the
source DOM (called a DOMSource) into an output stream (called a StreamResult). List-
ing 9.1 demonstrates saving an XML document via JAXP.

01: package org.javapitfalls.item9;

02:

03: import javax.xml.parsers.*;

Listing 9.1 JaxpSave.java

74 Item 9

04: import javax.xml.transform.*;

05: import javax.xml.transform.dom.*;

06: import javax.xml.transform.stream.*;

07: import java.io.*;

08: import org.w3c.dom.*;

09:

10: class JaxpSave

11: {

12: public static void main(String args[])

13: {

14: try

15: {

// ... command-line check omitted for brevity ...

22:

23: // load the document

24: DocumentBuilderFactory dbf =

25: DocumentBuilderFactory.newInstance();

26: DocumentBuilder db = dbf.newDocumentBuilder();

27: Document doc = db.parse(new File(args[0]));

28: String systemValue = doc.getDoctype().getSystemId();

29:

30: // save to output file

31: File f = new File(args[1]);

32: FileWriter fw = new FileWriter(f);

33:

34: /* write method USED To be in Sun’s XmlDocument class.

35: The XmlDocument class preceded JAXP. */

36:

37: // Currently only way to do this is via a transform

38: TransformerFactory tff = Æ
TransformerFactory.newInstance();

39: // Default transform is a copy

40: Transformer tf = tff.newTransformer();

41: tf.setOutputProperty(OutputKeys.DOCTYPE_SYSTEM, Æ
systemValue);

42: DOMSource ds = new DOMSource(doc.getDocumentElement());

43: StreamResult sr = new StreamResult(fw);

44: tf.transform(ds, sr);

45: fw.close();

46: } catch (Throwable t)

47: {

48: t.printStackTrace();

49: }

50: }

51: }

Listing 9.1 (continued)

The Saving-a-DOM Dilemma 75

While JAXP is the “official” API distributed with Sun’s JDK, using a transform to
save a DOM is not recommended. It is nonintuitive and not close to the proposed W3C
DOM Level 3 standard discussed next. The method to perform the save via JAXP uses
the XSLT classes in JAXP. Specifically, a TransformerFactory is created, which in turn is
used to create a transformer. A transform requires a source and a result. There are var-
ious different types of sources and results. Line 40 of Listing 9.1 is the key to under-
standing the source, since it creates the default transformer. This line is key because
normally an XSLT transform is performed via an XSLT script; however, since we are
only interested in a node-for-node copy, we don’t need a script, which is provided by
the no-argument newTransformer()method. This way the “default” transformer
provides the copy functionality. There is another newTransformer(Source s) that
accepts an XSLT source script. To sum up, once we have a transformer, a source, and a
result, the transform operation will perform the copy and thus serialize the DOM. One
extra step is necessary if we want to preserve the Document Type declaration from the
source document. Line 41 sets an output property on the transformer to add a Docu-
ment Type declaration to the result document, which we set to be the same value as the
source document.

Why has JAXP not defined the standard for saving a DOM? Simply because the
DOM itself is not a Java standard but a W3C standard. JAXP currently implements
DOM Level 2. The W3C is developing an extension to the DOM called DOM Level 3 to
enhance and standardize the use of the DOM in multiple areas. Table 9.1 details the
various parts of the DOM Level 3 specification.

Table 9.1 DOM Level 3 Specifications

DOM LEVEL 3 SPECIFICATIONS DESCRIPTION

DOM Level 3 Core Base set of interfaces describing the
document object model. Enhanced in this
third version.

DOM Level 3 XPath Specification A set of interfaces and methods to access a
DOM via XPATH expressions.

DOM Level 3 Abstract Schemas This specification defines two sub-specifi-
and Load and Save Specification catons: the Abstract Schemas specification

and the Load and Save specification. The
Abstract Schemas specification represents
abstract schemas (DTDs and schemas) in
memory. The Load and Save specification
specifies the parsing and saving of DOMs.

DOM Level 3 Events Specification This specification defines an event
generation, propagation, and handling
model for DOM events. It builds on the
DOM Level 2 event model.

DOM Level 3 Views and Formatting This specification defines interfaces to
represent a calculated view (presentation)
of a DOM. It builds on the DOM Level 2
View model.

76 Item 9

Table 9.2 DOM Level 3 Load and Save Interfaces

W3C DOM LEVEL 3 LS INTERFACES DESCRIPTION

DOMImplementationLS A DOMImplementation interface
that provides factory methods for
creating the DOMWriter,
DOMBuilder, and
DOMInputSource objects.

DOMBuilder A parser interface.

DOMInputSource An interface that encapsulates
information about the document to
be loaded.

DOMEntityResolver An interface to provide a method for
applications to redirect references to
external entities.

DOMBuilderFilter An interface to allow element nodes
to be modified or removed as they
are encountered during parsing.

DOMWriter An interface for serializing DOM
Documents.

DocumentLS An extended document interface
with built-in load and save methods.

ParseErrorEvent Event fired if there is an error in
parsing.

The part of the DOM specification that solves our dilemma is the specification to
Load and Save a DOM. Table 9.2 details the interfaces defined in the specification. It is
important to note that JAXP will even change its method for bootstrapping parsers,
since its current method is slightly different than the DOM Level 3 load interfaces
(specifically, DOMBuilder versus DocumentBuilder).

The Xerces parser implements the DOM Level 3 specification. Listing 9.2 uses the
Xerces parser to demonstrate both the loading and saving of a DOM via the DOM
Level 3 standard.

01: package org.javapitfalls.item9;

02:

03: import org.apache.xerces.jaxp.*;

04: import org.apache.xerces.dom3.ls.*;

05: import org.apache.xerces.dom.DOMImplementationImpl;

06: import org.apache.xerces.dom3.ls.DOMImplementationLS;

Listing 9.2 XercesSave.java (continued)

The Saving-a-DOM Dilemma 77

07:

08: import javax.xml.parsers.*;

09: import java.io.*;

10: import org.w3c.dom.*;

11:

12: class XercesSave

13: {

14: public static void main(String args[])

15: {

16: try

17: {

// ... command line check omitted for brevity ...

24:

25: // Xerces 2 implements DOM Level 3

26: // get DOM implementation

27: DOMImplementationLS domImpl =

28: (DOMImplementationLS) Æ
DOMImplementationImpl.getDOMImplementation();

29:

30: // Create a DOM Level 3 - DOMBuilder

31: DOMBuilder db =

32: domImpl.createDOMBuilder(Æ
DOMImplementationLS.MODE_SYNCHRONOUS);

33: DOMInputSource dis = domImpl.createDOMInputSource();

34: dis.setByteStream(new FileInputStream(args[0]));

35: Document doc = db.parse(dis);

36:

37: // save to output file

38: FileOutputStream fos = new FileOutputStream(args[1]);

39:

40: // create a DOM Writer

41: DOMWriter writer = domImpl.createDOMWriter();

42: writer.writeNode(fos, doc);

43:

44: fos.close();

45: } catch (Throwable t)

46: {

47: t.printStackTrace();

48: }

49: }

50: }

51:

Listing 9.2 (continued)

XercesSave.java uses the “LS” (which stands for Load and Save) version of the
DOMImplemenation to create the DOMBuilder (line 31) and DOMWriter (line 41)

78 Item 9

objects. Once created, the DOMBuilder creates the DOM via the parse()method, and
the DOMWriter saves the DOM via the writeNode() method. The writeNode()
method can write either all or part of a DOM.

One final implementation worth mentioning is the load and save operations in the
Java Document Object Model (JDOM). JDOM is a reimplementation of DOM for Java
and is optimized for seamless integration into the Java platform. JDOM stresses ease of
use for Java developers, whereas the W3C DOM is designed to be language-neutral
(specified in CORBA IDL) and then provides bindings to specific languages. Of all the
examples in this item, the JDOM implementation is the simplest; however, its func-
tionality often lags behind the W3C DOM; its Document class is not a subclass of the
W3C Document class and is thus incompatible with third-party software that expects
a W3C DOM as an argument (although conversion is provided). Listing 9.3 demon-
strates the load and save operations in JDOM.

01: package org.javapitfalls.item9;

02:

03: import org.jdom.*;

04: import org.jdom.input.*;

05: import org.jdom.output.*;

06: import java.io.*;

07:

08: class JdomSave

09: {

10: public static void main(String args[])

11: {

12: try

13: {

// ... command line check omitted for brevity ...

20:

21: // load the document

22: DOMBuilder db = new DOMBuilder();

23: Document doc = db.build(new File(args[0]));

24:

25: // save to output file

26: FileOutputStream fos = new FileOutputStream(args[1]);

27: XMLOutputter xout = new XMLOutputter();

28: xout.output(doc, fos);

29: fos.close();

30: } catch (Throwable t)

31: {

32: t.printStackTrace();

33: }

34: }

35: }

36:

Listing 9.3 JdomSave.java

The Saving-a-DOM Dilemma 79

Like the W3C Load and Save specification, JDOM also uses a DOMBuilder class
(but bootstraps it differently) and then builds an org.jdom.Document (line 23). It is
important to note that a JDOM Document is NOT a W3C Document. To save the JDOM
Document, an XMLOutputter class is instantiated that can output() (line 28) a document.

All three implementations of the program (JaxpSave, XercesSave, and JdomSave)
produce nearly identical outputs, and thus it is not necessary to list them here. In con-
clusion, at this time of rapid evolution of the DOM, the safest bet is to align your code
to the W3C standards and implementations that follow them. Thus, to save a DOM, the
Xerces implementation is currently the best choice.

Item 10: Mouse Button Portability

Unfortunately for cross-platform computing, all computer mice are not created equal.
There are one-button mice, two-button mice, three-button mice, and two-button-with-
mouse-wheel mice. Like the AWT, to cover all of these options, Java initially took a
least common denominator (LCD) approach that supported receiving a single mouse
event and using modifiers and modifier keys to differentiate between the different
types. A second problem Java programmers encounter regarding the mouse is that the
Java platform evolves its mouse support with each major release, adding support for
new features (like mouse wheels) and new convenience methods. Table 10.1 lists the
interfaces and methods for capturing mouse events.

Table 10.1 Mouse Event Interfaces

INTERFACE METHOD DESCRIPTION

MouseListener mouseClicked Invoked when a mouse is
clicked on a component

mousePressed Invoked when a mouse is
pressed

mouseReleased Invoked when a mouse is
released

mouseEntered Invoked when a mouse
enters a component’s bounds

mouseExited Invoked when a mouse exits
a component’s bounds

MouseMotionListener mouseDragged Invoked when a mouse
button is pressed on a
component and then dragged

mouseMoved Invoked when a mouse is
moved around a component

MouseWheelListener mouseWheelMoved Invoked when the mouse
wheel is rotated

80 Item 10

Figure 10.1 BadRightMouseButton on Windows (top) and Mac OS X (bottom).

A common problem is an application that needs to process clicks from a right mouse
button across platforms. For example, say we had an application that captured right
mouse clicks to both display a context-sensitive popup menu and change the mode of
a tool from select, on the left mouse click, to select and execute for a right mouse click.
Figure 10.1 displays the user interface of a simple application to capture these two
activities of a right mouse click. Figure 10.1 shows the application run on both Win-
dows NT and Mac OSX, since our Java application supports both operating systems.

Listing 10.1 displays the source code for BadRightMouseButton.java.

01: /* BadRightMouseButton.java */

02: import java.awt.event.*;

03: import java.awt.*;

04: import javax.swing.*;

05:

06: public class BadRightMouseButton extends JFrame implements

MouseListener

07: {

08: public BadRightMouseButton()

09: {

10: super(“Bad Right Mouse Button”);

11:

12: JLabel l = new JLabel(“Right Mouse Click here.”);

13: getContentPane().add(“Center”, l);

14:

15: addMouseListener(this);

16:

17: setSize(400,200);

18: setLocation(100,100);

19: setVisible(true);

20: addWindowListener(new WindowAdapter()

21: {

22: public void windowClosing(WindowEvent evt)

Listing 10.1 BadRightMouseButton.java (continued)

Mouse Button Portability 81

23: {

24: System.exit(1);

25: }

26: });

27:

28: }

29:

30: public static void main(String [] args)

31: {

32: try

33: {

34: BadRightMouseButton win = new BadRightMouseButton();

35:

36: } catch (Throwable t)

37: {

38: t.printStackTrace();

39: }

40: }

41:

42: public void mouseClicked(MouseEvent e)

43: {

44: int modifiers = e.getModifiers();

45: if ((modifiers & InputEvent.BUTTON1_MASK) == Æ
InputEvent.BUTTON1_MASK)

46: System.out.println(“Button 1 clicked.”);

47:

48: if ((modifiers & InputEvent.BUTTON2_MASK) == Æ
InputEvent.BUTTON2_MASK)

49: System.out.println(“Button 2 clicked.”);

50:

51: if ((modifiers & InputEvent.BUTTON3_MASK) == Æ
InputEvent.BUTTON3_MASK))

52: System.out.println(“Button 3 clicked.”);

53:

54: // modifier keys

55: System.out.println(“isControlDown? “ + e.isControlDown());

56: System.out.println(“isMetaDown? “ + e.isMetaDown());

57: System.out.println(“isAltDown? “ + e.isAltDown());

58: System.out.println(“isShiftDown? “ + e.isShiftDown());

59: System.out.println(“isAltGraphDown? “ + e.isAltGraphDown());

60:

61: /* 1.4 methods

62: int buttonNumber = e.getButton();

63: System.out.println(“Button # is : “ + buttonNumber);

64:

65: int mods = e.getModifiersEx();

66: System.out.println(“Modifiers: “ + Æ
InputEvent.getModifiersExText(mods));

67: */

Listing 10.1 (continued)

82 Item 10

68:

69: // is this a Popup Trigger?

70: System.out.println(“In mouseClicked(), isPopupTrigger? “ + Æ
e.isPopupTrigger());

71: }

72:

73: public void mousePressed(MouseEvent e)

74: { }

75: public void mouseReleased(MouseEvent e)

76: { }

77: public void mouseEntered(MouseEvent e)

78: { }

79: public void mouseExited(MouseEvent e)

80: { }

81: }

Listing 10.1 (continued)

JDK 1.4 has added some new methods as demonstrated (but commented out) in
lines 62 and 65. These are additional convenience methods that enable you to eliminate
the need for ANDing the modifier integer with the constant flags (lines 45, 48, and 51).

Here is a run of BadRightMouseButton on Windows with a two-button mouse with
a mouse wheel. When the program was executed, the right mouse button was clicked,
followed by the left mouse button and then the mouse wheel. This produced the fol-
lowing println statements:

>>>java BadRightMouseButton (on Windows NT with 2 button mouse with

mousewheel)

Button 3 clicked.

isControlDown? false

isMetaDown? true

isAltDown? false

isShiftDown? false

isAltGraphDown? false

In mouseClicked(), isPopupTrigger? false

Button 1 clicked.

isControlDown? false

isMetaDown? false

isAltDown? false

isShiftDown? false

isAltGraphDown? false

In mouseClicked(), isPopupTrigger? false

Button 2 clicked.

isControlDown? false

isMetaDown? false

isAltDown? true

Mouse Button Portability 83

isShiftDown? false

isAltGraphDown? false

In mouseClicked(), isPopupTrigger? false

Here is a run of BadRightMouseButton.java on Mac OSX with a single-button
mouse. When the program was executed, the single mouse button was clicked (which
maps to button 1), then the Ctrl key was held and the mouse button clicked, then the
special “apple” key was held and the mouse button clicked.

>>>java BadRightMouseButton (on MacOSX with a single mouse button)

Button 1 clicked.

isControlDown? false

isMetaDown? false

isAltDown? false

isShiftDown? false

isAltGraphDown? false

In mouseClicked(), isPopupTrigger? false

Button 2 clicked.

isControlDown? true

isMetaDown? false

isAltDown? true

isShiftDown? false

isAltGraphDown? false

In mouseClicked(), isPopupTrigger? false

Button 3 clicked.

isControlDown? false

isMetaDown? true

isAltDown? false

isShiftDown? false

isAltGraphDown? false

In mouseClicked(), isPopupTrigger? false

There are two problems you should notice when examining the results from both
operating systems besides the fact that they are not consistent. First, there is no clear
indication of a right mouse button click even though we know that the Windows
mouse clearly has a right and left mouse button. Instead of “sides” of the mouse, we
have the ability in the InputEvent class (which is the parent class of MouseEvent) to
check which button was clicked: button 1, 2, or 3. Unfortunately, there is no way to cor-
relate a button with a side for a cross-platform application. The second problem is that
the call to isPopupTrigger()has always returned false when we know that a right-
button mouse click is the trigger on Windows for a popup and the Ctrl-mouse click
combination is the trigger on the Mac. Listing 10.2, GoodRightMouseButton.java,
solves both of these problems.

84 Item 10

01: /* GoodRightMouseButton.java */

02: import java.awt.event.*;

03: import java.awt.*;

04: import javax.swing.*;

05:

06: public class GoodRightMouseButton extends JFrame implements Æ
MouseListener

07: {

08: public GoodRightMouseButton()

09: {

// ... constructor identical to Listing #10.1

28: }

29:

30: public static void main(String [] args)

31: {

32: try

33: {

34: GoodRightMouseButton win = new GoodRightMouseButton();

35:

36: } catch (Throwable t)

37: {

38: t.printStackTrace();

39: }

40: }

41:

42: public void mouseClicked(MouseEvent e)

43: {

// ... getModifiers() code Identical to listing 10.1 ...

68:

69: // is this a Popup Trigger?

70: System.out.println(“In mouseClicked(), isPopupTrigger? “ + Æ
e.isPopupTrigger());

71:

72: // Use SwingUtilities to disambiguate

73: boolean lb = SwingUtilities.isLeftMouseButton(e);

74: boolean mb = SwingUtilities.isMiddleMouseButton(e);

75: boolean rb = SwingUtilities.isRightMouseButton(e);

76:

77: System.out.println(“Left button? “ + lb);

78: System.out.println(“Middle button? “ + mb);

79: System.out.println(“Right button? “ + rb);

80: }

81:

82: public void mousePressed(MouseEvent e)

Listing 10.2 GoodRightMouseButton.java (continued)

Mouse Button Portability 85

83: {

84: // is this a Popup Trigger?

85: System.out.println(“In mousePressed(), isPopupTrigger? “ + Æ
e.isPopupTrigger());

86: }

87: public void mouseReleased(MouseEvent e)

88: {

89: // is this a Popup Trigger?

90: System.out.println(“In mouseReleased(), isPopupTrigger? “ + Æ
e.isPopupTrigger());

91: }

92:

93: public void mouseEntered(MouseEvent e)

94: { }

95: public void mouseExited(MouseEvent e)

96: { }

97: }

98:

Listing 10.2 (continued)

Here is a run of GoodRightMouseButton on Windows. When executing the pro-
gram, the right mouse button was clicked, followed by the left mouse button and then
the mouse wheel. This produced the following println statements:

>>>java GoodRightMouseButton (on Windows NT with 2 button mouse with

mousewheel)

In mousePressed(), isPopupTrigger? false

In mouseReleased(), isPopupTrigger? true

Button 3 clicked.

isControlDown? false

isMetaDown? true

isAltDown? false

isShiftDown? false

isAltGraphDown? false

In mouseClicked(), isPopupTrigger? false

Left button? false

Middle button? false

Right button? true

In mousePressed(), isPopupTrigger? false

In mouseReleased(), isPopupTrigger? false

Button 1 clicked.

isControlDown? false

isMetaDown? false

isAltDown? false

isShiftDown? false

isAltGraphDown? false

86 Item 10

In mouseClicked(), isPopupTrigger? false

Left button? true

Middle button? false

Right button? false

In mousePressed(), isPopupTrigger? false

In mouseReleased(), isPopupTrigger? false

Button 2 clicked.

isControlDown? false

isMetaDown? false

isAltDown? true

isShiftDown? false

isAltGraphDown? false

In mouseClicked(), isPopupTrigger? false

Left button? false

Middle button? true

Right button? false

Here is a run of GoodRightMouseButton.java on Mac OSX. When the program was
executed, the single mouse button was clicked, then the Ctrl key was held and the
mouse button clicked, then the special “apple” key was held and the mouse button
clicked.

>>>java GoodRightMouseButton (on MacOSX with a single mouse button)

In mousePressed(), isPopupTrigger? false

In mouseReleased(), isPopupTrigger? false

Button 1 clicked.

isControlDown? false

isMetaDown? false

isAltDown? false

isShiftDown? false

isAltGraphDown? false

In mouseClicked(), isPopupTrigger? false

Left button? true

Middle button? false

Right button? false

In mousePressed(), isPopupTrigger? true

In mouseReleased(), isPopupTrigger? false

Button 2 clicked.

isControlDown? true

isMetaDown? false

isAltDown? true

isShiftDown? false

isAltGraphDown? false

In mouseClicked(), isPopupTrigger? false

Left button? false

Middle button? true

Right button? false

In mousePressed(), isPopupTrigger? false

In mouseReleased(), isPopupTrigger? false

Mouse Button Portability 87

Button 3 clicked.

isControlDown? false

isMetaDown? true

isAltDown? false

isShiftDown? false

isAltGraphDown? false

In mouseClicked(), isPopupTrigger? false

Left button? false

Middle button? false

Right button? true

The new results show that we can determine which mouse button (left, right, or
middle) was clicked and whether that click is the popup trigger event. The solution has
two parts: first, the SwingUtilities class contains a set of methods that allow you
to test a mouse event to determine which side of the mouse was clicked. It is slightly
nonintuitive to have these separated from the other test methods in InputEvent or
MouseEvent; however, that could change in a future release. Second, you should
notice how you have to test for the popupTrigger in the mousePressed() and
mouseReleased() to accurately determine the trigger event. It is interesting to note
that the Ctrl-mouse combination on the Macintosh is considered the middle mouse
button and not the right mouse button. It would be better if the popup trigger was con-
sistent on Windows and the Mac (both being considered a “right click”).

In conclusion, using the SwingUtilities class and understanding when to call
isPopupTrigger()allows us to better process mouse events in cross-platform appli-
cations.

Item 11: Apache Ant and Lifecycle Management

The software lifecycle process describes the life of a software product from its concep-
tion to its implementation and deployment. An important aspect of this process is the
need to impose consistency and structure on all lifecycle activities that can guide
actions through development to deployment. This practice is often compared to a
cookbook, where knowledge is captured and then transferred to others so that they can
emulate similar actions. Unfortunately, most projects incorporate inconsistent prac-
tices where developers create and deploy on disparate platforms and apply their indi-
vidual techniques for building and testing code, which becomes problematic during
integration when disparities between scripts make them difficult to understand and
implement.

An important solution to this problem is a utility available through the Apache Soft-
ware Foundation called Ant (“Another Neat Tool”). Ant’s main purpose is to facilitate
application builds and deployments. This is achieved by combining Java program-
ming language applications and XML build files, which can be run on multiple plat-
forms and offer open-architecture flexibility. By maintaining applications and program
builds with Ant, consistency levels can be achieved by disparate groups of developers,
and the best practices can be propagated throughout a project.

With Ant, targets are generated in project files for compilation, testing, and deploy-
ment tasks. The aim of the Ant build file which follows is to highlight some useful

88 Item 11

target generation tasks that can facilitate software lifecycle activities so that manual
development processes can be automated, which will free up developers’ time for
greater creativity in their own applications rather than being tied down with mundane
build and deployment activities.

Most Ant scripts start with the initialization of application properties demonstrated
in lines 11 to 23. These same properties could also be established from the command
line and delivered to the Ant build script in the same manner as Java programs with
the -D parameter during the Ant build invocation. One important thing to consider
about properties that are set in an Ant script is that these are immutable constants that
cannot be changed once declared. Line 31 shows the depends tag that signals that the
target “compile” depends on the “init” target being run prior to its execution.
Most scripts will use the depends tag to execute sequential build processes.

001: <?xml version=”1.0”?>

002: <project name=”lifecycle management”>

003:

004: <!--

005: ***

006: ** Initialize global properties.

007: **-->

008: <target name=”init” description=”initialize lifecycle properties.”>

009:

010: <tstamp/>

011: <property name=”testdir” value=”.” />

012: <property name=”rootdir” value=”.”/>

013: <property name=”builddir” value=”build”/>

014: <property name=”driver” value=”org.gjt.mm.mysql.Driver” />

015: <property name=”url” value=”jdbc:mysql://localhost/States” />

016: <property name=”userid” value=”” />

017: <property name=”password” value=”” />

018: <property name=”destdir” value=”bugrat” />

019: <property name=”zip.bugrat” value=”bugrat.zip” />

020: <property name=”destdir.bugrat” value=”${destdir}/test” />

021: <property name=”catalina.home” value=”c:\apache\tomcat403”/>

022: <property name=”cvs.repository” Æ
value=”:pserver:<username>@<hostname>:c:\cvsrep”/>

023: <property name=”cvs.package” value=”tests”/>

024:

025: </target>

026:

027: <!--

028: ***

029: ** Java compilation

030: **-->

031: <target name=”compile” depends=”init”>

032: <javac srcdir=”.” destdir=”.” classpath=”junit.jar” />

033: </target>

034:

Listing 11.1 lifecycle_build.xml (continued)

Apache Ant and Lifecycle Management 89

Lines 39 to 57 illustrate how Ant can be used to run JUnit tests on your Java appli-
cations. JUnit is an open-source testing framework that allows developers to build test
suites so that unit testing can be performed on Java components. Personally, we like
to use them to create unit tests on JavaBean applications to ensure that developers on
our team do not corrupt these files during development activities. If a developer is
experiencing a problem with some code, we run some tests that were crafted during
development to verify that no bugs have been introduced into an application.

035: <!--
036: ***
037: ** JUnit tests
038: **-->
039: <target name=”test” depends=”compile”>
040:
041: <echo message=”Running JUnit tests.” />
042: <junit printsummary=”true”>
043: <!-- <formatter type=”plain” usefile=”false” /> -->
044: <formatter type=”xml” />
045: <test name=”AllTests2” />
046: <classpath>
047: <pathelement location=”.” />
048: </classpath>
049: </junit>
050: <junitreport todir=”.”>
051: <fileset dir=”.”>
052: <include name=”TEST-*.xml” />
053: </fileset>
054: <report format=”frames” todir=”.” />
055: </junitreport>
056:
057: </target>
058:

Listing 11.1 (continued)

Obviously, the setting of appropriate classpath properties is paramount when run-
ning Ant and compiling individual Java code. This is accomplished by setting the
paths and their components on lines 63 to 69.

059: <!--
060: ***
061: ** Classpath properties.
062: **-->
063: <path id=”classpath.path”>
064: <pathelement location=”${builddir}”/>
065: <fileset dir=”cache/lib”>
066: <include name=”*.jar”/>
067: </fileset>
068: <pathelement location=”cache/lib/servlet.jar”/>
069: </path>
070:

Listing 11.1 (continued)

90 Item 11

Additionally, directory creation scripts on lines 75 to 104 are needed to move source
code to proper deployment areas so that they are accessible to other Ant targets.

071: <!--
072: ***
073: ** Create the output directory structure.
074: **-->.
075: <target name=”prepare”>
076:
077: <mkdir dir=”${builddir}”/>
078: <mkdir dir=”${builddir}/tests”/>
079: <mkdir dir=”${builddir}/WEB-INF/lib”/>
080: <mkdir dir=”${builddir}/WEB-INF/classes/cache”/>
081:
082: <copy todir=”${builddir}/WEB-INF/classes/cache”>
083: <fileset dir=”cache/beans”/>
084: </copy>
085: <copy todir=”${builddir}”>
086: <fileset dir=”cache/src”/>
087: </copy>
<!-- some copy elements deleted for brevity ... -->
104: </target>
105:

Listing 11.1 (continued)

All Ant scripts should provide Help targets to assist end users in their build opera-
tions as verified on lines 110 to 115. Cleanup targets should be created to remove
unwanted files and directories, and to ensure that legacy code that is no longer pertinent
does not get added to production builds, which is demonstrated on lines 121 to 125.

106: <!--
107: **
108: ** Help
109: ***-->
110: <target name=”help” description=”Lifecycle Help”>.
111:
112: <echo message=”Lifecycle Help”/>
113: <echo message=”Type ‘ant -projecthelp’ for more Æ
assistance...”/>
114:
115: </target>
116:
117: <!--
118: **
119: ** Remove the (build/release) directories
120: ***-->
121: <target name=”clean”>.
122:
123: <delete dir=”${builddir}”/>
124:
125: </target>
126:

Listing 11.1 (continued)

Apache Ant and Lifecycle Management 91

On many development efforts, code repositories and versioning systems are
deployed to share code among programmers and to save modifications for redistribu-
tion. Often, an open-source application called Concurrent Versioning System (CVS) is
used to perform these tracking and coordination activities. With CVS, check-in and
checkout procedures allow users to access source code repositories to ensure that
proper builds are deployed and archived. Source code control is an absolute necessity
during multiple developer projects because it prevents inconsistencies in program
updates and automates coordination among developers. A very simple glimpse of a
CVS update operation embedded in Ant is shown on lines 131 to 139.

The combination of these three open-source applications, CVS/JUnit/Bugrat, can
be an effective configuration management toolset that developers can integrate with
Ant to facilitate their development activities. Configuration management systems are
important in that they minimize risk and promote traceability through source control,
test coordination, bug tracking, and resolution. Normal CVS operations and JUnit test
scripts can be embedded in Ant scripts. The BugRat tracking tool can be built or
deployed by using an Ant script to place the zipped Web Archive BugRat file in your
J2EE Web container. Lines 146 to 179 show how to initialize, deploy, and clean up a
BugRat installation.

127: <!--
128: **
129: ** CVS
130: ***-->
131: <target name=”cvs” description=”Check out CVS files...”>
132:
133: <echo message=”Check out CVS files...”/>
134: <cvs cvsRoot=”:pserver:anoncvs@cvs.apache.org:/home/cvspublic”
135: package=”jakarta-ant”
136: dest=”c:\Java_Pitfalls\Antidote\jakarta-ant-antidote” />
137: <cvs command=”update -A -d”/>
138:
139: </target>
140:
141: <!--
142: **
143: ** Bugrat - Bug Tracking Tool
144: ***-->
145:
146: <target name=”initBugrat”>
147:
148: <!-- Create the time stamp -->
149: <tstamp/>
150: <!-- Create the build directory structure used by compile -->
151: <available property=”haveBugrat” type=”dir” Æ
file=”${destdir.bugrat}”/>
152:
153: </target>
154:

Listing 11.1 (continued)

92 Item 11

155: <target name=”prepareBugrat” depends=”initBugrat”>
156:
157: <mkdir dir=”${destdir}”/>
158:
159: </target>
160:
161: <target name=”installBugrat” depends=”prepareBugrat” Æ
unless=”haveBugrat”>
162: <unzip src=”${zip.bugrat}” dest=”${destdir}”/>
163: </target>
164:
165: <target name=”deployBugrat” depends=”installBugrat” Æ
description=”Install Bugrat”>
166:
167: <pathconvert targetos=”windows” property=”bugrat_home”>
168: <path location=”${destdir.bugrat}”/>
169: </pathconvert>
170:
171: </target>
172:
173: <target name=”cleanBugrat”>
174:
175: <!-- Delete the ${build} and ${dist} directory trees -->
176: <delete dir=”${destdir}” />
177: <!-- For the sake of brevity, I’ve omitted the SQL scripts that Æ
need to be run to build the Bugrat repository. These files include: Æ
defconfig.sql, defproperties.sql, examplecats.sql, and mysqlschema.sql -->
178:
179: </target>

Listing 11.1 (continued)

As in life, with software, increasing complexity leads to the natural occurrence of
more problems. During software development, source code needs to be consistently
reviewed to determine where code can be refactored, or rewritten, to improve efficien-
cies. Refactoring increases quality through design improvements and the reduction of
defects. Two open-source Java utilities, JDepend and JavaNCSS, can be used within an
Ant script to provide metrics so that program behaviors can be observed and improve-
ments can be tested.

The JDepend application reads Java class and source file directories to generate met-
ric measurements that can be used to determine software quality. Designs are more
extensible when they are independent of implementation details, which allows them to
adapt to new modifications without breaking the entire system. JDepend isolates pro-
gram couplings to determine where dependencies lie and where migrations can occur
among lower levels of software hierarchies to higher levels so that redundancies can be
decreased. JavaNCSS provides noncommented source code measurements so that
large, cumbersome programs can be discovered and possibly be rewritten to improve
readability or performance.

Certainly, measurements from both JDepend and JavaNCSS should be used only to
gauge software quality and not be deemed absolute predictors as to what needs to be
performed in order to make code more efficient.

Apache Ant and Lifecycle Management 93

181: <!--
182: **
183: ** JDepend
184: ***-->
185: <target name=”jdepend”>
200: <jdepend outputfile=”docs/jdepend-report.txt”>
201: <sourcespath>
202: <pathelement location=”./ant/src” />
203: </sourcespath>
204: <classpath location=”.” />
206: </jdepend>
208: </target>
209:
210: <!--
211: **
212: ** JavaNCSS
213: ***-->
214: <target name=”javancss”>
223: <taskdef name=”javancss” classname=”javancss.JavancssAntTask” Æ
classpath=”${CLASSPATH}”/>
231: <javancss srcdir=”./ant/src”
232: generateReport=”true”
233: outputfile=”javancss_metrics.xml”
234: format=”xml”/>
236: </target>

Listing 11.1 (continued)

Developers can include a splash screen target to signal that something is actually
occurring during an Ant command-line build operation by adding lines 242 to 248.

238: <!--
239: **
240: ** Splash screen
241: ***-->
242: <target name=”splash” description=”Display splash screen...”>
243:
244: <echo message=”Display splash screen...”/>
245: <splash imageurl=”./ant/images/ant_logo_large.gif”
246: showduration=”5000” />
248: </target>

Listing 11.1 (continued)

Checkstyle is a Java development tool that helps programmers write Java code that
adheres to a recognized coding standard. It automates the process of visually checking
through Java code to ensure that previously established coding rules are incorporated
into individual source code components.

Some of the useful standards that Checkstyle looks for are unused or duplicate
import statements, that Javadoc tags for a method match the actual code, the incor-
poration of specified headers, that @author tags exist for class and interface Javadoc

94 Item 11

comments, that periods (.) are not surrounded by whitespace, that brackets ({}) are
used for if/while/for/do constructs, that lines do not contain tabs, and that files are
not longer than a specified number of lines. To implement Checkstyle, a user would
need to use lines 254 to 263.

250: <!--
251: **
252: ** Checkstyle
253: ***-->
254: <target name=”checkStyle” description=”Coding standard met?...”>
256: <taskdef name=”checkstyle”
257: Æ
classname=”com.puppycrawl.tools.checkstyle.CheckStyleTask”/>
258: <echo message=”Coding standard met?...”/>
259: <checkstyle allowTabs=”yes”>
260: <fileset dir=”./ant/src” includes=”**/*.java”/>
261: </checkstyle>
263: </target>

Listing 11.1 (continued)

Document preparation is an important but often overlooked activity during soft-
ware implementation. Users often need to understand what APIs are being used to
propagate data across systems. Javadoc provides hyperlinked documents for Web
browser viewing, which allows users to share copies and facilitates distribution.
Javadocs are easily updateable, which helps maintain consistency.

266: <!--
267: **
268: ** Javadoc
269: ***-->
270: <target name=”javadoc” description=”Generate Javadoc Æ
artifacts”>
272: <echo message=”Generating Javadoc artifacts...”/>
273: <javadoc packagenames=”*”
274: sourcepath=”./ant/src”
275: sourcefiles=”./ant/src/**”
276: excludepackagenames=”com.dummy.test.doc-files.*”
277: defaultexcludes=”yes”
278: destdir=”docs/api”
279: author=”true”
280: version=”true”
281: use=”true”
282: windowtitle=”Test API”>
283: <doctitle><![CDATA[<h1>Test</h1>]]></doctitle>
284: <bottom><![CDATA[<i>Copyright © 2002 Java Æ
Pitfalls II All Rights Reserved.</i>]]></bottom>
285: </javadoc>
286:
287: </target>

Listing 11.1 (continued)

Apache Ant and Lifecycle Management 95

In the Servlet/JavaServer Page model, Web ARchive (WAR) files are portable com-
ponents that can be deployed across a wide range of J2EE Web containers. The code
below shows how Java source is compiled and packaged for deployment.

288:
289: <!--
290: **
291: ** Build WAR file
292: ***-->
293: <target name=”distribute” depends=”prepare”>
294:
295: <echo message=”Compiling source...”/>
296:
297: <javac srcdir=”cache/beans” destdir=”${builddir}/WEB- Æ
INF/classes/”>
298: <classpath><path
refid=”classpath.path”/></classpath>
299: </javac>
300:
301: <echo message=”Creating WAR file [cache.war]...”/>
302: <war warfile=”${builddir}/cache.war” Æ
webxml=”cache/deployment/web.xml”>
303: <fileset dir=”${builddir}”>
304:

<patternset id=”_source”>
305: <include name=”*.jsp”/>
306: </patternset>
307: <patternset id=”_stylesheet”>
308: <include name=”*.css”/>
309: </patternset>
310: </fileset>
311: <webinf dir=”${builddir}/WEB-INF”>
312: <patternset id=”_tld”>
313: <include name=”*.tld”/>
314: </patternset>
315: </webinf>
316: <classes dir=”${builddir}/WEB-INF/classes” >
317: <patternset id=”_classes”>
318: <include name=”**”/>
319: </patternset>
320: </classes>
321: <lib dir=”${builddir}/WEB-INF/lib” />
322: </war>
324: </target>

Listing 11.1 (continued)

Database creation, population, and destruction can also be accomplished with Ant
scripts. Prior to discovering this capability, our development team was experiencing
great difficulties in performing these operations on both Intel and Unix platforms.
Different scripts needed to be maintained in order to run the SQL commands, which
proved quite cumbersome. By employing Ant, we were able to use the same script on
both platforms, which allowed us to facilitate operations.

96 Item 11

326: <!--
327: **
328: ** SQL - table creation, population and deletion
329: ***-->
330:
331: <target name=”createMySQLCacheTables”>
333: <sql driver=”${driver}” url=”${url}” userid=”${userid}” Æ
password=”${password}”>
334: <classpath>
335: <fileset dir=”.”>
336: <include name=”mm.mysql-2.0.4-bin.jar” />
337: </fileset>
338: </classpath>
339:
340: <!--
341: NOTE: Could logon to MySQL thru URL mysql Æ
(default database) and create the States dB instance
342: or do this manually through this step: create database Æ
States;
343: -->
345: CREATE TABLE GeneralInfo (
346: State VARCHAR(40) NOT NULL,
347: Flower VARCHAR(50),
348: Bird VARCHAR(50),
349: Capital VARCHAR(40),
350: PRIMARY KEY(State)
351:);
352:
353: CREATE TABLE Topics (
354: State VARCHAR(40) NOT NULL,
355: AutomobileDealers VARCHAR(40),
356: BikeTrails VARCHAR(50),
357: Gyms VARCHAR(50),
358: Hospitals VARCHAR(50),
359: Laundromats VARCHAR(50),
360: Parks VARCHAR(50),
361: Physicians VARCHAR(50),
362: PetStores VARCHAR(50),
363: Restaurants VARCHAR(50),
364: RestAreas VARCHAR(50),
365: Supermarkets VARCHAR(50),
366: PRIMARY KEY(State)
367:);
369: </sql>
371: </target>
372:
373: <target name=”dropMySQLCacheTables”>
375: <sql driver=”${driver}” url=”${url}” userid=”${userid}” Æ
password=”${password}”>
376: <classpath>
377: <fileset dir=”.”>
378: <include name=”mm.mysql-2.0.4-bin.jar” />
379: </fileset>

Listing 11.1 (continued)

Apache Ant and Lifecycle Management 97

380: </classpath>
382: DROP TABLE GeneralInfo;
383: DROP TABLE Topics;
385: </sql>
386: </target>
387:
388: <target name=”populateMySQLCacheTables”>
390: <sql driver=”${driver}” url=”${url}” userid=”${userid}”
password=”${password}”>
391: <classpath>
392: <fileset dir=”.”>
393: <include name=”mm.mysql-2.0.4-bin.jar” />
394: </fileset>
395: </classpath>
396:
397: INSERT INTO GeneralInfo VALUES (‘Alabama’, ‘Camellia’, Æ
‘Yellowhammer’, ‘Montgomery’);
399: INSERT INTO Topics VALUES (‘Alabama’, ‘KIA’, ‘Bama Path’,
‘Mr. Muscles’, ‘St. Lukes’, ‘Mr. Clean’, ‘Tuscaloosa’, ‘Dr. Nick’, ‘Mr.
Pickles’, ‘Joes Pizzaria’, ‘Selma’, ‘Mr. Goodshoes’);
401: </sql>
402: </target>

Listing 11.1 (continued)

The key to having efficient operations during development is predicated on the
automation of tedious operations, especially testing. An open-source offering called
CruiseControl can be embedded in Ant scripts to allow developers to check out source
code from CVS so that release builds can be made and modules can be tested. This is
an important component of all software operations. Batch scripts can be used to create
nightly builds with CruiseControl so that daily software modifications can be tested
for defects overnight and addressed by developers before they are forgotten and
remain undetected on a system.

404: <!--
405: **
406: ** Cruise control
407: ***-->
408: <target name=”all” depends=”clean, compile, javadoc, Æ
distribute, junit” description=”prepare application for CruiseControl”/>
410: <target name=”cruise” description=”Start the automated build Æ
process with CruiseControl”>
412: <copy todir=”${catalina.home}/webapps/” Æ
file=”Cruisecontrol/cruisecontrol/buildservlet.war” />
414: <java classname=”net.sourceforge.cruisecontrol.MasterBuild” Æ
fork=”yes” >
415: <arg line=”-properties cruisecontrol.properties - Æ
lastbuild 20020901010101 -label test 1”/>
416: <classpath>

Listing 11.1 (continued)

98 Item 11

417: <pathelement Æ
location=”Cruisecontrol\cruisecontrol\cruisecontrol.jar”/>
418: <pathelement path=”${java.class.path}”/>
419: <pathelement path=”${compile.classpath}”/>
420: <pathelement location=”.”/>
421: </classpath>
422: </java>
424: </target>
425:
426: <target name=”checkout” description=”Update package from CVS”>
427: <cvs cvsroot=”${cvs.repository}” package=”${cvs.package}” Æ
dest=”.” passfile=”etc\.passwd” />
428: </target>
429:
430: <target name=”modificationcheck” depends=”prepare” Æ
description=”Check modifications since last build”>
431:
432: <taskdef name=”modificationset”
classname=”net.sourceforge.cruisecontrol.ModificationSet”/>
433: <echo message=”Checking for modifications...”/>
434: <modificationset lastbuild=”${lastGoodBuildTime}” Æ
quietperiod=”30” dateformat=”yyyy-MMM-dd HH:mm:ss”>
435: <cvselement cvsroot=”${cvs.repository}” Æ
localworkingcopy=”.” />
436: </modificationset>
437: </target>
438:
439: <target name=”masterbuild” Æ
depends=”modificationcheck,checkout,all” description=”Cruise Control Æ
master build”/>
440: <target name=”cleanbuild” depends=”clean,masterbuild” Æ
description=”Cruise Control clean build”/>
442: </project>

Listing 11.1 (continued)

Let’s face it, the Internet has made it difficult for all software companies to keep up
with platform and tool evolutions. Many integrated development environments
(IDEs), both proprietary and open-source, have implemented Ant in their applications,
but disparities in Ant versions and proprietary tag extensions in these applications
have made these tools less desirable for application builds and deployments. These
inconsistencies make Ant a much more powerful tool when run from the command
line and not from an IDE application that could introduce incompatibility problems.

NOTE The lifecycle build script shown above highlights Ant’s ability to ease
the construction and deployment of Java projects by automating source code
packaging, integration, script execution, and production system deployment.
Hopefully, users can use these Ant build techniques to make their lifecycle
activities more efficient.

Apache Ant and Lifecycle Management 99

Item 12: JUnit: Unit Testing Made Simple

My wife is a good cook, a really good cook, but she drives me crazy sometimes with
experiments on existing recipes that I like and expect to taste a certain way. Sometimes
she does this because she’s run out of some ingredient or she just feels like trying some-
thing new. Me, I don’t like to try new things and prefer consistency in what I eat. My
wife has made several suggestions on what I should do about this problem, the clean-
est version being that I cook for myself. Rather than taking a chance that I might actu-
ally learn how to cook, I’ve graciously learned to accept her unpredictable ways.

Software testing exhibits these same qualities and inconsistencies. Many times
developers don’t write proper tests because they feel that they don’t have the time to
do so, and when they do, they often introduce their own programming biases in their
manual tests, making them irrelevant. Software testers often don’t understand what
they are testing because developers don’t communicate very well what exactly needs
to be tested. Growing code repositories and deadline pressures complicate this matter,
as well as the attrition of developers on many projects.

To address this problem, development teams need to enforce some order into their
systems to prevent the chaos that habitually occurs, and that can be accomplished by
implementing the JUnit framework to test logic boundaries and to ensure that the
overall logic of your software components is correct.

JUnit is an open-source unit-testing framework written in Java that allows users to
create individual test cases that are aggregated in test suites for deployment. Lines 16
and 17 illustrate this. The test case for my unit test is called OneTestCase.class, and my
test suite is “test”. If a test class does not define a suite method, then the TestRunner
application will extract a suite and fill it with all methods that start with “test” using
the Java reflection mechanism.

01:

02: import junit.framework.*;

03: import junit.runner.BaseTestRunner;

04:

05: /**

06: * TestSuite that runs all the sample tests

07: *

08: */

09: public class AllTests {

10:

11: public static void main(String[] args) {

12: junit.textui.TestRunner.run(suite());

13: }

14:

15: public static Test suite() {

16: testsuite suite= new testsuite(“Framework Tests”);

17: suite.addTestSuite(OneTestCase.class);

18: return suite;

19: }

20: }

Listing 12.1 AllTests.java

100 Item 12

Since we develop Web applications on many of our projects, our unit tests focus
primarily on JavaBean components to ensure that our program logic is sound and
consistent. In the code below, an employee form validates user inputs from a Web
page. Lines 59 to 71 demonstrate how to add JUnit test code to our JavaBean applica-
tions for unit testing.

01:

02: import java.util.*;

03: import junit.framework.*;

04: import junit.runner.BaseTestRunner;

05:

06: public class employeeFormBean {

07: private String firstName;

08: private String lastName;

09: private String phone;

10: private Hashtable errors;

11:

12: public boolean validate() {

13: boolean allOk=true;

14:

15: if (firstName.equals(“”)) {

16: errors.put(“firstName”,”Please enter your first name”);

17: firstName=””;

18: allOk=false;

19: }

20: if (lastName.equals(“”)) {

21: errors.put(“lastName”,”Please enter your last name”);

22: lastName=””;

23: allOk=false;

24: }

25: return allOk;

26: }

27:

28: public String getErrorMsg(String s) {

29: String errorMsg =(String)errors.get(s.trim());

30: return (errorMsg == null) ? “”:errorMsg;

31: }

32:

33: public employeeFormBean() {

34: firstName=””;

35: lastName=””;

36: // errors

37: errors = new Hashtable();

38: }

39:

40: // GET methods ---

41: public String getFirstName() {

42: return firstName;

43: }

Listing 12.2 employeeFormBean.java (continued)

JUnit: Unit Testing Made Simple 101

44:

45: public String getLastName() {

46: return lastName;

47: }

48:

49: // SET methods ---

50: public void setFirstName(String fname) {

51: firstName =fname;

52: }

53:

54: public void setLastName(String lname) {

55: lastName =lname;

56: }

57:

58: /* main */

59: public static void main(String[] args) {

60: junit.textui.TestRunner.run(suite());

61: }

62:

63: /**

64: * TestSuite that runs all the sample tests

65: *

66: */

67: public static Test suite() {

68: TestSuite suite= new TestSuite(“Employee Form Unit Tests”);

69: suite.addTestSuite(employeeFormBeanTestCase.class);

70: return suite;

71: }

73: }

Listing 12.2 (continued)

Listing 12.3 illustrates how a test case should be written to test the JavaBean that was
created. Notice the assert statements that check the getter/setter methods in the employ-
eeFormBean component. These asserts ensure that expected behavior is maintained in
our code and that bugs that might be introduced to this application are captured and
resolved easily. One thing to be aware of when you do create unit tests with JUnit is that
if you insert System.out.println() statements in your test cases, it does not print
the text output to the console when you run your test from the command line.

01: import junit.framework.TestCase;

02:

03: public class employeeFormBeanTestCase extends TestCase {

04: public employeeFormBeanTestCase(String name) {

Listing 12.3 employeeFormBeanTestCase.java

102 Item 12

05: super(name);

06: }

07: public void noTestCase() {

08: }

09: public void testCase1() {

10: employeeFormBean eForm = new employeeFormBean();

11: assertTrue(eForm != null);

12: }

13: public void testCase2() {

14: employeeFormBean eForm = new employeeFormBean();

15: assertTrue(eForm != null);

16:

17: eForm.setFirstName(“Steven”);

18: assertTrue(“Steven” == eForm.getFirstName());

19: }

20: public void testCase3() {

21: employeeFormBean eForm = new employeeFormBean();

22: assertTrue(eForm != null);

23:

24: eForm.setLastName(“Fitzgerald”);

25: assertTrue(“Fitzgerald” == eForm.getLastName());

26: }

27: public void testCase4() {

28: employeeFormBean eForm = new employeeFormBean();

29: assertTrue(eForm != null);

30:

31: eForm.setFirstName(“John”);

32: eForm.setLastName(“Walsh”);

33: assertTrue(eForm.validate());

34: }

35: public void testCase5() {

36: employeeFormBean eForm = new employeeFormBean();

37: assertTrue(eForm != null);

38:

39: String s = eForm.getErrorMsg(“firstName”);

40: assertTrue(!s.equals(“Please enter your first name”));

41: }

42: public void testCase6() {

43: employeeFormBean eForm = new employeeFormBean();

44: assertTrue(eForm != null);

45:

46: String s = eForm.getErrorMsg(“lastName”);

47: assertTrue(!s.equals(“Please enter your last name”));

48: }

49: public void testCase(int arg) {

50: }

51: }

Listing 12.3 (continued)

JUnit: Unit Testing Made Simple 103

Additionally, unit tests can be created to ensure that data in a database remains con-
sistent and has not been corrupted during testing and integration operations. This is
accomplished by creating unit tests that validate JDBC connections and user queries on
database data.

01:

02: import java.sql.*;

03: import java.util.*;

04: import junit.framework.*;

05: import junit.runner.BaseTestRunner;

06:

07: public class dbQueryBean {

08:

09: private static final String DRIVER_NAME=”org.gjt.mm.mysql.Driver”;

10: private static final String DB_URL=”jdbc:mysql://localhost/States”;

11: private static final String USERNAME=””;

12: private static final String PASSWORD=””;

13: private static final String QUERY=”Select * from Topics”;

14:

15: Connection conn = null;

16: Statement stmt = null;

17: ResultSet rslt = null;

18:

19: public dbQueryBean() {

20:

21: try {

22: // get driver

23: Class.forName(DRIVER_NAME);

24: // connect to the MySQL db

25: Connection conn = Æ
DriverManager.getConnection(DB_URL, USERNAME, PASSWORD);

26: Statement stmt = conn.createStatement();

27: ResultSet rslt = stmt.executeQuery(QUERY);

28: }

29: catch(Exception e) {

30: }

31: }

32:

33: public void closeDb()

34: {

35: try {

36: // get driver

37: this.conn.close();

38: }

39: catch(Exception e) {

40: }

41: }

42:

Listing 12.4 dbQueryBean.java

104 Item 12

43: public ResultSet getResultSet() {

44: return this.rslt;

45: }

46:

47: public Connection getConnection() {

48: return this.conn;

49: }

50:

51: public Statement getStatement() {

52: return this.stmt;

53: }

54:

55: /* main */

56: public static void main(String[] args) {

57: junit.textui.TestRunner.run(suite());

58: }

59:

60: /**

61: * TestSuite that runs all the sample tests

62: *

63: */

64: public static Test suite() {

65: TestSuite suite= new TestSuite(“DB Query Unit Tests”);

66: suite.addTestSuite(dbQueryBeanTestCase.class);

67: return suite;

68: }

70: }

Listing 12.4 (continued)

The dbQueryBeanTestCase in Listing 12.5 demonstrates how to assess database con-
nections and result sets that are returned from database queries. In most cases, a sim-
ple instantiation of your bean followed by an assert after the invocation of your bean’s
methods is the way to unit test your code. In this example, static database information
is tested; on many enterprise systems the data is dynamic and tests like this would not
be proper.

01: import java.sql.*;

02: import junit.framework.TestCase;

03:

04: public class dbQueryBeanTestCase extends TestCase {

05: public dbQueryBeanTestCase(String name) {

06: super(name);

07: }

Listing 12.5 dbQueryBeanTestCase.java (continued)

JUnit: Unit Testing Made Simple 105

08: public void noTestCase() {

09: }

10: public void testCase1() {

11: employeeFormBean eForm = new employeeFormBean();

12: assertTrue(eForm != null);

13: }

14: public void testCase2() {

15:

16: try {

17:

18: dbQueryBean db = new dbQueryBean();

19: assertTrue(db != null);

20:

21: // Get the resultset meta-data

22: ResultSet rslt = db.getResultSet();

23: ResultSetMetaData rmeta = rslt.getMetaData();

24:

25: // Use meta-data to determine column #’s in each row

26: int numColumns = rmeta.getColumnCount();

27: String[] s = new String[numColumns];

28:

29: for (int i=1; i < numColumns; i++) {

30: s[i] = rmeta.getColumnName(i);

31: }

32:

33: // check to see if db columns are correct

34: assertTrue(s[1].equals(“State”));

35: assertTrue(s[2].equals(“AutomobileDealers”));

36: assertTrue(s[3].equals(“BikeTrails”));

37: assertTrue(s[4].equals(“Gyms”));

38: assertTrue(s[5].equals(“Hospitals”));

39: assertTrue(s[6].equals(“Laundromats”));

40: assertTrue(s[7].equals(“Parks”));

41: assertTrue(s[8].equals(“Physicians”));

42: assertTrue(s[9].equals(“PetStores”));

43: assertTrue(s[10].equals(“Restaurants”));

44: assertTrue(s[11].equals(“RestAreas”));

45: }

46: catch(Exception e) {}

47: }

48: public void testCase3() {

49:

50: try {

51:

52: dbQueryBean db = new dbQueryBean();

53: assertTrue(db != null);

54:

55: // Get the resultset meta-data

Listing 12.5 (continued)

106 Item 12

56: ResultSet rslt = db.getResultSet();

57: ResultSetMetaData rmeta = rslt.getMetaData();

58:

59: // Use meta-data to determine column #’s in each row

60: int numColumns = rmeta.getColumnCount();

61: String[] s = new String[numColumns];

62:

63: for (int i=1; i < numColumns; i++) {

64: s[i] = rmeta.getColumnName(i);

65: }

66:

67: while (rslt.next()) {

68: for (int i=1; i < numColumns; ++i) {

69: if (rslt.getString(i).trim().equals(“Alabama”)) {

70: assertEquals(rslt.getString(i).trim(), Æ
“Alabama”);

71: assertEquals(rslt.getString(i+1).trim(), Æ
“KIA”);

72: assertEquals(rslt.getString(i+2).trim(), Æ
“Bama Path”);

73: assertEquals(rslt.getString(i+3).trim(), Æ
“Mr. Muscles”);

74: assertEquals(rslt.getString(i+4).trim(), Æ
“St. Lukes”);

75: assertEquals(rslt.getString(i+5).trim(), Æ
“Mr. Clean”);

76: assertEquals(rslt.getString(i+6).trim(), Æ
“Tuscaloosa”);

77: assertEquals(rslt.getString(i+7).trim(), Æ
“Dr. Nick”);

78: assertEquals(rslt.getString(i+8).trim(), Æ
“Mr. Pickles”);

79: assertEquals(rslt.getString(i+9).trim(), Æ
“Joes Pizzaria”);

80: assertEquals(rslt.getString(i+10).trim(), Æ
“Selma”);

81: assertEquals(rslt.getString(i+11).trim(), Æ
“Mr. Goodshoes”);

82: break;

83: }

84: }

85: }

87: }

88: catch(Exception e) {}

89: }

90: public void testCase(int arg) {

91: }

92: }

Listing 12.5 (continued)

JUnit: Unit Testing Made Simple 107

JUnit allows developers and testers to assess module interfaces to ensure that infor-
mation flows properly in their applications. Local data structures can be examined to
verify that data stored temporarily maintains its integrity, boundaries can be checked
for logic constraints, and error handling tests can be developed to ensure that potential
errors are captured. All developers should implement the JUnit framework to test their
software components and to make certain that development teams don’t accept incon-
sistencies in their programs.

Item 13: The Failure to Execute

Executable JAR files, CLASSPATHs, and JAR conflicts challenge developers as they
deploy their Java applications. Frequently, developers run into problems because of
inadequate understanding of the Java extension mechanism. This pitfall costs a devel-
oper time and effort, and it can lead to substantial configuration control issues. I have
seen numerous developers have problems with executable JAR files. They build desk-
top applications and deploy them via executable JAR files. However, for some reason,
sometimes the JAR file will not execute.

When executed using the conventional java classname command, the code runs
fine. The developer adds all of the classes to a JAR file and sets the main class attribute.
Executing the java -jar jarname command, the following error returns:

Exception in thread “main” java.lang.NoClassDefFoundError:

com/borland/jbcl/layout/XYLayout

at execution.application.ExecFrame.<init>(ExecFrame.java:23)

at execution.application.ExecApp.<init>(ExecApp.java:11)

at execution.application.ExecApp.main(ExecApp.java:40)

This is one example of this familiar error for these developers. It is unable to find a
particular class, in this case, com.borland.jbcl.layout.XYLayout. In this case,
the developer did not select the proper JAR packaging for the JBuilder IDE. This is not
unique to JBuilder, though, nor IDEs. This is part of a bigger issue in regard to tracking
the classpath of applications.

Another classic example of this issue, prior to JDK 1.4, was the use of XML libraries
like Xerces. This instance is not a problem in JDK 1.4, because XML is now part of the
JVM, but developers cannot wait for every additional JAR to be bundled into the JDK.

So since these developers still haven’t learned the underlying problem, they try
something else. They try to ensure that the JAR was made correctly, the CLASSPATH is
correct, and the JAR is uncompressed and executed in the conventional manner. Every-
thing works right. Recompress it and it no longer works.

Manifest-Version: 1.0

Main-Class: Example

Created-By: 1.3.1

Why doesn’t this work? First, it is important to recognize that the command-line
(“java Example”) invocation of the JVM uses the same CLASSPATH as the compiler. So,
obviously, if it compiled then, it will run.

108 Item 13

However, double-clicking on a JAR file, or executing java -jar (except in the JDK
HOME\bin directory), attempts to use the JRE, which has its own CLASSPATH. So, the
additional necessary JARs can be placed in the JRE HOME\lib\ext directory. Note that
it is not the lib directory itself, unlike the JDK.

However, unless you want to install the classes into that directory, you should add
them into your JAR file and reference them in the JAR’s manifest file.

Manifest-Version: 1.0

Main-Class: Example

Class-Path: jaxp.jar xalan.jar xerces.jar

Created-By: 1.3.1

Deploying Java Applications

A tremendous number of problems in installing, configuring, and running Java appli-
cations has to do with the misunderstanding of how to specify how the JVM should
find classes to load. The first method used looks like the one found in Listing 13.1.

01: APPDATA=C:\Documents and Settings\crichardson\Application Data

02: CLASSPATH=D:\soap-2_2;C:\Program Files\Apache Tomcat

4.0\webapps\soap\WEB-INF\classes;D:\soap-2_2\lib\mail.jar;D:\soap-

2_2\lib\activation.jar;D:\soap-2_2\lib\mailapi.jar

03: CommonProgramFiles=C:\Program Files\Common Files

04: COMPUTERNAME=CLAYSVAIO

05: ComSpec=C:\WINNT\system32\cmd.exe

06: HOMEDRIVE=C:

07: HOMEPATH=\

08: OS=Windows_NT

09: [...]

Listing 13.1 Environment variables

This shows the classic and traditional way of handling the Java CLASSPATH. Set an
environment variable, or rather, add to the already existing environment variable. A
number of other environment variables were left in this example to highlight how
broad the spectrum of things stored in the environment is and the number of applica-
tions that must make use of it.

Furthermore, we have one CLASSPATH that all applications use. This provides a
major issue for deploying applications, because there are possible conflicts that can
occur among executable JAR files. This is just the Java version of the “DLL hell” phe-
nomenon—not only for the presence or absence of JAR files, but also the difference in
versions of JAR files.

Another mechanism that is used for assembling a CLASSPATH is the -cp switch in
executing the Java Virtual Machine execution.

The Failure to Execute 109

C:\j2sdk1.4.0\jre\bin\javaw -cp

“D:\pkoDev\beans\classes;C:\dom4j\lib\dom4j.jar;D:\java_xml_pack-winter-

01-dev\jaxp-1.2-ea1\xalan.jar;D:\java_xml_pack-winter-01-dev\jaxp-1.2-

ea1\xerces.jar;D:\java_xml_pack-winter-01-dev\jaxm-1.0.1-

ea1\lib\activation.jar;D:\java_xml_pack-winter-01-dev\jaxm-1.0.1-

ea1\lib\dom4j.jar;D:\java_xml_pack-winter-01-dev\jaxm-1.0.1-

ea1\lib\jaxm.jar;D:\java_xml_pack-winter-01-dev\jaxm-1.0.1-

ea1\lib\log4j.jar;D:\java_xml_pack-winter-01-dev\jaxm-1.0.1-

ea1\lib\mail.jar;D:\jaxpack\java_xml_pack-fall01\jaxm-

1.0\jaxm\client.jar” org.javapitfalls.jar.Example

While this option allows for a more explicit and direct way to control the CLASSPATH
for your application, it still is neither very user-friendly nor very configuration-friendly.
In effect, this is what happens with a lot of applications; everyone packages their own
JAR files and references them using the CLASSPATH JVM option in order to control
what is available in their applications.

However, this can lead to a great deal of redundancy. For example, I searched for
“xerces*.jar” on my development machine. This would capture all of the versions of
the popular Apache XML parsing API Xerces. Granted, a development box is not
exactly the most representative example of a deployment machine, but I got 73
instances of Xerces. Basically, every Java application running on my machine that uses
XML, some of which are not development tools or APIs, has a copy of Xerces to process
XML. Those 73 instances take up 108 MB of disk space, to do essentially the same thing.

What if there is a bug fix out for Xerces that needs to be integrated into my applica-
tions, or even bigger, a performance improvement. I have to copy it to 73 different
places in my application. Furthermore, with the introduction of XML into JDK 1.4,
there is a potential for class conflicts. This is because the Java platform has evolved to
the point where it provides new features, and XML processing is part of it.

So, why not be able to extend the platform? Earlier, we discussed an example of
what people do wrong in creating an executable JAR file. Those mistakes are due to
poor understanding of the Java extension mechanism.

The Java Extension Mechanism

The Java Extension Mechanism is how developers can extend the Java platform with-
out having to worry about the issues concerning the CLASSPATH. The most obvious
way to create an extension is to copy a JAR file into the JRE HOME/lib/ext directory.
Furthermore, Java Plug-in and Java Web Start provide facilities for installing exten-
sions on demand and automatically.

Figure 13.1 shows the architecture of the Java Extension Mechanism. There are sets
of classes that make up the core system classes, and developers can provide the ability
to add their own classes into the Java Runtime Environment. These are called “optional
packages” (formerly known as “standard extensions”).

110 Item 13

Figure 13.1 Java Extension Mechanism.

We should note that in our previous example, there were references to three optional
packages: jaxp.jar, xerces.jar, and xalan.jar. When the executable JAR file
shown in that example is executed, the Java Runtime Environment knows to look in
those JAR files for classes needed to execute the application. It should be noted that it
checks those only if they are not already available in the system class loader; therefore,
redundant references to JAR files are not a problem. Class loading from the JAR files is
lazy, or as needed.

Sealed Packages

Developers can choose to seal their optional packages. The purpose of sealing a pack-
age is to ensure consistency among versions of a particular JAR file. When a package is
sealed, it means that every class defined in this JAR must originate from this JAR.
Therefore, a sealed Xerces package would assume precedence over other xerces.jar
files. This can cut both ways, and it requires that developers are cognizant of which of
the optional packages may be controlling the loading of classes.

A perfect example of this is when it becomes necessary to change the order in which
JAR files are placed in the CLASSPATH. If a sealed package is loaded first, and then a

No CLASSPATH Required

Java 2 Platform

Java Runtime Environment

Extension Extension

Extension

The Failure to Execute 111

newer version is loaded later in the sequence, the newer version will not be used; in
fact, ClassNotFoundExceptions and ClassCastExceptions are common
symptoms. Tomcat 3.x versions are known to have this problem in regard to XML. It
should be noted that this is addressed in another pitfall regarding the endorsed stan-
dards override mechanism.

Listing 13.2 gives an example of the Java Versioning Specification combined with
the optional package sealing mechanism.

01: Name: org/javapitfalls/

02: Sealed: true

03: Extension-List: ThisClass ThatClass

04: ThisClass-Extension-Name: org.javapitfalls.ThisClass

05: ThisClass-Specification-Version: 1.2

06: ThisClass-Implementation-Version: 1.2

07: ThisClass-Implementation-Vendor-Id: org.javapitfalls

08: ThisClass-Implementation-URL: http://javapitfalls.org/ThisClass.jar

09: ThatClass-Extension-Name: org.javapitfalls.ThatClass

10: ThatClass-Specification-Version: 1.2

11: ThatClass-Implementation-Version: 1.2

12: ThatClass-Implementation-Vendor-Id: org.javapitfalls

13: ThatClass-Implementation-URL: http://javapitfalls.org/ThatClass.jar

14:

Listing 13.2 Versioning and sealing an optional package

This shows that any files in the org.javapitfalls package will be sealed—that
is, they must all come from this JAR file. The rest shows the appropriate information to
allow ClassLoaders to understand the versioning of extensions. The Plug-in is an
example of an application that will use this to determine the need to download this
version of the package.

Security

These installed optional packages are restricted to the sandbox unless they are from a
trusted source. This requires a signing of the JAR file and appropriate permissions
being handled in the Java security policy for the application that uses the extension.

Executable JAR files, CLASSPATHs, JAR conflicts—these are all things that challenge
developers as they deploy their Java applications. Frequently, developers run into prob-
lems because of inadequate understanding of the Java extension mechanism. This pitfall
costs a developer time and effort and can lead to substantial configuration control issues.

Item 14: What Do You Collect?

We are building a system that provides a “virtual file cabinet” to browse articles available
all over the World Wide Web. The Web site provides a hierarchical format that organizes

112 Item 14

knowledge for visibility. The topics can be nested inside each other to go as deeply as the
content organizer desires. Each topic maps over to one or more categories. Furthermore, a
category can appear in multiple topics. This scenario might seem a bit confused, but it is
based on a real system. Essentially, the topics refer to how the Web site wants to organize
content, and the categories refer to how content syndicates tag their documents.

As the folders are opened, subfolders are displayed below it on the tree, and the
appropriate documents for the categories are displayed in the right pane. Users can
browse down the hierarchy to view the data that they want.

This whole logic is based on an XML file that maintains the nesting of topics and
mappings to categories. Listing 14.1 shows an excerpt of the XML document that the
Web site uses.

01: <?xml version = “1.0” encoding = “UTF-8”?>

02: <navigation>

03: <taxonomy text = “Donnie’s Subscription Service” value = “default”>

04: <topic value = “1” text = “Computer Technology News”>

05: <topic value = “3” text = “Software Technology”>

06: <topic value = “4” text = “J2SE”>

07: <category>2611</category>

08: </topic>

09: <topic value = “5” text = “J2EE”>

10: <category>2612</category>

11: </topic>

12: <topic value = “6” text = “J2ME”>

13: <category>2613</category>

14: </topic>

<!-- ... some topics omitted for brevity ... -->

32: </topic>

33: <topic value = “13” text = “Network Technology”>

34: <category>2612</category>

35: <category>2700</category>

46: </topic>

47: <topic value = “22” text = “Hardware”>

48: <topic value = “23” text = “Server Technology”>

49: <category>1511</category>

50: </topic>

51: <topic value = “24” text = “Desktop Technology”>

52: <category>1512</category>

53: </topic>

54: <topic value = “25” text = “Wireless Technology”>

55: <category>1513</category>

56: </topic>

57: <...>

58: </taxonomy>

59: </navigation>

Listing 14.1 Navigation.xml

What Do You Collect? 113

Listing 14.2 demonstrates the code that is used to process the Navigation.xml file for
supporting the Web site. It has been stripped down to show the necessary methods and
the one of interest (listCategories).

001: package org.javapitfalls;

002:

003: import java.io.*;

004: import java.net.*;

005: import java.util.*;

006: import org.dom4j.Document;

// ... some dom4j Imports removed for brevity ... Code available on Web

site

014:

015: public class BadNavigationUtils {

017: private Document document;

018:

019: public BadNavigationUtils () {

020: try {

021: setFile(getClass().getResource(“/Navigation.xml”));

022: setDates();

023: } catch (Exception e) { e.printStackTrace(); }

024: }

025:

026: public void setFile (String path) throws DocumentException {

027: SAXReader reader = new SAXReader();

028: document = reader.read(path);

029: }

030:

031: public void setFile (URL path) throws DocumentException {

032: SAXReader reader = new SAXReader();

033: document = reader.read(path);

034: }

035:

036:

037: public void writeFile (String path) {

039: try {

040:

041: // write to a file

042: XMLWriter writer = new XMLWriter(

043: new FileWriter(path), Æ
OutputFormat.createPrettyPrint());

044: writer.write(document);

045: writer.close();

046:

047: } catch (IOException ioe) {

048:

049: ioe.printStackTrace();

051: }

Listing 14.2 BadNavigationUtils.java

114 Item 14

052: }

053:

054:

055: public List listCategories (String[] topics) {

057: HashSet mySet = new HashSet();

060: for (int i=0; i < topics.length - 1; i++) {

062: List list = document.selectNodes(“//topic[@value=’” + Æ
topics[i] + “‘]/category”);

064: mySet.addAll(list);

066: }

067:

068: ArrayList theList = new ArrayList();

070: theList.addAll(mySet);

073: return theList;

074:

075: }

076:

077: public static void main(String[] args) {

079: try {

080:

081: String [] topics = new String[3];

083: topics[0] = “4”;

084: topics[1] = “5”;

085: topics[2] = “13”;

086:

087: BadNavigationUtils topicCategory = new BadNavigationUtils Æ
();

089: topicCategory.setFile(“Navigation.xml”);

091: List categories = topicCategory.listCategories(topics);

092: for (int i = 0; i < categories.size(); i++) {

093: Element myElement = (Element) categories.get(i);

094: System.out.println(myElement.getText());

096: }

099: } catch (Exception e) { e.printStackTrace();}

101: }

102: }

103:

Listing 14.2 BadNavigationUtils.java (continued)

BadNavigationUtils.java uses DOM4J to parse an XML file into a DOM tree, and
then uses an XPath expression to pull back a List of category nodes (in the listCat-
egories method). This is the result of executing this code:

01: 2611

02: 2612

03: 2612

What Do You Collect? 115

04: 2700

05: 2710

06: 2711

07: 2712

08: 2713

09: 2714

10: 2715

11: 2720

12: 2730

13: 2740

14: 2750

The idea was to filter out the duplicates in the list, but it is clear that this didn’t work.
The category “2612” is shown twice. Why didn’t this work? After all, HashSet is sup-
posed to not allow duplicates in the collection.

As it turns out, this method returns a list of nodes to the user. Those nodes represent
the location of that particular element on the tree. Therefore, there is a distinction
between the 2612 in the topic with id of 5 and the 2612 in the topic with id of 13.
When we print out the text of each of the nodes, we find that there are duplicate values.

So, if we want to make sure we have a true Set, we need to pay more careful atten-
tion to the type of object being stored in the collection. To handle this problem, we
modify the code to actually store the text value of the nodes. Listing 14.3 shows how
we do that.

01: public List listCategories (String[] topics) {

03: TreeSet mySet = new TreeSet();

06: for (int i=0; i < topics.length - 1; i++) {

08: List list = document.selectNodes(“//topic[@value=’” + Æ
topics[i] + “‘]/descendant-or-self::*/category”);

09:

10: for (Iterator it = list.listIterator(); it.hasNext();)

{

11: mySet.add(((Element) it.next()).getText());

12: }

14: }

15:

16: ArrayList theList = new ArrayList();

18: theList.addAll(mySet);

20: return theList;

22: }

Listing 14.3 GoodNavigationUtils.java (listCategories)

Notice in this example we are calling the getText() method on the Element
returned in the Iterator. The returned String is then added to the HashSet.

An interesting development has evolved in the Java Community Process program
(JCP). JSR 14, “Add Generic Types to the Java Programming Language,” offers a

116 Item 14

mechanism for providing parameterized classes (JSR stands for “Java Specification
Request”). In this case, we have a List being returned to us, which we were unable to
determine what type was in the list without closely consulting the API documentation.
Of course, since all code is well documented in excruciating detail, we always know
the types that are returned to us. In reality, the only documentation on which you can
ever truly count (and frequently the only documentation that is read) is the method
signature. Of course, if you were up on XML libraries, you would understand that a
method called selectNodes is going to return Node objects.

This gets to the essence of the problem: The Collection classes are a very popular fea-
ture in the Java platform. Their power, efficiency, and flexibility are highly valued.
However, as this example has shown, it is very difficult to know precisely how collec-
tions are handled. This requires that numerous casts and type checks are needed in
order to handle something generically.

That is what JSR 14 hopes to accomplish. Now, you would be able to pass a type to
the List class. For example, you could declare a vector like this:

Vector<String> x = new Vector<String>();

Generics are a feature to be added to the Java 2 Standard Edition 1.5, code-named
“Tiger.” Until then, developers will have to be aware of what types are being held in
their collections.

Item 15: Avoiding Singleton Pitfalls

As programmers, we love design patterns! They allow us to use repeatable solutions
to problems, and they offer us an easy way to communicate in software engineering
projects. Used wisely, these patterns offer us the capability to quickly build elegant,
flexible designs. Using them without fully understanding their purpose and impact
could lead to a brittle software architecture. More importantly, creating an incorrect
implementation of existing patterns could lead to disastrous results.

The Singleton design pattern, presented by Gamma, Helm, Johnson, and Vlissides
in Design Patterns: Elements of Reusable Software, is a creational pattern that ensures that
a class has one instance and provides a global point of access to it.4 In the Java pro-
gramming language, a correct implementation of a Singleton ensures that there will be
one instance of a class per JVM. There are many Singleton classes throughout the Java
API itself, with a few examples being java.util.Calendar and java.util.DateFormat. The
Singleton is useful in cases where you want a single point of access to a resource. In
Item 32, we created a Singleton class that was a single point of access to a database.
Listings 15.1 and 15.2 show two common ways of implementing a Singleton class. The
constructors in both classes are private, so that only the static getInstance()
method can instantiate the class. In Listing 15.1, the Singleton’s constructor is called
when the class is first loaded, on line 4. When a class calls the getInstance()
method shown in lines 16 to 18, the static m_instance variable is returned.

Avoiding Singleton Pitfalls 117

4 Gamma, Helm, Johnson, Vlissides, Design Patterns: Elements of Reusable Software, Addison-Wesley,
Reading, Massachusetts, 1984.

01: public class ClassLoadSingleton

02: {

03: //called at class-load time

04: private static ClassLoadSingleton

05: m_instance = new ClassLoadSingleton();

06:

07: private ClassLoadSingleton()

08: {

09: //implementation details go here

10: }

11:

12: /**

13: * point of entry to this class

14: */

15: public static ClassLoadSingleton getInstance()

16: {

17: return m_instance;

18: }

20: }

Listing 15.1 Singleton instantiated at class loading time

Listing 15.2 shows a different approach. Instead of calling the constructor at class
load time, the class uses lazy instantiation—-that is, the constructor is not called until
getInstance() is called the first time. Lines 14 to 20 of Listing 15.2 show the logic of
returning the FirstCallSingleton class from the getInstance() method.

01: public class FirstCallSingleton

02: {

03:

04: private static FirstCallSingleton m_instance = null;

05:

06: private FirstCallSingleton()

07: {

08: //implementation details go here

09: }

10:

11: /**

12: * point of entry to this class

13: */

14: public static synchronized FirstCallSingleton getInstance()

15: {

16: if (m_instance == null)

17: m_instance = new FirstCallSingleton();

Listing 15.2 Singleton instantiated at first call

118 Item 15

18:

19: return m_instance;

20: }

21: }

Listing 15.2 (continued)

Now that we’ve provided a review of the Singleton design pattern, let’s discuss
what could go wrong. The following sections discuss bad practices that we have com-
monly seen and provide suggestions on resolving the resulting dilemmas that occur.

When Multiple Singletons in Your VM Happen

Right now, you’re thinking, “What? Isn’t this contrary to the definition of a Singleton?”
Yes, you’re absolutely correct. However, if a Singleton class is not written correctly in a
one-VM multithreaded system, problems can arise.

Consider a Singleton designed to use lazy instantiation, as implemented in Listing
15.2. If the getInstance()method is not synchronized, the following could happen:
Two threads could call getInstance()simultaneously, and two different versions of
FirstCall could be returned. Figure 15.1 shows a pictorial representation of how this
could occur in one virtual machine. At time t=30, two threads in one virtual machine
call FirstCall.getInstance(), and two different objects are returned. This could
be extremely dangerous if, for example, the Singleton is supposed to guarantee a sin-
gle point of access to an external resource. If the Singleton class is writing data to a file,
for example, several problems could arise, ranging from corrupted data to unintended
mutual exclusion problems.

Figure 15.1 The synchronization problem.

FirstCall.getInstance()Thread 1

m_instance is null,
so return new

FirstCallSignleton();

FirstCall.getInstance()Thread 2

m_instance is null,
so return new

FirstCallSignleton();

t=0 t=30
TIMETIME

Avoiding Singleton Pitfalls 119

Like most concurrency issues, this is a difficult problem to debug. The key point here
is to make certain that your getInstance()method is synchronized when you are using the
lazy instantiation Singleton strategy shown in Listing 15.2.

When Singletons are Used as Global Variables,
or Become Non-Singletons

Sometimes the Singleton class is abused. One example that we’ve unfortunately seen
quite a bit is when a Singleton class is used as a “global variable” to eliminate parame-
ter passing. Using a Singleton in this manner is poor practice, and it may affect the flex-
ibility of your project’s software architecture. One example that we have seen is where
a code author placed his main application’s GUI object in a Singleton with synchro-
nized setGUI() and getGUI() methods, to avoid passing the user interface compo-
nent to other objects in the system. The strategy worked well, until the software
customer requested multiple applications per VM. Because some of the classes got a
handle to the application’s user interface with the getGUI() method in the Singleton,
this had to be rewritten.

We shudder to even show this next example, but an extreme case is shown in List-
ing 15.3.

01: public class GlobalVarSingleton

02: {

03:

04: private static GlobalVarSingleton

05: m_instance = new GlobalVarSingleton();

06:

07: //The use of this class is NOT recommended!

08: public int x = 0;

09: public int y = 1;

10: public int z = 2;

11:

12: private void GlobalVarSingleton()

13: {

14: }

15:

16: /**

17: * point of entry to this class

18: */

19: public static synchronized GlobalVarSingleton getInstance()

20: {

21: return m_instance;

22: }

23:

24: public static void main(String[] args)

25: {

26: //Bad usage example:

27:

Listing 15.3 Singleton as global variable

120 Item 15

28: GlobalVarSingleton globals =

29: GlobalVarSingleton.getInstance();

30: globals.x = 333;

31: globals.y = 40803;

32: globals.z = 21;

33:

34: /**

35: At this point, the offender calls other classes

36: who call GlobalVarSingleton.getInstance() to get

37: (and change) values of x, y, and z.

38: **/

39:

40: }

41: }

Listing 15.3 (continued)

Listing 15.3 shows the poor choice of using a Singleton to hold variables. In lines 8,
9, and 10, there are public instance variables x, y, and z. The main()method of Listing
15.3 shows an example usage of this, where a class in the VM gets the Singleton, alters
the variables, and calls another class, which gets the values of those variables and
changes them. It goes without saying that there will be synchronization issues in this
example, and it also goes without saying that this is poor design. Of course, many Sin-
gletons are not as blatant as this; some are designed correctly, but somewhere along the
road, an unenlightened programmer could add things to it to accomplish ends like
this. Please be aware that this is poor practice, and keep an eye on your existing Sin-
gleton classes.

Over time, a code base evolves. Software engineers modify classes, and every once
in a while, we have seen times where Singletons, accidentally or intentionally, stop
being Singletons. One of the most common events that we have seen is when a novice
programmer changes the private constructor to a public one, leading to havoc through-
out the baseline. Watch your baseline!

In conclusion, when you are deciding whether to create a Singleton class, first ask
yourself the following questions:

■■ Does there need to be one global entry point to this class?

■■ Should there be only one instance to this class in the VM?

If your answer is yes, then use a Singleton. If no, don’t use this design pattern.
If you do use the Singleton design pattern, be sure to implement your Singleton

classes correctly—use a private constructor, and synchronize methods that need to be
synchronized, looking at the code skeletons in Listing 15.1 and 15.2. Finally, again,
watch your baseline! Poor practices, such as using Singletons as global variables, as
well as the evolution of your Singletons into non-Singletons, can cause problems that
will keep you up too late at night.

Avoiding Singleton Pitfalls 121

Item 16: When setSize() Won’t Work5

Most developers stumble upon pitfalls sequentially, based on their experience level with
Java. The setSize() pitfall usually presents itself shortly after Java developers begin
serious GUI development, specifically when they try to set the size of their first newly
created custom components. BadSetSize, as follows, creates a simple custom button
that we want to size to 100 by 100 pixels. Here is the code to create our custom button:

class CustomButton extends Button

{

public CustomButton(String title)

{

super(title);

setSize(100,100);

}

}

In the constructor, developers often mistakenly assume that they can use set-
Size()(width, height) in the same way they do when sizing a frame. The prob-
lem arises when the developer hasn’t yet gained the knowledge of the Abstract
Windowing Toolkit’s (AWT) inner workings to understand that this code will only
work under certain situations. He or she has no idea that setSize() will fail to cor-
rectly size the component. For example, when we place our custom button in the frame
with other components using a simple grid layout, we get the results in Figure 16.1.
Our button is 66 by 23, not 100 by 100! What happened to our call to setSize()? The
method was executed, of course. However, it did not give the final word on the size of
our component.

Listing 16.1 shows the source code for BadSetSize.java.

Figure 16.1 Run of BadSetSize.class.

122 Item 16

5 This pitfall was first published by JavaWorld (www.javaworld.com) in the article “Steer clear
of Java Pitfalls”, September 2000 (http://www.javaworld.com/javaworld/jw-09-2000
/jw-0922-javatraps.html?) and is reprinted here with permission. The pitfall has been updated
from reader feedback.

01: package org.javapitfalls.item16;

02:

03: import java.awt.*;

04: import java.awt.event.*;

05:

06: class CustomButton extends Button

07: {

08: public CustomButton(String title)

09: {

10: super(title);

11: setSize(100,100);

12: }

13: }

14:

15: public class BadSetSize extends Frame

16: {

17: TextArea status;

18:

19: public BadSetSize()

20: {

21: super(“Bad Set Size”);

22:

23: setLayout(new GridLayout(2,0,2,2));

24: Panel p = new Panel();

25: CustomButton button = new CustomButton(“Press Me”);

26: p.add(button);

27: add(p);

28: status = new TextArea(3, 50);

29: status.append(“Button size before display: “ + Æ
button.getSize() + “\n”);

30: add(status);

31: addWindowListener(new WindowAdapter()

32: {

33: public void windowClosing(WindowEvent we)

34: { System.exit(1); }

35: });

36: setLocation(100,100);

37: pack();

38: setVisible(true);

39: status.append(“Button size after display: “ + Æ
button.getSize());

40: }

41:

42: public static void main(String args [])

43: {

44: new BadSetSize();

45: }

46: }

Listing 16.1 BadSetSize.java

When setSize() Won’t Work 123

Let’s examine the correct approach to sizing a component. The key to understand-
ing why our code failed is to recognize that after we create the component, the layout
manager—called GridLayout—reshapes the component in accordance with its own
rules. This presents us with several solutions. We could eliminate the layout manager
by calling setLayout(null), but as the layout manager provides numerous benefits
to our code, this is a poor remedy. If the user resizes the window, we still want to be
able to automatically resize our user interface, which is the layout manager’s chief
benefit. Another alternative would be to call setSize() after the layout manager has
completed its work. This only provides us with a quick fix: By calling repaint(), the
size would change, yet again when the browser is resized. That leaves us with only one
real option: Work with the layout manager only to resize the component. Below we
rewrite our custom component:

class CustomButton2 extends Button

{

public CustomButton2(String title)

{

super(title);

// setSize(100,100); - unnecessary

}

public Dimension getMinimumSize()

{ return new Dimension(100,100); }

public Dimension getPreferredSize()

{ return getMinimumSize(); }

}

Our custom component overrides the getMinimumSize() and getPreferred-
Size() methods of the Component class to set the component size. The layout man-
ager invokes these methods to determine how to size an individual component. Some
layout managers will disregard these hints if their pattern calls for that. For example, if
this button was placed in the center of a BorderLayout, the button would not be 100
by 100, but instead would stretch to fit the available center space. GridLayout will
abide by these sizes and anchor the component in the center. The GoodSetSize class
below uses the CustomButton2 class.

01: package org.javapitfalls.item16;

02:

03: import java.awt.*;

04: import java.awt.event.*;

05:

06: class CustomButton2 extends Button

07: {

Listing 16.2 GoodSetSize.java

124 Item 16

08: public CustomButton2(String title)

09: {

10: super(title);

11: System.out.println(“Size of button is : “ + this.getSize());

12: }

13:

14: public Dimension getMinimumSize()

15: { return new Dimension(100,100); }

16:

17: public Dimension getPreferredSize()

18: { return getMinimumSize(); }

19: }

20:

21: public class GoodSetSize extends Frame

22: {

23: TextArea status;

24:

25: public GoodSetSize()

26: {

27: super(“Good Set Size”);

28:

29: setLayout(new GridLayout(2,0));

30: Panel p = new Panel();

31: CustomButton2 button = new CustomButton2(“Press Me”);

32: p.add(button);

33: add(p);

34: status = new TextArea(3,50);

35: status.append(“Button size before display: “ + Æ
button.getSize() + “\n”);

36: add(status);

37: addWindowListener(new WindowAdapter()

38: {

39: public void windowClosing(WindowEvent we)

40: { System.exit(1); }

41: });

42: setLocation(100,100);

43: pack();

44: setVisible(true);

45: status.append(“Button size after display: “ + Æ
button.getSize());

46: }

47:

48: public static void main(String args [])

49: {

50: new GoodSetSize();

51: }

52: }

Listing 16.2 (continued)

When setSize() Won’t Work 125

Figure 16.2 Run of GoodSetSize.class.

Running GoodSetSize.java results in Figure 16.2.
It is interesting to note that our solution to setting the size of a component involved

not using the setSize() method. This pitfall is caused by the design complexity of a
cross-platform user interface and a developer’s unfamiliarity with the chain of events
necessary to display and resize an interface. Unfortunately, the supplied documenta-
tion of setSize() fails to suggest these prerequisites.

This solution also highlights the importance of properly naming methods and para-
meters. Should you use setSize()when you only need to set some internal values that
may or may not be used by your display mechanisms? A better choice would be
setInternalValues(), which at least clearly warns a developer of the limited guar-
antee this method offers.

Item 17: When Posting to a URL Won’t6

Now that the Simple Object Access Protocol (SOAP) and other variants of XML Remote
Procedure Calls (RPC) are becoming popular, posting to a Uniform Resource Locator
(URL) will be a more common and more important operation. While implementing a
standalone SOAP server, I stumbled across multiple pitfalls associated with posting to
a URL; starting with the nonintuitive design of the URL-related classes and ending
with specific usability pitfalls in the URLConnection class.

Connecting via HTTP with the java.net Classes

To perform a Hypertext Transfer Protocol (HTTP) post operation on a URL, you would
hope to find a simple HttpClient class to do the work, but after scanning the java.net
package, you would come up empty. There are several open-source HTTP clients avail-
able, and we examine one of them after examining the built-in classes. As an aside, it is
interesting to note that there is an HttpClient in the sun.net.www.http package that
is shipped with the JDK (and used by HttpURLConnection) but not part of the

126 Item 17

6 This pitfall was first published by JavaWorld (www.javaworld.com) in the article, “Dodge the
traps hiding in the URLConnection Class”, March 2001 (http://www.javaworld.com
/javaworld/jw-03-2001/jw-0323-traps.html?)and is reprinted here with permission. The pitfall
has been updated from reader feedback.

public API. Instead, the java.net URL classes were designed to be extremely generic
and take advantage of dynamic class loading of both protocols and content handlers.
Before we jump into the specific problems with posting, let’s examine the overall struc-
ture of the classes we will be using (either directly or indirectly). Figure 17.1 is a UML
diagram (created with ArgoUML downloadable from www.argouml.org) of the URL-
related classes in the java.net package and their relationships to each other. For brevity,
the diagram only shows key methods and does not show any data members.

The main class this pitfall centers around is the URLConnection class; however,
you cannot instantiate that class directly (it is abstract) but only get a reference to a spe-
cific subclass of URLConnection via the URL class. If you think that Figure 17.1 is com-
plex, I would agree. The general sequence of events works like this: A static URL
commonly specifies the location of some content and the protocol needed to access it.
The first time the URL class is used, a URLStreamHandlerFactory Singleton is created.
This factory will generate the appropriate URLStreamHandler that understands the
access protocol specified in the URL. The URLStreamHandler will instantiate the
appropriate URLConnection class that will then open a connection to the URL and
instantiate the appropriate ContentHandler to handle the content at the URL. So,
now that we know the general model, what is the problem? The chief problem is that
these classes lack a clear conceptual model by trying to be overly generic. Donald Nor-
man’s book The Design of Everyday Things states that one of the primary principles of
good design is a good conceptual model that allows us to “predict the effects of our
actions.”7 Here are some problems with the conceptual model of these classes:

■■ The URL class is conceptually overloaded. A URL is merely an abstraction for an
address or an endpoint. In fact, it would be better to have URL subclasses to dif-
ferentiate static resources from dynamic services. What is missing conceptually is
a URLClient class that uses the URL as the endpoint to read from or write to.

■■ The URL class is biased toward retrieving data from a URL. There are three
methods you can use to retrieve content from a URL and only one way to write
data to a URL. This disparity would be better served with a URL subclass for
static resources that only has a read operation. The URL subclass for dynamic
services would have both read and write methods. That would provide a clean
conceptual model for use.

■■ The naming of the protocol handlers “stream” handlers is confusing because
their primary purpose is to generate (or build) a connection. A better model to
follow would be the one used in the Java API for XML Parsing (JAXP) where a
DocumentBuilderFactory produces a DocumentBuilder that produces a
Document. Applying that model to the URL classes would yield a URLCon-
nectorFactory that produces a URLConnector that produces a URLCon-
nection.

Now that we have the general picture, we are ready to tackle the URLConnection
class and attempt to post to a URL. Our goal is to create a simple Java program that
posts some text to a Common Gateway Interface (CGI) program. To test our programs,
I created a simple CGI program in C that echoes (in an HTML wrapper) whatever is
passed in to it. Listing 17.1 is the source code for that CGI program called echocgi.c.

When Posting to a URL Won’t 127

7 Norman, Donald A., The Design of Everyday Things, Doubleday, 1988, page 13.

Figure 17.1 URL Classes in the java.net package.

01: #include <stdio.h>

02: #include <stdlib.h>

03: #include <string.h>

04:

05: void main(int argc, char **argv)

06: {

07: char *request_method = NULL;

08: char *content_length = NULL;

09: char *content_type = NULL;

10: int length=0;

11: char *content = NULL;

12: int read = 0;

13:

Listing 17.1 echocgi.c

<<realize>>

<<interface>>
URLStreamHandlerFactory

URL

URLConnection openConnection()
InputStream openStream()
Object getContent()
URLStreamHandler getURLStreamHandler()

Factory

URLStreamHandler createURLStreamHandler(String protocol)

URL StreamHandler

URLConnection openConnection(URL u)

ContentHandler

Object getContent(URLConnection urlc)

jpeg PlainHttpURLConnection JarURLConnection

HttpURLConnection JarURLConnection

URLConnection

void setRequestProperty(string p, string v)
InputStream getInputStream()
OutputStream getOutputStream()
ContentHandler getContentHandler()
Object getContent()

creates

uses

creates per connection sun.net.www.protocol.ftp.Handler

sun.net.www.protocol.jar.Handler

sun.net.www.protocol.http.Handler

128 Item 17

14: /* get the key environment variables. */

15: request_method = getenv(“REQUEST_METHOD”);

16: if (!request_method)

17: {

18: printf(“Not being run as a CGI program.\n”);

19: exit(1);

20: }

21:

22: // set outgoing content type

23: printf(“Content-type: text/html\n\n”);

24:

25: if (strcmp(request_method, “POST”) == 0)

26: {

27: content_length = getenv(“CONTENT_LENGTH”);

28: content_type = getenv(“CONTENT_TYPE”);

29:

30: length = atoi(content_length);

31: if (length > 0)

32: {

33: content = (char *) malloc(length + 1);

34: read = fread(content, 1, length, stdin);

35: content[length] = ‘\0’; /* NUL terminate */

36: }

37:

38: printf(“<HEAD>\n”);

39: printf(“<TITLE> Echo CGI program </TITLE>\n”);

40: printf(“</HEAD>\n”);

41: printf(“<BODY BGCOLOR=’#ebebeb’>”);

42: printf(“<CENTER>\n”);

43: printf(“<H2> Echo </H2>\n”);

44: printf(“</CENTER>\n”);

45: if (length > 0)

46: {

47: printf(“Length of content: %d\n”, length);

48: printf(“Content: %s\n”, content);

49: }

50: else

51: printf(“No content! ERROR!\n”);

52: printf(“</BODY>\n”);

53: printf(“</HTML>\n”);

54: }

55: else

56: {

57: // print out HTML error

58: printf(“<HTML> <HEAD> <TITLE> Configuration Error Æ
</TITLE></HEAD>\n”);

59: printf(“<BODY> Unable to run the Echo CGI Program.
\n”);

60: printf(“Reason: This program only tests a POST method. Æ

\n”);

Listing 17.1 (continued)

When Posting to a URL Won’t 129

61: printf(“Report this to your System Administrator. </BR>\n”);

62: printf(“</BODY> </HTML>\n”);

63: exit(1);

64: }

66: }

Listing 17.1 (continued)

Testing the CGI program requires two things: a Web server and a browser or pro-
gram to post information to the program. For the Web server, I downloaded and
installed the Apache Web server from www.apache.org. Figure 17.2 displays the sim-
ple HTML form used to post information (two fields) to the CGI program. When the
“Submit your vote” button is clicked in the HTML form, the two values are posted to
the CGI program (on the localhost) and the response page is generated as is shown in
Figure 17.3.

Now that we have a simple CGI program to echo data posted to it, we are ready to
write our Java program to post data. To send data to a URL, we would expect it to be
as easy as writing data to a socket. Fortunately, by examining the URLConnection
class we see that it has getOutputStream() and getInputStream()methods, just
like the Socket class. Armed with that information and an understanding of the
HTTP protocol, we write the program in Listing 17.2, BadURLPost.java.

Figure 17.2 HTML Form to test echocgi.exe.

130 Item 17

Figure 17.3 HTML response from echocgi.exe.

01: /** BadURLPost.java */

02: package org.javapitfalls.item17;

03:

04: import java.net.*;

05: import java.io.*;

06:

07: public class BadURLPost

08: {

09: public static void main(String args[])

10: {

11: // get an HTTP connection to POST to

12: if (args.length < 1)

13: {

14: System.out.println(“USAGE: java Æ
GOV.dia.mditds.util.BadURLPost url”);

15: System.exit(1);

16: }

17:

18: try

19: {

20: // get the url as a string

21: String surl = args[0];

22: URL url = new URL(surl);

23:

24: URLConnection con = url.openConnection();

25: System.out.println(“Received a : “ + Æ
con.getClass().getName());

26:

Listing 17.2 BadURLPost.java (continued)

When Posting to a URL Won’t 131

27: con.setDoInput(true);

28: con.setDoOutput(true);

29: con.setUseCaches(false);

30:

31: String msg = “Hi HTTP SERVER! Just a quick hello!”;

32: con.setRequestProperty(“CONTENT_LENGTH”, “5”); // Not Æ
checked

33: con.setRequestProperty(“Stupid”, “Nonsense”);

34:

35: System.out.println(“Getting an input stream...”);

36: InputStream is = con.getInputStream();

37:

38: System.out.println(“Getting an output stream...”);

39: OutputStream os = con.getOutputStream();

40:

41: /*

42: con.setRequestProperty(“CONTENT_LENGTH”, “” + Æ
msg.length());

43: Illegal access error - can’t reset method.

44: */

45:

46: OutputStreamWriter osw = new OutputStreamWriter(os);

47: osw.write(msg);

48: /** REMEMBER THIS osw.flush(); **/

49: osw.flush();

50: osw.close();

51:

52: System.out.println(“After flushing output stream. “);

53:

54: // any response?

55: InputStreamReader isr = new InputStreamReader(is);

56: BufferedReader br = new BufferedReader(isr);

57: String line = null;

58:

59: while ((line = br.readLine()) != null)

60: {

61: System.out.println(“line: “ + line);

62: }

63: } catch (Throwable t)

64: {

65: t.printStackTrace();

66: }

67: }

68: }

Listing 17.2 (continued)

132 Item 17

A run of Listing 17.2 produces the following:

E:\classes\org\javapitfalls\Item17>java

org.javapitfalls.item17.BadURLPost http://localhost/cgi-bin/echocgi.exe Æ
Received a : sun.net.www.protocol.http.HttpURLConnection

Getting an input stream...

Getting an output stream...

java.net.ProtocolException: Cannot write output after reading input.

at

sun.net.www.protocol.http.HttpURLConnection.getOutputStream(HttpURLCo

nnection.java:507)

at

com.javaworld.jpitfalls.article3.BadURLPost.main(BadURLPost.java:39)

When trying to get the output stream of the HttpURLConnection class, the pro-
gram informed me that I cannot write output after reading input. The strange thing
about this error message is that we have not tried to read any data yet. Of course, that
assumes the getInputStream()method behaves in the same manner as in other IO
classes. Specifically, there are three problems with the above code:

■■ The setRequestProperty()method parameters are not checked. This is
demonstrated by setting a property called “stupid” with a value of “non-
sense.” Since these properties actually go into the HTTP request and they are
not validated by the method (as they should be), you must be extra careful to
ensure the parameter names and values are correct.

■■ The getOutputStream() method causes the program to throw a
ProtocolException with the error message “Can’t write output after read-
ing input.” By examining the JDK source code, we find that this is due to the
getInputStream()method having the side effect of sending the request
(whose default request method is “GET”) to the Web server. As an aside, this is
similar to a side effect in the ObjectInputStream and ObjectOutput-
Stream constructors that are detailed in my first pitfalls book. So, the pitfall is
the assumption that the getInputStream()and getOutputStream()meth-
ods behave just like they do for a Socket connection. Since the underlying
mechanism for communicating to the Web server actually is a socket, this is not
an unreasonable assumption. A better implementation of HttpURLConnec-
tion would be to postpone the side effects until the initial read or write to
the respective input or output stream. This could be done by creating an
HttpInputStream and HttpOutputStream. That would keep the socket
metaphor intact. One could argue that HTTP is a request/response stateless
protocol and the socket metaphor does not fit. The answer to that is that the
API should fit the conceptual model. If the current model is identical to a
socket connection, it should behave as such. If it does not, you have stretched
the bounds of abstraction too far.

When Posting to a URL Won’t 133

■■ Although it is commented out, it is also illegal to attempt to set a request
property after getting an input or output stream. The documentation for
URLConnection does state the sequence to set up a connection, although it
does not state this is a mandatory sequence.

If we did not have the luxury of examining the source code (which definitely should
not be a requirement to use an API), we would be reduced to trial and error (the
absolute worst way to program). Neither the documentation nor the API of the
HttpURLConnection class afford us any understanding of how the protocol is imple-
mented, so we feebly attempt to reverse the order of calls to getInputStream() and
getOutputStream(). Listing 17.3, BadURLPost1.java, is an abbreviated version of
that program.

01: package org.javapitfalls.item17;

02:

03: import java.net.*;

04: import java.io.*;

05:

06: public class BadURLPost1

07: {

08: public static void main(String args[])

09: {

// removed for brevity

35: System.out.println(“Getting an output stream...”);

36: OutputStream os = con.getOutputStream();

37:

38: System.out.println(“Getting an input stream...”);

39: InputStream is = con.getInputStream();

// removed for brevity

67: }

68: }

Listing 17.3 BadURLPost1.java

A run of Listing 17.3 produces the following:

E:\classes\org\javapitfalls\Item17>java org.javapitfalls. Æ
item17.BadURLPost1 http://localhost/cgi-bin/echocgi.exe

Received a : sun.net.www.protocol.http.HttpURLConnection

Getting an output stream...

Getting an input stream...

After flushing output stream.

line: <HEAD>

line: <TITLE> Echo CGI program </TITLE>

line: </HEAD>

line: <BODY BGCOLOR=’#ebebeb’><CENTER>

134 Item 17

line: <H2> Echo </H2>

line: </CENTER>

line: No content! ERROR!

line: </BODY>

line: </HTML>

Although the program compiles and runs, the CGI program reports that no data
was sent! Why? Again we were bitten by the side effects of getInputStream(),
which caused the POST request to be sent before anything was put in the post’s output
buffer, thus sending an empty post request.

Now, after having failed twice, we understand that the getInputStream()is the
key method that actually writes the requests to the server. Therefore, we must perform
the operations serially (open output, write, open input, read) as we do in Listing 17.4,
GoodURLPost.java.

01: package org.javapitfalls.item17;

02:

03: import java.net.*;

04: import java.io.*;

05:

06: public class GoodURLPost

07: {

08: public static void main(String args[])

09: {

10: // get an HTTP connection to POST to

11: if (args.length < 1)

12: {

13: System.out.println(“USAGE: java Æ
GOV.dia.mditds.util.GoodURLPost url”);

14: System.exit(1);

15: }

16:

17: try

18: {

19: // get the url as a string

20: String surl = args[0];

21: URL url = new URL(surl);

22:

23: URLConnection con = url.openConnection();

24: System.out.println(“Received a : “ + Æ
con.getClass().getName());

25:

26: con.setDoInput(true);

27: con.setDoOutput(true);

28: con.setUseCaches(false);

29:

30: String msg = “Hi HTTP SERVER! Just a quick hello!”;

Listing 17.4 GoodURLPost.java (continued)

When Posting to a URL Won’t 135

31: con.setRequestProperty(“CONTENT_LENGTH”, “” + Æ
msg.length()); // Not checked

32: System.out.println(“Msg Length: “ + msg.length());

33:

34: System.out.println(“Getting an output stream...”);

35: OutputStream os = con.getOutputStream();

36:

37: OutputStreamWriter osw = new OutputStreamWriter(os);

38: osw.write(msg);

39: /** REMEMBER THIS osw.flush(); **/

40: osw.flush();

41: osw.close();

42:

43: System.out.println(“After flushing output stream. “);

44:

45: System.out.println(“Getting an input stream...”);

46: InputStream is = con.getInputStream();

47:

48: // any response?

49: InputStreamReader isr = new InputStreamReader(is);

50: BufferedReader br = new BufferedReader(isr);

51: String line = null;

52:

53: while ((line = br.readLine()) != null)

54: {

55: System.out.println(“line: “ + line);

56: }

57: } catch (Throwable t)

58: {

59: t.printStackTrace();

60: }

61: }

62: }

Listing 17.4 (continued)

A run of Listing 17.4 produces the following:

E:\classes\

org\javapitfalls\Item17>javaorg.javapitfalls.item17.GoodURLPost

http://localhost/cgi-bin/echocgi.exe

Received a : sun.net.www.protocol.http.HttpURLConnection Æ
Msg Length: 35

Getting an output stream...

After flushing output stream.

Getting an input stream...

line: <HEAD>

line: <TITLE> Echo CGI program </TITLE>

136 Item 17

line: </HEAD>

line: <BODY BGCOLOR=’#ebebeb’><CENTER>

line: <H2> Echo </H2>

line: </CENTER>

line: Length of content: 35

line: Content: Hi HTTP SERVER! Just a quick hello!

line: </BODY>

line: </HTML>

Finally, success! We now can post data to a CGI program running on a Web server. To
summarize, to avoid the HTTP post pitfall, do not assume the methods behave as they
do for a socket. Instead, the getInputStream()method has the side effect of writing
the requests to the Web server. Therefore, the proper sequence must be observed.

One final note on this class is to understand the complexity of writing characters to the
Web server. In the above programs, I use the default encoding when writing the String
to the underlying socket. You could explicitly write bytes instead of characters by first
retrieving the bytes via getBytes() of the String class. Additionally, you could
explicitly set the encoding of the characters using the OutputStreamWriter class.

An Alternative Open Source HTTP Client

A more intuitive open source package called HTTPClient can be downloaded from
http://www.innovation.ch/java/HTTPClient. We will use two classes in this pack-
age, HTTPConnection and HTTPResponse, to accomplish the same functionality in
GoodURLPost.java. Listing 17.5 demonstrates posting raw data using this package.

01: package org.javapitfalls.item17;

02:

03: import HTTPClient.*;

04:

05: import java.net.*;

06: import java.io.*;

07:

08: public class HTTPClientPost

09: {

10: public static void main(String args[])

11: {

12: // get an HTTP connection to POST to

13: if (args.length < 2)

14: {

15: System.out.println(“USAGE: java Æ
org.javapitfalls.net.mcd.i1.HTTPClientPost host cgi-program”);

16: System.exit(1);

17: }

Listing 17.5 HTTPClientPost.java (continued)

When Posting to a URL Won’t 137

18:

19: try

20: {

21: // get the url as a string

22: String sHost = args[0];

23: String sfile = args[1];

24:

25: HTTPConnection con = new HTTPConnection(sHost);

26:

27: String msg = “Hi HTTP SERVER! Just a quick hello!”;

28:

29: HTTPResponse resp = con.Post(sfile, msg);

30: InputStream is = resp.getInputStream();

31:

32: // any response?

33: InputStreamReader isr = new InputStreamReader(is);

34: BufferedReader br = new BufferedReader(isr);

35: String line = null;

36:

37: while ((line = br.readLine()) != null)

38: System.out.println(“line: “ + line);

39: } catch (Throwable t)

40: {

41: t.printStackTrace();

42: }

43: }

44: }

Listing 17.5 (continued)

A run of the HttpClientPost program produces:

E:\classes\org\javapitfalls>java org.javapitfalls.Item17.HTTPClientPost

localhost /cgi-bin/echocgi.exe

line: <HEAD>

line: <TITLE> Echo CGI program </TITLE>

line: </HEAD>

line: <BODY BGCOLOR=’#ebebeb’><CENTER>

line: <H2> Echo </H2>

line: </CENTER>

line: Length of content: 35

line: Content: Hi HTTP SERVER! Just a quick hello!

line: </BODY>

line: </HTML>

As you can see, the results are the same as with GoodURLPost. Instead of raw data,
you may want to send form input. Listing 17.6 is an example that sends the same form
input as demonstrated in Figure 17.1.

138 Item 17

01: package org.javapitfalls.item17;

02:

03: import HTTPClient.*;

04:

05: import java.net.*;

06: import java.io.*;

07:

08: public class HTTPClientPost2

09: {

10: public static void main(String args[])

11: {

12: // get an HTTP connection to POST to

13: if (args.length < 2)

14: {

15: System.out.println(“USAGE: java Æ
org.javapitfalls.net.mcd.i1.HTTPClientPost2 host cgi-program”);

16: System.exit(1);

17: }

18:

19: try

20: {

21: // get the url as a string

22: String sHost = args[0];

23: String sfile = args[1];

24:

25: HTTPConnection con = new HTTPConnection(sHost);

26:

27: NVPair form_data[] = new NVPair[2];

28: form_data[0] = new NVPair(“theName”, “Bill Gates”);

29: form_data[1] = new NVPair(“question1”, “No”);

30:

31: HTTPResponse resp = con.Post(sfile, form_data);

32: InputStream is = resp.getInputStream();

33:

34: // any response?

35: InputStreamReader isr = new InputStreamReader(is);

36: BufferedReader br = new BufferedReader(isr);

37: String line = null;

38:

39: while ((line = br.readLine()) != null)

40: System.out.println(“line: “ + line);

41: } catch (Throwable t)

42: {

43: t.printStackTrace();

44: }

45: }

46: }

Listing 17.6 HTTPClientPost2.java

When Posting to a URL Won’t 139

A run of the program HTTPClientPost2 produces the following:

E:\classes\org\javapitfalls\net\mcd\i1>java org.javapitfalls.net Æ
.mcd.i1.HTTPClientPost2 localhost /cgi-bin/echocgi.exe

line: <HEAD>

line: <TITLE> Echo CGI program </TITLE>

line: </HEAD>

line: <BODY BGCOLOR=’#ebebeb’><CENTER>

line: <H2> Echo </H2>

line: </CENTER>

line: Length of content: 31

line: Content: theName=Bill+Gates&question1=No

line: </BODY>

line: </HTML>

The results of HTTPClientPost2 are identical to the results in Figure 17.3. In conclu-
sion, while you can use URLConnection to post data to Web servers, you will find it
more intuitive to use an open-source alternative.

Item 18: Effective String Tokenizing8

This pitfall revealed itself when a junior developer needed to parse a text file that
used a three-character delimiter (###) between tokens. His first attempt used the
StringTokenizer class to parse the input text. He sought my advice after he dis-
covered what he considered to be strange behavior. The run of the program below
demonstrates code similar to his:

>java org.javapitfalls.util.mcd.i1.BadStringTokenizer

input: 123###4#5###678###hello###wo#rld###9

delim: ###

If ‘###’ treated as a group delimiter expecting 6 tokens...

tok[0]: 123

tok[1]: 4

tok[2]: 5

tok[3]: 678

tok[4]: hello

tok[5]: wo

tok[6]: rld

tok[7]: 9

of tokens: 8

As is demonstrated in the above listing, the developer expected six tokens, but if a
single “#” character was present in any token, he received more. The junior developer
wanted the delimiter to be the group of three pound characters, not a single pound

140 Item 18

8 This pitfall was first published by JavaWorld (www.javaworld.com) in the article, “Steer clear
of Java Pitfalls”, September 2000 (http://www.javaworld.com/javaworld/jw-09-2000
/jw-0922-javatraps-p2.html) and is reprinted here with permission. The pitfall has been updated
from reader feedback.

character. BadStringTokenizer.java in Listing 18.1 is the incorrect way to parse with a
delimiter of “###”.

01: package org.javapitfalls.item18;

02:

03: import java.util.*;

04:

05: public class BadStringTokenizer

06: {

07: public static String [] tokenize(String input, String delimiter)

08: {

09: Vector v = new Vector();

10: StringTokenizer t = new StringTokenizer(input, delimiter);

11: String cmd[] = null;

12:

13: while (t.hasMoreTokens())

14: v.addElement(t.nextToken());

15:

16: int cnt = v.size();

17: if (cnt > 0)

18: {

19: cmd = new String[cnt];

20: v.copyInto(cmd);

21: }

22:

23: return cmd;

24: }

25:

26: public static void main(String args[])

27: {

28: try

29: {

30: String delim = “###”;

31: String input = “123###4#5###678###hello###wo#rld###9”;

32: System.out.println(“input: “ + input);

33: System.out.println(“delim: “ + delim);

34: System.out.println(“If ‘###’ treated as a group Æ
delimiter expecting 6 tokens...”);

35: String [] toks = tokenize(input, delim);

36: for (int i=0; i < toks.length; i++)

37: System.out.println(“tok[“ + i + “]: “ + toks[i]);

38: System.out.println(“# of tokens: “ + toks.length);

39: } catch (Throwable t)

40: {

41: t.printStackTrace();

42: }

43: }

44: }

Listing 18.1 BadStringTokenizer.java

Effective String Tokenizing 141

The tokenize() method is simply a wrapper for the StringTokenizer class.
The StringTokenizer constructor takes two String arguments: one for the input
and one for the delimiter. The junior developer incorrectly inferred that the delimiter
parameter would be treated as a group of characters instead of a set of single charac-
ters. Is that such a poor assumption? I don’t think so. With thousands of classes in the
Java APIs, the burden of design simplicity rests on the designer’s shoulders and not on
the application developer’s. It is not unreasonable to assume that a String would be
treated as a single group. After all, that is its most common use: a String represents a
related grouping of characters.

A correct StringTokenizer constructor would require the developer to provide
an array of characters, which would better signify that the delimiters for the current
implementation of StringTokenizer are only single characters—though you can
specify more than one. This incompletion is an example of API laziness. The API
designer was more concerned with rapidly developing the API implementation than
the intuitiveness of the implementation. We have all been guilty of this, but it is some-
thing we should be vigilant against.

To fix the problem, we create two new static tokenize() methods: one that takes an
array of characters as delimiters, the other that accepts a Boolean flag to signify whether
the String delimiter should be regarded as a single group. The code for those two
methods (and one additional utility method) is in the class GoodStringTokenizer:

01: package org.javapitfalls.item18;

02:

03: import java.util.*;

04:

05: public class GoodStringTokenizer

06: {

07: // String tokenizer with current behavior

08: public static String [] tokenize(String input, char [] Æ
delimiters)

09: {

10: return tokenize(input, new String(delimiters), false);

11: }

12:

13: public static String [] tokenize(String input, String Æ
delimiters, boolean delimiterAsGroup)

14: {

15: String [] result = null;

16: List l = toksToCollection(input, delimiters, Æ
delimiterAsGroup);

17: if (l.size() > 0)

18: {

19: result = new String[l.size()];

20: l.toArray(result);

21: }

Listing 18.2 GoodStringTokenizer.java

142 Item 18

22: return result;

23: }

24:

25: public static List toksToCollection(String input, String Æ
delimiters, boolean delimiterAsGroup)

26: {

27: ArrayList l = new ArrayList();

28:

29: String cmd[] = null;

30:

31: if (!delimiterAsGroup)

32: {

33: StringTokenizer t = new StringTokenizer(input, delimiters);

34: while (t.hasMoreTokens())

35: l.add(t.nextToken());

36: }

37: else

38: {

39: int start = 0;

40: int end = input.length();

41:

42: while (start < end)

43: {

44: int delimIdx = input.indexOf(delimiters,start);

45: if (delimIdx < 0)

46: {

47: String tok = input.substring(start);

48: l.add(tok);

49: start = end;

50: }

51: else

52: {

53: String tok = input.substring(start, Æ
delimIdx);

54: l.add(tok);

55: start = delimIdx + delimiters.length();

56: }

57: }

58: }

59:

60: return l;

61: }

62:

63: public static void main(String args[])

64: {

65: try

66: {

Listing 18.2 (continued)

Effective String Tokenizing 143

67: String delim = “###”;

68: String input = “123###4#5###678###hello###wo#rld###9”;

69: // expecting 1 2 3 4 5 6 Æ
tokens

70: System.out.println(“input: “ + input);

71: System.out.println(“delim: “ + delim);

72: System.out.println(“If ‘###’ treated as a group Æ
delimiter expecting 6 tokens...”);

73: String [] toks = tokenize(input, delim, true);

74: for (int i=0; i < toks.length; i++)

75: System.out.println(“tok[“ + i + “]: “ + toks[i]);

76: System.out.println(“# of tokens: “ + toks.length);

77: } catch (Throwable t)

78: {

79: t.printStackTrace();

80: }

81: }

82: }

83:

Listing 18.2 (continued)

Following is run of GoodStringTokenizer that demonstrates the new static
method, tokenize(), that treats the token String “###” as a single delimiter:

>java org.javapitfalls.util.mcd.i1.GoodStringTokenizer

input: 123###4#5###678###hello###wo#rld###9

delim: ###

If ‘###’ treated as a group delimiter expecting 6 tokens...

tok[0]: 123

tok[1]: 4#5

tok[2]: 678

tok[3]: hello

tok[4]: wo#rld

tok[5]: 9

of tokens: 6

Beyond solving the “delimiter as a group” problem, GoodStringTokenizer adds a
utility method to convert the set of tokens into a java Collection. This is important,
as StringTokenizer is a pre-Collection class that has no built-in support for
collections. By returning a collection, we can take advantage of the utility methods,
specifically, those for sorting and searching, in the Collections class. The class below,
TokenCollectionTester.java, demonstrates the benefits of a Collection of
tokens.

144 Item 18

01: package org.javapitfalls.item18;

02:

03: import java.util.*;

04:

05: public class TokenCollectionTester

06: {

07: public static void main(String args[])

08: {

09: try

10: {

11: String input = “zuchinni, apple, beans, hotdog, Æ
hamburger,” +

12: “wine, coke, drink, rice, fries, chicken”;

13: String delim = “, “;

14: List l = GoodStringTokenizer.toksToCollection(input,

15: delim, false);

16: String top = (String) Collections.max(l);

17: System.out.println(“Top token is: “ + top);

18: Collections.sort(l);

19: System.out.println(“Sorted list: “);

20: Iterator i = l.iterator();

21: while (i.hasNext())

22: System.out.println(i.next());

23:

24: } catch (Throwable t)

25: {

26: t.printStackTrace();

27: }

28: }

29: }

Listing 18.3 TokenCollectionTester.java

Running TokenCollectionTester produces the following output:

>java org.javapitfalls.util.mcd.i1.TokenCollectionTester

Top token is: zuchinni

Sorted list:

apple

beans

chicken

coke

drink

fries

hamburger

Effective String Tokenizing 145

wine

hotdog

rice

zuchinni

In this item, we have carefully examined the workings of the StringTokenizer
class, highlighted some shortcomings, and created some utility methods to improve
the class.

Item 19: JLayered Pane Pitfalls9

While working on the jXUL project (an open-source effort to integrate XUL, or Exten-
sible User-Interface Language, with Java) for the book Essential XUL Programming, I
ported a Pacman arcade game clone called Pagman to a Java-based XulRunner plat-
form. XulRunner is a Java class that executes XUL applications; it’s similar to the
JDK’s AppletRunner. Figure 19.1 provides a screen shot of Pagman port’s current
version, which successfully allows the ghost sprites to move on a JLayeredPane’s
top layer. The sprites move over the background images, which exist in a layer
beneath. (Many thanks to my coauthor Kevin Smith, who worked through these pit-
falls with me to bring Pagman to fruition.)

Instead of examining this pitfall in the XulRunner code, which is rather large, we
will examine a simpler example that demonstrates the problem. Those interested in the
Pagman code can download it from the jXUL Web site (http://www.sourceforge
.net/jxul).

Our simple BadLayeredPane example in Listing 19.1 attempts to create a frame
that has a colored panel in a background layer and a button in a foreground layer with
a JLayeredPane:

Figure 19.1 Pagman using a JlayeredPane.
Graphics © Dan Addix, Brian King, and David Boswell.

146 Item 19

9 This pitfall was first published by JavaWorld (www.javaworld.com) in the article, “Practice makes
perfect” November 2001 (http://www.javaworld.com/javaworld/jw-11-2001/jw-1116-traps
.html?) and is reprinted here with permission. The pitfall has been updated from reader feedback.

01: package org.javapitfalls.item19;

02:

03: import java.awt.*;

04: import javax.swing.*;

05: import java.awt.event.*;

06:

07: public class BadLayeredPane extends JFrame

08: {

09: public BadLayeredPane()

10: {

11: // Error 1: using the Root layered pane

12: JLayeredPane lp = getLayeredPane();

13:

14: // set the size of this pane

15: lp.setPreferredSize(new Dimension(100,100));

16:

17: // add a Colored Panel

18: JPanel jpnl = new JPanel();

19: jpnl.setSize(100,100);

20: jpnl.setOpaque(true);

21: jpnl.setBackground(Color.red);

22:

23: // Error 2: these MUST be of type Integer.

24: lp.add(jpnl, 2);

25:

26: // put a Button on top

27: Button b = new Button(“Hi!”);

28: // Error 3: adding button wrong

29: lp.add(b, 1);

30: }

31:

32: public static void main(String [] args)

33: {

34: JFrame frame = new BadLayeredPane();

35:

36: frame.addWindowListener(

37: new WindowAdapter()

38: {

39: public void windowClosing(WindowEvent e)

40: {

41: System.exit(0);

42: }

43: });

44:

45: frame.pack();

46: frame.setVisible(true);

47: }

48: }

49:

Listing 19.1 BadLayeredPane.java

JLayered Pane Pitfalls 147

Figure 19.2 Run of BadLayeredPane.

When Listing 19.1 runs, it produces the screen in Figure 19.2.
Not only is our JLayeredPane not working properly, it has no size! We must first

work through the size problem before we can approach the heart of our pitfall. Listing
19.1 features three errors (called out in the comments); I’ll tackle the first two now and
address the third later. First, the JLayeredPane that is part of the JFrame’s JRootPane
causes our size problem. When you examine the source code for JRootPane, you see that
the JRootPane’s RootLayout does not use the JLayeredPane to calculate its size;
JLayeredPane only calculates the size of the content pane and the menu bar. Second,
when adding components to our JLayeredPane, we use integers instead of Integer
objects.

With this knowledge, let’s examine our second attempt at displaying our two sim-
ple layers. Listing 19.2 fixes two of our problems.

01: package org.javapitfalls.item19;

02:

03: import java.awt.*;

04: import javax.swing.*;

05: import java.awt.event.*;

06:

07: public class BadLayeredPane2 extends JFrame

08: {

09: public BadLayeredPane2()

10: {

11: // Fix 1: Create a JLayeredPane

12: JLayeredPane lp = new JLayeredPane();

13:

14: // set the size of this pane

15: lp.setPreferredSize(new Dimension(100,100));

16:

17: // add a Colored Panel

18: JPanel jpnl = new JPanel();

19: jpnl.setSize(100,100);

20: jpnl.setOpaque(true);

21: jpnl.setBackground(Color.red);

22:

23: // Fix 2: using Integer objects

24: lp.add(jpnl, new Integer(2));

Listing 19.2 BadLayeredPane2.java

148 Item 19

25:

26: // put a Button on top

27: Button b = new Button(“Hi!”);

28: lp.add(b, new Integer(1));

29:

30: // Part of Fix 1

31: getContentPane().add(lp);

32: }

33:

// main method() Identical to BadLayeredPane.java

50: }

Listing 19.2 (continued)

We’ll first study the fixes applied and then the results. There are two fixes in Listing 19.2
(called out in the comments):

■■ First, we create a new JLayeredPane, which we add to the ContentPane.
The RootLayout manager uses the ContentPane to calculate the frame’s
size, so now the JFrame is packed properly.

■■ Second, we correctly add components to the JLayeredPane using an Integer
object to specify the layer.

Figure 19.3 shows the result of these fixes.
Figure 19.3 clearly demonstrates that we have not yet accomplished our goal.

Though the colored panel displays, the button fails to appear on the layer above the
panel. Why? Because we assume we add components to a JLayeredPane the same
way we add components to Frames and Panels. This assumption is our third error
and the JLayeredPane pitfall. Contrary to Frame and Panel, the JLayeredPane
lacks a default LayoutManager; thus, the components have no sizes or positions pro-
vided for them by default. Instead, a component’s size and position must be explicitly
set before adding them to the JLayeredPane, which Fix 1 achieves in Listing 19.3.

Figure 19.3 Run of BadLayeredPane2.

JLayered Pane Pitfalls 149

01: package org.javapitfalls.item19;

02:

03: import java.awt.*;

04: import javax.swing.*;

05: import java.awt.event.*;

06:

07: public class GoodLayeredPane extends JFrame

08: {

09: public GoodLayeredPane()

10: {

11: JLayeredPane lp = new JLayeredPane();

12:

13: // set the size of this pane

14: lp.setPreferredSize(new Dimension(100,100));

15:

16: // add a Colored Panel

17: JPanel jpnl = new JPanel();

18: jpnl.setSize(100,100);

19: jpnl.setOpaque(true);

20: jpnl.setBackground(Color.red);

21:

22: lp.add(jpnl, new Integer(1));

23:

24: // put a Button on top

25: Button b = new Button(“Hi!”);

26: // Fix 1: set the size and position

27: b.setBounds(10,10, 80, 40);

28: lp.add(b, new Integer(2));

29:

30: getContentPane().add(lp);

31: }

32:

// main() method Identical to BadLayeredPane.java

49: }

Listing 19.3 GoodLayeredPane.java

When run, Listing 19.3 produces the correct result, shown in Figure 19.4.

Figure 19.4 Run of GoodLayeredPane.

150 Item 19

In summary, the key pitfall in our JLayeredPane example is wrongly assuming
that the JLayeredPane has a default LayoutManager like JFrame and JPanel.
Experience tells us to eliminate that assumption and position and size the components
for each layer. Once we do so, the JLayeredPane works fine.

Item 20: When File.renameTo() Won’t10

The File class and specifically the File.renameTo()method suffers from pitfalls in
both design and implementation. Many pitfalls stem from confusion regarding the
expected behavior of classes in the Java libraries. Unfortunately, the input/output (IO)
classes in Java have been prone to significant revision as the Java platform has evolved.
An early overhaul added readers and writers to the input and output streams to distin-
guish between character-based IO and byte-based IO. With JDK 1.4, another overhaul has
taken place, adding a lower layer of high-performance access via Channel classes. Figure
20.1 displays the major file-related classes in the java.io and java.nio packages.

Unfortunately, just the fact that there are five classes and two interfaces all pertain-
ing to different facets of a file increases the complexity of using these classes properly.
That is especially true if the distinction between classes is small or if the role of the class
is ill defined. Let’s examine each class and its purpose:

Figure 20.1 File-related classes in the Java class libraries.

java.io

<<interface>>
FileFilter

<<interface>>
FilenameFilter

RandomAccessFile

File

FileDescriptor

FilePermission

java.nio.channels

FileLockFileChannel

When File.renameTo() Won’t 151

10 This pitfall was first published by JavaWorld (www.javaworld.com) in the article, “Practice
makes perfect” November 2001 (http://www.javaworld.com/javaworld/jw-11-2001
/jw-1116-traps-p2.html) and is reprinted here with permission. The pitfall has been updated from
reader feedback.

File. Present since JDK 1.0, a class that represents a file or directory pathname. This
class contains a wide array of methods to test characteristics of a file, delete a
file, create directories, and, of course, rename a file. Unfortunately, this class
suffers from a vague scope in that it incorporates behaviors of a directory entry,
like isFile(), isDirectory(), and lastModified(), and behaviors of a
physical file like createNewFile(), delete(), and renameTo(). We will
discuss this more later.

FilenameFilter. Present since JDK 1.0, an interface to test the occurrence of a list of
File objects via the File.list() method and FileDialog.setFilename-
Filter() method. The confusion over scope stated above is evident in the con-
tradiction between this interface and the next one (FileFilter) in terms of
their names. This interface has a single method called accept() that receives a
File object representing a directory and a String representing the name of the
file to filter on.

FileFilter. Added in JDK 1.2, an interface to filter in the same manner as File-
nameFilter except that the accept() method receives only a single File
object. Unfortunately, this interface is a prime example of a superfluous conve-
nience interface that does more harm than good because of the new name. It
would have been far better to follow the precedent of the awt package where
LayoutManager2 extends LayoutManager to add methods. The difference
between the two design strategies is that the LayoutManager interfaces are
clearly semantically congruent, whereas FilenameFilter and FileFilter
are not.

FileDescriptor. A class to provide an opaque handle to the operating system-
specific File data structure. As its name implies, this class is a very thin abstrac-
tion over an operating system structure. The class only has two methods. As a
general design rule, it would be preferable to combine our abstractions of a
physical file into a single class. Unfortunately, the requirements of backward
compatibility cause future developers to suffer with multiple abstractions. Since
the New IO package (NIO), split IO operations at the package level (which also
spoils the platform’s cohesiveness), there is an opportunity to start from scratch
with new classes in the NIO package.

FilePermission. A class to represent access to a file directory. This was part of the
1.2 fine-grained security mechanisms—again, a nice candidate for conceptual
consolidation.

RandomAccessFile. Present since JDK 1.0, a class that represents the characteris-
tics and behaviors (taken from the C standard library) of a binary file. This
allows low-level reading and writing of bytes to a file from any random file
position. This class stands on its own and does not fit in to the IO stream
metaphor and does not interact with those classes. It is interesting to note that
the word “File” in this class name actually refers to a physical file and not just
its name. Unfortunately, this package lacks such consistency.

FileChannel. Added to JDK 1.4, a class to provide a high-performance pathway for
reading, writing, mapping, and manipulating a file. You get a FileChannel
from a FileInputStream, FileOutputStream, or RandomAccessFile
class. A key benefit of this class is the ability to map a file to memory. Item 2

152 Item 20

examined the NIO performance improvements. Lastly, a region of the file (or the
whole file) may be locked to prevent access or modification by other programs
via methods that return a FileLock object.

FileLock. Added to JDK 1.4, a class to represent a lock on a region of a file. A lock
can be either exclusive or shared. These objects are safe for use by multiple
threads but only apply to a single virtual machine.

Now let’s narrow our focus to the File class. Listing 20.1 demonstrates some File
class behaviors and pitfalls.

01: package org.javapitfalls.item20;

02:

03: import java.io.*;

04:

05: public class BadFileRename

06: {

07: public static void main(String args[])

08: {

09: try

10: {

11: // check if test file in current dir

12: File f = new File(“dummy.txt”);

13: String name = f.getName();

14: if (f.exists())

15: System.out.println(f.getName() + “ exists.”);

16: else

17: System.out.println(f.getName() + Æ
“ does not exist.”);

18:

19: // Attempt to rename to an existing file

20: File f2 = new File(“dummy.bin”);

21: // Issue 1: boolean status return instead of Exceptions

22: if (f.renameTo(f2))

23: System.out.println(

24: “Rename to existing File Successful.”);

25: else

26: System.out.println(

27: “Rename to existing File Failed.”);

28:

29: // Attempt to rename with a different extension

30: int dotIdx = name.indexOf(‘.’);

31: if (dotIdx >= 0)

32: name = name.substring(0, dotIdx);

33: name = name + “.tst”;

34: String path = f.getAbsolutePath();

35: int lastSep = path.lastIndexOf(File.separator);

36: if (lastSep > 0)

Listing 20.1 BadFileRename.java (continued)

When File.renameTo() Won’t 153

37: path = path.substring(0,lastSep);

38: System.out.println(“path: “ + path);

39: File f3 = new File(path + File.separator + name);

40: System.out.println(“new name: “ + f3.getPath());

41: if (f.renameTo(f3))

42: System.out.println(

43: “Rename to new extension Successful.”);

44: else

45: System.out.println(

46: “Rename to new extension failed.”);

47:

48: // delete the file

49: // Issue 2: Is the File class a file?

50: if (f.delete())

51: System.out.println(“Delete Successful.”);

52: else

53: System.out.println(“Delete Failed.”);

54:

55: // assumes program not run from c drive

56: // Issue 3: Behavior across operating systems?

57: File f4 = new File(“c:\\” + f3.getName());

58: if (f3.renameTo(f4))

59: System.out.println(

“Rename to new Drive Successful.”);

60: else

61: System.out.println(“Rename to new Drive failed.”);

62: } catch (Throwable t)

63: {

64: t.printStackTrace();

65: }

66: }

67: }

68:

Listing 20.1 (continued)

When this code is run from a drive other than C, and with the file dummy.txt in the
current directory, it produces the following output:

E:\classes\org\javapitfalls\Item20>java Æ
org.javapitfalls.item20.BadFileRename

dummy.txt exists.

Rename to existing File Failed.

path: E:\classes\org\javapitfalls\Item20

new name: E:\classes\org\javapitfalls\Item20\dummy.tst

Rename to new extension Successful.

Delete Failed.

Rename to new Drive Successful.

154 Item 20

Listing 20.1 raises three specific issues, which are called out in the code comments.
At least one is accurately characterized as a pitfall, and the others fall under poor
design:

■■ First, returning a Boolean error result does not provide enough information
about the failure’s cause. That proves inconsistent with exception use in other
classes and should be considered poor design. For example, the failure above
could have been caused by either attempting to renameTo() a file that already
exists or attempting to renameTo()an invalid filename. Currently, we have no
way of knowing.

■■ The second issue is the pitfall: attempting to use the initial File object after a
successful rename. What struck me as odd in this API is the use of a File
object in the renameTo() method. At first glance, you assume you only want
to change the filename. So why not just pass in a String? In that intuition lies
the source of the pitfall. The pitfall is the assumption that a File object repre-
sents a physical file and not a file’s name. In the least, that should be consid-
ered poor class naming. For example, if the object merely represents a filename,
then it should be called Filename instead of File. Thus, poor naming directly
causes this pitfall, which we stumble over when trying to use the initial File
object in a delete() operation after a successful rename.

■■ The third issue is File.renameTo()’s different behavior between operating
systems. The renameTo() works on Windows even across filesystems (as
shown here) and fails on Solaris (reported in Sun’s Bug Parade and not shown
here). The debate revolves around the meaning of “Write Once, Run Anywhere”
(WORA). Sun programmers verifying reported bugs contend that WORA sim-
ply means a consistent API. That is a cop-out. A consistent API does not deliver
WORA; there are numerous examples in existing APIs where Sun went beyond
a consistent API to deliver consistent behavior. The best-known example of this
is Sun’s movement beyond the Abstract Windowing Toolkit’s consistent API to
Swing’s consistent behavior. If you claim to have a platform above the operating
system, then a thin veneer of an API over existing OS functionality will not suf-
fice. A WORA platform requires consistent behavior; otherwise, “run anywhere”
means “maybe run anywhere.” To avoid this pitfall, you check the “os.name”
System property and code renameTo() differently for each platform.

Out of these three issues, we can currently only fix the proper way to delete a file
after a successful rename, as Listing 20.2 demonstrates. Because the other two issues
result from Java’s design, only the Java Community Process (JCP) can initiate these
fixes.

01: package org.javapitfalls.item20;

02:

03: import java.io.*;

04:

05: public class GoodFileRename

06: {

Listing 20.2 GoodFileRename.java (continued)

When File.renameTo() Won’t 155

07: public static void main(String args[])

08: {

09: try

10: {

11: // check if test file in current dir

12: File f = new File(“dummy2.txt”);

13: String name = f.getName();

14: if (f.exists())

15: System.out.println(f.getName() + “ exists.”);

16: else

17: System.out.println(f.getName() + Æ
“ does not exist.”);

18:

19: // Attempt to rename with a different extension

20: int dotIdx = name.indexOf(‘.’);

21: if (dotIdx >= 0)

22: name = name.substring(0, dotIdx);

23: name = name + “.tst”;

24: String path = f.getAbsolutePath();

25: int lastSep = path.lastIndexOf(File.separator);

26: if (lastSep > 0)

27: path = path.substring(0,lastSep);

28: System.out.println(“path: “ + path);

29: File f3 = new File(path + File.separator + name);

30: System.out.println(“new name: “ + f3.getPath());

31: if (f.renameTo(f3))

32: System.out.println(

33: “Rename to new extension Successful.”);

34: else

35: System.out.println(

36: “Rename to new extension failed.”);

37:

38: // delete the file

39: // Fix 1: delete via the “Filename” not File

40: if (f3.delete())

41: System.out.println(“Delete Successful.”);

42: else

43: System.out.println(“Delete Failed.”);

44: } catch (Throwable t)

45: {

46: t.printStackTrace();

47: }

48: }

49: }

50:

Listing 20.2 (continued)

156 Item 20

A run of Listing 20.2 produces the following output:

E:\classes\org\javapitfalls\Item20> java org.javapitfalls.item20 Æ
.GoodFileRename

dummy2.txt exists.

path: E:\classes\org\javapitfalls\Item20

new name: E:\classes\org\javapitfalls\Item20\dummy2.tst

Rename to new extension Successful.

Delete Successful.

Thus, don’t use the File class as if it represents a file instead of the filename. With
that in mind, once the file is renamed, operations such as delete() only work on the
new filename.

Item 21: Use Iteration over Enumeration11

Enumeration is the original interface, available since JDK 1.0, to iterate over (step
through) all the elements in a collection. In terms of semantics, it would have been bet-
ter to call the interface “Enumerator,” as it expresses the role a class is “putting on” by
implementing the interface, instead of “Enumeration,” which specifies an occurrence of
the activity. This is in line with all the more recent interfaces in the java.util package
like Observer, Comparator, and Iterator. Table 21.1 compares the Enumeration
interface to the Iterator interface.

Table 21.1 Enumeration versus Iterator

ENUMERATION DESCRIPTION ITERATOR DESCRIPTION
METHODS METHODS

boolean Checks if this boolean Checks if this
hasMoreElements(); enumeration has hasNext() iterator has

more elements. more elements.

Object Returns the next Object next() Returns the next
nextElement(); element in the element in the

enumeration if there iterator if there is
is at least 1 more. at least one more.

void remove() Removes from
the underlying
collection the last
element returned.
(optional)

Use Iteration over Enumeration 157

11 This pitfall was first published by JavaWorld (www.javaworld.com) in the article, “Practice makes
perfect” November 2001, (http://www.javaworld.com/javaworld/jw-11-2001/jw-1116-traps-p2
.html) and is reprinted here with permission. The pitfall has been updated from reader feedback.

The idiom for using both an Enumeration and Iterator is the same:

while (i.hasNext())

{

Object o = i.next();

// do something with o

}

As is evident in Table 21.1, both Iterator and Enumeration are functionally
identical except for two differences:

■■ Iterators allow you to safely remove an element from the underlying collection
in a well-defined way.

■■ The iterator method names have been simplified.

There is a removal of elements pitfall in the Enumeration implementation class of
Vector where its behavior differs from Iteration. Listing 21.1 demonstrates the
behavior in question.

01: package org.javapitfalls.item21;

02:

03: import java.util.*;

04:

05: public class BadVisitor

06: {

07: public static void main(String args[])

08: {

09: Vector v = new Vector();

10: v.add(“one”); v.add(“two”); v.add(“three”); v.add(“four”);

11:

12: Enumeration enum = v.elements();

13: while (enum.hasMoreElements())

14: {

15: String s = (String) enum.nextElement();

16: if (s.equals(“two”))

17: v.remove(“two”);

18: else

19: {

20: // Visit

21: System.out.println(s);

22: }

23: }

24:

25: // see what’s left

Listing 21.1 BadVisitor.java

158 Item 21

26: System.out.println(“What’s really there...”);

27: enum = v.elements();

28: while (enum.hasMoreElements())

29: {

30: String s = (String) enum.nextElement();

31: System.out.println(s);

32: }

33: }

34: }

Listing 21.1 (continued)

When run, Listing 21.1 produces the following:

E:\classes>java org.javapitfalls.item21.BadVisitor

one

four

What’s really there...

one

three

four

You would expect to have visited elements ”one”, “three”, and ”four”, but
instead only visited elements “one” and “four”. The problem is that we are assum-
ing that the Enumeration implementation and the Vector class work in sync, which
is not the case. What has happened is the index integer (called count) is not modified
when the Vector.remove() method is called. This is demonstrated in Figure 21.1.
Listing 21.2 demonstrates how an iterator handles this situation.

Figure 21.1 Under the hood of a Vector.

"one"

Index (1)

0

"two"
1

"three"
2

"four"
3

Before remove()

"one"

Index (2)

0

"three"
1

"four"
2

After remove()

Use Iteration over Enumeration 159

01: package org.javapitfalls.item21;

02:

03: import java.util.*;

04:

05: public class BadVisitor2

06: {

07: public static void main(String args[])

08: {

09: Vector v = new Vector();

10: v.add(“one”); v.add(“two”); v.add(“three”); v.add(“four”);

11:

12: Iterator iter = v.iterator();

13: while (iter.hasNext())

14: {

15: String s = (String) iter.next();

16: if (s.equals(“two”))

17: v.remove(“two”);

18: else

19: {

20: // Visit

21: System.out.println(s);

22: }

23: }

24:

25: // see what’s left

26: System.out.println(“What’s really there...”);

27: iter = v.iterator();

28: while (iter.hasNext())

29: {

30: String s = (String) iter.next();

31: System.out.println(s);

32: }

33: }

34: }

Listing 21.2 BadVisitor2.java

When run, Listing 21.2 produces the following:

E:\classes>java org.javapitfalls.item21.BadVisitor2

one

Exception in thread “main” java.util.ConcurrentModificationException

at

java.util.AbstractList$Itr.checkForComodification(AbstractList.java:445)

at java.util.AbstractList$Itr.next(AbstractList.java:418)

at

com.javaworld.jpitfalls.article5.BadVisitor2.main(BadVisitor2.java:15)

160 Item 21

As the output shows, the class implementing the Iterator interface specifically
checks for this type of concurrent modification (modification outside of the iteration
implemenation class while we are iterating) and throws an exception. It would be nice
if the Enumeration implementation class was upgraded with this same behavior.
Now let’s examine the correct way to do this. Listing 21.3 demonstrates both visiting
and modifying with an Iterator.

01: package org.javapitfalls.item21;

02:

03: import java.util.*;

04:

05: public class GoodVisitor

06: {

07: public static void main(String args[])

08: {

09: Vector v = new Vector();

10: v.add(“one”); v.add(“two”); v.add(“three”); v.add(“four”);

11:

12: Iterator iter = v.iterator();

13: while (iter.hasNext())

14: {

15: String s = (String) iter.next();

16: if (s.equals(“two”))

17: iter.remove();

18: else

19: {

20: // Visit

21: System.out.println(s);

22: }

23: }

24:

25: // see what’s left

26: System.out.println(“What’s really there...”);

27: iter = v.iterator();

28: while (iter.hasNext())

29: {

30: String s = (String) iter.next();

31: System.out.println(s);

32: }

33: }

34: }

Listing 21.3 GoodVisitor.java

When Listing 21.3 is run, it produces the following:

E:\classes>java org.javapitfalls.item21.GoodVisitor

one

Use Iteration over Enumeration 161

three

four

What’s really there...

one

three

four

Notice that the remove method is performed via the Iterator class and not using
the Vector class. So, in general, for classes that support it, use an Iterator over
Enumeration. All classes that implement the Collection interface support itera-
tion through the following method:

public Iterator iterator();

The classes that implement the Collection interface are AbstractCollection,
AbstractList, AbstractSet, ArrayList, BeanContextServicesSupport,
BeanContextSupport, HashSet, LinkedHashSet, LinkedList, TreeSet, and
Vector. Some classes like Hashtable and HashMap (all the classes that implement
the Map interface) indirectly support iteration by returning a Collection via the
values() method. There are still some classes that only implement Enumeration like
StringTokenizer, java.security.Permissions, and classes in Swing and JNDI.

Item 22: J2ME Performance and Pitfalls

The Java 2 Micro Edition (J2ME) is a subset of the Java platform created for developing
applications on small footprint devices, like personal digital assistants (PDAs) and cell
phones. These devices are significantly constrained in terms of processor speed, mem-
ory, and storage space. While the amounts vary between devices, you can easily expect
several orders of magnitude difference between your desktop PC and these devices.
There are three main classes of pitfalls associated with the J2ME platform: memory
consumption pitfalls, performance pitfalls, and API differences. Both memory con-
sumption and performance pitfalls have more to do with programming habit than the
J2ME platform. The fact is our habits have developed around creating reusable, mod-
ular, and readable J2SE/J2EE programs where memory and processing speed are
abundant. Unfortunately, those very habits deemed “good style” for J2SE/J2EE lead to
either nonperforming or poor-performing J2ME applications. The API pitfalls relate to
different method calls for classes implemented in both J2SE and J2ME.

My approach to exploring these J2ME pitfalls is to port a J2SE application to the
J2ME platform. First, we take the most direct approach and then optimize our
approach. Unfortunately, to demonstrate a nontrivial application (which we do)
requires significant amounts of code. To reduce the size of the code listings, I have
deleted simple, similar, and redundant code. Additionally, to avoid long runs of unin-
terrupted code, I have interspersed the code descriptions and explanations for all
major methods instead of putting it all after the code.

162 Item 22

The J2SE application we will port is called SwinginAmazonSearch. The main frame
of the application is displayed in Figure 22.1.

The purpose of the application is to enable you to query Amazon.com’s database
using a Representational State Transfer (REST) approach. REST is an architectural
style that describes how the World Wide Web (WWW) works. The term was coined by
Roy Fielding in his Ph.D. thesis (available at http:// www.ics.uci.edu/~fielding/pubs
/dissertation/top.htm). The Web uses Uniform Resource Identifiers (URIs) to retrieve
representation and to change state by transferring to other representations. Amazon
implemented this by encoding all query parameters in the URI and returning an XML
document as the resulting representation.

The layout of the main interface in Figure 22.1 is divided into two halves: the top
half to select and enter search terms and the bottom half to display the results after
clicking “Search.”After the results are displayed, you can examine more detail on a sin-
gle entry by clicking “Details” or receive an additional “page” of results by clicking
“Next Results.”Amazon.com limits all queries to a single “page” of 10 hits and requires
all queries to include a page number. Table 22.1 lists and defines the key parameters in
an Amazon.com query.

Figure 22.1 A Swing-based Amazon search application.

J2ME Performance and Pitfalls 163

Table 22.1 Amazon.com Query parameters

FIELD TYPE FIELD NAME FIELD VALUES DEFINITION

Operation KeywordSearch, Free text with The type of search to
BrowseNodeSearch, keywords, authors, perform.
AsinSearch, UpcSearch, etc. corresponding
AuthorSearch, to the search type.
ArtistSearch,
ActorSearch,
DirectorSearch,
ManufacturerSearch,
ListManiaSearch,
SimilaritySearch

Mode mode baby, books, A taxonomy of areas
classical, dvd, to search. Would be
electronics, garden, better to have been
kitchen, magazines, called category.
music, pc-hardware,
photo, software,
toys, universal, vhs,
videogames

Return Type type lite, heavy The DTD of the
returned XML where
the heavy version
contains many more
elements than the
lite version.

Page # page An integer The page of 10 hits to
return (if available).

Format f xml or URI to an A return in XML or any
XSLT stylesheet format generated by

the XSLT stylesheet.

Now let’s examine the source code in Listing 22.1 that implements the application.

001: /* SwinginAmazonSearch.java */

002: package org.javapitfalls.item22;

003:

// - removed Import statements

015:

016: class SwinginAmazonSearch extends JFrame implements ActionListener

017: {

018: public static final boolean debug;

019:

// - removed static block to set debug variable

Listing 22.1 SwinginAmazonSearch.java

164 Item 22

035:

036: public static final String CMD_SEARCH = “Search”;

// - removed CMD_DETAILS, CMD_NEXT_TEN, and ELEMENT_PRODUCT_NAME Strings

040:

041: JButton searchButton = new JButton(CMD_SEARCH);

042: JButton detailsButton = new JButton(CMD_DETAILS);

043: JButton nextResultsButton = new JButton(CMD_NEXT_TEN);

044: JList results = new JList();

045: JComboBox opsCombo = new JComboBox(AmazonHttpGet.legalOps);

046: JComboBox modeCombo = new JComboBox(AmazonHttpGet.legalModes);

047: JTextField targetTF = new JTextField(40);

048: StatusPanel status = new StatusPanel();

049: AmazonHttpGet getter = new AmazonHttpGet();

050: int page = 1;

051:

052: DocumentBuilderFactory dbf;

053: DocumentBuilder db;

054: Document doc;

055: NodeList productNodes;

056:

Listing 22.1 (continued)

The class SwinginAmazonSearch extends a Swing JFrame and implements the
Action Listener interface to receive events from the buttons on the main window. Lines
16-56 of the code contain the class declaration and class data members. The data mem-
bers consist of some static constants, GUI components (JButton, JList, JComboBox),
a reference to a class performing the HTTP networking functions called Amazon-
HttpGet, and references to XML parsing and the W3C Document class to manipulate
the returned XML. It is important to note the use of static constants for all fixed
Strings (like in line 36 and those deleted) in case the protocol changes at a later date.
This then makes it easy to modify the protocol by only changing the string in one loca-
tion instead of hunting down the occurrence of each String where it is used. Such
“future proofing” is a good habit for J2SE/J2EE development, but one that wastes pre-
cious heap space in J2ME. We will see workarounds for this later. The constructor
(below) creates and displays the main frame.

057: public SwinginAmazonSearch() throws ParserConfigurationException

058: {

059: super(“Amazon Search Tool”);

060:

061: dbf = DocumentBuilderFactory.newInstance();

062: db = dbf.newDocumentBuilder();

063:

064: // USE a vertical box for north Panel

065: Box northWithTitle = new Box(BoxLayout.Y_AXIS);

066: this.getContentPane().add(“North”, northWithTitle);

Listing 22.1 (continued)

J2ME Performance and Pitfalls 165

067:
068: // add label first
069: // add label up north
070: JPanel title = new JPanel(new FlowLayout(FlowLayout.CENTER));
071: JLabel titleLabel = new JLabel(“Amazon.com Search Æ
Assistant”);
072: titleLabel.setForeground(Color.green.darker());
073: title.add(titleLabel);
074: northWithTitle.add(title);
075:
076: Box northPanel = new Box(BoxLayout.Y_AXIS);
077: northWithTitle.add(northPanel);
078: northPanel.setBorder(new TitledBorder(new EtchedBorder(), Æ
“Search Terms”));
079:
080: // add operation drop down
081: JPanel panel1 = new JPanel(new FlowLayout(FlowLayout.LEFT));
082: northPanel.add(panel1);
083: panel1.add(new JLabel(“Operation:”));
084: opsCombo.setEditable(false);
085: panel1.add(opsCombo);
086:
// - removed adding most of the GUI components for brevity
// - removed adding status panel and WindowListener
132:
133: this.setSize(600,400);
134: this.setLocation(100,100);
135: this.setVisible(true);
136:
137: }

Listing 22.1 (continued)

The constructor (lines 57 to 137) instantiates the components, groups them in
JPanels, adds them to LayoutManagers, and then sizes and shows the window.
Unfortunately, the GUI components in the J2ME platform are different from (but simi-
lar to) those used in Swing:

139: public void actionPerformed(ActionEvent aevt)
140: {
141: String command = aevt.getActionCommand();
142: if (command.equals(CMD_SEARCH))
143: {
144: // check we have the valid parameters\
145: String targets = targetTF.getText();
146: if (targets.length() == 0)
147: {
148: status.setText(“‘Search For’ text field cannot be Æ
empty.”);
149: }

Listing 22.1 (continued)

166 Item 22

150: else
151: {
152: try
153: {
154: page = 1; // reset
155: doAmazonSearch(page, targets);
156: } catch (MalformedURLException mue)
// - removed exception handling, simply displayed an error message
164: }
165: }
166: else if (command.equals(CMD_DETAILS))
167: {
168: // popup a new window with the details for this product
169: String selectedProductName = (String) Æ
results.getSelectedValue();
170:
171: // get the parent ELEMENT node of the node with a Æ
ProductName with this Value
172: if (productNodes != null)
173: {
174: Node n = Æ
findNodeWithContent(productNodes,selectedProductName);
175:
176: // get the Details element parent
177: Node parent = n.getParentNode();
178:
179: if (debug) System.out.println(“parent: “ + Æ
parent.getNodeName());
180: if (parent != null)
181: {
182: // display a Details Window
183: new DetailsDialog(this, parent, Æ
selectedProductName);
184: }
185: }
186: else
187: {
188: status.setText(“Internal error. Try another search.”);
189: }
190: }
// - removed handling NEXT_TEN for brevity
207: }

Listing 22.1 (continued)

The Action event handler responds to the various button clicks generated by the
GUI. Notice that I use the String.equals()method to determine which button was
pressed. This will need to be changed, as string comparisons are slow. The two key
events to respond to are the search request (line 142) and a details request (line 166). To
respond to either event, some parameters are gathered (like the search term, line 145,
or the XML node to report details on, line 174), and then doAmazonSearch() is
invoked (line 155) or a new DetailsDialog window instantiated (line 183). Notice

J2ME Performance and Pitfalls 167

the DetailsDialog is instantiated as an anonymous reference and not saved in a
variable for reuse. Such an assumption of abundant memory and trust in the efficiency
of the garbage collector is a pitfall for J2ME programming:

209: private void doAmazonSearch(int page, String targets) throws Æ
Exception
210: {
211: getter.newBaseURL(); // reset
212:
213: // get the operation
214: String op = (String) opsCombo.getSelectedItem();
215:
216: // get the mode
217: String mode = (String) modeCombo.getSelectedItem();
218:
219: status.setText(“Contacting Amazon.com...”);
220:
221: getter.addOperation(op, targets);
222: getter.addMode(mode);
223: getter.addType(“lite”);
224: getter.addPage(“” + page);
225: getter.addFormat();
226:
227: // GET it
228: String response = getter.httpGet();
229: if (response != null && response.length() > 0)
230: status.setText(“Received results! Formatting ...”);
231:
232: if (debug) System.out.println(“response: “ + response);
233:
234: // parse the XML, extract ProductNames
235: String [] productNames = null;
236: ByteArrayInputStream bais = new Æ
ByteArrayInputStream(response.getBytes());
237: doc = db.parse(bais);
238: if (doc != null)
239: removeBlankNodes(doc.getDocumentElement());
240:
241: productNodes = Æ
doc.getElementsByTagName(ELEMENT_PRODUCT_NAME);
242: if (productNodes != null)
243: {
244: int len = productNodes.getLength();
245: productNames = new String[len];
246: for (int i=0; i < len; i++)
247: {
248: Node n = productNodes.item(i);
249: Node t = n.getFirstChild();
250: if (t.getNodeType() == Node.TEXT_NODE)
251: productNames[i] = t.getNodeValue();
252: }
253: }

Listing 22.1 (continued)

168 Item 22

254:
255: if (productNames != null && productNames.length > 0)
256: {
257: // populate the list
258: results.setListData(productNames);
259: }
// - removed else error condition handling for brevity
267: }
// - removed utility method isBlank()
// - removed utility method removeBlankNodes()
// - removed utility method findNodeWithContent()
// - removed main() which merely Instantiates SwinginAmazonSearch
333: }

Listing 22.1 (continued)

The method doAmazonSearch() (lines 209 to 267) has four key functions:

■■ Format a URL.

■■ Send an HTTP GET request to xml.amazon.com.

■■ Parse the resulting XML to extract the product names.

■■ Populate the JList with the product names.

Both formatting the URL and “getting” it are performed in conjunction with the
AmazonHttpGet class discussed later. It is important to note the modularity of the for-
matting operation for the URL displayed in lines 221 to 225. The formatting of a URL is
broken into separate functions to assemble the URL in any order or length you want.
Such modularity and the building of “generic code” will have to be sacrificed in our
J2ME implementation for speed. At line 228, the httpGet()method is invoked which
returns a String containing an XML document. Here is a portion of a sample return
document:

<Details url=”http://www.amazon.com/exec/obidos/redirect?tag=webservices-

20%26creative=D3AG4L7PI53LPH%26camp=2025%26link_code=xm2%26path=ASIN/047

1237515”>

<Asin>0471237515</Asin>

<ProductName>More Java Pitfalls: 50 New Time-Saving Solutions and Æ
Workarounds</ProductName>

<Catalog>Book</Catalog>

<Authors>

<Author>Michael C. Daconta</Author>

<Author>Kevin T. Smith</Author>

<Author>Donald Avondolio </Author>

<Author>W. Clay Richardson</Author>

</Authors>

<ReleaseDate>03 February, 2003</ReleaseDate>

<Manufacturer>John Wiley & Sons</Manufacturer>

<ListPrice>$40.00</ListPrice>

<OurPrice>$40.00</OurPrice>

</Details>

J2ME Performance and Pitfalls 169

The XML response is then fed into the standard JDK XML Parser, and a Document
Object Model (DOM) is constructed (the org.w3c.Document class) at line 237. All the
elements with a tag of “ProductName” are retrieved (line 241) and their text content
extracted. Since the XML document is guaranteed to be only 10 products at a time, this
Swing application can comfortably construct a DOM even though it requires more mem-
ory than a SAX Parser or Pull Parser approach; however, this approach proves to use too
much memory in our J2ME port. Several utility methods were created to search and
manipulate the DOM, like removeBlankNodes()and findNodeWithContent(),
but were deleted since they do not pertain to J2ME pitfalls:

335: class DetailsDialog extends JDialog
336: {
337: JTextArea textArea = new JTextArea(5,60);
338: public DetailsDialog(Frame f, Node detailsNode, String Æ
productName)
339: {
340: super(f, “Details for “ + productName, false);
341:
342: getContentPane().setLayout(new BorderLayout(2,2));
343: JScrollPane scroller = new JScrollPane(textArea);
344: getContentPane().add(“Center”, scroller);
345:
346: // initialize the text Area
347: textArea.setEditable(false);
348: textArea.setBackground(Color.lightGray);
349:
350: NodeList children = detailsNode.getChildNodes();
351: int len = children.getLength();
352: for (int i=0; i < len; i++)
353: {
354: // display element children with a text node
355: Node child = children.item(i);
356: if (child.getNodeType() == Node.ELEMENT_NODE)
357: {
358: Node txt = child.getFirstChild();
359: if (txt != null && txt.getNodeType() == Node.TEXT_NODE)
360: {
361: String label = child.getNodeName();
362: String value = txt.getNodeValue();
363:
364: if (value.length() > 0)
365: textArea.append(“” + label + “: “ + value +
“\n”);
366: }
367: }
368: }
369:
// - removed setting window size and location
372: this.setVisible(true);
373: }
374: }

Listing 22.1 (continued)

170 Item 22

375:
// - removed StatusPanel Class for brevity
439:

Listing 22.1 (continued)

The DetailsDialog presents a frame with a single JTextArea where each tag
name becomes the label (line 361) and each node value of the XML element is pre-
sented as the labels value separated by a colon (line 365). This approach relies on
detailed knowledge of the XML format.

Now let’s examine Listing 22.2 that presents the utility class, AmazonHttpGet, that
performs the networking operations of the application.

001: package org.javapitfalls.item22;
002:
003: import java.net.*;
004: import java.io.*;
005:
006: class AmazonHttpGet
007: {
008: public static final boolean debug;
009:
// - removed static block that sets debug variable
025:
026: public static final String DEVTAG = “YOUR-DEV-TAG-HERE”;
027: public static final String [] legalOps = { “KeywordSearch”, Æ
// - removed other keywords listed In Table 22.1 Æ
“SimilaritySearch”, };
031:
032: public static final String OP_KEYWORD_SEARCH = “KeywordSearch”;
033: public static final String OP_BROWSE_NODE_SEARCH = Æ
“BrowseNodeSearch”;
// - removed remaining “operation” constants
043:
044: public static final String [] legalModes = { “baby”, “books”,
// - removed other keywords listed In Table 22.1
047: “videogames”, };
048:
049: public static final String MODE_BABY = “baby”;
050: public static final String MODE_BOOKS = “Books”;
// - removed remaining “mode” constants
065:
066: public static final String KEYWORD_MODE = “mode”;
// - removed other KEYWORD constants
069:
070: public static final String TYPE_LIGHT = “lite”;
071: public static final String TYPE_HEAVY = “heavy”;
072:
// - removed stringExists() utility method
092:
093: private StringBuffer urlBuf;

Listing 22.2 AmazonHttpGet.java (continued)

J2ME Performance and Pitfalls 171

This class was designed with modularity and reusability in mind. The class data
members consist mostly of static constants (though many have been removed for
brevity). The key data members are the DEVTAG provided when you register at Ama-
zon.com and the urlBuf StringBuffer. In fact, this class does not go far enough in
terms of composability of the various queries and additional checking of parameter
combinations. Unfortunately, as you will see, most of this flexibility will be eliminated
in the J2ME port to reduce the number of method invocations. Throughout this pitfall,
you should notice the recurring theme of a mind set shift required to program for small
devices. The StringBuffer contains a string representation of the URL we will GET:

// - removed urlBuf accessor method
097:
098: public AmazonHttpGet()
099: {
100: newBaseURL();
101: }
102:
103: public void newBaseURL()
104: {
105: urlBuf = new StringBuffer(“http://xml.amazon.com/ Æ
onca/xml?v=1.0&t=webservices-20&dev-t=” + DEVTAG);
106: }
107:
108: public boolean validOp(String op)
109: {
110: if (stringExists(op, legalOps, false))
111: return true;
112: else
113: return false;
114: }
115:
// - removed validMode() as it is similar to validOp()
// - removed validType() as it is similar to validOp()
// - removed validPage() as it is similar to validOp()
145:
146: public void addOperation(String operation, String target) Æ
throws MalformedURLException
147: {
148: // validate the operation
149: if (validOp(operation))
150: {
151: urlBuf.append(‘&’);
152: urlBuf.append(operation);
153: urlBuf.append(‘=’);
154: if (target != null)
155: {
156: target.trim();
157: target = replaceString(target, “ “, “%20”, 0);
158:
159: urlBuf.append(target);

Listing 22.2 (continued)

172 Item 22

160: }
161: else
162: throw new MalformedURLException(“Invalid target”);
163: }
164: else
165: throw new MalformedURLException(“Invalid operation.”);
166: }
167:
// - removed addMode() as it is similar to addOperation()
// - removed addType() as it is similar to addOperation()
// - removed addPage() as it is similar to addOperation()
206:
207: public void addFormat()
208: {
209: urlBuf.append(“&f=xml”); // TBD: allow XSLT stylesheet
210: }
211:
// - removed replaceString() utility method

Listing 22.2 (continued)

The formatting of the URL involves validating and then appending name/value pairs
to the urlBuf StringBuffer. The addOperation() (line 146), addMode(), and
addType()methods add the parameters discussed in Table 22.1 to the StringBuffer.
Two utility methods were removed for brevity: stringExists()checked for the exis-
tence of a String in an array of Strings and replaceString()replaces a portion of
a String with supplied replacement text:

233: public String httpGet() throws IOException
234: {
235: if (debug) System.out.println(“URL: “ + urlBuf.toString());
236:
237: // Create a URL object
238: URL url = new URL(urlBuf.toString());
239: // get the connection object
240: URLConnection con = url.openConnection();
241:
242: con.setDoOutput(true);
243: con.setUseCaches(false);
244:
245: InputStream in = con.getInputStream();
246: BufferedReader br = new BufferedReader(new Æ
InputStreamReader(in));
247:
248: // read response
249: String line = null;
250: StringWriter sw2 = new StringWriter();
251: PrintWriter pw2 = new PrintWriter(sw2);
252: while ((line = br.readLine()) != null)

Listing 22.2 (continued)

J2ME Performance and Pitfalls 173

253: {
254: pw2.println(line);
255: }
256:
257: String response = sw2.toString();
258: return response;
259: }
260:
// - removed main() method (used for testing)
323: }

Listing 22.2 (continued)

The httpGet()method instantiates a URL object from the urlBuf StringBuffer
(line 238), opens a connection to the URL (line 240) and then reads lines of text from the
Web server (line 252) and prints them to a PrintWriter/StringWriter buffer.
Lastly, the contents of the StringWriter are retrieved as a single String (line 257).

To examine the API differences between J2SE and J2ME, we attempt a straightfor-
ward port of the code to J2ME, changing as little code as necessary. Listing 22.3 is our
direct port of SwinginAmazonSearch.java to J2ME. We will examine specific API dif-
ferences as we cover each section of code.

001: package org.javapitfalls.item22;
002:
003: import java.io.*;
004: import java.util.*;
005: import javax.microedition.midlet.*;
006: import javax.microedition.lcdui.*;
007: import org.kxml.*;
008: import org.kxml.kdom.*;
009: import org.kxml.parser.*;
010:
011: public class BadMicroAmazonSearch extends MIDlet implements Æ
CommandListener
012: {
013: public static final String CMD_SEARCH = “Search”;
014: public static final String CMD_DETAILS = “Details”;
015: public static final String CMD_NEXT_TEN = “More”;
// - removed other static constant Strings
019:
020: // commands
021: private Command searchCommand;
022: private Command detailsCommand;
// - removed other Command references for brevity
026:
027: // display
028: private Display display;
029:
030: // screens

Listing 22.3 BadMicroAmazonSearch.java

174 Item 22

031: private Form searchScreen;
032: private List resultsScreen;
033: private TextBox detailsScreen;
034:
035: // screen components
036: ChoiceGroup opsChoice;
037: ChoiceGroup modeChoice;
038: TextField targetTF;
039: BadMicroAmazonHttpGet getter = new BadMicroAmazonHttpGet();
040: int page = 1;
041:
042: Vector productNodes;
043:
044: boolean debug = true;
045: Timer ticker = new Timer();
046:

Listing 22.3 (continued)

The class BadMicroAmazonSearch extends MIDlet and implements CommandLis-
tener (instead of implementing ActionListener). A MIDlet is a Mobile Information
Device Profile (MIDP) application. The MIDlet is an abstract class with three abstract
methods that must be overridden by the subclass: startApp(), pauseApp(), and
destroyApp(). In this sense, a MIDlet is similar to an applet in that it has a lifecycle con-
trolled by an external Management application.

Before we examine the details of the class, notice the import statements: two pack-
ages are the same as J2SE packages (java.io and java.util), although they are lim-
ited in scope, and the two javax packages are new (javax.midlet, which has the
MIDlet class, and javax.lcdui, which has the GUI classes). The kxml package is an
open-source package available at http://kxml.enhydra.org/. We will discuss the kxml
package in more detail later. Now let’s examine the GUI differences apparent in the
BadMicroAmazonSearch class definition. Since we are dealing with such a small
screen size, as shown in Figure 22.2, I divided the single Swing Frame into three
“displayable” screens (Screen objects).

Figure 22.2 MIDP screen size on a Motorola phone.
Motorola and the Motorola logo are trademarks of Motorola, Inc.

J2ME Performance and Pitfalls 175

A major difference between Swing and J2ME GUIs is that there are no Frames in
J2ME. In essence, there is only a single Display (line 28) and you can switch the
Display to any subclass of Screen. Our Screen subclasses are a Form for the search
screen, a List for the results screen, and a TextBox for the details screen. One other
important difference is that there are no JButton or Button classes in J2ME; instead,
there is a Command class. You add your commands to the appropriate screen. You will
also notice that we shortened the “Next Results” label to “More” (line 15) to take
into account the smaller screen size. The last difference is that ComboBox has been
replaced by ChoiceGroup (lines 36 and 37).

047: public BadMicroAmazonSearch()
048: {
049: // Create GUI components here...
050: display = Display.getDisplay(this);
051:
052: // commands
053: searchCommand = new Command(CMD_SEARCH, Command.SCREEN, 1);
054: detailsCommand = new Command(CMD_DETAILS, Command.SCREEN, 1);
// - removed the Instantiation of other Commands
058:
059: // Create 3 screens: 1. Search, 2. Results, 3. Details
060: // search form
061: searchScreen = new Form(“Search Terms”);
062: opsChoice = new ChoiceGroup(“Operation:”, Choice.EXCLUSIVE, Æ
BadMicroAmazonHttpGet.legalOps, null);
063: searchScreen.append(opsChoice);
064: targetTF = new TextField(“Search For:”, “”, 20, Æ
TextField.ANY);
065: searchScreen.append(targetTF);
066: modeChoice = new ChoiceGroup(“Category:”, Choice.EXCLUSIVE, Æ
BadMicroAmazonHttpGet.legalModes, null);
067: modeChoice.setSelectedIndex(1, true);
068: searchScreen.append(modeChoice);
069: searchScreen.addCommand(searchCommand);
070: searchScreen.addCommand(exitCommand);
071: searchScreen.setCommandListener(this);
072:
073: // results list
074: resultsScreen = new List(“Results”, List.EXCLUSIVE);
075: resultsScreen.addCommand(detailsCommand);
// - removed adding other commands to resultsScreen
080:
081: // details text box
082: detailsScreen = new TextBox(“Details”, “”, 1024, Æ
TextField.ANY);
// - removed adding commands to detailsScreen
086: }

Listing 22.3 (continued)

The constructor for BadMicroAmazonSearch performs three key functions:

■■ Gets the Display object via Display.getdisplay() (line 50)

176 Item 22

■■ Instantiates the Commands (lines 53 to 57) and Screens (lines 61, 74, and 82)

■■ Adds the Commands and subcomponents (for the Form) to the screens

There are many minor differences in a MIDP GUI compared to a J2SE GUI, such as
not adding the screens to the Display (as we would to a JFrame); instead, we call
Display.setCurrent() to a Display object (as we will in the startApp()method
below):

088: public void startApp()
089: {
090: display.setCurrent(searchScreen);
091: }
092:
// - removed pauseApp() and destroyApp() as they did nothing
102:
103: public void commandAction(Command c, Displayable s)
104: {
105: String cmd = c.getLabel();
106: if (cmd.equals(CMD_EXIT))
107: {
108: destroyApp(false);
109: notifyDestroyed();
110: }
111: else if (cmd.equals(CMD_SEARCH))
112: {
113: // check we have the valid parameters\
114: String targets = targetTF.getString();
115: if (targets.length() == 0)
116: {
117: display.setCurrent(new Alert(“Search Error”, “‘Search Æ
For’ text field cannot be empty.”, null, AlertType.ERROR));
118: }
119: else
120: {
121: try
122: {
123: page = 1; // reset
124: doAmazonSearch(page, targets);
125: } catch (Exception e)
126: {
127: e.printStackTrace();
128: display.setCurrent(new Alert(“SearchError”, Æ
“ERROR: reason: “ + e.toString(),null, AlertType.ERROR));
129: }
130: }
131: }
// - removed handling CMD_DETAILS for brevity
136: }

Listing 22.3 (continued)

The commandAction()method is analogous to the actionPerformed()method
in J2SE. Note that instead of the getActionCmd(), we call getLabel()to retrieve

J2ME Performance and Pitfalls 177

the text label of the Command. Although this is similar to the method used in the Swing
application, it is a classic pitfall, since it is much slower than comparing the Command
references passed in with the references of our predefined Command objects (like
searchCommand). We make this optimization in the next version of the program. The
rest of the method is nearly identical to the actionPerformed()method, except the
error reporting requires the creation of an Alert screen. Although here in this “bad”
version we create temporary objects (lines 117 and 128), hopefully, you noticed this
waste and the opportunity for optimization:

138: private void doAmazonSearch(int page, String targets) throws Æ
Exception, IOException

139: {

140: ticker.reset(“Started Timer in doAmazonSearch()”);

141: getter.newBaseURL(); // reset

142:

143: // get the operation

144: int idx = opsChoice.getSelectedIndex();

145: String op = (String) opsChoice.getString(idx);

146:

// - removed getting the mode as it is similar to getting the op

150:

// - removed getter.addXXX methods -- no change.

156:

157: // GET it

158: byte [] response = getter.httpGet();

159: System.out.println(“Have response. Size is: “ +

response.length);

160:

161: // parse the XML, extract ProductNames

162: // Kxml required ~ 200k for a full parse.

163: String [] productNames = null;

164: ByteArrayInputStream bais = new Æ
ByteArrayInputStream(response);

165: InputStreamReader isr = new InputStreamReader(bais);

166: XmlParser parser = new XmlParser(isr);

167: Document doc = new Document();

168: doc.parse(parser);

169:

170: productNodes = new Vector();

171: getProductNames(doc.getRootElement(), productNodes);

172: if (productNodes != null)

173: {

174: int len = productNodes.size();

Listing 22.3 (continued)

178 Item 22

175: System.out.println(“# of products found: “ + len);

176: productNames = new String[len];

177: for (int i=0; i < len; i++)

178: {

179: Node n = (Node) productNodes.elementAt(i);

180: productNames[i] = n.getText();

181: }

182: }

183:

184: if (productNames != null && productNodes.size() > 0)

185: {

186: // populate the list

187: for (int i=0; i < productNames.length; i++)

188: resultsScreen.append(productNames[i], null);

189:

190: // set the display to the results

191: display.setCurrent(resultsScreen);

192: }

// - removed the else block for brevity

200: ticker.printStats(“Method doAmazonSearch()”);

201: }

202:

203: public void getProductNames(Node root, Vector v)

204: {

205: int cnt = root.getChildCount();

206: for (int i=0; i < cnt; i++)

207: {

208: Object o = root.getChild(i);

209: if (o instanceof Node)

210: {

211: Node n = (Node) o;

212: String name = n.getName();

213: if (name.equals(ELEMENT_PRODUCT_NAME))

214: {

215: v.addElement(n);

216: }

217:

218: // element?

219: if (n.getChildCount() > 0)

220: getProductNames(n, v);

221: }

222: }

223: }

224: }

Listing 22.3 (continued)

J2ME Performance and Pitfalls 179

The doAmazonSearch()method is similar to its Swing counterpart with a few
exceptions. For example, you cannot directly get a selected item (like with the getSe-
lectedItem()method) from a ChoiceGroup or List; instead, you must get the index
(line 144) and then call getString() (line 144). Such minor API changes can be frus-
trating, though in this case the purpose is to eliminate the need for casting (in this direct
port it was accidentally left in but is corrected in the next version). On line 158 notice that
the httpGet() method returns a byte array (which is required by the kxml parser).
Lines 164 to 167 represent the parsing of the XML document using the kxml package. At
line 171, we call the utility method, getProductNames(), to recursively traverse the
document tree and extract the product Nodes. Unfortunately, this was necessary because
the kdom package does not have a getElementsByTagName() method.

Like the minor API changes in the javax.microedition packages, the kdom
package has a slightly different API than the w3c DOM package. Such API changes only
cause a serious pitfall when such a change eliminates any implicit guarantee of the for-
mer abstraction. For the DOM, a tree of Nodes represents the “flattened view” where
every object is of type Node. This uniformity makes traversal easy and consistent.
Unfortunately, kxml breaks the metaphor by mixing Nodes and other objects (like
Strings). This nonuniformity led to runtime ClassCastExceptions (due to the
assumption of uniformity—a classic pitfall) and required explicit testing (line 209).
Additionally, the kxml changed the method names from getNodeName() to
getName()and from getNodeValue() to getText().

Figure 22.3 displays the Network Monitor application, which is part of Sun
Microsystems J2ME Wireless Toolkit. This toolkit allows you to emulate J2ME on a
personal computer or workstation and enabled the writing and testing of this pitfall.
Sun Microsystems did a real service to developers in delivering such a high-quality
emulation environment for Java programmers. You can download the kit from
http://java.sun.com/products/j2mewtoolkit/.

The Network Monitor application captures all communication between your
MIDlet and the Web server. The left pane shows a tree with all HTTP requests and
responses. Clicking on a request or response displays the details of the communication
in the right pane in both hexadecimal and ASCII. Now we can examine the port of
AmazonHttpGet to the J2ME platform in Listing 22.4.

Figure 22.3 The J2ME Wireless Toolkit Network Monitor.

180 Item 22

001: /* BadMicroAmazonHttpGet.java */

002: package org.javapitfalls.item22;

003:

004: import javax.microedition.io.*;

005: import java.io.*;

006: import java.util.*;

007:

008: public class BadMicroAmazonHttpGet

009: {

// - deleted static constants -- No change

056:

057: static Timer ticker = new Timer();

058:

// - deleted stringExists() method -- No change

076:

077: private StringBuffer urlBuf;

078:

079: public StringBuffer getUrlBuf()

080: { return urlBuf; }

081:

082: public BadMicroAmazonHttpGet()

083: {

084: newBaseURL();

085: }

086:

// - deleted method newBaseURL() -- No change

// - deleted all validation methods -- No change

// - deleted all addXXX methods -- No change

// - deleted replaceString() -- No change

216:

217: public byte [] httpGet() throws IOException

218: {

219: ticker.reset(“Started Timer in httpGet()”);

220: // get the connection object

221: String surl = urlBuf.toString();

222: surl.trim();

223: System.out.println(“url: “ + surl);

224:

225: HttpConnection con = (HttpConnection) Connector.open(surl);

226: int respCode = con.getResponseCode();

227: System.out.println(“Response code: “ + respCode);

228:

229: InputStream in = con.openInputStream();

230: ByteArrayOutputStream baos = new ByteArrayOutputStream();

231:

232: // read response

233: int b = 0;

234: while ((b = in.read()) != -1)

235: {

Listing 22.4 BadMicroAmazonHttpGet.java (continued)

J2ME Performance and Pitfalls 181

236: baos.write(b);

237: }

238:

239: ticker.printStats(“Method httpGet()”);

240: return baos.toByteArray();

241: }

// - deleted main() method -- No change.

Listing 22.4 (continued)

In the BadMicroAmazonHttpGet class, all of the URL formatting methods remained
unchanged (and thus were removed for brevity); however, the httpGet()method
underwent significant changes. The porting changes are as follows:

■■ There is no java.net package; instead, the networking classes are in
javax.microedition.io (line 4). Not only does this confuse it with the
J2ME version of java.io, this limits future differentiation between IO and
networking support in the platform. This is a prime example of change for the
sake of change that slows productivity by forcing a context switch without
good reason.

■■ There is no MalformedURLException or URL class; instead, the HttpCon-
nection class accepts a String (line 225).

■■ There is no URLConnection class; instead, you use an HttpConnection
(line 225).

■■ There is no getInputStream()method for the connection; instead, you use
openInputStream(). Another example of useless incompatibility.

■■ There was no BufferedReader class, so instead we read in bytes (instead of
Strings) and wrote into a ByteArrayOutputStream (line 236). This then led
to returing a byte array (line 240).

With the memory limit set at 128 KB, a run of BadMicroAmazonSearch produces:

Started Timer in doAmazonSearch(). Free Memory: 73076

Started Timer in httpGet(). Free Memory: 71628

url: http://xml.amazon.com/onca/xml?v=1.0&t=webservices-20&dev-

t=D3AG4L7PI53LPH&KeywordSearch=daconta&mode=books&type=lite&page=1&f=xml

Response code: 200

Method httpGet(): 5678. Free Memory: 63924

Have response. Size is: 8085

java.lang.OutOfMemoryError at

javax.microedition.lcdui.Display$DisplayAccessor.commandAction(+165)

at com.sun.kvem.midp.lcdui.EmulEventHandler$EventLoop.run(+459)

182 Item 22

When I increased the memory to 200 KB the program was able to run and produced
the following:

Started Timer in doAmazonSearch(). Free Memory: 141096

Started Timer in httpGet(). Free Memory: 139648

url: http://xml.amazon.com/onca/xml?v=1.0&t=webservices-20&dev-

t=D3AG4L7PI53LPH&KeywordSearch=daconta&mode=books&type=lite&page=1&f=xml

Response code: 200

Method httpGet(): 5718. Free Memory: 139152

Have response. Size is: 8085

of products found: 8

Method doAmazonSearch(): 36082. Free Memory: 46240

Started Timer in doAmazonSearch(). Free Memory: 65044

Even though the BadMicroAmazonSearch ran within 200 KB, you should also notice
the poor performance of the method (a noticeably long pause after selecting the Search
command). The output of the run shows that the method took 36,082 milliseconds to
run. The Wireless Toolkit also provides a Memory Monitor application, as shown in
Figure 22.4. As you can see, the large peak in the memory graph occurs when the kxml
package is parsing the XML document.

Unfortunately, we could not afford to allow the application to run within 200 KB in
order to run it in the Palm emulator. At the time of this writing, the Palm emulator only
allowed a Java application to have 64 KB of memory. Figure 22.5 shows our goal with
the final code running under the Palm emulator.

Figure 22.4 The Wireless Toolkit Memory Monitor.

J2ME Performance and Pitfalls 183

Figure 22.5 MicroAmazonSearch running in a Palm emulator.
© 2002 Palm, Inc. All rights reserved.

Now we are ready to optimize our J2ME application to get it to have both ade-
quate performance and memory consumption. Listing 22.5 is the optimized code for
MicroAmazonSearch.java. We will not discuss the functionality of MicroAmazon-
Search, since that has been covered in the preceding pages; instead, we will focus only
on the optimizations.

001: /* MicroAmazonSearch.java */

002: package org.javapitfalls.item22;

003:

004: import java.io.*;

005: import java.util.*;

006: import javax.microedition.midlet.*;

007: import javax.microedition.lcdui.*;

008:

009: public class MicroAmazonSearch extends MIDlet implements

CommandListener

010: {

011: public static final int MAX_RECORDS = 10;

012:

Listing 22.5 MicroAmazonSearch.java

184 Item 22

013: // commands

014: private Command searchCommand;

015: private Command detailsCommand;

// - removed additional Command references for brevity

019:

020: // Alerts

021: Alert searchAlert;

022: Alert detailAlert;

// - removed other Alert references for brevity

025:

026: // display

027: private Display display;

028:

029: // screens

030: private Form searchScreen;

031: private List resultsScreen;

032: private TextBox detailsScreen;

033:

034: // screen components

035: ChoiceGroup opsChoice;

036: ChoiceGroup modeChoice;

037: TextField targetTF;

038: int page = 1;

039:

040: Vector products;

041: String xmlBuf;

042: int [] detailIndexes;

043: boolean updateIndexes;

044:

045: boolean debug = true;

046: Timer ticker = new Timer();

Listing 22.5 (continued)

Here are the optimizations in the class definition:

Guess the Size of Vectors. Resizing Vectors is expensive. This is demonstrated
by using the constant in line 11.

Use Local Variables. Local variables are accessed faster than class members. You
will notice that we have eliminated all of the public static Strings. This opti-
mization could be used further in this code.

Avoid String Comparisons. Notice in lines 14 to 18 that the Command references
are declared as class members, and these will be compared against in the event
handler instead of comparing Strings.

Avoid Temporary Objects. In lines 21 to 24 we use class data members for the
Alert references and thus reuse the objects after instantiating them lazily.

J2ME Performance and Pitfalls 185

048: public MicroAmazonSearch()
049: {
050: final String [] legalOps = { “KeywordSearch”, Æ
“BrowseNodeSearch”, “AsinSearch”,
051: “UpcSearch”, “AuthorSearch”, Æ
“ArtistSearch”,
052: /* reduce to work in 64k ...
053: “ActorSearch”, “DirectorSearch”, Æ
“ManufacturerSearch”,
054: “ListManiaSearch”, “SimilaritySearch”,
055: */
056: };
057:
058: final String [] legalModes = { “baby”, “books”, Æ
“classical”, “dvd”, “electronics”,
059: /* reduce to conserve memory (< 64k)....
060: “garden”, “kitchen”, “magazines”, Æ
“music”, “pc-hardware”,
061: “photo”, “software”, “toys”, Æ
“universal”, “vhs”,
062: “videogames”,
063: */
064: };
065: final String CMD_SEARCH = “Search”;
// - removed remaining final Strings for brevity
070:
071: // Create GUI components here...
072: display = Display.getDisplay(this);
073:
074: // commands
075: searchCommand = new Command(CMD_SEARCH, Command.SCREEN, 1);
076: detailsCommand = new Command(CMD_DETAILS, Command.SCREEN,
1);
077: nextResultsCommand = new Command(CMD_NEXT_TEN,
Command.SCREEN, 1);
078: backCommand = new Command(CMD_BACK, Command.SCREEN, 2);
079: exitCommand = new Command(CMD_EXIT, Command.SCREEN, 2);
080:
081: // Create 3 screens: 1. Search, 2. Results, 3. Details
082: // search form
083: searchScreen = new Form(“Search Terms”);
// removed the construction of the searchScreen — no change.
094:
095: // other screens, lazy instantiated
096: }

Listing 22.5 (continued)

The MicroAmazonSearch constructor has three optimizations:

Use Local Variables. The arrays for operations (lines 50 to 63) and modes were
moved to become local variables so the memory is reclaimed at method return.

186 Item 22

Declare Variables and MethodsFinal. Final references are accessed faster and
declaring both final and static is the fastest. Both the arrays and line 65 demon-
strate this.

UseLazy Instantiation. Line 95 no longer contains the other screens, as we wait
until they are needed by the user to create them.

098: public void startApp()
099: {
100: display.setCurrent(searchScreen);
101: // clean up as User decides what to do
102: System.gc();
103: }
104:
// - removed pauseApp() and destroyApp as they do nothing
114:
115: public void commandAction(Command c, Displayable s)
116: {
117: String targets = null;
118: try
119: {
120: if (c == exitCommand)
121: {
122: destroyApp(false);
123: notifyDestroyed();
124: }
125: else if (c == searchCommand)
126: {
127: // check we have the valid parameters\
128: targets = targetTF.getString();
129: if (targets.length() == 0)
130: {
131: // lazy instantiation!
132: if (searchAlert == null)
133: searchAlert = new Alert(“Search Error”, Æ
“‘Search For’ text field cannot be empty.”, null, AlertType.ERROR);
134: display.setCurrent(searchAlert);
135: }
136: else
137: {
138: page = 1; // reset
139: xmlBuf = null;
140: updateIndexes = true;
141: // memory intensive, so get as much as we can
142: System.gc();
143: doAmazonSearch(page, targets);
144: System.gc();
145: }
146: }
147: else if (c == detailsCommand)
148: {
149: // get item selected in list

Listing 22.5 (continued)

J2ME Performance and Pitfalls 187

150: int selected = resultsScreen.getSelectedIndex();
151: if (selected >= 0)
152: {
153: String product = Æ
resultsScreen.getString(selected);
154: showDetails(product, xmlBuf);
155: }
156: else
157: {
158: if (detailAlert == null)
159: detailAlert = new Alert(“Error”, “Must Æ
select a product to see details.”, null, AlertType.ERROR);
160: display.setCurrent(detailAlert);
161: }
162: }
// - removed handling of backCommand and nextResultsCommand for brevity
182: } catch (Throwable t)
183: {
184: if (debug) t.printStackTrace();
185: if (genericAlert == null)
186: genericAlert = new Alert(“Error”, “ERROR: reason: Æ
“ + t.toString(),null, AlertType.ERROR);
187: else
188: genericAlert.setString(“ERROR: reason: “ + Æ
t.toString());
189: display.setCurrent(genericAlert);
190: if (t instanceof OutOfMemoryError)
191: {
192: Runtime r = Runtime.getRuntime();
193: long free = 0, freed = 0;
194: int trys = 0;
195: while ((freed += (r.freeMemory() - free)) > 0 && Æ
trys < 20)
196: {
197: free = r.freeMemory();
198: System.gc();
199: trys++;
200: }
201: if (debug) System.out.println(“Freed “ + freed + Æ
“ bytes.”);
202:
203: }
204: }
205: }

Listing 22.5 (continued)

The event handler demonstrates three optimizations:

Reduce String Comparisons. Lines 120 and 125 demonstrate comparing against
a reference instead of using String comparison.

Lines 132 and 185 again demonstrate using lazy instantiation.

188 Item 22

Handle OutOfMemoryError. This error is much more common in small footprint
devices and must be handled explicitly, like in lines 190 to 200.

207: private final void showDetails(String product, String xmlBuf)
208: {
209: final String ELEMENT_DETAILS = “Details”;
210: final String ELEMENT_AUTHORS = “Authors”;
211:
212: // lazy instantiation
213: if (detailsScreen == null)
214: {
215: // details text box
216: detailsScreen = new TextBox(“Details”, “”, 1024, Æ
TextField.ANY);
// - removed adding the Commands to detailsScreen — no change.
220: }
221:
222: ticker.reset(“Started Timer in showDetails()”);
223:
224: // clear the text box
225: detailsScreen.delete(0, detailsScreen.size());
226:
227: // display tagName : value
228: // first, find the product
229: int prodIdx = xmlBuf.indexOf(product);
230: if (prodIdx >= 0)
231: {
232: int productCount = products.size();
233: if (updateIndexes)
234: {
235: if (detailIndexes == null)
236: detailIndexes = new int[MAX_RECORDS];
237: int tmpIdx = 0;
238: // this loops needs to count up
239: for (int i=0;i < productCount; i++)
240: {
241: String tgt = “<” + ELEMENT_DETAILS;
242: detailIndexes[i] = xmlBuf.indexOf(tgt, tmpIdx);
243: tmpIdx = detailIndexes[i] + 1;
244: }
245: }
246:
247: updateIndexes = false;
248: int detailIdx = -1;
249: for (int i=productCount-1; i >= 0; i—)
250: {
251: if (detailIndexes[i] < prodIdx)
252: {
253: detailIdx = i;
254: break;
255: }
256: }

Listing 22.5 (continued)

J2ME Performance and Pitfalls 189

257:
258: int startIdx = detailIndexes[detailIdx];
259: int endIdx = ((detailIdx + 1) < detailIndexes.length Æ
)? detailIndexes[detailIdx + 1] : xmlBuf.length();
260:
261: int traverseIdx = startIdx + 1;
262: while (traverseIdx < endIdx)
263: {
264: // find a tag
265: int tagStartIdx = xmlBuf.indexOf(‘<’, traverseIdx);
266: int tagEndIdx = xmlBuf.indexOf(‘>’, tagStartIdx);
267: String tag = xmlBuf.substring(tagStartIdx+1, Æ
tagEndIdx);
268: if (tag.equals(“/” + ELEMENT_DETAILS))
269: break;
270:
271:
272: // now get the tag contents
273: int endTagStartIdx = xmlBuf.indexOf(“</” + tag, Æ
tagEndIdx);
274: String contents = xmlBuf.substring(tagEndIdx + 1, Æ
endTagStartIdx);
275:
276: if (!tag.equals(ELEMENT_AUTHORS))
277: {
278: detailsScreen.insert(tag + “:”, Æ
detailsScreen.size());
279: detailsScreen.insert(contents + “\n”, Æ
detailsScreen.size());
280: }
281:
282: traverseIdx = endTagStartIdx+1;
283: }
284:
285: // set the display to the results
286: display.setCurrent(detailsScreen);
287: }
288: ticker.printStats(“Method showDetails()”);
289: }

Listing 22.5 (continued)

The method showDetails() contains five optimizations:

Line 207 demonstrates declaring methods as final for faster access.

Line 213 again demonstrates lazy instantiation.

Use ArraysInstead of Objects. Line 236 uses an integer array instead of a Vector
to store indexes, and it also guesses the maximum size so as to not have to resize
the array. These optimizations could be used further in the code to gain addi-
tional speed and memory conservation.

Iterate Loops Down to Zero. Comparing against zero is the fastest, so coding loops
to count down instead of up is more efficient. Lines 249 and 259 demonstrate this.

190 Item 22

Only Code the Necessary Functionality. We have abandoned the kxml DOM
implementation for performing the minimal number of string comparisons and
substrings that we need. You will see this again used in doAmazonSearch().

291: private final void doAmazonSearch(int page, String targets) Æ
throws Exception, IOException
292: {
293: final String ELEMENT_PRODUCT_NAME = “ProductName”;
294: final String LITE_FORMAT = “lite”;
295:
296: ticker.reset(“Started Timer in doAmazonSearch()”);
297:
298: // get the operation
299: int idx = opsChoice.getSelectedIndex();
300: String op = opsChoice.getString(idx);
301:
302: // get the mode
303: idx = modeChoice.getSelectedIndex();
304: String mode = modeChoice.getString(idx);
305: // static method is fastest
306: String sURL = MicroAmazonHttpGet.createURL(op, targets, Æ
mode, LITE_FORMAT, “” + page);
307:
308: // GET it via static method
309: xmlBuf = MicroAmazonHttpGet.httpGet(sURL);
310:
311: // very lazy instantiation
312: if (resultsScreen == null)
313: {
314: // results list
315: resultsScreen = new List(“Results”, List.EXCLUSIVE);
// removed adding Commands to resultsScreen — no change.
321: }
322:
323: String [] productNames = null;
324: if (products == null)
325: {
326: products = new Vector(10); // Amazon returns 10 entries
327: }
328: else
329: {
330: products.setSize(0);
331: int rcnt = resultsScreen.size();
332: if (rcnt > 0)
333: {
334: // clear it
335: for (int i=rcnt - 1; i >= 0; i—)
336: resultsScreen.delete(i);
337: }
338: }
339:
340: int index = 0;

Listing 22.5 (continued)

J2ME Performance and Pitfalls 191

341: String productName = null;
342: while ((index = xmlBuf.indexOf(ELEMENT_PRODUCT_NAME, Æ
index)) > 0)
343: {
344: int endIdx = xmlBuf.indexOf(ELEMENT_PRODUCT_NAME, Æ
index + 1);
345: if (endIdx > index)
346: {
347: productName = xmlBuf.substring(index + Æ
ELEMENT_PRODUCT_NAME.length() + 1, endIdx - 2);
348: products.addElement(productName);
349: }
350: index = endIdx + 1;
351: }
352: productName = null;
353:
354: int productCount = products.size();
355: if (products != null && productCount > 0)
356: {
357: // populate the list
358: for (int i=productCount - 1; i >= 0; i—)
359: resultsScreen.append((String)products.elementAt(i), Æ
null);
360:
361: // set the display to the results
362: display.setCurrent(resultsScreen);
363: }
// - removed the else block for brevity
370: ticker.printStats(“Method doAmazonSearch()”);
371: }
372: }

Listing 22.5 (continued)

The method doAmazonSearch() contains five optimizations:

Line 291 declares the method final for faster access.

Lines 293 and 294 use local variables.

Line 326 sets the size of the Vector.

Line 330 avoids instantiating a new Vector by reusing it.

Set References to Null. This will assist the garbage collector in more efficiently
reclaiming unused memory. Line 352 makes the productName String avail-
able for reclamation.

Listing 22.6 presents the optimized version of BadMicroAmazonHttpGet. This
version has changed drastically to increase performance and conserve memory. There
are even further improvements available, like ensuring that the data returned from the
Web server can be stored in memory (or pared down to do so).

192 Item 22

001: /* MicroAmazonHttpGet.java */

002: package org.javapitfalls.item22;

003:

// - removed Import statements -- no change.

007:

008: public class MicroAmazonHttpGet

009: {

010: public static final String DEVTAG = “D3AG4L7PI53LPH”;

011: static Timer ticker = new Timer();

012:

013: // Memory saving but not thread safe

014: private static StringBuffer urlBuf;

015: private static ByteArrayOutputStream baos;

016: private static byte [] buf;

017:

Listing 22.6 MicroAmazonHttpGet.java

The Class definition of MicroAmazonHttpGet has two optimizations. First, most
of the static Strings have been eliminated to conserve memory. Second, all of the data
members have been declared as class data members (to eliminate instantiation) but
declared as static for fast access. This means that the class is no longer thread safe, but
this is okay because only a single thread uses it. In fact, another improvement may be
to just eliminate the class and roll the methods into MicroAmazonSearch:

018: public static final String createURL(String operation, String Æ
target, String mode, String type,

019: String page) throws Exception

020: {

021: final String KEYWORD_MODE = “mode”;

022: final String KEYWORD_TYPE = “type”;

023: final String KEYWORD_PAGE = “page”;

024:

025: if (urlBuf == null)

026: {

027: urlBuf = new

StringBuffer(“http://xml.amazon.com/onca/xml?v=1.0&t=webservices-20& Æ
dev-t=”);

028: urlBuf.append(DEVTAG);

029: }

030: else

031: {

032: urlBuf.setLength(0);

033:

urlBuf.append(“http://xml.amazon.com/onca/xml?v=1.0&t=webservices- Æ
20&dev-t=”);

034: urlBuf.append(DEVTAG);

Listing 22.6 (continued)

J2ME Performance and Pitfalls 193

035: }

036:

037: urlBuf.append(‘&’);

038: urlBuf.append(operation);

039: urlBuf.append(‘=’);

040: if (target != null)

041: {

042: target.trim();

043: target = replaceString(target, “ “, “%20”, 0);

044:

045: urlBuf.append(target);

046: }

047: else

048: throw new Exception(“Invalid target”);

049:

050: // add Mode

051: urlBuf.append(‘&’);

052: urlBuf.append(KEYWORD_MODE);

053: urlBuf.append(‘=’);

054: urlBuf.append(mode);

055:

// removed code for adding Type and Page -- no change, just Inlined

069: }

Listing 22.6 (continued)

The createURL method is a brand-new method that replaced all of the addXXX
methods in the previous class. This class demonstrates six optimizations:

Line 18 demonstrates declaring a method both final and static for the fastest access.

Lines 21 to 23 demonstrate using local variables.

Lines 25 to 29 demonstrate lazy instantiation.

Manually Inline Methods. Lines 51 to 54 were previously in the addMode()method,
and instead we inlined the method within the createURLmethod.

Minimize Method Calls. Inlining all of the addXXX methods demonstrates mini-
mizing method calls. This should especially be followed for any method calls
inside of loops (like a call to check length() or size()).

// - deleted replaceString() — No Change.

091:

092: public static final String httpGet(String sURL) throws Æ
IOException

093: {

094: ticker.reset(“Started Timer in httpGet()”);

095: // get the connection object

Listing 22.6 (continued)

194 Item 22

096: System.out.println(“url: “ + sURL);

097:

098: HttpConnection con = (HttpConnection) Connector.open(sURL);

099: int respCode = con.getResponseCode();

100: System.out.println(“Response code: “ + respCode);

101: InputStream in = con.openInputStream();

102:

103: // lazy instantiate!

104: if (baos == null)

105: baos = new ByteArrayOutputStream(1024);

106: else

107: baos.reset();

108: if (buf == null)

109: buf = new byte[1024];

110: String response = null;

111: int cnt=0;

112: while ((cnt = in.read(buf)) != -1)

113: {

114: baos.write(buf,0,cnt);

115: }

116: response = baos.toString();

117: ticker.printStats(“Method httpGet()”);

118: return response;

119: }

120: }

Listing 22.6 (continued)

The httpGet()method demonstrates three optimizations:

Line 92 declares the method final and static.

Lines 104 and 108 demonstrate lazy instantiation. Also, lines 105 and 109 guess
the size of objects to avoid resizing—though ByteArrayOutputStream could
be better sized with better sampling of average query sizes.

Read More than 1 Byte from a Stream at a Time. All network connections will
buffer more than a single byte so reading larger chunks of data is more efficient.

Here are some additional optimization tips:

Avoid String Concatenation. String concatenation has been proven extremely
slow, so use StringBuffers or streams to avoid this. This can be better taken
advantage of in this application.

Avoid Synchronization. Synchronization is slow because of the overhead of
implementation the thread controls.

If adding by 1, int++ is the fastest operation. This is faster than expressions like
“I = I + 1;”.

Improve Perceived Performance. Use progress meters to inform the user that the
computer is active.

J2ME Performance and Pitfalls 195

Only Include Necessary Classes. To conserve memory required to store your
application, only include necessary classes in the deployment archive.

Use Shift Operator to Multiply by 2. The shift operator is faster than the multipli-
cation operator.

Avoid Casting. Casting is expensive, so have methods return only one type.

Use int as Much as Possible. Other types like byte, short, and character are
promoted to an int. So eliminate the promotion by using ints directly.

Avoid Using Exceptions. Exceptions require additional checking by the VM, so
your code will be faster using more traditional procedural programming (with
status returns).

The new, optimized code runs extremely well within 128 KB. Here is a run of the
code demonstrating that by performing three queries and multiple showing of details:

Started Timer in doAmazonSearch(). Free Memory: 108760

Started Timer in httpGet(). Free Memory: 102160

url: http://xml.amazon.com/onca/xml?v=1.0&t=webservices-20&dev-

t=D3AG4L7PI53LPH&KeywordSearch=daconta&mode=books&type=lite&page=1&f=xml

Response code: 200

Method httpGet(): 8572. Free Memory: 35372

Method doAmazonSearch(): 8773. Free Memory: 32792

Started Timer in showDetails(). Free Memory: 75040

Method showDetails(): 20. Free Memory: 68768

// - removed second query for brevity

Started Timer in doAmazonSearch(). Free Memory: 63284

Started Timer in httpGet(). Free Memory: 60692

url: http://xml.amazon.com/onca/xml?v=1.0&t=webservices-20&dev-

t=D3AG4L7PI53LPH&AuthorSearch=Robert%20Heinlein&mode=books&type=lite&pag

e=1&f=xml

Response code: 200

Method httpGet(): 8502. Free Memory: 23512

Method doAmazonSearch(): 9143. Free Memory: 21244

Started Timer in showDetails(). Free Memory: 63736

Method showDetails(): 1082. Free Memory: 57560

Execution completed successfully

1578454 bytecodes executed

750 thread switches

324 classes in the system (including system classes)

2491 dynamic objects allocated (344132 bytes)

600 garbage collections (283784 bytes collected)

Total heap size 131072 bytes (currently 56276 bytes free)

Figure 22.6 displays MicroAmazonSearch being emulated on a BlackBerry device.

196 Item 22

Figure 22.6 MicroAmazonSearch emulated on a BlackBerry.
Copyright © 2002 Research In Motion Limited.

In conclusion, this pitfall has ported a Swing application to the J2ME platform in
order to reveal two categories of pitfalls: a bias to programming for the J2SE platform
and pitfalls caused by API differences. Lastly we covered and demonstrated over
20 techniques for optimizing J2ME code.

J2ME Performance and Pitfalls 197

199

It is difficult to overstate the transforming nature of Java on the server side. While the
adoption of Enterprise JavaBeans and other parts of the J2EE platform has been suc-
cessful, there is no mistaking how transforming Java has been in the Web tier space.

The accessibility of Java has provided many developers and would-be developers
with the opportunity to jump right in to building Web applications with the Java plat-
form. The strong technological advantages contained in servlets, filters, JSPs, and tag
libraries have caused many developers to become early adopters.

The early adoption and ease of use of the Java technologies is at the root of many of
the Web tier pitfalls. Many developers have found things that work for them and have
not understood the underlying implementation concerns. Furthermore, the nature of
Web applications having multiple concurrent users is not readily apparent to many
developers. Some notable pitfalls in this section:

Cache, It’s Money (Item 23). One of the overriding principles of Web applications
is the latency of the data being served by these applications. Many Web apps are
built to query a database on every request despite the fact that the data has not
changed.

JSP Design Errors (Item 24). JavaServer Pages are very powerful—combining the
flexibility of scripting and the power of compilation. However, this can have
unseen impact in the areas of readability, maintenance, and reuse.

The Web Tier
“The original impulse for modularity came from a desire for flexibility, in particular
how to subdivide a sizeable program text into ‘modules’ . . . But the emphasis has

shifted from such mere replaceability to the question of how to break down the
whole task most effectively: the demands are such that elegance is no longer a dis-

pensable luxury, but decides between success and failure.”

Edsger W. Dijkstra, “On a Cultural Gap”

PA R T

Two

When Servlet HTTPSessions Collide (Item 25). The nature of the Web is such that
users jump from site to site with impunity. This can cause issues with systems
that rely on the integrity of variables in the HTTPSession class. Collisions
between these can cause interesting issues in Web applications.

When Applets Go Bad (Item 26). Any developer that has developed and deployed
applet-based Web applications is well aware of the nightmares involved. Java
Web Start has proven to be a terrific redesign for all of the problems of applets.

Transactional LDAP—Don’t Make That Commitment (Item 27). The delivery of
personalized Web content to authenticated users is a complicated process that
involves tough questions about proper profile data storage operations needed to
perform this activity. This pitfall addresses the decision to store profile attributes
in a Relational Database Management System (RDBMS), an LDAP directory, or a
combination of both.

Problems with Filters (Item 28). The Servlet 2.3 specification introduced a new
Web component called the filter. This pitfall addresses problems encountered in
the use of this new component.

Some Direction about JSP Reuse and Content Delivery (Item 29). JavaServer
Pages are important visualization components because of their ability to be
reused in Web applications. An important aspect of this reusability is their abil-
ity to swap in dynamic content from both default application contexts as well as
remote contexts. This pitfall will show you how to do both.

Form Validation Using Regular Expressions (Item 30). A new feature of the JDK
1.4 is support for regular expressions. This new support greatly extends the
capabilities of Web applications to perform validation of entered data.

Item 23: Cache, It’s Money

Every developer’s nightmare is developing code on a local development environment
and migrating to a different enterprise deployment platform, only to discover substan-
dard latency times during back-end document queries. This problem often occurs
because of disparities between development and deployment systems, and because soft-
ware developers and database administrators tend to work separately from one another.
Unfortunately, this “Big Bang” theory, where all forces are expected to come together
during integration and work as expected, is a common delusion for most projects.

A recent development effort we were part of exemplified this when we were con-
fronted with latency issues on our front-end portal application that performed SOAP
requests and XSLT translations on data received from a back-end database that was
managed by a different contractor. Our customer’s concerns about protracted query
results forced us to take a fresh look at the problem. We knew that the database had doc-
uments that were updated roughly every month and had been relatively stable, and the
user community was estimated to be between 1,000 and 5,000 concurrent users.

Our analysis led us to the conclusion that our document queries had to be cached,
which would alleviate the strains that a relatively large user community might place on
our database. This was possible because of the nature of our data that remained stable

200 Item 23

until the end of every month. The downside of this solution was our understanding that
the relevance of the document data could be diminished if older, less significant data was
cached and rendered on user queries. Our final solution involved the implementation of
two innovative open-source applications: the OSCache tag library from OpenSymphony
and the JMeter application from the Apache Software Foundation. OSCache tags were
used to cache database queries, and JMeter was used to emulate user requests.

Our aim was to cache the sections of our code where database queries were per-
formed so that repeat trips back to the database could be avoided, thereby increasing
performance. During normal operations, any new documents that were added to the
database repository would be cached upon insertion. The caching process would be
facilitated by implementing JMeter scripts with URL parameters that emulated all the
different combinations of user responses. We determined that our entire site could be
cached in 45 minutes every month.

To demonstrate this process, some example JavaServer Pages (JSPs) and JMeter
XMLThreadGroup scripts were developed to cache query data from a simple MySQL
database. The Web page shown in Figure 23.1 demonstrates two portlet-like tables
with information items: Bike Trails, Gyms, and so on, and the 50 different U.S. states
where these information items can be found, which would total 550 different link com-
binations. The caching process could have been performed manually by hitting each
page with the OSCache tags, but this would take too much time and effort. We felt that
a more efficient process would involve the creation of a test generation application and
the implementation of JMeter to run those tests.

Figure 23.1 Cache example application.

Cache, It’s Money 201

The main focus of our implementation (see Listing 23.1) is a JSP named home.jsp
because it renders dynamic query information to the user display and uses the
OSCache tag library to cache that data. In the home.jsp code below, the tag library
OSCache is specified on line 07. The URI for this class is specified in the deployment
descriptor (web.xml). Please note that the <cache:cache></cache:cache> tags on
lines 31 to 40 surround the content.jsp page include, which actually performs the data-
base query. On line 31, we set the cache duration using the ISO-8601 format (YYYY-
MM-DD). We could have also set the caching duration using the time attribute, whose
default value is 3600 seconds, which is 1 hour.

01: <%@page import=”java.util.*” %>

02: <%@page import=”java.io.*” %>

03: <%@page import=”java.sql.*” %>

04:

05: <jsp:useBean id=”cacheHelper”

06: class=”org.javapitfalls.item23.cacheHelper” scope=”request”/>

07: <%@ taglib uri=”OSCache” prefix=”cache” %>

08:

09: <%

10: String topicId = request.getParameter(“topicId”);

11: String state = request.getParameter(“state”);

12: if (topicId == null) topicId = “”;

13: if (state == null) state = “”;

14: %>

15:

16: <title>

17: Cache Example

18: </title>

19:

20: <jsp:include page=”header.jsp” >

21: <jsp:param name=”topicId” value=”<%= topicId %>” />

22: <jsp:param name=”state” value=”<%= state %>” />

23: </jsp:include>

24:

25: <table border=”1” width=”100%”>

26: <tr valign=”top”>

27: <td width=”25%” valign=”top”>

28: <jsp:include page=”leftNav.jsp” />

29: </td>

30: <td width=”75%” valign=”top”>

31: <cache:cache scope=”session” duration=”2002-01-31”>

32: <% try { %>

33: <jsp:include page=”content.jsp”/>

34: <jsp:param name=”topicId” value=”<%= topicId %>” />

35: <jsp:param name=”state” value=”<%= state %>” />

36: </jsp:include>

37: <% } catch (Exception e) { %>

Listing 23.1 home.jsp

202 Item 23

38: <cache:usecached />

39: <% } %>

40: </cache:cache>

41: </td>

42: </tr>

43: </table>

44:

45:

46: <jsp:include page=”footer.jsp” />

47:

48:

Listing 23.1 (continued)

The OSCache tag library implementation includes a properties file that is installed
in the /WEB-INF/classes directory, which allows the user to set attributes for opera-
tional preferences. We’ve included only the properties that are pertinent to our imple-
mentation in Listing 23.2. The cache.path property points to the location where we
want to place our cache files. The cache.debug property specifies that we want to see
debugging messages, and the cache.unlimited property ensures that the cache
disk space is unlimited.

CACHE DIRECTORY

01:#

02:# This is the directory on disk where caches will be stored.

03:# it will be created if it doesn’t already exist, but OSCache

04:# must be able to write to here.

05:#

06: cache.path=c:\\cachetagscache

07:

08:# DEBUGGING

09:#

10:# set this to true if you want to see log4j debugging messages

11:#

12:cache.debug=false

13:

14:

15:# CACHE UNLIMITED DISK

16:# Use unlimited disk cache or not

17:cache.unlimited_disk=false

Listing 23.2 oscache.properties

Cache, It’s Money 203

Figure 23.2 Run of Apache JMeter.

After properly inserting the cache tag library tags in the source code, we generated
JMeter ThreadGroup scripts to replicate a user hitting each page with the state and
topicId parameters.

The JMeter application, as shown in Figure 23.2, is a Java desktop tool that performs
automated load testing and user activity measurements, and it comes with visualiza-
tion tools that provide test feedback and performance metrics. Our application uses
this tool to hit all possible user selections so that these pages could be cached. By
caching these pages, user queries do not have to go to the back end to draw back data.

Users can generate these ThreadGroup tests manually using the JMeter GUI, but
we felt that a more efficient option was to write a program called generateTests.java to
build these tests automatically. Listing 23.3 hard-codes the state and topicId data,
but an optimal solution would use a file or a database to store these values so that the
data would not be tightly coupled with the application and changes could be accom-
modated more easily. In the generateTests.java program, lines 81 to 85 show a constant
timer tag that will kick off a test every second or 1,000 milliseconds. Once these tests
are generated, users can use the JMeter GUI to execute these tests, or they can run them
manually from the command line using the nongui script:

prompt> nongui -o my_test.jmx -h <servername> -p <port #>

204 Item 23

01: import java.io.*;

02: import java.util.*;

03:

04: class generateTests

05: {

06: public static void main(String[] args) throws IOException

07: {

08: if (args.length != 0) {

09: System.out.println(“USAGE: java generateTests”);

10: } else {

11: String[] states = { “Alabama”, “Alaska”, “Arizona”, “Arkansas”,

12: “California”, “Colorado”, “Connecticut”, “Delaware”,

13: “Florida”, “Georgia”, “Hawaii”, “Idaho”, “Illinois”,

14: “Indiana”, “Iowa”, “Kansas”, “Kentucky”, “Louisiana”,

15: “Maine”, “Maryland”, “Massachusetts”, “Michigan”,

16: “Minnesota”, “Mississippi”, “Missouri”, “Montana”,

17: “Nebraska”, “Nevada”, “New Hampshire”, “New Jersey”,

18: “New Mexico”, “New York”, “North Carolina”, “North Dakota”,

19: “Ohio”, “Oklahoma”, “Oregon”, “Pennsylvania”,

20: “Rhode Island”, “South Carolina”, “South Dakota”,

21: “Tennessee”, “Texas”, “Utah”, “Vermont”, “Virginia”,

22: “Washington”, “West Virginia”, “Wisconsin”, “Wyoming” };

23:

24: String[] topicIds = { “Automobile Dealers”, “Bike Trails”,

25: “Gyms”, “Hospitals”, “Laundromats”, “Parks”,

26: “Physicians”, “Pet Stores”, “Restaurants”,

27: “Rest Areas”, “Supermarkets” };

28:

29: for (int x=0; x < topicIds.length; x++) {

30:

31: PrintWriter pw = new PrintWriter(new

32: FileOutputStream(“Cache_Test_” + topicIds[x] + “.jmx”));

33: pw.write(“<?xml version=\”1.0\”?>\n”);

34: pw.write(“<TestPlan>\n”);

35: pw.write(“<threadgroups>\n”);

36: pw.write(“<ThreadGroup name=\”Thread Group “ + topicIds[x] + “\”

37: numThreads=\”1\” rampUp=\”0\”>”);

38: pw.write(“<controllers>\n”);

39: pw.write(“<LoopController

40: type=\”org.apache.jmeter.control.LoopController\”

41: name=\”Loop Controller\” iterations=\”1\”>”);

42: pw.write(“<configElements>\n”);

43: pw.write(“</configElements>\n”);

44: pw.write(“<controllers>\n”);

45:

46: for (int y=0; y < states.length; y++) {

Listing 23.3 generateTests.java (continued)

Cache, It’s Money 205

47: pw.write(“<HttpTestSample

48: type=\”org.apache.jmeter.protocol.http.control.HttpTestSample\”

49: name=\”Cache Test for” + states[y] +

50: “(id=” + topicIds[x] + “)” + “\” getImages=\”false\”>\n”);

51: pw.write(“<defaultUrl>\n”);

52: pw.write(“<ConfigElement type=\”

53: org.apache.jmeter.protocol.http.config.MultipartUrlConfig\”>

54: \n”);

55: pw.write(“<property name=\”port\”>8080</property>\n”);

56: pw.write(“<property name=\”PROTOCOL\”>http</property>\n”);

57: pw.write(“<property name=\”domain\”>localhost</property>\n”);

58: pw.write(“<property name=\”arguments\”>\n”);

59: pw.write(“<Arguments>\n”);

60: pw.write(“<argument name=\”state\”> “ + states[y] +

61: “</argument>\n”);

62: pw.write(“<argument name=\”topicId\”>” + topicIds[x] +

63: “</argument>\n”);

64: pw.write(“</Arguments>\n”);

65: pw.write(“</property>\n”);

66: pw.write(“<property name=\”path\”>

67: /cachePage/home.jsp</property>\n”);

68: pw.write(“<property name=\”method\”>GET</property>\n”);

69: pw.write(“</ConfigElement></defaultUrl>\n”);

70: pw.write(“<configElements>\n”);

71: pw.write(“</configElements>\n”);

72: pw.write(“<controllers>\n”);

73: pw.write(“</controllers>\n”);

74: pw.write(“</HttpTestSample>\n”);

75: }

76:

77: pw.write(“</controllers>\n”);

78: pw.write(“</LoopController>\n”);

79: pw.write(“</controllers>\n”);

80: pw.write(“<timers>\n”);

81: pw.write(“<Timer type=\”org.apache.jmeter.timers.ConstantTimer\”

82: name=\”Constant Timer\”>\n”);

83: pw.write(“<delay>1000</delay>\n”);

84: pw.write(“<range>0.0</range>\n”);

85: pw.write(“</Timer>\n”);

86: pw.write(“</timers>\n”);

87: pw.write(“<listeners>\n”);

88: pw.write(“</listeners>\n”);

89: pw.write(“</ThreadGroup>\n”);

90: pw.write(“</threadgroups>\n”);

91: pw.write(“<configElements>\n”);

92: pw.write(“</configElements>\n”);

Listing 23.3 (continued)

206 Item 23

93: pw.write(“</TestPlan>\n”);

94: pw.close();

95: System.out.println(“Finished writing: “ + topicIds[x]);

96: }

97: }

98: }

99: }

Listing 23.3 (continued)

Figure 23.3 demonstrates what occurs in our Web application when we use the JMe-
ter test scripts to cache our database queries. These scripts ping the database with the
query operations indicated by the number 1 in the figure and cache the pages to the
cache repository so that future database queries hit the cached scripts as indicated by
the number 2.

In the end, our scripts allowed us to cache our entire site and reduce query result
times, which pleased our customer. Additionally, the knowledge we acquired from our
JMeter implementation allowed us to engage our test personnel earlier in our next pro-
gram, which facilitated our integration efforts between our front-end and database
developers.

In all Web development efforts, it is paramount that developers pay some consider-
ation to the implementation of a caching strategy so that pertinent data can be deliv-
ered in a timely fashion and database server overloads can be avoided. If your site
serves up document artifacts that don’t change regularly, it will serve you well. Con-
sider that at the JavaOne 2002 Conference there was significant discussion of the
JCACHE specification (JSR 107), whose purpose is to standardize caching of Java
objects. Feature enhancements with existing tag libraries like OSCache, along with
new implementations like JCACHE, will continue to produce faster Web page
response times and make Web content queries a much more pleasant experience.

Figure 23.3 Cache architecture.

Server Application

JMeter scripts

2.

Database

1.

Cached scripts

Data

Data queries (JDBC)

Cache, It’s Money 207

Item 24: JSP Design Errors

The evolution of Web applications followed two different paths: scripts and compiled
executables. Servlets provided a strong improvement on the compiled code examples
but suffered their own limitations in terms of presentation. The arrival of JSP caused
many people to use them as self-compiling scripts. They saw the flexibility of script
programming combined with the power of compiled code. Unfortunately, this can
cause significant problems in maintenance, reuse, and flexibility.

My development team was assigned a task of building a Web-based workflow sys-
tem that persisted information to a conventional relational database. Having built sys-
tems like this with a few different technologies, including most recently a servlet
implementation of a similar system, we were eager to try JSP to eliminate our endless
println statements, as well as eliminate the fundamental maintenance nightmare of
trying to maintain HTML code inside our servlets.

JSP turned out to be a set of challenges in its own right. Before discussing the blow
by blow, let’s quickly review the basics of Web application development.

Request/Response Paradigm

Web applications, independent of technological implementation, come down to a few
fundamental concepts. Having built quite a few of these systems with a number of
technological solutions, we’ve found that it boils down to a simple process:

■■ Parse parameters from request.

■■ Apply business logic (query/update the database in our case).

■■ Present results to the user in the response.

Listing 24.1 is an example of what this looks like in a servlet implementation.

01: public void doPost(HttpServletRequest request, HttpServletResponse

02: response) throws ServletException, IOException {

03:

04: // Parse parameters from the request

05: String salary = request.getParameter(“salary”);

07:

08: // Execute Business Logic (query a DB in this case)

09: try {

11: statement.setFloat(1, Float.parseFloat(salary));

12:

13: // statement is a PreparedStatement initialized in the init() Æ
method

14: ResultSet results =

15: statement.executeQuery();

Listing 24.1 doPost() from SalaryServlet

208 Item 24

16:

17:

18: // Present the results to the user in the response

19: response.setContentType(“text/html”);

20:

21: PrintWriter out = response.getWriter();

22: out.println(“<html>”);

23: out.println(“<head><title>SalaryServlet</title></head>”);

24: out.println(“<body>”);

25: out.println(“<table>”);

26: out.println(“<tr>”);

27: out.println(“<td>Employee</td></tr>”);

28:

29: while (results.next()) {

30: out.println(“<tr>”);

31: out.println(“<td>”);

32: out.println(results.getString(1));

33: out.println(“</td>”);

34: out.println(“</tr>”);

35: }

36:

37: out.println(“</table>”);

38: out.println(“</body></html>”);

40: } catch (SQLException sqle) {

41:

42: sqle.printStackTrace();

44: }

45:

46: }

Listing 24.1 (continued)

Maintaining State

The other issue that comes up in building Web applications is that HTTP is a stateless
protocol—that is, one request is independent of the next. Therefore, some method must
be chosen to determine how to maintain information about what was done prior to and
after this request. A classic example of maintaining state is the user login. A user should
not need to provide a login credential with each request. Therefore, there must be some
way of keeping track of whether or not this user has been authenticated. There are a
few options for how to do this:

Passing parameters. Obviously, the Web application can pass the parameters with
each request and embed “hidden” form elements in the response, so that the
user doesn’t need to re-enter these parameters. The obvious problem is that this
can become quite burdensome, involving continuously passing information that
is essentially passed through and not really relevant to this particular screen.

JSP Design Errors 209

Cookies. Cookies provide the ability to store pieces of information on the remote
machine; therefore, the application can check to determine if it has previously
set information on that machine. However, obviously, major concerns arise out
of whether the user will allow such information to be set on his or her machine
and how long such information can be counted on being available.

Session variables. HTTP actually provides the ability to put variables in the HTTP
session; this was the mechanism that HTTP uses for its basic authentication
scheme. Session variables can be helpful but can be problematic—especially
with regard to maintaining the session and avoiding other variables with the
same name.

JSP the Old Way

Let’s take a second to discuss the evolution of Web applications. Originally, Web appli-
cations came in two forms: compiled executables (usually written in C or C++) and
server scripts (usually written in Perl). They both used the Common Gateway Interface
(CGI) to execute requests. To make Web applications easier to build, other scripting
languages evolved like server-side JavaScript, JScript, and VBScript. The choice
seemed to boil down to power (compiled code was always faster) versus ease of use.

The servlet implementation of my Web application brings me a number of advan-
tages. It is compiled, so I get a performance increase. It operates in a shared process, the
servlet engine, so it scales particularly well. Also, the shared process allows for the
creation of shared resources like database connections. This is a particular advantage
over previously compiled options, which would create new processes (and resources)
to handle each request. This caused problems with scalability and with security (the
command executed in its own space, without any managing thread to contain malig-
nant or runaway code).

The problem with compiled code is that it is just that, compiled. Notice that I have
embedded a great deal of HTML code into my servlet. That means any changes to the
presentation require a recompile of the code. Furthermore, anyone who has created
these out.println() commands of HTML understands the pain of escape sequences.

Along comes JSP, which allows the developer to invert his or her servlet and embed
the logic into the presentation code. This proves very helpful to script writers who suf-
fer from limited-capability scripting languages and convoluted programming struc-
tures (like conditional loops and iterators). Furthermore, a JSP is compiled into a
servlet, so you receive the benefits of compiled code in a script-driven programming
environment.

Listing 24.2 is an example JSP implementation of the previous salary servlet.

01: <%@ page import=”java.util.*”%>

02: <%@ page import=”java.sql.*”%>

03: <HTML>

04: <HEAD>

05: <TITLE>

06: Salary Jsp

Listing 24.2 BadSalaryJsp.jsp

210 Item 24

07: </TITLE>

08: </HEAD>

09: <BODY>

10: <H1>

11: Here are the people who make over $<%= Æ
request.getParameter(“salary”) %>:

12: <%

13: // Database config information

14: String driver = “oracle.jdbc.driver.OracleDriver”;

15: String url = “jdbc:oracle:thin:@joemama:1521:ORACLE”;

16: String username = “scott”;

17: String password = “tiger”;

18:

19: String salary = request.getParameter(“salary”);

20:

21: // Establish connection to database

22: try {

23: Class.forName(driver);

24: Connection connection =

25: DriverManager.getConnection(url, username, password);

26:

27: PreparedStatement statement

28: = connection.prepareStatement(“SELECT ename FROM emp Æ
WHERE sal > ?”);

29:

30: statement.setFloat(1, Float.parseFloat(salary));

31:

32: ResultSet results =

33: statement.executeQuery();

34: %>

35: </H1>

36: <table>

37: <tr>

38: <td>Employee</td>

39: </tr>

40:

41: <% while (results.next()) { %>

42: <tr>

43: <td>

44: <%= results.getString(1) %>

45: </td>

46: </tr>

47: </table>

48: <% }

49:

50: } catch(ClassNotFoundException cnfe) {

51: System.err.println(“Error loading driver: “ + cnfe);

52:

53: } catch(SQLException sqle) {

Listing 24.2 (continued)

JSP Design Errors 211

54: sqle.printStackTrace();

55: }

56:

57: %>

58: </BODY>

59: </HTML>

60:

Listing 24.2 (continued)

This approach looks a lot like the servlet pulled inside out. In fact, to demonstrate
how close this is to reality, Listing 24.3 shows a snippet of the source generated by
Apache Tomcat to compile the JSP.

01: // HTML // begin

[file=”/BadSalaryJsp.jsp”;from=(0,31);to=(1,0)]

02: out.write(“\r\n”);

03:

04: // end

05: // HTML // begin Æ
[file=”/BadSalaryJsp.jsp”;from=(1,30);to=(10,35)]

06: out.write(“\r\n<HTML>\r\n<HEAD>\r\n<TITLE>\r\nSalaryÆ
Jsp\r\n</TITLE>\r\n</HEAD>\r\n<BODY>\r\n<H1>\r\nHere are the people who Æ
make over $”);

07:

08: // end

09: // begin Æ
[file=”/BadSalaryJsp.jsp”;from=(10,38);to=(10,70)]

10: out.print(request.getParameter(“salary”));

11: // end

12: // HTML // begin Æ
[file=”/BadSalaryJsp.jsp”;from=(10,72);to=(11,0)]

13: out.write(“:\r\n”);

14:

15: // end

16: // begin Æ
[file=”/BadSalaryJsp.jsp”;from=(11,2);to=(33,0)]

17:

18: // Database config information

19: String driver = Æ
“oracle.jdbc.driver.OracleDriver”;

20: String url = Æ
“jdbc:oracle:thin:@joemama:1521:ORACLE”;

21: String username = “scott”;

22: String password = “tiger”;

Listing 24.3 Apache Tomcat-generated BadSalaryJsp.jsp

212 Item 24

23:

24: String salary = request.getParameter(“salary”);

25:

26: // Establish connection to database

27: try {

28: Class.forName(driver);

29: Connection connection =

30: DriverManager.getConnection(url, username,Æ
password);

31:

32: PreparedStatement statement

33: = connection.prepareStatement(“SELECT Æ
ename FROM emp WHERE sal > ?”);

34:

35: statement.setFloat(1, Æ
Float.parseFloat(salary));

36:

37: ResultSet results =

38: statement.executeQuery();

39: // end

40: // HTML // begin Æ
[file=”/BadSalaryJsp.jsp”;from=(33,2);to=(40,0)]

41:

out.write(“\r\n</H1>\r\n<table>\r\n<tr>\r\n<td>Employee</td>\r\n</Æ
tr>\r\n\r\n”);

42:

43: // end

44: // begin Æ
[file=”/BadSalaryJsp.jsp”;from=(40,2);to=(40,32)]

45: while (results.next()) {

46: // end

Listing 24.3 (continued)

So what is wrong with that? The user gets the ease of scripting combined with the
power of compilation. This seems like the best of both worlds. However, the example
JSP shows the most obvious problem. Why do I want to put database configuration
information in each of my pages? This is a maintenance nightmare. A fundamental of
good software development, particularly object-oriented development, is the separa-
tion of concerns. The database is a common piece that should be accessible to numer-
ous JSP pages.

While it is possible to do some of this by creating an independent JSP, this kind of
issue—accessing an enterprise resource—screams for a programmatic implementation.
The solution to this came almost immediately with the JSP specification: Use JavaBeans—
now known as the Model 1 Architecture—to encapsulate your business logic.

JSP Design Errors 213

Figure 24.1 Model 1 Architecture.

JSP Development with Beans (Model 1 Architecture)

Figure 24.1 shows the JSP Model 1 Architecture.
The architecture features the following:

■■ Beans provide encapsulated data structure and logic.

■■ External resources (databases, Web services, etc.) are abstracted from presenta-
tion layer.

Although this is an improvement, the following drawbacks still exist:

■■ Control logic is still tied to presentation.

■■ Maintenance is better but still poor—too closely coupled to presentation logic.

Listing 24.4 shows the logic from the previous JSP in a bean.

01: public class SalaryServletBean {

02: private String salary = “30000”;

03: private LinkedList nameList;

04: private Connection connection;

05: private PreparedStatement statement;

06:

07: public SalaryServletBean() {

08:

09: // Database config information

10: String driver = “oracle.jdbc.driver.OracleDriver”;

11: String url = “jdbc:oracle:thin:@joemama:1521:ORACLE”;

12: String username = “scott”;

13: String password = “tiger”;

14:

15: // Establish connection to database

16: try {

17: Class.forName(driver);

18: connection =

19: DriverManager.getConnection(url, username, password);

20:

21: PreparedStatement statement

Listing 24.4 SalaryServletBean.java

Request
Response

Java Server Page

Business
Enterprise

Pass/
Retrieve data

Business Logic
(JavaBean)

Interact with
other systems as

necessary to handle
business logic

214 Item 24

22: = connection.prepareStatement(“SELECT ename FROM emp Æ
WHERE sal > ?”);

23:

24: } catch(ClassNotFoundException cnfe) {

25: System.err.println(“Error loading driver: “ + cnfe);

26:

27: } catch(SQLException sqle) {

28: sqle.printStackTrace();

30: }

31: }

32:

33: /**Retrieve the List of Names*/

34: public LinkedList getNameList() {

36: return nameList;

37: }

38:

39: /**Specify the salary level for getting the list of names*/

40: public void setSalary(String newValue) {

41: if (newValue!=null) {

42: salary = newValue;

43: }

44:

45: statement.setFloat(1, Float.parseFloat(salary));

46:

47: ResultSet results =

48: statement.executeQuery();

49:

50: nameList.clear();

51:

52: while (results.next()) {

53: nameList.add(results.getString(1));

54: }

56: }

57: }

58:

Listing 24.4 (continued)

Listing 24.5 shows the accompanying JSP that uses the bean.

01: <%@ page import=”java.util.*”%>

02: <HTML>

03: <HEAD>

04: <jsp:useBean id=”mySalaryServletBean” scope=”session” Æ
class=”SalaryServletBean” />

Listing 24.5 SalaryJsp.jsp (continued)

JSP Design Errors 215

05: <jsp:setProperty name=”mySalaryServletBean” property=”*” />

06: <TITLE>

07: Salary Servlet Jsp

08: </TITLE>

09: </HEAD>

10: <BODY>

11: <H1>

12: Salary Jsp

13: </H1>

14: <table>

15: <tr>

16: <td>Employee</td>

17: </tr>

18:

19: <%

20: LinkedList myList = mySalaryServletBean.getNameList();

21: ListIterator li = myList.listIterator();

22: while (li.hasNext()) {

25: %>

26: <tr>

27: <td>

28: <%= (String)li.next() %>

29: </td>

30: </tr>

31: <% } %>

32: </table>

33:

34: </BODY>

35: </HTML>

36:

Listing 24.5 (continued)

Another way to abstract business logic out of the JSP code is through the use of JSP
custom tag libraries. This approach allows for component reuse of particular code and
also allows content developers to have access to complex Java code programming logic
in a form that is familiar to them: HTML-like tags.

Listing 24.6 is an example of our salary business logic in a custom tag library. Notice
this tag library has not been designed for the purpose of reuse, but rather to show the
same logic expressed in a different manner.

01: package mypackage;

02: import javax.servlet.jsp.tagext.TagSupport;

03: import javax.servlet.jsp.tagext.BodyContent;

Listing 24.6 SalaryTag.java

216 Item 24

04: import javax.servlet.jsp.JspException;

05: import javax.servlet.jsp.JspTagException;

06: import javax.servlet.jsp.JspWriter;

07: import javax.servlet.jsp.PageContext;

08: import javax.servlet.ServletRequest;

09: import java.io.PrintWriter;

10:

11: public class salarytag extends TagSupport

12: {

13: /*

14: tag attribute: salary

15: */

16:

17: private String salary = “30000”;

18:

19: /**

20: * Method called at start of tag.

21: * @return SKIP_BODY

22: */

23: public int doStartTag() throws JspException

24: {

25: try

26: {

27: JspWriter out = pageContext.getOut();

28: SalaryServletBean mySalaryBean = new SalaryServletBean();

29: mySalaryBean.setSalary(salary);

30: LinkedList myList = mySalaryBean.getNameList();

31: ListIterator li = myList.listIterator();

32: while (li.hasNext()) {

33:

34: out.println(“<tr><td>”);

35: out.println((String)li.next());

36: out.println(“</td></tr>”);

37: }

38:

39: }

40: catch(Exception e)

41: {

42: e.printStackTrace();

43: }

44:

45: return SKIP_BODY;

46: }

47:

49: /**

50: * Method called at end of tag.

51: * @return SKIP_PAGE

52: */

53: public int doEndTag()

Listing 24.6 (continued)

JSP Design Errors 217

54: {

55: return SKIP_PAGE;

56: }

57:

58: public void setSalary(String value)

59: {

60: salary = value;

61: }

62:

63: public String getSalary()

64: {

65: return salary;

66: }

67:

68: }

69:

Listing 24.6 (continued)

To deploy this tag library, you need to define it using a tag library descriptor (see
Listing 24.7).

01: <?xml version = ‘1.0’ encoding = ‘windows-1252’?>

02: <!DOCTYPE taglib PUBLIC “-//Sun Microsystems, Inc.//DTD JSP Tag Æ
Library 1.1//EN” “http://java.sun.com/j2ee/dtds/web- Æ
jsptaglibrary_1_1.dtd”>

03: <taglib>

04: <tlibversion>1.0</tlibversion>

05: <jspversion>1.1</jspversion>

06: <shortname>salary</shortname>

07: <uri>javapitfalls </uri>

08: <info>Shows how to encapsulate the salary business logic in a Æ
taglib.</info>

09: <tag>

10: <name>salarytag</name>

11: <tagclass>mypackage.SalaryTag</tagclass>

12: <bodycontent>empty</bodycontent>

13: <attribute>

14: <name>salary</name>

15: <required>true</required>

16: <rtexprvalue>true</rtexprvalue>

17: </attribute>

18: </tag>

19: </taglib>

20:

Listing 24.7 Salary.tld

218 Item 24

However, neither of these shows the tag library in action. All of the complexity is
gone, so your developer has an easy task. Listing 24.8 is an example of a JSP using our
tag library.

01: <%@ page contentType=”text/html;charset=windows-1252”%>

02: <%@ page import=”java.util.*”%>

03: <%@ taglib uri=”javapitfalls” prefix=”jp” %>

04: <HTML>

05: <HEAD>

06: <TITLE>

07: Salary Servlet Jsp

08: </TITLE>

09: <META HTTP-EQUIV=”Content-Type” CONTENT=”text/html; charset=windows-Æ
1252”>

10: </HEAD>

11: <BODY>

12: <H1>

13: Salary Jsp

14: </H1>

15: <table>

16: <tr>

17: <td>Employee</td>

18: </tr>

19:

20: <!-- Down to this simple line -->

21:

22: <jp:salary salary=”<%= request.getParameter(“salary”) %>” />

23:

24: </table>

25:

26: </BODY>

27: </HTML>

28:

Listing 24.8 SalaryTag.jsp

All of this modularization has not addressed the fundamental problem we found in
our workflow system. While we successfully separated logic from presentation, we
had not separated out the flow control of the application. This is critical in most Web
systems, but particularly in our workflow system.

The solution to this problem is the Model 2 Architecture.

JSP Design Errors 219

Figure 24.2 Model 2 Architecture.

JSP Development in the Model 2 Architecture

Figure 24.2 shows the Model 2 Architecture. This architecture is a JSP/servlet imple-
mentation of the popular and powerful Model-View-Controller pattern. Included is
the controller, which is a servlet that responds to a request and dispatches it to the
appropriate business logic component. The JavaBean wraps the business logic that
needs to be executed to handle the request. From there, the bean hands off to a
JavaServer Page, which controls the presentation returned in the response.

It seems like a great idea, but is it realistic to expect Web applications to build this
entire infrastructure, especially considering the history of ad hoc Web development?
The good thing is that you don’t have to build this infrastructure. The Apache Software
Foundation’s Jakarta project has a rather sophisticated implementation of the Model 2
Architecture, called the Struts framework (http://jakarta.apache.org/struts).

Item 25: When Servlet HttpSessions Collide

Picture this scenario. A user is on the Internet, shopping at Stockman’s Online Hard-
ware Store, where there is an electronic commerce user interface with “shopping cart”
functionality. As he browses the Web site, he decides to put a belt sander, a drill press,
and an air compressor in his shopping cart. Instead of checking out what he has put in
his shopping cart, he decides that he’d better buy something for his wife to ease the
pain when she discovers his hardware purchases. He quickly goes to “Lace Lingerie
Online,” where they also have an e-commerce interface. There, he builds a shopping
cart consisting of “Sensual Bubble Bath,” the “Romantic Lunch Box Package for Two,”
and the “Lace Gift Certificate.” He checks out of the lingerie store, enters his credit
card information, and leaves the Web site. Now that his conscience is cleared, the

Response

Java Server Page

Business
Enterprise

Pass data

Business Logic
(JavaBean)

Request

Controller Servlet

Invoke

Interact with
other systems as

necessary to handle
business logic

220 Item 25

user goes back to the hardware store Web site. He clicks on the “Check out” button,
but, to his surprise, his shopping cart at the Stockman Hardware store is filled with
“Sensual Bubble Bath,” the “Romantic Lunch Box Package for Two,” and the “Lace Gift
Certificate.” The user is confused. Frankly, the folks processing orders at the hardware
store are baffled and are calling the programmers who designed the Web site. What
could have happened?

Believe it or not, that could be a feasible user scenario when this pitfall relating to the
HttpSession class is introduced into Java servlets. HttpSession is a wonderful
class for persisting state on the server. It is an interface that is implemented by services
to provide an association (session) between a browser and the Web server’s servlet
engine over a period of time. Using the HttpSession class, you can store a great deal
of information without the use of browser client-side cookies and hidden fields. In fact,
you can store very complex data structures of information with the API of the
HttpSession, which is shown in Table 25.1.

Table 25.1 HttpSession Interface

METHOD DESCRIPTION

long getCreationTime() Returns the time at which this session
was created.

String getId() Returns the unique identifier assigned
to this session.

long getLastAccessedTime() Returns the last time the current client
requested the session.

int getMaxInactiveInterval() Returns the maximum interval between
requests that the session will be kept by
the server.

Object getValue(String) Returns a data object stored in the
session represented by the parameter
String. See putValue().

String[] getValueNames() Returns an array of all names of data
objects stored in this session.

void invalidate() Causes this session to be invalidated
and removed.

boolean isNew() Returns true if the session has been
created by the server but the client
hasn’t acknowledged joining the
session; otherwise, it returns false.

void putValue(String, Object) Assigns (binds) a data object to
correspond with a String name. Used
for storing session data.

(continues)

When Servlet HttpSessions Collide 221

Table 25.1 HttpSession Interface (Continued)

METHOD DESCRIPTION

void removeValue(String) Removes the data object bound by the
String-represented name created with
the putValue() method.

void setMaxInactiveInterval() Sets the maximum interval between
requests that the session will be kept by
the server.

The API of the interface is quite simple. The most-used methods are getValue()
and putValue(), where it is possible to save any Java object to the session. This is
very helpful if you are developing an application that needs to save state information
on the server between requests. In discussing this pitfall, we will discuss the use of this
class in depth.

How does a servlet get access to the HttpSession object? The servlet’s request
object (HttpRequest) that is passed into the servlet’s doGet() and doPost() meth-
ods contains a method called getSession() that returns a class that implements
HttpSession. Listing 25.1 shows a good example of the doGet()method in a servlet
using the HttpSession class. This block of code originates from our hardware store
scenario discussed at the beginning of this pitfall. Notice that in line 6 of the listing, the
servlet calls getSession() with the boolean parameter true. This creates an
HttpSession if it doesn’t already exist. On line 13, the user checks to see if the session
is a new one (or if the client has never interacted with the session) by calling the
isNew() method on HttpSession.

01: public void doGet(HttpServletRequest request,

02: HttpServletResponse response)

03: throws ServletException, IOException

04: {

05: PrintWriter out;

06: HttpSession session = request.getSession(true);

07: Vector shoppingcart = null;

08:

09: response.setContentType(“text/html”);

10: out = response.getWriter();

11: out.println(“<HTML><TITLE>Welcome!</TITLE>”);

12: out.println(“<BODY BGCOLOR=’WHITE’>”);

13: if (session.isNew())

14: {

15: out.println(“<H1>Welcome to Stockman Hardware!</H1>”);

16: out.println(“Since you’re new.. we’ll show you how “);

17: out.println(“ to use the site!”);

Listing 25.1 Block of servlet code using HttpSession

222 Item 25

18: //...

19: }

20: else

21: {

22: String name = (String)session.getValue(“name”);

23: shoppingcart = (Vector)session.getValue(“shoppingcart”);

24: if (name != null && shoppingcart != null)

25: {

26: out.println(“<H1>Welcome back, “ + name + “!</H1>”);

27: out.println(“You have “ + shoppingcart.size() + “ left “

28: + “ in your shopping cart!”);

29: //...

30: }

31: }

32: //more code would follow here..

32: }

Listing 25.1 (continued)

On line 23, we see that the getValue() method is called on HttpSession to
retrieve a String representing the name of the user and also a vector representing the
user’s shopping cart. This means that at one time in the session, there was a scenario
that added those items to the session with session.putValue(), similar to the fol-
lowing block of code:

String myname=”Scott Henry”;

Vector cart = new Vector();

cart.add(“Belt sander ID#21982”);

cart.add(“Drill press ID#02093”);

cart.add(“Air compressor ID#98983”);

session.putValue(“name”, myname);

session.putValue(“shoppingcart”, cart);

In fact, the preceding block of code was made to follow the scenario we discussed at
the beginning of this pitfall. Everything seems to follow the way the documentation
describes the HttpSession API in Table 25.1. What could go wrong?

As we discussed earlier, an HttpSession exists between a browser and a servlet
engine that persists for a period of time. If the values name and shoppingcart are
placed to represent data objects in the HttpSession, then this session will exist for
every servlet-based application on the server. What could this mean? If there are multiple
servlet applications running on your server, they may use values such as name and
shoppingcart to store persistent data objects with HttpSession. If, during the same
session, the user of that session visits another servlet application on that server that uses

When Servlet HttpSessions Collide 223

the same values in HttpSession, bad things will happen! In the fictional scenario
where we discussed the “switched shopping carts,” where lingerie items appeared in
the hardware store shopping cart, it just so happened that both e-commerce sites
resided on the same server and the visits happened during the same HTTP session.

“Isn’t this probability slim?” you may ask. We don’t think so. In the present Internet
environment, it is not uncommon for e-commerce sites to exist on the same server
without the end user knowing about it. In fact, it is not uncommon for an Internet host-
ing company to host more than one e-commerce site on the same server without the
developers of the applications knowing about it!

What does this mean for you as a programmer? When using the HttpSession
class, try to make certain that you will not collide with another application. Avoid using
common names storing types in HttpSession with the putValue() method. Instead of
name and shoppingcart, it may be useful to put your organization, followed by the
name of the application, followed by the description of the item you are storing. For
example, if you are ACME.COM, and you are developing the e-commerce application
for the Stockman Hardware example, perhaps com.acme.StockmanHardware.
shoppingcart would be a better choice for storing your data.

Keeping the idea of collisions in mind, look at Listing 25.2, which is used for a shop-
ping cart “checkout” to finalize a transaction on the “Lace Lingerie” e-commerce site.
Can you find anything that could cause unexpected behavior to happen? As you can
see in the code listing in line 16, the programmer is using a better naming convention
for the shopping cart. However, in a new scenario, when the user finishes his purchase
at Lace Lingerie and returns to Stockman Hardware, his shopping cart is empty. How
could this happen?

01: public void checkout(PrintWriter out, HttpSession session)

02: {

03: /*

04: * Call the chargeToCreditCard() method, passing the session

05: * which has the user’s credit card information, as well as the

06: * shopping cart full of what he bought.

07: */

08: chargeToCreditCard(session);

09:

10: out.println(“<H2>”);

11: out.println(“Thank you for shopping at Lace Lingerie Online!”)

12: out.println(“</H2>”);

13: out.println(“The following items have been charged to “);

14: out.println(“your credit card:
”);

15: Vector cart =

16: session.getValue(“com.acme.lacelingerie.shoppingcart”);

17:

18: Iterator it = cart.iterator();

19:

20: while (it.hasNext())

21: {

22: out.println(“” + it.next());

Listing 25.2 A checkout()portion of a Web site

224 Item 25

23: }

24:

25: out.println(“<H2>Have a nice day!</H2>”);

26:

27: session.invalidate();

28:}

Listing 25.2 (continued)

The problem lies in line 27 in Listing 25.2. As we showed in Table 25.1, calling the
invalidate()method of the HttpSession interface eliminates the session and all
of the objects stored in the session. Unfortunately, this will affect the user’s session for
every application on the server. In our e-commerce shopping scenario, if the user returns
to another online store on the server that keeps any information in an HttpSession,
that data will be lost.

What is the solution? Avoid the invalidate()method in HttpSession. If you
are worried about leaving sensitive data in the HttpSession object, a better solution
is shown in Listing 25.3.

01: public void checkout(PrintWriter out, HttpSession session)

02: {

03: /*

04: * Call the chargeToCreditCard() method, passing the session

05: * which has the user’s credit card information, as well as the

06: * shopping cart full of what he bought.

07: */

08: chargeToCreditCard(session);

09:

10: out.println(“<H2>”);

11: out.println(“Thank you for shopping at Lace Lingerie Online!”)

12: out.println(“</H2>”);

13: out.println(“The following items have been charged to “);

14: out.println(“your credit card:
”);

15:

16: Vector cart =

17: session.getValue(“com.acme.lacelingerie.shoppingcart”);

18:

19: Iterator it = cart.iterator();

20:

21: while (it.hasNext())

22: {

23: out.println(“” + it.next());

24: }

25:

Listing 25.3 Better alternative for checkout() (continued)

When Servlet HttpSessions Collide 225

26: out.println(“<H2>Have a nice day!</H2>”);

27:

28: /*

29: * Delete all Information related to this transaction,

30: * because It Is confidential and/or sensitive!

31: */

32: session.removeValue(“com.acme.lacelingerie.customername”);

33: session.removeValue(“com.acme.lacelingerie.shoppingcart”);

34: session.removeValue(“com.acme.lacelingerie.creditcard”);

35: session.removeValue(“com.acme.lacelingerie.bodydimensions”);

36:

37: }

Listing 25.3 (continued)

In lines 32 to 35 of Listing 25.3, the programmer deleted all of the objects specific
to his application from the HttpSession. This can be a better alternative to the
invalidate()method.

What other collision pitfalls could you encounter with this class? If you look back at
the code in Listing 25.1, note the else clause in lines 20 to 31. The code assumed that
since the isNew()method returned false on line 13, the user had previously visited
that site. Now we know better. When isNew()returns false, it means that there
exists a session between the browser and the server that has persisted over a matter of
time. It does not mean that the user has established a session with the current servlet.
The better way to write the block of code in Listing 25.1 is shown in Listing 25.4.

Listing 25.4 sends the user to the showNewbieTheSite()method if the isNew()
method of HttpSession returns true on line 13. Also, it tests to see if the customer’s
name is in the HttpSession on lines 19 to 21. If the getValue()method returns
null, then we know that although the session is not new, the user has not set up an
account with the current e-commerce application.

01: public void doGet(HttpServletRequest request,

02: HttpServletResponse response)

03: throws ServletException, IOException

04: {

05: PrintWriter out;

06: HttpSession session = request.getSession(true);

07: Vector shoppingcart = null;

08:

09: response.setContentType(“text/html”);

10: out = response.getWriter();

11: out.println(“<HTML><TITLE>Welcome!</TITLE>”);

12: out.println(“<BODY BGCOLOR=’WHITE’>”);

13: if (session.isNew())

Listing 25.4 A smarter way for assuming past usage

226 Item 25

14: {

15: showNewbieTheSite(out);

16: }

17: else

18: {

19: String name =(String)session.getValue(

20: “com.acme.stockmanhardware.customername”

21:);

22: if (name == null)

23: {

24: /* Here, the person might have an existing session,

25: * but not with us!

26: */

27: showNewbieTheSite(out);

28: return;

29: }

30: else

31: {

32: /* NOW we can assume that they’ve visited the site! */

33: out.println(“<H1>Welcome back, “ + name + “!</H1>”);

34: shoppingcart = (Vector)session.getValue(“shoppingcart”);

35: if (shoppingcart != null)

36: {

37: out.println(“You have “ + shoppingcart.size() +

38: “ left in your shopping cart!”);

39: //...

40: }

41: }

42: //more code would follow here..

43: }

Listing 25.4 (continued)

Finally, lines 32 to 40 can assume that the user has used the e-commerce application
before!

In conclusion, be careful about your use of HttpSession in servlets. Be aware of
the collision pitfalls that could await you in regard to naming data objects with put-
Value(), terminating the session with invalidate(), and testing for first-time use
of the session with the isNew() method.

Item 26: When Applets Go Bad

In the pitfall “J2EE Architecture Considerations” (Item 37) in Part Three, we discuss a
software project where we had proposed a solution that can be viewed like Figure 26.1.
In that pitfall, we discuss the several scenarios for the client-side behaviors.

When Applets Go Bad 227

Figure 26.1 The proposed system.

Analyzing the requirements, we found there were really two types of users envi-
sioned for this system. There were analyst personnel who needed a rich toolset by
which they could pour through this voluminous set of data. Also, management per-
sonnel needed an executive-level summary of system performance. Therefore, there
were truly two different clients that needed to be Web-enabled.

The analyst client needed functionality that included mapping, time lines, and
spreadsheets. This was going to be the primary tool used for these personnel to per-
form their job and was expected to perform like the rest of the applications on their
desktop machine. They wanted to be able to print reports, save their work, and most
other things that users have come to expect from their PCs.

The manager client was meant to show some commonly generated displays and
reports. Essentially, this would be similar to portfolio summary and headlines views.
They didn’t want anything more involved than pointing their Web browser at a Web
site and knowing the latest information.

New System

Thin Clients
(Pages)

Thick Clients
(Apps)

Database

Database
Servlet

Data Extraction
Process

Control System Activity Feeds

228 Item 26

It was critical that the application needed to be centrally managed. Since the ana-
lysts were a widely distributed group, there could not be any expectation of doing
desktop support or ensuring that the proper version or update was installed.

So we built an applet for the analyst’s toolkit. Immediately, we noticed a number of
problems with the applet:

It was approximately 3 MB in size. No matter what we looked at, the time line,
graphing, and mapping components were simply too large to allow us to reduce
the size any more. We tried a phased loading approach, but that didn’t really
help much; since this was a visualization suite, we couldn’t really background-
load anything.

The JVM versions were problematic. Moving to the Java plug-in was better, but
we still had small subtleties that bothered us. Applets run within the context of
the browser; even with the plug-in, they are still at the mercy of the browser’s
handling.

The security model was buggy and convoluted. Trying to assign permissions
inside something that runs within the context of another application is fraught
with issues. We had problems with saving and printing from the applet. The
biggest showstopper was the fact that our Web server ran on a separate host
than the database server. So if we couldn’t get the permissions problem to work
out, we would not be able to attach to the DB server at all. We intended to use a
database access servlet, but we didn’t want our hand forced this way over some-
thing that should work.

The application ran into responsiveness problems. It had buggy behavior about
being unable to find a class that was not repeatable. However, it seemed these
problems went away when it was run from an application.

Most of the problems regarding the security model and browser versioning were
nuisances that could be worked around. However, we could not get past the long
download time of the application. Since the users were widely dispersed and had vary-
ing degrees of network communications, this could be an unbearable wait.

The solution to this problem is Java Web Start. Java Web Start is Sun’s implementa-
tion of the Java Network Launching Protocol (JNLP) and is packaged with JDK 1.4.
Java Web Start essentially consists of a specialized configuration file (with the “jnlp”
extension) associated with a special MIME type, combined with the Java class loader to
allow deployment of Java class files over HTTP. Since the class loading and Java Run-
time Environment are configured in accordance with the JNLP, the class files can be
cached and downloaded as needed. This provides a solution for centrally managing
Java applications and allowing clients to cache Java classes locally. When a patch or
change is released, it is propagated automatically out to the clients without your hav-
ing to download all of the classes again.

Furthermore, Java Web Start provides the ability to update the Java Runtime Envi-
ronment versions as necessary to suit the applications being deployed. Also, the Java
Security model is consistent and built into Java Web Start. The “sandbox” is in effect by
default, and the user must grant permissions as appropriate. An interesting thing to
note is that you get the security sandbox in a full application context (i.e., a main
method) without having to use the indirection execution of an applet.

When Applets Go Bad 229

Examining the JNLP file format provides a great deal of insight into the capabilities
of Java Web Start. Listing 26.1 is an example file.

01: <?xml version=”1.0” encoding=”utf-8”?>

02: <!-- JNLP File for Analyst’s Toolkit Demo Application -->

03: <jnlp

04: spec=”1.0+”

05: codebase=”http://www.javapitfalls.org/apps”

06: href=”toolkit.jnlp”>

07: <information>

08: <title>Analyst’s Toolkit</title>

09: <vendor>McDonald-Bradley, Inc.</vendor>

10: <homepage href=”docs/help.html”/>

11: <description>Analyst’s Toolkit Application</description>

12: <description kind=”tooltip”>The Analyst’s Toolkit</description>

13: <icon href=”http://www.javapitfalls.org/images/toolkit.jpg”/>

14: <offline-allowed/>

15: </information>

16: <security>

17: <all-permissions/>

18: </security>

19: <resources>

20: <j2se version=”1.4”/>

21: <j2se version=”1.3”/>

22: <jar href=”lib/toolkit.jar”/>

23: </resources>

24: <application-desc main-class=”Toolkit”/>

25: </jnlp>

26:

Listing 26.1 toolkit.jnlp

This file shows the configuration of the Java Web Start software. There are four dif-
ferent subsections in the JNLP file: information, security, resources, and application.

The information element provides the display information for the user to view the
application before having to run it. It provides descriptions, icons, vendor, and title. How-
ever, there is one more interesting tag in the information element: <offline-
allowed/>. This means that the Web Start application can be run without being
connected to the network! This is another advantage over applets.

The security element defines the permissions needed to run this application. If the
<all permissions> tag is not used, then the application runs within the sandbox
by default (as it would if the user chose not to grant permissions). Note that if the
<all-permissions> tag is used, then all JAR files must be signed.

230 Item 26

The resources element specifies how the system should download resources like
JAR files and native libraries. Also, it specifies the version of the JRE that is required to
run the application, as well as the preference order by which compatible ones should
be used. For instance, in the example above, both the JRE 1.4 and 1.3 are allowed as
compatible JREs, and JRE 1.2 is not. It prefers JRE 1.4 but will settle for JRE 1.3. The
native libraries can be specified in terms of the operating systems with which they
are compatible. Also, all resources can be specified as to whether they should be
downloaded in an eager or lazy mode—that is, whether they should be downloaded
immediately or as allowable.

Figure 26.2 is an example of what happens when a client requests a Java Web Start
application.

The question becomes how to check on whether or not JNLP is installed. The way to
handle this is to use a client-side script to ask the browser whether it can handle the
application/x-java-jnlp-file MIME type. Listing 26.2 is the example pro-
vided by Sun in the Java Web Start developer’s kit (http://java.sun.com/products
/javawebstart/docs/developersguide.html):

Figure 26.2 Java Web Start application invocation.

Browse to page
with JNLP File

Launch MIME
plug-in for JNLP

(Web Start)

Promp user
for

permissions

Download and
Install

Java Web Start

Download
needed
classes

Execute main
method

Are all
JARS current?

Is JNLP
Supported?

Are security
permissions

needed?

YesYes

YesYes

YesYes

NoNo

NoNo

NoNo

When Applets Go Bad 231

01: <SCRIPT LANGUAGE=”Javascript”>

02: var javawsInstalled = 0;

03: isIE = “false”;

04:

05: if (navigator.mimeTypes && navigator.mimeTypes.length) {

06: x = navigator.mimeTypes[‘application/x-java-jnlp-file’];

07: if (x) javawsInstalled = 1;

08: } else {

09: isIE = “true”;

10: }

11:

12: function insertLink(url, name) {

13: if (javawsInstalled) {

14: document.write(“” + name + “”);

15: } else {

16: document.write(“Need to install Java Web Start”);

17: }

18: }

19: </SCRIPT>

20:

21: <SCRIPT LANGUAGE=”VBScript”>

22: on error resume next

23: If isIE = “true” Then

24: If Not(IsObject(CreateObject(“JavaWebStart.IsInstalled”))) Æ
Then

25: javawsInstalled = 0

26: Else

27: javawsInstalled = 1

28: End If

29: End If

30: </SCRIPT>

31:

Listing 26.2 Script to check for Java Web Start

Figure 26.3 is an example of how the deployment of a Java Web Start application is
handled.

So, Java Web Start is really cool and makes great sense as a mechanism for centrally
managing cross-platform applications, but there is also a full set of APIs that allow the
application developer to control the Java Web Start functionality in his or her application.

232 Item 26

Figure 26.3 Java Web Start application deployment.

Here are some examples of the services in the javax.jnlp package:

BasicService. This service provides functionality like AppletContext, which
allows the user to do things like kicking off the environments default browser to
display a URL.

ClipboardService. This service provides access to the system’s clipboard. If the
user is operating inside the sandbox, he will be warned about the security risk.

DownloadService. This service manages the downloading and caching of Web
Start JAR files.

FileOpenService. Browsers have the functionality in Web pages to allow the
user to browse for a file to open. You most often see this in file upload forms.
This service does a similar thing even from inside the sandbox.

FileSaveService. This replicates the “Save as” functionality of Web browsers,
even within the sandbox.

PersistenceService. This can be thought of like a cookie, which allows certain
information to be stored even within the browser security model.

PrintService. This allows the user to print files from the Web Start application,
after accepting the Print Service prompt.

Looking at the JNLP API, we note all of these services are defined as interfaces.
Listing 26.3, from Sun’s documentation (http://java.sun.com/products/javawebstart
/1.2/docs/developersguide.html), shows how you can get an object that implements
these interfaces and also demonstrates using it for controlling the DownloadService.

Package
application in

JAR file(s)

Sign the JAR file
(as necessary)

Write the
JNLP file

Configure Web
Server to handle
JNLP MIME type

Deploy JNLP file
and JAR file(s)

When Applets Go Bad 233

01: import javax.jnlp.*;

02: ...

03:

04: DownloadService ds;

05:

06: try {

07: ds = Æ
(DownloadService)ServiceManager.lookup(“javax.jnlp.DownloadService”);

08: } catch (UnavailableServiceException e) {

09: ds = null;

10: }

11:

12: if (ds != null) {

13:

14: try {

15: // determine if a particular resource is cached

16: URL url =

17: new Æ
URL(“http://java.sun.com/products/javawebstart/lib/draw.jar”);

18: boolean cached = ds.isResourceCached(url, “1.0”);

19: // remove the resource from the cache

20: if (cached) {

21: ds.removeResource(url, “1.0”);

22: }

23: // reload the resource into the cache

24: DownloadServiceListener dsl = Æ
ds.getDefaultProgressWindow();

25: ds.loadResource(url, “1.0”, dsl);

26: } catch (Exception e) {

27: e.printStackTrace();

28: }

29: }

30:

Listing 26.3 Example using DownloadService

Looking at these services, we see that it begins to look like Java Web Start is a pseudo
Web browser. Consider the evolution of applets. Many saw them as the answer to cen-
trally managed applications deployed over HTTP in a Web browser. However, this
model of running within the context of a browser became very inconsistent and buggy.
Therefore, the answer was to reengineer the entire solution, looking at the disadvan-
tages and determining how to effectively handle this problem. Java Web Start and the
Java Native Launching Protocol is the answer to this problem.

234 Item 26

Item 27: Transactional LDAP—Don’t
Make that Commitment

The advent of distributed Web applications has created new channels for people to
perform business transactions and to communicate with one another. These online
dealings spawned the need for authentication mechanisms to ensure end users were
properly recognized so that they would be privy to proprietary content. Eventually,
this led to the creation of profile files that captured user roles inside and outside of an
organization so that Web site content could be targeted properly during operations.

The practice of role assignments and efforts to define user communities evolved into
a process called personalization. Personalization was predicated on an understanding of a
user’s preferences and role information. Back-end matching algorithms were developed
so that pertinent data could be rendered to users based on their preferences and roles.

Profile data often constituted generic data about users (name, address, phone number),
and role information often indicated his or her position inside and outside a corporation.
When users did not belong to an organization, they were afforded the status of guest.

These authentication and personalization activities raised many questions about
data exposure and integrity, along with proper delivery and storage mechanisms for
that information. Some, specifically, database vendors, suggested that role and prefer-
ence information should be stored in a database. Others suggested that this informa-
tion should be collected in an LDAP directory server. For enterprise system
deployments, both can be implemented, but the proper manner to store and retrieve
profile and personalization information would be a combination of both. An LDAP
directory should be used to house fairly static information—namely, items that don’t
change all that often—and user role information. Databases should be used for
dynamic data, which means data that changes often.

From an architectural perspective, Relational Database Management Systems
(RDBMSs) are flat tables with no mechanisms that reflect their organizational structure,
while LDAP directories render data in treelike structures that allow users to retrieve
organized data and view their spatial relationships. LDAP directories were designed for
high-speed read operations and high availability through replication. Migration of
dynamic data to an LDAP directory server would be a bad idea because that would be
forcing the protocol to perform operations that it was not designed to do.

Two differences between LDAP directories and database systems are how they retain
data and perform security activities. RDBMSs typically use table-oriented read/write
operations, while LDAP directories concentrate on attribute-oriented security. LDAP
directories are constructed to work with multivalue attributes, while traditional rela-
tional databases would have to perform SQL join operations to achieve the same func-
tionality. This join-ing of tables in database operations generally hampers performance.

Since LDAP directories were designed for low-throughput and high-speed opera-
tions as well as high availability through replication, they’ve been known to produce
incorrect answers from their repositories because of transactional consistencies during
write and replication activities. Aberrations like these can be tolerated for storage and
retrieval of simple queries, but not with mission-critical data, and that is why data
transactions in LDAP directories should be avoided.

Transactional LDAP—Don’t Make that Commitment 235

RDBMS support for ACID transactions (i.e., transactions that support atomicity,
consistency, isolation, and durability) make databases the preferred choice for han-
dling important data. Their implementation ensures predictability and reliability of
data transactions. The hierarchical nature of LDAP directories often models real-world
data better than flat files in relational databases. It just makes sense to store dynamic
data in RDBMSs because they are more flexible and reliable in handling transactions,
especially commit and rollback operations.

Personalization is generally considered a dynamic and personalized content deliv-
ery system that promotes self-service activities, which in turn strengthens user rela-
tionships. The objective of personalization is to deliver pertinent and targeted content
to users so that user retention can be maintained and strengthened. When users talk
about personalization, they often confuse it with customization. Customization should
be considered a subset of personalization, because personalization dictates what con-
tent the user has access to and customization allows users to whittle down and modify
the presentation of that data. On many applications, specifically, portals, users can cus-
tomize visualization preferences (what portlets do I want to view? where I want to
view them on the page?). More often than not, personalization is based on predeter-
mined role information or previous clickstream detections. In some instances, person-
alization is based on information explicitly provided by users who are confident in
their application’s security to provide personal information like salary information or
buying preferences. With personalized data, applications can create user communities
and matching agents can target content to users based on that information.

To demonstrate how an LDAP directory and an RDBMS can be used in tandem to
deliver personalized content, a sample application was developed that retrieves relatively
stable profile data in an LDAP directory and stores more dynamic data in a relational data
store. The authentication and personalization process is illustrated in Figure 27.1.

Figure 27.1 LDAP authentication.

Browser

HTTP Server App.

Authentication

LDAP/JNDI

JDBC Profile
Data

Client Layer Web Layer EIS Layer

Upon authentication, all
user profile information in

the LDAP database is
passed back and persisted

in the database store

All transactional
information obtained
from the user during

operations is
persisted also

Directory
Server
(LDAP)

Security Realm

236 Item 27

The ControllerServlet class in Listing 27.1 implements the Front Controller
pattern to control all requests through a single servlet application and dispatches
requests based upon user role information derived from an LDAP directory server. If a
user is recognized as a valid entry in the LDAP directory, that user will be forwarded
to the Web page that reflects his or her role.

001: package org.javapitfalls.item27;

002:

003: import java.io.*;

004: import java.util.*;

005: import javax.servlet.*;

006: import javax.servlet.http.*;

007: import org.javapitfalls.item27.*;

008:

009: public class ControllerServlet extends HttpServlet {

010:

011: String direction;

012: String pageNumber;

013: String username;

014: String password;

015: boolean loggedIn = false;

016: ldapAuthenticate la;

017: authenticateHelper helper;

018:

019: public void service(HttpServletRequest req,

020: HttpServletResponse res)

021: throws ServletException, java.io.IOException {

022:

023: direction = req.getParameter(“direction”);

024: pageNumber = req.getParameter(“page”);

025: username = req.getParameter(“username”);

026: password = req.getParameter(“password”);

027: if (loggedIn) {

028:

029: if ((username != la.getUsername()) ||

030: (password != la.getPassword())) {

031: loggedIn = false;

032: }

033: }

034: if (!loggedIn) {

035: if ((username != null) && (password != null) &&

036: (!username.equals(“”)) && (!password.equals(“”))) {

037:

Listing 27.1 ControllerServlet.java (continued)

Transactional LDAP—Don’t Make that Commitment 237

On line 38, an instance of the authentication application named ldapAuthenticate
is passed the username and password entered by the user from the login.jsp file
dispatched on line 83. When valid entries have been made by the user, the profile
data collected from the LDAP authentication and query will be passed along to the data-
base through the helper class authenticateHelper.java. This process is shown in
Figure 27.1.

038: la = new ldapAuthenticate(username, password);

039:

040: if ((la.validUser()) && (la.getSearchCount() > 0)) {

041:

042: loggedIn = true;

043: helper.setDB(la.getEmail());

044:

045: } else {

046:

047: System.out.println(“ERROR: Invalid user.”);

048: getServletConfig().getServletContext().

049: getNamedDispatcher(“InvalidUser”).forward(req, res);

050: }

051: }

052:

053: }

054:

055: if (loggedIn) {

056:

057: if (pageNumber == null) {

058:

059: pageNumber = “Page1”;

060:

061: } else {

062:

Listing 27.1 (continued)

The isUserInRolemethod checks for authenticated users in the application so that
proper navigation can take place. This role information is passed from the LDAP direc-
tory and the JNDI realm that was implemented to expose those roles. If a user is deter-
mined to possess an admin role, that user will be forwarded to the Page4.jsp.

063: if (req.isUserInRole(“admin”)) {

064:

065: pageNumber = “Page4”;

066:

067: } else if (req.isUserInRole(“manager”)) {

068:

069: pageNumber = “Page3”;

Listing 27.1 (continued)

238 Item 27

070:

071: } else if (req.isUserInRole(“tester”)) {

072:

073: pageNumber = “Page2”;

074:

075: } else {

076:

077: pageNumber = “Page1”;

078:

079: }

080:

081: }

082:

083: getServletConfig().getServletContext().

084: getNamedDispatcher(pageNumber).forward(req, res);

085:

086: } else {

087:

088: System.out.println(“Login error...”);

089: getServletConfig().getServletContext().

090: getNamedDispatcher(“Login”).forward(req, res);

091

092: }

093:

094: }

095:

Listing 27.1 (continued)

The Front Controller pattern was employed in this application indicated by the
Servlet controller, the dispatcher process shown on Lines 48, 83, and 89. Also part of
that pattern implementation is a helper routine shown in the init() method on lines
97 and 98. This one-time call determines the database properties and performs connec-
tion and query update operations on profile data that needs to be pushed to the back-
end data store and predetermined and user-defined personalization preferences.

095: public void init() throws ServletException {

096:

097: helper = new authenticateHelper();

098: helper.getDBProperties();

099:

100: }

101:

102: }

103:

Listing 27.2 authenticateHelper.java

Transactional LDAP—Don’t Make that Commitment 239

The authenticateHelper class shown in Listing 27.3 loads the database.proper-
ties file. It then extracts the key properties and stores them in instance variables:

01: package org.javapitfalls.item27;

02:

03: import java.io.*;

04: import java.net.*;

05: import java.util.*;

06: import javax.servlet.*;

07: import javax.servlet.http.*;

08:

09: public class authenticateHelper extends HttpServlet {

10:

11: String driver;

12: String dbname;

13: String username;

14: String password;

15:

16: authenticateHelper() {}

17:

18: public void getDBProperties() {

19:

20: URL url = null;

21: Properties props = new Properties();

22:

23: try {

24: url = this.getClass().getClassLoader().

25: getResource(“database.properties”);

26: props.load(new FileInputStream(url.getFile()));

27: // Get properties

28: driver = props.getProperty(“driver”);

29: dbname = props.getProperty(“dbname”);

30: username = props.getProperty(“username”);

31: password = props.getProperty(“password”);

32: }

33: catch(Exception e) {

34: System.out.println(“ERROR:” + e.toString());

35: }

36:

37: }

38:

39: public void setDB(String s) {

40:

41: System.out.println(“INSIDE setDB()...email= “ + s);

42: // UPDATE entry in database with email address.

43: }

44: }

Listing 27.3 authenticateHelper

240 Item 27

The ldapAuthenticate routine in Listing 27.4 receives the username and password
from the login.jsp and searches the LDAP directory to determine if the user is a valid
user that should be authenticated.

001: package org.javapitfalls.item27;

002:

003: import java.io.*;

004: import java.net.*;

005: import java.util.*;

006: import java.text.*;

007: import java.util.Date;

008: import javax.naming.*;

009: import javax.naming.directory.*;

010:

011: public class ldapAuthenticate {

012:

013: String username;

014: String password;

015: String firstname;

016: String lastname;

017: String email;

018: int searchCount;

019:

020: public ldapAuthenticate(String u, String p)

021: {

022: username = u;

023: password = p;

024: setUsername(u);

025: setPassword(p);

026: }

027:

028: public boolean validUser() {

029:

030: try {

031: search();

032: }

033: catch(Exception e) {

034: System.out.println(“ERROR: “ + e.toString());

035: return false;

036: }

037: return true;

038: }

039:

040: public boolean search() {

041:

Listing 27.4 ldapAuthenticate.java (continued)

Transactional LDAP—Don’t Make that Commitment 241

The DirContext class allows our application to search the directory for the
username specified in the login script. This operation is followed by the Attribute
operation on the DirContext object, which is used for the username lookup.

042: try {

043: DirContext ctx = getDirContext();

044: Attributes matchAttrs = new BasicAttributes(true);

045: matchAttrs.put(new BasicAttribute(“uid”, username));

046:

047: NamingEnumeration result = ctx.search(“dc=avey”,

048: matchAttrs);

049: int count = 0;

050: while (result.hasMore()) {

051: SearchResult sr = (SearchResult)result.next();

052: System.out.println(“RESULT:” + sr.getName());

053: printAttributes(sr.getAttributes());

054: count++;

055: }

056: System.out.println(“Search returned “+ count+ “ results”);

057: setSearchCount(count);

058: ctx.close();

059: }

060: catch(NamingException ne) {

061: System.out.println(“ERROR: “ + ne.toString());

062: return false;

063: }

064: catch(Exception e) {

065: System.out.println(“ERROR: “ + e.toString());

066: return false;

067: }

068: return true;

069: }

070:

071: public void printAttributes(Attributes attrs)throws Exception {

072:

073: if (attrs == null) {

074: System.out.println(“This result has no attributes”);

075: } else {

076:

077: try {

078:

079: for (NamingEnumeration enum = attrs.getAll();

080: enum.hasMore();) {

081: Attribute attrib = (Attribute)enum.next();

082:

083: for(NamingEnumeration e = attrib.getAll();e.hasMore();) {

084: String s = e.next().toString();

085: System.out.println(“attrib = “ + s + “\n”);

086:

Listing 27.4 (continued)

242 Item 27

087: if (attrib.getID().equals(“mail”)) {

088: setEmail(s);

089: } else if (attrib.getID().equals(“givenName”)) {

090: setFirstname(s);

091: } else if (attrib.getID().equals(“surName”)) {

092: setLastname(s);

093: }

094: }

095: }

096:

097: } catch (NamingException ne) {

098: System.out.println(“ERROR: “ + ne.toString());

099: }

100:

101: }

102:

103: }

104:

105: public DirContext getDirContext() throws Exception {

106:

Listing 27.4 (continued)

The InitialDirContext class is the starting context for performing directory
operations. The Hashtable items are the environment properties that allow the appli-
cation to construct a directory context to be searched.

107: Hashtable env = new Hashtable(11);

108: env.put(Context.INITIAL_CONTEXT_FACTORY,

109” “com.sun.jndi.ldap.LdapCtxFactory”);

110: env.put(Context.PROVIDER_URL, “ldap://localhost:389”);

111: env.put(Context.SECURITY_PRINCIPAL, username);

112: env.put(Context.SECURITY_CREDENTIALS, password);

113: DirContext ctx = new InitialDirContext(env);

114: return ctx;

115:

116: }

166: }

167:

Listing 27.4 (continued)

Customarily, the personalization process is incorporated after several iterations of a
program, because it is a difficult process to capture. Personalization preferences and
matching algorithms often vacillate, which hampers their implementation. That is why
role information, which is relatively stable, should be stored in a directory server and
personalization preferences should be part of a database that can handle transactions
in a more efficient manner.

Transactional LDAP—Don’t Make that Commitment 243

Consider the following. An LDAP directory is a lightweight database that acts as a
central repository for object management and is searched far more often than it should
be written to. Its real strength lies in its ability to replicate data across networks, which
comes at the expense of transactional protections. Because of this, an RDBMS should
be deployed to manage dynamic data, like personalization preferences, which often
change regularly.

When you are building distributed business systems, keep in mind that transac-
tional data should be handled with a database, and role information and static user
profile information should be managed by an LDAP directory. LDAP directories serve
as a complementary technology to database systems, because they can be used to orga-
nize and search for relatively static user information in an efficient manner, while
database systems can accommodate frequent fluctuations in data.

Item 28: Problems with Filters

Most Web developers want to craft applications that handle user requests, accommo-
date modifications, and render pertinent content in an efficient manner. Often this
means migration to a controller that processes requests and renders different views
based on user selections. More often than not, the Model-View-Controller (MVC)
pattern is used because it allows components to be separated from application inter-
dependencies, which enables modifications to be made in an easy fashion.

The three elements of the MVC pattern are as follows:

■■ A model that represents the application data and business logic that dictates the
availability and changes of the application data.

■■ A view that renders the model data and forwards user input to the controller.

■■ A controller that determines presentation views and dispatches user requests.

Applications that adhere to the MVC design pattern decouple application depen-
dencies, which means that component behavior can be separated and modifications to
one layer, say the model tier, can be made and will not affect the view and controller
tiers. This improves application flexibility and reusability because changes don’t rever-
berate through the entire system. The MVC paradigm also reduces code duplication
and makes applications easier to maintain. It also makes handling data easier, whether
you are adding new data sources or changing data presentation, because business logic
is kept separate from data.

The MVC solution seems simple enough, but the implementation of simple solu-
tions can often be a different matter. Application controller implementations can
assume many forms. Sometimes they involve having several applications pass
requests among each other with hard-coded navigation context paths. In many
JavaServer Page solutions, a left navigation page is incorporated into a home page that
includes header, footer, and content pages, and requests propagate between all of these
pages. Problems arise when modifications need to be made to those pages that share a
link, perhaps a header and a footer page, because corrections need to be made to both
pages. Additionally, the management of parameters between applications becomes
cumbersome, and changes don’t always propagate properly.

244 Item 28

Depending on your situation, the JSP solution described above could be right for
your deployment, but for enterprise deployments, the appropriate solution is a single
servlet or JavaServer controller page that serves as a common entry point for all appli-
cation requests. When a single servlet controller is implemented, it makes examining
and monitoring all process requests easy.

In addition to servlet controller implementations in MVC applications, filters are
needed to enhance request processing because of their ability to transform requests
and forward responses. Filters also allow applications to log, audit, and perform secu-
rity role administration operations prior to request forwarding, which previously had
to be performed by additional code and requests.

Filters are generally used to modify request headers and data. More importantly, fil-
ters allow requests to be processed in a chainlike fashion. Filter chain implementations
locate chain items sequentially through the doFilter method and pass along request
and response objects through the chain. When the last filter in the filter chain has been
processed, the target servlet is summoned.

Figure 28.1 visually demonstrates how a Web controller implementation should be
developed. All configuration data should be aggregated in the deployment descriptor
(web.xml), including servlet, filter, and JSP mappings. With this architecture, all
requests are “filtered” prior to being passed on to the servlet controller that passes con-
trol to the JSP visualization applications. The persistence layer on the outer perimeter
interacts with both the servlet and JSP applications.

The J2EE specification defines a deployment descriptor as an XML file that describes
components between the application assembler and the deployer. In Listing 28.1 all JSP
and servlet mappings are migrated to the web.xml file. All controller management
emanates from the web.xml file, which simplifies the application’s deployment and
facilitates modifications.

As part of the deployment described below, the Front Controller pattern is applied
to the controller implementation in the ControllerServlet.java program. With this pat-
tern, a controller component manages the user requests, and a dispatcher component
manages navigation and user views.

Figure 28.1 Web controller architecture.

Pe
rsi

ste
nce Layers (Database/XM

L)Jav
aServer Page (*.jsp)
Ser

vlet (*.java)

Fil
ters

(*.java)

web.xml

Problems with Filters 245

01: package org.javapitfalls.item28

02: import java.io.*;

03: import java.util.*;

04: import javax.servlet.*;

05: import javax.servlet.http.*;

06:

07: public class ControllerServlet extends HttpServlet {

08:

09: public void service(HttpServletRequest req,

10: HttpServletResponse res)

11: throws ServletException, java.io.IOException {

12:

13: String direction = req.getParameter(“direction”);

14: String pageNumber = req.getParameter(“page”);

15: if (pageNumber == null)

16: pageNumber = “Page1”;

17: else {

18: if (direction.equals(“next”)) {

Listing 28.1 ControllerServlet.java

Line 19 in Listing 28.1 illustrates how J2SDK 1.4 regular expressions can be used to
parse string variables. The code parses the first four characters of the page request vari-
able with \\w{4} and extracts the fifth character and, depending on the direction
parameter, increases or decreases that value and resets the page mapping request
parameter with the new value.

19: int iPage = Æ
Integer.parseInt(pageNumber.replaceAll(“^(\\w{4})(\\d{1})”, “$2”)) + 1;

20: if (pageNumber.equals(“Page4”))

21: pageNumber = “Page1”;

22: else

23: pageNumber = “Page” + String.valueOf(iPage);

24: }

25: else {

26: int iPage = Æ
Integer.parseInt(pageNumber.replaceAll(“^(\\w{4})(\\d{1})”, “$2”)) - 1;

27: if (pageNumber.equals(“Page1”))

28: pageNumber = “Page4”;

29: else

30: pageNumber = “Page” + String.valueOf(iPage);

31: }

32: }

33: // forward page request: Page1, Page2, Page3, Page4

34: // works too

35: // RequestDispatcher rd =

36: // req.getRequestDispatcher(“/test2/jsp/second.jsp”);

37: // rd.forward(req, res);

Listing 28.1 (continued)

246 Item 28

38: // works too

39: // String contextPath = req.getContextPath();

40: // res.sendRedirect(contextPath + “/test2/jsp/second.jsp”);

41: getServletConfig().getServletContext().

42: getNamedDispatcher(pageNumber).forward(req, res);

43: }

44:

45: }

46:

Listing 28.1 (continued)

On line 35 of Listing 28.1 the getRequestDispatcher method gets a Request-
Dispatcher instance from its request object so that it can dispatch the JSP component
to the given URI path “/test2/jsp/second.jsp”. In other words, this method
takes a user-specified path that is relative to the servlet’s root context and wraps it with
a RequestDispatcher object to forward a user request. The relative pathname can-
not extend outside the current servlet context, so if the path begins with a “/”, it is
interpreted as relative to the current context root. The forward method of the
RequestDispatcher interface emulates the JSP directive <jsp:forward>, which
will throw the IllegalStateException if the application’s response buffer has
data that has not been committed to the user requests. The forward operation delegates
all processing of the request to the target application. With filters, applications can now
perform preprocessing prior to the forward operation, which includes logging, secu-
rity, and request header modifications.

The migration of JSP, filter, and servlet configuration mappings to the deployment
descriptor allows the getNamedDispatchermethod on line 41 to map the appropriate
JSP page in the pageNumber variable so that the request can be forwarded properly. The
web.xml file in Listing 28.6 specifies all the JSP pages (Page1, Page2, Page3, Page4)
that are available for invocation.

An important result of moving the business logic into the servlet controller is that
scriptlet code is reduced in the JSP user interface components and maintenance is
facilitated.

01:

02: <form method=”post”>

03:

04: [content goes here.]

05:

06: <input type=”hidden” name=”page” value=”Page1”>

07: <input type=”submit” name=”direction” value=”prev”>

08: <input type=”submit” name=”direction” value=”next”>

09:

10:

11: </form>

Listing 28.2 This is a sample test page test1.jsp

Problems with Filters 247

The FileServlet application in Listing 28.3 is invoked after the filter applications are
processed. In our sample application the FileServlet application processes the file-
name parameter in the URL and displays the content data in HTML and XML format
based on that XSL stylesheet filename and the XML filename affiliated with that
request. Figure 28.2 shows the HTML presentation based on the filename
htmlStates.xsl being applied to the states.xml file. The filename (states.xml) that has
the user-specified XSL stylesheet applied to it is specified in line 31 of the web.xml file,
which is a lot easier to maintain and modify than the property file (controller.proper-
ties) shown on lines 19 to 22.

01: package org.javapitfalls.item28;

02:

03: import java.net.URL;

04: import java.io.*;

05: import java.util.*;

06: import javax.servlet.*;

07: import javax.servlet.http.*;

08:

09: public class FileServlet extends HttpServlet {

10:

11: private String filename = “”;

12:

13: public void doGet (HttpServletRequest req,

14: HttpServletResponse res)

15: throws ServletException, IOException {

16: PrintWriter out = res.getWriter();

17: try {

18: /*

19: Properties resource = new Properties();

20: URL url = this.getClass().getClassLoader().

21: getResource(“controller.properties”);

22: resource.load(new FileInputStream(url.getFile()));

23: */

24: // use filename from init() method

25: // File file = new File(getServletContext().

26: // getRealPath(resource.getProperty(“filename”)));

27: File file = new

28: File(getServletContext().getRealPath(filename));

29: BufferedReader reader =

30: new BufferedReader(new FileReader(file));

31: while(reader.ready()) out.println(reader.readLine());

32: } catch (Exception e){

33: out.println(“ERROR: “ + e.toString());

Listing 28.3 FileServlet.java

248 Item 28

34: }

35: out.close();

36: }

37:

38: public void init() throws ServletException {

39: filename = getInitParameter(“filename”);

40: }

41:

42: }

43:

Listing 28.3 (continued)

The Web display in Figure 28.2 is the result of the XSL stylesheet displayed in List-
ing 28.7 called htmlStates.xsl being applied to the xml.states file. A different view
would be rendered if the alternative sample stylesheet xmlState.xsl was specified.

The XSLTransformFilter application in Listing 28.4 performs a transformation on the
states.xml file with the user-specified XSL stylesheet in the filename parameter in the
URL request.

Figure 28.2 XSLT output.

Problems with Filters 249

01: package org.javapitfalls.item28;

02:

03: import java.io.*;

04: //import java.util.logging.*;

05: import javax.servlet.*;

06: import javax.servlet.http.*;

07: import javax.xml.transform.*;

08: import javax.xml.transform.stream.*;

09:

10: public class XSLTransformFilter implements Filter {

11:

12: private FilterConfig filterConfig = null;

13: // Reference below renders a compile-time error [reference to

14: // Filter is ambiguous] because javax.servlet.Filter and

15: // java.util.logging.Filter conflict

16: // private static java.util.logging.Logger logger =

17: // java.util.logging.Logger.getLogger(XSLTFilter.class.getName());

18:

19: public void doFilter(ServletRequest request,

20: ServletResponse response, FilterChain chain)

21: throws IOException, ServletException {

22:

23: // commented out because of Filter conflict

24: // logger.setLevel(Level.ALL);

25: // logger.info(“[XSLTFilter]”);

26:

27: String filename = request.getParameter(“filename”);

28: String contentType = “text/html”;

29: String styleSheet = “/data/” + filename;

30: if (filename.startsWith(“xml”))

31: contentType = “text/plain”;

32:

33: response.setContentType(contentType);

34: String stylePath = filterConfig.getServletContext().

35: getRealPath(styleSheet);

36: Source styleSource = new StreamSource(stylePath);

37: PrintWriter out = response.getWriter();

38: Wrapper wrapper = new Wrapper((HttpServletResponse)response);

39:

40: chain.doFilter(request, wrapper);

41:

42: StringReader sr = new StringReader(wrapper.toString());

43:

44: StreamSource xmlSource = new StreamSource(Æ
filterConfig.getServletContext().getRealPath(“/data/states.xml”));

45:

46: try {

47: TransformerFactory transformerFactory = Æ
TransformerFactory.newInstance();

Listing 28.4 XSL TransformFilter.java

250 Item 28

48: Transformer transformer =

49: transformerFactory.newTransformer(styleSource);

50: ByteArrayOutputStream baos = new ByteArrayOutputStream();

51: StreamResult result = new StreamResult(baos);

52: transformer.transform(xmlSource, result);

53: response.setContentLength(baos.toString().length());

54: out.write(baos.toString());

55:

56: } catch(Exception ex) {

57: out.println(ex.toString());

58: out.write(wrapper.toString());

59: }

60: }

61: public void init(FilterConfig filterConfig) {

62: this.filterConfig = filterConfig;

63: }

64: public void destroy(){

65: this.filterConfig = null;

66: }

67: }

68:

Listing 28.4 (continued)

The filter’s FilterConfig object on line 61 has access to the ServletContext of
the Web application, so the container can pass information to the application and state
information can be stored.

In Listing 28.4, lines 04 and 17 attempt to use the Logger class that is part of the
J2SDK 1.4 implementation but renders a compile-time error (reference to Filter is
ambiguous) because the javax.servlet.Filter class conflicts with the java
.util.logging.Filter class.

01: package org.javapitfalls.item28;

02:

03: import java.io.*;

04: import java.util.*;

05: import javax.servlet.*;

06: import javax.servlet.http.*;

07:

08: public final class ControllerFilter extends HttpServlet

09: implements Filter {

10:

11: private ServletContext ctx;

12:

Listing 28.5 ControllerFilter.java (continued)

Problems with Filters 251

13: public void doFilter(ServletRequest req,

14: ServletResponse res,

15: FilterChain chain)

16: throws IOException, ServletException {

17:

18: PrintWriter out = res.getWriter();

19: Wrapper wrapper = new Wrapper((HttpServletResponse)res);

20: chain.doFilter(req, wrapper);

21: String filename = req.getParameter(“filename”);

22: String wts = wrapper.toString();

23:

24: if (filename != null && filename.startsWith(“html”)) {

25: StringBuffer sb = new StringBuffer();

26: sb.append(“<html><body>”);

27: sb.append(wts);

28: sb.append(“</body></html>”);

29: res.setContentLength(sb.toString().length());

30: out.write(sb.toString());

31: } else {

32: out.write(wrapper.toString());

33: }

34: out.close();

35: }

36:

37: public void destroy() {}

38: public void init(FilterConfig config) throws ServletException {

39: ctx = config.getServletContext();

40: }

41: }

42:

Listing 28.5 (continued)

Because the filters’ applications are run sequentially prior to the invocation of the
requested servlet, the doFilter() method of XSLTFilter will be run prior to the
same method in the ControllerFilter application. The invocation sequence can be seen
in Listing 28.6 on lines 7 and 13.

01: <?xml version=”1.0” encoding=”ISO-8859-1”?>

02: <!DOCTYPE web-app

03: PUBLIC “-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN”

04: “http://java.sun.com/dtd/web-app_2_3.dtd”>

05: <web-app>

06: <filter>

07: <filter-name>XSLTranformFilter</filter-name>

Listing 28.6 Web.xml

252 Item 28

08: <filter-class>

09: org.javapitfalls.item28.XSLTransformFilter

10: </filter-class>

11: </filter>

12: <filter>

13: <filter-name>ControllerFilter</filter-name>

14: <filter-class>

15: org.javapitfalls.item28.ControllerFilter

16: </filter-class>

17: </filter>

18: <filter-mapping>

19: <filter-name>XSLTranformFilter</filter-name>

20: <servlet-name>FilteredFileServlet</servlet-name>

21: </filter-mapping>

22: <filter-mapping>

23: <filter-name>ControllerFilter</filter-name>

24: <url-pattern>/ControllerFilter</url-pattern>

25: </filter-mapping>

26: <servlet>

27: <servlet-name>FilteredFileServlet</servlet-name>

28: <servlet-class>

29: org.javapitfalls.item28.FileServlet

30: </servlet-class>

31: <init-param>

32: <param-name>filename</param-name>

33: <param-value>/data/states.xml</param-value>

34: </init-param>

35: </servlet>

36: <servlet>

37: <servlet-name>Page1</servlet-name>

38: <jsp-file>/test1/jsp/first.jsp</jsp-file>

39: </servlet>

40:

41: <!--- second.jsp, third.jsp, fourth.jsp excluded -- >

42:

56: <servlet-mapping>

57: <servlet-name>FilteredFileServlet</servlet-name>

58: <url-pattern>/FileServlet</url-pattern>

59: </servlet-mapping>

60:

61: </web-app>

62:

Listing 28.6 (continued)

With respect to the Filter environment, initialization parameters can be associated
with a filter using the init-params element in the deployment descriptor (web.xml).
The names and values of those parameters are available to the filter at runtime using
the getInitParameter and getInitParameterNames methods.

Problems with Filters 253

01: <?xml version=”1.0” ?>

02: <xsl:stylesheet version=”1.0”

03: xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

04:

05: <xsl:output method=”html”/>

06: <xsl:template match=”/”>

07: <xsl:choose>

08: <xsl:when test=”//state”>

09:

10: <table border=”0” width=”100%”>

11:

12: <tr>

13: <td bgcolor=”#dcdcff” width=”25%”>Name</td>

14: <td bgcolor=”#dcdcff” width=”25%”>Flower</td>

15: <td bgcolor=”#dcdcff” width=”25%”>Bird</td>

16: <td bgcolor=”#dcdcff” width=”25%”>Capital</td>

17: </tr>

18:

19: <xsl:for-each select=”//state”>

20: <xsl:if test=”position() mod 2 != 0”>

21: <tr>

22: <td bgcolor=”#eeeeee” width=”25%”>

23: <xsl:value-of select=”name”/></td>

24: <td bgcolor=”#eeeeee” width=”25%”>

25: <xsl:value-of select=”flower”/></td>

26: <td bgcolor=”#eeeeee” width=”25%”>

27: <xsl:value-of select=”bird”/></td>

28: <td bgcolor=”#eeeeee” width=”25%”>

29: <xsl:value-of select=”capital”/></td>

30: </tr>

31: </xsl:if>

32: <xsl:if test=”position() mod 2 = 0”>

33: <tr>

34: <td width=”25%”><xsl:value-of select=”name”/></td>

35: <td width=”25%”><xsl:value-of select=”flower”/></td>

36: <td width=”25%”><xsl:value-of select=”bird”/></td>

37: <td width=”25%”><xsl:value-of select=”capital”/></td>

38: </tr>

39: </xsl:if>

40: </xsl:for-each>

41:

42: </table>

43:

44: </xsl:when>

45: </xsl:choose>

46: </xsl:template>

47: </xsl:stylesheet>

48:

Listing 28.7 htmlstates.xsl

254 Item 28

Design patterns serve as building blocks for propagating best practices in software
development. In our sample application, the MVC and Front Controller patterns
demonstrate how to avoid programming pitfalls that inevitably reveal themselves in
superfluous code that is hard to maintain and deploy. The migration of our configura-
tion mappings to our deployment descriptor helped our application management, and
the getNamedDispatcher method helped avoid the hard-coding of context paths in
our application. The dispatcher component manages the application navigation and
display views. Applications and program paths change during normal development
lifecycles, and when business logic is spread across your application, they become very
difficult to maintain and modify.

Additionally, when control logic is moved into a controller class, processing is facil-
itated because all requests are coordinated and an application’s business logic is cen-
tralized. A controller servlet application is also employed by a popular Apache
Software Foundation offering called the Struts framework, mentioned in Item 24,
which is a much more sophisticated application than the one demonstrated in our
example and has been well received by the development community. Servlet con-
trollers and XML transform filters can be a powerful combination when processing
user requests, specifically SOAP requests. One shortcoming that needs mention is that
a single servlet controller can become unmanageable when too much business logic is
transferred into the application, which would warrant additional controllers.

Lastly, filter applications are important architectural considerations that need to be
included in all enterprise development design decisions. Essentially, they are building
blocks that allow applications to layer logic and transform user requests, which allow
developers to promote reuse.

Item 29: Some Direction about
JSP Reuse and Content Delivery

Your boss just asked you to storyboard his latest and greatest business plan so that it
could be shown to local and remote management teams at next week’s status meeting.
Your previous development experience involved crafting Java Swing components for
the accounting department and building some static HTML pages for your office
lottery selections.

You’ve determined that in order to satisfy your requirement to serve both local and
remote users, your application should run in a browser, and that JavaServer Pages
would be a perfect vehicle to serve up dynamic content. When you asked your boss
about the content needed for the presentation, his reply was that it was still being
worked on, and it was possible that it could be published by one of those remote man-
agement teams that will participate in next week’s meeting. His response has led you
to believe that a simple content management application might be needed to accom-
modate the inclusion of dynamic content from this remote source.

Your task appears to be a lot of work to deliver in one week’s time, but with a better
understanding of JSP page fragmentation and dynamic content inclusion, you should
have a pretty good chance of making yourself and your boss look good. JSP page frag-
mentation will allow the application to be reusable and fairly maintainable, which

Some Direction about JSP Reuse and Content Delivery 255

means that additional functionality can be added without having to rewrite the entire
application. The most difficult aspect of this task will be obtaining content from a dif-
ferent context than the application being executed, but we’ll look into that later.

Certainly, every development effort should start with a simple storyboard to envi-
sion what the application might look like. Figure 29.1 is a start.

Not only will your storyboard show spatial relationships and interface behaviors, it
will also allow you to organize your files into subdirectories to make them easier to
identify and maintain. In our case, we’ll need two file structures, one for the default
application, and another for the remote location to drop in content.

Now that your look and feel has been determined, we’ll add our page fragments in
a file called home.jsp, displayed in Listing 29.1. The JSP include directive on line 06
reads, translates, and pastes the specified file (header.jsp) into your JSP page one time
only. If any modifications are made to your header.jsp code, your Web container will
need to retranslate the code to reflect these changes. The JSP include action on line 74
includes the footer.jsp page during request time. The include action is more robust
than the directive because it performs an automatic update dynamically.

Figure 29.1 Application storyboard.

Content is displayed here from a separate context

Help

header.jsp

footer.jsp

<param name = "title" value = "" />

leftnav.jsp

help.jsp

256 Item 29

01: <%@ taglib uri=”http://java.sun.com/jstl/ea/core” prefix=”c” %>

02: <%@page import=”java.net.*” %>

03:

04: <title>Fruit Stand</title>

05:

06: <jsp:include page=”header.jsp” flush=”true” />

07:

08: <table border=”0” width=”100%”>

09: <tr valign=”top”>

10: <td width=”25%” align=”center” valign=”top”>

11: <jsp:include page=”leftnav.jsp” flush=”true” />

12: </td>

13: <td width=75%” align=”center” valign=”top”>

14: <%

15: String sMode = request.getParameter(“mode”);

16: String sTopicID = request.getParameter(“topic”);

17: %>

18:

19: <table width=”100%” border=”0” cellspacing=”0” cellpadding=”0”

20: valign=”top”>

21: <tr>

22: <td bgcolor=”#ffffff” align=”center” class=”portletBoxTitle”>

23: Æ
INFORMATION

24: </td>

25: </tr>

26: <tr>

27: <td bgcolor=”#ffffff” align=”center” class=”portletBoxBody”>

28:

29: <%

30: StringBuffer strbuf = new StringBuffer();

31: strbuf.append(“/default/” + sTopicID);

32: strbuf.append(“/index.html”);

33:

34: String s = strbuf.toString();

35:

36: // Obtain the custom view context

37: ServletContext scTemp = getServletConfig().getServletContext();

38: ServletContext scHome = getServletConfig().getServletContext();

39: ServletContext scRemote = scTemp.getContext(“/newstuff”);

40:

Listing 29.1 home.jsp (continued)

Some Direction about JSP Reuse and Content Delivery 257

41: // Create the absolute url for c:import tag to use

42: String sURL = request.getScheme() + “://” +

43: request.getServerName() + “:” + request.getServerPort() +

44: “/newstuff/” + s;

45: URL urlRsrcFile = null;

46:

47: try {

48: // Try to obtain resource from remote context

49: urlRsrcFile = scRemote.getResource((String)s);

50: } catch (Exception e) {

51: scTemp.log(“\n\nError: home.jsp - error occured when trying Æ
to obtain a resource from the ‘REMOTE’ context. Please verify that Æ
the server is configured to allow cross-context access.\n\n”, e);

52: }

53:

54: if (urlRsrcFile != null) {

55: %>

56: <c:import url=”<%= sURL %>” />

57: <%--

58: This does not work.

59: <jsp:include page=”<%= sURL %>” />

60: --%>

61: <%

62: }

63: %>

64:

65:

66: </td>

67: </tr>

68: </table>

69:

70: </td>

71: </tr>

72: </table>

73:

74: <jsp:include page=”footer.jsp” />

Listing 29.1 (continued)

All appears to be okay until you attempt to add the content using the include
directive as shown on line 59 from the [newstuff] context. Why? Apparently, JSP
include operations add resources that are relative to their context, and since the
application is being run from the [customviews] context, it looks there for the resource
inclusion. To rectify this problem, we’ll need to use the Java Standard Template Library
(JSTL) implementation of the import tag because it allows for the retrieval of absolute
URLs, which we’ll need to obtain data from the [newstuff] context. Additionally, an

258 Item 29

entry has to be made to set the context path for your remote inclusion. With Tomcat,
this means a context path inclusion in the server.xml file:

<Context path=”/newstuff” docBase=”newstuff” debug=”0”
crossContext=”true”/>
which will allow the customviews application to access the newstuff pages.

In the home.jsp script, the import tag library is used on line 56 to import a resource
from a directory that lies outside the context of the current application [customviews].
With the import tag, a simple drop-off mechanism like a WebDAV client can be used
to drop content into the [newstuff] location outside of your deployment area in
[customviews]. This simple content management process will enable you to work
uninterrupted, and without concern that someone outside of your office will corrupt
your development platform.

Lastly, we’ll look at the forward tag and its implementation in our application. In
Listing 29.2, the forward action <jsp:forward...> on line 12 passes the request to
the help.jsp page. Normally, if a response has already been partially sent to the
browser, the forwarding operation will throw an IllegalStateException error.
This could occur if a user specifies a page buffer equal to “none”, as shown on line 02.
A buffer size is generally set to “none” on Web pages that are slow and to which the
developer wants to feed the content as it comes in, rather than waiting for it to reach its
buffer maximum or for the page to load to render data. This error can be captured by
inserting a try/catch exception handler like the one shown in lines 10 to 17 below.
When the page buffer directive is omitted, a default value of 8 KB is allocated and the
request will be forwarded properly.

01: <%--

02: <%@ page buffer=”none” %> // bad idea. throws an

IllegalStateException error.

03: --%>

04:

05: <%

06: String mode = request.getParameter(“mode”);

07: if (mode==null) mode=””;

08:

09: if (mode.equals(“forward”)) {

10: try {

11: %>

12: <jsp:forward page=”help.jsp” >

13: <jsp:param name=”title” value=”Help Screen Topic passed from Æ
[footer.jsp]” />

14: </jsp:forward>

15: <%

16: }

17: catch (IllegalStateException e) { System.out.println(“ERROR: “ + Æ
e.toString()); }

18: }

19: %>

20:

Listing 29.2 footer.jsp (continued)

Some Direction about JSP Reuse and Content Delivery 259

21: <table width=”100%” border=”0” cellspacing=”0” cellpadding=”0”>

22: <tr bgcolor=”#FFFFFF”>

23: <td height=”4”></td>

24: </tr>

25: <tr bgcolor=”#3399CC”>

26: <td height=”2”></td>

27: </tr>

28: <tr class=”largetext”>

29: <td height=”19”>

30:

31: </td>

32: </tr>

33: <tr bgcolor=”#CCCC99”>

34: <td height=”2”></td>

35: </tr>

36: <tr>

37: <td height=”2”> </td>

38: </tr>

39: <tr>

40: <td>

41: <div align=”center”>

42: <a Æ
href=”footer.jsp?mode=forward”>Help

43: </div>

44: </td>

45: </tr>

46: </table>

Listing 29.2 (continued)

A finished prototype of your design could look like that shown in Figure 29.2.
When developing JSP Web pages, you need to understand when to use include

directives, which are included during the JSP-to-servlet translation phase, and when to
use include actions, which are included during request time. In addition, keep in
mind that forward operations should always test for IllegalStateException
errors. Lastly, it is imperative that you implement the c:import tag to retrieve remote
URLs in your JSP Web pages, rather than attempting to use JSP include
directives/actions for pages that differ in context from the application being run.

Hopefully, our simple example has shown you proper JSP development strategies
that will prevent you from realizing these pitfalls and will allow you to deliver robust
JSP applications and dynamic storyboards in a timely manner. It is important to con-
sider that the architecture you have chosen adheres to the Model 1 design, which is
considered “page-centric” because application flow is controlled by the JSP page logic.
Understand that this could present maintenance problems because of the tight
coupling of the flow and the logic, but it seems preferable to those with little experi-
ence in Web development, and your tight delivery schedule. A better solution would
incorporate a Model 2 architecture that implements a mediating application that
decouples hard-coded Web page references.

260 Item 29

Figure 29.2 Completed prototype.

Item 30: Form Validation Using Regular Expressions

The latest Merlin release (Java SDK 1.4) introduced regular expressions so that devel-
opers can manipulate character text in an easier fashion than previously released string
handling methods. This enhancement has strengthened the maturing language and
facilitated error checking and text manipulation, which is so important to Web appli-
cation components.

Search and search-and-replace activities are among the more common uses of regu-
lar expressions, but they can also be used to perform Boolean tests on text patterns and
data streams. Anyone familiar with Unix should recognize regular expressions and
their powerful capabilities because of their prevalence in Unix tools and commands. I
like to use regular expressions to parse form text and perform validation and replace-
ment activities in my JavaBean components. In Figure 30.1, a Web form demonstrates
user validation on input fields and error text that is rendered to the user display when
improper data is submitted by the end user. The code that follows will make obvious
how important regular expressions can be for Web developers and how the Java lan-
guage is the “programming language that keeps on giving.”

The form above takes user inputs and validates the data prior to passing the appli-
cation on to the next application in the workflow. The validation bean in Listing 30.1
reads and remembers the user input using the Memento pattern and checks to see if
valid entries have been submitted. Improper entries are tagged and sent back to the
user display to indicate what the proper input format should be.

Form Validation Using Regular Expressions 261

Figure 30.1 A Web form.

Telephone numbers are typically character strings separated by delimiters for read-
ability, so our regular expression should capture digits only ranging from 0 to 9 and be
linked by dash characters. The telephone number pattern shown on line 36 ensures that a
10-digit value is input by the user and that an optional dash delimiter can be used for
input. Several string manipulations would be needed to perform the same operation that
is performed in just one line. Note the double backslash notation in the regular expression
“\\d”, which differs from the single backslash notation used in Perl, because it differen-
tiates escape character values from regular expressions. The brace notation “{}” indicates
the number of decimals values that should be found in the string literal being examined.

001: package org.javapitfalls.item30;

002:

003: import java.util.*;

004: import java.text.*;

005: import java.util.Date;

006: import java.util.regex.*;

007:

008: public class validateBean {

009: private String title;

010: private String marriedFlag;

Listing 30.1 validateBean.java

262 Item 30

011: private String hobbies[];

012: private String colors[];

013: private String ageGroup;

014: private String telephoneNumber;

015: private String birthDate;

016: private String ssn;

017: private String email;

018: private String comments;

019: private SimpleDateFormat dateFormat;

020: private String DATE_FORMAT_PATTERN;

021:

022: private Hashtable errors;

023:

024: public boolean validate() {

025: boolean errorsFound=false;

026: if (title.equals(“”)) {

027: errors.put(“title”,”Please enter a valid title”);

028: errorsFound=true;

029: }

030:

031: if (telephoneNumber.equals(“”)) {

032: errors.put(“telephoneNumber”,”Please enter a valid telephone Æ
#”);

033: errorsFound=true;

034: }

035: else {

036: if (!(telephoneNumber.matches(“\\+?([0-9]+-)+([0-9]+- Æ
)+[0-9]+”))) {

037: errors.put(“telephoneNumber”,”Please enter a valid Æ
telephone format ### - ### - ####”);

038: errorsFound=true;

039: }

040: }

041:

Listing 30.1 (continued)

Social security numbers are typically nine-digit strings separated by dash delim-
iters, so our regular expression needs to capture the digit value and size constraints in
a similar fashion as the telephone number pattern.

042: if (ssn.equals(“”)) {

043: errors.put(“ssn”,”Please enter a valid Social Security #”);

044: errorsFound=true;

045: }

046: else {

047: if (!(ssn.matches(“(\\d{3}\\-?)+(\\d{2}\\-?)+\\d{4}+”))) {

Listing 30.1 (continued)

Form Validation Using Regular Expressions 263

048: errors.put(“ssn”,”Please enter a valid SSN: ### - ## - ####”);

049: errorsFound=true;

050: }

051: }

052:

Listing 30.1 (continued)

Date of birth formats come in many different varieties, but our application will val-
idate user input on entries that adhere to the “YYYY-MM-DD” format. The commented
text shown in lines 63 to 77 was implemented previously for DOB validation. Again,
the ability to do more with less is evident in this code segment.

053: if (birthDate.equals(“”)) {

054: errors.put(“birthDate”,”Please enter a valid date”);

055: errorsFound=true;

056: }

057: else {

058:

059: if (!(birthDate.matches(“(\\d{4}\\-?)+(\\d{2}\\-?)+\\d{2}+”))) {

060: errors.put(“birthDate”,”Please enter a valid date format: Æ
(yyyy-mm-dd)”);

061: errorsFound=true;

062: }

063: /*

064: Date date=null;

065: try

066: {

067: dateFormat.applyPattern(DATE_FORMAT_PATTERN);

068: // dateFormat.setLenient(false);

069: date = dateFormat.parse(birthDate);

070: }

071: catch(ParseException parseexception) { }

072: if (date==null) {

073: errors.put(“birthDate”,”Please enter a valid date format: Æ
(yyyy-mm-dd)”);

074: birthDate=””;

075: errorsFound=true;

076: }

077: */

078: }

Listing 30.1 (continued)

Email account validation is achieved with the pattern described on line 85. The pat-
tern text checks for alphanumeric text, with underlines and periods, that is separated
by the “at sign”(@) and terminated with a 3-byte extension.

264 Item 30

080: if (email.equals(“”)) {

081: errors.put(“email”,”Please enter a valid email address”);

082: errorsFound=true;

083: }

084: else {

085: if (!(email.matches(“[-A-Za-z0-9_.]+@[-A-Za-z0-9_.]+\\.[-A-Za-Æ
z]{2,}”))) {

086: errors.put(“email”,”Please enter a valid email address: ex. Æ
name@company.org”);

087: errorsFound=true;

088: }

089: }

Listing 30.1 (continued)

A pet peeve of mine is being forced to fill out an inordinate amount of information
about myself in order to gain access to something I’m interested in. This annoyance typi-
cally leads to puerile inputs, which become more vulgar the longer I have to keep typing.
I know that I’m not the only one doing this because most sites have some kind of dirty
word checking to ensure that improper language is not propagated to their database.

The code shown between lines 94 and 96 checks user input to ensure that inappro-
priate language is captured and replaced with more mild, less offensive text. The reg-
ular expression (darn | shoot) is run against the comment text input by the
user, and if a match is found, replaced by the replaceAll(text) method of the
Matcher class.

090: if (comments.equals(“”)) {

091: errors.put(“comments”,”Please enter a comment”);

092: errorsFound=true;

093: } else {

094: Pattern pattern = Æ
Pattern.compile(“(darn|shoot|damn|jerk|stupid|dummy)”);

095: Matcher match = pattern.matcher(comments);

096: if (match.find()) { comments = match.replaceAll(“#%&@”); }

097: }

098: return errorsFound;

099: }

Listing 30.1 (continued)

The following code illustrates how to use parenthesized subexpressions to replace
text and return a new string value. In the example below, my intention is to cut off all
of the digits after the decimal point with the exception of the first two. This can be
accomplished by matching the first two digits after the decimal point with the
“\\.\\d\\d” pattern. If the code segment below is run, then testAnswer will print
out 111.63.

Form Validation Using Regular Expressions 265

String test = “111.63642343422”;

String testAnswer = test.replaceAll(“(\\.\\d\\d?)\\d+”, “$1”); // 111.63

System.out.println(“testAnswer=” + testAnswer);

Another simple example that performs grouping operations is a code snippet that per-
forms pig Latin string manipulation shown below. In pig Latin, all strings that start with
a nonvowel character move the first character to the end of the string and add the “ay”
characters to the end of the string. Since Eagles starts with E, the string operation will be
skipped. All of the other strings will be replaced with their Pig latin string manipulation.

String testAnswer=””;

String[] s = { “PigLatin”, “Eagles”, “Redskins”, “Giants” };

for (int i=0; i < s.length; i++) {

testAnswer = s[i].replaceAll(“^([^aeiouAEIOU])(.+)”, “$2$1ay”);

System.out.println(“testAnswer=” + testAnswer);

}

A big problem for developers with regular expressions on Unix systems is inconsistent
behavior with its tools, specifically ed, ex, vi, sed, awk, grep, and egrep. Different conven-
tions often lead to unpredictable behavior that requires lots of patience and work to better
understand the pattern syntax of their regular expression libraries. Users often have prob-
lems when describing patterns and recognizing the context in which they appear. These
same problems exist in Java applications that use third-party regular expression libraries.
Hopefully, the implementation of regular expressions in the latest Java SDK will address
this and provide pattern consistency across applications and different platforms.

The regular expression libraries that shipped with the Merlin release were a long-
awaited addition to an already powerful enterprise programming language. Pattern
matching and replacement should unleash a great deal of flexibility in Java develop-
ment efforts and will facilitate Web development in the future. With regular expres-
sions, metacharacter implementations in patterns will improve text range matching
and make text processing a much more pleasant experience.

According to the published Java 2 Standard Edition APIs, the Java Regular Expres-
sions API does not support the following operations that are supported by the Perl 5
scripting language:

■■ Conditional constructs. (?{X}).

■■ Embedded code constructs. (?{code}).

■■ Embedded comment syntax. To parse comments from a string, the?#comment is
used.

■■ Preprocessing operations. This includes the implementation of the “\l \L \u
\U” constructs. To perform lowercase and uppercase operations on an entire
string, the \L and \U are used. To perform lowercase and uppercase on the next
character in a string, the \l and \u constructs need to be used.

Also, the constructs that are supported by the Java Regular Expressions class that
are not supported by the Perl 5 scripting language are as follows:

Possessive quantifiers. The inability to backtrack to another operation when a
condition has been met. This results in a greedy match operation.

266 Item 30

Character class operator precedence. Literal escape, Grouping, Range, Union,
Intersection.

The validation code shown above is okay for parsing user input, but there are cases
where you might want to parse text within a Web page. The code below is used to strip
meta data from all HTML pages that are spidered. On line 166, the Pattern class is
used to set up the string pattern to parse on the page. There are two tag elements that
are part of the pattern, meta name and content. The Matcher class is given the Web
page content in the pageOutput string, and all of the items are stripped out using the
new split method of the String class.

163: // strip out metadata ---Æ

164: StringBuffer metadata = new StringBuffer();

165:

166: Pattern p = Pattern.compile(“<meta name=\”XX.data1\” Æ
(CONTENT|content)=\”(.*)”);

167: Matcher m = p.matcher(pageOutput);

168: int z;

169: if (m.find()) {

170: String[] sw1 = m.group(0).split(“[\”]”);

171: String[] data1 = sw1[3].split(“[,]”);

172: for (z=0; z < data1.length; z++)

173: metadata.append(“<data1>” + data1[z] + “</data1>”);

174: }

175:

176: p = Pattern.compile(“<meta name=\”XX.data2\” Æ
(CONTENT|content)=\”(.*)”);

177: m = p.matcher(pageOutput);

178: if (m.find()) {

179: String[] sw2 = m.group(0).split(“[\”]”);

180: String[] data2 = sw2[3].split(“[,]”);

181: for (z=0; z < data2.length; z++)

182: metadata.append(“<data2>” + data2[z] + “</data2>”);

183: }

184:

185: p = Pattern.compile(“<meta name=\”XX.data3\” Æ
(CONTENT|content)=\”(.*)”);

186: m = p.matcher(pageOutput);

187: if (m.find()) {

188: String[] sw3 = m.group(0).split(“[\”]”);

189: String[] data3 = sw3[3].split(“[,]”);

190: for (z=0; z < data3.length; z++)

191: metadata.append(“<data2>” + data3[z] + “</data2>”);

192: }

193:

194: System.out.println(“metadata= “ + metadata.toString());

Listing 30.1 (continued)

Form Validation Using Regular Expressions 267

A new regular expression pattern is used to strip out additional links in the HTML
pages to spider on subsequent levels. The <a href> pattern is the target expres-
sion to be parsed from the text. The (a|A) groupings are used so that both lowercase
and uppercase expressions are matched.

Pattern pattern = Pattern.compile(“<(a|A) href+[^<]*</(a|A)>”);

Matcher match = pattern.matcher(pageOutput);

%>

<tr bgcolor=”#eeeeee”>

<td align=”center”> Links for next Level: <%= filename %></td>

</tr>

<%

// display all the references found in the URI

while (match.find()) {

// split words

String[] sw = match.group(0).split(“[\”]”);

if ((sw.length > 1) && (sw[1].startsWith(“http://”)) && Æ
(sw[1].endsWith(“html”))) {

%>

<tr><td>

<%

out.println(“webpage=” + sw[1]);

vRef.addElement(sw[1]);

%>

</td></tr>

<%

}

}

The Web page displayed in Figure 30.2 is the result of the spidering action of the
code snippet above, which resides in the regexpTest.jsp application. The results shown
below the Submit button are the links parsed from the Web page requested in the URI
field.

Java Regular Expressions are a powerful new language construct that strengthens
string manipulation activities for developers. With Java Regular Expressions, Java
developers can realize in their text processing activities what Perl programmers have
been lauding about for years.

268 Item 30

Figure 30.2 Spider results.

Item 31: Instance Variables in Servlets

A common trap that new servlet developers find themselves in revolves around the
use of instance variables. Unfortunately, the symptoms of this problem are not easy to
diagnose until the last minute. The developer writes the servlet, and it goes through
standalone testing just fine. When it is load-tested (or when it goes into production
with many concurrent users), however, strange things start to occur on an ad hoc basis:
garbled strings of nonsense begin appearing in Web browsers, users of the enterprise
Web system begin receiving other users’ information, and seemingly “random” errors
appear in the application. What went wrong?

A simple example of this situation can be seen in Listing 31.1, where we have an
example application that serves as a library of technical resources. Our fictional “Online
Technobabble Library” is a document repository where multiple users can check out,
check in, and read multiple documents with a lot of technobabble. The servlet takes a
parameter, userid, which tells the servlet where to get the user’s information.

Instance Variables in Servlets 269

001: package org.javapitfalls.item31;

002: import java.io.*;

003: import java.text.*;

004: import java.util.*;

005: import javax.servlet.*;

006: import javax.servlet.http.*;

007: /**

008: * This example demonstrates using instance variables

009: * in a servlet.. The example features a fictional

010: * “TechnoBabble Library”, where users can check out

011: * and check in technical documentation.

012: */

013: public class BadTechnobabbleLibraryServlet

014: extends HttpServlet

015: {

016:

017: PrintWriter m_out = null;

018: String m_useridparam = null;

019:

020:

021: /**

022: * doGet() method for a HTTP GET

023: *

024: * @param request the HttpServletRequest object

025: * @param response the HttpServletResponse object

026: */

027: public void doGet(HttpServletRequest request,

028: HttpServletResponse response)

029: throws ServletException, IOException

030: {

031: String title = “Online Technobabble Library”;

032: response.setContentType(“text/html”);

033: m_out = response.getWriter();

034: m_useridparam = request.getParameter(“userid”);

035:

036: m_out.println(“<HTML>”);

037: m_out.println(“<TITLE>” + title + “</TITLE>”);

038: m_out.println(“<BODY BGCOLOR=’WHITE’>”);

039: m_out.println(“<CENTER><H1>” + title +

040: “</H1></CENTER>”);

041: m_out.println(“<HR>”);

042:

043: //This will put the user’s personal page in..

044: putInUserData();

045: m_out.println(“<HR>”);

046: m_out.println(“</BODY></HTML>”);

047: }

048:

049:

Listing 31.1 A bad example!

270 Item 31

050: /**

051: * doPost() method for a HTTP PUT

052: *

053: * @param request the HttpServletRequest Object

054: * @param response the HttpServletResponse Object

055: */

056: public void doPost(HttpServletRequest request,

057: HttpServletResponse response)

058: throws ServletException, IOException

059: {

060: doGet(request, response);

061: }

062:

063:

064: /**

065: * This method reads the user’s data from the filesystem

066: * and writes the data to the browser screen.

067: */

068: private void putInUserData() throws IOException

069: {

070:

071: BufferedReader br = null;

072: String fn = m_useridparam + “.html”;

073: String htmlfile =

074: getServletContext().getRealPath(fn);

075:

076: System.out.println(“debug: Trying to open “

077: + htmlfile);

078:

079: File htmlSnippetFile = new File(htmlfile);

080: try

081: {

082: String line;

083:

084: //Check to see if it exists first

085: if (!htmlSnippetFile.exists())

086: {

087: m_out.println(“File “ + fn + “not found!”);

088: return;

089: }

090:

091: br = new BufferedReader(new FileReader(htmlfile));

092:

093: /*

094: * Now, let’s read it..

095: * Since finding the bad behavior in this pitfall

096: * revolves around timing, we will only read 2

097: * characters at a time so that the bad behavior

098: * can be easily seen.

Listing 31.1 (continued)

Instance Variables in Servlets 271

099: */

100:

101: char[] buffer = new char[2];

102: int count = 0;

103: do

104: {

105: m_out.write(buffer, 0, count);

106: m_out.flush();

107: count = br.read(buffer, 0, buffer.length);

108: }

109: while (count != -1);

110: }

111: catch (Exception e)

112: {

113: m_out.println(

114: “Error in reading file!!”

115:);

116: e.printStackTrace(System.err);

117: }

118: finally

119: {

120: if (br != null)

121: br.close();

122: }

123:

124: }

125: }

126:

127:

Listing 31.1 (continued)

Looking at the code in lines 17 and 18 of Listing 31.1, we have two instance vari-
ables. The PrintWriter m_out and the String m_useridparam are assigned in
the doGet() method on lines 33 and 34. After the doGet() method initializes these
variables, the putInUserData() method is called to read the user-specific HTML
files and print these out to the browser screen. Tested alone, a screen capture of the
browser window looks fine, as shown in Figure 31.1.

However, during load testing, multiple users log in and many see the screen shown
in Figure 31.2. The result seems like a combination of many screens and looks like non-
sense. What happened?

Because instance variables are set in the doGet()method in Listing 31.1 and are used
later in the servlet in the putInUserData() method, the servlet is not thread-safe.
Because many users access the servlet at the same time, and because the instance vari-
ables are written to and referenced by multiple areas of the servlet, the values of the
m_out variable and the m_useridparams variables have the potential to be clobbered!

272 Item 31

Figure 31.1 Our example with one concurrent user.

For example, when one user runs his servlet, the servlet could be setting the m_out vari-
able for his session while another user’s session is writing with the m_out variable.

Figure 31.3 shows us a time line of how this strange behavior occurred in our example
from Listing 31.1. In the time line, we have two fictitious users of the system, Alice and
Bob. At time t0, the servlet engine first instantiates the servlet, where the instance vari-
ables are declared in lines 17 and 18 of Listing 31.1. At time t1, the servlet engine calls the
servlet’s init() method. At time t2, Alice loads the servlet, which calls the servlet’s
doGet()method. At time t3, the instance variables m_out and m_useridparam are set
just for Alice. At the same time, Bob loads the servlet, which calls the servlet’s doGet()
method. At time t4, Alice’s servlet gets to the point where the putInUserData()
method is called, which loads her information and begins printing to the PrintWriter
variable, m_out. At the same time, Bob’s servlet is in the execution of doGet(), where
the instance variables m_out and m_useridparam are set.

Time t5 in Figure 31.3 is where everything seems to go nuts. Since Bob reset the
servlet’s instance variable m_out, Alice continues to print her information, but it goes
to Bob’s browser! When Bob also begins printing to m_out, he sees a combination of
his information and Alice’s information. The result is something like the screen shot
that we showed in Figure 31.2.

Instance Variables in Servlets 273

Figure 31.2 Chaos: Our example with concurrent users.

In fact, we chose the example so that this strange behavior could be shown easily.
Each servlet client (or user Web browser) will need its own PrintWriter, and
because each servlet is a thread in the server’s virtual machine, m_out can be trampled
on whenever a new user loads the servlet, producing scary output. In practice, these
types of errors can be difficult to detect until load testing, because errors occur with
timing when multiple clients hit the server at once. In fact, we couldn’t see any tangi-
ble ramifications of assigning the variable m_useridparam, because the timing has to
be right to actually see the effects. We have seen one situation where a customer’s
requirements were to provide sensitive and confidential data to its users. The software
developers used instance variables in their servlets for printing information gathered
from each user’s database connection. When the developers were testing it alone, the
system seemed to work fine. When the system went in for load testing with several dif-
ferent users, the testers saw the other users’ confidential data.

274 Item 31

Figure 31.3 Time line of data corruption.

se
rv

le
t

in
st

an
tia

te
d

se
rv

le
t's

in
it(

)

m
et

ho
d

is
 c

al
le

d

A
lic

e
lo

ad
s

up
 a

se
rv

le
t,

 c
al

lin
g

th
e

se
rv

le
t's

 d
o

G
et

()
m

et
ho

d

in
 d

o
G

et
()

, t
he

 m
_o

ut
an

d
m

_u
se

rid
pa

ra
m

va
ria

bl
es

 a
re

 s
et

 t
o

A
lic

e'
s

se
tt

in
gs

A
lic

e'
s

se
rv

le
t

ca
lls

th
e

p
ut

In
U

se
rD

at
a(

)
m

et
ho

d
w

hi
ch

 lo
ad

s
th

e
fil

e
ba

se
d

on
m

_u
se

rid
pa

ra
m

, a
nd

be
gi

ns
 p

rin
tin

g
th

at
fil

e
to

 A
lic

e'
s

br
ow

se
r

t4
ba

se
d

on
 m

_o
ut

D
ur

in
g

p
rin

tin
g

in
p

ut
U

se
rD

at
a(

),
 A

lic
e

be
gi

ns
 p

rin
tin

g
to

 t
he

m
_o

ut
 v

ar
ia

bl
e

se
t

by
Bo

b,
 w

hi
ch

 g
oe

s
to

Bo
b'

s
br

ow
se

r

A
lic

e
is

 n
ot

 h
ap

p
y,

 b
ec

au
se

sh
e

di
d

no
t

re
ce

iv
e

he
r

en
tir

e
do

cu
m

en
t.

 If
 s

he
re

lo
ad

s
at

 t
hi

s
p

oi
nt

, s
he

m
ay

 e
ve

n
ge

t
so

m
e

of
Bo

b'
s

in
fo

rm
at

io
n

Bo
b

lo
ad

s
up

 t
he

se
rv

le
t,

 c
al

lin
g

th
e

se
rv

le
t's

 d
o

G
et

()
m

et
ho

d

in
 d

o
G

et
()

, t
he

m
_o

ut
 a

nd
m

_u
se

rid
pa

ra
m

va
ria

bl
es

 a
re

 s
et

 t
o

th
e

se
tt

in
gs

 o
f

Bo
b'

s
in

fo

Bo
b'

s
se

rv
le

t
ca

lls
 t

he
p

ut
In

U
se

rD
at

a(
)

m
et

ho
d,

 w
hi

ch
 s

ta
rt

s
p

rin
tin

g
Bo

b'
s

in
fo

,
w

hi
ch

 a
ls

o
go

 t
o

Bo
b'

s
br

ow
se

r,
in

 a
dd

iti
on

 t
o

A
lic

e'
s

in
fo

rm
at

io
n

Bo
b

is
 n

ot
 h

ap
p

y,
 b

ec
au

se
he

 r
ec

ei
ve

d
a

co
m

bi
na

tio
n

of
 h

is
 in

fo
rm

at
io

n
A

N
D

A
lic

e'
s

in
fo

rm
at

io
n

t0
t1

t2
t3

t4
t5

t6

Instance Variables in Servlets 275

What if you use instance variables but only set them at instantiation? In this case,
you may not run into any concurrency issues. However, this could lead to other pitfalls
if you do not keep the lifecycle of the servlet in mind. Here is a bad example that we
saw recently:

//Here Is an Instance variable that we will be using later

ServletContext m_sc = getServletContext();

The programmer who wrote that snippet of code assumed that since the variable
was set at instantiation and never set again, no concurrency issues would arise. That is
true. Unfortunately, because the init() method sets the servlet’s ServletContext
object after instantiation, the servlet ran into a big problem: The value of the instance
variable m_sc was null, resulting in a NullPointerException later on in the
servlet. Because the instance variable was set at instantiation of the servlet, and not
after the init() method was called, the servlet had big problems.

So what is the best solution to this pitfall? Be very hesitant in using instance vari-
ables in servlets. Certainly, you could continue to use instance variables and synchro-
nize them whenever you need to access or set the instance variable, but that could
create code that is very complex-looking, inflexible, and ugly. Instead, try to pass the
variables and objects that you will need to your other methods. If it gets to the point
where you believe that you have too many variables to pass around, create a class that
serves as a container for these variables. Instantiate the class with the variables you
need, and pass the object around.

Listing 31.2 shows a better approach to our earlier “Online Technobabble Library”
example. Instead of having instance variables, we create the variables that we need in
the doGet() method in lines 32 and 33, and we pass them to the putInUserData()
method. The result is code that is thread-safe.

001: package org.javapitfalls.item31;

002: import java.io.*;

003: import java.text.*;

004: import java.util.*;

005: import javax.servlet.*;

006: import javax.servlet.http.*;

007: /**

008: * This example demonstrates using instance variables

009: * in a servlet.. The example features a fictional

010: * “TechnoBabble Library”, where users can check out

011: * and check in technical documentation.

012: */

013: public class GoodTechnobabbleLibraryServlet extends

014: HttpServlet

015: {

016:

017: /**

018: * doGet() method for a HTTP GET

Listing 31.2 A better application solution

276 Item 31

019: *

020: * @param request the HttpServletRequest object

021: * @param response the HttpServletResponse object

022: */

023: public void doGet(HttpServletRequest request,

024: HttpServletResponse response)

025: throws ServletException, IOException

026: {

027: PrintWriter out;

028: String userid;

029: String title = “Online Technobabble Library”;

030:

031: response.setContentType(“text/html”);

032: out = response.getWriter();

033: userid = request.getParameter(“userid”);

034:

035: out.println(“<HTML>”);

036: out.println(“<TITLE>” + title + “</TITLE>”);

037: out.println(“<BODY BGCOLOR=’WHITE’>”);

038: out.println(“<CENTER><H1>” + title +

039: “</H1></CENTER>”);

040: out.println(“<HR>”);

041:

042: //This will put the user’s personal page in..

043: putInUserData(out, userid);

044: out.println(“<HR>”);

045: out.println(“</BODY></HTML>”);

046: }

047:

048:

049: /**

050: * doPost() method for a HTTP PUT

051: *

052: * @param request the HttpServletRequest Object

053: * @param response the HttpServletResponse Object

054: */

055: public void doPost(HttpServletRequest request,

056: HttpServletResponse response)

057: throws ServletException, IOException

058: {

059: doGet(request, response);

060: }

061:

062:

063: /**

064: * This method reads the user’s data from the filesystem

065: * and writes the data to the browser screen.

066: *

067: * @param out the printwriter we are using

Listing 31.2 (continued)

Instance Variables in Servlets 277

068: * @param userid the userid of the accessing user

069: */

070: private void putInUserData(PrintWriter out,

071: String userid)

072: throws IOException

073: {

074: BufferedReader br = null;

075: String fn = userid + “.html”;

076: String htmlfile =

077: getServletContext().getRealPath(fn);

078:

079: System.out.println(“debug: Trying to open “

080: + htmlfile);

081:

082: File htmlSnippetFile = new File(htmlfile);

083: try

084: {

085: String line;

086:

087: //Check to see if it exists first

088: if (!htmlSnippetFile.exists())

089: {

090: out.println(“File “ + fn + “not found!”);

091: return;

092: }

093:

094: br = new BufferedReader(new FileReader(htmlfile));

095:

096: /*

097: * Now, let’s read it..

098: * Since finding the bad behavior in this pitfall

099: * revolves around timing, we will only read 2

100: * characters at a time so that the bad behavior

101: * can be more easily seen.

102: */

103:

104: char[] buffer = new char[2];

105: int count = 0;

106: do

107: {

108: out.write(buffer, 0, count);

109: out.flush();

110: count = br.read(buffer, 0, buffer.length);

111: }

112: while (count != -1);

113: }

114: catch (Exception e)

115: {

116: out.println(

Listing 31.2 (continued)

278 Item 31

117: “Error in reading file!!”

118:);

119: e.printStackTrace(System.err);

120: }

121: finally

122: {

123: if (br != null)

124: br.close();

125: }

126:

127: }

128: }

129:

130:

Listing 31.2 (continued)

Now that we have eliminated instance variables in Listing 31.2, we have fixed our
problems with thread safety! Be hesitant in using instance variables in servlets. If there
is a better way, do it.

Item 32: Design Flaws with Creating Database
Connections within Servlets

Connecting to a database is a convenient way for generating Web content. That
being said, there can be many performance issues with creating database connections
in servlets. It is imperative that a Web-enabled application be able to scale to
the demand of its users. For that reason, preparation for a large amount of users is a
necessity.

We will present a sample scenario where we are developing a Java Servlet-based
system for a local shop, “Lavender Fields Farm.” The decision makers on the project
have decided that we will need to use a database for the online purchases and transac-
tions. At the same time, we will need to use that database to keep track of inventory.
This example will focus on the development of that “inventory servlet.”

Listing 32.1 shows a servlet that queries the database to show inventory. In lines 52
to 75, in the servlet’s doPost()method, we establish a connection to the database, and
we create an HTML table showing the name of each item available, the description,
and the amount that the shop has in stock. Figure 32.1 shows a screen capture of the
result. In testing, everything with this example works wonderfully. When many
users begin to use the system, the database becomes a bottleneck. Finally, after intense
usage of the Web application, the database begins refusing new connections. What
happened?

Design Flaws with Creating Database Connections within Servlets 279

01: package org.javapitfalls.item32;

02: import java.io.*;

03: import java.sql.*;

04: import java.text.*;

05: import java.util.*;

06: import javax.servlet.*;

07: import javax.servlet.http.*;

08: public class BadQueryServlet extends HttpServlet

09: {

10: /**

11: * simply forwards all to doPost()

12: */

13: public void doGet(HttpServletRequest request,

14: HttpServletResponse response)

15: throws IOException, ServletException

16: {

17: doPost(request,response);

18: }

19:

20: /**

21: * The main form!

22: */

23: public void doPost(HttpServletRequest request,

24: HttpServletResponse response)

25: throws IOException, ServletException

26: {

27: PrintWriter out = response.getWriter();

28: out.println(“<TITLE>Internal Inventory Check</TITLE>”);

29: out.println(“<BODY BGCOLOR=’white’>”);

30: out.println(“<H1>Lavender Fields Farm Internal Inventory</H1>”);

31:

32: //show the date.

33: SimpleDateFormat sdf =

34: new SimpleDateFormat (“EEE, MMM d, yyyy h:mm a”);

35: java.util.Date newdate = new

36: java.util.Date(Calendar.getInstance().getTime().getTime());

37: String datestring = sdf.format(newdate);

38:

39: out.println(“<H3>Inventory as of: “ + datestring + “</H3>”);

40:

41: out.println(“<TABLE BORDER=1>”);

42: out.println(“<TR><TD BGCOLOR=’yellow’><CENTER>Name</CENTER>”+

43: “</TD><TD BGCOLOR=’yellow’><CENTER>” +

44: “Description</CENTER></TD><TD BGCOLOR=’yellow’>” +

45: “<CENTER>Inventory Amount</CENTER></TD></TR>”);

46:

47: //Load the inventory from the database.

48:

49: try

50: {

Listing 32.1 Specifying connection in a servlet

280 Item 32

51:

52: Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);

53: String connect = “jdbc:odbc:Lavender”;

54:

55: Connection con = DriverManager.getConnection(connect);

56:

57: Statement stmt = con.createStatement();

58: ResultSet rs = stmt.executeQuery(“select * from Inventory”);

59:

60: while (rs.next())

61: {

62: String amtString = “”;

63: int amt = rs.getInt(“Amount”);

64: if (amt < 50)

65: amtString =”<TD><CENTER>” + amt +

66: “</CENTER></TD>”;

67: else

68: amtString =”<TD><CENTER>” + amt + “</CENTER></TD>”;

69:

70: out.println(“<TR><TD><CENTER>” + rs.getString(“Name”) +

71: “</CENTER></TD><TD><CENTER>” +

72: rs.getString(“Description”) + “</CENTER>” +

73: “</TD>” + amtString + “</TR>”);

74: }

75: rs.close();

76: out.println(“</TABLE><HR>Items in RED” +

77: “ denote low inventory levels. Click “ +

78: “Here to Contact ” +

79: “MANAGEMENT to order more supplies.”);

80: }

81: catch (Exception e)

82: {

83: out.println(“There were errors connecting to the database.” +

84: “ See your systems administrator for details.”);

85: e.printStackTrace();

86: }

87:

88:

89: }

90:

91:

92:}

Listing 32.1 (continued)

The problem is twofold: opening a new connection to the database is a computation-
ally expensive operation, and there is a finite number of open connections that a data-
base can have. In line 55 in Listing 32.1, we open a new connection on line 55 every time
a user loads the Web page. On line 75, we close the result set, resulting in the eventual
termination of the connection. When there are hundreds (or thousands) of users con-
necting to that online store, that strategy will simply not suffice.

Design Flaws with Creating Database Connections within Servlets 281

What is a better solution? This is where the specifics of your application impact your
decision. If this servlet were the only one connecting to the database, you could design
it so that the servlet shares connections with itself. That is, a set of connections could be
shared, reused, recycled, and managed by this servlet. If, however, the entire Web
server shared connections between servlets, you should design it so that all the servlets
share the management of connections with each other.

This is where connection pooling comes into play. Connection pooling involves allo-
cating database connections in advance, along with the reuse and management of the
connections. You could write your own connection pool package that your servlet could
use, but many are available on the Internet. For our next example, we used an open-
source connection broker called DDConnectionBroker, from http://opensource
.devdaily.com/. This package offers the basics that any connection pooling class
should—including the pre-allocation, reuse, and management of database connections.

In Listing 32.2, we use the connection broker within the servlet. In our init()method,
we instantiate the connection broker, specifying the details of our database connection and
setting our broker to be the instance variable in line 13. Since the init() method is only
called once (right after instantiation), our connection pool is initialized once. We specify
that the connection pool will have a maximum number (10) of database connections. This
number is dependent on the configuration of your database. After setting up the connec-
tion broker in the init() method, the only further change to the servlet is that instead of
creating the connection in the doPost() method, we call the method m_broker
.getConnection() in line 95 and call the method m_broker.freeConnection() in
line 119. The result is that every thread going through this servlet (every user loading the
Web page) will use a connection pool in getting to the database.

Figure 32.1 Screen capture of inventory page.

282 Item 32

000: package org.javapitfalls.item32;

001: import com.devdaily.opensource.database.DDConnectionBroker;

002: import java.io.*;

003: import java.sql.*;

004: import java.text.*;

005: import java.util.*;

006: import javax.servlet.*;

007: import javax.servlet.http.*;

008:

009: public class BetterQueryServlet extends HttpServlet

010: {

011: //only set in the init() method, so concurrency

012: //issues should be fine.

013: private DDConnectionBroker m_broker = null;

014:

015: public void init()

016: {

017: String driver = “sun.jdbc.odbc.JdbcOdbcDriver”;

018: String url = “jdbc:odbc:Lavender”;

019: String uname = “”;

020: String passwd = “”;

021:

022: int minConnections = 1;

023: int maxConnections = 10;

024: long timeout = 100;

025: long leaseTime = 60000;

026: String logFile = “c:/tmp/ConnectionPool.log”;

027:

028: try

029: {

030: m_broker = new DDConnectionBroker(driver,

031: url, uname, passwd,

032: minConnections,

033: maxConnections,

034: timeout,

035: leaseTime,

036: logFile);

037: }

038: catch (SQLException se)

039: {

040: System.err.println(se.getMessage());

041: }

042:

043:

044: }

045: /**

046: * simply forwards all to doPost()

047: */

048: public void doGet(HttpServletRequest request,

Listing 32.2 Sharing a connection within a servlet (continued)

Design Flaws with Creating Database Connections within Servlets 283

049: HttpServletResponse response)

050: throws IOException, ServletException

051: {

052: doPost(request,response);

053: }

054:

055: /**

056: * The main form!

057: */

058: public void doPost(HttpServletRequest request,

059: HttpServletResponse response)

060: throws IOException, ServletException

061: {

062: PrintWriter out = response.getWriter();

063:

064: if (m_broker == null)

065: {

066: out.println(“There are currently database problems. “ +

067: “Please see your administrator for details.”);

068: return;

069: }

070: out.println(“<TITLE>Internal Inventory Check</TITLE>”);

071: out.println(“<BODY BGCOLOR=’white’>”);

072: out.println(“<H1>Lavender Fields Farm Internal Inventory</H1>”);

073:

074: //show the date.

075: SimpleDateFormat sdf =

076: new SimpleDateFormat (“EEE, MMM d, yyyy h:mm a”);

077: java.util.Date newdate =

078: new java.util.Date(Calendar.getInstance().getTime().getTime());

079: String datestring = sdf.format(newdate);

080:

081: out.println(“<H3>Inventory as of: “ + datestring + “</H3>”);

082:

083: out.println(“<TABLE BORDER=1>”);

084: out.println(“<TR><TD BGCOLOR=’yellow’>” +

085: “<CENTER>Name</CENTER></TD>” +

086: “<TD BGCOLOR=’yellow’><CENTER>Description</CENTER></TD>” +

087: “<TD BGCOLOR=’yellow’><CENTER>Inventory Amount</CENTER>” +

088: “</TD></TR>”);

089:

090: //Load the inventory from the database.

091:

092: try

093: {

094:

095: Connection con = m_broker.getConnection();

096:

097: Statement stmt = con.createStatement();

Listing 32.2 (continued)

284 Item 32

098: ResultSet rs = stmt.executeQuery(“select * from Inventory”);

099:

100: while (rs.next())

101: {

102: String amtString = “”;

103: int amt = rs.getInt(“Amount”);

104: if (amt < 50)

105: amtString =”<TD><CENTER>” + amt + Æ
“</CENTER></TD>”;

106: else

107: amtString =”<TD><CENTER>” + amt + “</CENTER></TD>”;

108: out.println(“<TR><TD><CENTER>” + rs.getString(“Name”) +

109: “</CENTER></TD><TD><CENTER>” + Æ
rs.getString(“Description”) + “</CENTER>” +

110: “</TD>” + amtString + “</TR>”);

111: }

112: rs.close();

113: out.println(“</TABLE><HR>Items in Æ
<FONTCOLOR=’red’>RED”

114: +” denote a possible low inventory. Click Here to

115: “ Contact ” +

116: “MANAGEMENT to order more supplies.”);

117:

118: //Free the connection!

119: m_broker.freeConnection(con);

120:

121: }

122: catch (Exception e)

123: {

124: out.println(“There were errors connecting to the database.

125: “See your systems administrator for details.”);

126: e.printStackTrace();

127: }

128:

129: }

130:

131:

132:}

Listing 32.2 (continued)

The effect of Listing 32.2 is that every user that runs the servlet BetterQueryServlet
will share the connection broker object, so that connections will be shared and reused.
Even better, our DDConnectionBroker object is instantiated in the init() method,
where it pre-allocates connections before they are requested. This will make perfor-
mance of this servlet better, and it is a good method of database connection manage-
ment when that servlet is the only application talking to your database.

Design Flaws with Creating Database Connections within Servlets 285

In our scenario, however, we said that customers at our online store will be con-
necting to the database as well. This means that it will be wise to share the database
connections across all servlets. How could we do this? One of the best ways to do this
is to use the Gang of Four’s Singleton design pattern.1 A very convenient design
pattern, a Singleton is used when there should be only one instance of a class in a
virtual machine. In our scenario, it would be great to get an instance of a connection
broker from any servlet and be able to use one of the connections. Listing 32.3 shows a
simple Singleton that also acts as an adapter to a few methods of the connection broker.
This class, LavenderDBSingleton, will be our single point of entry to the database
for our “Lavender Fields Farm” example. In our private constructor in lines 17 to 50,
we instantiate our connection pool. In our getInstance() method in lines 55 to 63,
you can see that this class will only be instantiated once. Finally, freeConnection()
and getConnection() are simply wrappers to the methods in the DDConnection-
Broker class.

01: package org.javapitfalls.item32;

02:

03: import com.devdaily.opensource.database.DDConnectionBroker;

04: import java.io.*;

05: import java.sql.*;

06:

07: /**

08: /* This is our class that will be shared across all of the

09: * servlets for the ‘Lavender’ database. It is a singleton,

10: * and also works as an adapter to the connection broker

11: * class that we are using.

12: */

13: public class LavenderDBSingleton

14: {

15:

16: private DDConnectionBroker m_broker;

17: private static LavenderDBSingleton m_singleton = null;

18:

19: private LavenderDBSingleton()

20: {

21: /*

22: * We will put all of our database-specific information

23: * here. Please note that we could have read this

24: * information from a properties file.

25: */

26:

27: String driver = “sun.jdbc.odbc.JdbcOdbcDriver”;

28: String url = “jdbc:odbc:Lavender”;

29: String uname = “”;

30: String passwd = “”;

Listing 32.3 Singleton class for sharing a connection pool

286 Item 32

1Gamma, Helm, Johnson, Vlissides. Design Patterns: Elements of Reusable Object-Oriented Software.
1995. Reading, Mass.: Addison-Wesley.

31:

32: int minConnections = 1;

33: int maxConnections = 10;

34: long timeout = 100;

35: long leaseTime = 60000;

36: String logFile = “c:/tmp/ConnectionPool.log”;

37:

38: try

39: {

40: m_broker = new DDConnectionBroker(driver,

41: url, uname, passwd,

42: minConnections,

43: maxConnections,

44: timeout,

45: leaseTime,

46: logFile);

47: }

48: catch (SQLException se)

49: {

50: System.err.println(se.getMessage());

51: }

52: }

53: /**

54: * getInstance() returns the class, instantiating it

55: * if there is not yet an instance in the VM.

56: */

57: public synchronized static LavenderDBSingleton getInstance()

58: {

59: if (m_singleton == null)

60: {

61: m_singleton = new LavenderDBSingleton();

62: }

63:

64: return (m_singleton);

65: }

66:

67: /*

68: * calls getConnection() on the broker class

69: */

70: public synchronized Connection getConnection() throws Exception

71: {

72: if (m_broker == null)

73: {

74: throw new Exception(“Can’t get Connection broker!”);

75: }

76: return (m_broker.getConnection());

77: }

78:

79: /*

Listing 32.3 (continued)

Design Flaws with Creating Database Connections within Servlets 287

80: * frees the connection from the broker class

81: */

82: public synchronized void freeConnection(Connection con)

83: throws Exception

84: {

85: if (m_broker == null)

86: {

87: throw new Exception(“Can’t get Connection broker!”);

88: }

89: m_broker.freeConnection(con);

90: }

91: }

92:

93:

Listing 32.3 (continued)

Listing 32.4 shows the final version of our servlet with our Singleton class in
action. In the init() method, we get the instance of our Singleton class on line 23.
On line 72, we call the getConnection()method of our Singleton, and finally, on line
107, we free the connection. If the other servlets in our example use the Singleton that
does connection pooling and database connection management, we will maximize the
efficiency of our servlet, reducing the overhead of creating connections for every client.

001: package org.javapitfalls.item32;

002:

003: import java.io.*;

004: import java.sql.*;

005: import java.text.*;

006: import java.util.*;

007: import javax.servlet.*;

008: import javax.servlet.http.*;

009:

010: public class BestQueryServlet extends HttpServlet

011: {

012: //only set in the init() method, so concurrency

013: //issues should be fine.

014: private LavenderDBSingleton m_dbsingleton = null;

015:

016: public void init()

017: {

018: /*

019: * This will instantiate it within the Servlet’s

020: * virtual machine if it hasn’t already. If it

021: * has, we have the instance of it.

022: */

023: m_dbsingleton = LavenderDBSingleton.getInstance();

Listing 32.4 Servlet Sharing Connection Pool Across Server

288 Item 32

024: }

025: /**

026: * simply forwards all to doPost()

027: */

028: public void doGet(HttpServletRequest request,

029: HttpServletResponse response)

030: throws IOException, ServletException

031: {

032: doPost(request,response);

033: }

034:

035: /**

036: * The main form!

037: */

038: public void doPost(HttpServletRequest request,

039: HttpServletResponse response)

040: throws IOException, ServletException

041: {

042: PrintWriter out = response.getWriter();

043:

044: out.println(“<TITLE>Internal Inventory Check</TITLE>”);

045: out.println(“<BODY BGCOLOR=’white’>”);

046: out.println(“<H1>Lavender Fields Farm Internal Inventory</H1>”);

047:

048: //show the date.

049: SimpleDateFormat sdf =

050: new SimpleDateFormat (“EEE, MMM d, yyyy h:mm a”);

051: java.util.Date newdate =

052: new java.util.Date(

053: Calendar.getInstance().getTime().getTime()

054:);

055: String datestring = sdf.format(newdate);

056:

057: out.println(“<H3>Inventory as of: “ + datestring + “</H3>”);

058:

059: out.println(“<TABLE BORDER=1>”);

060: out.println(“<TR><TD BGCOLOR=’yellow’>” +

061: “<CENTER>Name</CENTER></TD>” +

062: “<TD BGCOLOR=’yellow’>” +

063: “<CENTER>Description</CENTER></TD>” +

064: “<TD BGCOLOR=’yellow’>” +

065: “<CENTER>Inventory Amount</CENTER></TD></TR>”);

066:

067: //Load the inventory from the database.

068:

069: try

070: {

071:

072: Connection con = m_dbsingleton.getConnection();

073: if (con == null)

Listing 32.4 (continued)

Design Flaws with Creating Database Connections within Servlets 289

074: {

075: out.println(“There are currently database problems. “ +

076: “Please see your administrator for details.”);

077: return;

078: }

079:

080:

081: Statement stmt = con.createStatement();

082: ResultSet rs = stmt.executeQuery(“select * from Inventory”);

083:

084: while (rs.next())

085: {

086: String amtString = “”;

087: int amt = rs.getInt(“Amount”);

088: if (amt < 50)

089: amtString =”<TD><CENTER>” +

090: amt + “</CENTER></TD>”;

091: else

092: amtString =”<TD><CENTER>” +

093: amt + “</CENTER></TD>”;

094:

095: out.println(“<TR><TD><CENTER>” + rs.getString(“Name”) +

096: “</CENTER></TD><TD><CENTER>” +

097: rs.getString(“Description”) +

098: “</CENTER></TD>” + amtString + “</TR>”);

099: }

100: rs.close();

101: out.println(“</TABLE><HR>Items in RED”

102: + “ denote a possible low inventory. Click Here to “ +

103: “ contact ” +

104: “MANAGEMENT to order more supplies.”);

105:

106: //Free the connection!

107: m_dbsingleton.freeConnection(con);

108:

109: }

110: catch (Exception e)

111: {

112: out.println(“There were errors connecting to the database.” +

113: “ Please see your systems administrator for details.”);

114: e.printStackTrace();

115: }

116:

117: }

118:

119:

120: }

121:

122:

Listing 32.4 (continued)

290 Item 32

Using this Singleton class, you would simply need to do the following in your
servlet:

LavenderDBSingleton singleton = LavenderDBSingleton.getInstance();

Connection con = singleton.getConnection();

try

{

Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery(“select * from Inventory”);

//do the rest...

singleton.freeConnection(con);

}

catch (Exception e)

{

//...

}

If the other servlets on our Web server VM use the Singleton in this manner, we will
maximize the efficiency of our servlet, reducing the overhead of creating connections
for every client (and for every thread!). The initial performance overhead may be the
initial instantiation of the Singleton. For that purpose, it may be wise to instantiate it in
the servlet’s init() method. For the purposes of brevity, we have not included a full
program example of this in the book. The Web site, however, will have a code listing
that you can use.

In this pitfall, we discussed a few of the performance pitfalls that can arise when
servlets communicate directly to a database. We presented two methods of connection
pooling with servlets—one where a servlet shares a connection pool with its clients
and one where all servlets share a connection pool by calling a Singleton class that
will reside in memory in the virtual machine.

It should be noted, however, that there are ways of abstracting the database connec-
tion away from the user interface (servlet) model. Using servlets as the front end in a
J2EE architecture where Enterprise JavaBeans (EJBs) worry about database connec-
tions is a good way for accomplishing this abstraction. While this pitfall was meant for
developers who build applications where servlets connect to the database, there will be
other pitfalls in this book that will discuss the use of EJBs.

For more information about other methods of connection pooling, see Item 45 in
Part Three, “The Enterprise Tier.”

Item 33: Attempting to Use Both Output
Mechanisms in Servlets

If you’ve done a lot of servlet programming, you probably recognize this pitfall. The
Servlet API provides two mechanisms for printing out a response: PrintWriter and
ServletOutputstream. This pitfall discusses problems that may occur in using
these two objects and will demonstrate an example.

In Listing 33.1, we have created a simple servlet that takes a quick voting poll on the
Internet. We use this servlet along with a helper object called VoterApp, which has

Attempting to Use Both Output Mechanisms in Servlets 291

methods that tally votes, create an HTML-formatted “Poll of the Day,” and create a
graphical image representing the current tally of today’s votes. Our servlet either
shows the HTML Poll and creates a form for the user to vote or it shows the user a
graph of the current tally. If the vote parameter in our servlet is null, it will create the
poll, as shown in Listing 33.1 on line 29. In lines 33 to 40 of our servlet’s doGet()
method, we create an HTML form, with most of the contents returned from the
getPollOfTheDay() method on the VoterApp object.

01: package org.javapitfalls.item33;

02: import java.io.*;

03: import java.text.*;

04: import java.util.*;

05: import javax.servlet.*;

06: import javax.servlet.http.*;

07: /* Bad Voter Servlet Example */

08: public class BadVoterServlet extends HttpServlet

09: {

10:

11: public void doGet(HttpServletRequest request,

12: HttpServletResponse response)

13: throws IOException, ServletException

14: {

15: doPost(request,response);

16: }

17:

18:

19: public void doPost(HttpServletRequest request,

20: HttpServletResponse response)

21: throws IOException, ServletException

22: {

23: String vote = request.getParameter(“vote”);

24:

25: PrintWriter out = response.getWriter();

26:

27: VoterApp voter = VoterApp.getInstance();

28:

29: if (vote == null)

30: {

31: //Let’s print out the Poll of the Day!

32: response.setContentType(“text/html”);

33: out.println(“<TITLE>Poll of the Day!</TITLE>”);

34: out.println(“<FORM METHOD=’POST’ ACTION=’” +

35: request.getRequestURI() + “‘>”);

36:

37: out.println(voter.getPollOfTheDay());

38:

39: out.println(“<INPUT TYPE=’SUBMIT’ VALUE=’Vote Now!’>”);

40: out.println(“</FORM>”);

41: }

Listing 33.1 BadVoterServlet.java

292 Item 33

42: else

43: {

44: //Have our voter object tally up the results

45: voter.addToPollResults(vote);

46:

47: //Get the generated poll results graph

48: byte[] generatedGraph = voter.generateImageBytes();

49: if (generatedGraph == null)

50: {

51: response.setContentType(“text/html”);

52: out.println(“Technical difficulties.. Please see” +

53: “ your administrator for details.”);

54: return;

55: }

56: else

57: {

58: //We need to get the outputstream to write binary data

59:

60: ServletOutputStream os = response.getOutputStream();

61: response.setContentType(“image/gif”);

62:

63: os.write(generatedGraph, 0, generatedGraph.length);

64: os.flush();

65: }

66: }

67: }

68:

69: }

70:

Listing 33.1 (continued)

The first time we run this servlet (with no parameters), the browser shows the poll
of the day, as seen in Figure 33.1. Once we vote, however, we see an error message that
appears on our browser:

java.lang.IllegalStateException: Writer is already being used for this

request at

org.apache.tomcat.facade.HttpServletResponseFacade.getOutputStream(HttpS

ervletResponseFacade.java:156)

at BadVoterServlet.doPost(BadVoterServlet.java:63)

What went wrong? The problem is that we requested the PrintWriter on line 25
of our servlet, and then we requested the ServletOutputStream object on line 60 of
our servlet in Listing 33.1. Servlet documentation tells us that we should use
ServletOutputStream for printing binary data and use PrintWriter for printing
out character text. But our servlet writes both binary data and character text. What
should we do?

Attempting to Use Both Output Mechanisms in Servlets 293

Figure 33.1 The first part works!

We can either use one or the other. ServletOutputStream is an abstract class that
extends java.io.OutputStream, and PrintWriter is a class that extends
java.io.Writer. The difference is that PrintWriter is character-based and
ServletOutputStream, like java.io.OutputStream, is byte-based. To make life
easier, ServletOutputStream adds print() and println() methods for primi-
tive types and Strings, as shown in Table 33.1.

Table 33.1 javax.servlet.ServletOutputStream Methods

METHOD

void print(boolean b);

void println(boolean b);

void print(char c);

void println(char c);

void print(double d);

void println(double d);

void print(float f);

void println(float f);

void print(int i);

void println(int i);

void print(long l);

void println(long l);

void print(String s);

void println(String s);

void println();

294 Item 33

Because ServletOutputStream contains print() and println() methods, it
is easy to see that you may print character-based data with the print() and
println() methods, and binary data with the write() methods inherited from
java.io.OutputStream. To mix binary and text data in a multipart response, you
may use a ServletOutputStream and manage the character sections with the
methods in Table 33.1. Still, the rule of thumb is that if you are only sending character
data, use the PrintWriter object returned by getWriter().

If your servlet is used for both binary and character data, you may be wise to use
ServletOutputStream, rather than getting one or the other in an if-then clause or a
try-catch clause. We have seen instances where code asks for the ServletOutput-
Stream right before printing binary data, but asks for the PrintWriter if an error
occurs in processing. This is a bad idea and can introduce conditional complexity to
your servlet code, making the lifetime of your servlet difficult to manage. Listing 33.2
shows a segment of servlet code that will compile but could introduce complexity and
bugs as time goes on. In that listing, the developer gets the ServletOutputStream
in the try{} segment, and if an error occurs, it asks for the PrintWriter in the
catch() segment.

01: //This is a very bad idea!

02: PrintWriter pw;

03: ServletOutputStream out;

04: try

05: {

06: //get binary data

07: out = response.getOutputStream();

08: //now write the binary data with out

09: }

10: catch (Exception e)

11: {

12: pw = response.getWriter();

13: pw.println(“There was an error: “ + e.getMessage())

14:}

Listing 33.2 Using control flow to determine output

Listing 33.2 is simple enough, but if the servlet is changed to include more and more
conditionals, code management could be a nightmare as time goes on. What if more
processing goes on after that segment of code? You would have to keep track of which
one is used, and that is a bad idea. It is a lot easier to simply use the ServletOutput-
Stream object alone, if there is a case where you are printing binary data.

The important thing to remember is that if you are sending different types of data to
the client, make sure to set the content type with the HttpServletResponse object,
as shown in Listing 33.1 on lines 51 and 61. Since our “Poll of the Day” servlet example

Attempting to Use Both Output Mechanisms in Servlets 295

prints either binary or character-based data, we should simply ask for the
ServletOutputStream. Listing 33.3 shows the good example.

01: import java.io.*;

02: import java.text.*;

03: import java.util.*;

04: import javax.servlet.*;

05: import javax.servlet.http.*;

06:

07: /* Good Voter Servlet Example */

08: public class GoodVoterServlet extends HttpServlet

09: {

10:

11: public void doGet(HttpServletRequest request,

12: HttpServletResponse response)

13: throws IOException, ServletException

14: {

15: doPost(request,response);

16: }

17:

18:

19: public void doPost(HttpServletRequest request,

20: HttpServletResponse response)

21: throws IOException, ServletException

22: {

23: String vote = request.getParameter(“vote”);

24:

25: ServletOutputStream out = response.getOutputStream();

26:

27: VoterApp voter = VoterApp.getInstance();

28:

29: if (vote == null)

30: {

31: //Let’s print out the Poll of the Day!

32: response.setContentType(“text/html”);

33: out.println(“<TITLE>Poll of the Day!</TITLE>”);

34: out.println(“<FORM METHOD=’POST’ ACTION=’” +

35: request.getRequestURI() + “‘>”);

36:

37: out.println(voter.getPollOfTheDay());

38:

39: out.println(“<INPUT TYPE=’SUBMIT’ VALUE=’Vote Now!’>”);

40: out.println(“</FORM>”);

41: }

42: else

43: {

44: //Have our voter object tally up the results

45: voter.addToPollResults(vote);

46:

Listing 33.3 GoodVoterServlet.java

296 Item 33

47: //Get the generated poll results graph

48: byte[] generatedGraph = voter.generateImageBytes();

49: if (generatedGraph == null)

50: {

51: response.setContentType(“text/html”);

52: out.println(“Technical difficulties.. Please see “ +

53: “your administrator for details.”);

54: return;

55: }

56: else

57: {

58:

59: response.setContentType(“image/gif”);

60:

61: out.write(generatedGraph, 0, generatedGraph.length);

62: out.flush();

63: }

64: }

65: }

66:

67: }

68:

Listing 33.3 (continued)

As you can see in Listing 33.3, we get the ServletOutputStream on line 25. We
use the println() methods for character-based data in lines 32 to 40 after setting the
content-type to “text/html” on line 32. When there is an error in getting the binary
image, we use the same mechanism for printing binary data on lines 49 to 55. Finally,
when we have binary data to produce, we set the content-type to “image/gif”, and
write the binary data (or the graphed poll results in this example) to the user’s browser
with the methods inherited from java.io.OutputStream on lines 59 to 62.

This item showed the possible pitfalls that may lurk in your code when you try to
use PrintWriter and ServletOutputStream together in a servlet. We showed
you how to determine which object to use and showed how to eliminate this problem
from your code.

Item 34: The Mysterious File Protocol
Many developers have built applications that read files from both the Internet and the
local filesystem. Invariably, as developers get more seasoned, they discover that they
are able to use the “file protocol” to reference local files as URLs. Because of this, a
growing number of tools and APIs are beginning to simply accept URLs as references
for files.

The Mysterious File Protocol 297

A lot of Java classes are overloaded to handle both the conventional local file syntax
and also the URL syntax for files. Figure 34.1 shows an example of a simple Web
browser, built with one of those classes, JEditorPane. Observe that it is a simple
JFrame with a JTextField and a JScrollPane containing the JEditorPane. A
URL is typed into the JTextField, which is then browsed by calling the set-
Page(String url) method on the JEditorPane.

With the exception of the HTML rendering being more primitive than the average
Web browser user expects, it works quite well as a basic Web browser. However,
when the user tries to take advantage of the “file protocol” to browse the local filesys-
tem, he or she needs to be careful. If the user simply substitutes the file protocol for
the HTTP protocol, thus creating a URL that starts with “file://” instead of the usual
“http://”, then the user will be surprised to find the error shown in Figure 34.2
popping up.

The developer feverishly checks to determine if the slashes must go the other way, if
the colon after the drive letter must come out, if a pipe character needs to substitute for
the colon—anything to make the exception shown in Listing 34.1 go away.

Figure 34.1 JEditorPane loading normally.

298 Item 34

Figure 34.2 Loading with file protocol misapplied.

01: java.net.UnknownHostException: D

02: at java.net.InetAddress.getAllByName0(InetAddress.java:571)

03: at java.net.InetAddress.getAllByName0(InetAddress.java:540)

04: at java.net.InetAddress.getByName(InetAddress.java:449)

05: at java.net.Socket.<init>(Socket.java:100)

06: at sun.net.NetworkClient.doConnect(NetworkClient.java:50)

07: at sun.net.NetworkClient.openServer(NetworkClient.java:38)

08: at sun.net.ftp.FtpClient.openServer(FtpClient.java:267)

09: at sun.net.ftp.FtpClient.<init>(FtpClient.java:381)

20: at [...]

21:

Listing 34.1 UnknownHostException

The Mysterious File Protocol 299

The developer starts thinking: “UnknownHostException! That cannot be right.
Shouldn’t it be a MalformedURLException?” Desperate for a workaround, other
measures are thrown around, “What if I test for the ‘file://’ and then strip the rest out
and load it as a local file? That won’t work . . . now I need to find another method to set
the page, because setPage deals with URLs.”

The developer takes another look at the URL class and sees this gem:

Class URL represents a Uniform Resource Locator, a pointer to a “resource” on the World
Wide Web. A resource can be something as simple as a file or a directory, or it can be a
reference to a more complicated object, such as a query to a database or to a search
engine. More information on the types of URLs and their formats can be found at
http://archive.ncsa.uiuc.edu/SDG/Software/Mosaic/Demo/url-primer.html.

The developer quickly browses over to confirm his understanding of the proper
format of the file protocol, and this is what he finds:

File URLs
Suppose there is a document called “foobar.txt”; it sits on an anonymous ftp server called
“ftp.yoyodyne.com” in directory “/pub/files”. The URL for this file is then:

file://ftp.yoyodyne.com/pub/files/foobar.txt
The toplevel directory of this FTP server is simply:

file://ftp.yoyodyne.com/
The “pub” directory of this FTP server is then:

file://ftp.yoyodyne.com/pub
That’s all there is to it.2

“That’s all there is to it!” If that isn’t adding insult to injury! The information posted
reminds the developer of two things: his understanding of the file protocol is correct
and he is still at square one.

Desperate to make some sort of progress, the developer starts considering other
options and inspecting the File class. In the File class there is a method called
toURL(), which claims to convert the path and filename into a URL specifying the file
protocol. The developer decides to add a JFileChooser into the mix and use the
resulting selected file to create the URL:

try {

textField.setText(chooser.getSelectedFile().toURL().toString());

} catch (MalformedURLException malE) { malE.printStackTrace(); }

Figure 34.3 shows how that looks in the application.
After the developer gets this code up and running, the JFileChooser is now han-

dling the URL specification for the application. This approach turns out to be a successful
one, as shown in Figure 34.4.

300 Item 34

2http://archive.ncsa.uiuc.edu/SDG/Software/Mosaic/Demo/url-primer.html

Figure 34.3 The JFileChooser strategy in action.

Figure 34.4 Properly loaded local file.

The Mysterious File Protocol 301

Wanting to determine why the representation in the JTextField has only one
slash and whether that would work if entered by hand, the developer performs some
tests. He determines that it works without the slash at all and up to seven slashes—
then realizes that the only number of slashes that doesn’t work is the only number that
should: two.

Why does this problem occur? Well, reviewing RFC2396 (URLs) more closely, we
note a distinction is made between local and remote files. Absolute paths are annotated
with single slashes, followed by the appropriate path segments, whereas remote paths
are indicated by the double slashes. This is a common misunderstanding, driven out of
the assumption that the file protocol specification refers only to the local filesystem. In
fact, looking more closely at the previous example, we see the URL is actually pointing
at a remote file server, an FTP server, and hence the two slashes. Note, however, that
this subtle distinction is not made to the reader, nor is it prominent in the RFC.

Now that it has been established that the URL was wrong all along, why didn’t a
MalformedURLException get thrown when the developer was trying to create this
URL? After all, this is an incorrect URL. Instead, unexpectedly an UnknownHostEx-
ception is thrown. To understand this, the developer must consider the challenges of
implementing such functionality. First, it is important to recognize that an Unknown-
HostException is the result of being unable to resolve the host part of the URL to an
IP address. As such, variability must be built in to allow for both hosts that do not exist
and hosts that are simply unavailable. After all, how can it be determined that “vol1”
is incorrectly referring to a local volume, as opposed to a file server on the network
known as “vol1”? This requires the inconvenient problem of receiving an Unknown-
HostException rather than a MalformedURLException.

However, this still does not explain why seven slashes works—in fact, any multiple
of slashes other than two works. It appears that this is merely because the code checks
for two slashes to be a remote host and resolves any number of slashes other than that
to a path. This clearly does not strictly adhere to RFC2396, but this is not something
developers frequently know or even care about until running across this problem.

Item 35: Reading Files from Servlets

When developers begin to write servlet code, they quickly come across one major real-
ity: They are writing code that runs within the context of another application (a servlet
engine). Since they are within the context of another application, they are forced to live
within that context, or at least they should be. Unfortunately, this is not always the
case. One major advantage of servlets is their access to the entire Java programming
language, but it means that servlets can be written to do a number of ill-advised things
within the servlet engine. This includes reading files from the local filesystem.

Listing 35.1 is an example of the problem. For the sake of simplicity, ignore the prac-
tice of hard-coding “header.html” into the example.

302 Item 35

01: public class ReallyBadReadingServlet extends HttpServlet {

02: private static final String CONTENT_TYPE = “text/html”;

03: private StringBuffer strBuf;

04: private String header;

05:

06: /**Initialize global variables*/

07: public void init(ServletConfig config) throws ServletException {

08: super.init(config);

09:

10: strBuf = new StringBuffer();

11: try {

12:

13: BufferedReader bufRead = new BufferedReader(new Æ
FileReader(“header.html”));

14:

15: while (bufRead.read() != -1){

16: strBuf.append(bufRead.readLine());

17: }

18:

19: bufRead.close();

20:

21: } catch (IOException ioe) {

22: ioe.printStackTrace();

23: };

24:

25: header = strBuf.toString();

27: }

28:

Listing 35.1 ReallyBadReadingServlet.java

The example shows a conventional BufferedReader buffering a FileReader.
The servlet is reading a header file to include with output. This is a simplified example
of reading and processing a file.

The major problem with this code is that the working directory, where it will seek
the “header.html” file, cannot be reliably determined between servlet engine imple-
mentations. As an example, some vendors run their servlet engine in the same process
as their HTTP daemon (to improve performance). In an effort to keep the implementa-
tion simple, a frustrating search for where to place the file begins, which ends up cost-
ing the developer a lot more time over a small subtlety in the servlet specification. It
bites the developer again if he or she deploys the servlet into another servlet engine.

Reading Files from Servlets 303

The servlet specification does have a couple of methods that can help avoid this
problem. First, every servlet has a ServletContext object, which has a getReal-
Path(String virtualPath) method. This means that it will give the local filesys-
tem path for the specified virtual path. Notice in the example in Listing 35.2 that
localPath is prepended to the “header.html” filename.

01: public class StillBadReadingServlet extends HttpServlet {

02: private static final String CONTENT_TYPE = “text/html”;

03: private StringBuffer strBuf;

04: private String header;

05:

06: /**Initialize*/

07: public void init(ServletConfig config) throws ServletException {

08: super.init(config);

09:

10: ServletContext context = config.getServletContext();

11:

12: String localPath = context.getRealPath(“/myapp”);

13:

14: strBuf = new StringBuffer();

15: try {

16:

17: BufferedReader bufRead = new BufferedReader(new FileReader(localPath Æ
+ “header.html”));

18:

19: while (bufRead.read() != -1){

20: strBuf.append(bufRead.readLine());

21: }

22:

23: bufRead.close();

24:

25: } catch (IOException ioe) {

26: ioe.printStackTrace();

27: };

28:

29: header = strBuf.toString();

30:

31: }

32:

Listing 35.2 StillBadReadingServlet.java

The problem with using getRealPath() occurs when the path you are attempting
to get is within a Web Application Archive, also known as a WAR. The getRealPath()
method will return null as its result. A WAR can be thought of as the Web equivalent of

304 Item 35

a JAR file. It provides a deployable component to plug into a Web server, which contains
all of the servlets, filters, JSPs, tag libraries, HTML pages, and images.

In the situation shown in Listing 35.3, the developer specifies an explicit path for the
file in the local filesystem (e.g., C:\pitfallsbook\code\header.html). This def-
inition is specified within parameters passed to the ServletConfig object, but the
concept can be implemented in a number of ways. No longer using an implicit path
definition, the developer decides to place the burden of the deployer to specify a path
that is valid (and accessible). So, while this solves the first problem of not definitively
knowing where files should be stored, it still doesn’t help if we are using the WAR (as
is a good practice).

01: public class OKReadingServlet extends HttpServlet {

02: private static final String CONTENT_TYPE = “text/html”;

03: private StringBuffer strBuf;

04: private String header;

05:

06: /**Initialize global variables*/

07: public void init(ServletConfig config) throws ServletException {

08: super.init(config);

09:

10: ServletContext context = config.getServletContext();

11:

12: //Explicit specification of the path via file property

13: String configFile = config.getInitParameter(“Config-File”);

14:

15: strBuf = new StringBuffer();

16: try {

17:

18: BufferedReader bufRead = new BufferedReader(new Æ
FileReader(configFile));

19:

20: while (bufRead.read() != -1){

21: strBuf.append(bufRead.readLine());

22: }

23:

24: bufRead.close();

25:

26: } catch (IOException ioe) {

27: ioe.printStackTrace();

28: };

29:

30: header = strBuf.toString();

33: }

Listing 35.3 OKReadingServlet.java

Reading Files from Servlets 305

To alleviate this issue, the servlet specification adopted the paradigm first intro-
duced in the Applet. As shown in Listing 35.4, the solution is to call
getResource(String path), which returns a URL object of the file at the path—a
relative URL to the file. This methodology coincides with the way applets retrieve
resources from a JAR file.

01: public class GoodReadingServlet extends HttpServlet {

02: private static final String CONTENT_TYPE = “text/html”;

03: private StringBuffer strBuf;

04: private String header;

05:

06: /**Initialize global variables*/

07: public void init(ServletConfig config) throws ServletException {

08: super.init(config);

09:

10: ServletContext context = config.getServletContext();

11:

12: strBuf = new StringBuffer();

13: try {

14: // Using an init parameter

15: URL headerURL = context.getResource(config Æ
.getInitParameter(“header”));

16: // Getting the Content directly

17: strBuf.append(headerURL.getContent());

18:

19: } catch (IOException ioe) {

20: ioe.printStackTrace();

21: };

22:

23: header = strBuf.toString();

24:

25: }

Listing 35.4 GoodReadingServlet.java

Notice how this allows the user to avoid having to create a reader and iterate
through the reader to populate the header string. When the purpose is merely to read
the file into a variable, the getResource() method provides the most direct way.

However, often the developer wants to process the file, not just load its content
into a variable. To perform this function, the developer has a better way: call
getResourceAsStream(). This method, shown in Listing 35.5, returns an Input-
Stream, which can be enclosed in whatever reader the developer needs to handle the
processing.

306 Item 35

01: public class AnotherGoodReadingServlet extends HttpServlet {

02: private static final String CONTENT_TYPE = “text/html”;

03: private StringBuffer strBuf;

04: private String header;

05:

06: /**Initialize global variables*/

07: public void init(ServletConfig config) throws ServletException {

08: super.init(config);

09:

10: ServletContext context = config.getServletContext();

11:

12: strBuf = new StringBuffer();

13: try {

14: // Using an init parameter

15: BufferedReader bufRead = new BufferedReader(

16: new InputStreamReader(

17: context.getResourceAsStream(Æ
config.getInitParameter(“header”))));

18:

19: //line by line reading allows for any additional processing Æ
to occur

20: while (bufRead.read() != -1){

21: strBuf.append(bufRead.readLine());

22: }

23:

24: bufRead.close();

28: } catch (IOException ioe) {

29: ioe.printStackTrace();

30: };

31:

32: header = strBuf.toString();

34: }

Listing 35.5 AnotherGoodReadingServlet.java

Good software development practice demands avoiding the use of hard-coded
configuration information. Because of this, strong consideration should be given to plac-
ing the information in the servlet engine’s Web Application Deployment Descriptor.

This pitfall has introduced the concept of the Web Application Archive and briefly
mentioned the Web Application Deployment Descriptor. Now we will discuss the Web
Application Deployment Descriptor in greater detail.

Reading Files from Servlets 307

Web Application Deployment Descriptors

A primary part of a Web application is its Web Application Deployment Descriptor.
This is euphemistically known as the “web.xml”, as it is stored in a file by that name.
Also, the file is stored in the mywebapp/WEB-INF directory.

Listing 35.6 is an annotated version of a Web Application Deployment Descriptor
for a common Web application. See the comments in Listing 35.6 for an explanation of
each part.

001: <?xml version=”1.0”?>

002: <!DOCTYPE web-app PUBLIC “-//Sun Microsystems, Inc.//DTD Web

Application 2.3//EN” “http://java.sun.com/j2ee/dtds/web-app_2_3.dtd”>

003: <web-app>

004:

005: <!--

006: Basic Web Application Description information. Mostly used for Æ
Tools to display the web app in a more user friendly manner.

007: -->

008:

009: <display-name>example</display-name>

010: <description>My example web application</description>

011:

012: <!--

013: Filters are new to the Servlet 2.3 Specification.

014:

015: This declares the clickstreamFilter, which is an instance of the Æ
com.opensymphone.clickstream.ClickstreamFilter class.

016: This class should be located in the CLASSPATH, but the most common Æ
place to put it is in the WEB-INF/classes or WEB-INF/lib

017: directories.

018:

019: Clickstream tracks all accesses to the site. See Æ
http://opensymphony.com for more details.

021: -->

022:

023: <filter>

024: <filter-name>clickstreamFilter</filter-name>

025: <filter- Æ
class>com.opensymphony.clickstream.ClickstreamFilter</filter-class>

026: </filter>

027:

028: <!--

030: The filter-mapping applies the filter to all requests that match Æ
the url-pattern.

032: -->

033:

034: <filter-mapping>

035: <filter-name>clickstreamFilter</filter-name>

036: <url-pattern>*.jsp</url-pattern>

Listing 35.6 Web Application Deployment Descriptor (web.xml)

308 Item 35

037: </filter-mapping>

038:

039: <filter-mapping>

040: <filter-name>clickstreamFilter</filter-name>

041: <url-pattern>*.html</url-pattern>

042: </filter-mapping>

043:

044: <!--

046: The servlet listener is new to Servlet 2.3 also. It also is up Æ
to the developer to define a listener to monitor lifecycle events.

047:

048: In this case, the ClickstreamListener waits for an HTTPSession to Æ
terminate, and then logs the HTTP Session information.

050: -->

051:

052: <listener>

053: <listener- Æ
class>com.opensymphony.clickstream.ClickstreamListener</listener-class>

054: </listener>

055:

056:

057: <!--

059: This declares the XYZServlet, which is in a class by the same name.Æ
By convention, it usually is in the WEB-INF/classes

060: directory or in a jar in the WEB-INF/lib directory

062: -->

063:

064:

065: <servlet>

066: <servlet-name>XYZServlet</servlet-name>

067: <servlet-class>XYZServlet</servlet-class>

068: </servlet>

069:

070:

071: <!--

073: This servlet mapping dictates that all urls that end in *.xyz will Æ
be handled by the XYZServlet.

075: -->

076:

077: <servlet-mapping>

078: <servlet-name>

079: XYZServlet

080: </servlet-name>

081: <url-pattern>

082: /*.xyz

083: </url-pattern>

084: </servlet-mapping>

085:

086: <!--

Listing 35.6 (continued)

Reading Files from Servlets 309

088: These files are the files that are loaded (in the listed order) if Æ
they exist when the webapp is

089: called without a file specified (e.g. /examples/)

091: -->

092:

093: <welcome-file-list>

094: <welcome-file>home.jsp</welcome-file>

095: <welcome-file>index.jsp</welcome-file>

096: <welcome-file>index.html</welcome-file>

097: </welcome-file-list>

098:

099: <!--

101: These are the tag library definitions. The taglib-uri gives a Æ
unique identifier.

102: The taglib-location gives the location of the taglib’s tag library Æ
definition.

103:

104: These taglibs are the Jakarta IO, XTags, and DBTags all very good Æ
libraries from

105: http://jakarta.apache.org/taglibs.

106:

107: The last one is from opensymphony.com, the oscache tag library, Æ
which is an outstanding

108: tag library for caching web documents.

110: -->

111:

112:

113: <taglib>

114: <taglib-uri>http://jakarta.apache.org/taglibs/io- Æ
1.0</taglib-uri>

115: <taglib-location>/WEB-INF/taglibdefs/io.tld</taglib-location>

116: </taglib>

117:

118: <taglib>

119: <taglib-uri>http://jakarta.apache.org/taglibs/xtags- Æ
1.0</taglib-uri>

120: <taglib-location>/WEB-INF/lib/xtags.tld</taglib-location>

121: </taglib>

122:

123: <taglib>

124: <taglib- Æ
uri>http://jakarta.apache.org/taglibs/dbtags</taglib-uri>

125: <taglib-location>/WEB-INF/lib/dbtags.tld</taglib-location>

126: </taglib>

127:

128: <taglib>

129: <taglib-uri>oscache</taglib-uri>

130: <taglib-location>/WEB-INF/lib/oscache.tld</taglib-Æ
location>

Listing 35.6 (continued)

310 Item 35

131: </taglib>

132:

133: <!--

135: This defines a resource reference that is available to the web Æ
application.

136:

137: It should be noted that it doesn’t make the resource, just Æ
declares the reference.

138:

139: In Tomcat, you would still need to declare the resource factory in Æ
the server.xml.

141: -->

142:

143: <resource-ref>

144:

145: <description>

147: Resource reference to a javax.sql.DataSource

149: </description>

151: <res-ref-name>

153: jdbc/myDB

155: </res-ref-name>

157: <res-type>

159: javax.sql.DataSource

161: </res-type>

163: <res-auth>

165: Container

167: </res-auth>

169: </resource-ref>

172: <!--

174: This declares a security constraint on the web application. First Æ
there is definition of the collection,

175: in this case the JSP that flushes the cache, and the auth- Æ
constraint defines the user and/or roles that

176: this constraint applies to. In this case, the role “hero” is able Æ
to access this source.

177:

178: This facility is available programmatically through the Æ
request.isUserInRole(roleName) method.

180: -->

181:

182:

183: <!-- Protect certain pages with a password -->

184: <security-constraint>

185: <web-resource-collection>

186: <web-resource-name>Flush Cache</web-resource-name>

187: <url-pattern>/flush.jsp</url-pattern>

188: </web-resource-collection>

189: <auth-constraint>

190: <role-name>hero</role-name>

Listing 35.6 (continued)

Reading Files from Servlets 311

191: </auth-constraint>

192: </security-constraint>

193:

194: <!--

196: This defines the way that user logs into the web application. Æ
In this case, it uses a FORM, with the

197: login page and error page defined.

199: -->

200:

201: <login-config>

202: <auth-method>FORM</auth-method>

203: <realm-name>Example Authentication</realm-name>

204: <form-login-config>

205: <form-login-page>/login.jsp</form-login-page>

206: <form-error-page>/error.jsp</form-error-page>

207: </form-login-config>

208: </login-config>

209:

210: <!--

212: This is the place where environment entries can be made for the Æ
web application. This is quite preferable to a

213: properties file in that this is part of the configuration. To Æ
read this environment entry you could use these

214: lines of code:

215:

216: String configDirectory = “”;

217: Context initCtx = new InitialContext();

218: Context ctx = (Context) initCtx.lookup(“java:comp/env”);

219: configDirectory = (String) ctx.lookup(“configDirectory”);

220:

221: -->

224: <env-entry>

225: <env-entry-name>configDirectory</env-entry-name>

226: <env-entry-value>C:/pitfallsBook</env-entry-value>

227: <env-entry-type>java.lang.String</env-entry-type>

228: </env-entry>

230: </web-app>

Listing 35.6 (continued)

Item 36: Too Many Submits

The primary purpose of the Web site today is to display dynamic content. Of course,
that means at some point the user sends input to a Web application, the input is

312 Item 36

processed, and the result is returned. Typically, operations on the back end run fast
enough that under normal circumstances little can go wrong. However, occasionally,
more time-consuming processing must take place—processing that takes more than a
second or two. The problem of handling operations that run for long periods of time
isn’t a new one. Java provides a robust threading mechanism for supporting creating
background tasks. Additionally, with the arrival of the EJB 2.0 specification, message-
based EJBs can be used to perform background operations. The problem with both of
these mechanisms is that they are designed to primarily handle asynchronous opera-
tions. You start a thread or background process, and then at some point, you are noti-
fied or you check for a result.

The too-many-submits problem occurs when an application is synchronous in
nature but still somewhat long-running. Imagine the scenario where a concertgoer logs
on to her favorite Web site to order tickets for a show that’s just gone on sale. Under
normal circumstances, the site performs fine, and our would-be concertgoer purchases
her tickets and is on her way. However, when a heavy load occurs, the server slows
down, and the buyer gets frustrated waiting for the site and thinks her request to
purchase tickets failed. So she hits the Submit button again and again. Unfortunately,
earlier requests didn’t fail, they were just slow, and so each press of the Submit button
ends up ordering another set of tickets.

There are many ways to handle the multiple-submit problem. Two of the most
obvious is to prevent the user from submitting the same request over and over. The
second is to somehow track that a user has previously submitted a request and revert
to the previously submitted action. Figure 36.1 shows the output from a simple servlet
that processes the input as it arrives and assigns a ticket number to each request.

Figure 36.1 Processing simple submissions.

Too Many Submits 313

Preventing Multiple Submits

The first and most effective way to handle the multiple-submit problem is to not allow
it to happen in the first place. Listing 36.1 shows the underlying HTML for a simple
form that captures the name of a concert and submits it to a servlet to order tickets. The
form works perfectly fine when the Web site performs adequately speedwise. How-
ever, if the Web site bogs down and the submit is not processed quickly enough, the
user gets frustrated and processing such as that shown in Figure 36.2 results; the sub-
mit happens over and over.

01: <HTML>

02: <HEAD><TITLE>Online Concert Tickets</TITLE></HEAD>

03:

04: <CENTER><H1>Order Tickets</H1></CENTER>

05:

06: <FORM NAME=”Order” ACTION=”./SimpleOrder” METHOD=”GET”>

07: <TABLE BORDER=”2” WIDTH=”50%” ALIGN=”CENTER” BGCOLOR=”CCCCCC”>

08: <TR><TD ALIGN=”RIGHT” WIDTH=”40%”>Concert: </TD>

09: <TD WIDTH=”60%”><INPUT TYPE=”TEXT” NAME=”Concert” Æ
VALUE=””></TD></TR>

10:

11: <TR><TD COLSPAN=”2” ALIGN=”CENTER”>

12: <INPUT TYPE=”submit” NAME=”btnSubmit”

13: VALUE=”Do Submit”></TD></TR>

14: </TABLE>

15: </FORM>

16: </BODY>

17: </HTML>

Listing 36.1 ConcertTickets.html form

Figure 36.2 Repeated submissions.

314 Item 36

As we said, the simplest way to handle the multiple-submit problem is to stop it
from happening. Listing 36.2 shows a subtly different version of our concert order
form—one that has a small amount of embedded Java script. The embedded Java
script “remembers” if the Submit button was previously pressed, and if so, an alert
pops up and the submit isn’t processed. We short-circuit the normal submit processing
by adding an onClick attribute to the Submit button. Every time the button is
pressed, the code described in the onClick is processed. In our case this results in the
JavaScript checksubmitcount() method being called. However, just calling a func-
tion doesn’t really help. If we did no more then add the onClick, we’d get our popup
alert box every time the Submit button was pressed, and then immediately the submit
would happen. The user would be alerted that he or she made a mistake, and the
request would be sent anyway. This is an improvement over our prior problem, but
only from the user’s perspective; the end result was the same: multiple submits.

We can solve the problem by going one step further and subtly changing the way
our page works. Sharp readers might have noticed the one additional change. The type
of our button, line 12, was originally “submit,” but now it is replaced by “button.” The
look and feel of the page is identical. However, the default action associated with the
form, shown on line 6 of Listing 36.1, to invoke the servlet, is no longer automatic. We
can now programmatically choose to submit the form to our server, and our problem
is solved. Or is it?

01: <HTML>

. . .<!-- repeated code removed //-->

12: <INPUT TYPE=”button” NAME=”btnSubmit”

13: VALUE=”Do Submit”

14: onClick=”checksubmitcount();”></TD></TR>

15: </TABLE>

16: </FORM>

17:

18: <SCRIPT LANGUAGE=”JAVASCRIPT”>

19: <!--

20: var submitcount = 0;

21: function checksubmitcount()

22: {

23: submitcount++;

24: if (1 == submitcount)

25: {

26: document.Order.submit();

27: }

28: else

29: {

30: if (2 == submitcount)

31: alert(“You have already submitted this form”);

32: else

33: alert(“You have submitted this form “

34: + submitcount.toString()

35: + “ times already”);

Listing 36.2 Concert2.html form (continued)

Too Many Submits 315

36: }

37: }

38: //-->

39: </SCRIPT>

40: </BODY>

41: </HTML>

Listing 36.2 (continued)

Handling Multiple Submits

Listing 36.2 was certainly an improvement, but we’ve still got a ways to go. A number
of issues still could go wrong. For example, what if the user pushes the back button
and starts over? What if his or her browser has JavaScript disabled, or for some other
reason, handling the processing in the browser cannot be used? We can still solve the
problem, but now instead of preventing multiple submits, we need to handle them on
the back end, via the servlet that processes the form.

To understand how to solve the multiple-submit problem, we must first understand
how servlets work with respect to sessions. As everyone knows, HTTP is inherently a
stateless protocol. To handle state, we need some way for the browser to communicate
to the back end that the current request is part of a larger block of requests. Addition-
ally, the server needs a way to manage the data for a given set of requests. The servlet
session provides us a solution to this problem. The HttpServlet methods doGet()
and doPost() are provided with two specific parameters: HttpServletRequest
and HttpServletResponse. The servlet request parameter allows us to access what
is commonly referred to as the servlet session. Servlet sessions have mechanisms for
accessing and storing state information. But what exactly is a servlet session?

A servlet session is a number of things. It is:

■■ A set of states managed by the Web server and represented by a specific
identifier

■■ Shared by all requests for a given client

■■ A place to store state data

■■ Defined, at least for HttpServlets, via the HttpSession interface

Before we look at how we can solve our problem with multiple submits with a
server-side solution, we need to understand the servlet session lifecycle. As with EJBs
and other server-side entities, servlet sessions go through a defined set of states during
their lifetime. Figure 36.3 shows pictorially the lifecycle of a servlet session.

316 Item 36

Figure 36.3 Servlet session lifecyle.

Examining how a session moves through its various states during its lifecycle will
help us understand how we can solve the multiple-submit problem with a session.
Servlets move through three distinct states: does not exist, new, and not new or in-use.

1. Initially, a servlet session does not exist. A session starts here or returns to this
state for a number of reasons. The most likely are that the user has never
accessed the state before or the session was invalidated because the user left the
site (timed out) or explicitly left (logged out).

2. Sessions move from does not exist to new when the session is first created. The
distinction between new and not new is important because the HTTP is stateless.
Sessions cannot move to not new from being a prospective session to an actual
session according to the servlet specification, until the client returns the session
back to the server. Thus, sessions are new because the client does not yet know
about the session or the client decides not to join the session.

3. When the session is returned back to the server from the client via a cookie or
URL rewriting (more on URL rewriting in a moment), then the session becomes
in-use or not new.

4. Continued use of the session, via its various get and set methods, results in the
session remaining in use.

5. Transitions 5 and 6 happen when a session times out because inactivity of a
session causes it to be explicated invalidated. Application servers handle time-
outs in a variety of ways. BEA WebLogic Server handles timeouts by allowing
the application deployer the ability to set the session timeout via a special
deployment descriptor (weblogic.xml) packaged with the Web application.

does not exist
1 5

New
2

Not New
3 6

4

Too Many Submits 317

Now that we understand the lifecycle of a session, how do we go about obtaining a
session and using it to our advantage?

The HttpServletRequest interface offers two methods for obtaining a session:

■■ public HttpSession getSession(). Always returns either a new session
or an existing session.

■■ getSession() returns an existing session if a valid session ID was pro-
vided via a cookie or in some other fashion.

■■ getSession() returns a new session if it is the client’s first session (no
ID), the supplied session has timed out, the client provided an invalid
session, or the provided session has been explicitly invalidated.

■■ public HttpSession getSession(boolean). May return a new session
or an existing session or null depending on how the Boolean is set.

■■ getSession(true) returns an existing session if possible; otherwise, it
creates a new session

■■ getSession(false) returns an existing session if possible; otherwise, it
returns null.

NOTE At first glance, it appears that we should always use
getSession(true). However, you should be careful in that an out-of-memory
style of attack can be performed on your site by always creating new sessions
on demand. An unscrupulous hacker could discover your site was creating
sessions and keep pumping requests, each of which would result in a new
session. By using getSession(false) and then redirecting to a login page
when a session is not detected, you can protect against such attacks.

There are a number of interesting methods on HttpSession objects such as
isNew(), getAttribute(), setAttribute(), and so on. For an exhaustive review,
see the Servlet specification or any of the excellent John Wiley & Sons publications.

Getting back to our problem at hand, we have still only solved half of our problem.
We’d like to be able to use our sessions to somehow skip over the session new state and
move to the session in-use stage automatically. We can achieve this final step by redi-
recting the browser back to the handling servlet automatically. Listing 36.3 combines
servlet session logic with the ability to redirect, with a valid session, the client back to
the handling servlet.

01: package org.javapitfalls.item36;

02:

03: import java.io.*;

04: import java.util.Date;

05: import javax.servlet.*;

06: import javax.servlet.http.*;

Listing 36.3 RedirectServlet.java

318 Item 36

07:

08: public class RedirectServlet extends HttpServlet {

09:

10: static int count = 2;

11:

12: public void doGet(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {

13:

14: HttpSession session = req.getSession(false);

15: System.out.println(“”);

16: System.out.println(“---------------------------------------”);

17: System.out.println(“SessionServlet::doGet”);

18: System.out.println(“Session requested ID in request: “ +

req.getRequestedSessionId());

19:

20: if (null == req.getRequestedSessionId()) {

21: System.out.println(“No session ID, first call, creating new Æ
session and forwarding”);

22: session = req.getSession(true);

23: System.out.println(“Generated session ID in Request: “ + Æ
session.getId());

24: String encodedURL = res.encodeURL(“/resubmit/TestServlet”);

25: System.out.println(“res.encodeURL(\”/TestServlet\”;=” + encodedURL);

26: res.sendRedirect(encodedURL);

27: //

28: // RequestDispatcher rd = getServletContext() Æ
.getRequestDispatcher(encodedURL);

29: // rd.forward(req, res);

30: //

31: return;

32: }

33: else {

34: System.out.println(“Session id = “ + req.getRequestedSessionId());

35: System.out.println(“---”);

36: }

37:

38: HandleRequest(req, res);

39: System.out.println(“SessionServlet::doGet returning”);

40: System.out.println(“-------------------------------”);

41: return;

42: }

43:

44: void HandleRequest(HttpServletRequest req, HttpServletResponse Æ
res) throws IOException {

45:

46: System.out.println(“SessionServlet::HandleRequest called”);

47: res.setContentType(“text/html”);

48: PrintWriter out = res.getWriter();

Listing 36.3 (continued)

Too Many Submits 319

49: Date date = new Date();

50: out.println(“<html>”);

51: out.println(“<head><title>Ticket Confirmation</title></head>”);

52: // javascript

53: out.println(“<script language=\”javascript\”>”);

54: out.println(“<!--”);

55: out.println(“var submitcount = “ + count + “;”);

56: out.println(“function checksubmitcount()”);

57: out.println(“{“);

58: out.println(“ if (2 == submitcount)”);

59: out.println(“ alert(\”You have already submitted this form.\”);”);

60: out.println(“ else”);

61: out.println(“ alert(\”You have submitted this form “ + count + Æ
“ times already.\”);”);

62: out.println(“ document.Order.submit();”);

63: out.println(“}”);

64: out.println(“//-->”);

65: out.println(“</script>”);

66: // body

67: out.println(“<body>”);

68: out.println(“<center>”);

69: out.println(“<form name=\”Order\” action=\”./RedirectServlet\” Æ
method=\”GET\”>”);

70: out.println(“<table border=\”2\” width=\”50%\” align=\”center\” Æ
bgcolor=\”#cccccc\”>”);

71: out.println(“<tr>”);

72: out.println(“<td align\”right\” width=\”40%\”>Concert:</td>”);

73: out.println(“<td width=\”60%\”><input type=\”text\” Æ
name=\”Concert\” value=\”\”></td>”);

74: out.println(“</tr>”);

75: out.println(“<tr>”);

76: out.println(“<td colspan=\”2\” align=\”center\”>”);

77: out.println(“<input type=\”button\” name=\”btnSubmit\” value=\”Do Æ
Submit\” onClick=\”checksubmitcount();\”>”);

78: out.println(“</td>”);

79: out.println(“</tr>”);

80: out.println(“</form>”);

81: // message

82: out.println(“
”);

83: out.println(“<h1>The Current Date and Time Is:</h1>
”);

84: out.println(“<h3>You have submitted this page before</h3>
”);

85: out.println(“<h3>” + date.toString() + “</h3>”);

86: out.println(“</body>”);

87: out.println(“</html>”);

88:

89: count++;

90:

Listing 36.3 (continued)

320 Item 36

91: System.out.println(“SessionServlet::HandleRequest returning.”);

92: return;

93: }

94:

95: }

Listing 36.3 (continued)

Just how does Listing 36.3 solve our problem? If we examine the code closely, we see
that on line 14 we try to obtain a handle to a session. On line 20 we identify that an
active session exists by comparing the session to null or by checking for a valid ses-
sion ID. Either method suffices. Lines 20 to 31 are executed if no session exists, and to
handle our problem, we:

1. Create a session, as shown on line 22.

2. Use URL encoding to add the new session ID to our URL, as shown on line 24.

3. Redirect our servlet to the newly encoded URL, as shown on line 26.

Those readers unfamiliar with URL rewriting are directed to lines 18 and 25. The
request parameter to an HttpServlet can do what is known as URL rewriting. URL
rewriting is the process whereby a session ID is automatically inserted into a URL. The
underlying application server can then use the encoded URL to provide an existing
session automatically to a servlet or JSP. Note that depending on the application server,
you may need to enable URL rewriting for the above example to work.

WARN I NG Lines 28 and 29, while commented out, are shown as an example
of something not to do. On first glance, forward seems to be a better solution
to our problem because it does not cause a round-trip to the browser and back.
However, forward comes at a price: The new session ID is not attached to the
URL. Using forward in Listing 36.3 would cause the servlet to be called over
and over in a loop and ultimately kill the application server.

The JavaScript/servlet implementation described above is okay for many situations,
but I’ve been on several programs that wanted to limit the amount of JavaScript used
on their deployments, so I thought it would beneficial to include an example that sat-
isfies that requirement. In the example below, a controller servlet will be used to pro-
hibit multiple user form requests using the Front Controller pattern.

01: package org.javapitfalls.item36;

02:

03: import java.io.*;

Listing 36.4 ControllerServlet.java (continued)

Too Many Submits 321

04: import java.util.*;

05: import javax.servlet.*;

06: import javax.servlet.http.*;

07: import org.javapitfalls.item36.*;

08:

09: public class ControllerServlet extends HttpServlet {

10:

11: private static String SESSION_ID;

12:

13: public void destroy() {}

Listing 36.4 (continued)

Our application reads an id tag and its initial value from the deployment descriptor
embedded in the param-name and param-value tags in Listing 36.5 on lines 29 and
30. This read operation takes place in the init() method on line 17 of the controller
servlet in Listing 36.4 and will be used to identify the user session. The controller appli-
cation uses three parameters: numTickets, stadiumTier, and ticketPrice, as
data items to process from the ticketForm application shown in Listing 36.4. The
getNamedDispatcher forwards all requests by the name mappings specified in the
deployment descriptor. The form request associates the ticketForm.jsp with the
“form” label on line 44 of the web.xml in Listing 36.5. This method is preferred over
dispatching requests by application path descriptions because this exposes the path
information to the client, which could present a safety concern. Additionally, it is a
good practice to migrate applications and their dependencies to the deployment
descriptor so that modifications can be made more easily.

14:

15: public void init() throws ServletException {

16:

17: SESSION_ID = getInitParameter(“id”);

18:

19: }

20:

21: protected void doGet(HttpServletRequest req, HttpServletResponse

res) throws ServletException, IOException {

22:

23: process(req, res);

24:

25: }

26:

27: protected void process(HttpServletRequest req,

28: HttpServletResponse res)

29: throws ServletException, IOException {

30:

Listing 36.4 (continued)

322 Item 36

31: HttpSession session = req.getSession(false);

32: String numTickets = req.getParameter(“numTickets”);

33: String stadiumTier = req.getParameter(“stadiumTier”);

34: String ticketPrice = req.getParameter(“ticketPrice”);

35: if(session == null) {

36: if((numTickets == null) || (stadiumTier == null) ||

37: (ticketPrice == null)) {

38:

39: getServletConfig().getServletContext().

40: getNamedDispatcher(“form”).forward(req, res);

41:

42: } else {

43: throw new ServletException(“[form] Page Not Found”);

44: }

45:

46: } else {

47:

48: if ((!numTickets.equals(“Please enter a Ticket #”)) &&

49: (!stadiumTier.equals(“Please enter a Stadium Tier”)) &&

50: (!ticketPrice.equals(“Please enter a Ticket Price”))) {

51:

Listing 36.4 (continued)

The session.getAttribute operation on line 52 reads the ID name captured in
the init method on line 17 during the initialization of the controller servlet. This ID,
SESSION_ID, will serve as the session identifier for the submit page. If the user has
entered all the proper form information on the ticketForm page, and the session ID is
not null, then the controller will remove the ID and forward the application to the suc-
cessful completion page. When the form has been properly completed and the session
ID is equal to null, then the user will be forwarded to the error page that indicates that
the ticketForm has already been completed satisfactorily and cannot be resubmitted.

52: String sessionValidatorID =

53: (String)session.getAttribute(SESSION_ID);

54: if(sessionValidatorID != null) {

55:

56: session.removeAttribute(SESSION_ID);

57: getServletConfig().getServletContext().

58: getNamedDispatcher(“success”).forward(req, res);

59:

60: } else {

61: getServletConfig().getServletContext().

62: getNamedDispatcher(“resubmit”).forward(req, res);

63: }

64:

Listing 36.4 (continued)

Too Many Submits 323

65: } else {

66:

67: getServletConfig().getServletContext().

68: getNamedDispatcher(“form”).forward(req, res);

69: }

70:

71: }

72: }

73:

74: }

75:

Listing 36.4 (continued)

Lastly, the deployment descriptor exhibits the application’s mappings that allow
requests to be forwarded and processed by the controller. As mentioned earlier, the
session ID token is read from the parameter tags on lines 25 and 26 of Listing 35.5. The
JavaServer Pages that are used for presentation are shown on lines 42 to 55. When the
controller uses the getNamedDispatcher method, a label is passed that is associated
with a JSP script. When a user attempts to resubmit the ticketForm page, the resub-
mit label is passed through controller, which forwards control to the resubmit error
page (resubmitError.jsp).

01: <?xml version=”1.0”?>

02: <!DOCTYPE web-app PUBLIC “-//Sun Microsystems, Inc.//DTD Web Æ
Application 2.3//EN” “http://java.sun.com/j2ee/dtds/web-app_2_3.dtd”>

03: <web-app>

04:

05: <servlet>

06: <servlet-name>RedirectServlet</servlet-name>

07: <display-name>RedirectServlet</display-name>

08: <description>RedirectServlet</description>

09: <servlet-class>

10: org.javapitfalls.item36.RedirectServlet

11: </servlet-class>

12: </servlet>

13: <servlet>

14: <servlet-name>SimpleOrder</servlet-name>

15: <display-name>SimpleOrder</display-name>

16: <description>SimpleOrder</description>

17: <servlet-class>

18: org.javapitfalls.item36.SimpleOrder

19: </servlet-class>

20: </servlet>

21: <servlet>

22: <servlet-name>ControllerServlet</servlet-name>

23: <display-name>ControllerServlet</display-name>

Listing 36.5 web.xml

324 Item 36

24: <description>ControllerServlet</description>

25: <servlet-class>

26: org.javapitfalls.item36.ControllerServlet

27: </servlet-class>

28: <init-param>

29: <param-name>id</param-name>

30: <param-value>id</param-value>

31: </init-param>

32: </servlet>

33:

34: <servlet>

35: <servlet-name>TestServlet</servlet-name>

36: <display-name>TestServlet</display-name>

37: <description>TestServlet</description>

38: <servlet-class>

39: org.javapitfalls.item36.TestServlet

40: </servlet-class>

41: </servlet>

42: <servlet>

43: <servlet-name>form</servlet-name>

44: <jsp-file>/ticketForm.jsp</jsp-file>

45: </servlet>

46:

47: <servlet>

48: <servlet-name>success</servlet-name>

49: <jsp-file>/success.jsp</jsp-file>

50: </servlet>

51:

52: <servlet>

53: <servlet-name>resubmit</servlet-name>

54: <jsp-file>/resubmitError.jsp</jsp-file>

55: </servlet>

56:

57: <servlet-mapping>

58: <servlet-name>RedirectServlet</servlet-name>

59: <url-pattern>/RedirectServlet</url-pattern>

60: </servlet-mapping>

61:

62: <servlet-mapping>

63: <servlet-name>SimpleOrder</servlet-name>

64: <url-pattern>/SimpleOrder</url-pattern>

65: </servlet-mapping>

66:

67: <servlet-mapping>

68: <servlet-name>ControllerServlet</servlet-name>

69: <url-pattern>/ControllerServlet</url-pattern>

70: </servlet-mapping>

71:

72: <servlet-mapping>

Listing 36.5 (continued)

Too Many Submits 325

73: <servlet-name>TestServlet</servlet-name>

74: <url-pattern>/TestServlet</url-pattern>

75: </servlet-mapping>

76:

77: </web-app>

78:

Listing 36.5 (continued)

In this pitfall we discussed a number of solutions to the multiple-submit problem.
Each solution, as with almost every solution, had its positive and negative aspects.
When solving problems, we must clearly understand the various pros and cons of a
solution so we can assess the value of each trade-off. Our final JavaScript example had
the benefit of solving the problem at hand, but had the trade-off that we needed to
make an extra round-trip to the client in order to make it work. The first JavaScript
solution was perhaps the most elegant, but required that the client enables JavaScript
for it to work. The final application would serve those well that opted to forego the use
of JavaScript to avoid browser incompatibilities with the scripting language. As with
any problem, there is often a world of solutions, each one with its own trade-offs. By
understanding the trade-offs of a given solution, we can make the most informed
choice for a given problem.

326 Item 36

327

In that paper, which he wrote in 1984, Dijkstra suggests that in a world of incredibly
fast computers and increasingly complex programming environments, simplicity is
the key. “We know perfectly well what we have to do,” he writes, “but the burning
question is, whether the world we are a part of will allow us to do it.”1 I would contend
that the frameworks present in Java, and specifically on the server side today, provide
the beginnings of such a world—not that this will completely keep us from fouling
things up! As this book shows you, there are always opportunities for that. However,
when we do not have to worry about the management of services such as memory,
threads, connection pooling, transactions, security, and persistence, things get simpler.
When we allow the container to handle the details of these services for us, we can focus
where Dijkstra thought we should focus: on the logic of our application itself.

The J2EE environment provides the atmosphere for Java programmers to focus on
application logic. Because application servers focus on the “hard stuff,” we can focus
on the business logic of our applications. However, since programming in this envi-
ronment represents a change in mind-set, new enterprise developers stumble into

The Enterprise Tier
“Machine capacities give us room galore for making a mess of it. Opportunities
unlimited for fouling things up! Developing the austere intellectual discipline of
keeping things sufficiently simple is in this environment a formidable challenge,

both technically and educationally.”

Edsger W. Dijkstra,
from “The Threats to Computing Science,” EWD Manuscript #898

PA R T

Three

1 Dijkstra, Edsger. “The Threats to Computing Science.” EWD manuscript #898. Available at
http://www.cs.utexas.edu/users/EWD/ewd08xx/EWD898.PDF.

quite a few traps. Because the Java language is so flexible, there is the ability for pro-
grammers to add unneeded complexity (thread management, etc.) even when the con-
tainer provides this support. Because of misunderstandings of the J2EE environment,
design errors pop up. The use of database connections and different types of databases
present other challenges, and the use of new Java Web services APIs, such as Java API
for XML-based Remote Procedure Calls (JAX-RPC) and the Java API for XML Reg-
istries (JAXR), provides more opportunities for misunderstandings and traps to occur.

In this section of the book, we have tried to focus on areas of the enterprise tier
where we have seen and experienced problems and confusion. Although some of the
pitfalls could possibly be tied to the other tiers (JDBC pitfalls, for example), we placed
them in this section because developers make use of them in the enterprise tier. Many
of the pitfalls in this section revolve around Enterprise JavaBeans, some focus on APIs
related to Web services, and some focus on design pitfalls. In this section, many pitfalls
focus on “the big picture” in a multi-tier environment.

Here are highlights of pitfalls in this section:

J2EE Architecture Considerations (Item 37). J2EE has become a major player in
enterprise IT solutions. Developers are often confused about how to apply this
architecture to their solution. This pitfall discusses how those mistakes occur
and considerations for avoiding them.

Design Strategies for Eliminating Network Bottleneck Pitfalls (Item 38). This
pitfall focuses on pitfalls where network calls and bandwidth are a major factor
and shows performance-tuning design strategies to use between tiers.

I’ll Take the Local (Item 39). EJB 2.0 introduced the local interface as a mechanism
for referencing EJBs within the same process. This pitfall discusses the why and
how of local interfaces over the traditional remote interface.

Image Obsession (Item 40). Frequently, Enterprise Java applications are developed
on one platform and deployed on another. This can cause some cross platform
issues. This pitfall examines one of those issues regarding server generated
images.

The Problem with Multiple Concurrent Result Sets (Item 41). When you have to
interface with many different types of databases, your connections may be han-
dled in different ways. This pitfall addresses a problem that can arise when you
use multiple ResultSet objects concurrently.

Generating Primary Keys for EJB (Item 42). There are many ways to create unique
primary keys for entity beans. Some of these techniques are wrong, some suffer
performance problems, and some tie your implementation to the container. This
pitfall discusses the techniques and offers solutions.

The Stateful Stateless Session Bean (Item 43). Developers frequently confuse the
stateless nature of the stateless session bean. This pitfall provides an example of
where this confusion can cause problems and clarifies just how stateful the
stateless bean is.

The Unprepared PreparedStatement (Item 44). The PreparedStatement is a
powerful capability in server side applications that interface with a database. This
pitfall explores a common mistake made in the use of the PreparedStatement.

328 Part Three

Take a Dip in the Resource Pool (Item 45). Container resource pools are fre-
quently overlooked by developers, who instead rely on several techniques that
predate this capability. This pitfall explores techniques currently used and how a
container resource pool is the superior choice.

JDO and Data Persistence (Item 46). Data persistence is an important component
for all enterprise systems. This pitfall introduces Java Data Objects as a new per-
sistence mechanism that uses both Java and SQL constructs for data transactions.

Where’s the WSDL? Pitfalls of Using JAXR with UDDI (Item 47). This item
addresses pitfalls with using JAXR with UDDI. The advent of Web services
brought us a new API—the Java API for XML Registries. Problems can occur
when you are querying UDDI registries with JAXR. This pitfall discusses the
problems in depth.

Performance Pitfalls in JAX-RPC Application Clients (Item 48). As JAX-RPC is
adopted into the J2EE environment, it is important to know the gory details of how
slow or fast your connections could be when using some of JAX-RPC’s features on
the client side. This pitfall demonstrates an example and shows speed statistics.

Get Your Beans Off My Filesystem! (Item 49) The EJB specification lists certain pro-
gramming restrictions for EJB developers. This pitfall shows an example of how
one of these restrictions is often violated and provides an alternative solution.

When Transactions Go Awry , or Consistent State in Stateful Session EJBs (Item
50). Data transactions are an important part of all distributed system applica-
tions. This pitfall shows how the SessionSynchronization interface and the
Memento pattern can be employed as vehicles in enterprise applications to save
and restore data.

Item 37: J2EE Architecture Considerations

I was assigned to be the software lead of a project to Web-enable a legacy XWindows
database visualization application. This application consisted of a large database and a
data-handling interface that captured data coming from various control systems, cor-
related it, and loaded it. The data from the control systems was immense, and the inter-
face to them was customized and optimized for its purpose. It worked well, and the
goal was merely trying to make this data interface available to a wider audience. How
better than to make it a Web application? While database-driven Web applications had
been around for a while, including relatively stable versions of servlets and JSPs,
commercial J2EE containers were beginning to proliferate. Figure 37.1 shows the archi-
tecture of the “as is” system.

Analyzing the requirements, we found there were really two types of users envi-
sioned for this system:

■■ Analyst personnel, who needed a rich toolset by which they could pour
through this voluminous set of data

■■ Management personnel, who needed an executive-level summary of system
performance

J2EE Architecture Considerations 329

Figure 37.1 The current system.

Therefore, there were truly two different clients that needed to be Web-enabled.
The analyst client needed functionality that included mapping, time lines, and

spreadsheets. This was going to be the primary tool used for these personnel to perform
their job, and they had expectations that it would perform like the rest of the applica-
tions on their desktop machine. They wanted to be able to print reports, save their work,
and perform most other tasks that users have come to expect from their PCs.

The manager client was meant to show some commonly generated displays and
reports. Essentially, this would be similar to portfolio summary and headlines view.
They didn’t want anything more involved than essentially to point their Web browser
at a Web site and view the latest information.

We proposed to solve the problem of two clients by building a servlet/JSP Web site
for the managers with a restricted area that included a Java Web Start deployed appli-
cation for the analysts (for further explanation of the Java Web Start versus applet deci-
sion, see Item 26, “When Applets Go Bad”). There would be a query servlet interface to
the database, which would be reused by both clients, using XML as the wire data trans-
mission format. (It should be noted that there were also restrictions on the network
enforced by firewalls.) Figure 37.2 outlines the proposed solution.

Migrate to Web

Clients

Database

X Windows
Server

Data Extraction
Process

Control System Activity Feeds

330 Item 37

Figure 37.2 The proposed solution.

The customer accepted this as a sound approach and approved the project. Then
senior management attended a demonstration on J2EE from an application server ven-
dor, who gave an inspiring presentation. They used the very impressive-looking J2EE
Blueprint picture, which is shown in Figure 37.3 (no longer in use by Sun). I pointed
out to them that principles were entirely consistent with our design. However, they
seemed stuck on the fact that the yellow tier was not present in our design. More
specifically, they didn’t understand how we could in good conscience not use EJB.

This is a textbook case of what Allen Holub calls “bandwagon-oriented program-
ming” in his interesting article, “Is There Anything to JavaBeans but Gas?”2 The central
point of the article was that problems should not be solved in a “follow the herd” men-
tality. While I agree with this statement, Mr. Holub forgets that the inverse of that is also
problematic. Just because an approach is popular does not mean that it is without merit.

New System

Thin Clients
(Pages)

Thick Clients
(Apps)

Database

Database
Servlet

Data Extraction
Process

Control System Activity Feeds

J2EE Architecture Considerations 331

2 Holub, Allen. “Is There Anything to JavaBeans but Gas?” C/C++ Users Journal. Available at
http://www.cuj.com/java/forum.htm?topic=java.

Figure 37.3 J2EE Blueprint diagram (old).
http://java.sun.com/blueprints/
Copyright 2002 Sun Microsystems, Inc. Reprinted with permission. Sun, Sun Microsystems, the Sun Logo,
Java, J2EE, JSP, and EJB are trademarks or registered trademarks of Sun Microsystems, Inc. in the United
States and other countries.

Enterprise JavaBeans, and the J2EE in general, are based on sound engineering prin-
ciples and fill a major void in the enterprise application market (a platform-neutral
standard for enterprise applications and services). So although we’ve now seen an
example where J2EE is “bad,” this doesn’t necessarily mean that it can’t be good.

Let’s clarify. Both solutions deal with J2EE. I took issue with the use of EJB, and here
is why. EJB is not an object-relational mapping (ORM) tool. The purpose of entity beans
is to provide fault-tolerant persistent business objects. Corrupt data, particularly
transactions like orders, bills, and payments, cost businesses money—big money. Such
persistence costs resources and time. This application was a data visualization suite for
lots of data, which would amount to having to handle negotiating “locks” from the
database vernacular over a tremendous number of records. This would slow perfor-
mance to incredibly slow levels.

Pure
HTML

Java
Applet

Enterprise
Information

System

Server-Side
Presentation

Client-Side
Presentation

Browser

JSP

JSP

Java
Servlet

J2EE
Platform

Web Server

Java
Application

Desktop

J2EE
Client

Other Device

Server-Side
Business Logic

EJB

EJB

EJB

J2EE
Platform

EJB Container

332 Item 37

Figure 37.4 J2EE tiers (new).
http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/introduction
/introduction3.html#1041147
Copyright 2002 Sun Microsystems, Inc. Reprinted with permission. Sun, Sun Microsystems, the Sun Logo, JSP,
JNDI, and JavaMail are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States
and other countries.

But the original solution was a J2EE solution, what became known as the “Web tier”
by Sun. Figure 37.4 is a diagram representing the new vision that Sun has for different
containers for the tier of solution needed.

As to whether the original specification intended to have the flexibility of providing
simply Web tier solutions, it was not readily apparent from the initial blueprints. This
is why Sun separated them—to clarify that all solutions did not need to center on EJB.
This caused a lot of frustration on my team’s part (and I know that we were not alone
judging from the backlash against EJB I have read).

Figure 37.5 illustrates the various containers that the Java platform envisions. The
handheld clients are not shown but are not really relevant relative to the server-side
technologies. Note the distinction between the Web container and the EJB container.
Also note how the Web container can serve as a façade for the EJB container.

EJB Container

Web
Container

(Servlets,
JSP Pages,

HTML, XML)
JNDI,
JMS,

JavaMail

Enterprise
Information

Systems

(RDBMS,
ERP, Legacy

Applications)

Client

Client

Client

enterprise
bean

enterprise
beanenterprise

bean

Client Tier Middle Tier EIS Tier

Client

Firewall

J2EE Architecture Considerations 333

Figure 37.5 Java containers.

So how do we tell if the EJB tier (container) is necessary in our application? This
boils down to looking at what EJB provides:

Scalability. Everyone wants scalability, but how scalable? Essentially, we want all of
our apps to scale immensely and forever, because something in our system design
mentality says, “It can handle anything.” However, bigger is not always better, and
benchmarks from 2000 show servlets having peak performance on the order of 400
requests per second. Now, you would want to look into your own benchmarking
studies, especially concerning the specific vendor solutions you want, but it is not
safe to assume that if you want a highly scalable system, you must use EJB.

Transactions. Transactions are a strong capability of EJB containers. This is proba-
bly a major selling point when you are dealing with distributed or complex
transaction scenarios (multiple systems, phased transactions). However, a great

Applets

Apps

Client Container

J2SE

Servlets JSP

Filters

Web Container

J2SE

Session
Beans

Entity
Beans

Message
Driven
Beans

EJB Container

J2SE

RMI-IIOP

HTT
P

RM
I-IIOP

J2EE

334 Item 37

number of developers use transactions to ensure that a series of SQL statements
execute together in the same RDBMS. If this is the level of complexity required,
then the JDBC transaction capability is probably more than sufficient.

Security. If you have complex, role-based security or complicated access control
lists, this is probably a good place for the EJB container. While the filtering
mechanisms in the new servlet specification are very helpful for building good
user authentication, it is pretty transparent in EJB.

Reliability. A lot of people define reliability as whether their system ever crashes.
In fact, there are a number of semantic debates over reliability versus fault toler-
ance versus redundancy, but what we are talking about is how well the system
responds to something going wrong. As previously mentioned, entity beans
were designed around the old data processing nightmare, so if this is a major
concern to you, then EJB is probably a good idea.

Componentization. J2EE revolves around the idea of being able to build and reuse
components, allowing for the classic build versus buy engineering equation to
be introduced into enterprise applications. It is easy to assume that the market
for EJB container components is more vibrant than Web container components,
but it is quite the opposite. There are tremendous numbers of Web container
components available, including some very good open-source ones. A classic
example is the Jakarta Taglibs or Struts framework (http://jakarta.apache.org/).

Clustering, Load Balancing, Failover. These are classic examples of the need for
the EJB tier. When your applications need to be spread over several containers
in a transparent way to support things like clustering (multiple cooperating
instances to improve performance), load balancing (assigning requests to differ-
ent instances to level the load among all instances), and failover (when one
instance fails, another is able to pick up on it quickly).

Because it was the first cross-platform enterprise component architecture, J2EE has
gained a tremendous amount of attention. While the attention caused a great amount
of hype as well, it is wrong to assume J2EE is a technology without merit. J2EE is a col-
lection of technologies, so it is almost always inappropriate to suggest it is a bad solu-
tion for any enterprise scenario, despite the care that must be taken in determining
whether EJB is a helpful technology to your enterprise solution.

Item 38: Design Strategies for Eliminating
Network Bottleneck Pitfalls

In a distributed world where, as Sun Microsystems says, “the network is the com-
puter,” the network is also where a lot of performance bottlenecks can be found. If your
software communicates over the network, your design must be flexible enough to tune
your performance so that waiting for network traffic does not become the weakest link
in your system. Whether you are programming with Sockets, Remote Method Invoca-
tion (RMI), CORBA, Enterprise JavaBeans, or using SOAP messaging for Web services
using JAXM or JAX-RPC, it is important that you concentrate on your design so that

Design Strategies for Eliminating Network Bottleneck Pitfalls 335

network latency is not a factor. At the same time, you want to design your system with
a flexible architecture.

Although some Java programmers experience problems when designing parallel pro-
cessing algorithms in network computing, most of the pitfalls we’ve experienced relate
to call granularity in remote messages or method calls. That is, the more messages and
calls sent over a network, the more network traffic may impact the performance of your
application. In network programming, many developers design their systems where
clients send multiple small messages over the network, giving the client more details in
the specifics of the transaction but increasing the amount of network connections in an
application session. Most of the time, systems that are designed without performance in
mind fall into this “granular messaging” trap. In this pitfall, we provide a scenario where
we discuss design patterns and strategies for general network programming, and we
discuss examples for systems developed with Enterprise JavaBeans.

A Scenario

To demonstrate these challenges, let’s look at a scenario for a network application for
an automobile service center. An enterprise application for this auto shop supports
troubleshooting for its vehicle service. When customers arrive at the auto shop, they
tell the employees their customer number and the make and model of their auto-
mobile, and they describe their problem. This online application allows the employees
and mechanics to look up information about their automobile, find troubleshooting
solutions, and provide real-time assistance in fixing the problem. The use cases for the
auto shop workflow are shown in Figure 38.1. As you can see from the figure, the auto
shop employee enters the car trouble information (probably with the customer’s infor-
mation), gets the owner information from the database, gets the vehicle history from
the database, gets possible solutions to the problem, and finally, gets part numbers
related to those solutions that are provided.

Looking past the use case and into how data is stored, we see that the application
needs to talk to four databases: the owner database with information about the owner’s
automobile and his or her service history, the “car trouble” database with common
problems and solutions, the automobile database about makes and models of cars, and
the parts database that keeps part numbers for different makes and models of cars.

General Design Considerations

Before we even look at the pitfalls that occur in each API, the following should be made
abundantly clear: Although there are four databases full of information, it would be a
bad decision to design your client in such a way as to query the databases directly, as
shown in Figure 38.2. Such a design would put too much implementation detail in the
client, and a very possible bottleneck will be in the management of the JDBC connec-
tions, as well as the amount of network calls happening. In Figure 38.2, for each net-
work transaction, there is significant overhead in the establishment and setup of each
connection, leading to performance problems. In addition, such a solution is an exam-
ple of a very brittle software architecture: If the internal structure of one of these data-
bases changes, or if two databases are combined, a client application designed as shown
in Figure 38.2 will have to be rewritten. This causes a software maintenance nightmare.

336 Item 38

Figure 38.1 Use cases of auto shop scenario.

Figure 38.2 Bad client design: calling databases directly.

Owner
Database

Automobile
Database

Car Trouble
Database

Parts
Database

Client
Application

Enter Car Owner Information

Get Part #s for Possible Solutions

Enter Car Trouble Information

Get Owner's Vehicle History

Get Possible Solutions

Auto Shop
Employee

Design Strategies for Eliminating Network Bottleneck Pitfalls 337

Figure 38.3 shows an approach that abstracts the implementation details about the
four databases from the clients. Instead of the client communicating directly with the
four databases, the client communicates with four Java objects. This is good because
implementation-specific details in each database are abstracted from the client. The
abstraction objects hide these details from the client, but the workflow logic still exists
in the client. Added to that is that there is still a potential performance bottleneck: The
solution still requires many network calls from the client. For example, if there were
eight possible solutions to a car trouble problem, the solution in Figure 38.3 would
require 11 network connections (one connection each to the owner, automobile, and car
trouble abstractions, and eight connections asking for parts for possible solutions). If
this system were live, the performance of this would be unacceptable.

Figure 38.4, on the other hand, seems to eliminate all of the problems that we previ-
ously discussed. In Figure 38.4, the client application sends one big message to a gigan-
tic “object that talks to everything.” This object talks to all four databases, encapsulates
all the business logic, and returns the results back to the client application. On the sur-
face, the application design shown in Figure 38.4 seems perfect—but is it? We have def-
initely eliminated the bottleneck of too many network connections, and we have
eliminated the tight coupling between the client and the databases, but we have now a
monstrous object that is tightly coupled to the databases! This design is still inflexible,
similar to the design in Figure 38.1, but we have simply added another layer.

Finally, the diagram in Figure 38.5 shows a better solution. We have a client making
one network call to an object, which then calls the abstractions to the databases. The
database abstractions do the database-specific logic, and the object does the workflow
for our use cases. The client application passes in the customer information and symp-
toms of car trouble to an object, which then delegates that work to abstractions to talk
to the database. Finally, when the possible problems and their respective solution part
numbers are returned to the object, this information is passed back to the client in one
connection. Because only one network connection happens, this creates a positive
impact on performance.

Figure 38.3 Bottleneck: too many network calls from client.

Owner
Abstraction

Automobile
Abstraction

Car Trouble
Abstraction

Parts
Abstraction

Owner
Database

Automobile
Database

Car Trouble
Database

Parts
Database

Client
Application

338 Item 38

Figure 38.4 The extreme: better performance, but inflexible.

Looking at this scenario, we see that there could be many solutions to designing this
system. Before we go into the pitfalls that could occur in each API, let’s mention that
the key goal for designing this system for this scenario is network performance.

Figure 38.5 A more flexible solution.

Owner
Abstraction

Automobile
Abstraction

Car Trouble
Abstraction

Parts
Abstraction

Owner
Database

Automobile
Database

Car Trouble
Database

Parts
Database

Client
Application

Object
That Talks

To
Abstractions

Owner
Database

Automobile
Database

Car Trouble
Database

Parts
Database

Client
Application

Object
That Talks

To
Everything!!

Design Strategies for Eliminating Network Bottleneck Pitfalls 339

EJB Design Considerations

Because we have discussed the potential design pitfalls in this scenario in depth, these
pitfalls easily translate to design pitfalls using Enterprise JavaBeans. One problem sim-
ilar to the poorly thought out designs shown in Figures 38.2 and 38.3 is the design solu-
tion where clients directly call entity beans. When this happens, clients become too
tightly coupled to the logic of entity beans, putting unneeded logic and workflow in
the client, creating multiple network transactions, and creating an architecture that is
very unflexible. If the entity bean changes, the client has to change.

Luckily, session beans were made to handle transactional logic between your client
and your entity beans. Instead of having your clients call your entity beans directly,
have them talk to session beans that handle the transactional logic for your use case.
This cuts down on the network traffic and executes the logic of a use case in one net-
work call. This is an EJB design pattern called the Session Façade pattern and is one of
the most popular patterns used in J2EE.3 In our very simple use case for our example,
we could have a stateless session bean handle the workflow logic, talking to our ses-
sion beans, as shown in Figure 38.6.

Of course, you could also use the EJB Command pattern to accomplish the abstrac-
tion and to package your network commands into one network call. For more infor-
mation about these design patterns and for similar patterns in Enterprise JavaBeans,
read EJB Design Patterns by Floyd Marinescu. It’s a great book. (In fact, I had to throw
away several pitfall ideas because they were described so well in that book!)

In this pitfall, we discussed network programming design that can relate to any area of
Java programming—RMI, Sockets, CORBA, Web Services, or J2EE programming. As you
can see by our discussions related to EJB, the basic concepts of design and programming
for network performance do not change. With J2EE, we discussed the Session Façade and
the Command patterns, which were similar to the solutions we discussed in Figure 38.5.
In fact, the J2EE architecture itself helps the flexibility and stability of our architecture.

Figure 38.6 Using the session façade pattern.

Client
Application

Session
BeanNetwork

call

Application Server

Entity Beans

340 Item 38

3Marinescu. EJB Design Patterns. John Wiley & Sons, 2002.

In conclusion, use the following pieces of advice when designing network applications:

■■ Abstract details from the client.

■■ Abstract things in a multi-tiered solution.

■■ When the network has the potential to be a bottleneck, use the “plan and exe-
cute” strategy—it is often better to send one large message with lots of infor-
mation than to send smaller messages over the network.

Item 39: I’ll Take the Local

I have worked with a team that is providing EJBs available via the Web services proto-
cols (SOAP over HTTP). They use a servlet to receive SOAP messages over HTTP.
Based on the SOAP message, the appropriate EJB is referenced and called.

For the sake of clarity and simplicity, we will use a more stripped-down version to
demonstrate the same concept (see Figure 39.1).

This is the source of the handler, which extends JAXMServlet and implements the
ReqRespListener (a JAXM convention for handling requests that return a synchro-
nous response).

This servlet:

1. Receives the SOAP message.

2. Parses a parameter from the SOAP message.

3. Looks up the EJBHome interface object.

4. Narrows the object into a SOAPHome object.

5. Calls create() on the SOAPHome object to create a SOAPHandler object.

6. Calls the convert() method on the SOAPHandler object.

7. Builds a response SOAP message.

Figure 39.1 Architecture overview.

JA
X

M
Se

rv
le

t

EJB Container
SOAP/HTTP

J2EE Server

I’ll Take the Local 341

Listing 39.1 demonstrates this servlet.

001: /*

002: * RemoteEJBServlet.java

003: *

004: */

005:

006: import javax.servlet.*;

007: import javax.servlet.http.*;

008: import javax.xml.messaging.*;

009: import javax.xml.soap.SOAPMessage;

010: import javax.xml.soap.SOAPPart;

011: import javax.xml.soap.SOAPEnvelope;

012: import javax.xml.soap.SOAPHeader;

013: import javax.xml.soap.SOAPElement;

014: import javax.xml.soap.Name;

015: import javax.xml.soap.SOAPException;

016:

017: import org.xml.sax.*;

018: import org.xml.sax.helpers.*;

019: import javax.xml.parsers.*;

020:

021: import org.w3c.dom.*;

022: import javax.xml.transform.*;

023: import javax.xml.transform.dom.*;

024: import javax.xml.transform.stream.*;

025:

026: import java.net.URL;

027:

028: import javax.naming.*;

029:

030: import javax.rmi.PortableRemoteObject;

031:

032: public class RemoteEJBServlet extends JAXMServlet implements Æ
ReqRespListener {

033:

034: /** Initializes the servlet.

035: */

036: public void init(ServletConfig config) throws ServletException {

037: super.init(config);

038:

039: }

040:

041: /** Destroys the servlet.

042: */

043: public void destroy() {

044:

045: }

046:

Listing 39.1 RemoteEJBServlet

342 Item 39

047:

048: /** Returns a short description of the servlet.

049: */

050: public String getServletInfo() {

051: return “Example of a servlet accessing an EJB through the Æ
remote interface.”;

052: }

053:

054: /** This method receives the message via SOAP, gets a Local Æ
EJB Home interface,

055: * creates the EJB, invokes the appropriate method on the Æ
EJB, and sends

056: * the response in a SOAP message.

057: */

058: public SOAPMessage onMessage(SOAPMessage message) {

059:

060: SOAPMessage respMessage = null;

061:

062: try {

063: //retrieve the number element from the message

064: SOAPBody sentSB = message.getSOAPPart() Æ
.getEnvelope().getBody();

065: Iterator it = sentSB.getChildElements();

066: SOAPBodyElement sentSBE = (SOAPBodyElement)it.next();

067: Iterator beIt = sentSBE.getChildElements();

068: SOAPElement sentSE = (SOAPElement) beIt.next();

069:

070: //get the text for the number element to put in response

071: String value = sentSE.getValue();

072:

073: Context ctx = new InitialContext();

074:

075: Object obj = ctx.lookup(“mySOAPHome”);

076:

077: SOAPHome obj = (SOAPHome) PortableRemoteObject.narrow Æ
(obj, SOAPHome.class);

078:

079: SOAPHandler soapHandler = soapHm.create();

080:

081: String responseData = soapHandler.convert(value);

082:

083: //create the response message

084: respMessage = fac.createMessage();

085: SOAPPart sp = respMessage.getSOAPPart();

086: SOAPEnvelope env = sp.getEnvelope();

087: SOAPBody sb = env.getBody();

088: Name newBodyName = env.createName(“response”,

089: “return”, “http://www.javapitfalls.org”);

090: SOAPBodyElement response =

Listing 39.1 (continued)

I’ll Take the Local 343

091: sb.addBodyElement(newBodyName);

092:

093: //create the orderID element for confirmation

094: Name thingName = env.createName(“thing”);

095: SOAPElement newThing =

096: response.addChildElement(thingName);

097: newThing.addTextNode(responseData);

098:

099: respMessage.saveChanges();

100:

101: } catch (SOAPException soapE) {

102: // log this problem

103: soapE.printStackTrace();

104: }

105:

106: return respMessage;

107: }

108:

109: }

110:

Listing 39.1 (continued)

What is wrong with this approach? Actually, there is nothing explicitly wrong.
Countless systems have been built that use this servlet-to-EJB paradigm. However, in
this case, both the Web container and the EJB container are running in the same process
(in this case the JBoss Application Server). Therefore, this is what happens:

1. The client calls a local stub.

2. That stub performs the necessary translations (marshalling) to make the Java
objects suitable for network transport.

3. The skeleton receives the stub’s transmission and converts everything back to
Java objects.

4. The actual EJBObject is called, and it does all of its necessary magic (why you
built it).

5. The response is transformed back into a network neutral format.

6. The skeleton returns the response.

7. The stub converts back into Java stuff.

This is typical RMI stuff, right? So what is the big deal? Well, in this case we are
operating in the same process. No one would ever make RMI calls to interact with their
local objects, so why would you do it in EJB? It used to be that you had to do it; the EJB
1.x specifications gave you no other option. This was based on a basic principle in dis-
tributed objects: Design things to be independent of their location.

344 Item 39

Furthermore, let’s not forget that the Web server and EJB server running in different
processes is not that uncommon. As a matter of fact, it is very common to see Web
containers running on entirely different machines. However, in this case, we have pro-
vided a SOAP interface to our EJBs. That it communicates like a Web server, in other
words, over HTTP, is not really the point. We are essentially writing a protocol wrapper
to our business objects. It makes little sense to write a protocol wrapper that commu-
nicates in an entirely different protocol when it doesn’t have to do so.

NOTE All signs point to J2EE 1.4 containing the Web services protocols as an
inherent part of J2EE. However, this shows that it is not required in order to use
SOAP right now.

So how do you solve this problem? EJB 2.0 offers a solution: local interfaces. When
you use a local interface, you can interact directly with the object. This avoids all the
network-related issues. This is a remarkable timesaver when you consider just how
much is dependent on the size and complexity of the objects.

Listing 39.2 shows the code that changes to use the local interface.

1: //get the text for the number element to put in response

2: String value = sentSE.getValue();

3: Context ctx = new InitialContext();

4: SOAPHome obj = (SOAPHome)ctx.lookup(“mySOAPHome”);

5: SOAPHandler soapHandler = soapHm.create();

6: String responseData = soapHandler.convert(value);

7:

Listing 39.2 LocalEJBServlet

That doesn’t look much different than our previous example—because it isn’t. In
this case, I have only removed the narrowing of the Home object. I left the names of the
other interfaces the same. Why? Because the real difference is in the back end. Listing
39.3 is an example of a remote home interface.

01: package org.javapitfalls;

02:

03: /**

04: * This is an example of SOAPHome as a remote interface.

07: */

08:

09: public interface SOAPHome extends javax.ejb.EJBHome

10: {

Listing 39.3 SOAPHome (remote) (continued)

I’ll Take the Local 345

11:

12: /**

13: * This method creates the SOAPHandler Object

16: */

17:

18: SOAPHandler create() throws java.rmi.RemoteException, Æ
javax.ejb.CreateException;

19:

20: }

21:

Listing 39.3 (continued)

Listing 39.4 is the exact same thing as a local interface.

01: package org.javapitfalls;

02:

03: /**

04: * This is an example of SOAPHome as a local interface.

07: */

08:

09: public interface SOAPHome extends javax.ejb.EJBLocalHome

10: {

12: /**

13: * This method creates the SOAPHandler Object

16: */

17:

18: SOAPHandler create() throws javax.ejb.CreateException;

20: }

21:

Listing 39.4 SOAPHome (local)

Notice that this extends EJBLocalHome instead of EJBHome as in the remote case.
Furthermore, notice how the methods in the local version do not throw RemoteEx-
ception. This is because it is local. It won’t have problems with remote access,
because it won’t be dealing with things that are remote.

But this isn’t all. Let’s examine the actual business interface and notice its differ-
ences. Listing 39.5 is an example of a remote SOAPHandler object.

346 Item 39

01: package org.javapitfalls;

02:

03: /**

04: * This is an example of SOAPHandler remote interface.

07: */

08:

09: public interface SOAPHandler extends javax.ejb.EJBObject

10: {

11:

12: /**

13: * This method converts the parameter into the response

16: */

17:

18: String convert(String param) throws javax.rmi.RemoteException;

20: }

Listing 39.5 SOAPHandler (remote)

Listing 39.6 is the exact same thing as a local SOAPHandler object.

01: package org.javapitfalls;

02:

03: /**

04: * This is an example of SOAPHandler local interface.

07: */

08:

09: public interface SOAPHandler extends javax.ejb.EJBLocalObject

10: {

12: /**

13: * This method converts the parameter into the response

16: */

17:

18: String convert(String param);

20: }

Listing 39.6 SOAPHandler (local)

There is something important to understand about this configuration. Since
the servlet and EJBs need to be run in the process space, they need to be able to
have each other in the same context. To accomplish this, you should place any Web

I’ll Take the Local 347

components that use the local interfaces in the same EAR (Enterprise ARchive) as the
classes that implement them.

So, should you always use local interfaces? Not necessarily. There is really one major
thing to consider: Are your Web container and EJB container running in the same
process, or should they be? This all depends on your individual architecture, but here
are some thoughts to consider:

■■ Do you need separate processes for the Web container and the EJB container?
Most people believe that in order to load-balance the Web servers, they must be
kept separate from the EJB servers. This is untrue; in fact, it is likely that clus-
tering multiple “combined” application servers will provide just as good, if not
better, results.

■■ Is the EJB container going to be a resource burden on the Web container, since
they are running in the same process? If your architecture is light on EJBs and
heavy on Web components, perhaps they should be refactored out of the
equation. A Web tier solution may be best.

This example is done to illustrate a point about using local interfaces for Enterprise
JavaBeans. The example itself is quite helpful, but it is sure to become moot with the
release of J2EE 1.4. In this release, JAX-RPC will become another communication pro-
tocol for interacting with EJB containers, like RMI is right now. Also, JAXM will
become another protocol for interacting with the Java Message Service. These enhance-
ments will make the Web services protocols just another transparent mechanism for
communicating with the Java 2 Enterprise Edition.

Item 40: Image Obsession

Java has been enormously successful on the server side, largely tracking with the rise
of the Internet and distributed computing. This has given rise to many, many thin
clients. One of the biggest issues in thin clients is trying to deliver more expressive user
interfaces. This was the idea behind XWindows—a big, powerful machine generates
user interface components for thin clients.

A classic example in Web interfaces is to dynamically generate images. We built a
graphical reporting tool that generated images using the open-source JFreeChart
package (http://www.object-refinery.com/jfreechart/) and the open-source Cewolf
custom tag library (http://cewolf.sourceforge.net/).

Our application generates a pie chart showing the percentages of Web browser
usage on this particular site. We developed this application on our Windows develop-
ment boxes. Listing 40.1 is what it looks like both in code (simplified, see the Cewolf
docs for more information) and on the screen.

01: <%@page import=”java.util.*” %>

02: <%@page import=”de.laures.cewolf.*” %>

03: <%@page import=”com.jrefinery.data.*” %>

04:

Listing 40.1 Example code

348 Item 40

05: <%@ taglib uri=”http://cewolf.sourceforge.net/taglib/cewolf.tld” Æ
prefix=”cewolf” %>

06:

07: <%

08: class DatasetProducerImpl implements DatasetProducer {

09: private Object obj;

10:

11: public DatasetProducerImpl(Object obj) {

12: this.obj = obj;

13: }

14:

15: public Object produceDataset(HashMap params) throws Æ
DatasetProduceException {

16: return obj;

17: }

18: }

19: %>

20:

21: <html>

22: <head>

23: <title>Browser Graph</title>

24: </head>

25:

26: <body>

27: <%

28: try {

29:

30: DefaultPieDataset pieData = new DefaultPieDataset();

31: pieData.setValue(“Internet Explorer”, new Integer(23405));

32: pieData.setValue(“Netscape”, new Integer(12313));

33: pieData.setValue(“Mozilla”, new Integer(11202));

34: pieData.setValue(“Opera”, new Integer(1333));

35:

36: DatasetProducer pieProducer = new DatasetProducerImpl(pieData);

37: pageContext.setAttribute(“browserPie”, pieProducer, Æ
PageContext.APPLICATION_SCOPE);

38:

39: %>

40:

41: <center>

42: <h1>Usage of Site by Browser</h1>

43: </center>

44: <p>

45: <table border=”0” cellpadding=”2” align=”center”>

46: <tr>

47: <td colspan=”2”>

48: <cewolf:chart

49: id=”browserPieChart”

50: title=”Browser Usage”

Listing 40.1 (continued)

Image Obsession 349

51: renderer=”servlet/chart”

52: width=”400” height=”300”

53: type=”pie”

54: antialias=”true”>

55: <cewolf:data>

56: <cewolf:producer id=”browserPie” />

57: </cewolf:data>

58: </cewolf:chart>

59: </td>

60: </tr>

61: </table>

62: <p>

63: <%

64:

65: } catch (Exception e) {

66: e.printStackTrace();

67: }

68:

69: %>

70:

71: </body>

72: </html>

Listing 40.1 (continued)

Figure 40.1 shows our beautiful graph, easy to build and deploy. At this point, we
start thinking that it cannot be this easy, so then we deploy our Web application on our
production Solaris machine.

Figure 40.1 Rendered chart example (Windows).

350 Item 40

Figure 40.2 Example (Solaris 8).

After bragging about our new graph tool and showing it off on our development
boxes, our stomach turned when we saw what showed up on our deployment systems.
Figure 40.2 shows the source of our nightmare.

What happened to the image? We ran the exact same code with the same configura-
tion. When we examine the stack trace, we see the problem, shown in Listing 40.2
(abridged).

01: 2002-08-15 17:53:43 StandardWrapperValve[chart]: Servlet.service() Æ
for servlet chart threw exception

02: javax.servlet.ServletException: Servlet execution threw an exception

03: at org.apache.catalina.core.ApplicationFilterChain Æ
.internalDoFilter(ApplicationFilterChain.java:269)

04: at org.apache.catalina.core.ApplicationFilterChain.doFilter Æ
(ApplicationFilterChain.java:193)

05: at org.apache.catalina.core.StandardWrapperValve.invoke Æ
(StandardWrapperValve.java:243)

06: at org.apache.catalina.core.StandardPipeline.invokeNext Æ
(StandardPipeline.java:566)

07: {...}

08: at org.apache.catalina.connector.http.HttpProcessor.run Æ
(HttpProcessor.java:1107)

09: at java.lang.Thread.run(Thread.java:536)

10: ----- Root Cause -----

11: java.lang.NoClassDefFoundError: com.jrefinery.chart.AxisConstants

12: at com.jrefinery.chart.ChartFactory.createPieChart(Unknown Source)

Listing 40.2 Stack trace (continued)

Image Obsession 351

13: at de.laures.cewolf.DefaultChartRenderer.getChartInstance Æ
(DefaultChartRenderer.java:61)

14: at de.laures.cewolf.AbstractChartRenderer.renderChart Æ
(AbstractChartRenderer.java:99)

15: at de.laures.cewolf.CewolfRenderer.renderChart(CewolfRenderer Æ
.java:85)

16: at de.laures.cewolf.CewolfRenderer.doGet(CewolfRenderer.java:71)

17: at javax.servlet.http.HttpServlet.service(HttpServlet.java:740)

18: at javax.servlet.http.HttpServlet.service(HttpServlet.java:853)

19: {...}

20:

Listing 40.2 (continued)

We get a NoClassDefFoundError. We look to see if the class is not within the
CLASSPATH. Searching through the JFreeChart JAR file, we find the named class,
AxisConstants, is there. So we check to see if the jar is somehow not getting loaded.
Searching through the Tomcat logs, we find the line that shows it mounts the jar just
like the rest of the (working) JARs.
NoClassDefFoundError clearly doesn’t make sense. After all, it means that the

JVM cannot find the definition of a particular class, when, in fact, it can. Rather than
continue to try to chase this inexplicable phenomenon, we follow the stack trace a bit
further. It comes from rendering a pie chart in the CewolfRenderer. This causes us to
think about it a little closer.

What has changed? The operating system has, but that isn’t supposed to matter in
Java! As it turns out, we have a small anomaly in how Windows and Unix handle their
windowing environments. Windows, as the name implies, is tied to its windowing
environment. However, Unix does not require a windowing environment and uses an
X server to generate its user interface.

Actually, the heart of the problem has to do with the way the Abstract Windowing
Toolkit (AWT) is implemented. The implementation expects to find an X server run-
ning when it is created, despite the fact that no user interface components are going to
be used. This is relevant to our problem because certain classes out of the Java image
classes use the AWT (e.g., BufferedImage).

So, there are a couple of solutions to this problem. First, attach a monitor and run the
server as a logged-in user. (You should ignore any random images that pop up on the
screen as you are working.) However, this is not a very elegant or useful solution.

The real solution depends on which version of the JDK you are using. If you are run-
ning on JDK 1.3 or earlier, you should download an X emulator. One you can down-
load is called xvfb, which is at http://www.x.org.

However, JDK 1.4 comes with what is known as the “headless AWT.” This allows
the J2SE components to be run on the server side without an X server. To use this, you
need to specify the following JVM option:

-Djava.awt.headless=true

352 Item 40

Figure 40.3 Working version.

Sun recommends if you are running a server-side application without any graphical
user interface that you specify this option.

Figure 40.3 is the outcome of making this 24-character addition to our JVM invocation.

Item 41: The Problem with Multiple
Concurrent Result Sets

Over the years, we’ve run into many situations where we have needed to write Java
applications that have the capability of connecting to “any database.” If there is a JDBC
driver available for that database, this shouldn’t be a problem. In those situations, we
typically design our application, write the code, and initially test our application
against one type of database. Requirements for the development of many applications
beg the need for query builders—graphical user interfaces that allow users to click on a
selection of tables and columns from the database, allowing them to create advanced
queries. Of course, if you have created an application like this, you know that the
java.sql.DatabaseMetaData class allows you to get column and table informa-
tion from the database.

Before you build this query builder application, you need to write a simple method
that will print this database information to the screen. Later, you will probably change
this method to return a structure with all of the tables and columns of the database.
Listing 41.1 shows a portion of your code, where you get the table information from the
database and print out each table and column of the database.

The Problem with Multiple Concurrent Result Sets 353

01: /**

02: * this goes through the database and lists all the

03: * tables and columns of the database.

04: *

05: * @throws exception

06: */

07: public void printMetaDataStuff(Connection conn) throws Exception

08: {

09: String[] tabletypes = {“TABLE”};

10:

11: if (conn == null)

12: {

13: throw new Exception(“Could not establish a connection!”);

14: }

15:

16: DatabaseMetaData dmd = conn.getMetaData();

17:

18: ResultSet rs = dmd.getTables(null,null,null,tabletypes);

19:

20: if (rs == null)

21: {

22: throw new Exception(“No metadata!”);

23: }

24: while (rs.next())

25: {

26: String table = rs.getString(“TABLE_NAME”);

27:

28: System.out.println(“ResultSet 1: Got table “ + table);

29: ResultSet rs2 = dmd.getColumns(null,null,table,null);

30:

31: if (rs2 == null)

32: {

33: throw new Exception (“No Metadata!”);

34: }

35: while (rs2.next())

36: {

37: String col = rs2.getString(“COLUMN_NAME”);

38: System.out.println(“ResultSet2: Table “ + table +

39: “ has column “ + col);

40: }

41: }

42: }

Listing 41.1 printMetaDataStuff() from BadResultSet.java

354 Item 41

Initially, you test your code with one database, and it works fine. Many developers stop
there and continue to build their application. However, just to be on the safe side, you
decide to test this class against several databases running on different operating systems,
including Microsoft Access, Microsoft SQL Server, MySQL, Sybase, and Oracle. Your class
takes a database URL and driver class as an argument, builds a connection, and passes it
to your printMetaDataStuff() function in Listing 41.1. You write a script that passes
the JDBC URL and the driver class to the application, shown in Listing 41.2.

echo testing Access

java BadResultSet jdbc:odbc:TestAccessDB sun.jdbc.odbc.JdbcOdbcDriver

echo testing SQL Server

java BadResultSet jdbc:odbc:TestSQLServer sun.jdbc.odbc.JdbcOdbcDriver

testuser testpass

echo testing MySQL

java BadResultSet jdbc:mysql://testmachine:3306/metadotdb

org.gjt.mm.mysql.Driver testuser testpass

echo testing Sybase

java BadResultSet jdbc:sybase:Tds:testmachine:3000/TestDB

com.sybase.jdbc2.jdbc.SybDriver testuser testpass

echo testing ORACLE

java BadResultSet jdbc:oracle:thin:@testmachine:1521:dppo

oracle.jdbc.driver.OracleDriver testuser testpass

Listing 41.2 Script for testing

As you can see in Listing 41.2, you are testing this application against different data-
bases using different drivers. The output is shown in Listing 41.3. As you can see, many
of these databases (MS Access, MySQL, and Sybase) were able to run printMeta-
DataStuff() from Listing 41.1 with no problems. However, the SQL Server driver
throws a java.lang.SQLException, saying that the “Connection is busy with the
results of another hstmt.” The Oracle database throws an ORA-1000 error, saying that
you have exceeded your maximum open cursors. What happened?

The Problem with Multiple Concurrent Result Sets 355

testing Access

ResultSet 1: Got table EQP

ResultSet2: Table EQP has column ACQUIRED_CC

ResultSet2: Table EQP has column ACQUIRED_DATE

ResultSet2: Table EQP has column ACTIVITY

ResultSet 1: Got table EQP_AFLD

ResultSet2: Table EQP_AFLD has column ARRESTING_BARRIER

ResultSet2: Table EQP_AFLD has column ARRESTING_CABLE

ResultSet2: Table EQP_AFLD has column BAYS_QTY

...

testing SQL Server

ResultSet 1: Got table AuthorizedUsers

java.sql.SQLException: [Microsoft][ODBC SQL Server Driver]Connection is

busy with results for another hstmt

at sun.jdbc.odbc.JdbcOdbc.createSQLException(JdbcOdbc.java:6031)

at sun.jdbc.odbc.JdbcOdbc.standardError(JdbcOdbc.java:6188)

at sun.jdbc.odbc.JdbcOdbc.SQLColumns(JdbcOdbc.java:2174)

at sun.jdbc.odbc.JdbcOdbcDatabaseMetaData.getColumns

(JdbcOdbcDatabaseMetaData.java:2576)

at BadResultSet.printMetaDataStuff(BadResultSet.java:92)

at BadResultSet.main(BadResultSet.java:127)

testing MySQL

ResultSet 1: Got table addressbook

ResultSet2: Table addressbook has column ciid

ResultSet2: Table addressbook has column fname

ResultSet2: Table addressbook has column mname

ResultSet2: Table addressbook has column lname

ResultSet2: Table addressbook has column nname

ResultSet 1: Got table channel

ResultSet2: Table channel has column cid

ResultSet2: Table channel has column isa

ResultSet2: Table channel has column name

ResultSet2: Table channel has column description

--

testing Sybase

ResultSet 1: Got table PERSONNEL

ResultSet2: Table PERSONNEL has column PERSONNEL_ID

ResultSet2: Table PERSONNEL has column SOURCE_ID

ResultSet2: Table PERSONNEL has column PERSONNEL_NUMBER

Listing 41.3 Output of script

356 Item 41

ResultSet 1: Got table UNIT_STATUS

ResultSet2: Table UNIT_STATUS has column UNIT_ID

ResultSet2: Table UNIT_STATUS has column STATUS_TIME

ResultSet2: Table UNIT_STATUS has column SOURCE_ID

...

testing ORACLE

ResultSet 1: Got table DR$CLASS

ResultSet2: Table DR$CLASS has column CLA_ID

ResultSet2: Table DR$CLASS has column CLA_NAME

ResultSet2: Table DR$CLASS has column CLA_DESC

ResultSet2: Table DR$CLASS has column CLA_SYSTEM

ResultSet 1: Got table DR$DELETE

ResultSet2: Table DR$DELETE has column DEL_IDX_ID

ResultSet2: Table DR$DELETE has column DEL_DOCID

ResultSet 1: Got table DR$INDEX

ResultSet2: Table DR$INDEX has column IDX_ID

ResultSet2: Table DR$INDEX has column IDX_OWNER#

ResultSet2: Table DR$INDEX has column IDX_NAME

java.sql.SQLException: ORA-01000: maximum open cursors exceeded

at oracle.jdbc.dbaccess.DBError.throwSqlException(DBError.java:168)

at oracle.jdbc.ttc7.TTIoer.processError(TTIoer.java:208)

at oracle.jdbc.ttc7.Oopen.receive(Oopen.java:118)

at oracle.jdbc.ttc7.TTC7Protocol.open(TTC7Protocol.java:466)

at oracle.jdbc.driver.OracleStatement.<init>(OracleStatement.java:413)

at oracle.jdbc.driver.OracleStatement.<init>(OracleStatement.java:432)

at oracle.jdbc.driver.OraclePreparedStatement

.<init>(OraclePreparedStatement.java:182)

at oracle.jdbc.driver.OraclePreparedStatement

.<init>(OraclePreparedStatement.java:165)

at oracle.jdbc.driver.OracleConnection.privatePrepareStatement

(OracleConnection.java:604)

at oracle.jdbc.driver.OracleConnection.prepareStatement

(OracleConnection.java:485)

at oracle.jdbc.OracleDatabaseMetaData.getColumns

(OracleDatabaseMetaData.java:2533)

at BadResultSet.printMetaDataStuff(BadResultSet.java:92)

at BadResultSet.main(BadResultSet.java:127)

Listing 41.3 (continued)

Why did some of the databases run through your code without any problems? Why
did your queries to the other databases throw exceptions? It revolves around the use of
multiple concurrent result sets. Some databases, depending on their configurations,

The Problem with Multiple Concurrent Result Sets 357

can handle having more than one result set open at once. From your output in Listing
41.3, you can see that while SQL Server driver threw an exception immediately when
the getColumns() method was called on the DatabaseMetaData object, the Oracle
database itself continued to run for a while until its maximum cursors threshold was
exceeded.

To write code that is portable across databases, you unfortunately shouldn’t make
assumptions about what databases can handle having multiple ResultSet objects
open at a time. Lucky for you, you went through this testing process by writing the
script in Listing 41.2 before you wrote your main query builder application. Other
developers could have tested it against one database and deployed the application,
only to discover that the application couldn’t be ported to a few databases.

How can we solve this problem? A simple change in our design will work. Listing
41.4 shows our new printMetaDataStuff()method that uses an initial ResultSet
object to get the table names of the database in line 13 and puts each database table in a
LinkedList object in lines 21 to 23. Finally, the initial result set is closed in line 26. In
lines 30 to 45, we loop through the linked list of table names that we created, opening up
one ResultSet object at a time and printing out the column names for each table.

01: public void printMetaDataStuff() throws Exception

02: {

03: LinkedList ll = new LinkedList();

04: String[] tabletypes = {“TABLE”};

05:

06: if (conn == null)

07: {

08: throw new Exception(“Could not establish a connection!”);

09: }

10:

11: DatabaseMetaData dmd = conn.getMetaData();

12:

13: ResultSet rs = dmd.getTables(null,null,null,tabletypes);

14:

15: if (rs == null)

16: {

17: throw new Exception(“No metadata!”);

18: }

19: while (rs.next())

20: {

21: String table = rs.getString(“TABLE_NAME”);

22: ll.add(table);

23: System.out.println(“ResultSet 1: Got table “ + table);

24:

25: }

26: rs.close();

27:

28: ListIterator li = ll.listIterator(0);

29:

Listing 41.4 A better printMetaDataStuff() method

358 Item 41

30: while (li.hasNext())

31: {

32: String table = li.next().toString();

33: ResultSet rs2 = dmd.getColumns(null,null,table,null);

34:

35: if (rs2 == null)

36: {

37: throw new Exception (“No Metadata!”);

38: }

39: while (rs2.next())

40: {

41: String col = rs2.getString(“COLUMN_NAME”);

42: System.out.println(“ResultSet2: Table “ + table +

43: “ has column “ + col);

44: }

45: rs2.close();

46: }

47: }

Listing 41.4 (continued)

After you replace your printMetaDataStuff() method, you run the same script
shown in Listing 41.2. Now your connection to each database prints out all tables and
columns without any errors, and you are ready to create your query builder application.

This pitfall showed how important it is to be aware of the problem of using more
than one ResultSet at once. While many JDBC drivers will support the use of multi-
ple concurrent ResultSet objects, many will not. Many databases will exceed the
number of maximum open cursors. To achieve maximum portability, rethink your
designs so that you will only have one open at a time.

Item 42: Generating Primary Keys for EJB

In a distributed environment, it is imperative to be able to distinguish different
instances of objects. With the distributed model of Enterprise JavaBeans, it is important
to be able to distinguish instances of entity beans from each other. A common trap that
many EJB developers fall into relates to the methods of generating primary keys for
entity beans. This item provides an example scenario, gives several examples of how
an EJB developer could fall into such a trap, and provides solutions to the problem.

A Simple Scenario

A large video store chain wants to provide national access to accounts throughout the
United States. When a customer brings her identity card to the store, the store would
like to look up account information and allow the customer to check out videos—no

Generating Primary Keys for EJB 359

matter where the customer started the account. It was decided early on that the J2EE
model would provide a flexible solution for this video chain. In a high-level design
phase, they decided that their JSP would eventually talk to a session bean called
SignOnVideoBean, which would create an entity bean called VideoUser, as shown
in Figure 42.1. The question is this: How should the primary key for VideoUser be
created? We will look at many approaches and discuss pitfalls that lie in each solution.

A “Client Control” Approach

In many small systems, it is commonplace to have the client application (or sometimes
the user) generate a unique identifier that represents a new user. An example of this
could be an application where a user chooses a user identifier (userid) for access into a
portal. In these types of applications, a servlet or JSP from the Web tier initiates a trans-
action that eventually triggers the creation of an entity bean, which uses the passed-in
user identifier as its primary key. This is a valid practice, and depending on the back-
end database constraints for primary keys, strings that are guaranteed to be unique
(such as email addresses) can be used as the unique identifiers. If there is a collision,
the EJB will throw a javax.ejb.CreateException. The difficulty is finding a
recipe for the creation of these primary keys—throwing and passing exceptions over a
network can be bandwidth costly and pretty annoying.

To prevent primary key collisions, they chose a recipe for creating a primary key in
such a way that the date, time, store number, clerk ID, and customer name compose the
primary key. For example, if “Matt Van Wie” were to start an account at the second
Mechanicsville, Virginia, branch of the video store on March 1, 2003, at 5:30 P.M., and
the clerk was “Todd Tarkington,” the primary key would be “MattVanWie-
03-01-2003-530pm-MechanicsvilleVA2-ToddTarkington”. This approach is shown in
Figure 42.2.

Figure 42.1 Creating video user accounts.

Client
Application

Servlet/JSP SignOnVideoBean
<session>

VideoUser
<entity>

WEB TIER EJB TIER

360 Item 42

Figure 42.2 Client control solution.

In Figure 42.2, the client application passes the system date, time, store number,
clerk identifier, clerk ID, and client name to the servlet/jsp, which creates the unique
identifier and creates a reference to SignOnVideoBean, which is the session bean that
is used to access customer information and create users. SignOnVideoBean creates a
VideoUser entity bean, which is the entity bean that represents the video store
customer. This particular approach has many problems that could lead to collisions
and chaos:

■■ For owner names and clerk names that are commonplace, such as “Steve Jones”
and “Kevin Smith,” there is potential for primary key collisions.

■■ The solution assumes that a clerk will be only be logged in to the system at one
location. If, in the scenario, Todd is the manager and logs in to all of the client
workstations at the beginning of the day, this could increase the possibility of
name collisions.

■■ This solution assumes that all client workstations have a way to synchronize
date and time. A company policy must be written to specify how time synchro-
nization must work on each store basis. Even if the Web container in this
solution generated the system date and time, it is possible that many Web
containers at remote locations may be communicating with the EJB tier, and
time there must be synchronized.

■■ The solution assumes that each branch of the video store has a unique name.
This requires the assignment of unique store names at a central location, and
when new stores are added and removed, just the control of unique store
names causes much management overhead.

■■ The format of the primary key identifier is dependent on the database schema,
making one more constraint between the client/Web tier and the EJB tier.

Client
Application

Servlet/JSP SignOnVideoBean
<session>

VideoUser
<entity>

WEB TIER EJB TIER

date
time

store number
clerk ID

clerk name
unique

identifier

Generating Primary Keys for EJB 361

This scenario should demonstrate that allowing the client application to choose the
primary key from a certain “recipe” can cause an administrative nightmare. For one, it
puts more of a burden on the logic of the client and end users. Second, the burden for
creating and enforcing policy that fits into the primary “recipe” will put a huge burden
on the manager of the system. Finally, each J2EE system may have a large number of
entity beans, and even if you have a great recipe for generating primary keys for one
entity bean, you will probably run out of ideas. This is something that may work great
for username account generation on a Web site, but you will eventually find that you
will need a solution on the server side.

ASSESSMENT: This approach can become unmanageable and burdensome, and it is not
recommended.

The Singleton Approach

After the software designers for the video store applications decided that the “Client
Control” solution was too unmanageable, they decided that the use of the Singleton
design pattern (discussed in Item 15) could be helpful. They decided to create a
Singleton that implements a counter, so that it would be the central place to generate
primary keys. The team made a simple Singleton called UIDSingleton, with a syn-
chronized getNextKey() method to generate the key, shown in Figure 42.3.

Satisfied that this would solve the EJB primary key problem, the solution was
deployed. Unfortunately, what they didn’t understand is that the use of “pure Single-
tons” in J2EE is not recommended. A Singleton ensures that there is one instance of a
class per virtual machine. With most J2EE servers, there are multiple VMs involved. As
a result, the result is primary key chaos, resulting in primary key collisions—and one
very flawed system.

ASSESSMENT: Don’t do it.

Figure 42.3 Attempting to use a Singleton for PK generation.

Client
Application

Servlet/JSP SignOnVideoBean
<session>

VideoUser
<entity>

WEB TIER EJB TIER

UIDSingleton

key generated
from UIDSingleton

getN
ext

Key(
)

getN
ext

Key(
)

362 Item 42

The Networked Singleton Approach

Convinced that they were on the right track with the Singleton approach, the team
decides to ensure that there is one Singleton for the J2EE system by giving it a network
identifier. In this approach, the software developers decided to create a Singleton that
is callable via RMI and found by using JNDI. This Singleton implements a synchro-
nized counter and ensures that there are no primary key collisions.

Satisfied that this solution was better than the earlier solution, the software team
quickly implemented it. This was easy because each entity bean calls it via RMI and
calls getNextKey(). In functionality testing, the system worked wonderfully. When
it was load-tested with thousands of users, however, the system slowed to a crawl.
What happened?

The solution here—and the problem—revolves around the nature of a Singleton.
Because a unique network identifier ensures that there is a single object that generates
primary keys, this is also a single point of failure. Every entity bean in the system must
make a JNDI lookup and then must call the Singleton over the network. While this may
work in small-scale solutions, this approach will not scale.

ASSESSMENT: It works, but performance will not scale on large projects.

An Application Server-Specific Approach

At this point, the developers writing the video store application notice that their J2EE
application server provides an easy solution to the entity bean/primary key problem. It
is a proprietary solution, but it seems to work great. The team develops the entire appli-
cation, and it works beautifully. However, when it is mandated that they need to change
application servers, the team is in trouble. Their entire video store application is now
tied to their app server vendor, and it will take a long time to rewrite everything.

In many cases, application servers provide a simple solution to create primary keys
for your entity beans. A danger here is nonportability. When you tie your solution to a
particular application server with features like these, your solution will undoubtedly
work great. Unfortunately, porting your J2EE application to other application servers
will be a real headache. Keep in mind that when you go down this route, you may be
stuck with the app server you use.

ASSESSMENT: May work great, but at what cost?

Database Autogeneration Approaches

As the designers of the video store solution research new approaches, they decide to use
the autogeneration facilities that their chosen database vendor provides. The database
vendor supports a counter for the primary key that is incremented every time a new
record is created. This is powerful because it provides a centralized mechanism for gen-
erating primary keys, guaranteeing uniqueness. In the solution, the VideoUser entity
bean manages its own persistence. A potential problem here is the nonportability of this
solution. If there is a need to switch to another database vendor that does not support
autogeneration, the application will be in trouble. Luckily, many database vendors do
support autogeneration, so developers may consider this to be a minor concern.

Generating Primary Keys for EJB 363

Of the approaches we’ve discussed so far, this seems to have the most merit. In the
past, it has been difficult to make SQL calls to get autogenerated IDs in a nonpropri-
etary way. It was also a challenge to get the autogenerated key right after the insert,
because there was not a way to retrieve the generated key from the resulting Result-
Set. Luckily, with the release of JDK 1.4, an inserted row can return the generated key
using the getGeneratedKeys() method in java.sql.Statement, as can be seen
in the code segment below.

int primkey = 0;

Statement s = conn.prepareStatement();

s.execute(“INSERT INTO VIDEOUSERS” +

“(name,phone,address,creditcard)” +

“VALUES (‘Matt Van Wie’, ‘555-9509’, ‘91 Habib Ave’,

‘208220902033XXXX’)”,

Statement.RETURN_GENERATED_KEYS);

ResultSet rs = s.getGeneratedKeys();

if (rs.next())

{

primkey = rs.getInt(1);

}

Many developers using an earlier version of the JDK (or JDBC 2.0 or earlier drivers)
that cannot take advantage of this feature use stored procedures in SQL that can be
called from Java with the CallableStatement interface. The “Stored Procedures for
Autogenerated Keys” EJB Design Pattern from Floyd Marinescu’s book, EJB Design Pat-
terns, provides such a solution that does an insert and returns the autogenerated key.4

ASSESSMENT: This is a good solution. With the release of JDK 1.4 and the ability to get
generated keys returned from the java.sql.Statement interface, this provides a sound
mechanism for solving the EJB primary key problem.

Other Approaches

It is important to note that EJB Design Patterns (Marinescu, 2002), discussed in the
previous section, provides a few design patterns to solve this problem. One worth
mentioning is a Universally Unique Identifier (UUID) pattern for EJB, which is a data-
base-independent server-side algorithm for generating primary keys. Another pattern,
called Sequence Blocks, creates primary keys with fewer database accesses, using a
combination of an entity bean that serves as a counter and a stateless session bean that
caches many primary keys from the entity bean at a time.

364 Item 42

4 Marinescu, Floyd. EJB Design Patterns. John Wiley & Sons, 2002.

ASSESSMENT: These are good design patterns for solving the problem and are described in
detail in the book. You can also check out discussions on this topic at http://www.theserverside
.com/.

There are many traps that a J2EE architect can fall into when attempting to generate
unique identifiers for primary keys. There are also many approaches to solving this
problem. This pitfall showed several approaches and provided assessments for each.
By avoiding some of the traps discussed in this pitfall item, you will save yourself time
and headaches.

Item 43: The Stateful Stateless Session Bean

A developer approached me the other day with an interesting problem. He had an
existing API that he wanted to use (in a bean) that builds an index once and then pro-
vides search access to it. It seems a pretty simple idea in objected-oriented parlance.
There is an object with a member variable, the index, which is built at initialization,
and then methods that provide access to it (in this case, search). Figure 43.1 is a simpli-
fied example of what the class would look like.

There was concern about how to build this. This developer had some experience
with EJB and understood the basic concepts. There are three types of Enterprise Java
Beans: session beans, entity beans, and message-driven beans. In addition, there are
two flavors of session beans: stateful and stateless. The idea is that stateful session
beans maintain their state across invocations, and stateless session beans do not. Entity
beans provide real-time persistence of business objects.

The developer had developed EJBs prior to this, but his work had been confined to
new development—that is, from whole cloth—and dealt with basic problems. This
was the first time where he was trying to use something else in the EJB paradigm.

To examine this dilemma, we reviewed the different options.

Figure 43.1 The index class diagram.

Index

theIndex : Index

search(searchString : String) : ArrayList

initialize()

The Stateful Stateless Session Bean 365

Figure 43.2 The MessageDriven EJB class diagram.

Message-Driven Beans

The container creates message-driven beans to handle the receipt of an asynchronous
message. Figure 43.2 shows a message-driven EJB called MessageDriven. Notice that
there are no interfaces from which client applications can directly invoke the bean. This
means that the only access to this bean would be to send a message to the queue that
this message-driven bean would handle. When that happens, the container calls the
onMessage() method. All of the business logic would be contained within that
onMessage() method.

This is clearly problematic for two reasons. First, reinitializing the index on every
invocation is completely inconsistent with our purposes (a shared instance). Second,
the means of communicating with our EJB is not supposed to be asynchronous. So,
clearly this option was not seriously considered, but for the sake of completeness, we
had to look at it.

Entity Bean

Next, we considered using an entity bean. Thinking about it, we realized that the index
could be considered a persistent business object. Figure 43.3 shows the Entity EJB class
diagram.

Notice that the EntityHome interface contains the pertinent create() and
findByPrimaryKey() methods. The remote interface, Entity, has the search()
method within it. Notice that all of the clients would have to try the findByPrima-
ryKey() method to see if the index was created, and if not, create it. Once the refer-
ence has been grabbed, the client could call the search() method.

MessageDriven

EJB_Context : javax.ejb.MessageDrivenContext = null

MessageDriven()

<<EJBCreateMethod>> ejbCreate()

onMessage()

ejbRemove()

setMessageDrivenContext()

M

366 Item 43

Figure 43.3 The Entity EJB class diagram.

Seems to be a good idea, right? Well, this ignores the fact that entity beans are noto-
riously slow and it is considered bad practice to interact with them directly, instead of
referencing them through session beans (known commonly as the Session Façade pat-
tern). Of course, even if using the Session Façade, this is a classic example of using a
sledgehammer to drive a tack—that is, overkill. It could be counterproductive in terms
of the additional processing time required to maintain the index in persistence and it
could cost more time than re-creating the index on each invocation. After all, the pur-
pose of the entity bean is to ensure that the object survives system failure. Also, if the
system fails, then the index can be re-created upon reinitialization of the system. Since
we are now persisting this object, we will need to have a methodology to propagate
changes to the index so that it does not become a permanently configured instance.
This requires additional functionality to handle a case that is not really a requirement
for this problem (persistence).

EntityEJB

EJB_Context : javax.ejb.EntityContext
EJB_Connection : java.sql.Connection = null
EJB_Datasource : java.sql.DataSource = null

EntityEJB()
ejbActivate()
ejbPassivate()
ejbLoad()
ejbStore()
ejbRemove()
setEntityContext()
unsetEntityContext()
<<EJBFinderMethod>> ejbFindByPrimaryKey()
<<EJBCreateMethod>> ejbCreate()
<<EJBCreateMethod>> ejbPostCreate()

E

Entity

<<EJBRemoteMethod>> search()

Remote

<<EJBPrimaryKey>>
EntityPK

hashCode()
equals()
toString()

EntityHome

<<EJBRemoteMethod>> create()
<<EJBFinderMethod>> findByPrimaryKey()

Home

<<EJBRealizeHome>>

<<EJBPrimaryKey>>

The Stateful Stateless Session Bean 367

Furthermore, writing the persistence code for something that does not map very
congruently with a database (an object) can be a really big pain. Even if the effort is not
as bad as it appears, it is still more than is necessary.

Therefore, we saw some real drawbacks in using the entity bean solution. So we
decided to review further ideas, which brought us to session beans.

Stateful Session Bean

The stateful session bean provides an interesting alternative. The stateful session bean
maintains state across client invocations but does not have the performance overhead
of attempting to maintain persistence to survive system crashes. If the system crashes,
then the state is lost and must be reestablished.

Figure 43.4 is the class diagram for the stateful session bean, called Stateful. The dia-
gram shows the remote and home interfaces for the stateful session bean. Notice the
create() method and the requisite index object theIndex. Also, the remote inter-
face contains the search() method for searching the index.

However, the purpose of the stateful session bean is to maintain the conversation state
between the client and server across invocation, essentially tracking the interaction. As
such, this means that there is a separate context for each client conversation. This in turn
means that every client would create its own index object at the beginning of interaction.
Then the client would invoke the search method, and the interaction would end. This is
not a shared instance, as the performance hit from initialization comes with each client.

So, this method would not work for us. This left us with one option left for an EJB
solution. The stateless session bean seemed like the least likely solution, because the
name implies that it lacks state. Or does it?

Stateless Session Bean

By process of elimination, we were left with the stateless session bean approach. The
stateless session bean does not track any context between requests. The practical use is
to allow the EJB container to provide a highly scalable solution to handling client
requests. The container creates a pool of beans to handle the number of requests being
received by the container.

The key concept is that the container can assign a stateless session bean to handle
any client request, without guaranteeing that the next request by the same client will
get the same bean. This allows for much more efficient resource allocation.

368 Item 43

St
at

ef
ul

EJ
B

EJ
B_

C
on

te
xt

 :
ja

va
x.

ej
b.

Se
ss

io
nC

on
te

xt
 =

 n
ul

l
th

eI
nd

ex
 :

In
de

x

St
at

ef
ul

EJ
B(

)
ej

bR
em

ov
e(

)
: v

oi
d

ej
bA

ct
iv

at
e(

)
: v

oi
d

ej
bP

as
si

va
te

()
 :

vo
id

se
tS

es
si

on
C

on
te

xt
(s

c
: j

av
ax

.e
jb

.S
es

si
on

C
on

te
xt

)
: v

oi
d

<<
EJ

BC
re

at
eM

et
ho

d>
>

ej
bC

re
at

e(
)

: v
oi

d
<<

EJ
BR

em
ot

eM
et

ho
d>

>
se

ar
ch

(s
ea

rc
hS

tr
in

g
: S

tr
in

g)
 :

ja
va

.u
til

.A
rr

ay
Li

st

S

St
at

ef
ul

<<
EJ

BR
em

ot
eM

et
ho

d>
>

se
ar

ch
(s

ea
rc

hS
tr

in
g

: S
tr

in
g)

 :
ja

va
.u

til
.A

rr
ay

Li
st

Re
m

ot
e

St
at

ef
ul

H
om

e

<<
EJ

BC
re

at
eM

et
ho

d>
>

cr
ea

te
()

H
om

e

<<
EJ

BR
ea

liz
eR

em
ot

e>
>

<<
in

st
an

tia
te

>>

<<
EJ

BR
ea

liz
eH

om
e>

>

The Stateful Stateless Session Bean 369

Fi
gu

re
 4

3.
4

Th
e

St
at

ef
ul

 E
JB

 c
la

ss
 d

ia
gr

am
.

Frequently overlooked in this scenario is that a stateless session bean can contain
member variables that are independent of the client request. Figure 43.5 is a class dia-
gram of a stateless session diagram, called Stateless.

This shows the member variable called theIndex, which is populated at initializa-
tion when the create() method is called on the home interface. After that, requests
can be executed by calling the search() method on the remote interface.

But the obvious question arises. Isn’t every client calling the create() method? If
so, doesn’t this give us the same problem? Actually, this is a common misconception.
Because EJB relies on indirection through the container, frequently there is confusion
with regard to what a given method on the EJB home and remote interfaces actually
does before it gets to the EJB implementation. In fact, the call to create() doesn’t nec-
essarily mean that the EJB container will create a new stateless session bean. It proba-
bly will not, unless this request actually causes the container implementation to
determine that it is necessary to create another bean.

This raises an interesting point, though. There is no way to predict or determine
how many stateless session beans will be created. Any bean using the member vari-
ables needs to take this into account in its design. This becomes even more critical
when the container uses clustering.

This means that if we are trying to create a Singleton, or any pattern that demands a
resource exists once and only once, this method cannot be used safely.

However, the Singleton pattern and other resource pooling patterns are generally
used to ensure the number of instances do not grow out of control. That design goal is
achieved implicitly by the design of stateless session beans. They use resource-pooling
algorithms to determine the number of session beans that should exist.

Note that this example is not a database connection member variable. In fact, there
are certain connection pools that are specified in the EJB 2.0 specification. Actually, it is
a called a resource manager connection factory, and it entails more than just pooling
(deployment, authentication). However, bean developers are required to use the stan-
dard ones for JDBC, JMS, JavaMail, and HTTP connections. The container developers
are required to provide implementations of these factories.

370 Item 43

St
at

el
es

sE
JB

th
eI

nd
ex

 :
In

de
x

St
at

el
es

sE
JB

()
ej

bR
em

ov
e(

)
: v

oi
d

ej
bA

ct
iv

at
e(

)
: v

oi
d

ej
bP

as
si

va
te

()
 :

vo
id

se
tS

es
si

on
C

on
te

xt
(s

c
: j

av
ax

.e
jb

.S
es

si
on

C
on

te
xt

)
: v

oi
d

<<
EJ

BC
re

at
eM

et
ho

d>
>

ej
bC

re
at

e(
)

: v
oi

d
<<

EJ
BR

em
ot

eM
et

ho
d>

>
se

ar
ch

(s
ea

rc
hS

tr
in

g
: S

tr
in

g)
 :

ja
va

.u
til

.A
rr

ay
Li

st

S

St
at

el
es

s

<<
EJ

BR
em

ot
eM

et
ho

d>
>

se
ar

ch
(s

ea
rc

hS
tr

in
g

: S
tr

in
g)

 :
ja

va
.u

til
.A

rr
ay

Li
st

Re
m

ot
e

St
at

el
es

sH
om

e

<<
EJ

BC
re

at
eM

et
ho

d>
>

cr
ea

te
()

H
om

e

<<
EJ

BR
ea

liz
eR

em
ot

e>
>

<<
in

st
an

tia
te

>>

<<
EJ

BR
ea

liz
eH

om
e>

>

The Stateful Stateless Session Bean 371

Fi
gu

re
 4

3.
5

Th
e

St
at

el
es

s
EJ

B
 c

la
ss

 d
ia

gr
am

.

NOTE These resource manager connection factory objects are part of the
movement to the J2EE Connector Architecture, thus fulfilling the third piece of the
J2EE paradigm (connectors, along with the current containers and components).

A subtlety in the EJB session bean specification is often overlooked. A large number
of developers believe that stateless session beans can maintain no state information at
all. This causes confusion on how to maintain instance information that is neutral to
any particular request.

This pitfall explored how this misunderstanding can lead the developer into a real bind.
By looking at how to solve this particular issue, the developer can gain insight on how each
of the beans work behind the scenes and can gain a better appreciation of what is really
happening in the container, since it serves as the intermediary in all EJB development.

Item 44: The Unprepared PreparedStatement

JDBC is one of the most popular APIs in the Java platform. Its power and ease of use com-
bined with its easy integration in the Java Web application APIs has caused a proliferation
of database-driven Web applications. The most popular of these Web applications is the
classic HTML form driving a SQL query to present the data back to the user in HTML.
Figure 44.1 is an example of one such Web application. Figure 44.2 shows the response.

Figure 44.1 Salary HTML form.

372 Item 44

Figure 44.2 HTML form results.

As we look at the code for this example, there are a few things to note. First, it is a
very simplified example meant to show all the pieces together in one class. Second, this
is an example of a servlet running in the Tomcat servlet container, connecting to an
Oracle database. Listing 44.1 shows the code of the class.

01: import javax.servlet.*;

02: import javax.servlet.http.*;

03: import java.io.*;

04: import java.util.*;

05: import java.sql.*;

06:

07: public class SalaryServlet extends HttpServlet {

08:

09: Connection connection;

11:

12: private static final String CONTENT_TYPE = “text/html”;

13:

14: public void init(ServletConfig config) throws ServletException {

15: super.init(config);

16:

17: // Database config information

Listing 44.1 SalaryServlet (continued)

The Unprepared PreparedStatement 373

18: String driver = “oracle.jdbc.driver.OracleDriver”;

19: String url = “jdbc:oracle:thin:@joemama:1521:ORACLE”;

20: String username = “scott”;

21: String password = “tiger”;

22:

23: // Establish connection to database

24: try {

25: Class.forName(driver);

26: connection =

27: DriverManager.getConnection(url, username, password);

28:

29: } catch(ClassNotFoundException cnfe) {

30: System.err.println(“Error loading driver: “ + cnfe);

31:

32: } catch(SQLException sqle) {

33: sqle.printStackTrace();

34:

35: }

36: }

37: /**Process the HTTP Post request*/

38: public void doPost(HttpServletRequest request, Æ
HttpServletResponse response) throws ServletException, IOException {

39: response.setContentType(CONTENT_TYPE);

40:

41: String salary = request.getParameter(“salary”);

42:

43: String queryFormat =

44: “SELECT ename FROM emp WHERE sal > “;

45:

46: try {

47:

48: Statement statement = connection.createStatement();

49:

50: ResultSet results =

51: statement.executeQuery(queryFormat + salary);

52:

53: PrintWriter out = response.getWriter();

54: out.println(“<html>”);

55: out.println(“<head><title>SalaryServlet</title></head>”);

56: out.println(“<body>”);

57: out.println(“<table>”);

58: out.println(“<tr>”);

59: out.println(“<td>Employee</td></tr>”);

60:

61: while (results.next()) {

62: out.println(“<tr>”);

63: out.println(“<td>”);

64: out.println(results.getString(1));

Listing 44.1 (continued)

374 Item 44

65: out.println(“</td>”);

66: out.println(“</tr>”);

67: }

68:

69: out.println(“</table>”);

70: out.println(“</body></html>”);

72: } catch (SQLException sqle) {

74: sqle.printStackTrace();

76: }

77:

78: }

79: /**Clean up resources*/

80: public void destroy() {

82: connection.close();

84: }

85: }

86:

Listing 44.1 (continued)

Notice that the init() method handles all of the database connection issues. Keep
in mind that if this were going to be a production servlet, the connection handling and
pooling would be delegated to another class (possibly another servlet). The doPost()
method handles the building and execution of a JDBC statement from the connection,
as well as the parsing of the resulting result set into HTML. Once again, best practice
would cause this handling and presentation to be delegated elsewhere (usually a JSP),
rather than building all of these out.println() statements to render the HTML.

This method is the most simplistic, but it clearly lacks efficiency. Essentially, a new
String is constructed each time the user makes a request with the parameter
appended to that String. What about precompiling the query so that only the param-
eter must be passed into the query? JDBC provides a method to do this, called the
PreparedStatement. Listing 44.2 gives an example of the doPost() method
rewritten to use a PreparedStatement.

01: public void doPost

02: (HttpServletRequest request, HttpServletResponse response)

03: throws ServletException, IOException {

04: response.setContentType(CONTENT_TYPE);

05:

06: String salary = request.getParameter(“salary”);

07:

08: try {

09:

10: PreparedStatement statement

Listing 44.2 Using prepared statements (continued)

The Unprepared PreparedStatement 375

11: = connection.prepareStatement(“SELECT ename FROM emp WHERE Æ
sal > ?”);

12:

13: statement.setFloat(1, Float.parseFloat(salary));

14:

15: ResultSet results =

16: statement.executeQuery();

17:

// ... remaining code Identical to Listing 44.1 ...

Listing 44.2 (continued)

This example shows precompiling the statement and accepting parameters instead
of any string. This is helpful for controlling data types and escape sequences. For
example, calling setDate() or setString() handles the appropriate escape
characters for the specific database being used, and it also prevents mismatching
types—like specifying a String for a long field.

However, while this is a common practice among many developers, the Prepared-
Statement is not reused. This means that the statement is recompiled each time; thus,
no advantage is seen in the precompiling, aside from data typing. So, the Prepared-
Statement should persist between invocations to receive the most effective and effi-
cient results. Listing 44.3 is an example of the servlet rewritten to reuse the
PreparedStatement.

01: import javax.servlet.*;

02: import javax.servlet.http.*;

03: import java.io.*;

04: import java.util.*;

05: import java.sql.*;

06:

07: public class SalaryServlet extends HttpServlet {

08:

09: Connection connection; // Shouldn’t be member variable under

normal conditions.

10: PreparedStatement statement;

11:

12: private static final String CONTENT_TYPE = “text/html”;

13:

14: public void init(ServletConfig config) throws ServletException {

15: super.init(config);

16:

17: // Database config information

18: String driver = “oracle.jdbc.driver.OracleDriver”;

19: String url = “jdbc:oracle:thin:@joemama:1521:ORACLE”;

Listing 44.3 Best use of prepared statements

376 Item 44

20: String username = “scott”;

21: String password = “tiger”;

22:

23: // Establish connection to database

24: try {

25: Class.forName(driver);

26: connection =

27: DriverManager.getConnection(url, username, password);

28:

29: PreparedStatement statement

30: = connection.prepareStatement(“SELECT ename FROM emp Æ
WHERE sal > ?”);

31:

32: } catch(ClassNotFoundException cnfe) {

33: System.err.println(“Error loading driver: “ + cnfe);

34:

35: } catch(SQLException sqle) {

36: sqle.printStackTrace();

37:

38: }

39: }

40: /**Process the HTTP Post request*/

41: public void doPost(HttpServletRequest request, Æ
HttpServletResponse response) throws ServletException, IOException {

42: response.setContentType(CONTENT_TYPE);

43:

44: String salary = request.getParameter(“salary”);

45:

46: try {

47:

48: statement.setFloat(1, Float.parseFloat(salary));

49:

50: ResultSet results =

51: statement.executeQuery();

52:

// ... remaining code Identical to listing 44.1 ...

85: }

86:

Listing 44.3 (continued)

Notice in this example that the parameter is set and the PreparedStatement is
executed. This allows the reuse of the PreparedStatement between requests to the
servlet. This improves the responsiveness, since it does not require the repetitive and
time-consuming step of recompiling the statement on every invocation of the servlet.

It seems logical that there would be a performance improvement in reusing rather
than recompiling statements. Testing was conducted to determine how much better
the reuse option was. The three previously mentioned scenarios were tested. All used

The Unprepared PreparedStatement 377

an Oracle database over a local area network. A test class was built to connect to the
database and sequentially call a method representing each scenario, using the same
connection for each. The same query was executed 100 times using each methodology.
Here is the output of the tester class:

Executing prepared statement 100 times took 0.791 seconds.

Executing raw query 100 times took 1.472 seconds.

Executing repeated prepared statements 100 times took 1.622 seconds.

This class was executed several times with very similar results. Notice two things:
First, the reused prepared statement was approximately 40 to 50 percent faster than the
raw query statement, and second, the repeated compiling of prepared statements actu-
ally gave about a 10 percent performance hit.

This example shows a classic pitfall in the use of JDBC. When building desktop
applications or when in the development phase of Web and enterprise applications,
many developers fail to notice the performance hit that comes from not effectively
using the PreparedStatement. A 50 percent hit in response time can get very signif-
icant in Web applications when loads can go up tremendously without much notice.

Item 45: Take a Dip in the Resource Pool

Most of the time, an “interactive Web site” is really a controlled chaos of Web applica-
tions that gradually evolve into a common purpose. Most organizations come up with
an idea that “we can put these applications on the Web,” and they usually do. Depend-
ing on the skill level of the development organization, various technologies are used to
“Web-enable” their application.

This phenomenon is not limited to the spread of Web application platforms avail-
able—PHP, Cold Fusion, ASP, and so on. This occurs within Java also. The power of
servlets, the ease of JSP, and the reuse of JSP tag libraries have caused a lot of develop-
ers to use a wide variety of techniques to Web-enable applications in Java.

Here are a few common ways that Web developers handle database connections.
The first is to create a simple class to abstract the DB from the rest of the code, as List-
ing 45.1 demonstrates.

01: package org.javapitfalls;

02:

03: import java.io.*;

04: import java.net.*;

05: import java.sql.*;

06: import java.util.*;

07:

08: public class DbAbstract implements java.io.Serializable {

09:

10: private Connection connection;

Listing 45.1 DBAbstract.java

378 Item 45

11: private Statement statement;

12:

13: public DbAbstract ()

14: throws ClassNotFoundException, SQLException

15: {

16:

17: String driverName = “”;

18: String className = “”;

19: String user = “”;

20: String pass = “”;

21:

22: Properties resource = new Properties();

23: // Obtain a resource bundle that will allow use to get the

24: // appropriate configurations for the server.

25: try

26: {

27: URL url = Æ
this.getClass().getClassLoader().getResource(“db.properties”);

28: resource.load(new FileInputStream(url.getFile()));

29: // Get properties

30: driverName = resource.getProperty(“driverName”);

31: className = resource.getProperty(“className”);

32: user = resource.getProperty(“user”);

33: pass = resource.getProperty(“pass”);

34: System.out.println(“Using parameters from the db.properties Æ
file for Database.”);

35: } catch (Exception e) {

36: System.out.println(“ERROR: Couldn’t load db.properties.” Æ
+ e.toString());

37: }

38:

39: Class.forName(className);

40: connection = DriverManager.getConnection(driverName,user, pass);

41:

42: connection.setAutoCommit(false);

43:

44: statement = connection.createStatement();

45: }

46:

47: public void executeUpdate(String sqlCommand)

48: throws SQLException

49: {

50: statement.executeUpdate(sqlCommand);

51: }

52:

53: public ResultSet executeQuery(String sqlCommand)

54: throws SQLException

55: {

56: return statement.executeQuery(sqlCommand);

Listing 45.1 (continued)

Take a Dip in the Resource Pool 379

57: }

58:

59: public void commit() throws SQLException

60: {

61: connection.commit();

62: }

63:

64: public void rollback() throws SQLException

65: {

66: connection.rollback();

67: }

68:

69: protected void finalize() throws SQLException

70: {

71: statement.close();

72: connection.close();

73: }

74: }

75:

Listing 45.1 (continued)

This example works very well. Taking it one step further, we find the development
of servlets to pool database connections or broker database connections. I have seen a
number of innovative approaches to creating these types of servlets, including HTTP
interfaces to get state information, manipulate the interface, or control lifecycle events.
Because I don’t want to take anything away from these approaches or distract from my
main point, I’ve just provided a simple example of one of these in Listing 45.2.

01: package org.java.pitfalls;

02:

03: import javax.servlet.*;

04: import javax.servlet.http.*;

05: import java.io.*;

06: import java.util.*;

07: import java.sql.*;

08: import java.text.*;

09: import com.javaexchange.dbConnectionBroker.*;

10:

11: public class CPoolServlet extends HttpServlet

12: implements SingleThreadModel {

13:

14:

15: ServletContext context = null;

16: DbConnectionBroker broker = null;

Listing 45.2 CPoolServlet.java

380 Item 45

17: String logDir = “”;

18:

19: public void init(ServletConfig config) {

20:

21: try {

22:

23: startBroker();

24:

25: // Set it up so that other servlets can get a handle to Æ
it.

26: context = config.getServletContext();

27: context.setAttribute(“pooler”, broker);

28:

29: }catch (IOException e) {

30: System.out.println(

31: “CPoolServlet: Problems with database connection: “ + Æ
e);

32:

33: }catch (Exception e) {

34: System.out.println(

35: “CPoolServlet: General pooler error: “ + e);

36: }

37: }

38:

39: public void doPost(HttpServletRequest request, Æ
HttpServletResponse response)

40: throws IOException {

41: doGet(request, response);

42: }

43:

44: public void doGet(HttpServletRequest request, Æ
HttpServletResponse response)

45: throws IOException {

46:

47: response.setContentType(“text/html”);

48: ServletOutputStream out = response.getOutputStream();

49:

50: StringBuffer html = new StringBuffer();

51:

52: html.append(“”);

53: html.append(“<html><title>CPoolServlet</title><body>”);

54:

55: html.append(“<center><h2>CPoolServlet Æ
Information</h2></center>”);

56: html.append(“<p><center>Connection Pool is available Æ
under the pooler attribute.</center>”);

57:

58: html.append(“</body></html>”);

59:

Listing 45.2 (continued)

Take a Dip in the Resource Pool 381

60: out.println(html.toString());

61: }

62:

63: private void startBroker() throws Exception {

64: try {

65: broker = new DbConnectionBroker(

66: “com.sybase.jdbc2.jdbc.SybDriver”,

67: “jdbc:sybase:Tds:localhost:2638”,

68: “Test”,

69: “Test”,

70: 5,

71: 25,

72: “CPool.log”,

73: 1.0);

74: }catch (Exception e) {

75: throw e;

76: }

77: }

78:

79: public void destroy() {

80: broker.destroy();

81: }

82: }

83:

Listing 45.2 (continued)

In this example, the servlet creates a connection broker object, in this case, a popular
one from the Java Exchange. It places the attribute within the servlet context so that
other components (servlets, JSPs) within the container can use it. This shows that there
is an ability to create objects and make them available to the rest of the Web container.
Why can’t the container create these objects and make them available through the same
JNDI lookups? It can. In fact, J2EE 1.3 containers are required to support resource
pools, which are called resource managers.

Another interesting thing about the specification is that application developers are
required to get their database connections through the javax.sql.DataSource connec-
tion factory. That means that to be compliant with the specification, developers ought
to use this facility.

As an example, let’s look at how you would do this using Tomcat. In this case, we are
using an open-source connection pool factory provided by the Jakarta Commons project
called DBCP (http://jakarta.apache.org/commons/dbcp.html). Assuming you have
placed your JDBC driver and the connection pool JARs (if needed) in the right place
(%CATALINA_HOME%/common/lib for Tomcat), the first step is to place a resource
reference in your Web application’s web.xml file—as demonstrated in Listing 45.3.

382 Item 45

01: <resource-ref>

03: <description>

05: Reference to a factory for java.sql.Connection instances. Æ
The actual implementation is configured in the container.

07: </description>

09: <res-ref-name>

11: jdbc/myDB

13: </res-ref-name>

15: <res-type>

17: javax.sql.DataSource

19: </res-type>

21: <res-auth>

23: Container

25: </res-auth>

27: </resource-ref>

Listing 45.3 Excerpt from web.xml

As noted in the above declaration, you then need to configure the container to handle
the actual implementation of the reference. In Tomcat, this is done in the server.xml file.
Here is an example of what should be added to the file in order to create the resource pool.

Note this fits into the Context element, or in the DefaultContext element. More
information on these can be read from the sample server.xml and other documents that
the Jakarta project maintains on Tomcat. Listing 45.4 shows how to modify the
server.xml in Tomcat to create the Connection Pool resource.

01: <Context ...>

03: ...

04:

05: <Resource name=”jdbc/myDB” auth=”Container”

06: type=”javax.sql.DataSource”

07: description=”The PKO Portal DB”/>

08: <ResourceParams name=”jdbc/pkoDB”>

09: <parameter>

10: <name>factory</name>

11: <value>org.apache.commons.dbcp.BasicDataSourceFactory</value>

12: </parameter>

13: <parameter>

14: <name>driverClassName</name>

15: <value>com.sybase.jdbc2.jdbc.SybDriver</value>

16: </parameter>

17: <parameter>

Listing 45.4 Excerpt from server.xml (continued)

Take a Dip in the Resource Pool 383

18: <name>maxActive</name>

19: <value>3</value>

20: </parameter>

21: <parameter>

22: <name>maxIdle</name>

23: <value>3</value>

24: </parameter>

25: <parameter>

26: <name>username</name>

27: <value>user</value>

28: </parameter>

29: <parameter>

30: <name>password</name>

31: <value>pwd</value>

32: </parameter>

33: <parameter>

34: <name>maxWait</name>

35: <value>-1</value>

36: </parameter>

37: <parameter>

38: <name>url</name>

39: <value>jdbc:sybase:Tds:localhost:2638</value>

40: </parameter>

41: </ResourceParams>

Listing 45.4 (continued)

So, now the JDBC DataSource resource pool is available to the applications. The
last step would be to actually use it. Listing 45.5 is an example of how to use the
resource pool.

01: Context initCtx = new InitialContext();

03: Context envCtx = (Context) initCtx.lookup(“java:comp/env”);

05: DataSource ds = (DataSource) envCtx.lookup(“jdbc/myDB”);

07: Connection conn = ds.getConnection();

09: <<< Execute specific JDBC code here >>>

11: conn.close();

Listing 45.5 Using the resource pool

There are many different ways to create and manage resource pools. Like a lot of
things in Java, better solutions evolve with time, and developers often are not aware of
improvements offered in the platform. This is a common example where developers
who have created their own mechanisms may not be aware of the improvements.

384 Item 45

If you are working within a container, you should use the resource pooling capabil-
ity provided by the container. Often it is invalid not to use the container resource pool,
which can cause component developers to have problems with the portability of their
code. Also, this allows for one convenient place for the container configuration to pro-
vide this service to all of its applications. It can be configured or changed without
having to change every application that runs in the container.

The J2EE Connector Architecture is increasing in popularity for integrating back-
end systems. This architecture provides for resource managers, which provide similar
access to heterogeneous systems like Enteprise Resource Planning (ERP) and Human
Resources Management Systems (HRMS) systems.

Item 46: JDO and Data Persistence

The foundation of any enterprise application is the data layer. This also determines
how data will be persisted on your system. To me, deciding on a proper data persis-
tence mechanism is like passing a very large kidney stone. Perhaps that is an over-
statement, but it’s an arduous process that requires an exhaustive understanding of
your system and the technologies that will allow you to apply the best solution to your
data storage/retrieval activities.

A proper persistence strategy typically consists of storing information in byte
streams through serialization, hierarchically arranged data in XML files, Enterprise Java
Beans, relational/object databases, and now Java Data Objects (JDO). The problem is
that once you make a commitment to one technology, there’s always a lot of second-
guessing because of unforeseeable implementation hardships and performance issues.

Relational databases and EJBs can be effective tools for performing data persistence
activities, but Java Data Objects offer a powerful new alternative that should be con-
sidered in allowing object-based access to your back-end data stores. JDO’s strength
lies in its ability to allow developers to use both Java and SQL constructs to manage
data manipulation and access, and in its binary portability across data stores.

There are always design and implementation trade-offs in software development,
especially when it comes to data persistence and retrieval. Although serialization is
fairly simple to implement and does a decent job of preserving relationships between
Java objects, it is nontransactional and can be a performance hog. JDBC is great for han-
dling transactions, but it can require extensive field management and data mapping
activities and can be tedious when you are implementing several SQL language con-
structs. JDO is fairly new and is not fully developed, but it promises to make develop-
ers more productive by allowing business logic manipulation through the use of Java
interfaces and classes without having to explicitly understand SQL operations.

To gain a better appreciation of the strengths of JDO and how its transactional capa-
bilities should be considered along with traditional methodologies, you need to under-
stand data persistence in its most common form: serialization. Serialization is a simple
technique used to transfer and store objects in byte streams and, most recently, in XML,
but this is performed in a nontransactional manner. The code below demonstrates a
simple manner that data can be serialized to the system disk space and read back. The
ObjectInputStream class on line 122 deserializes data that was created previously
using ObjectOutputStream.

JDO and Data Persistence 385

001: package serialization;
002:
003: import java.util.*;
004: import java.text.*;
005: import java.util.Date;
006: import java.io.*;
007: import java.net.*;
008: import java.beans.*;
009: import java.util.logging.*;
010:
011: public class serializeBean {
012:
013: private String firstname;
014: private String lastname;
015: private String department[];
016: private String ssn;
017: private String comments;
018: private String filename;
019: private String filename2;
020:
021: //private String firstname2;
022: //private String lastname2;
023: //private String ssn2;
024: //private String comments2;
025:
026: private Hashtable errors;
027:
028: private static Logger logger = Æ
Logger.getLogger(serializeBean.class.getName());
029:
030: public boolean validate() {
031: boolean errorsFound=false;
032:
033: logger.info(“[validate:] lastname, firstname, ssn, comments= Æ
“ + lastname + “, “ + firstname + “, “ + ssn + “, “ + comments);
034:
035: if (firstname.equals(“”)) {
036: errors.put(“firstname”,”Please enter a valid Firstname”);
037: errorsFound=true;
038: }
039: if (lastname.equals(“”)) {
040: errors.put(“lastname”,”Please enter a valid Lastname”);
041: errorsFound=true;
042: }
043: if (ssn.equals(“”)) {
044: errors.put(“ssn”,”Please enter a valid Social Security #”);
045: errorsFound=true;
046: }
047: if (comments.equals(“”)) {
048: errors.put(“comments”,”Please enter a valid comment”);

Listing 46.1 serializeBean.java

386 Item 46

049: errorsFound=true;
050: }
051:
052: return errorsFound;
053: }
054:
055: public String getErrorMsg(String s) {
056: String errorMsg =(String)errors.get(s.trim());
057: return (errorMsg == null) ? “”:errorMsg;
058: }
059:
060: public serializeBean() {
061:
062: try
063: {
064: URL url = null;
065: Properties props = new Properties();
066:
067: url = Æ
this.getClass().getClassLoader().getResource Æ
(“serialization.properties”);
068: props.load(new FileInputStream(url.getFile()));
069: // Get properties
070: filename = props.getProperty(“filename”);
071: setFilename(filename);
072: logger.info(“[serializeBean:(constructor)] Filename is: Æ
“ + getFilename());
073:
074: BufferedInputStream in = new BufferedInputStream(new Æ
FileInputStream(filename));
075: XMLDecoder decoder = new XMLDecoder(in);
076: Object f = decoder.readObject(); // firstName
077: Object l = decoder.readObject(); // lastName
078: Object s = decoder.readObject(); // SSN
079: Object c = decoder.readObject(); // comments
080:
081: lastname = (String)l;
082: firstname = (String)f;
083: ssn = (String)s;
084: comments = (String)c;
085:
086: setLastname(lastname);
087: setFirstname(firstname);
088: setSsn(ssn);
089: setComments(comments);
090:
091: decoder.close();
092:
093: }
094: catch(Exception e) {

Listing 46.1 (continued)

JDO and Data Persistence 387

095:
096: System.out.println(“ERROR: “ + e.toString());
097: System.out.println(“Using default values.”);
098:
099: // use default values
100: firstname=””;
101: lastname=””;
102: // department[];
103: ssn=””;
104: comments=””;
105:
106: }

Listing 46.1 (continued)

The serialization process described in lines 109 to 210 can be a problem with differ-
ent versions of class libraries or Java Runtime Environments. The latest Merlin release
has addressed this with the introduction of XML serialization. Since the data is saved
in XML files, it is possible to serialize data, manually modify the serialized file by hand,
and have it deserialized without losing a step. Previously, this would not have been
possible because the data was saved in binary byte streams.

108: /*
109: try
110: {
111: URL url = null;
112: Properties props = new Properties();
113: url = this.getClass().getClassLoader().
114: getResource(“serialization.properties”);
115: props.load(new FileInputStream(url.getFile()));
116: // Get properties
117: filename2 = props.getProperty(“filename2”);
118: setFilename2(filename2);
119: logger.info(“Filename2 is: “ + getFilename2());
120: FileInputStream inputFile =
121: new FileInputStream(getFilename2());
122: ObjectInputStream inputStream =
123: new ObjectInputStream(inputFile);
124: // Read data
125: lastname2 = (String)inputStream.readObject();
126: firstname2 = (String)inputStream.readObject();
127: ssn2 = (String)inputStream.readObject();
128: comments2 = (String)inputStream.readObject();
129:
130: inputStream.close();
131:
132: }
133: catch(Exception e) {
134:
135: System.out.println(“ERROR: “ + e.toString());

Listing 46.1 (continued)

388 Item 46

136: System.out.println(“Using default values.”);
137:
138: // use default values
139: firstname2=””;
140: lastname2=””;
141: ssn2=””;
142: comments2=””;
143:
144: }
145: */
146: errors = new Hashtable();
147: logger.info(“lastname, firstname, ssn, comments= “ +
148: lastname + “, “ + firstname + “, “ + ssn + “, “ + comments);
149: // logger.info(“lastname2, firstname2, ssn2, comments2= “ +
150: // lastname2 + “, “ + firstname2 + “, “ + ssn2 + “, “ + comments2);
151: }
152: public void write()
153: {
154: try
155: {
156: logger.info(“Filename is: “ + getFilename());
157:
158: System.out.println(“Firstname= “ + getFirstname());
159: System.out.println(“Lastname= “ + getLastname());
160: System.out.println(“SSN= “ + getSsn());
161: System.out.println(“Comments= “ + getComments());
162:

Listing 46.1 (continued)

The code below demonstrates a new serialization mechanism that saves the states of
internal methods in an XML format.

163: // try XMLEncode
164: BufferedOutputStream out =
165: new BufferedOutputStream(new FileOutputStream(getFilename()));
166: XMLEncoder encoder = new XMLEncoder(out);
167: encoder.writeObject(getFirstname());
168: encoder.writeObject(getLastname());
169: encoder.writeObject(getSsn());
170: encoder.writeObject(getComments());
171: encoder.close();
172:
173: }
174: catch(IOException ioe) {
175: System.err.println(“IOERROR: “ + ioe);
176: }
177: catch(Exception e) {
178: System.err.println(“ERROR: “ + e);
179: }
180:

Listing 46.1 (continued)

JDO and Data Persistence 389

181: /*
182: try
183: {
184: logger.info(“Filename is: “ + getFilename2());
185: // avoid XMLEncode
186: FileOutputStream outputFile2 =
187: new FileOutputStream(getFilename2());
188: ObjectOutputStream outputStream2 =
189: new ObjectOutputStream(outputFile2);
190: outputStream2.writeObject(getFirstname());
191: outputStream2.writeObject(getLastname());
192: outputStream2.writeObject(getSsn());
193: outputStream2.writeObject(getComments());
194:
195: // close stream
196: outputStream2.flush();
197: outputStream2.close();
198:
199: }
200: catch(IOException ioe) {
201: System.err.println(“IOERROR: “ + ioe);
202: }
203: catch(Exception e) {
204: System.err.println(“ERROR: “ + e);
205: }
206: */
207:
208: logger.info(“[serializeBean:write] writing data.”);
209: }

Listing 46.1 (continued)

If you’ve used Remote Method Invocation in your software implementations,
you’ve come across serialization. With RMI implementations, objects are compressed
into byte streams when they are marshaled across a network. Performance becomes an
issue during the deserialization of objects because it involves the conversion of byte
array elements into object and data types. This process involves the use of reflection to
discover properties of an object.

Some shortcomings with serialization are that once an object is written to, additional
writes are ignored because the object reference is maintained, unless the reset()
method is invoked. Certainly, performance issues have always been associated with
serialization because of disk read (reflection)/write operations, but depending on your
situation, serialization can be a perfectly appropriate persistence solution in your
enterprise deployments. However, if your application requires concurrency in data-
base access and queries, then Java Data Objects can be a solution for you.

390 Item 46

Figure 46.1 JDO Test form.

Now that you have a better understanding of serialization, I think you’ll have a bet-
ter appreciation of JDO and the great promise it offers in abstracting away the inane
details of the SQL language implementation in Java applications.

A simple inventory program, shown in Listing 46.2, was crafted with a recent
open-source JDO offering from the Apache Software Foundation (ASF) called Objec-
tRelational Bridge (OJB). OJB is a fairly ambitious project by the good folks at the ASF,
and although their JDO implementation is not fully compliant with the JDO Draft (JSR-
012), ASF promises to move in that direction. OJB uses a PersistentBroker API as
its persistence kernel and has its JDO implementation built on top of it and XML data
mappings that bind to your database elements.

What makes OJB JDO worthy of examination is its ability for transparent persistence
of database elements in the form of Java objects. JDO abstracts away the complexities
of SQL transactions and allows developers to query instances of data stores with very
fine granularity and without having to understand the intimate details about the data-
base structure itself.

With OJB JDO, caches can be transactional, which means that each cache area can
maintain a different transactional view of the data store instances. This is an important
concept that separates it from the serialization process described above.

Mentioned earlier, the following code is a simple inventory Web application that
inserts, deletes, and displays inventory items using the OJB JDO libraries. The jdoForm
is a simple JavaServer Page that accepts user requests and interfaces with a back-end
MySQL database.

JDO and Data Persistence 391

001:

002: <%@page import=”org.apache.ojb.tutorial4.*” %>

003: <%@page import=”org.apache.ojb.jdo.PersistenceManagerImpl” %>

004: <%@page import=

005: “org.apache.ojb.jdo.PersistenceManagerFactoryImpl” %>

006: <%@page import=”javax.jdo.PersistenceManager” %>

007: <%@page import=”javax.jdo.Transaction” %>

008:

009: <%@page import=”org.odmg.*” %>

010:

011: <%@page import=”javax.jdo.Query” %>

012: <%@page import=”java.util.Collection” %>

013:

014: <%@page import=”javax.jdo.PersistenceManager” %>

015: <%@page import=”javax.jdo.PersistenceManagerFactory” %>

016: <%@page import=”java.io.BufferedReader” %>

017: <%@page import=”java.io.InputStreamReader” %>

018: <%@page import=”java.util.Vector” %>

019: <jsp:useBean id=”pm”

020: class=”org.javapitfalls.item46.jdoPersistenceMgr”

021: scope=”application”/>

022: <jsp:useBean id=”validate”

023: class=”org.javapitfalls.item46.jdoBean” scope=”request”>

024: <jsp:setProperty name=”validate” property=”*”/>

025: </jsp:useBean>

026: <head>

027: <title>JDO Test</title>

028: </head>

029:

030: <%

031: String addItem=request.getParameter(“Add”);

032: String deleteItem=request.getParameter(“Delete”);

033:

034: if (addItem != null)

035: {

036: String pName = request.getParameter(“productName”);

037: String pPrice = request.getParameter(“productPrice”);

038: String pCount = request.getParameter(“productCount”);

039:

040: if (!validate.validate()) {

041:

042: Product newProduct = new Product();

043:

044: newProduct.setName(pName);

045: newProduct.setPrice(Double.parseDouble(pPrice));

046: newProduct.setStock(Integer.parseInt(pCount));

047:

Listing 46.2 jdoForm.jsp

392 Item 46

The Transaction interface on line 49 provides the operations necessary to perform
database transactions—specifically, accessing, creating, and modifying persistent
objects and their fields. Prior to performing any database operations, a thread must
explicitly create a transaction object or associate itself with an existing transaction
object, and that transaction must be open (through a call to begin). All operations that
follow the thread are performed under the transaction of the thread.

The operational states of a transaction are either open or closed. An open transaction
means that the application has called begin() but has not invoked commit() or
abort(). Once an application calls the commit() or abort() methods, the transac-
tion is considered closed. The isOpen() method can be used to determine the state of
a transaction. As objects are accessed by an application, read locks are implicitly used
to allow proper access to data and write locks are used when objects are modified to
ensure that only one transaction is modifying data at one time.

The makePersistent(...) operation on line 52 is executed on an open transac-
tion so that the transient object can be made available for the commit method to make
it durable. If the transaction is made available and the operation aborts, then the
makePersistent operation is nullified and the target object is marked as transient.

048: // now perform persistence operations
049: Transaction tx = null;
050: // open transaction
051: PersistenceManager pmInstance = pm.getManagerInstance();
052: pmInstance.makePersistent(newProduct);
053: tx = pmInstance.currentTransaction();
054: tx.begin();
055:
056: // commit transaction
057: tx.commit();
058:
059: System.out.println(“successful submission...”);
060:
061: } else {
062:
063: System.out.println(“Validation error.”);
064:
065: }
066: }
067: else if (deleteItem != null)
068: {
069: String[] deleteArray = request.getParameterValues(“deleteItems”);
070:
071: if ((deleteArray != null) && (deleteArray.length > 0))
072: {
073: for (int i=0; i < deleteArray.length; i++)
074: {
075: System.out.println(“deleting: “ + deleteArray[i]);
076:

Listing 46.2 (continued)

JDO and Data Persistence 393

077: Product test = new Product();
078: test.setId(Integer.parseInt(deleteArray[i]));
079:
080: PersistenceManager pmInstance = pm.getManagerInstance();
081:
082: try
083: {
084: Product toBeDeleted = Æ
(Product)pmInstance.getObjectById(test, false);
085: Transaction tx = null;
086: tx = pmInstance.currentTransaction();
087: tx.begin();
088: pmInstance.deletePersistent(toBeDeleted);
089: tx.commit();
090: }
091: catch (Throwable t)
092: {
093: // rollback in case of errors
094: pmInstance.currentTransaction().rollback();
095: t.printStackTrace();
096: }
097: }
098: }
099: }
100:
101: %>
102:
103: <html>
104: <body>
105:
106: <form action=”jdoForm.jsp” method=post>
107: <center>
108:
109: <table border=”0” cellpadding=”4” cellspacing=”4” width=”100%”>
110: <tr valign=”top” bgcolor=”#eeeeee”>
111: <td colspan=”3”>
112: <table cellspacing=”0” border=”0” width=”100%”>
113: <tr>
114: <td align=”center” valign=”top”>
115: <table cellspacing=”0” cellpadding=”1” border=”0” Æ
width=”100%” align=”center”>
116: <tr>
117: <td valign=”top” align=”center”>
118: JDO Test
119: </td>
120: </tr>
121: </table>
122: </td>
123: </tr>

Listing 46.2 (continued)

394 Item 46

124: </table>
125: </td>
126: </tr>
127: <tr bgcolor=”” >
128: <td align=”left”>Product Name:
129:
130: <%=validate.getErrorMsg(“productName”)%></td>
131: <td align=”left”>
132: <input type=”text” name=”productName”
133: value=”<%=validate.getProductName()%>” size=”30”></td>
134: </tr>
135: <tr bgcolor=”” >
136: <td align=”left”> Product Price:
137:
138: <%=validate.getErrorMsg(“productPrice”)%></td>
139: <td align=”left”>
140: <input type=”text” name=”productPrice”
141: value=”<%=validate.getProductPrice()%>” size=”30”></td>
142: </tr>
143: <tr bgcolor=”” >
144: <td align=”left”>Product Count:
145:
146: <%=validate.getErrorMsg(“productCount”)%></td>
147: <td align=”left”>
148: <input type=”text” name=”productCount”
149: value=”<%=validate.getProductCount()%>” size=”30”></td>
150: </tr>
151: <tr bgcolor=”” >
152: <td align=”center” colspan=”2”>
153: <input type=”Submit” name=”Add” value=”Add”>
154: </td>
155: </tr>
156:
157: </table>
158:
159: </center>
160:
161: <table border=”0” cellpadding=”4” cellspacing=”4” width=”100%”>
162: <tr bgcolor=”#eeeeee”><td>Product ID</td><td>Price ($)</td><td>
163: # in Stock</td><td>Delete item?</td></tr>
164: <%

Listing 46.2 (continued)

The following code performs the rendering of the inventory data to the user display.
A query is performed using the product table mapping. If data items are found in the
product table, a collection handle is obtained and iterated through in the JSP display. A
screenshot is provided in Listing 46.1 for this application.

JDO and Data Persistence 395

165: // List all items

166: Query query = pm.getManagerInstance().newQuery(Product.class);

167: try

168: {

169: // ask the broker to retrieve the Extent collection

170:

171: Collection allProducts = (Collection)query.execute();

172: // now iterate over the result to print each product

173: java.util.Iterator iter = allProducts.iterator();

174: while (iter.hasNext())

175: {

176: Product a = (Product) iter.next();

177: %>

178: <tr>

179: <td><%= a.getId() %></td>

180: <td>$<%= a.getPrice() %></td>

181: <td><%= a.getStock() %></td>

182: <td><input type=”checkbox” name=”deleteItems” value=”<%=

183: a.getId() %>”>Delete?</td>

184: </tr>

185: <%

186: }

187: }

188: catch (Throwable t)

189: {

190: t.printStackTrace();

191: }

192: %>

193: <tr bgcolor=”” >

194: <td align=”center” colspan=”4”>

195: <input type=”Submit” name=”Delete” value=”Delete”>

196: </td>

197: </tr>

198:

199: </table>

200:

201: </form>

202:

203: </body>

204: </html>

205:

Listing 46.3 Inventory results

The jdoPersistenceMgr application which follows uses the JDO PersistenceMan-
ager class on line 22 as its primary interface between the Web application jdoForm.jsp
and the back-end MySQL database. The PersistenceManager provides both query
and transaction management. It uses the resource adapter to access the data store,
specifically the OJB libraries.

396 Item 46

01: package org.javapitfalls.item46;
02:
03: import org.apache.ojb.tutorial4.*;
04:
05: import org.apache.ojb.jdo.PersistenceManagerImpl;
06: import org.apache.ojb.jdo.PersistenceManagerFactoryImpl;
07: import javax.jdo.PersistenceManager;
08: import javax.jdo.Transaction;
09:
10: import javax.jdo.Query;
11: import java.util.Collection;
12:
13: import javax.jdo.PersistenceManager;
14: import javax.jdo.PersistenceManagerFactory;
15: import java.io.BufferedReader;
16: import java.io.InputStreamReader;
17: import java.util.Vector;
18:
19: public class jdoPersistenceMgr implements java.io.Serializable {
20:
21: PersistenceManagerFactory factory;
22: PersistenceManager manager;
23:
24: public jdoPersistenceMgr()
25: {
26: manager = null;
27: try
28: {
29: factory = PersistenceManagerFactoryImpl.getInstance();
30: manager = factory.getPersistenceManager();
31:
32: }
33: catch (Throwable t)
34: {
35: System.out.println(“ERROR: “ + t.getMessage());
36: t.printStackTrace();
37: }
38: }
39:
40: public PersistenceManager getManagerInstance()
41: {
42: return manager;
43: }
44:
45: }

Listing 46.4 do.PersistenceManager.java

There are many discussions in the development community about JDO and the per-
ception that it suffers from its association with Object Data Modeling Group (ODMG),
which has not garnered widespread community support because of proprietary lan-
guage extensions and nonstandard meta data support.

JDO and Data Persistence 397

Personally, I feel that this misperception is badly placed and will be displaced once
the development community implements new reference implementations by Sun and
the ASF. JDO is still a young standard, but as products like OJB mature, developers will
gain a better appreciation of JDO’s ability to propagate consistent persistence behavior
across implementations, its use of XML meta data representation for mapping data,
and its ability to use mature Java Collection class libraries to manipulate data. These
capabilities could make your persistence questions easier to tackle on your system’s
data layer.

JDO is relevant because it minimizes database transaction implementations by
developers and it supports reuse, particularly with Java components. OJB JDO facili-
tates cache and object management through object models and avoids relational mod-
eling and EJB/CMP intricacies that can be specific to an application.

Item 47: Where’s the WSDL? Pitfalls of
Using JAXR with UDDI

The Java API for XML Registries (JAXR) provides a Java API for accessing different
kinds of registries. Built on the OASIS ebXML Registry Information Model (RIM),
mappings between ebXML interfaces and JAXR interfaces are direct and seem intu-
itive. When JAXR is used with UDDI (Universal Description and Discovery Integra-
tion) registries, however, there is sometimes a bit of confusion. In our experience, Java
developers that are new to JAXR face a learning curve and a few pitfalls that revolve
around misunderstanding the relationships between JAXR objects and the UDDI data
structures. This item shows examples of these pitfalls and provides guidance on how
to avoid them.

To show these possible pitfalls, we will build a skeletal program that includes the
basics of JAXR, shown in our Listing 47.1. In this listing, we have an empty make-
Call() method on lines 64 to 69. After we explain our example setup in the listing, we
will implement several versions of makeCall() to query the registry.

In using JAXR, you must first set up a connection to a registry server. Listing 47.1
shows the beginning of a program using JAXR to speak to a registry server. In this
example, we are using the public Microsoft UDDI registry, passed in to the constructor
of JAXRQueryExample. In lines 29 to 32, we are able to get a connection to the reg-
istry using the ConnectionFactory object from the javax.xml.registry pack-
age. From that connection, we are able to get the RegistryService object, which
allows us to receive the BusinessQueryManager object on line 34.

001: package org.javapitfalls.item47;

002:

003: import javax.xml.registry.*;

004: import javax.xml.registry.infomodel.*;

005: import java.net.*;

006: import java.util.*;

Listing 47.1 The start of our UDDI query example

398 Item 47

007:

008: public class JAXRQueryExample

009: {

010: RegistryService m_regserv = null;

011: BusinessQueryManager m_querymgr = null;

012: Connection m_connection = null;

013:

014: public JAXRQueryExample(String registryURL) throws JAXRException

015: {

016: ConnectionFactory factory = null;

017:

018: Properties props = new Properties();

019: props.setProperty(“javax.xml.registry.queryManagerURL”,

020: registryURL);

021:

022: try

023: {

024: /*

025: * Create the connection, passing it the

026: * properties -- in this case, just the URL

027: */

028:

029: factory = ConnectionFactory.newInstance();

030: factory.setProperties(props);

031:

032: m_connection = factory.createConnection();

033: m_regserv = m_connection.getRegistryService();

034: m_querymgr = m_regserv.getBusinessQueryManager();

035: }

036: catch (JAXRException e)

037: {

038: cleanUp();

039: //pass it on..

040: throw e;

041: }

042: }

043:

044: /**

045: * Close the connection

046: */

047: public void cleanUp()

048: {

049: if (m_connection != null)

050: {

051: try

052: {

053: m_connection.close();

054: }

Listing 47.1 (continued)

Where’s the WSDL? Pitfalls of Using JAXR with UDDI 399

055: catch (JAXRException je)

056: {

057: }

058: }

059: }

060:

061: /**

062: * Our main focus in this pitfall

063: **/

064: public void makeCall(String query) throws Exception

065: {

066: //We will use m_querymgr in this method

067:

068: System.out.println(“makeCall() Not implemented yet!”);

069: }

070:

071: /** Simple convenience function, since strings from registry

072: * are in this format

073: */

074: public String convertToString(InternationalString intl)

075: throws JAXRException

076: {

077: String stringVal = null;

078: if (intl != null)

079: {

080: stringVal = intl.getValue();

081: }

082: return(stringVal);

083: }

084:

085: public static void main(String[] args)

086: {

087: JAXRQueryExample jaxrex = null;

088: try

089: {

090: String uddiReg = “http://uddi.microsoft.com/inquire”;

091: jaxrex = new JAXRQueryExample(uddiReg);

092:

093: jaxrex.makeCall(“truman”);

094:

095: System.out.println(“-----------SECOND QUERY--------------”);

096: jaxrex.makeCall(“sched”);

097: }

098: catch (Exception e)

099: {

100: e.printStackTrace();

101: }

102: finally

Listing 47.1 (continued)

400 Item 47

103: {

104: jaxrex.cleanUp();

105: }

106: }

107:

108: }

109:

Listing 47.1 (continued)

On lines 64 to 69, we have an empty makeCall() method that will be our focus for
the rest of this pitfall item. In that method, we will make extensive use of the Busi-
nessQueryManager interface returned from the RegistryService object on line 33.
Because this is where some of the confusion comes in, we have listed the available meth-
ods of the javax.xml.registry.BusinessQueryManager interface in Table 47.1.

Table 47.1 The BusinessQueryManager Interface

METHOD DESCRIPTION

BulkResponse Finds Association
findAssociations (Collection findQualifiers, objects that match

String sourceObjectId, parameters of this call.
String targetObjectId,

Collection assocTypes)

BulkResponse Finds all Association
findCallerAssociations(Collection objects owned by the

findQualifiers, caller that match all of
Boolean confirmedByCaller, the criteria specified by
Boolean confirmedByOtherParty, the parameters of this
Collection associationTypes) call.

ClassificationScheme Finds a
findClassificationSchemeByName(Classification-

Collection findQualifiers, Scheme by name based
String namePattern on the specified find
) qualifiers and name

pattern.

BulkResponse Finds all
findClassificationSchemes(Collection Classification-

findQualifiers, Scheme objects that
Collection namePatterns, match all of the criteria
Collection classifications, specified by the
Collection externalLinks) parameters of this call.

Concept findConceptByPath(java.lang.String path) Finds a Concept object
by the path specified.

(continued)

Where’s the WSDL? Pitfalls of Using JAXR with UDDI 401

Table 47.1 (continued)

METHOD DESCRIPTION

BulkResponse Finds all Concept
findConcepts(Collection findQualifiers, objects that match the

Collection namePatterns, parameters of this call.
Collection classifications,

Collection externalIdentifiers,

Collection externalLinks)

BulkResponse

findOrganizations(Collection findQualifiers, Finds all Organization
Collection namePatterns, objects that match the
Collection classifications, parameters of this call.
Collection specifications,

Collection externalIdentifiers,

Collection externalLinks)

BulkResponse

findRegistryPackages(Collection findQualifiers, Finds all
Collection namePatterns, RegistryPackage
Collection classifications, objects that match the
Collection externalLinks) parameters of the call.

BulkResponse

findServiceBindings(Key serviceKey, Finds all
Collection findQualifiers, ServiceBinding
Collection classifications, objects that match the
Collection specifications) parameters of this call.

BulkResponse Finds all Service
findServices(Key orgKey, objects that match the

Collection findQualifiers, parameters of this call.
Collection namePatterns,

Collection classifications,

Collection specifications)

As you can see from Table 47.1, the BusinessQueryManager interface queries the
registry for information. In calling these methods, many searches can be constrained by
collections of search qualifiers, patterns, classifications, external links, and specifications.
Many of the methods return a BulkResponse object that contains a Collection of
objects. Depending on the method call, the objects contained in the collection can be asso-
ciations between registry instances (Association), taxonomies used to describe the
classifications of registry objects (ClassificationScheme), taxonomy elements them-
selves (Concept) present in the registry, organizations in the registry (Organization),
registry entries logically organized together (RegistryPackage), services that are
available (Service), and bindings to interfaces of the service (ServiceBinding).

402 Item 47

All of the objects in the collection contained by the BulkResponse objects are inter-
faces in the javax.xml.registry.infomodel package and are all subinterfaces to
the RegistryObject class. Figure 47.1 shows the methods of the RegistryObject
interface, as well as the classes that realize that interface. Because the RegistryOb-
ject interface contains a getExternalLinks() method, every class that imple-
ments this interface may have a named URI to content residing outside the
registry—such as a Web Service Description Language (WSDL) document in a UDDI
registry. As we show potential pitfalls in making JAXR searches, you will find that it is
important to have an understanding of where objects in a registry reside.

Figure 47.1 The RegistryObject interface.

<<Interface>>
RegistryObject

+ addAssociation(Association assoc): void
+ addAssociations(Colleciton coll): void
+ addClassification(Classification classif): void
+ addClassifications(Collection coll): void
+ addExternalIdentifier(ExternalIdentifier ext): void
+ addExternalIdentifiers(Collection coll): void
+ addExternalLink(ExternalLink link): void
+ addExternalLinks(Collection coll): void
+ getAssociatedObjects(): Collection
+ getAssociations(): Collection
+ getAuditTrail(): Collection
+ getClassifications(): Collection
+ getDescription(): InternationalString
+ getExternalIdentifiers(): Collection
+ getExternalLinks(): Collection
+ getKey(): Key
+ getLifeCycleManager(): LifeCycleManager
+ getName(): InternationalString
+ getRegistryPackages(): Collection
+ getSubmittingOrganization(): Organization
+ removeAssociation(Association assoc): void
+ removeAssociations(Collection coll): void
+ removeClassification(Classification classif): void
+ removeClassifications(Collection coll): void
+ removeExternalIdentifier(ExternalIdentifier): void
+ removeExternalIdentifiers(Collection coll): void
+ removeExternalLink(ExternalLink link): void
+ removeExternalLinks(Collection coll): void
+ setAssociations(Colleciton coll): void
+ setClassifications(Collection coll): void
+ setDescription(InternationalString desc): void
+ setExternalIdentifiers(Collection coll): void
+ setExternalLinks(Collection coll): void
+ setKey(Key key): void
+ setName(InternationalString name): void
+ toXML(): String

ServiceBinding SpecificationLink

Association RegistryEntry

Classification ExternalLink

Concept Service

ClassificationScheme RegistryPackage

User Organization

ExtrinsicObject ExternalIdentifier

Where’s the WSDL? Pitfalls of Using JAXR with UDDI 403

Where’s the WSDL?

We’re about to embark on a quest for a Web service’s WSDL found in a UDDI registry.
For our example, we would like to constrain the search by searching for a string found
in an organization name in the registry. From there, we would like to print out all avail-
able Web services—and more importantly, their WSDL—so that we can dynamically
call their Web services. To do this, we will modify our original code from Listing 47.1
and will replace that code’s empty makeCall() method. For convenience, we will list
the following code listings starting with line 64—this will make it easier when you
download the code for the examples from our Web site.

Listing 47.2 shows the makeCall() method where we are attempting to get the
WSDL document from a search of the registry. Our search constraint, the query string,
is set up to be a pattern on lines 74 and 75. At the same time, we qualify our search on
line 74 by setting our responses to be sorted alphabetically by name. Our example then
queries the BusinessQueryManager’s findOrganizations() method with these
parameters. Because a collection of Organization objects will be returned from the
collection in the BulkResponse object, and because organizations contain services that
can be retrieved by the organization’s getServices() method, we will be able to get
the services. Because the Service object inherits the getExternalLinks() method
from RegistryObject, the programmer in this example assumes that we should be
able to get the WSDL document with that method on the service. Just to make certain,
the programmer calls that method from the service’s ServiceBinding objects, which
was returned from getServiceBindings() on the service on line 123.

064: public void makeCall(String query) throws Exception

065: {

066: if (m_querymgr == null)

067: {

068: throw new Exception(“No query manager!!!!! Exiting Æ
makeCall()”);

069: }

070: else

071: {

072:

073: Collection findQualifiers = new ArrayList();

074: findQualifiers.add(FindQualifier.SORT_BY_NAME_DESC);

075: Collection namePatterns = new ArrayList();

076: namePatterns.add(“%” + query + “%”);

077:

078: BulkResponse response =

079: m_querymgr.findOrganizations(findQualifiers,

080: namePatterns,

081: null, null, null, null);

082:

083: Iterator orgIterator = response.getCollection().iterator();

084:

Listing 47.2 Our first attempt for WSDL, in makeCall()

404 Item 47

085: System.out.println(“Made an organizational query for ‘“ +

086: query + “‘...”);

087:

088: int orgcnt = 0;

089: while (orgIterator.hasNext())

090: {

091: orgcnt ++;

092: //Let’s get every organization that matches the query!

093: Organization org = (Organization) orgIterator.next();

094: System.out.println(orgcnt + “) Organization Name: “ +

095: convertToString(org.getName()));

096: System.out.println(“ Organization Desc: “ +

097: convertToString(org.getDescription()));

098:

099: //Now get the services provided by the organization

100: Iterator svcIter = org.getServices().iterator();

101: while (svcIter.hasNext())

102: {

103: Service svc = (Service)svcIter.next();

104: System.out.println(“ Service Name: “ +

105: convertToString(svc.getName()));

106:

107: //External links are associated with every registry Æ
object,

108: //so maybe it’s in the external link of service..

109: Iterator extlinkit = svc.getExternalLinks().iterator();

110: if (!extlinkit.hasNext())

111: {

112: System.out.println(“ ? - “ +

113: “No WSDL document at Æ
svc.getExternalLinks()..”);

114: }

115: while (extlinkit.hasNext())

116: {

117: ExternalLink extlink = (ExternalLink)extlinkit.next();

118: System.out.println(“WSDL Document: “ +

119: extlink.getExternalURI());

120: }

121:

122: //Let’s get the service binding object

123: Iterator bindit = svc.getServiceBindings().iterator();

124: while (bindit.hasNext())

125: {

126: ServiceBinding sb = (ServiceBinding)bindit.next();

127: System.out.println(“ Service Binding Name: “ +

128: convertToString(sb.getName()));

129: System.out.println(“ Service Binding Desc: “ +

130: convertToString(sb.getDescription()));

Listing 47.2 (continued)

Where’s the WSDL? Pitfalls of Using JAXR with UDDI 405

131: System.out.println(“ Service Binding Access URI:\n” +

132: “ “ + sb.getAccessURI());

133:

134: //Maybe WSDL is on the external link here..

135: Iterator extlinkit2 = sb.getExternalLinks().iterator();

136: if (!extlinkit2.hasNext())

137: {

138: System.out.println(“ ? - “ +

139: “No WSDL document at \n” +

140: “ svc.getServiceBindings().getExternalLinks()..”);

141: }

142: while (extlinkit2.hasNext())

143: {

144: ExternalLink extlink = Æ
(ExternalLink)extlinkit2.next();

145: System.out.println(“WSDL Document: “ +

146: extlink.getExternalURI());

147: }

148:

149:

150: }

151:

152:

153: }

154:

155: }

156: }

157: }

Listing 47.2 (continued)

Our example in Listing 47.2 shows a search of the UDDI registry, and printing orga-
nization, service, and service binding information for the result of our search. Listing
47.3 shows the output of our program. There are two calls to makeCall(): a query
including the string ‘truman’ and a query including the string ‘sched’. Both
queries return two results. As you can see by the bolded content in Listing 47.3, the
programmer got it wrong.

01: Made an organizational query for ‘truman’...

02: 1) Organization Name: TrumanTruck.com

03: Organization Desc: Restoration of Truman Schermerhorn’s Truck

04: Service Name: TrumanTruck Page

05: ? - No WSDL document at svc.getExternalLinks()..

06: Service Binding Name: null

Listing 47.3 Output of our first attempt

406 Item 47

07: Service Binding Desc: hyperlink

08: Service Binding Access URI:

09: http://www.trumantruck.com

10: ? - No WSDL document at

11: svc.getServiceBindings().getExternalLinks()..

12: 2) Organization Name: Harry S. Truman Scholarship Foundation

13: Organization Desc:

14: Service Name: Web home page

15: ? - No WSDL document at svc.getExternalLinks()..

16: Service Binding Name: null

17: Service Binding Desc: hyperlink

18: Service Binding Access URI:

19: http://www.truman.gov/welcome.htm

20: ? - No WSDL document at

21: svc.getServiceBindings().getExternalLinks()..

22: -----------SECOND QUERY--------------

23: Made an organizational query for ‘sched’...

24: 1) Organization Name: LFC Scheduling

25: Organization Desc:

26: Service Name: Classroom Scheduling

27: ? - No WSDL document at svc.getExternalLinks()..

28: Service Binding Name: null

29: Service Binding Desc:

30: Service Binding Access URI:

31: http://www.contest.eraserver.net/Scheduling/Scheduler.asmx

32: ? - No WSDL document at

33: svc.getServiceBindings().getExternalLinks()..

34: 2) Organization Name: Interactive Scheduler

35: Organization Desc:

36: Service Name: Interactive Schedule

37: ? - No WSDL document at svc.getExternalLinks()..

38: Service Binding Name: null

39: Service Binding Desc:

40: Service Binding Access URI:

41: Æ
http://www.contest.eraserver.net/InteractiveScheduler/service1.asmx

42: ? - No WSDL document at

43: svc.getServiceBindings().getExternalLinks()..

44:

Listing 47.3 (continued)

The problem in that example demonstrates the programmer’s misunderstanding of
where the WSDL document lives in the JAXR object hierarchy. This is a common prob-
lem with developers new to JAXR and UDDI. Luckily, Appendix D of the JAXR speci-
fication (found at http://java.sun.com/xml/jaxr/) shows the mappings of JAXR to
UDDI. In Figure 47.2, we have provided a graphical depiction of where the WSDL doc-
ument is located. To get the WSDL document for a Web service, you need to somehow

Where’s the WSDL? Pitfalls of Using JAXR with UDDI 407

traverse the structures to get to the registry object classified as a “wsdlspec”, and get
that object’s ExternalLink. Because our organizational query returns a collection of
organizations, we have shown a logical “road map” from the Organization object.
For the sake of eliminating confusion, we have left out potential paths to Exter-
nalLink and SpecificationLink that are available from every object (since they
all realize the RegistryObject interface).

TI P If you are used to UDDI terminology, there are different terms for each of
these interfaces. For example, a JAXR Organization is known in UDDI as a
“businessEntity.” A JAXR Service is known as a UDDI “businessService.” A UDDI
“bindingTemplate” is a JAXR ServiceBinding. There are many more of these
mappings. For more information, download the JAXR specification at
http://java.sun.com/jaxr/.

Figure 47.2 Navigating through JAXR objects to get WSDL .

getServices()
returns a Collection of

getServiceBindings()

returns a Collection of

getS
peci

fic
ati

onObjec
t()

ret
urns

getC
las

sifi
cat

ions()

ret
urns a

 Collec
tio

n of

getSpecificationLinks()
returns a Collection of

getC
las

sifi
ed

Objec
t()

ret
urns

getExternalLinks()
returns a Collection of

getE
xte

rn
alU

RI(
)

ret
ur

ns

Organization Service

ServiceBinding SpecificationLink

RegistryObject ExternalLink

Classification

String
a WSDL document URI

if the original RegistryObject
is classified with the

UDDI wsdlSpec.

408 Item 47

Now that we have provided the “traversal road map” in Figure 47.2, we will demon-
strate another potential programming pitfall. In Listing 47.4, the programmer traverses
the objects as shown from the figure. On line 83, we get our collection of organizations
from our BulkResponse object. On line 100, we get a collection of services from each
organization. On line 109, we get a collection of service bindings from each service. On
lines 120 and 121, we get a collection of specification links from each service binding. On
line 127, we get a registry object from the specification link with the getSpecifica-
tionObject() method. Finally, on lines 128 to 134, we get the external link from the
registry object, and we call the getExternalURI() method on the specification link.

064: public void makeCall(String query) throws Exception

065: {

066: if (m_querymgr == null)

067: {

068: throw new Exception(“No query manager!!!!! Exiting Æ
makeCall()”);

069: }

070: else

071: {

072:

073: Collection findQualifiers = new ArrayList();

074: findQualifiers.add(FindQualifier.SORT_BY_NAME_DESC);

075: Collection namePatterns = new ArrayList();

076: namePatterns.add(“%” + query + “%”);

077:

078: BulkResponse response =

079: m_querymgr.findOrganizations(findQualifiers,

080: namePatterns,

081: null, null, null, null);

082:

083: Iterator orgIterator = response.getCollection().iterator();

084:

085: System.out.println(“Made an organizational query for ‘“ +

086: query + “‘...”);

087:

088: int orgcnt = 0;

089: while (orgIterator.hasNext())

090: {

091: orgcnt ++;

092: //Let’s get every organization that matches the query!

093: Organization org = (Organization) orgIterator.next();

094: System.out.println(orgcnt + “) Organization Name: “ +

095: convertToString(org.getName()));

096: System.out.println(“ Organization Desc: “ +

097: convertToString(org.getDescription()));

098:

Listing 47.4 Our second attempt for WSDL, in makeCall() (continued)

Where’s the WSDL? Pitfalls of Using JAXR with UDDI 409

099: //Now get the services provided by the organization

100: Iterator svcIter = org.getServices().iterator();

101: while (svcIter.hasNext())

102: {

103: Service svc = (Service)svcIter.next();

104: System.out.println(“ Service Name: “ +

105: convertToString(svc.getName()));

106:

107:

108: //Let’s get the service binding object

109: Iterator bindit = svc.getServiceBindings().iterator();

110: while (bindit.hasNext())

111: {

112: ServiceBinding sb = (ServiceBinding)bindit.next();

113: System.out.println(“ Service Binding Name: “ +

114: convertToString(sb.getName()));

115: System.out.println(“ Service Binding Desc: “ +

116: convertToString(sb.getDescription()));

117: System.out.println(“ Service Binding Access URI:\n” +

118: “ “ + sb.getAccessURI());

119:

120: Iterator speclinkit =

121: sb.getSpecificationLinks().iterator();

122: while (speclinkit.hasNext())

123: {

124: SpecificationLink slink =

125: (SpecificationLink)speclinkit.next();

126:

127: RegistryObject ro = slink.getSpecificationObject();

128: Iterator extlinkit = Æ
ro.getExternalLinks().iterator();

129: while (extlinkit.hasNext())

130: {

131: ExternalLink extlink = Æ
(ExternalLink)extlinkit.next();

132: System.out.println(“ WSDL: “ +

133: extlink.getExternalURI());

134: }

135: }

136: }

137: }

138: }

139: }

140: }

Listing 47.4 (continued)

410 Item 47

Unfortunately, the programmer was wrong again. As you can see in the output of
the program in Listing 47.5, the first response from the 'truman' query returned no
WSDL document. The second response from the 'truman' query returned an HTML
document on line 17. Strangely, the first and second responses from the ‘sched’
query did return the WSDL document. What went wrong?

01:

02: Made an organizational query for ‘truman’...

03: 1) Organization Name: TrumanTruck.com

04: Organization Desc: Restoration of Truman Schermerhorn’s Truck

05: Service Name: TrumanTruck Page

06: Service Binding Name: null

07: Service Binding Desc: hyperlink

08: Service Binding Access URI:

09: http://www.trumantruck.com

10: 2) Organization Name: Harry S. Truman Scholarship Foundation

11: Organization Desc:

12: Service Name: Web home page

13: Service Binding Name: null

14: Service Binding Desc: hyperlink

15: Service Binding Access URI:

16: http://www.truman.gov/welcome.htm

17: WSDL: http://www.uddi.org/specification.html

18: -----------SECOND QUERY--------------

19: Made an organizational query for ‘sched’...

20: 1) Organization Name: LFC Scheduling

21: Organization Desc:

22: Service Name: Classroom Scheduling

23: Service Binding Name: null

24: Service Binding Desc:

25: Service Binding Access URI:

26: http://www.contest.eraserver.net/Scheduling/Scheduler.asmx

27: WSDL: Æ
http://www.contest.eraserver.net/Scheduling/Scheduler.asmx?wsdl

28: 2) Organization Name: Interactive Scheduler

29: Organization Desc:

30: Service Name: Interactive Schedule

31: Service Binding Name: null

32: Service Binding Desc:

33: Service Binding Access URI:

34: Æ
http://www.contest.eraserver.net/InteractiveScheduler/service1.asmx

35: WSDL: Æ
http://www.contest.eraserver.net/InteractiveScheduler/ Æ
InteractiveScheduler.wsdl

Listing 47.5 Output of our second attempt

Where’s the WSDL? Pitfalls of Using JAXR with UDDI 411

The problem from our second attempt to find WSDL documents revolves around
the concept of classifications. Because both registry objects for our first query were not
classified as the UDDI “wsdlspec” type, they do not have WSDL documents. Unfor-
tunately, this is a common programming mistake. If the programmer had assumed that
these were both Web services registered with a WSDL URL, the program would have
mixed results—the program may work for one query, but not for another. In the case of
the false WSDL document output on line 17, if the program had tried to dynamically
call the Web service using JAX-RPC, the program would have failed.

The answer to our dilemma lies in our call from the Classification object to the
RegistryObject in Figure 47.2. If you call getClassifications() from the
returned RegistryObject, and if the classification of that object is the “wsdlspec”
classification, then you can call getClassifiedObject() to then get the WSDL-
classified object, and then retrieve the external link. Listing 47.6 does just that in lines
123 to 150.

064: public void makeCall(String query) throws Exception

065: {

066: if (m_querymgr == null)

067: {

068: throw new Exception(“No query manager!!!!! Exiting Æ
makeCall()”);

069: }

070: else

071: {

072:

073: Collection findQualifiers = new ArrayList();

074: findQualifiers.add(FindQualifier.SORT_BY_NAME_DESC);

075: Collection namePatterns = new ArrayList();

076: namePatterns.add(“%” + query + “%”);

077:

078: BulkResponse response =

079: m_querymgr.findOrganizations(findQualifiers,

080: namePatterns,

081: null, null, null, null);

082:

083: Iterator orgIterator = response.getCollection().iterator();

084:

085: System.out.println(“Made an organizational query for ‘“ +

086: query + “‘...”);

087:

088: int orgcnt = 0;

089: while (orgIterator.hasNext())

090: {

091: String orgname = null;

092: String orgdesc = null;

Listing 47.6 The solution to our dilemma

412 Item 47

093: String svcname = null;

094:

095: //Let’s get every organization that matches the query!

096: Organization org = (Organization) orgIterator.next();

097:

098: orgname = convertToString(org.getName());

099: orgdesc = convertToString(org.getDescription());

100:

101: //Now get the services provided by the organization

102: Iterator svcIter = org.getServices().iterator();

103: while (svcIter.hasNext())

104: {

105: Service svc = (Service)svcIter.next();

106: svcname = convertToString(svc.getName());

107:

108: //Let’s get the service binding object from service

109: Iterator bindit = svc.getServiceBindings().iterator();

110: while (bindit.hasNext())

111: {

112: ServiceBinding sb = (ServiceBinding)bindit.next();

113:

114: Iterator speclinkit =

115: sb.getSpecificationLinks().iterator();

116: while (speclinkit.hasNext())

117: {

118: SpecificationLink slink =

119: (SpecificationLink)speclinkit.next();

120:

121: RegistryObject ro = slink.getSpecificationObject();

122:

123: //Now, let’s see the classification object..

124: Iterator classit = ro.getClassifications().iterator();

125: while (classit.hasNext())

126: {

127: Classification classif =

128: (Classification)classit.next();

129: if (classif.getValue().equalsIgnoreCase(“wsdlspec”))

130: {

131: orgcnt++;

132: System.out.println(orgcnt +

133: “) Organization Name: “ + orgname);

134: System.out.println(

135: “ Organization Desc: “ + orgdesc);

136: System.out.println(

137: “ Service Name: “ + svcname);

138:

139: RegistryObject ro2 = classif.getClassifiedObject();

Listing 47.6 (continued)

Where’s the WSDL? Pitfalls of Using JAXR with UDDI 413

140:

141: Iterator extlinkit =

142: ro2.getExternalLinks().iterator();

143: while (extlinkit.hasNext())

144: {

145: ExternalLink extlink =

146: (ExternalLink)extlinkit.next();

147:

148: System.out.println(“ WSDL: “ +

149: extlink.getExternalURI());

150: }

151:

152: }

153: }

154: }

155: }

156: }

157: }

158: }

159: }

Listing 47.6 (continued)

The result of our example is shown in Listing 47.7. In our output, our program only
prints the listing of Web services that have WSDL documents.

01: Made an organizational query for ‘trumantruck’...

02: -----------SECOND QUERY--------------

03: Made an organizational query for ‘sched’...

04: 1) Organization Name: LFC Scheduling

05: Organization Desc:

06: Service Name: Classroom Scheduling

07: WSDL: Æ
http://www.contest.eraserver.net/Scheduling/Scheduler.asmx?wsdl

08: 2) Organization Name: Interactive Scheduler

09: Organization Desc:

10: Service Name: Interactive Schedule

11: WSDL: Æ
http://www.contest.eraserver.net/InteractiveScheduler/ Æ
InteractiveScheduler.wsdl

Listing 47.7 The output of our solution

414 Item 47

It is important to note that we could get to the service much easier. If we knew the
name of the service, for example, and we wanted to go directly to the RegistryOb-
ject that has the “wsdlspec” classification, we could do a concept query. The Reg-
istryObject, shown in Figure 47.2, on page 408, is always a Concept object when
using UDDI registries (even though the getSpecificationObject() from the
SpecificationLink interface returns the RegistryObject interface to be more
flexible for other registries).

To demonstrate this, we will show another example of the makeCall() method in
Listing 47.8. We will call the findConcepts() method on the BusinessQueryMan-
ager object. To constrain the search, we will use the same namePatterns query pat-
tern that we used in the previous examples, but we will add a classification constraint
on lines 83 to 100. In doing so, the objects that are returned will be Concept objects that
have WSDL documents and that match the query pattern passed in as a parameter.

064: public void makeCall(String query) throws Exception

065: {

066: if (m_querymgr == null)

067: {

068: throw new Exception(“No query manager!!!!! Exiting Æ
makeCall()”);

069: }

070: else

071: {

072:

073: Collection findQualifiers = new ArrayList();

074: findQualifiers.add(FindQualifier.SORT_BY_NAME_DESC);

075: Collection namePatterns = new ArrayList();

076: namePatterns.add(“%” + query + “%”);

077:

078: /*

079: * Find the classification scheme defined by

080: * the UDDI spec

081: */

082:

083: String schemeName = “uddi-org:types”;

084: ClassificationScheme uddiOrgTypes =

085: m_querymgr.findClassificationSchemeByName(null,

086: schemeName);

087: /*

088: * Create a classification, specifying the scheme

089: * and the taxonomy name and value defined for

090: * WSDL documents by the UDDI spec

091: */

092: BusinessLifeCycleManager blm =

093: m_regserv.getBusinessLifeCycleManager();

Listing 47.8 Good example of querying by concept (continued)

Where’s the WSDL? Pitfalls of Using JAXR with UDDI 415

094:

095: Classification wsdlSpecClass =

096: blm.createClassification(uddiOrgTypes,

097: “wsdlSpec”, “wsdlSpec”);

098:

099: Collection classifications = new ArrayList();

100: classifications.add(wsdlSpecClass);

101:

102: // Find concepts

103: BulkResponse response =

104: m_querymgr.findConcepts(null, namePatterns,

105: classifications, null, null);

106:

107: System.out.println(“Made an wsdlSpec concept query for \n’” +

108: “services matching ‘“ +query + “‘“);

109:

110: // Display information about the concepts found

111: int itnum = 0;

112: Iterator iter = response.getCollection().iterator();

113: if (!iter.hasNext())

114: {

115: System.out.println(“ No matching items!”);

116: }

117: while (iter.hasNext())

118: {

119: itnum++;

120: Concept concept = (Concept) iter.next();

121: System.out.println(itnum + “) Name: “ +

122: convertToString(concept.getName()));

123: System.out.println(“ Description: “ +

124: convertToString(concept.getDescription()));

125:

126: Iterator linkit = concept.getExternalLinks().iterator();

127: if (linkit.hasNext())

128: {

129: ExternalLink link =

130: (ExternalLink) linkit.next();

131: System.out.println(“ WSDL: ‘“ +

132: link.getExternalURI() + “‘“);

133: }

134:

135: }

136: }

137: }

Listing 47.8 (continued)

The result of our program is shown in Listing 47.9. On our concept query for ser-
vices with the string ‘sched’ in them with WSDL documents, we had four results.

416 Item 47

01: Made an wsdlSpec concept query for

02: ‘services matching ‘truman’

03: No matching items!

04: -----------SECOND QUERY--------------

05: Made an wsdlSpec concept query for

06: ‘services matching ‘sched’

07: 1) Name: Continental-com:Schedule-v1

08: Description: Flight schedule

09: WSDL: Æ
‘http://webservices.continental.com/schedule/schedule.asmx?WSDL’

10: 2) Name: Interactive Scheduler

11: Description: A Web Service that provides a method to schedule Æ
meetings into someone else’s calendar.

12: WSDL: Æ
‘http://www.contest.eraserver.net/InteractiveScheduler/ Æ
InteractiveScheduler.wsdl’

13: 3) Name: Lake Forest College-com:SchedulingInterface-v1

14: Description: Scheduling Web Service for Institutions- Æ
Scheduling Classes to appropriate rooms

15: WSDL: Æ
‘http://www.contest.eraserver.net/Scheduling/Scheduler.asmx?wsdl’

16: 4) Name: Metric-com:Aeroflot Flights Schedule

17: Description: Web service deliver on-line flights schedule Æ
information

18: WSDL: ‘http://webservices.aeroflot.ru/flightSearch.wsdl’

Listing 47.9 Output of querying by concept

In this pitfall, we demonstrated problems that developers encounter when using the
JAXR API with UDDI registries. We showed two examples of potential pitfalls while
traversing the data structures of the registry and provided solutions for these prob-
lems. Because of the difficulty that some programmers have with JAXR and UDDI,
reading the JAXR specification is highly recommended.

Item 48: Performance Pitfalls in
JAX-RPC Application Clients

The Java API for XML-based Remote Procedure Calls (JAX-RPC) allows us to continue
to think like Java developers when we develop, deploy, and communicate with RPC-
based Web services. Although JAX-RPC relies on underlying protocols (HTTP and
SOAP), the API hides this complexity from the application developer. Using basic pro-
gramming techniques that enterprise developers are accustomed to, you can create a
Web service easily. Building a client that communicates with the Web service is also

Performance Pitfalls in JAX-RPC Application Clients 417

easy—proxy stubs for the Web service can be compiled prior to runtime, they can be
dynamically generated at runtime, or the Dynamic Invocation Interface (DII) can be
used to discover a Web service’s API on-the-fly.

In this pitfall item, we use different techniques in building clients for a simple Web
service. We run a timing experiment on each of the techniques and give recommenda-
tions for building clients using JAX-RPC. As a result of reading this pitfall item, you
will understand the performance implications of using each technique—and hopefully
use this to your advantage in your projects.

Example Web Service

For this pitfall item, we used Sun’s Java Web Services Developer Pack (WSDP) and cre-
ated a simple Web service called “SimpleTest.” The Web service has one method called
doStuff(), and the interface used to develop this Web service is shown in Listing 48.1.

001: package org.javapitfalls.item48;

002:

003: import java.rmi.Remote;

004: import java.rmi.RemoteException;

005:

006: public interface SimpleTestIF extends Remote

007: {

008: public String doStuff(String s) throws RemoteException;

009: }

Listing 48.1 Interface to our simple Web service.

The Web Service Description Language (WSDL) that was automatically generated
from the tools available with the developer’s pack is shown in Listing 48.2. Because
this was automatically generated and deployed with the developer tools that gener-
ated this from our Java interface, our implementation class, and deployment descrip-
tors, we weren’t forced to write it by hand. As JAX-RPC defines Web services as
collections of remote interfaces and methods, WSDL defines Web services as a collec-
tion of ports and operations. The WSDL provided in Listing 48.2 is for your reference,
as we develop our Web service clients later in the pitfall examples.

001: <?xml version=”1.0” encoding=”UTF-8” ?>

002: <definitions xmlns=”http://schemas.xmlsoap.org/wsdl/”

003: xmlns:tns=”http://org.javapitfalls.item48/wsdl/SimpleTest”

Listing 48.2 WSDL for a simple Web service

418 Item 48

005: xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

004: xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”

006: name=”SimpleTest”

007: targetNamespace=”http://org.javapitfalls.item48/wsdl/SimpleTest”>

008: <types />

009: <message name=”SimpleTestIF_doStuff”>

010: <part name=”String_1” type=”xsd:string” />

011: </message>

012: <message name=”SimpleTestIF_doStuffResponse”>

013: <part name=”result” type=”xsd:string” />

014: </message>

015: <portType name=”SimpleTestIF”>

016: <operation name=”doStuff” parameterOrder=”String_1”>

017: <input message=”tns:SimpleTestIF_doStuff” />

018: <output message=”tns:SimpleTestIF_doStuffResponse” />

019: </operation>

020: </portType>

021: <binding name=”SimpleTestIFBinding” type=”tns:SimpleTestIF”>

022: <operation name=”doStuff”>

023: <input>

024: <soap:body

025: encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”

026: use=”encoded”

027: namespace=”http://org.javapitfalls.item48/wsdl/SimpleTest”

028: />

029: </input>

030: <output>

031: <soap:body

032: encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”

033: use=”encoded”

034: namespace=”http://org.javapitfalls.item48/wsdl/SimpleTest”

035: />

036: </output>

037: <soap:operation soapAction=”” />

038: </operation>

039: <soap:binding transport=”http://schemas.xmlsoap.org/soap/http”

040: style=”rpc” />

041: </binding>

042: <service name=”SimpleTest”>

043: <port name=”SimpleTestIFPort” binding=”tns:SimpleTestIFBinding”>

044: <soap:address xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”

045: location=”http://localhost:8080/simpletest-jaxrpc/simpletest” />

046: </port>

047: </service>

048: </definitions>

Listing 48.2 (continued)

Performance Pitfalls in JAX-RPC Application Clients 419

Next, we will get to the meat of this pitfall: writing different clients that will call the
doStuff() method on the “SimpleTest” Web service. In the next sections, we show
different approaches to building JAX-RPC clients.

A Simple Client That Uses Precompiled Stub Classes

The first, and easiest, way to call an RPC-style Web service is by using precompiled
stubs. To create these stubs, the Java Web Services Developer Pack contains a tool
called “wscompile.” As a result, a client can communicate with the Web service inter-
face using the java.xml.rpc.Stub interface. The wscompile tool is run against a
configuration file listing details about the Web services (the URL of the WSDL, the
package name, etc). When the wscompile tool runs successfully, it processes the WSDL
for our Web service and generates proxy stubs so that our client can invoke methods on
our SimpleTestIF interface at runtime.

Listing 48.3 shows a client that uses precompiled stubs. Lines 37 to 40 show the sta-
tic createProxy() method that returns the stub that is cast to the SimpleTestIF
interface in line 16. As a result, you do not have to know anything about SOAP or
WSDL. Instead, you write code like you’re using RMI. Note that in lines 27 and 28, we
are printing out the invocation setup time. This will be used later in this pitfall item to
compare pre-invocation times with our other techniques.

001: package org.javapitfalls.item48;

002:

003: import javax.xml.rpc.*;

004: import javax.xml.namespace.*;

005:

006: public class NoDynamicStuffClient

007: {

008: public static void main(String[] args)

009: {

010: try

011: {

012: long initial, afterproxy, preInvokeTime, invokeTime;

013:

014: initial = System.currentTimeMillis();

015:

016: SimpleTestIF simpletest = (SimpleTestIF)createProxy();

017:

018: afterproxy = System.currentTimeMillis();

019: preInvokeTime = afterproxy - initial;

020:

021: //Now, invoke our method

022:

023: String response =

024: simpletest.doStuff(“Hi there from NoDynamicStuffClient!”);

025: //Print out stats

026:

Listing 48.3 A simple client using precompiled stubs

420 Item 48

027: System.out.println(“Invocation setup took “

028: + preInvokeTime + “ milliseconds.”);

029:

030: }

031: catch (Exception ex)

032: {

033: ex.printStackTrace();

034: }

035: }

036:

037: private static Stub createProxy()

038: {

039: return(Stub)(new SimpleTest_Impl().getSimpleTestIFPort());

040: }

041:}

Listing 48.3 (continued)

A Client That Uses Dynamic Proxies for Access

JAX-RPC includes the concept of using dynamic proxies—a second way for clients to
access Web services. A dynamic proxy class is a class that implements a list of interfaces
specified at runtime, and using this technique, does not require pregeneration of the
proxy class. Listing 48.4 shows an example of building such a proxy. In line 30, we create
a new instance of ServiceFactory. We then specify the service in lines 32 and 33 by
passing the URL for our WSDL in the example, as well as the javax.xml.name-
space.QName, which represents the value of a qualified name as specified in the XML
Schema specification. By calling the getPort() method on our javax.xml.rpc
.Service class on lines 35 to 37, we have generated a proxy class that is cast to our orig-
inal interface class from Listing 48.1.

001: package org.javapitfalls.item48;

002:

003: import java.net.URL;

004: import javax.xml.rpc.Service;

005: import javax.xml.rpc.JAXRPCException;

006: import javax.xml.namespace.QName;

007: import javax.xml.rpc.ServiceFactory;

008:

009: public class DynamicProxyClient

010: {

011:

Listing 48.4 A simple client using dynamic proxies (continued)

Performance Pitfalls in JAX-RPC Application Clients 421

012: public static void main(String[] args)

013: {

014: try

015: {

016:

017: long initial, afterproxy, preInvokeTime, invokeTime;

018:

019: initial = System.currentTimeMillis();

020:

021: String UrlString =

022: “http://localhost:8080/simpletest- Æ
jaxrpc/simpletest?WSDL”;

023: String nameSpaceUri =

024: “http://org.javapitfalls.item48/wsdl/SimpleTest”;

025: String serviceName = “SimpleTest”;

026: String portName = “SimpleTestIFPort”;

027:

028: URL WsdlUrl = new URL(UrlString);

029:

030: ServiceFactory serviceFactory =

031: ServiceFactory.newInstance();

032: Service simpleService =

033: serviceFactory.createService(WsdlUrl,

034: new QName(nameSpaceUri, serviceName));

035: SimpleTestIF myProxy = (SimpleTestIF) Æ
simpleService.getPort(

036: new QName(nameSpaceUri, portName),

037: org.javapitfalls.item48.SimpleTestIF.class);

038:

039: afterproxy = System.currentTimeMillis();

040: preInvokeTime = afterproxy - initial;

041:

042: String response = myProxy.doStuff(

043: “Hello from Dynamic Proxy..”);

044:

045: //Print out stats

046: System.out.println(“Invocation setup took “

047: + preInvokeTime + “ milliseconds.”);

048:

049: }

050: catch (Exception ex)

051: {

052: ex.printStackTrace();

053: }

054: }

055: }

Listing 48.4 (continued)

422 Item 48

It is important to realize that this example requires a copy of the compiled Java inter-
face class that we created (in order to cast it on line 35), but it does not require any pre-
compilation steps. Where our precompilation process for our first example involved
downloading the WSDL and creating the stubs before runtime, the dynamic proxy
method does everything at runtime. This convenience will come at a cost. On line 46 of
Listing 48.4, we print out our invocation setup time.

Two Clients Using the Dynamic Invocation Interface (DII)

A client can call a Web service using the Dynamic Invocation Interface (DII). The
javax.xml.rpc.Call interface provides support for the dynamic invocation of an
operation on a target service endpoint. In this section, we demonstrate two examples.
In the first example, shown in Listing 48.5, we know where our Web service is, and we
know the methods of our Web service. We will simply create our Call object and
invoke the doStuff() method.

In lines 28 to 30 of Listing 48.5, we create our Service object. In line 35, we create the
Call object by passing the port name (which is the qualified name for “SimpleTestIF”
set up on line 32). In lines 36 to 55, we create our call by setting properties, setting our
return types, and setting up our parameter information. Finally, on line 62, we perform
the invocation.

001: package org.javapitfalls.item48;

002:

003: import javax.xml.rpc.*;

004: import javax.xml.namespace.*;

005:

006: public class DIIClient

007: {

008:

009:

010: public static void main(String[] args)

011: {

012: String endpoint =

013: “http://localhost:8080/simpletest-jaxrpc/simpletest”;

014: String servicenamespace =

015: “http://org.javapitfalls.item48/wsdl/SimpleTest”;

016: String encodingStyleProperty =

017: “javax.xml.rpc.encodingstyle.namespace.uri”;

018:

019: try

020: {

021:

022: long initial, afterproxy, preInvokeTime, invokeTime;

023:

Listing 48.5 A simple client using DII hard-coded calls (continued)

Performance Pitfalls in JAX-RPC Application Clients 423

024: initial = System.currentTimeMillis();

025:

026: //Set up the service, giving it the service name

027: //and the port (interface)

028: ServiceFactory factory = ServiceFactory.newInstance();

029: Service service = factory.createService(

030: new QName(“SimpleTest”)

031:);

032: QName port = new QName(“SimpleTestIF”);

033:

034: //Set up the call & the endpoint..

035: Call call = service.createCall(port);

036: call.setTargetEndpointAddress(endpoint);

037:

038: //Set up the Call properties...

039: call.setProperty(Call.SOAPACTION_USE_PROPERTY,

040: new Boolean(true)

041:);

042: call.setProperty(Call.SOAPACTION_URI_PROPERTY, “”);

043: call.setProperty(encodingStyleProperty,

044: “http://schemas.xmlsoap.org/soap/encoding/”);

045:

046: QName qnametype =

047: new QName(“http://www.w3.org/2001/XMLSchema”,”string”);

048: call.setReturnType(qnametype);

049:

050: //Set up the operation name & parameter...

051: call.setOperationName(

052: new QName(servicenamespace, “doStuff”));

053:

054: call.addParameter(“String_1”, qnametype, ParameterMode.IN);

055: String[] params = { “Hello from DII Client!”};

056:

057: afterproxy = System.currentTimeMillis();

058: preInvokeTime = afterproxy - initial;

059: System.out.println(“Invocation setup took “ +

060: preInvokeTime + “ milliseconds.”);

061:

062: String response = (String)call.invoke(params);

063: }

064: catch (Exception ex)

065: {

066: ex.printStackTrace();

067: }

068: }

069:}

Listing 48.5 (continued)

424 Item 48

Our example in Listing 48.5 requires no precompilation or WSDL lookups. Because
we knew the information in advance, we could hard-code it into our application. On
line 59, we made sure to print out the milliseconds for invocation setup.

Our final client code example is another example of using DII. DII is quite powerful,
because you can dynamically determine your interfaces at runtime, looking at the
WSDL, and discover information about the operations that a Web service supports.
Listing 48.6 is such an example. Like the last example, using DII is convenient because
it requires no precompilation of code or local Java interfaces at compile time. Every-
thing with DII occurs at runtime.

In this example, we ask the service for the first method, and we simply invoke the
method. In our example, we know the method takes a string as a parameter. Because
we pass the URL of the WSDL in lines 31 to 33 of Listing 48.6, our Service object will
have the ability to download the WSDL and get call information for the Web service. In
line 38, we ask the Web service for the names of available calls. On line 48, we request
the first call available, which we know is the method we would like to invoke. Finally,
we set up the parameter on line 52, and we invoke the method on line 63.

001: package org.javapitfalls.item48;

002:

003: import java.net.*;

004: import javax.xml.rpc.*;

005: import javax.xml.namespace.*;

006:

007: public class DIILookupClient

008: {

009:

010:

011: public static void main(String[] args)

012: {

013: try

014: {

015: long initial, afterproxy, preInvokeTime, invokeTime;

016:

017: initial = System.currentTimeMillis();

018:

019: String UrlString =

020: “http://localhost:8080/simpletest-jaxrpc/simpletest?WSDL”;

021: String nameSpaceUri =

022: “http://org.javapitfalls.item48/wsdl/SimpleTest”;

023: String serviceName = “SimpleTest”;

024: String portName = “SimpleTestIFPort”;

025: String qnamePort = “SimpleTestIF”;

026:

027: URL wsdlUrl = new URL(UrlString);

Listing 48.6 A simple client using DII with lookups (continued)

Performance Pitfalls in JAX-RPC Application Clients 425

028:

029: ServiceFactory serviceFactory =

030: ServiceFactory.newInstance();

031: Service simpleService =

032: serviceFactory.createService(wsdlUrl,

033: new QName(nameSpaceUri,serviceName));

034:

035: QName port = new QName(nameSpaceUri, portName);

036:

037:

038: Call[] servicecalls = simpleService.getCalls(port);

039: Call mycall = null;

040:

041: /*

042: * We will assume that we know to call the first method &

043: * pass it a string..

044: */

045:

046: if (servicecalls != null)

047: {

048: mycall = servicecalls[0];

049: String operationName =

050: mycall.getOperationName().toString();

051:

052: String[] params = { “Hello from DII Client!”};

053:

054:

055: afterproxy = System.currentTimeMillis();

056: preInvokeTime = afterproxy - initial;

057:

058: System.out.println(“Invocation setup took “

059: + preInvokeTime + “ milliseconds.”);

060: System.out.println(“About to call the “

061: + operationName + “ operation..”);

062:

063: String response = (String)mycall.invoke(params);

064: System.out.println(“Received ‘“

065: + response + “‘ as a response..”);

066:

067:

068: }

069: else

070:

071: System.out.println(“Problem with DII command..”);

Listing 48.6 (continued)

426 Item 48

072: }

073:

074: }

075: catch (Exception ex)

076: {

077: ex.printStackTrace();

077: }

078: }

079: }

Listing 48.6 (continued)

Everything in this example used the capabilities of DII, getting call information at
runtime. Many more methods on the javax.xml.rpc.Call interface could be used,
but for the purpose of simplicity, this example doesn’t use them all. For more informa-
tion about the JAX-RPC API and specification, go to Sun’s JAX-RPC Web page at
http://java.sun.com/xml/jaxrpc/.

Performance Results

For our experiment, we deployed our Web service and used the code from Listings
48.3, 48.4, 48.5, and 48.6. Our experiment was run with the Web service and the client
running on a 1300-MHz Pentium IV PC with 1 GB RAM, using the Windows 2000
operating system. Each “run” was done by running each client, in random order, one
after another. The client VM was Java HotSpot Client VM (build 1.4.0-b92, mixed
mode), and the tools and Web services were running with the Java Web Services Devel-
oper’s Pack, version 1.0_01. Table 48.1 shows the results.

As you can see, there is an obvious trade-off between flexibility at runtime and per-
formance. The best performing clients (with respect to invocation setup) were those in
Listings 48.3 and 48.5. Our hard-coded DII example in Listing 48.5 matched the per-
formance of our precompiled stubs example. This makes sense, because no WSDL
lookup was necessary in the hard-coded example.

The worst performance for call setup revolved around the clients where calls
were determined at runtime, or where stubs were generated at runtime. The DII
with call lookups example in Listing 48.6 and the dynamic proxy example in Listing
48.4 were approximately 2.5 times slower in performance for pre-invocation setup.
Both of those clients downloaded the WSDL. The dynamic proxy example was slightly
slower because of the generation of the stubs on the fly, but they were quite similar
in speed.

Performance Pitfalls in JAX-RPC Application Clients 427

Table 48.1 Table of Results: Pre-invocation Times

LISTING 48.3 LISTING 48.4 LISTING 48.5 LISTING 48.6
(PRECOMPILED (DYNAMIC (DII HARD- (DII - WITH
STUBS) PROXY CODED) CALL

GENERATION) LOOKUPS)

Run 1 590 ms 1683 ms 591 ms 1642 ms

Run 2 601 ms 1683 ms 581 ms 1653 ms

Run 3 591 ms 1672 ms 591 ms 1643 ms

Run 4 591 ms 1672 ms 581 ms 1633 ms

Run 5 591 ms 1783 ms 581 ms 1643 ms

Run 6 601 ms 1663 ms 591 ms 1653 ms

Run 7 591 ms 1692 ms 601 ms 1642 ms

Run 8 591 ms 1713 ms 601 ms 1663 ms

Run 9 591 ms 1672 ms 590 ms 1662 ms

Run 10 591 ms 1682 ms 641 ms 1662 ms

Run 11 641 ms 1662 ms 581 ms 1632 ms

Run 12 591 ms 1683 ms 581 ms 1642 ms

Run 13 591 ms 1722 ms 591 ms 1642 ms

Run 14 581 ms 1692 ms 631 ms 1642 ms

Run 15 591 ms 1682 ms 591 ms 1692 ms

Average 594.9333333 ms 1690.4 ms 594.9333333 ms 1649.733333 ms
Time

Conclusion

Our simple example has shown that there is obviously a trade-off between the dynamic
features of JAX-RPC and performance. Imagine if we needed to write a client applica-
tion for working with multiple Web services, or a complex Web service with pages and
pages of WSDL. The performance implications of doing everything dynamically—just
because those techniques are available—would be awful. Just because you can do
things dynamically doesn’t necessarily mean you should do things dynamically with
JAX-RPC. If there is a reason, do it. When in doubt, use precompiled stubs—your code
will look prettier—and if your Web service’s interface changes, you will simply need to
recompile your client.

428 Item 48

Item 49: Get Your Beans Off My Filesystem!

It is easy to overlook best practices for J2EE because some habits of using the Java 2
Standard Edition die hard. When designing Enterprise JavaBeans solutions, it is some-
times easy to forget what type of programming should not be done. We know, for
example, that spawning threads within beans is a big no-no, because we understand
that the EJB container handles all threading issues. Oftentimes, however, we overlook
the pitfalls that await us when we use the java.io classes to access files in the filesystem.

To demonstrate this issue, we provide a very simple example of a session bean read-
ing properties from the filesystem. In our example, a session bean is used to calculate
the amount of tax that shoppers must pay when they proceed to check out. In doing so,
the two-character abbreviation for the shoppers’ state is passed to the bean, so the bean
can calculate the approximate sales tax. Because sales tax varies from state to state, the
bean reads from a local properties file with different sales tax percentages:

Salestax.AB=.04

Salestax.VA=.045

For brevity (and to do a simple demonstration of this pitfall), we are only listing two
states. In our example, we assume that if a state is not in this properties file, the state
has no sales tax. Listing 49.1 shows the code for our BadTaxCalculatorBean that
reads the properties file. A client calling this session bean passes the purchase amount
(double cost) and the two-letter state abbreviation (String state), and the tax on
the purchase amount is returned. We load the properties file in our session bean’s
calculateTax() method, and we calculate the sales tax and return it as a double.
In lines 18 to 31, we load the properties file using the java.io.FileInputStream
class and calculate the tax:

001: package org.javapitfalls.item49;

002:

003: import java.rmi.RemoteException;

004: import javax.ejb.SessionBean;

005: import javax.ejb.SessionContext;

006: import java.util.Properties;

007: import java.io.*;

008: import javax.ejb.EJBException;

009:

010:

011: public class BadTaxCalculatorBean implements SessionBean

012: {

013: public double calculateTax(double cost, String state)

014: {

015: Properties p = new Properties();

016: double tax = 0;

Listing 49.1 Bean reading properties file for values (continued)

Get Your Beans Off My Filesystem! 429

017:

018: try

019: {

020: p.load(new FileInputStream(“C://salestax.properties”));

021: tax = Double.parseDouble(p.getProperty(“Salestax.” + state)) *

022: cost;

023:

024: }

025: catch (IOException e)

026: {

027: e.printStackTrace();

028:

029: throw new EJBException(“Can’t open the properties file! “

030: + e.toString());

031: }

032:

033: String taxString = p.getProperty(“Salestax.” + state);

034:

035: if (taxString != null && !taxString.equals(“”))

036: {

037: tax = Double.parseDouble(taxString) * cost;

038: }

039:

040: return (tax);

041: }

042:

043: public void ejbCreate() {}

044: public void ejbPostCreate() {}

045: public void ejbRemove()

046: public void ejbActivate()

047: public void ejbPassivate()

048: public void setSessionContext(SessionContext sc) {}

049: }

Listing 49.1 (continued)

What could go wrong in Listing 49.1? First of all, loading a properties file every time
the calculateTax() method is called is bad practice. This is a given. More impor-
tantly, because the container is responsible for management of this session bean, who
knows how many BadTaxCalculator beans may be actually instantiated during
heavy loads on the server? When an EJB uses the java.io package to access files on
the filesystem, bad things could happen, ranging from very poor performance to run-
ning out of file descriptors and bringing down the server.5

430 Item 49

5 Van Rooijen, Leander. “Programming Restrictions in EJB Development: Building Scalable and
Robust Enterprise Applications.” Java Developers Journal. Volume 7, Issue 7, July 2002.

For this reason, the EJB specification lists programming restrictions related to the
java.io classes. In the “Runtime Environment” chapter of the specifications (EJB speci-
fications 1.1, 2.0, and 2.1), the restriction is listed plainly: “An enterprise bean must not
use the java.io package to access files and directories in the filesystem. The filesys-
tem APIs are not well-suited for business components to access data. Business compo-
nents should use a resource manager API, such as the JDBC API, to store data.”6 Simply
put, because a filesystem is not transactional, and because there is no resource manager
involved in java.io operations, you need to keep your beans off the filesystem! This
presents us with a challenge: If a bean compiles and deploys into our EJB container
without any problems, and it seems to work well when we test it, fatal errors may end
up diagnosing the problem.

For our sales tax example, how should we rewrite it? If we store all the sales tax
information in a database, this would eliminate the possible problems that we could
encounter when using the java.io package. Unfortunately, using a database in this
example may be overkill because sales tax usually doesn’t change very often, and we
could pay a performance penalty for hitting the database every time. In our bad exam-
ple, we used properties files because they are convenient for configuring our Java
applications. Luckily, we can do something similar—with our deployment descriptor.

To customize your beans at runtime, you can use the environment properties in your
deployment descriptor. For data that doesn’t change often, and for an alternative to using
a database for storing information, environment properties work well. Listing 49.2 shows
our deployment descriptor for our new bean, in a file called ejb-jar.xml. Each entry, desig-
nated by the XML tag <env-entry>, contains a <description> tag, a name desig-
nated by <env-entry-name>, a type designated by <env-entry-type>, and a
value designated by <env-entry-value>. As you can see from our listing of this
deployment descriptor, we converted the original properties file to this format.

001: <?xml version=”1.0” encoding=”UTF-8”?>

002: <ejb-jar>

003: <description>GoodTaxCalculatorBean</description>

004: <display-name>GoodTaxCalculatorBean</display-name>

005: <enterprise-beans>

006: <session>

007: <ejb-name>GoodTaxCalculator</ejb-name>

008: <home>org.javapitalls.item49.GoodTaxCalculatorHome</home>

009: <remote>org.javapitfalls.item49.GoodTaxCalculator</remote>

010: <ejb-class>

011: org.javapitfalls.item49.GoodTaxCalculatorBean

012: </ejb-class>

013: <session-type>Stateless</session-type>

014: <transaction-type>Bean</transaction-type>

015: <env-entry>

016: <description>Alabama Sales Tax</description>

Listing 49.2 Setting environment entries in ejb-jar.xml (continued)

Get Your Beans Off My Filesystem! 431

6 Enterprise JavaBeans Specification 2.1, Chapter 25; Enterprise JavaBeans Specification 2.0,
Chapter 20; Enterprise JavaBeans Specifications 1.1, Chapter 18.

017: <env-entry-name>Salestax.AB</env-entry-name>

018: <env-entry-type>java.lang.String</env-entry-type>

019: <env-entry-value>.04</env-entry-value>

020: </env-entry>

021: <env-entry>

022: <description>Virginia Sales Tax</description>

023: <env-entry-name>Salestax.VA</env-entry-name>

024: <env-entry-type>java.lang.String</env-entry-type>

025: <env-entry-value>.04</env-entry-value>

026: </env-entry>

027: </session>

028: </enterprise-beans>

029: </ejb-jar>

Listing 49.2 (continued)

To access these properties, the bean must do a JNDI lookup. Listing 49.3 demon-
strates this approach. On lines 18 and 19, the session bean gets the initial context and
uses it to look up the environment entries. These entries are always found under JNDI
in java:comp/env. Finally, the lookup for the sales tax for a certain state is done by
looking up the value of the current state’s sales tax on line 20.

001: package org.javapitfalls.item49;

002:

003: import java.rmi.RemoteException;

004: import javax.ejb.EJBException;

005: import javax.ejb.SessionBean;

006: import javax.ejb.SessionContext;

007: import javax.naming.*;

008:

009: public class GoodTaxCalculatorBean implements SessionBean

010: {

011: public double calculateTax(double cost, String state)

012: {

013: double tax = 0;

014:

015: try

016: {

017:

018: Context ctx = new InitialContext();

019: Context env = (Context)ctx.lookup(“java:comp/env”);

020: String taxString = (String)env.lookup(“Salestax.” + state);

021:

022: if (taxString != null && !taxString.equals(“”))

023: {

Listing 49.3 Using environment entries in our bean

432 Item 49

024: tax = Double.parseDouble(taxString) * cost;

025: }

026:

027: }

028: catch (NamingException ne)

029: {

030: ne.printStackTrace();

031: // Instead of throwing an EJBException, let’s just assume

032: // there is no tax!

033: }

034:

035: return(tax);

036: }

037:

038: public void ejbCreate() {}

039: public void ejbPostCreate() {}

040: public void ejbRemove() {}

041: public void ejbActivate() {}

042: public void ejbPassivate() {}

043: public void setSessionContext(SessionContext sc) {}

044:

045: }

Listing 49.3 (continued)

In this pitfall, we discussed the potential problems our beans may encounter if they
use the java.io package to access files and directories on the filesystem. We demon-
strated a potentially flawed session bean that loaded a properties file with the
java.io.FileInputStream class. We listed the programming restriction from the
EJB specification and discussed what could go wrong. Finally, we modified our exam-
ple and provided an alternative to beans loading properties files by using environ-
mental entries in the deployment descriptor. As you are looking through your code
base, you may want to look for this potential problem. If you see any code where beans
are loading properties files, it will be an easy fix to switch to environment entries.

Item 50: When Transactions Go Awry, or Consistent
State in Stateful Session EJBs

Many pitfalls are based on erroneous assumptions—assumptions that, at least on the
surface, appear perfectly reasonable. As EJB developers become more educated, one of
the first areas they branch out into is transactions. In one way or another, one of their
EJBs becomes part of a transaction, and the developer feels confident that his or her
code is stable and works correctly because, after all, when a transaction rolls back, the
data is rolled back to a consistent state. Herein lies the pitfall; the developer assumed
that the state of his or her EJB was rolled back when the transaction failed.

When Transactions Go Awry, or Consistent State in Stateful Session EJBs 433

As you will recall, stateful session EJBs are those EJB components that maintain
state between method calls. We can easily imagine such a bean in an example of a
police call center. When you call the police operator, he or she remembers the context
of your call. In such an example, each question to the call center represents a method
invocation on the “call center” EJB. The assumption that EJB developers made was that
when the transaction rolled back, the state of all the data within their EJB was restored
to its pretransaction state. On the surface, it seems perfectly reasonable.

The problem with stateful session beans and transactions comes from the interaction
of bean state and transaction state. The pitfall with session beans comes about as a result
of assuming that the bean state is reset to correspond to the pretransaction state when a
transaction fails.

Imagine a stateful session bean that represents a bank teller. A client speaks to the
bank teller to make a withdrawal. The teller notes that a withdrawal has been requested
(transaction start), attempts to perform the withdrawal (method during transaction), and
then, depending on whether the teller’s cash drawer has enough cash, either commits
the transaction (hands cash to the client) or rolls back the transaction (“sorry, I don’t have
enough cash on hand”). A problem comes about if the client’s passbook has already been
updated to show the withdrawal. The client’s passbook shows the withdrawal, but no
cash was given (an inconsistency between the transaction state and the client state).

To solve the problem of inconsistent state within an EJB, we can implement the
SessionSynchronization interface on our stateful session EJBs. The Session-
Synchronization interface requires you to implement three methods: beforeCom-
pletion(), afterCompletion(), and afterBegin(). Figure 50.1 shows the
lifecycle of stateful session EJBs. Understanding the lifecycle will clarify exactly how
we can use these methods to solve our state problem.

NOTE Note that the session synchronization interface is designed to be used
with container-managed transactions. Obviously, if you are managing your own
transaction state, you would know where transaction boundaries exist and you
could store and reset the EJB state yourself.

Figure 50.1 Stateful session EJB lifecycle.

does not exist
1 5

callable
(outside a tx) passivated2

callable
(inside a tx)

3
6

7

8

4

9

(6) Transaction start
afterBegin()
followed by method call

Transaction aware method calls

(8) Rollback
beforeCompletion()
afterCompletion(false)

(9) Commit
beforeCompletion()
afterCompletion(true)

434 Item 50

Examining how a bean moves through its various states during its lifecycle will help
us understand how transactions affect bean state and how we can solve the transaction
state problem.

1. Initially, an EJB is in the does not exist state. In the does not exist state, a stateful
bean has not been called for (often referred to as pooled) but is potentially ready
for quick creation and use. Various application servers handle this state in dif-
ferent ways. Many, including BEA WebLogic Server, precreate beans so that
they are ready for immediate use.

2. A bean moves into the callable state when a client calls the home interface
create() method. In the callable (outside a transaction) state, a bean has been
created and is ready for use. Beans in the callable state are method ready and
stay in the method state until they are destroyed, or passivated.

3. Beans move to the passivated state because they have been inactive for a long
period of time. Passivated beans are normally stored in some sort of high-
speed backing store outside RAM to conserve system memory.

4. A bean can move from the passivated state back to callable as a result of a client
calling a method on the bean. Under normal circumstances, passivated beans are
restored without any developer work or interaction. However, the EJB specifi-
cation provides methods for notifying a bean that it has been passivated and
then restored.

5. If a bean is inactive long enough, it may be destroyed by the bean container.
Further method calls on such a bean will result in a client exception. Many
application servers will reset the state of such an object and return it to a
ready-for-use object pool.

6. A bean moves to the callable (inside a transaction) state the first time a method is
called after a transaction is started. The session synchronization interface
method afterBegin() is called at this point, but before the method call is
evoked, to signal the bean that a transaction has been started. We will use
afterBegin() to signal we should store our state for reset later.

7. After a transaction has been started, all bean method calls become part of that
transaction until either a commit or a rollback occurs. As long as the transaction
is active, we remain in this state.

8. If a transaction is rolled back, the bean moves to the callable (outside a transac-
tion) state. The beforeCompletion() method is called, followed by
afterCompletion(false) being called. The bean could then revert its
state to a known point before the transaction began.

9. When a transaction is committed, the bean moves from back to the callable
(outside a transaction) state. However, unlike item 8 above, the transaction was
committed and the afterCompletion(true) method is called. Since the
session state is consistent with the transaction state, no action need be taken.

We can solve the transaction/bean state problem by a combination of the Session-
Synchronization interface and careful store and reset logic within our application.
The SessionSynchronization interface requires that we implement three specific
methods:

When Transactions Go Awry, or Consistent State in Stateful Session EJBs 435

■■ public void afterBegin(). Represented by transition 6 in the EJB life-
cycle diagram. Here is where we would implement any logic to store current
state. In the EJB lifecyle, afterBegin() is called after a transaction has begun
but before any methods that would be part of the transaction. Transaction con-
text can be obtained and manipulated within the afterBegin() method.

■■ public void beforeCompletion(). Represented by transitions 8 and 9 in
the EJB lifecycle diagram. beforeCompletion() is called when a transaction
is committed but before the actual commit operation takes place. Any work
done within beforeCompletion() is within the context of the transaction.

■■ public void afterCompletion(boolean committed). Represented by
transaction 8 (failed) and 9 (committed) in the EJB lifecycle diagram. after-
Completion() is called after the transaction has been committed or rolled
back. The committed flag can be used to determine if the transaction was suc-
cessfully committed. Here is where we would implement any required logic to
store or update bean state. An important note: afterCompletion() is not
called inside the context of a transaction.

NOTE A complete description of Stateless Session EJB is beyond the scope of
this text. Only the implementation of stateless session EJBs is presented in this
section. For complete coverage of EJB development, see Mastering Enterprise
JavaBeans, Second Edition by Ed Roman (Wiley, 2002) or Developing Java
Enterprise Applications by Stephen Asbury and Scott R. Weiner (Wiley, 2001).

In Listing 50.1 we can take advantage of transaction boundaries by specifying the
session synchronization interface, as shown on line 7, and implementing the required
methods. To solve our problem, we must save our current state, have all methods oper-
ate within transaction boundaries, and then be able to determine if our transaction suc-
ceeded or failed and restore state appropriately.

The afterBegin() method, shown on lines 28 to 32, called before the first method
invocation inside a transaction, allows us to save our current state. All methods, which
are transaction-aware, are then within transaction boundaries. Line 34 shows the
before completion method, which is unused in our example but could be used for final
cleanup, to reset transaction state (to rollback only for example). Once the transaction
has been committed, we need to either reset from our prior state (transaction failed) or
simply continue on (transaction succeeded). Lines 39 to 52 show the implementation of
the afterCompletion() method and allow us to correctly reset our bean state when
a transaction either commits or fails. The boolean committed flag tells us whether
the transaction committed (we can discard our previous state) or failed (we need to
restore our state).

436 Item 50

01: package org.javapitfalls.item50;

02:

03: import javax.ejb.*;

04: import java.util.*;

05:

06: public class TellerBean implements SessionBean,

07: SessionSynchronization

08: {

09:

10: private SessionContext sc;

11: private double balance;

12: private double priorBalance;

13:

14: public TellerBean() { balance = 0.0;}

15: public void setSessionContext(SessionContext sc)

16: {

17: this.sc=sc;

18: }

19:

20: public void ejbCreate() { }

21:

22: public void ejbRemove() { }

23:

24: public void ejbPassivate() { }

25:

26: public void ejbActivate() { }

27:

28: public void afterBegin()

29: {

30: System.out.println(“TellerBean::afterBegin”);

31: priorBalance = balance;

32: }

33:

34: public void beforeCompletion()

35: {

36: System.out.println(“TellerBean::beforeCompletion”);

37: }

38:

39: public void afterCompletion(boolean committed)

40: {

Listing 50.1 TellerBean.java, using session synchronization (continued)

When Transactions Go Awry, or Consistent State in Stateful Session EJBs 437

41: System.out.println(“TellerBean::afterCompletion (“

42: + committed + “)”);

43: if (committed)

44: {

45: priorBalance=balance; // prior and current state match

46: }

47: else

48: {

49: balance=priorBalance; // restore state

50: }

51:

52: }

53:

54: public double getBalance()

55: {

56: System.out.println(“getBalance” + balance);

57: return balance;

58: }

59:

60: public double Withdraw(double amount)

61: {

62: System.out.println(“Withdraw” + amount);

63: balance = balance - amount;

64: return balance;

65: }

66:

67: public double Deposit(double amount)

68: {

69: System.out.println(“Deposit” + amount);

70: balance = balance + amount;

71: return balance;

72: }

73: }

Listing 50.1 (continued)

The Memento Pattern

Our previous scenario showed an example where we only needed to restore a simple
set of variables. However, often in real life, we need to restore a complex set of data
where setting and restoring variables can be a tedious and error-prone operation. To
solve the restore problem, we can use a variant of the value object pattern known as the
Memento pattern.

438 Item 50

The Memento pattern is a rather simple pattern whose purpose is to store the state
of an object. When using a memento, an originator, such as an EJB or other object that
requires state, creates an instance of a memento and passes it to a caretaker, which
manages the object’s state on behalf of the originator. Typically, mementos hide the
contents of the object from all but the originator of that object. In our case, the origina-
tor and caretaker are the same class; however, in a more complex system, we could eas-
ily envision an object monitor managing mementoes for us. When the originator needs
to restore state, the caretaker provides the memento back to the originator, and the
object can then restore.

The Memento pattern is actually a rather simple one to implement in Java. Using
inner classes, as shown on lines 04 to 16 of Listing 50.2, we create a memento that con-
tains two methods, a constructor and a restore method, which allows us to reset state
using the contents of the moment.

In Listing 50.2, we use the memento by creating two instances representing current
state and prior state, as shown in lines 19 to 21.

The value of the memento pattern is most clear when we need to contain a large
amount of state. The actual object’s state is contained wholly within the memento and
not within the object itself. We access the object state throughout a set of state variables,
currentState and priorState. Current state is used whenever we perform nor-
mal object operations such as getting and setting data. We store object state for later use
into the priorState object whenever necessary. In the example, a simple method that
changes the object’s state, shown on lines 24 to 28, saves the current object’s state con-
tents in the priorState memento using the setFrom method. Likewise, line 31
shows how we might restore our state as required.

Our memento example is a rather simple one using predefined variables to contain
an object’s state. It’s easy to imagine a more generic memento implementation that
uses reflection to examine an object’s content and save and restore state automatically
without requiring object-specific code.

01: class MementoExample {

02: Memento currentState = null;

03: Memento priorState = null;

04: private class Memento {

05: int imaInt;

06: double imaDouble;

07: Memento(int i, double d) {

08: imaInt = i;

09: imaDouble = d;

10: }

11: void setFrom(Memento source) {

12: imaInt=source.imaInt;

13: imaDouble=source.imaDouble;

14: }

15:

Listing 50.2 MementoExample.java (continued)

When Transactions Go Awry, or Consistent State in Stateful Session EJBs 439

16: }

17:

18: public MementoExample() {

19: currentState = new Memento(1,20.0);

20: priorState = new Memento(0,0.0);

21: priorState.setFrom(currentState);

22: }

23:

24: public void changeState(int i, double d) {

25: priorState.setFrom(currentState);

26: currentState.imaInt = i;

27: currentState.imaDouble = d;

28: }

29:

30: public void restoreState() {

31: currentState.setFrom(priorState);

32: }

33:

34: public void printState() {

35: System.out.println(“State:”);

36: System.out.println(“ imaInt = “ +

37: currentState.imaInt);

38: System.out.println(“ imaDouble = “ +

39: currentState.imaDouble);

40: }

41: public static void main(String[] arg) {

42: MementoExample mt = new MementoExample();

43: System.out.println(“Original state to 1,20.0”);

44: mt.printState();

45: System.out.println(“Changing state to 3, 7”);

46: mt.changeState(3,7.00);

47: mt.printState();

48: System.out.println(“Restoring state”);

49: mt.restoreState();

50: mt.printState();

51:

52: }

53:

54: } // end MementoExample

Listing 50.2 (continued)

The StateTellerBean interface, shown in Listing 50.3, is a remote interface that
extends the EJBObject class so that all the methods in it will be exposed to remote
clients.

440 Item 50

01: package org.javapitfalls.item50;

02:

03: import javax.ejb.EJBObject;

04: import java.rmi.RemoteException;

05:

06: public interface StateTellerBean extends EJBObject {

07:

08: public double getBalance() throws RemoteException;

09:

10: public double Withdraw(double amount) throws RemoteException;

11:

13: public double Deposit(double amount) throws RemoteException;

14:

15: }

Listing 50.3 StateTellerBean.java

The StateTellerBeanHome interface, shown in Listing 50.4, extends the
EJBHome class so that remote clients can access the application. Our application does
not use this, but it is provided so that other applications can use it if they want to.

01: package org.javapitfalls.item50;

02:

03: import java.rmi.RemoteException;

04: import javax.ejb.CreateException;

05: import javax.ejb.EJBHome;

06:

07: public interface StateTellerBeanHome extends EJBHome {

08:

09: StateTellerBean create() throws RemoteException, CreateException;

10:

11: }

12:

Listing 50.4 StateTellerBeanHome.java

Listed below is the output if the Memento pattern application is run. Notice the
transitions between states and the restoration of the original values. This is the result of
the Memento pattern implementation.

When Transactions Go Awry, or Consistent State in Stateful Session EJBs 441

01: prompt> java org.javapitfalls.item50.MementoExample

02:

03:

04: Original state 1,20.0

05: State:

06: imaInt = 1

07: imaDouble = 20.0

08: Changing state 3, 7

09: State:

10: imaInt = 3

11: imaDouble = 7.0

12: Restoring state

13: State

14: imaInt = 1

15: imaDouble = 20.0

16:

As shown in the rather simple Memento application, the memento operation
remembers the context of your call, which allows an application to roll back the state of
all the data within an EJB.

442 Item 50

443

Index

SYMBOLS AND NUMERICS
@ (at sign), 264
{ } braces, 262
[] brackets, 94
. (dot), 94
4 KB buffer size, 21
16-bit unicode characters, 18

A
abort() method, 393
AbstractCollection class, 162
abstracting details, bad example of, 39–40
AbstractList class, 162
AbstractSelectableChannel class, 18
AbstractSet class, 162
Abstract Windowing Toolkit (AWT), 122, 352
acceptChanges() method, 33
accept() method, 33, 152
AccessControl, 39–40
AccessException class, 41–42
Action event handler, 167
actionPerformed() method, 177–178
addMode() method, 173, 194
addOperation() method, 173
addType() method, 173
afterBegin() method, 434–436
afterCompletion() method, 434–435
allocateDirect() method, 26
AllTests.java example, 100
Another Neat Tool (ANT)

BugRat tracking tool and, 92
Checkstyle tool and, 94

command-line build operations, 94
CruiseControl and, 98
database creation, destruction and population,

96–98
Help targets, 91
JavaNCSS utility and, 93
JDepend utility and, 93
overview, 88–89
running JUnit tests using, 90

Apache Software Foundation (ASF), 391
applets, problems with, 227–231
application programming interfaces (APIs)

collision of, 53–57
Java Regular Expressions, 266

applications
Java Web Start, 231–232
servlet-based, 223
XSLTransformFilter, 249

ArrayList class, 162
ASF (Apache Software Foundation), 391
assertions
AssertionExample.java, 61
enabling, 64–65
errors, 60, 62–63
how to use, 59
invariants, 60
postconditions, 60, 63–64
preconditions, 60
unreachable conditions, 63

at sign (@), 264
attachment() method, 31
attach() method, 31
authenticateHelper class, 239

444 Index

authenticate() method, 40, 42–44
authentication, 236, 238
AWT (Abstract Windowing Toolkit), 122, 352
AxisConstants class, 352

B
BadDomLookup.java example, 67
BadExecJavac.java example, 5–6
BadLayeredPane.java example, 147–148
BadLoggerExample, 45–49
BadNavigationUtils.java example,

114–115
BadRightMouseButton.java example,

81–83
BadSetSize.java example, 123
BadStringTokenizer.java example, 141
BadURLPost.java example, 131–132
BadVoterServlet.java example, 292–293
BadWinRedirect.java example, 12
BasicService interface, 233
batch scripts, 98
BeanContextServicesSupport class, 162
BeanContextSupport class, 162
beans. See session beans
BEA Web Logic Server, 317
beforeCompletion() method, 434–435
begin() method, 393
BmpWriter3.java, 23–25
boolean isNew() method, 221
BorderLayout manager, 124
braces ({ }), 262
brackets ([]), 94
buffers
BufferedReader class, 182
ByteBuffer class, 26
defined, 18
DirectBuffer class, 26

BugRat tracking tool, 92
BulkResponse objects, 403
BusinessQueryManager interface, 401–402
ByteArrayOutputStream class, 182
ByteBuffer class, 26

C
cache.debug property, 203
cache.path property, 203
cache.unlimited property, 203
caching

database/server architecture, 207
generate.Tests.java example, 205–207
JCACHE specification, 207
OSCache tags, 201–203

CallableStatement interface, 364

Callback object, 31
canonical file copy operation, 20–21
catch() method, 295
Cewolf tag library, 348
CGI (Common Gateway Interface), 127, 210
Channel class, 17–18
character class operator precedence, 266
Charset class, 18
Checkstyle tool, 94
checksubmitcount() method, 315
ClassCastExceptions, 112
classes
AbstractCollection, 162
AbstractList, 162
AbstractSelectableChannel, 18
AbstractSet, 162
AccessException, 41–42
ArrayList, 162
authenticateHelper, 239
AxisConstants, 352
BeanContextServicesSupport, 162
BeanContextSupport, 162
BufferedReader, 182
ByteArrayOutputStream, 182
ByteBuffer, 26
Channel, 18
Charset, 18
CommandListener, 175
ConsoleHandlers, 51–52
ControlServlet, 237
DatagramChannel, 18
DDConnectionBroker, 281, 285
DetailsDialog, 171
DirContext, 241
DirectBuffer, 26
DocumentBuilderFactory, 127
DomUtil, 71
EJBObject, 440
File, 151–154
FileChannel, 17, 21, 25, 152
FileDescriptor, 152
FileFilter, 152
FileHandler, 48, 52
FileInputStream, 17, 152
FileLock, 153
FileOutputStream, 17, 152
FilePermission, 152
FirstCallSingleton, 118
GatheringByteChannel, 17
HashSet, 162
HTTPConnection, 137
HTTPResponse, 137
HttpSession, 221

Index 445

HttpURLConnection, 133
InitialDirContext, 243
Iterator, 157–158, 161–162
java.lang.Throwable, 41
java.sql.DatabaseMetaData, 353
JButton, 165
JComboBox, 165
JEditorPane, 298
JFrame, 149, 151
JLayeredPane, 146–150
JList, 165
JPanel, 151
JRootPane, 148
JScrollPane, 298
JTextArea, 171
JTextField, 298
LDAPException, 41
LinkedHashSet, 162
LinkedList, 162
Matcher, 266
NIO packages, 18–19
org.w3c.dom, 53
org.xml.sax, 53
OutputStream
Runtime.exe() method, 15
writeInt() method, 23

OutputStreamWrite, 137
Pattern, 266
Pipe.SinkChannel, 18
Pipe.SourceChannel, 18
PixelGrabber, 25
PrintWriter, 273, 294
Process
exitValue() method, 4
getInputStream() method, 11
waitFor() method, 5

ProtocolException, 133
RandomAccessFile, 17, 152
RegistryObject, 403
Runtime, 4
ScatteringByteChannel, 17
SelectableChannel, 18
SelectionKey, 31, 33
Selector, 18
ServerSocket, 17, 30
ServerSocketChannel, 18, 30
ServletOutputStream, 294
Socket, 17
SocketChannel, 17–18
StreamGobbler, 11
StringBuffer, 172
StringTokenizer, 4, 140, 142, 146
SwingUtilities, 88

TreeSet, 162
URLConnection, 127, 134
URLConnectionFactory, 127
Vector, 162
XMLOutputter, 80
XSLTFilter, 252
XulRunner, 146
See also interfaces

class loading, 111–112
ClassNotFoundExceptions, 112
CLASSPATHS, 108–111
ClipboardService interface, 233
cloneNode() method, 58–59
clustering, 335
code. See listings
commandAction() method, 177
CommandListener class, 175
commands
dir
exec() method, 8
GoodWindowsExec.java, 11

java classname, 108
java -r jarname, 108
SQL, 96
See also methods

commit() method, 393
committed flags, 436
Common Gateway Interface (CGI), 127, 210
compile-time errors, 251
componentization, 335
concurrent result sets, multiple, problems with,

353, 355, 357–359
Concurrent Versioning System (CVS), 92
conditional constructs, 266
Connection Pool resource, 383
connections
DDConnectionBroker class, 281, 285
freeConnection() method, 285
getConnection() method, 285, 288
m_broker.freeConnection() method, 281
m_broker.getConnection() method, 281
pooling, 282
within servlets, design flaws, 278–279, 281,

285, 288
ConsoleHandlers class, 51–52
constructs, 266
ControllerServlet class, 237
convert() method, 341
cookies, 210, 221
-cp switch, 109
create() method, 341, 366–367, 369
createNewFile() method, 152
createProxy() method, 420

446 Index

createURL() method, 194
CruiseControl tool, 98
currentState variable, 439
CVS (Concurrent Versioning System), 92

D
DatabaseAccessControl, 40
databases, creation, destruction and

population, 96–98
data corruption, time line of, 275
DatagramChannel class, 18
date formats, 264
dbQueryBean.java example, 105
dbQueryCase.java example, 105–107
DDConnectionBroker class, 281, 286
DefaultContext element, 383
delete() method, 152, 155, 157
depends tag, 89
deploying Java applications, 109–110
Design by Contract utility, 59–60
The Design of Everyday Things

(Donald Norman), 127
destroy() method, 175
DetailsDialog class, 171
DII (Dynamic Invocation Interface), 423
dir command
exec() method, 8
GoodWindowsExec.java, 11

DirContext class, 242
DirectBuffer class, 26
directives
forward, 321
include, 256, 258
See also tags

Display.getdisplay() method, 176
Display.setCurrent() method, 177
doAmazonSearch() method, 180, 191–192
.doc extensions, 11
DocumentBuilderFactory class, 127
Document.cloneNode() method, 59
DocumentLS interface, 77
Document Object Model (DOM)

DOMBuilder, 78
DOMimplementation, 78
DOM tree, searching, 66–70
DOMWriter, 78
JDOM (Java Document Object Model), 79
level 3 specifications, 76–77
lifecycle of, 73
Modified state, 74
New state, 74
overview, 170
Persisted state, 74
W3C Load specification, 80

doFilter() method, 245, 252
doGet() method, 222, 272, 292
DomEditor utility, 74
DomUtil class, 71
doPost() method, 208–209, 222, 279, 375
doStuff() method, 423
dot (.), 94
DownloadService interface, 233–234
Dynamic Invocation Interface (DII), 423
dynamic proxy class, 421

E
EJB Design Patterns (Floyd Marinescu), 340, 364
EJBObject class, 440
embedded code constructs, 266
embedded comment syntax, 266
employeeFormBean.java example, 101–102
employeeFormBeanTestCase.java

example, 102–103
enabling assertions, 64–65
Endorsed Standards Override Mechanism

(ESOM), 59
Enterprise JavaBeans (EJBs)

overview, 291
primary keys for, generating

application server-specific approach, 363
client control approach, 360–362
database autogeneration approach, 363–364
networked Singleton approach, 363
simple scenario, 359–360
Singleton approach, 362

Enterprise Resource Planning (ERP), 385
entity beans, 366
Enumeration interface, 157–158, 161–162
environment variables, CLASSPATHS and, 109
errors

assertions, 60, 62–63
compile-time, 251
file not found, 8
NoClassDefFoundError, 352
not a valid Win32 application, 16
OutofMemoryError, 188

ESOM (Endorsed Standards Override Mecha-
nism), 59

example code. See listings
exec() method
BadWinRedirect.java, 12
dir command, 8
method prototypes, list of, 4
Runtime class, 4

executable JAR files, 108–112
exitValue() method, 4–5
ExternalLink path, 408

Index 447

F
failover, 335
FileChannel class, 17, 21, 25, 152
File class, 151–154
FileDescriptor class, 152
FileDialog.setFilenameFilter()

method, 152
FileFilter class, 152
FileHandler class, 48, 52
FileInputStream class, 17, 152
File.list() method, 152
FileLock class, 153
FilenameFilter class, 152
file not found error code, 8
FileOpenService interface, 233
FileOutputStream class, 17, 152
FilePermission class, 152
File.renameTo() method, 151, 155
files

reading from servlets, 302–306
references, URLs as, 297–300, 302

FileSaveService interface, 233
FilterConfig object, 251
findAssociations() method, 401
findByPrimaryKey() method, 366
findCallerAssociations() method, 401
findClassificationSchemeByName()

method, 401
findClassificationSchemes() method, 401
findConceptByPath() method, 401
findConcepts() method, 402, 415
findNodeWithContent() method, 170
findOrganizations() method, 402, 404
findRegistryPackages() method, 402
findServiceBindings() method, 402
findServices() method, 402
FirstCall.getInstance() method, 119
FirstCallSingleton class, 118
flip() method, 26
forward directive, 259, 321
4 KB buffer size, 21
freeConnection() method, 286
Front Control pattern, 239, 245

G
GatheringByteChannel class, 17
getActionCmd() method, 177
getAttribute() method, 318
getBytes() method, 137
getChannel() method, 25
getClassifications() method, 412
getClassifiedObject() method, 412
getConnection() method, 286, 288
getElementsByTagName() method, 180

getExternalLinks() method, 403
getExternalURI() method, 409
getFirstChildElement() method, 71
getGeneratedKeys() method, 364
getGUI() method, 120
getInitParameter() method, 253
getInitParameterNames() method, 253
getInputStream() method, 11, 130, 134, 182
getInstance() method, 117, 119–120, 285
getLabel() method, 177
getLevel() method, 48
getMinimumSize() method, 124
getNamedDispatcher() method, 247, 255, 324
getName() method, 180
getNextKey() method, 362–363
getNodeName() method, 180
getNodeValue() method, 180
getOutputStream() method, 130, 133–134
getPollOfTheDay() method, 292
getPort() method, 421
getPreferredSize() method, 124
getProductNames() method, 180
getRealPath() method, 304
getResourceAsStream() method, 306
getResource() method, 306
getRuntime() method, 4
getSelectedItem() method, 180
getServiceBindings() method, 404
getServices() method, 404
getSession() method, 222, 308
getSpecificationObject() method,

409, 415
getString() method, 180
getText() method, 116, 180
getValue() method, 222
getValueNames() method, 221
getWriter() method, 295
global variables, Singletons as, 120–121
goGet() method, 222
GoodDomLookup.java example, 69–71
GoodFileRename.java example, 155–156
GoodLayeredPane.java example, 150
GoodNavigationUtils.java example, 116
GoodRightMouseButton.java example,

85–86
GoodSetSize.java example, 124–125
GoodStringTokenizer.java example,

142–144
GoodURLPost.java example, 135–136
GoodVoter.Servlet.java example,

296–297
GoodWindowsExec.java example, 9–11
GoodWinRedirect.java example, 13–15
GridLayout manager, 124

448 Index

H
HashMap class, 162
HashSet class, 116, 162
Hashtable class, 162
Help targets (ANT), 91
hiding implementation details, 39–43
HRMS (Human Resources Management

Systems), 385
HTTPClientPost.java example, 137–140
HTTPConnection class, 137
httpGet() method, 169, 174, 180, 195
HTTPResponse class, 137
HttpSession class, 221
HttpURLConnection class, 133
Human Resources Management Systems

(HRMS), 385
Hypertext Transfer Protocol (HTTP), 126

I
IANA charset registry, 18
IDEs (integrated development

environments), 99
IllegalArgumentException value, 31
IllegalStateException value, 247
IllegalThreadSafeException value, 5–6
ImageAnnotationServer.java, 27–29
image obsession, 348–352
implementation details, hiding, 39–43
import tag, 258
include directive, 256, 258
InitialDirContext class, 243
init() method, 239, 273–274
init-params element, 253
input/output (I/O), non-blocking server, 26–30
instance variables, in servlets, 269, 272–274, 278
instantiation, lazy instantiation, 118, 187
Integer object, 149
integrated development environments

(IDEs), 99
interfaces
BasicService, 233
BusinessQueryManager, 401–402
CallableStatement, 364
ClipboardService, 233
DocumentLS, 77
DownloadService, 233–234
Enumeration, 157–158, 161–162
FileOpenService, 233
FileSaveService, 233
MouseListener, 80
MouseMotionListener, 80
MouseWheelListener, 80
NIO packages, 18–19
ParseErrorEvent, 77

PersistenceService, 233
PrintService, 233
RequestDispatcher, 247
SessionSynchronization, 434–435
SimpleTestIF, 420
StateTellerBean, 440–441
Transaction, 393
See also classes

int getMaxInactiveInterval()
method, 221

invalidate() method, 225–227
invariants, 60
I/O (input/output), non-blocking server, 26–30
isAcceptable() method, 33
isDirectory() method, 152
isFile() method, 152
isNew() method, 222, 226–227, 318
isOpen() method, 393
isPopupTrigger() method, 84, 88
isUserInRole() method, 238
Iterator class, 157–158, 161–162

J
Java API for XML-based Remote Procedure Call

(JAX-RPC)
DII calls, 423–426
dynamic proxies, 421–423
overview, 328, 417–418
stub classes, 420
web services, 418

Java API for XML Processing (JAXP), 68
Java API for XML Registries (JAXR), 328
Java applications, deploying, 109–110
java classname command, 108
Java Community Process (JCP) program,

116, 155
Java Data Objects (JDO), 385
Javadoc tags, 94
Java Document Object Model (JDOM), 79
Java Extension Mechanism, 110–111
Java Hotspot Client VM, 423–424
java -jar jarname command, 108
java.lang.Throwable class, 41
JavaNCSS utility, 93
Java Network Launching Protocol (JNLP),

229–230
Java Regular Expressions API, 266
JavaServer Pages (JSPs)

design errors
compiled code, 210–213
model 1 architecture, 214
model 2 architecture, 220
request/response paradigm, 208
state, maintaining, 209–210

Index 449

overview, 201
reuse and content delivery, 255–259

java.sql.DatabaseMetaData class, 353
Java Standard Template Library (JSTL), 258
Java 2 Enterprise Edition (J2EE) architecture

considerations, 329–333
Java 2 Micro Edition (J2ME), 162
java.util.logging package
BadLoggerExample, 45–47
getLevel() method, 48
GoodLoggerExample.java, 52
logger-handler relationship, 51
logging granularity, levels of, 45
overview, 44
setLevel() method, 51–52

Java Virtual Machine (JVM), 108–109
Java Web Start application, 231–232
jaxp.jar package, 111
JAXP (Java API for XML Processing), 68
JaxpSave.java, 74–75
JAXR (Java API for XML Registries), 328
JAX-RPC. See Java API for XML-based Remote

Procedure Call
JButton class, 165
JCACHE specification, 207
JComboBox class, 165
JConfig library, 7
JCP (Java Community Process) program,

116, 155
JDBC DataSource resource pool, 384
JDepend utility, 93
JDO (Java Data Objects), 385
JDOM (Java Document Object Model), 79
JdomSave.java example, 79
JEditorPane class, 298
JFrame class, 149, 151
JFreeChart package, 348
JLayeredPane class
BadLayeredPane.java example, 147–148
GoodLayeredPane.java example, 150
overview, 146

JList class, 165
JNLP (Java Network Launching Protocol),

229–230
JPanel class, 151
JRootPane class, 148
JScrollPane class, 298
JSPs. See JavaServer Pages
JSTL (Java Standard Template Library), 258
JTextArea class, 171
JTextField class, 298
J2EE (Java 2 Enterprise Edition) architecture

considerations, 329–333
J2ME (Java 2 Micro Edition), 162

JUnit tests
AllTests.java example, 100
ANT (Another Neat Tool) and, 90
dbQueryBean.java example, 105
dbQueryTestCase.java example, 105–107
employeeFormBean.java example, 101–102
employeeFormBeanTestCase.java

example, 102–103
JVM (Java Virtual Machine), 108–109

L
lastModified() method, 152
lazy instantiation, 118, 187
LDAPAccessControl, 40
LDAPException class, 41
least common denominator (LCD), 80
levels of granularity, 45
level 3 specifications (DOM), 76–77
lifecycle_build.xml example, 89
Lightweight Directory Access Protocol (LDAP)

directories, 235–239
overview, 39

LinkedHashSet class, 162
LinkedList class, 162
listCategories() method, 114–115
listings

abstracting details, bad example of, 39–40
acceptConnections() method, 33
AssertionExample.java, 61
assertions, postconditions, 63–64
authenticate() method, 42–44
BadExecJavac.java, 5–6
BadWinRedirect.java, 12
BmpWriter3.java, 23–25
caching, generateTests.java, 205–207
concurrent results sets, 354–358
connections, in servlets, 279–285
DII hard-coded calls, 423–424
DOM tree, searching
BadDomLookup.java, 67
GoodDomLookup.java, 69–71
XpathLookup.java, 72–73

doPost(), 208–209
dynamic proxies, 421–422
environment variables, 109
FileHandler class, XML-formatted output

from, 50
files
BadFileRename.java, 153–154
GoodFileRename.java, 155–156

GoodWindowsExec.java, 9–10
GoodWinRedirect.java, 13–14
ImageAnnotationServer.java, 27–29
JaxpSave.java, 74–75

450 Index

listings (continued)
JdomSave.java, 79
JLayeredPane class
BadLayeredPane.java, 147–148
GoodLayeredPane.java, 150

JUnit tests
AllTests.java, 100
dbQueryBean.java, 105
dbQueryCase.java, 105–107
employeeFormBean.java, 101–102
employeeFormBeanTestCase.java,

102–103
lifecycle_build.xml, 89
Little Endian byte operations, 22
LocalEJBServlet, 345
logging, BadLoggerExample, 45–49
makeCall() method, 404–406
MediocreExecJavac.java, 7
Memento pattern, 439–441
mouse button portability
BadRightMouseButton.java, 81–83
GoodRightMouseButton.java, 85–86

navigation
BadNavigationUtils.java, 114–115
GoodNavigationUtils.java, 116
Navigation.xml, 113

optional packages, versioning and sealing, 112
preferences, storing user, 37
prepared statements, 376–377
printMetaDataStuff(), 358–359
properties, preferences file, 35–36
querying, by concept, 415–417
RemoteEJBServlet, 342–344
ScheduleSwitcher.java, 53–56
servlets

instance variables in, 269–271, 276–277
output mechanisms in, 292–293, 296–297
reading files from, 303, 305–306

session synchronization, 437–438
setSize() method, 123–125
Singletons

global variables as, 120–121
instantiated at class loading time, 118
instantiated at first call, 118–119

SlowFileCopy.java, 20
SOAPHandler object, 347
SOAPHome object, 345–346
stack tracing, 351–352
strings
BadStringTokenizer.java, 141
GoodStringTokenizer.java, 142–144
TokenCollectionTester.java, 145

submissions, multiple
handling, 318–321
preventing, 314–315

TestExec.java, 15–16
UDDI query example, 398–401
URLs, posting
BadURLPost.java, 131–132, 134
echocgi.c, 128–130
GoodURLPost.java, 135–136
HTTPClientPost.java, 137–139

validateBean.java, 262–263
Web Application Deployment Descriptor,

308–312
XercesSave.java, 77–78
XML schedule file, 56

Little Endian byte operations, 21–26
load balancing, 335
LocalEJBServlet example, 345
loggers. See java.util.logging package
log() method, 60
long getCreationTime() method, 221
long getLastAccessedTime() method, 221
loops, iterating to zero, 190

M
main() method, 47, 121
makeCall() method, 398, 401, 404–406
makePersistent() method, 393
MalformedURLException, 302
Marinescu, Floyd (EJB Design Patterns), 340, 364
Matcher class, 266
m_broker.freeConnection() method, 281
m_broker.getConnection() method, 281
MediocreExecJavac.java, 7
Memento pattern, 438–442
message-drive beans, 366
methods
abort(), 393
accept(), 33, 152
actionPerformed(), 177–178
addMode(), 173, 194
addOperation(), 173
addType(), 173
afterBegin(), 434–436
afterCompletion(), 434–435
allocateDirect(), 26
attach(), 31
attachment(), 31
authenticate(), 40, 42–44
beforeCompletion(), 434–435
begin(), 393
boolean isNew(), 221

Index 451

catch(), 295
checksubmitcount(), 315
cloneNode(), 58–59
commandAction(), 177
commit(), 393
convert(), 341
create(), 341, 366, 368–370
createNewFile(), 152
createProxy(), 420
createURL(), 194
delete(), 152, 155, 157
destroy(), 175
Display.getdisplay(), 176
Display.setCurrent(), 177
doAmazonSearch(), 180, 191–192
Document.cloneNode(), 59
doFilter(), 245, 252
doGet(), 222, 272, 276, 292
doPost(), 208–209, 222, 279, 281, 375
doStuff(), 423
exec()
BadWinRedirect.java, 12
dir command, 8
method prototypes, list of, 4
Runtime class, 4

exitValue(), 4–5
FileDialog.setFilenameFilter(), 152
File.list(), 152
File.renameTo(), 151, 155
findAssociations(), 401
findByPrimaryKey(), 366
findCallerAssociations(), 401
findClassificationSchemeByName(),

401
findClassificationSchemes(), 401
findConceptByPath(), 401
findConcepts(), 402, 415
findNodeWithContent(), 170
findOrganizations(), 402, 404
findRegistryPackages(), 402
findServiceBindings(), 402
findServices(), 402
FirstCall.getInstance(), 119
flip(), 26
freeConnection(), 285
getActionCmd(), 177
getAttribute(), 318
getBytes(), 137
getChannel(), 25
getClassifications(), 412
getClassifiedObject(), 412
getConnection(), 285, 288

getElementsByTagName(), 180
getExternalLinks(), 403
getExternalURI(), 409
getFirstChildElement(), 71
getGeneratedKeys(), 364
getGUI(), 120
getInitParameter(), 253
getInitParameterNames(), 253
getInputStream(), 11, 130, 134, 182
getInstance(), 117, 119–120, 285
getLabel(), 177
getLevel(), 48
getMinimumSize(), 124
getName(), 180
getNamedDispatcher(), 247, 255, 324
getNextKey(), 362–363
getNodeName(), 180
getNodeValue(), 180
getOutputStream(), 130, 133–134
getPollOfTheDay(), 292
getPort(), 421
getPreferredSize(), 124
getProductNames(), 180
getRealPath(), 304
getResource(), 306
getResourceAsStream(), 306
getRuntime(), 4
getSelectedItem(), 180
getServiceBindings(), 404
getServices(), 404
getSession(), 222, 308
getSpecificationObject(), 409, 415
getString(), 180
getText(), 116, 180
getValue(), 222
getValueNames(), 221
getWriter(), 295
httpGet(), 169, 174, 180, 195
init(), 239, 273–275
int getMaxInactiveInterval(), 221
invalidate(), 225–227
isAcceptable(), 33
isDirectory(), 152
isFile(), 152
isNew(), 222, 226–227, 318
isOpen(), 393
isPopupTrigger(), 84, 88
isUserInRole(), 238
lastModified(), 152
listCategories(), 114–115
log(), 60
long getCreationTime(), 221

452 Index

methods (continued)
long getLastAccessedTime(), 221
main(), 47, 121
makeCall(), 398, 401, 404
makePersistent(), 393
m_broker.freeConnection(), 282
m_broker.getConnection(), 282
mouseClicked(), 80
mouseDragged(), 80
mouseEntered(), 80
mouseExited(), 80
mouseMoved(), 80
mousePressed(), 80, 88
mouseReleased(), 80, 88
mouseWheelMoved(), 80
Object getValue(), 221
onMessage(), 365
openInputStream(), 182
order(), 26
out.println(), 210
parse(), 79
pauseApp(), 175
print(), 294–295
printLeague(), 63
println(), 83, 86, 294–295
printMetaDataStuff(), 354–358
Process.getOutputStream(), 17
putInt(), 26
putInUserData(), 272–273
putShort(), 26
putValue(), 221, 224, 227
removeBlankNodes(), 170
renameTo(), 152, 155
repaint(), 124
replaceAll(), 265
replaceString(), 173
reset(), 390
Runtime.exec(), 6, 8, 15
search(), 366, 368–370
select(), 31, 33
selectNodes(), 117
selectSingleNode(), 73
setAttribute(), 318
setDate(), 376
setFrom(), 439
setGUI(), 120
setInternalValues(), 126
setLayout(), 124
setLevel(), 51–52
setPage(), 298
setRequestProperty(), 133
setSize(), 122–125
setString(), 376
setUseParentHandlers(), 51–52
showDetails(), 190

showSwitchedDays(), 56
split(), 266
startApp(), 175, 177
static allocate(), 26
String.equals(), 167
stringExists(), 173
String getId(), 221
System.out.println(), 60, 102
Throwable.printStackTrace(), 41
tokenize(), 142, 144
transferTo(), 21
values(), 162
Vector.remove(), 159
void invalidate(), 221
void putValue(), 221
void setMaxInactiveInterval(), 222
waitFor(), 5
write(), 295
writeInt(), 23
writeNode(), 79
See also commands

m_instance variable, 117
Model-View-Controller (MVC), 244
Modified state (DOM), 74
Momento Pattern, 438
mouse button portability
BadRightMouseButton.java example,

81–83
event interfaces, list of, 80
GoodRightMouseButton.java example,

85–86
mouseClicked() method, 80
mouseDragged() method, 80
mouseEntered() method, 80
mouseExited() method, 80
MouseListener interface, 80
MouseMotionListener interface, 80
mouseMoved() method, 80
mousePressed() method, 80, 88
mouseReleased() method, 80, 88
MouseWheelListener interface, 80
mouseWheelMoved() method, 80
m_out variable, 273–274
m_sc variable, 276
multiplexing, 26–27
m_useridparam variable, 274
MVC (Model-View-Controller), 244

N
namespace collision, 34
navigation
BadNavigationUtils.java example,

114–115
GoodNavigationUtils.java example, 116
Navigation.xml example, 113

Index 453

network problems, elimination design strategies
bad client design, 337
EJB design considerations, 340–341
general design considerations, 336–339
overview, 335–336
simple scenario, 336

New state (DOM), 74
NIO packages

abstractions in, 17–18
canonical file copy example, 20–21
classes and interfaces in, list of, 18–19
Little Endian byte operations, 21–26
managing connections using, 26
Selector utility, 26–27

NoClassDefFoundError, 352
non-blocking server I/O, 26–30
Norman, Donald (The Design of Everyday

Things), 127
not a valid Win32 application error code, 16
NullPointerException value, 275
numTickets parameter, 322

O
Object Data Modeling Group (ODMG), 397
Object getValue() method, 221
Object Management Group (OMG), 59
Object Relational Bridge (OJB), 391
object-relational mapping (ORM) tool, 332
onClick attribute, 315
onMessage() method, 365
OP_ACCEPT operation, 3, 31
OP_CONNECT operation, 31
openInputStream() method, 182
operator precedence, 267
OP_READ operation, 31
optional packages, 110–112
OP_WRITE operation, 31
order() method, 26
org.w3c.dom class, 53
org.xml.sax class, 53
ORM (object-relational mapping) tool, 332
OSCache tags, 201–203
os.name system property, 11
OutofMemoryError, 188
out.println() method, 210
OutputStream class
Runtime.exe() method, 15
writeInt() method, 23

OutputStreamWriter class, 137

P
pageNumber variable, 247
ParseErrorEvent interface, 77
parse() method, 79
passing parameters, 209

Pattern class, 266
pauseApp() method, 175
PersistenceService interface, 233
Persisted state (DOM), 74
personal digital assistants (PDAs), 162
personalization, 235
Pipe.SinkChannel class, 18
Pipe.SourceChannel class, 18
PixelGrabber class, 25
possessive quantifiers, 266
postconditions, 60, 63–64
preconditions, 60
preferences

file example, 35
user, storing, 37–38
in Windows Registry, 38

pre-invocation times, 428
prepared statements, 375–378
preprocessing operations, 266
printLeague() method, 63
println() method, 83, 86, 294–295
printMetaDataStuff() method, 354–358
print() method, 294–295
PrintService interface, 233
PrintWriter class, 274, 294
priorState variable, 439
Process class
exitValue() method, 4
getInputStream() method, 11
waitFor() method, 5

Process.getOutputStream() method, 17
properties
cache.debug, 203
cache.path, 203
cache.unlimited, 203
namespace collision, avoiding, 34
preferences, user, storing, 37–38
user, storing, 36

Properties API, 38
ProtocolException class, 133
publications

The Design of Everyday Things (Donald
Norman), 127

EJB Design Patterns (Floyd Marinescu),
340, 364

public Process exec commands, 4
putInt() method, 26
putInUserData() method, 272–273
putShort() method, 26
putValue() method, 221, 224, 227

Q
query builders, 353
querying, by concept, 415–417

454 Index

R
RandomAccessFile class, 17, 152
Reactor pattern, 30–31
Registry Information Model (RIM), 398
RegistryObject class, 403
Relational Database Management Systems

(RDBMS), 235
RemoteEJBServlet example, 342–343, 345
Remote Method Invocation (RMI), 335, 390
Remote Procedure Call (RPC), 126
removeBlankNodes() method, 170
renameTo() method, 152, 155
repaint() method, 124
replaceAll() method, 265
replaceString() method, 173
Representational State Transfer (REST), 163
RequestDispatcher interface, 247
reset() method, 390
resource managers

defined, 382
resource manager connection factory, 370

result sets, multiple concurrent, problems with,
353, 355, 357–359

RIM (Registry Information Model), 398
RMI (Remote Method Invocation), 335
Root Logger, 51
RPC (Remote Procedure Call), 126
Runtime class, 4
Runtime.exec() method, 6, 8, 15

S
scalability, 334
ScatteringByteChannel class, 17
ScheduleSwitcher.java example, 53–56
scripts

batch, 98
ThreadGroup, 201, 204

sealed packages, 111–112
search() method, 366–367, 369
security, optional packages, 112
SelectableChannel class, 18
SelectionKey class, 31, 33
select() method, 31, 33
selectNodes() method, 117
Selector class, 18
Selector utility (NIO packages), 26–27
selectSingleNode() method, 73
ServerSocketChannel class, 18, 30
ServerSocket class, 17, 30
servlet-based applications, 223
ServletContext object, 276, 304
ServletOutputStream class, 294

servlets
connections within, 278–279, 281, 285, 288
files from, reading, 302–306
instance variables in, 269, 272–274, 278
output mechanisms in, 291–295
URL rewriting, 321

servlet sessions, 316–317
session beans

entity beans, 366
message-driven, 365–366
passivated state, 435
stateful, 367–369, 434
stateless, 369–372
transaction state problem, 435

sessions
defined, 316
getSession() method, 308
in-use stage, 318
multiple-submit problem, 317
servlet sessions, 316

SessionSynchronization interface, 434–435
session variables, 210
setAttribute() method, 318
setDate() method, 376
setFrom() method, 439
setGUI() method, 120
setInternalValues() method, 126
setLayout() method, 124
setLevel() method, 51–52
setPage() method, 298
setRequestProperty() method, 133
setSize() method, 122–125
setString() method, 376
setUseParentHandlers() method, 51–52
showDetails() method, 190
showSwitchedDays() method, 56
SignOnVideoBean session bean, 360–361
Simple Object Access Protocol (SOAP), 126
SimpleTestIF interface, 420
Singleton pitfalls, avoiding, 117–121
16-bit unicode characters, 18
SlowFileCopy.java, 20–21
SOAPHandler object, 341, 347
SOAPHome object, 341, 345–346
SocketChannel class, 17–18
Socket class, 17
SpecificationLink path, 408
split() method, 266
SQL commands, 96
stack tracing, 351–352
startApp() method, 175, 177
stateful session beans, 368, 434
stateless session beans, 368–372

Index 455

state parameter, 204
StateTellerBean interface, 440–441
static allocate() method, 26
StreamGobbler class, 11
StringBuffer class, 172
string comparisons, avoiding, 185
String.equals() method, 167
stringExists() method, 173
String getId() method, 221
StringTokenizer class, 4, 140, 142, 146
Struts framework, 220
stub classes, 420
submissions
checksubmitcount() method, 315
multiple

handling, 316–320
preventing, 313–315

processing simple, 313
SwingUtilities class, 88
System.out.println() method, 60, 102

T
tags

Cewold tag library, 348
depends, 89
forward, 259
import, 258
Javadoc, 94
See also directives

telephone number formats, 262–263
temporary objects, avoiding, 186
TestExec.java, 15–16
theIndex object, 367
ThreadGroup scripts, 201, 204
Throwable.printStackTrace() method, 41
TokenCollectionTester.java example,

145–146
tokenize() method, 142, 144
topicId parameter, 204
Transaction interface, 393
transactions, defined, 334–335
transferTo() method, 21
TreeSet class, 162

U
UDP (User Datagram Protocol), 26–27
Uniform Resource Identifiers (URIs)

as file references, 297–300, 302
overview, 163

Universal Description and Discovery Integra-
tion (UDDI), 398

Universally Unique Identifier (UUID), 364

UnknownHostException value, 302
URLConnection class, 127, 134
URLConnectionFactory class, 127
URLStreamHandler class, 127
User Datagram Protocol (UDP), 26–27
user properties, storing, 36

V
validateBean.java example, 262–263
values() method, 162
Vector class, 162
Vector.remove() method, 159
versioning optional packages, 112
VideoUser entity bean, 360–361, 363
Virtual Machine (VM), 4
void invalidate() method, 221
void putValue() method, 221
void removeValue() method, 222
void setMaxInactiveInterval()

method, 222
VoterApp object, 291–292

W
waitFor() method, 5
Web Application Deployment Descriptor,

307–308
Web Archive (WAR) files, 95
Web controller architecture, 245
Web Service Description Language (WSDL), 403
Win32 error code. See errors
Windows Registry, preferences stored in, 38
writeInt() method, 23
write() method, 295
writeNode() method, 79
Write Once, Run Anywhere (WORA), 155
WSDL (Web Service Description Language), 403
W3C Load specification, 80

X
xalan.jar package, 111
xerces.jar package, 111
XMLOutputter class, 80
XML schedule file example, 56
XpathLookup.java example, 72–73
XSLTFilter class, 252
XSLTransformFilter application, 249
XulRunner class, 146

	@Team LiB
	Cover
	Contents
	Introduction
	Acknowledgments
	PART

One The Client Tier
	Item 1: When Runtime.exec() Won’t
	Item 2: NIO Performance and Pitfalls
	Canonical File Copy
	Little-Endian Byte Operations
	Non-Blocking Server IO

	Item 3: I Prefer Not to Use Properties
	Item 4: When Information Hiding Hides Too Much
	Item 5: Avoiding Granularity

Pitfalls in java.util.logging
	Item 6: When Implementations of

Standard APIs Collide
	Item 7: My Assertions Are Not Gratuitous!
	How to Use Assertions

	Item 8: The Wrong Way to Search a DOM
	Item 9: The Saving-a-DOM Dilemma
	Item 10: Mouse Button Portability
	Item 11: Apache Ant and Lifecycle Management
	Item 12: JUnit: Unit Testing Made Simple
	Item 13: The Failure to Execute
	Deploying Java Applications
	The Java Extension Mechanism
	Sealed Packages
	Security

	Item 14: What Do You Collect?
	Item 15: Avoiding Singleton Pitfalls
	When Multiple Singletons in Your VM Happen
	When Singletons are Used as Global Variables,

or Become Non-Singletons

	Item 16: When setSize() Won’t Work
	Item 17: When Posting to a URL Won’t
	Connecting via HTTP with the java.net Classes
	An Alternative Open Source HTTP Client

	Item 18: Effective String Tokenizing
	Item 19: JLayered Pane Pitfalls
	Item 20: When File.renameTo() Won’t
	Item 21: Use Iteration over Enumeration
	Item 22: J2ME Performance and Pitfalls

	PART

Two The Web Tier
	Item 23: Cache, It’s Money
	Item 24: JSP Design Errors
	Request/Response Paradigm
	Maintaining State
	JSP the Old Way
	JSP Development with Beans (Model 1 Architecture)
	JSP Development in the Model 2 Architecture

	Item 25: When Servlet HttpSessions Collide
	Item 26: When Applets Go Bad
	Item 27: Transactional LDAP—Don’t

Make that Commitment
	Item 28: Problems with Filters
	Item 29: Some Direction about

JSP Reuse and Content Delivery
	Item 30: Form Validation Using Regular Expressions
	Item 31: Instance Variables in Servlets
	Item 32: Design Flaws with Creating Database

Connections within Servlets
	Item 33: Attempting to Use Both Output

Mechanisms in Servlets
	Item 34: The Mysterious File Protocol
	Item 35: Reading Files from Servlets
	Web Application Deployment Descriptors

	Item 36: Too Many Submits
	Preventing Multiple Submits
	Handling Multiple Submits

	PART

Three The Enterprise Tier
	Item 37: J2EE Architecture Considerations
	Item 38: Design Strategies for Eliminating

Network Bottleneck Pitfalls
	A Scenario
	General Design Considerations
	EJB Design Considerations

	Item 39: I’ll Take the Local
	Item 40: Image Obsession
	Item 41: The Problem with Multiple

Concurrent Result Sets
	Item 42: Generating Primary Keys for EJB
	A Simple Scenario
	A “Client Control” Approach
	The Singleton Approach
	The Networked Singleton Approach
	An Application Server-Specific Approach
	Database Autogeneration Approaches
	Other Approaches

	Item 43: The Stateful Stateless Session Bean
	Message-Driven Beans
	Entity Bean
	Stateful Session Bean
	Stateless Session Bean

	Item 44: The Unprepared PreparedStatement
	Item 45: Take a Dip in the Resource Pool
	Item 46: JDO and Data Persistence
	Item 47: Where’s the WSDL? Pitfalls of

Using JAXR with UDDI
	Where’s the WSDL?

	Item 48: Performance Pitfalls in

JAX-RPC Application Clients
	Example Web Service
	A Simple Client That Uses Precompiled Stub Classes
	A Client That Uses Dynamic Proxies for Access
	Two Clients Using the Dynamic Invocation Interface (DII)
	Performance Results
	Conclusion

	Item 49: Get Your Beans Off My Filesystem!
	Item 50: When Transactions Go Awry, or Consistent

State in Stateful Session EJBs
	The Memento Pattern

	Index

