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Preface

The origin of this book goes back to the Dagstuhl seminar on Logic for System
Engineering, organized during the first week of March 1997 by S. Jähnichen,
J. Loeckx, and M. Wirsing. During that seminar, after Egon Börger’s talk
on How to Use Abstract State Machines in Software Engineering, Wolfram
Schulte, at the time a research assistant at the University of Ulm, Germany,
questioned whether ASMs provide anything special as a scientifically well-
founded and rigorous yet simple and industrially viable framework for high-
level design and analysis of complex systems, and for natural refinements of
models to executable code. Wolfram Schulte argued, referring to his work
with K. Achatz on A Formal Object-Oriented Method Inspired by Fusion
and Object-Z [1], that with current techniques of functional programming
and of axiomatic specification, one can achieve the same result. An intensive
and long debate arose from this discussion. At the end of the week, it led
Egon Börger to propose a collaboration on a real-life specification project of
Wolfram Schulte’s choice, as a comparative field test of purely functional-
declarative methods and of their enhancement within an integrated abstract
state-based operational (ASM) approach.

After some hesitation, in May 1997 Wolfram Schulte accepted the offer
and chose as the theme a high-level specification of Java and of the Java
Virtual Machine. What followed were two years of hard but enjoyable joint
work, resulting in a series of ASM models of the Java language, of the JVM,
and of a provably correct compilation scheme for compiling Java programs to
JVM code, which were published in [9, 8, 10, 11, 12]. When in the spring of
1999, Wolfram Schulte put this work together for his Habilitationsschrift at
the University of Ulm, Egon Börger suggested completing and extending it to
a—badly needed—full-blown ASM case study book. The book should show
the ASM method at work, convincingly, for the practical design of a complex
real-life system, and for its rigorous mathematical and extensive experimental
analysis.

Robert Stärk and Joachim Schmid accepted to join this book project.
At that time, in his Fribourg lectures [33], Robert Stärk had already elabo-
rated part of the Java-to-JVM compilation correctness claim, namely, that
the execution, on the ASM for the JVM, of every correctly compiled legal
Java program is equivalent to the execution of the original Java program
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on the ASM for Java. In the spring of 1998, Egon Börger had proposed to
Joachim Schmid a PhD thesis, hosted by Siemens Corporate Technology in
Munich, on defining and implementing practically useful structuring and de-
composition principles for large ASMs. It could be expected that for this
work Wolfram Schulte’s suggestion to make our abstract Java/JVM mod-
els executable would provide a rich test bed for validating the submachine
concepts we were looking for (see [7]). The realization of these ideas led
to a complete revision (completion, correction, and restructuring) of all the
Java/JVM models and to their refinement by AsmGofer executable versions.
The revision was triggered, not surprisingly, by three sources, namely:

– The needs of the proofs, in particular for the correctness and completeness
of the verification of the bytecode resulting from the compilation, proofs
which have been worked out for this book by Robert Stärk

– The needs of naturally detailing the abstractions to make them executable
in AsmGofer, developed by Joachim Schmid building upon an extension
of the functional programming environment Gofer by graphical user inter-
faces [36]

– An enhancement of the stepwise refined definition of the Java/JVM models,
driven by the goal to create a compositional structure of submachines which
supports incremental modularized proofs and component-wise validation
(model-based testing)

All this took much more time and energy, and made us aware of more
problems with bytecode verification than we had expected in the spring of
1999, and in retrospect we see that it was at the very beginning of this long
journey when we lost Wolfram Schulte as the fourth author. We regret this,
it was painful for the four of us to eventually recognize and accept it. We had
to understand that since the moment when, just after having submitted his
Habilitationsschrift to the University of Ulm, Wolfram joined the Foundations
of Software Engineering group at Microsoft Research in Redmond, all his
energy has been absorbed by Yuri Gurevich’s challenging project to make
ASMs relevant for software development at Microsoft.

Egon Börger, Joachim Schmid, Robert Stärk
Pisa, München, Zürich, March 2001
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1. Introduction

This book provides a structured and high-level description, together with a
mathematical and an experimental analysis, of Java and of the Java Virtual
Machine (JVM), including the standard compilation of Java programs to
JVM code and the security critical bytecode verifier component of the JVM.
The description is structured into modules (language layers and machine
components), and its abstract character implies that it is truly platform-
independent. It comes with a natural refinement to executable machines on
which code can be tested, exploiting in particular the potential of model-
based high-level testing. The analysis brings to light in what sense, and under
which conditions, legal Java programs can be guaranteed to be correctly
compiled, to successfully pass the bytecode verifier, and to be executed on
the JVM correctly, i.e., faithfully reflecting the Java semantics and without
violating any run-time checks. The method we develop for this purpose, using
Abstract State Machines which one may view as code written in an abstract
programming language, can be applied to other virtual machines and to other
programming languages as well.

The target readers are practitioners—programmers, implementors, stan-
dardizers, lecturers, students—who need for their work a complete, correct,
and at the same time transparent definition, and an executable model of the
language and of the virtual machine underlying its intended implementation.
As a consequence, in our models for the language and the machine, we first of
all try to directly and faithfully reflect, in a complete way, as far as possible
without becoming inconsistent, and in an unambiguous yet for the human
reader graspable way, the intuitions and design decisions which are expressed
in the reference manuals [18, 23] and underlie the current implementations of
the language and the machine. We clarify various ambiguities and inconsis-
tencies we discovered in the manuals and in the implementations, concerning
fundamental notions like legal Java program, legal bytecode, verifiable byte-
code, etc. Our analysis of the JVM bytecode verifier, which we relate to the
static analysis of the Java parser (rules of definite assignment and reachabil-
ity analysis), goes beyond the work of Stata and Abadi [34], Qian [27, 28],
Freund and Mitchell [16], and O’Callahan [26].



2 1. Introduction

In this introduction, we give an overview of the general goals of the book,
its contents, the structuring techniques we use for decomposing Java and the
JVM, and the literature we used.

For additional information on the book and updates made after its pub-
lication, see the Home Page of Jbook at http://www.inf.ethz.ch/~jbook.

1.1 The goals of the book

Our main goal is not to write an introduction to programming in Java or
on the JVM, but to support the practitioner’s correct understanding of Java
programs and of what can be expected when these programs run on the vir-
tual machine. Therefore we provide a rigorous implementation-independent
(read: a mathematical) framework for the clarification of dark corners in the
manuals, for the specification and evaluation of variations or extensions of the
language and the virtual machine, and for the mathematical and the experi-
mental study and comparison of present and future Java implementations. We
build stepwise refined models for the language, the virtual machine, and the
compiler that are abstract, but nevertheless can in a natural way be turned
into executable models, which we also provide in this book, together with
the necessary run-time support. As a result, our specifications of Java and
the JVM are amenable to mathematical and computer-assisted verification
as well as to the experimental validation of practically important properties
of Java programs when executed on the JVM.

To formulate our models for Java and the JVM as consisting of compo-
nents which reflect different language and security features, we use Gurevich’s
Abstract State Machines(ASMs), a form of pseudo-code, working on abstract
data structures, which comes with a simple mathematical foundation [20].
The use of ASMs allowed us:

– To express the basic Java and JVM objects and operations directly, without
encoding, i.e., as abstract entities and actions, at the level of abstraction
in which they are best understood and analyzed by the human reader

– To uncover the modular structure which characterizes the Java language
and its implementation

At the same time, one can turn ASMs in various natural ways into exe-
cutable code, so that the models can be tested experimentally and validated.

With this book we also pursue a more general goal, which uses Java and
the JVM only as a practically relevant and non-trivial case study. Namely, we
want to illustrate that for the design and the experimental and mathemati-
cal analysis of a complex system, the ASM method is helpful for the working
software system engineer and indeed scales to real-life systems.1 Therefore
1 For a survey of numerous other applications of the method including industrial

ones, we refer the reader to [3, 4].
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we also include a chapter with a textbook introduction to ASMs. We provide
two versions, one written for the practitioner and the other one for the more
mathematically inclined reader. We hope that the framework developed in
this book shows how to make implementations of real-life complex systems
amenable to rigorous high-level analysis and checkable documentation—an
indispensable characteristic of every scientifically grounded engineering dis-
cipline worth its name.

The three main themes of the book, namely, definition, mathematical
verification, and experimental validation of Java and the JVM, fulfill three
different concerns and can be dealt with separately. The definition has to
provide a natural understanding of Java programs and of their execution on
the JVM, which can be justified as representing a faithful “ground model” of
the intentions of the reference manuals, although our models disambiguate
and complete them and make them coherent, where necessary. The verifi-
cation has to clarify and to prove under which assumptions, and in which
sense, the relevant design properties can be guaranteed, e.g., in this case,
the type safety of syntactically well-formed Java programs, the correctness of
their compilation, the soundness and completeness of the bytecode verifier,
etc. The validation of (a refinement of the ground model to) an executable
model serves to provide experimental tests of the models for programs. How-
ever, as should become clear through this book, using the ASM framework,
these three concerns, namely, abstract specification, its verification, and its
validation, can be combined as intimately and coherently connected parts of
a rigorous yet practical approach to carrying out a real-life design and im-
plementation project, providing objectively checkable definitions, claims, and
justifications. It is a crucial feature of the method that, although abstract, it
is run-time oriented. This is indispensable if one wants to come up with for-
mulating precise and reliably implementable conditions on what “auditing”
secure systems [21] may mean.

It is also crucial for the practicality of the approach that by exploiting
the abstraction and refinement capabilities of ASMs, one can layer complex
systems, like Java and the JVM, into several natural strata, each responsible
for different aspects of system execution and of its safety, so that in the
models one can study their functionality, both in isolation and when they are
interacting (see the explanations below).

1.2 The contents of the book

Using an ASM-based modularization technique explained in the next section,
we define a structured sequence of mathematical models for the statics and
the dynamics of the programming language Java (Part I) and for the Java
Virtual Machine, covering the compilation of Java programs to JVM code
(Part II) and the JVM bytecode verifier (Part III). The definitions clarify
some dark corners in the official descriptions in [18, 23]:
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– Bytecode verification is not possible the way the manuals suggest (Fig. 16.8.
Fig. 16.9, Remark 8.3.1, Remark 16.5.1, bug no. 4381996 in [14])

– A valid Java program rejected by the verifier (Fig. 16.7, bug no. 4268120
in [14])

– Verifier must use sets of, instead of single, reference types (Sect. 16.1.2,
Fig. 16.10)

– Inconsistent treatment of recursive subroutines (Fig. 16.6)
– Verifier has problems with array element types (Example C.7.1)
– Inconsistent method resolution (Example 5.1.4, bug no. 4279316 in [14])
– Compilation of boolean expressions due to the incompatibility of the reach-

ability notions for Java and for JVM code (Example 16.5.4)
– Unfortunate entanglement of embedded subroutines and object initializa-

tion (Fig. 16.19, Fig. 16.20)
– Initialization problems [10]

We formulate and prove some of the basic correctness and safety properties,
which are claimed for Java and the JVM as a safe and secure, platform-
independent, programming environment for the internet. The safety of Java
programs does not rely upon the operating system. The implementation com-
piles Java programs to bytecode which is loaded and verified by the JVM and
then executed by the JVM interpreter, letting the JVM control the access to
all resources. To the traditional correctness problems for the interpretation
and the compilation of programs,2 this strategy adds some new correctness
problems, namely, for the following JVM components (see Fig. 1.4):

– The loading mechanism which dynamically loads classes; the binary rep-
resentation of a class is retrieved and installed within the JVM—relying
upon some appropriate name space definition to be used by the security
manager—and then prepared for execution by the JVM interpreter

– The bytecode verifier, which checks certain code properties at link-time,
e.g. conditions on types and on stack bounds which one wants to be satisfied
at run-time

– The access right checker, i.e., a security manager which controls the access
to the file system, to network addresses, to critical windowing operations,
etc.

As is well known (see [21]), many Java implementation errors have been
found in the complex interplay between the JVM class loader, the bytecode
verifier, and the run-time system.

We show under what assumptions Java programs can be proved to be
type safe (Theorem 8.4.1), and successfully verified (Theorem 16.5.2 and
Theorem 17.1.2) and correctly executed when correctly compiled to JVM
code (Theorem 14.1.1). The most difficult part of this endeavor is the rigorous
2 See [5, 6] where ASMs have been used to prove the correctness of the compilation

of PROLOG programs to WAM code and of imperative (OCCAM) programs
with non-determinism and parallelism to Transputer code.
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definition and verification of the bytecode verifier, which is a core part of the
JVM. We define a novel bytecode verifier for which we can prove soundness
(Theorem 17.1.1) and completeness (Theorem 17.1.2). We also prove that
successfully verified bytecode is guaranteed to execute without violating any
run-time checks (Theorem 16.4.1). We also prove the soundness of Java’s
thread synchronization (Theorem 7.3.1). Figure 1.1 shows how the theorems
and the three parts of this book fit together. We hope that the proofs will
provide useful insight into the design of the implementation of Java on the
JVM. They may guide possible machine verifications of the reasoning which
supports them, the way the WAM correctness proof for the compilation of
Prolog programs, which has been formulated in terms of ASMs in [6], has
been machine verified in [31].

Last but not least we provide experimental support for our analysis,
namely, by the validation of the models in their AsmGofer executable form.
Since the executable AsmGofer specifications are mechanically transformed
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Fig. 1.2 Language oriented decomposition of Java/JVM
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into the LATEX code for the numerous models which appear in the text, the
correspondence between these specifications is no longer disrupted by any
manual translation. AsmGofer (see Appendix A) is an ASM programming
system developed by Joachim Schmid, on the suggestion and with the initial
help of Wolfram Schulte, extending TkGofer to execute ASMs which come
with Haskell definable external functions. It provides a step-by-step execution
of ASMs, in particular of Java/JVM programs on our Java/JVM machines,
with GUIs to support debugging. The appendix which accompanies the book
contains an introduction to the three graphical AsmGofer user interfaces: for
Java, for the compiler from Java to bytecode, and for the JVM. The Java
GUI offers debugger features and can be used to observe the behavior of
Java programs during their execution. As a result, the reader can run exper-
iments by executing Java programs on our Java machine, compiling them to
bytecode and executing that bytecode on our JVM machine. For example,
it can be checked that our Bytecode Verifier rejects the program found by
Saraswat [30].

The CD contains the entire text of the book, numerous examples and
exercises which support using the book for teaching, the sources of the exe-
cutable models, and the source code for AsmGofer together with installation
instructions (and also precompiled binaries of AsmGofer for several popular
operating systems like Linux and Windows). The examples and exercises in
the book which are provided by the CD are marked with ; CD. The exe-
cutable models also contain the treatment of strings which are needed to run
interesting examples.
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Fig. 1.3 Multiple thread Java machine execJavaThread
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1.3 Decomposing Java and the JVM

We decompose Java and the JVM into language layers and security modules,
thus splitting the overall definition and verification problem into a series of
tractable subproblems. This is technically supported by the abstraction and
refinement capabilities of ASMs. As a result we succeed

– To reveal the structure of the language and the virtual machine
– To control the size of the models and of the definition of the compilation

scheme, which relates them
– To keep the effort of writing and understanding the proofs and the exe-

cutable models, manageable

The first layering principle reflects the structure of the Java language and
of the set of JVM instructions. In Part I and Part II we factor the sets of
Java and of JVM instructions into five sublanguages, by isolating language
features which represent milestones in the evolution of modern programming
languages and of the techniques for their compilation, namely imperative (se-
quential control), procedural (module), object-oriented, exception handling,
and concurrency features. We illustrate this in Fig. 1.2. A related structur-
ing principle, which helps us to keep the size of the models small, consists
in grouping similar instructions into one abstract instruction each, coming
with appropriate parameters. This goes without leaving out any relevant
language feature, given that the specializations can be regained by mere pa-
rameter expansion, a refinement step whose correctness is easily controllable
instruction-wise. See Appendix C.8 for a correspondence table between our
abstract JVM instructions and the real bytecode instructions.

This decomposition can be made in such a way that in the resulting
sequence of machines, namely JavaI , JavaC , JavaO, JavaE , JavaT and JVMI ,
JVMC , JVMO, JVME , JVMN , each ASM is a purely incremental—similar to
what logicians call a conservative—extension of its predecessor, because each
of them provides the semantics of the underlying language instruction by
instruction. The general compilation scheme compile can then be defined
between the corresponding submachines by a simple recursion.
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Fig. 1.4 Security oriented decomposition of the JVM
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Functionally we follow a well known pattern and separate the treatment
of parsing, elaboration, and execution of Java programs. We describe how
our Java machines, which represent abstract interpreters for arbitrary pro-
grams in the corresponding sublanguage, are supposed to receive these input
programs in the form of abstract syntax trees resulting from parsing. For
each Java submachine we describe separately, in Part I, the static and the
dynamic part of the program semantics. We formulate the relevant static
constraints of being well-formed and well-typed, which are checked during
the program elaboration phase and result in corresponding annotations in
the abstract syntax tree. In the main text of the book we restrict the analysis
of the static constraints to what is necessary for a correct understanding of
the language and for the proofs in this book. The remaining details appear
in the executable version of the Java model. We formalize the dynamical
program behavior by ASM transition rules, describing how the program run-
time state changes through evaluating expressions and executing statements.
This model allows us to rigorously define what it means for Java to be type
safe, and to prove that well-formed and well-typed Java programs are in-
deed type safe (Theorem 8.4.1). This includes defining rules which achieve
the definite assignment of variables, and to prove the soundness of such as-
signments. The resulting one-thread model execJava can be used to build a
multiple–thread executable ASM execJavaThread which reflects the intention
of [18, 23], namely to leave the specification of the particular implementation
of the scheduling strategy open, by using a choice that is a not further spec-
ified function (Fig. 1.3)3. For this model we can prove a correctness theorem
for thread synchronization (Theorem 7.3.1).
3 The flowchart notation we use in this introduction has the expected precise

meaning, see Chapter 2, so that these diagrams provide a rigorous definition,
namely of so called control state ASMs.
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Fig. 1.5 Decomposing trustfulVMs into execVMs and switchVMs
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For JVM programs, we separate the modeling of the security relevant load-
ing (Chapter 18) and linking (i.e., preparation and verification, see Part III)
from each other and from the execution (Part II), as illustrated in Fig. 1.4.

In Part II we describe the trustful execution of bytecode which is assumed
to be successfully loaded and linked (i.e., prepared and verified to satisfy the
required link-time constraints). The resulting sequence of stepwise refined
trustful VMs, namely trustfulVMI , trustfulVMC , trustfulVMO , trustfulVME ,
and trustfulVMN , yields a succinct definition of the functionality of JVM
execution in terms of language layered submachines execVM and switchVM
(Fig. 1.5). The machine execVM describes the effect of each single JVM in-
struction on the current frame, whereas switchVM is responsible for frame
stack manipulations upon method call and return, class initialization and ex-
ception capture. The machines do nothing when no instruction remains to be
executed. As stated above, this piecemeal description of single Java/JVM in-
structions yields a simple recursive definition of a general compilation scheme
for Java programs to JVM code, which allows us to incrementally prove it to
be correct (see Chapter 14). This includes a correctness proof for the han-
dling of Java exceptions in the JVM, a feature which considerably complicates
the bytecode verification, in the presence of embedded subroutines, class and
object initialization and concurrently working threads.

In Chapter 17 we insert this trustfully executing machine into a diligent
JVM which, after loading the bytecode, which is stored in class files, and
before executing it using the trustfully executing component trustfulVM ,
prepares and verifies the code for all methods in that class file, using a sub-
machine verifyVM which checks, one after the other, each method body to
satisfy the required type and stack bound constraints (Fig. 1.6).

The machine verifyVM is language layered, like trustfulVM , since it is
built from a language layered submachine propagateVM , a language layered
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Fig. 1.6 Decomposing diligent JVMs into trustfulVMs and verifyVMs
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predicate check and a language layered function succ. The verifier machine
chooses an instruction among those which are still to be verified, checks
whether it satisfies the required constraints and either reports failure or
propagates the result of the checked conditions to the successor instructions
(Fig. 1.7).

The submachine propagateVM , together with the function succ in the
verifying submachine verifyVM , defines a link-time simulation (type version)
of the trustful VM of Part II, although the checking functionality can be
better defined in terms of a run-time checking machine, see Chapter 15. The
defensive VM we describe there, which is inspired by the work of Cohen [13],
defines what to check for each JVM instruction at run-time, before its trust-
ful execution. We formulate the constraints about types, resource bounds,
references to heap objects, etc., which are required to be satisfied when the
given instruction is executed (Fig. 1.8).

The reason for introducing this machine is to obtain a well motivated and
clear definition of the bytecode verification functionality, a task which is best
accomplished locally, in terms of run-time checks of the safe executability of
single instructions. However, we formulate these run-time checking conditions
referring to the types of values, instead of the values themselves, so that we
can easily lift them to link-time checkable bytecode type assignments (see
Chapter 16). When lifting the run-time constraints, we make sure that if a
given bytecode has a type assignment, this implies that the code runs on the
defensive VM without violating any run-time checks, as we can indeed prove
in Theorem 16.4.1. The notion of bytecode type assignment also allows us to
prove the completeness of the compilation scheme defined in Part II. Com-
pleteness here means that bytecode which is compiled from a well-formed and
well-typed Java program (in a way which respects our compilation scheme),
can be typed successfully, in the sense that it does have type assignments
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Fig. 1.7 Decomposing verifyVMs into propagateVMs, checks, succs

succ succ succ succI C O E⊂ ⊂ ⊂ and propagate propagateI E⊂

report failure

no

yes

record pc as verified

choose pc for verification check(pc)

propagateVM(succ,pc)

(Theorem 16.5.2). To support the inductive proof for this theorem we refine
our compiler to a certifying code generator, which issues instructions together
with the type information needed for the bytecode verification.

The details of the machines outlined above are explained in this book
and are summarized in appendices B and C. Putting together the proper-
ties of the language layered submachines and of the security components of
Java and of the JVM, one obtains a precise yet graspable statement, and an
understandable (and therefore checkable) proof of the following property of
Java and the JVM.

Main Theorem. Under explicitly stated conditions, any well-formed
and well-typed Java program, when correctly compiled, passes the
verifier and is executed on the JVM. It executes without violating
any run-time checks, and is correct with respect to the expected
behavior as defined by the Java machine.

For the executable versions of our machines, the formats for inputting and
compiling Java programs are chosen in such a way that the ASMs for the
JVM and the compiler can be combined in various ways with current im-
plementations of Java compilers and of the JVM (see Appendix A and in
particular Fig. A.1 for the details).

1.4 Sources and literature

This book is largely self-contained and presupposes only basic knowledge
in object-oriented programming and about the implementation of high-level
programming languages. It uses ASMs, which have a simple mathematical
foundation justifying their intuitive understanding as “pseudo-code over ab-
stract data”, so that the reader can understand them correctly and success-
fully without having to go through any preliminary reading. We therefore
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Fig. 1.8 Decomposing defensiveVMs into trustfulVMs and checks
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invite the reader to consult the formal definition of ASMs in Chapter 2 only
should the necessity be felt.

The Java/JVM models in this book are completely revised—streamlined,
extended and in some points corrected—versions of the models which ap-
peared in [9, 11]. The original models were based upon the first edition of the
Java and JVM specifications [18, 23], and also the models in this book still
largely reflect our interpretation of the original scheme. In particular we do
not treat nested and inner classes which appear in the second edition of the
Java specification, which was published when the work on this book was fin-
ished. It should be noted however that the revision of [23], which appeared in
1999 in the appendix of the second edition of the JVM specification, clarifies
most of the ambiguities, errors and omissions that were reported in [10].

The proofs of the theorems were developed for this book by Robert Stärk
and Egon Börger, starting from the proof idea formulated for the compiler
correctness theorem in [8], from its elaboration in [33] and from the proof for
the correctness of exception handling in [12]. The novel subroutine call stack
free bytecode verifier was developed by Robert Stärk and Joachim Schmid.
Robert Stärk constructed the proof for Theorem 16.5.2 that this verifier ac-
cepts every legal Java program which is compiled respecting our compilation
scheme. The AsmGofer executable versions of the models were developed for
this book by Joachim Schmid and contributed considerably towards getting
the models correct.

We can point the reader to a recent survey [21] of the rich literature on
modeling and analyzing safety aspects of Java and the JVM. Therefore we
limit ourselves to citing in this book only a few sources which had a direct
impact on our own work. As stated above, the complex scheme to implement
Java security through the JVM interpreter requires a class loader, a security
manager and a bytecode verifier. For a detailed analysis of the class loading
mechanism, which is underspecified in [18] and therefore only sketched in
this book, we refer the reader to [29, 35] where also further references on this
still widely open subject can be found. We hope that somebody will use and
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extend our models for a complete analysis of the critical security features of
Java, since the framework allows to precisely state and study the necessary
system safety and security properties; the extensive literature devoted to this
theme is reviewed in [21].

Draft chapters of the book have been used by Robert Stärk in his summer
term 2000 course at ETH Zürich, and by Egon Börger in his Specification
Methods course in Pisa in the fall of 2000.





2. Abstract State Machines

The notion of Abstract State Machines (ASMs), defined in [20], captures in
mathematically rigorous yet transparent form some fundamental operational
intuitions of computing, and the notation is familiar from programming prac-
tice and mathematical standards. This allows the practitioner to work with
ASMs without any further explanation, viewing them as ‘pseudocode over
abstract data’ which comes with a well defined semantics supporting the in-
tuitive understanding. We therefore suggest to skip this chapter and to come
back to it only should the need be felt upon further reading.

For the sake of a definite reference, we nevertheless provide in this chapter
a survey of the notation, including some extensions of the definition in [20]
which are introduced in [7] for structuring complex machines and for reusing
machine components. For the reader who is interested in more details, we
also provide a mathematical definition of the syntax and semantics of ASMs.
This definition helps understanding how the ASMs in this book have been
made executable, despite of their abstract nature; it will also help the more
mathematically inclined reader to check the proofs in this book. We stick
to non distributed (also called sequential) ASMs because they suffice for
modeling Java and the JVM.

2.1 ASMs in a nutshell

ASMs are systems of finitely many transition rules of form

if Condition then Updates

which transform abstract states. (Two more forms are introduced below.)
The Condition (so called guard) under which a rule is applied is an arbitrary
first-order formula without free variables. Updates is a finite set of function
updates (containing only variable free terms) of form

f (t1, . . . , tn) := t

whose execution is to be understood as changing (or defining, if there was
none) the value of the (location represented by the) function f at the given
parameters.
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Fig. 2.1 Control state ASM diagrams
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The global JVM structure is given by so called control state ASMs [3]
which have finitely many control states ctl state ∈ {1, . . . ,m}, resembling
the internal states of classical Finite State Machines. They are defined and
pictorially depicted as shown in Fig. 2.1. Note that in a given control state
i , these machines do nothing when no condition condj is satisfied.

The notion of ASM states is the classical notion of mathematical struc-
tures where data come as abstract objects, i.e., as elements of sets (domains,
universes, one for each category of data) which are equipped with basic op-
erations (partial functions) and predicates (attributes or relations). Without
loss of generality one can treat predicates as characteristic functions.

The notion of ASM run is the classical notion of computation of transition
systems. An ASM computation step in a given state consists in executing
simultaneously all updates of all transition rules whose guard is true in the
state, if these updates are consistent. For the evaluation of terms and formulae
in an ASM state, the standard interpretation of function symbols by the
corresponding functions in that state is used.

Simultaneous execution provides a convenient way to abstract from irrel-
evant sequentiality and to make use of synchronous parallelism. This mech-
anism is enhanced by the following concise notation for the simultaneous
execution of an ASM rule R for each x satisfying a given condition ϕ:

forall x with ϕ do R

A priori no restriction is imposed neither on the abstraction level nor on the
complexity nor on the means of definition of the functions used to compute
the arguments ti and the new value t in function updates. The major distinc-
tion made in this connection for a given ASM M is between static functions—
which never change during any run of M —and dynamic ones which typically
do change as a consequence of updates by M or by the environment (i.e., by
some other agent than M ). The dynamic functions are further divided into
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four subclasses. Controlled functions (for M ) are dynamic functions which
are directly updatable by and only by the rules of M , i.e., functions f which
appear in a rule of M as leftmost function (namely in an update f (s) := t for
some s, t) and are not updatable by the environment. Monitored functions
are dynamic functions which are directly updatable by and only by the en-
vironment, i.e., which are updatable but do not appear as leftmost function
in updates of M . Interaction functions are dynamic functions which are di-
rectly updatable by rules of M and by the environment. Derived functions
are dynamic functions which are not directly updatable neither by M nor by
the environment but are nevertheless dynamic because defined (for example
by an explicit or by an inductive definition) in terms of static and dynamic
functions.

We will use functions of all these types in this book, their use supports the
principles of separation of concerns, information hiding, modularization and
stepwise refinement in system design. A frequently encountered kind of static
or monitored functions are choice functions, used to abstract from details of
static or dynamic scheduling strategies. ASMs support the following concise
notation for an abstract specification of such strategies:

choose x with ϕ do R

meaning to execute rule R with an arbitrary x chosen among those satisfy-
ing the selection property ϕ. If there exists no such x , nothing is done. For
choose and forall rules we also use graphical notations of the following
form:

forall x withchoose x with
R R

ϕ ϕ

We freely use as abbreviations combinations of where, let, if then else,
case and similar standard notations which are easily reducible to the above
basic definitions. We usually use the table like case notation with pattern
matching and try out the cases in the order of writing, from top to bottom. We
also use rule schemes, namely rules with variables and named parametrized
rules, but only as an abbreviational device to enhance the readability or
as macro allowing us to reuse machines and to display the global machine
structure. For example

if . . . a = (X ,Y ) . . .
then . . .X . . .Y . . .

abbreviates

if . . . ispair(a) . . .
then . . . fst(a) . . . snd(a) . . . ,

sparing us the need to write explicitly the recognizers and the selectors. Sim-
ilarly, an occurrence of
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r(x1, . . . , xn)

where a rule is expected stands for the corresponding rule R (which is sup-
posed to be defined somewhere, say by r(x1, . . . , xn) = R). Such a “rule call”
r(x1, . . . , xn) is used only when the parameters are instantiated by legal val-
ues (objects, functions, rules, whatever) so that the resulting rule has a well
defined semantical meaning on the basis of the explanations given above.

2.2 Mathematical definition of ASMs

In this section we provide a detailed mathematical definition for the syn-
tax and semantics of ASMs. This definition is the basis of the AsmGofer
implementation of the ASMs for Java/JVM in this book.

2.2.1 Abstract states

In an ASM state, data come as abstract elements of domains (also called
universes, one for each category of data) which are equipped with basic oper-
ations represented by functions. Without loss of generality we treat relations
as boolean valued functions and view domains as characteristic functions,
defined on the superuniverse which represents the union of all domains. Thus
the states of ASMs are algebraic structures, also called simply algebras, as
introduced in standard logic or universal algebra textbooks.

Definition 2.2.1 (Vocabulary). A vocabulary Σ is a finite collection of
function names. Each function name f has an arity , a non-negative integer.
The arity of a function name is the number of arguments the function takes.
Function names can be static or dynamic. Nullary function names are often
called constants; but be aware that, as we will see below, the interpretation
of dynamic nullary functions can change from one state to the next, so that
they correspond to the variables of programming. Every ASM vocabulary is
assumed to contain the static constants undef , True, False.

Example 2.2.1. The vocabulary Σbool of Boolean algebras contains two con-
stants 0 and 1, a unary function name ‘−’ and two binary function names
‘+’ and ‘∗’. The vocabulary Σscm of the programming language Scheme con-
tains a constant nil , two unary function names car and cdr and a binary
function name cons, etc.

Definition 2.2.2 (State). A state A of the vocabulary Σ is a non-empty
set X , the superuniverse of A, together with interpretations of the function
names of Σ. If f is an n-ary function name of Σ, then its interpretation f A

is a function from X n into X ; if c is a constant of Σ, then its interpretation
cA is an element of X . The superuniverse X of the state A is denoted by |A|.
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Example 2.2.2. Two states A and B for the vocabulary Σbool of Exam-
ple 2.2.1: The superuniverse of the state A is the set {0, 1}. The functions
are interpreted as follows, where a, b are 0 or 1:

0A := 0 (zero)
1A := 1 (one)
−Aa := 1− a (logical complement)
a +A b := max(a, b) (logical or)
a ∗A b := min(a, b) (logical and)

The superuniverse of the state B is the power set of the set of non-negative
integers N. The functions are interpreted as follows, where a, b are subsets
of N:

0B := ∅ (empty set)
1B := N (full set)
−Ba := N \ a (set of all n ∈ N such that n /∈ a)
a +B b := a ∪ b (set of all n ∈ N such that n ∈ a or n ∈ b)
a ∗B b := a ∩ b (set of all n ∈ N such that n ∈ a and n ∈ b)

Both states, A and B, are so-called Boolean algebras.

Other examples of algebraic structures are: groups, rings, lattices, etc.

Remark 2.2.1. Formally, function names are interpreted in states as total
functions. We view them, however, as being partial and define the domain of
an n-ary function name f in A to be the set of all n-tuples (a1, . . . , an) ∈ |A|n
such that f A(a1, . . . , an) 6= undef A.

Example 2.2.3. In states for the vocabulary Σscm of Example 2.2.1, we usu-
ally have: carA(nilA) = undef A, cdrA(nilA) = undef A.

The constant undef represents an undetermined object, the default value
of the superuniverse. It is also used to model heterogeneous domains. In
applications, the superuniverse A of a state A is usually divided into smaller
universes, modeled by their characteristic functions. The universe represented
by f is the set of all elements t for which f (t) 6= undef . If a unary function f
represents a universe, then we simply write t ∈ f as an abbreviation for the
formula f (t) 6= undef .

Definition 2.2.3 (Term). The terms of Σ are syntactic expressions gener-
ated as follows:

1. Variables v0, v1, v2, . . . are terms.
2. Constants c of Σ are terms.
3. If f is an n-ary function name of Σ and t1, . . . , tn are terms, then

f (t1, . . . , tn) is a term.

Terms are denoted by r , s, t ; variables are denoted by x , y , z . A term which
does not contain variables is called closed.
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Example 2.2.4. The following are terms of the vocabulary Σbool:

+(v0, v1), +(1, ∗(v7, 0))

The are usually written as v0 + v1 and 1 + (v7 ∗ 0).

Since terms are syntactic objects, they do not have a meaning. A term can
be evaluated in a state, if elements of the superuniverse are assigned to the
variables of the term.

Definition 2.2.4 (Variable assignment). Let A be a state. A variable
assignment for A is a function ζ which assigns to each variable vi an element
ζ(vi) ∈ |A|. We write ζ a

x for the variable assignment which coincides with ζ
except that it assigns the element a to the variable x . So we have:

ζ a
x (vi) =

{
a, if vi = x ;
ζ(vi), otherwise.

Given a variable assignment a term can be interpreted in a state.

Definition 2.2.5 (Interpretation of terms). Let A be a state of Σ, ζ be
a variable assignment for A and t be a term of Σ. By induction on the length
of t , a value [[t ]]Aζ ∈ |A| is defined as follows:

1. [[vi ]]Aζ := ζ(vi),
2. [[c]]Aζ := cA,
3. [[f (t1, . . . , tn)]]Aζ := f A([[t1]]Aζ , . . . , [[tn ]]Aζ ).

The interpretation of t depends on the values of ζ on the variables of t only:
if ζ(x ) = ξ(x ) for all variables x of t , then [[t ]]Aζ = [[t ]]Aξ (Coincidence Lemma).

Example 2.2.5. Consider the state A for Σbool of Example 2.2.2. Let ζ be a
variable assignment with ζ(v0) = 0, ζ(v1) = 1 and ζ(v2) = 1. Then we have:

[[(v0 + v1) ∗ v2]]Aζ = 1.

The same term can be interpreted in the state B of Example 2.2.2. Let
ξ(v0) = {2, 3, 5}, ξ(v1) = {2, 7} and ξ(v2) = {3, 7, 11}. Then we have:

[[(v0 + v1) ∗ v2]]Bξ = {3, 7}.

In the first case, the value of the term is a non-negative integer, whereas in
the second case the value of the term is a set of non-negative integers.

Definition 2.2.6 (Formula). Let Σ be a vocabulary. The formulas of Σ
are generated as follows:

1. If s and t are terms of Σ, then s = t is a formula.
2. If ϕ is a formula, then ¬ ϕ is a formula.
3. If ϕ and ψ are formulas, then (ϕ ∧ ψ), (ϕ ∨ ψ) and (ϕ→ ψ) are formulas.
4. If ϕ is a formula and x a variable, then (∀x ϕ) and (∃x ϕ) are formulas.
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The logical connectives and quantifiers have the standard meaning:

symbol name meaning
¬ negation not
∧ conjunction and
∨ disjunction or (inclusive)
→ implication if-then
∀ universal quantification for all
∃ existential quantification there is

A formula s = t is called an equation. The expression s 6= t is an abbreviation
for the formula ¬ (s = t).

In order to increase the readability of formulas parentheses are often omitted.
For example, the following conventions are used:

ϕ ∧ ψ ∧ χ stands for ((ϕ ∧ ψ) ∧ χ),
ϕ ∨ ψ ∨ χ stands for ((ϕ ∨ ψ) ∨ χ),
ϕ ∧ ψ → χ stands for ((ϕ ∧ ψ)→ χ), etc.

Formulas can be interpreted in a state with respect to a variable assignment.
Formulas are either true or false in a state. The truth value of a formula in a
state is computed recursively. The classical truth tables for the logical con-
nectives and the classical interpretation of quantifiers are used. The equality
sign is interpreted as identity.

Definition 2.2.7 (Interpretation of formulas). Let A be a state of Σ, ϕ
be a formula of Σ and ζ be a variable assignment in A. By induction on the
length of ϕ, a truth value [[ϕ]]Aζ ∈ {True,False} is defined as follows:

[[s = t ]]Aζ :=
{

True, if [[s]]Aζ = [[t ]]Aζ ;
False, otherwise.

[[¬ ϕ]]Aζ :=
{

True, if [[ϕ]]Aζ = False;
False, otherwise.

[[ϕ ∧ ψ]]Aζ :=
{

True, if [[ϕ]]Aζ = True and [[ψ]]Aζ = True;
False, otherwise.

[[ϕ ∨ ψ]]Aζ :=
{

True, if [[ϕ]]Aζ = True or [[ψ]]Aζ = True;
False, otherwise.

[[ϕ→ ψ]]Aζ :=
{

True, if [[ϕ]]Aζ = False or [[ψ]]Aζ = True;
False, otherwise.

[[∀x ϕ]]Aζ :=
{

True, if [[ϕ]]Aζ a
x

= True for all a ∈ |A|;
False, otherwise.

[[∃x ϕ]]Aζ :=
{

True, if [[ϕ]]Aζ a
x

= True for some a ∈ |A|;
False, otherwise.
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We say that a state A is a model of ϕ, if [[ϕ]]Aζ = True for all variable
assignments ζ.

Example 2.2.6. The states A and B of Example 2.2.2 are models of the fol-
lowing equations:

(x + y) + z = x + (y + z ), (x ∗ y) ∗ z = x ∗ (y ∗ z ),
x + y = y + x , x ∗ y = y ∗ x ,
x + (x ∗ y) = x , x ∗ (x + y) = x ,
x + (y ∗ z ) = (x + y) ∗ (x + z ), x ∗ (y + z ) = (x ∗ y) + (x ∗ z ),
x + (−x ) = 1, x ∗ (−x ) = 0.

These formulas are called axioms of a Boolean algebra.

2.2.2 Transition rules and runs

In mathematics, states like Boolean algebras are static. They do not change
over time. In computer science, states are dynamic. They evolve by being
updated during computations. Updating abstract states means to change the
interpretation of (some of) the functions in the underlying signature. The
way ASMs update states is described by transitions rules of the following
form which define the syntax of ASM programs.

Definition 2.2.8 (Transition rules). Let Σ be a vocabulary. The transi-
tion rules R, S of an ASM are syntactic expressions generated as follows:

1. Skip Rule:

skip

Meaning: Do nothing.

2. Update Rule:

f (t1, . . . , tn) := s

Syntactic conditions:
– f is an n-ary, dynamic function name of Σ
– t1, . . . , tn and s are terms of Σ
Meaning: In the next state, the value of the function f at the arguments
t1, . . . , tn is updated to s. It is allowed that f is a 0-ary function, i.e., a
constant. In this case, the update has the form c := s.

3. Block Rule:

R S

Meaning: R and S are executed in parallel.

4. Conditional Rule:

if ϕ then R else S

Meaning: If ϕ is true, then execute R, otherwise execute S .
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5. Let Rule:

let x = t in R

Meaning: Assign the value of t to x and execute R.

6. Forall Rule:

forall x with ϕdo R

Meaning: Execute R in parallel for each x satisfying ϕ.

7. Call Rule:

r(t1, . . . , tn)

Meaning: Call r with parameters t1, . . . , tn .

A rule definition for a rule name r of arity n is an expression

r(x1, . . . , xn) = R,

where R is a transition rule. In a rule call r(t1, . . . , tn) the variables xi in the
body R of the rule definition are replaced by the parameters ti .

Definition 2.2.9 (ASM). An abstract state machine M consists of a vo-
cabulary Σ, an initial state A for Σ, a rule definition for each rule name,
and a distinguished rule name of arity zero called the main rule name of the
machine.

The semantics of transition rules is given by sets of updates. Since due to the
parallelism (in the Block and the Forall rules), a transition rule may prescribe
to update the same function at the same arguments several times, we require
such updates to be consistent. The concept of consistent update sets is made
more precise by the following definitions.

Definition 2.2.10 (Update). An update for A is a triple (f , (a1, . . . , an), b),
where f is an n-ary dynamic function name, and a1, . . . , an and b are elements
of |A|.

The meaning of the update is that the interpretation of the function f in A has
to be changed at the arguments a1, . . . , an to the value b. The pair of the first
two components of an update is called a location. An update specifies how the
function table of a dynamic function has to be updated at the corresponding
location. An update set is a set of updates.

In a given state, a transition rule of an ASM produces for each variable
assignment an update set. Since the rule can contain recursive calls to other
rules, it is also possible that it has no semantics at all. The semantics of a
transition rule is therefore defined by a calculus in Fig. 2.2.



24 2. Abstract State Machines

Fig. 2.2 The semantics of ASM rules

[[skip ]]Aζ B ∅

[[f (t) := s]]Aζ B {(f , a, b)}
if a = [[t ]]Aζ and b = [[s]]Aζ

[[R]]Aζ B U [[S ]]Aζ B V

[[R S ]]Aζ B U ∪V

[[R]]Aζ B U

[[if ϕ then R else S ]]Aζ B U
if [[ϕ]]Aζ = True

[[S ]]Aζ B U

[[if ϕ then R else S ]]Aζ B U
if [[ϕ]]Aζ = False

[[R]]Aζ a
x
B U

[[let x = t in R]]Aζ B U
if a = [[t ]]Aζ

[[R]]Aζ a
x
B Ua for each a ∈ I

[[forall x with ϕdo R]]Aζ B
⋃

a∈I Ua
if I = {a ∈ |A| : [[ϕ]]Aζ a

x
= True}

[[R]]Aζ a
x
B U

[[r(t)]]Aζ B U

if r(x ) = R is a rule definition

and a = [[t ]]Aζ

Definition 2.2.11 (Semantics of transition rules). The semantics of a
transition rule R of a given ASM in a state A with respect to a variable
assignment ζ is defined if and only there exists an update set U such that
[[R]]Aζ B U can be derived in the calculus in Fig. 2.2. In that case [[R]]Aζ is
identified with U .

It can happen that the update set [[R]]Aζ contains several updates for the same
function name f . In this case, the updates have to be consistent, otherwise
the execution stops.

Definition 2.2.12 (Consistent update set). An update set U is called
consistent, if it satisfies the following property:

If (f , (a1, . . . , an), b) ∈ U and (f , (a1, . . . , an), c) ∈ U , then b = c.

This means that a consistent update set contains for each function and each
argument tuple at most one value.

If an update set U is consistent, it can be fired in a given state. The result
is a new state in which the interpretations of dynamic function names are
changed according to U . The interpretations of static function names are the
same as in the old state. The interpretation of monitored functions is given
by the environment and can therefore change in an arbitrary way.
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Definition 2.2.13 (Firing of updates). The result of firing a consistent
update set U in a state A is a new state B with the same superuniverse as A
satisfying the following two conditions for the interpretations of function
names f of Σ:

1. If (f , (a1, . . . , an), b) ∈ U , then f B(a1, . . . , an) = b.
2. If there is no b with (f , (a1, . . . , an), b) ∈ U and f is not a monitored

function, then f B(a1, . . . , an) = f A(a1, . . . , an).

Since U is consistent, for static and controlled functions the state B is de-
termined in a unique way. Notice that only those locations can have a new
value in state B with respect to state A for which there is an update in U .
(In this way ASMs avoid the so called frame problem.)

Definition 2.2.14 (Run of an ASM). Let M be an ASM with vocabu-
lary Σ, initial state A and main rule name r . Let ζ be a variable assignment.
A run of M is a finite or infinite sequence B0,B1, . . . of states for Σ such
that the following conditions are satisfied:

1. B0 = A.
2. If [[r ]]Bn

ζ is not defined or inconsistent, then Bn is the last state in the
sequence.

3. Otherwise, Bn+1 is the result of firing [[r ]]Bn

ζ in Bn .

If we assume that for each rule definition r(x1, . . . , xn) = R of the machine M
the free variables of R are among x1, . . . , xn , then a run is independent of the
variable assignment ζ (see Exercise 2.2.2).

2.2.3 Syntactic sugar

To extend a subuniverse of the superuniverse by new elements we use the
following notation:

create x do R

The meaning of this construct is

let x = fnew (. . .) in R

where fnew (. . .) is a monitored function (possibly with parameters) which
returns a new element of the superuniverse which does not belong to any of
the subuniverses.

As mentioned above we sometimes use the following notation as syntactic
sugar for monitored choice functions:

choose x with ϕdo R

We understand this notation as an abbreviation for the rule

let x = fϕ(. . .) in R,
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where fϕ(. . .) is an monitored choice function updated by the environment
which returns elements satisfying the selection condition ϕ. Of course differ-
ent occurrences of choose have to be replaced by different choice functions
(possibly with parameters) to guarantee the independence of selection.

Another approach would be to add choose as a basic construct to the
syntax and to extend the calculus in Fig. 2.2 in the following way:

[[R]]Aζ a
x
B U

[[choose x with ϕdo R]]Aζ B U
if [[ϕ]]Aζ a

x
= True

This approach has the disadvantage that the semantics of a transition rule R
is no longer unique, because there can be different update sets U such that
[[R]]Aζ B U is derivable in the calculus.

2.2.4 Exercises

Exercise 2.2.1. Prove the following equation:

[[(if ϕ then R1 else R2) S ]]Aζ = [[if ϕ then (R1 S ) else (R2 S )]]Aζ

Is the following equation true?

[[S (if ϕ then R1 else R2)]]Aζ = [[if ϕ then (S R1) else (S R2)]]Aζ

If yes, why? If not, give a counter example.

Exercise 2.2.2. The set of free variables of a term t is defined as follows:

1. FV(vi) := {vi}
2. FV(c) := ∅
3. FV(f (t1, . . . , tn)) := FV(t1) ∪ . . . ∪ FV(tn)

The set of free variables of a formula ϕ is defined as follows:

1. FV(s = t) := FV(s) ∪ FV(t)
2. FV(¬ ϕ) := FV(ϕ)
3. FV(ϕ ∧ ψ) := FV(ϕ ∨ ψ) := FV(ϕ→ ψ) := FV(ϕ) ∪ FV(ψ)
4. FV(∀x ϕ) := FV(∃x ϕ) := FV(ϕ) \ {x}

The set of free variables of a transition rule R is defined as follows:

1. FV(skip ) := ∅
2. FV(f (t1, . . . , tn) := s) := FV(t1) ∪ . . . ∪ FV(tn) ∪ FV(s)
3. FV(R S ) := FV(R) ∪ FV(S )
4. FV(if ϕ then R else S ) := FV(ϕ) ∪ FV(R) ∪ FV(S )
5. FV(let x = t in R) := FV(t) ∪ (FV(R) \ {x})
6. FV(forall x with ϕdo R) := (FV(ϕ) ∪ FV(R)) \ {x}
7. FV(r(t1, . . . , tn)) := FV(t1) ∪ . . . ∪ FV(tn)

Let A be a state. Prove the following coincidence properties:
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1. If ζ(x ) = η(x ) for all x ∈ FV(t), then [[t ]]Aζ = [[t ]]Aη .
2. If ζ(x ) = η(x ) for all x ∈ FV(ϕ), then [[ϕ]]Aζ = [[ϕ]]Aη .
3. If ζ(x ) = η(x ) for all x ∈ FV(R), then [[R]]Aζ = [[R]]Aη .

We assume that in a rule definition r(x1, . . . , xn) = R the body R contains
no free variables except of x1, . . . , xn .

Exercise 2.2.3. How can Turing machines be defined with ASMs?

2.3 Notational conventions

Throughout the book we stick to standard mathematical and programming
terminology. For a quick reference we nevertheless list here some frequently
used notation, in particular for list operations.

a∗ denotes the set of all sequences of elements of a. We use list and sequence
as synonyms.

[a1, . . . , an ] is the list containing the elements a1, . . . , an ; [ ] is the empty list.

length(ls) returns the number of elements in list ls.

null(ls) tests whether the list ls is empty (i.e., ls = [ ]).

copy(i)(x ) is the list consisting of i copies of x .

l1 · l2 is the concatenation of the lists l1 and l2.

push(ls, e) is the list ls · [e], the result of pushing e to (the right of) ls.

top(ls) returns the right most (the last) element of the list ls.

take(ls,n) generalizes top(ls), returning the list consisting of the last n ele-
ments of the list ls.

pop(ls) returns the list ls without the right most (the last) element.

drop(ls,n) generalizes pop(ls), returning the list resulting from dropping the
last n elements from the list ls.

ls(i) returns the i th element of the list, reading from left to right and starting
counting from 0. If ls is a list [a0, . . . , an ], then ls(i) is the element ai .

split(ls,n) splits off the last n elements of the list ls. More precisely split(ls,n)
is the pair (ls ′,ns) of two lists where ls ′ · ns = ls and length(ns) = n.
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splits(ls,ns) is a generalization of split(ls,n). It splits off from the list ls a list
of as many sublists, of appropriate length, as indicated by ns. More formally,
the list ns is a list of natural numbers. The result of splits(ls,ns) is a pair
(ls ′, [ns0, . . . ,nsn−1]) where n is the length of ns and length(nsi) = ns(i).
The concatenation ls ′ · ns1 · . . . · nsn is equal to the list ls.

tops(ls,ns) returns the list nss which is split off from ls by splits(ls,ns), i.e.,
satisfying ( ,nss) = splits(ls,ns). The symbol is the wildcard pattern and
matches everything.

zip(xs, ys) is the list of pairs (x , y) where x ∈ xs and y ∈ ys. For applying
zip, the lists xs and ys must have the same length:

zip([x1, . . . , xn ], [y1, . . . , yn ]) = [(x1, y1), . . . , (xn , yn)]

When parameterizing functions f : X → Z or f : X × Y → Z we sometimes
write fx for f (x ) and fx (y) for f (x , y).

By Map(a, b) we denote the set of all (finite) mappings from domain a to
range b. If f is a finite mapping, then f (x ) = y if (x , y) ∈ f , otherwise f (x )
is undefined.

f1 ⊕ f2 denotes the union of the two mappings fi where f2 overrides values
which are defined also in f1:

(x , y) ∈ f1 ⊕ f2 ⇔ (x , y) ∈ f2 ∨ (x 6∈ dom(f2) ∧ (x , y) ∈ f1)

We write X � f for the domain restriction of the function f to the set X ;
X �− f denotes the domain restriction of f to elements in the complement
of X :

X � f := {(x , f (x )) | x ∈ dom(f ), x ∈ X }
X �− f := {(x , f (x )) | x ∈ dom(f ), x /∈ X }

We write Powerset(a) for the set of all subsets of a.
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In Part I of the book we formalize the semantics of Java. The model for the
interpreter we are going to define serves three purposes, concerning the de-
sign, the verification and the validation of the language. The design goal is to
provide an implementation independent definition which directly reflects the
intuitions and design decisions underlying the language (see JLS [18]) and
which supports the programmer’s understanding of Java programs. The ver-
ification goal is to provide a sufficiently rigorous basis for proving properties
of the language and of Java programs, like type safety (see Theorem 8.4.1)
or the correctness of a standard scheme for the compilation of Java programs
to JVM code (see Theorem 14.1.1). The validation concern is to allow for
a refinement of the model into an executable version which can be used for
running experiments with the model (see Appendix A).

We formally define the semantics of Java by providing an ASM which
executes arbitrary Java programs. To make the model manageable, we factor
Java into five sublanguages, by isolating orthogonal parts of the language,
and define an ASM for each of them, namely handling the imperative, pro-
cedural, object-oriented, exception handling and concurrency features. This
can be done in such a way that the ASM for each sublanguage is a purely
incremental (conservative) extension of its predecessor, so that the entire ma-
chine execJava defined below turns out to be a parallel composition of five
submachines. Intuitively speaking it expresses that given a program to be
run, at each step all those submachines are called which provide rules for
the interpretation of the current instruction. A similar decomposition can be
made also for the JVM, see Part II.

execJava = execJavaI

execJavaC

execJavaO

execJavaE

execJavaT

We will denote by JavaI , JavaC , JavaO, JavaE , JavaT the machines consist-
ing of the parallel composition of the corresponding submachines execJavaI ,
execJavaC , execJavaO , execJavaE , execJavaT up to the respective index
I ,C ,O ,E ,T , in this order.

Chapter 3 defines the basic ASM execJavaI for the imperative core of
Java, essentially a while language with statements and expressions over the
primitive types of Java.

In Chapter 4, we extend execJavaI by execJavaC which deals with Java
classes. The machine execJavaC supports procedural abstraction and global
(module) variables through classes coming with (so called static) methods,
fields and initializers.

In Chapter 5, we extend execJavaC by execJavaO which includes the
truly object-oriented concepts of Java, namely instances, instance creation,
instance field access, instance method calls with late binding, casts, and null
pointers.
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Chapter 6 extends execJavaO with exceptions, handled by execJavaE .
We specify which exception will be thrown when semantic constraints are
violated and introduce the throw and try-catch-finally statements.

In Chapter 7, we move from sequential Java to concurrent Java. The
corresponding ASM model execJavaT introduces the lightweight processes of
Java, called threads, their synchronization mechanism using locks, and their
start, interrupt, suspension, resumption, and deletion mechanism. In terms
of an abstract scheduling mechanism, we formulate and prove the correctness
of the thread synchronization mechanism and related invariants which hold
in JavaT (Theorem 7.3.1).

In Chapter 8 we analyze some structural properties of Java statements
and expressions during runs of Java, together with the values of definite
assignment for local variables. We formulate and prove (Theorem 8.4.1) in
which sense every legal Java program is type safe; i.e., at run-time deals
only with (variable of stack) values, objects, expressions, statements, and
abruptions, which satisfy the structural—in particular the compile type—
constraints.

In order not to lengthen the definition of our models by tedious and
routine repetitions, we skip those language constructs which can easily be
reduced to the core constructs dealt with explicitly in our models; examples
are alternative control structures (like for, do, switch), pre- and postfix
operators (++, --), conditional operators (&&, ||), assignments combined with
operations (+=, -=, etc.), variable initialization and similar expressive sugar.
The description of arrays—which is needed to run interesting examples in
the executable version of our model—is given in the appendix.

We do not consider Java packages, compilation units, the visibility of
names and input/output except for providing what is needed to run interest-
ing examples in the executable version of our model. We also do not consider
garbage collection. The loading and linking of classes is discussed only for the
JVM in Chapter 18, although in Java dynamic loading and linking might raise
exceptions, and in the presence of finalize methods also garbage collection
is semantically visible.
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In this chapter we define the basic model execJavaI , which defines the seman-
tics of the sequential imperative core of Java with statements (appearing in
method bodies) and expressions (appearing in statements) over the primitive
types of Java. Each machine is started with an arbitrary but fixed Java pro-
gram it has to interpret. In Sect. 3.1 we describe the signature of JavaI and
the static semantics of the input programs. We explain the form in which
these programs are supposed to appear to the ASM, namely as annotated
abstract syntax trees, resulting from parsing and elaboration. For future use
in the proofs we also list the constraints which are imposed on the syntax of
programs and on the types of the constructs appearing in them. In Sect. 3.2
we define the ASM rules for the dynamic semantics of JavaI programs.

3.1 Static semantics of JavaI

The primitive types of JavaI are: boolean, byte, short, int, long, float,
double, char. Types are denoted by capital letters A, B , C . The types byte,
short, int, long and char are called integral types. The types float and
double are called floating point types. Numeric types are integral types or
floating point types. External representations of values of primitive type are
called literals. Table 3.1 contains examples of literals.

A binary relation � is defined between primitive types. In terms of the
JLS, the relation A � B means that there exists an identity conversion or a
widening primitive conversion from A to B . In traditional terms, the relation
A � B means that A is a subtype of B , i.e., each value of type A can be used
as a value of type B . In some cases, however, information may be lost. For
example, if a 64-bit value of type long is converted to a 32-bit value of type
float, then some precision may be lost.

Definition 3.1.1. The relation � is the least relation on the set of primitive
types which is reflexive, transitive and has the following properties:

byte � short � int � long � float � double, char � int.

Reflexive means that A � A for each primitive type A. Transitive means
that, if A � B and B � C , then A � C .
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Table 3.1 The primitive types of Java

Type Size Default Literals

boolean false true, false

byte 8 bit (byte)0

short 16 bit (short)0

int 32 bit 0 11, 1969, 0xff00, 017

long 64 bit 0L 11L, 0x1000L, 0777L

float 32 bit 0.0f 3.141f, 1.2e+23f

double 64 bit 0.0d 3.141, 1e-9, 0.1e10

char 16 bit ’\u0000’ ’a’, ’?’, ’\n’, ’\uFFFF’

3.1.1 Syntax of JavaI

The syntax of the imperative core of Java is defined in Fig. 3.1. It can also
be viewed as defining corresponding domains (also called universes) of JavaI .
Although in our ASMs we will extend some of these domains by a small num-
ber of auxiliary constructs which do not appear in the syntax of Java, we use
the names of Java constructs also as names for the corresponding extended
ASM universes. Usually we denote domains by words beginning with a capi-
tal letter and write dom for elements of Dom, i.e., assuming without further
mentioning that dom ∈ Dom.

Fig. 3.1 uses universes which represent basic syntactic constructs of Java,
namely:

Exp . . . . . expressions, Lit . . . . . . literals,
Asgn . . . . assignments, Loc . . . . . . local variables,
Stm . . . . . statements, Uop . . . . . unary operators,
Block . . . . blocks, Bop . . . . . binary operators,
Bstm . . . . block statements, Lab . . . . . . labels.

Local variables and labels are identifiers, sequences of letters and digits start-
ing with a letter. Java programs are written in the Unicode 16-bit character
set and so letters and digits may be drawn from the entire Unicode character
set.

The unary operators Uop are listed in Table 3.2 and the binary operators
Bop in Table 3.3. The function ‘max’ in the column ‘Result type’ of the two
tables denotes the maximum of types with respect to the subtype relation �.
Although the set of primitive types is not linearly ordered by the relation �,
the maximum always exists for the special cases in Table 3.2 and Table 3.3.
The type cast operator ‘(B)’ is considered as a unary operator in Table 3.2
provided that B is a primitive type. Binary operators are associated to the
left: e1 bop e2 bop e3 is read as (e1 bop e2) bop e3.
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Fig. 3.1 Syntax of JavaI

Exp := Lit | Loc | Uop Exp | Exp Bop Exp | Exp ? Exp : Exp | Asgn
Asgn := Loc = Exp
Stm := ; | Asgn; | Lab : Stm | break Lab; | continue Lab;

| if (Exp) Stm else Stm | while (Exp) Stm | Block
Block := {Bstm1 . . .Bstmn}
Bstm := Type Loc; | Stm
Phrase := Exp | Bstm | Val | Abr | Norm

A block statement ‘A loc;’ is called a local variable declaration. The local
variable loc is declared to be of type A. The scope of the declaration of loc
consists of the statements following the variable declaration in the block.
Consider the following declaration:

{. . . A loc; bstm1 . . . bstmn}

Then the scope of the local variable loc are the statements bstm1, . . . , bstmn .

Constraint 3.1.1. A JavaI block must satisfy the following constraints:

1. If a variable loc is used in an expression, then it is in the scope of a
declaration of loc.

2. A local variable declaration of loc is not in the scope of another declara-
tion of loc, i.e., there are no hidden variables.

3. A labeled statement ‘lab : stm’ does not contain proper substatements
with the same label lab.

4. A jump statement ‘break lab;’ occurs as a substatement of a labeled
statement ‘lab : stm’ with label lab.

5. A jump statement ‘continue lab;’ occurs as a substatement of a labeled
loop statement ‘lab : while (exp) stm’ with label lab.

6. Every local variable must be initialized before it is used (rule of definite
assignment).

In the following code fragment, for example, the compiler is able to conclude
that the variable x is initialized before it is used:

if (0 < z)
x = 2;

else
x = 3;

y = x * x;

The rules of definite assignment are explained later in Sect. 8.3.
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Table 3.2 Unary operators for operands of primitive type

Prec. Uop Operand type Result type Operation

1 + A numeric max(A, int) unary plus

1 - A numeric max(A, int) unary minus

1 ~ A integral max(A, int) bitwise NOT

1 ! boolean boolean logical complement

1 (B) A 6= boolean B 6= boolean type cast

Table 3.3 Binary operators for operands of primitive type

Prec. Bop Operand types Result type Operation

2 * A and B numeric max(A,B , int) multiplication

2 / A and B numeric max(A,B , int) division

2 % A and B numeric max(A,B , int) remainder

3 + A and B numeric max(A,B , int) addition

3 - A and B numeric max(A,B , int) subtraction

4 << A and B integral max(A, int) left shift

4 >> A and B integral max(A, int) signed right shift

4 >>> A and B integral max(A, int) unsigned right shift

5 < A and B numeric boolean less than

5 <= A and B numeric boolean less than or equal

5 > A and B numeric boolean greater than

5 >= A and B numeric boolean greater than or equal

6 == A � B or B � A boolean equal

6 != A � B or B � A boolean not equal

7 & A and B integral max(A,B , int) bitwise AND

7 & A = B = boolean boolean boolean AND

8 ^ A and B integral max(A,B , int) bitwise XOR

8 ^ A = B = boolean boolean boolean XOR

9 | A and B integral max(A,B , int) bitwise OR

9 | A = B = boolean boolean boolean OR
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Table 3.4 Type constraints for expressions of JavaI

αlit T (α) is the type of lit according to the JLS.
αloc T (α) is the declared type of loc.
α(uop βe) The result of applying uop to an operand of type T (β)

is of type T (α) according to Table 3.2.
α(βe1 bop γe2) The result of applying bop to operands of type T (β)

and T (γ) is of type T (α) according to Table 3.3.
α(loc = βe) T (α) is the declared type of loc and T (β) � T (α).
α(βe0 ? γe1 : δe2) Let A = T (γ) and B = T (δ). Then T (β) is boolean and

one of the following conditions is true:

– A, B are numeric and T (α) = max(A,B , int)
– A � B and T (α) = B
– B � A and T (α) = A

3.1.2 Type checking of JavaI

Positions in the given program are denoted by small Greek letters α, β, γ, etc.
The reader can think of positions either as positions in the source code of the
program or as positions in an abstract syntax tree. Positions are displayed as
superscripts, for example, as in αexp or in αstm. The set of positions of the
given program is considered as a universe of the superuniverse of the ASM
for JavaI . The universe of positions is called Pos.

Java programs are statically typed. The compiler has to verify that a
program is well-typed. As a result of parsing and elaboration the parse tree of
the program is annotated with type information. In the ASM, the annotation
is modeled by a static function T which assigns to each position α in an
expression a type. The function T has to satisfy the constraints in Table 3.4.
Moreover, if an expression αexp is the test expression in an if or a while
statement, then T (α) must be boolean.

During compilation and type checking explicit unary conversion operators
(type casts) are inserted at places where they are necessary. For example, an
explicit type cast is inserted in an assignment loc = exp, if the type of exp
is different from the declared type of loc. The assignment is replaced by
loc = (A)exp, where A is the declared type of loc. In this way it is ensured
that during run-time a variable of declared primitive type A always holds a
value of type A. Table 3.5 contains the additional type constraints which the
abstract syntax tree must satisfy after parsing and elaboration.
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Table 3.5 Type constraints after introduction of primitive type casts

α(loc = βe) Let A be the declared type of loc. If A is a primitive type,
then T (β) = A = T (α).

α(βe0 ? γe1 : δe2) If T (γ) and T (δ) are primitive types, then
T (γ) = T (δ) = T (α).

3.1.3 Vocabulary of JavaI

The input program body , an annotated abstract syntax tree, is the initial
value of the to be computed term restbody , a dynamic function which contains
a) the still to be executed part of the current program (method body), b)
the already computed and still needed expression values, and c) information
about the current abruption or the successful termination of the computation.
We view program execution as a walk through the annotated abstract syntax
tree: at each position, the corresponding phrase, originally an expression or
a statement, is evaluated or executed and then the control flow proceeds to
the next phrase (at the same or the next position). We denote the current
position by a 0-ary dynamic function

pos: Pos

which represents an abstract program counter, pointing to the current ex-
pression or statement to be executed. We view restbody as a function which
initially assigns to each position a phrase:

restbody : Pos → Phrase

The expression restbody/pos denotes the currently to be computed subterm of
restbody at pos. It will eventually be replaced by the computed value (element
of Val) of the subexpression, or by a reason for abruption (element of Abr),
or by the constant Norm, which we use to denote successful termination
(also called normal completion) of a statement. The universe Phrase therefore
contains semi-evaluated expressions and statements which at certain positions
may contain values, reasons for abruptions or Norm.

The set Abr serves to distinguish the normal termination of the control
flow from its possible abruptions, which in JavaI can happen due to the
restricted jump statements ‘break Lab;’ and ‘continue Lab;’. It contains
elements of form Break(lab) and Continue(lab) which indicate reasons for
abrupt completion of a statement in JavaI . The notion of abruption will be
extended in JavaC and JavaE to include also return and exception values.

The current value of the local variables is kept in the local environment
function (association between local variables and their values)



3.2 Transition rules for JavaI 39

type Locals = Map(Loc,Val)
locals: Locals

which is updated upon execution of assignment statements or as side effect
of expression evaluation. The universe Val , defined by

type Val = boolean | byte | short | int | long | float | double | char

contains the primitive values of Java: booleans, integers in specific ranges, and
floating point numbers according to IEEE 754. For simplicity, we identify the
booleans of Java with the corresponding ASM values True and False, and
often abbreviate bool = True to bool .

This concludes the definition of the core signature restbody , pos, locals for
the states of JavaI . Auxiliary state components and additions pertaining only
to some special constructs will be presented in the corresponding sections.

3.2 Transition rules for JavaI

Transition rules describe how the states of JavaI , i.e., the dynamic functions
restbody , pos, locals, change over time by evaluating expressions and executing
statements of the input program. Initially restbody is the given method body ,
pos is its start position firstPos and locals is empty. The machine execJavaI ,
depending on its currently to be executed subterm, either evaluates an ex-
pression, or executes a statement. This work is done by two submachines
execJavaExpI and execJavaStmI which are defined below, so that execJavaI

is the following machine:

execJavaI =
execJavaExpI

execJavaStmI

The machine execJavaI terminates if none of the rules of its submachines
can be applied any more. Before proceeding in the next subsections to the
definition of these two submachines, we explain here the basic mechanism
they share, also with the other machines to be defined in this chapter, for
walking through the abstract syntax tree.

When the machine encounters a stm to be executed or an exp to be evalu-
ated, or when it comes (back) to the firstPos of its method body, the context
of the pending subcomputation of this phrase is given by restbody/pos. After
this subcomputation has been completed, either normally or abruptly, the
control passes to the parent position where the decision is taken on how to
continue, either by computing the next subphrase of the phrase in the parent
position, or by executing on the computed subphrases the computation to be
done at the parent position. In both cases the context of the completed sub-
computation changes to the superphrase restbody/up(pos); here the auxiliary
function
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up: Pos → Pos

yields the parent position of a position, thus allowing to retrieve for a phrase,
occurring in a position, the next enclosing phrase. We capture this context
switch by the following definition.

context(pos) = if pos = firstPos ∨ restbody/pos ∈ Bstm ∪ Exp then
restbody/pos

else
restbody/up(pos)

Since the context switch is often accompanied by passing to the parent posi-
tion the result of the completed subcomputations, or what has to be computed
from them at the parent position, we use the following rule:

yieldUp(result) =
restbody := restbody [result/up(pos)]
pos := up(pos)

It combines passing a result, from a substructure at pos to its direct super-
structure, with an update of pos to the position of the superstructure. When
a result has to be recorded without changing the value of pos, we use the
following variant yield :

yield(result) =
restbody := restbody [result/pos]

To streamline the notation, we indicate that the machine is positioned on
a direct subphrase t of a structure f (. . . t . . .) by writing s = f (. . .It . . .)
for s = f (. . . t . . .) ∧ pos =I. E.g. context(pos) = uop Ival denotes that
the machine is positioned on the value val , computed for the expression exp
which appeared as argument to uop. Similarly we write s = phrase(It) for
s = phrase(t) ∧ pos =I ∧ restbody/pos = t . When writing the rules we use
the pattern matching notation which guarantees that the rules are tried to
be applied, one at a time, in the order in which they appear in the text.

3.2.1 Expressions

The machine execJavaExpI in Fig. 3.2 formalizes for the imperative core
of Java the condition in [18, §15.6] that all expressions are evaluated from
innermost to outermost. For this purpose the current control is transfered,
by updating pos, from unevaluated expressions to the appropriate subexpres-
sions, until an atom (a literal or a variable) is reached. For binary expressions
also the left-to-right evaluation strategy is taken into account, and for con-
ditional expressions the condition is evaluated first. This reflects also that
as required in [18, §15.25.1], the value of a simple assignment expression is
the value of its right hand side, which becomes bound under the name of
the variable of the left hand side in the local environment. When the current
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Fig. 3.2 Execution of JavaI expressions

execJavaExpI = case context(pos) of
lit → yield(JLS(lit))

loc → yield(locals(loc))

uop αexp → pos := α
uop Ival → yieldUp(JLS(uop, val))

αexp1 bop βexp2 → pos := α
Ival bop βexp → pos := β
αval1 bop Ival2 → if ¬(bop ∈ divMod ∧ isZero(val2)) then

yieldUp(JLS(bop, val1, val2))

loc = αexp → pos := α
loc = Ival → locals := locals ⊕ {(loc, val)}

yieldUp(val)

αexp0 ? βexp1 : γexp2 → pos := α
Ival ? βexp1 : γexp2 → if val then pos := β else pos := γ
αTrue ?Ival : γexp → yieldUp(val)
αFalse ? βexp : Ival → yieldUp(val)

task restbody/pos requires to evaluate a context which is an atom or a com-
pound expression all of whose relevant arguments are evaluated, this context
is replaced by the (to be) computed value—which is determined for literals
and for compound expressions by the JLS function defined in [18, §3.10] and
for variables by the local environment function locals. For the evaluation of
atoms the rule yield(result) is used, otherwise the rule yieldUp(result).

3.2.2 Statements

The machine execJavaStmI in Fig. 3.3 computes statements similarly to how
execJavaExpI evaluates expressions. It follows the syntactical structure of the
statement to be computed by transferring, through updates of pos, the cur-
rent control from structured statements to the appropriate substatements,
until the current statement has been computed normally or abrupts the com-
putation. This reflects the following stipulations in [18, §14.2-10]: an empty
statement, a type declaration and an empty block just terminate normally;
an expression statement and a labeled statement terminate normally through
evaluating the expression respectively through normally terminating the exe-
cution of the direct substatement; execution of a block statement follows the
left-to-right evaluation strategy—started by executing the first of its substate-
ments, and followed by the execution of the remaining substatements, in their
textual order—and terminates normally when all the substatements have
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Fig. 3.3 Execution of JavaI statements

execJavaStmI = case context(pos) of
; → yield(Norm)
αexp;→ pos := α
Ival ; → yieldUp(Norm)

break lab; → yield(Break(lab))
continue lab; → yield(Continue(lab))
lab : αstm → pos := α
lab : INorm → yieldUp(Norm)
lab : IBreak(labb) → if lab = labb then yieldUp(Norm)

else yieldUp(Break(labb))
lab : IContinue(labc)→ if lab = labc then yield(body/pos)

else yieldUp(Continue(labc))
phrase(Iabr)→ if pos 6= firstPos ∧ propagatesAbr(restbody/up(pos)) then

yieldUp(abr)

{ } → yield(Norm)
{α1stm1 . . .

αn stmn} → pos := α1

{α1Norm . . .INorm} → yieldUp(Norm)
{α1Norm . . .INormαi+1stm i+1 . . .

αn stmn} → pos := αi+1

if (αexp) βstm1 else γstm2 → pos := α
if (Ival) βstm1 else γstm2 → if val then pos := β else pos := γ
if (αTrue)INorm else γstm → yieldUp(Norm)
if (αFalse) βstm else INorm → yieldUp(Norm)

while (αexp) βstm → pos := α
while (Ival) βstm → if val then pos := β else yieldUp(Norm)
while (αTrue)INorm → yieldUp(body/up(pos))

Type x ;→ yield(Norm)

terminated normally; the execution of an if-else or a while statement is
started by first evaluating the conditional expression. When the computation
of the substatements terminate normally, the control switches to the state-
ment which has to be computed next, namely by executing yieldUp(Norm)
or, in case a while statement has to be iterated, yieldUp(body/up(pos)).

The execution of expressions or statements can be terminated through
abruptions before all steps of their execution have completed normally. In
JavaI only the computation of a statement can be abrupted, namely due
to the execution, by execJavaStmI , of a jump statement (namely break or
continue) which appears inside a labeled statement lab : s, with the effect
that an element of Abr (here Continue(lab) or Break(lab)) becomes the term
at the current position pos. Then the control propagates through all the
enclosing statements up to the innermost enclosing labeled statement with
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label lab—the context conditions of Java guarantee the existence of such a
labeled statement, which is called the jump target.

More precisely the machine looks at the superstructure restbody/up(pos)
of the current position pos during whose execution the abruption did occur. If
this enclosing structure is not a labeled phrase (so that it has to propagate the
abruption), but also if it is a labeled phrase whose label does not agree with
the label of the reason of abruption, then the abruption is propagated up-
wards. Otherwise, in case the reason is a Break(labb), the execution proceeds
normally at the next phrase of the target, in case of a Continue(labc) the
execution proceeds with the next iteration of the corresponding while state-
ment, which is available in the method body at pos [18, §14.13,14.14,14.10].
This guarantees in particular that all statements complete abruptly which
are passed through during the transfer of an abruption.

The concept of propagation is defined here in such a way that it can be
extended easily to the abruptions in JavaC and JavaE where abrupt completion
can also be due to return from procedure execution respectively to raising
and handling of exceptions.:

propagatesAbr(phrase) =
phrase 6= lab : s

Example (; CD) 3.2.1. Abrupt transfer of control is illustrated in the fol-
lowing example:

l1: while (αexp) {
...

l2: while (βexp) {
...

break l1; // control goes to δ
...

continue l1; // control goes to α
...

break l2; // control goes to γ
...

continue l2; // control goes to β
...

}
γ . . .

}
δ . . .
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Table 3.6 Derived language constructs

Derived JavaI

exp1 && exp2 exp1 ? exp2 : false

exp1 || exp2 exp1 ? true : exp2

++loc loc = (A)(loc + 1), where loc has type A

--loc loc = (A)(loc - 1), where loc has type A

if (exp) stm if (exp) stm else;

3.2.3 Derived language constructs

Table 3.6 contains some Java constructs that can be syntactically reduced to
the core language. Other Java constructs like the do, for, switch statements
as well as the postincrement operator loc++ and the postdecrement operator
loc-- cannot be transformed to the core language. They have to be treated
separately (see Exercises 3.2.5–3.2.8).

The JLS points out that the ‘if statement without else’ suffers from the
so-called ‘dangling else problem’. Consider the following statement:

if (exp1) if (exp2) stm1 else stm2

This statement can be read in two different ways:

if (exp1) {if (exp2) stm1 else stm2}

if (exp1) {if (exp2) stm1} else stm2

Java reads it the first way. The problem disappears if one restricts the ‘if
statement without else’ to:

if (exp) block

Note, that block is surrounded with a pair of braces and cannot be an if
statement.

For almost every binary operator bop there exists an assignment operator
bop=. This operator is reduced in the following way (where A is the declared
type of loc):

loc bop= exp is reduced to loc = (A)(loc bop exp)

For example, if the variable c is declared of type char, then

c += 32 is reduced to c = (char)(c + 32)
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3.2.4 Exercises

Exercise 3.2.1. Which expressions can be typed in JavaI under the follow-
ing variable declaration?

byte b; char c; int i; long l;

What is the type of the expressions?

1. i + (i * l)
2. b << l
3. (boolean)i
4. c & 0x1f
5. (char)(c & 0x1f)
6. (b == 0) ? 1 : 3.141
7. (~ b) + 1
8. b = (i = b + 1)
9. !(i = 2)

10. !(c < ’G’)

Exercise (; CD) 3.2.2. What is the value of j in the following block?

{ int i = 2; int j = (i = i * i) + i; }

Exercise (; CD) 3.2.3. Consider the following JavaI block:

0{
int i 1= 25;
int j 3= 40;

5while (6(7(8i % 92) != 100)) 11{
i 12= 13(14i / 152);
j 16= 17(18j + 191);

}
}

What is the trace of pos when the block is executed in execJavaI starting
with pos = 0?

Exercise 3.2.4. Use the definitions of && and || of Table 3.6 and extend
the ASM rule execJavaExpI to the two operators.

Exercise 3.2.5. Postincrement- and postdecrement expressions have the fol-
lowing syntax [18, §15.13]:

loc++, loc--

What are the type constraints? Extend the ASM rule execJavaExpI to both
kind of expressions.
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Exercise 3.2.6. The do statement has the following syntax [18, §14.11]:

do stm while (exp);

Extend the ASM rule execJavaStmI to the do statement.

Exercise 3.2.7. The for statement has the following syntax [18, §14.12]:

for (init ; test ; update)stm

Extend the ASM rule execJavaStmI to the for statement.

Exercise 3.2.8. A switch statement has the following syntax [18, §14.9]:
α switch (βexp) {γ1grp1 . . .

γm grpm}

The groups of a switch statement have the following syntax:

grp := lab: stm1 . . . stmn

lab := case lit | default

The value val(γ) of a switch label γ lab is defined as follows:

1. val(γ) = JLS (lit), if γ lab is ‘case lit ’.
2. val(γ) = default , if γ lab is ‘default’.

The following constraints must be satisfied:

1. T (β) � int.
2. val(γi) 6= val(γj ) for all i , j with 1 ≤ i < j ≤ m.
3. If val(γi) has type A, then A � T (β).

As a consequence of these constraints a switch statement contains at most
one grp with label default. Extend the ASM rule execJavaStmI to the
switch statement.
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JavaC extends JavaI by classes and interfaces, more precisely by class fields,
class methods and class initializers, also called static fields, static methods
and static initializers. Classes play the role of modules: class variables corre-
spond to global variables, class methods to procedures (also called subrou-
tines or functions) and class initializers to module initializers. In Sect. 4.1
we describe the static and in Sect. 4.2 the dynamic part of the semantics of
JavaC .

4.1 Static semantics of JavaC

The capital Latin letters A, B , C have been used to denote primitive types.
We use the same letters now to denote classes and interfaces. This is on
purpose, since in the next chapter, classes and interfaces will be used as types,
too. In the present chapter, classes and interfaces are treated as modules only.
By convention, classes or interfaces A, B , C are identifiers starting with an
upper case letter. Interfaces are often denoted by I , J .

4.1.1 Syntax of JavaC

Fig. 4.1 contains a schematic definition of a Java class. The parts in an-
gle brackets are optional. The keywords public, abstract and final are
called modifiers. We say that the class is m, if the modifier m appears in the
definition of the class.

Constraint 4.1.1. The class definition in Fig. 4.1 must satisfy the following
constraints:

1. The type B must be a class and I1, . . . , In must be different interfaces.
2. The class B is not final.
3. If A is final, then it is not abstract.
4. If A = Object, then there is no extends clause.

If the extends clause is present, we say that A is a direct subclass of B or
B is a direct superclass of A and define A ≺d B . If the extends clause is
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Fig. 4.1 Syntax of a Java class

〈public〉 〈abstract〉 〈final〉
classA 〈extendsB〉 〈implements I1, . . . , In〉 {

...
constructor declarations

...
field declarations

...
method declarations

...
static initializers

...
}

missing and A 6= Object, we define A ≺d Object. If the implements clause
is present, we say that I1, . . . , In are direct superinterfaces of A and define
A ≺d Ii for i = 1, . . . ,n.

The syntax of interfaces in Fig. 4.2 differs slightly from the syntax of
classes. If the extends clause is present, we say that I is a direct subinterface
of Ji or Ji is a direct superinterface of I and define I ≺d Ji for i = 1, . . . ,n.

Constraint 4.1.2. The interface definition in Fig. 4.2 must satisfy the fol-
lowing constraints:

1. The types J1, . . . , Jn are different interfaces.
2. The interface I is implicitly abstract.

Let ≺h be the transitive closure of ≺d. This means that A ≺h B holds
if, and only if, B can be reached by a finite number of direct ≺d steps. The
relation ≺h is called the inheritance relation. The following terminology is
used for classes A, B and interfaces I , J :

– If A ≺h B : A is a subclass of B or B is a superclass of A
– If A ≺h I : A implements I or I is superinterface of A
– If I ≺h J : I is a subinterface of J or J is a superinterface of I

It is not allowed that A ≺h A. Cycles in the inheritance relation are detected
at compile-time or at run-time when classes are dynamically loaded.

Constraint 4.1.3. The inheritance relation ≺h must be acyclic.

The relation A �h B is defined as A ≺h B or A = B . If A �h B , then one
can say that each A ‘is-a’ B .
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Fig. 4.2 Syntax of a Java interface

〈public〉 interface I 〈extends J1, . . . , Jn〉 {
...

constant declarations
...

abstract method declarations
...

}

Lemma 4.1.1. The relation �h is a partial ordering:

1. A �h A.
2. If A �h B and B �h C , then A �h C .
3. If A �h B and B �h A, then A = B .

The relation �h restricted to classes is a finite tree. The root of the tree is
the class Object. In mathematical terms, this can be expressed as follows.

Lemma 4.1.2. Let A, B and C be classes. Then we have:

1. A �h Object (every class is a subclass of Object).
2. If A ≺d B and A ≺d C , then B = C .
3. If A �h B and A �h C , then B �h C or C �h B .

Not much can be said with respect to interfaces except that interfaces have
no superclasses but only superinterfaces.

Lemma 4.1.3. If A is an interface and A �h B , then B is an interface, too.

Classes and interfaces are collected in so-called packages.

Definition 4.1.1. A package is a collection of classes and interfaces.

Definition 4.1.2. A JavaC program is a set of packages.

The usual way to tell the compiler to which package a class or interface
belongs is to prepend a package statement to the file in which the class or
interface is defined. A package statement has the following form:

packagePackageName;

A package name is a sequence of identifiers separated by dots. The JLS pro-
poses a unique way to name packages using Internet domains. For example:

package ch.ethz.inf.staerk;
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Fig. 4.3 Syntax of JavaC

Exp := . . . | Field | Class.Field | Invk
Asgn := . . . | Field = Exp | Class.Field = Exp
Exps := Exp1, . . . ,Expn

Invk := Meth(Exps) | Class.Meth(Exps)
Stm := . . . | Invk ; | return Exp; | return;
Phrase := . . . | static Block

Inside the package one can refer to a class by its simple name, e.g. Point3D.
Outside the package one has to use the full qualified name, e.g.

ch.ethz.inf.staerk.Point3D.

Since the dot is overloaded, an expression ‘x .x .x ’ can denote different things
in different contexts [18, §6.5].

Definition 4.1.3. We say that a type B is accessible from A, if one of the
following conditions is true:

1. B is a primitive type (Table 3.1), or
2. B is in the same package as A, or
3. B is public.

Constraint 4.1.4. The inheritance relation must satisfy the following con-
straint: If A ≺d B , then B is accessible from A.

Fig. 4.3 defines what is added in JavaC to the syntax of JavaI , namely
return statements and expressions for fields and method invocations. Method
invocations can occur inside expressions or as top-level statements. Fig. 4.3
uses the following universes:

Class . . . . (fully qualified) class and interface names,
Field . . . . field names (identifiers),
Meth . . . . method names (identifiers),
Invk . . . . . method invocations.

4.1.2 Class members

Class members are constructor declarations, field declarations, method dec-
larations and static initializers. Constructor declarations will be introduced
in the next chapter.
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Field declarations. A field declaration in a class C has the following syn-
tax:

〈public | protected | private〉 〈final〉 〈static〉A field 〈= exp〉;

We refer to the field as C/field . The type A is called the declared type of the
field. We say that the field is m, if the modifier m appears in the declaration
of the field. If the optional part ‘= exp’ is present, then the assignment
field = exp is called the initializer of the field.

Constraint 4.1.5. A field declaration must satisfy the following constraints:

1. The type A is accessible from C .
2. The field is declared at most once in C .
3. If the field is final, then a variable initializer must appear in the decla-

ration of field .

Fields are classified according to whether they are static or not:

– If the field is static, then it is called a class field
– If the field is not static, then it is called an instance field

Class fields correspond to global variables in a module, whereas instance fields
correspond to fields in a record.

Method declarations. A method declaration in a class C has the following
syntax:

〈public | protected | private〉
〈abstract〉 〈final〉 〈static〉 〈native〉
A meth(B1 loc1, . . . ,Bn locn) body

The method body can be:

body := ‘;’ | block

We refer to the method as C/msig , where msig is the signature of the method,
i.e., msig is the expression meth(B1, . . . ,Bn). We say that C/msig is m, if
the modifier m appears in the declaration of msig in C . The universe MSig
consists of method signatures, i.e., method names together with the number
of arguments and the types of the arguments.

Constraint 4.1.6. A method declaration must satisfy the following con-
straints:

1. The name A is a type or the keyword void. It is called the declared return
type of the method.

2. The types A, B1, . . . ,Bn are accessible from C .
3. The identifiers loc1, . . . , locn are pairwise different. They are called the

formal parameters of the method. We say that the parameter locj is
declared of type Bj .
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4. The formal parameters loc1, . . . , locn are different from identifiers in local
variable declarations of body .

5. If a variable loc is used in an expression in body , then loc is a formal pa-
rameter of the method or loc is in the scope of a local variable declaration
of loc.

6. If the declared return type A is different from void, then each execution
path of body must be terminated with a statement ‘return exp;’ (see also
Sect. 8.2).

7. If the declared return type A is void, then each execution path of body
must be terminated by the statement ‘return;’. (Otherwise, the compiler
inserts a return statement at the end of the body.)

8. The method msig is declared at most once in C .
9. The method is abstract if, and only if, its body is the semicolon.

10. If C/msig is abstract, then C is abstract.
11. If C/msig is private, final or static, then it is not abstract.

Note, that void is not a real type. It is not allowed to declare a formal
parameter or a local variable to be of type void.

Methods are classified according to whether they are static or not:

– If the method is static, then it is called a class method
– If the method is not static, then it is called an instance method

Class methods correspond to procedures in a module.

Static initializers. A static initializer has the following syntax:

static block

We assume that all static initialization blocks and all static field initializers of
a class are combined in textual order in one single static initialization block.
This block is called the initializer of the class or interface. It is executed when
the class is initialized.

Constraint 4.1.7. The keyword return is not allowed to appear in the block
of a static initializer.

4.1.3 Interface members

The members of an interface are constant declarations and abstract method
declarations.

Constant declarations. A constant declaration in an interface I has the
following syntax:

A field = exp;

The expression exp can be an arbitrary non-constant expression. It is evalu-
ated when the interface is initialized. Usually the identifier field consists of
upper case letters only.
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Constraint 4.1.8. A constant declaration must satisfy the following con-
straints:

1. The type A is accessible from I .
2. A field is declared at most once in I .
3. The field is implicitly public, static and final.

Although an interface does not contain static initialization blocks, we as-
sume that all field initializers are combined in textual order as a sequence of
assignments in one block which is called the initializer of the interface I .

Abstract method declarations. An abstract method declaration in an
interface I has the following syntax:

A meth(B1 loc1, . . . ,Bn locn);

If a class implements an interface, then all abstract methods of the interface
must be implemented in the class. What this means will be explained below.

Constraint 4.1.9. An abstract method declaration must satisfy the follow-
ing constraints:

1. The types A and B1, . . . ,Bn must be accessible from I .
2. The method is implicitly public and abstract (and not static).

4.1.4 Accessibility, visibility, hiding and overriding

A class inherits members from its superclasses and superinterfaces. A declara-
tion of a field or static method, however, may hide a member of a superclass
with the same name. A declaration of an instance method is said to over-
ride a declaration of a method with the same signature. Members which are
visible in a class can be referred to by their simple names. In the following
definitions, x denotes a field or a method signature.

Definition 4.1.4. We say that x has default access in class C , if x is
neither private nor public nor protected in C .

Definition 4.1.5. An element C/x is accessible from A means:

1. x is private in C and A = C , or
2. x is not private in C and C is in the same package as A, or
3. x is public in C , or
4. x is protected in C and A ≺h C .

Some consequences of these definitions are:

1. If x is private in C , then C/x is accessible from class C only. Outside
of C , the element C/x is not accessible.
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2. If x has default access in C , then C/x is accessible from all classes
in the same package. Outside of the package, the element C/x is not
accessible.

3. If x is public in C , then C/x is accessible from everywhere.
4. If x is protected in C , then C/x is accessible from the same package or

outside of the package from subclasses of C .
5. Elements of interfaces are accessible from everywhere, because they are

public by definition.

The next definition is almost identical with the previous definition except
that the clause for the modifier protected has an additional condition [18,
§6.6.2].

Definition 4.1.6. An element C/x is accessible from A with respect to B
means:

1. x is private in C and A = C , or
2. x is not private in C and C is in the same package as A, or
3. x is public in C , or
4. x is protected in C and B �h A ≺h C .

In the next definition we define what it means that an element is visible in a
class or interface A. In terms of the JLS this means that it is a member of A.

Definition 4.1.7. The visibility of members is defined inductively:

1. If x is declared in A, then A/x is visible in A.
2. If A ≺d B , C/x is visible in B , x is not declared in A and C/x is

accessible from A, then C/x is visible in A.

Example (; CD) 4.1.1. Consider the following two classes:

class A {
public static int i = 2;
private static int j = 3;

}
class B extends A {

public static int i = 4;
}

The field A/i is not visible in class B, because i is defined in class B, too. The
field A/j is not visible in class B, because it is private in A and therefore not
accessible from B.

It is possible that two fields with the same identifier are visible in a class,
since a class can implement several interfaces.

Example (; CD) 4.1.2. Both, the field I/MAX and the field J/MAX are visible
in class A.



4.1 Static semantics of JavaC 55

interface I {
int MAX = 100;

}
interface J {
int MAX = 99;

}
class A implements I, J {}

As long as the constant MAX is not accessed in A by its simple name, no syntax
error occurs.

Example (; CD) 4.1.3. A field can be visible in a class through different
paths:

interface I {
int MAX = 100;

}
class A implements I {}
class B extends A implements I {}

The field I/MAX is visible in class B through its superclass A as well as directly,
since B implements I.

The JLS uses the term ‘override’ for instance methods only. We use it here
for class methods, too.

Definition 4.1.8. A method A/msig is said to directly override a method
C/msig , if there is a class or interface B such that

1. A ≺d B ,
2. C/msig is visible in B and
3. C/msig is accessible from A.

When a new method possibly overrides or hides a method with the same sig-
nature in a superclass or superinterface several conditions have to be satisfied,
for example, the return type has to be the same.

Constraint 4.1.10. If A/msig directly overrides C/msig , then the following
constraints must be satisfied:

1. The return type of msig in A is the same as in C .
2. Method msig is not final in C .
3. Method msig is static in A if, and only if, it is static in C .
4. Method msig is not private in A.
5. If msig is public in C , then msig is public in A.
6. If msig is protected in C , then msig is public or protected in A.
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The last three constraints say that access may not decrease according to the
following ordering:

private < default < protected < public

The relation ‘overriding’ is the reflexive, transitive closure of ‘direct overrid-
ing’.

Definition 4.1.9. The relation A/msig overrides B/msig is inductively de-
fined as follows:

1. If msig is declared in A, then A/msig overrides A/msig .
2. If A/msig directly overrides B/msig and B/msig overrides C/msig , then

A/msig overrides C/msig .

It is possible that a method msig is declared in several superinterfaces of a
class A. It is also possible that msig is declared in a superinterface and in a
superclass of A. In order to avoid inconsistencies one has to require that the
return type of msig is always the same.

Constraint 4.1.11. If two methods B/msig and C/msig with the same sig-
nature are both visible in A, then the following constraints must be satisfied:

1. msig has the same return type in B and C ,
2. If msig is public in B , then msig is public in C .
3. If msig is not static in B , then msig is not static in C .

The following constraint for abstract methods is not contained in the JLS.
The constraint is natural, since abstract methods in interfaces are public
by definition. The constraint is later used in the Lookup Lemma 8.4.1.

Constraint 4.1.12. If C/msig is abstract, then it is public or protected.

The JLS allows abstract methods with default access. Such methods, how-
ever, are strange, because they cannot be implemented in a different package.

Definition 4.1.10. A class A implements a method msig , if there exists a
class B such that

1. A �h B and msig is declared in B ,
2. B/msig is visible in A,
3. msig is not abstract in B .

Unless a class A implements all methods of its superinterfaces the class has to
be declared abstract. Also if an abstract method of a superclass is visible
in A, then A has to be declared abstract.

Constraint 4.1.13. If the abstract method C/msig is visible in class A
and A does not implement msig , then A is abstract.
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In other words, if a non abstract class A implements an interface I , then A
implements each method declared in the interface I .

Example (; CD) 4.1.4. Class A inherits from its direct superclass B a non-
abstract method m(int). Therefore, class A implements method m(int).

interface I { int m(int i); }
class B {
public int m(int i) {
return i * i;

}
}
class A extends B implements I { }

The abstract method I/m(int) is visible in class A. Since A implements
m(int), class A is not abstract.

Example (; CD) 4.1.5. If the method m(int) is declared private in class B ,
then it is no longer visible in class A.

interface I { int m(int i); }
class B {
private int m(int i) {
return i * i;

}
}
abstract class A extends B implements I { }

Since class A does not implement method m(int), class A has to be declared
abstract.

Example (; CD) 4.1.6. If the method m(int) is declared with default ac-
cess in class B , then Constraint 4.1.11 is violated, because m(int) is public
in interface I:

interface I { int m(int i); }
class B {
int m(int i) {
return i * i;

}
}
abstract class A extends B implements I { }

The compiler reports an error because the access modifier of m(int) is made
more restrictive.
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4.1.5 Static type checking

For the rest of this chapter we assume that all fields and methods of classes
are static. Static field access expressions are replaced at compile-time by
abstract expressions C .field , where field is a class field declared in class or
interface I . There are two possibilities to access a static field:

1. B .field , where B is a class or interface.
2. field

These expressions are replaced at compile-time as follows:

1. In an expression B .field the identifier field can denote a field of the class or
interface B or a field of one of B ’s superclasses or superinterfaces which is
visible in B . At compile-time, the expression B .field in class A is replaced
by C .field , if the class or interface C is unique with the property that
C/field is visible in B and accessible from A. If there is no such class C
or if field is not static in C , then a syntax error occurs.

2. If a simple expression field in class A is not in the scope of a local variable
declaration or formal parameter with the same name, then it denotes a
field of A or field of one of A’s superclasses or superinterfaces which
is visible in A. The simple expression field is replaced by the expression
C .field , if the class or interface C is unique with the property that C/field
is visible in A, and if field is static in C .

The type of a static field access expressions C .field is the declared type of
field in C (see Table 4.1).

4.1.6 Overloaded methods

A method invocation expression can refer to a method in the current class
or to a visible method of one of its superclasses. Since methods can be over-
loaded, during compile-time the most specific method is chosen which is ap-
plicable to the types of the arguments of the invocation. The type of the
method invocation is then the return type of the chosen method. A method
is more specific, if it is defined in a subclass or in the same class and if the
argument types are subtypes. The return type of the method is ignored in
the comparison. The relation ‘more specific’ is a partial ordering. If a set of
methods has a least element, then this element is unique.

Definition 4.1.11. A method C/meth(A1, . . . ,An) is more specific than a
method D/meth(B1, . . . ,Bn), if C �h D and Ai � Bi for i = 1, . . . ,n.

There are two kinds of method invocations:

1. αmethβ(exps)
2. αC .methβ(exps), where C is a class.
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Table 4.1 Type constraints for JavaC

αC .field T (α) is the declared type of field in C .
α(C .field = βexp) T (α) is the declared type of field in C , field is not

final in C , T (β) � T (α).
αC .msig(exps) T (α) is the declared return type of msig in

class C .

return αexp; If the position α is in the body of a method with
return type A, then T (α) � A.

As a result of parsing and elaboration each kind of expression is replaced
by αD .mβ(exps), where D and the method signature m are determined
as follows: Assume that the position α is in class A and that β(exps) is
β(γ1exp1, . . . ,

γn expn). Let msig be the signature meth(T (γ1), . . . , T (γn)). A
set of applicable methods app(α) is determined as follows:

1. Let app(α) be the set of all methods D/m such that
a) A/msig is more specific than D/m and
b) D/m is visible in A.

2. Let app(α) be the set of all methods D/m such that
a) C/msig is more specific than D/m and
b) D/m is visible in C and accessible from A with respect to C .

Assume that app(α) contains a most specific element D/m, i.e.,

– D/m ∈ app(α)
– If E/k ∈ app(α), then D/m is more specific than E/k

Assume that m is static in D . Then D/m is the method chosen by the
compiler. Moreover, the type at position α is the declared return type of m
in D (see Table 4.1).

Example (; CD) 4.1.7. In the following program the method m is over-
loaded. It can take arguments of type double as well as arguments of type
long. The most specific method is chosen during compile-time:

class A {
static void m(double d) {}
static void m(long l) {}
static void test(int i) {
m(i); // Method m(long) is chosen during compile-time.

}
}
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Since i is declared to be of type int, the most specific method for the method
invocation m(i) is m(long). In order to ensure type safety, the compiler in-
serts automatically a type cast: the method invocation m(i) is replaced by
m((long)i). Hence, before the method m(long) is invoked, the argument is
converted from type int to long.

Example (; CD) 4.1.8. It can happen that there exists no most specific
method which is applicable to a method invocation.

class A {
static void m(int x,long y) {}
static void m(long x,int y) {
m(0,0); // Reference to m is ambiguous.

}
}

In this case, the compiler reports that the reference to the method is ambigu-
ous. Note, that the literal 0 is of type int.

Example (; CD) 4.1.9. In the following example A/m(int) and B/m(long)
are both applicable to the method invocation expression m(0):

class A {
static void m(int x) {}

}

class B extends A {
static void m(long x) {
m(0); // Reference to m is ambiguous.

}
}

Since B �h A and int � long the two methods are not comparable and
therefore there is no most specific method for m(0).

Example (; CD) 4.1.10. The type of the expression in the return statement
can be a subtype of the declared return type of the method:

class Test {
static long m(int i) {
return i;

}
}

In this example, the value of i is automatically converted to type long: the
compiler replaces ‘return i’ by ‘return (long)i’ (see Table 4.2).
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Table 4.2 Type constraints after introduction of primitive type casts

α(C .field = βexp) Let D be the declared type of field in C .
If D is primitive, then T (β) = D = T (α).

αC .msig(β1exp1, . . . ,
βn expn) If msig = meth(B1, . . . ,Bn) and Bi is a

primitive type, then T (βi) = Bi .

return αexp; If the position α is in the body of a
method with a primitive return type A,
then T (α) = A.

4.1.7 Vocabulary of JavaC

The extension of the vocabulary we describe in this section for JavaC re-
flects that this machine comes with a class environment, including a class
initialization mechanism, that it deals with different methods which can be
invoked and be returned from, and that with method return it introduces a
new reason of abruption of normal program execution.

For the sake of simplicity, but without loss of generality, we assume that
any class C has a class initializer C/<clinit>()—its body (whose function
is to initialize the class fields at the first active use of the class, see below)
is a phrase static block , where block may be empty. Non constant class
field initializations are syntactically reduced to assignments and are placed
at the beginning of the class initializer. JavaC abstracts from initializations of
constant fields; the latter are final class fields, whose values are compile-time
constants [18, §15.27]. The value of constant fields is precomputed (as part
of the elaboration phase) and stored in the class and interface environment
of the given program.

We assume also that there are only field access expressions of the kind
C .field , where field is a static field declared in C . Other field access ex-
pressions are replaced during parsing and type checking. Moreover, method
invocations are of the kind C .msig(exps), where msig is a method signature
of a static method of class C . The method signature as well as the class C
have been determined during type-checking (see Sect. 4.1.5).

JavaC programs are executed w.r.t. a static class environment which is
set up during parsing and elaboration. The following static functions look up
information in this environment, possibly traversing the inheritance hierarchy
from bottom to top (from subtype to supertype).

The function super returns the direct superclass of a given class, provided
there is a superclass, i.e., C ≺d super(C ). We use the function classNm
to access the class name of a compound identifier (e.g. classNm(c/m) =
c). The function methNm accesses the method name (e.g. methNm(c/m) =
methNm(m)). The function body yields the body of the given method in the
given class.
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super : Class → Class
body : Class/MSig → Block

In JavaC we distinguish four initialization states for a class: either the ini-
tialization of the class has not yet started (but the class is Linked), it is
InProgress, it is already Initialized or during the initialization an error oc-
cured. Therefore we introduce a universe

data ClassState = Linked | InProgress | Initialized | Unusable

together with a dynamic function

classState: Class → ClassState

which records the current initialization status of a class. A class is initialized ,
if the initialization state for the class is InProgress or Initialized .

initialized(c) =
classState(c) = Initialized ∨ classState(c) = InProgress

To model the dynamic state of class fields, we have to reserve storage for
these variables. The dynamic function globals yields the value stored under
a field specification.

globals: Class/Field → Val

In JavaC we have to deal with different methods which can be invoked and
be returned from. We use the dynamic function meth to denote the currently
executed method.

meth: Class/MSig

A method may call other methods. We use the usual stack technique to
implement method calls. When a new method is invoked, the frame of the
invoking method meth, consisting of meth, restbody ; pos, and locals, is pushed
onto the stack to be resumed after the invoked method has finished. We
denote by a dynamic function frames the sequence of currently still to be
executed frames on the stack.

type Frame = (Class/MSig ,Phrase,Pos,Locals)
frames: Frame∗

In JavaC there are two new reasons for abruption, namely Return and
Return(Val), occurring through the execution of return statements which
by definition complete the body of a method abruptly and possibly return a
result value to the invoker of the method. They will be used in the extension
of the abruption handling rules of execJavaStmI in execJavaStmC .

data Abr = Break(Lab) | Continue(Lab) | Return | Return(Val)
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4.2 Transition rules for JavaC

The machine execJavaC of execJava extends the machine execJavaI by the
rules which define the semantics of the new JavaC-expressions and JavaC-
statements. Therefore like execJavaI it consists of two submachines, for ex-
pression evaluation and statement execution, which are defined below.

execJavaC =
execJavaExpC

execJavaStmC

For the initial state of JavaC we assume that the environment of the respec-
tive lookup functions and predicates is defined by the given program which
consists of a list of classes and interfaces. All class fields of all classes are set
to their default or constant values. The run of JavaC starts with meth being
the class method

public static void main()

which is supposed to be part of the environment; pos denotes the first position
of the body of main which defines restbody , locals is undefined (because main
is invoked without parameters). The run terminates, if no rule of JavaC can
be applied any more.

The machine execJavaExpC is defined in Fig. 4.4. We first look at its
effect for expressions belonging to initialized classes. In this case the evalua-
tion of class fields is defined similarly to the evaluation of local variables in
execJavaExpI , but using the memory function globals instead of locals. The
value of a class field access is the value bound under the name of the class
and of the field in the global environment [18, §15.10]. To execute a class
field assignment is to compute the value of its right-hand side [18, §15.25],
followed by binding it as new value to the class and field name in the global
environment. When a class method is called [18, §15.11], execJavaExpC trig-
gers the evaluation of the actual arguments of the invocation, respecting the
left-to-right strategy; their values are then bound by invokeMethod (see be-
low) to the parameters of the method, to start the execution of the called
method and at the same time preparing the return to up(pos) in the calling
method.
Now we explain the class initialization mechanism in execJavaExpC . The
program execution starts in a state in which no class or interface is initialized
(except for Object). The initialization is required to be done at the first active
use of any class or interface C , namely by executing its static initializer. The
first active use of C can occur in the following situations:

– A class method declared in C is invoked
– A static field declared in C is used or assigned which is not a primitive

constant
– A new instance of class C is created (see Chapter 5)



64 4. The procedural extension JavaC of JavaI

Fig. 4.4 Execution of JavaC expressions

execJavaExpC = case context(pos) of
c.f → if initialized(c) then yield(globals(c/f )) else initialize(c)
c.f = αexp → pos := α
c.f = Ival → if initialized(c) then

globals(c/f ) := val
yieldUp(val)

else initialize(c)

c.mα(exps)→ pos := α
c.mI(vals) → if initialized(c) then invokeMethod(up(pos), c/m, vals)

else initialize(c)

( ) → yield([ ])
(α1exp1, . . . ,

αn expn) → pos := α1

(α1val1, . . . ,
Ivaln) → yieldUp([val1, . . . , valn ])

(α1val1, . . . ,
Ivali ,

αi+1expi+1 . . .
αn expn)→ pos := αi+1

A primitive constant is a field that is both static and final, and that is
initialized with a compile-time constant expression. A constant expression is
built up from literals and other primitive constants using unary and binary
operators. Primitive constants are replaced in the source code, at compile-
time, by the corresponding literals with the same value (so called inlining of
primitive constants).

Before a class is initialized, its superclasses must be initialized. As a con-
sequence, when execJavaExpC accesses fields, or assigns to fields, or calls
methods, as first active use of a not yet initialized class C , it invokes the
class initializer of C which is described by the following rule initialize(C ).

initialize(c) =
if classState(c) = Linked then

classState(c) := InProgress
forall f ∈ staticFields(c)

globals(f ) := defaultVal(type(f ))
invokeMethod(pos, c/<clinit>, [ ])

This rule records that starting from now, the initialization of class C is
InProgress. All static fields (staticFields) of the class are initialized with
their default value. Through the macro invokeMethod defined below, the rule
pushes the current computation state on the frame stack, with unchanged
pos (since after the initialization the computation has to proceed where the
initialization was started) and without parameters (since class initialization
methods have no arguments), and it transfers the control to the first position
of the body of the static initialization code (where firstPos can be considered
as a system constant).
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The statement execution submachine execJavaStmC of execJavaC , de-
fined in Fig. 4.5, starts the execution of static initialization blocks—unless
the current class has a superclass which is not yet initialized, in which case
execJavaStmC invokes the initialization of that superclass. When a static
block of class C is executed, accesses to the fields of C and invocations of
methods of C should not trigger a new first use of C . This is the reason why
InProgress is included in the definition of the predicate initialized .

When returning from a method, in case an expression is returned, the
submachine execJavaStmC first transfers the control to the expression eval-
uation submachine execJavaExpC ; in case no expression is returned, or after
the value val of the returned expression has been computed, the computation
abrupts, with the possible return value encoded into the reason Return(val)
for abruption, and the current method has to be exited. In the extension
execJavaE of execJavaC , this method exit will be subject to prior execu-
tion of so called finally code, which may be present in the current method.
Therefore, instead of transferring the control from a return statement di-
rectly to the invoker, we let execJavaStmC propagate the return abruption
up to the starting point firstPos of the current method body, from where the
method will be exited. However, the return from a class initialization method
has to be excluded from this propagation. Therefore we refine the predicate
propagatesAbr from execJavaI in execJavaC as follows:

propagatesAbr(phrase) =
phrase 6= lab : s ∧
phrase 6= static s

In execJavaE propagatesAbr will be further refined to take also finally code
into account.
The rule invokeMethod , which is used in Fig. 4.5, pushes the current frame,
with the position given as parameter, on the frame stack and creates a new
current frame to start executing the body of the invoked method. The ar-
gument values are bound to the formal parameters of the method in the
new local environment. We use the submachine invokeNative which describes
the invocation of native methods and is defined in Sect. 7.2.2. The function
modifiers returns the method modifiers (Native,Public, . . .), as specified in
the class definition.

invokeMethod(nextPos, c/m, values)
| Native ∈ modifiers(c/m) =

invokeNative(c/m, values)
| otherwise =

frames := push(frames, (meth, restbody ,nextPos, locals))
meth := c/m
restbody := body(c/m)
pos := firstPos
locals := zip(argNames(c/m), values)

Upon return from the execution of a method, the rule exitMethod(result)
passes control back to the current position of the invoker, reestablishes the
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Fig. 4.5 Execution of JavaC statements

execJavaStmC = case context(pos) of
static αstm → let c = classNm(meth)

if c = Object ∨ initialized(super(c)) then pos := α
else initialize(super(c))

static αReturn → yieldUp(Return)

return αexp; → pos := α
return Ival ; → yieldUp(Return(val))
return; → yield(Return)
lab : IReturn → yieldUp(Return)
lab : IReturn(val)→ yieldUp(Return(val))
Return → if pos = firstPos ∧ ¬null(frames) then

exitMethod(Norm)
Return(val) → if pos = firstPos ∧ ¬null(frames) then

exitMethod(val)

INorm;→ yieldUp(Norm)

method and local variables of the invoker and replaces in its restbody the
method invocation statement by the result of the invoked method (i.e., the
value to be returned if there is one or the information on normal completion
of the method body)—except for the normal return from a class initialization
whereupon the execution proceeds with the previous restbody and the class
state is updated to Initialized.

exitMethod(result) =
let (oldMeth, oldPgm, oldPos, oldLocals) = top(frames)
meth := oldMeth
pos := oldPos
locals := oldLocals
frames := pop(frames)
if methNm(meth) = "<clinit>" ∧ result = Norm then

restbody := oldPgm
classState(classNm(meth)) := Initialized

else
restbody := oldPgm[result/oldPos]

4.2.1 Exercises

Exercise (; CD) 4.2.1. Which field is selected at position α?

interface I {
int i = 11;

}
class A implements I {
private static int i = 7;
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void m() {
i = αB.i;

}
}
class B extends A {}

Exercise (; CD) 4.2.2. Which field is selected at position α?

interface I {
int i = 11;

}
class A {
private static int i = 7;

}
class B extends A implements I {
static int j = αi + 1;

}

Exercise (; CD) 4.2.3. What are the applicable methods at positions
α, β, γ? Which method is selected by the compiler?

class A {
static void m(int x) {}
static void m(char x) {}

}
class B extends A {
static void m(long x) {
αm(0);
βm(’A’);
γm(0L);

}
}

Exercise (; CD) 4.2.4. What is the order of initialization?

class A {
static int x = 7;
static { System.out.println("Initialization of A"); }

}
class B extends A {
static { System.out.println("Initialization of B"); }

}
class Test {
public static void main(String[] argv) {
System.out.println(B.x);

}
}
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Exercise (; CD) 4.2.5. What is the order of initialization?

class A {
static int x = 7;
static { System.out.println("Initialization of A"); }

}
class B extends A {
static int x = 3;
static { System.out.println("Initialization of B"); }

}
class Test {
public static void main(String[] argv) {
System.out.println(B.x);

}
}

Exercise (; CD) 4.2.6. What is the order of initialization?

class A {
static int x = 7;
static { System.out.println("Initialization of A"); }

}
class B extends A {
static final int x = 3;
static { System.out.println("Initialization of B"); }

}
class Test {
public static void main(String[] argv) {
System.out.println(B.x);

}
}

Exercise (; CD) 4.2.7. What is the output of the following program?

interface I {
int c = 1 + A.x;
int d = 1 + A.y;

}
class A implements I {
static int x = 2;
static int y = I.d;

}
class Test {
public static void main(String[] args) {
System.out.println("I.c = " + I.c);
System.out.println("I.d = " + I.d);
System.out.println("A.x = " + A.x);
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System.out.println("A.y = " + A.y);
}

}

Exercise (; CD) 4.2.8. What is the output of the following program?

interface I {
int c = 1 + A.x;
int d = 1 + A.y;

}
class A implements I {
static int x = 2;
static int y = I.d;

}
class Test {
public static void main(String[] args) {
System.out.println("A.x = " + A.x);
System.out.println("A.y = " + A.y);
System.out.println("I.c = " + I.c);
System.out.println("I.d = " + I.d);

}
}





5. The object-oriented extension JavaO of
JavaC

JavaO extends JavaC to an object-oriented language, supporting the following
new features to form expressions: instance fields, instance methods, creation
of new instances, method overriding, type casts, type checks and null pointers.
Correspondingly execJavaO introduces new rules for expression evaluation
and handling of values. In Sect. 5.1 we describe the static and in Sect. 5.2
the dynamic part of the semantics of JavaO.

5.1 Static semantics of JavaO

In the previous chapter, classes and interfaces played the role of modules. In
the present chapter, classes and interfaces will be types, too. This means that
the type of a variable can be a class or interface and not only a primitive
type. The return type of a method can be a class or interface, too.

Definition 5.1.1. Types A, B , C are generated as follows:

1. Primitive types are types (see Table 3.1).
2. Classes and interfaces are types.
3. Null and void are types.
4. If A is a type different from Null and void, then A[ ] is a type.

The type Null is not allowed to appear explicitly in a program. The type
void can only be used as a return type of a method. The type A[ ] is called
array of A. Reference types are class types, interface types, array types and
the type Null. The default value for all reference types is the constant null.

The subtype relation � of Def. 3.1.1 is extended to reference types.

Definition 5.1.2. For reference types, the relation � is the least reflexive
and transitive relation satisfying the following conditions:

1. If A ≺d B , then A � B .
2. If A is a reference type, then Null � A and A � Object.
3. A[ ] � Cloneable and A[ ] � Serializable.
4. If A � B and A, B are reference types, then A[ ] � B [ ].
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Table 5.1 Binary operators for references

Bop Operand types Result type Operation

+ A or B is String String String concatenation

== A � B or B � A boolean equal (references)

!= A � B or B � A boolean not equal (references)

Null is the least reference type and Object is the top element. For classes
and interfaces A, B the following is true (see Exercise 5.2.5):

A � B ⇐⇒ A �h B or B = Object.

In terms of the JLS, the relation A � B for reference types means that there
is an identity conversion or a widening reference conversion from A to B (see
[18, §5.1.4]).

Example 5.1.1. Although every reference type is a subtype of Object, this is
not true for primitive types. For example, int is not considered as a subtype of
Object, i.e., int 6� Object. There exists, however, a standard class Integer
which is a subtype of Object,

java.lang.Integer � Object.

Note, that although int is a subtype of long the type array of int is not a
subtype of array of long, i.e., we have int � long, but int[ ] 6� long[ ].

5.1.1 Operators for reference types

The binary operators +, == and != can be applied to arguments of reference
type. The type of the result is indicated in Table 5.1. Note, that to test
whether two strings s1 and s2 are equal one has to use s1.equals(s2) and not
s1 == s2.

5.1.2 Syntax of JavaO

The syntax of the object-oriented sublanguage JavaO of Java is given in
Fig. 5.1. Expressions with this or super are allowed in the following contexts
only:

1. in the body of an instance method,
2. in the initializer of an instance field,
3. in the body of a constructor.

Expressions with super are not allowed to appear in the class Object.
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Fig. 5.1 Syntax of JavaO

Exp := . . . | null | this | Exp.Field | super.Field
| Exp instanceof Class | (Class)Exp

Asgn := . . . | Exp.Field = Exp | super.Field = Exp
Invk := . . . | new Class(Exps) | Exp.Meth(Exps) | super.Meth(Exps)

5.1.3 Constructor declarations

A constructor declaration in a class A has the following syntax:

〈public | protected | private〉A(B1 loc1, . . . ,Bn locn) cbody

The name of the constructor is the simple name of the class, in our case A.
A constructor declaration has no return type. Constructors are not inherited
and, therefore, cannot be overridden. Several constructors with different sig-
natures may be defined in the same class. The body of a constructor has the
following grammar:

cbody := block | {this(exps); bstm . . .} | {super(exps); bstm . . .}

The first statement of the constructor body can be an explicit constructor
invocation of a constructor of the same class or of a constructor of the direct
superclass:

1. this(exps); [constructor of the same class]
2. super(exps); [constructor of the direct superclass]

An explicit constructor invocation statement may not refer to any instance
variables or instance methods declared in the class or any superclass, or use
this or super in any expression. It is not allowed that there is a cycle through
explicit constructor invocations.

The compiler does the following:

1. If cbody does not begin with an explicit constructor invocation, then the
constructor invocation ‘super();’ is inserted.

2. The instance variable initializers of class A are inserted in textual order
as assignments immediately after the explicit invocation of a superclass
constructor.

3. If the class A does not have a constructor, then the following default
constructor is inserted:

A() {super(); }

The default constructor is public, if the class A is public.

The default constructor of the class Object is:

Object() {}
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Example (; CD) 5.1.2. Consider the following class A:

class A {
private int x;
private int y = 17;
static int z = 3;

A(int x) {
this.x = x;

}
}

The compiler replaces the constructor A(int) by the following code:

A(int x) {
super();
y = 17;
this.x = x;

}

The static field A/z is initialized when the class A is initialized, not when a
constructor is invoked.

5.1.4 Field access expressions

Instance field access expressions are transformed at compile-time into the
abstract form exp.C/field , where field is an instance field declared in class C .
Instance fields can be accessed in three different ways:

1. exp.field
2. super.field
3. field

Assume that the expressions are in class A. Then they are transformed in
the following way:

1. Let B be the type of exp in the expression exp.field . Then field denotes an
instance field of B or of one of B ’s superclasses. The expression exp.field
is replaced by exp.C/field , if the class C is unique with the property
that C/field is visible in B and accessible from A with respect to B
(Def. 4.1.6), and if field is not static in C . If there exists no such
class C , a syntax error occurs.

2. An expression super.field in class A denotes an instance field of the
direct superclass B of A or of one of B ’s superclasses. The expression
super.field is replaced by this.C/field , if the class C is unique with the
property that C/field is visible in B and accessible from A (Def. 4.1.5),
and if field is not static in C .
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3. If a simple expression field in class A is not in the scope of a local variable
declaration or formal parameter with the same name, then it denotes a
field of A or of one of A’s superclasses. The simple expression field is
replaced by the expression this.C/field , if the class C is unique with
the property that C/field is visible in A, and if field is not static in C .
The simple field access expression field must be in a context where this
is allowed.

The type of an abstract field access expression exp.C/field is the declared
type of field in class C (see Table 5.2).

5.1.5 Overloaded methods

As a result of the parsing and elaboration phase instance method invoca-
tions are attributed as specified in [18, §15.11.1–3]. They are transformed
at compile-time into the abstract form exp.D/msig(exps), where msig is a
method signature of an instance method declared in class or interface D .
Instance method invocations have an additional callKind which is used for
method lookup.

data Kind = Virtual | Special | Super

The invocation kind Static is not needed here, since it is already handled by
class methods. Instance methods can be invoked in three different ways:

1. α(βexp.methγ(exps))
2. αsuper.methγ(exps)
3. αmethγ(exps)

Assume that α is in class A and that γ(exps) is γ(δ1exp1, . . . ,
δn expn). Let msig

be the method signature meth(T (δ1), . . . , T (δn)). In a first step the compiler
computes a set app(α) of applicable and accessible methods as follows:

1. Let C = T (β). Then app(α) is the set of all D/m such that
a) C/msig is more specific than D/m,
b) D/m is visible in C and accessible from A with respect to C ,
c) if D is an interface, then C does not implement m.1

2. Let C be the direct superclass of A, i.e., A ≺d C . Then app(α) is the set
of all methods D/m such that
a) C/msig is more specific than D/m,
b) D/m is visible in C and accessible from A,
c) if D is an interface, then C does not implement m.

3. Let app(α) be the set of all methods D/m such that
a) A/msig is more specific than D/m,
b) D/m is visible in A,

1 The last condition is not contained in the JLS [18, §15.11]. In [19, §15.12.2.2] the
problem is solved in a slightly more general way.
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c) if D is an interface, then A does not implement m.

In a next step a most specific method is selected, if there exists one, and an
invocation mode is determined. Assume that app(α) contains a most specific
element D/m. Assume that m is not static in D . Then D/m is the method
chosen by the compiler and the invocation mode is determined as follows:

1. The method invocation expression is replaced by
α(βexp.D/mγ(exps)).

If the method m is private in D , then callKind(α) = Special , otherwise
callKind(α) = Virtual .

2. The method invocation expression is replaced by
α(βthis.D/mγ(exps)).

The invocation mode is callKind(α) = Super . In this case it is not allowed
that m is abstract in D .

3. The method invocation expression is replaced by
α(βthis.D/mγ(exps)).

If the method m is private in D , then callKind(α) = Special , otherwise
callKind(α) = Virtual .

The method chosen during compile-time determines the type of a method
invocation expression: T (α) is the return type of method m in D (see Ta-
ble 5.2). The compile-time information associated with the method invocation
is later used at run-time. If the invocation mode is

– Special , overriding is not allowed and the instance method m in class D is
called directly

– Virtual , then the instance method m is looked up dynamically starting at
the class of the target reference

– Super , the instance method m in class D is called directly

Example (; CD) 5.1.3. In the following example the method A/m(int) is
applicable at the method invocation m(i) in the method test in class B.

interface I { void m(int i); }
class A {
public void m(int i) { }

}
class B extends A implements I {
void test(int i) {
m(i);

}
}

The method I/m(int) is not applicable, because it is implemented by B.
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Example (; CD) 5.1.4. In the body of method test in the following class A,
the JDK 1.2 compiler accepts the first two invocations of m(x) and rejects
the third one as ambiguous. In all three cases, however, both methods I/m(J)
and J/m(I) are applicable, hence all three method invocations are ambiguous.

interface I {
void m(J x);

}
interface J extends I {
void m(I x);

}
abstract class A implements J {
void test(J x) {
this.m(x);
((A)x).m(x);
x.m(x);
}

}

If we use abstract classes instead of interfaces, then the JDK 1.2 compiler
correctly reports all three method invocations as ambiguous.

abstract class I {
abstract void m(J x);

}
abstract class J extends I {
abstract void m(I x);

}
abstract class A extends J {
void test(J x) {
this.m(x); // Reference to m is ambiguous.
((A)x).m(x); // Reference to m is ambiguous.
x.m(x); // Reference to m is ambiguous.

}
}

5.1.6 Instance creation expressions

Instance creation expressions are treated like ordinary method invocations.
An instance creation expression new C (exps) is transformed at compile-time
into the abstract form

(new C ).C/msig(exps),

where msig is a signature of a constructor of class C with name <init>. The
abstract expression new C creates a new reference to an instance of class C
which is the target reference of the invoked constructor. Since constructors
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Table 5.2 Type constraints for JavaO

αnull T (α) = Null

αthis T (α) = A, if the position α is in class A.
α(βexp instanceof A) T (α) = boolean. A is a reference type. It must be

possible that there is a class or array type C with
C � A and C � T (β) (see Exercise 5.2.6).

α((A) βexp) T (α) = A. A is a reference type. It must be pos-
sible that there is a class or array type C with
C � A and C � T (β) (see Exercise 5.2.6).

α(exp.C/field) T (α) is the declared type of field in class C .
α(exp1.C/field = γexp2) T (α) is the declared type of field in C , field is not

final in C , T (γ) � T (α).
αnewC .C/msig(exps) T (α) = C . C is a class and C is not abstract.
α(exp.C/msig(exps)) T (α) is the declared return type of method msig

in class or interface C .

Table 5.3 Type constraints after introduction of primitive type casts

exp1.C/field = γexp2 Let A be the declared type of field in C . If
A is primitive, then T (γ) = A.

exp0.C/msig(β1exp1, . . . ,
βn expn) If msig = meth(B1, . . . ,Bn) and Bi is a

primitive type, then T (βi) = Bi .

are not inherited, applicable constructors are always in the same class. The
callKind of a constructor invocation is Special .

5.1.7 Type checking of JavaO

The type constraints for JavaO are listed in Table 5.2. Some casts can be
proven incorrect at compile-time; such casts result in a compile-time error.
Consider a cast expression ‘(A) exp’. Assume that exp has type B . At run-
time the value of exp will belong to a class or array type C � B . The cast
will be allowed at run-time only if C � A. Hence, if the compiler is able to
prove that there exists no class or array type C such that C � A and C � B ,
the cast is not allowed. Details can be found in Exercise 5.2.6.

5.1.8 Vocabulary of JavaO

The following static functions look up compile-time information in the envi-
ronment:
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instanceFields: Class → Powerset(Class/Field)
defaultVal : Type → Val
type : Class/Field → Type
lookup : (Class,Class/MSig)→ Class

The function instanceFields calculates the set of instance fields declared by
the specified class and all of its superclasses (if any). Hence D/field belongs
to instanceFields(C ) iff C �h D and field is an instance field of D .

Example (; CD) 5.1.5. Consider the following two classes:

class A {
private int x;
public int y;
public static int z;

}
class B extends A {
private int x;

}

Then instanceFields(B) = [A/x, A/y, B/x]. An object of type B has fields A/x,
A/y, B/x. The field A/z is static and therefore not an instance field.

The function defaultVal maps types to their default values as specified in [18,
§4.5.4]. The function type returns the declared type of the field in the class.
The function lookup yields the class where the given method specification is
defined with respect to the class hierarchy. The function lookup(A,B/msig)
is computed as follows:

1. If class A contains a non abstract declaration of msig and
a) B is an interface, or
b) A/msig overrides B/msig (cf. Def. 4.1.9),

then lookup(A,B/msig) = A.
2. Otherwise, if C is the direct superclass of A, then

lookup(A,B/msig) = lookup(C ,B/msig).
3. Otherwise, A = Object and lookup(A,B/msig) = undef .

Example 5.1.6. This example illustrates some details of the dynamic method
lookup. Consider the following two packages:

package p;

public class A {
String m() { return "p"; }

public String n() { return this.m(); }
}
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package q;

public class B extends p.A {
public String m() { return "q"; }

public static void main(String[] _) {
B x = new B();
System.out.println(x.n());

}
}

The method p.A/m() is not visible in package q. Therefore the method q.B/m()
does not override p.A/m(). Although the variable x contains at run-time a
reference of type q.B, the output of the program is p. If the method p.A/m()
is declared public, then the output of the program will be q.

An object is an instance of a non abstract class. Objects are represented
by references (pointers). References belong to the dynamic universe Ref . We
extend the universe Val in JavaO to include references and the value null .

type Val = . . . | Ref | null

To model the dynamic state of objects, we have to reserve storage for all
instance variables and have to store to which class an object belongs. The
dynamic function heap records the class together with the field values of an
object. The function classOf returns the class of the object that is referred
to by the reference.

data Heap = Object(Class,Map(Class/Field ,Val))

heap : Ref → Heap
classOf : Ref → Class
classOf (ref ) = case heap(ref ) of

Object(c,fields)→ c

More precisely, if heap(ref ) = Object(C ,fields), then fields is a finite map
which assigns a value to each field in the list instanceFields(C ).

5.2 Transition rules for JavaO

The initial state and the termination conditions of JavaO are the same as
for JavaC . Since JavaO has only new expressions and no new statements,
the rules for JavaO extend only the expression evaluation rules of JavaI and
JavaC .

execJavaO =
execJavaExpO
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Fig. 5.2 Execution of JavaO expressions

execJavaExpO = case context(pos) of
this→ yield(locals( "this" ))

new c → if initialized(c) then create ref
heap(ref ) := Object(c, {(f , defaultVal(type(f )))

| f ∈ instanceFields(c)})
yield(ref )

else initialize(c)

αexp.c/f → pos := α
Iref .c/f → if ref 6= null then yieldUp(getField(ref , c/f ))

αexp1.c/f = βexp2 → pos := α
Iref .c/f = βexp → pos := β
αref .c/f = Ival → if ref 6= null then

setField(ref , c/f , val)
yieldUp(val)

αexp instanceof c → pos := α
Iref instanceof c → yieldUp(ref 6= null ∧ classOf (ref ) � c)

(c)αexp → pos := α
(c)Iref → if ref = null ∨ classOf (ref ) � c then yieldUp(ref )

αexp.c/mβ(exps)→ pos := α
Iref .c/mβ(exps) → pos := β
αref .c/mI(vals) → if ref 6= null then

let c′ = case callKind(up(pos)) of
Virtual → lookup(classOf (ref ), c/m)
Super → lookup(super(classNm(meth)), c/m)
Special → c

invokeMethod(up(pos), c′/m, [ref ] · vals)

An additional rule extends exitMethod , describing the special case of a return
from a constructor initialization method.

The expression evaluation machine execJavaExpO defined in Fig. 5.2
passes the control from object related expressions to the evaluation of the cor-
responding object expression, namely for field access, field assignment, type
check, type cast, instance method invocation and creation of a parametrized
new class instance (if the class is initialized). The machine execJavaExpO

treats this the way execJavaExpI handles local variables, upon invoking an
instance method it binds the value of this keyword to the reference for the
object for which the instance method is invoked [18, §15.7.2]. The expression
null is a literal with value null .
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execJavaExpO treats the access and the assignment to instance fields sim-
ilarly to how execJavaExpI deals with local variables, checking in addition
that the previously computed object, pointed to by the target reference, is
not null . The value of the computed expression, in the case of a field access,
is the value fields(f ) which is stored in the heap for the object pointed to by
the target reference ref [18, §15.10]; it is described by the function getField
below. In the case of a field assignment, the value of the computed expression
is the value of the right-hand side of this assignment [18, §15.25] which, using
setField , is stored in the heap to the field for the object pointed to by the
target reference.

getField(ref , f ) = case heap(ref ) of
Object(c,fields)→ fields(f )

setField(ref , f , val) =
heap(ref ) := Object(c,fields ⊕ {(f , val)})
where Object(c,fields) = heap(ref )

For type check and cast expressions execJavaExpO passes the dynamic type
condition of the computed subexpression up to the expression. The semantics
of instance method calls as defined by execJavaExpO [18, §15.11] is similar to
that defined by execJavaExpC for static method calls in that the evaluation
of the arguments of the call (which includes the binding of the reference
target to this) is guaranteed to happen before the values of these arguments
are bound through invokeMethod to the method parameters. In addition,
before applying invokeMethod , the machine checks that the target reference
is defined; it determines dynamically the method body to be executed [18,
§15.11.4].

For the creation of a parametrized new class instance, execJavaExpO guar-
antees that the class get initialized before the parameter values are evaluated
in the left-to-right order. Only then a reference to the newly created object of
the specified class type is stored on the heap, together with new instances (in-
stantiated with their default values) of all the fields declared in the specified
class and its superclasses [18, §15.8], and the constructor method is invoked.

The exitMethod rule has to be extended for constructors. The result of a
constructor invocation with new is the newly created object which is stored
in the local environment as value for this.

exitMethod(result) =
. . .
elseif methNm(meth) = "<init>" ∧ result = Norm then

restbody := oldPgm[locals( "this" )/oldPos]
. . .

The effect of the execJavaExpO -extension of the exitMethod rule is the same
as if during the parsing and elaboration phase a ‘return this’ is inserted at
the end of each constructor. Exercise 5.2.7 shows why we have to adapt the
exitMethod rule.
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5.2.1 Exercises

Exercise 5.2.1. Which of the following subtype relations are true in JavaO?

1. int[ ] � Object[ ]
2. java.lang.Integer[ ] � Object[ ]
3. int[ ][ ] � Object[ ]
4. int[ ][ ][ ] � Cloneable[ ]
5. byte[ ][ ] � long[ ][ ]

Exercise (; CD) 5.2.2. What is the output of the following program?
How many fields has an object of type B?

class A { int i = 0; }
class B extends A { int i = 1; }
class Test {
public static void main(String[] args) {
B b = new B();
System.out.println(b.i);
System.out.println(((A)b).i);

}
}

What are the abstract forms of the field access expressions b.i and ((A)b).i
after parsing and elaboration?

Exercise (; CD) 5.2.3. What is the output of the following program?

class A {
private String m() { return "A/m()"; }
public String n() { return "A/n()"; }
void test() {
System.out.println(this.m());
System.out.println(this.n());

}
}

class B extends A {
public String m() { return "B/m()"; }
public String n() { return "B/n()"; }

}

class Test {
public static void main(String[] argv) {
B b = new B();
b.test();

}
}
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Which methods are selected by the compiler? What is their invocation mode?
Which methods are invoked at run-time?

Exercise (; CD) 5.2.4. What is the output of the following program?

class Cell {
private int content;
public int get(){ return content; }
public void set(int i){ content = i; }
public void inc(int i){ set(get() + i); }

}

class BackupCell extends Cell {
private int backup;
public void set(int i){ backup = get(); super.set(i); }
public void restore(){ super.set(backup); }

}

class Test {
public static void main(String[] args){
BackupCell c = new BackupCell();
c.set(1);
c.inc(2);
System.out.println(c.get());
c.restore();
System.out.println(c.get());

}
}

Explain how backup cells work.

Exercise 5.2.5. The subtype relation � for reference types is inductively
defined in Def. 5.1.2. It can be characterized directly as follows. Let A ρ B
iff one of the following conditions is true:

1. A �h B , or
2. B = Object, or
3. A = Null, or
4. A is an array type and B ∈ {Cloneable, Serializable}, or
5. there is an n ∈ N and C , D such that n > 0, A = C [ ]n , B = D [ ]n and

a) D is a primitive type and C = D , or
b) D is a class or interface and C �h D , or
c) D = Object and C is a reference type , or
d) D ∈ {Cloneable, Serializable} and C is an array type.

Show that the relation ρ has the following properties:

1. A ρ A.
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2. If A ρ B and B ρ C , then A ρ C .
3. If A ρ B , then A[ ] ρ B [ ].
4. If A ρ B , then A � B .
5. If A ρ B and B ρ A, then A = B .

It follows that A ρ B ⇔ A � B . Hence the relation ρ is a direct characteri-
zation of the subtype relation �.

Exercise 5.2.6. Let A, B , C reference types with C 6= Null, C � A and
C � B . Show that at least one of the following conditions is satisfied:

1. A � B , or
2. B � A, or
3. A and B are interfaces which do not contain methods with the same

signature but different return type, or
4. A is an interface and B is a non-final class, or
5. B is a Interface and A is a non-final class, or
6. there is an n ∈ N and types E , F such that n > 0, A = E [ ]n , B = F [ ]n

and
a) E and F are interfaces which do not contain methods with the same

signature but different return type, or
b) E is a interface and F is a non-final class, or
c) F is a Interface and E is a non-final class.

The conditions above are listed in the JLS [18, §5.5].

Exercise 5.2.7. Consider the following Java statement:

Test t = new Test();

Assume we have not extended the exitMethod rule for constructor invoca-
tion. Explain why our Java ASM would stop after evaluating the expression
new Test() instead of assigning the result to variable t .





6. The exception-handling extension JavaE of
JavaO

JavaE extends JavaO with exceptions, designed to provide support for recov-
ering from abnormal situations. In this extension of the previous machines
it becomes transparent how break and continue statements (in JavaI),
return statements (in JavaC) and the initialization of classes and interfaces
(in JavaO) interact with catching and handling exceptions. When a Java
program violates certain semantic constraints at run-time, the JVM signals
this error to the program as an exception. The control is transferred, from
the point where the exception occurred, to a point that can be specified by
the programmer. An exception is said to be thrown from the point where it
occurred, and it is said to be caught at the point to which control is trans-
ferred. Exceptions are represented in Java by instances of subclasses of the
class Throwable. Java distinguishes between run-time exceptions (which cor-
respond to invalid operations violating the semantic constraints of Java, like
an attempt to divide by zero or to index an array outside its bounds), errors
(which are failures detected by the executing machine), and user-defined ex-
ceptions. We consider here only run-time and user-defined exceptions, since
errors belong to the JVM and are therefore ignored in the dynamic semantics
of Java.

In Sect. 6.1 we describe the static and in Sect. 6.2 the dynamic part of
the semantics of JavaE .

6.1 Static semantics of JavaE

The direct subclasses of Throwable are Error and Exception. One of the
direct subclasses of Exception is the class RuntimeException. A class E is
called a checked exception class, if

1. E �h Throwable,
2. E 6�h Error,
3. E 6�h RuntimeException.

The checked exceptions which a method may throw have to be declared in
the throws clause of the method. A throws clause has the following syntax:

meth(D1 x1, . . . ,Dn xn) throwsE1, . . . ,En body



88 6. The exception-handling extension JavaE of JavaO

Fig. 6.1 Syntax of JavaE

Stm ::= . . . | throw Exp;
| try Block catch (Class1 Loc1) Block1 . . . catch (Classn Locn) Blockn

| Stm finally Block

The classes Ei must be subclasses of Throwable, i.e., Ei �h Throwable.

Definition 6.1.1. Let A and B be classes or interfaces. We say that a
method msig throws more specific exceptions in A than in B , if for each
class E occurring in the throws clause of msig in A there exists a class F in
the throws clause of msig in B such that E �h F .

It is allowed to restrict the exceptions that might be thrown when a method
is overridden or implemented. It is not allowed to introduce new exceptions
in the throws clause when a method is overridden or implemented.

Constraint 6.1.1 (Overriding). If a method A/msig directly overrides
B/msig , then msig throws more specific exceptions in A than in B .

Constraint 6.1.2 (Implementing). Assume that I is an interface and

1. I /msig is visible in A,
2. C/msig is visible in A.

Then msig throws more specific exceptions in C than in I .

The syntax of JavaE in Fig. 6.1 defines the extension of JavaO by the two
statements of Java which are related to exceptions. A try-catch statement
can have an arbitrary number of catch clauses. A catch clause is also called
an exception handler. The scope of the parameter loc of a catch clause is the
block of the clause. The statement stm in a finally statement ‘stm finally
block ’ must be a try-catch statement.

Definition 6.1.2. We say that an exception E is allowed at a position α, if
one of the following conditions is true:

1. E �h Error, or
2. E �h RuntimeException, or
3. the position α is in a try block and at least one catch clause of the try

statement has a parameter of type F such that E �h F , or
4. the position α is in the body of a method or constructor declaration and

there exists a class F in the throws clause of the declaration such that
E �h F .

The following lemma is used in the proof of the type soundness theorem
(Theorem 8.4.1).
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Table 6.1 Type constraints for JavaE

catch (E loc) block E �h Throwable.

throw αexp; T (α) �h Throwable and T (α) is allowed at posi-
tion α according to Def. 6.1.2.

α(exp0.C/msig(exps)) Each class E occurring in the throws clause
of msig in C is allowed at position α according
to Def. 6.1.2.

αC .msig(exps) Each class E occurring in the throws clause
of msig in C is allowed at position α according
to Def. 6.1.2.

Lemma 6.1.1. If E is allowed at position α and F �h E , then F is allowed
at position α.

The static type constraints for exceptions are listed in Table 6.1. The sub-
classes of class RuntimeException are unchecked exception classes and are
therefore exempted from compile-time checking. Many of the operations and
constructs of Java can result in runtime exceptions.

6.1.1 Vocabulary of JavaE

Since throwing an exception completes the computation of an expression or a
statement abruptly, we introduce a new type of reasons of abruptions, namely
references Exc(Ref ) to an exception object.

data Abr = Break(Lab) | Continue(Lab) | Return | Return(Val) | Exc(Ref )

Exceptions propagate through the grammatical block structure of a method
and up the method call stack to the nearest dynamically enclosing catch
clause of a try-catch statement that handles the exception. A catch clause
handles an exception, if the exception object is compatible with the declared
type. The try-finally statements provided by Java are generally used to
clean-up after the try clause. A try-finally statement is executed when its
try block—regardless of how it completes—has been executed.

6.2 Transition rules for JavaE

JavaE is initialized like JavaO the execution is assumed to start normally.
JavaE provides new statements and handling of run-time exceptions, which
may occur during expression evaluation. Therefore the machine execJavaE

consists of two submachines, to be defined below, consisting of additional
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rules for the new statements and for the handling of some characteristic
expression evaluation exceptions.

execJavaE =
execJavaExpE

execJavaStmE

The execution of throw, try, finally statements is started by the sub-
machine execJavaStmE , defined in Fig. 6.2, by passing the control to the
evaluation of the related exception expression or to the execution of the first
direct substatement. When the exception value ref of a throw statement has
been computed, and if it turns out to be null , a NullPointerException is
reported to the enclosing phrase using failUp, which allocates a new object
for the exception and throws the exception (whereby the execution of the
corresponding finally code starts, if there is some, together with the search
for the appropriate exception handler). When appropriate we use fail instead
of failUp to substitute the current phrase by the corresponding exception.

failUp(exc) = yieldUp(throw new exc(); )
fail(exc) = yield(throw new exc(); )

If the exception value ref of a throw statement is not null , the abruption
Exc(ref ) is passed up to the (position of the) throw statement, thereby
abrupting the control flow with the computed exception as reason [18, §14.16].

Upon normal completion of a try statement, the machine passes the con-
trol to the parent statement, whereas upon abrupted completion the machine
attempts to catch the exception by one of the catch clauses. The catching
condition is the compatibility of the class of the exception with one of the
catcher classes. If the catching fails, the exception is passed to the parent
statement, as is every other abruption which was propagated up from within
the try statement; otherwise the control is passed to the execution of the
relevant catch statement. Upon normal completion of this statement, the
machine passes the normal control up, whereas upon abrupted completion
the new exception is passed up to the parent statement.

For a finally statement, upon normal or abrupted completion of the
first direct substatement, the control is passed to the execution of the second
direct substatement, the finally statement proper. Upon normal completion
of this statement, the control is passed up, together with the possible reason
of abruption, the one which was present when the execution of finally
statement proper was started, and which in this case has to be resumed after
execution of the finally statement proper. However, should the execution
of this finally statement proper abrupt, then this new abruption is passed
to the parent statement.

Exceptions are passed up when they have been propagated to the position
directly following a label.

There is a special case which has to be added, namely uncaught excep-
tions in class initializers. For them Java specifies the following strategy. If,
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Fig. 6.2 Execution of JavaE statements

execJavaStmE = case context(pos) of
throw αexp;→ pos := α
throw Iref ;→ if ref = null then failUp(NullPointerException)

else yieldUp(Exc(ref ))

try αstm catch . . . → pos := α
try INorm catch . . . → yieldUp(Norm)
try IExc(ref ) catch (c1 x1) β1stm1 . . . catch (cn x n) βn stmn →

if ∃ 1 ≤ j ≤ n : classOf (ref ) �h cj then
let j = min{i | classOf (ref ) �h ci}
pos := βj

locals := locals ⊕ {(xj , ref )}
else yieldUp(Exc(ref ))

try Iabr catch (c1 x1) β1stm1 . . . catch (cn x n) βn stmn → yieldUp(abr)
try αExc(ref ) . . . catch (ci x i)

INorm . . . → yieldUp(Norm)
try αExc(ref ) . . . catch (ci x i)

Iabr . . . → yieldUp(abr)

αstm1 finally βstm2 → pos := α
INorm finally βstm → pos := β
Iabr finally βstm → pos := β
αs finally INorm → yieldUp(s)
αs finally Iabr → yieldUp(abr)

lab : IExc(ref ) → yieldUp(Exc(ref ))
static αExc(ref )→

if classOf (ref ) �h Error then
yieldUp(Exc(ref ))

else
failUp(ExceptionInInitializerError)

Exc(ref )→ if pos = firstPos ∧ ¬null(frames) then
exitMethod(Exc(ref ))
if methNm(meth) = "<clinit>" then

classState(classNm(meth)) := Unusable

during execution of the body of a static initializer, an exception is thrown,
and if this is not an Error or one of its subclasses, throw ExceptionIn-
InitializerError. If the exception is compatible with Error, then the ex-
ception is rethrown in the directly preceding method on the frames stack.

If the attempt to catch a thrown exception in the current method fails,
i.e., when pos reaches firstPos, the exception is passed to the invoker of this
method (if there is some), to continue the search for an exception handler
there. If the current method is a class initializer, then the corresponding class
becomes unusable.

A throw statement can be user-defined, whereby an exception is thrown
explicitly. A throw statement can also be due to the occurrence of run-time
exceptions which are thrown, if certain semantic constraints for binary op-
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Fig. 6.3 Execution of JavaE expressions

execJavaExpE = case context(pos) of
αval1 bop Ival2 → if bop ∈ divMod ∧ isZero(val2) then

failUp(ArithmeticException)
Iref .c/f → if ref = null then failUp(NullPointerException)
αref .c/f = Ival → if ref = null then failUp(NullPointerException)
αref .c/mI(vals)→ if ref = null then failUp(NullPointerException)
(c)Iref → if ref 6= null ∧ classOf (ref ) 6� c then

failUp(ClassCastException)

erations, target expressions and reference type cast expressions do not hold.
The submachine execJavaExpE in Fig. 6.3 defines the semantics of three char-
acteristic run-time exceptions which can occur. A binary expression throws
an ArithmeticException, if the operator is an integer division or remainder
operator and the right operand is 0 [18, §15.13, 15.14]. An instance target
expression throws a NullPointerException, if the operand is null . A refer-
ence type cast expression throws a ClassCastException, if the value of the
direct subexpression is neither null nor compatible with the required type
[18, §15.15].

If the current class is in an erroneous state, then initialization is not
possible and a NoClassDefFoundError is thrown. This is expressed by the
following extension in JavaE of the rule initialize from JavaC :

initialize(c) =
. . .
if classState(c) = Unusable then

fail(NoClassDefFoundErr)

In JavaE the definition of propagation of abruptions is refined for jump and
return instructions, to the effect that try statements suspend these abrup-
tions for execution of relevant finally code. As explained above, after the
execution of this finally code, that abruption will be resumed (unless dur-
ing the finally code a new abruption did occur which cancels the original
one).

propagatesAbr(phrase) =
phrase 6= lab : s ∧
phrase 6= static s ∧
phrase 6= try . . . ∧
phrase 6= s1 finally s2

Example (; CD) 6.2.1. The following program shows that, if a return ex-
pression is included in a try block, then the finally block is executed before
the expression is returned.
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int m(int i) {
try {
return i + i;

} finally {
return i * i;

}
}

Since the finally block contains another return expression, the value of
i * i is returned and the value i + i is discarded.

6.2.1 Exercises

Exercise (; CD) 6.2.1. What is the output of the following program?

class Test {
public static void main(String[] argv) {
int i = 0;

l1: while (i < 5) {
try {
if (i == 2) break l1;

}
finally { i = i + 1; }

}
System.out.println(i);

}
}

Exercise (; CD) 6.2.2. What is the output of the following program?

class E extends Exception {
public int contents;
public E(int i) { contents = i; }
public String toString() {
return "E(" + contents + ")";

}
}

class Test {
public static void main(String[] argv) {
for (int i = 0; i < 4; i++) {
try { test(i); }
catch (Exception e) {
System.out.println("test(" + i + ") threw " + e);

}
}
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}
public static int test(int i) throws E {
try {

if (i < 3)
throw new E(10 / i);

else
return 0;

}
finally {

System.out.println("test(" + i + ") done");
}

}
}

Exercise (; CD) 6.2.3. What is the output of the following program?

public class Test {
public static void main(String[] argv) {
for (int i = 0; i < 4; ++i) {
try { m(i); }
catch (Exception e) {
System.out.println(e + " handled in main");

}
}

}
public static void m(int i) throws Exception {
try {
System.out.println("m(" + i + ") called");
if (i % 2 == 0) throw new Exception("m(" + i + ")");

}
catch (Exception e) {
System.out.println(e + " handled in m(" + i + ")");
throw e;

}
finally {
System.out.println("m(" + i + ") done");

}
}

}



7. The concurrent extension JavaT of JavaE

The abstract state machine execJava defines the behavior of Java executing a
single phrase at a time and by a single thread. In this chapter we extend JavaE
to JavaT so that execJava can be embedded into a machine execJavaThread ,
for multithreaded Java, which provides support for execution of multiple
tasks with shared main and local working memory. We consider the mech-
anisms Java provides for thread creation and destruction, for synchronizing
the concurrent activity of threads using locks, and for waiting and notification
introduced for an efficient transfer of control between threads. We describe
the methods for starting (start), interrupting (interrupt), suspending (wait),
and resuming (notify) threads as normal methods, which for the purpose of
executability are included here into native methods.

The reference manual [18] specifies a memory model for shared memory
multiprocessors that support high performance implementations. It allows
objects to reside in main and local working memory, and presents rules spec-
ifying when a thread is permitted or required to transfer the contents of its
working copy of an instance variable into the master copy in main memory,
or vice versa. To separate this memory model—which “details the low-level
actions that may be used to explain the interaction of Java Virtual Machine
threads with a shared memory” [23, page 371]—from the semantics of the
mechanisms defined by the language for thread creation, destruction, syn-
chronization and for waiting and notification, we define here a model which
uses only the main memory for storing objects, and which agrees for best
practice programs with the memory model in [18].

In Sect. 7.1 we describe the static semantics of JavaT and in Sect. 7.2
the rules which define its dynamic semantics. In Sect. 7.3 we formulate and
prove some thread invariants, expressing in particular the correctness of the
thread synchronization mechanism without commitment to any particular
scheduling scheme.
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Fig. 7.1 Syntax of JavaT

Stm := . . . | synchronized (Exp) Stm

7.1 Static semantics of JavaT

7.1.1 Vocabulary of JavaT

Threads are concurrent, independent processes, running within a single pro-
gram. We describe them as elements of a universe Thread , i.e., the do-
main of objects belonging to the class Thread through which threads are
represented and controlled in Java. Since threads are objects, the universe
Thread is a subset of Ref . A pointer q is in Thread iff q ∈ dom(heap) and
classOf (q) �h Thread. Every thread q executes the machine execJava, but it
does it on its own continuation cont(q), consisting of its frame stack frames
and its current frame (meth, restbody , pos, locals). The continuation is local
to the thread and cannot be accessed by other threads. It is used to restore
the values of meth, restbody , pos, locals and frames, when q becomes the
current thread.

cont : Thread → (Frame∗,Frame)

Threads exchange information among each other by operating on objects
residing in shared main memory, which is modeled by the functions globals
and heap.

The extension of the syntax of JavaE in JavaT by synchronization state-
ments is given in Fig. 7.1. The type of the expression Exp in a synchronized
statement must be a reference type.

To synchronize threads, Java uses monitors, a mechanism for allowing
only one thread at a time to execute a region of code protected by the mon-
itor. The behavior of monitors is formulated in terms of locks, which are
uniquely associated with objects. When a synchronized statement is pro-
cessed, the executing thread must grab the lock which is associated with the
target reference, to become the owner of the lock, before the thread can con-
tinue. Upon completion of the block, the mechanism releases that very same
lock. We use a dynamic function sync to keep track of the dynamic nestings of
synchronized statements; sync(q) denotes the stack of all references grabbed
by thread q . Since a single thread can hold a lock more than once, we have
to define also dynamic lock counters.

sync : Thread → Ref ∗

locks : Ref → Nat

To assist communication between threads, each object also has an associated
wait set of threads, which are waiting for access to this object. Wait sets are
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used by the wait and notify methods of class Object. The wait method
allows a thread to wait for a notification condition. Executing wait adds the
current thread to the wait set for this object and releases the lock—which
is reacquired, to continue processing, after the thread has been notified by
another thread. Wait sets are modeled by a dynamic function

waitSet : Ref → Powerset(Thread)

Every thread can be in one of five execution modes. This is modeled using
the following dynamic function:

exec: Thread → ThreadState

where the universe ThreadState of thread execution modes is defined by

data ThreadState = NotStarted | Active | Synchronizing
| Waiting | Notified | Dead

As will be defined below, a thread T is in the state exec(T ) = NotStarted ,
from the moment it is created, until the start method of the Thread object is
called, whereby it becomes Active. A thread gets into the Synchronizing state
by execution of a synchronization statement on an object of which it does
not have a lock. The object it is competing for is stored using the dynamic
function syncObj .

syncObj : Thread → Ref

A thread in the Waiting state cannot be run, because a wait method has
been called. The thread is waiting for the notification of an object. The object
it is waiting for is given by the dynamic function waitObj .

waitObj : Thread → Ref

A thread who is waiting for regaining the abandoned locks on an object gets
Notified (and thereby leaves its waiting mode and can compete for being
selected again for execution) through the action of another thread, who ex-
ecutes the notify method. A thread in the Notified state is re-enabled for
thread scheduling. A thread becomes Dead when it has terminated the exe-
cution of its code.

The interrupt method is an asynchronous method which may be invoked
by one thread to affect the execution of another thread. We use a dynamic
function to signal if a thread has been interrupted:

interruptedFlag : Thread → Bool

The Java reference manual [18] leaves the scheduling strategy open. Although
the language designers had a pre-emptive priority-based scheduler in mind,
they explicitly say that there is no guarantee for threads with highest priority
to be always running. Therefore we abstract from priority based scheduling
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and formalize the scheduling strategy by a not furthermore specified selection
function “choose”, which is used in the machine execJavaThread below. That
machine will call the submachine execJava, to be executed by the thread
which has been chosen to be the currently running active thread and is kept
in the dynamic constant thread . To achieve this goal we define in the next
section the submachine execJavaT of execJava, which provides the semantics
for the new statement appearing in JavaT .

7.2 Transition rules for JavaT

The initial state of JavaT is defined as for JavaE , but started with a single
thread, namely the runnable, active, current thread . Execution of the machine
execJavaThread , into which execJava is embedded, continues until there are
no more runnable threads. We first define JavaT then execJavaThread and
finally the rules for starting, interrupting, notifying, and putting threads to
waiting.

The additional rules for JavaT define the semantics for the new synchro-
nization statement and for the extension of the rules for exiting an initializa-
tion method or for exiting the code of a thread.

execJavaT =
execJavaStmT

The rules for execJavaStmT in Fig. 7.2 start the execution of a synchronized
statement by passing the control to the evaluation of the synchronization
expression.

Once the synchronization expression has been evaluated, execJavaStmT

attempts to grab the lock of the object denoted by the target reference,
provided it is not null . If it is null , a NullPointerException is thrown.
Otherwise execJavaStmT checks whether the current thread already holds
the lock of that object. In case it does, the current thread grabs the lock once
more, namely by pushing it onto the sync stack, it increments the lock counter
and passes the control to the execution of the protected statement. Otherwise
the current thread is put into synchronization mode (and its continuation
and its synchronization object are stored), so that it now participates in the
competition on getting activated by execJavaThread .

Upon normal completion of the protected statement, using the rule
releaseLock , the lock which was grapped last by the thread is released, by
popping it from the sync stack, the lock counter is decremented, and the
control is passed up.

releaseLock(phrase) =
let [p] · rest = sync(thread)
sync(thread) := rest
locks(p) := locks(p)− 1
yieldUp(phrase)
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Fig. 7.2 Execution of JavaT statements

execJavaStmT = case context(pos) of
synchronized (αexp) βstm → pos := α
synchronized (Iref ) βstm →

if ref = null then failUp(NullPointerException)
else

if ref ∈ sync(thread) then
sync(thread) := [ref ] · sync(thread)
locks(ref ) := locks(ref ) + 1
pos := β

else
exec(thread) := Synchronizing
syncObj (thread) := ref
cont(thread) := (frames, (meth, restbody , β, locals))

synchronized (αref )INorm → releaseLock(Norm)
synchronized (αref )Iabr → releaseLock(abr)

static Iabr → notifyThreadsWaitingForInitialization
abr → if pos = firstPos ∧ null(frames) then killThread

Similarly, when an abruption is detected during the execution of a synchro-
nized statement, releaseLock passes the abruption up. For this purpose, in
JavaT the definition of propagatesAbr is refined to its final version, including
also synchronized statements into those which do not propagate abruptions.

propagatesAbr(phrase) =
phrase 6= lab : s ∧
phrase 6= static s ∧
phrase 6= try . . . ∧
phrase 6= s1 finally s2 ∧
phrase 6= synchronized s

Should the attempt to handle the abruption reaches the starting position of
the code of the current thread, with an empty frame stack, the thread notifies
all the threads who are waiting for him and dies.

killThread =
waitSet(thread) := ∅
exec(thread) := Dead
forall q ∈ waitSet(thread)

exec(q) := Notified

Except for the remaining case of a thread which abrupts an initialization
method, which will be explained below, this concludes the extension of
execJava by the submachine execJavaT , which defines the behavior of any
current single thread. What remains to do is to refine some of the rules in
the previous machines.



100 7. The concurrent extension JavaT of JavaE

When creating a new thread, i.e., a member of class Thread its mode has
to be initialized (to NotStarted) and its locks stack and is wait set have to be
initialized to empty. Formally this comes up to extend the definition of new
which was given in the submachine execJavaExpO of JavaO on Page 81 by
the following new definition:

waitSet(ref ) := ∅
locks(ref ) := 0
if c �h Thread then

exec(ref ) := NotStarted
sync(ref ) := [ ]
interruptedFlag(ref ) := False

Similarly we have to extend the definition of initialization. Initialization of
a class or interface in JavaT requires synchronization, since several threads
may be trying simultaneously to do this initialization. If initialization by one
thread is InProgress, other threads have to wait, until the initialization is
done or an Error occurs. To distinguish the thread that actually initializes a
class from those that wait for it, we use two dynamic functions; initThread(c)
is the thread that initializes class c; initWait(c) is the set of threads waiting
for the initialization of class c.

initThread : Class → Thread
initWait : Class → Powerset(Thread)

The definition of the predicate initialized has to be sharpened by adding the
description of the initializing thread in case an initialization is InProgress.

initialized(c) =
classState(c) = Initialized ∨
classState(c) = InProgress ∧ initThread(c) = thread

Hence, a class c is not initialized , if one of the following is true:

– classState(c) = Linked
– classState(c) = Unusable
– classState(c) = InProgress and initThread(c) 6= thread

To initialize a class or interface, one has first to synchronize on the Class
object. When a class is linked, the current thread is recorded as the initial-
izing thread, and no other threads are waiting for initializing this class. If
initialization is InProgress, then upon attempting to initialize the class, the
currently executing thread is set to mode Waiting , it is put into the list
of threads which are waiting to initialize the class, and its current state is
stored. This is formalized by the following two new rules to be added to the
definition of initialize(c) which was defined in Page 64:
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if classState(c) = Linked then
initWait(c) := ∅
initThread(c) := thread

if classState(c) = InProgress ∧ initThread(c) 6= thread then
exec(thread) := Waiting
cont(thread) := (frames, (meth, restbody , pos, locals))
initWait(c) := initWait(c) ∪ {thread}

Upon abrupting an initialization method of a class c, the current thread has
to notify the threads in initWait(c). This is captured by the following rule
which is used in that case in Fig. 7.2:

notifyThreadsWaitingForInitialization =
let c = classNm(meth)
initWait(c) := ∅
initThread(c) := undef
forall q ∈ initWait(c)

exec(q) := Active

7.2.1 Scheduling of multiple threads

There are various ways to incorporate execJava into a machine which han-
dles the scheduling of multiple threads. The machine defined in [9] uses
for this purpose distributed ASMs, but it does not lead to an executable
model. We therefore choose here a different approach and define a machine
execJavaThread , which can and has been made executable by AsmGofer (see
Chapter A), and which provides an abstract scheduling mechanism through
which, at each moment, one thread is selected to execute execJava. In or-
der not to commit, at the level of specification, to any particular selection
mechanism, we use instead a not furthermore specified choice function.

At each moment one of the runnable threads is chosen. If it happens
to be the currently executed and still active thread , then it is confirmed as
agent to execute the machine execJava defined above. Otherwise the current
thread gets its state stored for future continuation of its computation, and it
is replaced by the newly chosen thread, which is started to run execJava (see
the definition below).

execJavaThread =
choose q ∈ dom(exec), runnable(q)

if q = thread ∧ exec(q) = Active then
execJava

else
if exec(thread) = Active then

cont(thread) := (frames, (meth, restbody , pos, locals))
thread := q
run(q)

The runnable threads among which the next one is chosen for executing
execJava are those who are either active, or trying to synchronize on an



102 7. The concurrent extension JavaT of JavaE

object, or whose waiting period has ended (through a notification from some
other thread, so that they can again compete for execution).

runnable(q) =
case exec(q) of

Active → True
Synchronizing → locks(syncObj (q)) = 0
Notified → locks(waitObj (q)) = 0

The rule used by execJavaThread for putting a thread back to run execJava
switches the context back and synchronizes or wakes up the thread, depending
on its current mode.

run(q) =
switchCont(q)
if exec(q) = Synchronizing then

synchronize(q)
if exec(q) = Notified then

wakeup(q)

The rules to switch context, to synchronize, and to wakeup a thread which
has been selected for being run, reestablish the state of the thread as current
state and make the thread active; synchronize also puts the synchronizing
expression value on top of the sync stack and updates the lock counter,
whereas wakeup lets the woken up thread reacquire all its synchronization
claims on the synchronizing object.

switchCont(q) =
let (frames ′, (meth ′, restbody ′, pos ′, locals ′)) = cont(q)
exec(q) := Active
meth := meth ′

restbody := restbody ′

pos := pos ′

locals := locals ′

frames := frames ′

The rules synchronize and wakeup do not need to include the update
exec(q) := Active because this update is executed as part of switchCont ,
which is executed each time synchronize or wakeup is called in run(q).

synchronize(q) =
sync(q) := [syncObj (q)] · sync(q)
locks(syncObj (q)) := 1

wakeup(q) =
locks(waitObj (q)) := occurrences(waitObj (q), sync(q))

The function occurrences(x , l) returns the number of occurrences of the ele-
ment x in the list l .

Our abstract scheduling mechanism does not exclude the possibility that
the machine execJavaThread stops executing threads and switches contexts
only. It could happen that it continuously switches the contexts of two threads
without executing any computation steps of the single threads.
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7.2.2 Thread methods

In this section we specify the thread methods for starting, interrupting, sus-
pending and resuming threads. They all belong to the Java class Thread and
are incorporated here as native methods, to make them usable in the exe-
cutable version of our model execJavaThread . A native method is called with
a list values of arguments; the first argument values(0) is the value of the
object on which the method is called except Thread/interrupted which is
a static method.

invokeNative(meth, values)
| meth = Thread/start() = start(values(0))
| meth = Thread/interrupt() = interrupt(values(0))
| meth = Thread/interrupted() = interrupted
| meth = Thread/isInterrupted() = isInterrupted(values(0))
| meth = Object/wait() = wait(values(0))
| meth = Object/notify() = notify(values(0))
| meth = Object/notifyAll() = notifyAll(values(0))

There are two possibilities to create a new thread. The first one is to define
a subclass of class Thread and to create a new instance of the subclass. The
second possibility is to use the constructor Thread(Runnable) of class Thread.
For this purpose one has to define a class that implements the interface
Runnable. In each case, the start method of class Thread is used to cause
a thread to compete, by becoming active, for execution of the run method
of its Thread object [18, §20.20.14]. If the thread to be started has already
been started, an IllegalThreadStateException is thrown. The result of the
invocation of start is that two threads are running concurrently, namely the
current thread, which returns from the call to the start method, and the
thread represented by the target field, which executes its run method.

start(ref ) =
if exec(ref ) 6= NotStarted then

fail(IllegalThreadStateException)
else

let q = getField(ref , Thread/ "target" )
meth = lookup(classOf (q), Thread/run())/run()

exec(ref ) := Active
cont(ref ) := ([ ], (meth, body(meth),firstPos, {( "this" , q)}))
yieldUp(Norm)

The interrupt method of class Thread may be invoked by one thread to
interrupt another thread. An InterruptedException is thrown, if the thread
is waiting and not trying to initialize a class. If the thread is not waiting, then
the interrupt is asynchronous. The interruptFlag of the thread is set. It is the
programmer’s responsibility to check the flag from time to time, to respond
to the interrupt request. A thread therefore does not immediately react to
an interrupt signal.
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interrupt(q) =
yieldUp(Norm)
if exec(q) = Waiting ∧ ¬classInitialization(q) then

let (frames ′, (meth ′, restbody ′, pos ′, locals ′)) = cont(q)
let fail = restbody ′[throw new InterruptedException(); /pos ′]
let ref = waitObj (q)
waitSet(ref ) := waitSet(ref ) \ {q}
exec(q) := Notified
cont(q) := (frames ′, (meth ′, fail , pos ′, locals ′))
interruptedFlag(q) := False

else
interruptedFlag(q) := True

classInitialization(q) = q ∈ ran(initThread) ∨ q ∈
⋃

ran(initWait)

The method interrupted of class Thread is static and can be used to
check whether the current thread has been interrupted. The interruptedFlag
is cleared thereby.

interrupted =
if interruptedFlag(thread) then

interruptedFlag(thread) := False
yield(True)

else
yield(False)

The method isInterrupted of class Thread is an instance method, used to
check whether a given thread has been interrupted.

isInterrupted(q) =
if interruptedFlag(q) then

yieldUp(True)
else

yieldUp(False)

The wait method of class Object causes the current thread to enter mode
Waiting , until some other thread invokes the notify method for the underly-
ing object. The method can be called only when the current thread is already
synchronized on this object (in which case the method completes normally),
otherwise an IllegalMonitorStateException is thrown. Executing wait
adds the current thread to the wait set for the considered object, releases the
locks and stores the state of the current thread . The rule wait is executed
when the method wait is called.
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wait(ref ) =
if ref /∈ sync(thread) then

fail(IllegalMonitorStateException)
else

let ret = restbody [Norm/up(pos)]
waitSet(ref ) := waitSet(ref ) ∪ {thread}
locks(ref ) := 0
exec(thread) := Waiting
waitObj (thread) := ref
cont(thread) := (frames, (meth, ret , up(pos), locals))
yieldUp(Norm)

The notify method of class Object chooses one thread among those waiting
on the current object. The choice is left unspecified by the Java language
reference manual; we reflect this by using yet another not furthermore spec-
ified choice function. The chosen thread is removed from the wait set, and
its mode is changed from Waiting to Notified . The notify method may
be called only when the current thread is already synchronized on this ob-
ject (in which case the notify method completes normally), otherwise an
IllegalMonitorStateException is thrown.

notify(ref ) =
if ref /∈ sync(thread) then

fail(IllegalMonitorStateException)
else

yieldUp(Norm)
choose q ∈ waitSet(ref )

waitSet(ref ) := waitSet(ref ) \ {q}
exec(q) := Notified

There is a variant of the notify method which notifies all the threads which
are waiting on the current object, and empties its waiting set.

notifyAll(ref ) =
if ref /∈ sync(thread) then

fail(IllegalMonitorStateException)
else

waitSet(ref ) := ∅
yieldUp(Norm)
forall q ∈ waitSet(ref )

exec(q) := Notified

7.2.3 Exercises

Exercise 7.2.1. Extend the rule execJavaThread such that each thread per-
forms at least one execution step when it is selected by the abstract scheduler.

Exercise 7.2.2. What happens if a thread is interrupted when it is waiting
for the initialization of a class, i.e., when it is in the set initWait(c) of some
class c?
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Exercise 7.2.3. Can a thread be interrupted when it is initializing a class?

Exercise 7.2.4. Assume that the interrupt flag of thread q has been set by
an invocation of the interrupt method. Assume that thread q continues its
execution ignoring the state of its interrupt flag. Assume that thread q puts
itself into the Waiting state by invoking the wait method on some object and
the interrupt flag is still True. What happens now if the interrupt method
is invoked on q?

7.3 Thread invariants

The list sync(q) of objects the thread q is synchronized on can be recon-
structed from the context of q . We start in the bottom frame of the stack
of q with an empty list. The bottom frame contains a position α and a rest-
body. Starting at the root position of the restbody we go downwards to α.
Each time we encounter a

synchronized (ref ) phrase,

where the path to α leads into phrase, we prepend the object ref to the list.
When we reach the position α, we continue with the second frame, and so on,
including the current frame. The list we obtain, on the way up in the frame
stack and down in the restbodies, is called syncFromCont(q) and will always
be the same as sync(q).

For the formulation of the invariants we use several predicates. The pred-
icate synchronizing(q , ref ) means that thread q is synchronizing on the ob-
ject ref . Thread q does not yet hold the lock of ref and is competing for it
with other threads. The predicate waiting(q , ref ) means that thread q has
called the wait method of the object ref and is waiting to be notified. The
predicate notified(q , ref ) means that another thread has called the notify
method of the object ref and thread q has been chosen to be notified.

synchronizing(q , ref ) =
exec(q) = Synchronizing ∧ syncObj (q) = ref

waiting(q , ref ) =
exec(q) = Waiting ∧ waitObj (q) = ref

notified(q , ref ) =
exec(q) = Notified ∧ waitObj (q) = ref

What does it mean that a thread holds the lock of an object? If q is synchro-
nized on ref , thenq holds the lock of ref . However, if q is waiting for ref or has
been notified by ref , then q temporarily releases the lock of the object ref .
This is expressed by the predicate locked(q , ref ).

locked(q , ref ) =
ref ∈ sync(q) ∧ ¬waiting(q , ref ) ∧ ¬notified(q , ref )
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We say that an object ref is locked, if there exists a thread q holding the
lock of ref .

locked(ref ) =
∃q ∈ dom(exec)(locked(q , ref ))

In JavaT , the following invariants are satisfied (they are formalized in the
theorem below):

1. The current thread is a valid thread.
2. The elements of the domain of exec are threads.
3. If the execution state of a thread is NotStarted , then the thread is not

synchronized on any object and is not in the wait set of any object.
4. If a thread is synchronized on an object, then the object is a valid refer-

ence in the heap.
5. If the state of a thread is synchronizing, then the thread is not already

synchronized on the object it is competing for. It can hold the lock of
other objects, and therefore block other threads from execution.

6. The list of synchronized objects, obtained from the context of a thread,
is the same as the sync list of the thread.

7. If a thread is waiting for an object, then it is synchronized on the object
and is in the wait set of the object. By definition, it does not hold the
lock of the object it is waiting for. However, it can hold the lock of other
objects, and therefore block other threads from execution.

8. A thread cannot be in the wait set of two different objects.
9. If a thread has been notified on an object, then it is no longer in the

wait set of the object. It is still synchronized on the object, but it does
not hold the lock of the object. It can hold the lock of other objects, and
therefore block other threads from execution.

10. If a thread has terminated normally or abruptly, then it does not hold
the lock of any object.

11. If a thread holds the lock of an object, then the lock counter of the
object is exactly the number of occurrences of the object in the list of
synchronized objects of the thread. It follows that, if the lock counter of
an object is zero, then no thread holds the lock of the object.

12. It is not possible that two different threads hold the lock of the same
object.

13. If the lock counter of an object is greater than zero, then there exists a
thread which holds the lock of the object.

Theorem 7.3.1 (Synchronization). The following invariants are satisfied
for each thread q :

(thread) classOf (thread) �h Thread.

(exec1) dom(exec) is exactly the set of all threads.

(exec2) If exec(q) = NotStarted , then sync(q) = [ ].
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(sync1) If ref ∈ sync(q), then ref ∈ dom(heap).

(sync2) If synchronizing(q , ref ), then ref ∈ dom(heap), ref /∈ sync(q) and
[ref ] · sync(q) = syncFromCont(q).

(sync3) If exec(q) /∈ {Synchronizing ,NotStarted}, then
sync(q) = syncFromCont(q).

(wait1) If waiting(q , ref ), then q ∈ waitSet(ref ) and ref ∈ sync(q).

(wait2) If q ∈ waitSet(ref ), then q is a thread and waiting(q , ref ).

(notified) If notified(q , ref ), then q /∈ waitSet(ref ) and ref ∈ sync(q).

(dead) If exec(q) = Dead , then the frame stack of q is empty, waitSet(q) = ∅
and sync(q) = [ ].

(lock1) If locked(q , ref ), then locks(ref ) = occurrences(ref , sync(q)).

(lock2) If locked(q1, ref ) and locked(q2, ref ), then q1 = q2.

(lock3) If locks(ref ) > 0, then locked(ref ).

Proof. By induction on the number of steps in the run of the ASM. The
predicates synchronizing , waiting , notified , and locked depend on the dy-
namic functions sync, exec, syncObj , and waitObj only. These functions as
well as the dynamic functions cont , thread , locks and waitSet are not up-
dated in execJava, except in execJavaT or when new instances of objects are
created. Hence the critical cases are in execJavaThread and execJavaT . ut

Exercise 7.3.1. Derive the following statements from the thread invariants:

1. If exec(q) = NotStarted , then q is in no waitSet .
2. No thread is in the waitSet of two objects.

Exercise 7.3.2. Prove that a thread which has terminated abruptly or nor-
mally has no lock on any object.

Example (; CD) 7.3.1. The following example models a common situation.
Several authors are writing together a book. If an author holds the lock of
the book and the book is not yet finished, he does the following:

1. he appends a piece of text to the book;
2. he notifies another author (or the publisher);
3. he releases the lock of the book;
4. he waits until he gets notified himself.

If the book is finished, he notifies another author (or the publisher) and
terminates his work.
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class Author extends Thread {
private char letter;
private StringBuffer book;

Author(StringBuffer b,char c) { book = b; letter = c; }

public void run() {
synchronized (book) {
while (book.length() < 40) {
book.append(letter);
book.notify();
try { book.wait(); }
catch (InterruptedException e) { }

}
book.notify();

}
}

}

The publisher waits until the book is finished. He then prints the book and
notifies all waiting authors.

class Publisher extends Thread {
private StringBuffer book;

Publisher(StringBuffer b) { book = b; }

public void run() {
synchronized (book) {
while (book.length() < 40) {
book.notify();
try { book.wait(); }
catch (InterruptedException e) { }

}
System.out.println(book);
book.notifyAll();

}
}

}

The following program creates a book, 10 authors ‘A’, ‘B’, ‘C’, . . . , ‘J’ and a
publisher.

class Test {
public static void main(String[] _) {
StringBuffer book = new StringBuffer(40);
for (int i = 0; i < 10; ++i) {
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new Author(book,(char)(’A’ + i)).start();
}
new Publisher(book).start();

}
}

A possible output of the program is:

ABACDEFGHIJBACDEFGHIJBACDEFGHIJBACDEFGHI

The JLS does not specify the order of the letters. There are no constraints.
For example, the output of the program could start with a ‘J’. Or in an
extreme case, the publisher and the author ‘J’ could alternately lock the
book such that at the end the book consists of forty letters ‘J’. [In fact, this
happens sometimes with certain versions of Sun’s JDK.]
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In this chapter we analyze and prove some structural properties of Java runs
which are needed for the proof that Java is type safe (Theorem 8.4.1), and
for the correctness proof of the compilation of Java to JVM bytecode (Chap-
ter 14). This includes the reachability analysis for expressions and statements
(Sect. 8.2) and the rules of definite assignment for local variables (Sect. 8.3,
where we correct two inconsistencies in the rules defined in the JLS [19]).

8.1 Structural properties of Java runs

Most structural properties of Java runs are intuitively clear. Therefore a
reader not interested in the technical details of mathematical proofs should
skip this section and move directly to Sect. 8.3. Some structural properties
proved in this section are used for the proof that Java is type safe in Sect. 8.4.
Most structural properties are used later in the correctness proof of the com-
pilation of Java to bytecode of the JVM in Chapter 14.

The evaluation of expressions or statements may not terminate at all. An
expression can contain an invocation of a recursive function which does not
return. A statement can contain a loop which does not terminate. Our main
goal is to prove a theorem relating the states of a possibly infinite run of the
ASM of Java with the recursive structure of expressions and statements.

In order to prove properties about runs of ASMs it is convenient to add
the time as a subscript to the dynamic functions. Therefore by fn we denote
the dynamic function f in the nth state of the run of the ASM. For example,
posn is the value of the dynamic function pos in the nth state of a run of
execJavaThread .

To some dynamic functions we add threads as superscripts. For example,
posq

n is the value of pos for thread q in the nth state of the run. The thread
superscripts allow us to make statements about the local states of threads
without distinguishing between the current thread and other threads.

Definition 8.1.1 (Context functions). For each thread q the functions
framesq

n , methq
n , restbodyq

n , posq
n , localsq

n are defined in such a way that, if the
current thread in state n is q , then
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framesn= framesq
n , methn = methq

n , restbodyn= restbodyq
n ,

posn = posq
n , localsn= localsq

n .

If the current thread in state n is different from q , then

contn(q) = (framesq
n , (methq

n , restbodyq
n , posq

n , localsq
n)).

The functions are defined only if q is a valid pointer of type Thread in the
nth state of the run, i.e., if q ∈ dom(heapn) and classOfn(q) �h Thread.

When a thread executes Java code, control walks through the abstract
syntax trees of method bodies. It enters expressions and statements, evaluates
them and yields the results upwards for further processing. When methods
are invoked or classes are initialized, new frames are pushed on the stack of
the thread. When the methods return, the frames are popped again.

What does it mean that a thread is inside a phrase (expression or state-
ment) in a certain interval of the run of the ASM? It means that during the
interval the current position of the thread is always inside the phrase. Since
methods may be invoked inside the phrase, new frames are created and the
current position walks through the bodies of the invoked methods. Hence the
current position leaves the phrase, although in the view of the parent frame
the position is still inside the phrase.

We write l1 vpre l2, if the list l1 is a prefix of l2. For positions α and β,
α vpre β means that β is below α in the abstract syntax tree. For stacks,
frames1 vpre frames2 means that frames2 is an extension of frames1.

Definition 8.1.2 (Inside). Thread q is inside α on the interval [m,n], if
for all i with m ≤ i ≤ n

1. framesq
m vpre framesq

i ,
2. if framesq

m = framesq
i , then α vpre posq

i .

What does it mean that a thread enters a phrase in a certain state of the
run of the ASM? It means that in that state in the run, the thread is the active
thread and the phrase is the phrase at the current position in the body of
the current method, and it is unevaluated. At some positions, however, static
initializers are called for the initialization of classes. When control returns
from the class initialization, the phrase at the current position is still the
same as before the initialization and so the thread ‘enters’ the expression a
second time. This second ‘entering’ is excluded in the following definition.

Definition 8.1.3 (Enter). Thread q enters α at m, if

1. threadm = q ,
2. posm = α,
3. there is no k < m such that q is inside α on the interval [k ,m].
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What does it mean that a thread evaluates a phrase in a certain interval
of the run of the ASM? It means that the thread enters the phrase at the
beginning of the interval and stays inside the phrase during the interval. The
only changes made to restbody are inside the phrase. The local environment
can be changed and extended during the evaluation because expressions and
statements have side effects. The stacks of frames at the beginning and at
the end of the interval are the same.

Definition 8.1.4 (Evaluation). Thread q evaluates α on [m,n], if

1. q enters α at m,
2. q is inside α on the interval [m,n],
3. restbodyq

n = restbodyq
m [ϕ/α], where ϕ = restbodyq

n/α,
4. framesq

n = framesq
m ,

5. dom(localsq
m) ⊆ dom(localsq

n).

Given the endpoint of the evaluation of an expression or statement, the
beginning of the evaluation is uniquely determined, since it is not allowed
that the thread just returned from a class initialization.

Lemma 8.1.1. If q evaluates α on the interval [m,n] and q evaluates α on
the interval [m ′,n], then m = m ′.

The ASM formalism allows us to speak about steps in a run of a machine.
Since the steps in the run of JavaT are different from the steps of the single
threads, we need some terminology to speak about the steps of an individual
thread. The previous step of a thread is (the number of) its step which was
done in the last state in the run of the ASM where the thread has been the
current thread.

Definition 8.1.5 (Previous step). The previous step of thread q before n
is m, if

1. m < n,
2. threadm = q ,
3. for each i , if m < i < n, then threadi 6= q .

The walk of the current position through the body of a method can branch
at certain positions. For most positions in the abstract syntax tree, however,
when they are entered the preceding position is uniquely determined. It is
called the predecessor of the position.

Definition 8.1.6 (Predecessor). Position α is a predecessor of position β
in method µ (written α ≺µ β), if for each thread q of state n which is in µ
at n and enters β at n there is a previous step m of q before n such that

1. posq
m = α,

2. framesq
m = framesq

n ,
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Table 8.1 The direct subexpressions of an expression

Expression at position α Direct subexpressions of α
α(uop βexp) βexp
α(βexp1 bop γexp2) βexp1, γexp2

α(c.f = βexp) βexp
α(β1exp1, . . . ,

βn expn) β1exp1, . . . ,
βn expn

α(c.mβ(exps)) β(exps)
α(βexp instanceof c) βexp
α((c) βexp) βexp
α(βexp.c/f ) βexp
α(βexp1.c/f = γexp2) βexp1, γexp2

α(βexp.c/mγ(exps)) βexp, γ(exps)
αnew c.c/mβ(exps) β(exps)
α(βexp1[γexp2]) βexp1, γexp2

α(βexp1[γexp2] = δexp3) βexp1, γexp2, δexp3

α(newA[β1exp1] . . . [βn expn ][] . . . []) β1exp1, . . . ,
βn expn

3. restbodyq
m = restbodyq

n ,
4. localsq

m = localsq
n .

Lemma 8.1.2 (Predecessor). If the direct subexpressions (Table 8.1) of
αexp in the body of µ are β1exp1, . . . ,

βn expn , then a ≺µ β1 and βi ≺µ βi+1

for each i with 1 ≤ i < n. For other kinds of phrases the predecessors are
listed in Table 8.2.

Proof. By induction on the run of execJavaThread . If the rule executed in the
step of the ASM moves the current position upwards or does not move the
position at all, nothing has to be shown, because in that case by definition,
the thread in the current position does not enter an expression or statement.
Hence the rules which move the current positions inwards or forwards have
to be considered only. ut

The stack of a thread may grow and shrink. New frames are pushed on
the stack when class or instance methods are invoked, when class initializers
are executed, or when new instances are created and a constructor is called.
The positions which cause the growth of the stack are categorized as follows:

Definition 8.1.7 (Position categories). We say that

1. position β is a method invocation position for α in:
αc.mβ(exps)
α(exp.c/mβ(exps))
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Table 8.2 The predecessors of expressions and statements

Phrase at α in µ Predecessors
α(loc = βexp) α ≺µ β
α(βexp0 ? γexp1 : δexp2) α ≺µ β, β ≺µ γ, β ≺µ δ
α(βexp; ) α ≺µ β
α{β1stm1 . . .

βn stmn} a ≺µ β1, βi ≺µ βi+1 for 1 ≤ i < n
αif (βexp) γstm1 else δstm2 α ≺µ β, β ≺µ γ, β ≺µ δ
αwhile (βexp) γstm α ≺µ β, β ≺µ γ
αlab: βstm α ≺µ β
αreturn βexp α ≺µ β
αthrow βexp α ≺µ β
α try βblockt

catch (E1 x1) γ1block1

...
catch (En xn) γn blockn

α ≺µ β, β ≺µ γi for 1 ≤ i ≤ n

α(βstm finally γblock) α ≺µ β, β ≺µ γ
αsynchronized (βexp) γstm α ≺µ β, β ≺µ γ
α static βblock α ≺µ β

2. position β is a constructor invocation position for α in:
αnew c.c/mβ(exps)

3. position β is a class initialization position in:
βstatic block [static initializer]
βc.f [access to class field]
c.f = βexp [assignment to class field]
c.mβ(exps) [invocation of class method]
βnew c.c/m(exps) [new instance creation]

For each thread the current method is either a class method, an instance
method, a constructor, or a class initialization method. If the stack of the
thread is empty, then the current method is the run method of the thread.

Definition 8.1.8 (Run method). We say that C/m is the run method of
thread q , if

1. m = run(),
2. getField(q , Thread/target) = r ,
3. classOf (r) = A,
4. lookup(A, Thread/run()) = C .
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The ASM rules which change the stack of a thread are invokeMethod
and exitMethod . A new frame is pushed with invokeMethod when a class is
initialized, when a class or instance method is invoked, or when a new instance
is created and a constructor is invoked. A frame is popped with exitMethod
when a value is returned to the invoking frame or when an exception is
passed to the invoking frame. The next lemma simply states, that the current
method has been called at some point in the past. The lemma must be proved
simultaneously with Lemma 8.1.4.

Lemma 8.1.3 (Invocation). For each thread q of state n in the run of
execJavaThread , either methq

n is the run method of q and framesq
n is the

empty stack, or there exists k and m such that k ≤ m < n and

1. framesq
n = framesq

m · ( , , α, ),
2. one of the following is true:

a) methq
n is a class or instance method and posq

m is a method invocation
position for α in the body of methq

m , or
b) methq

n is a constructor and posq
m is a constructor invocation position

for α in the body of methq
m , or

c) methq
n is a <clinit> method, posq

m = α and α is a class initialization
position in the body of methq

m ,
3. for each i , if m < i ≤ n, then framesq

n vpre framesq
i ,

4. q evaluates α on the interval [k ,m].

Proof. By induction on the run of execJavaThread . In most steps of the
run the frame stack of a thread remains unchanged and nothing has to be
shown. A class or instance method is invoked at a method invocation position.
A constructor is invoked at a constructor invocation position. A <clinit>
method is invoked at a class initialization position. ut

The following lemma says that execJavaThread respects the recursive
structure of expressions and statements. At each point in the computation
there is a unique point in the past where control entered the expression or
statement at the current position. In the interval between the entry point
and the current point the expression is evaluated according to Def. 8.1.4.
This means that all changes made to restbody occur in the subtree rooted at
the current position. Outside of this area, restbody is not touched.

Lemma 8.1.4 (Evaluation). For each thread q of state n in the run of
execJavaThread , if posq

n = α, then there exists an m ≤ n such that thread q
evaluates α on the interval [m,n].

Proof. By induction on the run of execJavaThread . Lemma 8.1.3 is used when
values or exceptions are returned to the parent frame. ut
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It is not possible that control enters an expression or statement and re-
turns to the root position of the expression or statement before it is com-
pletely evaluated. At the current position in restbody there is always an un-
evaluated expression, an unevaluated statement, a value, the constant Norm,
or an abruption.

Lemma 8.1.5. For each thread q of state n in the run of execJavaThread ,
if restbodyq

n/posq
n is neither a value nor the constant Norm nor an abrup-

tion, then restbodyq
n/posq

n is an unevaluated expression or an unevaluated
statement.

Proof. By induction on the run of execJavaThread . Lemma 8.1.4 is used when
the current position moves to the next subexpression. ut

8.2 Unreachable statements

It is not allowed to drop off the end of a method body. A compile-time error
occurs if the body of a method can complete normally. It is also a compile-
time error if a statement cannot be executed because it is unreachable. Every
Java compiler must carry out a conservative flow analysis to make sure that
all statements are reachable. For this purpose two static predicates reachable
and normal are computed at compile-time. The predicates have the following
intended meanings:

reachable(α)
The phrase at position α is reachable.

normal(α)
The phrase at position α can complete normally.

The predicates are defined such that normal(α) implies reachable(α). More-
over, if a substatement is reachable, then the statement is reachable.

The reachability analysis is also used in Sect. 16.5 in the proof that byte-
code generated by the Java compiler of Part II is accepted by the bytecode
verifier. There, one has to show that execution cannot jump out of the code
of a method.

At the root position of a method body the predicate reachable is de-
termined by the following initial conditions: Let αblock be the body of an
instance method, constructor or class method or a static initializer. Then
reachable(α) is True.

For the other positions in the block the predicates reachable and normal
can then be computed in a top-down manner. Instead of explaining exactly
how the functions are computed, in Table 8.3 we just state the equivalences
the predicates have to satisfy. Constant boolean expressions are not treated
the same way in all control structures. For example, in the while statement
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Table 8.3 Reachability constraints

α; normal(α)⇔ reachable(α)
α(βexp; ) normal(α)⇔ reachable(α)
α{β1stm1 . . .

βn stmn} reachable(β1)⇔ reachable(α),
reachable(βi+1)⇔ normal(βi),
normal(α)⇔ normal(βn)

αif (βexp) γstm1 else δstm2 reachable(γ)⇔ reachable(α),
reachable(δ)⇔ reachable(α),
normal(α)⇔ normal(γ) ∨ normal(δ)

αwhile (βexp) γstm reachable(γ)⇔ reachable(α) and βexp is not
a constant expression with value False,
normal(α)⇔ reachable(α) and βexp is not a
constant expression with value True

αlab: βstm reachable(β)⇔ reachable(α),
normal(α) ⇔ normal(β) or there exists a
reachable statement break lab inside βstm
that can exit βstm (Def. 8.2.2)

αbreak lab; ¬ normal(α)
αcontinue lab; ¬ normal(α)
αreturn; ¬ normal(α)
αreturn βexp; ¬ normal(α)
αthrow βexp; ¬ normal(α)
αtry βblockt

catch (E1 x1) γ1block1

...
catch (En xn) γn blockn

reachable(β)⇔ reachable(α),
reachable(γi) ⇔ reachable(α) and Ei 6�h Ej

for 1 ≤ j < i and blockt can throw an excep-
tion F (Def. 8.2.3) with F �h Ei or Ei �h F ,
normal(α)⇔ normal(β) ∨

∨
1≤i≤n

normal(γi)

α(βstm finally γblock) reachable(β)⇔ reachable(α),
reachable(γ)⇔ reachable(α),
normal(α)⇔ normal(β) ∧ normal(γ)

αsynchronized (βexp) γstm reachable(γ)⇔ reachable(α),
normal(α)⇔ normal(γ)

while (false) stm

the statement stm is not considered as reachable. In the if-then-else statement

if (false) stm

the statement stm, however, is considered as reachable. The reason for this
difference is to allow programmers to use the if-then-else statement for “con-
ditional compilation”.
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For positions in expressions the predicate reachable is determined by the
following definition.

Definition 8.2.1 (Reachable expression). An expression is reachable iff
the innermost statement containing it is reachable.

If an abruption occurs in a try block, the corresponding finally block
is executed before the abruption moves upwards. If the finally block does
not complete normally, the old abruption is discarded and cannot exit the
try-finally statement.

Definition 8.2.2 (Abruption can exit statement). An abruption at po-
sition α can exit stm, if for every substatement β(γs finally δb) of stm
such that α is in s the predicate normal(δ) is true.

We say that a break statement at position α can exit stm, if an abruption
at position α can exit stm.

Definition 8.2.3 (Statement can throw exception). A statement stm
can throw an exception E , if one of the following conditions is true:

1. E = RuntimeException or E = Error, or
2. stm contains a reachable statement αthrows βexp such that T (β) = E ,

the exception E is not caught in stm and an abruption at position α can
exit stm, or

3. stm contains a reachable method invocation αc/m(exps) such that E
occurs in the throws clause of m in c, the exception E is not caught in
stm and an abruption at position α can exit stm.

At run-time the current position is always reachable. If a statement com-
pletes normally, then the statement is normal (see Theorem 8.4.1). The con-
verse is not true. There are normal statements which can complete abruptly.
For example, in an if-then-else-statement one branch may be normal whereas
the other branch completes abruptly.

8.2.1 Exercises

Exercise (; CD) 8.2.1. Is the catch clause reachable in the following pro-
gram?

class E extends Exception { }

class Test {
public static void main(String[] argv) {
try {
try { throw new E(); } finally { return; }

} catch (E x) { return; }
}

}
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Exercise (; CD) 8.2.2. Which catch clauses are reachable in the follow-
ing code?

class E extends Exception { }

class F extends E { }

class G extends Exception { }

class Test {
static void test(E e) {
try { throw e; }
catch (F x) { }
catch (E x) { }
catch (G x) { }
catch (Error x) { }
catch (RuntimeException x) { }
catch (Exception x) { }

}
}

Exercise (; CD) 8.2.3. Can the body of the method m complete nor-
mally?

class Test {
int m() {
l: try {
break l;

} finally { return 0; }
}

}

Exercise (; CD) 8.2.4. Can the body of the method m complete nor-
mally?

class Test {
int m(int i) {
if (i < 0) return 0;
else
while (i != 0) {
if (i == 0) return 1;
i = i - 1;

}
}

}
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8.3 Rules of definite assignment

Each local variable must have a definitely assigned value when any access
of its value occurs. An access to its value consists of using the identifier
of the variable occurring anywhere in an expression except as the left-hand
operand of the simple assignment operator =. A Java compiler must carry
out a specific conservative flow analysis to make sure that, for every access
of a local variable, the local variable is definitely assigned before the access;
otherwise a compile-time error must occur.

Since local variables are not initialized with default values like class vari-
ables or instance fields, a Java program that does not obey the rules of definite
assignment could violate the invariants of Theorem 8.4.1 below and would
not be type safe. For example, a local pointer variable which is not initial-
ized could point to an undefined location on the heap. Moreover, the rules
of definite assignment ensure that the bytecode generated by a correct Java
compiler is not rejected by the bytecode verifier (Theorem 16.5.2 and 17.1.2).

The rules of definite assignment have been changed in the second edition
of the JLS [19, §16]. Boolean operators &, |, ^, == as well as assignments of
boolean expressions to boolean variables are no longer treated in a special
way. We take the rules of the second edition, because it simplifies the task of
writing a compiler that generates code that is accepted by the verifier.

In order to precisely specify all the cases of definite assignment, static
functions before, after , true, false and vars are computed at compile-time.
These functions assign sets of variables (identifiers) to each position in the
body of a method. The static functions have the following intended mean-
ings (the functions true(α) and false(α) are defined for expressions of type
boolean only):

x ∈ before(α)
The variable x is definitely assigned before the evaluation of the state-
ment or expression at position α.

x ∈ after(α)
The variable x is definitely assigned after the statement or expression at
position α when this statement or expression completes normally.

x ∈ true(α)
The variable x is definitely assigned after the evaluation of the expression
at position α when this expression evaluates to true.

x ∈ false(α)
The variable x is definitely assigned after the evaluation of the expression
at position α when this expression evaluates to false.

x ∈ vars(α)
The position α is in the scope of the local variable, formal parameter or
catch parameter x .

The functions satisfy the following inclusions:
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Table 8.4 Definite assignment for boolean expressions

αtrue true(α) = before(α), false(α) = vars(α)
αfalse true(α) = vars(α), false(α) = before(α)
α(! βe) before(β) = before(α),

true(α) = false(β), false(α) = true(β)
α(βe0 ? γe1 : δe2) before(β) = before(α),

before(γ) = true(β), before(δ) = false(β),
true(α) = true(γ) ∩ true(δ), false(α) = false(γ) ∩ false(δ)

α(βe1 &&
γe2) before(β) = before(α), before(γ) = true(β),

true(α) = true(γ), false(α) = false(β) ∩ false(γ)
α(βe1 ||

γe2) before(β) = before(α), before(γ) = false(β),
true(α) = true(β) ∩ true(γ), false(α) = false(γ)

1. before(α) ⊆ after(α) ⊆ vars(α).
2. If type(α) = boolean, then before(α) ⊆ true(α) ∩ false(α).
3. If type(α) = boolean, then true(α) ∪ false(α) ⊆ vars(α).

At the root position of a method body the function before is determined
by the following initial conditions: Let αblock be the body of an instance
method, constructor or class method with declaration m(c1 loc1, . . . , cn locn).
Then before(α) = {loc1, . . . , locn}, because when the body is invoked there
are always values assigned to the formal parameters loc1, . . . , locn . If αblock
is a static initializer, then before(α) is the empty set.

For the other positions in the block the functions before, after , true and
false can then be computed in a top-down manner. Instead of explaining
exactly how the functions are computed, we just state the equations the
functions have to satisfy.

Table 8.4 contains the equations for boolean expressions (see Table 3.6
for the boolean operators). It is assumed that type(α) = boolean in each
row. There are no conditions for after in Table 8.4, since by definition in all
cases after(α) = true(α)∩ false(α). Constant boolean expressions with value
true (resp. false) are treated like the literal true (resp. false). If type(α) is
boolean and αexp is not an instance of one of the expressions in Table 8.4,
then true(α) = after(α) and false(α) = after(α).

Table 8.5 contains the equations for non-boolean expressions. The most
important condition is the first one for local variables. It requires for a local
variable loc at a position α that loc ∈ before(α). Hence loc must be definitely
assigned before it is used.

In addition to the constraints in Table 8.5 there are the following con-
ditions for an expression αexp with direct subexpressions β1exp1, . . . ,

βn expn

(Table 8.1):
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Table 8.5 Definite assignment for arbitrary expressions

αloc after(α) = before(α), loc ∈ before(α)
αlit after(α) = before(α)
α(loc = βe) before(β) = before(α), loc ∈ vars(α),

after(α) = after(β) ∪ {loc}
α(βe0 ? γe1 : δe2) before(β) = before(α), before(γ) = true(β),

before(δ) = false(β), after(α) = after(γ) ∩ after(δ)
αc.f after(α) = before(α)

1. before(β1) = before(α),
2. before(βi+1) = after(βi) for i = 1, . . . ,n − 1,
3. after(α) = after(βn).

Table 8.6 contains the constraints for statements. For a statement with label
lab at position α a set break(α, lab) is needed.

Definition 8.3.1. A variable x belongs to break(α, lab) if the following two
conditions are true:

1. x is in before(β) for each statement βbreak lab inside the statement at
position α that can exit α (Def. 8.2.2) and

2. x is in after(β) for each statement β(s finally b) inside α such that s
contains a break lab that can exit α.

If there are no substatements break lab inside βstm, then break(β, lab) =
vars(β).

In a block statement the variables which are definitely assigned after the
normal execution of the statement are the variables which are definitely as-
signed after the last substatement of the block. However, the variables must
still be in the scope of a declaration. Consider the following example:

{ α{ int i; i = 3; } { int i; i = 2 * βi; } }

The set after(α) is empty and does not contain the variable i because at
the end of block α, i is not in the scope of a declaration. Thus before(β)
is empty, too, and the block is rejected by the compiler. Note that in Java
it is not allowed to declare the same variable again in the scope of another
declaration (Constraint 3.1.1).

What does it mean that the rules for definite assignment are sound?
It means that at run-time all variables of the compile-time computed set
before(pos) are defined in the local environment. If there is a normal value at
the current position pos in restbody , then all variables of the set after(pos)
are defined in the local environment. If the value is the boolean value True,
then the variables of the set true(pos) are defined in the local environment;
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Table 8.6 Definite assignment for statements

α; after(α) = before(α)
α(βexp; ) before(β) = before(α), after(α) = after(β)
α{β1stm1 . . .

βn stmn} before(β1) = before(α),
before(βi+1) = after(βi) for i = 1, . . . ,n − 1,
after(α) = after(βn) ∩ vars(α)

αif (βexp) γstm1 else δstm2 before(β) = before(α),
before(γ) = true(β), before(δ) = false(β),
after(α) = after(γ) ∩ after(δ)

αwhile (βexp) γstm before(β) = before(α), before(γ) = true(β),
after(α) = false(β)

αlab: βstm before(β) = before(α),
after(α) = after(β) ∩ break(β, lab)

αbreak lab; after(α) = vars(α)
αcontinue lab; after(α) = vars(α)
αreturn; after(α) = vars(α)
αreturn βexp; before(β) = before(α), after(α) = vars(α)
αthrow βexp; before(β) = before(α), after(α) = vars(α)
αtry βblockt

catch (E1 x1) γ1block1

...
catch (En xn) γn blockn

before(β) = before(α),
before(γi) = before(α) ∪ {xi},
after(α) = after(β) ∩

⋂
1≤i≤n after(γi)

α(βstm finally γblock) before(β) = before(α), before(γ) = before(α),
after(α) = after(γ) ∪
{x ∈ after(β) | there is no x = exp in γblock}

αsynchronized (βexp) γstm before(β) = before(α), before(γ) = after(β),
after(α) = after(γ)

if the value is False, then the variables of the set after(pos) are defined in
the local environment. The soundness of the rules of definite assignment is
included in Theorem 8.4.1 below.

Remark 8.3.1. The constraints in Table 8.6 differ from the rules of definite
assignment in [19, §16] in two points. First, the official JLS defines for a
try-finally statement α(βstm finally γblock):

after(α) = after(β) ∪ after(γ).

Our definition in Table 8.6 is more restrictive. A variable x in after(β) belongs
to after(α) only if there is no subphrase x = exp in γblock . Why do we restrict
the set in this way? The reason is the program in Fig. 16.8 which is legal
according to the JLS. If we compile the program following [23, §7.13], then
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the resulting bytecode is rejected by any bytecode verifier we tried. If we take
our constraints in Table 8.6, then the program in Fig. 16.8 is no longer legal,
since there is an assignment i = 3 in the finally block and the variable i is
not regarded as definitely assigned after the try-finally statement. Hence,
it cannot be used in the return statement. The effect of our restriction of the
rules of definite assignment for the try-finally statement is that a variable
which is definitely assigned after the try-finally statement but not after
the finally block is—in the eyes of the bytecode verifier—not modified by
the subroutine that implements the finally block.

The second difference between Table 8.6 and the rules of definite assign-
ment in the official JLS affects the labeled statement. The second clause of
Def. 8.3.1 is not contained in the official JLS. Hence, according to the JLS
a variable is definitely assigned after a labeled statement, if it is definitely
assigned after the statement and before every break that can exit the labeled
statement. We restrict the set further. The reason for our restriction is that
the program in Fig. 16.9 which is legal according to the JLS is rejected by all
known bytecode verifiers. Therefore we exclude the (rather exotic) program
in Fig. 16.9 from the Java programming language. Both of our restrictions of
the rules of definite assignments are chosen so that we can prove in Sect. 16.5
that our compiler in Part II generates verifiable code.

8.3.1 Exercises

Exercise (; CD) 8.3.1. An attacker wants to fool the Java type system.
His idea is simple. A pure Object is type casted into an array of integers.
The ClassCastException which is thrown at run-time is caught so that in
the handler of the catch clause the Object can be used as an array.

class Test {
public static void main(String[] _) {
int[] a;
try {
a = (int[])(new Object());

}
catch (ClassCastException e) {
System.out.println(a[0]);

}
}

}

Explain why the idea does not work.

Exercise 8.3.2. What are the conditions for the functions before and after
for the do, for and switch statement (see [18, §16])?
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Exercise 8.3.3. Show that the equations for the operators !, && and || in
Table 8.4 can be derived from the equations for conditional expressions using
the following equivalences:

! e ≡ e ? false : true
e1 && e2 ≡ e1 ? e2 : false
e1 || e2 ≡ e1 ? true : e2

Exercise (; CD) 8.3.4. Is the following method correct with respect to
the rules of definite assignment? What happens if we define false(α) = ∅ in
αtrue?

int m() {
int i;
if (true)
return 0;

else
return i;

}

8.4 Java is type safe

What does it mean that Java is type safe? It means that if an expression
is evaluated, then the resulting value is of the type of the expression. This
statement alone, however, is not sufficient. Consider the case of a local vari-
able. If the variable is not defined in the local environment, it is evaluated to
the constant undef . The constant undef is then propagated in the evaluation
tree until the abstract Java machine stops and the execution fails.

In a real implementation of Java the constant undef does not exist. There
is also no notion of definedness of variables in the local environment. In a
situation like above, execution proceeds with the (arbitrary) value which was
at the memory position of the undefined local variable. This value could be
of any type and the type safety of Java would be violated. Hence, type safety
means more. It also means that the constant undef never occurs at run-time
in the state of the ASM. This implies, for example, that pointers must always
be defined in the heap, since an undefined pointer is evaluated to undef , too.

Type safety means that when a legal, well-typed Java program is executed
on the ASM described in the previous chapters, then its state is always in
good shape; local variables, class variables, instance fields and array elements
always contain values of the declared types; references to objects are always
defined in the heap (there are no dangling pointers); expressions are evaluated
to values of the compile-time type; even when exceptions are thrown and later
caught, the invariants remain valid. Type safety means that the invariants of
Theorem 8.4.1 below are always satisfied during the run of the Java program.
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Why is the soundness of the rules of definite assignment important for
the type safety of Java? Consider again the case of a local variable loc at
the current position α of the execution of a Java program. If we know that
the set before(α) is contained in the domain of the local environment, we
can conclude that loc is defined in the local environment and therefore is
not evaluated to undef , because the equations for local variables in Table 8.5
require that loc belongs to the set before(α). Hence the soundness of the
rules of definite assignment are an essential ingredient for the proof of the
Java type safety theorem below.

What does it mean that a value v is of type A? For primitive values like
integers and floats it means that A is equal to the type of the value v . For
references it means that classOf (v) is a subtype of A. Since this notion of run-
time compatibility does not agree with the subtype relation � for primitive
types (Def. 3.1.1), we introduce a new relation v between the types of Java.

Definition 8.4.1 (Run-time compatible). The relation A v B holds iff
one of the following conditions is true:

1. A and B are primitive types and A = B , or
2. A and B are reference types and A � B (see Def. 5.1.2).

The relation v is a partial ordering. We have:

1. A v A.
2. If A v B and B v C , then A v C .
3. If A v B and B v A, then A = B .
4. A[ ] v B [ ]⇔ A v B .

The invariants of the type safety theorem have to be proved simultane-
ously for the current frame and for the frames on the stack, for each thread.
Therefore we define what we mean by a frame and a parent frame in the state
of the computation.

Definition 8.4.2 (Frame in a state). We say that f is a frame in state n
of thread q , if one of the following conditions is true:

1. f = (methq
n , restbodyq

n , posq
n , localsq

n), or
2. f is an element of framesq

n .

Definition 8.4.3 (Parent frame). We say that g is the parent frame of f
in thread q , if one of the following conditions is true:

1. framesq
n = [. . . , g , f , . . .], or

2. f = (methq
n , restbodyq

n , posq
n , localsq

n) and g = top(framesq
n).

As we have seen above, for the type safety of Java it is important that
there are no dangling references. Therefore we have to define what it means
that a reference is used in the state. A reference is used if there exists some-
thing which refers to it. The term ‘is used’ does not mean the same as ‘is
reachable’. A reachable reference is a reference that can be accessed in the
continuation of the computation.
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Definition 8.4.4 (Used reference). We say that a reference ref is used
in state n, if one of the following conditions is true:

1. there exists a field c/f such that globalsn(c/f ) = ref , or
2. there exists an r and a field c/f such that getFieldn(r , c/f ) = ref , or
3. there exists an r and an i ∈ N such that getElementn(r , i) = ref , or
4. there exists a frame ( , restbody∗, , locals∗) in state n of a thread q and

one of the following conditions is true:
a) there exists a variable loc such that locals∗(loc) = ref , or
b) there exists a position α such that restbody∗/α = ref , or
c) there exists a position α such that restbody∗/α = Return(ref ), or
d) there exists a position α such that restbody∗/α = Exc(ref ).

Now we have all the notions to formulate the invariants of the type safety
theorem. We split the invariant into invariants for the frames of a thread,
invariants of the dynamic method chain of a thread, and global invariants.

The global invariants state that run-time values of (static or instance)
fields and of array elements are compatible with their types (global, object2,
array), that there are no dangling references (ref), and that references to
class instances are for non-abstract classes and have the correct class instance
fields (object1).

The dynamic method chain invariants express that at any method in-
vocation position on the frame stack, the invoked method’s return type is
compatible with the type at the method invocation position (chain1), and
that the exceptions in the invoked method’s throws clause are allowed at
that position (chain2). If a constructor is invoked, then the value of this in
the local environment is the newly created reference which is stored at the
position of the new-expression in the invoking frame (chain3).

The frame invariants guarantee that each run-time position is compile-
time reachable (reach) and contains in its restbody, if not an unevaluated
phrase, either a value or an abruption or a normally completed statement
(undef) which satisfies the compile-time constraints. In fact, the variables
computed as definitely assigned at the current position of the frame are well-
defined local variables at run-time (def1)–(def6) with values compatible with
the declared types (loc1)–(loc5). Expressions evaluate to values which are
compatible with the compile-time type associated to their position (val), and
the positions of statements which complete normally are compile-time normal
(norm).

Run-time abruptions occur in accordance with the corresponding compile-
time constraints for jumps, returns or exceptions. Every run-time position
where a Break(l) occurs is within a statement with label l that contains a
break l that can exit (Def. 8.2.2) the statement (abr1). Every run-time
position where Continue(l) occurs is within a while statement which label l
(abr2). Every run-time position where Return or Return(v) occurs is within
a method body, with a return value of a type which is compatible with the
return type of the method (abr3, abr4). The class of any exception thrown
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at run-time is a subclass of Throwable, and if it is neither an error nor a run-
time exception, then the position where the exception occurs is protected by
a catch or throws clause with compatible type and the thrown exception is
more specific than some exception that a statement at the position can throw
at compile-time (abr5) (Def. 8.2.3).

Theorem 8.4.1 (Java is type safe). Assume that

(meth∗, restbody∗, pos∗, locals∗)

is a frame in state n of thread q . Then the following invariants are satisfied:

(def1) before(pos∗) ⊆ dom(locals∗).

(def2) If restbody∗/pos∗ is normal, then after(pos∗) ⊆ dom(locals∗).

(def3) If restbody∗/pos∗ = True, then true(pos∗) ⊆ dom(locals∗).

(def4) If restbody∗/pos∗ = False, then false(pos∗) ⊆ dom(locals∗).

(def5) If restbody∗/pos∗ = Break(l), then break(pos∗, l) ⊆ dom(locals∗).

(def6) If the frame is not the current frame of q and body(meth∗)/pos∗ is a
method invocation then after(pos∗) ⊆ dom(locals∗).

(reach) reachable(pos∗).

(norm) If restbody∗/α = Norm, then normal(α).

(val) If restbody∗/α is a value of type B , then B v T (α), where T (α) is the
compile-time type of position α in body(meth∗).

(undef) The constant undef does not occur in restbody∗.

(loc1) If x ∈ dom(locals∗), then locals∗(x ) ∈ Val .

(loc2) If pos∗ is in the scope of a local variable declaration of a variable x of
type A and x ∈ dom(locals∗), then locals∗(x ) is a value of type B v A.

(loc3) If pos∗ is in the scope of a formal parameter x of type A, then
locals∗(x ) is a value of type B v A.

(loc4) If pos∗ is in the scope of a catch parameter x of type E , then
locals∗(x ) is a value of type F �h E .

(loc5) If pos∗ is in class A and pos∗ is in the body of an instance method
or in the body of a constructor, then locals∗(this) is a value of type
B �h A.

(abr1) If restbody∗/α = Break(l), then α is in a statement with label l
and body(meth∗)/α contains a reachable break lab which can exit
body(meth∗)/α (Def. 8.2.2).

(abr2) If restbody∗/α = Continue(l), then α is in a while statement with
label l .
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(abr3) If restbody∗/α = Return, then α is in the body of a method with
return type void.

(abr4) If restbody∗/α = Return(v), then α is in the body of a method with
return type A and v is a value of type B v A.

(abr5) If restbody∗/α = Exc(ref ), then classOf (ref ) = E , E �h Throwable,
E is allowed at position α (Def. 6.1.2) and body(meth∗)/α can throw an
exception F (Def. 8.2.3) such that E �h F .

Assume that ( , restbody∗, β, ) is the parent frame of (c/m, , , locals∗) in
state n of thread q . Then the dynamic method invocation chain has the
following properties:

(chain1) If the return type of c/m is A and A 6= void, then type(β) = A.

(chain2) If E occurs in the throws clause of c/m, then E is allowed at
position β (see Def. 6.1.2).

(chain3) If c/m is a constructor and restbody∗/β = ref .c/m( ), then
locals∗(this) = ref .

The following global invariants are true in state n:

(global) If c/f is a static field of declared type A, then globalsn(c/f ) is a
value of type B v A.

(ref) If a reference ref is used in state n, then ref ∈ dom(heapn).

(object1) If heapn(ref ) = Object(c,fields), then c is a non abstract class
and dom(fields) = instanceFields(c).

(object2) If heapn(ref ) = Object( ,fields), fields(f ) = v and f is of declared
type A, then v is a value of type B v A.

(array) If heapn(ref ) = Array(A, elems) and elems(i) = v , then v is a value
of type B v A.

Proof. By induction on the number of steps in the run of the ASM. We first
consider invariants (def1)–(def6) which express the soundness of the rules of
definite assignment. Why is Lemma 8.1.5 used in the proof? Consider the
case where

restbodyq
n/posq

n = α(uop βexp) and posq
n+1 = β.

By the induction hypothesis (def1) we know that before(α) ⊆ dom(localsq
n).

Since before(β) = before(α), we obtain that before(posq
n+1) ⊆ dom(localsq

n+1)
and invariant (def1) remains valid. What about invariant (def2)? By as-
sumption, we have restbodyq

n+1/posq
n+1 = βexp. What happens if βexp is

a value? Fortunately this is not possible, because by Lemma 8.1.5 we know
that α(uop βexp) is an unevaluated expression and therefore βexp cannot be
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a value. Hence, invariant (def2) is trivially satisfied and also the remaining
invariants (def3)–(def6).
Invariant (def5) about Break(l) requires special care. A Break(l) can occur
inside statements only. When it is propagated upwards in restbody , the set
break(pos∗, l) gets smaller. When a Break(l) is propagated upwards from a
try statement, then the corresponding finally block has terminated nor-
mally and thus, by invariant (norm) it is normal . Hence the Break(l) can
exit the try-finally statement in the sense of Def. 8.2.2. Therefore invari-
ant (def5) remains true. Similarly, the set before(pos∗) gets smaller when
other abruptions are propagated upwards.
Unfortunately the positions of restbodyq

n are not contained in body(methq
n).

For example, the rule fail(exc) of Sect. 6.2 inserts a new piece of code into
restbody and possibly generates positions which are not present in the body
of methq

n . In this case, we assume that before and after are computed on the
fly for the new positions in the inserted code.
Now we consider the remaining invariants. Consider the case where the cur-
rent position posq

n is at a local variable αloc which is replaced by localsq
n(loc)

in the computation step of the ASM. Because the program satisfies the equa-
tions for definite assignment in Table 8.5, it follows that loc is in the set
before(α). By invariant (def1), the set before(α) is contained in dom(localsq

n).
Therefore the variable loc is in dom(localsq

n). By invariant (loc1), localsq
n(loc)

is a value v . Hence, localsq
n(loc) is not the constant undef and invariant (un-

def) remains valid. Moreover, the local variable loc at the current position
posq

n is either in the scope of a local variable declaration, a formal method
parameter or a catch parameter. In each case we can apply the appropri-
ate induction hypothesis (loc2)–(loc4) and obtain that the value v is of type
T (α), hence invariant (val) is satisfied.
The transitivity of the run-time compatibility relation v is used several times.
Consider, for example, the case where posq

n is at position γ in a conditional
expression α(βTrue ? γv : δexp) and the value v is moved upwards to po-
sition α in the computation step of the ASM. Let B be the type of v . By
the induction hypothesis (val) we know that B v T (γ). Since the program
is well-typed (see Tables 3.4 and 3.5), we have T (γ) v T (α). Since the re-
lation v is transitive, it follows that B v T (α) and hence invariant (val)
remains valid.
If an abruption Break(l) or Continue(l) is generated by executing the corre-
sponding statement, then the invariants (abr1) and (abr2) are initially satis-
fied because of Constraint 3.1.1. An abruption Return can only be generated
in a method with return type void because of Constraint 4.1.6 hence invari-
ant (abr3) is satisfied. If an abruption Return(v) is generated, then invari-
ant (abr4) is initially satisfied because of the type constraints in Tables 4.1
and 4.2.
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Since the type of a method invocation expression is the return type of the
invoked method (see Tables 4.1, 4.2, 5.2, 5.3), the invariant (chain1) is satis-
fied when a method is invoked. The Lookup Lemma 8.4.1 below ensures that
the return type of a dynamically invoked method is the same as the return
type of the compile-time method.
Consider the case where posq

n is at position γ in a method invocation expres-
sion α(βref .B/mγ(vals)). By the induction hypothesis (ref) we know that ref
is defined in heapn , because ref is used in state n according to Def. 8.4.4.
Let A = classOf (ref ). Then, by the induction hypothesis (object1), it follows
that A is a non abstract class. By the induction hypothesis (val) we know
that A v T (β). The compiler did choose the most specific applicable method
B/m in such a way that T (β) �h B and m is declared in B . If follows that
A �h B and the assumptions of the lookup lemma below are satisfied. Hence
the function lookup(A,B/m) does not return undef and invariant (undef)
remains valid.
The lookup lemma ensures also invariant (chain2). The method found by
the lookup function throws more specific exceptions than the method B/m
determined at compile-time. The classes in the throws clause of B/m are
all allowed at position α because of the type constraints in Table 6.1. Hence
(chain2) is satisfied.
If an exception is not caught in the body of a method, it is propagated up-
wards to the first position. Consider the case where posq

n is with an exception
Exc(ref ) at the first position of a method body. By the induction hypothe-
sis (abr5), it follows that classOf (ref ) = E , where E is allowed at the first
position. According to Def. 6.1.2, if E is not an error or a run-time excep-
tion, then there must exists a class F in the throws clause of the current
method with E �h F . By the induction hypothesis (chain2) it follows that
F is allowed at the position of the parent frame waiting for the return of the
method. Lemma 6.1.1 yields that E is allowed at that position, too. Hence
invariant (abr5) remains valid after the exception is propagated to the parent
frame. ut

Remark 8.4.1. For the formulation of the invariants (loc1)–(loc3) it is essen-
tial that in Java it is not allowed to hide a local variable, a formal parameter
or a catch parameter with a new declaration of the same identifier (see Con-
straint 3.1.1).

For the dynamic method lookup procedure, the following lemma is needed. It
states that when the lookup function is used to search in the class hierarchy for
the current definition of a method declared in a class B , it yields a method
with the correct return type and with a compile-time compatible throws
clause.

Lemma 8.4.1 (Lookup lemma). Assume that A is a non abstract class,
m is a method signature and B is a class or interface such that
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1. A �h B ,
2. m is declared in B .

Then there exists a class C such that

1. lookup(A,B/m) = C ,
2. m has the same return type in B and C ,
3. m throws more specific exceptions in C than in B (see Def. 6.1.1).

Proof. There are two cases. Either B is a class or an interface.

Case 1. B is a class:
Let C be the least class (w.r.t. �h) such that
1. A �h C �h B ,
2. m is declared in C ,
3. C/m overrides B/m (see Def. 4.1.9).

Suppose that m is abstract in C . By Constraint 4.1.12, it follows that m
is public or protected in C . Hence by Def. 4.1.7 and Def. 4.1.5, C/m is
visible in A and, by Constraint 4.1.13, A is an abstract class. Contradiction.
Thus, m is not abstract in C and therefore (by clause 1 of the algorithm
for computing lookup in Sect. 5.1.8) lookup(A,B/m) = C .
Using Constraints 4.1.10 and 6.1.1 and Def. 4.1.9 it follows that m has the
same return type in C and B and that m throws more specific exceptions
in C than in B .
Case 2. B is an interface:
Since B is an interface, m is public in B by Constraint 4.1.9.
Let D be a minimal (w.r.t. �h) class or interface such that
1. A �h D �h B ,
2. m is declared in D .

By Constraints 4.1.10 and 6.1.1, it follows that
1. m is public in D ,
2. m has the same return type in D and B ,
3. m throws more specific exceptions in D than in B .

If D is a class, we can proceed as in Case 1. Otherwise, D is an interface and,
by Constraint 4.1.9, D/m is abstract.
Since D/m is visible in A and A is not abstract, by Constraint 4.1.13, it
follows that A implements m.
Hence by Def. 4.1.10, there exists a class C such that A �h C , m has a non
abstract declaration in C and C/m is visible in A.
Since C/m is visible in A and B is an interface, lookup(A,B/m) = C .
By Constraint 4.1.11, it follows that m has the same return type in C and
in D and by property 2 above also in C and in B .
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By Constraint 6.1.2, it follows that m throws more specific exceptions in C
than in D and by property 3 above m throws more specific exceptions in C
than in B .

In both cases we have shown that the dynamic lookup procedure finds a
non-abstract method declaration and this declaration is consistent with the
given declaration B/m. ut

The type safety theorem is also useful for proving the completeness of the
ASM rules for Java. For example, there is no rule that can be applied in case
that the current position pos is firstPos and restbody is Norm. There is no
need for such a rule, because this case is not possible in a run of the ASM
for a legal Java program due to invariant (norm) of Theorem 8.4.1. Invariant
(norm) says that, if restbody is Norm, then the body of the current method
would be normal . This is not allowed in Java.

There is also no rule for the case that pos is firstPos and restbody is
Break(l) or Continue(l). That this case is not possible follows from invariants
(abr1) and (abr2) of Theorem 8.4.1, because the body of a method cannot
be enclosed by a statement with label l .



Part II

Compilation of Java: The Trustful JVM
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Every justification showing that a proposed compiler behaves well is relative
to a definition of the semantics of source and target language. In Part I we
have developed a mathematical (read: rigorous and platform independent)
definition for an interpreter of Java programs, which captures the intuitive
understanding Java programmers have of the semantics of their code. In
this part we provide a mathematical model of an interpreter for the Java
Virtual Machine, which formalizes the concepts presented in the JVM speci-
fication [23], as far as they are needed for the compilation of Java programs.
We also extract from the JVM specification the definition of a scheme for
the compilation of Java to JVM code and prove its correctness (see Theo-
rem 14.1.1).

Since the JVM as used in this chapter is a machine to run compiled
Java programs, we abstract here from checking the constraints on the JVM
code (bytecode verification) and from dynamic loading. These aspects are
discussed in Part III. The resulting trustful JVM runs well for statically
loaded, well formed and well-typed JVM programs. If the translation is done
following the scheme we define here, then we are able to prove that the
generated target JVM program is also well formed and well typed. This proof
however is deferred to Part III, where we introduce the checking component
and dynamic loading.

The JVM specification and the definition of the compilation scheme in
this chapter can be read independently from Part I—only the correctness
proof relies upon an exact definition of the semantics of Java programs. We
suppose the reader to have basic knowledge in modern programming language
compilation.

We split the JVM and the compilation function into an incremental se-
quence of machines whose structure corresponds to the submachines we have
introduced for Java. In Chapters 9 to 12 we define the sequence of successively
extended JVM machines JVMI , JVMC , JVMO and JVME for the compilation
of programs from the imperative core JavaI of Java and its extensions JavaC
(by classes and procedures), JavaO (by object-oriented features) and JavaE
(by exceptions). As part of JVMC we introduce the submachine switchVMC —
extended in JVME to switchVME and in JVMD to switchVMD—which takes
care of frame stack manipulations, as opposed to the execution submachine
which deals with operations on the current frame. We discuss here only the
single threaded JVM, although our approach could easily include also mul-
tiple threads (see the Java model with threads in Chapter 7). In Chapter 13
we add native methods to JVME .





9. The JVMI submachine

In this chapter we define the JVM submachine JVMI which can execute
compiled JavaI programs. We also define a standard compilation scheme for
translating JavaI programs to JVMI code.

9.1 Dynamic semantics of the JVMI

The basic machine JVMI is an untyped word-oriented stack-machine sup-
porting all instructions for implementing a while-language. JVMI provides
instructions to load constants, to apply various unary and binary operators,
to load and store a variable, to duplicate and to remove values, and to jump
unconditionally or conditionally to a label. A JVMI program is a sequence
of instructions.

data Instr = Prim(PrimOp)
| Load(MoveType,RegNo)
| Store(MoveType,RegNo)
| Dupx (Size,Size)
| Pop(Size)
| Goto(Offset)
| Cond(PrimOp,Offset)
| Halt

The universe PrimOp contains literals, unary and binary functions and rela-
tions. Offset and Size denote code offsets and the amount of words to move.
These universes are synonyms for the universe of natural numbers Nat . And
so is the universe RegNo, which stands in for variable locations in the JVM.

type Offset = Nat
type Size = Nat
type RegNo = Nat

Load and Store instructions are also parametrized by the types they move.
Possible types of values in JVMI are:

data MoveType = int | long | float | double
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Real JVM instructions can be obtained by expanding the (parameter) uni-
verses PrimOp, Size, and MoveType. Appendix C.8 defines this correspon-
dence in detail. In fact the abstract instructions above already comprise about
150 of the 200 bytecode instructions of the JVM.

Environment. JVMI ’s static environment consists only of the bytecode for
the currently executed method.

code: Code
type Code = Instr∗

We assume for simplicity of exposition and without loss of generality that the
last instruction of code is Halt . 1 In Chapter 10 we will write this function
more precisely as parametrized (namely by the current method).

Values. JVMI supports integers, floats, longs and doubles. Integers are 32-
bit, longs are 64-bit signed two complement values. Floats are 32-bit, doubles
are 64-bit IEEE 754 floating point numbers. The universe of Words is sup-
posed to hold 32-bit values.2 64-bit values are mapped to sequences of length
two of words in an implementation dependent way. Thus JVM values are
sequences of length one or two of words. The Size of a value is its length in
words. The function size can also be applied on MoveTypes, in which case it
returns the number of words to move.

JVMI implements values and operations on the introduced data types in
the usual way, the only exception being boolean. Booleans are represented
as integers: 0 is used for False, and 1 for True. We denote by JVMS (s) the
semantic value corresponding to syntactic arguments s.

State. JVMI ’s dynamic state consists of a single frame, containing a program
counter pc, registers reg (i.e., a local variable environment), and an operand
stack opd . In the declaration below, the first column defines the state, and
the second column defines the condition on the initial state.

pc : Pc
reg : Map(RegNo,Word)
opd : Word∗

type Pc = Nat

pc = 0
reg = ∅
opd = [ ]

1 Halt is not an instruction of the real JVM, but its introduction simplifies the
exposition.

2 The real JVM also supports bytes and shorts, which are 8-bit and 16-bit signed
two complement values, and 16-bit uni-code characters. However, there are (al-
most) no instructions for these values—instead when such a value is read from
or written to the store, it is automatically cast into an integer or truncated to
the relevant size, respectively.
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Fig. 9.1 Trustful execution of JVMI instructions

execVMI (instr) =
case instr of

Prim(p) → let (opd ′,ws) = split(opd , argSize(p))
if p ∈ divMod ⇒ sndArgIsNotZero(ws) then

opd := opd ′ · JVMS(p,ws)
pc := pc + 1

Dupx (s1, s2)→ let (opd ′, [ws1,ws2]) = splits(opd , [s1, s2])
opd := opd ′ · ws2 · ws1 · ws2

pc := pc + 1
Pop(s) → let (opd ′,ws) = split(opd , s)

opd := opd ′

pc := pc + 1
Load(t , x ) → if size(t) = 1 then opd := opd · [reg(x )]

else opd := opd · [reg(x ), reg(x + 1)]
pc := pc + 1

Store(t , x ) → let (opd ′,ws) = split(opd , size(t))
if size(t) = 1 then reg := reg ⊕ {(x ,ws(0))}

else reg := reg ⊕ {(x ,ws(0)), (x + 1,ws(1))}
opd := opd ′

pc := pc + 1
Goto(o) → pc := o
Cond(p, o) → let (opd ′,ws) = split(opd , argSize(p))

opd := opd ′

if JVMS(p,ws) then pc := o else pc := pc + 1
Halt → halt := "Halt"

Rules. Fig. 9.1 specifies the dynamic semantics of JVMI instructions by ASM
rules. The trustfulVMI halts, if the pc points to Halt where we update the
dynamic function halt (see Remark 9.1.1 below). In the defensive VM and the
diligent VM there are other reasons for halting. As long as the trustfulVMI

does not halt, it fires execVMI rules.

trustfulVMI = execVMI (code(pc))

Remark 9.1.1. For the sake of brevity, we suppress notationally the main
guard of all our machines, namely halt = undef . As soon as halt gets a
defined value (e.g. "Halt", "Verification failed", etc.) the machines stop
executing, as do their executable versions.

The execVMI rules define the effect of executing a single instruction. The
Prim(p) instruction takes n values from the top of the operand stack, where
n is determined using argSize(p) that returns the sum of the sizes of the
parameters of p, e.g. argSize(iadd) = 2 and argSize(dadd) = 4. If p is an
element of the divMod operator set (that denotes integer and long division
and modulo operators) and the right operand is 0, then the execution of
the instruction is undefined. Otherwise, the result of the semantic function
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JVMS (p,ws) applied on the popped values ws is pushed onto the operand
stack. For instance the value of JVMS (iadd, [1, 2]) is 3. The function JVMS
takes care of the semantic effect of all arithmetic and type conversion in-
structions of the real JVM [23]. The instruction Pop removes the top stack
value. A Dupx instruction duplicates the top value ws2 and inserts the dupli-
cate below the second value ws1 on the stack. For example, the instruction
Dupx (0, 1) is the dup instruction of the real JVM. A Load instruction loads
the value stored under the location x on top of the stack. If x denotes a
double word, the next two locations are pushed on top of the stack. A Store
instruction stores the top (double) word of the operand stack in the registers
x (and x + 1). A Goto instruction causes execution to jump to the next in-
struction determined by the provided parameter. The Cond instruction is a
conditional goto. If the relation for the values on top of the operand stack
holds, execution continues at the specified instruction, otherwise execution
proceeds with the next instruction.

9.2 Compilation of JavaI

This section describes a standard scheme to translate a JavaI source lan-
guage program, expressed by an abstract syntax tree, into a sequence of low-
level instructions for the target machine JVMI . More efficient compilation
schemes can be introduced by further refinement steps. By a simultaneous
recursion we define four functions B1, B0, E , S for the compilation of expres-
sions and statements, where the expressions are treated differently depending
on whether they are formed by non strict (“Boolean”) or by strict operators.
The definition uses a case distinction; the cases appearing in Fig. 9.2, 9.3,
9.4 are thought of as disjoint and ordered from top to bottom. To improve
readability, we suppress the details of a consistent assignment of JVM vari-
able numbers x to (occurrences of) Java variables x and of the generation of
labels. We use functions T to return the type of (occurrences of) variables
and expressions.

The compilation E : Exp → Code of (occurrences of) JavaI expressions
to JVMI instructions yields a sequence of instructions which, as we will
prove below, has the effect of storing the value of the expression on top of
the operand stack. (For the proof we assume that JVMI supports the same
constants as JavaI .) Executing Prim(lit) pushes its argument on top of the
stack, similarly for translating variables. In the compilation of variable as-
signments, the expression value is first duplicated before it is stored, because
a Store instruction consumes the topmost element of the operand stack.

Expressions which are used to describe the control flow of a program—
namely true, false, expressions formed by negation or by the non strict
logical primitives (&&, ||), and if-then-else expressions—are translated using
the functions B1, B0: (Exp,Label)→ Code. These functions translate expres-
sions in the context of a given target label l in such a way that if the evaluation
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of the given expression yields true, then the execution of the code compiled
by B1 jumps to the provided label l , otherwise the execution continues at
the next instruction that follows the compiled expression. Symmetrically for
B0 and expressions evaluating to false. In particular for conditional expres-
sions, in case the expression exp0 evaluates to true, B1 sends the execution
to continue at the label if1 where the compilation of the then part e1 starts;
otherwise it sends the execution to continue where the compilation of the
else part exp2 starts. After the execution of either the then or the else part,
if this part evaluates to true, the execution will continue at the given label
lab, otherwise it will jump to the next instruction following the compilation
of the if-then-else expression (instruction Goto(if2)). For non-control flow ex-
pressions exp, the intended control flow effect of B1, B0 is achieved by adding
after the compilation of exp a zero test conditioned jump to the given target
label.

We illustrate the use of B1 for the compilation of negations. If the eval-
uation of an expression exp yields true, executing the E-compilation of the
negation of exp makes JVMI jump to the label una1 which is followed by an
instruction pushing 0 (the JVM-value of the negation of exp) on the stack.
Otherwise 1 is pushed on the stack and the execution is sent by a jump
to the next instruction that follows the E-compilation of the negation. The
compilation of the other control flow expressions is similar. When compil-
ing expressions which are formed by a strict operator, all the arguments are
translated from left to right, followed by the application of the operator. Con-
stant boolean expressions with value True (resp. False) are treated like the
literal true (resp. false) in Fig. 9.3.

The compilation S: Stm → Code of JavaI statements to JVMI instruc-
tions takes a JavaI statement stm as input and produces an equivalent JVMI
instruction sequence as output. The instructions for any stm are generated
in such a way that after their execution, the operand stack is reestablished
to what it was when their execution had been started. The compilation of
an empty statement produces no instructions. The compilation of an expres-
sion statement consists of the compilation of the expression followed by an
additional Pop instruction, which erases the computed value from the top
of the operand stack. The compilation of a block of statements results in
the sequence of the compilation of these statements. The compilation of an
if-then-else statement is similar to the one for conditional expressions. The
compilation of a while statement starts with a jump to the label while1,
which is followed by the compilation of the condition. If this condition evalu-
ates to true, the execution continues with the compiled body and is followed
by testing the condition again. This compilation of a while statement needs
only one conditional jump. The compilation of a labeled instruction generates
continue and break labels which are used as target labels for compiling the
corresponding break lab and continue lab statements.
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Fig. 9.2 Compilation of JavaI expressions

E(lit) = Prim(lit)
E(loc) = Load(T (loc), loc)
E(loc = exp) = E(exp) ·Dupx (0, size(T (exp))) · Store(T (exp), loc)
E(! exp) = B1(exp,una1) · Prim(1) ·Goto(una2)·

una1 · Prim(0) · una2

E(uop exp) = E(exp) · Prim(uop)
E(exp1 bop exp2) = E(exp1) · E(exp2) · Prim(bop)
E(exp0 ? exp1 : exp2) = B1(exp0, if1) · E(exp2) ·Goto(if2) · if1 · E(exp1) · if2

Fig. 9.3 Compilation of JavaI expressions for control flow

B1(true, lab) = Goto(lab)
B1(false, lab) = ε
B1(! exp, lab) = B0(exp, lab)
B1(exp0 ? exp1 : exp2, lab) = B1(exp0, if1) · B1(exp2, lab) ·Goto(if2)·

if1 · B1(exp1, lab) · if2

B1(exp, lab) = E(exp) · Cond(ifne, lab)

B0(true, lab) = ε
B0(false, lab) = Goto(lab)
B0(! exp, lab) = B1(exp, lab)
B0(exp0 ? exp1 : exp2, lab) = B1(exp0, if1) · B0(exp2, lab) ·Goto(if2)·

if1 · B0(exp1, lab) · if2

B0(exp, lab) = E(exp) · Cond(ifeq, lab)

Fig. 9.4 Compilation of JavaI statements

S(; ) = ε
S(exp; ) = E(exp) · Pop(size(T (exp)))
S({stm1 . . . stmn}) = S(stm1) · . . . · S(stmn)
S(if (exp) stm1 else stm2) = B1(exp, if1) · S(stm2) ·Goto(if2)·

if1 · S(stm1) · if2

S(while (exp) stm) = Goto(while1) · while2 · S(stm)·
while1 · B1(exp,while2)

S(lab : stm) = labc · S(stm) · labb

S(continue lab; ) = Goto(labc)
S(break lab; ) = Goto(labb)
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Why do we use the functions B1 and B0 for compiling boolean test ex-
pressions and not the function E? A simple compiler could compile an if-
statement in the following way:

S(if (exp) stm1 else stm2) =
E(exp) · Cond(ifne, if1) · S(stm2) ·Goto(if2) · if1 · S(stm1) · if2

It generates the code for the expression exp using the function E . If the result
of the test is True (different from integer 0), then control jumps to the code
of stm2. Otherwise, stm1 is executed.

Semantically the simple compilation scheme is correct. The problem is
that code generated by the simple scheme is not always accepted by the
bytecode verifier (Chapter 17), as shown in the following example (see also
Example 16.5.4):

Example (; CD) 9.2.1. Consider the following method:

boolean m(boolean x, boolean y) {
boolean z;
if (x && (z = y))
return z;

else
return x;

}

According to the rules of definite assignment in Sect. 8.3, the variable z is
definitely assigned when it is used in the return statement, hence the program
is a legal Java program. When we compile the method using the equivalence

x && (z = y) ≡ x ? z = y : false,

we obtain the following two variants:

Simple compilation Compilation with Bi

Load(int, x ) Load(int, x )
Cond(ifne,A) Cond(ifne,A)
Prim(0) Goto(B)
Goto(B) A : Load(int, y)

A : Load(int, y) Dupx (0, 1)
Dupx (0, 1) Store(int, z )
Store(int, z ) Cond(ifne,L)

B : Cond(ifne,L) B : Load(int, x )
Load(int, x ) Return(int)
Return(int) L : Load(int, z )

L : Load(int, z ) Return(int)
Return(int)

The bytecode in the right column, generated using the functions Bi , is ac-
cepted by the verifier, whereas the bytecode in the left column, generated
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using the simple scheme, is rejected. The reason for the rejection is that the
bytecode verifier does not treat the truth value False (generated by Prim(0))
in a special way, as the rules for definite assignment do in Table 8.4. The
bytecode verifier cannot deduce that, on the left-hand side, the variable z
has an assigned value at label L, because there exists a path from the first
instruction to label L which does not store any value in z .
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In this chapter we extend the machine JVMI to a JVM submachine JVMC
which can execute compiled JavaC programs. The extension consists in adding
rules for handling class variables, and for method invocation and return.
We introduce a submachine switchVMC which takes care of frame stack
manipulations—upon method invocation or return and upon implicit class
initialization—and which will be extended in switchVME for frame manip-
ulations due to capturing exceptions. We also extend the JavaI-to–JVMI
compilation scheme by translating the new JavaC expressions and statements
to JVMC code.

10.1 Dynamic semantics of the JVMC

JVMC extends JVMI by instructions to read and write class fields, to invoke
and to return from class methods and to initialize classes. Methods can either
return nothing (i.e., they return void) or they return real values like integers.

data Instr = . . .
| GetStatic(Type,Class/Field)
| PutStatic(Type,Class/Field)
| InvokeStatic(Type,Class/MSig)
| Return(MoveType)

data MoveType = . . .
| void

We define in execVMC a rule for each of the new instructions. We also intro-
duce a submachine switchVMC which takes care of the context switch upon
calling or returning from a method. This separation of method call and re-
turn from the execution of instructions in the method body is extended in
Part III to separate the instruction execution proper from checking concerns
in the refinement of the trustful to a defensive machine and to the diligent
machine coming with a bytecode verifier.

As long as we only consider statically linked programs, classes are denoted
by their class name. Field and method references are pairs of class and field
or method names.
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type MSig = (Meth,Type∗)

The abstract universes Field and Meth stand for field and method identi-
fiers. Type denotes the types supported by the JVM. The JVM supports
overloading. Fields can have the same identifier, as long as the classes they
are declared in are different. Methods within the same class can also be over-
loaded, as long as the argument types differ.1

We use selector functions classNm, fieldNm, methSig , methNm and
argTypes and overload selectors, as long as their meaning is not ambigu-
ous. For instance classNm is used to select the class name of a field reference
as well as of a method reference. Similarly we use methNm to get the method
identifier of a method reference. We write tuples of field and method refer-
ences in the form c/f and c/m, where c, f and m are elements of the universes
Class,Field and MSig , respectively. Likewise we write method signatures as
m(ts), where m and ts denote a method identifier and a type sequence, re-
spectively.

Environment. JVMC programs are executed with respect to a static envi-
ronment cEnv , which is a mapping of classes and interfaces to class files.
(The following description does not distinguish interfaces and classes, unless
explicitly stated.) Each class file provides for every class its name, its kind
(whether it is a class or an interface), its superclass (if there is any, otherwise
super is undefined), the set of the interfaces the class implements, a table
for fields, and a table for methods. In JVMC every member of a class file is
static; this is extended in JVMO, which also supports instances.

Class files do not include definitions for fields or methods provided by any
superclass, unless the definitions are overwritten.

cEnv : Class → ClassFile

data ClassFile = CFile(classNm : Class,
isInterface : Bool ,
modifiers : Powerset(Modifier),
super : Class,
implements : Powerset(Class),
fields : FieldTab,
methods : MethTab)

Field declarations have a type and a set of modifiers. The type of a method
is its result type, which can be void. If a method is implemented in the class,
the function code defines a nonempty sequence of instructions, otherwise
the sequence is empty. An implemented method can include an exception
table. Exception handling is introduced in Chapter 12. Methods can have
constraints on the maximum depth of their operand stacks and the number of
1 The types of fields and return types of methods are not used. However, types

will play an important role when considering the security aspects of the JVM.
This is the subject of Part III.
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registers they use (maxOpd and maxReg). This information is only exploited
in the secure JVM, which is the subject of Part III.

type FieldTab = Map(Field ,FDec)
type MethTab = Map(MSig ,MDec)

data FDec = FDec(modifiers : Powerset(Modifier),
type : Type)

data MDec = MDec(modifiers : Powerset(Modifier),
returnType : Type,
code : Code,
excs : Exc∗,
(maxOpd ,maxReg) : (Nat ,Nat))

We assume that for any class file selector there is a derived function having
the same name, that suppresses the class environment cEnv and abbreviates
the data path to select the corresponding component. For instance, the over-
loaded function super : Class → Class returns the direct superclass of the
specified class, that is super(c) = super(cEnv(c)). Another example is the
derived function code(c/m) that returns the code of the given method, that
is code(c/m) = code(methods(cEnv(c))(m)).

State. JVMC adds procedural abstraction in the form of class methods. Due
to their presence we have not only a single JVMI frame (pc, reg , opd) but
many of them of type

type Frame = (Pc,Map(RegNo,Word),Word∗,Class/MSig)

which are stored in a stack. Note that the frame information is enriched by
a fourth component, that always describes the method to which the frame
belongs. The dynamic function stack holds the stack of active method incar-
nations. The dynamic function meth holds the currently active method.

meth : Class/MSig
stack : Frame∗

meth = (Object/<entrypoint>())
stack = [ ]

The first method to execute is Object/<entrypoint>(). Its code is:

Prim(null)
InvokeStatic(void,Main/main(String))
Halt

where Main is a not furthermore specified class (in ASM terminology: a static
0-ary function) given by the invoker of the application.2

2 Conceptually, the internal method is not needed. It can be substituted by corre-
sponding conditions on the initialization.
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Method invocation and return as well as implicit class initialization (see
below) change the current frame (the context). In order to obtain a uniform
treatment of checking and verifying of methods (see Part III), we explic-
itly separate here method transfer from the execution of instructions within
method bodies. For this purpose we introduce a new universe

data Switch = Noswitch
| Call(Class/MSig ,Args)
| Result(Val)
| InitClass(Class)

type Args = Word∗

type Val = Word∗

that comes together with a dynamic function switch characterizing the con-
text switch the machine is currently performing. The machine either performs
no switch (Noswitch–the initial value) or it calls (Call) or returns (Result)
from a method, or it initializes (InitClass) a class.

switch: Switch
switch = Noswitch

The JVM uses symbolic field and method references to support binary com-
patibility, see also [18]. As a consequence, the calculation of field offsets and
of method offsets is implementation dependent. Therefore, we keep the class
field access as abstract as in Java (see Chapter 4) and define the storage
function for class fields by the same abstract function globals which initially
holds the default value for each static field. The environment based function
staticFields(c) returns the static fields of a class c, the function defaultVal(f )
returns null for fields holding references, and 0 otherwise. (Depending on the
type of the field different representations of 0 are chosen.)

globals: Class/Field → Val
∀ c ∈ dom(cEnv) :∀ f ∈ staticFields(c) : globals(f ) = defaultVal(f )

Before a class can be used it must be loaded, linked, and its class initializers
must be executed. Loading and linking is introduced in Chapter 18. At the
JVM level class initializers appear as class methods with the special name
<clinit>. In JVMC a class can either be linked or initialized, similarly to
the Java model in Chapter 4 which also keeps track of the initialization state
of a class so that we can repeat the definition here:

data ClassState = Linked | Initialized

The JVM also comes with a dynamic function classState, which records the
current class state. Initially all classes, except the root class Object, are
Linked . The class Object is initially initialized.
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Fig. 10.1 Trustful execution of JVMC instructions

trustfulSchemeC (execVM , switchVM ) =
if switch = Noswitch then

execVM (code(pc))
else

switchVM

execVMC (instr) =
execVMI (instr)
case instr of

GetStatic( , c/f )→ if initialized(c) then
opd := opd · globals(c/f )
pc := pc + 1

else switch := InitClass(c)
PutStatic( , c/f )→ if initialized(c) then

let (opd ′,ws) = split(opd , size(c/f ))
globals(c/f ) := ws
opd := opd ′

pc := pc + 1
else switch := InitClass(c)

InvokeStatic( , c/m)→ if initialized(c) then
let (opd ′,ws) = split(opd , argSize(c/m))
opd := opd ′

switch := Call(c/m,ws)
else switch := InitClass(c)

Return(t)→ let (opd ′,ws) = split(opd , size(t))
switch := Result(ws)

classState: Class → ClassState
∀ c ∈ dom(cEnv) \ {Object} : classState(c) = Linked
classState(Object) = Initialized

A class is initialized, if its class state is Initialized . Formally:

initialized(c) = (classState(c) = Initialized)

Rules. Fig. 10.1 defines trustfulSchemeC . The scheme can be read as a macro
with two parameters execVM and switchVM . For JVMC we instantiate the
parameters with execVMC and switchVMC .

trustfulVMC = trustfulSchemeC (execVMC , switchVMC )

As long as a context switch is requested, switchVMC rules fire. Otherwise
execVMC rules are executed.

We first explain the new execVMC rules for the case that the referenced
class of the field or method is already initialized. A GetStatic instruction
loads, on top of the operand stack, the value (one or two words) which is
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Fig. 10.2 Trustful switch machine

switchVMC =
case switch of

Call(meth, args)→ if ¬isAbstract(meth) then
pushFrame(meth, args)
switch := Noswitch

Result(res) → if implicitCall(meth) then popFrame(0, [ ])
else popFrame(1, res)

switch := Noswitch
InitClass(c)→ if classState(c) = Linked then

classState(c) := Initialized
forall f ∈ staticFields(c)

globals(c/f ) := default(type(c/f ))
pushFrame(c/<clinit>())
if c = Object ∨ initialized(super(c)) then

switch := Noswitch
else

switch := InitClass(super(c))

stored under the field in the global environment. A PutStatic instruction
stores the top (two) word(s) of the operand stack in the global environment
at the given field. An InvokeStatic instruction pops the arguments from the
operand stack and triggers a context switch. The switchVMC machine in
Fig. 10.2 then stores the current frame in the frame stack and places the argu-
ments of the invoked method in the registers of the new frame, and execution
continues at the first instruction of the new method3. When execVMC inter-
prets Return, it takes the required number of words (0, 1 or 2) from the top of
the operand stack and triggers a context switch. Upon returning from a class
initializer (implicitCall), no return value is passed and switchVMC makes the
execution continue with the frame and the instruction which triggered the
class initialization; otherwise switchVMC discards the topmost frame, pushes
the returned words onto the invoker’s operand stack and increments the in-
voker’s pc. We therefore define (see the refinement for class loading method
<cload> in Sect. 18.3.2):

implicitCall(m) = methNm(m) = "<clinit>"

Pushing and popping frames, as required by the switchVMC , are defined by
the following rules:

pushFrame(newMeth, args) =
stack := stack · [(pc, reg , opd ,meth)]
meth := newMeth
pc := 0
opd := [ ]
reg := makeRegs(args)

3 In Fig. 12.1 an error is raised should the invoked method happen to be abstract.
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Fig. 10.3 Compilation of JavaC expressions/statements

E(c.f ) = GetStatic(T (c/f ), c/f )
E(c.f = exp) = E(exp) ·Dupx (0, size(T (exp))) · PutStatic(T (c/f ), c/f )
E(c.m(exps)) = E(exps) · InvokeStatic(T (c/m), c/m)

E((exp1, . . . , expn)) = E(exp1) · . . . · E(expn)

S(static stm) = S(stm)
S(return; ) = Return(void)
S(return exp; ) = E(exp) · Return(T (exp))

popFrame(offset , result) =
let (stack ′, [(pc′, reg ′, opd ′,meth ′)]) = split(stack , 1)
pc := pc′ + offset
reg := reg ′

opd := opd ′ · result
meth := meth ′

stack := stack ′

The function makeRegs converts an argument sequence to a finite mapping:

makeRegs(args) = {(l , v) | (l , v) ∈ zip([0..length(args)− 1], args)}

Initialization starts, that is a class initialization method <clinit> is im-
plicitly called by triggering a context switch to InitClass(c), when the class
referred to in a Get-, Put- or InvokeStatic instruction is not initialized. Before
a class is initialized, its superclass has to be initialized, if there is any. Inter-
faces can be initialized at this time, although this is not specified in the Java
language reference manual [18]. This strategy is reflected by the InitClass(c)
rule in switchVMC . It pushes <clinit> frames on the stack and at the same
time records that the class is initialized. The machine switchVMC executes
this rule until in the inheritance hierarchy either the class Object or an ini-
tialized superclass is reached. Since the class state is set to initialized as soon
as a frame is pushed, the finiteness of the inheritance hierarchy implies that
this recursive initialization always terminates.4

10.2 Compilation of JavaC

The compilation of JavaI expressions is extended by defining the compila-
tion of class field access, class field assignment, and by the compilation of
calls of class methods. This extension refers to the compiling function E , see
Fig. 10.3. The compilation of class field access and assignment follows the
4 In a concurrent setting, an additional class state variant is needed, see Chapter 7.
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pattern for local variable access and assignment. For calls of class methods,
first all arguments are pushed on the stack from left to right followed by an
InvokeStatic instruction.

Likewise we extend the compiling function S to translate static initializa-
tions and return statements.



11. The object-oriented extension JVMO of
JVMC

In this chapter we extend the machine JVMC to a JVM submachine JVMO
which can execute compiled JavaO programs. We also extend the JavaC-to–
JVMC compilation scheme by translating the new JavaO expressions and
statements to JVMO code.

11.1 Dynamic semantics of the JVMO

In this section we extend the machine JVMC to JVMO. This machine handles
the result of the compilation of object-oriented features of Java programs,
namely instances, instance creation and initialization, instance field access,
instance method calls, type casts and null pointers. Therefore the extension
consists in adding to the execVMC rules for the new instructions of JVMO
and extending the Store, Load and Return instructions to handle addresses.

data Instr = . . .
| New(Class)
| GetField(Type,Class/Field)
| PutField(Type,Class/Field)
| InstanceOf (Type)
| Checkcast(Type)
| InvokeSpecial(Type,Class/MSig)
| InvokeVirtual(Type,Class/MSig)

data MoveType = . . .
| addr

JVMO distinguishes two kinds of instance method calls. If the method is early
bound (InvokeSpecial), the class which implements the method is embedded
in the method reference. In the case of late binding (InvokeVirtual), the
method must be looked up dynamically.

Environment. JVMO uses the same environment and abstract class file as
JVMC . However, instance fields and instance methods—in opposite to class
fields and class methods—are not static but dynamic. Java constructors ap-
pear in the JVM as instance initialization methods with the special name
<init>.
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Fig. 11.1 Trustful execution of JVMO instructions

execVMO(instr) =
execVMC (instr)
case instr of

New(c)→
if initialized(c) then create r

heap(r) := Object(c, {(f , defaultVal(f )) | f ∈ instanceFields(c)})
opd := opd · [r ]
pc := pc + 1

else switch := InitClass(c)
GetField( , c/f )→ let (opd ′, [r ]) = split(opd , 1)

if r 6= null then
opd := opd ′ · getField(r , c/f )
pc := pc + 1

PutField( , c/f )→ let (opd ′, [r ] · ws) = split(opd , 1 + size(c/f ))
if r 6= null then

setField(r , c/f ,ws)
pc := pc + 1
opd := opd ′

InvokeSpecial( , c/m)→
let (opd ′, [r ] · ws) = split(opd , 1 + argSize(c/m))
if r 6= null then

opd := opd ′

switch := Call(c/m, [r ] · ws)
InvokeVirtual( , c/m)→

let (opd ′, [r ] · ws) = split(opd , 1 + argSize(c/m))
if r 6= null then

opd := opd ′

switch := Call(lookup(classOf (r), c/m), [r ] · ws)

InstanceOf (c)→ let (opd ′, [r ]) = split(opd , 1)
opd := opd ′ · (r 6= null ∧ classOf (r) v c)
pc := pc + 1

Checkcast(c) → let r = top(opd)
if r = null ∨ classOf (r) v c then

pc := pc + 1

Values. References uniquely denote instances and belong to the abstract uni-
verse Ref , which is assumed to be a subset of Word . We assume that also
null is an element of Word .

State. JVMO memorizes the class of an instance and the values of instance
fields in the heap. The heap is structured as in JavaO.

data Heap = Object(Class,Map(Class/Field ,Val))

heap: Ref → Heap
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Two derived functions classOf and getField access the heap to select the
class of the instance and the values of its fields. The rule setField is used to
assign to an instance field, see Chapter 5 for the definition.

Rules. The trustfulVM for JVMO is the one for JVMC extended with the
new execVMO rules appearing in Fig. 11.1.

trustfulVMO = trustfulSchemeC (execVMO , switchVMC )

If upon executing a New instruction the referenced class is initialized, a fresh
reference r 6∈ dom(heap) is allocated. The class of the reference is set to
the given class with its instance fields set to the default values. The new
reference is pushed on the operand stack.1 A GetField instruction pops the
target reference from the stack and pushes the value of the field, determined
using the function getField , from the dynamic store on the operand stack.
A PutField instruction pops a value and the target reference from the stack;
using the rule setField(r , c/f ,ws) it sets the dynamic store at the point of
the target reference and the given field to the popped value. The instructions
InvokeSpecial and InvokeVirtual pop from the stack the arguments and the
target reference (which denotes the instance whose method is called). The
class which implements the method is determined as follows: If the method is
early bound (InvokeSpecial), the class specified by the instruction parameter
is selected, otherwise the method is late bound (InvokeVirtual) and the im-
plementing class is looked up dynamically, starting at the class of the given
reference. (The function lookup returns, starting at the given class, the first
(super) class for the given method reference that implements this method,
see Sect. 5.1.8.) The arguments for the invoked method are stored in the reg-
isters of the new stack frame, starting at the target reference which is placed
in reg(0). Execution continues at the first instruction of the new method.
An InstanceOf instruction pops a reference from the operand stack. If the
reference is not null and compatible with the required class, the integer 1 is
pushed on the operand stack, otherwise 0 is pushed. A Checkcast instruction
validates that the top value on the stack is an instance of the given class.

11.2 Compilation of JavaO

We extend here the compilation of JavaC expressions to the new JavaO expres-
sions, see Fig. 11.2. The reference this is implemented as the distinguished
local variable with register number 0. Expressions which create new instances
are compiled in such a way that first an uninitialized object is created. This
object is then duplicated so that after calling the constructor for the ini-
tialization of the object—this call consumes the topmost stack element—one
1 For the checking mechanism in the defensive JVMO (Fig. 15.4) we will refine

the New(c)-rule by providing the to be checked information on the initialization
status for the newly created reference to an object of class c.
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Fig. 11.2 Compilation of JavaO expressions

E(this) = Load(addr, 0)
E(new c) = New(c) ·Dupx (0, 1)
E(exp.c/f ) = E(exp) ·GetField(T (c/f ), c/f )
E(exp1.c/f = exp2) = E(exp1) · E(exp2) ·Dupx (1, size(T (c/f )))·

PutField(T (c/f ), c/f )
E(exp.c/m(exps)) = E(exp) · E(exps)·

case callKind(exp.c/m) of
Virtual → InvokeVirtual(T (c/m), c/m)
Super → InvokeSpecial(T (c/m), c/m)
Special → InvokeSpecial(T (c/m), c/m)

E(exp instanceof c) = E(exp) · InstanceOf (c)
E((c)exp) = E(exp) · Checkcast(c)

reference to the new object is left on the stack. The compilation of instance
field access and assignment is similar to the compilation of static fields (see
Chap. 9), except that first the target reference must be pushed on the stack.
For instance method calls, the target reference can be accessed in the caller
using register number 0. Reference type cast and instanceof expressions
are translated like unary operators (see Chap. 9) using the corresponding
specific JVM instructions. The literal null is compiled into the instruction
Prim(null).



12. The exception-handling extension JVME of
JVMO

In this chapter we extend the machine JVMO to a JVM submachine JVME
which can execute compiled JavaE programs. This includes extending the
submachine switchVMC to switchVME which copes with frame stack ma-
nipulations due to exception handling. We also extend the JavaO-to–JVMO
compilation scheme by translating the new JavaE statements to JVME code.

12.1 Dynamic semantics of the JVME

In the JVM exceptions are objects that can be thrown and caught. JVME
extends JVMO by instructions dealing with exceptions, namely to raise an
exception, to jump to and to return from subroutines.

data Instr = . . .
| Athrow
| Jsr(Offset)
| Ret(RegNo)

The extension JVME of JVMO consists in adding to the execVMO a rule for
each of the error handling instructions and in adding to switchVMC a new
rule which describes the context switch when an exception is thrown.

trustfulVME = trustfulSchemeC (execVME , switchVME )

Environment. To implement the try/catch construct of Java, JVME provides
exception tables. They list the exceptions of a method. When an exception
is raised, these tables are searched for the handler.

data Exc = Exc(from : Pc,
upto : Pc,
handle : Pc,
type : Class)

Any quadruple (f , u, h, t) describes the range of instructions {f ..u−1} where
an exception is handled that is compatible with t .1

1 In the real JVM if the exception entry describes a finally block, the type compo-
nent is undefined. We assume that the corresponding class name is Throwable.
Since any exception is a subclass of Throwable, this definition has the desired
effect.
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When an exception is raised, the run-time system searches the exception
table of the current method. If no handler is found, the frame of the current
method is discarded and the invoker frame is re-instantiated to continue the
search for an exception handler. If a handler is found, the operand stack is
cleared and the reference of the exception is pushed onto the stack. The exe-
cution continues from the address of the handler (within the current method
and with the current register values). This propagation of exceptions termi-
nates since we assume that Main has a “default” exception handler. It catches
any exception and points to Halt . Its exception table is [(0, 2, 2, Throwable)].

State. Exception handling modifies the frame stack. The universe Switch is
extended to signal the handling of a thrown exception:

data Switch = . . . | Throw(Ref ) | ThrowInit(Ref )

When an exception occurs in a <clinit> method the switch will be set to
ThrowInit and the method’s class must be marked as Unusable. We extend
the universe ClassState as follows:

data ClassState = . . . | Unusable

unusable(c) = (classState(c) = Unusable)

Values. To implement Java try/finally constructs, JVME supports embedded
subroutines. The corresponding instructions push 32-bit program counters
onto the stack or load them from local variables. This requires that Pc is
injected in Word .

Rules. Fig. 12.1 defines the rules of switchVME . The switchVME rules search
for the handler of the thrown exception. If the current pc and exception
match an exception entry of the current method, switchVME sets the program
counter to the first matching handler and replaces the operand stack with
the thrown exception. The function handler selects the appropriate error
handler (if any) where the function excs returns the exception table of the
given method (see definition of methods in Chapter 10.1).

handler(m, pc, c) = e
where [e] · = [e | e ∈ excs(m),match(pc, c, e)]

escapes(m, pc, c) = 6 ∃e ∈ excs(m) : match(pc, c, e)
match(pc, c,Exc(f , u, h, t)) = f ≤ pc ∧ pc < u ∧ c �h t

If the exception escapes from the current method, the top method frame is
discarded and it is checked whether the invoker frame has defined a handler.
If an exceptpin thrown in a <clinit> method is not compatible with Error,
an ExceptionInInitializerError replaces the thrown one.2 If a <clinit>
method frame is popped, the declared class becomes Unusable. The exception
2 In the real JVM the ExceptionInInitializerError embeds the thrown excep-

tion.
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Fig. 12.1 Switch machine for JVME

switchVME =
switchVMC

case switch of
Call(meth, args)→ if isAbstract(meth) then

raise( "AbstractMethodError" )
InitClass(c)→ if unusable(c) then

raise( "NoClassDefFoundError" )
Throw(r)→ if ¬escapes(meth, pc, classOf (r)) then

let exc = handler(meth, pc, classOf (r))
pc := handle(exc)
opd := [r ]
switch := Noswitch

else
if methNm(meth) = "<clinit>" then

if ¬(classOf (r) �h Error) then
raise( "ExceptionInInitializerError" )
pc := undef

else switch := ThrowInit(r)
else popFrame(0, [ ])

ThrowInit(r)→ let c = classNm(meth)
classState(c) := Unusable
popFrame(0, [ ])
if ¬superInit(top(stack), c) then

switch := Throw(r)

superInit(( , , ,m), c) =
methNm(m) = "<clinit>" ∧ super(classNm(m)) = c

NoClassDefFoundError is thrown, if an unusable class should be initialized.
The macro raise(c) is a short hand for the following code template:

New(c)
Dupx (0, 1)
InvokeSpecial(void, c/<init>())
Athrow

This code can be implemented as a static method defined for instance in class
Object.

fail(c) = (Object/( "<fail" · c · ">" , [ ]))
raise(c) = (switch := Call(fail(c), [ ]))

The execVME rules in Fig. 12.2 specify the effect of the JVME instructions on
the current frame. The Athrow instruction takes the reference from the top
of the stack and throws the exception represented by that reference, namely
by triggering the switchVME submachine. The Jsr instruction is used to
implement finally clauses of Java. Its execution transfers the control to the
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Fig. 12.2 Trustful execution of JVME instructions

execVME (instr) =
execVMO(instr)
case instr of

Athrow → let [r ] = take(opd , 1)
if r 6= null then switch := Throw(r)

else raise( "NullPointerException" )
Jsr(s)→ opd := opd · [pc + 1]

pc := s
Ret(x )→ pc := reg(x )
Prim(p)→ let ws = take(opd , argSize(p))

if p ∈ divMod ∧ sndArgIsZero(ws) then
raise( "ArithmeticException" )

GetField( , c/f )→ let [r ] = take(opd , 1)
if r = null then raise( "NullPointerException" )

PutField( , c/f )→ let [r ] · ws = take(opd , 1 + size(c/f ))
if r = null then raise( "NullPointerException" )

InvokeSpecial( , c/m)→
let [r ] · ws = take(opd , 1 + argSize(c/m))
if r = null then raise( "NullPointerException" )

InvokeVirtual( , c/m)→
let [r ] · ws = take(opd , 1 + argSize(c/m))
if r = null then raise( "NullPointerException" )

Checkcast(c)→ let r = top(opd)
if r 6= 0 ∧ ¬(classOf (r) v c) then

raise( "ClassCastException" )

given label and pushes the address of the next instruction on the operand
stack. This address is typically used by Ret to return from the subroutine.
Therefore from the top of the stack where this return address has been put
by Jsr , it has to be stored in a register (using Store) to be found there by
Ret , as one can see below in the compilation of finally statements.

JVME also extends in the expected way the rules where run-time excep-
tions might occur. A typical representative of this extension is the definition
for Prim. The new rule throws an ArithmeticException, if the operator
is an integer or long division or remainder operator and the right operand
is 0. JVME throws a NullPointerException if the target reference of a
GetField , PutField , InvokeSpecial or InvokeVirtual instruction is null , or
if the reference of the Athrow instruction is null . The machine throws a
ClassCastException, if for a Checkcast instruction the reference on top of
stack is neither null nor assignment compatible with the required type.
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12.2 Compilation of JavaE

In this section we extend the compilation of JavaO statements to the new
JavaE statements. We refine the compilation of the abruptions statements of
JavaI and JavaC for the case that in JavaE they occur in the range of finally
statements. We also define the exception tables for JVME programs, namely
by an induction on JVME statements.

The JVME -extension for statement compilation is defined in Fig. 12.3.
For try-catch statements, the compilation of the try block stm is followed
by a jump to the end of the compiled statement. The code for the exception
handlers is generated in the order in which they appear in the statement.
Each handler stores the exception from the top of the stack into its ‘catch’
parameter, followed first by the code of the catch clause, then by a jump to
the end of the statement.

For try-finally statements, the compilation of the try-catch statement
stm1 is followed by a jump to the start fin of the subroutine stm2 for the
finally block. This is followed by a jump to the end of the compiled state-
ment, to be executed upon returning from the finally statement. The sub-
routine first stores the return address into a fresh variable and then executes
the code of stm2, followed by a return to the stored address where in case it
represents a pending abruption this abruption will be resumed.

For those exceptions that are thrown in the try-catch statement stm1 but
not caught by any of the catchers (if present), the exception table will point
to the default label. Here the pending exception of class Throwable is stored
from the operand into a fresh local variable, the subroutine is called, and
upon return from there the pending exception is reloaded and rethrown. The
compilation has to guarantee that the mentioned fresh variables are used only
when an exception or return address is stored (and in particular not during
execution of the finally block).

The compilation of break and continue statements to JVMI-code has
to be extended for the case that they occur within a try block of a try-
catch-finally statement and their corresponding target statement contains
some try-catch-finally statement. In that case all finally blocks between
the jump statement and its target have to be executed in innermost order
(computed by the function finallyLabsUntil(lab)) before jumping to the tar-
get. Similarly for the sequence of fin labels (finallyLabs) appearing in the
compilation of a return statement.

The exception tables are defined in Fig. 12.4. To guarantee that exceptions
are searched in innermost order we make sure that inner try statements are
concatenated before outer ones (see Lemma 14.2.1 for the properties of the
exception table that are used to guarantee the correct execution of Java
programs on the JVM).



Fig. 12.3 Compilation of JavaE abruption statements

S(throw exp; ) = E(exp) ·Athrow
S(try stm catch (c1 x1) stm1 . . . catch (cn x n) stmn ) =

try · S(stm) · tryEnd ·Goto(end)·
handle1 · Store(addr, x1) · S(stm1) ·Goto(end)·
...
handlen · Store(addr, xn) · S(stmn) ·Goto(end)·
end

S(stm1 finally stm2) =
tryf · S(stm1) · Jsr(fin) ·Goto(end)·
default · Store(addr, exc) · Jsr(fin) · Load(addr, exc) ·Athrow ·
fin · Store(addr, ret) · S(stm2) · Ret(ret)·
end

S(continue lab; ) = let [fin1, . . . ,finn ] = finallyLabsUntil(lab)
Jsr(fin1) · . . . · Jsr(finn) ·Goto(labc)

S(break lab; ) = let [fin1, . . . ,finn ] = finallyLabsUntil(lab)
Jsr(fin1) · . . . · Jsr(finn) ·Goto(labb)

S(return; ) = let [fin1, . . . ,finn ] = finallyLabs
Jsr(fin1) · . . . · Jsr(finn) · Return(void)

S(return exp; ) =
if finallyCodeToExec then
E(exp) · Store(T (exp), var)·
let [fin1, . . . ,finn ] = finallyLabs
Jsr(fin1) · . . . · Jsr(finn) · Load(T (exp), var) · Return(T (exp))

else
E(exp) · Return(T (exp))

Fig. 12.4 Definition of JavaE exception tables

X (try stm catch (c1 x1) stm1 . . . catch (cn x n) stmn ) =
X (stm)·
X (stm1) · Exc(try, tryEnd,handle1, c1)·
...
X (stmn) · Exc(try, tryEnd,handlen , cn)

X (stm1 finally stm2) =
X (stm1) · Exc(tryf ,default,default, Throwable) · X (stm2)

X ({stm1 . . . stmn}) = X (stm1) · . . . · X (stmn)
X (if (exp) stm1 else stm2) = X (stm1) · X (stm2)
X (while (exp) stm) = X (stm)
X (lab : stm) = X (stm)
X (static stm) = X (stm)
X ( ) = ε



13. Executing the JVMN

The specification of the Java Virtual Machine is not complete without the
specification of all native methods which are used in the JDK libraries. Un-
fortunately, not all native methods are described in the official specifications.
Therefore, one is constrained to using Sun’s JVM if one wants to use Sun’s
JDK libraries.

Native methods do not have Java bytecode. Native methods are imple-
mented in foreign programming languages. In our model, native methods are
implemented via ASM rules. Therefore, a full specification of the JVM would
consist of ASM rules for each native method which is used in the JDK li-
braries. In the execVMN machine below, we describe—as examples—just two
native methods, namely Object/equals and Object/clone. The executable
version contains other native methods (see Appendix A).

The extension JVMN of JVME consists in adding the execution of native
methods to execVME . In case there is no context switch and the method to
execute is a native method, we execute the machine specified by nativeVM
which in this chapter is execVMN .

trustfulSchemeN (nativeVM , switchVM ) =
if switch = Noswitch ∧ isNative(meth) then

nativeVM
else

trustfulSchemeC (execVME , switchVM )

trustfulVMN = trustfulSchemeN (execVMN , switchVME )

The method Object/equals tests whether the two argument references are
equal. The method Object/clone creates an exact copy of the given reference
if the class specified by the argument implements the Cloneable interface.
Otherwise the exception CloneNotSupportedException is thrown.
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execVMN =
if meth = Object/ equals then

switch := Result(reg(0) = reg(1))
elseif meth = Object/ clone then

let r = reg(0)
if classOf (r) �h Cloneable then

create r ′

heap(r ′) := heap(r)
switch := Result(r ′)

else
raise( "CloneNotSupportedException" )



14. Correctness of the compiler

In this chapter we formulate and prove the correctness of the compiler for
JavaE programs. The goal of the chapter is to show that the run of the ASM
for a JavaE program is equivalent to the corresponding run of the JVME
for the compiled program, based upon a precise definition of the equivalence
between a JavaE run and its implementation by a JVME run. For example,
the run of the JavaE program is finite if and only if the run of the compiled
JVME program is finite. The correspondence of states to be compared in the
two runs will be made explicit by a mapping n 7→ σ(n) with the following
properties:

1. If m ≤ n, then σ(m) ≤ σ(n).
2. The nth state in the run of the JavaE program is equivalent to state σ(n)

in the run of the compiled JVME program.

The mapping from one run into the other will be constructed by induction
on the number of steps of the first run. The mapping is not monotonic in
the strict sense, since there are steps in the run of the ASM for JavaE which
require zero steps on the JVME .1 There are also steps of JavaE which require
more than one step on the JVME . The equivalence of states will be explained
in Sect. 14.1, where we identify how JavaE and the JVME , upon navigation
(via pos/pc) through their code, produce in corresponding method code seg-
ments the same values for (local, global, heap) variables and the same results
of intermediate calculations (stored in restbody/opd), for the current method
as well as for the method calls still to be completed (stored in frames/stack).
Sect. 14.2 contains the correctness proof.

14.1 The correctness statement

In this section we make the notion of compilation correctness precise through
which the runs of JavaE are related to their implementations by JVME runs.
We have to identify the relevant locations in the states of the two machines,
whose value evolution guarantees that the two runs yield the same result.
1 In such cases we set σ(n + 1) := σ(n), instead of explicitly introducing stutter

steps as is usually done in the refinement literature. This also hides the abruption
cycles introduced for the proof in [12].
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We briefly summarize the dynamic states of JavaE and the JVME . The
dynamic state of JavaE is given by the following dynamic functions:

pos : Pos
restbody : Phrase
locals : MAP(Loc,Val)
meth : Class/MSig
frames : (Meth,Restbody ,Pos,Locals)∗

classState : Class → {Linked , Initialized ,Unusable}
globals : Class/Field → Val
heap : Ref → Object(Class,MAP(Class/Field ,Val))

The dynamic state of the JVME is given by the following dynamic functions:

pc : Pc
opd : Word∗

reg : Map(RegNo,Word)
meth : Class/MSig
stack : (Pc,Reg ,Opd ,Meth)∗

classState : Class → {Linked , Initialized ,Unusable}
globals : Class/Field → Val
heap : Ref → Object(Class,MAP(Class/Field ,Val))
switch : Noswitch | Call(Meth,Args) | Result(Val) |

InitClass(Class) | Throw(Ref ) | ThrowInit(Ref )

The dynamic functions meth, classState, globals and heap have the same
name for JavaE and the JVME . This identification is on purpose, since the
two interpretations of these functions in JavaE and the JVME are the same.
To be precise, we had to write methJavan = methVMσ(n), etc. For the other
dynamic functions—the only ones which remain to be investigated in this
chapter—we have the following correspondence between the elements of the
current frame, and the resulting correspondence between the elements of the
method call stack:

JavaE JVME
pos pc
restbody opd
locals reg
frames stack

We are now going to define, for each pair of these corresponding functions,
in which sense they reflect equivalent descriptions for navigating through the
code, for calculating intermediate values, and for computing the values of
local variables.
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14.1.1 The equivalence of pos and pc

What is the desired equivalence between the working positions pos and pc
of JavaE and the JVME?—We associate to each position α in the body of a
method a code interval

[code(i) | begα ≤ i < endα].

The index begα is the index (label) of the first instruction which belongs
to the compiled code for the phrase at position α. The index endα is the
index of the first instruction immediately following the code for the phrase
at position α. If the statement at position α is not empty, then begα is less
than endα, otherwise begα is equal to endα. The nesting of expressions and
statements is preserved by the compiler. If a phrase is contained in another
phrase, then the code interval of the phrase is contained in the code interval
of the enclosing phrase.

Lemma 14.1.1. If β is a position inside αphrase, then
begα ≤ begβ ≤ endβ ≤ endα.

Proof. By induction on the size of αphrase. ut

The equivalence for posn and pcσ(n) is defined in the invariants (beg)–
(exc) of Theorem 14.1.1, stating one condition for each kind of phrases which
may occur in restbody at posn , namely not yet computed expressions or state-
ments, values of non-boolean or boolean or instance creation expressions,
normal or abrupted termination results of statement execution. The equiva-
lence conditions express that in each case, JavaE and the JVME are working
on (representations of) the same phrase in the same computation phase of
that phrase (entering or exiting). For example, if the current position pos of
JavaE is α and the phrase at position α is not yet evaluated, then the pc of
the JVME will be at index begα. If the phrase at position α is fully evaluated,
then the pc will be at index endα.

14.1.2 The equivalence of restbody and opd

We show here how to compute from restbody the operand stack opd of the
JVME which is equivalent to it. The values are represented differently in
JavaE and the JVME . Values of JavaE are abstract values of the primitive
types or references (elements of the universe Val), whereas values of the
JVME are lists of one or two 32 bit words. We denote by jvmVal(v) the list
of words used in the JVME to represent a value v of JavaE . We extend the
data refinement function jvmVal to finite sequences of values and arbitrary
phrases. If phrase is not an element of the universe Val , then jvmVal(phrase)
is the empty list.

1. If the type of v is of size 1, then jvmVal(v) = [w ].
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2. If the type of v is of size 2, then jvmVal(v) = [w1,w2].
3. If vals = (v1, . . . , vn), then jvmVal(vals) = jvmVal(v1) · . . . · jvmVal(vn).
4. If ϕ is neither a value nor a sequence of values, then jvmVal(ϕ) = [ ].

What is the desired equivalence between restbody and opd?—The operand
stack opd of the JVME can be reconstructed from the restbody of JavaE .
Consider the evaluation of the following expression:

(3 * 5) + (2 * x)

If during the evaluation of the expression the current position is at the vari-
able x, the restbody looks as follows:

+
↙ ↘

15 *
↙ ↘

2 Ix

The corresponding operand stack of the JVME is the list [15, 2]. It is obtained
by collecting into a list the JavaE values on the left-hand side of the path
from the root of the expression to the current position and transforming them
into the corresponding words of the JVME using the function jvmVal .

Conditional expressions and new instance creation expressions have to
be treated with special care. For a conditional expression, the value of the
boolean test expression exists in the restbody of JavaE , but through the exe-
cution of the corresponding Cond instruction it is deleted from the operand
stack of the JVME . For an instance creation expression, the newly created
reference has to be duplicated in the operand stack of the JVME . (See the
compilation of new c and note that in the abstract syntax tree the arguments
of the instance initialization method are one level deeper than new c.)

Let α be a position in restbody of JavaE . Then javaOpd(restbody , α) de-
notes the operand stack of the JVME when the evaluation of restbody is at
position α. The function javaOpd can be computed by recursion on the depth
of the position α. We assume that positions are represented by finite lists of
natural numbers. The root position firstPos is the empty list, and the ith
successor of position α is obtained by appending the item i to the list α.

Definition 14.1.1 (javaOpd). Let α be a position in body(meth).

1. javaOpd(restbody , [ ]) := [ ].
2. If body(meth)/α is not an expression, then

javaOpd(restbody , α · [n]) := [ ].

3. If body(meth)/α = e0 ? e1 : e2, then

javaOpd(restbody , α · [n]) := javaOpd(restbody , α).
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4. If body(meth)/α = new c.c/m(exps), then

javaOpd(restbody , α · [1]) := javaOpd(restbody , α) · [v , v ],

where v = jvmVal(restbody/α · [0]).
5. Otherwise,

javaOpd(restbody , α · [n]) :=
javaOpd(restbody , α) ·
jvmVal(restbody/α · [0]) · . . . · jvmVal(restbody/α · [n − 1])

As a special case, javaOpd(restbody , α · [0]) = javaOpd(restbody , α).

The definition of javaOpd(restbody , α) is by recursion on the length of α. If
we reach a prefix β of α such that body(meth)/β is a statement and not an
expression, then the recursion stops with the empty list. If body(meth)/α is
an equation loc = exp, then javaOpd(restbody , α ·[1]) = javaOpd(restbody , α),
since jvmVal(loc) = [ ].

14.1.3 The equivalence of locals and reg

The correspondence between locals and reg is given by the function x 7→ x
used by the compiler to associate register numbers to local variables. The
function depends on the method body. The equivalence condition holds mod-
ulo the refinement of Java values to JVM values.

Definition 14.1.2 (Equivalence of locals and reg). We write
locals ≈ reg , if for each variable x of type τ which is defined in locals the
following is true:

1. If τ is of size 1, then jvmVal(locals(x )) = [reg(x )].
2. If τ is of size 2, then jvmVal(locals(x )) = [reg(x ), reg(x + 1)].

Note, that the relation ≈ depends on the current method and the class envi-
ronment. For reasons of simplicity, however, we suppress these parameters.

14.1.4 The equivalence of frames and stack

At the beginning of the JavaE and JVME runs, frames and stack are both
empty. This equivalence is preserved during the runs because each time a
new frame is pushed on frames—namely in case of a class initialization or
of a method or constructor invocation—the JVME is working on the same
phrase, in the same computation phase, with equivalent operands (interme-
diate values) and local variables, and with correct return addresses from
possibly nested subroutines in the registers. The most delicate part of this
equivalence notion is the correctness of subroutine return addresses, which
we are going to define now.
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As a preparatory step for this definition, first we isolate the code segments
in the compilation of abruption statements where the JVM will continue its
execution upon the occurrence of an abruption. We define what it means
that a code index i is a continuation for an abruption abr which is not an
exception and which occurs during the execution of JavaE at a position α.
The case of exceptions is special, as will become clear through Def. 14.1.7
and Theorem 14.1.1.

Definition 14.1.3 (Continuation for break). Code index i is a continu-
ation for an abruption Break(lab) at position α, if
finallyLabsUntil(α, lab) = [fin1, . . . ,fink ] and

code(i) = Jsr(fin1)
...

...
code(i + k − 1) = Jsr(fink )
code(i + k) = Goto(labb)

or k = 0 and i = labb .2

Definition 14.1.4 (Continuation for continue). Code index i is a con-
tinuation for an abruption Continue(lab) at position α, if
finallyLabsUntil(α, lab) = [fin1, . . . ,fink ] and

code(i) = Jsr(fin1)
...

...
code(i + k − 1) = Jsr(fink )
code(i + k) = Goto(labc)

or k = 0 and i = labc .

Definition 14.1.5 (Continuation for return void). Code index i is a
continuation for an abruption Return at position α, if

code(i) = Jsr(fin1)
...

...
code(i + k − 1) = Jsr(fink )
code(i + k) = Return(void)

where [fin1, . . . ,fink ] = finallyLabs(α).

2 Note that the functions finallyLabsUntil and finallyLabs, used for the compilation
of JavaE abruption statements in Fig. 12.3 are implicitly parametrized by the
position α of the compiled statement. This position parameter becomes explicit
here to determine the finally blocks which remain to be executed, when the
Java machine navigates through the code to reach the target statement of the
abruption.
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Definition 14.1.6 (Continuation for return value). Code index i is a
continuation for an abruption Return(val) at position α with respect to reg ,
if

1. code(i) = Jsr(fin1)
...

...
code(i + k − 1) = Jsr(fink )
code(i + k) = Load(τ, x )
code(i + k + 1) = Return(τ)
where [fin1, . . . ,fink ] = finallyLabs(α),

2. if size(τ) = 1, then jvmVal(val) = [reg(x )],
3. if size(τ) = 2, then jvmVal(val) = [reg(x ), reg(x + 1)],
4. if the position α is within a try block, then the code for the corresponding

finally block does not use the local register(s) x (and x + 1).

When Java enters a finally block, the JVM jumps to the corresponding
subroutine. After termination of the finally block Java moves to a position
which depends on whether the try-catch statement has been terminated
normally or abruptly. When the JVM returns from the subroutine, it jumps
back to where it has been called from, namely the return address stored in
reg upon entering the subroutine (either after execution of the compilation of
a normally terminated try-catch statement or after having encountered an
abruption during the execution of such a statement). The following definition
makes this equivalence between JavaE and JVME returns from subroutines
precise. It says what it means that during the execution of (possibly nested)
subroutines, the registers of the JVM contain correct return addresses.

Definition 14.1.7 (Correct return address). We say that reg contains
correct return addresses for position α in restbody , if the following conditions
are satisfied:

(fin-norm) For each β, if restbody/β = (Norm finally s) and α is in s,
then code(reg(retβ)) = Goto(endβ).

(fin-abr) For each β, if restbody/β = (abr finally s), abr is not an excep-
tion and α is in s, then reg(retβ) is a continuation for abr at position β
with respect to reg .

(fin-exc) For each β, if restbody/β = (Exc(r) finally s) and α is in s,
then reg(retβ) = defaultβ + 2 and reg(excβ) = r .

(fin-norm) defines the correct return address from finally code which
was entered after normal execution of the corresponding try-catch state-
ment. (fin-abr) does the same for finally code entered after occurrence
of a Break , Continue or Return abruption. Returning from finally code
to resume an exception, which has not been caught in the try-catch state-
ment, is described in (fin-exc), where the exception has to be reloaded to be
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rethrown. The label defaultβ is defined in the compilation scheme in Fig. 12.3.
It is the label of the Store instruction at the beginning of the default handler
for the try-catch statement, through which the exception was stored which
now has to be reloaded.

We have now all the notions which are necessary to define the equiv-
alence of frames and stack . When a new frame (meth, restbody , pos, locals)
is pushed on the stack, then, by Lemma 8.1.3, either body(meth)/pos is a
method or constructor invocation expression or pos is an initialization posi-
tion (Def. 8.1.7). The following definition of the equivalence of frames and
stack comprises these different possibilities.

Definition 14.1.8 (Equivalence of frames and stack). Inductive
definition of frames ≈ stack :

[ ] ≈ [ ].

Assume that

1. frames ≈ stack ,
2. locals ≈ reg ,
3. reg contains correct return addresses for pos in restbody ,
4. one of the following conditions is satisfied

a) body(meth)/pos is a method invocation and
i. pc = endpos − 1,
ii. opd = javaOpd(restbody , pos), or

b) body(meth)/pos is a constructor invocation and
i. pc = endpos − 1,
ii. restbody/pos = ref .c/m( ),
iii. opd = javaOpd(restbody , pos) · [ref ], or

c) restbody/pos is an unevaluated expression or statement and
i. pc = begpos ,
ii. opd = javaOpd(restbody , pos), or

d) restbody/pos is a value v and
i. pc = endpos ,
ii. opd = javaOpd(restbody , pos) · jvmVal(v).

Then frames · (meth, restbody , pos, locals) ≈ stack · (pc, reg , opd ,meth).

From the definition it immediately follows that, if frames ≈ stack , then
frames and stack have the same length.

14.1.5 Equivalence of states

Two more auxiliary definitions are needed before we can give a precise def-
inition of the state invariants, which link together the above defined equiv-
alences of pos/pc, restbody/opd , locals/reg and frames/stack , thus yielding
the needed definition of the equivalence of JavaE/JVME runs started with
P/compile(P).
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Positions in a method body are labeled as E-positions, S-positions,
B1(lab)-positions or B0(lab)-positions depending on the kind of compilation
function which has been used to compile the phrase at that position. For
technical reasons, the position β in a method invocation statement α(βexp);
is considered as an S-position, too, if exp is an invocation of a method with
return type void (cf. Case 54 in Theorem 14.1.1).

If α is an S-position, then X (α) denotes the subtable of the exception
table of the method which corresponds to the statement at position α. If α
is not an S-position, then we set X (α) := [ ].

In the rest of this chapter we take for granted, and consequently do not
mention any more, that by the preceding definitions, in corresponding states
n, σ(n) both machines JavaE and the JVME work on the same method, with
the same classState, with the same values of global variables, and with the
same heap. Therefore for the correctness of the refinement, via the program
compilation, of JavaE runs to JVME runs, four conditions remain to be guar-
anteed for each pair of corresponding frames, whether current or belonging
to the frame stacks (framesn , stackσ(n)):

1. The values of corresponding local variables, which are stored in localsn

and regσ(n), must be the same. In view of the correctness of the implemen-
tation of finally code, it is also required that all the still relevant return
addresses from subroutines, which are stored in the JVME in regσ(n),
are correct for the current position posn of JavaE in restbodyn in the
corresponding state n.

2. The same values must be computed for corresponding intermediate (still
needed) results of expression evaluation or statement execution; these
values are stored in restbodyn and in opdσ(n).

3. Each machine must execute a code segment—described by posn and
pcσ(n)—which belongs to the same phrase of the original program, and
both machines must work on it in the same phase (unevaluated, evalu-
ated, normally terminated, or abrupted).

4. The current class initialization status in n is equivalent to the value of
the switch location in σ(n).

These four conditions constitute the integrity constraints formulated in
the statement of Theorem 14.1.1 below. More precisely, the conditions are
expressed for the inductive step by the frame stack equivalence property
(stack). For the current method frame, which constitutes the basis of the
induction, the condition on the equivalence of local variables is captured by
(reg), the correctness of stored return addresses from finally code is formal-
ized by (fin).

The condition on the equivalence of the still needed intermediate re-
sults is captured by the equations for opdσ(n) in the integrity constraints
(beg)–(abr), using the refinement function javaOpd which translates the
abstract JavaE values stored in restbodyn to JVME operand stack values
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in σ(n). For unevaluated phrases (beg) and for evaluated Boolean expressions
(bool1,bool2) the exact condition is opdσ(n) = javaOpd(restbodyn , posn).
The expression evaluation condition (exp) states that when JavaE has nor-
mally terminated computing the value (sequence) for the current expression
(sequence) in state n, then in the corresponding state σ(n) the JVME has
finished executing the code compiled from that expression (sequence), and
the jvmVal -refinements of the computed values are on top of the operand
stack as it was when that expression computation was started. Condition
(new) requires that when in state n a new object has been created in JavaE ,
in the corresponding state σ(n) two copies of the reference to that object
appear on top of the JVME operand stack. Upon normal termination or non-
exception abruption of a statement in JavaE , in the corresponding state the
JVME operand stack of intermediate values is empty, as formalized in (stm)
and (abr).

The condition on the equivalence of the class initialization status is con-
tained in the constraints (clinit) and (exc-clinit), the second one covering
the special case of an exception which occurred upon executing class initial-
ization code.

The condition on the equivalence of corresponding working positions posn

and pcσ(n) of the two machines, namely “working on the same phrase in the
same phase”, splits into several integrity constraints, expressed in (beg)–
(exc) and depending on whether the computation of the current phrase
is just starting or whether it has been terminated (yielding a value, nor-
mal termination, an abruption or an exception). Roughly speaking, the in-
tegrity constraints express that except the special cases discussed below, when
JavaE in state n starts respectively ends executing a phrase (at posn), then
the JVME in the corresponding state σ(n) starts (beg) respectively ends
(exp,bool1,bool2,new,stm) (at position pcσ(n)) the execution of the com-
piled code for that phrase.

More precisely, condition (beg) formalizes that when JavaE starts ex-
ecuting a not yet evaluated phrase (expression or statement), then in the
corresponding state, the JVME starts executing the compiled code for that
phrase—except for the special case of a while statement where the JVME
may already have executed the initial Goto instruction of the compiled while
statement (see Fig. 9.4 and Case 34 below).

The case of just terminated JavaE -execution of phrases splits into subcases
for expressions (exp)–(new) and for statements (stm)–(exc). For expres-
sions it has to be distinguished whether the value (sequence) is non-Boolean
(exp,new)—then the JVME terminates the compiled code for the current
expression—or whether it is Boolean. In the Boolean case, depending on
whether the tested condition is satisfied or not, pcσ(n) is the jump target
(bool1) or the end of the compiled expression (bool2); note that in the
Boolean case and differently from the case (exp) of non-Boolean expression
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values, through executing the test instruction, the JVME pops the computed
Boolean value from its operand stack.

For the case that JavaE at posn yields an abruption statement which is not
an exception, condition (abr) requires that pcσ(n) is a continuation for that
abruption at posn with respect to regσ(n) (and that the operand stack in σ(n)
is empty). For an exception at posn which is not within a class initialization
method, condition (exc) implies that in σ(n) the switchVME submachine
has been triggered by that exception, that pcσ(n) points within the compiled
code for the phrase at posn (or within the immediately enclosing phrase in
case of an expression), and that the exception is not caught by the subtable
of exceptions corresponding to the statement at posn .

Theorem 14.1.1 (Correctness of the compiler). There exists a mono-
tonic mapping σ from the run of the ASM for a JavaE program into the run of
the ASM for the compiled JVME program such that the following invariants
are satisfied for α = posn :

(reg) localsn ≈ regσ(n)

(stack) framesn ≈ stackσ(n)

(beg) If restbodyn/α is not evaluated, then
1. pcσ(n) = begα, or begα < endα and code(begα) = Goto(pcσ(n)),
2. opdσ(n) = javaOpd(restbodyn , α).

(exp) If α is an E-position, restbodyn/α = v and v is a value or a finite
sequence of values, then
1. pcσ(n) = endα,
2. opdσ(n) = javaOpd(restbodyn , α) · jvmVal(v).

(bool1) If α is a B1(lab)-position and restbodyn/α = True, or
if α is a B0(lab)-position and restbodyn/α = False, then
1. pcσ(n) = lab,
2. opdσ(n) = javaOpd(restbodyn , α).

(bool2) If α is a B1(lab)-position and restbodyn/α = False, or
if α is a B0(lab)-position and restbodyn/α = True, then
1. pcσ(n) = endα,
2. opdσ(n) = javaOpd(restbodyn , α).

(new) If body(methn)/α = new c and restbodyn/α = ref , then
1. pcσ(n) = endα,
2. opdσ(n) = javaOpd(restbodyn , α) · [ref , ref ].

(stm) If α is an S-position and restbodyn/α = Norm, then
1. pcσ(n) = endα,
2. opdσ(n) = [ ].

(abr) If restbodyn/α = abr and abr is not an exception, then
1. opdσ(n) = [ ],
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2. pcσ(n) is a continuation for abr at position α with respect to regσ(n).

(exc) If restbodyn/α = Exc(r) and body(methn)/α 6= static , then
1. switchσ(n) = Throw(r),
2. begα ≤ pcσ(n),
3. pcσ(n) < endα, or α is an E-position and pcσ(n) < endup(α),
4. there is no (f , u, , c) ∈ X (α) such that f ≤ pcσ(n) < u and

classOf (r) �h c.

(exc-clinit) If restbodyn/α = Exc(r) and body(methn)/α = static , then
switchσ(n) = ThrowInit(r).

(clinit) Assume that restbodyn/α = static and c = classNm(methn).
If c 6= Object and not initialized(super(c)), then
switchσ(n) = InitClass(super(c)), otherwise switchσ(n) = Noswitch.

(fin) regσ(n) contains correct return addresses for α in restbodyn .

If nothing is said about switch, then switchσ(n) = Noswitch. Moreover, the
dynamic functions meth, classState, globals and heap are the same in state n
of JavaE and in state σ(n) of the JVME .

14.2 The correctness proof

The reader who is more interested in the models for Java, the JVM and the
Java-to-JVM compilation, as well as in the correctness conditions relating
them, but not so much in the proof details, may skip this section. Be aware
however that a detailed verification helps to become reasonably confident
about the correctness and the completeness of the definitions. For example,
only at the very last stage of writing out the relevant proof details we found
out that the previous models we had worked with were incomplete, two cases
related to special class initialization situations were missing and discovered
through the attempt to complete the proof. They led us to refine the initialize
rule and the switchVME machine. The ease and naturalness with which one
can identify and incorporate such extensions of ASM models, even at a late
state of the modeling process, is one of the reasons for the practicality of the
ASM design method for large systems.

The following lemma lists some properties of the exception table which are
used in the correctness proof of the compiler. Property 1 is used in Cases 73
and 78 of Theorem 14.1.1; Property 2 is used in Case 73; Property 3 is used
in Cases 23, 75 and 80.

Lemma 14.2.1 (Exception table). The exception table has the following
properties:

1. If (f , u, , ) ∈ X (α), then begα ≤ f and u ≤ endα.
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2. If β is a position inside αstm and h is a handler which occurs in the
table X (α) before the subtable X (β), then the interval protected by h is
disjoint to the interval {i | begβ ≤ i < endβ}.

3. If β is a direct subposition of αstm and β is not the position of a try
Block, or a try-catch statement, then the intervals of handlers in X (α)
which do not belong to X (β) are disjoint to {i | begβ ≤ i < endβ}.

Proof. Statement 1 is proved by induction on the definition of X in Fig. 12.4.
Statements 2 and 3 are proved by induction on the size of stm. Lemma 14.1.1
is used. ut

Note that Theorem 8.4.1 (Java is type safe) and some of the Lemmata in
Chapter 8 are used several times in the proof below.

Proof. (Theorem 14.1.1) The mapping σ is constructed by induction on n.
σ(0) is the initial JVME -state defined by the compiled JVME -program for the
given JavaE -program which defines the initial JavaE -state 0. No local variable
is defined yet, frames0, stackσ(0), opdσ(0) are empty, no phrase is evaluated
yet so that the invariants (ref)–(fin) are satisfied for n = 0. In the induc-
tion step from n to n + 1 we exploit our decomposition of the Java machine
into a sequence of incrementally defined submachines JavaI , JavaC , JavaO,
JavaE . It allows us to split the case distinction on context(posn) into four
groups, one for each submachine, and to isolate within each group the two
subgroups corresponding to the submachines dealing with expression evalua-
tion and statement execution respectively. In this way the stepwise refinement
of the machines in Fig. 3.2, 3.3, 4.4, 4.5, 5.2, 6.2, 6.3, put together with the
corresponding refinements of the JVM-submachines in Fig. 9.1, 10.1, 10.2,
11.1, 12.1, 12.2 and of the compilation functions, reveal the structure which
underlies the local—instruction wise—checking of the run-time invariants,
which imply the compiler correctness property. In particular it explains that
for each type of phrase which occurs for elaboration, we will distinguish the
cases whether that phrase is still unevaluated or whether its value has been
computed, partially or completely, following exactly the cases appearing in
our machine definitions. To simplify the task to check the completeness of our
proof, in the case distinction below we follow the order in which the JavaE -
rules have been defined, although some cases are similar and could have been
grouped into just one case. We assume that the proof is read in the order we
present it, so that in later cases we may use shortcuts for reasonings which
have been explained in full detail for earlier cases.
JavaI-Expressions. Following Fig. 3.1 and Fig. 3.2, we have to consider
the six cases for JavaI-expressions: literals (Case 1), local variables (Case 2),
terms built by unary or binary operators (Cases 3–7), assignment (Cases 8–9)
and conditional expressions (Cases 10–13). Subcases appear where structural
expressions can be partially evaluated.
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Case 1. context(posn) = αlit : The run of JavaE proceeds with the rule
execJavaExpI in Fig. 3.2 such that posn+1 = α and restbodyn+1/α = v ,
where v = JLS (lit). We have to distinguish whether lit has been compiled
with E or as a Boolean expression.
Assume that α is an E-position. Due to the compilation according to Fig. 9.2,
code(begα) is the instruction Prim(lit) and endα = begα + 1. By the in-
duction hypothesis (beg), it follows that pcσ(n) = begα and opdσ(n) =
javaOpd(restbodyn , α). We set σ(n + 1) := σ(n) + 1. In state σ(n), the
JVME executes the instruction Prim(lit) using the rule execVMI in Fig. 9.1.
We obtain (using for the third equation also Def. 14.1.1 which guarantees
javaOpd(restbodyn , α) = javaOpd(restbodyn+1, α) if above and to the left
of α, restbodyn+1 does not differ from restbodyn):

pcσ(n+1) = pcσ(n) + 1 = begα + 1 = endα,
opdσ(n+1) = opdσ(n) · JVMS (lit , [ ])

= javaOpd(restbodyn+1, α) · jvmVal(v).

Hence, the invariant (exp) is satisfied in state n + 1. The other invariants
remain true for n + 1, since the dynamic functions localsn , framesn , regσ(n)

and stackσ(n) are not changed from n to n + 1.
Assume that α is a B1(lab)-position. Then lit is either the literal true or the
literal false. We first consider the case where lit is true. Then v is the value
True by definition of JLS . Since α is a B1(lab)-position, code(begα) is the
instruction Goto(lab) according to the compilation scheme in Fig. 9.3. By
the induction hypothesis (beg), it follows that pcσ(n) = begα or pcσ(n) = lab
and the operand stack opdσ(n) is javaOpd(restbodyn , α). If pcσ(n) = begα, we
set σ(n + 1) := σ(n) + 1 and the JVME executes the Goto(lab) instruction.
If pcσ(n) = lab, we set σ(n + 1) := σ(n) and the JVME does nothing (or
one could say that the JVME executes a stutter step). In both cases we have
pcσ(n+1) = lab and the invariant (bool1) is satisfied in state n + 1.
Now we consider the case where lit is the literal false. According to Fig. 9.3,
begα = endα, since B1(false, lab) = ε. By the induction hypothesis (beg), it
follows that pcσ(n) = begα and opdσ(n) = javaOpd(restbodyn , α). The literal
false is evaluated to False in JavaE . We set σ(n + 1) := σ(n) and see that
the invariant (bool2) is satisfied.
The case where α is a B0(lab)-position is treated in a similar way.
Case 2. context(posn) = αloc: By (def1) and (loc1) of the Java type safety
Theorem 8.4.1, it follows that localsn(loc) is a value. Let v = localsn(loc).
Then posn+1 = α and restbodyn+1/α = v (rule execJavaExpI in Fig. 3.2). By
the induction hypothesis (reg), it follows that localsn ≈ regσ(n). Assume that
the size of the type of loc is 1. Then Def. 14.1.2 implies that jvmVal(v) =
[regσ(n)(loc)]. (The case of size 2 is treated in a similar way.) Again we have
to distinguish now whether loc has been compiled as Boolean expression or
using E .
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Assume that α is an E-position. According to Fig. 9.2, code(begα) is the
instruction Load(T (α), loc) and endα = begα+1. By the induction hypothesis
(beg), it follows that pcσ(n) = begα and opdσ(n) = javaOpd(restbodyn , α).
We set σ(n + 1) := σ(n) + 1 and obtain (using Def. 14.1.1 as in Case 1)

pcσ(n+1) = pcσ(n) + 1 = begα + 1 = endα,
opdσ(n+1) = opdσ(n) · [regσ(n)(loc)]

= javaOpd(restbodyn+1, α) · jvmVal(v).

Hence, the invariant (exp) is satisfied for n + 1.
Assume that α is a B1(lab)-position. Then, according to Fig. 9.3, code(begα)
is the instruction Load(T (loc), loc) followed by Cond(ifne, lab). Moreover,
endα = begα+ 2. By the induction hypothesis (beg), it follows that pcσ(n) is
begα and opdσ(n) = javaOpd(restbodyn , α). We set σ(n + 1) := σ(n) + 2. The
JVME executes the Load instruction. If v = True, then the integer 1 is pushed
on opdσ(n), since jvmVal(True) = [1]. At the Cond instruction, the JVME
jumps to code index lab. Thus, pcσ(n+1) = lab and the invariant (bool1) is
satisfied. If v = False, then the integer 0 is pushed on the operand stack and,
at the Cond instruction, the JVME proceeds to the next instruction. Thus,
pcσ(n+1) = pcσ(n) + 2 = endα and the invariant (bool2) is satisfied.
The case where α is a B0(lab)-position is treated in a similar way.
Case 3. context(posn) = α(βexp1 bop γexp2) and posn = α:
Then (beg) is satisfied (by the induction hypothesis). Also posn+1 = β
(rule execJavaExpI in Fig. 3.2). In this case the JVME does nothing, so that
we set σ(n + 1) := σ(n). Since begβ = begα and javaOpd(restbodyn , α) =
javaOpd(restbodyn+1, β), the invariant (beg) is satisfied also in state n + 1.
Note, that exp1 cannot be a value by Lemma 8.1.5.
Several cases are similar to this one. They have in common that the current
position of JavaE just moves from one unevaluated position to another un-
evaluated position and leaves restbody unchanged, whereas the JVME does
nothing:
1. restbodyn/posn as well as restbodyn+1/posn+1 are unevaluated,
2. the beginning of the code for posn is the same as the beginning of the

code for posn+1, and
3. javaOpd(restbodyn , posn) = javaOpd(restbodyn+1, posn+1).

In all theses cases the invariant (beg) is satisfied also for n + 1, if it was
satisfied for n.
Case 4. context(posn) = α(βval bop γexp) and posn = β:
Then posn+1 = γ (rule execJavaExpI in Fig. 3.2). Since β is an E-position,
by the induction hypothesis (exp), it follows that pcσ(n) = endβ and opdσ(n)

is javaOpd(restbodyn , β) · jvmVal(val). By Def. 14.1.1, it follows that
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javaOpd(restbodyn , γ) = javaOpd(restbodyn , α) · jvmVal(val)
= javaOpd(restbodyn , β) · jvmVal(val)
= opdσ(n) = opdσ(n+1).

We set σ(n + 1) := σ(n). Since begγ = endβ and restbodyn = restbodyn+1,
the invariant (beg) is satisfied in state n + 1.
Case 5. context(posn) = α(βval1 bop γval2) and posn = γ:
By the induction hypothesis (exp), it follows that pcσ(n) = endγ and
opdσ(n) = javaOpd(restbodyn , γ) · jvmVal(val2). Note that by Def. 14.1.1

javaOpd(restbodyn , γ) = javaOpd(restbodyn , α) · jvmVal(val1).

Thus we have

opdσ(n) = javaOpd(restbodyn , α) · jvmVal(val1) · jvmVal(val2).

We distinguish now whether the expression in α has been compiled using E
or as a Boolean expression.
Assume that α is an E-position. According to the compilation scheme in
Fig. 9.2, code(endγ) is the instruction Prim(bop) and endα = endγ + 1.
Assume that the operation bop does not throw an exception. Then posn+1 = α
and restbodyn+1/α = v , where v = JLS (bop, val1, val2) (rule execJavaExpI in
Fig. 3.2 yields up the computed value). We set σ(n+1) := σ(n)+1 and obtain,
after the execution of the Prim(bop) instruction (rule execVMI in Fig. 9.1),
that pcσ(n+1) = endα and opdσ(n+1) = javaOpd(restbodyn+1, α) · jvmVal(v)
using the fact that

JVMS (bop, jvmVal(val1) · jvmVal(val2)) = jvmVal(JLS (bop, val1, val2)).

Thus, the invariant (exp) is satisfied in state n + 1.
Assume that α is a B1(lab)-position. Then code(endγ + 1) is the instruction
Cond(ifne, lab) and endα = endγ+2. Hence, we can proceed as in the second
part of Case 2, which includes the case that α is a B0(lab)-position.
If the operation bop throws an ArithmeticException (rule execJavaExpE in
Fig. 6.3), then posn+1 = α and restbodyn+1/α = Exc(r), where r is a pointer
to a newly created object of type ArithmeticException.3 The JVME exe-
cutes in state σ(n) the instruction Prim(bop) and throws the same exception
as JavaE (rule execVME in Fig. 12.2). We set σ(n +1) := σ(n)+1 and obtain
switchσ(n+1) = Throw(r) (through the execution of Athrow , the last instruc-
tion of the code sequence defining raise in Sect. 12.1). The invariant (exc)
is satisfied in state n + 1, since begα ≤ endγ = pcσ(n+1) < endα and X (α) is
empty by definition.
3 To simplify the proof, we assume that the execution of the macro fail of JavaE

as well as of the macro raise of the JVME are counted in the given runs as one
step.
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Case 6. context(posn) = α(uop βexp) and posn = α:
Similar to Case 3.
Case 7. context(posn) = α(uop βval) and posn = β:
Similar to Case 5. If uop is the negation operator and α is a B1(lab)-position,
then according to the compilation scheme in Fig. 9.3, the position β is B0(lab)-
position. We set σ(n + 1) := σ(n) and the invariants (bool1) and (bool2)
for β in state n can be carried over to α in state n + 1.
Case 8. context(posn) = α(loc = βexp) and posn = α:
Similar to Case 3.
Case 9. context(posn) = α(loc = βval) and posn = β:
Assume that α is an E-position and that the size of the type of the vari-
able loc is 1. (The case of size 2 is treated in a similar way.) Accord-
ing to the compilation scheme in Fig. 9.2, code(endβ) is the instruction
Dupx (0, 1) followed by Store(1, loc). Moreover, endα = endβ + 2. By the
induction hypothesis (exp), it follows that pcσ(n) = endβ and opdσ(n) is
javaOpd(restbodyn , β) · jvmVal(val). We set σ(n + 1) := σ(n) + 2. The JVME
executes the Dupx and the Store instruction (using the rule execVMI in
Fig. 9.1) such that

pcσ(n+1) = pcσ(n) + 2 = endβ + 2 = endα,
opdσ(n+1) = javaOpd(restbodyn+1, α) · jvmVal(val).

Hence, the invariant (exp) is satisfied in state n + 1. After the application
of rule execJavaExpI in Fig. 3.2, we have localsn+1(loc) = val and after the
execution of the Store instruction, regσ(n+1)(loc) = jvmVal(val). Hence, the
invariant (reg) is satisfied as well.
The invariant (fin) remains true, since the register retβ for storing the return
address of a finally block is not used as a register of a local variable in the
finally block and is therefore different from loc.
If α is a Bi(lab)-position, then we can proceed as in the second part of Case 2.
Case 10. context(posn) = α(βexp0 ? γexp1 : δexp2) and posn = α:
Similar to Case 3.
Case 11. context(posn) = α(βval ? γexp1 : δexp2) and posn = β:
According to the compilation scheme in Fig. 9.2, β is a B1(begγ)-position.
Since the test expression in a conditional expressions is of type boolean, by
invariant (val) of Theorem 8.4.1, it follows that val is either True or False.
Since in this case the JVME does nothing, we set σ(n + 1) := σ(n).
If val = True, then by the induction hypothesis (bool1), it follows that
pcσ(n) = begγ and opdσ(n) = javaOpd(restbodyn , β). JavaE proceeds with
posn+1 = γ. Since javaOpd(restbodyn , β) = javaOpd(restbodyn+1, γ) (by
restbodyn = restbodyn+1 and the third clause of Def. 14.1.1), the invariant
(beg) is satisfied in state n + 1.
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If val = False, then by the induction hypothesis (bool2), it follows that
pcσ(n) = endβ and opdσ(n) = javaOpd(restbodyn , β). JavaE proceeds with
posn+1 = δ. The invariant (beg) is satisfied in state n + 1, since endβ = begδ
and javaOpd(restbodyn , β) = javaOpd(restbodyn+1, δ).
Case 12. context(posn) = α(βTrue ? γval : δexp) and posn = γ:
Assume that α is an E-position. By the induction hypothesis (exp), it fol-
lows that pcσ(n) = endγ and opdσ(n) = javaOpd(restbodyn , γ) · jvmVal(val).
JavaE executes the rule execJavaExpI in Fig. 3.2 such that posn+1 = α
and restbodyn+1/α = val . According to the compilation scheme in Fig. 9.2,
code index endγ = endα, and the JVME does nothing in this case. We set
σ(n +1) := σ(n). Since javaOpd(restbodyn , γ) = javaOpd(restbodyn+1, α) (by
Def. 14.1.1), the invariant (exp) is satisfied.
If α is a B1(lab)-position, then γ is a B1(lab)-position, too. If val = True,
then we set σ(n + 1) := σ(n) and the invariant (bool1) remains true. If
val = False, then we set σ(n + 1) := σ(n) + 1, the JVME executes the
Goto(endα) instruction at code index endγ and the invariant (bool2) remains
true. (Similarly if α is a B0(lab)-position.)
Case 13. context(posn) = α(βFalse ? γexp : δval) and posn = δ:
Assume that α is an E-position. By the induction hypothesis (exp), it fol-
lows that pcσ(n) = endδ and opdσ(n) = javaOpd(restbodyn , δ) · jvmVal(val).
JavaE executes rule execJavaExpI in Fig. 3.2 such that posn+1 = α and
restbodyn+1/α = val . According to the compilation scheme in Fig. 9.2,
code(endδ) is the instruction Goto(endα). We set σ(n + 1) := σ(n) + 1. The
JVME executes the Goto instruction and the invariant (exp) is satisfied,
since javaOpd(restbodyn , δ) = javaOpd(restbodyn+1, α) (by Def. 14.1.1).
In case α is a Bi(lab)-position, we proceed as in Case 12.
JavaI-Statements. Following Fig. 3.1 and Fig. 3.3, we have to consider
the eight cases for JavaI-statements: empty statement (Case 14), expression
statements (Cases 15–16), jump and labeled statements (Cases 17–18, 19–
22), propagation of abruptions (Case 23), blocks (Cases 24–27), if-then-else
(Cases 28–31) and while statements (Cases 32–34), and type declarations
(Case 35). Subcases appear for evaluating subterms.
Case 14. context(posn) = α;
Then posn+1 = posn = α and restbodyn+1/α = Norm (rule execJavaStmI in
Fig. 3.3). By the induction hypothesis (beg), it follows that pcσ(n) = begα
and opdσ(n) = javaOpd(restbodyn , α) = [ ] (by clauses 1 and 2 of Def. 14.1.1).
Since the code for the empty statement is empty (Fig. 9.4), begα = endα.
We set σ(n + 1) := σ(n) and the invariant (stm) is satisfied in state n + 1.
Case 15. context(posn) = α(βexp); and posn = α:
Similar to case 3.
Case 16. context(posn) = α(βval); and posn = β:
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Then posn+1 = α and restbodyn+1/α = Norm (rule execJavaStmI in Fig. 3.3).
Since β is an E-position (Fig. 9.2), by the induction hypothesis (exp), it
follows that pcσ(n) = endβ and opdσ(n) = javaOpd(restbodyn , β)·jvmVal(val).
Since javaOpd(restbodyn , β) is empty, the operand stack opdσ(n) is equal to
jvmVal(val). The expression statement is compiled such that code(endβ) is
the instruction Pop(size(T (β))) and endα = endβ + 1 (Fig. 9.4). We set
σ(n + 1) := σ(n) + 1 and after the execution of the Pop instruction (rule
execVMI in Fig. 9.1), we have pcσ(n+1) = endα and opdσ(n+1) = [ ] and the
invariant (stm) is satisfied in state n + 1.
Case 17. context(posn) = αbreak lab;
Then posn+1 = α and restbodyn+1/α = Break(lab) (rule execJavaStmI in
Fig. 3.3). By the induction hypothesis (beg), it follows that pcσ(n) = begα
or code(begα) = Goto(pcσ(n)) and opdσ(n) = [ ]. The break-statement is
compiled in Fig. 12.3 such that begα is a continuation for a Break(lab) at
position α in the sense of Def. 14.1.3. If the position α is not enclosed by
try blocks, then code(begα) = Goto(labb) and labb is a continuation for a
Break(lab) at position α, too. We set σ(n + 1) := σ(n) and the invariant
(abr) is satisfied in state n + 1.
Case 18. context(posn) = αcontinue lab;
Similar to Case 17.
Case 19. context(posn) = αlab : βstm and posn = α:
Similar to Case 3.
Case 20. context(posn) = αlab : βNorm and posn = β:
Then posn+1 = α and restbodyn+1/α = Norm (rule execJavaStmI in Fig. 3.3).
We set σ(n + 1) := σ(n). Since endβ = endα (Fig. 9.4), the invariant (stm)
is still satisfied in state n + 1.
Case 21. context(posn) = αlab : βBreak(l) and posn = β:
By the induction hypothesis (abr), it follows that opdσ(n) = [ ] and pcσ(n) is
a continuation for a Break(l) at position β in the sense of Def. 14.1.3.
Assume that lab = l . Then posn+1 = α and restbodyn+1/α = Norm (rule
execJavaStmI in Fig. 3.3). Since pcσ(n) is a continuation for a Break(l) at
position β and finallyLabsUntil(β, lab) = [ ], Def. 14.1.3 implies that either
code(pcσ(n)) is the instruction Goto(labb) or pcσ(n) = labb . In the first case
we set σ(n + 1) := σ(n) + 1 and the JVME executes the Goto instruction. In
the second case we set σ(n + 1) := σ(n) and the JVME does nothing. Since
labb = endα, the invariant (stm) is satisfied in state n + 1.
Assume that lab 6= l . Then posn+1 = α and restbodyn+1/α = Break(l). We
set σ(n + 1) := σ(n). The invariant (abr) is still satisfied, since in this case
finallyLabsUntil(β, lab) = finallyLabs(α, lab) and pcσ(n) is also a continuation
for a Break(l) at position α.
Case 22. context(posn) = αlab : βContinue(l) and posn = β:



186 14. Correctness of the compiler

By the induction hypothesis (abr), it follows that opdσ(n) = [ ] and pcσ(n) is
a continuation for a Continue(l) at position β in the sense of Def. 14.1.4.
Assume that lab = l . Then posn+1 = β and restbodyn+1/β = body(methn)/β
(rule execJavaStmI in Fig. 3.3). Since pcσ(n) is a continuation for the abrup-
tion Continue(l) at position β, Def. 14.1.4 implies that either code(pcσ(n))
is the instruction Goto(labc) or pcσ(n) = labc . In the first case we set
σ(n + 1) := σ(n) + 1 and the JVME executes the Goto instruction. In the
second case we set σ(n + 1) := σ(n) and the JVME does nothing. Since
labc = begα and begα = begβ , the invariant (beg) is satisfied in state n + 1.
Assume that lab 6= l . Then posn+1 = α and restbodyn+1/α = Continue(l).
We set σ(n + 1) := σ(n). The invariant (abr) is still satisfied, since pcσ(n) is
also a continuation for a Continue(l) at position α.
Case 23. context(posn) = αphrase(βabr), posn 6= firstPos, posn = β and
propagatesAbr(restbodyn/α):
Then JavaE propagates the abruption upwards such that posn+1 = α and
restbodyn+1/α = abr (rule execJavaStmI in Fig. 3.3). We set σ(n+1) := σ(n).
Assume that abr is not an exception. By the induction hypothesis (abr),
it follows, that pcσ(n) is a continuation for abr at position β. Since the as-
sumption propagatesAbr(restbodyn/α) implies that body(methn)/α is neither
a labeled statement nor a try-finally statement, pcσ(n) is also a continu-
ation for abr at position α. Hence, the invariant (abr) is satisfied in state
n + 1.
Assume that abr = Exc(r). By the induction hypothesis (exc) (which applies
because posn 6= firstPos and body(methn)/β 6= static ), it follows that
1. switchσ(n) = Throw(r),
2. begβ ≤ pcσ(n),
3. pcσ(n) < endβ , or β is an E-position and pcσ(n) < endup(β),
4. there is no (f , u, , c) ∈ X (β) with f ≤ pcσ(n) < u and classOf (r) �h c.

Since the nesting of expressions and statements is preserved by the com-
piler, we have begα ≤ begβ and endβ ≤ endα (Lemma 14.1.1). It follows
that begα ≤ pcσ(n) < endα. Since propagatesAbr(restbodyn , α) implies that
body(methn)/β is neither a try block in a try-catch statement nor a try-
catch statement in a try-finally statement, by clause 3 of Lemma 14.2.1
it follows that there is no (f , u, , c) in X (α) such that f ≤ pcσ(n) < u and
classOf (r) �h c. Hence, the invariant (exc) is satisfied in state n + 1.
Case 24. context(posn) = α{ }:
Similar to Case 14.
Case 25. context(posn) = α{β1stm1 . . .

βn stmn} and posn = α:
Similar to Case 3.
Case 26. context(posn) = α{β1Norm . . . βn Norm} and posn = βn :
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Then posn+1 = α and restbodyn+1/α = Norm (rule execJavaStmI in Fig. 3.3).
By the induction hypothesis (stm), it follows that pcσ(n) = endβn and
opdσ(n) = [ ]. We set σ(n + 1) := σ(n). Since endα = endβn

(Fig. 9.4),
the invariant (stm) is satisfied in state n + 1.
Case 27. context(posn) = α{β1Norm . . . βi Normβi+1stmi+1 . . .

βn stmn} and
posn = βn :
Then posn+1 = βi+1 (rule execJavaStmI in Fig. 3.3). By the induction hy-
pothesis (stm), it follows that pcσ(n) = endβi

and opdσ(n) = [ ]. We set
σ(n + 1) := σ(n). By Lemma 8.1.2, 8.1.4 and 8.1.5, it follows that stmi+1

is not evaluated. Since endβi
= begβi+1

(Fig. 9.4), the invariant (beg) is
satisfied in state n + 1.
Case 28. context(posn) = αif (βexp) γstm1 else δstm2 and posn = α:
Similar to Case 3.
Case 29. context(posn) = αif (βval) γstm1 else δstm2 and posn = β:
Similar to Case 11.
Case 30. context(posn) = αif (βTrue) γNorm else δstm and posn = γ:
Similar to Case 12.
Case 31. context(posn) = αif (βFalse) γstm else δNorm and posn = γ:
Similar to Case 13.
Case 32. context(posn) = αwhile (βexp)γstm and posn = α:
Similar to Case 3.
Case 33. context(posn) = αwhile (βval)γstm and posn = β:
The position β is a B1(begγ)-position (Fig. 9.4). Since the test expression in
a while-statement is of type boolean, by invariant (val) of Theorem 8.4.1,
it follows that val is either True or False. We set σ(n + 1) := σ(n).
Assume that val = True. Then posn+1 = γ (Fig. 3.3). By the induction
hypothesis (bool1), it follows that pcσ(n) = begγ and opdσ(n) = [ ]. Since
stm is not evaluated, the invariant (beg) is satisfied in state n + 1.
Assume that val = False. Then posn+1 = α and restbodyn/α = Norm
(Fig. 3.3). By the induction hypothesis (bool2), it follows that pcσ(n) = endβ
and opdσ(n) = [ ]. Since endβ = endα (Fig. 9.4), the invariant (stm) is satis-
fied in state n + 1.
Case 34. context(posn) = αwhile (βTrue)γNorm and posn = γ:
Then posn+1 = α and restbodyn+1/α = body(methn)/α (Fig. 3.3). By the
induction hypothesis (stm), it follows that pcσ(n) = endγ and opdσ(n) = [ ].
We set σ(n + 1) := σ(n). Since code(begα) is the instruction Goto(endγ)
(Fig. 9.4), the invariant (beg) is satisfied in state n + 1.
Remark: This case is the reason that the invariant (beg) does not just say
pcσ(n) = begα but allows also that code(begα) = Goto(pcσ(n)).
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Case 35. context(posn) = αType x ;
Similar to Case 14.
JavaC-Expressions. Following Fig. 4.3 and Fig. 4.4, we have to consider
the four cases for JavaC-expressions, namely for static fields (Case 36) and
assignments to them (Cases 37–38), for static method invocations (Cases
39–40), and for the left-to-right evaluation of expression sequences (Cases
41–44).
Case 36. context(posn) = αc.f :
According to Fig. 10.3, the access to the static field f of class c is compiled
as the instruction GetStatic(T (α), c/f ). By the induction hypothesis (beg),
it follows that pcσ(n) = begα and opdσ(n) = javaOpd(restbodyn , α).
Assume that the class c is initialized. Then, by rule execJavaExpC in Fig. 4.4,
posn+1 = α and restbodyn+1/α = globalsn(c/f ).
Assume that α is an E-position. We set σ(n +1) := σ(n)+1. The JVME exe-
cutes the GetStatic instruction (rule execVMC in Fig. 10.1). Since pcσ(n+1) =
endα and opdσ(n+1) = opdσ(n) · globalsn(c/f ), the invariant (exp) is satisfied
in state n + 1. Note, that globalsn(c/f ) is a value by invariant (global) of
Theorem 8.4.1.
The cases where α is a Bi(lab)-position are treated as in Case 2.
Assume that the class c is not initialized. Assume that classStaten(c) =
Linked . Then JavaE has to initialize the class c:

framesn+1 = framesn · (methn , restbodyn , α, localsn),
methn+1 = c/<clinit>,
restbodyn+1 = body(c/<clinit>),
posn+1 = firstPos,
localsn+1 = ∅,
classStaten+1(c) = Initialized .

We set σ(n + 1) := σ(n) + 2. In state σ(n), the JVME executes the GetStatic
instruction such that switchn+1 = InitClass(c). In state σ(n) + 1, it executes
the switchVMC rule in Fig. 10.2 such that

stackσ(n+1) = stackσ(n) · (pcσ(n), regσ(n), opdσ(n),methσ(n)),
methσ(n+1) = c/<clinit>,
pcσ(n+1) = 0,
opdσ(n+1) = [ ],
regσ(n+1) = ∅,
classStaten+1(c) = Initialized .

Since localsn+1 and regσ(n+1) are both empty, the invariant (reg) is satisfied.
We have
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framesn ≈ stackσ(n),
localsn ≈ regσ(n),
pcσ(n) = begα,
opdσ(n) = javaOpd(restbodyn , α).

Therefore by the induction hypothesis (fin), framesn+1 ≈ stackσ(n+1) in the
sense of Def. 14.1.8 and the invariant (stack) is satisfied. Since by Def. 14.1.1
javaOpd(restbodyn+1, posn+1) = [ ], the invariant (beg) is satisfied. If c is the
class Object or the direct super class of c is initialized, then switchσ(n+1) is
Noswitch; otherwise switchσ(n+1) is InitClass(super(c)) (Fig. 10.2). Hence,
the invariant (clinit) is satisfied as well.
Assume that classStaten(c) = Unusable. We set σ(n + 1) := σ(n) + 2.
JavaE throws a NoClassDefFoundError (by the refinement of initialize(c) in
Sect. 6.2). Since after having executed the GetStatic instruction, the JVME
does the same (rule switchVME in Fig. 12.1), the invariant (exc) is satisfied
(by Fig. 12.4, X (α) = [ ]).
Case 37. context(posn) = α(c.f = βexp) and posn = α:
Similar to Case 3.
Case 38. context(posn) = α(c.f = βval) and posn = β:
If the class c is not yet initialized in state n, then we proceed as in Case 36.
Otherwise, the proof is similar to Case 9.
Case 39. context(posn) = αc.mβ(exps) and posn = α:
Similar to Case 3.
Case 40. context(posn) = αc.mβ(vals) and posn = β:
If the class c is not yet initialized in state n, then we proceed as in Case 36.
Otherwise, JavaE executes an invokeMethod(α, c/m, vals) such that

framesn+1 = framesn · (methn , restbodyn , α, localsn),
methn+1 = c/m,
restbodyn+1 = body(c/m),
posn+1 = firstPos,
localsn+1 = zip(argNames(c/m), vals).

By the induction hypothesis (exp), it follows that pcσ(n) = endβ and
opdσ(n) = javaOpd(restbodyn , β) · jvmVal(vals). We set σ(n + 1) := σ(n) + 2.
According to the compilation scheme in Fig. 10.3, code(endβ) is the instruc-
tion InvokeStatic(T (α), c/m) and endα = endβ + 1. In state σ(n), the JVME
executes the InvokeStatic instruction (rule execVMC in Fig. 10.1) such that

opdσ(n)+1 = javaOpd(restbodyn , β),
switchσ(n)+1 = Call(c/m, jvmVal(vals)).

In state σ(n) + 1, the JVME executes the switchVMC rule in Fig. 10.2 and,
since a static method cannot be abstract by Constraint 4.1.6, performs a
pushFrame(c/m, jvmVal(vals)) such that
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stackσ(n+1) = stackσ(n) · (pcσ(n), regσ(n), opdσ(n)+1,methσ(n)),
methσ(n+1) = c/m,
pcσ(n+1) = 0,
opdσ(n+1) = [ ],
regσ(n+1) = makeReg(jvmVal(vals)).

Since zip(argNames(c/m), vals) ≈ makeReg(jvmVal(vals)), the invariant
(reg) is satisfied for n + 1. We have methn = methσ(n) and

framesn ≈ stackσ(n),
localsn ≈ regσ(n),
pcσ(n) = endα − 1,
opdσ(n)+1 = javaOpd(restbodyn , α).

Therefore, the induction hypothesis (fin) implies framesn+1 ≈ stackσ(n+1)

(Def. 14.1.8) and the invariant (stack) is satisfied for n + 1. Since by
Def. 14.1.1 javaOpd(restbodyn+1, posn+1) = [ ], the invariant (beg) for n + 1
is satisfied as well.
Case 41. context(posn) = α():
Then posn+1 = α and restbodyn+1/α = [] (Fig. 4.4). By the induction hypoth-
esis (beg), it follows that pcσ(n) = begα and opdσ(n) = javaOpd(restbodyn , α).
We set σ(n + 1) := σ(n). Since endα = begα, the invariant (exp) is satisfied
in state n + 1.
Case 42. context(posn) = α(β1exp1, . . . ,

βn expn) and posn = α:
Similar to Case 3.
Case 43. context(posn) = α(β1val1, . . . , βn valn) and posn = βn :
Then posn+1 = α (Fig. 4.4). By the induction hypothesis (exp), it follows
that

pcσ(n) = endβn
,

opdσ(n) = javaOpd(restbodyn , βn) · jvmVal(valn).

We set σ(n + 1) := σ(n). Since endβn = endα and, by Def. 14.1.1,

javaOpd(restbodyn , βn) · jvmVal(valn) =
javaOpd(restbodyn , α) · jvmVal(val1) · . . . jvmVal(valn),

and since in this case javaOpd(restbodyn , α) = javaOpd(restbodyn+1, α), the
invariant (exp) is satisfied in state n + 1.
Case 44. context(posn) = α(β1val1, . . . , βi vali , βi+1expi+1, . . . ,

βn expn) and
posn = βi :
Then posn+1 = βi+1 (Fig. 4.4). By the induction hypothesis (exp), it follows
that

pcσ(n) = endβi ,
opdσ(n) = javaOpd(restbodyn , βi) · jvmVal(vali).
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We set σ(n + 1) := σ(n). Since endβi = begβi+1
and, by Def. 14.1.1,

javaOpd(restbodyn , βi+1) = javaOpd(restbodyn , βi) · jvmVal(vali),

and since restbodyn = restbodyn+1, the invariant (beg) is satisfied in state
n + 1.
JavaC-Statements. Following Fig. 4.3 and Fig. 4.5, we have to consider the
three new cases which appear for statement execution in JavaC , namely start
of and return from static initialization code (Cases 45–46), method return and
its propagation through labeled statements to the beginning of the method
body (Cases 47–53), and normal completion of expression statements for
methods returning void (Case 54).
Case 45. context(posn) = αstatic βstm and posn = α:
Let c be the class of methn . Assume that c is the class Object or the di-
rect super class of c is initialized. Then posn+1 = β (rule execJavaStmE

in Fig. 4.5). We set σ(n + 1) := σ(n). Since begα = begβ (Fig. 10.3) and
restbodyn = restbodyn+1, the invariant (beg) is still satisfied.
Otherwise, c is not Object and the direct super class of c is not initialized.
JavaE has to initialize super(c). By the induction hypothesis (clinit), it fol-
lows that switchσ(n) is InitClass(super(c)). We set σ(n +1) := σ(n)+1, since
the JVME does one step of switchVME , and proceed as in Case 36.
Case 46. context(posn) = αstatic βReturn and posn = β:
Similar to Case 23.
Case 47. context(posn) = αreturn βexp; and posn = α:
Similar to Case 3.
Case 48. context(posn) = αreturn βval ; and posn = β:
Then posn+1 = α and restbodyn+1/α = Return(val) (Fig. 4.5). By the
induction hypothesis (exp), it follows that pcσ(n) = endβ and opdσ(n) is
jvmVal(val). Let [fin1, . . . ,fink ] = finallyLabs(α). Then according to the com-
pilation scheme in Fig. 12.3 we have:

code(pcσ(n)) = Store(T (β), var)
code(pcσ(n) + 1) = Jsr(fin1)

...
...

code(pcσ(n) + k) = Jsr(fink )
code(pcσ(n) + k + 1) = Load(T (β), var)
code(pcσ(n) + k + 2) = Return(T (β))

We set σ(n+1) := σ(n)+1. The JVM executes the store instruction such that
opdσ(n+1) = [ ] and pcσ(n+1) = pcσ(n) + 1. Since pcσ(n) + 1 is a continuation
for Return(val) at position α in the sense of Def. 14.1.6, the invariant (abr)
is satisfied in state n + 1.
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Case 49. context(posn) = αreturn;
Similar to Case 48.
Case 50. context(posn) = αlab : βReturn and posn = β:
Similar to Case 23.
Case 51. context(posn) = αlab : βReturn(val) and posn = β:
Similar to Case 23.
Case 52. context(posn) = αReturn(val), posn = firstPos and framesn 6= [ ]:
Then JavaE executes an exitMethod(val) such that

framesn = framesn+1 · (methn+1, rest , posn+1, localsn+1),
restbodyn+1 = rest [val/posn+1].

By the induction hypothesis (abr), it follows that pcσ(n) is a continuation for
Return(val) at position α with respect to regσ(n). Since finallyLabs(α) = [ ]
(due to posn = firstPos), Def. 14.1.6 implies that

code(pcσ(n)) = Load(τ, x ),
code(pcσ(n) + 1) = Return(τ),
jvmVal(val) = [regσ(n)(x )].

We set σ(n + 1) := σ(n) + 3. In state σ(n), the JVME executes the Load in-
struction such that opdσ(n)+1 = jvmVal(val). In state σ(n)+1, the JVME ex-
ecutes the Return instruction such that switchσ(n)+2 = Result(jvmVal(val)).
In state σ(n) + 2, the JVME executes rule switchVMC in Fig. 10.2 and per-
forms a popFrame(1, jvmVal(val)), since methn has a return type different
from void (by invariant (abr4) of Theorem 8.4.1) and is therefore not an
implicitly called <clinit> method. We obtain:

stackσ(n) = stackσ(n+1) · (pc′, regσ(n+1), opd ′,methσ(n+1)),
pcσ(n+1) = pc′ + 1,
opdσ(n+1) = opd ′ · jvmVal(val).

By the induction hypothesis (stack), Def. 14.1.8 and Lemma 8.1.3 it follows
that

framesn+1 ≈ stackσ(n+1),
localsn+1 ≈ regσ(n+1),
pc′ = endposn+1 − 1,
opd ′ = javaOpd(rest , posn+1).

Hence, the invariants (reg) and (stack) are satisfied in state n + 1. Since
pcσ(n+1) = endposn+1 , restbodyn+1/posn+1 = val and

opdσ(n+1) = javaOpd(rest , posn+1) · jvmVal(val)
= javaOpd(restbodyn+1, posn+1) · jvmVal(val),
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the invariant (exp) is satisfied as well. Def. 14.1.8 implies that regσ(n+1)

contains correct return addresses for posn+1 in rest . Since restbodyn+1 is
obtained from rest just by substituting val for posn+1, it also contains correct
return addresses for posn+1 in restbodyn+1 and the invariant (fin) is satisfied
in state n + 1.
Case 53. context(posn) = αReturn, posn = firstPos and framesn 6= [ ]:
Then JavaE executes an exitMethod(Norm) such that

framesn = framesn+1 · (methn+1, rest , posn+1, localsn+1).

restbodyn+1 =

 rest , if methn = /<clinit>;
rest [localsn(this)/posn+1], if methn = /<init>( );
rest [Norm/posn+1], otherwise.

By the induction hypothesis (abr), it follows that pcσ(n) is a continuation for
a Return at position α with respect to regσ(n). Since finallyLabs(α) = [ ] (due
to posn = firstPos), Def. 14.1.5 implies that code(pcσ(n)) is the instruction
Return(void). We set σ(n +1) := σ(n)+2. In state σ(n), the JVME executes
the Return(void) instruction such that switchσ(n)+1 = Result([]). In state
σ(n)+1, the JVME executes a popFrame(0, []), if methn is a class initialization
method, and a popFrame(1, []), otherwise. We thus obtain:

stackσ(n) = stackσ(n+1) · (pc′, regσ(n+1), opdσ(n+1),methσ(n+1)),

pcσ(n+1) =
{

pc′, if methn = /<clinit>;
pc′ + 1, otherwise.

By the induction hypothesis (stack) and Def. 14.1.8, it follows that
1. framesn+1 ≈ stackσ(n+1),
2. localsn+1 ≈ regσ(n+1),
3. regσ(n+1) contains correct return addresses for posn+1 in rest .

Hence, the invariants (reg) and (stack) are satisfied in state n + 1. The in-
variant (fin) is satisfied, since regσ(n+1) contains also correct return addresses
for posn+1 in restbodyn+1.
Assume that methn is a class initialization method. Then restbodyn+1 = rest
and pcσ(n+1) = pc′. Def. 14.1.8 and Lemma 8.1.3 imply that the invariants
(beg) or (exp) are still satisfied.
Assume that methn is an instance initialization method. Then restbodyn+1

is obtained from rest by substituting localsn(this) at position posn+1 and
pcσ(n+1) = pc′ + 1. Def. 14.1.8 and the induction hypothesis (stack) imply
that
1. pc′ = endposn+1 − 1,
2. rest/posn+1 = ref .methn( ),
3. opdσ(n+1) = javaOpd(rest , posn+1) · [ref ].
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From invariant (chain3) of Theorem 8.4.1 it follows that localsn(this) is the
reference ref . Since pcσ(n+1) = endposn+1 and restbodyn+1/posn+1 = ref , the
invariant (exp) is satisfied.
Otherwise, methn is a class or instance method with return type void (in-
variant (abr3) of Theorem 8.4.1). Def. 14.1.8 implies that
1. pc′ = endposn+1 − 1,
2. opdσ(n+1) = javaOpd(rest , posn+1).

Since pcσ(n+1) = pc′+ 1 and restbodyn+1 = rest [Norm/posn+1], the invariant
(stm) is satisfied.
Case 54. context(posn) = α(βNorm); and posn = β:
Similar to Case 16, exploiting that we consider such positions β of method
invocations with return type void as S-positions.
JavaO-Expressions. Following Fig. 5.1 and Fig. 5.2, we have to consider the
seven new kinds of expressions occurring in JavaO, namely this (Case 55),
new c (Case 56), instance fields (Cases 57–58) and assignment to them (Cases
59–61), instanceof (Cases 62–63) and type cast expressions (Cases 64–65),
and instance method invocations (Cases 66–68).
Case 55. context(posn) = αthis:
Similar to Case 2.
Case 56. context(posn) = αnew c:
By the induction hypothesis (beg), it follows that pcσ(n) = begα and
opdσ(n) = javaOpd(restbodyn , α). According to the compilation scheme in
Fig. 11.2, code(begα) is the instruction New(c) followed by the instruction
Dupx (0, 1) and endα = begα + 2.
Assume that the class c is initialized in state n. Then posn+1 = α and
restbodyn+1/α = ref , where ref is a reference to a newly created object of
type c on the heap (rule execJavaExpO in Fig. 5.2). We set σ(n + 1) :=
σ(n) + 2. In state σ(n), the JVME executes the instruction New(c), such
that opdσ(n)+1 = opdσ(n) · [ref ]. Then, the JVME executes the instruction
Dupx (0, 1). Since pcσ(n+1) = endα and opdσ(n+1) = opdσ(n) · [ref , ref ], the
invariant (new) is satisfied.
If the class c is not initialized in state n, we proceed as in Case 36.
Case 57. context(posn) = α(βexp.c/f ) and posn = α:
Similar to Case 3.
Case 58. context(posn) = α(βref .c/f ) and posn = β:
By the induction hypothesis (exp), it follows that pcσ(n) = endβ and
opdσ(n) = javaOpd(restbodyn , β) · [ref ]. According to the compilation scheme
in Fig. 11.2, code(endβ) is the instruction GetField(T (α), c/f ). We set
σ(n + 1) := σ(n) + 1. If ref = null , then JavaE (Fig. 6.3) as well as the
JVME (Fig. 12.2) throw a new NullPointerException and the invariant
(exc) is satisfied in state n + 1, since X (α) = [ ]. Otherwise, posn+1 = α
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and restbodyn+1/α = v , where v = getFieldn(ref , c/f ) (Fig. 5.2). The
JVME executes the instruction GetField in rule execVMO in Fig. 11.1. Since
pcσ(n+1) = pcσ(n) + 1 = endα and opdσ(n+1) = opdσ(n) · jvmVal(v), the
invariant (exp) is satisfied in state n + 1.
Case 59. context(posn) = α(βexp1.c/f = γexp2) and posn = α:
Similar to Case 3.
Case 60. context(posn) = α(βref .c/f = γexp) and posn = β:
Similar to Case 4.
Case 61. context(posn) = α(βref .c/f = γval) and posn = γ:
By the induction hypothesis (exp), it follows that pcσ(n) = endγ and
opdσ(n) = javaOpd(restbodyn , γ) · jvmVal(val). By Def. 14.1.1, it follows that

opdσ(n) = javaOpd(restbodyn , α) · [ref ] · jvmVal(val).

According to the compilation scheme in Fig. 11.2, code(endγ) is the instruc-
tion Dupx (1, size(T (α)) followed by the instruction PutField(T (α), c/f ) and
endα = endγ + 2. We set σ(n + 1) := σ(n) + 2. In state σ(n), the JVME
executes the Dupx instruction such that

opdσ(n)+1 = javaOpd(restbodyn , α) · jvmVal(val) · [ref ] · jvmVal(val).

If ref = null , then JavaE (Fig. 6.3) as well as the JVME (Fig. 12.2) throw a
NullPointerException and the invariant (exc) is satisfied for n + 1. Oth-
erwise, posn+1 = α, restbodyn+1/α = val and the field c/f of the object
heapn(ref ) is updated to val in both machines. In state σ(n) + 1, the JVME
executes the PutField instruction (Fig. 11.1). Since pcσ(n+1) = endα and
opdσ(n+1) = javaOpd(restbodyn , α) · jvmVal(val), the invariant (exp) is sat-
isfied in state n + 1. Moreover, the heap of JavaE and the heap of the JVME
are still identical.
Case 62. context(posn) = α(βexp instanceof c) and posn = α:
Similar to Case 3.
Case 63. context(posn) = α(βref instanceof c) and posn = β:
Then posn+1 = α and restbodyn+1/α = v , where v is the value of the boolean
expression ref 6= null ∧ classOf (ref ) � c (rule execJavaExpO in Fig. 5.2).
Assume that α is an E-position. By the induction hypothesis (exp), it fol-
lows that pcσ(n) = endβ and opdσ(n) = javaOpd(restbodyn , α) · [ref ]. Ac-
cording to the compilation scheme in Fig. 11.2, code(endβ) is the instruc-
tion InstanceOf (c). We set σ(n + 1) := σ(n) + 1. The JVME (Fig. 11.1)
replaces ref on top of the operand stack with the result of the boolean ex-
pression ref 6= null ∧ classOf (ref ) v c (represented as an integer). Since
the relations � and v agree on reference types (see Def. 8.4.1), we obtain
opdσ(n+1) = javaOpd(restbodyn+1, α) · jvmVal(v) and the invariant (exp) is
satisfied.
If α is an Bi(lab)-position, we proceed as in the second part of Case 2.
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Case 64. context(posn) = α(c)βexp and posn = α:
Similar to Case 3.
Case 65. context(posn) = α(c)βref and posn = β:
By the induction hypothesis (exp), it follows that pcσ(n) = endβ and
opdσ(n) = javaOpd(restbodyn , α) · [ref ]. We set σ(n + 1) := σ(n) + 1. Since
code(endβ) is the instruction Checkcast(c) (Fig. 11.2), the JVME executes in
state σ(n) the Checkcast instruction.
Assume that ref = null or classOf (ref ) � c. Then posn+1 = α and
restbodyn+1/α = ref (Fig. 5.2). The JVME leaves the operand stack as it
is and increments the program counter such that pcσ(n+1) = endα (Fig. 11.1)
and the invariant (exp) is still satisfied.
If ref 6= null and classOf (ref ) 6� c, then JavaE as well as the JVME throw a
ClassCastException and the invariant (exc) is satisfied in state n + 1.
Case 66. context(posn) = α(βexp.c/mγ(exps)) and posn = α:
Similar to Case 3.
Case 67. context(posn) = α(βref .c/mγ(exps)) and posn = β:
Then posn+1 = γ. Since by Fig. 11.2 in this case the JVME does nothing, we
set σ(n + 1) := σ(n).
Assume that c/m is a constructor. Then by the induction hypothesis (new),
it follows that pcσ(n) = endβ and

opdσ(n) = javaOpd(restbodyn , β) · [ref , ref ]
= javaOpd(restbodyn , α) · [ref , ref ] (Clause 5 of Def. 14.1.1)

By Clause 4 of Def. 14.1.1, we have

javaOpd(restbodyn , γ) = javaOpd(restbodyn , α) · [ref , ref ].

Since endβ = begγ (Fig. 11.2), the invariant (beg) is satisfied for n + 1.
If c/m is an instance method, then the invariant (beg) in state n + 1 follows
similarly from the induction hypothesis (exp) and Clause 5 of Def. 14.1.1.
Case 68. context(posn) = α(βref .c/mγ(vals)) and posn = γ:
By the induction hypothesis (exp), it follows that pcσ(n) = endγ = endα − 1
(Fig. 11.2). If c/m is an instance method, then

opdσ(n) = javaOpd(restbodyn , α) · [ref ] · jvmVal(vals).

If c/m is a constructor, then

opdσ(n) = javaOpd(restbodyn , α) · [ref , ref ] · jvmVal(vals).

If ref 6= null , then JavaE executes invokeMethod(α, c′/m, [ref ] · vals), where
class c′ is determined as follows and d = classNm(methn) (Fig. 5.2):
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callKind(α) c′ code(endγ)
Virtual lookup(classOf (ref ), c/m) InvokeVirtual(T (α), c/m)
Super lookup(super(d), c/m) InvokeSpecial(T (α), c/m)
Special c InvokeSpecial(T (α), c/m)

In state n + 1 we have:

framesn+1 = framesn · (methn , restbodyn , α, localsn),
methn+1 = c′/m,
restbodyn+1 = body(c′/m),
posn+1 = firstPos,
localsn+1 = zip(argNames(c′/m), [ref ] · vals).

We set σ(n + 1) := σ(n) + 2, one step for the invoke instruction and one step
for executing the pushFrame in the submachine switchVMC .
Assume that callKind(α) = Virtual . In state σ(n), the JVME executes the
InvokeVirtual instruction such that opdσ(n)+1 = javaOpd(restbodyn , α) and
switchσ(n)+1 = Call(c′/m, [ref ] · jvmVal(vals)). In state σ(n) + 1, the JVME
executes a pushFrame(c′/m, [ref ] · jvmVal(vals)) (Fig. 10.2), since by The-
orem 8.4.1 and the Lookup Lemma 8.4.1 the method c′/m is not abstract.
Thus we have

stackσ(n+1) = stackσ(n) · (pcσ(n), regσ(n), opdσ(n)+1,methσ(n)),
methσ(n+1) = c′/m,
pcσ(n+1) = 0,
opdσ(n+1) = [ ],
regσ(n+1) = makeReg([ref ] · jvmVal(vals)).

As in Case 40 we can conclude that the invariants (reg), (stack), (beg) and
(fin) are satisfied.
Assume that callKind(α) = Super . From Sect. 5.1.5 it follows that m is not
abstract in c and super(d) �h c. Hence, lookup(super(d), c/m) = c and
c′ = c. (One could as well assign the call kind Special to α.) In state σ(n),
the JVME executes the instruction InvokeSpecial(T (α), c/m) and in state
σ(n) + 1 a pushFrame(c/m, [ref ] · jvmVal(vals)). The rest goes as above.
Assume that callKind(α) = Special and c/m is a constructor. Then the
difference to the other cases is that opdσ(n)+1 = javaOpd(restbodyn , α) · [ref ].
Since the case of a constructor is treated separately in Def. 14.1.8, we still
can conclude that framesn+1 ≈ stackσ(n+1). If c/m is an instance method,
we proceed as above.
If ref = null , then JavaE as well as the JVME throw a NullPointerException
and the invariant (exc) is satisfied.
JavaE-Statements. Following Fig. 6.1 and Fig. 6.2, we have to consider the
six new cases which appear for statement execution in JavaE , namely throw
(Cases 69–70), try-catch (Cases 71–75) and try-catch-finally statements
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(Cases 76–80), exception propagation through labeled statements (Case 81),
uncaught exceptions in class initialization (Case 82) and propagation of un-
caught exceptions to the invoker (Case 83).
Case 69. context(posn) = αthrow βexp and posn = α:
Similar to Case 3.
Case 70. context(posn) = αthrow βref and posn = β:
Since β is an E-position, by the induction hypothesis (exp), it follows that
pcσ(n) = endβ and opdσ(n) = [ref ]. According to Fig. 12.3, code(endβ) is the
instruction Athrow and endα = endβ + 1. We set σ(n + 1) := σ(n) + 1.
Assume that ref 6= null . Then posn+1 = α and restbodyn+1/α = Exc(ref )
(rule execJavaStmE in Fig. 6.2). The JVME executes the Athrow instruc-
tion (rule execVME in Fig. 12.2) such that switchσ(n+1) = Throw(ref ) and
pcσ(n+1) = pcσ(n). Since begα ≤ endβ , endβ < endα, endβ = pcσ(n+1) and
X (α) = [ ], the invariant (exc) is satisfied in state n + 1.
Assume that ref = null . Then posn+1 = α and restbodyn+1/α = Exc(r),
where r is a reference to a new object of type NullPointerException. The
JVME raises the same exception when it executes the Athrow instruction.
Thus, switchn+1 = Throw(r) and the invariant (exc) is satisfied in state
n + 1.
Case 71. context(posn) = αtry βstm catch . . . and posn = α:
Similar to Case 3.
Case 72. context(posn) = αtry βNorm catch . . . and posn = β:
Then posn+1 = α and restbodyn+1/α = Norm (Fig. 6.2). By the induction
hypothesis (stm), it follows that pcσ(n) = endβ and opdσ(n) = [ ]. Accord-
ing to the compilation scheme in Fig. 12.3, code(endβ) is the instruction
Goto(endα). We set σ(n + 1) := σ(n) + 1. The JVME executes the Goto
instruction and the invariant (stm) is satisfied in state n + 1.
Case 73. context(posn) = αtryβabr catch (c1 x1)γ1s1 . . . catch (cn xn)γn sn

and posn = β:
Assume that abr is not an exception. Then posn+1 = α and restbodyn+1/α
is abr (rule execJavaStmE in Fig. 6.2). By the induction hypothesis (abr), it
follows that opdσ(n) = [ ] and pcσ(n) is a continuation for abr at position β. We
set σ(n +1) := σ(n). Since pcσ(n) is also a continuation for abr at position α,
the invariant (abr) is satisfied in state n + 1.
Assume that abr = Exc(r). By the induction hypothesis (exc), it follows
that
1. switchσ(n) = Throw(r),
2. begβ ≤ pcσ(n) < endβ (β is not an E-position),
3. there is no (f , u, , c) ∈ X (β) with f ≤ pcσ(n) < u and classOf (r) �h c.

The definition of the exception table in Fig. 12.4 says that
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X (α) = X (β) ·
X (γ1) · Exc(begα, endβ ,begγ1

− 1, c1) ·
...
X (γn) · Exc(begα, endβ ,begγn

− 1, cn)

Assume that there exists an i such that 1 ≤ i ≤ n and classOf (r) �h ci .
Let j := min{i | classOf (ref ) �h ci}. Then posn+1 = γj and localsn+1 is
localsn⊕{(xj , r)} (rule execJavaStmE in Fig. 6.2). We set σ(n+1) := σ(n)+2.
In state σ(n), the JVME executes the rule switchVME in Fig. 12.1. It looks
for the first handler (f , u, h, c) in the exception table of the method such that
f ≤ pcσ(n) < u and classOf (r) �h c. The intervals protected by handlers in
the table before X (α) are disjoint to {k | begα ≤ k < endα} (Lemma 14.2.1)
and cannot be used, since begα ≤ pcσ(n) < endβ . The handlers in X (β)
cannot be used by the induction hypothesis (exc). The handlers in X (γi)
cannot be used by Lemma 14.2.1, since the code interval of γi is disjoint
from the code interval of β and begβ ≤ pcσ(n) < endβ . Hence, the first
handler found by the JVME is (begα, endβ ,begγj

− 1, cj ) and by Fig. 12.1
1. pcσ(n)+1 = begγj

− 1,
2. opdσ(n)+1 = [r ],
3. switchσ(n)+1 = Noswitch.

In state σ(n) + 1, it executes the Store(addr, xj ) instruction which is at
begγj

− 1 (Fig. 12.3). Hence, in state n + 1 the invariants (reg) and (beg)
are satisfied.
Assume that there is no j such that 1 ≤ j ≤ n and classOf (r) �h cj . Then
posn+1 = α and restbodyn+1/α = Exc(r). We set σ(n + 1) := σ(n). Since
the intervals {j | begγi

≤ j < endγi} do not contain pcσ(n), by Lemma 14.2.1
it follows that there is no (f , u, , c) ∈ X (α) with f ≤ pcσ(n) < u and
classOf (r) �h c. Hence, the invariant (exc) is satisfied in state n + 1.
Case 74. context(posn) = αtry βExc(r) . . . catch (ci xi) γi Norm . . . and
posn = γi :
Then posn+1 = α and restbodyn+1/α = Norm (rule execJavaStmE in
Fig. 6.2). By the induction hypothesis (stm), it follows that pcσ(n) = endγi

and opdσ(n) = [ ]. We set σ(n + 1) := σ(n) + 1. According to the compilation
scheme in Fig. 12.3, the instruction code(endγi

) is Goto(endα). The JVME
executes the Goto instruction and pcσ(n+1) = endα. Hence, the invariant
(stm) is satisfied in state n + 1.
Case 75. context(posn) = αtry βExc(r) . . . catch (ci xi) γi abr . . . and
posn = γi :
Similar to Case 23. If abr = Exc( ), one has to look at the exception ta-
ble X (α) in Case 73 and use Lemma 14.2.1.
Case 76. context(posn) = α(βstm1 finally γstm2) and posn = α:
Similar to Case 3.
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Case 77. context(posn) = α(βNorm finally γstm) and posn = β:
Then posn+1 = γ (rule execJavaStmE in Fig. 6.2). By the induction hy-
pothesis (stm), it follows that pcσ(n) = endβ and opdσ(n) = [ ]. We set
σ(n + 1) := σ(n) + 2. According to the compilation scheme in Fig. 12.3,
code(endβ) is the instruction Jsr(begγ−1) followed by a Goto(endα). In state
σ(n), the JVME executes the Jsr instruction such that pcσ(n)+1 = begγ − 1
and opdσ(n)+1 = [endβ + 1] (Fig. 12.2). In state σ(n) + 1, it executes
the instruction Store(addr, retα). Hence, regσ(n+1)(retα) = endβ + 1. Since
code(endβ + 1) is Goto(endα), regσ(n+1) contains correct return addresses
for γ in restbodyn+1 and the invariant (fin) is satisfied in state n + 1. Since
pcσ(n+1) = begγ and opdσ(n+1) = [ ], the invariant (beg) is satisfied as well.

Case 78. context(posn) = α(βabr finally γstm) and posn = β:
Then posn+1 = γ (rule execJavaStmE in Fig. 6.2).
Assume that abr is not an exception. By the induction hypothesis (abr), it
follows that opdσ(n) = [ ] and pcσ(n) is a continuation for abr at position β
with respect to regσ(n). By Def. 14.1.3, 14.1.4, 14.1.5 and 14.1.6, it follows
that
1. code(pcσ(n)) = Jsr(begγ − 1) and
2. pcσ(n) + 1 is a continuation for abr at position α with respect to regσ(n).

We set σ(n + 1) := σ(n) + 2. In state σ(n), the JVME executes the Jsr
instruction such that pcσ(n)+1 = begγ − 1 and opdσ(n)+1 = [pcσ(n) + 1].
In state σ(n) + 1, it executes the instruction Store(addr, retα). Hence,
regσ(n+1)(retα) = pcσ(n) + 1. Since pcσ(n) + 1 is a continuation for abr at
position α with respect to regσ(n+1), regσ(n+1) contains correct return ad-
dresses for γ in restbodyn+1 and the invariant (fin) is satisfied in state n + 1.
Since pcσ(n+1) = begγ and opdσ(n+1) = [ ], the invariant (beg) is satisfied as
well.
Assume that abr = Exc(r). By the induction hypothesis (exc), it follows
that
1. switchσ(n) = Throw(r),
2. begβ ≤ pcσ(n) < endβ (β is not an E-position),
3. there is no (f , u, , c) ∈ X (β) with f ≤ pcσ(n) < u and classOf (r) �h c.

The definition of the exception table in Fig. 12.4 says that

X (α) = X (β) · Exc(begα,defaultα,defaultα, Throwable) · X (γ).

We set σ(n + 1) := σ(n) + 4. In state σ(n), the JVME executes rule
switchVME in Fig. 12.1. By Lemma 14.2.1 and consequence 3 above of
(exc), the first handler in the exception table that catches the exception r is
(begα,defaultα,defaultα, Throwable) and
1. pcσ(n)+1 = defaultα,
2. opdσ(n)+1 = [r ],
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3. switchσ(n)+1 = Noswitch.
The compilation scheme in Fig. 12.3 says that

code(defaultα) = Store(addr, excα)
code(defaultα + 1) = Jsr(begγ − 1)

In state σ(n) + 1, the JVME stores the exception r in register excα. In state
σ(n)+2, it jumps to the subroutine and, in state σ(n)+3, it stores the return
address defaultα+2 in register retα such that regσ(n+1) contains correct return
addresses for γ in restbodyn+1 and the invariant (fin) is satisfied in state n+1.
Since pcσ(n+1) = begγ and opdσ(n+1) = [ ], the invariant (beg) is satisfied as
well.
Case 79. context(posn) = α(βs finally γNorm) and posn = γ:
Then posn+1 = α and restbodyn+1/α = s (Fig. 6.2). By the induction hypoth-
esis (stm), it follows that pcσ(n) = endγ and opdσ(n) = [ ]. The instruction
code(endγ) is Ret(retα) (Fig. 12.3). In state σ(n), the JVME executes the
Ret instruction and pcσ(n)+1 = regσ(n)(retα).
Assume that s = Norm. We set σ(n + 1) := σ(n) + 2. By the induction
hypothesis (fin) and (fin-norm) of Def. 14.1.7, it follows that code(pcσ(n)+1)
is the instruction Goto(endα). Therefore, in state σ(n)+1, the JVME executes
the Goto instruction such that pcσ(n+1) = endα and the invariant (stm) is
still satisfied.
Assume that s = abr and abr is not an exception. By the induction hypothesis
(fin) and (fin-abr) of Def. 14.1.7, it follows that pcσ(n)+1 is a continuation
for abr at position α with respect to regσ(n). We set σ(n + 1) := σ(n) + 1
and the invariant (abr) is satisfied in state n + 1.
Assume that s = Exc(r). By the induction hypothesis (fin) and (fin-exc) of
Def. 14.1.7, it follows that regσ(n)(retα) = defaultα+2 and regσ(n)(excα) = r .
The compilation scheme in Fig. 12.3 says that

code(defaultα + 2) = Load(addr, excα)
code(defaultα + 3) = Athrow

We set σ(n + 1) := σ(n) + 3. Since pcσ(n)+1 = defaultα+ 2, in state σ(n) + 1,
the JVME loads the reference r on the operand stack and, in state σ(n) + 2,
it executes the Athrow instruction. Hence,
1. switchσ(n+1) = Throw(r),
2. begα ≤ defaultα + 3 = pcσ(n+1) < endα,
3. there is no (f , u, , c) ∈ X (α) such that f ≤ pcσ(n+1) < u and

classOf (r) �h c,
and the invariant (exc) is satisfied in state n + 1.
Case 80. context(posn) = α(βs finally γabr) and posn = γ:
Then posn+1 = α and restbodyn+1/α = abr (rule execJavaStmE in Fig. 6.2).
The rest is similar to Case 23.
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Case 81. context(posn) = αlab : βExc(r) and posn = β:
Similar to Case 23.
Case 82. context(posn) = αstatic βExc(r) and posn = β:
Then posn+1 = α. If classOf (r) �h Error, then restbodyn+1/α = Exc(r).
Otherwise, restbodyn+1/α = Exc(ref ), where ref is a newly created object
of type ExceptionInInitializerError (rule execJavaStmE in Fig. 6.2).
By the induction hypothesis (exc), it follows that switchσ(n) = Throw(r)
and that the exception r is not caught in the <clinit> method. We set
σ(n + 1) := σ(n) + 1. The JVME executes rule switchVME in Fig. 12.1.
If classOf (r) �h Error, then switchσ(n+1) = ThrowInit(r). Otherwise,
switchσ(n+1) = ThrowInit(ref ), where ref is the newly created object of type
ExceptionInInitializerError. In both cases the invariant (exc-clinit) is
satisfied in state n + 1.
Case 83. context(posn) = Exc(r), posn = firstPos and framesn 6= [ ]:
Assume that methn is not a class initialization method. Then JavaE executes
exitMethod(Exc(r)) such that

framesn = framesn+1 · (methn+1, rest , posn+1, localsn+1),
restbodyn+1 = rest [Exc(r)/posn+1].

By the induction hypothesis (exc), it follows that switchσ(n) = Throw(r) and
that there is no handler in the exception table which catches the exception r .
We set σ(n + 1) := σ(n) + 1. The JVME executes the rule switchVME in
Fig. 12.1 and performs a popFrame(0, [ ]) such that

stackσ(n) = stackσ(n+1) · (pcσ(n+1), regσ(n+1), opdσ(n+1),methσ(n+1)).

Since framesn ≈ stackσ(n), Def. 14.1.8 and Lemma 8.1.3 imply that
1. framesn+1 ≈ stackσ(n+1),
2. localsn+1 ≈ regσ(n+1),
3. regσ(n+1) contains correct return addresses for posn+1 in rest ,
4. begposn+1

≤ pcσ(n+1) < endposn+1 .
Since X (posn+1) = [ ], the invariant (exc) is satisfied. Since restbodyn+1 is
obtained from rest by inserting Exc(r) at posn+1, regσ(n+1) contains also
correct return addresses for posn+1 in restbodyn+1 and the invariant (fin) is
satisfied as well.
Assume that methn is the <clinit> method of class c. Then JavaE marks the
class c as Unusable and makes an exitMethod(Exc(r)). Since posn is the first
position in the body of the <clinit> method, body(methn)/posn is a static
initializer static . By the induction hypothesis (exc-clinit), it follows that
switchσ(n) = ThrowInit(r). We set σ(n+1) := σ(n)+1. The JVME marks the
initialization state of class c as Unusable, too, and makes a popFrame(0, [ ])
(rule switchVME in Fig. 12.1). By Lemma 8.1.3, it follows that posn+1 is a
class initialization position (Def. 8.1.7).
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If body(methn+1)/posn+1 = static , then the class c is the direct super class
of the class of methn+1. Therefore, switchσ(n+1) is still ThrowInit(r) and the
invariant (exc-clinit) is satisfied in state n + 1.
Otherwise, posn+1 is an E-position and X (posn+1) = [ ]. Then the class c
cannot be the direct super class of the class of methn+1 and therefore,
switchσ(n+1) = Throw(r). Note, that if posn+1 = β in αc/f = βval , then
pcσ(n+1) = endβ , up(β) = α, endβ < endα and therefore pcσ(n+1) < endup(β).
Hence, the invariant (exc) is satisfied.

This concludes the proof. ut
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In Part III we extend the trustfully executing JVM of Part II by the verifier
and loading components which load and verify bytecode before it may be
executed by the trustful VM. We analyze the ambiguities and inconsisten-
cies encountered in the official description in [23], and resolve them by an
appropriate new bytecode verifier (Chapter 16).

First we define a diligent VM (Chapter 17) which adds a bytecode ver-
ifying submachine to the trustful VM of Part II. We prove the soundness
(Theorem 17.1.1) and the completeness (Theorem 17.1.2) of this bytecode
verifier. Then we refine the diligent VM to the dynamic VM (Chapter 18)
which at run-time loads and references classes when they are needed, before
they are passed to the verifier.

The bytecode verifier simulates at link-time, i.e., on type frames instead
of value frames, all possible run-time paths through the submitted program,
trying to verify certain type conditions which will guarantee the safety of
the trustful execution at run-time. We extract these link-time checkable
conditions—bytecode type assignments (Chapter 16)—from natural run-time
type checks of a defensive VM (Chapter 15). We show that these checks are
monotonic, i.e., are preserved when type frames get more specific. In run-
time terms, the checking component of the defensive VM can be defined in
a modular way by successively refined submachines checkI , checkC , checkO ,
checkE , checkN .

In the bytecode verifier the checking machines are coupled to machines
propagateVMI and propagateVME (Chapter 17), which propagate checked
type frames to possible successor frames (Sect. 16.2), resulting in a link-time
simulation of the trustful VM of Part II.

We prove that bytecode type assignments guarantee the desired run-time
safety (Theorem 16.4.1), that the compiler of Part II generates code with
bytecode type assignments (Theorem 16.5.1), and that our bytecode verifier
computes most specific bytecode type assignments (Theorem 17.1.2), thus
establishing the Main Theorem of this book. For the completeness proof we
refine the compiler to generate code with type information, which is then
used in the inductive steps of the proof.





15. The defensive virtual machine

In this chapter we lift the trustfully executing machine of Part II to a defensive
machine which checks each instruction before its execution to satisfy certain
constraints about types, resource bounds, etc., guaranteeing correct execution
in such a way that if the defensive VM executes bytecode successfully, then
also the trustful VM does so with the same semantical effect. Our goal here
is to prepare the description of the bytecode verifier, to be given in the next
chapters, by a transparent definition of the verification functionality, namely
in terms of run-time checks of the safe executability of single instructions. We
formulate these checking conditions in terms of the types of values instead of
values themselves so that they can be adapted in the next two chapters to
link-time verifiable properties.

The JVM defines a set of constraints on JVM code to guarantee that
its execution cannot go wrong (cf. [23, §4.8]). Static constraints define the
well-formedness of the bytecode in Java class files, for example, that branch
targets are within the method where the branch occurs or that any access
to registers is within the domain of the register environment. Structural con-
straints specify constraints between JVM instructions and run-time data,
for instance that the operand stack does not underflow or overflow, or that
methods are called with the right number and types of arguments, or that
the JVM does not jump out of the code by executing a Ret instruction with
an invalid address.

Since static constraints do not change at run-time, these constraints need
be checked only once, for example at link-time. In the sequel, we will assume
that all static constraints hold (see Appendix C.6). Structural constraints
are defined as restrictions on run-time data structures. As preparation for
their definition for the bytecode verification in the next chapters, we develop
in this chapter a defensive VM that augments the trustful VM of Part II
with additional run-time checks to assure that for each instruction all struc-
tural constraints, in particular typing constraints, hold upon execution. The
checking component can be defined by stepwise refinement, analogously to
the layering of the execution component, thus leading to a series of con-
servatively extended defensive machines for JVMI , JVMC , JVMO, JVME ,
JVMN . We conclude the chapter with a proof that the checking mechanism
is monotonic with respect to type refinements.
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Fig. 15.1 Defensive JVM interpreter

defensiveSchemeI (check , trustfulVM ) =
if ¬validCodeIndex (code, pc) ∨
¬check(instr ,maxOpd , pc, type(reg), type(opd)) then

halt := "Runtime check failed"
else

trustfulVM

validCodeIndex (code, pc) = (0 ≤ pc ∧ pc < length(code))

15.1 Construction of the defensive JVM

The defensive JVM extends (and refines) the trustful JVM with a checking
component: before an instruction is executed the types of the current state
are checked. Fig. 15.1 defines the scheme for the defensive VM which will be
instantiated in the following sections for the JVM submachines. If checking
fails, the machine reports failure. The execVM rules are lifted forms of those
introduced in Part II; check and type denote functions defined below in this
section expressing that the execution of the current instruction will not violate
the conditions which are required to hold for the stack size and the types
of the values the instruction operates on. The above defensiveSchemeI will
be refined in Sect. 15.3 to the defensiveSchemeC by introducing switching,
similarly to the extension of the trustful JVMI to the trustful JVMC , and in
Sect. 15.6 to a scheme which takes into account also native methods.

15.2 Checking JVMI

In this section we define the defensive VM as an instantiation of the scheme
in Fig. 15.1, namely by

defensiveVMI = defensiveSchemeI (checkI , trustfulVMI )

The checking function checkI of this defensive JVMI guarantees the following
safety properties, which can be made precise and be proved once we have
defined the machine.

1. Primitive operations are executed with the right number and types of
the arguments.

2. Local variables are used consistently and correctly, that is, the machine
does not operate individually on words of double words; double words are
not swapped, and local variables are assigned before they are accessed.

3. The operand stack does not overflow or underflow.
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Types. The first two conditions require the introduction of a type system.
The JVM is weakly typed: at different times the same register can hold an
integer, a float, or a low or high word of a long or double. The same is true
for the operand stack. Hence we trace the types of words in the registers and
on the operand stack and check the types before executing an instruction.

data WordType = int
| lowLong
| highLong
| float
| lowDouble
| highDouble

The universe WordType denotes the types of words. The JVM specification,
on purpose, does not specify which part of a double word is its high or low
word. This is up to the implementation.1 In JVMI two types are compatible
(denoted by v) if they are syntactically equal. The relation v is refined
to a subsort relation in JVMO. The relation vsuf takes as its arguments
two sequences of types. It checks whether a suffix of the first argument is
compatible to the second argument.

State. We keep track of the types of words in registers and on the operand
stack tagging words with types.

type Word = (Int ,WordType)

As a consequence, all dynamic functions that operate on words are refined
to include type information. The function type selects the type component
of the dynamic functions reg and opd , that is type applied on a type ex-
tended operand stack of the form [(w1, t1), . . . , (wn , tn)] returns [t1, . . . , tn ];
type applied to a local environment {(x1, (w1, t1)), . . . , (xn , (wn , tn))} re-
turns {(x1, t1), . . . , (xn , tn)}. The pair (regT , opdT ) of the type components
type(reg) and type(opd) is called a type frame.

Environment. The third of the above conditions requires the introduction of
a constant maxOpd denoting the maximum number of words the operand
stack can hold.

Rules. Lifting the execution rules of JVMI onto the new state representa-
tion is easily described: the semantic functions JVMS (p,ws) now take (and
return) sequences of word/type pairs instead of sequences of words only. The
other operations work on the components of the new representation in the
standard way, like application, indexing or concatenation. Hence, it remains
to specify the boolean valued function checkI for checking JVMI ’s dynamic
constraints, see Fig. 15.2.
1 The real JVM also supports Boolean, Byte, Short and Char , but since the JVM

supports them only in a very limited way, we identify these types with Int .
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Fig. 15.2 Checking JVMI instructions

checkI (instr ,maxOpd , pc, regT , opdT ) =
case instr of

Prim(p)→ opdT vsuf argTypes(p) ∧
¬overflow(maxOpd , opdT , retSize(p)− argSize(p))

Dupx (s1, s2)→ let [ts1, ts2] = tops(opdT , [s1, s2])
length(opdT ) ≥ s1 + s2 ∧
¬overflow(maxOpd , opdT , s2) ∧
validTypeSeq(ts1) ∧ validTypeSeq(ts2)

Pop(s)→ length(opdT ) ≥ s
Load(t , x )→

if size(t) = 1 then [regT (x )] vmv t ∧ ¬overflow(maxOpd , opdT , 1)
else [regT (x ), regT (x + 1)] vmv t ∧ ¬overflow(maxOpd , opdT , 2)

Store(t , ) → opdT vsuf t
Goto(o) → True
Cond(p, o)→ opdT vsuf argTypes(p)
Halt → True

Checking a Prim instruction requires that the appropriate argument types
appear on top of the stack and that the result type can be pushed on the
operand stack without overflow.

overflow(maxOpd , opdT , s) = length(opdT ) + s > maxOpd

The function argTypes returns the sequence of argument types of a primitive
operation with the low type listed before the high type. For example,

argTypes(dadd) = [lowDouble, highDouble, lowDouble, highDouble].

Dupx and Pop are polymorphic. They do not require a particular type on the
stack. Rather any type can be provided as long as its size equals the required
size and it is a well-formed JVM type. For this purpose we define the function
validTypeSeq .2

validTypeSeq([ ]) = True
validTypeSeq([t ]) = ¬isHigh(t)
validTypeSeq([t , ]) = ¬isHigh(t)

isHigh(t) = (t = highLong ∨ t = highDouble)

Following this definition also the sequence [int, float] is a valid type se-
quence of size 2.

A Load instruction loads the run types stored under the location(s) x
(and possibly x + 1) onto the operand stack only if they match the move
type and if enough space is left. The rule implicitly checks that registers
are not accessed before they are assigned. Indeed for a register x to which no
2 The definition of the predicate isHigh is refined in Sect. 15.4.
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value has been assigned, regT (x ) yields undef which is not compatible to any
defined type. Likewise, the rule checks that for double words the types stored
under locations x and x +1 have the correct low and high types, otherwise the
representation of the move type would not match the runtime-type according
to the following definition of the compatibility relation between sequences of
word types and move types:

[int] vmv int = True
[float] vmv float = True
[lowLong, highLong] vmv long = True
[lowDouble, highDouble] vmv double = True

Store and Cond require appropriate argument types on the stack. For Goto
and Halt nothing has to be checked.

15.3 Checking JVMC

In this section we refine the defensiveSchemeI to the defensiveSchemeC which
incorporates the switching machine, and then instantiate this scheme with
the new checking function checkC to the defensive JVMC :

defensiveVMC = defensiveSchemeC (checkC , trustfulVMC )

Since JVMC introduces class fields and class methods, the defensive JVMC
adds a check constraint for each of the new instructions to guarantee the
following security properties:

1. The type of every value stored in a class field is compatible with its
declared type.

2. The actual arguments to each class method invocation are compatible
with the corresponding formal parameters.

3. The type of every returned result is compatible with the declared result
type.

Environment. Every method has its own maximum operand stack size so
that we refine maxOpd by an additional method parameter. For this reason
maxOpd appears in the class file component of method declarations (see
Sect. 10.1).

maxOpd : Class/MSig → Nat

Similarly, we refine check = check(meth), etc.

Rules. Fig. 15.3 extends the defensiveSchemeI by the switching submachine
and by checking constraints on class fields and methods. A GetStatic instruc-
tion can be executed provided the operand stack has sufficient space to push
the stored value. The PutStatic instruction requires the popped value to be
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Fig. 15.3 Checking JVMC instructions

defensiveSchemeC (check , trustfulVM ) =
if switch = Noswitch then

defensiveSchemeI (check(meth), trustfulVM )
else

trustfulVM

checkC (meth)(instr ,maxOpd , pc, regT , opdT ) =
checkI (instr ,maxOpd , pc, regT , opdT ) ∨
case instr of

GetStatic(t , c/f ) → ¬overflow(maxOpd , opdT , size(t))
PutStatic(t , c/f ) → opdT vsuf t
InvokeStatic(t , c/m)→ opdT vsuf argTypes(c/m) ∧

¬overflow(maxOpd , opdT , size(t)−
argSize(c/m))

Return(t) → opdT vsuf returnType(meth) ∧
returnType(meth) vmv t

compatible with the field type. The InvokeStatic instruction requires that the
actual argument types are compatible to the types of the formal parameters
of the method. If the method returns a result, enough space must be left
to push the result onto the operand stack.3 Executing a Return instruction
requires that the actual type on top of the stack is compatible with the re-
sult type of the method and this type must be compatible with the move
type as specified by the instruction parameter. In case of a Return without
return value, the constraint is satisfied. (The condition will be sharpened in
Sect. 15.4 by the clause endinit for returns from instance initialization meth-
ods.) Of course, the run-time dependent length of the method call invocation
stack is and cannot be checked for overflow.

[ ] vmv void = True

15.4 Checking JVMO

In this section we extend the defensive machine to handle also constraints for
object-oriented language features. The extension adds the checking counter-
part to the extension of the trustful execVMC to the trustful execVMO : new
rules are added for checking each of the object-oriented instructions executed
by execVMO . Therefore we define the defensive JVMO as an instantiation of
the defensiveSchemeC .

defensiveVMO = defensiveSchemeC (checkO , trustfulVMO)

3 The overflow check can be suspended until the method returns. However, this
would complicate the formulation.
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For checking JVMO instructions, the compatibility notion must be refined,
to take the inheritance hierarchy into account, and it must be guaranteed
that only fields of initialized instances may be accessed and only methods
of initialized instances may be called. The defensive JVMO guarantees the
following safety properties, in addition to the ones of the JVMC :

1. The type of every target of an object access or of a method call is com-
patible with the required type.

2. The argument of any InstanceOf or Checkcast operation is compatible
with Object.

With respect to object creation and initialization the defensive JVM guaran-
tees the following security properties:

1. A newly created object is regarded as un-initialized. An object becomes
fully initialized when the constructor of class Object is invoked. The
invocation of another constructor makes an object partially initialized.

2. Constructors are invoked on un-initialized or partially initialized objects
only. If an object is un-initialized, then the invoked constructor is in the
class of the object. If an object is partially initialized, then the invoked
constructor is in the same class as the invoking constructor or in the
direct superclass.

3. When a constructor returns, it has invoked a constructor either in the
same class or in the superclass.

4. Field accesses are performed on fully initialized objects only.
5. Instance methods are invoked on fully initialized objects only.
6. References to not fully initialized objects are neither stored in class fields,

nor in instance fields, nor in array elements. References to not fully ini-
tialized objects cannot be passed as arguments to methods and are not
returned by methods.

7. References to not fully initialized objects, however, can be moved from
the operand stack to local registers and vice versa. They can also be
compared with other references using the operator ‘==’. The Checkcast
and Instanceof instructions are applied to fully initialized objects only.

What does it mean that an object is fully initialized? It means that there is
a sequence of constructor calls for the object, starting with a constructor of
the class of the object, such that each constructor in the sequence, except for
the constructor of class Object, calls either another constructor of the same
class or a constructor of its direct superclass before the instance members
of the object are accessed. Fully initialized, however, does not mean that
all constructor calls in the sequence do terminate normally. In a deviate
program, it may happen that a constructor stores the value of this in a
global variable and throws an exception afterwards. The exception can be
caught and later the object can be used from the global class variable in its
insecure state. Nevertheless, the object is regarded as fully initialized because
all constructors of the type hierarchy have been called.
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The JLS does not allow direct or indirect recursive constructor invocations
(see [18, §8.6.5]), because cycles through explicit constructor invocations can
easily be detected in Java source code. On the bytecode level, however, such
cycles are not so obvious, because an argument expression of a constructor
can contain a subexpression which creates a new instance of the same class
and hence uses the same constructor. Therefore recursive constructor calls
are allowed in bytecode programs (although this is not explicitly mentioned
in [23]).

Types. The above listed constraints require the introduction of new type
descriptors. Since the new types are later also used in the bytecode verifier,
we call them verify types.

data VerifyType
= int
| lowLong
| highLong
| float
| lowDouble
| highDouble
| Null
| Class
| Interface
| Array
| (Class,Pc)new

| InInit
| unusable

The primitive verify types are identical with the corresponding word types.
The descriptor Null represents its only value null and is compatible with any
reference types.4 Reference types are class types, interface types, array types
and Null. Initialized instances of a class c are denoted simply by the name
itself. The type descriptor (c, pc)new is the type of an un-initialized object
created at code index pc. Partially initialized objects are of type InInit . The
types (c, pc)new and InInit are not considered as reference types. The type
descriptor unusable is added in order to have a topmost element in the set of
verify types. Every value can be of type unusable. The compatibility relation
is defined on verify types σ, τ as follows:

Definition 15.4.1. For verify types σ and τ the relation σ v τ is true, iff
one of the following conditions is true:

1. σ = τ , or
2. σ and τ are reference types and σ � τ (see Def. 5.1.2), or
3. τ = unusable.
4 Null has a special status: it can only be generated by Prim(null); afterwards
Null can be propagated like any other type.
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Since the types (c, pc)new and InInit are not reference types, they are com-
patible with themselves and unusable only.

The Load ,Store and Return instructions are allowed to move class refer-
ences and null . The instructions Load and Store are even allowed to move
uninitialized objects, the Return instruction not. Therefore the notion of com-
patibility between verifier types and move types is extended as follows. Let
c be any reference type:

[c] vmv addr = True
[( , )new ] vmv addr = True
[InInit ] vmv addr = True

The definition of the predicate isHigh is refined to include also the type
unusable. Hence a valid type sequence is not allowed to begin with the type
unusable.

isHigh(t) = (t = highLong ∨ t = highDouble ∨ t = unusable)

State. We have to distinguish un-initialized object, partially initialized ob-
jects and initialized objects. Therefore we introduce a new type InitState:

data InitState = New(Pc) | InInit | Complete

We keep track of the initialization status of a reference in the dynamic func-
tion initState:

initState: Ref → InitState

A newly created un-initialized object of class c with reference r has ini-
tialization state New(pc), where pc is the code index of the instruction
New . If an initializer method declared in class c is called on r , the value
of initState(r) is updated to InInit . When the initialization method of class
Object is called, the partially initialized object r gets fully initialized and we
update initState(r) to Complete (see Fig. 15.5).

References in the stack and in the registers are tagged with reference.
The universe WordType is extended by reference.

data WordType = . . .
| reference

The heap contains the type information about references. Thus we have to
extend our definition for type on words:

type(r , reference) = typeOf (r)
type( , t) = t

typeOf (r) =
if (r = null) then Null
else case heap(r) of

Object(c,fields)→ case initState(r) of
New(pc) → (c, pc)new

InInit → InInit
Complete → c
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Fig. 15.4 Checking JVMO instructions

checkO(meth)(instr ,maxOpd , pc, regT , opdT ) =
checkC (meth)(instr ,maxOpd , pc, regT , opdT ) ∧ endinit(meth, instr , regT ) ∨
case instr of

New(c)→ ¬overflow(maxOpd , opdT , 1)
GetField(t , c/f )→ opdT vsuf c ∧ ¬overflow(maxOpd , opdT , size(t)− 1)
PutField(t , c/f )→ opdT vsuf c · t
InvokeSpecial( , c/m)→

let [c′] · = take(opdT , 1 + argSize(c/m))
length(opdT ) > argSize(c/m) ∧
opdT vsuf argTypes(c/m) ∧
¬overflow(maxOpd , opdT , retSize(c/m)− argSize(c/m)− 1) ∧
if methNm(m) = "<init>" then

initCompatible(meth, c′, c)
else c′ v c

InvokeVirtual( , c/m)→
opdT vsuf c · argTypes(c/m) ∧
¬overflow(maxOpd , opdT , retSize(c/m)− argSize(c/m)− 1)

InstanceOf (c)→ opdT vsuf Object
Checkcast(c) → opdT vsuf Object

Rules. The execVMO rules are lifted for GetField , PutField , InvokeSpecial
and InvokeVirtual onto the new state representation. Fig. 15.4 extends the
check function of JVMC for these instructions. The conditions are similar to
the ones for the class counterparts in the object-based language, additionally
the type of the target reference must be an initialized subtype of the in-
struction parameter. The instructions InstanceOf and Checkcast both check
whether the top of the stack denotes an initialized reference type. The instruc-
tion New(c) requires that there is still space on the type operand stack for
the type (c, pc)new of a newly created un-initialized object of class c. When
execVMO executes an instruction New(c) and creates a new reference r , then
the initialization state of r has to be set in the following way:

initState(r) := New(pc)

It remains to explain the conditions for calling and for returning from instance
initialization methods. To initialize objects an <init> method has to be
called. The target object must be un-initialized. The actual argument types
must be compatible with the formal parameters.

If the target object is typed by (c, pc)new (the initialization method is
called the first time for the target object), then the called method must be
declared in the class c. Otherwise—the target object is typed by InInit—the
machine executes initialization code. Then, the called method must either be
declared in the same class or in the immediate super class. This is captured
by the predicate initCompatible that is specified as follows:
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Fig. 15.5 Pushing a new JVMO frame

pushFrame(c/m, args) =
stack := stack · [(pc, reg , opd ,meth)]
meth := c/m
pc := 0
opd := [ ]
reg := makeRegs(args)
if methNm(m) = "<init>" then

let [r ] · = args
if c = Object then

initState(r) := Complete
else

initState(r) := InInit

initCompatible( , (c, )new , c
′) = (c = c′)

initCompatible(c/m, InInit , c′) = (c = c′ ∨ super(c) = c′)

Whenever an initialization method is called, the dynamic function initState
will be updated. This updating is performed in the switchVM , namely as fol-
lows. An object becomes initialized, when the initialization method of the root
of the inheritance tree is called. Fig. 15.5 refines the definition of pushing the
type frame on the type stack. If an Object/<init> frame is pushed, initState
is updated to Complete. If a c/<init> frame is pushed with c 6= Object, then
the function initState is updated to InInit . Note that this update changes the
initState of the reference—from New(pc), assigned to it when the reference
has been created—only at the first constructor call.

Each <init> method should invoke another <init> method of the same
class or of its direct superclass. Therefore, we assume that an <init> method
keeps its target object in register 0. We forbid that it uses the instruction
Store( , 0) to store a different value in register 0. Hence, at the end, when an
<init> method returns and register 0 has a type different from InInit , we
know that it has called another <init> method. Therefore the check for the
Return instruction is refined in checkO by the following condition:

endinit(c/m, instr , regT ) =
if instr = Return( ) ∧ methNm(m) = "<init>" ∧ c 6= Object then

0 ∈ dom(regT ) ∧ regT (0) 6= InInit
else True

15.5 Checking JVME

This section adds the checking counterpart to the extension of the trustful
execVMO to the trustful execVME , namely by checking each of the error
handling instructions.
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Fig. 15.6 Checking JVME instructions

checkE (meth)(instr ,maxOpd , pc, regT , opdT ) =
checkO(meth)(instr ,maxOpd , pc, regT , opdT ) ∨
case instr of

Store(addr, x )→ length(opdT ) > 0 ∧ isRetAddr(top(opdT ))
Athrow → opdT vsuf Throwable
Jsr(o) → ¬overflow(maxOpd , opdT , 1)
Ret(x ) → isRetAddr(regT (x ))

isRetAddr(retAddr( )) = True
isRetAddr( ) = False

defensiveVME = defensiveSchemeC (checkE , trustfulVME )

The defensive JVME assures the following security properties:

1. Athrow is only applied on throwable objects.
2. Program counters denote always valid addresses.

These aspect can be guaranteed if we keep track of the use of references and
program counters in the store.

Types. The instructions Jsr and Ret push program counters on the stack
and load program counters from local variables, respectively. We add the
new variant retAddr to our type system.

data WordType = . . .
| retAddr(Pc)

data VerifyType = . . .
| retAddr(Pc)

In the JVM only the Store operation is allowed to move return addresses
from the stack into a register. Therefore, we have to extend the corresponding
check definition for Store.

Rules. The extension of the check function for JVME instructions is given
in Fig. 15.6. The Athrow instruction requires that the reference on top of
the operand stack is an instance of type Throwable. The Jsr instruction
pushes retAddr on the type operand stack, provided enough space is left on
the stack. The Ret instruction checks whether a retAddr is stored in the
accessed location.

Jsr and Ret require to lift the execVME . The Jsr(s) instruction pushes
the value (pc + 1, retAddr(s)) on the operand stack indicating that pc + 1 is
a return address for subroutine s.

Jsr(s)→ opd := opd · [(pc + 1, retAddr(s))]
pc := s
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The Ret(x ) instruction only takes the first component of the register x as its
next program counter.

The defensive JVME does not allow computed gotos: only Jsr generates
return addresses and pushes them on the stack, only Store can move a return
address into a register. The condition on Ret guarantees that only program
generated return addresses can be used.

15.6 Checking JVMN

Native methods do not have Java bytecode. Native methods are implemented
in foreign programming languages. In our model, native methods are imple-
mented via ASM rules, hence they cannot be checked in the ASM model
itself. We have to check from outside that the implementation of each native
method is correct and does not change the state of the JVM in an unsafe
way.

defensiveSchemeN (check , trustfulVM ) =
if isNative(meth) then

if check(meth) then trustfulVM
else halt := "unknown native method"

else
defensiveSchemeC (checkE , trustfulVM )

The check for a native method ensures that the virtual machine has native
code for the method and knows what to do when the method is called. Since
the only native methods which are implemented in Chapter 13 are clone and
equal, only those two methods are accepted as native.5

checkN (c/m) =
c/m = Object/ equals ∨
c/m = Object/ clone

defensiveVMN = defensiveSchemeN (checkN , trustfulVMN )

We could check at run-time that the return value of a native method is of
the return type of the method. However, such a check cannot be performed
by the bytecode verifier in the next chapters. The implementor of a native
method is responsible that the method returns always values of the right type.
For example, the implementor of the native method clone of class Object
must ensure that this method returns a valid reference and not a value of a
primitive type.
5 The executable AsmGofer model in Appendix A contains further native methods.
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15.7 Checks are monotonic

The run-time checks do not operate on the values directly, they operate on
the types of the values. In this way it is possible to reuse the same checks in
the next chapter for the definition of bytecode type assignments and in Chap-
ter 17 for the diligent VM. The checks depend on the type frame (regT , opdT )
and are monotonic in these types. To make this statement more precise we
need two predicates vreg and vseq for comparing types of registers and types
of operand stacks.

regS vreg regT = ∀ x ∈ dom(regT ) : regS(x ) v regT (x )

xs vseq ys = (length(xs) = length(ys)) ∧ ∀ (x , y) ∈ zip(xs, ys) : x v y

If regS vreg regT , then we say that regS is more specific than regT . Similarly,
if opdS vseq opdT , then opdS is also more specific than opdT . Note, that if
regS is more specific than regT , then regS may assign types to more local
registers than regT . This is in contrast to types of operand stacks. If opdS
is more specific than opdT , then opdS and opdT have the same length and
assign types to exactly the same stack positions.

The following lemma says that a check remains true if the type frame
is replaced by a more specific one. The lemma is used in the next chap-
ter in the proof of the soundness of bytecode type assignments. It is also
used in Chapter 17 for showing that the bytecode verifier computes princi-
pal (most specific) type assignments. Hence, monotonicity is an important
property of the structural checks. We write check(meth, pc, regT , opdT ) for
checkE (meth)(code(meth)(pc),maxOpd(meth), pc, regT , opdT ).

Lemma 15.7.1 (Checks are monotonic). Assume that (regS , opdS ) and
(regT , opdT ) are type frames with regS vreg regT and opdS vseq opdT .
If check(meth, pc, regT , opdT ) returns true, then check(meth, pc, regS , opdS )
returns true as well.

Proof. The lemma is proved by a case distinction over the different in-
structions of the JVM. It uses the fact that the compatibility relation v
of Def. 15.4.1 is transitive. ut
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In this chapter we analyze the dynamic constraints, which are checked at
run-time by the defensive VM, to extract from them link-time checkable con-
ditions on bytecode which, if satisfied, imply that the defensive VM executes
the code without violating any run-time check (Soundness Theorem 16.4.1
for bytecode type assignments). We refine the compilation function of Part II
by an appropriate type frame, which is associated to every instruction, and
show that code, if generated from a correct Java program and following this
certifying compilation scheme, does satisfy these link-time checkable bytecode
conditions (Compiler Completeness Theorem 16.5.2 for bytecode type assign-
ments). In the next chapter we will show that for a large class of programs
bytecode type assignments can be computed using a fixed point computation.

The defensive VM checks dynamic constraints at run-time, at the price of
slowing down the performance of the system. The slow down can be avoided
if checks are performed only once, namely before running the fast but trustful
machine. This is the task of the Java bytecode verifier.

At link-time, run-time data are not available. For example, the verifier
does not know which reference value will be created by a New instruction
or which path the execution will take and, usually, it is impossible to check
all possible paths. To compensate this, the Java bytecode verifier imposes
certain restrictions on the bytecode. For example, the verifier verifies every
independent execution path through the code to ensure that for the verifica-
tion all reachable instructions in the code are verified at least once. Similarly
the verifier abstracts from the concrete reference generated by a New in-
struction and restricts the form of the program in such a way that link-time
information is sufficient to keep track of un-initialized instances.

In this chapter we formulate such conditions by the notion of a bytecode
type assignment. A bytecode type assignment assigns type frames to the code
indices of method bodies and must satisfy several constraints. Our notion of
bytecode type assignments differs from similar notions in the literature; for
example it does not use the so-called subroutine call stacks of Stata and
Abadi [34] or the modification histories of Qian [27]. Our typing rules for
return addresses are simpler than O’Callahan’s type system in [26].

In Sect. 16.1 we explain the problems with bytecode verification and with
current bytecode verifiers. In particular we show that SUN’s treatment of
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subroutines is inconsistent. In Sect. 16.2 we define by stepwise refinement the
possible successors of (certifying) type frames, which are used in Sect. 16.3
for the definition of bytecode type assignments. Sect. 16.4 contains the proof
of the soundness of bytecode type assignments, and Sect. 16.5 the proof that
bytecode generated by the compiler of Part II is typeable.

16.1 Problems of bytecode verification

Bytecode verification is complicated because of the instructions Jsr(s) and
Ret(x ). Without these instructions bytecode verification would be much sim-
pler. In this section we explain the general problems of bytecode verification,
and show the particular problems and inconsistencies encountered in current
bytecode verifier implementations.

16.1.1 Why are subroutines problematic?

The instructions Jsr(s) and Ret(x ) are used to implement the finally block
of Java try statements. The finally block is called with the instruction
Jsr(s) and the bytecode starting at code index s is called a subroutine. The
instruction Ret(x ) is used to return from the subroutine. Control jumps to
the address stored in the local variable x . Since the same finally block
may be called from different positions, a subroutine is executed in different
environments. The subroutine must be polymorphic in the variables which
are not modified by the subroutine.

In Fig. 16.1, the finally block is called from several positions: (1) Before
the expression i * i is returned, its value is saved in a new local variable x,
and then the finally block is executed. Afterwards the saved value of x is
returned. (2) The finally block is called at the end of the try block, where
the variable j has a value. (3) Because of errors which could occur in the try
block, the compiler inserts a default handler which does the following: the
value of a possible error or exception is saved in a temporary variable y and
then the finally block is executed. After termination of the finally block,
the saved value of y is thrown again.

In Fig. 16.1, the subroutine S is called from three different positions.1

Each time exactly one of the variables j, x, y has a value, whereas the other
two variables are undefined. When S is called from block A, the variable x
contains an int. When S is called at label C, the variable j contains an int.
When S is called in the exception handler H, the variable y contains a pointer
which is compatible with Throwable.

Polymorphism is one of the problems with subroutines. Another problem
is that subroutines are not always left via a Ret(x ) instruction. Subroutines
1 We write the examples in terms of real bytecode. See Appendix C.8 for real and

abstract bytecode instructions.
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Fig. 16.1 A polymorphic subroutine (; CD)

static int m(int i) { A: iload i C: jsr S
int j; ifne B goto E
try { iload i H: astore y
if (i == 0) iload i jsr S

return i * i; imul aload y
j = i + i; istore x athrow

} finally { i = 0; } jsr S S: astore 4
return j + i; iload x iconst_0

} ireturn istore i
B: iload i ret 4

iload i E: iload j
iadd iload i
istore j iadd

ireturn

catch Throwable from A to C using H

Fig. 16.2 Breaking out of a subroutine to the top level (; CD)

static void m(boolean b) { goto W
while (b) { A: jsr S
try { return

return; S: astore r
} finally { iload b

if (b) break; ifne R
} ret r

} W: iload b
} ifne A

R: return

Fig. 16.3 Breaking out of a subroutine to an enclosing subroutine (; CD)

static void m(boolean b) { jsr S1
try { return
return; S1: astore r1

} finally { goto W
while (b) { A: jsr S2

try { return
return; S2: astore r2

} finally { iload b
if (b) break; ifne R1

} ret r2
} W: iload b

} ifne A
} R1: ret r1
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Fig. 16.4 Jumping out of a subroutine with an exception handler (; CD)

static void m(boolean b) { A: jsr S
try { return
try { S: astore r

return; iload b
} finally { ifeq B

if (b) new E
throw new E(); athrow

} B: ret r
} catch (E x) { H: pop

return; return
}

} catch E from A to H using H

Fig. 16.5 Which variables are modified by the subroutine? (; CD)

static void m(boolean b) { A: iload b
while (true) { ifeq B
try { jsr S

if (b) return; return
} finally { B: jsr S

if (b) break; goto A
} S: astore r

} iload b
b = true; ifne E

} ret r
E: iconst_1

istore b
return

Fig. 16.6 Inconsistencies in Sun’s JDK 1.2 verifier (; CD)

jsr S A: jsr S
return return

S: astore_1 S: astore_1
jsr S // rejected goto A // accepted
return
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Fig. 16.7 A valid Java program rejected by Sun’s JDK 1.2 verifier (; CD)

class Test {
static void m(boolean b) {
try {

try { if (b) return; }
finally {
try { if (b) return; }
finally { if (b) return; }

}
} finally { if (b) return; }

}
}

Fig. 16.8 A valid Java program rejected by all known verifiers (; CD)

class Test {
static int m(boolean b) {
int i;
try {

if (b) return 1;
i = 2;

} finally { if (b) i = 3; }
return i;

}
}

Fig. 16.9 Another Java program rejected by all known verifiers (; CD)

class Test {
int m(boolean b) {
int i;
L: {

try {
if (b) return 1;
i = 2;
if (b) break L;

} finally { if (b) i = 3; }
i = 4;

}
return i;

}
}
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can also be left via a Cond(p, j ) instruction or via a Throw . Unfortunately,
it is not obvious from the bytecode where exactly a subroutine is left. It is
also not obvious to which subroutine an instruction belongs. For example, in
Fig. 16.2, the finally block can be left via a break statement. This fact is
reflected in the bytecode: the instruction ‘ifne R’ jumps out of the subrou-
tine S to the label R which belongs to the top-level. It is also possible to jump
out of a subroutine to an enclosing subroutine. In Fig. 16.3, the instruction
‘ifne R1’ jumps out of the subroutine S2 to the enclosing subroutine S1.
Moreover, a subroutine can be left via an exception handler. In Fig. 16.4, the
subroutine S throws an exception of type E. This exception is then caught by
the top-level handler H.

In some cases it is not so clear which variables are modified by a subroutine
just by looking at the bytecode. In Fig. 16.5 we see in the Java program on
the left-hand side that the variable b is not modified in the finally block.
In the bytecode on the right-hand side, however, the only way to reach the
instruction ‘istore b’ is via the subroutine S. Therefore, why should the
variable b not be considered as modified by the subroutine S?

Sun’s treatment of subroutines is inconsistent. For example, the JVM
specification requires that subroutines are not recursive. Sun’s JDK 1.2 veri-
fier, however, accepts some recursive subroutines and rejects others. The byte-
code on the left-hand side in Fig. 16.6 is rejected with the error ‘Recursive
call to jsr entry’. The bytecode on the right-hand side in Fig. 16.6, how-
ever, is accepted by Sun’s verifier although it is as recursive as the rejected
bytecode.

It turns out that recursive subroutines are harmless, because return ad-
dresses can be stored in local variables only (see Fig. 15.6). They cannot
be stored in an array. They cannot be loaded on the operand stack. The
only operations which are allowed with return addresses are duplication or
deletion. Therefore, our notion of bytecode type assignment is focused on
polymorphism and allows trivial forms of recursion.

Fig. 16.7 shows an example of a valid Java program which is rejected by
Sun’s JDK 1.2 verifier[14, bug no. 4268120]. This should not happen, since
a verifier should at least accept all bytecode that has been generated by a
correct compiler from valid Java programs.

The program in Fig. 16.8 suggests that bytecode verification is not possi-
ble at all, because it is rejected by any bytecode verifier we have tried includ-
ing JDK 1.2, JDK 1.3, Netscape 4.73-4.76, Microsoft VM for Java 5.0 and 5.5
and the Kimera Verifier (http://kimera.cs.washington.edu/). The prob-
lem is that in the eyes of the verifier the variable i is unusable at the end
of the method at the return i instruction, whereas according to the JLS
[19, §16.2.14] the variable i is definitely assigned after the try statement [14,
bug no. 4381996]. Our rules of definite assignment for the try statement in
Table 8.6 are stronger and therefore the program is already rejected by our

http://kimera.cs.washington.edu/
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Fig. 16.10 What is the type of variable x in the bytecode? (; CD)

void m1(Integer i, String s) { aload i
Comparable x; ifnull A
if (i != null) aload i
x = i; astore x

else goto B
x = s; A: aload s

m2(x); astore x
} B: aload_0

aload x
void m2(Comparable x) {} invokevirtual m2(Comparable)

return

compiler (see Remark 8.3.1). Fig. 16.9 shows a similar problem for labeled
statements.

16.1.2 Why sets of reference types?

One of the main tasks of bytecode verification is to infer the types of local
variables in method bodies. Only the types of the arguments of a method are
known because they are contained in the method signature in the class file.
The types of the other local variables are not known and must be inferred.
Fig. 16.10 contains an example with a local variable x of type Comparable
(see Fig. 16.11 for the type hierarchy). Since the class Integer as well as
class String implement the interface Comparable, both arguments i and s
of the method can be assigned to the variable x in the body.

In the corresponding bytecode in Fig. 16.10, the type of x is not known.
When the verifier reaches label B during its static analysis, the variable x
can contain an Integer or a String. Since both types are reference types,
the verifier tries to merge the two types. The JVM specification says in [23]
that ‘the merged type of two references is the first common superclass of
the two types and that such a reference type always exists because the type
Object is a superclass of all class and interface types.’ In our example the
first common superclass of Integer and String is the class Object as can
be seen in Fig. 16.11. Hence, the type assigned to variable x at label B is
Object. The method invocation at the next instruction, however, requires an
argument of type Comparable and so the verification process fails.

Sun’s JDK 1.2 verifier does not reject the bytecode. Instead it inserts
an additional run-time check for methods with arguments of interface type.
Hence, the compatibility of method arguments has to be checked at run-
time in contradiction to the JVM specification [23]. A better solution is to
allow sets of reference types in the bytecode verification process. The type
of variable x at label B in Fig. 16.10 is then the set {Integer, String}. The
meaning of this type is ‘either Integer or String’. At the method invocation



230 16. Bytecode type assignments

Fig. 16.11 A piece of the Java type hierarchy
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in the next instruction, the verifier has just to check that each element of the
set of reference types assigned to x is a subtype of Comparable. No additional
run-time checks are needed.

Therefore we extend the universe of verify types to include also finite sets
of reference types. Remember that reference types are class types, interface
types, array types and the special type Null which is used as the type of the
null pointer.

data VerifyType = . . .
| Powerset(Null | Class | Interface | Array)

A single reference type R is often identified with the singleton set {R}. Ex-
amples of sets of reference types are:

{Integer, String}, {Comparable}, {int[ ], float[ ]}

The compatibility relation v has to be extended to such sets. Therefore we
need the notion of an upper bound of a set of reference types.

Definition 16.1.1 (Upper bound). A type A is an upper bound of a set τ
of reference types, if B � A for every B ∈ τ .

For example, the upper bounds of the verify type {Float, Integer} are the
following types:

Number, Object, Comparable.

The classes Integer, Float and Double are direct subclasses of Number and
implement the interface Comparable. The class Number is a direct subclass
of Object and does not implement Comparable.

Definition 16.1.2 (Compatibility). Let σ and τ be finite sets of reference
types. We define σ v τ iff each upper bound of τ is an upper bound of σ.
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For example, the following compatibility relations are true:

{Integer, String} v {Comparable}

Reason: Integer and String implement the interface Comparable.

{Double} v {Integer, Float}

Reason: The upper bounds of {Integer,Float} are Number, Comparable,
Object.

Definition 16.1.3 (Array type). A set τ of reference types is called an
array type, if there exists a type A such that A[ ] is an upper bound of τ .

For example, the verify type {int[ ], float[ ]} is not an array type, be-
cause its only upper bounds are Object, Cloneable and Serializable (see
Def. 5.1.2). The verify type {Integer[ ], Float[ ]}, is an array type, because
Object[ ] is an upper bound. The verify type {Null} is an array type, too.

In the soundness and completeness proof for the bytecode verifier the
following properties of the extended compatibility relation are relevant:

Lemma 16.1.1 (Properties of sets of reference types).

V1. τ v τ .
V2. ρ v σ and σ v τ =⇒ ρ v τ .
V3. τ v {A} ⇐⇒ A is an upper bound of τ .
V4. If σ v τ and τ v {Object[ ]}, then {A | A[ ] ∈ σ} v {A | A[ ] ∈ τ}.

Proof. The properties can be derived using the subtype relation for reference
types in Def. 5.1.2. Property V4 is used for the array instructions which are
listed in Appendix C.7. ut

Remark 16.1.1. We could replace Def. 16.1.2 and define σ v τ iff for each
A ∈ σ there exists a B ∈ τ such that A � B . This version of compatibility
satisfies the properties V1–V4, too.

16.2 Successors of bytecode instructions

Since the verifier works at link-time, it operates only on the type components
of the items stored in registers and on the operand stack, as introduced for
the defensive VM. These type components constitute a type frame. For each
instruction, the verifier tries to simulate the effect for all possible successors.
To determine the successor type frame, in this section a function succ is
defined by stepwise refinement for each of the submachines.
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Fig. 16.12 Successors for JVMI instructions

succI (instr , pc, regT , opdT ) =
case instr of

Prim(p)→ {(pc + 1, regT , drop(opdT , argSize(p)) · returnType(p))}
Dupx (s1, s2)→
{(pc + 1, regT , drop(opdT , s1 + s2)·

take(opdT , s2) · take(opdT , s1 + s2))}
Pop(s)→ {(pc + 1, regT , drop(opdT , s))}
Load(t , x )→

if size(t) = 1 then
{(pc + 1, regT , opdT · [regT (x )])}

else
{(pc + 1, regT , opdT · [regT (x ), regT (x + 1)])}

Store(t , x )→
if size(t) = 1 then
{(pc + 1, regT ⊕ {(x , top(opdT ))}, drop(opdT , 1))}

else
{(pc + 1, regT ⊕ {(x , t0), (x + 1, t1)}, drop(opdT , 2))}

where [t0, t1] = take(opdT , 2)
Goto(o) → {(o, regT , opdT )}
Cond(p, o)→ {(pc + 1, regT , drop(opdT , argSize(p))),

(o, regT , drop(opdT , argSize(p)))}

16.2.1 Successors for JVMI instructions

Fig. 16.12 defines the succI function which computes for every JVMI in-
struction and given type frame the set of instructions together with the cor-
responding type frames which are possible successors of the given instruction
and type frame in the given method. It simulates on the type frame all tran-
sitions an instruction can make (see Chapter 9 for the definition of the effect
of the instructions). Successors which can be reached via an exception are
listed below in the function succE . The argument instr of the function succI

is the instruction at code index pc.

16.2.2 Successors for JVMC instructions

Fig. 16.13 defines the extension of succI to the function succC . In contrast to
the registers and to the operand stack that are weakly typed, class fields in
JVMC are strongly typed: every field always holds a single type. In contrast
to the defensive VM, the verifier therefore uses the declared type of the
global field which is stored as first parameter in GetStatic and PutStatic
instructions. Similarly, for method invocations the declared return type is
propagated to the successor type frame. Since the effect of a return instruction
is to leave the given method, such instructions generate no successors in that
method.
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Fig. 16.13 Successors for JVMC instructions

succC (meth)(instr , pc, regT , opdT ) =
succI (instr , pc, regT , opdT ) ∪
case instr of

GetStatic(t , c/f ) → {(pc + 1, regT , opdT · t)}
PutStatic(t , c/f ) → {(pc + 1, regT , drop(opdT , size(t)))}
InvokeStatic(t , c/m)→ {(pc + 1, regT , drop(opdT , argSize(c/m)) · t)}
Return(mt) → ∅

16.2.3 Successors for JVMO instructions

Successors of JVMO instructions with given type frame are defined in
Fig. 16.14. For instructions which do not relate to object initialization,
the successors are computed similarly to those for JVMC instructions in
Fig. 16.13, taking into account also the type of the target object. The link-
time checkable requirements on object initialization pose several new prob-
lems. The defensive VM keeps track of the initialization status of objects
by adding information to the generated run-time reference via the dynamic
function initState. For link-time verification this run-time information has to
be simulated in the type system.

At link-time, different New instructions can be distinguished by their
instruction index. However, this information does not denote uninitialized
objects uniquely. For instance, it does not suffice to distinguish different run-
time instances of New which is part of a loop body. But if we require that
the uninitialized type that we generate when we simulate a New instruction
is neither in any of the type registers nor in the type operand stack, then this
assures uniqueness of the type description. The successor of New in Fig. 16.14
replaces the uninitialized type on the operand stack with the verify type
unusable and filters out all registers with the uninitialized type such that
they are not available at the successor code index. We do not add this as
a check to the function checkO in Fig. 15.4, because that would violate the
monotonicity property of Lemma 15.7.1.

By construction any execution of an instance initialization method ini-
tializes only a single object. As a consequence in any type frame of an ini-
tialization method there is the type descriptor InInit for only this object.
By definition, an object is regarded as fully initialized after execution of an
instance initialized method. Hence in the successor of an InvokeSpecial in-
struction which invokes an initialization method, the uninitialized type of
the object has to be replaced by the initialized type. In case of InInit the
initialized type is equal to the class of the current initialization method.



234 16. Bytecode type assignments

Fig. 16.14 Successors for JVMO instructions

succO(meth)(instr , pc, regT , opdT ) =
succC (meth)(instr , pc, regT , opdT ) ∪
case instr of

New(c)→ {(pc + 1, regS , opdS · [(c, pc)new ])}
where regS = {(x , t) | (x , t) ∈ regT , t 6= (c, pc)new}

opdS = [if t = (c, pc)new then unusable else t | t ∈ opdT ]
GetField(t , c/f )→ {(pc + 1, regT , drop(opdT , 1) · t)}
PutField(t , c/f )→ {(pc + 1, regT , drop(opdT , 1 + size(t)))}
InvokeSpecial(t , c/m)→

let opdT ′ = drop(opdT , 1 + argSize(c/m)) · t
if methNm(m) = "<init>" then

case top(drop(opdT , argSize(c/m))) of
(c, o)new → {(pc + 1, regT [c/(c, o)new ], opdT ′[c/(c, o)new ])}
InInit → let c/ = meth

{(pc + 1, regT [c/InInit ], opdT ′[c/InInit ])}
else
{(pc + 1, regT , opdT ′)}

InvokeVirtual(t , c/m)→
let opdT ′ = drop(opdT , 1 + argSize(c/m)) · t
{(pc + 1, regT , opdT ′)}

InstanceOf (c)→ {(pc + 1, regT , drop(opdT , 1) · [int])}
Checkcast(t)→ {(pc + 1, regT , drop(opdT , 1) · t)}

16.2.4 Successors for JVME instructions

The function succE in Fig. 16.15 reflects the consequences of exception han-
dling and embedded subroutines. We first consider which handler frames
have to be included as possible successors of JVME instructions. For Athrow
instructions the control proceeds according to the exception table of the
method. Therefore every possible handler of the thrown exception provides a
candidate for a successor instruction. It would be wrong to restrict the suc-
cessors of the Athrow instruction to those handlers (from, upto, handle, τ) for
which c v τ , where c is the topmost type on the operand stack. At run-time
the topmost reference on the operand stack will be of a subtype of c and
could be caught by a different handler.

Several instructions might throw run-time exceptions. Therefore, the
handlers which catch run-time exceptions have to be included in the suc-
cessors, too. Moreover, the VM might throw a VirtualMachinError almost
at any position in the bytecode. Therefore, for each code index and each in-
struction, except for Jsr , Goto, Return and Load , we include into the set of
possible successors all handlers which protect the code index.
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Fig. 16.15 Successors for JVME instructions

succE (meth)(instr , pc, regT , opdT ) =
succO(meth)(instr , pc, regT , opdT ) ∪ allhandlers(instr ,meth, pc, regT ) ∪
case instr of

Athrow → ∅
Jsr(s) → {(s, regT , opdT · [retAddr(s)])}
Ret(x ) → ∅

Fig. 16.16 Some instructions do not throw exceptions (; CD)

class Test {
boolean m(boolean b) {
try {

try { if (b) return b; }
finally {
try { if (b) return b; }
catch (Throwable x) { if (b) return b; }

}
} finally { if (b) return b; }
return b;

}
}

Fig. 16.17 Successors are monotonic
regV vreg regT
opdV vseq opdT

for each successor
(s, regS , opdS) of
(pc, regV , opdV )

↓ ↓
there exists a successor
(s, regU , opdU ) of
(pc, regT , opdT )

regS vreg regU
opdS vseq opdU
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allhandlers(Jsr( ),m, pc, regT ) = {}
allhandlers(Goto( ),m, pc, regT ) = {}
allhandlers(Return( ),m, pc, regT ) = {}
allhandlers(Load( , ),m, pc, regT ) = {}
allhandlers(instr ,m, pc, regT ) =
{(h, regT , [t ]) | (f , u, h, t) ∈ excs(m) ∧ f ≤ pc < u}

It seems that this simple definition is good enough for bytecode generated by
a Java compiler (see Sect. 16.5). We assume that the instructions Jsr , Goto,
Return and Load wich are used for the compilation of the continue, break
and return statements in Fig. 12.3 do not throw exceptions. Therefore they
do not have successors via the exception table. Otherwise, programs like the
one in Fig. 16.16 would be rejected by our verifier.

The instruction Jsr(s) pushes the type retAddr(s) on top of the operand
stack indicating that this is a return address to a caller which has called sub-
routine s. The successor of a Ret instruction is not defined in the function
succE . Instead, it is treated as a special case in the definition of bytecode
type assignments in the next section, and also in the definition of type prop-
agation in the bytecode verifier in Sect. 17.5. The reason for this is that a
Ret instruction does not return all local registers, but only the registers the
corresponding subroutine has modified. The types of the other registers have
to be propagated from the caller of the subroutine.

The following lemma says that the successors of an instruction with re-
spect to a more specific type frame are more specific than some successors
with respect to the more general type frame. The lemma is needed in the
next chapter in the proof that the bytecode verifier computes principal type
assignments if there exist any at all. We write succ(meth, pc, regT , opdT ) for

succE (meth)(code(meth)(pc), pc, regT , opdT ),

similarly check(meth, pc, regT , opdT ) for

checkE (meth)(code(meth)(pc),maxOpd(meth), pc, regT , opdT ).

Lemma 16.2.1 (Successors are monotonic). Assume that (regV , opdV )
and (regT , opdT ) are type frames with regV vreg regT and opdV vseq opdT .
If check(meth, pc, regT , opdT ) is true and (s, regS , opdS ) is a successor in
succ(meth, pc, regV , opdV ), then there exists a successor (s, regU , opdU ) in
succ(meth, pc, regT , opdT ) such that regS vreg regU and opdS vseq opdU
(see Fig. 16.17).

Proof. The lemma follows by a case distinction along the JVM instructions
from the transitivity of the compatibility relation v (see Def. 15.4.1). ut

16.3 Type assignments without subroutine call stacks

In this section we show how one can resolve the inconsistencies pointed out
in Sect. 16.1, and obtain a sound and sufficiently complete notion of bytecode
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type assignment. This notion combines the type frame successor function of
the previous section with the checking function of the defensive VM.

Based on the examples in Sect. 16.1 we make the following assumptions
about subroutines. We assume that the first instruction of a subroutine is
a Store(addr, x ) instruction which stores the return address in a variable x .
This assumption is reasonable, since if a subroutine ever returns, it has to
take its return address from a local variable in the Ret instruction. The return
address is on top of the operand stack, when the subroutine is called. It has
to be stored in the local variable somewhere in the subroutine. We assume
that this is at the beginning.

Our second assumption is that the code generated by a Java compiler for
a finally block is connected. The code may contain several Ret instructions,
but the code indices for the block must form an interval. Both assumptions
are implicit in the notion of bytecode type assignment below.

We divide the instruction set of the Java VM into normal instructions
and control transfer instructions.

Definition 16.3.1 (Control transfer instructions). Control transfer in-
structions are: Goto(i), Cond(p, i), Return(τ), Throw , Jsr(i), Ret(x ).

Each code index has a (possibly empty) set of successor indices which can be
reached in the next step of the execution of the Java VM without applying
a return instruction (Return(t) or Ret(x )).

Definition 16.3.2 (Successor index). A code index j is called a successor
index of i (with respect to a given method), if one of the following conditions
is true:

– The ith instruction is not a control transfer instruction and j = i + 1
– The ith instruction is Goto(j )
– The ith instruction is Cond(p, k) or Jsr(k) and j ∈ {i + 1, k}
– There exists a handler (f , u, j , ) in the exception table of the method such

that f ≤ i < u and the ith instruction is not Jsr , Goto, Return or Load

Note that the index of a Jsr instruction has two possible successors unlike the
type frame associated to a successor instruction in Fig. 16.15 which has only
one (except for type frames of possible exception handlers). This is because
in the intended “pairing” of Jsr(s) and Ret(x ) instructions, the subroutine
called by Jsr returns to the instruction immediately following Jsr , similarly
to the association between the index i of a method invocation instruction
and its successor index i +1 which is reached by executing the corresponding
Return instruction from the invoked method. In the following definition of
reachability it is important that both successor indices of Jsr are included.

Definition 16.3.3 (Reachable). A code index j is called reachable from i
if there exists a finite (possibly empty) sequence of successor steps from i
to j . A code index is called reachable, if it is reachable from 0.
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Since the treatment of subroutines is rather complicated we have to define
precisely what we mean by a subroutine.

Definition 16.3.4 (Subroutine). If i is reachable from 0 and the ith in-
struction is Jsr(s), then the code index s is called a subroutine of the method.

Since we assume that the first instruction of a subroutine stores the return
address in a local variable, the possible returns from the subroutine are easy
to identify.

Definition 16.3.5 (Return from subroutine). A code index r is a pos-
sible return from subroutine s, if code(s) = Store(addr, x ), code(r) = Ret(x )
and r is reachable from s + 1 on a path that does not use any Store( , x )
instruction.

The instructions which belong to a subroutine are simply those which are in
the interval between the first instruction of the subroutine and any possible
return from the subroutine (there could be several).

Definition 16.3.6 (Belongs to a subroutine). A code index i belongs to
subroutine s, if there exists a possible return r from s such that s ≤ i ≤ r .

For the treatment of polymorphic subroutines a function mod is used which
assigns to each subroutine the set of local variables modified by the subrou-
tine. This set includes also the variables which are used in other subroutines
called by this subroutine as well as the variables which are used in implicitly
called exception handlers, as long as they belong to the subroutine.

Definition 16.3.7 (Modified variables). Let s be a subroutine. A vari-
able x belongs to mod(s), if there exists a code index i which belongs to s
such that code(i) = Store(t , y) and one of the following conditions is satisfied:

1. size(t) = 1 and x = y , or
2. size(t) = 2 and x = y or x = y + 1.

The set mod(s) of variables which are modified by a subroutine is used to
restrict the type assignment to local variables when a subroutine returns with
a Ret(x ) instruction. At this time, the variable x must be of type retAddr(s)
for some subroutine s. The types of the variables modified by s have to
be returned to the callers of s. For this purpose we use the notion of the
restriction of type assignments to a given set of variables (see Sect. 2.3).
Since instructions Ret(x ) have no successor type frames, they have to be
treated in a special way in the following definition.

Definition 16.3.8 (Bytecode type assignment). A bytecode type
assignment with domain D for a method µ is a family (regTi , opdTi)i∈D of
type frames satisfying the following conditions:

T1. D is a set of valid code indices of the method µ.
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T2. Code index 0 belongs to D.

T3. Let [τ1, . . . , τn ] = argTypes(µ) and c = classNm(µ). If µ is a
a) class initialization method: regT0 = ∅.
b) class method: {0 7→ τ1, . . . ,n − 1 7→ τn} vreg regT0.
c) instance method: {0 7→ c, 1 7→ τ1, . . . ,n 7→ τn} vreg regT0.
d) constructor: {0 7→ InInit , 1 7→ τ1, . . . ,n 7→ τn} vreg regT0.

T4. The list opdT0 is empty.

T5. If i ∈ D, then check(µ, i , regTi , opdTi) is true.

T6. If i ∈ D and (j , regS , opdS ) ∈ succ(µ, i , regTi , opdTi), then
j ∈ D, regS vreg regTj and opdS vseq opdTj .

T7. If i ∈ D, code(i) = Ret(x ) and regTi(x ) = retAddr(s), then for all
reachable j ∈ D with code(j ) = Jsr(s):
a) j + 1 ∈ D,
b) regTi vreg mod(s) � regTj+1,
c) opdTi vseq opdTj+1,
d) regTj vreg mod(s) �− regTj+1,
e) if retAddr(`) occurs in mod(s) �− regTj+1, then each code index

which belongs to s belongs to l ,
f) neither (c, k)new nor InInit occur in mod(s) �− regTj+1.

T8. If i ∈ D and retAddr(s) occurs in regTi , then i belongs to s.
If i ∈ D and retAddr(s) occurs in opdTi , then i = s.

The verify type unusable is allowed on the operand stack but not as the type
of a register.

T1 says that the domain D of a bytecode type assignment must be a
set of valid code indices. A bytecode type assignment does not necessarily
assign type frames to all code indices which are reachable from 0 according
to Def. 16.3.3. For example, if the bytecode jumps at index i to subroutine s
and s does never return, then i + 1 does not necessarily belong to D. We will
see in the soundness proof that at run-time the program counter pc always
belongs to D. This is certainly true at the beginning, because T2 ensures that
code index 0 is in D.

T3 and T4 are conditions for the type frame at code index 0. The operand
stack must be empty at the beginning. The declared types of the arguments
of the method must be more specific than the types assigned in regT0. An
instance method assigns the value of this to register 0, hence the type of 0
must be the class in which the method is defined. When a constructor is called,
the this object becomes partially initialized, hence the type of register 0
must be InInit except in class Object where the this object becomes fully
initialized. Therefore, the constructor of class Object is treated as an instance
method in T3. We do not require that the types of the arguments are equal
to the ones in regT0, because it may happen that the code later jumps back
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to 0 when some of the registers have more general types or are not even used
any longer.

In T5, we use the check functions of the defensive VM in the pre-
vious chapter to ensure the correct applicability of an instruction. Since
the check functions operate on the type frame and not on the raw values,
we can apply them to regTi and opdTi for each code index i in the do-
main D of the bytecode assignment. We write check(meth, pc, regT , opdT )
for checkE (meth)(code(meth)(pc),maxOpd(meth), pc, regT , opdT ).

T6 says that a successor type frame has to be more specific than the type
frame assigned to the successor index. T6 requires that the successor index j
of i belongs to the domain D. Since D consists of valid code indices only,
T6 ensures that successor code indices are valid code indices. T6 therefore
makes it impossible to drop off the end of a method body. The length of
the operand stack of the computed successor type frame for the instruction
with index j must be the same as the length of the operand stack which
is assigned to j and the types must be compatible. For type registers the
condition is weakened. For each register in the computed successor either the
type is compatible with the one assigned at index j or it cannot be used at
successor index j .

T7 deals with subroutines. If the ith instruction is Ret(x ), a return from
a subroutine, then by T5 the local variable x has type retAddr(s) in regTi

for some subroutine s. This means that the value of x at run-time will be a
return address to a caller of the subroutine s. Let j be any code index which
calls s, i.e., code(j ) = Jsr(s). Then the code index j + 1 must be valid (a).
For local variables which are used at index j + 1 and are modified by the
subroutine s, the type at i must be more specific than at j + 1 (b). For
local variables not modified by s, the type at j , from where the subroutine s
was called, has to be more specific than the type at index j + 1 to which
subroutine s is returning (d). The types assigned to the operand stack at
index i must be more specific than the types at index j + 1 (c).

Condition T7 (e) ensures that subroutines are properly nested. If a type
retAddr(`) is used at code index j + 1 for a register which is not modified
by the subroutine s, then the subroutine l must enclose s in the sense of
Def. 16.3.6. In Fig. 16.18 all conditions are satisfied except of T7 (e). Although
the subroutine s is called by the subroutine l , the variables x and r2 which
are modified by s are not in mod(l). We have mod(s) = {r2, x} and mod(l) =
{r1}. Because x is not in mod(l), the type String is propagated at the Jsr(l)
instruction and not the type int. At run-time there would be a type violation
there. Condition T7 (e) is violated, because the second Jsr(s) belongs to
subroutine l but subroutine s is not contained in l . Condition T7 (e) is used
below in the proof of the Coincidence Lemma 16.4.1.

Instead of condition T7 (e) we could also use the following inductive
definition of the sets mod(s):
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Fig. 16.18 Violation of T7 (e): subroutine s is not contained in l (; CD)

opdTi regTi

Jsr(s) [ ] {}
Prim("abc") [ ] {x 7→ int}
Store(addr, x ) [String] {x 7→ int}
Jsr(l) [ ] {x 7→ String}
// at run-time x is an int and not a String!

Load(addr, x ) [ ] {x 7→ String}
InvokeVirtual(String/length()) [int] {}
Return(int) [int] {}

l : Store(addr, r1) [rA(l)] {}
Jsr(s) [ ] {r1 7→ rA(l)}
Ret(r1) [ ] {x 7→ int, r1 7→ rA(l)}

s : Store(addr, r2) [rA(s)] {}
Prim(7) [ ] {r2 7→ rA(s)}
Store(int, x ) [int] {r2 7→ rA(s)}
Ret(r2) [ ] {x 7→ int, r2 7→ rA(s)}

Fig. 16.19 Violation of T7 (f): (c, k)new occurs in mod(s)�−regTj+1 (; CD)

opdTi regTi

Jsr(s) [ ] {}
Store(addr, x ) [(c, k)new ] {}

j : Jsr(s) [ ] {x 7→ (c, k)new}
InvokeSpecial(c/<init>) [(c, k)new ] {x 7→ (c, k)new}
Load(addr, x ) [c] {x 7→ c}
// use uninitialized object!

Return(addr) [c] {x 7→ c}
s : Store(addr, r) [retAddr(s)] {}
k : New(c) [ ] {r 7→ retAddr(s)}

Ret(r) [(c, k)new ] {r 7→ retAddr(s)}
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1. If i belongs to s and code(i) = Store(t , x ), then x ∈ mod(s) and, if
size(t) = 2, then x + 1 ∈ mod(s).

2. If i belongs to l , code(i) = Jsr(s) and x ∈ mod(s), then x ∈ mod(l).

With this extended definition of mod , more bytecode programs would have
type assignments. A compiler for Java, however, had to use more local regis-
ters for storing return values and for storing exceptions in default handlers.

Condition T7 (f) is similar to a condition proposed by Freund and Mitchell
in [17]. Without T7 (f) a subroutine may create new objects which can later
be used without being fully initialized. This behavior is shown in Fig. 16.19
(example from [17]). When the second object which has been created in the
subroutine is initialized, the type (c, k)new is replaced by c everywhere in the
type frame. The variable x gets type c, although the value of x at run-time is
an uninitialized object. Hence a bytecode type assignment must ensure that
there is always at most one object of type (c, k)new . Without T7 (f) (or a
similar condition) this is not possible.

In a similar way T7 (f) prevents code from initializing an object twice.
Fig. 16.20 shows an example of what could happen without T7 (f). Since the
variable x is not modified by the subroutine s, it does not belong to mod(s).
Therefore type (c, k)new is propagated from j to j + 1 and type c remains at
index i . The object can be initialized a second time.

In Fig. 16.21 conditions T1–T7 are satisfied but condition T8 is violated.
According to Def. 16.3.5 the last instruction Ret(r1) is a possible return from
subroutine s1. Therefore mod(s1) = {r1, r2}. The instruction Ret(r2) is a
possible return from subroutine s1. Since the instruction Ret(r2) is before s1,
the set mod(s2) is empty although subroutine s1 stores at run-time an integer
in register x . Condition T8 is violated, since the type retAddr(s2) is used
several times for register r2, but there are no instructions that belong to
subroutine s2.

16.4 Soundness of bytecode type assignments

For the rest of this chapter we assume that each method in each class of the
current class environment has a bytecode type assignment.

What does it mean that the type assignment is sound? It means that the
bytecode does not violate any checks when it runs on the defensive VM. One
can show that at run-time the values of the operands and the values stored in
local variables belong to the assigned types. If there is a verify type assigned
to a local variable, then at run-time the local variable contains a value which
belongs to that verify type. If the type is a primitive type, then the value is of
exactly that type. If the type is a reference type, then the value is a pointer
to an object or array which is compatible with that type. The same is true
for the verify types assigned to the operand stack. Moreover, at run-time the
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Fig. 16.20 Violation of T7 (f): (c, k)new occurs in mod(s)�−regTj+1 (; CD)

opdTi regTi

k : New(c) [ ] {}
Store(addr, x ) [(c, k)new ] {}

j : Jsr(s) [ ] {x 7→ (c, k)new}
Load(addr, x ) [ ] {x 7→ (c, k)new}
InvokeSpecial(c/<init>) [(c, k)new ] {x 7→ (c, k)new}
// the object is initialized twice!

Return [ ] {x 7→ c}
s : Store(addr, r) [retAddr(s)] {x 7→ (c, k)new}

Load(addr, x ) [ ] {r 7→ retAddr(s), x 7→ (c, k)new}
InvokeSpecial(c/<init>) [(c, k)new ] {r 7→ retAddr(s), x 7→ (c, k)new}

i : Ret(r) [ ] {r 7→ retAddr(s), x 7→ c}

Fig. 16.21 Violation of T8 (; CD)

opdTi regTi

Prim("abc") [ ] {}
Store(addr, x ) [String] {}

j : Jsr(s1) [ ] {x 7→ String}
Prim(7) [ ] {r2 7→ rA(s2)}
Store(int, x ) [int] {r2 7→ rA(s2)}

l : Ret(r2) [ ] {r2 7→ rA(s2)}
s1 : Store(addr, r1) [rA(s1)] {x 7→ String}

Jsr(s2) [ ] {x 7→ String, r1 7→ rA(s1)}
Load(addr, x ) [ ] {x 7→ String}
// at run-time x is an int and not a String!

InvokeVirtual(String/length()) [int] {}
Return(int) [int] {}

s2 : Store(addr, r2) [rA(s2)] {r1 7→ rA(s1)}
Prim(1) [ ] {r1 7→ rA(s1), r2 7→ rA(s2)}
Cond(ifeq, l) [int] {r1 7→ rA(s1), r2 7→ rA(s2)}
Ret(r1) [ ] {r1 7→ rA(s1), r2 7→ rA(s2)}
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operand stack has exactly the same length as the list of verify types which
are assigned to the operand stack.

The crucial point is how to define what it means that a return address
belongs to the type retAddr(s). The idea is that j + 1 belongs to the type
retAddr(s), if code(j ) = Jsr(s) and, for all variables x which are not modified
by the subroutine s, the value of x in the local environment belongs to the
type assigned to x at index j +1, i.e., reg(x ) belongs to regTj+1(x ). Therefore
a return address has to be typed with respect to the local environment reg .
Moreover, the type of a reference depends on the class of the reference, which
is stored in the heap, and on the initialization status of the reference, which
is stored in the functions initState (see the definition of the function type in
Sect. 15.4).

Definition 16.4.1 (Typing rules). Let (regTi , opdTi)i∈D be a type assign-
ment for a method µ. Let reg be a local environment for µ, v be a value and
τ be a verify type. The typing judgment reg ` v : τ is defined by the following
rules:

type(v) v τ
τ 6= retAddr( )
reg ` v : τ

j ∈ D, code(j ) = Jsr(s), s does not return
reg ` (j + 1, retAddr(s)): retAddr(s)

j ∈ D, code(j ) = Jsr(s), s returns
reg ` reg(x ): regTj+1(x ) for each x ∈ dom(clean(mod(s) �− regTj+1))
reg ` (j + 1, retAddr(s)): retAddr(s)

The function clean filters out all not fully initialized types:

clean(regT ) = {(x , t) ∈ regT | t 6= ( , )new , t 6= InInit}

A subroutine s returns, if there exists an i ∈ D such that code(i) = Ret(x )
and regTi(x ) = retAddr(s).

The typing rules for return addresses depend on the local environment
reg , the function heap and the type assignment to the method. Since a Store
instruction changes the local environment, a return address could possibly
loose its type. The following coincidence lemma therefore states a convenient
condition under which a return address keeps its type. The typing of a return
address from a subroutine depends only on the local variables which are not
modified by the subroutine. In the following we often omit the tag retAddr(s)
in values which represent return addresses.

Lemma 16.4.1 (Coincidence). If reg ` j + 1: retAddr(s) and
mod(s) �− reg = mod(s) �− reg ′, then reg ′ ` j + 1: retAddr(s).
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Proof. By induction on the length of a derivation of reg ` v : τ . Assume that

reg ` j + 1: retAddr(s) and mod(s) �− reg = mod(s) �− reg ′.

From the typing rules we obtain that j ∈ D and code(j ) = Jsr(s).
If s does not return, we obtain reg ′ ` j + 1: retAddr(s) by the second typing
rule. Otherwise, by the third typing rule we have

1. j ∈ D, code(j ) = Jsr(s), s returns,
2. reg ` reg(x ): regTj+1(x ) for each x ∈ dom(clean(mod(s) �− regTj+1)).

Let x be a local variable which is defined in regTj+1 but does not belong to
mod(s). Since reg ′ is equal to reg outside of mod(s), it follows by (2) that
reg ` reg ′(x ): regTj+1(x ). If regTj+1(x ) is not a return address type, then,
by the first typing rule, we immediately obtain reg ′ ` reg ′(x ): regTj+1(x ).
Otherwise there is an ` such that regTj+1(x ) = retAddr(`). By T7 (e) and
Def. 16.3.7, it follows that mod(s) ⊆ mod(`). Hence,

mod(`) �− reg = mod(`) �− reg ′.

By the induction hypothesis, we obtain that reg ′ ` reg ′(x ): retAddr(`).
Hence, the three premises of the third typing rule are satisfied and we can
conclude that reg ′ ` j + 1: retAddr(s). ut

Because of object initialization the types of references may change at run-
time. When the initialization state of an object ref changes from InInit to
Complete, its type given by the function typeOf (ref ) changes from InInit
to classOf (ref ), too. Once the initialization state is Complete, the reference
keeps its type forever. Since un-initialized types and partially initialized types
are excluded in the typing rules for return addresses via the function clean,
the initialization of objects causes no problems for typing judgments.

A bytecode type assignment ensures by T6 that if the instruction at code
index i is a call to an instance initialization method invoked on a reference
of type (c, k)new , this type is replaced by the type c everywhere in the type
frame at code index i +1. When the instance initialization method is executed
at run-time, we know that the reference on which it is invoked is of that
type. In the soundness proof below, we have to prove that in the future,
after the instance initialization method has returned and the object has been
initialized, the invariants are still true. At code index i , however, we do not
know what the heap will be after the completion of the initialization method.
Hence we have to prove the invariants for all possible continuations of the
current heap. A possible continuation of the current heap with respect to a
frame on the stack, is a heap in the state of the computation when the frame
again becomes the current frame.

Definition 16.4.2 (Active reference). Let (pc∗, reg∗, opd∗,meth∗) be a
frame and (regTi , opdTi)i∈D be the bytecode type assignment for meth∗. We
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say that the frame contains an active reference r with assigned type τ , if one
of the following two conditions is satisfied:

1. there exists a local register x with regTpc∗(x ) = τ and reg∗(x ) = r , or
2. there exists a stack position i with opdTpc∗(i) = τ and opd∗(i) = r .

We say that a reference r is active in the frame, if the frame contains r with
some assigned type.

Definition 16.4.3 (Continuation of the heap). Let f be a frame on the
stack. A continuation of the heap for f is a function heap∗ with the following
properties:

1. dom(heap) ⊆ dom(heap∗),
2. classOf (p) = classOf ∗(p) for each p ∈ dom(heap).

If the frame f is followed by a constructor invocation frame with this ob-
ject ref , then

3. initState(p) = initState∗(p) for each active p of f with p 6= ref ,
4. initState∗(ref ) = Complete.

If the frame f is not followed by a constructor invocation frame, then

3. initState(p) = initState∗(p) for each active p in f .

Definition 16.4.4 (Continuation of a frame). Assume that the frame
(pc∗, reg∗, opd∗,meth∗) is a frame on the stack of the JVM. Let µ be the
method of the next frame (the called frame). Let vals be a sequence of pos-
sible return values compatible with the return type of µ with respect to a
continuation of heap for the frame. If the return type is void, then vals is the
empty sequence. Then (pc∗+1, reg∗, opd∗·vals,meth∗) is called a continuation
of the frame.

Definition 16.4.5 (Init sequence). An init sequence on the stack is a
maximal sequence of consecutive frames on the stack with the following prop-
erties:

1. Each frame in the sequence is a constructor invocation frame.
2. For each frame in the sequence except for the first frame, the constructor

belongs to the same class as the constructor of the parent frame or is in
its direct superclass.

3. The value of register 0 is the same in all frames of the sequence.

The value of register 0 is called the init object of the init sequence.

Theorem 16.4.1 (Soundness of type assignments).
Assume that in the given run, the frame (pc∗, reg∗, opd∗,meth∗)

1. is the current frame (pc, reg , opd ,meth) and heap∗ is the current heap
heap, or
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2. is a frame on the stack waiting for a <clinit> method to return and
heap∗ is a continuation of heap for the frame, or

3. is a continuation of a frame f on the stack and heap∗ is a continuation
of heap for the frame f .

Let (regTi , opdTi)i∈D be the type assignment for meth∗. Then the following
invariants are satisfied at run-time for the frame (pc∗, reg∗, opd∗,meth∗):

(pc) pc∗ ∈ D (hence pc∗ is a valid code index for meth∗).

(check) check(meth∗, pc∗, types(reg∗), types(opd∗)) is true.

(reg1) dom(regTpc∗) ⊆ dom(reg∗).

(reg2) reg∗ ` reg∗(x ): regTpc∗(x ) for every x ∈ dom(regTpc∗).

(reg64) If reg∗(x ) = (w1, lowt) and reg∗(x + 1) = (w2, hight), then the pair
(w1,w2) is a correct 64-bit value of type t .

(opd1) dom(opdTpc∗) = dom(opd∗).

(opd2) reg∗ ` opd∗(i): opdTpc∗(i) for each i ∈ dom(opdTpc∗).

(opd3) length(opdTpc∗) < maxOpd .

(opd64) If opd∗(k) = (w1, lowt) and opd∗(k + 1) = (w2, hight), then the
pair (w1,w2) is a correct 64-bit value of type t .

(init1) If the frame contains an active reference r with assigned type InInit ,
then meth∗ is an <init> method (not of class Object), r = reg∗(0)
and classOf (r) v classNm(meth∗). Conversely, if meth∗ is an <init>
method, then reg∗(0) contains a reference r with initState(r) = InInit
or initState(r) = Complete.

(init2) For each c and i , the frame contains at most one active reference r
with assigned type (c, i)new .

(init3) If the frame contains an active reference r with assigned type
(c, i)new , then r is not the init object of an init sequence of stack and r
is not active in any other frame.

The following global invariants are true at run-time:

(global) If the static field c/f of declared type A is used in the program,
then type(globals(c/f )) v A.

(ref) If a reference r is used in the current state of the JVM, then r points
to an existing object or array on the heap; classOf (r) is a non-abstract
class or an array type.

(object) If classOf (r) is a class c and d/f is an instance field of c of declared
type A, then type(getField(r , d/f )) v A.
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(array) If classOf (r) is an array type A[ ], then type(arrayElem(r , i)) v A
for each i < arraySize(r).

(initseq) There are not two different init sequences on stack with the same
init object.

Proof. We show first that the invariant (check) follows from the other invari-
ants:
The type assignment ensures that check(meth∗, pc∗, regTpc∗ , opdTpc∗) is true.
Let regS = types(reg∗) and opdS = types(opd∗) be the type assignments as-
sociated to the local environment reg∗ and the operand stack opd∗. From
(reg1), (reg2), (opd1) and (opd2) we can deduce that regS vreg regTpc∗

and opdS vseq opdTpc∗ . Since the structural constraints are monotonic
(Lemma 15.7.1), it follows that check(meth∗, pc∗, regS , opdS ) is true as well.
The remaining invariants are proved by an induction on the run of the defen-
sive VM. We show here the critical cases for subroutines, object initialization
and the current frame.

Case 1. code(pc) = Jsr(s): The new pc is s and the new operand stack is
opd · [pc + 1]. The type assignment condition T6 ensures that
– regTpc vreg regTs

– opdTpc · [retAddr(s)] vseq opdTs

This implies (by the transitivity of v and the induction hypothesis) invariants
(reg1), (reg2), (reg64), (opd1), (opd2), (opd3) (using T5 and the check in
Fig. 15.6) and (opd64) at s, except for reg ` pc+1: retAddr(s). The induction
hypothesis says that reg ` reg(x ): regTpc(x ) for every x ∈ dom(regTpc). If s
does not return, then by the second typing rule of Def. 16.4.1,

reg ` pc + 1: retAddr(s).

Otherwise, if s returns, then by T7 (d), regTpc vreg mod(s) �− regTpc+1 and,
by the third typing rule of Def. 16.4.1, it follows that reg ` pc+1: retAddr(s).
The invariants (init1)–(init3) and the global invariants can be moved from
pc to s.
Case 2. code(pc) = Ret(x ): Condition T5 and the check in Fig. 15.6 en-
sure that there exists a subroutine s such that regTpc(x ) = retAddr(s)
and therefore s returns. The induction hypothesis (reg2) for x implies that
reg ` reg(x ): retAddr(s). Let reg(x ) = j + 1. By the third typing rule in
Def. 16.4.1 it follows that

reg ` reg(x ): regTj+1(x ) for every x ∈ dom(clean(mod(s) �− regTj+1)).

The new pc is j + 1. The typing rules in Def. 16.4.1 also yield that j ∈ D and
code(j ) = Jsr(s). The type assignment condition T7 ensures that
– j + 1 ∈ D (hence j + 1 is a valid code index for meth)
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– regTpc vreg mod(s) � regTj+1

– opdTpc vseq opdTj+1

– regTj vreg mod(s) �− regTj+1

– Neither (c, k)new nor InInit occur in mod(s) �− regTj+1

Invariants (reg1), (reg2) and (reg64) follow from the induction hypothesis at
pc. Namely regTj vreg mod(s) �− regTj+1, the fact that neither (c, k)new nor
InInit occur in mod(s) �− regTj+1 and the typing rules for the return address
j + 1 imply that

reg ` reg(x ): regTj+1(x ) for every x ∈ dom(regTj+1) \mod(s).

Moreover, regTpc vreg mod(s) � regTj+1 implies that

reg ` reg(x ): regTj+1(x ) for every x ∈ dom(regTj+1) ∩mod(s).

Invariants (opd1)–(opd64) follow immediately from the induction hypothesis,
since the operand stack is propagated to j + 1 without modifications. The
global invariants and the invariants (init1)–(init3) can be moved from pc to
j + 1, since by condition T7 (f) we know that mod(s) �− regTj+1 is free of
( , )new and InInit .
Case 3. code(pc) = Store(t , x ): Assume that size(t) = 1 (the argument for
the case size(t) = 2 is similar). The type assignment condition T6 ensures
that there exist opdS and τ such that
– opdTpc = opdS · [τ ]
– opdS vseq opdTpc+1

– regTpc [x 7→ τ ] vreg regTpc+1

Hence, opd = opd ′ · [v ]. Let reg ′ = reg [x 7→ v ]. The new pc is pc + 1, the new
operand stack is opd ′ and the new local environment is reg ′. Invariants (pc),
(reg1), (reg64), (opd1), (opd3), (opd64) for pc + 1 follow from the induction
hypothesis. The same holds for invariants (reg2) and (opd2), using part 1 of
Def. 16.4.1, except for operands and local variables of return address type.
Assume that retAddr(`) occurs in regTpc+1 or opdTpc+1. Then retAddr(`)
already occurs in regTpc or opdTpc and, by T8, pc belongs to subroutine `.
Therefore x ∈ mod(`) and mod(`) �− reg = mod(`) �− reg ′. We can apply
the Coincidence Lemma 16.4.1 and see that, if reg ` j + 1: retAddr(`), then
reg ′ ` j + 1: retAddr(`). Hence, the invariants are also satisfied for return
addresses at code index pc + 1. The global invariants and the invariants
(init1)–(init3) can be moved from pc to pc + 1 without problems.
Case 4. code(pc) = New(c): The type assignment condition T6 for the suc-
cessor frame (see Fig. 16.14) ensures that
– opdS · [(c, pc)new ] vseq opdTpc+1, where

opdS = [if t = (c, pc)new then unusable else t | t ∈ opdTpc ]
– {(x , t) ∈ regTpc | t 6= (c, pc)new} vreg regTpc+1
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Hence the only occurrence of the type (c, pc)new in the type frame at pc + 1
is the topmost position in opdTpc+1. Since there is only one occurrence of
this type, invariant (init2) can be carried over from pc to pc + 1. The other
invariants follow with similar arguments as in the previous cases.
The VM creates a new reference r on heap with classOf (r) = c. Hence, each
continuation of the new heap for a frame f on stack is also a continuation
of the current heap for f . Therefore the invariants for continuations of other
frames on the stack remain true.
Case 5. code(pc) = InvokeSpecial(void, c/<init>): We consider the invo-
cation of a nullary constructor only. The general case is similar. For a nullary
constructor the type assignment condition T5 yields with Fig. 15.4 that
– opdTpc = opdS · [τ ] and initCompatible(meth, τ, c).
The predicate initCompatible implies that one of the following statements is
true:
– τ = (c, k)new for some k
– τ = InInit and c = classNm(meth) or c is the direct superclass of

classNm(meth)
Let r be the topmost value on the operand stack opd .
Invariants (opd1) and (opd2) yield reg ` r : τ and thus type(r) = τ .
The defensive VM deletes r from opd , pushes the current frame onto the
stack (Fig. 15.5) and sets initState(r) to Complete if c is class Object and
to InInit otherwise. Hence type(r) might change and we have to think about
the possibility that the invariants for the continuations of other frames on the
stack might be violated. Fortunately this is not the case because of invariants
(init3) and (initseq).
We have to show the invariants for the new frame for the method c/<init>:
If τ = (c, k)new , then by invariant (init3), the reference r is not the init
object of any init sequence on stack . This fact is needed, because r is the
init object of the new frame created for the method c/<init>. Hence all init
sequences have different init objects and invariant (initseq) is true. Invariant
(init1) is true in the new frame, since classOf (r) = c. The other invariants
are trivially true for the new frame.
If τ = InInit , then by invariant (init1) we are already in an init sequence with
init object r . This init sequence is extended by the new frame. By the induc-
tion hypothesis (init1), we obtain that classOf (r) v classNm(meth). Since
classNm(meth) v c, it follows that classOf (r) v c. The other invariants are
trivially true for the new frame.
It is not enough to show the invariants for the new frame for method
c/<init>. We have to show them also for every continuation of the current
frame which is pushed on stack and for every continuation of the current
heap. In such a continuation we are at code index pc + 1 and we can assume
that initState(r) = Complete (Def. 16.4.3 and 16.4.4).



16.4 Soundness of bytecode type assignments 251

If τ = (c, k)new , then in the successor type frame of pc the type τ is replaced
by c (Fig. 16.14). Because initState(r) = Complete in the continuation of the
frame, we have type(r) = c and hence reg ` r : c. Note, that if the successor
frame contains an active occurrence of r , then its assigned type in the current
frame must be τ .
If τ = InInit , then in the successor type frame of pc the type τ is replaced
by classNm(meth) (Fig. 16.14). By the induction hypothesis (init1) it fol-
lows that classOf (r) v classNm(meth). Since type(r) = classOf (r) in the
continuation, we obtain reg ` r : type(r).
Case 6. code(pc) = Return(t): The checks in Fig. 15.3 and 15.4 (including
the clause endinit) ensure that
– opdTpc vsuf returnType(meth)
– returnType(meth) vmv t
– If meth is an <init> method not in class Object, then 0 ∈ dom(regTpc)

and regTpc(0) 6= InInit
The VM pops the topmost frame from the stack and makes it again the
current frame. The returned value is appended to the operand stack and
the program counter is incremented, if necessary. Hence we obtain exactly
a continuation of the frame according to Def. 16.4.4. Moreover, the current
heap is a continuation of itself for the topmost frame according to Def. 16.4.3.
The induction hypothesis yields the invariants for the new state.
Case 7. code(pc) = Dupx (s1, s2): The check in Fig. 15.2 ensures that
– opdTpc = opdS · ts1 · ts2

– length(tsi) = si and validTypeSeq(tsi) for i = 1, 2
Hence, opd = opd ′ · ws1 · ws2, where length(wsi) = si and the new operand
stack at pc + 1 is opd ′ · ws2 · ws1 · ws2.
By the definition of the predicate validTypeSeq , the type sequences ts1 and ts2

do not start with a type hight . Hence, by invariant (opd2), the first words in
the sequences ws1 and ws2 do not have the type tag hight . Therefore we see
that the instruction Dupx cannot be used to construct an invalid 64-bit value
be permuting single words on the operand stack and the invariant (opd64)
remains true.

The cases for the other instructions are treated in a similar way. ut

The entanglement of embedded subroutines and object initialization is
rather delicate. In our approach we forbid that a caller of a subroutine uses
later an un-initialized or partially initialized object stored in a register not
modified by the subroutine. This prevents that a subroutine can mislead
the caller in believing that an object has already been initialized by the
subroutine although it is not (Fig. 16.19). It prevents also the reverse direction
that a caller of a subroutine believes an object is still un-initialized although



252 16. Bytecode type assignments

the subroutine already did that (Fig. 16.20). We could achieve the same by
other conditions on subroutines. We could forbid that

1. a caller passes not fully initialized objects to a subroutine and
2. a subroutine returns not fully initialized objects to a caller.

The first condition can be implemented by defining the successor set of a
Jsr(s) instruction at type frame (regT , opdT ) as follows:

{(s, clean(regT ), clean(opdT ) · [retAddr(s)]}
Here the function clean filters out all ( , )new and InInit types in regT and
replaces them by unusable in opdT . The second condition can be imple-
mented by changing T7 (f) in the definition of bytecode type assignment to
the following condition:

f’) Neither (c , )new nor InInit occur in mod(s) � regTj+1 or in opdTj+1.

The above soundness proof, however, becomes much more complicated be-
cause invariants (init1)–(init3) have to be included into the typing rules for
return addresses and the function clean has to be removed. Moreover, the
type of a return address depends then on the initialization status of the ob-
jects and a new coincidence lemma has to be proved.

16.5 Certifying compilation

In this section we prove that bytecode generated by the compiler of Part II
is typeable. For this purpose we extend the functions E , B1, B0 and S for the
compilation of expressions, boolean expressions and statements such that
they generate also type frames for the instructions. Hence, the result of the
extended compilation is not only a sequence of bytecode instructions but a
sequence of triples (instr , regT , opdT ), where (regT , opdT ) is a type frame
for the instruction instr . We then prove that the so generated type frames
satisfy the conditions T1–T8 of Def. 16.3.8 for bytecode type assignments.

The extended compiler is a certifying compiler which generates type car-
rying code. What it does is similar to the so-called off-device pre-verification
in [25]. Type frames are called stack maps in [25]. Our extended compiler,
however, does not inline subroutines as it is done in [25].

When compiling Java methods one has to make sure that “execution never
falls off the bottom of the code array” [23, §4.8.2]. On the Java language
level, this property follows from the reachability analysis of Sect. 8.2. For
each method body the predicate normal must return False, hence the body
cannot complete normally (invariant (norm) in Theorem 8.4.1); the result of
the execution of a method body is a Return, Return(val) or Exc(ref ). So the
obvious conjecture is, that if a statement αstm cannot complete normally,
i.e., if normal(α) is false, then execution cannot fall off the bottom of the
compiled code for the statement, i.e., code index endα is not reachable from
begα. Unfortunately the conjecture is not true for our compiler.
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Example (; CD) 16.5.1. Consider the following method:

int m() α{
int i;
try { i = 7;}
finally { return 3; }

}

According to Table 8.3 the predicate normal(α) is false. Hence the method
body is legal. When we compile the method using the compiler of Part II, we
obtain the following code:

begα : Prim(7) fin : Store(addr, r)
Store(int, i) Prim(3)
Jsr(fin) Return(int)
Goto(endα) Ret(r)

default : Store(addr, e) endα : Nop
Jsr(fin)
Load(addr, e)
Athrow

In this code fragment, index endα is reachable (Def. 16.3.3) from begα. Never-
theless, the bytecode is accepted by the verifier, since, due to the Return(int)
instruction (see Fig. 16.13), the verifier does not reach the instruction Ret(r)
and therefore Goto(endα) is dead code for the verifier. The Nop instruction
at the end of the method body is automatically inserted by the compiler to
ensure that the target labels of jump instructions are within the body of the
method (see static constraints in Appendix C.6).

Also the converse of the conjecture is not true for the compiler of Part II.
If normal(α) is true for a position α, then code index endα is not necessarily
reachable from begα.

Example (; CD) 16.5.2. Consider the following statement:
αif (true)

return;
else
i = 2;

From the equations in Table 8.3 it follows that normal(α) is true. When we
compile the statement using the compiler of Part II, we obtain the following
code:

begα : Goto(ifα)
Prim(2)
Store(int, i)
Goto(endα)

ifα : Return(void)
endα :

In this code fragment, label endα is not reachable from begα.
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Example (; CD) 16.5.3. Assume that b is variable of type boolean. Con-
sider the following statement:

αwhile (b ? true : true);

From the equations in Table 8.3 it follows that normal(α) is true, since the
expression ‘b ? true: true’ is not a constant expression. When we compile
the statement using the compiler of Part II, then index endα is not reachable
from begα.

Example (; CD) 16.5.4. This example shows that it is impossible to write a
compiler such that Java’s notion of reachability (Sect. 8.2) coincides with the
bytecode reachability relation of Def. 16.3.3. Consider the following method:

void m(boolean b) {
boolean z;
while (b ? true: true);
b = z;

}

According to Table 8.3 the statement ‘b = z’ is reachable, since the boolean
expression ‘b ? true: true’ is not a constant expression with value true and
the while statement can complete normally in the eyes of the static analysis
of Sect. 8.2. Moreover, according to the rules of definite assignment, the
variable z is definitely assigned after the while statement, since false(α) =
vars(α) for αtrue and z ∈ vars(α). Hence the method is a legal Java method
which should be accepted by any Java compiler. For the bytecode verifier,
however, the Load(int, z) instruction which corresponds to the access to z in
‘b = z’ should not be reachable, because the bytecode verifier cannot infer
that the variable z has been initialized.

The example shows a not so obvious inconsistency in the design of the
Java programming language. In the rules of definite assignment (Sect. 8.3),
the expression ‘b ? true: true’ is treated like the constant ‘true’. In the
reachability analysis of Sect. 8.2, however, the expression ‘b ? true: true’
is treated like an arbitrary boolean expression which can also have the value
false.

What is the domain D of a bytecode type assignment generated by the
extended compiler? Assume that the code array generated for a method µ is
the list

[code(0), . . . , code(codeLength(µ)− 1)]

and the corresponding type frames generated by the extended compiler are

(regTi , opdTi)0≤i<codeLength(µ).

Assume that for each position α in the body of the method, the code gener-
ated for the phrase at position α is the sublist
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[code(i) | begα ≤ i < endα].

Note that the code for the method µ cannot be the empty sequence, because
the body of the method is not normal .

Definition 16.5.1 (Domain of the generated type assignment). The
domain D for the type assignment generated by the certifying compiler is the
least (w.r.t. set inclusion) set of natural numbers with the following proper-
ties:

1. 0 ∈ D.
2. If i ∈ D and code(i) is not a control transfer instruction (Def. 16.3.1),

then i + 1 ∈ D.
3. If i ∈ D and code(i) = Goto(j ), then j ∈ D.
4. If i ∈ D and code(i) = Cond(p, j ), then i + 1 ∈ D and j ∈ D.
5. If i ∈ D and code(i) = Jsr(j ), then j ∈ D.
6. If i ∈ D, (f , u, h, ) ∈ excs(µ) and f ≤ i < u, then h ∈ D.
7. If α(βstm finally γblock) is a substatement in the body of µ, i ∈ D,

code(i) = Jsr(finα) and endγ ∈ D, then i + 1 ∈ D.

The extended compiler generates a type frame for each instruction in the
code for a method. The assignment of types to local registers is based on the
static analysis for the Java source code of the method described in Sect. 8.3.

Definition 16.5.2 (Types of local registers). Let α be a position in the
body of the method µ to be compiled. For a subset X of vars(α), the set of
variables, formal parameters and catch parameters which are in the scope
of a declaration at position α, we denote by R(α,X ) the assignment of the
declared types to the (variable numbers of) variables in the set X . More
precisely, let x be an identifier in X of declared type t .

1. If t is of size 1, then (x , t) belongs to R(α,X ).
2. If t is of size 2, then (x , lowt) and (x + 1, hight) belong to R(α,X ).
3. If µ is an instance method of class c, then (0, c) belongs to R(α,X ), too.
4. If µ is a constructor in class c (different from Object) and α is firstPos

or a position in an argument of an explicit constructor invocation
this(exps) or super(exps) at the beginning of the body of the construc-
tor, then (0, InInit) belongs to R(α,X ); if α is another position in the
body of the constructor, then (0, c) belongs to R(α,X ).

5. If α is a position in δblock in β(γstm finally δblock) with endδ ∈ D,
then (retβ , retAddr(finβ)) belongs to R(α,X ) (we assume that retβ is
different from x and x + 1 for all x ∈ vars(β) and different from retξ,
if the position β is in a finally block of a try-finally statement at
position ξ, cf. Fig. 16.27).

We use the following abbreviations:

P(α) := R(α, before(α)), A1(α) := R(α, true(α)),
A(α) := R(α, after(α)), A0(α) := R(α, false(α)).
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The functions before, after , true and false are the static functions defined in
Sect. 8.3.

Let α be a position in an expression. Then T (α) is the Java type of
the subexpression at position α. By V(α) we denote the corresponding
list of verify types. For example, if T (α) is double, then V(α) is the list
[lowDouble, highDouble]; if T (α) is byte, then V(α) is the list [int]. There
is one case which has to be treated in a different way. If α is the position of
this in an explicit constructor invocation at the beginning of the body of
a constructor, then V(α) = InInit . Note that after parsing and elaboration,
an explicit constructor invocation this(exps) or super(exps) is replaced by
this.c/<init>(ts)(exps). It is not allowed that this occurs in the arguments
exps (see Sect. 5.1.3).

Fig. 16.22–16.28 define the extended compiler. We call the extended com-
piler a certifying compiler, because the type frames it generates can be under-
stood as a certificate that the generated bytecode behaves in a well-defined
manner on the virtual machine. The first components of the triples gener-
ated by the certifying compiler are exactly the instructions generated by the
compiler of Part II.

In Fig. 16.28 we use the pseudo instructions Continue(l) and Break(l).
These instructions are just alternative names for the Goto(l) instruction used
by the original compiler in Fig. 12.3. We use Continue(l) and Break(l) to
simplify notations in the proofs below.

Since condition 7 in Def. 16.5.1 is more restrictive than the corresponding
definition for the successor indices of a Jsr instruction in Def. 16.3.2, it is
obvious that D is a subset of the reachable code indices of method µ. The
converse is not true as Example 16.5.1 shows.

Lemma 16.5.1. If i ∈ D, then i is reachable from code index 0 via a path
with elements from D.

Proof. By induction on the generation of the set D. ut

The successor code indices of a bytecode instruction are defined in
Def. 16.3.2. The code generated by our compiler has the property that the
i + 1 successor of a Jsr instruction at index i cannot be reached on a path
avoiding index i , for example via a Goto(i + 1). Therefore, if i + 1 belongs
to D, then the Ret instruction of the corresponding subroutine belongs to D,
too.

Lemma 16.5.2. If, in code generated by our compiler, code(j ) = Jsr( ) and
j + 1 is a successor (Def. 16.3.2) of i , then i = j .

Proof. The following facts are used:

1. The compilation of expressions and test expressions is free of Jsr .



16.5 Certifying compilation 257

Fig. 16.22 Certifying compilation of JavaI expressions

E(αlit , opdT ) = (Prim(lit),A(α), opdT )
E(αloc, opdT ) = (Load(T (α), loc),A(α), opdT )
E(α(loc = βexp), opdT ) =

E(βexp, opdT ) · (Dupx (0, size(T (β))),A(β), opdT · V(β)) ·
(Store(T (β), loc),A(β), opdT · V(β) · V(β))

E(α(uop βexp), opdT ) =
E(βexp, opdT ) · (Prim(uop),A(β), opdT · V(β))

E(α(! βexp), opdT ) =
B1(βexp,unaα) · (Prim(1),A(β), opdT ) ·
(Goto(endα),A(β), opdT · [int]) ·
unaα · (Prim(0),A(β), opdT ) · endα

E(α(βexp1 bop γexp2), opdT ) =
E(βexp1, opdT ) · E(γexp1, opdT · V(β)) ·
(Prim(bop),A(γ), opdT · V(β) · V(γ))

E(α(βexp0 ? γexp1 : δexp2), opdT ) =
B1(βexp0, ifα, opdT ) · E(δexp2, opdT ) ·
(Goto(endα),A(δ), opdT · V(δ)) · ifα · E(γexp1, opdT ) · endα

Fig. 16.23 Certifying compilation of JavaI statements

S(; ) = ε
S(α(βexp); ) = E(βexp, [ ]) · (Pop(size(T (β))),A(β), [V(β)])
S(α{β1stm1 . . .

βn stmn}) = S(β1stm1) · . . . · S(βn stmn)
S(αif (βexp) γstm1 else δstm2) =

B1(βexp, ifα, [ ]) · S(δstm2) ·
(Goto(endα),A(δ), [ ]) ·
ifα · S(γstm1) · endα

S(αwhile (βexp) γstm) =
(Goto(testα),P(α), [ ]) · whileα · S(γstm) ·
testα · B1(βexp,whileα, [ ])

S(αlab: βstm) = labc · S(βstm) · labb
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Fig. 16.24 Certifying compilation of JavaI expressions for control flow

B1(αtrue, lab, opdT ) = (Goto(lab),A1(α), opdT )
B1(αfalse, lab, opdT ) = ε
B1(α(! βexp), lab, opdT ) = B0(βexp, lab, opdT )
B1(α(βexp0 ? γexp1 : δexp2), lab, opdT ) =

B1(βexp0, ifα, opdT ) · B1(δexp2, lab, opdT ) ·
(Goto(endα),A0(δ), opdT ) · ifα · B1(γexp1, lab, opdT ) · endα

B1(αexp, lab, opdT ) =
E(αexp, opdT ) · (Cond(ifne, lab),A(α), opdT · [int])

B0(αtrue, lab, opdT ) = ε
B0(αfalse, lab, opdT ) = (Goto(lab),A0(α), opdT )
B0(α(! βexp), lab, opdT ) = B1(βexp, lab, opdT )
B0(α(βexp0 ? γexp1 : δexp2), lab, opdT ) =

B1(βexp0, ifα, opdT ) · B0(δexp2, lab, opdT ) ·
(Goto(endα),A1(δ), opdT ) · ifα · B0(γexp1, lab, opdT ) · endα

B1(αexp, lab, opdT ) =
E(αexp, opdT ) · (Cond(ifeq, lab),A(α), opdT · [int])

Fig. 16.25 Certifying compilation of JavaC expressions/statements

E(αc.f , opdT ) = (GetStatic(T (α), c/f ),A(α), opdT )
E(αc.f = βexp, opdT ) =

E(βexp, opdT ) · (Dupx (0, size(T (β))),A(β), opdT · V(β)) ·
(PutStatic(T (α), c/f ),A(β), opdT · V(β) · V(β))

E(αc.mβ(exps), opdT ) =
E(β(exps), opdT ) · (InvokeStatic(T (α), c/m),A(β), opdT · V(β))

E(α(β1exp, . . . , βn expn), opdT ) =
E(β1exp1, opdT ) · E(β2exp2, opdT · V(β1)) ·

...
E(βn expn , opdT · V(β1) · . . . · V(βn−1))

S(αstatic βstm) = S(βstm)
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Fig. 16.26 Certifying compilation of JavaO expressions

E(αthis, opdT ) = (Load(addr, 0),A(α), opdT )
E(αnew c/mβ(exps), opdT ) =

let τ = (c,begα)new in
begα · (New(c),P(α), opdT ) · (Dupx (0, 1),P(α), opdT · τ) ·
E(β(exps), opdT · τ · τ) ·
(InvokeSpecial(void, c/m),A(β), opdT · [τ, τ ] · V(β))

E(α(βexp.c/f ), opdT ) =
E(βexp, opdT ) · (GetField(T (α), c/f ),A(β), opdT · V(β))

E(α(βexp1.c/f = γexp2), opdT ) =
E(βexp1, opdT ) · E(γexp2, opdT · V(β)) ·
(Dupx (1, size(T (α))),A(γ), opdT · V(β) · V(γ)) ·
(PutField(T (α), c/f ),A(γ), opdT · V(γ) · V(β) · V(γ))

E(α(βexp.c/mγ(exps)), opdT ) =
E(βexp, opdT ) · E(γ(exps), opdT · V(β)) ·
(Invoke[callKind(α)](T (α), c/m),A(γ), opdT · V(β) · V(γ))

E(α(βexp instanceof c), opdT ) =
E(βexp, opdT ) · (InstanceOf (c),A(β), opdT · V(β))

E(α((c)βexp), opdT ) =
E(βexp, opdT ) · (CheckCast(c),A(β), opdT · V(β))

Fig. 16.27 Certifying compilation of JavaE statements

S(αthrow βexp) = E(βexp, [ ]) · (Athrow ,A(β), [V(β)])
S(αtry βblock catch (c1 x1) γ1block1 . . . catch (cn xn) γn blockn) =

begβ · S(βblock) · endβ ·
(Goto(endα),A(β), [ ]) ·
handleγ1 · (Store(addr, x1),P(β), [c1]) · S(γ1block1) ·
(Goto(endα),A(γ1), [ ]) ·

...
handleγn · (Store(addr, xn),P(β), [cn ]) · S(γn blockn) · endα

S(α(βstm finally γblock)) =
begα · S(βstm) · (Jsr(finα),A(β), [ ]) ·
(Goto(endα),A(α), [ ]) ·
defaultα · (Store(addr, exc),P(β), [Throwable]) ·
(Jsr(finα),P(β)⊕ {(exc, Throwable)}, [ ]) ·
(Load(addr, exc),P(β)⊕ {(exc, Throwable)}, [ ]) ·
(Athrow ,P(β), [Throwable]) ·
finα · (Store(addr, retα),P(γ), [retAddr(finα)]) · S(γblock) ·
(Ret(retα),A(γ), [ ]) · endα
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Fig. 16.28 Certifying compilation of JavaE abruptions statements

S(αcontinue lab; ) =
let [finβ1 , . . . ,finβn ] = finallyLabsUntil(α, lab)
(Jsr(finβ1),P(β1), [ ]) · . . . · (Jsr(finβn ),P(βn), [ ]) ·
(Continue(labc),P(βn), [ ])

S(αbreak lab; ) =
let [finβ1 , . . . ,finβn ] = finallyLabsUntil(α, lab)
(Jsr(finβ1), regB ⊕ P(β1), [ ]) · . . . · (Jsr(finβn ), regB ⊕ P(βn), [ ]) ·
(Break(labb), regB , [ ])
where γ(lab: stm) encloses α and
where regB = if Break(labb) ∈ D then A(γ) else ∅

S(αreturn; ) =
let [finβ1 , . . . ,finβn ] = finallyLabs(α)
(Jsr(finβ1),P(β1), [ ]) · . . . · (Jsr(finβn ),P(βn), [ ]) ·
(Return(void), ∅, [ ])

S(αreturn βexp; ) =
let [finγ1 , . . . ,finγn ] = finallyLabs(α)
E(βexp) · (Store(T (β), var),A(β),V(β)) ·
(Jsr(finγ1),P(γ1)⊕ {(var ,V(β))}, [ ]) ·

...
(Jsr(finγn ),P(γn)⊕ {(var ,V(β))}, [ ]) ·
(Load(T (β), var), {(var ,V(β))}, [ ]) ·
(Return(T (β)), ∅, [V(β)])

Fig. 16.29 The general pattern for abruptions statements

γ lab: {
β2try {

εtry { ... }
finally {
β1try { αbreak lab; }

finally δ1{ ... }
}

} finally δ2{ ... }
}
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2. The compilation of statements does not end in a Jsr instruction.
3. The compilation of statements does not start after a Jsr instruction.
4. Targets i of Goto(i), Cond( , i) and Bz (exp, i) are not after a Jsr .
5. No exception handler starts after a Jsr instruction.
6. No subroutine starts after a Jsr instruction.

Therefore, if code(j ) = Jsr( ), then the only possible way to reach j + 1 is
via j . ut

In the compiled code of an expression, the end of the code is reachable
from the beginning of the code. For statements this is not true. In an infinite
loop or in a return statement, the end of the code is not reachable from the
beginning.

Lemma 16.5.3. Let α be a position in the body of µ.

1. In E(αexp), code index endα is reachable from begα.
2. In Bi(αexp, lab), at least one of lab or endα is reachable from begα.

Proof. By induction on the size of αexp. ut

The label used in the compilation of a boolean test expression cannot
jump inside the code of the expression. It can jump to the beginning of the
test expression, for example in while (true) {}.

Lemma 16.5.4. In Bz (αexp, lab, opdT ), either lab ≤ begα or endα < lab.

Proof. Top down, starting at the firstPos of the body of µ. ut

A successor of an instruction in the bytecode for a phrase is either also an
instruction in the code for the phrase, or the next instruction immediately
following the code for the phrase, or the target of an exception handler which
protects the instruction, or a jump to a subroutine of an enclosing finally
statement, or a jump to the beginning or the end of an enclosing labeled
statement.

Lemma 16.5.5. If begα ≤ i < endα in E(αexp, opdT ) and j is a successor
(Def. 16.3.2) of i , then one of the following is true:

1. begα ≤ j ≤ endα, or
2. there exists a handler (f , u, j ) ∈ excs(µ) with f ≤ i < u.

Lemma 16.5.6. If begα ≤ i < endα in Bz (αexp, lab, opdT ) and j is a suc-
cessor (Def. 16.3.2) of i , then one of the following is true:

1. begα ≤ j ≤ endα, or
2. j = lab, or
3. there exists a handler (f , u, j ) ∈ excs(µ) with f ≤ i < u.
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Lemma 16.5.7. If begα ≤ i < endα in S(αstm) and j is a successor
(Def. 16.3.2) of i , then one of the following is true:

1. begα ≤ j ≤ endα, or
2. there exists a handler (f , u, j ) ∈ excs(µ) \ X (αstm) with f ≤ i < u, or
3. there exists a statement β(γstm finally δblock) in the body of µ such

that α is a position in γstm, code(i) = Jsr(j ) and j = finβ ,
4. there exists a statement lab: βstm in the body of µ such that α is a

position in βstm and
a) code(i) = Continue(j ) and j = labc = begβ or
b) code(i) = Break(j ) and j = labb = endβ .

Proof. By induction on the size of αstm. ut

The code for a phrase has entry points. Each path entering the code must
go to one of these entry points. In the code generated by the compiler of
Part II, each phrase has exactly one entry point, the first instruction of the
code for the phrase.

Lemma 16.5.8. If α is a position in the body of µ and j is a successor
(Def. 16.3.2) of i with begα < j < endα, then begα ≤ i < endα.

Proof. Top down, starting at the firstPos of the body of µ. ut

Lemma 16.5.1 can be strengthened to subphrases of the body of µ. If a
code index in the code interval of a subphrase of the body of µ belongs to D,
then the code index is reachable from the beginning of the interval via a path
in D. It follows that the first instruction of the code of the subphrase belongs
to D, too.

Lemma 16.5.9. If α is a position in the body of µ and if i is a code index
in D with begα ≤ i < endα, then i is reachable from begα via a path in
{j | begα ≤ j < endα} ∩ D.

Proof. By Lemma 16.5.1, there exists a path from code index 0 to i with ele-
ments from D. If begα = i , we are done. Otherwise, consider the last element
on the path which is not in {j | begα < j < endα} ∩ D. By Lemma 16.5.8, it
follows that this last element must be begα. ut

If the Ret instruction at the end of a finally block in Fig. 16.27 belongs
to D, then the instruction is reachable from the beginning of the block. Hence,
the Ret(retα) instruction is a possible return from the subroutine in the sense
of Def. 16.3.5, since in the code of the finally block no Store( , retα) is used.

Lemma 16.5.10. Let α(βstm finally γblock) be a substatement in the
body of µ. If endγ ∈ D, then endγ is reachable from begγ via a path in
{i | begγ ≤ i ≤ endγ} ∩ D.
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Proof. If endγ is in D, then by Lemma 16.5.9 there exists a path from begα
to endγ in {j | begα ≤ j < endα}∩D. Since the path has to leave the code of
βstm, it must reach finα via Jsr(finα) and hence also begγ . If the path leaves
the code of γblock again before reaching endγ , then it loops back to begα and
reaches begγ later again. The end piece of the path is in {j | begγ ≤ j ≤
endγ} ∩ D and connects begγ with endγ . ut

Corollary 16.5.1. Let α(βstm finally γblock) be a substatement in the
body of µ. If endγ ∈ D, then endγ is a possible return from subroutine finα
in the sense of Def. 16.3.5.

Proof. By Fig. 16.27 we have

code(finα) = Store(addr, retα) and code(endγ) = Ret(retα).

By Lemma 16.5.10, endγ is reachable from endγ via a path which is entirely in
the code for γblock . Since the code for γblock does not use any Store( , retα)
instruction, endγ is a possible return from subroutine finα, in the sense of
Def. 16.3.5. ut

As we have seen in Example 16.5.1, it is not true that, if code index endα
is reachable from begα, then normal(α) is true. Therefore, in Lemma 16.5.11
below, we need a stronger assumption than simple reachability. We assume
that endα is reachable from begα via a path which is entirely in the set D.
Exercise 16.5.1 below provides an example, why break statements have to be
treated as a special case.

Definition 16.5.3 (Critical path). A path from begα to endα is a critical
path for αstm, if the last step in the path is a Break(lab) and the position α
is in the scope of the label lab in the body of µ.

Note, that the path in Lemma 16.5.10 which connects the end of a subroutine
with the beginning is not critical for the finally block.

Lemma 16.5.11. Let αstm be a statement in the body of µ.

1. If code index endα is reachable from code index begα via a path in the set
{j | begα ≤ j ≤ endα}∩D which is not critical for αstm, then normal(α)
is true.

2. If begα ≤ i < endα, i ∈ D, code(i) = Break(lab) and endα ≤ lab, then
the corresponding break lab can exit αstm (Def. 8.2.2).

Proof. By induction on the size of αstm. We consider the case of a statement
α(βstm finally γblock) in Fig. 16.27.
Consider a path from begα to endα in {j | begα ≤ j ≤ endα} ∩ D which is
not critical for α. We can assume that the path does not loop back to begα.
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By Lemma 16.5.7, the different possibilities for the path to leave the code of
βstm are via endβ , defaultα, Jsr(finα), or Break(endα).
If the path leaves βstm via Break(endα), then it would be critical for α.
Suppose that the path reaches finα. From finα the path proceeds to begγ .
Then, again by Lemma 16.5.7, it can leave the code of γblock via endγ or
Break(endα). If the path reaches endγ , then it gets stuck at the following
Ret(retα) instruction contradicting the assumption that it reaches endα. If
the path leaves the code of γblock via Break(endα), then the path would be
critical for α. Hence, the path cannot reach finα.
Suppose that the path reaches defaultα. Then the path must reach finα be-
cause otherwise it gets stuck at the Athrow instruction. Contradiction.
The only possibility that remains to leave the code of βstm is via endβ . The
part of the path from begβ to endβ is not critical for β, since a Break(labb)
at the end of a critical path would jump below endα. Hence we can apply the
induction hypothesis 1 to β and obtain that normal(β) is true.
At the instruction Jsr(finα) at endβ the path proceeds to Goto(endα). Oth-
erwise, it would go through finα. Since the path is in D, the instruction
Goto(endα) belongs to D. By Def. 16.5.1 and Lemma 16.5.2 it follows that
endγ is in D.
Since endγ is in D, by Lemma 16.5.10 there exists a path from begγ to endγ
in {j | begγ ≤ j ≤ endγ} ∩ D which is not critical for γ. Hence we can apply
the induction hypothesis 1 to γblock and obtain that normal(γ) is true.
From Table 8.3 it follows that normal(α) is true.
The second part of the lemma is shown in a similar way. The difficult case is
a Break(lab) instruction in the code of βstm. By the induction hypothesis 2
for β, it follows that the corresponding break lab statement can exit β. In
order to conclude that it can also exit α, we have to show that normal(γ)
is true. According to Fig. 16.28 the Break(lab) is preceded by a cascade of
Jsr instructions. One of them is Jsr(finα). Since the Break(lab) is in D, by
Def. 16.5.1 and Lemma 16.5.2 it follows that endγ is in D. As in the proof
of the first part of the lemma it follows that normal(γ) is true. Hence, the
break lab statement can exit α. ut

In Def. 16.3.7, the set of register numbers modified by a subroutine is
defined. We extend the notion and define the set of variables modified by an
arbitrary subphrase of the body of µ.

Definition 16.5.4 (Modified variables). Let α be a position in the body
of µ. A variable x belongs to mod(α), if there exists a code index i with
begα ≤ i < endα, i is reachable from begα and code(i) = Store( , x ).

For subroutines the two definitions are related in the following sense.
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Lemma 16.5.12. Let α(βstm finally γblock) be a substatement in the
body of µ with endγ ∈ D. If x ∈ mod(γ), then x ∈ mod(finα). If the size of
the type of x is 2, then x + 1 ∈ mod(finα).

Proof. Consider the code for the statement in Fig. 16.27. Let x ∈ mod(γ).
This means that there exists a reachable code index i with begγ ≤ i < endγ
and code(i) = Store( , x ). By Corollary 16.5.1, endγ is a possible return from
subroutine finα. Hence x ∈ mod(finα). ut

An obvious conjecture is that variables which are definitely assigned after
a phrase but not before the phrase occur in Store instructions in the code
interval for the phrase. For expressions and boolean test expressions, this fact
is true and can be proved by a simple induction on the size of the expression.

Lemma 16.5.13. Let α be a position in the body of µ.

1. In E(αexp, opdT ) we have: after(α) \ before(α) ⊆ mod(α).
2. In B1(αexp, lab, opdT ) we have:

a) If lab is reachable from begα, then true(α) \ before(α) ⊆ mod(α).
b) If endα is reachable from begα, then false(α) \ before(α) ⊆ mod(α).

3. In B0(αexp, lab, opdT ) we have:
a) If lab is reachable from begα, then false(α) \ before(α) ⊆ mod(α).
b) If endα is reachable from begα, then true(α) \ before(α) ⊆ mod(α).

Proof. By induction on the size of αexp. ut

For statements the fact has to be formulated in a slightly different way.
The reason is shown in the following example.

Example (; CD) 16.5.5. Consider the following code fragment (which hope-
fully will never be written by a Java programmer):

L: α{
if (true)
break L;

else
i = 3;

}

This piece of code is compiled by the compiler of Part II as follows (remember
that Break(endα) is just an alias for Goto(endα)):

begα : Goto(ifα)
Prim(3)
Store(int, i)
Goto(endα)

ifα : Break(endα)
endα :
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Although the variable i belongs to after(α)\before(α) and endα is reachable
from begα, the variable i does not belong to mod(α), since the Store(int, i)
instruction is not reachable from the beginning. The example does not con-
tradict the following lemma, since the path from begα to endα is critical
for α.

Lemma 16.5.14. Let αstm be a statement in the body of µ.

1. If code index endα is reachable from code index begα via a path in the
set {j | begα ≤ j ≤ endα} ∩ D which is not critical for αstm, then
after(α) \ before(α) ⊆ mod(α).

2. If an instruction Break(labb) is reachable from code index begα via a
path in {j | begα ≤ j < endα} ∩ D and α is in the scope of the label lab
in the body of µ, then break(α, lab) \ before(α) ⊆ mod(α).

Proof. By induction on the size of αstm. We consider the case of a statement
α(βstm finally γblock) in Fig. 16.27.
According to Table 8.6, before(α) = before(β) = before(γ) and

after(α) \ before(α) ⊆ (after(β) \ before(β)) ∪ (after(γ) \ before(γ)).

Consider a path from begα to endα in {j | begα ≤ j ≤ endα} ∩ D which is
not critical for α.
As in the proof of Lemma 16.5.11 it follows that the first part of the path
goes from begβ to endβ and is not critical for β. Hence we can apply the
induction hypothesis 1 to β and obtain that

after(β) \ before(β) ⊆ mod(β) ⊆ mod(α).

Following further the proof of Lemma 16.5.11 we see that endγ is in D and
that there exists a path from begγ to endγ in {j | begγ ≤ j ≤ endγ} ∩ D
which is not critical for γ. Hence we can apply the induction hypothesis 1 to
γblock and obtain that

after(γ) \ before(γ) ⊆ mod(γ) ⊆ mod(α).

Hence, statement 1 of the lemma is shown for α.
Statement 2 is proved in a similar way. ut

In the main theorem we prove that the type frames computed by the ex-
tended compiler restricted to the domain D of Def. 16.5.1 is a bytecode type
assignment in the sense of Def. 16.3.8.

Theorem 16.5.1. The family (regTi , opdTi)i∈D of type frames generated
by the certifying compiler for the body of method µ is a bytecode type as-
signment for µ.
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Proof. We have to show that conditions T1–T8 of Def. 16.3.8 are satisfied.
T1 says that D must be a set of valid code indices. So we have to show that,
if i ∈ D, then 0 ≤ i < codeLength(µ).
Obviously, each index i ∈ D is less than or equal to codeLength(µ). Sup-
pose that codeLength(µ) belongs to D. By Lemma 16.5.1, it follows that
codeLength(µ) is reachable from code index 0 via a path in D. Since the body
of µ is not contained in an enclosing labeled statement, Lemma 16.5.11 yields
that the body of µ is normal . This is a contradiction, since the body of a
method cannot be normal (Sect. 8.2). Hence codeLength(µ) /∈ D and T1 is
satisfied.
T2 is satisfied, since 0 belongs to D according to Def. 16.5.1.
Next we prove that the triples generated by the certifying compiler for ex-
pressions, test expressions and statements have the following properties.
If E(αexp, opdT ) = [code(i) | m ≤ i < n] and there is no code index i with
m ≤ i < n such that a type ( , i)new occurs in opdT and, opdT is free of
InInit or α is a position in an argument of an explicit constructor invocation
at the beginning of a constructor, then the following is true:

E1. P(α) vreg regTm and opdT = opdTm .
E2. If m ≤ i < n and i ∈ D, then check(µ, i , regTi , opdTi) is true.
E3. If m ≤ i < n, i ∈ D and (j , regS , opdS ) ∈ succs(µ, i , regTi , opdTi),

then j ∈ D and one of the following is true:
a) m ≤ j < n, regS vreg regTj and opdS vseq opdTj , or
b) j = n, regS vreg A(α) and opdS vseq opdT · V(α), or
c) there exists an entry (f , u, j , t) in excs(µ) such that f ≤ i < u,

regS vreg P(α) and opdS = [t ].
E4. If m ≤ i < n, i ∈ D and regTi(x ) = retAddr(s), then i belongs to s.

If Bz (αexp, lab, opdT ) = [code(i) | m ≤ i < n] and there is no code index i
with m ≤ i < n such that a type ( , i)new occurs in opdT , and opdT is free of
InInit or α is a position in an argument of an explicit constructor invocation
at the beginning of a constructor, then the following is true:

B1. If m < n, then P(α) vreg regTm and opdT = opdTm .
B2. If m ≤ i < n and i ∈ D, then check(µ, i , regTi , opdTi) is true.
B3. If m ≤ i < n, i ∈ D and (j , regS , opdS ) ∈ succs(µ, i , regTi , opdTi),

then j ∈ D and one of the following is true:
a) m ≤ j < n, regS vreg regTj and opdS vseq opdTj , or
b) j = n, regS vreg A1−z (α) and opdS vseq opdT , or
c) j = lab, regS vreg Az (α) and opdS vseq opdT , or
d) there exists an entry (f , u, j , t) in excs(µ) such that f ≤ i < u,

regS vreg P(α) and opdS = [t ].
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B4. If m ≤ i < n, i ∈ D and regTi(x ) = retAddr(s), then i belongs to s.

For S(αstm) = [code(i) | m ≤ i < n] the following is true:

S1. If m ≤ n, then P(α) vreg regTm and opdTm = [ ].
S2. If m ≤ i < n and i ∈ D, then check(µ, i , regTi , opdTi) is true.
S3. If m ≤ i < n, i ∈ D and (j , regS , opdS ) ∈ succs(µ, i , regTi , opdTi),

then j ∈ D and one of the following is true:
a) m ≤ j < n, regS vreg regTj and opdS vseq opdTj , or
b) j = n, regS vreg A(α) and opdS = [ ], or
c) there exists an entry (f , u, j , t) in excs(µ) \ X (αstm) such that

f ≤ i < u, regS vreg P(α) and opdS = [t ], or
d) there exists a statement β(lab: s) in the body of µ such that α is

in s, j = labc , regS vreg P(β) and opdS = [ ], or
e) there exists a statement β(lab: s) in the body of µ such that α is

in s, j = labb , regS vreg A(β) and opdS = [ ], or
f) there exists a statement β(s finally b) in the body of µ such that
α is in s, j = finβ , regS vreg P(β) and opdS = [retAddr(finβ)].

S4. If m ≤ i < n, i ∈ D and regTi(x ) = retAddr(s), then i belongs to s.

Properties E1–E4, B1–B4, S1–S4 are proved by induction on the size of αexp
and αstm. The following facts are used in the proof:

1. If B1(αexp, lab, opdT ) = ε, then false(α) = before(α).
2. If B0(αexp, lab, opdT ) = ε, then true(α) = before(α).
3. If S(αstm) = ε, then after(α) = before(α).

Consider now the body bodyµ of the method µ with

S(bodyµ) = [code(i) | 0 ≤ i < codeLength(µ)].

The properties S1–S3 are true for the body.
From S1 we obtain that P(firstPos) vreg regT0 and opdT0 = [ ], hence
T3 and T4 are satisfied.
From S2 it follows that the checks are true for every code index i ∈ D, hence
T5 is satisfied.
Condition T6 follows from S3, since the cases (b)–(f) are not possible for a
successor j of an index i ∈ D. Case (b) is not possible, since codeLength(µ) /∈
D as we have seen above. Case (c) is not possible because the exception table
excs(µ) is defined to be X (bodyµ). Cases (d)–(f) are not possible, since bodyµ
cannot be contained in another statement in the body of µ.
The second part of condition T8 follows directly from Fig. 16.27. The first
part of condition T8 follows from S4. If retAddr(s) occurs in a regTi , then,
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by Def. 16.5.2 (5), there exists a substatement α(βstm finally γblock) of
the body of µ such that s = finα and endγ ∈ D. The code index i belongs to
the code of a subphrase of γblock . By Corollary 16.5.1 it follows that endγ
is a possible return from subroutine finα. Therefore i belongs to finα in the
sense of Def. 16.3.6.
It remains to show that (a)–(f) of T7 are satisfied.
Assume that i ∈ D, code(i) = Ret(x ), regTi(x ) = retAddr(s), j ∈ D and
code(j ) = Jsr(s). The Ret instruction occurs in Fig. 16.27 only, therefore
there exists a position α in the body of µ such that x = retα and s = finα.
Since i and j are in D, by Def. 16.5.1 (7), it follows that j + 1 is in D, hence
T7 (a) is shown. For T7 (b)–(f) we have to consider the Jsr(s) instructions
which occur in Fig. 16.27 and Fig. 16.28.
Consider the first Jsr(finα) instruction in Fig. 16.27 in the code of the state-
ment α(βstm finally γblock). Then i = endγ , j = endβ , regTi = A(γ),
regTj = A(β) and regTj+1 = A(α).
For T7 (b) we have to show that A(γ) vreg mod(finα) �A(α).
Let x be a variable in after(α) such that x ∈ mod(finα). If x is in after(γ),
then A(γ)(x ) = A(α)(x ) and we are done. Otherwise, x is in after(β) and,
by definition of after(α), there is no subexpression x = exp in γblock . Hence,
there is no instruction Store( , x ) in between begγ and endγ and, since x is
different from retα, x does not belong to mod(finα). Contradiction.
T7 (c) is satisfied, since opdTi as well as opdTj+1 are empty.
For T7 (d) we have to show that A(β) vreg mod(finα) �−A(α).
Let x be a variable in after(α) such that x /∈ mod(finα). If x is in after(β),
then A(β)(x ) = A(α)(x ) and we are done. Otherwise, x is in after(γ) and not
in before(γ). By Lemma 16.5.10 (which is applicable because endγ = i ∈ D),
Lemma 16.5.14, the remark preceding Lemma 16.5.14 and Lemma 16.5.12, it
follows, that x ∈ mod(finα). Contradiction.
For T7 (e) assume that retAddr(l) occurs in mod(finα)�−A(α). By item (5) of
Def. 16.5.2, it follows that α is a position in a finally block with subroutine l .
Hence, using Corollary 16.5.1 to guarantee the existence of a possible return
from subroutine l , the code for subroutine finα belongs to l in the sense of
Def. 16.3.6.
T7 (f) is satisfied, since a type (c, k)new is never used as the type of a local
register in the type frames generated by the certifying compiler; furthermore,
by Def. 16.5.2 (4), InInit is used only as the type of register 0 in the code for
explicit constructor invocations at the beginning of the body of a constructor,
but in our case α is not such a position. Hence, neither (c, k)new nor InInit
occur in mod(s) �− regTj+1.
Let us now consider the Jsr instruction in the default handler in Fig. 16.27.
For T7 (b) we have to show that

A(γ) vreg mod(finα) � (P(β)⊕ {(exc, Throwable)})



270 16. Bytecode type assignments

This is true, since before(β) = before(γ) ⊆ after(γ), by Table 8.6, and the
variable exc has been chosen by the compiler to be sufficiently fresh (see
Sect. 12.2) so that there is no Store( , exc) instruction between begγ and
endγ . Hence, exc does not belong to mod(finα). T7 (c)–(f) follow as above.
Finally we move to the Jsr instructions in S(αbreak lab;) in Fig. 16.28. The
difficult case is when the instruction Break(labb) is in the domain D and
regB = A(γ) in Fig. 16.28. If Break(labb) is in D, then by Lemma 16.5.9
and 16.5.11, it follows that αbreak lab can exit (Def. 8.2.2) the labeled state-
ment γ(lab : stm) enclosing α.
The general situation is pictured in Fig. 16.29.
Consider the instruction Jsr(finβ1). For T7 (b) we have to show that

A(δ1) vreg mod(finβ1) � (A(γ)⊕ P(β2)).

By the nesting of the try-finally statements,

P(β2) ⊆ P(β1) = P(δ1) ⊆ A(δ1).

Let x be a variable in after(γ) ∩ mod(finβ1). By Table 8.6 and Def. 8.3.1,
x is in after(β1) because the αbreak lab can exit γ. Moreover, there is a
Store( , x ) instruction in the code for the block at position δ1. This can only
be, if there is an assignment x = exp in the block at δ1. By Table 8.6, it
follows that x ∈ after(δ1).
For T7 (d) we have to show that

A(γ)⊕ P(β1) vreg mod(finβ1) �− (A(γ)⊕ P(β2)).

This is true because P(β2) ⊆ P(β1). T7 (c)–(f) follow as above.
The remaining cases from Fig. 16.28 are shown in a similar way. ut

Remark 16.5.1. The examples in Fig. 16.8 and 16.9 were found during a
first attempt to prove the preceding theorem for the previous version of our
bytecode verifier. After we detected the counter examples, we decided to
restrict the rules of definite assignment for finally statements and labeled
statements in such a way that the above proof goes through. Hence, in our
view the programs in Fig. 16.8 and 16.9 are no longer valid Java programs
(see also Remark 8.3.1).

Theorem 16.5.2 (Completeness of the compiler). Bytecode generated
by the compiler of Part II from a correct Java program does have type as-
signments.

Proof. Follows from the previous theorem, since the certifying compiler is a
conservative extension of the compiler of Part II. ut

Exercise (; CD) 16.5.1. Show that in the code generated by the certi-
fying compiler for the following method, code index endα is reachable from
begα via a path in D.
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void m(boolean b) {
lab:
αtry { if (b) break lab; }
finally { break lab; }

}

This example shows why Lemma 16.5.11 is rather tricky. Note, that normal(α)
is false.

Exercise 16.5.2. In the proof of Theorem 16.5.1, we assume that the length
of the list regTi for i ∈ D is less than maxOpd . Show that the function
maxOpd of Appendix D.2 has the property, too.





17. The diligent virtual machine

In this chapter we distill from the incrementally defined defensive machine
the analogously stepwise refined diligent virtual machine. It combines the
trustful machine of Part II with a link-time bytecode verifier. We prove (The-
orem 17.1.1) that this verifier is sound, i.e., that for each method in the class
environment, the verifier either computes a bytecode type assignment in the
sense of Chapter 16 or terminates with a VerifyError. We also prove (The-
orem 17.1.2) the completeness of the verifier, i.e., that a) if there exists a
bytecode type assignment for the body of a method, then the bytecode ver-
ifier computes a principal (most specific) type assignment; b) if the body of
a method is not typeable, then the bytecode verifier returns a VerifyError.
By the soundness of bytecode type assignments (Theorem 16.4.1) it follows
that, if the bytecode verifier is successful, then the run-time checks of the
defensive VM of Chapter 15 are always satisfied thus establishing the Main
Theorem of this book.

17.1 Principal bytecode type assignments

Bytecode type assignments can be compared in the obvious way. We say that
a type assignment (regVi , opdVi)i∈V is more specific than the type assignment
(regTi , opdTi)i∈D, if the following three conditions are satisfied:

1. V ⊆ D,
2. regVi vreg regTi for each i ∈ V,
3. opdVi vseq opdTi for each i ∈ V.

Hence a more specific type assignment assigns type frames to less code indices.
It assigns more specific types to more local variables and it assigns more
specific types to an operand stack of the same size. A most specific type
assignment to bytecode is called a principal type assignment.

Let µ be the method which has to be verified. The bytecode verifier at-
tempts to compute a bytecode type assignment (regVi , opdVi)i∈V for the
method. At the beginning the set V consists of code index zero only. More
indices are added to V whenever they can be reached by the computation
which tries to propagate the already computed type frames to the possible
successor indices. It can happen that during this process an index is revisited
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and the type frame for the index has to be changed. In this case the index is
added to a set C of changed indices whereby it becomes subject to yet another
verification step, namely the attempt to propagate its new type frame. The
bytecode verifier proceeds until the set C is empty. It can be shown that the
verifier always terminates. During the verification the following invariants are
satisfied which correspond exactly to the seven conditions for bytecode type
assignments in Def. 16.3.8. We formulate the invariants as a theorem which
will be proved later.

Theorem 17.1.1 (Soundness of the verifier). Let µ be the method to be
verified. During the verification process the following invariants are satisfied
where C = dom(changed) and V = dom(visited):

I1. C ⊆ V and V is a set of valid code indices of the method µ.

I2. Code index 0 belongs to V.

I3. Let [τ1, . . . , τn ] = argTypes(µ) and c = classNm(µ). If µ is a
a) class initialization method: regV0 = ∅.
b) class method: {0 7→ τ1, . . . ,n − 1 7→ τn} vreg regV0.
c) instance method: {0 7→ c, 1 7→ τ1, . . . ,n 7→ τn} vreg regV0.
d) constructor: {0 7→ InInit , 1 7→ τ1, . . . ,n 7→ τn} vreg regV0.

(The constructor of class Object is treated as an instance method.)

I4. The list opdV0 is empty.

I5. If i ∈ V \ C, then check(µ, i , regVi , opdVi) is true.

I6. If i ∈ V \ C and (j , regS , opdS ) ∈ succ(µ, i , regVi , opdVi), then
j ∈ V, regS vreg regVj and opdS vseq opdVj .

I7. If i ∈ V \ C, code(i) = Ret(x ) and regVi(x ) = retAddr(s), then for all
reachable j ∈ V \ C with code(j ) = Jsr(s):
a) j + 1 ∈ V,
b) regVi vreg mod(s) � regVj+1,
c) opdVi vseq opdVj+1,
d) regVj vreg mod(s) �− regVj+1,
e) if retAddr(`) occurs in mod(s) �− regVj+1, then each code index

which belongs to s belongs to l ,
f) neither (c, k)new nor InInit occur in mod(s) �− regVj+1.

I8. If i ∈ V and retAddr(s) occurs in regVi , then i belongs to s.
If i ∈ V and retAddr(s) occurs in opdVi , then i = s.

If the set C of changed code indices is empty, then I1–I8 are equivalent to
the conditions T1–T8 of Def. 16.3.8 and the verifier has computed a bytecode
type assignment. Conversely, if the method to be verified has a bytecode type
assignment, then the bytecode type assignment computed by the verifier will
be more specific. In other words, the verifier is complete.
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Theorem 17.1.2 (Completeness of the verifier). If the method µ has
a bytecode type assignment (regTi , opdTi)i∈D, then during the verification
process (regVi , opdVi)i∈V will always be more specific than (regTi , opdTi)i∈D
and no VerifyError will occur.

We are going now to define a sequence of four diligent virtual machines and
to prove soundness and completeness for their verifier.

17.2 Verifying JVMI

In this section we define the verifier component for JVMI . In each step, if no
verification failure did occur yet, the verifier chooses an instruction pc to be
verified and (if possible) propagates the so far computed type frame to each
of the possible successor instructions of pc. It checks the applicability of an
instruction using the check function of the defensiveVM in Chapter 15. To
determine the successor type-frame, the function succ of Chapter 16 is used.

State. To simulate the type state we introduce type registers and a type
operand stack. Since the verifier simulates the effect for all possible (im-
mediate) successors of an instruction (within a single frame), two dynamic
functions regV and opdV store the type registers and the type stack for each
instruction. They are the verifier analogue of the type component functions
regT and opdT of the defensive VM in Chapter 15 and are initially unde-
fined for every i 6= 0; opdV0 is initialized by the empty stack and regV0 by
the types of the method arguments and of the target reference. The other
functions opdVi and regVi (i 6= 0) are initially undefined. Additionally, we
need two dynamic functions changed and visited which control the way the
verification runs through the code.

regV : Nat → Map(RegNo,VerifyType)
opdV : Nat → VerifyType∗

visited : Nat → Bool
changed : Nat → Bool

The visited function represents those code indices that already have a type
frame assigned by the functions regV and opdV . The changed function al-
ways holds those instruction indices that are not verified yet, meaning that
the type frame associated to them has still to be checked for a possible propa-
gation to the successor indices. Initially changed(0) = True = visited(0) and
changed(i) = undef = visited(i) for i 6= 0.

Rules. Verification always starts with the first instruction at index 0. In
JVMI the verification has successfully finished if the domain of changed (i.e.,
where the function takes a value which is different from undef ) is empty so
that the trustful VM can be executed.
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diligentVMI =
if dom(changed) 6= ∅ then

verifySchemeI (code,maxOpd , propagateVMI , succI , checkI )
else

trustfulVMI

We define a verification scheme for reuse in the following sections. The
verifySchemeI chooses an arbitrary instruction that needs to be verified. The
type frame associated to this instruction is checked and, if in the current
state check (see Chapter 15) yields False, the machine stops (reporting fail-
ure). Otherwise the current type frame is propagated and the instruction is
marked as verified.

verifySchemeI (code,maxOpd , propagateVM , succ, check) =
choose pc ∈ dom(changed)

if check(code(pc),maxOpd , pc, regVpc , opdVpc) then
changed(pc) := undef
propagateVM (code, succ, pc)

else
halt := "Verification failed"

In propagateVMI the type registers and the type operand stack resulting
from the type simulation step are propagated to every successor whereby
these successor indices become subject to verification. Successor type frames
are computed in diligentVMI by the function succI of Fig. 16.12.

propagateVMI (code, succ, pc) =
forall (s, regS , opdS) ∈ succ(code(pc), pc, regVpc , opdVpc)

propagateSucc(code, s, regS , opdS)

The propagateSucc rule works as follows: If the index s of the successor in-
struction has not been seen previously by the verifier and if it is a valid
index in the method to be verified, the result of the simulation is copied to
the successor instruction and the instruction is marked as visited but not
yet verified. The assignment is restricted for retAddr-types to satisfy condi-
tion I8. If the successor instruction has been seen before and the two type
stacks are compatible (vseq) and the newly computed type registers are a
superset of and compatible with those registers that are already stored at
the instruction (vreg), then the destination needs no further checking and
the type state of the successor instruction remains unchanged.

validReg(retAddr(l), pc) = pc ∈ belongsTo(l)
validReg(t , pc) = True

validOpd(retAddr(l), pc) = (l = pc)
validOpd(t , pc) = True
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propagateSucc(code, s, regS , opdS) =
if s 6∈ dom(visited) then

if validCodeIndex (code, s) then
regVs := {(x , t) | (x , t) ∈ regS , validReg(t , s)}
opdVs := [if validOpd(t , s) then t else unusable | t ∈ opdS ]
visited(s) := True
changed(s) := True

else
halt := "Verification failed (invalid code index)"

elseif regS vreg regVs ∧ opdS vseq opdVs then
skip

elseif length(opdS) = length(opdVs) then
regVs := regVs treg regS
opdVs := opdVs topd opdS
changed(s) := True

else
halt := "Propagate failed"

Otherwise if the operand stacks have the same length, we merge the stacks
and the registers. If the lengths of the stacks differ, then propagation is not
possible. For primitive types t1 and t2 we denote by t1 t t2 the least upper
bound of the two types according to Def. 15.4.1.

t1 t t2 = if t1 = t2 then t1 else unusable

opdS topd opdV = [s t v | (s, v) ∈ zip(opdS , opdV )]

regS treg regT = {(x , t) | (x , t) ∈ regs, t 6= unusable}
where regs = {(x , regS(x ) t regT (x )) | x ∈ dom(regS) ∩ dom(regT )}

The merging of verify types has the following properties:

1. t1 v t1 t t2,
2. t2 v t1 t t2,
3. if t1 v s and t2 v s, then t1 t t2 v s.

Similar properties hold for the merging of operand stacks (topd with respect
to vseq) and the merging of registers (treg with respect to vreg). (We assume
that the type unusable is not used in register types. It is allowed on the
operand stacks only.)

The verification process in the diligentVMI terminates. Each instruction is
checked only a finite number of times. Each merge introduces at least one new
occurrence of the type unusable or reduces the domain of the type register
function whose domain is finite. Therefore either the rules are not applicable
(in which case it terminates because of failure detection) or dom(changed)
eventually becomes empty so that the trustful VM will be executed.

We have to show that the verifier is sound and complete. For the soundness
we have to check that the invariants I1–I6 are satisfied during the verification
process (I7 is empty for the diligentVMI ).
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Proof. (Theorem 17.1.1) Let V = dom(visited) and C = dom(changed). The
set C is always a subset of V, since a new code index is added to C only in
the propagateSucc rule. V contains only valid code indices. In fact either the
index is visited for the first time and is added to V because it is a valid code
index of the verified method, or, in case of a merge, we know that the index
has already been visited. Hence invariant I1 is satisfied.
The verification starts at code index 0 with empty operand stack type assign-
ment (I4) and register type assignment reflecting the argument types of the
method and possibly the type of the target reference (I3). Hence in particular
0 belongs to V (I2).
At the beginning of the verification process I5 holds because by initialization
V \ C is empty. A code index is removed from C in verifySchemeI only if its
type frame satisfies the check predicate, so that I5 is satisfied also during the
verification process.
If a code index is removed from C, then the propagateVMI rule enforces the
invariant I6 about the successor indices.
Invariant I8 remains true, since in propagateSucc invalid types are deleted or
replaced by unusable, when a new code index is added to V. ut

What remains to be shown is that if the bytecode has a type assignment
(regTi , opdTi)i∈D, then the verification process does not fail and the so far
computed (regVi , opdVi)i∈V is always more specific (as defined at the begin-
ning of Sect. 17.1).

Proof. (Theorem 17.1.2) The initial assignment (regV0, opdV0) with which
the verifier starts satisfies the completeness condition, namely by properties
T1–T4 of bytecode type assignments.
We prove now that the condition is preserved under each verification step
(induction on the choose steps). Assume that verifySchemeI chooses a code
index pc ∈ C and let instr = code(pc). Since C is a subset of V and V is by
the induction hypothesis a subset of D, we know by T5 that the function
check(instr ,maxOpd , pc, regTpc , opdTpc) returns true. By the induction hy-
pothesis regVpc and opdVpc are more specific than regTpc and opdTpc so that
by the monotonicity of the check functions (Lemma 15.7.1), it follows that
the function check(instr ,maxOpd , pc, regVpc , opdVpc) returns true as well and
the verifier proceeds and propagates the successors.
Assume that (s, regS , opdS ) is one of the successors with respect to regVpc

and opdVpc . By the monotonicity of successors (Lemma 16.2.1), we know
that there exists also a successor (s, regU , opdU ) of pc with respect to the
less specific type frame (regTpc , opdTpc) such that

regS vreg regU and opdS vseq opdU .

By T6 in Def. 16.3.8, we have that s ∈ D and
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regU vreg regTs and opdU vseq opdTs .

By the transitivity of vreg and vseq, it follows that

regS vreg regTs and opdS vseq opdTs .

By T1, s ∈ D implies that s is a valid code index in the given method.
If the index s is visited for the first time in propagateSucc, then regVs is set
to regS ′ and opdVs to opdS ′, where regS ′ is obtained from regS by deleting
all invalid return addresses and opdS ′ is replaced from opdS by replacing
all invalid return addresses by unusable. A return address retAddr(l) for
a register is valid, if s belongs to the subroutine l (Def. 16.3.6). A return
address retAddr(l) is valid on the operand stack only if s = l . We have to
show that

regS ′ vreg regTs and opdS ′ vseq opdTs .

Assume that the register x is defined in regTs . Then x is defined in regS and
regS (x ) v regTs(x ). If reg(S ) = retAddr(l), then regTs(x ) = retAddr(l),
since the type unusable does not occur in regTs . By T8, s belongs to l .
Therefore x is defined in regS ′ and regS ′(x ) = regS (x ) v regTs(x ).
Assume that k is a location on the operand stack. Then opdS (k) v opdTs(k).
Assume that opdS (k) = retAddr(l) and s 6= l . Then opdTs(k) = unusable
or opdTs(k) = retAddr(l). In the first case we have opdS ′(k) v opdTs(k).
The second case is not possible by T8.
If the successor index has been seen before we know by the induction hypoth-
esis that

regVs vreg regTs and opdVs vseq opdTs .

If (regS , opdS ) is more specific than (regVs , opdVs), then the verifier does not
change the so far computed type assignment. Otherwise, since

opdS vseq opdTs and opdVs vseq opdTs ,

both stacks have the same length and can be merged. By the properties of
least upper bounds, we can conclude that

regVs treg regS vreg regTs and opdVs topd opdS vseq opdTs ,

and the new type assignment remains more specific. ut

17.3 Verifying JVMC

In this section we apply the verifySchemeI to all methods of a given class or
interface and instantiate the resulting diligentScheme with the trustfulVMC

and with the successor and check functions succC , checkC .
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In JVMC a class or interface must be successfully verified before it is
initialized. The verifier has to verify every method of a class. If each method
invocation and return can be guaranteed to be type correct, the verifier can
check each method individually. The type correctness of method invocation
is taken care of by starting the verification of the method with the types of
its formal parameters; the type correctness of returning from a method is
verified by checking for return instructions the top of the operand type frame
against the return type of the method. In this way the diligentVMC can be
obtained from the diligentVMI by applying the bytecode verification to all
methods of the class to be verified.

State. In order to make our model close to an executable model, instead of
checking all methods in parallel we choose a not furthermore specified but
fixed order for method verification. This requires the following extension of
the state of diligentVMI . A new dynamic function verifyClass contains the
class to be verified. The dynamic function verifyMeths holds all methods of
the class to be verified.

verifyClass: Class
verifyMeths: Class/MSig∗

methv = top(verifyMeths)

Verification starts with the first method of verifyMeths, abbreviated as methv .
We leave the particular ordering of verifyMeths unspecified, as well as the
corresponding functions top, drop, null which are used to walk through
verifyMeths in an attempt to exhaust it. Verification succeeds, if all instruc-
tions of all methods are verified.

Rules. We define a scheme for the diligent JVMC which iterates a refinement
of the verifier of the diligent JVMI . As long as a class is not verified (and
the verification did not fail) the verification process proceeds. After the class
has been verified, the VM continues with the trustful code execution.

diligentScheme(verifyVM , execVM ) =
if ¬isChecked then

verifyVM
else

execVM

The top level guard isChecked tests whether there is still some instruction in
some method of the class to verify.

isChecked = (null(verifyMeths) ∧ dom(changed) = ∅)

The diligent JVMC is obtained by instantiating the scheme:

diligentVMC = diligentScheme(verifyVM , trustfulVMC )
where verifyVM = verifySchemeC (propagateVMI , succC , checkC )

The verifySchemeC is the verifySchemeI extended by resetting the verifier,
once a method of the class has been successfully verified, for the verification
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of the next method to verify, and by updating the verification status of the
class to Linked once all its methods have been verified successfully.

verifySchemeC (propagateVM , succ, check) =
if dom(changed) 6= ∅ then

verifySchemeI (code(methv ),maxOpd(methv ), propagateVM ,
succ(methv ), check(methv ))

else
let verifyMeths ′ = drop(verifyMeths, 1)
verifyMeths := verifyMeths ′

if length(verifyMeths ′) > 0 then
initVerify(top(verifyMeths ′))

else
classState(verifyClass) := Linked

Whenever a method is verified, the verifier drops it from the still to be verified
methods in verifyMeths and resets its dynamic functions to their initial state
for the next method to be verified using the following initVerify rule. This rule
formalizes the assumptions made for the initial verifier state in diligentVMI .

initVerify(meth) =
visited(0) := True
changed(0) := True
regV0 := formals(meth)
opdV0 := [ ]
forall i ∈ dom(visited), i 6= 0

visited(i) := undef
changed(i) := undef
regVi := undef
opdVi := undef

The type correctness of method invocation is guaranteed by using the ar-
gument types of the method as initial assignments for the type registers,
described by a static function formals, to be refined for instance methods
and constructors in Sect. 17.4:

formals(c/m) = if isStatic(c/m) then makeRegs(argTypes(c/m))

We have to extend the switchVMC of the trustfulVM in Fig. 10.2 in order
to support verifying of classes before class initialization. When the trustful
VM switches to the initialization of a class which has not yet been linked,
the diligent VM triggers a submachine to link this class. For this purpose the
universe ClassState is extended.

data ClassState = . . . | Referenced

A class can be in one of the states Referenced , Linked , Initialized or Unusable.
We assume in this chapter that at the beginning all classes are referenced.

switchVMC =
. . .
case switch of

InitClass(c)→ if classState(c) = Referenced then
linkClass(c)
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Linking a class or interface c involves linking (i.e., verifying and preparing) c,
its direct superclass and its direct superinterfaces. If the superclass of c and
all its direct superinterfaces are already linked or if c is Object, the verifi-
cation of c is started. Otherwise the linking submachine is triggered for one
of the still to be linked superinterfaces or the superclass of c—unless a class
circularity error is detected. Due to the finiteness of the class inheritance,
the recursive calls of the submachine linkClass terminate. If any of the su-
perclasses or superinterfaces of c is c itself, then the class hierarchy is cyclic
and the VM stops with an error.1

linkClass(c) =
let classes = {super(c)} ∪ implements(c)
if c = Object ∨ ∀ c′ ∈ classes : classState(c′) ≥ Linked then

prepareVerify(c)
elseif ¬cyclicInheritance(c) then

choose c′ ∈ classes, classState(c′) = Referenced
linkClass(c′)

else
halt := "Cyclic Inheritance: " · classNm(c)

There is a preparatory test for starting the verification, namely checking the
format of the class file and the static constraints for the method bodies (see
Appendix C.6 for a definition of the predicate constraintViolation).

prepareVerify(c) =
if constraintViolation(c) then

halt := violationMsg(classNm(c))
else

let verifyMeths ′ = [(c/m) | m ∈ dom(methods(cEnv(c))),
¬null(code(c/m))]

verifyMeths := verifyMeths ′

verifyClass := c
initVerify(top(verifyMeths ′))
prepareClass(c)

Preparing the class involves creating its static fields and initializing those
fields to their standard values.

prepareClass(c) =
forall f ∈ staticFields(c)

globals(c/f ) := defaultVal(type(c/f ))

In the diligent VM, only after a class has been successfully verified and pre-
pared for initialization, it is initialized by executing its <clinit> method (see
Fig. 10.2).
1 The real JVM throws a ClassCircularityError.
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17.4 Verifying JVMO

In this section we instantiate the diligentScheme by the trustfulVMO and the
extension of the verifySchemeC by succO and checkO .

Verification of JVMO code has to consider, in a run-time independent
way, the impact of instance methods and instance fields, of subtypes, and of
object initialization. Checking instance methods and instance fields raises no
new problem but requires slight modifications. The most obvious is, that the
initialization of the verifier must be adapted to prepend the target reference
of instance methods and constructors before the parameter types. For a con-
structor not in class Object the target reference has type InInit . In all other
cases the type of the target reference is the class of the method. The derived
function formals is therefore refined by:

formals(c/m) =
if isStatic(c/m) then makeRegs(argTypes(c/m))
elseif methNm(m) = "<init>" ∧ c 6= Object then

makeRegs([InInit ] · argTypes(c/m))
else

makeRegs([c] · argTypes(c/m))

Because of the subtype relation two different class types can be merged to a
common ancestor in the class tree and not to the type unusable as in the
case of primitive types. A common ancestor of two class types, however, can
also be an interface type. In general, two reference types can have several
least ancestor types. Therefore we work with sets of reference types (see
Sect. 16.1.2). The least upper bound t of two sets of reference types with
respect to the compatibility relation v in Def. 16.1.2 is simply their union.

rs1 t rs2 = rs1 ∪ rs2

The least upper bound of a set of reference types and a verify type which is
not a set of reference types is the type unusable.

The diligentVMO is obtained by instantiating the diligentScheme with the
check function checkO , the successor function succO and the trustfulVMO .

diligentVMO = diligentScheme(verifyVM , trustfulVMO)
where verifyVM = verifySchemeC (propagateVMI , succO , checkO)

Reference types require that instructions might be checked several times. Nev-
ertheless, the verification process terminates. The type states can be merged
only a finite number of times: the domains of the type state functions are
finite and the number of reference types in a program is finite.

17.5 Verifying JVME

This section extends the verifier for the object-oriented machine to verify
also the constraints which are related to exceptions and embedded subrou-
tines. The diligentVME is obtained by instantiating the diligentScheme with
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a refinement propagateVME of propagateVMI by rules for Jsr and Ret in-
structions, and with succE , checkE and trustfulVME instead of succO , checkO

and trustfulVMO .

diligentVME = diligentScheme(verifyVM , trustfulVME )
where verifyVM = verifySchemeC (propagateVME , succE , checkE )

The extended rule propagateVME completes the definition of the function
succE in Fig. 16.15 by propagating type frames also to the successors of
Ret instructions, namely to the direct successors j + 1 of all code indices j
from where the corresponding subroutine may possibly have been called. As
we will prove below, this is done in such a way that the invariant I7 from
Theorem 17.1.1 is satisfied for indices in V \ C, where V = dom(visited) and
C = dom(changed).

propagateVME (code, succ, pc) =
propagateVMI (code, succ, pc)
case code(pc) of

Jsr(s) → enterJsr(s) := {pc} ∪ enterJsr(s)
forall (i , x ) ∈ leaveJsr(s), i 6∈ dom(changed)

if regVi(x ) = retAddr(s) then
propagateJsr(code, pc, s, i)

Ret(x )→ let retAddr(s) = regVpc(x )
leaveJsr(s) := {(pc, x )} ∪ leaveJsr(s)
forall j ∈ enterJsr(s), j 6∈ dom(changed)

propagateJsr(code, j , s, pc)

The rule propagateVME takes also care that during the verification process,
the set enterJsr(s) contains exactly the code indices of visited instructions
Jsr(s), i.e.,

enterJsr(s) = {j ∈ V | code(j ) = Jsr(s)}.
Similarly propagateVME computes the set leaveJsr(s), a superset of the fol-
lowing set:

{(i , x ) | i ∈ V, code(i) = Ret(x ), regVi(x ) = retAddr(s)}.
The equality does not hold, because the type of a local register can disappear
in a merge.

propagateJsr(code, j , s, i) =
propagateSucc(code, j + 1, regJ ⊕ mod(s) � regVi , opdVi) where

regJ = {(x , t) | (x , t) ∈ mod(s) �− regVj ,
validJump(t , s) ∧ t 6= ( , )new ∧ t 6= InInit}

validJump(retAddr(l), s) = belongsTo(s) ⊆ belongsTo(l)
validJump(t , s) = True

Except for the initialization of the new functions when the verification of a
method starts, which will be given below, this completes the definition of
the diligentVME . It remains to show that the additional propagation rule
propagateVME is sound and complete.
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Proof. (Theorem 17.1.1, continued) Assume the rule propagateJsr(code, j , s, i)
has been applied without producing a failure. Then we know that i and j are
in V \ C and

– code(j ) = Jsr(s)
– code(i) = Ret(x )
– regVi(x ) = retAddr(s)

We have to show that the type frame propagation to the successor j + 1
satisfies conditions (a)–(f) of I7.
j + 1 ∈ V holds because the validCodeIndex test was passed successfully.
PropagateJsr propagates the new stack from i to j + 1, simulating a possible
return from the subroutine. In this way we ensure condition (c) of invariant I7.
The types for the registers which are propagated to j + 1 are a combination
of the types at j where the subroutine has been called and the types at i
where the subroutine returns.
Let us call a type invalid, if it is a return address type retAddr(`) such that
the subroutine s is not contained in `.
If a register is modified by the subroutine, then its type from i is propagated.
Otherwise the register disappears at j + 1. This implies condition (b) of
invariant I7. If a register is not modified by the subroutine, then its type
from j is propagated if this type is valid and different from ( , )new and
InInit . Otherwise the register disappears at j +1. This implies conditions (d)–
(f) of invariant I7. ut

Proof. (Theorem 17.1.2, continued) Assume that the method we are verifying
has a bytecode type assignment (regTi , opdTi)i∈D.
When propagateJsr(code, j , s, i) is called we know by the induction hypoth-
esis that

regVj vreg regTj and opdVj vseq opdTj ,

regVi vreg regTi and opdVi vseq opdTi .

We have to show that in the next step of the verification, after the successors
have been propagated to j + 1, the following holds:

regVj+1 vreg regTj+1 and opdVj+1 vseq opdTj+1.

It is enough to show that

regJ ⊕ (mod(s) � regVi) vreg regTj+1 and opdVi vseq opdTj+1.

By T7 (b), we know that regTi vreg mod(s) � regTj+1 and then we use that
regVi vreg regTi .
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By T7 (c), we know that opdTi vseq opdTj+1.
By T7 (d), we know that regTj vreg mod(s) �− regTj+1 and then we use that
regVj vreg regTj .
What remains to be shown is that regJ (x ) v regTj+1(x ), if x is defined in
regTj+1 and x /∈ mod(s).
Assume that x is not modified by subroutine s and x is defined in regTj+1.
Then x is also defined in regVj , regVj (x ) is a valid jump for s and differ-
ent from ( , )new and InInit , because otherwise condition T7 (e) or (f) of
Def. 16.3.8 would be violated. Hence, the local variable x is defined in regJ
and regJ (x ) = regVj (x ), therefore regJ (x ) v regTj+1(x ). ut

At the beginning of the verification of a method the new functions enterJsr
and leaveJsr have to be initialized, so that we refine the initVerify rule as
follows:

initVerify(meth) = . . .
forall s ∈ dom(enterJsr)

enterJsr(s) := ∅
forall s ∈ dom(leaveJsr)

leaveJsr(s) := ∅

In the retrospective it is confirmed that verifying embedded subroutines is
not trivial, whereas checking embedded subroutines posed no particular prob-
lems. This is the reason why we started with the checking machine before
developing the verifier by imposing necessary and sufficient conditions which
are checkable at link-time on the code.

Proof. (Main Theorem) Let any well-formed and well-typed Java program P
be given, let PC = compile(P) for the compiler defined in Part II. By Theo-
rem 16.5.2 PC has a bytecode type assignment. Therefore by Theorem 17.1.2,
PC passes successfully the bytecode verifier in the diligent VM, so that it will
be trustfully executed by the submachine trustfulVM of diligent VM without
violating any run-time checks (by Theorem 16.4.1) and by Theorem 14.1.1
with the same semantical effect as P has on the machine execJava defined in
Part I. ut

17.6 Verifying JVMN

Native methods cannot be verified because they are implemented in foreign
languages. If a native method changes the state of the VM in an unsafe way,
there could be type violations at run-time.
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verifySchemeN (check) =
if changed(0) ∧ isNative(methv ) then

if check(methv ) then
changed(0) := undef

else
halt := "Verification failed"

else
verifySchemeC (propagateVME , succE , checkE )

diligentVMN = diligentScheme(verifyVM , trustfulVMN )
where verifyVM = verifySchemeN (checkN )

What our verifier ensures is that the only methods which can be declared as
native methods are equal and clone. (The executable AsmGofer model in
Appendix A contains further native methods).





18. The dynamic virtual machine

In this chapter we refine the virtual machines of the previous chapters to a dy-
namic machine that incorporates dynamic loading and linking of classes. This
involves new rules for class loader methods and an extension of switchVME

to switchVMD to cope with referencing loaded classes (together with their
superclasses) before they are linked.

The previous machines assume that a JVM program and all referenced
classes are already loaded so that the class environment is static. However,
the real JVM is dynamic: it loads and links classes as they are needed.

Dynamic loading [23, §5.3] is the process of finding a binary form, which
during linking involving preparation and verification as described in Chap-
ter 17, is integrated into the run-time state.

The environment as seen by a running JVM program, that is the set of
loaded classes, is partitioned into separate name spaces. In JDK 1.2 there
is one name space for classes that come from the local file system, and a
separate name space for each network source. To each loaded class its loader
is attached as part of the entire class name; in this way each class is placed
into the “private” loader determined name space, which is taken into account
when checking the type compatibility of class instances.

18.1 Initiating and defining loaders

A class loader, when invoked to load a class, might delegate the loading
process to another class loader, i.e., there may be a chain of delegation. In
such a case the first class loader is called an initiating loader. The loader which
eventually loads the class and incorporates the class into the environment is
called a defining loader. Two classes are equal iff they have the same name,
where the loader part of the name refers to the defining loader. It is possible
that two classes, loaded by different initiating loaders, are defined by the
same loader. This is the reason why we have to attach the defining loader to
the class name instead of the initiating loader.

If a class C references other classes, the defining loader of class C is
used to load the references if they are not already loaded by that loader. For
example, if C is defined by loader L and the super class of C is Object,
then the loader L is used to load class Object. The loader L can load the
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class directly (becoming the defining loader) or it may delegate the loading to
another loader. The JVM environment provides a system class loader which
loads classes from the local file system.

Since the system loader does not delegate loading, all references of a class
loaded by the system loader are also loaded by the system loader. Therefore,
local classes, which are typically built-in classes, cannot reference non-local
classes. This avoids the problem of type “spoofing” local classes.

18.2 Loading classes

When the JVM needs access to a particular class, it is up to a class loader to
provide the class. Internally each class is represented as an instance of class
Class. In JDK 1.2 the built-in system class loader is used to load classes
from the local file system in a platform dependent manner. Additionally, Java
programmers can define their own class loaders by subclassing the built-in
class ClassLoader and implementing the loadClass method. The system
class loader is an instance of this class. The programming interface is as
follows:

public abstract class ClassLoader {
protected final Class findLoadedClass(String name);
protected final Class findSystemClass(String name)
throws ClassNotFoundException;

protected final Class defineClass(String name, byte[] data,
int offset, int length) throws ClassFormatError;

protected abstract Class loadClass(String name)
throws ClassNotFoundException;

protected final void resolveClass(Class c)
throws NullPointerException;

}

The class loader takes care of loading and linking, although the name
ClassLoader might suggest that it is only responsible for loading and not
linking. User defined class loaders customize the load phase; class loaders
do not differ in the way they link classes. Linking is done by the method
resolveClass.

When a class has to be linked, then it must have been loaded before.
When loading a class, all its non-loaded super classes (if any) must be loaded
as well, from bottom to top in the inheritance hierarchy. During this step
these classes are not linked. When a class is going to be linked, then during
the link phase all its non linked super classes (if any) are linked from top to
bottom in the inheritance tree.

In the JVM dynamic loading and linking is triggered by (constant pool)
resolution. When the machine executes an instruction that references a class,
field or method, it first checks whether the referenced class exists in the sense
defined below. In case it does not, the JVM invokes the loadClass method
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of the class loader that defined the referencing class, to load the referenced
class. If loadClass is called for a class that the loader has already loaded,
then the method should simply return that class. The system class loader is
implemented in that way. A class exists in the name space of a class loader,
if the loader is an initiating or defining loader for that class.

As a consequence loadClass methods typically perform the following
three steps, reflecting the programming interface defined above.

1. If the invoked class loader has already loaded the required class, it finds
the previously defined class object using the method findLoadedClass.
Upon successful search, findLoadedClass returns the previously defined
class object (which is also returned by loadClass).

2. If findLoadedClass returns null , the system class loader is consulted
using the method findSystemClass. This method tries to load the class
from the local domain and to link it. If and when loading the class is
successful, all (including the previously non-loaded) super classes are re-
quired to be loaded, as well. Furthermore, the findSystemClass method
links the class and every non linked super class. If findSystemClass
is successful, it returns the loaded and linked class object (which is
also returned by loadClass), otherwise findSystemClass throws a
ClassNotFoundException.

3. If no local class can be found (a ClassNotFoundException was thrown
in the previous step), the class file is read from the origin of the refer-
encing class and a class object is constructed from the read bytecodes
using defineClass. Incorporating the new class into the run-time state
triggers implicit loading of all super classes. Yet, at this time the loaded
class and its super classes are not linked. If defineClass completes nor-
mally, it returns the constructed class object (which is also returned by
loadClass), otherwise defineClass throws a ClassFormatError. In this
case loadClass will also throw an exception.

Alternatively the class loader can delegate the loading to another class
loader by invoking the loadClass method of that loader.

18.3 Dynamic semantics of the JVMD

The specification of dynamic loading and linking in the dynamic VM proceeds
in three steps. First, we refine the run-time state. Second, we define loading
of references. Third, we adapt the rules of the previous JVM models.

18.3.1 Refinement of the run-time state

Class loader instances are references. We use a universe Ld—a subset of the
universe of references—for class loader instances. The system class loader
sysLd is a distinguished element of this subset.
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sysLd : Ld
type Ld = Ref

Since each class loader has its own name space, a single JVM program
can load multiple classes which have the same name. If classes with the same
name have been loaded into different name spaces, the identity of the class
loader that defined the class is needed to uniquely identify the class. As
a consequence, we refine the notion of classes (and thereby of their fields
and methods) by adding a loader component to their names. We refine the
universe Class to include the loader information.

type Class = (Ld ,Name)

The defining class loader (which incorporates the class into the JVM
environment) is used as the loader component in all entries where the loader
information is needed in a class file. For example, if class C is defined by
loader L and C has syntactically a super class D , then the class file of C has
an entry (L,D) for its super class. The loader L will be the initiating loader
for D . Sometimes we write also DL instead of (L,D). The same applies to all
other entries in the class file. Later, we change the loader component of these
entries if the defining loader differs from the initiating loader. From now on,
we work only with classes which have a loader component and a class name.

State. Each class loader has its own name space. Elements of this name
space are the classes the class loader has loaded. The dynamic function ldEnv
keeps track of the loaded class object, which has been loaded under the given
class name by the corresponding (initiating or defining) class loader instance.
The name of the loaded class object (classOf ) is always Class. A dynamic
function cOf stores for a class instance the real name of the loaded class, i.e.,
the class name together with its defining loader.

ldEnv : Class → Ref
cOf : Ref → Class

Initial values of dynamic functions needed for dynamic class loading are given
at the end of this section. The following example illustrates loading of a class
by different loaders.

Example 18.3.1. Let n be a class name, let L1 and L2 be initiating loaders
for n, let L be the defining loader for n. Let r be the reference of the corre-
sponding class object. Then, the dynamic functions ldEnv , cOf , and classOf
have the following values:

ldEnv(L1,n) = r cOf (r) = (L,n)
ldEnv(L2,n) = r classOf (r) = (sysLd , Class)
ldEnv(L,n) = r

Since we have class names with the initiating loader and defining loader
as the loader component, we have to transform a class name to a name with
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Fig. 18.1 Ordering of class states
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the defining loader as the loader component. As can be seen in the above
example, for a class C we get the class which contains the defining loader,
instead of the initiating loader, as its loader component by applying the
following function liftClass:

liftClass(c) = cOf (ldEnv(c))

In the previous chapters the class state of a class could be Referenced , Linked ,
Initialized , and Unusable. In the dynamic machine we introduce two new
states Loaded and SupersLoaded .

data ClassState = . . .
| Loaded | SupersLoaded

The state Loaded means that the class is loaded. If a class has this state,
then we know nothing about the class state of the super classes and of the
referenced classes.

The state SupersLoaded is used if all super classes are loaded and the class
state of all super classes is at least SupersLoaded . A class is in state Referenced
if all super classes have at least state Referenced and all referenced classes
have at least state SupersLoaded . Fig. 18.1 shows the ordering of the different
class states.

Environment. When a class file is loaded, the class environment changes. The
function cEnv : Class → ClassFile becomes dynamic. An external function
load is used as a source for new class files on the local file system:

load : (ClassPath,Class)→ Content

Types. Changing the class environment changes all environment based de-
rived functions, in particular all typing conditions. Since already loaded and
verified classes should not become invalid, the class environment is only al-
lowed to increase.

Type compatibility has to take different name spaces into account. Using
the extension of a class to a class name with its defining loader, we define
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Fig. 18.2 Refinement of the switch machine

switchVMD =
switchVME

case switch of
InitClass(c)→ if classState(c) < Referenced then

referenceClass(c)
Result(res)→

if methNm(meth) = "<cload>" then
ldEnv(reg(0), stringOf (reg(1))) := res(0)

referenceClass(c) =
if c = Object then

classState(c) := Referenced
elseif classState(c) = SupersLoaded then

let supers = {super(c)} ∪ implements(c)
choose c′ ∈ supers, classState(c′) < Referenced

referenceClass(c′)
ifnone

loadReferences(c)
else loadSuperClasses(c)

as mentioned above two classes to be equal iff they have the same name and
the same defining loader. This guarantees that type spoofing problems as
detected by Saraswat [30] do not occur in our model. The Saraswat example
is given in Appendix A.

18.3.2 Loading references

In the dynamic machine a class can be in a class state less than Referenced .
When such a class has to be initialized, then we first have to reference the
class to reference all its super classes and to load all referenced classes. This
is done by extending the switch machine switchVME to switchVMD (see
Fig. 18.2) where a class will be referenced if the state is less than Referenced
(either Loaded or SupersLoaded).

If the class Object has to be referenced, then we set the class state im-
mediately to Referenced , because Object1 has no super class. If a class c
different from Object has to be referenced, then we distinguish between the
class states SupersLoaded and Loaded . If the state is SupersLoaded—meaning
that at least all super classes have state SupersLoaded—we reference each su-
per class which has not already been referenced. The invoked submachine
referenceClass terminates its recursive calls because the inheritance hierar-
chy is finite. If there is no unreferenced super class, we load all references of
1 Object means the class with name Object and loader component sysLd . The

same applies to the other basic classes.
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the class c, as defined by the submachine loadReferences. If the state of c is
Loaded , then we first have to load the super classes of c, which is done by
the machine loadSuperClasses described below (see Fig. 18.3).

This algorithm of referencing guarantees that the class state of a class
becomes referenced only if all super classes are at least referenced and all
referenced classes are at least in state SupersLoaded . Hence, this ensures that
the class hierarchy is loaded completely with respect to all types which may
occur during execution of the class. The following example illustrates why the
class state Loaded is not sufficient for the referenced classes in our diligent
machine.

Example 18.3.2. Let I be an interface. Let A be a class which implements
I and let A be the super class of B . In the following code fragment the
classes B and I are referenced, but A (the super class of B) is needed during
verification to determine whether B is compatible to I .

...
InvokeStatic(B ,B/getB())
InvokeVirtual(void, I /m())

Fig. 18.3 specifies loading of super classes and references. The two ma-
chines loadSuperClasses and loadReferences in that figure are based on the
scheme loadClasses. The scheme gets as its first argument a set of classes
to load and the second argument is a machine which is executed if all these
classes have at least state SupersLoaded . If there is any class which has not
been loaded, then we load the class using the machine callLoad . This machine
updates the switch function to call the method <cload> of the loader ld (the
loader component of the class) and with the class name as argument.

callLoad(ld , cn) =
switch := Call(<cload>, [ld , cn])

The method <cload>(String) is not a Java API method; it is a wrapper in
our machine to call the loadClass method. The code of the method is as
follows:

Load(addr, 0)
Load(addr, 1)
InvokeVirtual(Class, loadClass(String) )
Return(addr)

The method <cload> is similar to the method <clinit> which is also called
only by the virtual machine. When the <cload> method returns, it has to
continue at the same instruction it was invoked from. Therefore we extend
the definition of implicitCall from Chapter 10 which is used in switchVMC .

implicitCall(m) = methNm(m) ∈ { "<clinit>" , "<cload>" }
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Fig. 18.3 Loading super classes and references

loadClasses(cs,m) =
choose c ∈ cs \ dom(ldEnv)

callLoad(c)
ifnone

choose c ∈ cs, classState(liftClass(c)) = Loaded
loadSuperClasses(liftClass(c))

ifnone m

loadSuperClasses(c) =
loadClasses({super(c)} ∪ implements(c), setSupersLoaded(c))

loadReferences(c) =
loadClasses(directReferences(c), loadIndirectReferences(c))

setSupersLoaded(c) =
classState(c) := SupersLoaded
setDefiningLoadersForSupers(c)

loadIndirectReferences(c) =
loadClasses(indirectReferences(c), setReferenced(c))

setReferenced(c) =
classState(c) := Referenced
setDefiningLoaders(c)

Since we do not know and therefore cannot specify the possibly user defined
body for the loadClass method, our model can only reflect the result of its
execution, namely by specifying what happens when a <cload> method re-
turns. If it returns normally, it has extended the loader environment. There-
fore, the dynamic switch machine switchVMD in Fig. 18.2 sets—when the
method returns—the dynamic function ldEnv for the current loader instance
(in register 0) and the name of the class to load (in register 1) with the refer-
ence of the created class object (returned in res(0)). Note that the function
stringOf returns the string content of the corresponding reference.

The question arises whether we really need the wrapper function. Why
not simply call loadClass directly? We do not know anything about user
defined loaders. A loader may delegate the loading by invoking the loadClass
method of another loader. This loader may delegate again. However, the chain
of delegation is of no interest and we are only interested in the first (initiating)
loader and the last (defining) loader.

When a class is defined by a loader L, each class entry in the class file
contains L as the loader component. The loader L is the initiating loader
for all these references. At the time when the reference is loaded by L, we



18.3 Dynamic semantics of the JVMD 297

can replace the loader component by Ld using the not furthermore specified
submachine setDefiningLoaders, if Ld is the defining loader for the reference.
This is what the machines in Fig. 18.3 are doing, as we are now going to
explain in more detail.

The machine loadSuperClasses in Fig. 18.3 loads all super classes of the
class c. If the class state of all super classes is at least SupersLoaded , then
the machine setSupersLoaded sets the class state to SupersLoaded and the
not furthermore specified machine setDefiningLoadersForSupers replaces the
loader component for the super class entries (super class and implemented
interfaces) in the class file with the defining loader. All other references are
untouched, because at this time they are not necessarily loaded and the defin-
ing loader might be unknown.

Indirect references. An indirect reference is a class which appears only in
the context of another reference. More precisely, classes in argument types
of methods, and classes in return types of methods and fields are indirect
references. The other references are called direct. Let us consider the following
instruction in a class D :

GetStatic(A,C/getA(B))

The class C is a direct reference which has to be loaded by the same loader
as D . The classes in the types A and B have to be handled in the same way
as in the class C and are called indirect references. Thus we load the classes
in A and B with the defining loader of C and not with the loader of D . This
is the reason why we have to load the direct references before we load the
indirect references. Otherwise we do not know the loader to load the indirect
references. Note that the machine setDefiningLoaders takes also care of the
difference between direct and indirect references when substituting the loader
component.

Loading the references is done by loadReferences which first loads all
direct references. If all direct references are loaded and the class state for all
these is at least SupersLoaded , then the indirect references are loaded in the
same way. Finally the class state is set to Referenced and the not furthermore
specified machine setDefiningLoaders substitutes all loader components in the
class file with the defining loader.

Example (; CD) 18.3.3. The following example illustrates why we distin-
guish between direct and indirect references. Assume we have the following
classes (for readability we extend class names by their loaders):

public class AL extends BLA {
public A() { m(); n(); }
public void m() { }
public void n() {
try { super.getA().n(); }
catch (LinkageError e) { . . . }
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}
}
public classs BLA extends ALA {

public ALA getA() { return this; }
}
public class ALA { }

There is an error in the Java program, because super.getA() in the method
n returns the class ALA and this class has no method n. The bytecode of the
method n in class AL is of special interest:

...
Load(addr, 0)
InvokeSpecial(A,B/getA())
InvokeVirtual(void,A/n())
...

There seems to be no error in the bytecode. The class B has a method getA
which returns A and A has a method n. The problem is that B/getA returns
ALA and this class is not compatible to AL.

If we load the references as above and take care of direct and indirect
references, then our verifier has to verify the following annotated program:

...
Load(addr, 0)
InvokeSpecial(ALA,BL/getA())
InvokeVirtual(void,AL/n())
...

Now, the verifier detects that ALA is not compatible to AL and rejects the
program at the InvokeVirtual instruction.

Remark 18.3.1. The verifier in JDK 1.3 from Sun accepts the bytecode for the
method n in class AL and throws a LinkageError before calling the method
B/getA(), although all classes have been already loaded and initialized.

18.3.3 The trustful JVMD

JVMD extends JVMN by the native methods for loading and resolving classes
and by the native method newInstance which creates an instance for a given
class object.

The trustfulVM for JVMD is the one for JVMN , extended with the new
execVMD rule appearing in Fig. 18.4 and the new switch machine switchVMD

appearing in Fig. 18.2.
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Fig. 18.4 Trustful execution of JVMD instructions

execVMD =
execVMN

if c = ClassLoader then
execClassLoader(m)

elseif meth = Class/ newInstance() then
meth := cOf (reg(0))/ <newInstance>()

where c/m = meth

trustfulVMD = trustfulSchemeN (execVMD , switchVMD)

Rules for the final methods of class ClassLoader. Fig. 18.5 shows the new
rules of the dynamic VM for the final methods of class ClassLoader.

The method findLoadedClass is required to return the class object for
a class previously loaded by the called class loader. If the class is not found,
a null reference is returned.

The method findSystemClass attempts to find the named class by us-
ing the internal class loader sysLd .2 If the system class is not found, a
ClassNotFoundException is thrown (by loadClass). Otherwise the class is
referenced and linked. Finally, the method returns the loaded class. Loading
and linking is specified in Fig. 18.6.

The defineClass method tests whether the class name (argument 1) is
already in the name space of the loader (argument 0). In such a case the
exception ClassFormatError is thrown3. Otherwise the class—specified by
the array (arguments 2, 3, and 4)—is defined and the machine defineClass
returns the newly created class object.

The resolveClass method references and links the class specified by
the reference of the class object. It throws a NullPointerException if the
reference is null .

Note that there is no need to explicitly call resolveClass, because the
virtual machine references and links the class—if not already done—before
the class will be initialized.

The details on loading, defining, and linking are specified in Fig. 18.6.
The loadClass machine tests whether the specified class exists on the local file
system and either defines that class or throws a ClassNotFoundException.

The defineClass machine takes three arguments. The first argument is the
binary representation of the class name (the second argument) to be defined.
If the last argument is True, the new created class is returned by defineClass.
If the class name coincides with the expected class name, a new class object
2 The search is typically performed along the user’s class path, described by the

environment variable CLASSPATH.
3 The JLS does not specify this case.
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Fig. 18.5 Execution of final class loader methods

execClassLoader(m) =
if m = findLoadedClass then

let c = (reg(0), stringOf (reg(1)))
if c 6∈ dom(ldEnv) then

switch := Result([null ])
else

switch := Result([ldEnv(c)])
if m = findSystemClass then

let c = (sysLd , stringOf (reg(1)))
if c 6∈ dom(ldEnv) then

loadClass(classPath, c)
elseif classState(c) < Referenced then

referenceClass(c)
elseif classState(c) = Referenced then

linkClass(c)
else

switch := Result([ldEnv(c)])
if m = defineClass then

let c = (reg(0), stringOf (reg(1)))
if c 6∈ dom(ldEnv) then

let content = arrayContent(heap(reg(2)), reg(3), reg(4))
defineClass(content , c,True)

else
raise( "ClassFormatError" )

if m = resolveClass then
let r = reg(1)
if r = null then

raise( "NullPointerException" )
else

let c = cOf (r)
if classState(c) < Referenced then

referenceClass(c)
elseif classState(c) = Referenced then

linkClass(c)
else

switch := Result([ ])

is created and the corresponding dynamic functions are initialized properly.
Otherwise a ClassFormatError is thrown.

The linking machine linkClass in Fig. 18.6 ensures that the class and its
super classes are prepared. Note that the diligent VM has its own machine
for linking, but in the trustful VM the class states Referenced and Linked
differ only in preparation.

Rules for the final methods of class Class. If a program uses class loaders
to load and define new classes, then the loadClass method returns the class
object of the loaded class. New instances of the loaded classes can be created
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Fig. 18.6 Loading and linking machines

loadClass(classPath, c) =
if c /∈ dom(load(classPath)) then

raise( "ClassNotFoundException" )
else

defineClass(load(classPath), c,False)

defineClass(content , c, returnClass) =
let cf = analyze(content)
if classNm(cf ) 6= classNm(c) then

raise( "ClassFormatError" )
else create r

classState(c) := Loaded
heap(r) := Object(Class, ∅)
cOf (r) := c
cEnv(c) := cf
ldEnv(c) := r
if returnClass then switch := Result([r ])

linkClass(c) =
let classes = {super(c)} ∪ implements(c)
if c = Object ∨ ∀ c′ ∈ classes : classState(c′) ≥ Linked then

classState(c) := Linked
prepareClass(c)

elseif ¬cyclicInheritance(c) then
choose c′ ∈ classes, classState(c′) = Referenced

linkClass(c′)
else

halt := "Cyclic Inheritance: " · classNm(c)

using the newInstance method of class Class. The stripped down signature
of class Class is:

public final class Class{
protected final Object newInstance();

}

The newInstance method has the same semantics as if in Java a new in-
stance creation expression with an empty argument list is called. The method
newInstance is called on the reference r where r is the class object. For such
a given reference, the dynamic function cOf (see Fig. 18.6) returns the real
class name.

We model newInstance as a native method where we update the dynamic
function meth to cOf (r)/<newInstance>() with the effect, that this method
will be executed in the next step. Without loss of generality we assume that
each loaded class C contains the following code for that method:
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New(C )
Dupx (0, 1)
InvokeSpecial(void,C/<init>())
Return(addr)

We update the dynamic function meth instead of setting switch to call
<newInstance>, because otherwise we would create a new frame for the
method <newInstance>. After returning from the method <newInstance>
the native method newInstance would call <newInstance> again and again,
because the state after returning from <newInstance> would be the same as
before invoking <newInstance>.
Initialization. Dynamic loading works correctly under the assumption that
the classes Object, ClassLoader, Class, and String are pre-linked and that
an instance of the class ClassLoader, namely sysLd , is created. Furthermore,
there has to be a class object for each loaded class.

Assume that initially the dynamic function heap is defined only for sysLd
and heap(sysLd) is an instance of ClassLoader. Additionally, the class state
for the classes Object, Class, ClassLoader, and String is Linked and cEnv
is defined for these classes. Then the initial class objects and the initial values
for the corresponding dynamic functions can be obtained by applying the
following rule:

initializeDynamicLoading(classes) =
forall c ∈ classes

create r
heap(r) := Object(Class, ∅)
cOf (r) := c
ldEnv(c) := r

The dynamic VM starts execution by interpreting the instructions of the in-
ternal method <entrypoint> (see Chapter 10). The method <entrypoint>,
which calls the main method of the class to execute, is defined in class Object.
The initial attempt to call main of class Main discovers that the class state
of Main is loaded. The virtual machine tries to initialize the class and transi-
tively its super classes using sysLd (the system loader) as the current loader.
Afterwards, the class and transitively its super classes are initialized, that is
verified, prepared, linked, and initialized in the strict sense. Now, the method
main can be called.

18.3.4 The defensive JVMD

The defensive JVMD extends the defensive JVMN by the native methods for
dynamic loading.

checkD(c/m) =
c = ClassLoader ∧ m ∈ { findLoadedClass , findSystemClass ,

resolveClass , defineClass } ∨
c/m = Class/ newInstance() ∨
checkN (c/m)



18.3 Dynamic semantics of the JVMD 303

defensiveVMD =
defensiveSchemeN (checkD , trustfulVMD)

18.3.5 The diligent JVMD

The diligent JVMD extends the diligent JVMN by the new check function
checkD and the trustful machine trustfulVMD .

diligentVMD = diligentScheme(verifyVM , trustfulVMD)
where verifyVM = verifySchemeN (checkD)

18.3.6 Exercises

Exercise 18.3.1. The loadClass machine is used by the native method
findSystemClass. Why do we call defineClass with False as the last ar-
gument?

Exercise 18.3.2. The JLS uses loading constraints [23, §5.3.4] to detect type
errors if there are classes with the same name defined by different loaders.
Why do we not need loading constraints?

Exercise 18.3.3. The loadClasses scheme in Fig. 18.3 applies the liftClass
function to class c. Why do we have to use liftClass(c) instead of c?

Exercise 18.3.4. Let A and B we classes. Consider the following instruc-
tions in class C defined by loader L:

– New(B)
– GetField(B [ ],A/f )
– InvokeVirtual(B ,A/m(int,C ))
– InvokeStatic(void,B/m(int,A))

Which loader will be used to load A, B , and C in the above instructions?

Exercise 18.3.5. The dynamic function ldEnv contains the relation between
a class and its class object. Why do we update the dynamic function in
switchVMD (Fig. 18.2) and in defineClass (see Fig. 18.6)? What are the
differences?

Exercise 18.3.6. Extend the formulation of the Main Theorem from the
diligentVME to the dynamic diligentVMD and prove the theorem from ap-
propriate assumptions on the class loaders.





A. Executable Models

The ASM models introduced in this book are executable with AsmGofer [32]
where all external functions (and predicates) can be computed which in the
models are only abstractly specified. AsmGofer is an Abstract State Machine
programming system; an extension of the functional programming environ-
ment Gofer [22] (more precisely TkGofer [36]—an extension of Gofer for
graphical user interfaces). The AsmGofer tool was developed for executing
the ASM models in this book, but it is a general interpreter for a large class
of ASMs. AsmGofer allows to execute an ASM step by step. In each step the
current state can be observed.

We defined graphical user interfaces (GUIs) for our models to simplify the
interaction between the user and the AsmGofer interpreter. The source code
of AsmGofer, installation instructions, and the sources of our ASM models
are provided by the attached CD (see the README file in the root directory
of the CD). All executable models have been developed by Joachim Schmid,
Siemens Corporate Technology, Munich (see machines/files/license.term
on the CD for further information).

There are precompiled binaries of AsmGofer for several popular operating
systems like Linux, Solaris Sparc, and Microsoft Windows. For such operating
systems, our executable models can be started directly from the CD with-
out installing anything. Furthermore, there is an installation program for
Microsoft Windows based platforms.

The following sections introduce the three graphical user interfaces for
Java, the compiler from Java to bytecode, and the Java Virtual Machine. At
the end of this chapter, the reader should be able to execute a Java program
with our machine, compile it to bytecode, and execute that bytecode with
our Java Virtual Machine.

A.1 Overview

The ASM models presented in this book are executable. Each model reads
its input from files. The input format for the Java-ASM and the Compiler-
ASM is the standard Java syntax. Given a Java program, the Compiler-ASM
generates bytecode in a textual representation called Jasmin [24]. This textual
representation of bytecode is the input for the JVM-ASM.
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Fig. A.1 Relationship between different machines
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Usually, bytecode is stored in the binary representation called class file.
However, we use the textual representation, because it is easier to read and
to generate. There are several tools to convert between the binary and the
textual representation. For example, Jasmin [24] and BCEL (Bytecode En-
gineering Library) [15], which are also provided by the attached CD.

Fig. A.1 gives an overview about the different file formats (denoted by
rectangles) and shows the relationship between the ASM-machines in this
book and the corresponding machines from Sun.

The source language is Java (suffix .java). The Java-ASM reads programs
in the source language and executes them. There is no counterpart by Sun.
The Compiler-ASM reads also programs in the source language Java and
compiles them to bytecode in Jasmin syntax (suffix .j). On the other hand,
the Sun-Compiler generates class files (suffix .class). The JVM-ASM and
the Sun-JVM read input in Jasmin syntax and class files, respectively. Due to
Jasmin and BCEL, there are several possibilities to use and mix the different
machines and compilers.

A.2 Java

The ASM model for Java is available as an executable model with a graphical
user interface. The GUI is like a debugger and can be used to observe the
behavior of a Java program. Although we introduced different machines for
Java, namely execJavaI , . . . , execJavaT (see Part I) it is not useful to execute
only JavaI statements, because each Java program contains at least one class
and one method. Hence, there is only one GUI, which supports all features
up to JavaT .
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A.2.1 Completing the Java ASM

The Java specification [18] contains additional features which do not appear in
our models, but they can all be handled in a routine manner using the method
described in this book. Not supported are packages, throws clauses, switch
statements, for loops, do while loops, the operators for bit manipulation
>>=, >>>=, <<=, ^=, >>, >>>, <<, &=, |=, &, ~, ^, |, the increment operator ++,
the decrement operator --, and the following special assignment operators
*=, +=, -=, %=, and /=.

One could argue that a Java specification is complete only together with
a specification of all API methods the language comes with. We specify and
implement all Java API methods which are needed to execute the exam-
ples in the book. The file machines/predefined.java on the CD contains
our environment for execution. This file is loaded at runtime. For example,
our class Object provides the methods <init>, equals, notify, notifyAll,
toString, and wait. Other supported classes and interfaces are:

– ArithmeticException
– ArrayIndexOutOfBoundsException
– ArrayStoreException
– ClassCastException
– Cloneable
– CloneNotSupportedException
– Comparable
– Error
– Exception
– ExceptionInInitializerError
– Float
– IllegalThreadStateException
– IndexOutOfBoundsException
– Integer
– InterruptedException
– LinkageError
– NoClassDefFoundError
– NullPointerException
– Number
– PrintStream
– Runnable
– RuntimeException
– String
– StringBuffer
– System
– Thread
– ThreadDeath
– Throwable
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Note that these classes and interfaces are not defined completely, but they
can be extended by the reader if he wishes to do so.

The primitive types byte, short, int, long, float, and double are sup-
ported by the type system, but not implemented according to the Java spec-
ification [19, §4.2]. The integral types are mapped to the AsmGofer type Int
and the floating point types are mapped to the AsmGofer type Float .

A.2.2 Starting the machine

For the following steps, we assume that AsmGofer has been installed suc-
cessfully (see instructions on the CD for further information) or there is a
corresponding precompiled binary.1 We further assume, that the executable
ASM-models are located in the directory ~/jbook/machines which is the
current working directory.

For a unix like environment, the command ./java calls AsmGofer and
loads all necessary files for the Java machine. A user for Microsoft Win-
dows should either type java in the command prompt or double click the file
java.exe in the explorer. The output should look like the following:

joe:~/jbook/machines > ./java
=== AsmGofer v1.0.2 (TkGofer v2.0) ===
(with modules: guiMonad, widget, time, io, concurrent, asmvar)
Gofer Version 2.30a Copyright (c) Mark P Jones 1991-1994

Reading script file "AsmGofer/Preludes/tk.prelude-all-asm":
Reading script file "files/jvm/lib/monad.gs":
...
Reading script file "files/gui/main.gs":

Gofer session for:
Reading script file "files/basic/types.gs":
...
files/java/gui/main.gs
? please wait (starting the GUI)

AsmGofer is an interpreter and is ready to use when the ? prompt appears.
It is possible to use the interpreter in console mode, but we prefer using the
GUI. The GUI (see Fig. A.2) will be automatically started by the script.

A.2.3 Introduction to the GUI

The GUI (see Fig. A.2) is divided into different parts. The main window
contains the source code of the selected method. On startup this is the code
1 Precompiled binaries are available for Microsoft Windows and for the unix-like

operating systems Linux, cygwin under Microsoft Windows, and Solaris Sparc.
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Fig. A.2 Java GUI

of the method Object.<entrypoint>. This method is used to call the main
method of the class to execute (if there is any program). Left to the source
window there is the METHODS frame. The frame contains all known methods
preceeded by their class name.

At the bottom there are three frames, namely HEAP, FRAME-STACK, and
CLASS-INFO. The HEAP frame displays the content of the dynamic function
heap in the notation ref =value where ref is the heap reference. Note that the
system thread is always present in the heap and has reference 1.

The frame FRAME-STACK displays the frame information of the dynamic
function frames and the current frame: the method name and the local vari-
ables of each frame. The first (top) element in the list is the current method
followed by the local variables, then the method which has called the current
method, and so on.

Information about loaded classes, their global (static) variables, and their
class state (dynamic function classState) is shown in the CLASS-INFO frame.

The fields frames, steps, break, and thread contain information about
the size of the current frame stack, the number of steps executed, the current
breakpoint (if there is any), and the current thread reference, respectively.
Breakpoints are described in Appendix A.2.5.

The frame CONTROL contains several buttons to load and execute a given
program step by step. In particular these are the following buttons:

– Load
Opens the file manager to load a Java program. After loading the file the
new classes and methods are shown in the corresponding frames.



310 A. Executable Models

Fig. A.3 Control execution

– Locate
Highlights the method and phrase which will be executed next.

– Step
Executes one step of the ASM model.

– Step call
If the current phrase is a method call, then the method is executed com-
pletely. Afterwards, the GUI is updated and ready for the next command.
Otherwise the behavior is the same as pressing the button Step.

– Run
Executes the program until it terminates or a breakpoint is reached. During
the run, the GUI is updated in each step and the user can stop and start
the execution.

– Break
Sets a breakpoint to the marked position. More information about break-
points can be found in Appendix A.2.5.

– Reset
Resets all dynamic functions to their initial values. This button can be
used to restart the execution of a program.

– Main?
Usually the first main method of the loaded classes is executed. If there are
several classes, there might be several main methods. The button Main?
lists all known signatures for main methods and the user can choose the
method to execute. The method Object.<entrypoint> will be modified
to call the corresponding main method.

– Quit
Quits the GUI and leaves the AsmGofer interpreter.

A.2.4 Running an example

Start the Java interpreter as described in the last section and load the file
examples/java/Exercise6_2_2/Test.java. The file contains an example
for throwing and catching exceptions.

After loading the file, the METHODS frame contains the methods <init>(),
<clinit>(), test(int) and the method main of class Test. The methods
<init> and <clinit> are not present in the Java source code. They have
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been generated with default bodies, because each class needs these two meth-
ods. The code of Object.<entrypoint> has been modified to call the main
method of class Test and to catch all exceptions. We do not support runtime
arguments for the main method. Thus the method is called with argument
null:

public static void Object.<entrypoint>() {
try {
Test.main(null);

} catch (Throwable x){ }
return;

}

After pressing the button Run the execution starts and the Run window (see
Fig. A.3) appears. The window contains a slide to change the execution speed
and four buttons to control the run:

– cancel
Cancels the execution and closes the window. The execution can be con-
tinued by pressing the Run (or step) button again.

– clear
Clears the current breakpoint (if there is any).

– finish
Executes the program until it terminates or until the breakpoint is reached.
During the execution the GUI is not updated and does not react to any
user commands. This mode is for fast execution.

– start or stop
Starts and stops the execution without closing the window.

During the run, the GUI is updated in each step. For example, Fig. A.4
shows the GUI while throwing an exception.

The Run window closes itself if no further execution is possible. The pro-
gram can be executed again by resetting the state with the button Reset
where each dynamic function is set to its initial value.

A.2.5 Breakpoints

Sometimes we are interested in local variables or heap values at special time
points. For instance, in the above example, the state before executing the
finally code. Breakpoints help to interrupt the execution (during Run or
Step call) at certain positions in the source program.

Setting breakpoints. The GUI supports only one breakpoint. Therefore set-
ting a new breakpoint removes the old breakpoint. To set a breakpoint, first
select the corresponding method, mark the phrase, and press the button
Break. The breakpoint is shown in the info field break:. The GUI stores the
marked position and interrupts the execution during Run and Step call if
the execution position is equal to the breakpoint.
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Fig. A.4 Execution of Exercise 6.2.2

Removing breakpoints. The Run window in Fig. A.3 has a button clear which
removes the breakpoint.

A.2.6 Examples on the CD

Java examples are located in the directory machines/examples/java on the
CD. There is a directory for each example. In the directory there are the
source files and either a file called out or a file no_out. The file out contains
the output of the example when running it with our Java-ASM. If the file
no_out is present, then the example does not produce an output.

A.3 Compiler

Fig. A.5 shows the GUI for the Compiler-ASM. The GUI can be used to load
Java programs and to compile them into bytecode.

A.3.1 Completing the Compiler ASM

The compiler supports everything which is supported by the Java-ASM, ex-
cept threads (excluding in particular the synchronized statement).

A.3.2 Starting the machine

Similar to the Java-ASM, the command ./compiler (or for Microsoft Win-
dows users the file compiler.exe) calls AsmGofer with all files necessary for
the compiler. The output should look as follows:
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Fig. A.5 Compiler GUI

joe:~/jbook/machines > ./compiler
=== AsmGofer v1.0.2 (TkGofer v2.0) ===
(with modules: guiMonad, widget, time, io, concurrent, asmvar)
Gofer Version 2.30a Copyright (c) Mark P Jones 1991-1994

Reading script file "AsmGofer/Preludes/tk.prelude-all-asm":
Reading script file "files/jvm/lib/monad.gs":
...
files/compiler/gui/main.gs
? please wait (starting the GUI)

The script automatically starts the GUI (Fig. A.5) after loading the files.

A.3.3 Introduction to the GUI

The GUI consists of four parts. Namely the CONTROL frame, the METHODS
frame, the source window, and the CLASSES frame.

The METHODS frame shows all known methods preceeded by the corre-
sponding class name. The source code of the selected method is shown in the
source window in the middle. All known classes are displayed in the CLASSES
frame. The CONTROL frame contains the following buttons:

– Load
Opens the file manager to load a Java program. The first class of the
program will be selected in the CLASSES frame.

– Compile
Compiles the selected class (in the CLASSES frame) to bytecode in Jasmin
syntax. The GUI opens the file manager and asks for a filename to store
the bytecode. The default filename for a class with name n is n.j .
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Fig. A.6 Execution language

– Quit
Leaves the GUI and the AsmGofer interpreter.

A.3.4 Examples on the CD

All examples in the java directory except the examples about threads can be
used for the compiler. Other compiler examples are located on the CD in the
directory machines/examples/compiler.

A.4 Java Virtual Machine

The ASM models for the Java Virtual Machine are available as executable
models. We have three different machines. Namely the Trustful JVM, the
Defensive JVM, and the Diligent JVM. The Trustful JVM (Part II) does not
check anything, the Defensive JVM (Chapter 15) checks all instructions on
the fly, and the Diligent JVM (Chapter 17) verifies a class before execution.
The GUI is the same for all these machines.

In all JVM-ASMs the supported sublanguage can be selected (Fig. A.6).
This means that the machine can execute instructions up to JVMI , or JVMC ,
JVMO, JVME , JVMN , and JVMD. JVMN is needed for output and JVMD
for dynamic loading (the Saraswat example described below, e.g.). Without
the features of JVMD the GUI loads all referenced classes, because otherwise
we could not execute the given program. Initially the sublanguage is JVMN .

Switching from or to dynamic loading resets the machine to its initial
state, because in dynamic mode each loaded class needs an instance of class
Class which we create only in dynamic mode. Furthermore, loading refer-
ences of a class can be delayed until the class needs to be linked. Hence, for
examples about dynamic loading, first switch to dynamic mode and then load
the example.
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A.4.1 Completing the JVM ASM

The list of supported bytecode instructions is given in Appendix C.8. Similar
to Java, to be complete, one should implement all Java API methods. We
have implemented all the API methods which are needed for executing the
examples in the book. The supported classes and interfaces are defined in the
following two directories:

– machines/predefined.jvm/java/lang
– machines/predefined.jvm/java/io.

There are definitions for the following classes and interfaces:

– AbstractMethodError
– ArithmeticException
– Array
– ArrayIndexOutOfBoundsException
– ArrayStoreException
– Class
– ClassCastException
– ClassLoader
– ClassNotFoundException
– Cloneable
– CloneNotSupportedException
– Comparable
– Error
– Exception
– ExceptionInInitializerError
– Float
– IncompatibleClassChangeError
– Integer
– LinkageError
– NegativeArraySizeException
– NoClassDefFoundError
– NullPointerException
– Number
– PrintStream
– RuntimeException
– String
– StringBuffer
– System
– Throwable

Here too, the classes and interfaces are not defined completely, but can
be extended easily. Furthermore, the primitive types are mapped to the
AsmGofer types Int and Float as in Java and are not implemented according
to the specification [23, §2.4].
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A.4.2 Starting the machines

The JVM machines can be started similarly to the Java-ASM and the
Compiler-ASM. The scripts are ./trustful, ./defensive, and ./diligent.2

The output should look as follows:

joe:~/jbook/machines > ./diligent
=== AsmGofer v1.0.2 (TkGofer v2.0) ===
(with modules: guiMonad, widget, time, io, concurrent, asmvar)
Gofer Version 2.30a Copyright (c) Mark P Jones 1991-1994

Reading script file "AsmGofer/Preludes/tk.prelude-all-asm":
Reading script file "files/jvm/lib/monad.gs":
...
files/jvm/gui/jvmgui.gs
? please wait (starting the GUI)

The scripts start the GUI (Fig. A.7) immediately after loading the files.

A.4.3 Introduction to the GUI

The JVM GUI consists of several frames and info fields. The frames HEAP,
CLASS-INFO, STACK, and VARIABLES give information about the current run:

– HEAP
Displays the content of the dynamic function heap. The notation is ref =
class where ref is the heap reference. The system class loader has reference
1.

– CLASS-INFO
Displays all loaded classes together with their class state and their global
(static) variables. Note that a class name is shown together with the ref-
erence of its class loader when JVMD is selected.

– STACK
Displays all stack frames. A stack frame starts with the name of the method
followed by the content of the corresponding stack. The stack values are
denoted by n = value where n equals 0 is the top stack element.
During bytecode verification, the window displays the stack types (opdT )
of the current verified instruction.

– VARIABLES
Displays all local variables in the frame. The window is organized in the
same way as the STACK window. The current method is always the first
element. The variables are denoted by n = value where n is the number of
the variable.

2 Users for Microsoft Windows should use the corresponding exe file (extension
.exe).
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Fig. A.7 Java Virtual Machine GUI

During bytecode verification, the window displays the local variable types
(regT ) of the current verified instruction.

The INSTRUCTIONS frame at the bottom contains the bytecode instruc-
tions of the selected method in the METHODS frame. The METHODS frame shows
all known methods together with their class names.

Additionally, there are several info fields. These fields contain information
about dynamic functions like pc or switch and other information like the
current breakpoint. In particular, there are the following fields:

– pc
The value of the dynamic function pc. During verification the field contains
the pc of the currently verified instruction.

– stacks
The number of stacks.
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– steps
The number of execution steps. Verification steps are not counted.

– switch
The value of the dynamic function switch.

– phase
The current execution mode. Possible values are executing, preparing ver-
ification, and bytecode verification.

– break
The current breakpoint. Breakpoints are handled in the same way as break-
points in Java. A breakpoint can be set to every bytecode instruction.

As for Java and Compiler GUI, there are buttons on the left side to load
and execute a program. The buttons have the following behavior:

– Load
Opens the file manager to load a JVM program. The GUI manages a
variable classPath to store the directories where the user loads classes.
These directories are searched for when a class should be loaded during
runtime. Resetting the machine resets also this variable.

– Locate
Highlights the current instruction and method.

– Step one
Executes one step.

– Step pc
Executes until the value of pc is different from the current value.

– Step call
If the current instruction is a method call, then the method is executed
completely before the user gets back the control, otherwise the behavior is
the same as Step one.

– Run
Starts the automatic run mode, as in Java.

– Break
Sets a breakpoint to the highlighted instruction.

– Reset
Resets all dynamic functions to their initial values. After resetting, the
GUI is also in its initial state.

– Main?
The button displays a window with all main methods. The user can select
the method to execute (as for Java).

– Quit
Quits the GUI and the AsmGofer interpreter.
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A.4.4 Examples on the CD

The directory machines/examples/jvm contains examples for the Java Vir-
tual Machine. These examples are mainly the examples of the Java part
compiled with our compiler.

A.4.5 Dynamic Loading – Saraswat’s Example

The class definitions below are similar to Saraswat’s example [30]. For better
readability we annotate class names with the defining loader.

The method invocation rr.getR() in the constructor of class RT L is of
special interest. The variable rr is of type RRsysLd . Therefore, the result type
of the method invocation is the result type of the method definition getR()
in class RRsysLd . The class RRsysLd is loaded in such a way, that the result
type of getR() will be RsysLd (see definition below).

Let us reconsider the method invocation rr.getR() in the constructor of
class RT L. The result of the invocation is assigned to the variable r, which
has declared type RL. The assignment violates the type constraints of Java,
if class RsysLd (the result type of the invocation) is not compatible to RL

(the declared type of r). This is the case in our example, where L is supposed
to be different from sysLd .

Earlier versions of the JDK did not detect a type error in the assignment
r = rr.getR() even if L was different from sysLd . This error in the Sun
verifier allowed type spoofing of local classes. In the example below, the Sun
verifier verified the code of class RT L with type RL for variable r, although
at run-time the type of r was RsysLd . Our JVM with dynamic loading detects
the type error when verifying the class RT L.

public class RT L {
public RT() {
try {

RRsysLd rr = new RRsysLd();
RL r = rr.getR();
r.r = 300960;

} catch (Throwable e) {
...

}
}

}

public class RRsysLd {
public RsysLd getR() {
return new RsysLd();

}
}



320 A. Executable Models

public class RsysLd {
public String r = "abc";
}

public class RL {
public int r;

}

There are two questions to be addressed, namely whether (i) it is possible
to write bytecode, such that the above situation occurs, and (ii) how we can
show that with our machine the type error will be detected. In reproducing
Saraswat’s example we are somehow handicapped by the fact that our ma-
chine supports only some Java API methods. For example, it is not possible
to load classes from a given URL.

In the following we describe how to write a class loader for the above ex-
ample which can be used on our JVM. The presented class loader is a slightly
modified version of the class loader given by Saraswat in his example. For
simplicity we describe the classes in the source language and not in bytecode
directly. Therefore, the classes have to be compiled with the Sun compiler 3

to bytecode. BCEL can then be used to translate the bytecode into Jasmin
syntax, which can be executed on our machine.

public abstract class LocalClassLoader extends ClassLoader {
private String directory;
public LocalClassLoader (String dir) {
directory = dir;
}
protected Class loadClassFromFile(String name)

throws ClassNotFoundException, IOException {
FileInputStream f =

new FileInputStream(directory + name + ".class");
int bytecount = f.available();
byte[] buffer = new byte[bytecount];
try {

f.read(buffer);
return defineClass(name, buffer, 0, bytecount);

}
catch (Exception e) { ... }

}
}

The class loader is initialized with a directory name, where the loader has
to look for classes. The method loadClassFromFile reads the content of
the given file name in that directory (if there is such a file). Afterwards, the
3 Our compiler does not support the class ClassLoader.
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method defines and returns the class. The following class extends the previous
class and defines the delegation to the system loader.

public class DelegatingLoader extends LocalClassLoader {
public DelegatingLoader (String dir) { super(dir); }
public synchronized Class loadClass(String name)
throws ClassNotFoundException {
try {
if (name.equals("RR") || name.startsWith("java")) {
return findSystemClass(name);

}
else
return loadClassFromFile(name);

} catch (Exception e) { ... }
}

}

Assume that L is an instance of DelegatingLoader. If L has to load class
RT , it loads the class from the local file system, and L is the defining loader
for RT . The class R is referenced in RT , and therefore the class R will also
be loaded from the local file system and defined by L.

On the other hand, if L has to load class RR, then L delegates loading to
the system loader which will become the defining loader for that class. The
class contains also a reference R which is loaded and defined by the system
loader, too. Now, we have the situation described above.

The presented class LocalClassLoader compiled with JDK 1.2 and trans-
lated to Jasmin syntax with BCEL works also with our JVM. Note that our
implementation changes the suffix .class to .j. This allows to use the same
Java code for execution with JDK and for our JVM. Note also, that the
method available reports always size 0. Nevertheless, loading classes from
the local file system and defining them in this way, works fine in our imple-
mentation.

The directory machines/examples/jvm/Saraswat contains the above ex-
ample. Example 18.3.3 deals also with dynamic loading.
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B.1 Rules

execJava = execJavaI

execJavaC

execJavaO

execJavaE

execJavaT

execJavaI =
execJavaExpI

execJavaStmI

execJavaC =
execJavaExpC

execJavaStmC

execJavaO =
execJavaExpO

execJavaE =
execJavaExpE

execJavaStmE

execJavaT =
execJavaStmT

context(pos) = if pos = firstPos ∨ restbody/pos ∈ Bstm ∪ Exp then
restbody/pos

else
restbody/up(pos)

yieldUp(result) =
restbody := restbody [result/up(pos)]
pos := up(pos)
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yield(result) =
restbody := restbody [result/pos]

execJavaExpI = case context(pos) of
lit → yield(JLS(lit))

loc → yield(locals(loc))

uop αexp → pos := α
uop Ival → yieldUp(JLS(uop, val))

αexp1 bop βexp2 → pos := α
Ival bop βexp → pos := β
αval1 bop Ival2 → if ¬(bop ∈ divMod ∧ isZero(val2)) then

yieldUp(JLS(bop, val1, val2))

loc = αexp → pos := α
loc = Ival → locals := locals ⊕ {(loc, val)}

yieldUp(val)

αexp0 ? βexp1 : γexp2 → pos := α
Ival ? βexp1 : γexp2 → if val then pos := β else pos := γ
αTrue ?Ival : γexp → yieldUp(val)
αFalse ? βexp : Ival → yieldUp(val)
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execJavaStmI = case context(pos) of
; → yield(Norm)
αexp;→ pos := α
Ival ; → yieldUp(Norm)

break lab; → yield(Break(lab))
continue lab; → yield(Continue(lab))
lab : αstm → pos := α
lab : INorm → yieldUp(Norm)
lab : IBreak(labb) → if lab = labb then yieldUp(Norm)

else yieldUp(Break(labb))
lab : IContinue(labc)→ if lab = labc then yield(body/pos)

else yieldUp(Continue(labc))
phrase(Iabr)→ if pos 6= firstPos ∧ propagatesAbr(restbody/up(pos)) then

yieldUp(abr)

{ } → yield(Norm)
{α1stm1 . . .

αn stmn} → pos := α1

{α1Norm . . .INorm} → yieldUp(Norm)
{α1Norm . . .INormαi+1stm i+1 . . .

αn stmn} → pos := αi+1

if (αexp) βstm1 else γstm2 → pos := α
if (Ival) βstm1 else γstm2 → if val then pos := β else pos := γ
if (αTrue)INorm else γstm → yieldUp(Norm)
if (αFalse) βstm else INorm → yieldUp(Norm)

while (αexp) βstm → pos := α
while (Ival) βstm → if val then pos := β else yieldUp(Norm)
while (αTrue)INorm → yieldUp(body/up(pos))

Type x ;→ yield(Norm)

execJavaExpC = case context(pos) of
c.f → if initialized(c) then yield(globals(c/f )) else initialize(c)
c.f = αexp → pos := α
c.f = Ival → if initialized(c) then

globals(c/f ) := val
yieldUp(val)

else initialize(c)

c.mα(exps)→ pos := α
c.mI(vals) → if initialized(c) then invokeMethod(up(pos), c/m, vals)

else initialize(c)

( ) → yield([ ])
(α1exp1, . . . ,

αn expn) → pos := α1

(α1val1, . . . ,
Ivaln) → yieldUp([val1, . . . , valn ])

(α1val1, . . . ,
Ivali ,

αi+1expi+1 . . .
αn expn)→ pos := αi+1
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initialize(c) =
if classState(c) = Linked then

classState(c) := InProgress
forall f ∈ staticFields(c)

globals(f ) := defaultVal(type(f ))
invokeMethod(pos, c/<clinit>, [ ])

if classState(c) = Linked then
initWait(c) := ∅
initThread(c) := thread

if classState(c) = InProgress ∧ initThread(c) 6= thread then
exec(thread) := Waiting
cont(thread) := (frames, (meth, restbody , pos, locals))
initWait(c) := initWait(c) ∪ {thread}

if classState(c) = Unusable then
fail(NoClassDefFoundErr)

execJavaStmC = case context(pos) of
static αstm → let c = classNm(meth)

if c = Object ∨ initialized(super(c)) then pos := α
else initialize(super(c))

static αReturn → yieldUp(Return)

return αexp; → pos := α
return Ival ; → yieldUp(Return(val))
return; → yield(Return)
lab : IReturn → yieldUp(Return)
lab : IReturn(val)→ yieldUp(Return(val))
Return → if pos = firstPos ∧ ¬null(frames) then

exitMethod(Norm)
Return(val) → if pos = firstPos ∧ ¬null(frames) then

exitMethod(val)

INorm;→ yieldUp(Norm)

invokeMethod(nextPos, c/m, values)
| Native ∈ modifiers(c/m) =

invokeNative(c/m, values)
| otherwise =

frames := push(frames, (meth, restbody ,nextPos, locals))
meth := c/m
restbody := body(c/m)
pos := firstPos
locals := zip(argNames(c/m), values)
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exitMethod(result) =
let (oldMeth, oldPgm, oldPos, oldLocals) = top(frames)
meth := oldMeth
pos := oldPos
locals := oldLocals
frames := pop(frames)
if methNm(meth) = "<clinit>" ∧ result = Norm then

restbody := oldPgm
classState(classNm(meth)) := Initialized

elseif methNm(meth) = "<init>" ∧ result = Norm then
restbody := oldPgm[locals( "this" )/oldPos]

else
restbody := oldPgm[result/oldPos]

execJavaExpO = case context(pos) of
this→ yield(locals( "this" ))

new c → if initialized(c) then create ref
heap(ref ) := Object(c, {(f , defaultVal(type(f )))

| f ∈ instanceFields(c)})
waitSet(ref ) := ∅
locks(ref ) := 0
if c �h Thread then

exec(ref ) := NotStarted
sync(ref ) := [ ]
interruptedFlag(ref ) := False

yield(ref )
else initialize(c)

αexp.c/f → pos := α
Iref .c/f → if ref 6= null then yieldUp(getField(ref , c/f ))

αexp1.c/f = βexp2 → pos := α
Iref .c/f = βexp → pos := β
αref .c/f = Ival → if ref 6= null then

setField(ref , c/f , val)
yieldUp(val)

αexp instanceof c → pos := α
Iref instanceof c → yieldUp(ref 6= null ∧ classOf (ref ) � c)

(c)αexp → pos := α
(c)Iref → if ref = null ∨ classOf (ref ) � c then yieldUp(ref )

αexp.c/mβ(exps)→ pos := α
Iref .c/mβ(exps) → pos := β
αref .c/mI(vals) → if ref 6= null then

let c′ = case callKind(up(pos)) of
Virtual → lookup(classOf (ref ), c/m)
Super → lookup(super(classNm(meth)), c/m)
Special → c

invokeMethod(up(pos), c′/m, [ref ] · vals)
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failUp(exc) = yieldUp(throw new exc(); )
fail(exc) = yield(throw new exc(); )

execJavaStmE = case context(pos) of
throw αexp;→ pos := α
throw Iref ;→ if ref = null then failUp(NullPointerException)

else yieldUp(Exc(ref ))

try αstm catch . . . → pos := α
try INorm catch . . . → yieldUp(Norm)
try IExc(ref ) catch (c1 x1) β1stm1 . . . catch (cn x n) βn stmn →

if ∃ 1 ≤ j ≤ n : classOf (ref ) �h cj then
let j = min{i | classOf (ref ) �h ci}
pos := βj

locals := locals ⊕ {(xj , ref )}
else yieldUp(Exc(ref ))

try Iabr catch (c1 x1) β1stm1 . . . catch (cn x n) βn stmn → yieldUp(abr)
try αExc(ref ) . . . catch (ci x i)

INorm . . . → yieldUp(Norm)
try αExc(ref ) . . . catch (ci x i)

Iabr . . . → yieldUp(abr)

αstm1 finally βstm2 → pos := α
INorm finally βstm → pos := β
Iabr finally βstm → pos := β
αs finally INorm → yieldUp(s)
αs finally Iabr → yieldUp(abr)

lab : IExc(ref ) → yieldUp(Exc(ref ))
static αExc(ref )→

if classOf (ref ) �h Error then
yieldUp(Exc(ref ))

else
failUp(ExceptionInInitializerError)

Exc(ref )→ if pos = firstPos ∧ ¬null(frames) then
exitMethod(Exc(ref ))
if methNm(meth) = "<clinit>" then

classState(classNm(meth)) := Unusable

execJavaExpE = case context(pos) of
αval1 bop Ival2 → if bop ∈ divMod ∧ isZero(val2) then

failUp(ArithmeticException)
Iref .c/f → if ref = null then failUp(NullPointerException)
αref .c/f = Ival → if ref = null then failUp(NullPointerException)
αref .c/mI(vals)→ if ref = null then failUp(NullPointerException)
(c)Iref → if ref 6= null ∧ classOf (ref ) 6� c then

failUp(ClassCastException)

releaseLock(phrase) =
let [p] · rest = sync(thread)
sync(thread) := rest
locks(p) := locks(p)− 1
yieldUp(phrase)
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killThread =
waitSet(thread) := ∅
exec(thread) := Dead
forall q ∈ waitSet(thread)

exec(q) := Notified

execJavaStmT = case context(pos) of
synchronized (αexp) βstm → pos := α
synchronized (Iref ) βstm →

if ref = null then failUp(NullPointerException)
else

if ref ∈ sync(thread) then
sync(thread) := [ref ] · sync(thread)
locks(ref ) := locks(ref ) + 1
pos := β

else
exec(thread) := Synchronizing
syncObj (thread) := ref
cont(thread) := (frames, (meth, restbody , β, locals))

synchronized (αref )INorm → releaseLock(Norm)
synchronized (αref )Iabr → releaseLock(abr)

static Iabr → notifyThreadsWaitingForInitialization
abr → if pos = firstPos ∧ null(frames) then killThread

notifyThreadsWaitingForInitialization =
let c = classNm(meth)
initWait(c) := ∅
initThread(c) := undef
forall q ∈ initWait(c)

exec(q) := Active

execJavaThread =
choose q ∈ dom(exec), runnable(q)

if q = thread ∧ exec(q) = Active then
execJava

else
if exec(thread) = Active then

cont(thread) := (frames, (meth, restbody , pos, locals))
thread := q
run(q)

run(q) =
switchCont(q)
if exec(q) = Synchronizing then

synchronize(q)
if exec(q) = Notified then

wakeup(q)
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switchCont(q) =
let (frames ′, (meth ′, restbody ′, pos ′, locals ′)) = cont(q)
exec(q) := Active
meth := meth ′

restbody := restbody ′

pos := pos ′

locals := locals ′

frames := frames ′

synchronize(q) =
sync(q) := [syncObj (q)] · sync(q)
locks(syncObj (q)) := 1

wakeup(q) =
locks(waitObj (q)) := occurrences(waitObj (q), sync(q))

invokeNative(meth, values)
| meth = Thread/start() = start(values(0))
| meth = Thread/interrupt() = interrupt(values(0))
| meth = Thread/interrupted() = interrupted
| meth = Thread/isInterrupted() = isInterrupted(values(0))
| meth = Object/wait() = wait(values(0))
| meth = Object/notify() = notify(values(0))
| meth = Object/notifyAll() = notifyAll(values(0))

start(ref ) =
if exec(ref ) 6= NotStarted then

fail(IllegalThreadStateException)
else

let q = getField(ref , Thread/ "target" )
meth = lookup(classOf (q), Thread/run())/run()

exec(ref ) := Active
cont(ref ) := ([ ], (meth, body(meth),firstPos, {( "this" , q)}))
yieldUp(Norm)

interrupt(q) =
yieldUp(Norm)
if exec(q) = Waiting ∧ ¬classInitialization(q) then

let (frames ′, (meth ′, restbody ′, pos ′, locals ′)) = cont(q)
let fail = restbody ′[throw new InterruptedException(); /pos ′]
let ref = waitObj (q)
waitSet(ref ) := waitSet(ref ) \ {q}
exec(q) := Notified
cont(q) := (frames ′, (meth ′, fail , pos ′, locals ′))
interruptedFlag(q) := False

else
interruptedFlag(q) := True
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interrupted =
if interruptedFlag(thread) then

interruptedFlag(thread) := False
yield(True)

else
yield(False)

isInterrupted(q) =
if interruptedFlag(q) then

yieldUp(True)
else

yieldUp(False)

wait(ref ) =
if ref /∈ sync(thread) then

fail(IllegalMonitorStateException)
else

let ret = restbody [Norm/up(pos)]
waitSet(ref ) := waitSet(ref ) ∪ {thread}
locks(ref ) := 0
exec(thread) := Waiting
waitObj (thread) := ref
cont(thread) := (frames, (meth, ret , up(pos), locals))
yieldUp(Norm)

notify(ref ) =
if ref /∈ sync(thread) then

fail(IllegalMonitorStateException)
else

yieldUp(Norm)
choose q ∈ waitSet(ref )

waitSet(ref ) := waitSet(ref ) \ {q}
exec(q) := Notified

notifyAll(ref ) =
if ref /∈ sync(thread) then

fail(IllegalMonitorStateException)
else

waitSet(ref ) := ∅
yieldUp(Norm)
forall q ∈ waitSet(ref )

exec(q) := Notified

B.2 Arrays

Grammar:

Exp := . . . | Exp[Exp]
Asgn := . . . | Exp[Exp] = Exp
Invk := . . . | new Exp[Exp1] . . . [Expn ]
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Heap structure:

data Heap= Object(Class,Map(Class/Field ,Val))
| Array(Type, [Val ])

classOf (ref ) = case heap(ref ) of
Array(t , elems) → Array(t)
Object(c,fields)→ c

Execution rules for arrays:

execJavaArray = case context(pos) of
αexp1[βexp2]→ pos := α
Iref [βexp] → pos := β
αref [Ii ] → if ref = null then fail(NullPointerException)

elseif i < 0 ∨ i ≥ arraySize(ref ) then
fail(IndexOutOfBoundsException)

else
yieldUp(getElement(ref , i))

αexp1[βexp2] = γexp3 → pos := α
Iref [βexp2] = γexp3 → pos := β
αref [Ii ] = γexp3 → pos := γ
αref [βi ] = Ival →

if ref = null then
fail(NullPointerException)

elseif i < 0 ∨ i ≥ arraySize(ref ) then
fail(IndexOutOfBoundsException)

elseif val ∈ Ref ∧ classOf (val) 6� c then
fail(ArrayStoreException)

else
setElement(ref , i , val)
yieldUp(val)

where Array(c, ) = heap(ref )

new t [α1exp1] . . . [αn expn ]→ pos := α1

new t [α1dim1] . . . [Idimn ]→
if ∃ 1 ≤ j ≤ n : dimj < 0 then

fail(NegativeArraySizeException)
else

let ref := createArray(t ,n, [dim1, . . . , dimn ])
yieldUp(ref )

new t [α1dim1] . . . [Idim i ][
αi+1expi+1] . . . [αn expn ]→ pos := αi+1
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Array functions:

createArray(Array(t), d , [i ] · is) = create ref
waitSet(ref ) := ∅
locks(ref ) := 0
if d = 1 then

heap(ref ) := Array(t , take(i , repeat(defaultVal(t))))
result(ref )

else
let elems := forall x ∈ [1..i ]

let r := createArray(t , d − 1, is)
result(r)

heap(ref ) := Array(t , elems)
result(ref )

getElement(ref , i) = elems(i)
where Array(t , elems) = heap(ref )

setElement(ref , i , e) =
heap(ref ) := Array(t , take(i , elems) · [e] · drop(i + 1, elems))

where Array(t , elems) = heap(ref )

arraySize(ref ) = length(elems)
where Array(t , elems) = heap(ref )





C. JVM

C.1 Trustful execution

execVMI (instr) =
case instr of

Prim(p) → let (opd ′,ws) = split(opd , argSize(p))
if p ∈ divMod ⇒ sndArgIsNotZero(ws) then

opd := opd ′ · JVMS(p,ws)
pc := pc + 1

Dupx (s1, s2)→ let (opd ′, [ws1,ws2]) = splits(opd , [s1, s2])
opd := opd ′ · ws2 · ws1 · ws2

pc := pc + 1
Pop(s) → let (opd ′,ws) = split(opd , s)

opd := opd ′

pc := pc + 1
Load(t , x ) → if size(t) = 1 then opd := opd · [reg(x )]

else opd := opd · [reg(x ), reg(x + 1)]
pc := pc + 1

Store(t , x ) → let (opd ′,ws) = split(opd , size(t))
if size(t) = 1 then reg := reg ⊕ {(x ,ws(0))}

else reg := reg ⊕ {(x ,ws(0)), (x + 1,ws(1))}
opd := opd ′

pc := pc + 1
Goto(o) → pc := o
Cond(p, o) → let (opd ′,ws) = split(opd , argSize(p))

opd := opd ′

if JVMS(p,ws) then pc := o else pc := pc + 1
Halt → halt := "Halt"
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execVMC (instr) =
execVMI (instr)
case instr of

GetStatic( , c/f )→ if initialized(c) then
opd := opd · globals(c/f )
pc := pc + 1

else switch := InitClass(c)
PutStatic( , c/f )→ if initialized(c) then

let (opd ′,ws) = split(opd , size(c/f ))
globals(c/f ) := ws
opd := opd ′

pc := pc + 1
else switch := InitClass(c)

InvokeStatic( , c/m)→ if initialized(c) then
let (opd ′,ws) = split(opd , argSize(c/m))
opd := opd ′

switch := Call(c/m,ws)
else switch := InitClass(c)

Return(t)→ let (opd ′,ws) = split(opd , size(t))
switch := Result(ws)

switchVMC =
case switch of

Call(meth, args)→ if ¬isAbstract(meth) then
pushFrame(meth, args)
switch := Noswitch

Result(res) → if implicitCall(meth) then popFrame(0, [ ])
else popFrame(1, res)

switch := Noswitch
InitClass(c)→ if classState(c) = Linked then

classState(c) := Initialized
forall f ∈ staticFields(c)

globals(c/f ) := default(type(c/f ))
pushFrame(c/<clinit>())
if c = Object ∨ initialized(super(c)) then

switch := Noswitch
else

switch := InitClass(super(c))

pushFrame(newMeth, args) =
stack := stack · [(pc, reg , opd ,meth)]
meth := newMeth
pc := 0
opd := [ ]
reg := makeRegs(args)

popFrame(offset , result) =
let (stack ′, [(pc′, reg ′, opd ′,meth ′)]) = split(stack , 1)
pc := pc′ + offset
reg := reg ′

opd := opd ′ · result
meth := meth ′

stack := stack ′
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execVMO(instr) =
execVMC (instr)
case instr of

New(c)→
if initialized(c) then create r

heap(r) := Object(c, {(f , defaultVal(f )) | f ∈ instanceFields(c)})
opd := opd · [r ]
pc := pc + 1

else switch := InitClass(c)
GetField( , c/f )→ let (opd ′, [r ]) = split(opd , 1)

if r 6= null then
opd := opd ′ · getField(r , c/f )
pc := pc + 1

PutField( , c/f )→ let (opd ′, [r ] · ws) = split(opd , 1 + size(c/f ))
if r 6= null then

setField(r , c/f ,ws)
pc := pc + 1
opd := opd ′

InvokeSpecial( , c/m)→
let (opd ′, [r ] · ws) = split(opd , 1 + argSize(c/m))
if r 6= null then

opd := opd ′

switch := Call(c/m, [r ] · ws)
InvokeVirtual( , c/m)→

let (opd ′, [r ] · ws) = split(opd , 1 + argSize(c/m))
if r 6= null then

opd := opd ′

switch := Call(lookup(classOf (r), c/m), [r ] · ws)

InstanceOf (c)→ let (opd ′, [r ]) = split(opd , 1)
opd := opd ′ · (r 6= null ∧ classOf (r) v c)
pc := pc + 1

Checkcast(c) → let r = top(opd)
if r = null ∨ classOf (r) v c then

pc := pc + 1
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switchVME =
switchVMC

case switch of
Call(meth, args)→ if isAbstract(meth) then

raise( "AbstractMethodError" )
InitClass(c)→ if unusable(c) then

raise( "NoClassDefFoundError" )
Throw(r)→ if ¬escapes(meth, pc, classOf (r)) then

let exc = handler(meth, pc, classOf (r))
pc := handle(exc)
opd := [r ]
switch := Noswitch

else
if methNm(meth) = "<clinit>" then

if ¬(classOf (r) �h Error) then
raise( "ExceptionInInitializerError" )
pc := undef

else switch := ThrowInit(r)
else popFrame(0, [ ])

ThrowInit(r)→ let c = classNm(meth)
classState(c) := Unusable
popFrame(0, [ ])
if ¬superInit(top(stack), c) then

switch := Throw(r)

superInit(( , , ,m), c) =
methNm(m) = "<clinit>" ∧ super(classNm(m)) = c

execVME (instr) =
execVMO(instr)
case instr of

Athrow → let [r ] = take(opd , 1)
if r 6= null then switch := Throw(r)

else raise( "NullPointerException" )
Jsr(s)→ opd := opd · [pc + 1]

pc := s
Ret(x )→ pc := reg(x )
Prim(p)→ let ws = take(opd , argSize(p))

if p ∈ divMod ∧ sndArgIsZero(ws) then
raise( "ArithmeticException" )

GetField( , c/f )→ let [r ] = take(opd , 1)
if r = null then raise( "NullPointerException" )

PutField( , c/f )→ let [r ] · ws = take(opd , 1 + size(c/f ))
if r = null then raise( "NullPointerException" )

InvokeSpecial( , c/m)→
let [r ] · ws = take(opd , 1 + argSize(c/m))
if r = null then raise( "NullPointerException" )

InvokeVirtual( , c/m)→
let [r ] · ws = take(opd , 1 + argSize(c/m))
if r = null then raise( "NullPointerException" )

Checkcast(c)→ let r = top(opd)
if r 6= 0 ∧ ¬(classOf (r) v c) then

raise( "ClassCastException" )
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execVMN =
if meth = Object/ equals then

switch := Result(reg(0) = reg(1))
elseif meth = Object/ clone then

let r = reg(0)
if classOf (r) �h Cloneable then

create r ′

heap(r ′) := heap(r)
switch := Result(r ′)

else
raise( "CloneNotSupportedException" )

switchVMD =
switchVME

case switch of
InitClass(c)→ if classState(c) < Referenced then

referenceClass(c)
Result(res)→

if methNm(meth) = "<cload>" then
ldEnv(reg(0), stringOf (reg(1))) := res(0)

referenceClass(c) =
if c = Object then

classState(c) := Referenced
elseif classState(c) = SupersLoaded then

let supers = {super(c)} ∪ implements(c)
choose c′ ∈ supers, classState(c′) < Referenced

referenceClass(c′)
ifnone

loadReferences(c)
else loadSuperClasses(c)
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loadClasses(cs,m) =
choose c ∈ cs \ dom(ldEnv)

callLoad(c)
ifnone

choose c ∈ cs, classState(liftClass(c)) = Loaded
loadSuperClasses(liftClass(c))

ifnone m

loadSuperClasses(c) =
loadClasses({super(c)} ∪ implements(c), setSupersLoaded(c))

loadReferences(c) =
loadClasses(directReferences(c), loadIndirectReferences(c))

setSupersLoaded(c) =
classState(c) := SupersLoaded
setDefiningLoadersForSupers(c)

loadIndirectReferences(c) =
loadClasses(indirectReferences(c), setReferenced(c))

setReferenced(c) =
classState(c) := Referenced
setDefiningLoaders(c)

callLoad(ld , cn) =
switch := Call(<cload>, [ld , cn])

execVMD =
execVMN

if c = ClassLoader then
execClassLoader(m)

elseif meth = Class/ newInstance() then
meth := cOf (reg(0))/ <newInstance>()

where c/m = meth
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execClassLoader(m) =
if m = findLoadedClass then

let c = (reg(0), stringOf (reg(1)))
if c 6∈ dom(ldEnv) then

switch := Result([null ])
else

switch := Result([ldEnv(c)])
if m = findSystemClass then

let c = (sysLd , stringOf (reg(1)))
if c 6∈ dom(ldEnv) then

loadClass(classPath, c)
elseif classState(c) < Referenced then

referenceClass(c)
elseif classState(c) = Referenced then

linkClass(c)
else

switch := Result([ldEnv(c)])
if m = defineClass then

let c = (reg(0), stringOf (reg(1)))
if c 6∈ dom(ldEnv) then

let content = arrayContent(heap(reg(2)), reg(3), reg(4))
defineClass(content , c,True)

else
raise( "ClassFormatError" )

if m = resolveClass then
let r = reg(1)
if r = null then

raise( "NullPointerException" )
else

let c = cOf (r)
if classState(c) < Referenced then

referenceClass(c)
elseif classState(c) = Referenced then

linkClass(c)
else

switch := Result([ ])

loadClass(classPath, c) =
if c /∈ dom(load(classPath)) then

raise( "ClassNotFoundException" )
else

defineClass(load(classPath), c,False)
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defineClass(content , c, returnClass) =
let cf = analyze(content)
if classNm(cf ) 6= classNm(c) then

raise( "ClassFormatError" )
else create r

classState(c) := Loaded
heap(r) := Object(Class, ∅)
cOf (r) := c
cEnv(c) := cf
ldEnv(c) := r
if returnClass then switch := Result([r ])

linkClass(c) =
let classes = {super(c)} ∪ implements(c)
if c = Object ∨ ∀ c′ ∈ classes : classState(c′) ≥ Linked then

classState(c) := Linked
prepareClass(c)

elseif ¬cyclicInheritance(c) then
choose c′ ∈ classes, classState(c′) = Referenced

linkClass(c′)
else

halt := "Cyclic Inheritance: " · classNm(c)

prepareClass(c) =
forall f ∈ staticFields(c)

globals(c/f ) := defaultVal(type(c/f ))

trustfulVMI = execVMI (code(pc))

trustfulSchemeC (execVM , switchVM ) =
if switch = Noswitch then

execVM (code(pc))
else

switchVM

trustfulVMC = trustfulSchemeC (execVMC , switchVMC )

trustfulVMO = trustfulSchemeC (execVMO , switchVMC )

trustfulVME = trustfulSchemeC (execVME , switchVME )

trustfulSchemeN (nativeVM , switchVM ) =
if switch = Noswitch ∧ isNative(meth) then

nativeVM
else

trustfulSchemeC (execVME , switchVM )

trustfulVMN = trustfulSchemeN (execVMN , switchVME )

trustfulVMD = trustfulSchemeN (execVMD , switchVMD)
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C.2 Defensive execution

pushFrame(c/m, args) =
stack := stack · [(pc, reg , opd ,meth)]
meth := c/m
pc := 0
opd := [ ]
reg := makeRegs(args)
if methNm(m) = "<init>" then

let [r ] · = args
if c = Object then

initState(r) := Complete
else

initState(r) := InInit

execVME (instr) =
execVMO(instr)
case instr of
. . .
Jsr(s)→ opd := opd · [(pc + 1, retAddr(s))]

pc := s
. . .

defensiveSchemeI (check , trustfulVM ) =
if ¬validCodeIndex (code, pc) ∨
¬check(instr ,maxOpd , pc, type(reg), type(opd)) then

halt := "Runtime check failed"
else

trustfulVM

defensiveVMI = defensiveSchemeI (checkI , trustfulVMI )

defensiveVMC = defensiveSchemeC (checkC , trustfulVMC )

defensiveSchemeC (check , trustfulVM ) =
if switch = Noswitch then

defensiveSchemeI (check(meth), trustfulVM )
else

trustfulVM

defensiveVMO = defensiveSchemeC (checkO , trustfulVMO)

defensiveVME = defensiveSchemeC (checkE , trustfulVME )

defensiveSchemeN (check , trustfulVM ) =
if isNative(meth) then

if check(meth) then trustfulVM
else halt := "unknown native method"

else
defensiveSchemeC (checkE , trustfulVM )
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defensiveVMN = defensiveSchemeN (checkN , trustfulVMN )

defensiveVMD =
defensiveSchemeN (checkD , trustfulVMD)

C.3 Diligent execution

propagateVMI (code, succ, pc) =
forall (s, regS , opdS) ∈ succ(code(pc), pc, regVpc , opdVpc)

propagateSucc(code, s, regS , opdS)

propagateSucc(code, s, regS , opdS) =
if s 6∈ dom(visited) then

if validCodeIndex (code, s) then
regVs := {(x , t) | (x , t) ∈ regS , validReg(t , s)}
opdVs := [if validOpd(t , s) then t else unusable | t ∈ opdS ]
visited(s) := True
changed(s) := True

else
halt := "Verification failed (invalid code index)"

elseif regS vreg regVs ∧ opdS vseq opdVs then
skip

elseif length(opdS) = length(opdVs) then
regVs := regVs treg regS
opdVs := opdVs topd opdS
changed(s) := True

else
halt := "Propagate failed"

initVerify(meth) =
visited(0) := True
changed(0) := True
regV0 := formals(meth)
opdV0 := [ ]
forall i ∈ dom(visited), i 6= 0

visited(i) := undef
changed(i) := undef
regVi := undef
opdVi := undef

forall s ∈ dom(enterJsr)
enterJsr(s) := ∅

forall s ∈ dom(leaveJsr)
leaveJsr(s) := ∅

switchVMC =
. . .
case switch of

InitClass(c)→ if classState(c) = Referenced then
linkClass(c)
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linkClass(c) =
let classes = {super(c)} ∪ implements(c)
if c = Object ∨ ∀ c′ ∈ classes : classState(c′) ≥ Linked then

prepareVerify(c)
elseif ¬cyclicInheritance(c) then

choose c′ ∈ classes, classState(c′) = Referenced
linkClass(c′)

else
halt := "Cyclic Inheritance: " · classNm(c)

prepareVerify(c) =
if constraintViolation(c) then

halt := violationMsg(classNm(c))
else

let verifyMeths ′ = [(c/m) | m ∈ dom(methods(cEnv(c))),
¬null(code(c/m))]

verifyMeths := verifyMeths ′

verifyClass := c
initVerify(top(verifyMeths ′))
prepareClass(c)

propagateVME (code, succ, pc) =
propagateVMI (code, succ, pc)
case code(pc) of

Jsr(s) → enterJsr(s) := {pc} ∪ enterJsr(s)
forall (i , x ) ∈ leaveJsr(s), i 6∈ dom(changed)

if regVi(x ) = retAddr(s) then
propagateJsr(code, pc, s, i)

Ret(x )→ let retAddr(s) = regVpc(x )
leaveJsr(s) := {(pc, x )} ∪ leaveJsr(s)
forall j ∈ enterJsr(s), j 6∈ dom(changed)

propagateJsr(code, j , s, pc)

propagateJsr(code, j , s, i) =
propagateSucc(code, j + 1, regJ ⊕ mod(s) � regVi , opdVi) where

regJ = {(x , t) | (x , t) ∈ mod(s) �− regVj ,
validJump(t , s) ∧ t 6= ( , )new ∧ t 6= InInit}

diligentVMI =
if dom(changed) 6= ∅ then

verifySchemeI (code,maxOpd , propagateVMI , succI , checkI )
else

trustfulVMI

verifySchemeI (code,maxOpd , propagateVM , succ, check) =
choose pc ∈ dom(changed)

if check(code(pc),maxOpd , pc, regVpc , opdVpc) then
changed(pc) := undef
propagateVM (code, succ, pc)

else
halt := "Verification failed"
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diligentScheme(verifyVM , execVM ) =
if ¬isChecked then

verifyVM
else

execVM

diligentVMC = diligentScheme(verifyVM , trustfulVMC )
where verifyVM = verifySchemeC (propagateVMI , succC , checkC )

verifySchemeC (propagateVM , succ, check) =
if dom(changed) 6= ∅ then

verifySchemeI (code(methv ),maxOpd(methv ), propagateVM ,
succ(methv ), check(methv ))

else
let verifyMeths ′ = drop(verifyMeths, 1)
verifyMeths := verifyMeths ′

if length(verifyMeths ′) > 0 then
initVerify(top(verifyMeths ′))

else
classState(verifyClass) := Linked

diligentVMO = diligentScheme(verifyVM , trustfulVMO)
where verifyVM = verifySchemeC (propagateVMI , succO , checkO)

diligentVME = diligentScheme(verifyVM , trustfulVME )
where verifyVM = verifySchemeC (propagateVME , succE , checkE )

verifySchemeN (check) =
if changed(0) ∧ isNative(methv ) then

if check(methv ) then
changed(0) := undef

else
halt := "Verification failed"

else
verifySchemeC (propagateVME , succE , checkE )

diligentVMN = diligentScheme(verifyVM , trustfulVMN )
where verifyVM = verifySchemeN (checkN )

diligentVMD = diligentScheme(verifyVM , trustfulVMD)
where verifyVM = verifySchemeN (checkD)
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C.4 Check functions

checkI (instr ,maxOpd , pc, regT , opdT ) =
case instr of

Prim(p)→ opdT vsuf argTypes(p) ∧
¬overflow(maxOpd , opdT , retSize(p)− argSize(p))

Dupx (s1, s2)→ let [ts1, ts2] = tops(opdT , [s1, s2])
length(opdT ) ≥ s1 + s2 ∧
¬overflow(maxOpd , opdT , s2) ∧
validTypeSeq(ts1) ∧ validTypeSeq(ts2)

Pop(s)→ length(opdT ) ≥ s
Load(t , x )→

if size(t) = 1 then [regT (x )] vmv t ∧ ¬overflow(maxOpd , opdT , 1)
else [regT (x ), regT (x + 1)] vmv t ∧ ¬overflow(maxOpd , opdT , 2)

Store(t , ) → opdT vsuf t
Goto(o) → True
Cond(p, o)→ opdT vsuf argTypes(p)
Halt → True

checkC (meth)(instr ,maxOpd , pc, regT , opdT ) =
checkI (instr ,maxOpd , pc, regT , opdT ) ∨
case instr of

GetStatic(t , c/f ) → ¬overflow(maxOpd , opdT , size(t))
PutStatic(t , c/f ) → opdT vsuf t
InvokeStatic(t , c/m)→ opdT vsuf argTypes(c/m) ∧

¬overflow(maxOpd , opdT , size(t)−
argSize(c/m))

Return(t) → opdT vsuf returnType(meth) ∧
returnType(meth) vmv t

checkO(meth)(instr ,maxOpd , pc, regT , opdT ) =
checkC (meth)(instr ,maxOpd , pc, regT , opdT ) ∧ endinit(meth, instr , regT ) ∨
case instr of

New(c)→ ¬overflow(maxOpd , opdT , 1)
GetField(t , c/f )→ opdT vsuf c ∧ ¬overflow(maxOpd , opdT , size(t)− 1)
PutField(t , c/f )→ opdT vsuf c · t
InvokeSpecial( , c/m)→

let [c′] · = take(opdT , 1 + argSize(c/m))
length(opdT ) > argSize(c/m) ∧
opdT vsuf argTypes(c/m) ∧
¬overflow(maxOpd , opdT , retSize(c/m)− argSize(c/m)− 1) ∧
if methNm(m) = "<init>" then

initCompatible(meth, c′, c)
else c′ v c

InvokeVirtual( , c/m)→
opdT vsuf c · argTypes(c/m) ∧
¬overflow(maxOpd , opdT , retSize(c/m)− argSize(c/m)− 1)

InstanceOf (c)→ opdT vsuf Object
Checkcast(c) → opdT vsuf Object
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checkE (meth)(instr ,maxOpd , pc, regT , opdT ) =
checkO(meth)(instr ,maxOpd , pc, regT , opdT ) ∨
case instr of

Store(addr, x )→ length(opdT ) > 0 ∧ isRetAddr(top(opdT ))
Athrow → opdT vsuf Throwable
Jsr(o) → ¬overflow(maxOpd , opdT , 1)
Ret(x ) → isRetAddr(regT (x ))

checkN (c/m) =
c/m = Object/ equals ∨
c/m = Object/ clone

checkD(c/m) =
c = ClassLoader ∧ m ∈ { findLoadedClass , findSystemClass ,

resolveClass , defineClass } ∨
c/m = Class/ newInstance() ∨
checkN (c/m)

C.5 Successor functions

succI (instr , pc, regT , opdT ) =
case instr of

Prim(p)→ {(pc + 1, regT , drop(opdT , argSize(p)) · returnType(p))}
Dupx (s1, s2)→
{(pc + 1, regT , drop(opdT , s1 + s2)·

take(opdT , s2) · take(opdT , s1 + s2))}
Pop(s)→ {(pc + 1, regT , drop(opdT , s))}
Load(t , x )→

if size(t) = 1 then
{(pc + 1, regT , opdT · [regT (x )])}

else
{(pc + 1, regT , opdT · [regT (x ), regT (x + 1)])}

Store(t , x )→
if size(t) = 1 then
{(pc + 1, regT ⊕ {(x , top(opdT ))}, drop(opdT , 1))}

else
{(pc + 1, regT ⊕ {(x , t0), (x + 1, t1)}, drop(opdT , 2))}

where [t0, t1] = take(opdT , 2)
Goto(o) → {(o, regT , opdT )}
Cond(p, o)→ {(pc + 1, regT , drop(opdT , argSize(p))),

(o, regT , drop(opdT , argSize(p)))}

succC (meth)(instr , pc, regT , opdT ) =
succI (instr , pc, regT , opdT ) ∪
case instr of

GetStatic(t , c/f ) → {(pc + 1, regT , opdT · t)}
PutStatic(t , c/f ) → {(pc + 1, regT , drop(opdT , size(t)))}
InvokeStatic(t , c/m)→ {(pc + 1, regT , drop(opdT , argSize(c/m)) · t)}
Return(mt) → ∅
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succO(meth)(instr , pc, regT , opdT ) =
succC (meth)(instr , pc, regT , opdT ) ∪
case instr of

New(c)→ {(pc + 1, regS , opdS · [(c, pc)new ])}
where regS = {(x , t) | (x , t) ∈ regT , t 6= (c, pc)new}

opdS = [if t = (c, pc)new then unusable else t | t ∈ opdT ]
GetField(t , c/f )→ {(pc + 1, regT , drop(opdT , 1) · t)}
PutField(t , c/f )→ {(pc + 1, regT , drop(opdT , 1 + size(t)))}
InvokeSpecial(t , c/m)→

let opdT ′ = drop(opdT , 1 + argSize(c/m)) · t
if methNm(m) = "<init>" then

case top(drop(opdT , argSize(c/m))) of
(c, o)new → {(pc + 1, regT [c/(c, o)new ], opdT ′[c/(c, o)new ])}
InInit → let c/ = meth

{(pc + 1, regT [c/InInit ], opdT ′[c/InInit ])}
else
{(pc + 1, regT , opdT ′)}

InvokeVirtual(t , c/m)→
let opdT ′ = drop(opdT , 1 + argSize(c/m)) · t
{(pc + 1, regT , opdT ′)}

InstanceOf (c)→ {(pc + 1, regT , drop(opdT , 1) · [int])}
Checkcast(t)→ {(pc + 1, regT , drop(opdT , 1) · t)}

succE (meth)(instr , pc, regT , opdT ) =
succO(meth)(instr , pc, regT , opdT ) ∪ allhandlers(instr ,meth, pc, regT ) ∪
case instr of

Athrow → ∅
Jsr(s) → {(s, regT , opdT · [retAddr(s)])}
Ret(x ) → ∅

C.6 Constraints

constraintViolation(c) =
if isInterface(c) then ¬validInterface(c)
else ¬validClass(c)

validInterface(c) =
isAbstract(c) ∧ super(c) = Object ∧
∀ c′ ∈ implements(c) : accessible(c, c′) ∧ isInterface(c′) ∧
∀m ∈ dom(methods(cEnv(c))) : validIMeth(c/m, code(c/m)) ∧
checkEqualVisibleSigs(c)

validClass(c) =
(c = Object ∨ super(c) 6= undef ∧ accessible(c, super(c))) ∧
∀ c′ ∈ implements(c) : accessible(c, c′) ∧ isInterface(c′) ∧
∀m ∈ dom(methods(cEnv(c))) : validCMeth(c/m, code(c/m)) ∧
checkEqualVisibleSigs(c)
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validIMeth(c/m, code) =
let mods = modifiers(c/m)
let len = length(code)
if methNm(m) = "<clinit>" then

Abstract /∈ mods ∧
∀ instr ∈ code : validInstr(c/m,maxReg(c/m), instr , len)

else
Abstract ∈ mods ∧ null(code) ∧ Private /∈ mods ∧
∀m ′ ∈ overrideMethods(c/m) : checkOverride(c/m,m ′)

validCMeth(c/m, code) =
let mods = modifiers(c/m)
let len = length(code)
null(code) = (Native ∈ mods ∨ Abstract ∈ mods) ∧
¬(Abstract ∈ mods ∧ Private ∈ mods) ∧
∀ instr ∈ code : validInstr(c/m,maxReg(c/m), instr , len) ∧
∀m ′ ∈ overrideMethods(c/m) : checkOverride(c/m,m ′)

checkOverride(m,m ′) = . . . (see Constraint 4.1.10)

checkEqualVisibleSigs = . . . (see Constraint 4.1.11)

validInstr(ctx/m,maxReg , instr , len) =
validAccess(ctx , instr) ∧
case instr of

Goto(pc) → pc ≥ 0 ∧ pc < len
Cond(p, pc) → pc ≥ 0 ∧ pc < len
Load(t , x ) → x ≥ 0 ∧ x ≤ maxReg − size(t)
Store(t , x ) → x ≥ 0 ∧ x ≤ maxReg − size(t) ∧

(x 6= 0 ∨ methNm(m) 6= "<init>" )
GetStatic(t , c/f )→ isStatic(c/f ) ∧ type(c/f ) = t
PutStatic(t , c/f )→ isStatic(c/f ) ∧ type(c/f ) = t
InvokeStatic(t , c/m)→

head(methNm(m)) 6=′<′∧ isStatic(c/m) ∧ ¬isInterface(c) ∧
returnType(c/m) = t

GetField(t , c/f )→ ¬isStatic(c/f ) ∧ type(c/f ) = t
PutField(t , c/f )→ ¬isStatic(c/f ) ∧ type(c/f ) = t
InvokeSpecial(t , c/m)→

methNm(m) = "<init>" ∨ c ∈ supers(ctx ) ∧
returnType(c/m) = t ∧ ¬isStatic(c/m) ∧ ¬isInterface(c)

InvokeVirtual(t , c/m)→
methNm(m) 6= "<init>" ∧ ¬isStatic(c/m) ∧ returnType(c/m) = t

NewArray(t , d)→ d ≤ arrayDim(t) ∧ d ≤ 255
New(c) → ¬isAbstract(c)
Jsr(o) → o ≥ 0 ∧ o < len
Ret(x ) → x ≥ 0 ∧ x < maxReg
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validAccess(ctx , instr) =
case instr of

GetStatic(t , c/f ) → accessible(ctx , c/f ) ∧ accessible(ctx , t)
PutStatic(t , c/f ) → accessible(ctx , c/f ) ∧ accessible(ctx , t)
InvokeStatic(t , c/m) → accessible(ctx , c/m) ∧ accessible(ctx , t)
GetField(t , c/f ) → accessible(ctx , c/f ) ∧ accessible(ctx , t)
PutField(t , c/f ) → accessible(ctx , c/f ) ∧ accessible(ctx , t)
InvokeSpecial(t , c/m) → accessible(ctx , c/m) ∧ accessible(ctx , t)
InvokeVirtual(t , c/m)→ accessible(ctx , c/m) ∧ accessible(ctx , t)
New(c) → accessible(ctx , c)

arrayDim(Array(t)) = 1 + arrayDim(t)
arrayDim( ) = 1

violationMsg(cn) =
"Constraint Violation: class " · cn

C.7 Arrays

New instructions (extension to type Instr):

data Instr = . . .
| NewArray(Type,Dimension)
| ArrayLength
| AStore(ArrayMoveType)
| ALoad(ArrayMoveType)

Array move types:

data ArrayMoveType = byte | short | char | int |
long | float | double | Object

Conversion from array move types to verify types

typevt(byte) = [int]
typevt(char) = [int]
typevt(short) = [int]
typevt(int) = [int]
typevt(float) = [float]
typevt(long) = [lowLong, highLong]
typevt(double) = [lowDouble, highDouble]
typevt(Object) = [Object]

Heap structure:
data Heap = Object(Class,Map(Class/Field ,Val)) | Array(Type,Val∗)

typeOf (r) =
if (r = null) then Null
else case heap(r) of

Array(t , vs)→ Array(t)
Object(c,fields)→ case initState(r) of

New(pc) → (c, pc)new

InInit → InInit
Complete → c
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Extension to execVMO :

execVMO(instr) = . . .
case instr of

NewArray(t , d)→
let (opd ′, ds) = split(opd , d)
if ∀ i ∈ ds : i ≥ 0 then

let r := createArray(t , d , ds)
opd := opd ′ · [r ]
pc := pc + 1

ArrayLength →
let (opd ′, [r ]) = split(opd , 1)
if ¬(r = null) then

opd := opd ′ · [arraySize(r)]
pc := pc + 1

ALoad(t)→
let (opd ′, [r , i ]) = split(opd , 2)
if ¬(r = null) ∧ i ≥ 0 ∧ i < arraySize(r) then

opd := opd ′ · getElement(r , i)
pc := pc + 1

AStore(t)→
let (opd ′, [[r , i ], v ]) = splits(opd , [2, size(t)])
if ¬(r = null) ∧ i ≥ 0 ∧ i < arraySize(r) ∧

(t 6= Object ∨ v = null ∨ [classOf (v)] vseq arrayType(r)) then
heap(r) := setElement(r , i , v)
opd := opd ′

pc := pc + 1

Extension to execVME :

execVME (instr) = . . .
case instr of

NewArray(t , d)→
let ds = take(opd , d)
if ∃ i ∈ ds : i < 0 then

raise( "NegativeArraySizeException" )
ArrayLength →

if top(opd) = null then
raise( "NullPointerException" )

ALoad(t)→
let [r , i ] = take(opd , 2)
if r = null then

raise( "NullPointerException" )
elseif i < 0 ∨ i ≥ arraySize(r) then

raise( "ArrayIndexOutOfBoundsException" )
AStore(t)→

let [[r , i ], v ] = tops(opd , [2, size(t)])
if r = null then

raise( "NullPointerException" )
elseif i < 0 ∨ i ≥ arraySize(r) then

raise( "ArrayIndexOutOfBoundsException" )
elseif t = Object ∧ v 6= null ∧

¬([classOf (v)] vseq arrayType(r)) then
raise( "ArrayStoreException" )
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Extension to checkO :

checkO(meth)(instr ,maxOpd , pc, regT , opdT ) = . . . ∨
case instr of

NewArray(t , d)→ opdT vsuf copy(d)(int)
ArrayLength → length(opdT ) > 0 ∧ isArray(top(opdT ))
ALoad(t) → opdT vsuf [Array(typevt(t)), int]
AStore(t) → opdT vsuf [Array(typevt(t)), int] · typevt(t)

Extension to succO :

succO(meth)(instr , pc, regT , opdT ) = . . . ∪
case instr of

NewArray(t , d)→
{(pc + 1, regT , drop(opdT , d) · [Array(t)])}

ArrayLength →
{(pc + 1, regT , drop(opdT , 1) · [int])}

ALoad(Object)→
let [arr , i ] = take(opdT , 2)
{(pc + 1, regT , drop(opdT , 2) · [arrayElemType(arr)])}

ALoad(t)→
{(pc + 1, regT , drop(opdT , 2) · typevt(t))}

AStore(t)→
{(pc + 1, regT , drop(opdT , 2 + size(t)))}

Array functions:

createArray(t , d , [i ] · is) =
create r

if d = 1 then
heap(r) := Array(t , copy(i)(defaultVal(t)))
result(r)

else
let Array(elemType) = t
let vs := forall x ∈ [1..i ]

let r := createArray(elemType, d − 1, is)
result([r ])

heap(r) := Array(t , vs)
result(r)

arrayType(r) = t
where Array(t , arr) = heap(r)

isArray(Array([int])) = True
isArray(Array([lowLong, highLong])) = True
isArray(Array([float])) = True
isArray(Array([lowDouble, highDouble])) = True
isArray(t) = t v Array([Object])

arrayElemType(Array([t ])) = t
arrayElemType(Null) = Null
arrayElemType(rs) = t{arrayElemType(r) | r ∈ rs}
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Example C.7.1. The following legal Java program is rejected be some byte-
code verifiers:

public class Test {
public static void main(String[] argv) {
int[][] a = null;
a[0] = new int[0];

}
}

The program should be accepted. At run-time, a NullPointerException will
be thrown, because the variable a is a null pointer when the array element
a[0] is assigned.
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C.8 Abstract versus real instructions

Bytecode instruction Abstract instruction
aaload ALoad(Object)
aastore AStore(Object)
aconst null Prim(null)
aload 0 Load(addr, 0)
aload 1 Load(addr, 1)
aload 2 Load(addr, 2)
aload 3 Load(addr, 3)
aload n Load(addr,n)
anewarray t NewArray(t , 1)
areturn Return(addr)
arraylength ArrayLength
astore 0 Store(addr, 0)
astore 1 Store(addr, 1)
astore 2 Store(addr, 2)
astore 3 Store(addr, 3)
astore n Store(addr,n)
athrow Athrow
baload ALoad(byte)
bastore AStore(byte)
bipush n Prim(n)
caload ALoad(char)
castore AStore(char)
checkcast c Checkcast(c)
d2f Prim(d2f)
d2i Prim(d2i)
d2l Prim(d2l)
dadd Prim(dadd)
daload ALoad(double)
dastore AStore(double)
dcmpg Prim(dcmpg)
dcmpl Prim(dcmpl)
dconst 0 Prim(0.0)
dconst 1 Prim(1.0)
ddiv Prim(ddiv)
dload 0 Load(double, 0)
dload 1 Load(double, 1)
dload 2 Load(double, 2)
dload 3 Load(double, 3)
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Bytecode instruction Abstract instruction
dload n Load(double,n)
dmul Prim(dmul)
dneg Prim(dneg)
drem Prim(drem) (not implemented)
dreturn Return(double)
dstore 0 Store(double, 0)
dstore 1 Store(double, 1)
dstore 2 Store(double, 2)
dstore 3 Store(double, 3)
dstore n Store(double,n)
dsub Prim(dsub)
dup2 x1 Dupx (1, 2)
dup2 x2 Dupx (2, 2)
dup2 Dupx (0, 2)
dup x1 Dupx (1, 1)
dup x2 Dupx (2, 1)
dup Dupx (0, 1)
f2d Prim(f2d)
f2i Prim(f2i)
f2l Prim(f2l)
fadd Prim(fadd)
faload ALoad(float)
fastore AStore(float)
fcmpg Prim(fcmpg)
fcmpl Prim(fcmpl)
fconst 0 Prim(0.0F )
fconst 1 Prim(1.0F )
fconst 2 Prim(2.0F )
fdiv Prim(fdiv)
fload 0 Load(float, 0)
fload 1 Load(float, 1)
fload 2 Load(float, 2)
fload 3 Load(float, 3)
fload n Load(float,n)
fmul Prim(fmul)
fneg Prim(fneg)
frem Prim(frem) (not implemented)
freturn Return(float)
fstore 0 Store(float, 0)
fstore 1 Store(float, 1)
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Bytecode instruction Abstract instruction
fstore 2 Store(float, 2)
fstore 3 Store(float, 3)
fstore n Store(float,n)
fsub Prim(fsub)
getfield fref t GetField(t , fref )
getstatic fref t GetStatic(t , fref )
goto w o Goto(o)
goto o Goto(o)
i2b Prim(i2b)
i2c Prim(i2c)
i2d Prim(i2d)
i2f Prim(i2f)
i2l Prim(i2l)
i2s Prim(i2s)
iadd Prim(iadd)
iaload ALoad(int)
iand Prim(iand) (not implemented)
iastore AStore(int)
iconst 0 Prim(0)
iconst 1 Prim(1)
iconst 2 Prim(2)
iconst 3 Prim(3)
iconst 4 Prim(4)
iconst 5 Prim(5)
iconst m1 Prim(−1)
idiv Prim(idiv)
if acmpeq l Cond(if acmpeq, l)
if acmpne l Cond(if acmpne, l)
if icmpeq l Cond(if icmpeq, l)
if icmpge l Cond(if icmpge, l)
if icmpgt l Cond(if icmpgt, l)
if icmple l Cond(if icmple, l)
if icmplt l Cond(if icmplt, l)
if icmpne l Cond(if icmpne, l)
ifeq l Cond(if eq, l)
ifge l Cond(if ge, l)
ifgt l Cond(if gt, l)
ifle l Cond(if le, l)
iflt l Cond(if lt, l)
ifne l Cond(if ne, l)
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Bytecode instruction Abstract instruction
ifnonnull l Cond(ifnonull, l)
ifnull l Cond(ifnull, l)
iinc n i IInc(n, i) (not described)
iload 0 Load(int, 0)
iload 1 Load(int, 1)
iload 2 Load(int, 2)
iload 3 Load(int, 3)
iload n Load(int,n)
imul Prim(imul)
ineg Prim(ineg)
instanceof c Instanceof (c)
invokeinterface mref /rt InvokeVirtual(rt ,mref )
invokespecial mref /rt InvokeSpecial(rt ,mref )
invokestatic mref /rt InvokeStatic(rt ,mref )
invokevirtual mref /rt InvokeVirtual(rt ,mref )
ior Prim(ior) (not implemented)
irem Prim(irem)
ireturn Return(int)
ishl Prim(ishl) (not implemented)
ishr Prim(ishr) (not implemented)
istore 0 Store(int, 0)
istore 1 Store(int, 1)
istore 2 Store(int, 2)
istore 3 Store(int, 3)
istore n Store(int,n)
isub Prim(isub)
iushr Prim(iushr) (not implemented)
ixor Prim(ixor) (not implemented)
jsr w s Jsr(s)
jsr s Jsr(s)
l2d Prim(l2d)
l2f Prim(l2f)
l2i Prim(l2i)
ladd Prim(ladd)
laload ALoad(long)
land Prim(land)
lastore AStore(long)
lcmp Prim(lcmp)
lconst 0 Prim(0L)
lconst 1 Prim(1L)
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Bytecode instruction Abstract instruction
ldc2 w n Prim(n)
ldc w n Prim(n)
ldc n Prim(n)
ldiv Prim(ldiv)
lload 0 Load(long, 0)
lload 1 Load(long, 1)
lload 2 Load(long, 2)
lload 3 Load(long, 3)
lload n Load(long,n)
lmul Prim(lmul)
lneg Prim(lneg)
lookupswitch not supported
lor Prim(lor) (not implemented)
lrem Prim(lrem) (not implemented)
lreturn Return(long)
lshl Prim(lshl) (not implemented)
lshr Prim(lshr) (not implemented)
lstore 0 Store(long, 0)
lstore 1 Store(long, 1)
lstore 2 Store(long, 2)
lstore 3 Store(long, 3)
lstore n Store(long,n)
lsub Prim(lsub)
lushr Prim(lushr) (not implemented)
lxor Prim(lxor) (not implemented)
monitorenter not supported
monitorexit not supported
multianewarray t d NewArray(t , d)
newarray t NewArray(t , 1)
new c New(c)
nop Nop (not described)
pop2 Pop(2)
pop Pop(1)
putfield fref t PutField(t , fref )
putstatic fref t PutStatic(t , fref )
return Return(void)
ret n Ret(n)
saload ALoad(short)
sastore AStore(short)
sipush Prim(n)
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Bytecode instruction Abstract instruction
swap Swap (not described)
tableswitch not supported
wide not supported
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D.1 Compilation functions

E(lit) = Prim(lit)
E(loc) = Load(T (loc), loc)
E(loc = exp) = E(exp) ·Dupx (0, size(T (exp))) · Store(T (exp), loc)
E(! exp) = B1(exp,una1) · Prim(1) ·Goto(una2)·

una1 · Prim(0) · una2

E(uop exp) = E(exp) · Prim(uop)
E(exp1 bop exp2) = E(exp1) · E(exp2) · Prim(bop)
E(exp0 ? exp1 : exp2) = B1(exp0, if1) · E(exp2) ·Goto(if2) · if1 · E(exp1) · if2

S(; ) = ε
S(exp; ) = E(exp) · Pop(size(T (exp)))
S({stm1 . . . stmn}) = S(stm1) · . . . · S(stmn)
S(if (exp) stm1 else stm2) = B1(exp, if1) · S(stm2) ·Goto(if2)·

if1 · S(stm1) · if2

S(while (exp) stm) = Goto(while1) · while2 · S(stm)·
while1 · B1(exp,while2)

S(lab : stm) = labc · S(stm) · labb

S(continue lab; ) = let [fin1, . . . ,finn ] = finallyLabsUntil(lab)
Jsr(fin1) · . . . · Jsr(finn) ·Goto(labc)

S(break lab; ) = let [fin1, . . . ,finn ] = finallyLabsUntil(lab)
Jsr(fin1) · . . . · Jsr(finn) ·Goto(labb)

B1(true, lab) = Goto(lab)
B1(false, lab) = ε
B1(! exp, lab) = B0(exp, lab)
B1(exp0 ? exp1 : exp2, lab) = B1(exp0, if1) · B1(exp2, lab) ·Goto(if2)·

if1 · B1(exp1, lab) · if2

B1(exp, lab) = E(exp) · Cond(ifne, lab)

B0(true, lab) = ε
B0(false, lab) = Goto(lab)
B0(! exp, lab) = B1(exp, lab)
B0(exp0 ? exp1 : exp2, lab) = B1(exp0, if1) · B0(exp2, lab) ·Goto(if2)·

if1 · B0(exp1, lab) · if2

B0(exp, lab) = E(exp) · Cond(ifeq, lab)
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E(c.f ) = GetStatic(T (c/f ), c/f )
E(c.f = exp) = E(exp) ·Dupx (0, size(T (exp))) · PutStatic(T (c/f ), c/f )
E(c.m(exps)) = E(exps) · InvokeStatic(T (c/m), c/m)

E((exp1, . . . , expn)) = E(exp1) · . . . · E(expn)

S(static stm) = S(stm)
S(return; ) = let [fin1, . . . ,finn ] = finallyLabs

Jsr(fin1) · . . . · Jsr(finn) · Return(void)
S(return exp; ) =

if finallyCodeToExec then
E(exp) · Store(T (exp), var)·
let [fin1, . . . ,finn ] = finallyLabs
Jsr(fin1) · . . . · Jsr(finn) · Load(T (exp), var) · Return(T (exp))

else
E(exp) · Return(T (exp))

E(this) = Load(addr, 0)
E(new c) = New(c) ·Dupx (0, 1)
E(exp.c/f ) = E(exp) ·GetField(T (c/f ), c/f )
E(exp1.c/f = exp2) = E(exp1) · E(exp2) ·Dupx (1, size(T (c/f )))·

PutField(T (c/f ), c/f )
E(exp.c/m(exps)) = E(exp) · E(exps)·

case callKind(exp.c/m) of
Virtual → InvokeVirtual(T (c/m), c/m)
Super → InvokeSpecial(T (c/m), c/m)
Special → InvokeSpecial(T (c/m), c/m)

E(exp instanceof c) = E(exp) · InstanceOf (c)
E((c)exp) = E(exp) · Checkcast(c)

S(throw exp; ) = E(exp) ·Athrow
S(try stm catch (c1 x1) stm1 . . . catch (cn x n) stmn ) =

try · S(stm) · tryEnd ·Goto(end)·
handle1 · Store(addr, x1) · S(stm1) ·Goto(end)·
...
handlen · Store(addr, xn) · S(stmn) ·Goto(end)·
end

S(stm1 finally stm2) =
tryf · S(stm1) · Jsr(fin) ·Goto(end)·
default · Store(addr, exc) · Jsr(fin) · Load(addr, exc) ·Athrow ·
fin · Store(addr, ret) · S(stm2) · Ret(ret)·
end
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X (try stm catch (c1 x1) stm1 . . . catch (cn x n) stmn ) =
X (stm)·
X (stm1) · Exc(try, tryEnd,handle1, c1)·
...
X (stmn) · Exc(try, tryEnd,handlen , cn)

X (stm1 finally stm2) =
X (stm1) · Exc(tryf ,default,default, Throwable) · X (stm2)

X ({stm1 . . . stmn}) = X (stm1) · . . . · X (stmn)
X (if (exp) stm1 else stm2) = X (stm1) · X (stm2)
X (while (exp) stm) = X (stm)
X (lab : stm) = X (stm)
X (static stm) = X (stm)
X ( ) = ε

D.2 maxOpd

opdSize(phrase) = case phrase of
lit → s
loc → s
loc = exp → max(opdSize(exp), 2 ∗ s)
uop exp → max(opdSize(exp), s)
exp1 bop exp2 → max(opdExps([exp1, exp2]), s)
exp1 ? exp2 : exp3 → max(opdSize(exp1),

max(opdSize(exp2), opdSize(exp3)))
exp; → opdSize(exp)
{stm1 . . . stmn} → opdStms([stm1, . . . , stmn ])
if (exp) stm1 else stm2 → max(opdSize(exp), opdStms([stm1, stm2]))
while (exp) stm → max(opdSize(exp), opdSize(stm))
lab : stm → opdSize(stm)
c.f → s
c.f = exp → max(opdSize(exp), 2 ∗ s)
c.m(exps) → max(opdSize(exps), s)
(exp1, . . . , expn) → opdExps([exp1, . . . , expn ])
static stm → opdSize(stm)
return exp; → opdSize(exp)
this → 1
new c(exps) → 2 + opdSize(exps)
exp.c/f → max(opdSize(exp), s)
exp1.c/f = exp2 → max(opdExps([exp1, exp2]), 1 + 2 ∗ s)
exp.c/m(exps) → max(opdExps([exp, exps]), s)
exp instanceof c → opdSize(exp)
(c)exp → opdSize(exp)
throw exp; → opdSize(exp)
try stm catch (c1 loc1) stm1 . . . catch (cn locn) stmn →

max(opdSize(stm),max(1, opdStms([stm1, . . . , stmn ])))
stm1 finally stm2 → max(opdSize(stm1),max(1, opdSize(stm2)))
exp1[exp2] → max(opdExps([exp1, exp2]), s)
exp1[exp2] = exp3 → max(opdExps([exp1, exp2, exp3]), 2 + 2 ∗ s)
new t [d1] . . . [dn ] → max(1, opdExps([d1, . . . , dn ]))
otherwise → 0

where s = size(T (phrase))
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opdExps([ ]) = 0
opdExps([exp] · exps) = max(opdSize(exp), size(T (exp)) + opdExps(exps))

opdStms([ ]) = 0
opdStms([stm] · stms) = max(opdSize(stm), opdStms(stms))

D.3 Arrays

E(exp1[exp2]) = E(exp1) · E(exp2) ·ALoad(T (exp1[exp2]))
E(exp1[exp2] = exp3) = E(exp1) · E(exp2) · E(exp3)·

Dupx (2, size(T (exp1[exp2]))) ·AStore(T (exp3))
E(new t [d1] . . . [dn ]) = E(d1) · . . . · E(dn) ·NewArray(t ,n)
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