

Java Web Services

David Chappell
Tyler Jewell

Publisher: O'Reilly

First Edition March 2002

ISBN: 0-596-00269-6, 276 pages

Java Web Services shows you how to use SOAP to perform remote method calls and message
passing; how to use WSDL to describe the interface to a web service or understand
the interface of someone else's service; and how to use UDDI to advertise (publish) and look
up services in each local or global registry. Java Web Services also discusses security issues,
interoperability issues, integration with other Java enterprise technologies like EJB; the work
being done on the JAXM and JAX-RPC packages, and integration with Microsoft's .NET
services.

Table of Contents
Preface ...
 Who Should Read This Book?
 Organization ...
 Software and Versions ..
 Conventions ...
 Comments and Questions ..
 Acknowledgments ...

1
1
2
3
4
4
5

1. Welcome to Web Services
 1.1 What Are Web Services?
 1.2 Web Services Adoption Factors
 1.3 Web Services in a J2EE Environment
 1.4 What This Book Discusses

6
6

11
14
15

2. Inside the Composite Computing Model
 2.1 Service-Oriented Architecture
 2.2 The P2P Model ..

17
17
26

3. SOAP: The Cornerstone of Interoperability
 3.1 Simple ..
 3.2 Object ..
 3.3 Access ..
 3.4 Protocol ...
 3.5 Anatomy of a SOAP Message
 3.6 Sending and Receiving SOAP Messages
 3.7 The Apache SOAP Routing Service
 3.8 SOAP with Attachments

28
28
29
29
30
30
34
46
50

4. SOAP-RPC, SOAP-Faults, and Misunderstandings
 4.1 SOAP-RPC ...
 4.2 Error Handling with SOAP Faults
 4.3 SOAP Intermediaries and Actors

55
55
63
69

5. Web Services Description Language
 5.1 Introduction to WSDL ..
 5.2 Anatomy of a WSDL Document
 5.3 Best Practices, Makes Perfect
 5.4 Where Is All the Java? ..

72
72
73
94
95

6. UDDI: Universal Description, Discovery, and Integration
 6.1 UDDI Overview ..
 6.2 UDDI Specifications and Java-Based APIs
 6.3 Programming UDDI ...
 6.4 Using WSDL Definitions with UDDI

96
96
99

101
135

7. JAX-RPC and JAXM ...
 7.1 Java API for XML Messaging (JAXM)
 7.2 JAX-RPC ..
 7.3 SOAPElement API ..
 7.4 JAX-RPC Client Invocation Models

138
138
157
161
162

8. J2EE and Web Services ..
 8.1 The SOAP-J2EE Way ..
 8.2 The Java Web Service (JWS) Standard

169
169
183

9. Web Services Interoperability
 9.1 The Concept of Interoperability
 9.2 The Good, Bad, and Ugly of Interoperability
 9.3 Potential Interoperability Issues
 9.4 SOAPBuilders Interoperability
 9.5 Other Interoperability Resources
 9.6 Resources ..

186
186
186
198
200
223
225

10. Web Services Security ..
 10.1 Incorporating Security Within XML
 10.2 XML Digital Signatures
 10.3 XML Encryption ..
 10.4 SOAP Security Extensions
 10.5 Further Reading ...

227
227
228
233
239
241

A. Credits ...

243

Colophon ..

245

Java Web Services

1

Preface
When XML was first introduced, it was hailed as the cornerstone of a new kind of technology
that would permit interoperable businesses. XML provided a generic way to represent
structured and typed data. Even though it has taken several years, XML standards have started
to evolve and multiply. As part of this evolution, XML has been incorporated into every facet
of application and enterprise development. XML is now a part of operating systems,
networking protocols, programming languages, databases, application servers, web servers,
and so on. XML is used everywhere.

Starting in 1998, XML was incorporated into a number of networking protocols with the
intention of providing a standard way for two pieces of software to communicate with each
other. The Simple Object Access Protocol (SOAP) and XML-RPC specifications blew the
doors wide open on the distributed-computing environment by providing a platform-
independent way for software to communicate. Even more astounding, nearly every major
software company supported SOAP. The instant success of SOAP created the potential for
interoperability at a level that has never been seen before. SOAP became the cornerstone
protocol of the web services revolution that is going on today.

After SOAP, the Web Services Description Language (WSDL) and Universal Discovery,
Description, Integration (UDDI) specifications were introduced with an equal amount of
industry support. Other specifications were rapidly introduced, including ebXML, OASIS
technical communities, and a variety of SOAP extensions. Some specifications were met with
acclaim and others with disappointment. Either way, the industry has unified around SOAP,
WSDL, and UDDI. These core technologies are required to achieve true software
interoperability for the future.

It was only a matter of time before developers wanted to use web services technology. Even
though web services are language and platform independent, developers still have to develop
programs in programming languages. With Java and J2EE being the primary environment for
enterprise development, it wasn't long before technology used to integrate web services with
the J2EE platform appeared. Java programs need to be able to create, locate, and consume
web services.

Many specifications and technologies have been introduced to bridge the gap between Java
and web services. This book provides an introduction to both web services and the Java
technologies that have been introduced to support web services. It highlights major web
services technologies and investigates the current happenings in the Java standardization
community. As the web services revolution continues, it will be increasingly important for
software developers to understand how web services work and when to use them. Reading
this book may be one of the smartest career moves you will ever make.

Who Should Read This Book?

This book explains and demonstrates the fundamentals of web services and the Java
technologies built around web services. It provides a straightforward, no-nonsense
explanation of the underlying technology, Java classes and interfaces, programming models,
and various implementations.

Java Web Services

2

Although this book focuses on the fundamentals, it's no "for Dummy's" book. Readers are
expected to have an understanding of Java and XML. Web service APIs are easy to learn, but
can be tedious. Before reading this book, you should be fluent in the Java language and have
some practical experience developing business solutions. If you are unfamiliar with the Java
language, we recommend that you pick up a copy of Learning Java by Patrick Neimeyer and
Jonathan Knudsen (formerly Exploring Java) (O'Reilly). If you need a stronger background in
distributed computing, we recommend Java Distributed Computing by Jim Farley (O'Reilly).
If you need additional information on XML, we recommend Java and XML by Brett
McLaughlin (O'Reilly) and XML in a Nutshell by Elliotte Harold and W. Scott Means
(O'Reilly). Other O'Reilly books covering web services include Programing Web Services
with SOAP by Doug Tidwell, James Snell, and Pavel Kulchenko and Programming Web
Services with XML-RPC by Simon St. Laurent, Joe Johnston, and Edd Dumbill.

Organization

Here's how the book is structured:

Chapter 1

This chapter defines web services; provides an overview of SOAP, WSDL, and
UDDI; and discusses the different business uses for web services.

Chapter 2

This chapter introduces the role of service-oriented architecture (SOA) and how
application architecture can leverage programs developed using a SOA.

Chapter 3

This chapter introduces the SOAP protocol and shows how it is layered on top of
HTTP. It discusses the SOAP envelope, header, and body, and how SOAP with
attachments works. This chapter introduces the Apache SOAP engine and the Apache
SOAP client API that provides a Java interface for sending and receiving SOAP
messages.

Chapter 4

This chapter continues the SOAP discussion by describing how SOAP deals with
method invocations, exception handling, and the mustUnderstand header attribute.

Chapter 5

This chapter introduces WSDL and the steps involved in creating a web service
description. It provides an overview of the different ways WSDL may be created
within a Java program.

Chapter 6

This chapter discusses the UDDI initiative and the makeup of a UDDI Business
Registry. It introduces the inquiry and publishing API for UDDI and demonstrates

Java Web Services

3

how to access a UDDI registry using the Apache SOAP client library, a custom library
provided by a vendor, and JAXR. This chapter also discusses higher-level abstraction
Java APIs for seamless access to a registry.

Chapter 7

This chapter introduces two relatively new client programming models that are
evolving as part of the Java Community Process (JCP). The coding examples from the
previous SOAP chapters are examined using these new APIs.

Chapter 8

This chapter discusses how an application server might support web services. It
discusses where SOAP, WSDL, and UDDI fit into the J2EE picture. It also introduces
the Java Community Process standardization efforts currently underway to get web
services integrated tightly with J2EE.

Chapter 9

This chapter combines firsthand experience with collective research gathered from
message boards, articles, and various interoperability web sites. It explores low-level
issues regarding such things as datatype mapping and header processing, as well as
higher-level framework issues such as interoperability with ebXML and MS Biztalk.
To provide concrete examples of interoperability problems and solutions, this chapter
discusses the SOAPBuilder's Interoperability Labs' effort.

Chapter 10

This chapter discusses how issues such as digital signatures, key management, and
encryption present new challenges as a result of using XML and SOAP-based
interoperable communications. Current specifications and implementations such as
XML-Encryption, XML-Signatures, SOAP-Security, and XKMS are examined.

Software and Versions

This book covers many different technologies and uses a number of different examples
provided by different vendors. It uses technology available from Apache, IBM, BEA, Sonic
Software, Systinet, Phaos, and Sun. In the examples that come with this book, there is a
comprehensive set of README documents that outline where the different pieces of software
can be downloaded. The README documents also detail the installation and configuration
instructions relevant to you.

Examples developed in this book are available from
http://www.oreilly.com/catalog/javawebserv. The examples are organized by chapter.

Given the speed at which this field is developing, one of the best strategies you can take is to
look at vendors' examples. In the examples archive for this book, we've decided to include
separate directions with a number of examples from Sonic and BEA's products. We will add
other vendors as we get permission. If you are a vendor and would like to see your examples
included in the archive, please contact us.

Java Web Services

4

Conventions

Italic is used for:

• Filenames and pathnames
• Hostnames, domain names, URLs, and email addresses
• New terms where they are defined

Constant width is used for:

• Code examples and fragments
• Class, variable, and method names, and Java keywords used within the text
• SQL commands, table names, and column names
• XML elements and tags

Constant-width bold is used for emphasis in some code examples.

The term JMS provider is used to refer to a vendor that implements the JMS API to provide
connectivity to their enterprise messaging service. The term JMS client refers to Java
components or applications that use the JMS API and a JMS provider to send and receive
messages. JMS application refers to any combination of JMS clients that work together to
provide a software solution.

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

There is a web page for this book, which lists errata, examples, or any additional information.
You can access this page at:

http://www.oreilly.com/catalog/javawebserv

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O'Reilly Network,
see the O'Reilly web site at:

http://www.oreilly.com/

Java Web Services

5

Acknowledgments

While only two names are on the cover of this book, the credit for its development and
delivery is shared by many individuals. Michael Loukides, our editor, was pivotal to the
success of this book. Without his experience, craft, and guidance, this book would not have
been possible.

Many expert technical reviewers helped ensure that the material was technically accurate and
true to the spirit of the Java Message Service. Of special note are Anne Thomas Manes, Scott
Hinkelman, J.P. Morganthal, Rajiv Mordani, and Perry Yin.

David Chappell would like to express sincere gratitude to Sonic Software colleagues Jaime
Meritt, Colleen Evans, and Rick Kuzyk for their research, contributions, and feedback
throughout the book-writing process—as well as other Sonic coworkers who provided
valuable help along the way: Tim Bemis, Giovanni Boschi, Andrew Bramley, Ray Chun, Bill
Cullen, David Grigglestone, Mitchell Horowitz, Sonali Kanaujia, Oriana Merlo, Andy
Neumann, Mike Theroux, Bill Wood, and Perry Yin.

A special thanks goes to George St. Maurice for organizing the download zip file and the
readme files.

Finally, the most sincere gratitude must be extended to our families. Tyler Jewell thanks his
friend and lover, Hillary, for putting up with the aggressive writing timeline, dealing with his
writing over the Christmas break, and not getting upset when he had to cancel their sunny
vacation to finish the manuscript. David Chappell thanks his wife, Wendy, and their children
Dave, Amy, and Chris, for putting up with him during this endeavor.

Java Web Services

6

Chapter 1. Welcome to Web Services
The promise of web services is to enable a distributed environment in which any number of
applications, or application components, can interoperate seamlessly among and between
organizations in a platform-neutral, language-neutral fashion. This interoperation brings
heterogeneity to the world of distributed computing once and for all.

This book defines the fundamentals of a web service. It explores the core technologies that
enable web services to interoperate with one another. In addition, it describes the distributed
computing model that the core web service technologies enable and how it fits into the bigger
picture of integration and deployment within the J2EE platform. It also discusses
interoperability between the J2EE platform and other platforms such as .NET.

1.1 What Are Web Services?

A web service is a piece of business logic, located somewhere on the Internet, that is
accessible through standard-based Internet protocols such as HTTP or SMTP. Using a web
service could be as simple as logging into a site or as complex as facilitating a multi-
organization business negotiation.

Given this definition, several technologies used in recent years could have been classified as
web service technology, but were not. These technologies include win32 technologies, J2EE,
CORBA, and CGI scripting. The major difference between these technologies and the new
breed of technology that are labeled as web services is their standardization. This new breed
of technology is based on standardized XML (as opposed to a proprietary binary standard)
and supported globally by most major technology firms. XML provides a language-neutral
way for representing data, and the global corporate support ensures that every major new
software technology will have a web services strategy within the next couple years. When
combined, the software integration and interoperability possibilities for software programs
leveraging the web services model are staggering.

A web service has special behavioral characteristics:

XML-based

By using XML as the data representation layer for all web services protocols and
technologies that are created, these technologies can be interoperable at their core
level. As a data transport, XML eliminates any networking, operating system, or
platform binding that a protocol has.

Loosely coupled

A consumer of a web service is not tied to that web service directly; the web service
interface can change over time without compromising the client's ability to interact
with the service. A tightly coupled system implies that the client and server logic are
closely tied to one another, implying that if one interface changes, the other must also
be updated. Adopting a loosely coupled architecture tends to make software systems
more manageable and allows simpler integration between different systems.

Java Web Services

7

Coarse-grained

Object-oriented technologies such as Java expose their services through individual
methods. An individual method is too fine an operation to provide any useful
capability at a corporate level. Building a Java program from scratch requires the
creation of several fine-grained methods that are then composed into a coarse-grained
service that is consumed by either a client or another service. Businesses and the
interfaces that they expose should be coarse-grained. Web services technology
provides a natural way of defining coarse-grained services that access the right amount
of business logic.

Ability to be synchronous or asynchronous

Synchronicity refers to the binding of the client to the execution of the service. In
synchronous invocations, the client blocks and waits for the service to complete its
operation before continuing. Asynchronous operations allow a client to invoke a
service and then execute other functions. Asynchronous clients retrieve their result at a
later point in time, while synchronous clients receive their result when the service has
completed. Asynchronous capability is a key factor in enabling loosely coupled
systems.

Supports Remote Procedure Calls (RPCs)

Web services allow clients to invoke procedures, functions, and methods on remote
objects using an XML-based protocol. Remote procedures expose input and output
parameters that a web service must support. Component development through
Enterprise JavaBeans (EJBs) and .NET Components has increasingly become a part of
architectures and enterprise deployments over the past couple of years. Both
technologies are distributed and accessible through a variety of RPC mechanisms. A
web service supports RPC by providing services of its own, equivalent to those of a
traditional component, or by translating incoming invocations into an invocation of an
EJB or a .NET component.

Supports document exchange

One of the key advantages of XML is its generic way of representing not only data,
but also complex documents. These documents can be simple, such as when
representing a current address, or they can be complex, representing an entire book or
RFQ. Web services support the transparent exchange of documents to facilitate
business integration.

1.1.1 The Major Web Services Technologies

Several technologies have been introduced under the web service rubric and many more will
be introduced in coming years. In fact, the web service paradigm has grown so quickly that
several competing technologies are attempting to provide the same capability. However, the
web service vision of seamless worldwide business integration is not be feasible unless the
core technologies are supported by every major software company in the world.

Java Web Services

8

Over the past two years, three primary technologies have emerged as worldwide standards
that make up the core of today's web services technology. These technologies are:

Simple Object Access Protocol (SOAP)

SOAP provides a standard packaging structure for transporting XML documents over
a variety of standard Internet technologies, including SMTP, HTTP, and FTP. It also
defines encoding and binding standards for encoding non-XML RPC invocations in
XML for transport. SOAP provides a simple structure for doing RPC: document
exchange. By having a standard transport mechanism, heterogeneous clients and
servers can suddenly become interoperable. .NET clients can invoke EJBs exposed
through SOAP, and Java clients can invoke .NET Components exposed through
SOAP.

Web Service Description Language (WSDL)

WSDL is an XML technology that describes the interface of a web service in a
standardized way. WSDL standardizes how a web service represents the input and
output parameters of an invocation externally, the function's structure, the nature of
the invocation (in only, in/out, etc.), and the service's protocol binding. WSDL allows
disparate clients to automatically understand how to interact with a web service.

Universal Description, Discovery, and Integration (UDDI)

UDDI provides a worldwide registry of web services for advertisement, discovery, and
integration purposes. Business analysts and technologists use UDDI to discover
available web services by searching for names, identifiers, categories, or the
specifications implemented by the web service. UDDI provides a structure for
representing businesses, business relationships, web services, specification metadata,
and web service access points.

Individually, any one of these technologies is only evolutionary. Each provides a standard for
the next step in the advancement of web services, their description, or their discovery.
However, one of the big promises of web services is seamless, automatic business integration:
a piece of software will discover, access, integrate, and invoke new services from unknown
companies dynamically without the need for human intervention. Dynamic integration of this
nature requires the combined involvement of SOAP, WSDL, and UDDI to provide a dynamic,
standard infrastructure for enabling the dynamic business of tomorrow. Combined, these
technologies are revolutionary because they are the first standard technologies to offer the
promise of a dynamic business. In the past, technologies provided features equivalent to
SOAP, WSDL, and UDDI in other languages, but they weren't supported by every major
corporation and did not have a core language as flexible as XML.

Figure 1-1 provides a diagram that demonstrates the relationship between these three
technologies.

Java Web Services

9

Figure 1-1. Simple web service interaction

The relationship between these pieces (SOAP, WSDL, and UDDI) can be described as
follows: an application acting in the role of a web services client needs to locate another
application or a piece of business logic located somewhere on the network. The client queries
a UDDI registry for the service either by name, category, identifier, or specification
supported. Once located, the client obtains information about the location of a WSDL
document from the UDDI registry. The WSDL document contains information about how to
contact the web service and the format of request messages in XML schema. The client
creates a SOAP message in accordance with the XML schema found in the WSDL and sends
a request to the host (where the service is).

1.1.2 Service-Oriented Architecture in a Web Services Ecosystem

The web services model lends itself well to a highly distributed, service-oriented architecture
(SOA). A web service may communicate with a handful of standalone processes and
functions or participate in a complicated, orchestrated business process. A web service can be
published, located, and invoked within the enterprise, or anywhere on the Web.

As illustrated in Figure 1-2, a service might be simple and discrete, such as an international
currency conversion service. It may also be a whole suite of applications representing an
entire business function, such as an auto insurance claims processor. At the mass-consumer
market, web services may provide something like a restaurant finder application for a
handheld device that knows who and where you are. It could also take the form of an
application that participates in an exchange between a business entity and its suppliers.

Figure 1-2. Discrete components in a web services architecture

Whether a service is implemented as a fine-grained component performing a discrete
operation or as an application suite exposing an entire business function, each can be

Java Web Services

10

considered a self-contained, self-describing, modular unit that participates in a larger
ecosystem. As illustrated in Figure 1-3, a web service can access and encapsulate other web
services to perform its function. For example, a portal such as www.boston.com may have
a restaurant finder application that is exposed as a web service. The restaurant finder service
may in turn access Mapquest as a web service in order to get directions.

Eventually, these small ecosystems can all be combined into a larger, more complicated,
orchestrated business macrocosm.

Figure 1-3. Web services within a larger ecosystem

A service-oriented architecture may be intended for use across the public Internet, or built
strictly for private use within a single business or among a finite set of established business
partners.

1.1.3 Practical Applications for Web Services

Because of the cross-platform interoperability promised by SOAP and web services, we can
provide practical business solutions to problems that, until now, have only been a dream of
distributed-computing proponents.

It's easy to see the use for simple, discrete web services such as a currency conversion service
that converts dollars to Euros or a natural language translation service that converts English to
French. Today, web sites such as www.xmethods.com are dedicated to hosting simple web
services

This scenario becomes more exciting when we see real companies using web services to
automate and streamline their business processes. Let's use the concept of a Business-to-
Consumer (B2C) portal. Web-based portals, such as those used by the travel industry, often
combine the offerings of multiple companies' products and services and present them with a
unified look and feel to the consumer accessing the portal. It's difficult to integrate the
backend systems of each business to provide the advertised portal services reliably and
quickly.

Web services technology is already being used in the integration between Dollar Rent A Car
Systems, Inc. and Southwest Airlines Co. Dollar uses the Microsoft SOAP Toolkit to
integrate its online booking system with Southwest Airlines Co.'s site. Dollar's booking

Java Web Services

11

system runs on a Sun Solaris server, and Southwest's site runs on a Compaq OpenVMS
server. The net result (no pun intended) is that a person booking a flight on Southwest
Airline's web site can reserve a car from Dollar without leaving the airline's site. The resulting
savings for Dollar are a lower cost per transaction. If the booking is done online through
Southwest and other airline sites, the cost per transaction is about $1.00. When booking
through traditional travel agent networks, this cost can be up to $5.00 per transaction.

The healthcare industry provides many more scenerios in which web services can be put to
use effectively. A doctor carrying a handheld device can access your records, health history,
and your preferred pharmacy using a web service. The doctor can also write you an electronic
prescription and send it directly to your preferred pharmacy via another web service. If all
pharmacies in the world standardized a communication protocol for accepting prescriptions,
the doctor could write you a subscription for any pharmacy that you selected. The pharmacy
would be able to fulfill the prescription immediately and have it prepared for you when you
arrive or couriered to your residence.

This model can be extended further. If the interfaces used between doctors and pharmacies are
standardized using web services, a portal broker could act as an intermediary between doctors
and pharmacies providing routing information for requests and better meet the needs of
individual consumers. For example, a patient may register with an intermediary and specify
that he wants to use generic drugs instead of expensive brand names. An intermediary can
intercept the pharmaceutical web service request and transform the request into a similar one
for the generic drug equivalent. The intermediary exposes web services to doctors and
pharmacies (in both directions) and can handle issues such as security, privacy, and
nonrepudiation.

1.2 Web Services Adoption Factors

Web services are new technologies and require a paradigm shift. The adoption of web
services is directly impacted by the adoption of the paradigm of web services development.

A paradigm shift can happen quickly in a large wave, when suddenly the whole world is
doing something differently, and no one notices how and when it happened until after the fact.
An example of such a shift is the World Wide Web phenomenon that began around 1995. The
combination of HTML, HTTP, and the CGI programming model is not the most efficient way
to accomplish the services offered by these technologies, yet the CGI model gained
widespread grassroots acceptance because it was simple and easy to adopt.

The acceptance of CGI started the wave. To become a lasting paradigm shift, the model of
web-based business needed broader acceptance among corporate IT and industry leaders. This
acceptance was encouraged by continuing standards development within W3C and IETF and
through continuing technology innovations such as ISAPI, NSAPI, Java Servlets, and
application servers. Eventually, high-level architectures and infrastructures such as .NET and
J2EE were created to hold everything together.

Unlike the initial adoption of the Web, which was driven by grass-roots demand, the adoption
of web services will be driven downward by corporations. It's still a paradigm shift, but it's
likely to move more slowly. The adoption of the fax machine provides a good analogy.
Because fax machines were initially large expensive devices, they were adopted first by large
businesses as a way to communicate between their offices. As more companies bought fax

Java Web Services

12

machines, they became important for business-to-business communications. Today, fax
machines are nearly ubiquitous—you can fax in your pizza order. We expect to see the same
trend in web services. They will be used first for internal business communications before
they become part of everyday life. In all cases, though—the rapid adoption of the Web, the
slower adoption of the fax machine, and the current adoption of web services—the same
factor has enabled the paradigm shift. That factor is a standards communications mechanism.
Whether the standard be the phone line and FAX protocols, the TCP/IP stack and HTTP
(together with the phone line and modem protocols), or the web service protocols, standards
have been, and continue to be, the key factor in enabling the acceptance of new technologies.

1.2.1 Industry Drivers

Many tangible drivers make web services technology attractive, both from a business and a
technical perspective. Classic Enterprise Application Integration (EAI) problems require
applications to integrate and interoperate. Even within a particular business unit, there exist
islands of IT infrastructure. For example, a Customer Relationship Management (CRM)
system may have no knowledge of how to communicate with anything outside of its own
application suite. It may need to communicate with a third-party Sales Order system so it can
know about new customers as soon as they place their first order.

Corporate acquisitions and mergers are also an issue. Entire parallel business application
infrastructures have to be synchronized or merged. Business partners such as suppliers and
buyers need to collaborate across corporate boundaries.

These EAI and B2B problems exist in abundance and are increasing exponentially. Every new
deployed system becomes a legacy system, and any future integration with that system is an
EAI or B2B problem. As the growth of integration problems and projects accelerates over the
next couple of years, the standards-based approach that web services offer makes adopting
web services technology an attractive option for companies that need to cost-effectively
accomplish seamless system integration.

1.2.2 Lessons Learned from Recent History

Some industry analysts claim that the web service model is causing a paradigm shift that will
change the way distributed computing is done forever. Others say that this model is just a fad
that will go away soon. Currently, web services is still very much in the hype phase. Drawing
parallels to other new technologies can teach us important lessons.

Other distributed-computing models have had an opportunity to garner universal acceptance
and adoption, yet they have not. While these models offer great technical advantages for
solving real problems, none have achieved the massive widespread adoption that their
proponents had hoped for. This is largely due to their proprietary nature and the inevitable
vendor lock-in. Though COM/DCOM had a widespread following, it could not permeate an
enterprise because it was limited to Microsoft platforms. CORBA was controlled by the
OMG, a neutral standards body. However, software availability was a problem. There were
really only two robust vendor implementations: Iona and Visigenic.

Forcing middleware infrastructure down the throats of other departments and business
partners is not easy. Both CORBA and DCOM required that a piece of the vendor-supplied
middleware be installed at every node of the system. You can't always force a business

Java Web Services

13

partner to install a piece of your software at their site for them to be able to participate in
business transactions with your systems. Even within the four walls of an organization,
agreeing upon and rolling out an enterprise-wide middleware solution is a huge, concerted
effort. CORBA implementations eventually achieved cross-vendor interoperability, but by
then it was too late; the wave had already passed.

Crossing corporate boundaries in a secure, reliable fashion is key. If you go back only as far
as 1996 to 1997, you would have seen every trade magazine talking about a world of
distributed CORBA objects happily floating around on the Internet, discovering one another
dynamically and communicating through firewalls. Standards were proposed for firewall
communications, and IIOP was going to be adopted by all major firewall vendors as a
recognizable protocol. It just never happened—partly due to the aforementioned adoption
problems and partly due to widespread adoption and general acceptance of HTTP as a
firewall-friendly protocol.

1.2.3 Why Web Services, and Why Now?

What is so different about web services, and why are they poised for success, whereas other
preceding technologies have failed to achieve widespread adoption? The answer lies in the
challenge that every organization faces today: to create a homogeneous environment while
still leveraging its core abilities and existing applications. IT needs a simple, platform-neutral
way of communicating between applications.

For starters, XML is ideal for representing data. IT developers have had exposure to XML for
a few years and they understand what it's good for. Even though the average IT developer
hasn't yet become a walking XML parser, by now most developers understand the concepts
behind XML and how it can be used.

Also, the base technologies of SOAP, WSDL, and UDDI are not themselves very exciting;
they are just new dressings for the same old distributed-computing model. What draws people
to them is the promise of what they enable. Finally, we have a platform-neutral
communication protocol that provides interoperability and platform independence. A
bidirectional conversation may occur between a Biztalk server and a set of hand-rolled Perl
scripts. The Perl scripts may be simultaneously involved in a conversation with a set of
applications held together by a J2EE-based application server or a message-oriented
middleware (MOM) infrastructure. The minimum requirement is that each participant in the
multiparty collaboration knows how to construct and deconstruct SOAP messages and how to
send and receive HTTP transmissions.

The heavy involvement of the Microsoft camp and the J2EE camp in web services is good for
everyone. It's advantage is not about .NET versus J2EE or .NET versus SunONE; it's about
the fact that you no longer have to let that debate or choice get in the way of achieving
interoperability across the enterprise. The programming languages and associated
infrastructure of each respective camp will continue to coexist and will remain "camps" for a
long time.

1.2.3.1 Low barrier to entry means grass-roots adoption

The widespread adoption of web services can be predicted by drawing parallels to the CGI
phenomenon discussed earlier.

Java Web Services

14

Similar conditions exist today. The straightforward approach that SOAP takes—XML
messages sent over HTTP—means that anyone can grab Apache SOAP and start exchanging
data with the application owned by the guy down the hall. There isn't any overly complex,
mysterious alchemy involving a strategic architecture group that takes two years to figure out.
A corporate-wide infrastructure adoption shift doesn't need to occur for a company to start
working and benefiting from web services; companies can be selective about how and where
they adopt these technologies to get the best return on their investment.

1.3 Web Services in a J2EE Environment

A common thread found throughout various web services specifications is the regular
reference to web services "platforms" and "providers." A web services platform is an
environment used to host one or more web services. It includes one or more SOAP servers,
zero or more UDDI business registries, the security and transaction services used by the web
services hosted on it, and other infrastructure provisions. A web services provider is generally
considered a vendor-supplied piece of middleware infrastructure, such as an ORB, an
application server, or a MOM. The provider may fully supply a platform, or it may deliver
some base J2EE functionality plus some web service add-ons.

Web services are a new approach for exposing and advertising enterprise services that are
hosted on a platform. These platform services still have a variety of enterprise requirements,
such as security, transactions, pooling, clustering, and batch processing. Web services do not
provide these infrastructure capabilities, but expose the services that do. J2EE and .NET still
play an important role in the enterprise as platform definitions: they define the behavior of
core capabilities that every software program needs internally. Web services, however, offer a
standard way to expose the services deployed onto a platform.

An important question is, "What is being web service enabled?" If the answer is the business
systems that run the enterprise, then the role of J2EE in the whole web services picture
becomes abundantly clear. The core requirements of a web service enabled ecosystem are the
same as they have always been—scalability, reliability, security, etc. Web services provide
new ways of wrapping things at the edge of the enterprise, but if you poke your head through
the web services hype, the requirements for holding together your core systems don't change
that much. The implemention of the web services backbone should still be based on the J2EE
architecture. Web services and J2EE come together at multiple points. The use of each J2EE
component depends on the application's requirements, just as it did prior to the advent of web
services. If the nature of the web service is for lightweight, quick-and-dirty processing, then
use a web container and implement the web service directly as a JSP. If the solution requires
a distributed component model, then use EJB. If the solution requires a highly distributed,
highly reliable, loosely coupled environment, then use JMS. Naturally, any of these
combinations is allowed and encouraged, as illustrated in Figure 1-4.

Java Web Services

15

Figure 1-4. SOA based on a J2EE backbone

1.4 What This Book Discusses

This is a book on Java and web services. It is for developers who need to develop client- or
server-side programs that either use web services or are exposed as web services. Web
services are built on XML and have specifications that focus on the XML nature of the
technology. These specifications do not discuss how these technologies might be bound to a
particular programming language such as Java. As a result, a plethora of industry technologies
that facilitate Java/web service integration have been proposed.

This book introduces the basics of SOAP, WSDL, and UDDI, and then discusses some of the
different Java technologies available for using each of these platforms within a Java program.
The technologies we've chosen range from open source initiatives, such as the Apache
project, to big-ticket commercial packages. One reason for touching on so many different
packages is that the web services story is still developing; a number of important standards are
still in flux, and vendors are providing their own solutions to these problems. Of course, this
book looks at the standards efforts designed to consolidate and standardize how Java
programs interface with web services. Most notably, this book discusses Java/XML
technologies, such as JAXR, JAX-RPC, and JAXM, and how they can be used in a web
services environment.

These standards are still works in progress; their status may be clarified by the time we write a
second edition. In the meantime, we thought it was important (and even critical) to show you
how things look. Just be aware that changes are certain between now and the time when these
standards are finalized and actual products are released.

Additionally, for developers who are producing J2EE applications, this book discusses
different technologies that are being proposed to web service-enable standard J2EE
applications. This book discusses how a web service facade can integrate with a J2EE
infrastructure. It also introduces some of the standards efforts proposed for solidifying this
work.

Java Web Services

16

This book also discusses the points that developers need to understand to make their web
services secure and interoperable with other web services. It provides an in-depth look at web
service interoperability across multiple platforms, including the topic of .NET.

Java Web Services

17

Chapter 2. Inside the Composite Computing Model
What is the "composite computing model," you ask? The most straightforward definition
we've found is:

An architecture that uses a distributed, discovery-based execution environment
to expose and manage a collection of service-oriented software assets.

A software asset is nothing more than a piece of business logic; it can be a component, a
queue, or a single method that performs a useful function that you decide to expose to the
outside world. Like the client-server and n-tier computing models, the composite computing
model represents the architectural principles for governing roles and responsibilities of its
constituents. It was designed to solve a specialized group of business problems that have the
following requirements:

• Dynamic discovery of the business logic's capabilities
• Separation between the description of the business logic's capabilities and its

implementation
• The ability to quickly assemble impromptu computing communities with minimal

coordinated planning efforts, installation procedures, or human intervention

The computing industry has been moving towards this model for some time now; much of the
last decade has been devoted to defining and refining distributed-computing technologies that
allow you to look up components on the fly; discovering a component's interface at runtime;
and building applications from components on an ad-hoc basis, often using components in
ways that weren't anticipated when they were developed. Listing the steps by which we
arrived at the composite computing model is a tangent we won't follow, but remember that
Java has played, and continues to play, a very important role in the development of distributed
technologies.

In short, the "composite computing model" is the direction in which computing has headed
ever since networking became cheap and easy. Instead of trying to build larger applications on
ever larger computers, we're trying to assemble smaller components that interact with one
another across many computers, and possibly thousands of miles. Instead of building a large,
monolithic, proprietary inventory system, for example, we're trying to build services that
access inventory databases and can easily be combined as needed. Instead of forcing a
customer to call customer service to find out if your plant can deliver 10,000 widgets by
Wednesday (and if another plant can deliver 15,000 gadgets by Thursday), you can run an
application that knows how to search for vendors that supply widgets and gadgets, figures out
how to query each vendor's service interface, and says, "Yes, we can do a production run of
5,000 next week at a cost of $40,000." If you're not working on applications that do this now,
you will be soon.

2.1 Service-Oriented Architecture

The composite computing model defines a vision for what computing should be. Service-
oriented architecture (SOA) represents a way to achieve this vision using the set of
technologies that make up the Web Services Technology Stack. This set of technologies
currently consists of SOAP, WSDL, and UDDI, though other components may be added in
the future.

Java Web Services

18

Like other concepts associated with web services, the SOA seemed to appear almost out of
nowhere in September 2000. The originator was IBM and the introduction mechanism was an
article by the IBM Web Services Architecture team on the developerWorks web site
(http://www.ibm.com/developerWorks). Since then, this group has used it as a way to extol
the virtues of web services to nontechnical users. The SOA is an instance of a composite
computing model, and thus something that can be used to further our understanding of it.

Conceptually, the SOA model is comprised of three roles performing three fundamental
interactions. The components of the SOA are our good friends, web services. Each web
service is made up of two parts:

Service

The implementation for a web service. A service can be as minuscule as a JavaScript
file or as elaborate as a 30-year-old, industrial-strength COBOL application running
on a mainframe. The key requirement is that it be on a network-accessible platform,
provided by the web service provider.

Service description

The interface for a web service. It is expressed in XML and is governed by one or
more standards. This description includes the datatypes, operations, protocol bindings
and network location (i.e., the URL, etc.) for the web service's implementation.
Additional documents provide categorization and other metadata to facilitate
discovery.

2.1.1 Participant Roles

The SOA is based upon the interactions between three roles: a provider, a registry (or broker),
and a requestor. These roles are illustrated in Figure 2-1. The interactions between these roles
involve publishing information about a service, finding which services are available, and
binding to those services.

Java Web Services

19

Figure 2-1. The service-oriented architecture

In a typical scenario, a provider hosts the implementation for a service. Providers define
service descriptions for services and publish them to a registry. A requestor then uses a
registry to find service descriptions for services they are interested in using. With the service
description in hand, the requestor binds (i.e., creates a service request for) to a service.

Let's take a closer look at the roles of the SOA.

2.1.1.1 Provider

In the SOA, a provider is considered the owner of a service. From a composite computing
perspective, it is a software asset that others regard as a network-accessible service. In most
cases, this software asset is exposed as a web service, which by definition:

• Has an XMLized description
• Has a concrete implementation that encapsulates its behavior

Almost any piece of logic can be exposed as a service in an SOA—from a single component
to a full-blown, mainframe-based business process, such as loan processing. Likewise, how
the service is exposed is up to the provider; you can access it through SOAP over HTTP,
through a JMS message queue, or via other technologies (such as SMTP); the service may
implement a request/response protocol, or it may just receive messages and deliver
asynchronous replies.

As is often the case in modern software development, some fundamental ambiguities exist in
basic terms such as "provider." Does it mean the organization providing the service, the
software itself, or the computer (or computers) on which the software runs? The meaning is
almost always clear from the context.

Java Web Services

20

2.1.1.2 Registry (broker)

A registry, or a broker, manages repositories of information on providers and their software
assets. This information includes:

• Business data such as name, description, and contact information ("white pages" data)
• Data describing policies, business processes, and software bindings—in other words,

information needed to make use of the service ("green pages" data)

A service broker usually offers intelligent search capabilities and business classification or
taxonomy data (called "yellow pages" data). From a composite computing perspective, a
broker represents a searchable registry of service descriptions, published by providers.

During the development cycle for a web service, a programmer (or tool) can use the
information in registries to create static bindings to services. At runtime, an application can
tap into a registry (local or remote) to obtain service descriptions and create dynamic bindings
to services.

Registries often sound abstract, but they solve a very concrete problem. They allow you (or,
more properly, your software) to ask questions such as, "Who sells widgets?" Once you have
an answer to that question, you can ask more questions, such as, "How do I interact with their
service to find prices, place orders, etc.?" In short, a registry lets you look up a service and
then find its programmatic interface.

2.1.1.3 Requestor

In the service-oriented architecture, a requestor is a business that discovers and invokes
software assets provided by one or more providers. From a composite computing perspective,
a requestor is an application that looks for and initiates an interaction with a provider. This
role could be played by:

• A person using a web browser
• Computational entities without a user interface, such as another web service

Again, there's a lot of ambiguity: is a requestor a person, an organization, or a piece of
software? If it's software, is it a browser of some sort, or is it another kind of software? Again,
the answer depends on the context.

2.1.2 Participant Interactions

Having defined the roles that participants in web services can play, we'll look in more detail at
how they interact. There are three fundamental types of interaction: publishing, service
location, and binding.

2.1.2.1 Publishing

Providers publish information (or metadata) about services to a registry. These providers are
usually standards organizations, software vendors, and developers. According to IBM's Web
Services Conceptual Architecture document, several different mechanisms are used to publish
service descriptions:

Java Web Services

21

Direct

The service requestor retrieves the service description directly from the service
provider, using email, FTP, or a distribution CD. Here, the service provider delivers
the service description and simultaneously makes the service available to a requestor.
There is no registry as such; the requestor is responsible for locating services and
retrieving their descriptions.

HTTP GET request

This mechanism is currently used at http://www.xmethods.com/, a public repository of
web services that developers can use to test their wares. The service requestor
retrieves the service description directly from the service provider by using an HTTP
GET request. This model has a registry (the public web repository), though only in a
limited sense.

Dynamic discovery

This mechanism uses local and public registries to store and retrieve service
descriptions programmatically. In the web services world, the most frequently used
registry is UDDI, though others exist (for example, ebXML R). Contextually, the
service provider is an application that uses a specialized set of APIs to publish the
service description.

The direct publishing method is a historical artifact and of little interest to us. Publishing with
a GET request is more interesting, particularly since http://www.xmethods.com/ has been on
the forefront of web services development. However, we see this means of publishing as
transitional—a temporary tool to get us from direct publishing to dynamic discovery. (We
suspect the developers of XMethods would agree.)

Dynamic discovery (see Figure 2-2) is the most interesting and versatile publishing model.
UDDI and other protocols designed to support dynamic discovery are at the center of the web
services landscape.

Figure 2-2. Publishing for dynamic discovery

2.1.2.2 Service location (finding)

Given that registries or brokers publish services, how do you locate services that you wish to
use? Requestors find services using a registry or broker. Service location is closely associated
with dynamic discovery. In this context, the requestor is an application that uses a specialized
set of APIs to query a public or private registry for service descriptions. These queries are
formatted in a well-defined, standard XML format and transmitted using an XML messaging
format, such as SOAP or XML-RPC. The criteria used to find a service include the quality of

Java Web Services

22

service (How quickly can the service respond? How good are its results?), supported
protocols (Can my client talk to your service?), and the service taxonomy (What kind of
service?). It's easy to imagine other criteria that you could use to locate a service. Figure 2-3
shows the process of service location.

Figure 2-3. Service location

2.1.2.3 Binding

The binding interaction involves the requestor and provider and, optionally, the registry. In
context, binding is what an application does when it uses the service description to create a
message to be sent to the service provider. Web service description documents (WSDL
documents) specify the network protocols (i.e., HTTP, MIME, SMTP, etc.) that a service
supports, the APIs by which the service is accessed, and everything else that a requestor needs
to use a service. Figure 2-4 illustrates the binding interaction.

Figure 2-4. Binding to a service

2.1.3 Business Perspectives on the SOA

The participants in an SOA have different objectives, and hence different perspectives on the
SOA itself. This section looks at the perspectives of the three main participants in an SOA:
the service provider, service requestor, and service broker.

Interestingly, both IBM and Microsoft are setting up business units to function in multiple
roles, sometimes simultaneously. For Microsoft, the bCentral initiative will be both a service
broker and service provider, MSN will be a service broker, and their desktop products will be
service requestors.

Just because these participant roles have been defined with business-to-business interactions
in mind, it doesn't mean an SOA can be used only in business technologies. A web service
doesn't have to be an e-service or be associated with revenue generation at all. Forward-
thinking companies have already predicted that the web services platform will logically
evolve into a full-blown, Internet-based "virtual distributed computing environment." In that
world, the services supplied by a provider must:

Java Web Services

23

• Perform with high efficiency
• Scale to handle an extremely large volume of requests
• Support versioning and online self-reparation
• Support being part of a workflow
• Be highly available

2.1.3.1 Service provider

A business that sees itself as performing some degree of an electronic service will most likely
identify with the service provider role. Whether that service is defined as processing data or
carrying out a specific task, the business entity must believe it is performing mission-critical
work for others. Since almost anything can be a service, coming up with an exhaustive list of
applicable businesses is difficult. However, we can mention a few straightforward examples:

• Independent software vendor This business owns and maintains software that
performs one or more tasks. This software could be made available as an aggregation
of services or broken down into distinct service resources.

• Business process center This business accesses a diverse set of applications that
perform an entire business process. For example, a bank usually has a business process
for loan processing; it may wish to generate additional income by offering its loan
processing service to other lenders. The bank could expose its loan processing
business process as a web service, thus becoming a service provider.

• Web service aggregators The SOA—and indeed, the whole composite computing
paradigm—offers the opportunity for intermediaries to build new services by
aggregating other services. In the loan example, it's easy to imagine a service that
checks a number of banks to find a good rate and uses another loan processing service
to request a loan on the part of a customer. This new service doesn't provide services
of its own; it just packages services that are provided by others.

As expected, the service provider views the SOA as a framework for exposing its web
services. These services are islands of code designed to solve one aspect of an overall
business problem. Here's a short list of what typically goes through the mind of a service
provider:

• Ensuring availability A web service is not very useful if it isn't available. Making
sure that a web service can accept service requests from a SOAP router is paramount.
The web sites that host today's web applications have already figured out how to do
this in a load-balanced, scalable way, so ensuring availability should be a piece of
cake.

• Providing a secure transaction environment Most businesses already have security
in place. However, the SOA presents interesting and nontrivial security problems. An
SOA may encompass multiple sites, each with its own way of implementing security.
The challenge is to come up with a standards-based mechanism that allows each site in
the SOA to propagate a security context, without necessarily having to use the same
software. More likely than not, the two main security aspects, authentication and
authorization, will end up being web services themselves.

• Quality of service Web services are an innovative and powerful new mechanism for
heterogeneous distributed computing, but they still need to follow old "rules of
conduct" to gain rapid, widespread acceptance. One of these rules guarantees a certain
level of service.

Java Web Services

24

• Preventing denial of service (DOS) attacks DOS attacks are currently the bane of
large consumer shopping portals (such as Amazon) and online auction sites (such as
eBay). There are mechanisms that deal with these problems, though ultimately the
goal is to stay one step ahead of the hackers who try to attack your site. Whenever
security is an issue, it's important to run operating-system software that is
fundamentally sound and to stay up to date with the latest patches and bug fixes.

2.1.3.2 Service registry (broker)

A service registry, also called a broker, is a business or software component whose main
SOA-related activity involves maintaining service registries and their entries. Service
providers customarily pay registration fees to these brokers, who in turn advertise their
service offerings. UDDI and ebXML Registries are the main "tools of the trade" for a service
broker.

What kind of things would a service broker look for in an SOA? The answer depends on the
type of broker. If the broker functions as a gateway, then it is probably interested in finding
other service registries (brokers). Gateways serve as a connection point to a network of
external service registries. They differ from other service registries in that they are used
primarily by the service registries themselves, as opposed to service requestors and providers.
This being the case, gateways are primarily interested in finding other brokers and expanding
their reach.

Other types of brokers may be concerned with locating and installing documentation for web
services. This activity is usually done on behalf of a service requestor. It includes all the work
required to obtain, install, version, and configure services before they are made available to
clients.

2.1.3.3 Service requestor

A business that finds some commonality between its own activities and the actions of others
who request service will most likely see itself in the service requestor role. Two revenue-
generating activities a service requestor might perform are content aggregation and service
aggregation. In content aggregation, thebusiness entity interacts with various content
providers to process or reproduce such content in the desired presentation format of its
customers. A service aggregator interacts with service providers to rebrand, host, or offer a
composite of services to its customers. Earlier, we talked about a hypothetical loan service
that aggregated several pieces of the loan application and processing puzzle. To its customers,
this aggregate service is just another provider; to the banks that provide the loans and the loan
processing, this service is a requestor.

A service requestor typically views an SOA as something it uses to access the web services
that provide it with the data it gives to its customers. Ideally, these web services allow the
business to receive this data in an exact format or structure, thereby eliminating the need for
elaborate data integration or mapping. Here's a short list of what is typically on the mind of a
service requestor:

• Locating the cheapest web services Cost is one of the chief driving factors for goods
and services; a service requestor wants to get the most bang for its buck. We'll see
how UDDI can help do this in the next section.

Java Web Services

25

• Mechanisms for choosing an alternate service Networks fail and servers crash with
distressing regularity. A service requestor has no control over the availability of a web
service, unless it is also the service's provider. Currently, no web services platform
detects when a service is unavailable and automatically fails over to another service.
For the time being, the service requestor must figure out how to choose an alternate
web service when the desired service is unavailable. In the future, the web services
platform should be able to take care of this requirement, or at least be sufficiently
extensible to allow the requestor to work out its own solution.

• Subscribing to a secure environment Web services will undoubtedly become an
incubator for serious hackers and mischievous adolescents. This is a serious problem
that could severely hamper the widespread adoption and usage of web services. DOS
attacks are probably the biggest concern.

2.1.4 Developers' Perspectives on the SOA

The service-oriented architecture has been praised for how it enables the deployment of large,
complex systems of applications. It is an equally useful framework for application developers.
Here, a service provider performs several activities that are part of the development realm:

• Designing and describing the service's interface
• Writing code to implement the service, assembling it into a deployable package, and

subsequently deploying it
• Publishing XML and non-XML artifacts (i.e., WSDL files, usage documentations,

specifications, etc.) for the service to a service registry or other interested parties

All of these activities, with the possible exception of the last one, fall squarely in the world of
development. IBM defines the development aspect of the SOA as an "end-to-end"
development lifecycle that consists of four steps or phases: build, deploy, run, and manage.
Since the service provider performs most of these steps, we'll start with it.

2.1.4.1 Service provider

In many cases, the implementation for our web service is already built: we have a backend
application (or maybe even a web application) and only need to put a web service frontend
onto it. With the application already in hand, we only need to create a service description.
Most serious Java-based web services platforms include tools for producing this description
directly from a class using reflection.

If a service provider doesn't have an existing implementation, it needs to start by developing
and testing the web services implementation, developing the service interface description, and
developing the service implementation description. Developing a new web service involves
using the programming languages and models that are appropriate for the service provider's
environment.

Next, the developer needs to assemble the web service solution for deployment. Don't confuse
deploying and publishing, as they are not synonymous. Deploying makes the web service
visible to the outside world; publishing tells everyone it's there.

Finally, a service provider needs to maintain and enhance its web services. This maintenance
phase covers ongoing management and administration of the web service application.

Java Web Services

26

2.1.4.2 Service requestor

Developers build the service implementations that service requestors consume. Once coded,
this service implementation plays the role of provider, and you or another developer craft a
piece of software that acts as a requestor. Binding to a service means that the developer has a
blueprint for using the service and a mechanism for executing the service. The blueprint
contains both a definition of the service's interface and any requirements for using the service.

2.2 The P2P Model

The SOA provides a powerful framework for building next-generation applications. However,
for some enterprises, the centralized hub-and-spoke structure of the SOA is too inflexible.
Some enterprises want to build web service solutions that require real-time views of work in
progress, inventories, logistics, etc. Other businesses want to exploit highly successful peer-
to-peer (P2P) applications, such as instant messaging and content distribution.

The P2P approach differs from the SOA in that no attempt is made to define explicit roles.
Any node, or peer, can operate in any role it knows about or can discover through other peers
on the P2P network. We often think that this "be whatever you can discover" capability makes
the P2P model more suitable for doing web services than the SOA.

Despite its legal problems, looking at an application such as Napster (or its close relative,
Gnutella) from a web services perspective is useful. Users publish the files they are willing to
share and these files are listed in a registry. (Napster had a centralized database that served as
a registry and Gnutella has a distributed searching mechanism, which is essentially a virtual
registry.) Other users can search the registry (physical or virtual) and download files directly
from the provider. This process maps nicely onto the SOA, except that there's no clear
distinction between provider and requestor or even (in the case of Gnutella) requestor and
directory. Peers establish ad hoc, short-term relationships with one another; at any time, a peer
can be provider, requestor, or both.

Advocates of P2P computing have often failed to come up with a business model that works
in such a decentralized environment. However, that shouldn't prevent us from looking at the
technical advantages of the peer-to-peer model and seeing how it might apply to web services.
Here are some compelling reasons for considering the P2P approach:

• More efficient use of network bandwidth The concentrated, localized traffic
congestion typical of today's Web doesn't apply to P2P networking. There is no server
as such; interactions are between individual peers, with no centralized bottlenecks. If
that peer experiences a hardware failure, another peer can handle the request. If a peer
is too busy, it will be slow in replying to a request, and another peer will handle it.

• Greater availability In a P2P network, a peer can obtain content from multiple
servers, ideally reaching one that is running nearby. The peer that first provided some
content need not service every resource request; in fact, it does not even have to be
running.

Although a detailed discussion of P2P frameworks is beyond the bounds of this book; we'll
point you in the direction of two of the most promising projects: Project JXTA
(http://www.jxta.org/) and BEEP (http://www.beepcore.org/). Both projects are open source
works in progress. Although they haven't yet become part of the computing mainstream,

Java Web Services

27

dynamic and exciting developer communities have grown up around them. We won't mention
them again in this book, but you should be aware of them and decide whether they're
appropriate for the applications you're developing.

Java Web Services

28

Chapter 3. SOAP: The Cornerstone of
Interoperability
Much like web services, the broad definition of the Simple Object Access Protocol (SOAP)
means various things to different people. It's a wire protocol. It's an RPC mechanism. It's an
interoperability standard. It's a document exchange protocol. It's a universal business-to-
business communications language. It's everything you would ever need. It's not nearly
enough.

Actually, it's all of the above. Perhaps the best way to understand what it is and what it isn't is
to break down the acronym into its parts and analyze where each one fits.

3.1 Simple

For starters, the "S" in SOAP stands for "simple." The basic approach of expressing data as
XML and transporting it across the Internet using HTTP is simple. In the SOAP protocol,
everything that goes across the wire is expressed in terms of HTTP or SMTP headers, MIME
encoding, and a special XML grammar for encoding application data and objects.

However, a full understanding of the details and rules of SOAP is not for the faint of heart.
For instance, the idea of expressing a SOAP document with attachments using the email and
MIME metaphor is simple. Is MIME simple? It is simple only because it uses a data
formatting convention that is already in widespread use, is familiar to most IT people, and is
conceptually understood by less technical people. Perhaps the "S" should stand for "simpler."

Is XML simple? It can be as simple or as complex as you want it to be. XML provides a way
to add semantic meaning to data shipped over the wire. Through XML-Schema, we have a
way of describing a complex document such as a purchase order. But XML-Schema is far
from simple. SOAP provides conventions for creating "envelopes" for your data. SOAP has
explicit rules for encoding application data—even for such things as arrays of binary data—so
it can be expressed in an ASCII human-readable form. It isn't all that simple, but it is
explainable.

We don't mean to scare anybody off by representing SOAP as overly complex; we will walk
you through it and explain it in detail. The good news is that tools and frameworks are already
coming to the rescue. In the end, most of us will not worry about how a purchase order gets
encoded or how it is sent over the wire. We will all code to a PO object and click on a "Save"
button. However, for those of you who consider the best tool of trade to be vi, emacs, or
Notepad, we must press on. Even those who like to take advantage of productivity tools and
infrastructure need to understand what lies beneath.

Perhaps the "S" should stand for "straightforward." In SOAP, nothing is hidden intentionally.
Every aspect of a SOAP request is intended to be completely self-describing and largely
based on a conglomeration of proven, well-established conventions. That's the real beauty
behind SOAP; the platforms and programming languages on both sides of a SOAP
conversation are independent of one another, yet they can communicate as long as each side
of the conversation can:

Java Web Services

29

• Send and receive data transmissions across a network using either HTTP or SMTP1
• Understand MIME encoding rules and base the means of constructing and

deconstructing binary attachments on those rules
• Construct and deconstruct XML documents that conform to the enveloping and

encoding rules established by SOAP
• Perform the required action, if an action is indicated in the SOAP document

Also, simple doesn't necessarily connotate "weak" or "lame." SOAP is powerful enough to
represent any datatype, object serialization, method invocation, or document exchange.

Simple does mean that SOAP is missing some important things, such as security, reliability,
routing, and rules of engagement for interaction among multiple parties. These items,
however, will be added eventually. Let's just conclude that in its infancy, SOAP was
"simpler" than its predecessors.

3.2 Object

The "O" in SOAP stands for "object" and has to do with its roots as a way of invoking COM
objects across the Internet. As with its close cousin XML-RPC, SOAP is fully capable of
describing a remote procedure call or method invocation. Here's a typical SOAP document
that describes a method invocation on a remote object:

POST /StockQuote HTTP/1.1
Host: www.example.org
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn
SOAPAction: "http://example.org/2001/06/quotes"

<env:Envelope xmlns:env="http://www.w3.org/2001/09/soap-envelope" >
 <env:Body>
 <m:GetLastTradePrice
 env:encodingStyle="http://www.w3.org/2001/09/soap-encoding"
 xmlns:m="http://example.org/2001/06/quotes">
 <symbol>DIS</symbol>
 </m:GetLastTradePrice>
 </env:Body>
</env:Envelope>

Section 3.5 discusses the details of this SOAP request. For now, it should suffice to say that
the two most important parts are the method name, GetLastTradePrice, and its parameter,
the ticker symbol DIS.

3.3 Access

A key feature of SOAP and web services is their accessibility. The initial developers of SOAP
intended for all SOAP conversations to be carried out via a "binding" to another lower-level
protocol, and that binding would most likely be HTTP or SMTP. These protocols were chosen
because they are almost universally available. Most firewalls have been trained to allow
HTTP sessions and SMTP exchanges, so SOAP conversations can easily cross corporate
boundaries.

1 Even this characterization is somewhat of a misnomer, as we will see when we talk about bindings and higher-level protocols built on top of SOAP.

Java Web Services

30

It's possible to create a SOAP binding for almost any protocol—however, for the time being,
HTTP is the de facto binding (and most widely used). Other bindings, such as SOAP over
RMI, or SOAP over JMS (for improved reliability), are emerging.

3.4 Protocol

Put all these factors together and we have a protocol. SOAP is an XML based protocol used to
exchange information throughout a distributed environment.

3.4.1 Message-Based Document Exchange and RPC

SOAP has its roots in synchronous remote procedure calls over HTTP—although you
wouldn't know it by reading the specification these days. In fact, the specification seems to go
out of its way to distance itself from that association. Although special provisions are
available for performing synchronous RPC calls in SOAP, there is also an asynchronous,
message-based document exchange model. Actually, the document exchange model is the
default method of exchanging data between two endpoints. An RPC call is a specialized case
of combining multiple one-way asynchronous messages into a request-response.

The introduction to Section 2 of the SOAP 1.2 specification says it well:

SOAP messages are fundamentally one-way transmissions from a SOAP
sender to a SOAP receiver; however, SOAP messages are often combined to
implement patterns such as request/response.

SOAP implementations can be optimized to exploit the unique characteristics
of particular network systems. For example, the HTTP binding ... provides for
SOAP response messages to be delivered as HTTP responses, using the same
connection as the inbound request.2

Because SOAP can represent some fairly complex data structures in both the request and
response messages, the lines between the two models are blurred. This chapter presents the
information that is germane to either model first. The RPC-specific concepts built on the more
generic concepts are explained at the end. We use Apache SOAP 2.2 for our examples, which
follows a similar design.

3.5 Anatomy of a SOAP Message

The SOAP specification describes four major components: formatting conventions for
encapsulating data and routing directions in the form of an envelope, a transport or protocol
binding, encoding rules, and an RPC mechanism. The envelope defines a convention for
describing the contents of a message, which in turn has implications on how it gets processed.
A protocol binding provides a generic mechanism for sending a SOAP envelope via a lower-
level protocol such as HTTP. Encoding rules provide a convention for mapping various
application datatypes into an XML tag-based representation. Finally, the RPC mechanism
provides a way to represent remote procedure calls and their return values. Throughout this
book, we'll refer to these four areas collectively as a SOAP message.

2 SOAP 1.2 Specification: http://www.w3.org/TR/2001/WD-soap12-part1-20011002/.

Java Web Services

31

3.5.1 How XML Becomes SOAP

We start this discussion by focusing on the document exchange model. To clarify this topic,
we use a simple purchase order document, PO.xml. This document is overly simplified
because it contains only two things—a ship-to address and an item entry:

<?xml version="1.0" encoding="UTF-8"?>
<PurchaseOrder xmlns="urn:oreilly-jaws-samples">
 <shipTo country="US">
 <name>Joe Smith</name>
 <street>14 Oak Park</street>
 <city>Bedford</city>
 <state>MA</state>
 <zip>01730</zip>
 </shipTo>
 <items>
 <item partNum="872-AA">
 <productName>Candy Canes</productName>
 <quantity>444</quantity>
 <price>1.68</price>
 <comment>I want candy!</comment>
 </item>
 </items>
</PurchaseOrder>

PO.xml is not yet a SOAP document; it's just a vanilla XML document. What makes it
become a SOAP document is:

• The wrapping of the XML inside of a SOAP body
• The wrapping of the SOAP body within a SOAP envelope
• The optional inclusion of a SOAP header block
• Namespace declarations
• Encoding style directives for the serialization of data
• The binding of the whole thing to a protocol

As illustrated in Figure 3-1, a SOAP envelope contains two primary components: a header
and a body. Both the header and the body can contain multiple blocks of information.

Figure 3-1. Block structure of a SOAP envelope

The following listing shows PO.xml wrapped by an envelope to make it conform to SOAP:

Java Web Services

32

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/1999/XMLSchema">
<SOAP-ENV:Header>
 ...
</SOAP-ENV:Header>
<SOAP-ENV:Body>
<PurchaseOrder xmlns="urn:oreilly-jaws-samples">
 <shipTo country="US">
 <name>Joe Smith</name>
 <street>14 Oak Park</street>
 <city>Bedford</city>
 <state>MA</state>
 <zip>01730</zip>
 </shipTo>
 <items>
 <item partNum="872-AA">
 <productName>Candy Canes</productName>
 <quantity>444</quantity>
 <price>1.68</price>
 <comment>I want candy!</comment>
 </item>
 </items>
</PurchaseOrder>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

3.5.2 The SOAP Envelope

The SOAP envelope declaration is simply the outermost XML tag that delineates the
boundaries of the SOAP document. The following envelope tag shows three required
attributes, which specify the namespace and the schema to be used for this envelope:

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/1999/XMLSchema">
...
</SOAP-ENV:Envelope>

Let's examine the syntax of this tag. The first attribute,
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/", is a namespace
declaration. The namespace declaration prevents tag name conflicts when XML fragments are
combined to form composite documents. It's analogous to the use of the package keyword in
Java.

At first, it may seem that "<SOAP-ENV:Envelope xmlns:SOAP-ENV" is nothing but a string of
special keywords. Actually, :Envelope and xmlns: are, but the use of the string SOAP-ENV is
completely arbitrary. What's really important is its relationship to the :Envelope and xmlns:
keywords. The URL http://schemas.xmlsoap.org/soap/envelope/ is a special URI reserved for
the namespace defined by SOAP. Its purpose in life is to be a unique string. A common
convention is to use a URI that represents a real URL owned by the organization that authors
the document. This convention ensures that the URI is globally unique. It could just as well
have looked like this:

Java Web Services

33

<abbr:Envelope
 xmlns:abbr="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/1999/XMLSchema">
...
</abbr:Envelope>

In this version of the envelope element, xmlns:abbr declares a prefix that is an abbreviation
to be used in place of the much more lengthy
"http://schemas.xmlsoap.org/soap/envelope/". The <abbr:Envelope...> tag and the
closing </abbr:Envelope> tag indicate that this namespace is scoped to the entire envelope.

Next, the xmlns:xsi=http://www.w3.org/1999/XMLSchema-instance attribute declares
the XML schema instance namespace. The prefix, xsi, must be prepended to all elements and
attributes defined in this namespace. An example of such an attribute is xsi:type, which
specifies the type of an element for encoding purposes.

Finally, xmlns:xsd=http://www.w3.org/1999/XMLSchema is just another namespace
declaration, akin to xsi and SOAP-ENV. This declaration defines the XMLSchema namespace.
Elements from this namespace are used as values for the xsi:type attribute—for example,
xsd:string or xsd:boolean. The schema for the SOAP document is not referenced from the
SOAP envelope.

3.5.3 The SOAP Header

The SOAP header and body are syntactically similar. SOAP 1.1 and SOAP 1.2 have no
conventions for what is supposed to be in the header; it is simply a place to put directives to
the SOAP processor that receives the message. The sending and receiving parties need to
agree on which elements go there and what they mean. Higher- level protocols built on top of
SOAP, such as ebXML Message Service (MS), have formalized the use of the SOAP header
by defining specific elements such as a <MessageHeader>, which contains such specific
things as <From>, <To>, and <MessageId>. The SOAP body is intended for the actual data, or
message payload, to be consumed and processed by the ultimate receiver.

When using SOAP for RPC, the distinction between the header and the body is similar. The
<Body> is reserved purely for the method call and its parameters, and the <Header> is used for
things targeted at the underlying infrastructure, such as a transaction ID. A transaction ID
clearly should not belong to the method signature; it's intended for the SOAP processor that
receives the message, which could very well be a J2EE server with a transaction manager.

Here's the syntactic form of a SOAP header:

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/1999/XMLSchema">
<SOAP-ENV:Header>
 <jaws:MessageHeader xmlns:jaws="urn:oreilly-jaws-samples">
 <From>Me</From>
 <To>You</To>
 <MessageId>9999</MessageId>
 ...
 </jaws:MessageHeader>

Java Web Services

34

</SOAP-ENV:Header>
<SOAP-ENV:Body>
...
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

3.5.4 The SOAP Protocol Binding

At this point, we need to add only one thing to make PO.xml into a SOAP message: the
additional information needed by the protocol that it is bound to. The following listing shows
the HTTP header information that is prepended to the message when it is bound to the HTTP
protocol:

SOAPAction = "urn:soaphttpclient-action-uri"
Host = localhost
Content-Type = text/xml; charset=utf-8
Content-Length = 701

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/1999/XMLSchema">
...
</SOAP-ENV:Envelope>

The SOAPAction header is somewhat strange. In SOAP 1.1, it was a required part of the
HTTP protocol binding. Its intent was to allow something that does routing or dispatching to
make decisions without any knowledge of SOAP or the means to parse the SOAP envelope.
For example, a dumb CGI script or servlet whose only purpose is to route requests to other
processes shouldn't have to process the SOAP envelope to get routing information. This
concept is great, but it is tied to the HTTP protocol.

In SOAP 1.2, SOAPAction has become optional. It's not up to SOAP to dictate extensions to
an underlying protocol. Hindsight is 20/20. In this case, who can blame anyone for taking an
existing HTTP header such as Action and creating something like it called SOAPAction?
What's really needed is a generic mechanism for specifying sideband data independent of the
protocol. If such a thing existed, the people responsible for creating a standard mapping to
HTTP might just as well have chosen to have a SOAPAction header. However, the semantics
of the first mapping shouldn't dictate how the rest of the mappings are done.

3.6 Sending and Receiving SOAP Messages

We have seen the building blocks of a SOAP message. The next steps are to understand how a
message is built and how it is then communicated between two endpoints. To discuss these
topics, we present a simple SOAP sender and a SOAP receiver using Apache SOAP and the
Apache Tomcat servlet engine.3 You may find it refreshing to discover that the additional
pieces are not placed in the SOAP document by hand. The SOAP-ification is accomplished by
using APIs that take care of the dirty work.

3 While we use Apache SOAP, this chapter is not intended to be a tutorial on Apache SOAP or Tomcat. The intent is to talk about SOAP and its
behavior whenever possible. The installation and set up of Apache SOAP, Tomcat, and the example files are not discussed. Installation is covered by
the readme file included with the examples, which is available from http://www.oreilly.com/catalog/javawebserv/examples.

Java Web Services

35

Before we look at the code of our first SOAP example, let's run it and observe its behavior.
This example consists of a simple HTTP sender class that reads an XML file, wraps it in
a SOAP envelope, and sends it to a URL destination. The destination is a simple HTTP
servlet that takes the contents of the message and dumps it to the screen. As we progress
through concepts such as dynamic headers, SOAP with Attachments, and SOAP-RPC, these
examples will become progressively more sophisticated. For now, lets run the simple one.
From the command line, run the command:

java SimpleGenericHTTPSoapClient -df ./PO.xml

If this command doesn't work, make sure that
SimpleGenericHTTPSoapClient.class is on the classpath and PO.xml is
in the current directory.

You should see the following output:

Starting SimpleGenericHTTPSoapClient:
 host url = http://localhost:8080/examples/servlet/SimpleHTTPReceive
 data file = ./PO.xml

Sent SOAP Message with Apache HTTP SOAP Client.
Waiting for response....
HTTP POST was successful.

In the command shell running the Tomcat servlet engine, you should see:

Received request.

 SOAPAction = "urn:oreilly-jaws-samples"
 Host = localhost
 Content-Type = text/xml; charset=utf-8
 Content-Length = 695

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.org
/1999/XMLSchema">
<SOAP-ENV:Body>
<PurchaseOrder xmlns="urn:oreilly-jaws-samples">
 <shipTo country="US">
 <name>Joe Smith</name>
 <street>14 Oak Park</street>
 <city>Bedford</city>
 <state>MA</state>
 <zip>01730</zip>
 </shipTo>

Java Web Services

36

 <items>
 <item partNum="872-AA">
 <productName>Candy Canes</productName>
 <quantity>444</quantity>
 <price>1.68</price>
 <comment>I want candy!</comment>
 </item>
 </items>
</PurchaseOrder>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

3.6.1 The SOAP Sender

We will soon examine the source code and some of the APIs used to create and send this
message. But first, here is a listing of the simple SOAP sender in its entirety:

import java.io.*;
import java.util.*;

public class SimpleGenericHTTPSoapClient
{
 //////////////
 //Default values used if no command line parameters are set
 private static final String DEFAULT_HOST_URL =
 "http://localhost:8080/examples/servlet/SimpleHTTPReceive";

 private static final String DEFAULT_DATA_FILENAME = "./PO.xml";

 private static final String URI = "urn:oreilly-jaws-samples";
 //////////////
 //Member variables
 private String m_hostURL;
 //data file that will be the body content of a soap envelop
 private String m_dataFileName;

 public SimpleGenericHTTPSoapClient(String hostURL, String dataFileName)
 throws Exception
 {
 m_hostURL = hostURL;
 m_dataFileName = dataFileName;

 System.out.println();

System.out.println("__");
 System.out.println("Starting SimpleGenericHTTPSoapClient:");
 System.out.println(" host url = " + m_hostURL);
 System.out.println(" data file = " + m_dataFileName);

System.out.println("__");
 System.out.println();

 }

Java Web Services

37

 public void sendSOAPMessage()
 {
 try
 {
 // get soap body to include in the SOAP envelope
 FileReader fr = new FileReader (m_dataFileName);
 javax.xml.parsers.DocumentBuilder xdb =
 org.apache.soap.util.xml.XMLParserUtils.getXMLDocBuilder();
 org.w3c.dom.Document doc =
 xdb.parse (new org.xml.sax.InputSource (fr));
 if (doc == null) {
 throw new org.apache.soap.SOAPException
 (org.apache.soap.Constants.FAULT_CODE_CLIENT,
 "parsing error");
 }

 //Create the SOAP envelope
 org.apache.soap.Envelope envelope =
 new org.apache.soap.Envelope();

 // create a vector for collecting the body elements
 Vector bodyElements = new Vector();

 //obtain the top-level DOM element and place it into the vector
 bodyElements.add(doc.getDocumentElement ());

 //Create the SOAP body element
 org.apache.soap.Body body = new org.apache.soap.Body();
 body.setBodyEntries(bodyElements);

 //Add the SOAP body element to the envelope
 envelope.setBody(body);

 // Build the Message.
 org.apache.soap.messaging.Message msg
 = new org.apache.soap.messaging.Message();

 msg.send (new java.net.URL(m_hostURL), URI, envelope);
 System.out.println("Sent SOAP Message with Apache HTTP SOAP
Client.");

 // receive response from the transport and dump it to
 // the screen
 System.out.println("Waiting for response....");
 org.apache.soap.transport.SOAPTransport st =
 msg.getSOAPTransport ();
 BufferedReader br = st.receive ();
 String line = br.readLine();
 if(line == null)
 {
 System.out.println("HTTP POST was successful. \n");
 }
 else
 {
 while (line != null)
 {
 System.out.println (line);
 line = br.readLine();
 }
 }
 }

Java Web Services

38

 catch(Exception e)
 {
 e.printStackTrace();
 }
 }

 //
 // NOTE: the remainder of this deals with reading arguments
 //
 /** Main program entry point. */
 public static void main(String args[]) {

 // not relevant ...
 }
}

The main() method is responsible for parsing the command-line arguments, running
the constructor, and calling the sendSOAPMessage() method:

/** Main program entry point. */
public static void main(String args[]) {

...
 // Start the HTTPSoapClient
 try
 {
 SimpleGenericHTTPSoapClient soapClient =
 new SimpleGenericHTTPSoapClient(hostURL, dataFileName);
 soapClient.sendSOAPMessage();

 }
...
}

The constructor simply stores some local member variables and prints things on the screen.
All the real work happens in sendSOAPMessage(). After reading the PO.xml document,
sendSOAPMessage() parses the document into a DOM tree. We get a parser by calling the
Apache getXMLDocBuilder() method, which returns a DocumentBuilder object. This
parser is represented by a javax.xml.parsers.DocumentBuilder interface, which is part of
the Java API for XML Processing (JAXP) package. While we chose to use the Xerces parser,
the actual parser could be any parser that implements the interface. Once a suitable parser is
obtained, the parser is invoked; it returns an org.w3c.dom.Document object:

public void sendSOAPMessage()
{
 try
 {
 // get soap body to include in the SOAP envelope
 FileReader fr = new FileReader (m_dataFileName);
 javax.xml.parsers.DocumentBuilder xdb =
 org.apache.soap.util.xml.XMLParserUtils.getXMLDocBuilder();
 org.w3c.dom.Document doc
 = xdb.parse (new org.xml.sax.InputSource (fr));
 if (doc == null) {
 throw new org.apache.soap.SOAPException
 (org.apache.soap.Constants.FAULT_CODE_CLIENT,
 "parsing error");
 }

Java Web Services

39

Next, we need to create a SOAP envelope to hold everything and place the document into it.
To associate the document with the envelope, place the top-level DOM element into a
Vector, then attach the Vector to a Body object. Then place the body in the envelope using
the setBody() method. In this simple case, only one top-level element, the
<PurchaseOrder> tag, should be attached. The DOM parser has taken care of building and
attaching the nodes underneath the main PurchaseOrder element:

 //Create the SOAP envelope
 org.apache.soap.Envelope envelope = new org.apache.soap.Envelope();

 // create a vector for collecting the body elements
 Vector bodyElements = new Vector();

 //obtain the top-level DOM element and place it into the vector
 bodyElements.add(doc.getDocumentElement ());

 //Create the SOAP body element
 org.apache.soap.Body body = new org.apache.soap.Body();
 body.setBodyEntries(bodyElements);

 //Add the SOAP body element to the envelope
 envelope.setBody(body);

Now that the envelope is constructed, it needs to be sent to a destination. In Apache SOAP, a
Message object performs an asynchronous one-way send:

 // Build the Message.
 org.apache.soap.messaging.Message msg
 = new org.apache.soap.messaging.Message();

 msg.send (new java.net.URL(m_hostURL), URI, envelope);
 System.out.println("Sent SOAP Message with Apache HTTP SOAP
Client.");

The Message.send() method takes three parameters: a URL that represents a destination, a
URI that represents the value for the SOAPAction header, and the SOAP envelope that we just
built. The SOAPAction URI is really part of the binding to HTTP. When we ran the example,
the value urn:oreilly-jaws-samples appeared as part of the HTTP header information that the
receiving servlet dumped. Later, we will see how to use the SOAPAction to map the request
into either an Apache MessageRouter service or a RPCRouter service. For now, it suffices to
say that this URI is used to determine which function or service is invoked when the message
reaches its destination.

The Message interface is intended for asynchronous one-way communications;
Message.send() has a void return value. This value does not preclude it from being used in
a two-way synchronous conversation. When the Message interface is implemented over a
two-way transport protocol, such as HTTP, the SOAPTransport.receive() method can be
used to receive a response:

 // receive response from the transport and dump it to the screen
 System.out.println("Waiting for response....");
 org.apache.soap.transport.SOAPTransport st =
 msg.getSOAPTransport ();
 BufferedReader br = st.receive ();
 String line = br.readLine();

Java Web Services

40

 if(line == null)
 {
 System.out.println("HTTP POST was successful. \n");
 }
 else
 {
 while (line != null)
 {
 System.out.println (line);
 line = br.readLine();
 }
 }
 }

SOAPTransport.receive() blocks and waits for a response from the receiver. In the case of
a SOAPTransport implemented over HTTP, the receive() method blocks and waits for an
error, a timeout on the HTTP request, or even a good return code, such as a "HTTP 1.0 200
OK". It is a good idea to look for a response, even if your application is not expecting
anything. In this example, the sender does not expect any application-level response from the
sender, but it calls receive() to check for any underlying HTTP errors. In a more serious
application, you would probably want to raise an alert when an error occurs and log the
unexpected error to a logging service.

That's all you need to do to send a SOAP message—at least for now. We will revisit this
example as we go along, building envelope headers dynamically, adding MIME attachments,
and moving on to SOAP-RPC. Before we get too far along that path, though, let's become
more familiar with our receiver.

3.6.2 The Simple Servlet Receiver

Here's a listing of SimpleHTTPReceive, which is the servlet that received the SOAP message
you ran in the first example. So far, this is a plain Java servlet with no knowledge of SOAP,
or even of XML; it simply receives the HTTP POST request and dumps out the HTTP
headers to the screen, followed by the body of the message:

import java.io.*;
import java.text.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class SimpleHTTPReceive extends HttpServlet
{
 // Treat GET requests as errors.
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException
 {
 System.out.println("Received GET request");
 response.setStatus(HttpServletResponse.SC_BAD_REQUEST);
 }

Java Web Services

41

 // Our SOAP requests are going to be received as HTTP POSTS
 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException
 {
 System.out.println("____________________________");
 System.out.println("Received request.");
 System.out.println("-----------------------");

 // Traverse the HTTP headers and show them on the screen
 for(Enumeration enum = request.getHeaderNames();
 enum.hasMoreElements();)
 {
 String header = (String)enum.nextElement();
 String value = request.getHeader(header);

 System.out.println(" " + header + " = " + value);
 }

 System.out.println("-----------------------");

 // If there is anything in the body of the message,
 // dump it to the screen as well
 if(request.getContentLength() > 0)
 {
 try{
 java.io.BufferedReader reader = request.getReader();
 String line = null;
 while((line = reader.readLine()) != null)
 {
 System.out.println(line);
 }
 }
 catch(Exception e)
 {
 System.out.println(e);
 }
 }

 System.out.println("____________________________");
 // Need this to prevent Apache SOAP from gacking
 response.setContentType("text/xml");
 }
}

3.6.3 The Servlet Receiver Becomes SOAP-Aware

While this generic servlet is useful for dumping the contents of an HTTP request, it is not
very helpful for SOAP programming. Let's expand on it a bit and explore the SOAP-aware
version, HTTPReceive. First, run the example again and direct the output to the HTTPReceive:

java SimpleGenericHTTPSoapClient -df ./PO.xml -url
 http://localhost:8080/examples/servlet/HTTPReceive

The output in the Tomcat window should be the same as it was before, with an important
difference: the information is now being extracted using the inverse of the APIs that were
used to construct the message. The SOAP-aware servlet looks exactly like the simple servlet

Java Web Services

42

until it gets to the processing of the request content. We start by getting a DocumentBuilder,
just as we did in the sender:

public class HTTPReceive extends HttpServlet
{
 ...

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException
 {
 ...

 if(request.getContentLength() > 0)
 {
 try
 {
 java.io.BufferedReader reader = request.getReader();

 // get the document builder
 javax.xml.parsers.DocumentBuilder xdb =

org.apache.soap.util.xml.XMLParserUtils.getXMLDocBuilder();

Next, we parse that document into a DOM tree, getting a Document object as the result:

 // parse it into a DOM
 org.w3c.dom.Document doc =
 xdb.parse (new org.xml.sax.InputSource (reader));
 if (doc == null)
 {
 // Error occured
 System.out.println("Doc is null!");
 throw new org.apache.soap.SOAPException
 (org.apache.soap.Constants.FAULT_CODE_CLIENT,
 "parsing error");
 }
 else
 {

In the sender, we created an envelope and populated it. In the receiver, we already have an
envelope that was sent to us. The SOAP envelope is the outermost element of a SOAP
document, and therefore its root element. We could just walk the DOM tree and obtain the
envelope and its children directly. However, we choose to use the envelope and its associated
interfaces because they help separate the details of the SOAP packaging from the raw
processing of the document contents. We obtain an Envelope instance from the document
object by calling unmarshall() , which is a static method of the Envelope class:

 // call static method to create the envelope from
 // the document
 org.apache.soap.Envelope env =
 org.apache.soap.Envelope.unmarshall(
 doc.getDocumentElement());

Now that we have an envelope, we do the inverse of what we did to populate it: we get the
Vector of BodyEntrys from the Envelope and get the Body from the Vector:

Java Web Services

43

 org.apache.soap.Body body = env.getBody();
 java.util.Vector bodyEntries = body.getBodyEntries();

 java.io.StringWriter writer =
 new java.io.StringWriter();
 for (java.util.Enumeration e = bodyEntries.elements();
 e.hasMoreElements();)
 {
 org.w3c.dom.Element el =
 (org.w3c.dom.Element)e.nextElement();

In this case, only one entry, the <PurchaseOrder> element, is in the Vector. Now that we
have the PurchaseOrder element, we have a DOM object that is identical to the raw DOM
object that we built for PO.xml (before it got SOAPified). Since the goal of this example is to
write the original XML document to the screen, we call the static method
DOM2Writer.serializeAsXML(). This method serializes the PurchaseOrder element and
all of its children into a StringWriter object:

 org.apache.soap.util.xml.DOM2Writer.serializeAsXML(
 (org.w3c.dom.Node)el, writer);
 }
 System.out.println(writer.toString());
 }
 }
 catch(Exception e)
 {
 System.out.println(e);
 }
 }

 System.out.println("____________________________");

 response.setContentType("text/xml");
 }
}

Apache SOAP provides a more straightforward way to go about this
process. It has the notion of a service that can be deployed using a
special message router service handler. In that model, a special method
signature causes the Envelope object to get passed to the listener
directly. We will discuss that model in more detail later. For this
introductory example, we thought it would be appropriate to show how
to handle the message using the DOM and the Envelope interfaces by
themselves, in the event that you work with an infrastructure that is not
Tomcat-based.

3.6.4 Adding a Header Block

So far, the construction of the SOAP envelope has relied on reading a file from disk to obtain
the XML content and then running that file through a parser to build a DOM tree. That's an
acceptable way to deal with the message body if the SOAP layer will interact with a backend
system that produces and consumes raw XML documents. However, SOAP documents, or
parts of them, need to be built dynamically in many cases. In this example, we construct a
SOAP <Header> block dynamically. A SOAP header is not generally intended for application

Java Web Services

44

data but for carrying information specific to the SOAP processors that are at either endpoint in
the conversation. Therefore, it is the most likely candidate for dynamic construction. To see it
in action, run the following command:4

java GenericHTTPSoapClient -df ./PO.xml -url
 http://localhost:8080/examples/servlet/SimpleHTTPReceive

You should see the following output in the Tomcat servlet window. Note that the header
information enclosed by the <SOAP-ENV:Header> tags is not formatted nicely, but it is all
there:

Received request.

 SOAPAction = "urn:oreilly-jaws-samples"
 Host = localhost
 Content-Type = text/xml; charset=utf-8
 Content-Length = 869

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.org
/1999/XMLSchema">
<SOAP-ENV:Header>
<jaws:MessageHeader
xmlns:jaws="urn:oreilly-jaws-samples"><From>Me</From><To>You
</To><MessageId>9999</MessageId></jaws:MessageHeader>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
<PurchaseOrder xmlns="urn:oreilly-jaws-samples">
 <shipTo country="US">
 <name>Joe Smith</name>
 <street>14 Oak Park</street>
 <city>Bedford</city>
 <state>MA</state>
 <zip>01730</zip>
 </shipTo>
 <items>
 <item partNum="872-AA">
 <productName>Candy Canes</productName>
 <quantity>444</quantity>
 <price>1.68</price>
 <comment>I want candy!</comment>
 </item>
 </items>
</PurchaseOrder>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Let's examine the code that puts the header there. Here's an excerpt from
GenericHTTPSoapClient. It is identical to its "simple" sibling, with the addition of the code

4 We have removed the word "Simple" from the SimpleGenericHTTPSoapClient sender class. We explicitly tell it to send the message to
the SimpleHTTPReceive servlet, which dumps the raw content of the message to the console. We're still using SimpleHTTPReceive because
we have not yet told our HTTPReceive servlet how to extract the header.

Java Web Services

45

in sendSoapMessage(). This method reads the PO.xml document and parses it, just as in the
previous example:

 public void sendSOAPMessage()
 {
 try
 {
 // get soap body to include in the SOAP envelope
 FileReader fr = new FileReader (m_dataFileName);
 javax.xml.parsers.DocumentBuilder xdb =
 org.apache.soap.util.xml.XMLParserUtils.getXMLDocBuilder();
 org.w3c.dom.Document doc =
 xdb.parse (new org.xml.sax.InputSource (fr));
 if (doc == null) {
 throw new org.apache.soap.SOAPException
 (org.apache.soap.Constants.FAULT_CODE_CLIENT,
 "parsing error");
 }

Next, it creates a Vector for holding the header elements, similar to the way the body
elements are handled:

 // create a vector for collecting the header elements
 Vector headerElements = new Vector();

The org.w3c.dom.Document object is used as a factory to create all nodes in the DOM tree.
We create a tag with the name MessageHeader, which has its own namespace, using the
namespace prefix jaws:. To create this tag, we use createElementNS(). It takes two
parameters: the namespace URI and the qualified name (Qname) of the element:

 // Create a header element in a namespace
 org.w3c.dom.Element headerElement =
 doc.createElementNS("urn:oreilly-jaws-samples",
 "jaws:MessageHeader");

The <MessageHeader> element contains three subelements: <From>, <To>, and <MessageId>.
An element is created to represent the <From> tag. Another node is created under that tag to
represent the text within the tag. The objects Element, Text, and Node are all members of the
tree; Element and TextNode both extend Node, which is the base object responsible for the
linkage to parents, children, and siblings:

 // Create subnodes within the MessageHeader
 org.w3c.dom.Element ele = doc.createElement("From");
 org.w3c.dom.Text textNode = doc.createTextNode("Me");
 org.w3c.dom.Node tempNode = ele.appendChild(textNode);

 tempNode = headerElement.appendChild(ele);

 ele = doc.createElement("To");
 textNode = doc.createTextNode("You");
 tempNode = ele.appendChild(textNode);

 tempNode = headerElement.appendChild(ele);

Java Web Services

46

 ele = doc.createElement("MessageId");
 textNode = doc.createTextNode("9999");
 tempNode = ele.appendChild(textNode);

 tempNode = headerElement.appendChild(ele);

Now that this subtree is constructed, place it in the document using the Envelope APIs. The
APIs for creating the Header and attaching it to the envelope are analogous to the Body APIs
that we have already seen:

 headerElements.add(headerElement);

 ...

 //Create the SOAP envelope
 org.apache.soap.Envelope envelope =
 new org.apache.soap.Envelope();

 //Add the SOAP header element to the envelope
 org.apache.soap.Header header =
 new org.apache.soap.Header();
 header.setHeaderEntries(headerElements);
 envelope.setHeader(header);

 //Create the SOAP body element
 org.apache.soap.Body body = new org.apache.soap.Body();
 body.setBodyEntries(bodyElements);
 //Add the SOAP body element to the envelope
 envelope.setBody(body);

 ...
 }

3.7 The Apache SOAP Routing Service

Before moving on to the rest of the examples, we need to make a quick note about Apache
SOAP's routing and service capability. It's a concept that is likely to be applicable to other
SOAP infrastructures you may use in the future. If you have poked around with Apache (or
you looked ahead at the rest of the chapter), you may have noticed that many samples use a
common URL, which either looks like
http://localhost:8080/soap/servlet/messagerouter or
http://localhost:8080/soap/servlet/rpcrouter. These special URLs point to Apache's
routing and dispatching mechanism. This mechanism looks at the content of the SOAP
envelope and decides which class to load and which method to call within that class. Apache
refers to this destination as a service. The service is registered with the servlet engine in a
two-step process. First, an XML deployment descriptor is created, specifying details about the
class name of the service, its associated method call, and the target URI. Then a special
org.apache.soap.server.ServiceManagerClient class is invoked to register the service
with Apache SOAP.

Using the RPC router, any Java class and method can be registered as a service; the Apache
SOAP infrastructure will call the method with the appropriate parameters. An example of
SOAP-RPC can be found in Chapter 4. Using the message router, the method name is the tag
name of the body entry in the SOAP envelope, and the method always conforms to the
following signature:

Java Web Services

47

public void anyMessageMethod(Envelope requestEnvelope,
 SOAPContext requestContext, SOAPContext responseContext)

for which anyMessageMethod is specified in the deployment descriptor for the service and is
also the tag name of the body entry in the SOAP envelope.

3.7.1 The Apache TunnelGui Application

Sending SOAP messages to the SimpleHTTPReceive servlet is an excellent way of dumping
raw output to the screen. A more convenient way to see the raw output from the sender and
the receiver is to use the TunnelGui included with Apache SOAP. TunnelGui is a simple
utility that intercepts the HTTP request, displays it in a window on the screen, and forwards
the request to the ultimate destination. It's a great tool for analyzing and debugging problems
that have to do with unexpected output. To launch the Apache TunnelGui utility, issue the
following command:

java org.apache.soap.util.net.TcpTunnelGui 5555 localhost 8080

5555 is the port on which TunnelGui listens; 8080 is the port to which it forwards requests
(8080 also happens to be the default port for Tomcat). To send a SOAP request through
TunnelGui, specify port 5555 instead of 8080 in the destination URL. For example, issue the
following command:

java GenericHTTPSoapClient -df ./PO.xml -url
 http://localhost:5555/examples/servlet/SimpleHTTPReceive

This command displays the expected output in the Tomcat server window and shows the
request and response in the TunnelGui window (Figure 3-2).

Figure 3-2. The Apache TunnelGui utility

3.7.2 The SOAP-Aware Servlet Becomes a Message Router

In the previous example, we promised to show another way to set up a servlet that passes the
SOAP envelope directly to the receiver. To do this, we'll use Apache's message router service.

Java Web Services

48

For this example, we can use the GenericHTTPClient without any modifications; simply
override the destination URL on the command line:

java GenericHTTPSoapClient
 -url http://localhost:8080/soap/servlet/messagerouter

Here's what you should see in the command window for the sender:

Starting GenericHTTPSoapClient:
 host url = http://localhost:8080/soap/servlet/messagerouter
 data file = ./PO.xml

Sent SOAP Message with Apache HTTP SOAP Client.
Waiting for response....
<PurchaseOrderResponse>Accepted</PurchaseOrderResponse>

In the Tomcat console window, you should see:

Received a PurchaseOrder!!

Header==>
<jaws:MessageHeader
xmlns:jaws="urn:oreilly:jaws:samples"><From>Me</From><To>You
</To><MessageId>9999</MessageId></jaws:MessageHeader>
Body====>
<PurchaseOrder xmlns="urn:oreilly-jaws-samples">
 <shipTo country="US">
 <name>Joe Smith</name>
 <street>14 Oak Park</street>
 <city>Bedford</city>
 <state>MA</state>
 <zip>01730</zip>
 </shipTo>
 <items>
 <item partNum="872-AA">
 <productName>Candy Canes</productName>
 <quantity>444</quantity>
 <price>1.68</price>
 <comment>I want candy!</comment>
 </item>
 </items>
</PurchaseOrder>

This example works partly because of the information in the deployment descriptor for this
service. The class name of the receiver is PurchaseOrderAcceptor. The method name is
PurchaseOrder, which is also the name of the main tag in the SOAP body. Here's the
deployment descriptor:

Java Web Services

49

<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment"
 id="urn:oreilly-jaws-samples" type="message">
 <isd:provider type="java" scope="Application"
 methods="PurchaseOrder PurchaseOrderWithAttachment">
 <isd:java class="PurchaseOrderAcceptor"/>
 </isd:provider>
 <isd:faultListener>org.apache.soap.server.DOMFaultListener
 </isd:faultListener>
</isd:service>

If you are going to experiment with creating your own Apache services, remember that the
URI represented by the id attribute of the service tag in the deployment descriptor must
match the target URI used in the Message.send() call—something that's not obvious from
reading the Apache documentation.

Here's a listing of the PurchaseOrderAcceptor class and its PurchaseOrder() method. It
uses the Envelope, Header, and Body APIs to pick apart the header and body of the message:

import org.apache.soap.Envelope;
import org.apache.soap.Constants;
import org.apache.soap.SOAPException;

import org.apache.soap.rpc.SOAPContext;

public class PurchaseOrderAcceptor
{

 public void PurchaseOrder(Envelope requestEnvelope,
 SOAPContext requestContext,
 SOAPContext responseContext)
 throws SOAPException
 {
 System.out.println("Received a PurchaseOrder!!");

 java.io.StringWriter writer = new java.io.StringWriter();

 org.apache.soap.Header header = requestEnvelope.getHeader();
 java.util.Vector headerEntries = header.getHeaderEntries();

 writer.write("\nHeader==>\n");
 for (java.util.Enumeration e = headerEntries.elements();
 e.hasMoreElements();)
 {
 org.w3c.dom.Element el = (org.w3c.dom.Element)e.nextElement();
 org.apache.soap.util.xml.DOM2Writer.serializeAsXML(
 (org.w3c.dom.Node)el, writer);
 }

 org.apache.soap.Body body = requestEnvelope.getBody();
 java.util.Vector bodyEntries = body.getBodyEntries();

 writer.write("\nBody====>\n");
 for (java.util.Enumeration e = bodyEntries.elements();
 e.hasMoreElements();)
 {
 org.w3c.dom.Element el = (org.w3c.dom.Element)e.nextElement();
 org.apache.soap.util.xml.DOM2Writer.serializeAsXML(
 (org.w3c.dom.Node)el, writer);
 }

Java Web Services

50

 System.out.println(writer.toString());
 try
 {
 //should really be better XML with declaration and namespaces
 responseContext.setRootPart(
 "<PurchaseOrderResponse>Accepted</PurchaseOrderResponse>",
 "text/xml");
 }
 catch(Exception e)
 {
 throw new SOAPException(Constants.FAULT_CODE_SERVER,
 "Error writing response", e);
 }
 }
}

3.8 SOAP with Attachments

While XML and SOAP are very good at describing data, many kinds of application data aren't
well-suited for XML—for example, a piece of binary data such as an image, or a CAD file
that contains schematic diagrams of parts being ordered electronically. SOAP with
Attachments (SwA) was born in recognition of this limitation. SwA combines the SOAP
protocol with the MIME format to allow any arbitrary data to be included as part of a SOAP
message. The model is exactly the same as the model used for including email attachments.

3.8.1 Parts Is Parts

The MIME protocol allows multiple arbitrary blocks of data to be strung together in a
message, with each block separated by a MIME header. The MIME headers delineate where
each part begins and the previous part ends. The next example shows what a MIME header
looks like. In SwA, the entire message consists of multiple MIME parts; the first part (part 0)
is the SOAP envelope, and the remaining parts (1 through n) are the attachments. All parts are
wrapped by the underlying protocol, as illustrated by Figure 3-3.

Figure 3-3. The structure of a SOAP with Attachments message

Java Web Services

51

To construct and deconstruct SwA messages, use the Apache SOAP and JavaMail APIs.
Before running the example, note that the example archive contains a text file called
attachment.txt. It is a simple text file that contains the string "This is an attachment." There is
also a file called poWithAttachment.xml that is identical to PO.xml, except that the root level
tag is <PurchaseOrderWithAttachment>. The other modification we have made is the
addition of an element with the name of attachment. This element contains an href attribute:

<attachment href="cid:the-attachment"/>

This element helps identify the attachment when processing the document. Now run the
example from the command line:

java GenericHTTPSWAClient -df ./poWithAttachment.xml -at attachment.txt

In addition to the purchase order, you should see the following output in the Tomcat console
window:

Content-ID = the-attachment
The attachment is...
This is an attachment.

Let's see the raw output from our client by redirecting it at the SimpleHTTPReceive servlet.
Run the following command:

java GenericHTTPSWAClient -url
 http://localhost:8080/examples/servlet/SimpleHTTPReceive
 -df ./poWithAttachment.xml -at attachment.txt

You should see the following output:

Received request.

 SOAPAction = "urn:oreilly-jaws-samples"
 Host = localhost
 Content-Type = multipart/related;
 boundary="----=_Part_0_252212802.1005940272120"; type="text/xml";
 start="1730639424.1005940272280.apache-soap.nbchappell3"
 Content-Length = 1283

------=_Part_0_252212802.1005940272120
Content-Type: text/xml; charset=utf-8
Content-Transfer-Encoding: 8bit
Content-ID: <1730639424.1005940272280.apache-soap.nbchappell3>
Content-Length: 869

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.org
/1999/XMLSchema">
<SOAP-ENV:Header>
<jaws:MessageHeader
xmlns:jaws="urn:oreilly-jaws-samples"><From>Me</From><To>You
</To><MessageId>9999</MessageId></jaws:MessageHeader>

Java Web Services

52

</SOAP-ENV:Header>
<SOAP-ENV:Body>
<PurchaseOrder xmlns="urn:oreilly-jaws-samples">
 ... same as before ...
 <attachment href="cid:the-attachment"/>
</PurchaseOrder>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

------=_Part_0_252212802.1005940272120
Content-Type: text/plain; charset=us-ascii
Content-Transfer-Encoding: 7bit
Content-ID: the-attachment
This is an attachment.
------=_Part_0_252212802.1005940272120--

Note the Content-Type = multipart/related in the HTTP header itself and the individual
part boundaries and their associated MIME headers for each of the parts.

3.8.2 Constructing SOAP with Attachments

GenericHTTPSWAClient is identical to GenericHTTPClient, with the addition of the code
used to construct the MIME attachments. For that reason, we'll look only at the changes. First,
we need an import statement to allow the use of the MimeBodyPart class, which is included in
the JavaMail APIs:

import javax.mail.internet.MimeBodyPart;

Next, there are some parts we won't get into, which relate to parsing the command line for the
attachment file and passing the file to the constructor. The SOAP envelope is created and
populated as before, complete with the <header> and <body> constructs. The message is
created as usual. Here's the additional code for creating a MimeBodyPart object and setting its
content as the text that we read from the attachment file:

// Build the Message.
org.apache.soap.messaging.Message msg =
new org.apache.soap.messaging.Message();

//Attach any attachments
if(m_attachment != null)
{
 BufferedReader attachmentReader =
 new BufferedReader(new FileReader(m_attachment));
 StringBuffer buffer = new StringBuffer();
 for(String line = attachmentReader.readLine(); line != null;
 line = attachmentReader.readLine())
 {
 buffer.append(line);
 }
 MimeBodyPart attachment = new MimeBodyPart();
 attachment.setText(buffer.toString());

Next, we need a way for the receiver to reference the attachment. To enable the receiver to
dissect the message, we add an element in the XML document with an href value of the-
attachment. We use that value for this attachment part's content-id:

Java Web Services

53

 attachment.setHeader("Content-ID", "the-attachment");

Finally, we add the attachment part to the message and send it. Apache SOAP knows that you
have added an attachment to the message and formats the message appropriately:

 msg.addBodyPart(attachment);
}

msg.send (new java.net.URL(m_hostURL), URI, envelope);
System.out.println("Sent SOAP Message with Apache HTTP SOAP Client.");

3.8.3 Receiving the SOAP with Attachments Message

The method PurchaseOrderAcceptor.PurchaseOrderWithAttachment() is similar to
PurchaseOrderAcceptor.PurchaseOrder(), with the addition of the MIME code:

//import statements
...

public class PurchaseOrderAcceptor
{
...

 public void PurchaseOrderWithAttachment(Envelope requestEnvelope,
 SOAPContext requestContext,
 SOAPContext responseContext)
 throws SOAPException
 {
 System.out.println("Received a PurchaseOrderWithAttachment!!");

 String cid = null;
 java.io.StringWriter writer = new java.io.StringWriter();

 // process SOAP header - nothing new here
 ...

 // process SOAP body
 org.apache.soap.Body body = requestEnvelope.getBody();
 java.util.Vector bodyEntries = body.getBodyEntries();

 writer.write("\nBody====>\n");
 for (java.util.Enumeration e = bodyEntries.elements();
 e.hasMoreElements();)
 {
 org.w3c.dom.Element el = (org.w3c.dom.Element)e.nextElement();
 org.apache.soap.util.xml.DOM2Writer.serializeAsXML(
 (org.w3c.dom.Node)el, writer);

Remember the <attachment href="cid:the-attachment"/> element that we put into
poWithAttachment.xml? We now use it to find the attachment. First, we retrieve the
<attachment> element by name. Then we extract the value of the content-id stored in the
href attribute. Once we have the ID, we can use the getBodyPart() method on the
SOAPContext object to retrieve the MIME attachment by content-id:

Java Web Services

54

 org.w3c.dom.Element attachmentEl =
 (org.w3c.dom.Element)el.getElementsByTagName("attachment").item(0);
 if (attachmentEl != null)
 {
 writer.write("\nAttachment==>\n");
 //get rid of cid:
 cid = attachmentEl.getAttribute("href").substring(4);
 writer.write("Content-ID = "+cid+"\n");
 MimeBodyPart attachment = requestContext.getBodyPart(cid);
 try
 {
 writer.write(
 "The attachment is...\n"+attachment.getContent()+"\n");
 }catch(Exception ex)
 {
 throw new SOAPException(Constants.FAULT_CODE_SERVER,
 "Error writing response", ex);
 }
 }else
 writer.write("The Content-ID is null!\n");
 }
 System.out.println(writer.toString());
...
 }
}

Now that we've had a closer look at SOAP and how it structures XML messages and the types
of processing it can perform as part of message handling, let's study SOAP more deeply.
SOAP message passing is important in its own right (and, as we've already seen, the SOAP
specification stresses it's message-passing foundations), but most developers see SOAP as a
mechanism for remote procedure call (RPC). In Chapter 4, we'll look at SOAP-RPC in more
detail and discuss the Fault mechanism and the MustUnderstand header.

Java Web Services

55

Chapter 4. SOAP-RPC, SOAP-Faults, and
Misunderstandings
4.1 SOAP-RPC

SOAP-RPC defines a model for representing an RPC and an RPC response using the SOAP
infrastructure. It is not necessarily bound tightly to a synchronous request/reply model, or to
the HTTP protocol. In fact, both the SOAP 1.1 and 1.2 specifications explicitly state that the
use of SOAP-RPC is orthogonal to the protocol binding. The specifications do concede that
when SOAP-RPC is bound to HTTP, an RPC invocation maps naturally to an HTTP request,
and an RPC return maps naturally to an HTTP response, but this natural mapping is purely
coincidental. One of the goals of the SOAP 1.2 effort was to distance itself from the point of
view that SOAP is inherently an RPC mechanism. As a result, SOAP-RPC was moved into
the optional "Adjuncts" portion of the specification.

That said, what's really important is that SOAP defines a uniform model for representing an
RPC and its return value or values. The fundamental requirements for an RPC call are that the
body element contains the method name and the parameters and that the parameters are
accessible via accessors.1 In addition, SOAP has provisions for encoding the method
signature, header data, and the URI that represents the destination.

In the next example, we'll look at a SOAP-RPC client that calls a remote service that returns
the value of a book at Barnes & Noble. The service is hosted and available at
http://www.xmethods.net/. Let's start by running the client and examining its output:

java GetBookPrice

The default settings look up the price of O'Reilly's Java Message Service, using its ISBN
number.

You should see the following output:

Starting GetBookPrice:
 service url =
http://services.xmethods.com:80/soap/servlet/rpcrouter
 ISBN# = 0596000685

The price for O'Reilly's The Java Message Service book is 34.95

Congratulations! You have just executed a SOAP-RPC invocation over the Internet and
received a response with a return value. Let's examine the SOAP messages that just went over
the wire and the code that made it happen. To see what the SOAP looks like, we can reroute
the transaction to our SimpleHTTPReceiver with this command:

java GetBookPrice
–url http://localhost:8080/examples/servlet/SimpleHTTPReceive
-isbn 0596000686

1 Accessors as defined in SOAP-encoding. They can be referenced by either a tag or an ordinal value such as an array index.

Java Web Services

56

You will see the following output in the Tomcat servlet window (we have reformatted some
of the output for readability):

Received request.

 SOAPAction = ""
 Host = localhost
 Content-Type = text/xml; charset=utf-8
 Content-Length = 461

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/1999/XMLSchema">
<SOAP-ENV:Body>
 <ns1:getPrice xmlns:ns1="urn:xmethods-BNPriceCheck"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <isbn xsi:type="xsd:string">0596000686</isbn>
 </ns1:getPrice>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

When using SOAP-RPC, the body of the envelope contains the method name and the
parameters for the procedure call. In this SOAP message, <ns1:getPrice> is an
automatically generated tag that represents the method name. The parameter <isbn> is
represented by the type xsd:string and has a value of 0596000686.

4.1.1 The SOAP-Encoding Attribute

SOAP encoding is a set of rules that designates how datatypes are encoded, or serialized, over
the wire. In this message, the encodingStyle attribute is set to the value
http://schemas.xmlsoap.org/soap/encoding/. This particular URL defines the encoding rules
based on the schema for SOAP 1.1. If you look at that URL directly, you'll see that it is an
actual XML Schema document. Among other things, it defines the xsd:string type used for
the <isbn> tag. If this SOAP call used SOAP 1.2, the encodingStyle attribute would be set
to http://www.w3.org/2001/09/soap-encoding.

The SOAP encoding covers rules for serializing any datatype, ranging from simple scalar
types such as int, float, and string, to complex datatypes such as structures, arrays, and
sparse arrays.2

4.1.2 SOAP-RPC Method Signatures

The rules for method signatures simply state that the <body> element contains a single SOAP
struct. The elements in the struct each have to be referenceable by an accessor. In SOAP, an
element with an accessor can be identified directly by a named tag (for example, <isbn>) or
by an ordinal value (as in an array value). If multiple parameters exist, they must appear in the
same order as they appear in the signature of the receiving method. Finally, the types have to

2 A subset of an array, for which only the "sparsely populated" portions of the array are relevant.

Java Web Services

57

match. If this example used a second parameter, such as a book title, the body might look like
this:3

<SOAP-ENV:Body>
 <ns1:getPrice xmlns:ns1="urn:xmethods-BNPriceCheck"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <isbn xsi:type="xsd:string">0596000686</isbn>
 <title xsi:type="xsd:string">Java And Web Services</isbn>
 </ns1:getPrice>
</SOAP-ENV:Body>

The rules for the response are similar. The response is also a named struct that can contain
multiple values. In the SOAP document itself, no direct correlation exists between the request
and the response. By convention, the name of the return value should be the same as the name
of the request method with the string "Response" appended; for example, getPriceResponse
would be the return value for getPrice. However, this role is only a convention, not a
requirement. Furthermore, the association between the format of the request and the format of
the response is also arbitrary; there is no way to dictate in the request which parameters are
[in] parameters and which are [in|out] parameters. As we will see, this deficiency is addressed
by WSDL. A WSDL definition can include the complete XML Schema for the request and
the response.

SOAP 1.2 imposes two additional rules: the name of the return value accessor is result, and
it is namespace-qualified with the namespace identifier
http://www.w3.org/2001/09/soap-rpc.

4.1.3 The SOAP-RPC Sender—Remote Service

Here's a complete listing of the SOAP-RPC client that we used to look up a book price on
Barnes & Noble:

import java.io.*;
import java.util.*;

public class GetBookPrice {

 // default values to be used if not supplied on the command line
 private static final String DEFAULT_SERVICE_URL =
 "http://services.xmethods.com:80/soap/servlet/rpcrouter";
 private static final String DEFAULT_BOOK_ISBN = "0596000685";
 private String m_serviceURL;
 private String m_bookISBN;

 public GetBookPrice (String serviceURL, String bookISBN) throws Exception
 {
 //this section displays the status of the call to the service
 m_serviceURL = serviceURL;
 m_bookISBN = bookISBN;

 System.out.println();
 System.out.println(
 "__");
 System.out.println("Starting GetBookPrice:");
 System.out.println(" service url = " + m_serviceURL);

3 If you actually try to add a second parameter with the existing service, you may learn about handling SOAP Faults sooner than you think.

Java Web Services

58

 System.out.println(" ISBN# = " + m_bookISBN);
 System.out.println(
 "___");
 System.out.println();
 }

 public static float sendSoapRPCMessage (String url, String isbn)
 throws Exception
 {

 //Build the call.
 org.apache.soap.rpc.Call call = new org.apache.soap.rpc.Call ();

 //This service uses standard SOAP encoding
 String encodingStyleURI = org.apache.soap.Constants.NS_URI_SOAP_ENC;
 call.setEncodingStyleURI(encodingStyleURI);

 //Set the target URI
 call.setTargetObjectURI ("urn:xmethods-BNPriceCheck");

 //Set the method name to invoke
 call.setMethodName ("getPrice");

 //Create the parameter objects
 Vector params = new Vector ();
 params.addElement (new org.apache.soap.rpc.Parameter("isbn",
 String.class, isbn, null));

 //Set the parameters
 call.setParams (params);

 //Invoke the service
 org.apache.soap.rpc.Response resp =
 call.invoke (new java.net.URL(url),"");

 //Check the response
 if (resp.generatedFault ()) {
 org.apache.soap.Fault fault = resp.getFault();
 System.err.println("Generated fault: ");
 System.out.println(" Fault Code = " + fault.getFaultCode());
 System.out.println(" Fault String = " + fault.getFaultString());
 return 0;
 } else {
 org.apache.soap.rpc.Parameter result = resp.getReturnValue ();
 Float FL = (Float) result.getValue();
 return FL.floatValue();
 }
 }

 public static void main(String args[]) {

 // Argument parsing stuff
 ...

Java Web Services

59

 try
 {
 GetBookPrice soapClient =
 new GetBookPrice(serviceURL, bookISBN);

 // call method that will perform RPC call using
 // supplied Service
 // url and the book ISBN number to query on
 float f = soapClient.sendSoapRPCMessage(serviceURL, bookISBN);

 // output results of RPC service call
 if (bookISBN != DEFAULT_BOOK_ISBN) {
 System.out.println(
 "The Barnes & Noble price for this book is " + f);
 }else {
 System.out.println(
 "The price for O'Reilly's The Java Message Service book is " + f);
 }

 } catch(Exception e) {
 System.out.println(e.getMessage());
 }
 }
...
}

Let's examine the code in detail, paying particular attention to the pieces that do the real work.
The code starts with several import statements, which import some standard Java packages
plus some Apache packages we used for handling the SOAP messages. After the import
statements, the class declaration, and some field declarations, we have the constructor—which
sets some default parameters and does some runtime reporting:

import java.io.*;
import java.util.*;

public class GetBookPrice {

 // default values to be used if not supplied on the command line
 private static final String DEFAULT_SERVICE_URL =
 "http://services.xmethods.com:80/soap/servlet/rpcrouter";
 private static final String DEFAULT_BOOK_ISBN = "0596000685";
 private String m_serviceURL;
 private String m_bookISBN;

 public GetBookPrice (String serviceURL, String bookISBN) throws Exception
 {
 ...
 }

The real workhorse of this application is sendSoapRPCMessage(). This method builds the
SOAP Call object and populates it with the information necessary for remote service. This
client calls the Barnes & Noble service and provides it with an ISBN number for a book. The
service returns the retail value for that book. In Apache SOAP, the key to making this work is
specifying the correct target URI for the call object that the service uses to identify itself. The
service creator specifies this value in a deployment descriptor when it registers the service.
setMethodName() sets the name of the method you want to call; this method must exist in

Java Web Services

60

the service referenced in the URN. Finally, the client creates parameter objects for the call.
The number of parameters and their types must match the parameters that the service expects:

 public static float sendSoapRPCMessage (String url, String isbn)
 throws Exception
 {

 //Build the call.
 org.apache.soap.rpc.Call call = new org.apache.soap.rpc.Call ();

 //This service uses standard SOAP encoding
 String encodingStyleURI = org.apache.soap.Constants.NS_URI_SOAP_ENC;
 call.setEncodingStyleURI(encodingStyleURI);

 //Set the target URI
 call.setTargetObjectURI ("urn:xmethods-BNPriceCheck");

 //Set the method name to invoke
 call.setMethodName ("getPrice");

 //Create the parameter objects
 Vector params = new Vector ();
 params.addElement (new org.apache.soap.rpc.Parameter("isbn",
 String.class, isbn, null));

 //Set the parameters
 call.setParams (params);

The service is then invoked by calling the Call object's invoke() method, passing the URL
of the service and the SOAP action, if more than one exists. This RPC call is synchronous,
meaning that invoke() blocks until a response is returned. When the response is received,
sendSoapRPCMessage() first checks whether the call returned a SOAP fault. (More
information on SOAP faults can be found in Section 4.2 of this chapter.) If the call was
successful, it extracts the return value from the response object and displays it:

 //Invoke the service
 org.apache.soap.rpc.Response resp =
 call.invoke (new java.net.URL(url),"");

 //Check the response
 if (resp.generatedFault ()) {
 org.apache.soap.Fault fault = resp.getFault();
 System.err.println("Generated fault: ");
 System.out.println(" Fault Code = " + fault.getFaultCode());
 System.out.println(" Fault String = " + fault.getFaultString());
 return 0;
 } else {
 org.apache.soap.rpc.Parameter result = resp.getReturnValue ();
 Float FL = (Float) result.getValue();
 return FL.floatValue();
 }
}

4.1.4 Another SOAP-RPC Sender: Local Service

That example was cool. Let's look at how to do the server portion. Unfortunately, we don't
have access to the Barnes & Noble's server, so we have to run another RPC example on

Java Web Services

61

a local machine so we can watch what's going on. In this example, we'll look at a SOAP-RPC
client that calls a local service we deploy using a Tomcat server. The service accepts an item
number and returns the stock on hand for that item. Here's a listing of the client, CheckStock:

import java.net.*;
import java.util.*;

public class CheckStock {

 private static final String DEFAULT_HOST_URL
 = "http://localhost:8080/soap/servlet/rpcrouter";
 private static final String DEFAULT_ITEM = "Test";
 private static final String URI = "urn:oreilly-jaws-samples";

 //Member variables
 private String m_hostURL;
 private String m_item;

 public CheckStock (String hostURL, String item) throws Exception
 {
 m_hostURL = hostURL;
 m_item = item;
 // print stuff to the console
 ...
 }

 public void checkStock() throws Exception {

 //Build the call.
 org.apache.soap.rpc.Call call = new org.apache.soap.rpc.Call ();

 //This service uses standard SOAP encoding
 String encodingStyleURI = org.apache.soap.Constants.NS_URI_SOAP_ENC;
 call.setEncodingStyleURI(encodingStyleURI);

 //Set the target URI
 call.setTargetObjectURI ("urn:stock-onhand");

 //Set the method name to invoke
 call.setMethodName ("getQty");

 //Create the parameter objects
 Vector params = new Vector ();
 params.addElement (new org.apache.soap.rpc.Parameter("item",
 String.class, m_item, null));

 //Set the parameters
 call.setParams (params);

 //Invoke the service
 org.apache.soap.rpc.Response resp
 = call.invoke (new java.net.URL(m_hostURL),"urn:go-do-this");

 //Check the response
 if (resp != null) {
 if (resp.generatedFault ()) {
 org.apache.soap.Fault fault = resp.getFault ();
 System.out.println ("Call failed due to a SOAP Fault: ");
 System.out.println (" Fault Code = " + fault.getFaultCode());

Java Web Services

62

 System.out.println("Fault String = " + fault.getFaultString());
 } else {
 org.apache.soap.rpc.Parameter result = resp.getReturnValue();
 Integer intresult = (Integer) result.getValue();
 System.out.println ("The stock-on-hand quantity for this item
 is: " + intresult);
 }
 }
 }

 /** Main program entry point. */

 public static void main(String args[]) {
 // Command line parsing
 ...

 // Start the CheckStock client
 try
 {
 CheckStock stockClient = new CheckStock(hostURL, item);
 stockClient.checkStock();
 }catch(Exception e){
 System.out.println(e.getMessage());
 }
 }
 ...
}

This client is similar to our previous client for looking up book prices, GetBookPrice. Thus,
rather than reviewing how to write a simple client, we'll concentrate on the service side of
the application.

4.1.5 The SOAP-RPC Service

Here's a listing of the SOAP-RPC service:

import java.net.*;
import java.io.*;
import java.util.*;

public class StockQuantity{

 public int getQty (String item)
 throws org.apache.soap.SOAPException {

 int inStockQty = (int)(java.lang.Math.random() * (double)1000);

 return inStockQty;
 }
 // main() for command line testing
 ...
}

This program is obviously very simple and doesn't require much explanation. However, you
should note the class name and method name. These names are important when you register
the service with the server, and in turn when you call the service from the sender. In our case,
the class name (StockQuantity) and method name (getQty) are used in the Deployment
Descriptor, which describes the service to the Apache SOAP server.

Java Web Services

63

4.1.5.1 The Deployment Descriptor

Here is a listing of the Deployment Descriptor used to register the service with the server. Use
the appropriate server manager to register the Deployment Descriptor:

<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment"
 id="urn:stock-onhand">
 <isd:provider type="java"
 scope="Application"
 methods="getQty">
 <isd:java class="StockQuantity"/>
 </isd:provider>
 <isd:faultListener>org.apache.soap.server.DOMFaultListener
 </isd:faultListener>
</isd:service>

The Deployment Descriptor contains information that the server needs to call the service
successfully, such as the service and provider elements. The service element contains the
namespace with which this descriptor is associated (i.e., the namespace that defines the tags
used within the descriptor) and the URN used by the service to identify itself to the server.
The caller uses this value in the setTargetObjectURI() method of the Call object.

The provider element contains information about the type of service, the scope of the service
(i.e., Request, Session, or Application), and the methods exposed by the service. In our case,
the service is clearly a Java service; we specify Application scope, which means that a single
instance of the service class is created when the server starts; and we have only one service
exposed and accessible, getQty. Finally, we specify the class name associated with the
service. Class location needs to be accessible to the server.

4.2 Error Handling with SOAP Faults

SOAP errors are handled using a specialized envelope known as a Fault Envelope. If an error
occurs while the server processes a SOAP message, it constructs a SOAP Fault and sends it
back to the client. Here's a typical SOAP 1.1 Fault:

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/1999/
XMLSchema">

<SOAP-ENV:Body>
 <SOAP-ENV:Fault>
 <faultcode>SOAP-ENV:Server</faultcode>
 <faultstring>Test Fault</faultstring>
 <faultactor>/soap/servlet/rpcrouter</faultactor>
 <detail>
 <stackTrace>[SOAPException: faultCode=SOAP-ENV:Server;
 msg=Test Fault]
 at StockQuantity.getQty(StockQuantity.java:21)
 at java.lang.reflect.Method.invoke(Native Method)
 at org.apache.soap.server.RPCRouter.invoke(RPCRouter.java:146)
 ...
 at org.apache.tomcat.util.ThreadPool$ControlRunnable.run(
 ThreadPool.java:501)

Java Web Services

64

 at java.lang.Thread.run(Thread.java:498)
 </stackTrace>
 </detail>
 </SOAP-ENV:Fault>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

A SOAP Fault is a special element that must appear as an immediate child of the SOAP body
element. The <faultcode> and <faultstring> elements are required. The <faultactor>
and <detail> elements are optional. Table 4-1 lists the possible values for the faultcodes and
their meanings.

Table 4-1. SOAP faultcodes
Faultcode Meaning

VersionMismatch The SOAP node processing the request encountered a version mismatch.
The namespace identifier of the SOAP envelope determines version compatibility.

MustUnderstand
An immediate child element of the SOAP header (i.e., <MessageHeader>)
contained a MustUnderstand attribute with a setting of true or 1. The SOAP
processor was not able to recognize the element or was not capable of processing it.

DTDNotSupported Introduced in SOAP 1.2 Working Draft 12/17/2001. It is an error for a SOAP 1.2
envelope to contain a DTD.

DataEncodingUnknown The soapEncodingStyle attribute specified is unknown or not supported. It
was also introduced in SOAP 1.2 WD 12/17/2001.

Client
The content generated by the client is incorrect or malformed. Therefore, resending
the same data will result in the same error. In SOAP 1.2, this fault is being changed
to Sender.

Server

The content sent by the client is perfectly acceptable, but the SOAP processor is
unable to process it for some reason, such as an unavailable service. Resending
the message at a later time could result in success. In SOAP 1.2, this fault is being
changed to Receiver.

The body and Fault elements are namespace-qualified to the envelope's namespace—for
example, <SOAP-ENV:body> and <SOAP-ENV:Fault>. The <faultcode> element uses the
local namespace (it has no namespace prefix), and the <faultcode> value that the element
contains is a qualified name using the envelope's namespace—for example,
<faultcode>SOAP-ENV:Client</faultcode>.

The SOAP Fault from the previous listing was achieved by making a slight modification to
the StockQuantity service. In Apache SOAP, having the service throw an exception is all
that's needed to generate a fault; Apache takes care of the rest:

public class StockQuantity{

 public int getQty (String item)
 throws org.apache.soap.SOAPException {

 int inStockQty = (int)(java.lang.Math.random() * (double)1000);

 if (item.equalsIgnoreCase("Fail"))
 throw new org.apache.soap.SOAPException
 (org.apache.soap.Constants.FAULT_CODE_SERVER,
 "Test Fault");

Java Web Services

65

 return inStockQty;
 }
...
}

In Apache SOAP 2.2, this code is all that is necessary to send a complete SOAP 1.1 Fault
message back to the sender. To view the full output of the Fault message, redirect the
CheckStock RPC call through the TunnelGui utility by using the command:

java CheckStock -url http://localhost:5555/soap/servlet/rpcrouter
 -item Fail

In this command, 5555 is the port on which the TunnelGui is listening. The RPC request and
the corresponding SOAP Fault can be viewed in the TunnelGui window, as shown in
Figure 4-1.

Figure 4-1. A SOAP Fault viewed through the Apache TunnelGui utility

The sending client can trap the Fault programatically and take appropriate action. Apache
SOAP has a Fault object that can be used to access the pieces of the Fault message, as
indicated in this excerpt from CheckStock:

 //Invoke the service
 Response resp = call.invoke (url,"urn:go-do-this");

 //Check the response
 if (resp != null) {
 if (resp.generatedFault()) {
 Fault fault = resp.getFault();
 System.out.println("Call failed due to a SOAP Fault: ");
 System.out.println(" Fault Code = "+fault.getFaultCode());
 System.out.println(" Fault String = "+fault.getFaultString());

While the ability to generate a fault by throwing an exception is handy, you may want more
control over what goes into a fault message. For example, Apache SOAP, by default, puts

Java Web Services

66

the current stacktrace into the <detail> element of the SOAP fault. That may not be what
you want. We will explore how to build your own Fault message in the context of
the mustUnderstand attribute.

4.2.1 Soap Faults and the mustUnderstand Attribute

To appreciate the meaning and role of the mustUnderstand or misUnderstood fault codes,
one must first understand the intent of the mustUnderstand attribute. This attribute can be
placed in any top-level header element. The presence of the mustUnderstand attribute with a
value of true or 1 means that the header element must be recognizable by the receiving
SOAP processor. If the SOAP processor does not recognize or know how to process the
header element, it must generate a Fault. We can generate a header element with a
mustUnderstand attribute by adding the following line of code to our
GenericHTTPSoapClient:

 // Create a header element in a namespace
 org.w3c.dom.Element headerElement =
 doc.createElementNS(URI,"jaws:MessageHeader");
 headerElement.setAttributeNS(URI,
 "SOAP-ENV:mustUnderstand","1");

 // Create subnodes within the MessageHeader
 org.w3c.dom.Element ele = doc.createElement("From");
 org.w3c.dom.Text textNode = doc.createTextNode("Me");

This code creates a SOAP envelope that looks like this:

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/1999/XMLSchema">
<SOAP-ENV:Header>
 <jaws:MessageHeader xmlns:jaws="urn:http://oreilly/jaws/samples"
 SOAP-ENV:MustUnderstand="1" >
 <From>Me</From>
 <To>You</To>
 <MessageId>9999</MessageId>
 ...
 </jaws:MessageHeader>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
...
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

This envelope requires the server to understand the <MessageHeader> element. Since the
server doesn't understand these elements, it returns a SOAP 1.1 Fault message:

Java Web Services

67

<?xml version='1.0' encoding='UTF-8'?>

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/1999/
XMLSchema">
 <SOAP-ENV:Body>
 <SOAP-ENV:Fault>
 <faultcode>SOAP-ENV:MustUnderstand</faultcode>
 <faultstring>Unsupported header: jaws:MessageHeader</faultstring>
 <faultactor>/examples/servlet/FaultServlet</faultactor>
 </SOAP-ENV:Fault>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The code used to generate this fault is in the following listing of the FaultServlet class.
FaultServlet is a variation of our HTTPReceive class. As part of the header's processing, we
look for the existence of a mustUnderstand attribute:

public class FaultServlet extends HttpServlet
{
...

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException
 {
 ...
 // Get the header and check it for mustunderstand
 Header header = env.getHeader();
 java.util.Vector headerEntries = header.getHeaderEntries();

 screenWriter.write("\nHeader==>\n");
 for (java.util.Enumeration e = headerEntries.elements();
 e.hasMoreElements();)
 {
 org.w3c.dom.Element el=(org.w3c.dom.Element)e.nextElement();
 org.apache.soap.util.xml.DOM2Writer.serializeAsXML(
 (org.w3c.dom.Node)el, screenWriter);

 // process mustUnderstand
 String mustUnderstand=
 el.getAttributeNS(Constants.NS_URI_SOAP_ENV,
 "mustUnderstand");
 screenWriter.write("\nMustUnderstand: "
 + mustUnderstand + "\n");

 String tagName = el.getTagName();
 screenWriter.write("Tag Name: " + tagName + "\n");

FaultServlet doesn't support the <MessageHeader> tag; it supports only the
<IOnlyUnderstandThis> tag. Therefore, we must generate a fault when it sees the message
header tag combined with the mustUnderstand attribute. To construct the fault, we create a
SOAPException and use it to create a new Fault object:

Java Web Services

68

 if(!tagName.equalsIgnoreCase("IOnlyUnderstandThis"))
 {
 //generate a fault.
 screenWriter.write("Unsupported header: " +
 tagName + "\n");
 screenWriter.write("Generating Fault....\n");
 SOAPException se =
 New SOAPException(
 Constants.FAULT_CODE_MUST_UNDERSTAND,
 "Unsupported header: " + tagName);
 Fault fault = new Fault(se);
 fault.setFaultActorURI (request.getRequestURI ());

 String respEncStyle = Constants.NS_URI_SOAP_ENC;

Next, we create a Response object and supply it with the Fault object that we created:

 org.apache.soap.rpc.Response soapResponse =
 new org.apache.soap.rpc.Response (
 null, // targetObjectURI
 null, // methodName
 fault,
 null, // params
 null, // headers
 respEncStyle, // encodingStyleURI
 null); // SOAPContext

Finally, we create an Envelope from the Response object and marshall it into the
PrintWriter attached to the servlet's HTTPResponse:

 Envelope faultEnvelope=soapResponse.buildEnvelope();

 org.apache.soap.encoding.SOAPMappingRegistry smr =
 new org.apache.soap.encoding.SOAPMappingRegistry();

 PrintWriter resW = response.getWriter();

 faultEnvelope.marshall(resW, smr,
 soapResponse.getSOAPContext());
 response.setContentType(request.getContentType());
 response.setStatus(response.SC_INTERNAL_SERVER_ERROR);
 ...
 }
 }

Note that in the SOAP 1.2 effort, there has been much debate over whether mustUnderstand
also means "MustExecute" or "MustProcess."

SOAP 1.2 clarifies the use of the SOAP header in Fault processing. The general idea is that
the body of a Fault message should contain only the errors that resulted from processing the
body of the message that caused the Fault. Likewise, detailed information about any errors
that occur as the result of processing a header block should be placed in the header block of
the resulting Fault message. The <Fault> and <Faultcode> elements still appear in the body.
However, the <Misunderstood> element in the header carries detailed information about
which header element could not be recognized.

Java Web Services

69

The SOAP 1.2 Fault message (generated from not being able to understand the
<MessageHeader> element in our previous example) would look like this:

<env:Envelope xmlns:env='http://www.w3.org/2001/09/soap-envelope'
 xmlns:f='http://www.w3.org/2001/09/soap-faults' >
 <env:Header>
 <f:misunderstood qname="jaws:MessageHeader"
 xmlns:jaws="urn:http://oreilly/jaws/samples" />
 </env:Header>
 <env:Body>
 <env:Fault>
 <faultcode>env:mustUnderstand</faultcode>
 <faultstring>
 One or more mandatory headers not understood
 </faultstring>
 </env:Fault>
 </env:Body>
</env:Envelope>

SOAP 1.2 adds an additional set of fault codes. These RPC fault codes use the new
namespace identifier http://www.w3.org/2001/09/soap-rpc with the namespace prefix of rpc:.
The new codes are listed in Table 4-2.

Table 4-2. SOAP 1.2 RPC fault codes
Fault code Meaning
rpc:ProcedureNotPresent The server can't find the specified procedure.

rpc:BadArguments The server can't parse the arguments (or the arguments don't match what
the server is expecting for the procedure call).

env:DataEncodingUnknown The encodingStyle attribute contained in either the header or body is not
supported.

4.3 SOAP Intermediaries and Actors

The world of interapplication communication usually involves more than two parties talking
with one another in a point-to-point fashion. A SOAP envelope that represents a business
transaction may move from place to place as it goes through the various stages of a business
process. Each stage in a multihop process may act upon the envelope, modify its contents, and
route it along to the next step in a process.

Recognizing that messages may take many hops as they travel from the sender to their final
destination, SOAP defines a Message Exchange Model. As illustrated in Figure 4-2, this
model defines terminology and roles such as SOAP Node, Intermediary, Actor, the initial
SOAP sender, and the ultimate receiver. A node is any object or process performing any of
these roles. An intermediary is any node that sits between the initial SOAP sender and the
ultimate receiver. An actor is any node that receives a SOAP envelope for processing and can
be either an intermediary or the ultimate receiver.

Figure 4-2. Multihop processing terminology

Java Web Services

70

The actor attribute may be used to specify which blocks of information are intended for each
step in the process. Each node in a multihop process is responsible for digesting and
interpreting the meaning of the actor attribute for each SOAP block and possibly re-inserting
it into the SOAP block and forwarding it on to the next node for processing. Any SOAP
receiver that encounters a header block without an actor attribute, or an actor attribute
equivalent to the special URI http://www.w3.org/2001/09/soap-envelope/actor/next, has to
interpret that header block as being intended for it (the current SOAP node). If the current
SOAP node cannot fulfill the mustUnderstand requirements, it must generate a SOAP Fault.

An actor attribute with the special value of
http://www.w3.org/2001/09/soap-envelope/actor/none indicates that this header is not targeted
at anything in particular. This indication is useful for sharing header information across
multiple nodes.

4.3.1 Note on URIs, URNs, and URLs

There's a lot of confusion about URIs, URNs, and URLs, which are seemingly similar
concepts used throughout web services and are gradually infiltrating Internet programming in
general. In 2001, the W3C published a document that attempts to clarify these three
commonly misused acronyms. The full document can be found at
http://www.w3.org/TR/2001/NOTE-uri-clarification-20010921/.

1 URI Partitioning

There is some confusion in the web community over the partitioning of URI
space, specifically, the relationship among the concepts of URL, URN, and
URI. The confusion owes to the incompatibility between two different views
of URI partitioning, which we call the "classical" and "contemporary" views.

1.1 Classical View

During the early years of discussion of web identifiers (early to mid 90s),
people assumed that an identifer type would be cast into one of two (or
possibly more) classes. An identifier might specify the location of a resource (a
URL) or its name (a URN) independent of location. Thus a URI was either a
URL or a URN. There was discussion about generalizing this by addition of a
discrete number of additional classes; for example, a URI might point to
metadata rather than the resource itself, in which case the URI would be a
URC (citation). URI space was thus viewed as partitioned into subspaces: URL
and URN, and additional subspaces, to be defined. The only such additional
space ever proposed was URC and there never was any buy-in; so without loss
of generality it's reasonable to say that URI space was thought to be partitioned
into two classes: URL and URN. Thus for example, "http:" was a URL
scheme, and "isbn:" would (someday) be a URN scheme. Any new scheme
would be cast into one or the other of these two classes.

1.2 Contemporary View

Over time, the importance of this additional level of hierarchy seemed to
lessen; the view became that an individual scheme does not need to be cast into

Java Web Services

71

one of a discrete set of URI types such as "URL", "URN", "URC", etc. Web-
identifer schemes are in general URI schemes; a given URI scheme may define
subspaces. Thus "http:" is a URI scheme. "urn:" is also a URI scheme; it
defines subspaces, called "namespaces". For example, the set of URNs of the
form "urn:isbn:n-nn-nnnnnn-n" is a URN namespace. ("isbn" is an URN
namespace identifier. It is not a "URN scheme" nor a "URI scheme").

Further according to the contemporary view, the term "URL" does not refer to
a formal partition of URI space; rather, URL is a useful but informal concept: a
URL is a type of URI that identifies a resource via a representation of its
primary access mechanism (e.g., its network "location"), rather than by some
other attributes it may have. Thus as we noted, "http:" is a URI scheme. An
http URI is a URL. The phrase "URL scheme" is now used infrequently,
usually to refer to some subclass of URI schemes which exclude URNs.

1.3 Confusion

The body of documents (RFCs, etc.) covering URI architecture, syntax,
registration, etc., spans both the classical and contemporary periods. People
who are well-versed in URI matters tend to use "URL" and "URI" in ways that
seem to be interchangable. Among these experts, this isn't a problem. But
among the Internet community at large, it is. People are not convinced that
URI and URL mean the same thing, in documents where they (apparently) do.
When one sees an RFC that talks about URI schemes (e.g., [RFC2396]),
another that talks about URL schemes (e.g., [RFC2717]), and yet another that
talks of URN schemes ([RFC2276]) it is natural to wonder what's the
difference, and how they relate to one another. While RFC 2396 1.2 attempts
to address the distinction between URIs, URLs and URNs, it has not been
successful in clearing up the confusion.

We hope this clears it up for everyone. The summarized description that we feel is generally
acceptable in the industry is this:

A Universal Resource Identifier (URI) is a generic representation that can either be a
Universal Resource Locator (URL) or a Universal Resource Name (URN). A URL is
something that represents a physical network location and contains things that pertain to a
particular protocal, such as http:// or ftp://. A URN is something that does not necessarily
resolve to any physical location; generally, it is intended to be used to identify something
uniquely, such as a SOAP action or a namespace.

Java Web Services

72

Chapter 5. Web Services Description Language
In the previous two chapters, we talked extensively about SOAP and the structure it delivers
to web services. Not surprisingly, the adoption of SOAP's messaging formats brought about
a need to describe operational information in an equally structured way. WSDL was
introduced to address this need.

WSDL is an XML grammar for describing a web service as a collection of access endpoints1
capable of exchanging messages in a procedure- or document-oriented fashion. A WSDL
document is a recipe used to automate the details involved in application-to-application
communication.

On one level, WSDL is not that different from CORBA IDL or Microsoft IDL. They are all
used to define the interfaces (method signatures) and datatypes for a discreet piece of
programming logic.

On another level, WSDL is an altogether different beast, offering a degree of extensibility that
has no parallel in the IDL specification. This extensibility allows WSDL to be used to:

• Describe endpoints and their messages, regardless of the message format or network
protocol used to exchange them.

• Treat messages as abstract descriptions of the data being exchanged.
• Treat port types as abstract collections of a web services' operations. A port type can

then be mapped to a concrete protocol and data format.

If you are feeling a bit dazed after reading these bullet items, it's just the WSDL specification
talking! We'll offer fewer "scientific" definitions as we go along; don't let the terms scare you
away from this technology.

5.1 Introduction to WSDL

As the number of communication formats and protocols used on the Internet continues to
increase, finding a standard way of describing how two machines should communicate with
one another has become increasingly important. WSDL describes what a service does, how to
invoke its operations, and where to find it. WSDL has created separate definitions and
terminology for defining a web service, the communication endpoint where that web service
exists, the legal format for input and output messages for the web service, and an abstract way
to declare a binding to a concrete protocol and data format.

Everything defined within a WSDL file is abstract: it's just the definition of parameters and
constraints for how communication should occur at runtime. The web service implementation
has to adhere to the guidelines defined in the WSDL file but has some flexibility over
specifics. WSDL also provides the ability to define a binding that attaches an abstract set of
message definitions to a concrete protocol or data format. A bindingextension is a type of
binding defined for a major protocol. WSDL defines out-of-the-box binding extensions for
SOAP 1.1, HTTP GET, HTTP POST, and MIME.

1 URLs to which service requests are sent.

Java Web Services

73

5.1.1 How a Service Description Begets Code

Since WSDL is just an abstract description of a web service's interface, it is conceivable that
implementation code can be generated from a WSDL definition and that WSDL definitions
can be created automatically from existing implementation code. From a programming
perspective, using WSDL to generate code is one of its biggest values. Methods of generating
WSDL from existing components have also been discovered. Both techniques are a boon to
developers and nondevelopers alike and lend credibility to the notion of truly dynamic
computing models.

The question that developers have to ask, however, is what they are going to build first. Will
you build the service implementation first and then generate the interfaces automatically?
Will you create the WSDL for a web service and then use a tool to create the matching J2EE
base components necessary to implement the web service?

We feel that the model that will resonate most with developers is one that focuses on creating
a web service and a specified set of input methods. Developers will create an implementation
and make sure it works correctly; tools then take the basic implementation and generate
WSDL files automatically. Most tools on the market today are capable of doing this. For
example, Cape Clear's CapeConnect allows you to create a web service; it generates the
WSDL automatically. BEA's WebLogic Server 6.1 allows you to create an EJB or a JMS
Destination and provides Ant scripts to create the WSDL associated with the
implementations. Sonic Software's SonicXQ allows you to generate WSDL that is mapped to
various services, or endpoints, which could represent JMS destinations, calls to WebLogic
EJB Server, or a J2EE Connector. Other available industry tools available for working with
WSDL include Systinet WASP, The Mind Electic's GLUE, and IBM's Web Services Toolkit.

Integration between Java and WSDL is discussed in more depth at the end of this chapter.

5.2 Anatomy of a WSDL Document

Let's take a detailed look at the individual parts of a WSDL document. The following code
shows the major elements that may appear in a WSDL document. An asterisk (*) next to an
element indicates that more than one of these elements may appear. Elements from WSDL
binding extensions (i.e., SOAP, HTTP, etc.) were not included here, to keep things simpler:

<definitions>
 <import>*
 <types>
 <schema></schema>*
 </types>
 <message>*
 <part></part>*
 </message>
 <PortType>*
 <operation>*
 <input></input>
 <output></output>
 <fault></fault>*
 </operation>
 </PortType>

Java Web Services

74

 <binding>*
 <operation>*
 <input></input>
 <output></output>
 </operation>
 </binding>
 <service>*
 <port></port>*
 </service>
</definitions>

In the next few sections, we define each of the major WSDL elements and present a real-life
example as part of the explanation. Finding a WSDL file sophisticated enough to cover the
various facets of the specification while still remaining readable was not simple. The
following sections present the WSDL document that defines a web service for the translation
of the Z39.50 ASN.1 specification. Z39.50/XER (XML Encoding Rules) allows information
described in ASN.1 to be carried in XML. It describes the datatypes and operations that one
would need to perform real-time conversions between ASN.1-encoded data structures and
XML-encoded data structures.

The ez3950-PortTypes.wsdl file in the examples directory contains the WSDL for this
example. This file also depends upon ez3950.xsd, which is in the same directory.

5.2.1 <definitions> Element

The <definitions> element in a WSDL document acts as a container for the service
description. It provides a place to do global declarations of namespaces that are intended to be
visible throughout the rest of the document. Here is the <definitions> element from the
XML Encoding Rules. Note that some of the namespaces defined in this element have
prefixes (xsd, soap, soapenc, xer, etc.), and some do not. These prefixes are bound to a
particular namespace but do not govern which schemas are actually available to a schema
processor:

<definitions
 targetNamespace="urn:3950"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:tns="urn:3950"
>

Java Web Services

75

What's an XML Namespace?
If you aren't familiar with the concept of an XML namespace, just think of it as a
name that qualifies element and attribute names. Most XML grammars used in the
web services technology stack have an XML Schema (.xsd) document that governs
the elements and attributes used in them, their datatypes, and valid values. A
namespace provides an alias (code name) to use within the current XML document
for referring to the rules defined in a separate XML Schema document.

A namespace is used as a qualifier for tags. For example, if two XML Schema
documents each define the <car> tag with different subelements, how would an
XML file that uses both schemas know which <car> definition to refer to? The
namespace alias is used as a prefix to qualify an XML tag as coming from a
particular XML Schema document. For example, the <car> tag might be modified
to be <ford:car> (to indicate that the <car> tag definition that is valid is the one
defined in the XML Schema document with the ford alias).

A namespace definition is valid for the element it is defined in and for all
subelements. Subelements can have additional or overriding namespace definitions.

Are the addresses specified in these namespace URIs real? Some of them are and some of
them are not. It's a common practice to post the XML Schema document that the namespace
URI refers to at the real URL. Many organizations don't follow this practice, however.
Namespaces frequently contain URIs that are just references to XML Schema documents that
aren't located on the Internet. Connect to the Internet and try entering
http://schemas.xmlsoap.org/wsdl/soap/ in your browser. If you use Internet Explorer 5, you
should see the XML Schema document for the SOAP binding extension for WSDL. Can you
get the XML schema for all namespace URIs?

The targetNamespace attribute of the <definitions> element defines the namespace
definition that this document is creating. This attribute is used in lieu of the name attribute on
the <definitions> element. The target namespace creates a new, unique identifier within
which any types or abstract definitions defined by the document fall. The default namespace
allows you to use tags without prepending the namespace alias to the beginning of the tag.
The URI for the targetNamspace attribute must be an absolute reference, not a relative one.
Here, http://asf.gils.net/xer is specified as the target and http://schemas.xmlsoap.org/wsdl/ is
used as the default namespace.

Given this description, keep the following issues in mind when working with namespaces:

• A namespace is qualified in an XML document through a QNAME. The QNAME is
the value following xmlns: in an XML document. It is a value used to qualify an
element within the XML document. If two elements imported from different
namespaces have the same name, they are qualified by using the QNAME followed by
a colon.

• The default namespace used on elements (also known as the default qualifier) is the
namespace that follows the xmlns= attribute in an XML definition. If two conflicting
elements come from different namespaces, the element defined in the namespace
identified by xmlns= is used.

Java Web Services

76

• The targetNamespace creates a unique identifier of the namespace created in the
WSDL document. Since the WSDL document defines new elements and attributes, the
value of this attribute is the identifier given to the namespace to which those elements
belong.

• It is common practice to further qualify the target namespace by creating a QNAME
named tns that points to the same value of targetNamespace. Thus,
targetNamespace creates a new namespace, and tns becomes the QNAME for
identifying "this namespace" within the same WSDL document.

Table 5-1 lists the namespace prefixes and URIs that you'll see most frequently in WSDL
documents. Of course, many namespaces aren't listed in this table.

Table 5-1. Common namespace prefixes
Prefix Namespace URI Synopsis
wsdl http://schemas.xmlsoap.org/wsdl/ Namespace of WSDL grammar.

soap http://schemas.xmlsoap.org/wsdl/soap/ Namespace of WSDL extension binding for SOAP
message.

http http://schemas.xmlsoap.org/wsdl/http/ Namespace of WSDL extension binding HTTP
protocol.

mime http://schemas.xmlsoap.org/wsdl/mime/ Namespace of WSDL extension binding for MIME
protocol.

soapenc http://schemas.xmlsoap.org/soap/encoding/ Namespace of schema governing SOAP 1.1 encoding.
soapenv http://schemas.xmlsoap.org/soap/envelope/ Namespace of schema governing SOAP 1.1 envelopes.

xsi http://www.w3.org/2000/10/XMLSchema-
instance

Namespace of schema governing XML Schema
instances. An instance is an XML document that
conforms to a given XML Schema (.xsd) file.

xsd http://www.w3.org/2000/10/XMLSchema Namespace of schema governing XML Schema (.xsd)
files.

tns (application or context-dependent)

Namespace convention used to refer to the current
WSDL document. The prefix is an acronym for "this
namespace." Assigning the targetNamespace value
to this prefix is customary.

5.2.2 <import> Element

After the <definitions> element, we see an <import> element:

<definitions
 targetNamespace="urn:3950"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:tns="urn:3950"
>
 <import namespace="http://asf.gils.net/xer"
 location="http://asf.gils.net/xer/ez.xsd"/>

The <import> element serves a purpose similar to the #include directive in the C/C++
programming language. It lets you separate the elements of a service definition into
independent documents and include them in the main document, where appropriate. Effective
use of the <import> element promotes the modularization of WSDL documents and creates
an environment of reuse that can create clear service definitions. WSDL documents structured

Java Web Services

77

in this way are easier to use and maintain, but require any WSDL parsing engine to perform
additional I/O operations to import any externally referenced resource. You can have zero or
more <import> elements.

The <import> element imports the namespace of another file, not the file itself. Elements in
an XML file are identified by a namespace declaration. A namespace declaration can occur at
any element in the file and then applies for any subelements, assuming that an overriding
namespace isn't applied. When an <import> statement is used, all elements for that given
namespace are included at the location of the <import> element in the parent document.

In the ez3950-PortTypes.wsdl file that we have provided, an <import> tag is used to include
information located in another XML file. In this case, the <import> tag imports the file
located at http://asf.gils.net/xer/ez.xsd. Even though this file is local, the WSDL file is placed
on the Internet, so it is important to provide an absolute URL for the location of the imported
file. The ez.xsd file is located in the examples directory and contains the schema definitions
required for this WSDL file. The schema definitions are further defined in the next section.

5.2.3 <types> Element

The <types> element in a WSDL document acts as a container for defining the datatypes
used in <message> elements. <message> elements define the format of messages
interchanged between a client and a web service. Currently, XML Schema Definitions (XSD)
is the most widely used data typing method, but WSDL allows the inclusion of other XML
typing approaches.

For the most part, a study of the <types> element is a study of XML Schema. The <types>
element has zero or more <schema> subelements, which must follow the rules for XML
Schema documents. The <schema> element of our WSDL document is surprisingly simple,
but long.

If you look at the ez3950-PortTypes.wsdl file provided in this chapter, a <types> element is
not included. Rather, the schema definitions required for the WSDL document are included
via the <import> element. What is interesting is that if you look at the ez3950.xsd file, that
file does not have a <types> element. Since the namespace being imported is a schema
definition, the WSDL parser automatically understands that the included elements must be
included as part of the <types> definition. The <types> section listed here appears as it
would if the <import> statement did not exist in the WSDL document and the WSDL
contained all schema definitions inline.

The <types> section is presented in several portions to illustrate some of the different kinds
of syntax available with XML Schema. XML Schema can be very complex. This chapter
provides some rudimentary explanations of XML Schema notation, but we're assuming that
you already have a basic understanding of what XML Schemas are and how they work. We
start with the <type> tag itself, followed by the definition of a single complex type:

Java Web Services

78

<types>
 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="PDU" type="PDU"/>
 <xsd:complexType name="PDU">
 <xsd:choice>
 <xsd:element name="initRequest" type="InitializeRequest" />
 <xsd:element name="initResponse" type="InitializeResponse"
 />
 <xsd:element name="searchRequest" type="SearchRequest" />
 <xsd:element name="searchResponse" type="SearchResponse" />
 <xsd:element name="presentRequest" type="PresentRequest" />
 <xsd:element name="presentResponse" type="PresentResponse"
 />
 <xsd:element name="deleteResultSetRequest"
 type="DeleteResultSetRequest" />
 <xsd:element name="deleteResultSetResponse"
 type="DeleteResultSetResponse" />
 <xsd:element name="accessControlRequest"
 type="AccessControlRequest" />
 <xsd:element name="accessControlResponse"
 type="AccessControlResponse" />
 <xsd:element name="resourceControlRequest"
 type="ResourceControlRequest" />
 <xsd:element name="resourceControlResponse"
 type="ResourceControlResponse" />
 <xsd:element name="triggerResourceControlRequest"
 type="TriggerResourceControlRequest" />
 <xsd:element name="resourceReportRequest"
 type="ResourceReportRequest" />
 <xsd:element name="resourceReportResponse"
 type="ResourceReportResponse" />
 <xsd:element name="scanRequest" type="ScanRequest" />
 <xsd:element name="scanResponse" type="ScanResponse" />
 <xsd:element name="sortRequest" type="SortRequest" />
 <xsd:element name="sortResponse" type="SortResponse" />
 <xsd:element name="segmentRequest" type="Segment" />
 <xsd:element name="extendedServicesRequest"
 type="ExtendedServicesRequest" />
 <xsd:element name="extendedServicesResponse"
 type="ExtendedServicesResponse" />
 <xsd:element name="close" type="Close" />
 </xsd:choice>
 </xsd:complexType>

XML Schema is a language used to define the structure and restrictions for new elements and
attributes. New elements are defined through the <simpleType> and <complexType>
elements. A <simpleType> defines the format of a single element, while <complexType>
defines an element with subelements. The <xsd:complexType> element (which starts at the
fourth line of the preceding code) defines a complex datatype that uses a <choice> model
group. This model group ensures that the value assigned to an instance of this datatype
corresponds to exactly one of the possible values for it.

The next element, <xsd:simpleType>, defines a simple datatype that represents an
enumeration. It starts with the definition of a predefined schema datatype, xsd:string, and
then restricts the behavior to a form that meets our needs:

Java Web Services

79

 <xsd:simpleType name="KnownProximityUnit">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="character" />
 <xsd:enumeration value="word" />
 <xsd:enumeration value="sentence" />
 <xsd:enumeration value="paragraph" />
 <xsd:enumeration value="section" />
 <xsd:enumeration value="chapter" />
 <xsd:enumeration value="document" />
 <xsd:enumeration value="element" />
 <xsd:enumeration value="subelement" />
 <xsd:enumeration value="elementType" />
 <xsd:enumeration value="byte" />
 </xsd:restriction>
 </xsd:simpleType>

The base xsd:string type allows a string value to have any combination of characters and
any length. The new type, named KnownProximityUnit, creates a new string type that allows
only the values defined in the <xsd:enumeration> elements to appear as values; the value of
a KnownProximityUnit must be of type xsd:string and must have one of the specified
values.

The next part of the file defines several additional types derived by restriction:

 <xsd:simpleType name="ReferenceId">
 <xsd:restriction base="xsd:hexBinary" />
 </xsd:simpleType>
 <xsd:simpleType name="GeneralString">
 <xsd:restriction base="xsd:string" />
 </xsd:simpleType>
 <xsd:simpleType name="InternationalString">
 <xsd:restriction base="GeneralString" />
 </xsd:simpleType>
 <xsd:simpleType name="OID">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="\d*{\.\d*}*" />
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="ANY">
 <xsd:restriction base="xsd:anyType" />
 </xsd:simpleType>

As you can see, <simpleType> datatypes can be derived from a variety of existing base types.
The ReferenceId and GeneralString types are derived from the xsd:hexBinary and
xsd:string base types, respectively. The user-defined type InternationalString is
derived in turn from GeneralString. Likewise, the user-defined type ANY is derived by
restriction from xsd:anyType. This type can represent any value that conforms to nearly any
type. In toolkits that map XML Schema to Java, xsd:anyType elements are typically mapped
to java.lang.Object classes.

The next part of the WSDL file takes us for a whirlwind ride through almost every XML
Schema structure and type you're likely to come across regularly:

Java Web Services

80

 <xsd:element name="SortRequest" type="SortRequest" />
 <xsd:complexType name="SortRequest">
 <xsd:sequence>
 <xsd:element name="referenceId" type="ReferenceId"
 minOccurs="0" />
 <xsd:element name="inputResultSetNames">
 <xsd:simpleType>
 <xsd:list itemType="InternationalString" />
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="sortedResultSetName"
 type="InternationalString" />
 <xsd:element name="sortSequence">
 <xsd:complexType>
 <xsd:sequence minOccurs="0"
 maxOccurs="unbounded">
 <xsd:element name="SortKeySpec"
 type="SortKeySpec" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="otherInfo" type="OtherInformation"
 minOccurs="0" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="SortResponse" type="SortResponse" />
 <xsd:complexType name="SortResponse">
 <xsd:sequence>
 <xsd:element name="referenceId" type="ReferenceId"
 minOccurs="0" />
 <xsd:element name="sortStatus">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="success" />
 <xsd:enumeration value="partial-1" />
 <xsd:enumeration value="failure" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="resultSetStatus" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="empty" />
 <xsd:enumeration value="interim" />
 <xsd:enumeration value="unchanged" />
 <xsd:enumeration value="none" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="diagnostics" minOccurs="0">
 <xsd:complexType>
 <xsd:sequence minOccurs="0"
 maxOccurs="unbounded">
 <xsd:element name="DiagRec" type="DiagRec"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="otherInfo" type="OtherInformation"
 minOccurs="0" />
 </xsd:sequence>
 </xsd:complexType>

Java Web Services

81

The <xsd:list> element introduces a list element. This element is a datatype whose values
consist of a finite-length sequence of values of an atomic datatype (i.e., xsd:string, derived
restriction, etc.). It has an attribute named itemType, which specifies the atomic datatype for
the items that make up the list. For the most part, the rest of the lines contain datatypes we
have already discussed (user-defined complex types, user-defined simple types, or
enumerations).

The last block introduces the <xsd:element> element's ref attribute:

 <xsd:complexType name="EXTERNAL">
 <xsd:sequence>
 <xsd:element name="External">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="direct-reference"
 type="xsd:string" />
 <xsd:element name="encoding">
 <xsd:complexType>
 <xsd:choice>
 <xsd:element ref="single-ASN1-
 type" />
 <xsd:element ref="octet-aligned"
 />
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="single-ASN1-type">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="motd" minOccurs="0"
 maxOccurs="unbounded" />
 <xsd:element ref="DBName" minOccurs="0"
 maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="octet-aligned" type="xsd:string" />
 <xsd:element name="motd" type="xsd:string" />
 <xsd:element name="DBName" type="xsd:string" />
 <xsd:complexType name="DatabaseNames">
 <xsd:sequence minOccurs="0" maxOccurs="unbounded">
 <xsd:element ref="DatabaseName" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="databaseNames" type="DatabaseNames" />
 <xsd:element name="DatabaseName" type="xsd:string" />
 </xsd:schema>
</types>

As implied by its name, this attribute allows you to reference a user-defined type (either
complex or simple) defined elsewhere within the schema document. For example, the
ref="DatabaseName" attribute indicates that the element definition in which it appears
(<DatabaseNames>) can include a <DatabaseName> element, which is defined elsewhere in

Java Web Services

82

the document. The definition for <DatabaseName> appears at the end of this block of code; it
is defined as an xsd:string type with no restrictions.

A complete discussion of XML Schema would be a book in itself.2 It suffices to say that
XML Schema is a pretty intense body of work. Unfortunately, developers still have to do
some XML Schema mangling, which requires you to understand the details of this complex
specification. However, many web services and XML Schema toolkits are becoming adept at
processing <schema> elements and providing interfaces that abstract the details of XML
Schema definitions provided by developers. If you want to know more about XML Schema,
see Eric van der Vlist's XML Schema (O'Reilly).

5.2.4 <message> Element

The <message> element is used to model the data exchanged as part of a web service.
<message> elements reference the types defined in the <types> section. The data contained
within a <message> element typed by a <message> element is abstract. A message consists of
one or more <part> subelements. A <part> subelement identifies the individual pieces of
data that are part of this data message and the datatypes that the pieces adhere to. The
following <message> element is contained in the ez3950-PortTypes.wsdl file:

<message name="soapHeader">
 <part type="xsd:string" name="id"/>
 <part type="xsd:string" name="timeout"/>
</message>

In the previous code, the <message> element is uniquely identified by the name attribute. This
message is named soapHeader; it has two <part> subelements, of which the first is named id
and the second is named timeout. In this case, each part is typed as an XML Schema string
(xsd:string). But the types used in part definitions aren't required to come from XML
Schema; they could just as well be defined in the <types> element of the existing WSDL
document itself.

The rest of the <message> elements contained in our sample WSDL file follow. Note that
multiple parts are used if the message contains multiple logical parts, such as parameters in an
RPC request. Each part can be a simple type or a structure. You can define the part structure
here within the message using the <element> tag, or you can refer to the typed structures
defined in the <types> section:

<message name="initRequest">
 <part type="xer:initRequest" name="initRequest"/>
</message>
<message name="initResponse">
 <part type="xer:initResponse" name="initResponse"/>
</message>
<message name="searchRequest">
 <part type="xer:searchRequest" name="searchRequest"/>
</message>
<message name="searchResponse">
 <part type="xer:searchResponse" name="searchResponse"/>
</message>

2 The XML Schema recommendation has three parts: a primer (http://www.w3.org/TR/xmlschema-0/), structures
(http://www.w3.org/TR/xmlschema-1/), and datatypes (http://www.w3.org/TR/xmlschema-2/).

Java Web Services

83

<message name="presentRequest">
 <part type="xer:presentRequest" name="presentRequest"/>
</message>
<message name="presentResponse">
 <part type="xer:presentResponse" name="presentResponse"/>
</message>
<message name="sortRequest">
 <part type="xer:sortequest" name="sortRequest"/>
</message>
<message name="sortResponse">
 <part type="xer:sortResponse" name="sortResponse"/>
</message>
<message name="scanRequest">
 <part type="xer:sortRequest" name="scanRequest"/>
</message>
<message name="scanResponse">
 <part type="xer:scanResponse" name="scanResponse"/>
</message>
<message name="deleteRequest">
 <part type="xer:scanRequest" name="deleteRequest"/>
</message>
<message name="deleteResponse">
 <part type="xer:scanResponse" name="deleteResponse"/>
</message>
<message name="accessControlRequest">
 <part type="xer:accessControlRequest" name="accessControlRequest"/>
</message>
<message name="accessControlResponse">
 <part type="xer:accessControlResponse" name="accessControlResponse"/>
</message>
<message name="triggerResourceControlRequest">
 <part type="xer:triggerResourceControlRequest"
 name="triggerResourceControlRequest"/>
</message>
<message name="resourceControlRequest">
 <part type="xer:resourceControlRequest" name="resourceControlRequest"/>
</message>
<message name="resourceControlResponse">
 <part type="xer:resourceControlResponse"
 name="resourceControlResponse"/>
</message>
<message name="resourceReportRequest">
 <part type="xer:resourceReportRequest" name="resourceReportRequest"/>
</message>
<message name="resourceReportResponse">
 <part type="xer:resourceReportResponse" name="resourceReportResponse"/>
</message>
<message name="extendedServicesRequest">
 <part type="xer:extendedServicesRequest"
 name="extendedServicesRequest"/>
</message>
<message name="extendedServicesResponse">
 <part type="xer:extendedServicesResponse"
 name="extendedServicesResponse"/>
</message>
<message name="close">
 <part type="xer:close" name="close"/>
</message>

Java Web Services

84

5.2.5 <portType> Element

The <portType> element specifies a subset of operations supported for an endpoint of a web
service. In a sense, a <portType> element provides a unique identifier to a group of actions
that can be executed at a single endpoint.

The <operation> element represents an operation. This element is an abstract definition of
an action supported by a web service. A WSDL <operation> element is analogous to a Java
method definition. A WSDL operation can have input and output messages as part of its
action. The <operation> tag defines the name of the action by using a name attribute, defines
the input message by the <input> subelement, and defines the output message by the
<output> subelement. The <input> and <output> elements reference <message> elements
defined in the same WSDL document or an imported one. A <message> element can
represent a request, response, or a fault.

Continuing with the Z39.50 ASN.1 sample, the WSDL file defines a single <portType>
element:

<portType name="ez3950PortTypes">

This element declares that this endpoint has a set of operations that are jointly referenced as
ez3950PortTypes. The following lines define the <operation> elements for this
<portType>:

<!-- Request-response Operations (client initiated) -->
 <operation name="init">
 <input message="initRequest"/>
 <output message="initResponse"/>
 </operation>
 <operation name="search">
 <input message="searchRequest"/>
 <output message="searchResponse"/>
 </operation>
 <operation name="present">
 <input message="presentRequest"/>
 <output message="presentResponse"/>
 </operation>
 <operation name="sort">
 <input message="sortRequest"/>
 <output message="sortResponse"/>
 </operation>
 <operation name="scan">
 <input message="scanRequest"/>
 <output message="scanResponse"/>
 </operation>
 <operation name="delete">
 <input message="deleteRequest"/>
 <output message="deleteResponse"/>
 </operation>
 <operation name="resourceReport">
 <input message="resourceReportRequest"/>
 <output message="resourceReportResponse"/>
 </operation>

Java Web Services

85

 <operation name="extendedServices">
 <input message="extendedServicesRequest"/>
 <output message="extendedServicesResponse"/>
 </operation>
 <operation name="close">
 <output message="close"/>
 <input message="close"/>
 </operation>

<!-- Solicit-response Operation (Server initiated) -->
 <operation name="accessControl">
 <output message="accessControlResponse"/>
 <input message="accessControlRequest"/>
 </operation>
 <operation name="resourceControl">
 <output message="resourceControlResponse"/>
 <input message="resourceControlRequest"/>
 </operation>
 <operation name="close">
 <output message="close"/>
 <input message="close"/>
 </operation>

<!-- Notification Operations (Server initiated)-->
 <operation name="segment">
 <output message="segmentRequest"/>
 </operation>

<!-- One-way Operations (Client initiated) -->
 <operation name="triggerResourceControl">
 <input message="triggerResourceControlRequest"/>
 </operation>

 </portType>

These <operation> elements are grouped according to their behavior. When an operation is
defined in a WSDL document, it is made to be abstract; it is purely an operation definition,
but how that operation is mapped to a real function is defined later (i.e., the operation can
behave in a number of different ways depending on the actual definition). The WSDL
specification defines the following behavioral patterns as transmission primitives:

• Request-response
• Solicit-response
• One-way
• Notification

First, the operation can follow a request-response model, in which a web service client
invokes a request and expects to receive a synchronous response message. This model is
defined by the presence of both <input> and <output> elements. The <input> element must
appear before the <output> element. This order indicates that the operation first accepts an
input message (request) and then sends an output message (response). This model is similar to
a normal procedure call, in which the calling method blocks until the called method returns its
result.

Second, the operation can follow a solicit-response model, in which the web service solicits a
response from the client, expecting to receive a response. This model is defined as having

Java Web Services

86

both <input> and <output> elements. The <output> element must appear before the
<input> element. This order indicates that the operation first sends an output message
(solicit) and then receives an input message (response).

Third, the operation can be a one-way invocation, in which the web sevice client sends a
message to the web service without expecting to receive a response. This model is defined by
a single <input> message with no <output> message. This model indicates that the operation
receives input messages (one-way invocation), but doesn't deliver a response to the client.

Fourth, the operation can be a notification, in which the web services sends a one-way
message to the client without expecting a response. This model is defined by a single
<output> message and no <input> message. It indicates that the operation sends output
messages asynchronously; i.e., the messages are not in response to a request, but can be sent
at any time. The operation doesn't expect a response to the messages it sends.

For the request-response and solicit-response models, an optional
<fault> element can be included. This element refers to another
message. A <fault> message will be transmitted if any processing,
system, or application errors occur. The <fault> message is delivered
to the client in a request-response model and to the web service in the
solicit-response model.

The value assigned to the name attribute of each <operation> element must be unique within
the scope of the <portType>. The names of the input and output messages must be unique
within the <portType>, not just the <operation>. The value assigned to the message
attribute of an <input> or <output> element must match one of the names of the <message>
elements defined in the same WSDL document or in an imported one.

5.2.6 <binding> Element

A <binding> element is a concrete protocol and data format specification for a <portType>
element. It is where you would use one of the standard binding extensions—HTTP, SOAP, or
MIME—or create one of your own.

Each protocol has its own wire format. For example, HTTP has a simple header/body format.
SOAP, which can exist inside of HTTP and other protocols, has its own header and body. A
SOAP message can have attachments included as part of a message.

Our WSDL document has already defined the <operation> elements for this web service. A
<binding> element takes the abstract definition of the operations and their input/output
messages and maps them to the concrete protocol that the web service uses. Should the
<input> element defined in a WSDL document be located in the SOAP header? Should it be
in the SOAP body? Should it be in the attachment? Also, how should the data be encoded?
Should the supplied schema be used for encoding rules or should literal encoding be used?
The <binding> element provides this mapping.

Java Web Services

87

5.2.6.1 The SOAP binding extension

The SOAP 1.1 binding extension in the WSDL 1.1 specification allows you to use
SOAP-specific grammar in the <binding> element. Table 5-2 lists the SOAP-specific
elements that are part of the SOAP binding extension.

Table 5-2. SOAP binding extension elements
Element Synopsis

<soap:binding>

This element signifies that the binding is bound to the SOAP protocol format. It has a
transport attributethat specifies the network transport protocol (i.e., HTTP,
SMTP, etc.) in which the SOAP message will travel. It also has a style attribute
that specifies the default style of each operation in the binding. The possible values
for this attribute are rpc and document.

<soap:operation>

This element overrides the style attribute; it identifies the SOAPAction attribute
in an HTTP SOAP binding and identifies the encoding system used. Like the
<soap:binding> element, it also has a style attribute that indicates the
operation's orientation (i.e., rpc, document). If no style attribute is specified,
the style from the <soap:binding> element is inherited. It also has
a soapAction attribute, which specifies the value to use for this operation's
SOAPAction HTTP header. It is very important to set the encoding rules. Encoding
rules are defined through the use attribute. use=literal means that the type or
element definitions referenced by the parts attribute specify the concrete schema
for this message. use=encoded means that the message parts refer to abstract
types and the concrete schema must be derived from the encoding style defined by
the encodingStyle attribute. The advantage of using use=encoded is that you
don't need to follow the XML Schema schemas precisely when serializing the data.
For example, though a schema says there's an element <a> with two children,
and <c>, and these are both integers, when encoded use is in effect, SOAP encoding
can make a reference to an integer even though the reference may be a string.

<soap:body>

This element specifies how the message parts appear inside the SOAP body element.
It is used in both RPC and document-oriented messages, but the style of
the enclosing operation has important effects on how the body section is structured.

For RPC-oriented messages, each part is a parameter or a return value and appears
inside a wrapper element within the body.

For document-oriented messages, there are no additional wrappers, so the message
parts appear directly under the SOAP body element.

<soap:fault> This element specifies the contents of the SOAP Fault details element and is
patterned after the <soap:body> element.

<soap:header>
This element specifies how header information would appear in the SOAP Header
element. These entries are transmitted in the <SOAP-ENC:Header> element of
the SOAP envelope. It is patterned after the <soap:body> element.

<soap:headerfault>
This element is used to specify a fault that will contain the contents of the SOAP
Fault details elements associated with a <soap:header> element. These faults
will probably be mustUnderstand faults.

<soap:address>

This element provides the address (a URI) for a <port> child element of
the <service> element. A port can have only one address; if the service is written
in Java, with a J2EE-based toolkit or library, its address is usually the address of
a servlet or JSP. The URI scheme specified for the address must correspond to
the transport specified by the <soap:binding> element.

Java Web Services

88

5.2.6.2 Demonstrating a binding through example

The WSDL file we are working through uses the SOAP binding extension, so it provides
an excellent example for explaining how the SOAP binding extension works in reality. This
example is fairly long, so it is broken up in various places with explanations of how
the binding extension works. It starts with a <binding> tag:

<binding name="ez3950SOAPBinding" type="tns:ez3950PortTypes">

The <binding> tag indicates that we will map a <portType> to a particular protocol. The
name attribute defines a unique identifier for this binding; the value of the type attribute must
be the name of one of the <portType> elements contained within the same WSDL document
or in an imported one. Note that the tns: namespace is used to reference a port type in the
existing WSDL:

 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>

The <soap:binding> element is a child of the <binding> element. This element indicates
that we will use the SOAP binding extensions to map the operations. To use the HTTP
GET/POST binding extension, replace this tag with <http:binding>. To use the MIME
binding extension, use the tag <mime:binding>.

The value of the style attribute can be document or rpc. The value given in this tag is used
as the default value and applied to the style attribute of each subsequent operation, if a style
isn't defined within the operation itself. The style attribute defaults to document if one is not
provided. The transport attribute specifies the SOAP transport protocol that will be used. Is
the SOAP packet embedded within HTTP, FTP, SMTP, or something else? In our example,
the SOAP transport is HTTP.

Next, we look at the <operation> tag:

 <operation name="init">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output>
 <soap:header message="soapHeader"
 part="id"
 use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 <soap:header message="soapHeader"
 part="timeout"
 use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 <soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>

Java Web Services

89

We must include an <operation> here for each <operation> that was defined as part of the
<portType> tag. The WSDL file must map the <input>, <output>, and <fault> elements of
each element to a SOAP envelope.

The <operation> tag has a <soap:operation> subelement. The <soap:operation>
element has a soapAction attribute that defines the value of the SOAPAction header. The URI
used for this header represents the action that should occur when the message arrives at its
destination. It is not the URI of the web service's endpoint. In this case, the URI is the empty
string (" ").

Since the first operations defined in the WSDL document follow the request-response model,
this <soap:operation> defines <input> and <output> tags. The <input> tag has a
<soap:body> subelement. The <soap:body> element defines how the message parts should
appear inside of a SOAP body. The required use attribute defines how the data is encoded
inside of the SOAP packet. If the value is encoded, as in this example, then the value of the
encodingStyle attribute references a URI that indicates how the data should be encoded. If
the value of the use attribute is literal, then the definition of the message provided within
the WSDL document is written into the SOAP body without using another encoding
mechanism.

In addition to defining a single <soap:body> element, the <input> and <output> elements
can have zero or more <soap:header> elements. The <soap:header> element defines the
content that should be included in a SOAP header as part of an envelope. Our example
identifies two items included in the SOAP header for the output message. The use and
encodingStyle attributes operate the same way as they do for the <soap:body> element.
Individual parts, as opposed to whole messages, are included in a SOAP header. The value of
the message attribute refers-0.75 to an abstract <message> already defined in the same
WSDL document. The value of the part attribute identifies the part of the <message>
element that should be included within the SOAP header.

If you refer to the <message> definitions earlier in this chapter, one of the messages was
named soapHeader. The soapHeader message had two parts defined: id and timeout. Both
parts are included as part of the SOAP header for the output message. Though our example
pulled all of the SOAP header fields from a single message definition, you can pull the fields
from any other message contained in the same WSDL document.

The next few pages continue the listing of the <binding> for the Z39.50 ASN.1 sample. It
shows how each operation behavior is represented using the SOAP binding extension
elements:

<operation name="search">
 <soap:operation soapAction=""/>
 <input>
 <soap:header message="soapHeader" part="id" use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 <soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output>
 <soap:header message="soapHeader" part="id" use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

Java Web Services

90

 <soap:header message="soapHeader" part="timeout" use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 <soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
</operation>

<operation name="present">
 <soap:operation soapAction=""/>
 <input>
 <soap:header message="soapHeader" part="id" use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 <soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output>
 <soap:header message="soapHeader" part="id" use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 <soap:header message="soapHeader" part="timeout" use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 <soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
</operation>

<operation name="sort">
 <soap:operation soapAction=""/>
 <input>
 <soap:header message="soapHeader" part="id" use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 <soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output>
 <soap:header message="soapHeader" part="id" use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 <soap:header message="soapHeader" part="timeout" use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 <soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
</operation>

<operation name="scan">
 <soap:operation soapAction=""/>
 <input>
 <soap:header message="soapHeader" part="id" use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 <soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output>
 <soap:header message="soapHeader" part="id" use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 <soap:header message="soapHeader" part="timeout" use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 <soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
</operation>

Java Web Services

91

<operation name="delete">
 <soap:operation soapAction=""/>
 <input>
 <soap:header message="soapHeader" part="id" use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 <soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output>
 <soap:header message="soapHeader" part="id" use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 <soap:header message="soapHeader" part="timeout" use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 <soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
</operation>

<operation name="resourceReport">
 <soap:operation soapAction=""/>
 <input>
 <soap:header message="soapHeader" part="id" use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 <soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output>
 <soap:header message="soapHeader" part="id" use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 <soap:header message="soapHeader" part="timeout" use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 <soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
</operation>

<operation name="extendedService">
 <soap:operation soapAction=""/>
 <input>
 <soap:header message="soapHeader" part="id" use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 <soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output>
 <soap:header message="soapHeader" part="id" use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 <soap:header message="soapHeader" part="timeout" use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 <soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
</operation>

<operation name="close">
 <soap:operation soapAction=""/>
 <input>
 <soap:header message="soapHeader" part="id" use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

Java Web Services

92

 <soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output>
 <soap:header message="soapHeader" part="id" use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 <soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
</operation>

<operation name="close">
 <soap:operation soapAction=""/>
 <output>
 <soap:header message="soapHeader" part="id" use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 <soap:header message="soapHeader" part="timeout" use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 <soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 <input>
 <soap:header message="soapHeader" part="id" use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 <soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
</operation>

<operation name="accessControl">
 <soap:operation soapAction=""/>
 <output>
 <soap:header message="soapHeader" part="id" use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 <soap:header message="soapHeader" part="timeout" use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 <soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 <input>
 <soap:header message="soapHeader" part="id" use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 <soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
</operation>

<operation name="resourceControl">
 <soap:operation soapAction=""/>
 <output>
 <soap:header message="soapHeader" part="id" use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 <soap:header message="soapHeader" part="timeout" use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 <soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>

Java Web Services

93

 <input>
 <soap:header message="soapHeader" part="id" use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 <soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
</operation>

<operation name="segment">
 <soap:operation soapAction=""/>
 <output>
 <soap:header message="soapHeader" part="id" use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 <soap:header message="soapHeader" part="timeout" use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 <soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
</operation>

<operation name="triggerResourceControl">
 <soap:operation soapAction=""/>
 <input>
 <soap:header message="soapHeader" part="id" use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 <soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
</operation>

</binding>

This section discusses only the SOAP binding extension; extensions and elements are also
defined for the HTTP and MIME binding extensions. They are similar to the SOAP binding
extensions, but use different elements to reference different portions of their packets. Refer to
the WSDL specification to learn how each of these binding extensions operates.

5.2.7 <service> Element

Even though there was a lot of text in the <binding> element and its subelements, a careful
eye might notice that the binding never referenced the URL at which the web service is
actually located! The <service> element typically appears at the end of a WSDL document
and identifies a web service. Please note that some WSDL documents do not contain a
<service> definition. The primary purpose of a WSDL document is to describe the abstract
interface. A <service> element is used only when describing the actual endpoint of a service.

A web service is a grouping of one or more <port> elements. A <port> element represents a
single endpoint (or access point) for the web service. Given this definition, you can create a
web service that is conceptually whole, but operates out of several different URLs. Here is the
<service> definition for the Z39.50 ASN.1 sample:

Java Web Services

94

<service name="Oxford University Libraries">
 <documentation>
 Z39.50 Server for Oxford University Libraries
 </documentation>
 <port name="OLIS" binding="ez:ez3950SOAPBinding">
 <soap:address location="http://jafer.las.ox.ac.uk/ez3950"/>
 </port>
</service>

A <service> element has an optional <documentation> subelement that describes the web
service. It also contains one or more <port> subelements. The <port> element has a name
attribute that provides a unique identifier for this endpoint. It also contains a binding attribute
that references the name of a <binding> element contained within the same WSDL document
or in an imported one.

The <port> element has a <soap:address> subelement—an element defined as part of the
SOAP binding extension. The <soap:address> element identifies the URL of the web
service. If this service used a different binding extension, this element would be different as
well.

5.2.7.1 The end of the example!

That's it! We have made it to the end of the WSDL sample—a complete, working WSDL file.
We didn't leave out any portions of this file along the way, so if you have been able to follow
up to this point, you are well on your way to becoming a WSDL master.

5.3 Best Practices, Makes Perfect

One of the biggest mistakes that many developers make when working with WSDL is
defining operations and messages that are too fine-grained. By doing so, developers usually
define more than they really need. You need to ensure that your web service is coarse-grained
and that the messages being defined are more business oriented than programmatic. You
shouldn't define a web service operation for every Java method you want to expose. Rather,
you should define an operation for each action you need to expose. Deciding what to expose
in your web service requires a methodological rather than a technical mindset.

The natural tendency for a developer is to treat a WSDL document like code because it
describes the operations and types for the web service. It's not code, though—it's metadata
about code. Take care not to include anything that a service requestor doesn't need to know to
invoke the web service.

For maximum interoperability and platform neutrality, use XML Schema as your type system
whenever possible. If your WSDL is publicly visible, imagine that it is part of a workflow that
you do not get to define. It is entirely feasible that the web service your WSDL describes is
upstream or downstream of other actions and that a tool uses the WSDL document to
instrument it. Realize that your service hasn't necessarily succeeded when the particular
application you're developing works; the real test of a successful web service is when other
applications that you didn't anticipate use your service.

Java Web Services

95

5.4 Where Is All the Java?

You might have noticed that there wasn't much Java in this chapter. Most Java web service
frameworks do a very good job of hiding the details of WSDL from the web service clients
that they provide. You're not likely to write a WSDL file yourelf; you're more likely to read a
WSDL file to understand and debug an interoperability problem.

Conceptually, a Java toolkit can work with an existing WSDL file in two ways. First, given a
WSDL file, Java code could be generated that is capable of accessing the web service defined
within the WSDL file. This type of code seems convenient, but it would contain classes and
interfaces specific to the WSDL file. A client that used these classes would have to be
recompiled or even rewritten each time the WSDL file was modified and the Java code was
regenerated. The advantage of using a system like this is that it would provide Java objects for
each WSDL type, message, and operation. Compile-time checking would provide a more
reliable application.

The JAX-RPC specification, which is part of the Java Web Services Pack available from
http://java.sun.com/, allows both models. A tool that is compliant with JAX-RPC may
generate statically defined stub interfaces, or it may generate a more generic stub that uses a
dynamic invocation interface (DII) based on Java reflection to build a request object. JAX-
RPC is discussed in more depth in Chapter 7.

Second, a Java web service invocation mechanism can import a WSDL file and then make an
invocation on an operation dynamically. The advantage of this model is that the client code
would not have to be recompiled each time the WSDL is modified, nor would Java code have
to be generated each time the WSDL file is modified. The drawback to this approach is that
no compile-time checking of data is used. The toolkit would formulate messages dynamically
at runtime, so any typing problems that might arise could be more difficult to track down.

IBM's Web Service Invocation Framework (WSIF) and Systinet WASP use this model. The
WSIF is a toolkit (http://www.alphaworks.ibm.com/tech/wsif) that provides a simple API for
invoking web services, no matter how or where the services are provided. The WSIF's API is
driven by the abstract service description in WSDL. It is completely divorced from the actual
Java client stub/proxy used. This invocation API is WSDL-oriented because it uses WSDL
terms to refer to message parts, operations, etc.

Systinet WASP provides dynamic access to any service described by WSDL. It creates a
dynamic Java proxy based on the WSDL description. WASP can also dynamically access any
J2EE resource, such as a JMS Destination, JDBC driver, EJB, or J2EE CA adapter by
creating a dynamic proxy.

The binding of Java to WSDL is discussed in more depth in upcoming chapters. Chapter 6,
which discusses UDDI, has a section that talks about how WSDL documents should be placed
within a UDDI registry. The next chapters also discuss JAX-RPC and how it absorbs WSDL
documents to facilitate the invocation of web services in a standardized way.

Java Web Services

96

Chapter 6. UDDI: Universal Description, Discovery,
and Integration
The Universal Description, Discovery, and Integration (UDDI) Project provides
a standardized method for publishing and discovering information about web services.
The UDDI Project is an industry initiative that attempts to create a platform-independent,
open framework for describing services, discovering businesses, and integrating business
services. UDDI focuses on the process of discovery in the service-oriented architecture.

The UDDI Project is an initiative that communicates with the public through
http://www.uddi.org/. The UDDI Community runs the UDDI Project. The Community
consists of a group of Working Group members who develop the specifications and Advisory
Group members who provide requirements and review the specifications. The Working Group
is an invitation-based group and the Advisory Group is open to everyone.

Web services are becoming the basis for electronic commerce of all forms. Companies invoke
the services of other companies to accomplish a business transaction. In an environment in
which only a few companies participate, managing the discovery of business partners
manually would be simple. After all, how difficult would it be to figure out if one of your few
business partners has an access point that adheres to your requirements? This model breaks
down, however, as the number of companies that you need to interact with grows, along with
the number and types of interfaces they export. How do you discover all the business partners
that you can do business with? If you attempted to account for them manually, you could
never be sure that you discovered every partner. UDDI is a single conceptual registry
distributed among many nodes that replicate the participating businesses' data with one
another. The UDDI registry of services (hosted by different businesses on the Internet)
attempts to solve this problem.

This chapter presents an overview of UDDI and how to put it to work. It includes a discussion
about the information stored in a UDDI registry, the different potential uses of UDDI, and its
technical architecture; the specifications that comprise the UDDI effort, with a focus on their
relevance to developers and a list of different Java approaches for programming with UDDI;
and an introduction to interacting with a UDDI registry programmatically. The following
sections cover the UDDI data structures and XML APIs available for accessing a registry.

6.1 UDDI Overview

Prior to the UDDI project, no industry-wide approach was available for businesses to reach
their customers and partners with information about their products and web services. Nor was
there a uniform method that detailed how to integrate the systems and processes that are
already in place at and between business partners. Nothing attempted to cover both the
business and development aspects of publishing and locating information associated with a
piece of software on a global scale.

Conceptually, a business can register three types of information into a UDDI registry. The
specification does not call out these types specifically, but they provide a good summary of
what UDDI can store for a business:

Java Web Services

97

White pages

Basic contact information and identifiers about a company, including business name,
address, contact information, and unique identifiers such as D-U-N-S numbers or tax
IDs. This information allows others to discover your web service based upon your
business identification.

Yellow pages

Information that describes a web service using different categorizations (taxonomies).
This information allows others to discover your web service based upon its
categorization (such as being in the manufacturing or car sales business).

Green pages

Technical information that describes the behaviors and supported functions of a web
service hosted by your business. This information includes pointers to the grouping
information of web services and where the web services are located.

6.1.1 How UDDI Is Used

UDDI has several different uses, based on the perspective of who is using it. From a business
analyst's perspective, UDDI is similar to an Internet search engine for business processes.
Typical search engines, such as AskJeeves, organize and index URLs for web sites. However,
a business exporting a web service needs to expose much more than a simple URL. A
business analyst can browse one or more UDDI registries to view the different businesses that
expose web services and the specifications of those services. However, business users
probably won't browse a UDDI registry directly, since the information stored within it is not
necessarily reader friendly. A series of marketplaces and business search portals could crop
up to provide business analysts with a more user-oriented approach to browsing the services
and businesses hosted in a UDDI registry.

Software developers use the UDDI Programmer's API to publish services (i.e., put
information about them in the registry) and query the registry to discover services matching
various criteria. It is conceivable that software will eventually discover a service dynamically
and use it without requiring human interaction.

Java Web Services

98

Even though the API provided by UDDI allows random searching for
businesses, it's not feasible for a program to select new business
partners dynamically. Realistically, it's more likely that business
analysts with specific knowledge of the problem at hand will use UDDI
portals to discover potentially interesting services and partners, and
technologists will write programs to use the services from companies
that have already been discovered. We'll probably see programs that
update the data in a UDDI registry, but most publicly available
registries already have a user-friendly interface that allows human users
to update information in a registry.

Even though the registries have human-friendly interfaces for direct
access, humans should never have to interface with a repository directly.
The web service tool you use should automate interaction with a UDDI
registry. For example, if you use a tool that creates a web service, that
tool should be able to not only deploy the web service into production,
but add it to the UDDI registry for you on your behalf.

Both business analysts and software developers can publish new business entities and
services. Business analysts can use portals attached directly to a particular UDDI server or to
a more general search portal that supports UDDI. Figure 6-1 depicts the relationship between
business analysts and technologists.

Figure 6-1. Relationship between business analysts and technologists

6.1.2 Technical Architecture

Figure 6-2 depicts the makeup of the UDDI project. The UDDI Business Registry (UBR),
also known as the Public Cloud, is a conceptually single system built from multiple nodes that
has their data synchronized through replication. A series of operator nodes each hosts a copy
of the content. The global grouping of operator nodes is jointly known as the UBR. Operator
nodes replicate content among one another. Accessing any individual operator node provides
the same information and quality of service as any other operator node. Content inserted into
the UBR is done at a single node, and that operator node becomes the master owner of that
content. Any subsequent updates or deletes of the data must occur at the operator node where
the data was inserted.

Java Web Services

99

Figure 6-2. The UDDI initiative

Note that the scope of the UDDI project is much more than the UBR; a company can provide
a private operator node that is not part of the UBR. Private nodes do not have data
synchronized with the UBR, so the information contained within is distinct. A grouping of
companies can also create a "private cloud" of nodes that have information replicated between
their private nodes, but that replication sequence will not have any interaction with the UBR
nodes.

The UBR has widely accessible inquiry services, but services may be published only by
authenticated entities. Any business can create an operator node and make it available over
the Internet and part of the UBR. Private operator nodes can define the access rules for their
nodes on a case-by-case basis. They can follow the same model as the UBR or make the
restrictions looser or tighter.

Companies will likely set up private UDDI nodes. Even though use of these nodes will
probably be limited in the near future, quite a few companies are showing interest in setting
up private registries for internal or B2B operations. Industry groups are also discussing
options for meeting the demands of their individual sector.

Many products have either been created or are being expanded to allow companies to create
their own public and private UDDI registries. For example, BEA WebLogic Server and IBM
WebSphere both intend to ship a fully compliant UDDI Server embedded within the
application server sometime in 2002. Other companies, such as Systinet, HP, Oracle, SAP,
Cape Clear, The Mind Electric, and Silverstream, have created J2EE-compliant UDDI
implementations that work with existing application servers, including Tomcat, BEA, and
IBM. Microsoft has an implementation based upon .NET. Additionally, two open source
J2EE UDDI projects are in development: Bowstreet's jUDDI (http://www.juddi.org/) and JP
Moresmau's pudding (http://www.opensorcerer.org/).

6.2 UDDI Specifications and Java-Based APIs

This section discusses the different specifications that make up the UDDI initiative and the
options available to developers writing Java programs that interact with a UDDI registry.

6.2.1 UDDI Specifications

The UDDI project also defines a set of XML Schema definitions that describe the data
formats used by the various specification APIs. These documents are all available for

Java Web Services

100

download at http://www.uddi.org/. The UDDI project releases their specifications in unison.
The current version of all specification groups is Version 2.0. The specifications include:

UDDI replication

This document describes the data replication processes and interfaces to which a
registry operator must conform to achieve data replication between sites. This
specification is not a programmer's API; it defines the replication mechanism used
among UBR nodes.

UDDI operators

This document outlines the behavior and operational parameters required by UDDI
node operators. This specification defines data management requirements to which
operators must adhere. For example, node operators are responsible for durable
recording and backup of all data, ensuring that each business registration has a valid
email address associated with it, and the integrity of the data during deletions (e.g.,
deleting a business means that all of its service entries must also be deleted). This
document is not a programmer's API and private registries are not required to support
it.

UDDI Programmer's API

This specification defines a set of functions that all UDDI registries support for
inquiring about services hosted in a registry and for publishing information about a
business or a service to a registry. This specification defines a series of SOAP
messages containing XML documents that a UDDI registry accepts, parses, and
responds to. This specification, along with the UDDI XML API schema and the UDDI
Data Structure specification, makes up a complete programming interface to a UDDI
registry.

UDDI data structures

This specification covers the specifics of the XML structures contained within the
SOAP messages defined by the UDDI Programmer's API. This specification defines
five core data structures and their relationships to one another.

The UDDI XML API schema is not contained in a specification; rather, it is stored as an
XML Schema document that defines the structure and datatypes of the UDDI data structures.

6.2.2 Java-Based APIs

The UDDI specifications do not directly define a Java-based API for accessing a UDDI
registry. The Programmer's API specification only defines a series of SOAP messages that a
UDDI registry can accept. Thus, a Java developer who wishes to access a UDDI registry can
do so in a number of ways:

Java Web Services

101

Using a Java-based SOAP API

A Java programmer can use an API that creates SOAP messages containing a UDDI
XML document. The Java programmer would be have to create each XML document
by hand and insert this document into the body of each SOAP message. This approach
would require that a developer understand the ordering of the SOAP messages that a
UDDI registry accepts and format each SOAP message properly.

Using a custom Java-based UDDI client API

Some companies, such as Systinet, have created client APIs for accessing a UDDI
registry. These APIs have classes and constructs that represent the data structures and
messages supported by UDDI. These APIs also allow you to interact with a UDDI
registry without knowing the specifics of SOAP or the XML messages and data
structures that UDDI interacts with. These custom libraries work with any UDDI
registry, so you can use Systinet's library to access Microsoft's UBR node.

Using JAXR

The JAXR specification defines a standardized way for Java programs to access a
registry. JAXR allows developers to write code that can access several different
registries, including UDDI and the ebXML Registry/Repository. JAXR's
programming constructs don't mimic those used by UDDI, but this API gives you a
common way to access a variety of different registry types, whereas a custom Java-
based UDDI client API can access only a UDDI registry. The trade-off for portability
is dealing with the additional layer of abstraction required by JAXR. JAXR is
currently in an early preview release

To get you up to speed with UDDI, this chapter presents a simple UDDI example
implemented three times—one time for each technique. Apache SOAP is used to develop a
client that uses a Java-based SOAP API, Systinet WASP UDDI Client Package demonstrates
a custom Java-based UDDI client API, and a JAXR client shows how JAXR's abstract
approach looks to the developer. However, as more details of UDDI are explained, the
examples use the Apache SOAP implementation because it allows us to focus on the details of
XML and UDDI.

6.3 Programming UDDI

Two APIs are described by the UDDI specification: the inquiry API and the Publishing API.
They are accessed using the same techniques but use different XML documents, data
structures, and access points. The inquiry API locates information about a business, the
services a business offers, the specifications of those services, and information about what to
do in a failure situation. Any read operation from a UDDI registry uses one of the inquiry
API's messages. The inquiry API does not require authenticated access and is subsequently
accessed using HTTP.

The Publishing API is used to create, store, or update information located in a UDDI registry.
All functions in this API require authenticated access to a UDDI registry; the UDDI registry
must have a logon identity, and the security credentials for this identity must be passed as a
parameter of the XML document for each UDDI invocation. Because publishing requires

Java Web Services

102

authenticated access, it is accessed over HTTPS, with a different URL than the one used with
the inquiry access point. Table 6-1 lists the inquiry and publishing access point URLs for
some major operator nodes.

Table 6-1. Access point URLs for some operator nodes
Operator
node Inquiry URL Publishing URL

HP http://uddi.hp.com/inquire https://uddi.hp.com/publish
IBM
Production http://www-3.ibm.com/services/uddi/inquiryapi https://www-

3.ibm.com/services/uddi/protect/publishapi

IBM Test http://www-
3.ibm.com/services/uddi/testregistry/inquiryapi

https://www-
3.ibm.com/services/uddi/testregistry/protect/publishapi

Microsoft
Production http://uddi.microsoft.com/inquire https://uddi.microsoft.com/publish

MicrosoftTest http://test.uddi.microsoft.com/inquire https://test.uddi.microsoft.com/publish
SAP Test http://udditest.sap.com/UDDI/api/inquiry/ https://udditest.sap.com/UDDI/api/publish/
Systinet http://www.systinet.com/wasp/uddi/inquiry/ https://www.systinet.com/wasp/uddi/publishing/

Several primary information types construct the XML documents used as input and output to
UDDI invocations. This section shows these data structures along with the major APIs as
defined by the UDDI specifications.

UDDI APIs are designed to be simple. All operations that a UDDI registry performs are
synchronous, meaning that the requesting client blocks and waits until it receives a response
message. Additionally, all operations have a simple request/response mechanism that gives
them a stateless behavior. Therefore, using the UDDI APIs doesn't require a lot of complex
ordering.

6.3.1 UDDI Data Structures

To understand the structure of the messages that are part of the API, you need a basic
appreciation for the different data structures and XML formats that are used. This section
discusses the major data structures that are passed as input and output parameters for major
API messages. Figure 6-3 shows the relationships between the primary UDDI data structures.

Figure 6-3. Relationship of primary UDDI data structures

Java Web Services

103

A <businessEntity> structure represents a business's basic information. This information
includes contact information, categorization, identifiers, descriptions, and relationships to
other businesses. UDDI allows companies to establish relationships with one another. Many
different types of relationships are possible. For example, a conglomerate can reference
a subsidiary, or two companies can declare a partnership. In either case, each company must
establish a unique <businessEntity> and separately establish its relationships to other
companies that have their own <businessEntity> structures.

The <publisherAssertion> structure is used to establish public relationships between two
<businessEntity> structures. A relationship between two <businessEntity> structures is
visible only to the "public" when both companies have created the same assertion with two
separate <publisherAssertion> documents independently. Thus, a company can claim
a business relationship only if its partner asserts the same relationship. One company's
assertion about a business relationship isn't visible to the public until its partner creates
a similar, but separate, <publisherAssertion> document for its own <businessEntity>
structure. Thus, if Company A asserts a relationship with Company B (fromKey=A,
toKey=B), then the relationship will become public when Company B asserts a relationship
with Company A (fromKey=B, toKey=A).

A <businessEntity> contains one or more <businessService> structures.
A <businessService> represents a single, logical service classification.
A <businessService> element is used to describe a set of services provided by the business.
These services can be web services or manual services such as a nonelectronic service.
A <businessService> document is reusable (i.e., a <businessService> element can be
used by several <businessEntity> elements). For example, GE might create an HR web
service and publish that service as part of an "HR web service" <businessService>
structure. Additionally, GE might choose to list each of its subsidiaries as a separate
<businessEntity>, since each subsidiary has its own IT infrastructure. Doing so would
allow the <businessEntity> structure for the Plastics division to reference the same
"HR web service" <businessService> as the Chemicals division.

A <businessService> contains one or more <bindingTemplate> structures.
A <bindingTemplate> contains pointers to technical descriptions and the access point URL,
but does not contain the details of the service's specifications. A <bindingTemplate>
contains an optional text description of the web service, the URL of its access point, and
a reference to one or more <tModel> structures. A <tModel> is an abstract description of
a particular specification or behavior to which the web service adheres. A <tModel> is a type
of digital "fingerprint" for determining the specifics of how to interact with a particular web
service. The <tModel> structure does not provide the web service's specification directly.
Instead, it contains pointers to the locations of the actual specifications. Companies can use
the information pointed to by a <tModel> to determine whether a web service is compatible
with their business requirements.

Java Web Services

104

UUID
Instances of these data structures are identified and referenced by a universally
unique identifier, known as a UUID. UUIDs are assigned when the data structure is
first inserted into the UUID registry. They are hexadecimal strings whose structure
and generation algorithm is defined by the ISO/IEC 11578:1996 standard. This
standard virtually guarantees the generation of a unique identifier by concatenating
the current time, hardware address, IP address, and random number in a specific
fashion. The Inquiry API uses the UUID to request a particular structure on demand.

<publisherAssertion> documents do not have UUIDs, however.

6.3.2 Browsing Basic Information

A series of messages allow a program to retrieve basic information about a business, a web
service, or metadata about a specification that a web service supports. These messages all
have SOAP messages whose XML body element begins with find. Table 6-2 lists the
messages that can be used to retrieve basic information for searching purposes. The "Message
name" column lists the name of the XML root element used as the body of the SOAP
envelope on the call's request portion. The "Response document" column shows the name of
the XML root element that is the body of the SOAP envelope for the response.

Table 6-2. XML documents used in browsing inquiry messages
Message name Response document Brief description

<find_binding> <bindingDetail>

Given a UUID to a
<businessService> structure, this
message retrieves zero or more
<bindingTemplate> structures
within a single <bindingDetail>
structure matching the criteria specified
in the input arguments.

<find_business> <businessList>

Given a regular expression, business
category, business identifier, or
<tModel>, this message retrieves zero
or more <businessInfo> structures
contained within a single
<businessList> structure that meet
the criteria specified in the input
arguments.

<find_relatedBusinesses> <relatedBusinessesList>

Given the UUID of a
<businessEntity>, this message
returns a list of UUIDs contained within
a <relatedBusinessList>
structure for the other businesses that
have a relationship with this business.

Java Web Services

105

<find_service> <serviceList>

Given the UUID of a
<businessEntity> and either the
name of the service, the <tModel> of
an implemented specification, or the
service category, this message returns a
list of all matching
<businessService> documents
contained within a <serviceList>
structure.

<find_tModel> <tModelList>

Given the a name, a category, or
identifier, this message returns all
matching <tModel> structures
contained within a <tModelList>
structure.

UDDI Response Structure
Many response messages return an XML document that contains zero or more of the
primary UDDI data structures, rather than the data structures themselves. For
example, the <find_business> message returns zero or more <businessInfo>
structures, but does so in a <businessList> structure. The <businessList>
structure is merely another data structure designed to hold zero or more other
elements, similar to a Java Collection object. Don't confuse collection structures
such as <businessList> with the primary UDDI data structures; they exist only for
grouping.

The UDDI Programmer's API and UDDI Schema documents identify dozens of different
structures used to make up the request and response messages. The Programmer's API
identifies the structure of the request and response messages, paying particular attention to the
input parameters for every request message. The UDDI Schema represents the same data
structures, but provides datatyping and constraint information that can't be conveyed in the
Programmer's API. When doing any development with UDDI, you should keep a copy of
these two documents.

Traversing UDDI data structures can be complicated. To demonstrate this complexity, let's
delve into the inner workings of the <find_business> message. The <find_business>
message returns a <businessList> structure. Here's the definition of <businessList> from
the UDDI Schema:

<element name="businessList" type="uddi:businessList" />
<complexType name="businessList">
 <sequence>
 <element ref="uddi:businessInfos" />
 </sequence>
 <attribute name="generic" use="required" type="string" />
 <attribute name="operator" use="required" type="string" />
 <attribute name="truncated" use="optional" type="uddi:truncated" />
</complexType>

This definition says that a <businessList> contains a single <businessInfos> subelement
(defined in the same schema, as indicated by the preceding uddi:) and three attributes named

Java Web Services

106

generic, operator, and truncated. Doesn't tell us much, does it? So, let's delve further.
The schema for the <businessInfos> structure is:

<element name="businessInfos" type="uddi:businessInfos" />
<complexType name="businessInfos">
 <sequence>
 <element ref="uddi:businessInfo" minOccurs="0" maxOccurs="unbounded" />
 </sequence>
</complexType>

This definition tells us that a <businessInfos> structure contains zero or more
<businessInfo> subelements, which are also defined in the same schema document.
minOccurs="0" and maxOccurs="unbounded" tell us that the included <businessInfo>
elements can be repeated zero or more times. We now need to seek out the schema definition
of the <businessInfo> structure, which is:

<element name="businessInfo" type="uddi:businessInfo" />
<complexType name="businessInfo">
 <sequence>
 <element ref="uddi:name" maxOccurs="unbounded" />
 <element ref="uddi:description" minOccurs="0" maxOccurs="unbounded" />
 <element ref="uddi:serviceInfos" />
 </sequence>
 <attribute name="businessKey" use="required" type="uddi:businessKey" />
</complexType>

This structure contains three subelements and an attribute. The attribute, businessKey, is the
UUID for this business. The first subelement, <name>, gives the name of the business. The
second subelement, <description>, is zero or more text elements that describe what the
business does. The third subelement, <serviceInfos>, is a grouping of <businessService>
documents. To figure out what a <businessService> document is, we must search the
schema for the <serviceInfos> element.

Searching for this schema is left as the proverbial "exercise for the reader." At this stage, you
should have an idea of the complexity of UDDI data structures and their navigation. An entire
book could be dedicated to exploring every facet of the UDDI Programmers API. The rest of
this chapter focuses on how to interact with UDDI and presents Java clients that demystify
some of the complexity in the UDDI API and its data structures.

6.3.3 Finding a Business

Now it's finally time to pull everything that we have talked about together into a program. The
examples in this chapter use Systinet WASP UDDI Standard. We selected this software
because it is robust and free for development purposes. It includes:

• A "local" UDDI registry (server) that runs as a servlet under Apache Tomcat 3.2.3,
WebLogic Server 6.1, or IBM WebSphere 4.0

• Database scripts for using Oracle, PostgreSQL, Cloudscape, Microsoft SQL Server,
IBM DB2, and Sybase as the persistent store for the local UDDI registry

• A Java-based UDDI client API
• Sample code that illustrates how to use its custom client API in Java

Java Web Services

107

We use Systinet WASP UDDI Standard primarily for its local registry, which allows you to
run a registry locally on your computer for testing and development. We won't focus on the
client API. Since a UDDI server accepts standard SOAP messages, we can use any Java-
based SOAP client API to create the appropriate messages and direct them to a valid UDDI
registry.

Our first UDDI client retrieves basic business information for a fictitious company called
Demi Credit. The Systinet WASP UDDI registry comes with a preconfigured entry for Demi
Credit. This example uses the Apache SOAP client library to create an appropriate SOAP
message that has a <find_business> document as its body. We won't create this document
programmatically, which would be an exercise in the use of the DOM or JDOM APIs;
instead, we'll take the body for our SOAP request message from the file
Ch6_FindBusiness.xml:

<uddi:find_business generic="2.0" maxRows="10">
 <uddi:name>
 Demi Credit
 </uddi:name>
</uddi:find_business>

The <uddi:find_business> tag indicates that this element is named find_business and
defined in the uddi namespace. The contents of the tag must adhere to the schema for
find_business, which defines a couple of different attributes. The generic attribute
indicates the UDDI API version that is used (Version 2.0, in this case). maxRows indicates
how many matching <businessInfo> structures should be returned if the query matches
more than one company.

Optional Attributes and Elements
All UDDI API messages have several optional attributes and elements. For example,
the maxRows attribute of the <find_business> element is optional. If this attribute
is not included, the response message will contain an unbounded list of every match
that could be found (up to the point where the UDDI server truncates a response).

In fact, the <name> subelement of <find_business> is optional as well. You can
search for companies in other ways (besides using their name). You can search by
category (through the <categoryBag> element), identifier (through the
<identifierBag> element), or a particular specification that one of their web
services implements (through the <tModelBag> element). Categories and identifiers
are discussed in more detail later in this chapter.

This <find_business> element has a single subelement, <name>, which is the meat of our
request. The value of the <name> element is a simple regular expression used to search the
names of different businesses. The percentage sign (%) can be used for wildcard matching. In
this example, we know the name of the company we are searching for: Demi Credit.

Before looking at the code for the client, let's run it and observe its behavior. The client reads
an XML file, wraps it in a SOAP envelope, and sends it to a URL destination, adding various
UDDI and Systinet namespace declarations that are required to make the SOAP message

Java Web Services

108

comply to the UDDI specification. The destination is the URL of an endpoint configured to
accept UDDI inquiry messages. Run the command:

java UDDISoapClient -df ./Ch6_FindBusiness.xml

You should see the following output:

Starting UDDISoapClient:
 host url = http://localhost:8080/wasp/uddi/inquiry/
 data file = Ch6_FindBusiness.xml

Sent SOAP Message with Apache HTTP SOAP Client.
Waiting for response....

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <businessList xmlns="urn:uddi-org:api_v2" generic="2.0"
 operator="SYSTINET">
 <businessInfos>
 <businessInfo businessKey="892ac280-c16b-11d5-85ad-801eef208714">
 <name xml:lang="en">
 Demi Credit
 </name>
 <description xml:lang="en">
 A smaller demo credit agency used for illustrating UDDI
 inquiry.
 </description>
 <serviceInfos>
 <serviceInfo serviceKey="860eca90-c16d-11d5-85ad-801eef208714"
 businessKey="9a26b6e0-c15f-11d5-85a3-801eef208714">
 <name xml:lang="en">
 DCAmail
 </name>
 </serviceInfo>
 </serviceInfos>
 </businessInfo>
 </businessInfos>
 </businessList>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

This output is saved as Ch6_FindBusiness_OUTPUT.xml and is included with the examples
provided for this chapter. Other examples that use this program have their response
documents saved in the same format.

Let's pick apart the response to see what it contains. The UDDI Server returned a single
<businessList> structure which, in turn, has a single <businessInfos> structure. The
<businessInfos> element can have zero or more <businessInfo> elements, based upon the
number of businesses that were matched as part of the query. In this case, the server found
only one business matching the name Demi Credit in the UDDI registry.

The <businessInfo> element contains several other important pieces of information. First,
the businessKey attribute contains the UUID of Demi Credit. The UUID value is needed to
do a more detailed information search or an update using the Publisher's API. Second, the

Java Web Services

109

<businessInfo> structure has a <description> that contains a textual description of what
the company does. Next, the <businessInfo> structure contains a <serviceInfos> structure
that contains a collection of all web services registered by this business. Each web service is
described by a single <serviceInfo> structure, which contains the web service's UUID as an
attribute.

Now that we've seen what the client does and examined the documents it sends and receives,
it is time to look at UDDISoapClient.java in its entirety:

import java.io.*;
import java.util.*;

public class UDDISoapClient
{
 // Default values used if no command line parameters are set
 private static final String DEFAULT_HOST_URL =
 "http://localhost:8080/wasp/uddi/inquiry/";
 private static final String DEFAULT_DATA_FILENAME = "./Default.xml";

 // In the SOAP chapter, we used "urn:oreilly:jaws:samples",
 // but Systinet UDDI requires this to be blank.
 private static final String URI = "";
 private String m_hostURL;
 private String m_dataFileName;

 public UDDISoapClient(String hostURL, String dataFileName)
 throws Exception
 {
 m_hostURL = hostURL;
 m_dataFileName = dataFileName;

 System.out.println();
 System.out.println("______________________________________");
 System.out.println("Starting UDDISoapClient:");
 System.out.println(" host url = " + m_hostURL);
 System.out.println(" data file = " + m_dataFileName);
 System.out.println("______________________________________");
 System.out.println();
 }

 public void sendSOAPMessage() {
 try {

 // Get soap body to include in the SOAP envelope from FILE
 FileReader fr = new FileReader (m_dataFileName);
 javax.xml.parsers.DocumentBuilder xdb =
 org.apache.soap.util.xml.XMLParserUtils.getXMLDocBuilder();
 org.w3c.dom.Document doc =
 xdb.parse (new org.xml.sax.InputSource (fr));
 if (doc == null) {
 throw new org.apache.soap.SOAPException
 (org.apache.soap.Constants.FAULT_CODE_CLIENT,
 "parsing error");
 }

 // Create a vector for collecting the body elements
 Vector bodyElements = new Vector();

Java Web Services

110

 // Parse XML element as soap body element
 bodyElements.add(doc.getDocumentElement ());

 // Create the SOAP envelope
 org.apache.soap.Envelope envelope =
 new org.apache.soap.Envelope();
 envelope.declareNamespace("idoox",
 "http://idoox.com/uddiface");
 envelope.declareNamespace("ua",
 "http://idoox.com/uddiface/account");
 envelope.declareNamespace("config",
 "http://idoox.com/uddiface/config");
 envelope.declareNamespace("attr",
 "http://idoox.com/uddiface/attr");
 envelope.declareNamespace("fxml",
 "http://idoox.com/uddiface/formxml");
 envelope.declareNamespace("inner",
 "http://idoox.com/uddiface/inner");
 envelope.declareNamespace("",
 "http://idoox.com/uddiface/inner");
 envelope.declareNamespace("uddi", "urn:uddi-org:api_v2");

 //
 // NO SOAP HEADER ELEMENT AS SYSTINET WASP DOES NOT REQUIRE IT
 //

 // Create the SOAP body element
 org.apache.soap.Body body = new org.apache.soap.Body();
 body.setBodyEntries(bodyElements);
 envelope.setBody(body);

 // Build and send the Message.
 org.apache.soap.messaging.Message msg =
 new org.apache.soap.messaging.Message();
 msg.send (new java.net.URL(m_hostURL), URI, envelope);
 System.out.println("Sent SOAP Message with Apache HTTP SOAP
 Client.");

 // Receive response from the transport and dump it to
 // the screen
 System.out.println("Waiting for response....");
 org.apache.soap.transport.SOAPTransport st =
 msg.getSOAPTransport ();
 BufferedReader br = st.receive ();

 if(line == null) {
 System.out.println("HTTP POST was unsuccessful. \n");
 } else {
 while (line != null) {
 System.out.println (line);
 line = br.readLine();
 }
 }

Java Web Services

111

 /////
 // Version in examples has XML pretty printing logic here.
 ////

 } catch(Exception e) {
 e.printStackTrace();
 }
 }

 //
 // NOTE: the remainder of this deals with reading arguments
 //
 /** Main program entry point. */
 public static void main(String args[]) {

 // Not Relevant

 }
}

This code is similar to the code presented in the SOAP chapters, with a couple of exceptions.
First, Systinet WASP UDDI uses different servlets to implement the inquiry and publisher
ports. When Systinet WASP UDDI is first installed, the URL of the inquiry port is
http://localhost:8080/wasp/uddi/inquiry. In the program, this URL is assigned to the constant
DEFAULT_HOST_URL:

private static final String DEFAULT_HOST_URL =
 "http://localhost:8080/wasp/uddi/inquiry/";

Second, UDDI SOAP messages don't require the use of a SOAP header. Thus, all of the code
used to create a SOAP header and fill it with values, such as mustUnderstand, is not needed.
Next, UDDI and Systinet WASP UDDI SOAP envelopes require the addition of several
different namespaces that they have defined. These namespaces are required at the envelope
level of the message, not the SOAP header or body. In the Apache SOAP API, the Envelope
interface has a method called declareNamespace() that adds these additional namespaces:

// Create the SOAP envelope
org.apache.soap.Envelope envelope = new org.apache.soap.Envelope();

// Add the Systinet namespaces.
envelope.declareNamespace("idoox", "http://idoox.com/uddiface");
envelope.declareNamespace("ua", "http://idoox.com/uddiface/account");
envelope.declareNamespace("config", "http://idoox.com/uddiface/config");
envelope.declareNamespace("attr", "http://idoox.com/uddiface/attr");
envelope.declareNamespace("fxml", "http://idoox.com/uddiface/formxml");
envelope.declareNamespace("inner", "http://idoox.com/uddiface/inner");

// Add the default namespace
envelope.declareNamespace("", "http://idoox.com/uddiface/inner");

// Include the standard UDDI namespace.
// This URN contains all of the UDDI XML data structures and messages.
envelope.declareNamespace("uddi", "urn:uddi-org:api_v2");

Java Web Services

112

Systinet was formally named Idoox. In their documentation,
namespaces, and other declarations, you'll often see references to Idoox.
When you come across these references, treat them synonymously with
Systinet.

6.3.4 Using Systinet's UDDI Java API

The simple SOAP client we've just examined is sufficient to demonstrate a variety of UDDI
APIs and data structures. It has some obvious limitations, however:

• SOAP envelope complexities such as namespaces have to be coded manually.
• SOAP Fault messages that are received have to be handled manually.
• The input and output XML documents are weakly typed as XML. A more

sophisticated package would have Java interfaces that represent each UDDI data
structure, allowing a program to check datatypes at compile time instead of
discovering faults at runtime.

To get a feeling for what these limitations mean, we'll implement the same example using
Systinet's UDDI Java API. To run this program, compile the file SystinetFindBusiness.java
and execute the following command:

java -Dwasp.restrictor.packages=- SystinetFindBusiness

Because of a limitation in the way the Systinet UDDI client library operates, you get a series
of array typing error messages if you omit the -Dwasp.restrictor.packages=- environment
variable definition. Don't forget to include the hyphen (-) after the equal sign!

Here's a listing of the Systenet-based client in its entirety:

import org.idoox.uddi.client.api.v2.request.inquiry.*;
import org.idoox.uddi.client.structure.v2.tmodel.*;
import org.idoox.uddi.client.api.v2.response.*;
import org.idoox.uddi.client.structure.v2.base.*;
import org.idoox.uddi.client.structure.v2.business.*;
import org.idoox.uddi.client.api.v2.*;
import org.idoox.uddi.client.*;

/**
 * This is simple example of Systinet's UDDI Java API for accessing
 * a UDDI registry.
 * This program does a find_business call by name.
 */

public class SystinetFindBusiness {

 // Program Entry Point
 public static void main(String args[]) throws Exception
 {
 String company = "Demi Credit";
 findBusinessByName(company);
 }

Java Web Services

113

 public static void findBusinessByName(String name) throws Exception
 {
 System.out.println("Searching for businesses named '" +
 name + "'...");

 // Create a FindBusiness instance.
 // This creates a SOAP message.
 FindBusiness findBusiness = new FindBusiness();

 // Set the name to use in the query.
 findBusiness.addName(new Name(name));

 // This will limit the number of returned matches.
 // maxRows is an optional attribute.
 findBusiness.setMaxRows(new MaxRows("10"));

 // This will retrieve a stub to the UDDI inquiry port.
 UDDIApiInquiry inquiry =
 UDDILookup.getInquiry("http://localhost:8080/wasp/uddi/inquiry/");

 // Send the message and retrieve the response.
 BusinessList businessList=inquiry.find_business(findBusiness);

 // Show the results
 if (businessList==null) {
 System.err.println("ERROR: Business list is null!");
 }
 else {
 // Business list is holder for results - business infos.
 BusinessInfos businessInfos = businessList.getBusinessInfos();
 System.out.println("\nFound: " +
 businessInfos.size() +
 " businesses.\n");

 // Iterate through each company found in the query.
 BusinessInfo businessInfo = businessInfos.getFirst();
 BusinessKey result;
 if (businessInfo != null) {
 result=businessInfo.getBusinessKey();

 while (businessInfo!=null) {
 System.out.println("BusinessEntity name = " +
 businessInfo.getNames().getFirst().getValue());
 System.out.println("BusinessEntity UUID = " +
 businessInfo.getBusinessKey());
 System.out.println("***");
 businessInfo = businessInfos.getNext();
 }
 }
 }
 }
}

The Systinet UDDI client library is spread throughout several different packages. Since the
UDDI API and data structures changed from Version 1.0 to Version 2.0 of the specification,
Systinet opted to create separate Java packages for each version. This can be problematic for
developers, but it is workable. Here are the import statements needed for the current crop of
packages:

Java Web Services

114

import org.idoox.uddi.client.api.v2.request.inquiry.*;
import org.idoox.uddi.client.structure.v2.tmodel.*;
import org.idoox.uddi.client.api.v2.response.*;
import org.idoox.uddi.client.structure.v2.base.*;
import org.idoox.uddi.client.structure.v2.business.*;
import org.idoox.uddi.client.api.v2.*;
import org.idoox.uddi.client.*;

The main() method is responsible for declaring the search string for the company and
calling findBusinessByName(), where the bulk of the work is performed:

 // Program Entry Point
 public static void main(String args[]) throws Exception
 {
 String company = "Demi Credit";
 findBusinessByName(company);
 }

Within findBusinessByName(), the program needs to create a <find_business> message
and populate it with the search criteria we established. The Systinet UDDI library has a
separate class abstraction representing each UDDI XML message. Therefore, to create a
<find_business> structure, you merely need to create an instance of their FindBusiness
class. The FindBusiness class has several methods that add elements and attributes to the
underlying <find_business> structure. In this example, we'll use addName(), which adds
the company name to search for, and setMaxRows(), which limits the number of matches
returned:

 // Create a FindBusiness instance.
 // This creates a SOAP message.
 FindBusiness findBusiness = new FindBusiness();

 // Set the name to use in the query.
 findBusiness.addName(new Name(name));

 // This will limit the number of returned matches.
 // maxRows is an optional attribute.
 findBusiness.setMaxRows(new MaxRows("10"));

Next, the program creates a connection to a UDDI server's inquiry port. The UDDILookup
class has static methods that create a dynamic Java proxy object that communicates using
SOAP. From the developer's point of view, it looks and feels like an RMI stub, except it
doesn't communicate over RMI. The UDDILookup.getInquiry() method creates an inquiry
connection. This program uses the same inquiry port as the UDDISoapClient program,
http://localhost:8080/wasp/uddi/inquiry/. An UDDIApiInquiry object is returned and
encapsulates an active stub that communicates with the UDDI server:

 // This will retrieve a stub to the UDDI inquiry port.
 UDDIApiInquiry inquiry =

UDDILookup.getInquiry("http://localhost:8080/wasp/uddi/inquiry/");

Finally, the program needs to send the <find_business> document as part of a SOAP
message. The UDDIApiInquiry object has a number of methods that create the SOAP
envelope and populate it with an XML structure. A separate method exists for each UDDI
XML message in the Programmer's API. For our example, the program calls

Java Web Services

115

the find_business() method on the UDDIApiInquiry object, passing in the FindBusiness
object containing the XML structure.

The Systinet API also has matching classes for the response XML structures. Thus, since a
<find_business> request yields a <businessList> response structure, the Systinet API has
a BusinessList class. We can traverse this class to get to each subelement and attribute that
was returned:

 BusinessList businessList=inquiry.find_business(findBusiness);

 // Show the results
 if (businessList==null) {
 System.err.println("ERROR: Business list is null!");
 }
 else {
 // Business list is holder for results - business infos.
 BusinessInfos businessInfos = businessList.getBusinessInfos();
 System.out.println("\nFound: " +
 businessInfos.size() +
 " businesses.\n");

 // Iterate through each company found in the query.
 BusinessInfo businessInfo = businessInfos.getFirst();
 BusinessKey result;
 if (businessInfo != null) {
 result=businessInfo.getBusinessKey();

 while (businessInfo!=null) {
 System.out.println("BusinessEntity name = " +
 businessInfo.getNames().getFirst().getValue());
 System.out.println("BusinessEntity UUID = " +
 businessInfo.getBusinessKey());
 System.out.println("***");
 businessInfo = businessInfos.getNext();
 }
 }
 }

6.3.5 Using JAXR

Now that we've looked at a simple SOAP client to build a request by hand, and a client that
uses a UDDI API to build a request with slightly higher-level tools, let's proceed to the next
level of abstraction: the Java API for XML Registries (JAXR). JAXR is a uniform approach
to accessing a registry that advertises business information and services in XML. JAXR
attempts to provide a single API that can access many different kinds of registries, including
ISO 11179, OASIS, eCo Framework, ebXML, and UDDI (although the reference
implementation can access only a UDDI registry).

The JAXR reference implementation is unique because it requires Tomcat for the client
implementation! This requirement is somewhat odd, but fortunately, it is only a characteristic
of the reference implementation. The provider implementations created by vendors will
probably be simple libraries that don't require an external server such as Tomcat. You can get
JAXR and Systinet WASP UDDI Standard to use the same Tomcat installation; details on
how to accomplish this installation are in this chapter's README.txt file. When installing and
configuring JAXR on your machine, make sure that the .jaxr.properties file included with this

Java Web Services

116

chapter's examples is placed in your home directory. On a Unix system, this directory is the ~/
directory; on NT or Windows 2000, the home directory is given by the value of the
%USERPROFILE% environment variable. To run the program to search for Demi Credit using
JAXR, use this command:

java JAXRFindBusiness "Demi Credit"

The following output should be seen on the console:

Query string is Demi Credit
JAXR Reference Implementation—logging started

Org name: Demi Credit
Org description: A smaller demo credit agency used for illustrating UDDI
inquiry
.
Org key id: 892ac280-c16b-11d5-85ad-801eef208714
Contact name: David Tarnov

Since you should now have a better understanding of how these UDDI queries work, this
example provides a more thorough parsing of the response message. This program provides a
formatted output, rather than simply dumping an XML document to the screen. The code for
this client is in the file JAXRFindBusiness.java. Here is the source code in its entirety:

import javax.xml.registry.*;
import javax.xml.registry.infomodel.*;
import java.net.*;
import java.util.*;

/*
 * This is the FindBusiness UDDI example implemented using
 * the JAXR libraries and the reference implementation
 * JAXR provider for accessing a UDDI registry.
 */
public class JAXRFindBusiness {

 public JAXRFindBusiness() {}

 public static void main(String[] args) {

 if (args.length != 1) {
 System.out.println("Usage: java " +
 "JAXRFindBusiness <query-string>");
 System.exit(1);
 }

 String queryString = new String(args[0]);
 System.out.println("Query string is " + queryString);

 doQuery(queryString);
 }

Java Web Services

117

 public static void doQuery(String qString) {
 Connection conn = null;

 // Define connection configuration properties
 // To query, you need only the query URL
 Properties props = new Properties();
 props.setProperty("javax.xml.registry.queryManagerURL",
 "http://localhost:8080/wasp/uddi/inquiry/");
 props.setProperty("javax.xml.registry.factoryClass",
 "com.sun.xml.registry.uddi.ConnectionFactoryImpl");

 try {
 // Create the connection, passing it the
 // configuration properties
 ConnectionFactory factory =
 ConnectionFactory.newInstance();
 factory.setProperties(props);
 conn = factory.createConnection();

 // Get registry service and query manager
 RegistryService rs = conn.getRegistryService();
 BusinessQueryManager bqm = rs.getBusinessQueryManager();

 // Define find qualifiers and name patterns
 Collection qualifiers = new ArrayList();
 qualifiers.add(FindQualifier.SORT_BY_NAME_DESC);
 Collection namePatterns = new ArrayList();
 namePatterns.add(qString);

 // Find using the name
 BulkResponse response =
 bqm.findOrganizations(qualifiers,
 namePatterns, null, null, null, null);
 Collection orgs = response.getCollection();

 // Display information about the organizations found
 Iterator orgIter = orgs.iterator();
 while (orgIter.hasNext()) {
 Organization org =
 (Organization) orgIter.next();
 System.out.println("Org name: " + getName(org));
 System.out.println("Org description: " +
 getDescription(org));
 System.out.println("Org key id: " + getKey(org));

 // Display primary contact information
 User pc = org.getPrimaryContact();
 if (pc != null) {
 PersonName pcName = pc.getPersonName();
 System.out.println(" Contact name: " +
 pcName.getFullName());
 Collection phNums =
 pc.getTelephoneNumbers(pc.getType());
 Iterator phIter = phNums.iterator();
 while (phIter.hasNext()) {
 TelephoneNumber num =
 (TelephoneNumber) phIter.next();
 System.out.println(" Phone number: " +
 num.getNumber());
 }

Java Web Services

118

 Collection eAddrs = pc.getEmailAddresses();
 Iterator eaIter = eAddrs.iterator();
 while (phIter.hasNext()) {
 System.out.println(" Email Address: " +
 (EmailAddress) eaIter.next());
 }
 }

 // Display service and binding information
 Collection services = org.getServices();
 Iterator svcIter = services.iterator();
 while (svcIter.hasNext()) {
 Service svc = (Service) svcIter.next();
 System.out.println(" Service name: " +
 getName(svc));
 System.out.println(" Service description: " +
 getDescription(svc));
 Collection serviceBindings =
 svc.getServiceBindings();
 Iterator sbIter = serviceBindings.iterator();
 while (sbIter.hasNext()) {
 ServiceBinding sb =
 (ServiceBinding) sbIter.next();
 System.out.println(" Binding " +
 "Description: " +
 getDescription(sb));
 System.out.println(" Access URI: " +
 sb.getAccessURI());
 }
 }
 // Print spacer between organizations
 System.out.println(" --- ");
 }
 } catch (Exception e) {
 e.printStackTrace();
 } finally {
 // At end, close connection to registry
 if (conn != null) {
 try {
 conn.close();
 } catch (JAXRException je) {}
 }
 }
 }

 private static String getName(RegistryObject ro) throws JAXRException {
 try {
 return ro.getName().getValue();
 } catch (NullPointerException npe) {
 return "";
 }
 }

 private static String getDescription(RegistryObject ro)
 throws JAXRException {
 try {
 return ro.getDescription().getValue();
 } catch (NullPointerException npe) {
 return "";
 }
 }

Java Web Services

119

 private static String getKey(RegistryObject ro) throws JAXRException {
 try {
 return ro.getKey().getId();
 } catch (NullPointerException npe) {
 return "";
 }
 }
}

JAXR uses javax.xml.registry for the base package name for all of its classes.
The main() method for this program parses a single parameter, which is the query string to
use as the business name in the request:

import javax.xml.registry.*;
import javax.xml.registry.infomodel.*;
import java.net.*;
import java.util.*;

/*
 * This is the FindBusiness UDDI example implemented using
 * the JAXR libraries and the reference implementation
 * JAXR provider for accessing a UDDI registry.
 */
public class JAXRFindBusiness {

 public JAXRFindBusiness() {}

 public static void main(String[] args) {

// Parameter parsing, not entirely relevant

 doQuery(queryString);
 }

Most work for this program takes place in the doQuery() method. A client program first
needs to create a connection to the service provider. In our case, the service provider is our
local UDDI registry running at http://localhost:8080/wasp/uddi/inquiry/. To create the
connection, we create a Properties object and fill it with relevant information: the
javax.xml.registry.queryManagerURL value should be the URL of the UDDI registry that
you are accessing, while the javax.xml.registry.factoryClass is the class that
implements a ConnectionFactory object. Different JAXR providers provide different values
for this property; the JAXR reference implementation uses
com.sun.xml.registry.uddi.ConnectionFactoryImpl. Finally, the client code creates an
instance of the ConnectionFactory class, associates the properties with this class, and then
creates a Connection object using the createConnection() method:

 public static void doQuery(String qString) {
 Connection conn = null;

 // Define connection configuration properties
 // To query, you need only the query URL
 Properties props = new Properties();
 props.setProperty("javax.xml.registry.queryManagerURL",
 "http://localhost:8080/wasp/uddi/inquiry/");
 props.setProperty("javax.xml.registry.factoryClass",
 "com.sun.xml.registry.uddi.ConnectionFactoryImpl");

Java Web Services

120

 try {
 // Create the connection, passing it the
 // configuration properties
 ConnectionFactory factory =
 ConnectionFactory.newInstance();
 factory.setProperties(props);
 conn = factory.createConnection();

Once we have a connection to a service provider, we need to connect to a RegistryService
object. Since different registries support different types of services, a RegistryService
object tells your program exactly which services the registry supports. For example, some
registries allow declarative SQL queries (UDDI does not). The RegistryService interface
has methods for telling a program the registry's capabilities and returning manager objects
that support a particular type of capability. For business requests, such as the requests that
UDDI supports, the BusinessQueryManager interface must be used. To retrieve a reference
to a BusinessQueryManager object, call the getBusinessQueryManager() method on a
RegistryService object:

 // Get registry service and query manager
 RegistryService rs = conn.getRegistryService();
 BusinessQueryManager bqm = rs.getBusinessQueryManager();

The BusinessQueryManager interface has a series of findXXX() methods that perform
different types of queries. Different methods query for different items; for example, the
findOrganizations() method queries a registry for business information, while the
findServices() method asks for different services that may or may not be available. Most
methods take one or more Collection objects as input; these objects refine the query using
qualifiers. The first parameter of the findOrganizations() method takes a Collection of
find qualifiers that refines how the query should be performed. Find qualifiers can apply a sort
or restrict the number of entries that are returned; in this case, we ask that the responses be
sorted by name. The second parameter of the findOrganizations() takes a Collection of
name patterns to apply to the search. To populate this Collection, we add the business name
that we read from the command line. The other parameters (all set to null in this example)
take qualifiers that search for businesses based upon classifications, specifications supported,
external identifiers, and external URLs, respectively. The query returns a BulkResponse
object that can be checked for exceptions from the server or converted to a Collection:

 // Define find qualifiers and name patterns
 Collection qualifiers = new ArrayList();
 qualifiers.add(FindQualifier.SORT_BY_NAME_DESC);
 Collection namePatterns = new ArrayList();
 namePatterns.add(qString);

 // Find using the name
 BulkResponse response =
 bqm.findOrganizations(qualifiers,
 namePatterns, null, null, null, null);
 Collection orgs = response.getCollection();

The rest of the program is responsible for iterating through the output and formatting it for
display on the screen. It's a bit wordy, so it's not included again here. A client application
would use the information retrieved from the query to perform other queries or to leverage a
particular service.

Java Web Services

121

As you undoubtedly noticed, the JAXR API is more complicated than the Systinet API. JAXR
does not have class representations for each UDDI XML structure; instead, we have to work
with query managers and lists of various qualifiers. Working with the Systinet API is
convenient because every class has an XML counterpart with the same name. You pay a price
for abstraction, though: the Systenet client is tied to UDDI, while the JAXR client could
conceivably make a similar request from a different kind of registry with little or no
modification.

6.3.6 Getting More Detail

find_ messages are designed to return basic information about the structures that a UDDI
registry manages. Given the UUID to one of the major data structures, you can drill down into
the registry to get a full listing of the details stored in that structure. The UDDI inquiry API
provides a series of messages that begin with get_ for retrieving information from the
registry. Table 6-3 lists these messages.

Table 6-3. XML documents used to get detailed information
Message name Response document Brief description

<get_bindingDetail> <bindingDetail>

Given one or more UUIDs of different
<bindingTemplate> documents, this message
returns a <bindingDetail> structure containing the
complete <bindingTemplate> document for each
matching UUID. The specification recommends that a
client application caches <bindingTemplate>
documents locally so repeated calls to a web service do
not require a query on the UDDI server each time. If a
call based on cached <bindingDetail> information
fails, a new <bindingDetail> structure can be
retrieved using this message.

<get_businessDetail> <businessDetail>

Given one or more UUIDs of different
<businessEntity> documents, this message
retrieves a <businessDetail> structure that contains
<businessEntity> documents for each matching
UUID.

<get_serviceDetail> <serviceDetail>

Given one or more UUIDs of different
<businessService> documents, this message
returns a <serviceDetail> structure that contains
the complete <businessService> document for
each matching UUID.

<get_tModelDetail> <tModelDetail>

Given one or more UUIDs of different <tModel>
documents, this message returns a <tModelDetail>
structure containing the complete <tModel> document
for each matching UUID.

All of these messages are fairly straightforward. As long as you can get a valid UUID for the
data structure you are interested in, you can get its details. In the <find_business> example
for Demi Credit, the response document indicated that Demi Credit had published a web
service named DCAmail with the UUID 860eca90-c16d-11d5-85ad-801eef208714. Let's
send a <get_serviceDetail> message to get all of the information about this web service.
To get this information, we'll use the UDDISoapClient program from our previous examples
to send a handwritten XML document. This document contains a <get_serviceDetail>

Java Web Services

122

message using the UUID for the DCAmail web service. Here's a listing of
Ch6_GetServiceDetail.xml:

<uddi:get_serviceDetail generic="2.0">
 <uddi:serviceKey>860eca90-c16d-11d5-85ad-801eef208714</uddi:serviceKey>
</uddi:get_serviceDetail>

The <get_serviceDetail> message doesn't have any optional attributes; it has only one
subelement, <serviceKey>, which is the UUID of the web service for which you want more
detail. The <get_serviceDetail> message can accept one or more <serviceKey>
subelements on which to query. Here is the response document returned by the UDDI server:

<serviceDetail generic="2.0" operator="SYSTINET"
 xmlns="urn:uddi-org:api_v2">
 <businessService businessKey="9a26b6e0-c15f-11d5-85a3-801eef208714"
 serviceKey="860eca90-c16d-11d5-85ad-801eef208714">
 <name xml:lang="en">DCAmail</name>
 <description xml:lang="en">Get credit assessment by email</description>
 <bindingTemplates>
 <bindingTemplate bindingKey="f9274a50-c16f-11d5-85ad-801eef208714"
 serviceKey="860eca90-c16d-11d5-85ad-801eef208714">
 <description xml:lang="en">
 The address to which you should send the name
 and address of your credit report target</description>
 <accessPoint URLType="mailto">
 mailto:DCAmail@democredit.bar</accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo
 tModelKey="uuid:93335d49-3efb-48a0-acea-ea102b60ddc6">
 <description xml:lang="en">
 The smtp protocol is used when sending information
 </description>
 <instanceDetails>
 <overviewDoc>
 <description xml:lang="en">
 Describes how to use this service
 </description>

<overviewURL>
 http://www.creditdemo.bar/DCAmail/howto
</overviewURL>

 </overviewDoc>
 </instanceDetails>
 </tModelInstanceInfo>
 <tModelInstanceInfo
 tModelKey="uuid:25ddf051-c164-11d5-85a6-801eef208714">
 <description xml:lang="en">
 The namespace in which our credit numbers are used.
 </description>
 </tModelInstanceInfo>
 </tModelInstanceDetails>
 </bindingTemplate>
 </bindingTemplates>
 <categoryBag>
 <keyedReference keyName="Personal credit agencies"
 keyValue="841416"
 tModelKey="uuid:db77450d-9fa8-45d4-a7bc-04411d14e384"/>
 <keyedReference keyName="Credit agencies"
 keyValue="8414"
 tModelKey="uuid:db77450d-9fa8-45d4-a7bc-04411d14e384"/>

Java Web Services

123

 <keyedReference keyName="Netherlands"
 keyValue="NL"
 tModelKey="uuid:4e49a8d6-d5a2-4fc2-93a0-0411d8d19e88"/>
 <keyedReference keyName="France"
 keyValue="FR"
 tModelKey="uuid:4e49a8d6-d5a2-4fc2-93a0-0411d8d19e88"/>
 <keyedReference keyName="Belgium"
 keyValue="BE"
 tModelKey="uuid:4e49a8d6-d5a2-4fc2-93a0-0411d8d19e88"/>
 <keyedReference keyName="Business credit agencies"
 keyValue="841417"
 tModelKey="uuid:db77450d-9fa8-45d4-a7bc-04411d14e384"/>
 <keyedReference keyName="Luxembourg"
 keyValue="LU"
 tModelKey="uuid:4e49a8d6-d5a2-4fc2-93a0-0411d8d19e88"/>
 <keyedReference keyName="Germany, Federal Republic of"
 keyValue="DE"
 tModelKey="uuid:4e49a8d6-d5a2-4fc2-93a0-0411d8d19e88"/>
 </categoryBag>
 </businessService>
</serviceDetail>

This document contains a <businessService> structure, which is a logical grouping of web
services by a business. In the case of Demi Credit, this grouping lists a number of web
services that allow you to do a credit check via email. The returned <businessService> has
a single <bindingTemplate> that provides technical details of how to access the web service.
The <accessPoint> is the web service endpoint URL. In this case, it is a simple email
address: mailto:DCAmail@democredit.bar.

More importantly, the <bindingTemplate> has two <tModelInstanceInfo> documents that
show where to find more information about how this web service runs and the specifications it
supports. Each <tModelInstanceInfo> document contains a tModelKey attribute, which is
the UUID of a <tModel> structure that contains a particular specification's metadata. The
<tModelInstanceInfo> document also contains an <instanceDetails> subelement that
contains a description of how to use the web service.

6.3.6.1 Categorization

Our <businessService> document also contains a <categoryBag> structure.
<categoryBag> documents can appear with <businessEntity>, <businessService>, and
<tModel> documents.

Categorization of data was an important requirement during the development of UDDI.
Categorization allows data in a UDDI registry to be associated with an industry, product, or
geographic code set. Some obvious problems come with the use of categories; they should be
familiar to anyone who's ever searched for something on the Web. Broad categories, such as
manufacturing, can return thousands of matching services and businesses—certainly too many
to sift through manually. On the other hand, specific categories, such as "manufacturing in
Buffalo," might be too specific to return any results.

It's probably not realistic to expect software to dynamically discover and use new businesses
on the fly in the near future. Realistically, human analysts need to browse a UDDI portal that
allows customized searches and queries to discover the businesses they are interested in
working with. It's more likely that software will contain the logic necessary to locate and

Java Web Services

124

integrate with web services for companies that have been predetermined. It's also likely that
businesses will set up private UDDI registries that they can share with their approved partners
to facilitate B2B integration.

Many categorization systems can be used on data within UDDI. These systems are
summarized in Table 6-4. Each taxonomy categorization is registered as a <tModel> structure
within UDDI. This registration means that each categorization has a tModel name and UUID
that can be used to reference it. The tModel name is the same in all UDDI registries, but the
UUID for the tModel may change between operator nodes.

Table 6-4. Supported categorization taxonomies
Taxonomy
name tModel name Description

NAICS ntis-gov:naics:1997

The North American Industry Classification system. Hundreds of
classifications are in this system, including "Pet supply stores,"
"Hazardous waste collection," and "Diet and weight reducing
centers." More information can be found at
http://www.census.gov/epcd/www/naics.html.

UNSPSC unspsc-org:unspsc:3-
1

The Universal Standard Products and Services Classification. It is
the first system to classify products and services for worldwide use.
More information can be found at http://www.unspsc.org/.

ISO 3166 iso-ch:3166:1999

International standard geographical regions. This taxonomy includes
codes for countries and their administrative support staffs. More
information can be found at
http://www.din.de/gremien/nas/nabd/iso3166ma.

Other uddi-
org:general_keywords

General-purpose associations that a business might want to make.
This taxonomy allows operator nodes to promote invalid entries or
entries that would otherwise be rejected by another classification
system. There is no specification on how this works; it is operator-
node specific.

A <categoryBag> structure contains zero or more <keyedReference> structures. Each
<keyedReference> structure contains the name and value of a category to which the data
element belongs. In the previous <businessService> example, the <categoryBag> had
eight <keyedReference> subelements. Three <keyedReference> subelements were for
NAICS categorizations; the other five were for ISO 3166 country categorizations.

Determining which categorization a <keyedReference> belongs to can be difficult, but more
details can be discovered by looking up the <tModel> document, using the tModelKey
attribute that is also part of a <keyedReference>. If you look at the <categoryBag>, you will
notice that three of the <keyedReference> elements have the same tModelKey value and the
other five attributes have a different tModelKey value. For example, here is one of the ISO
3166 country categorization <keyedReference> elements returned as part of the
<categoryBag>:

<keyedReference keyName="Netherlands"
 keyValue="NL"
 tModelKey="uuid:4e49a8d6-d5a2-4fc2-93a0-0411d8d19e88"/>

The keyName value identifies the categorization. It is also a textual name given to the
categorization. The keyValue is the categorization code, as identified by the specification.
The categorization code is guaranteed to be unique. The tModelKey value is the UUID of a

Java Web Services

125

<tModel> document that provides metadata of the specification that this categorization
supports.

6.3.6.2 Identifiers

An identifier is a type of property or keyword used to uniquely identify a business or
specification. Identifiers can be applied to <businessEntity> and <tModel> structures.
Identifiers, like categorizations, can be used as part of a search when doing a
<find_business> or <find_tModel> request message.

Identifiers and categorizations are implemented similarly. Identifiers are attached to
<businessEntity> and <tModel> documents through an <identifierBag> structure. The
<identifierBag> structure can have one or more <keyedReference> structures that provide
the name, value, and <tModel> UUID reference for locating more information.

At this time, only two general-purpose identifier schemes have been incorporated into all
operator nodes, but other schemes can be used as well. Table 6-5 lists the identifier types that
are a core part of an operator node.

Table 6-5. Supported identifier types
Identifier
name tModel name Description

D-U-N-S dnb-com:D-U-N-S

The Dun & Bradstreet D-U-N-S number is a unique nine-digit
identification sequence. This sequence provides unique identifiers for
single business entities, while linking corporate family structures. More
information can be found at http://www.d-u-n-s.com/.

Thomas
Register

thomasregister-
com:supplierID

This scheme provides identifiers for over 150,000 manufacturing and e-
commerce companies worldwide. More information can be found at
http://www.thomasregister.com/.

6.3.6.3 tModel

<tModel> documents provide metadata information about a web service specification,
categorization specification, or identifier specification. <tModel> documents are a core data
structure in the UDDI specification and represent the most detailed information that a UDDI
registry can provide about any specification.

Looking at Demi Credit, we can see that the DCAmail <businessService> has a
<bindingTemplate> with two <tModelInstanceInfo> documents. Each
<tModelInstanceInfo> document contains a tModelKey attribute that is the UUID of a
<tModel> document representing information about the supporting specification. There are
also tModelKey attributes for each <keyedReference> structure that was part of the
<categoryBag>. We can use the UDDISoapClient to retrieve the <tModel> document for any
of these UUIDs. Let's get the <tModel> document for uuid:93335d49-3efb-48a0-acea-
ea102b60ddc6, which is a specification implemented by the DCAmail web service. Here is the
listing of Ch6_GetTModelDetail.xml, which is used as the body of the SOAP request:

<uddi:get_tModelDetail generic="2.0">
 <uddi:tModelKey>uuid:93335d49-3efb-48a0-acea-
ea102b60ddc6</uddi:tModelKey>
</uddi:get_tModelDetail>

Java Web Services

126

The resulting response is saved as Ch6_GetTModelDetail_OUTPUT.xml:

<tModelDetail generic="2.0" operator="SYSTINET"
 xmlns="urn:uddi-org:api_v2">
 <tModel authorizedName="admin"
 operator="SYSTINET"
 tModelKey="uuid:93335d49-3efb-48a0-acea-ea102b60ddc6">
 <name>uddi-org:smtp</name>
 <description xml:lang="en">E-mail based web service</description>
 <categoryBag>
 <keyedReference
 keyName="A transport tModel is a specific type of protocol"
 keyValue="transport"
 tModelKey="uuid:c1acf26d-9672-4404-9d70-39b756e62ab4"/>
 </categoryBag>
 </tModel>
</tModelDetail>

The authorizedName attribute is the recorded name of the individual who published this
<tModel>. The operator attribute is the certified name of the UDDI registry site that owns the
master copy of the <tModel> data. The tModelKey is the UUID of this <tModel>; it matches
the tModelKey for the request document. The <name> subelement is the recorded name of the
<tModel>; it can be used as part of a search when doing a <find_tModel> request. The
<description> subelement provides a specification's textual description. A <tModel> can
have an optional <categoryBag> or <identifierBag> structure as well. Finally, a <tModel>
can contain an optional <overviewDoc> subelement, which contains a URL that points to
remote descriptive information.

6.3.7 Publishing to a UDDI Registry

Publishing to a UDDI registry involves any operation that would create, update, or destroy
data in a UDDI registry. Here are some key technical differences between publishing and
inquiring:

Authenticated access

All publishing messages require authenticated access. The process for authentication is
not defined by the UDDI specification and is specific to the operator node. Given
authenticated credentials, however, your program can access any publishing message.

Different access point

Publishing message requests use a different access point than do inquiry messages.
The HTTP protocol was suitable for inquiry messages, but HTTPS is required for all
publishing messages.

Space limits

Operator nodes can impose space and registration restrictions on an individual or
company. For example, a site may limit some users to one <businessEntity>
structure and prevent them from inserting additional data without special permissions.

Java Web Services

127

Operator node binding

When information is inserted into an operator node, that site becomes the owner of
that data's master copy. Any subsequent updates or changes to the data must be
performed at the same operator node. UDDI does not have a mechanism for resolving
conflicts if duplicate entries are made at another operator node.

The Publisher API messages that require authentication are listed in Table 6-6.

Table 6-6. UDDI Publisher API messages
Message name Response document Brief description

<add_publisherAssertions> <dispositionReport>

Given a valid authentication token
and a
<publisherAssertion>
document, this message adds a
<publisherAssertion> to
an individual publisher's collection
of assertions. A publisher assertion
creates an association between two
businesses. When the publishers of
both businesses have added
matching
<publisherAssertion>
documents to their collection, the
relationship becomes publically
visible.

<delete_binding> <dispositionReport>

Given a valid authentication token
and the UUID of one or more
<bindingTemplate>
documents, this message deletes
the matching
<bindingTemplate>
documents from the UDDI
registry.

<delete_business> <dispositionReport>

Given a valid authentication token
and the UUID of one or more
<businessEntity>
documents, this message deletes
the matching <binding-
Template> documents from the
UDDI registry. Deleting these
documents causes the deletion of
any contained
<businessService> or
<bindingTemplate> data.
Additionally, any
<publisherAssertions>
created with the UUID of this
<businessEntity> will be
deleted.

Java Web Services

128

<delete_publisherAssertions> <dispositionReport>

Given a valid authentication token
and the UUID of one or more
<publisherAssertion>
documents, this message deletes
the matching
<publisherAssertion>
documents from this publisher's
collection. If other companies have
created similar
<publisherAssertion>
documents, their documents
remain part of their collection.

<delete_service> <dispositionReport>

Given a valid authentication token
and the UUID of one or more
<businessService>
documents, this message deletes
the matching
<businessService>
documents from the UDDI
registry.

<delete_tModel> <dispositionReport>

Given a valid authentication token
and the UUID of one or more
<tModel> documents, this
message logically deletes the
matching <tModel> documents
from the UDDI registry by
marking them as hidden. The
documents are not actually
destroyed. Hidden <tModel>
documents are not returned as part
of a result of a <find_tModel>
message, but are still accessible
through
<get_tModelDetail> and
<get_registeredInfo>
messages. <tModel> messages
are not permanently destroyed,
which allows any organization still
using the <tModel> to get basic
details about it.

<discard_authToken> <dispositionReport>

Given a valid authentication token,
this message tells an operator node
to discard the active authentication
session, effectively logging out the
client. To perform additional
Publishing API operations, a new
authentication token must be
retrieved from the operator node
by using the <get_authToken>
message.

Java Web Services

129

<get_assertionStatusReport> <assertionStatusReport>

Given a valid authentication token,
this message returns a report that
details all <publisher-
Assertion> documents that
have been created on any
<businessEntity>
documents managed by this
publisher. This report returns
<publisherAssertion>
documents that were created by
this publisher and other publishers.
This query can search for complete
or incomplete associations.

<get_authToken> <authToken>

Given a username and password,
this message retrieves an
authentication token from an
operator node to be used on other
Publisher API messages.

<get_publisherAssertions> <publisherAssertions>

Given a valid authentication token,
this message returns a complete
list of
<publisherAssertion>
documents that have been
associated with the authenticated
publisher account.

<get_registeredInfo> <registeredInfo>

Given a valid authentication token,
this message returns a complete
list of <businessEntity> and
<tModel> documents that are
managed by the individual
associated with the authentication
credentials.

<save_binding> <bindingDetail>

Given an authenticated token and
one or more
<bindingTemplate>
documents, this message inserts or
updates a UDDI registry with the
<bindingTemplate>
documents passed as input. This
message can also update any
associations made between a
<businessService>
document and a
<bindingTemplate>
document. This message returns a
<bindingDetail> message
that contains the final results of the
call that reflect the information in
the UDDI registry.

Java Web Services

130

<save_business> <businessDetail>

Given an authenticated token and
one or more
<businessEntity>
documents, this message inserts or
updates a UDDI registry with the
<businessEntity>
documents passed as input. This
message can make sweeping
changes to a UDDI registry; the
changes may involve inserts,
updates, and deletes of
subdocuments contained within a
<businessEntity>. Changes
to an existing
<businessEntity> can
impact existing references to
<publisherAssertion>
documents,
<businessService>
documents, and
<bindingTemplate>
documents. This message returns a
<businessDetail> message
that contains the final results of the
call that reflect the UDDI registry
information.

<save_service> <serviceDetail>

Given an authenticated token and
one or more
<businessService>
documents, this message inserts or
updates a UDDI registry with the
<businessService>
documents passed as input. This
message can modify
<businessService> data and
any references to
<bindingTemplate>
structures. This message returns a
<serviceDetail> message
that contains the final results of the
call that reflect the UDDI registry
information.

<save_tModel> <tModelDetail>

Given an authenticated token and
one or more <tModel>
documents, this message inserts or
updates a UDDI registry. If a
passed-in <tModel> documet
refers to a <tModel> that was
previously deleted (hidden), it will
be made visible again. This
message returns a
<tModelDetail> message that
contains the final results of the call
that reflect the UDDI registry
information.

Java Web Services

131

<set_publisherAssertions> <publisherAssertions>

Given an authenticated token and
one or more
<publisherAssertion>
documents, this message updates a
UDDI registry to contain a
complete collection of
<publisherAssertion>
documents while deleting
documents that are not present as
part of the input. This message
returns
a<publisherAssertions>
document that contains the current
collection of
<publisherAssertions> as
they are stored in the UDDI
registry.

6.3.8 Security and Authentication

Authentication with an operator node is typically straightforward. Most operator nodes
implement a name/password scheme that allows you to retrieve an authentication token.
Operator nodes that support the name/password scheme for authentication expose their
authentication interface through the <get_authToken> message. Operator nodes do not have
to support this scheme for authentication and can provide alternative techniques for allowing a
client to get an authentication token. Those techniques are not documented by the UDDI
specifications and are specific to the operator node. An operator node also has specific ways
of registering new publishers and verifying their information. The only requirement that an
operator node has to adhere to is that the authentication token returned must be a text value
that can be inserted in subsequent XML messages.

The Systinet WASP UDDI Standard has a preconfigured username (admin) and password
(changeit). We can obtain an authentication token by running the UDDISoapClient program
with the Ch6_GetAuthToken.xml file as input and two command-line modifications:

java -Djava.protocol.handler.pkgs=com.sun.net.ssl.internal.www.protocol
 UDDISoapClient
 -url https://localhost:8443/wasp/uddi/publishing/
 -df Ch6_GetAuthToken.xml

First, the JDK java.net.URL class does not support HTTPS as a standard protocol. The
Message.send() method in the Apache SOAP library requires a URL object as input, so
enabling HTTPS is key. Enabling HTTP is done by including the -
Djava.protocol.handler.pkgs=com.sun.net.ssl.internal.www.protocol option on
the command line. Using this option assumes that you have installed the jsse.jar library. This
library is installed as part of Systinet WASP UDDI; if you use a different UDDI package, you
may have to install JSSE yourself. Second, since we are using the Publishing API, we must
access a different URL than the default that is configured for inquiries. The publishing URL
for Systinet WASP UDDI is https://localhost:8443/wasp/uddi/publishing/.

Java Web Services

132

Using the JSSE library directly is not for the weak of heart. In addition
to setting up JSSE and enabling HTTPS as a valid protocol, SSL
requires that your program have a valid client certificate to be used
against the server. Fortunately, Systinet WASP UDDI Standard installs
a client certificate for your use, but otherwise, you would have to create
a new certificate using Java's keytool utility.

The real value of using a custom Java API such as Systinet's is apparent
when you look at the difficulty of using the UDDISoapClient to
generate HTTPS messages. Two complete round-trip SOAP invocations
have to be made and you have to go through the rigmarole of
configuring SSL appropriately on the client. Systinet's library handles
this situation cleanly by providing one method that retrieves your
authentication credentials and other methods that use the rest of the
Publishing API.

Here is the Ch6_GetAuthToken.xml document that we send to the server to request an
authentication token:

<uddi:get_authToken generic="2.0" userID="admin" cred="changeit" />

The <get_authToken> element doesn't have any subelements and passes the name and
password as the userID and cred attributes, respectively. Here's the body of the SOAP
response:

 <authToken xmlns="urn:uddi-org:api_v2" generic="2.0"
 operator="SYSTINET">
 <authInfo>
MIHLMDYbBWFkbWluMB4XDTAxMTIzMDAwNDYzNVoXDTAxMTIzMDAxNDYzNVoEDUFkbWluaXN0cmF
0b3IwDQYJK
oZIhvcNAQEEBQADgYEA4Cci/CbDji6RiQFneRt7gVXwX/4TA7qCZNUmTnXFJdVNFIDvp4WV+IW+
/
deDCQk0GVAdsub0vkXJX3dqdDGqDsDleXwm7cDN2ENW7K/IeN9ii7/
pfbVryPtKzzbe07ETcWAoRnkcgDteC7I77VpyiqKHUqwmi5+kN10XMRXfkTw=
 </authInfo>
 </authToken>

The response document contains an <authToken> element that has an <authInfo>
subelement. The value of the <authInfo> subelement is a key that will be used as the
authentication token on all other publishing messages. To write a program that makes a series
of updates on a UDDI registry, you must parse the <get_authToken> response message and
store the authentication token as a String object. Your program would then have to create a
second SOAP message to perform an insert, an update, or a delete operation.

6.3.9 Errors and <dispositionReport> Documents

Errors can occur on any request message, whether they are part of the inquiry API or the
Publishing API. UDDI errors are always returned as SOAP Fault messages. (For more
information on SOAP Fault messages and their structure, refer to Chapter 4.) The subelement
of a SOAP Fault <detail> message is a UDDI <dispositionReport> document; this

Java Web Services

133

document is defined in the UDDI schema. Despite being used for all error code situations,
<dispositionReport> documents are also used in some non-error situations as a status
indicator. Non-error <dispositionReport> documents are returned as part of a standard
SOAP response for any UDDI delete_ message.

UDDI SOAP Faults can be returned for dozens of reasons: expiration of an authentication
token, a server that is busy and unable to handle requests, the use of invalid categorization and
identifiers, unsupported APIs, etc. A full listing of error codes is contained in Appendix A of
the UDDI Programmer's API specification. Here is an error that I received one time when I
tried to exceed my limit for <businessEntity> documents while using Systinet's WASP
UDDI Standard:

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <ns0:Fault xmlns:ns0="http://schemas.xmlsoap.org/soap/envelope/">
 <faultcode>
 ns0:Client
 </faultcode>
 <faultstring>
 ClientError
 </faultstring>
 <detail>
 <dispositionReport generic="2.0"
 operator="SYSTINET"
 xmlns="urn:uddi-org:api_v2">
 <result errno="10160">
 <errInfo errCode="E_accountLimitExceeded">
 An attempt to save more data than allowed.
 </errInfo>
 </result>
 </dispositionReport>
 </detail>
 </ns0:Fault>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

A <dispositionReport> has a <result> subelement with an errno attribute. The <result>
subelement also has an <errInfo> subelement with an errCode attribute. The value of the
errCode attribute must be one of the error codes that are identified in Appendix A of the
UDDI Programmer's API specification. In this example, the errCode value is
E_accountLimitExceeded. The value of the <errInfo> element is a textual explanation of
the error that can be displayed to a user.

When designing a program that interacts with a UDDI registry, your program needs to be
prepared to handle SOAP Faults and react appropriately. If you want your program to parse
UDDI responses intelligently, use the DOM API to parse a <dispositionReport> structure
and then implement specialized actions to handle different errCode situations.

Abstraction APIs, such as the UDDI API provided by Systinet and JAXR, capture SOAP
Faults and convert their contents into a specialized exception. This action allows you to write
a program that has a familiar try/catch block to handle SOAP Fault scenarios, rather than
using the DOM API to parse a <dispositionReport>.

Java Web Services

134

6.3.10 What About the Rest of the Publishing API?

Using the rest of the Publishing API is straightforward. If you have the UUID of one major
data structure element, you can use the delete_ messages to destroy data in the registry. If
you want to insert or update data in a UDDI registry, construct a valid data structure, such as a
<businessEntity>, and then use one of the save_ messages.

Since this chapter has already covered the major talking points of every major UDDI data
structure, demonstrating Publishing APIs in full form would be repetitive. At this stage, you
have all the necessary tools to work with the UDDI Programmer's and Data Structure
specifications.

When working with the Publishing API, keep a couple of points in mind:

• Your program signals the difference between a creation and an update by the value of
a document's UUID fields on a save_ message. If a save_ message is used for
updating an existing document in a UDDI registry, the value of the existing
document's UUID is placed in the input document's UUID field. If a save_ message is
used to create a new document in a UDDI registry, the UUID should be left blank. For
example, if you wanted to update a <businessEntity> document with a fictional
UUID of 43, then you would create a <businessEntity> document, fill it with the
contents you want stored in the registry, and then set this document's businessKey
attribute to 43. However, if you wanted to insert a new registration into the registry,
the businessKey value would be "".

• Be careful when using the delete_ and save_ messages. If the structure you are
updating has a number of subelements, such as a <businessEntity>, you can
inadvertently destroy them by removing their containment. If you delete a
<businessEntity>, it will delete all <businessService> and <bindingTemplate>
elements contained within the <businessEntity>. It will not delete a
<businessService> referenced by the <businessEntity>, which would occur only
if the <businessService> is contained with a different <businessEntity>. For
example, if you want to update a <businessEntity> document using a save_
message, you might accidentally delete <businessService> and
<bindingTemplate> structures in the process. If the existing <businessEntity>
element stored in a UDDI registry has <businessService> or <bindingTemplate>
structures, but the <businessEntity> document used as input to the save_ message
does not have those same subelements, the <businessService> and
<bindingTemplate> subelements will be destroyed automatically as part of the
update process.

• <tModel> documents are never fully destroyed. When you use the <delete_tModel>
message, a <tModel> element saved in the registry is merely hidden. Hidden
documents can be located through <get_tModelDetail> and
<get_registeredInfo> messages, but will not be displayed by any find_ queries.
This behavior ensures that the details associated with any <tModel> are still available
to anyone who may currently implement the specifications referred by the <tModel>.
<tModel> documents can be unhidden by using the <save_tModel> message.

Java Web Services

135

6.4 Using WSDL Definitions with UDDI

WSDL is used to describe the interface of a web service. <tModel> UDDI documents provide
metadata descriptions of a web service and pointers to specifications that describe their
implementation. Given this provision, WSDL documents tie into the UDDI data structures in
a couple of places:

• A <tModel> document should be created for each WSDL document supported by a
web service. The <tModel> describes the abstract service type, not the service
instance; if appropriate, the WSDL file pointed to by the <tModel> should not contain
the <service> and <port> elements. Omitting the <service> and <port> elements
allows a WSDL document to describe many web services located in several different
places. The WSDL document's URL should be listed as the value of the
<overviewURL> element. A <tModel> that references a WSDL document should have
a categorization taxonomy of uddi-org:types; a categorization value of wsdlSpec
should be applied to it by using a <categoryBag> element.

• A <bindingTemplate> structure is created for each unique URL access point used by
the web service. The <bindingTemplate> document references one or more
<tModel> documents containing the WSDL definitions supported at this access point.

• A <businessService> document is created for each web service. The document
contains one <bindingTemplate> for each of the access points supported by the web
service.

For example, if you implement one web service that has a single access point and is defined
by a single WSDL document, you would create a single <tModel>, a single
<bindingTemplate>, and a single <businessService>. Also, if you implement one web
service that has two separate access points, each defined by a different WSDL document, you
would create two <tModel> documents (one for each interface), two <bindingTemplate>
documents (one for each access point), and a single <businessService> document. Each
<bindingTemplate> document must point to the <tModel> that references its interface.

The Hertz reservation system web service provides a concrete example of how UDDI and
WSDL work together. Here is the <tModel> for this web service:

<tModel authorizedName="..." operator="..." tModelKey="...">
 <name>HertzReserveService</name>
 <description xml:lang="en">WSDL description of the Hertz reservation
service
 interface</description>
 <overviewDoc>
 <description xml:lang="en">WSDL source document.</description>

<overviewURL>http://mach3.ebphost.net/wsdl/hertz_reserve.wsdl</overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference tModelKey="uuid:C1ACF26D-9672-4404-9D70-
39B756E62AB4"
 keyName="uddi-org:types" keyValue="wsdlSpec"/>
 </categoryBag>
</tModel>

Java Web Services

136

The WSDL document URL that this web service implements is contained as the value of the
<overviewURL>. Additionally, this <tModel> is categorized as a web service by incorporating
a <categoryBag>. <categoryBag> has a <keyedReference> that specifies the keyName
attribute as uddi-org:types and the keyValue attribute as wsdlSpec.

A <tModel> can further qualify the portion of the WSDL document it refers to. For example,
a <tModel> can refer to a specific <binding> element within a WSDL document that has
multiple <binding> elements. A pound sign fragment identifier is used between the URL of
the WSDL document and the name of the <binding> element that accomplishes this
qualification. For example:

<overviewURL>http://mach3.ebphost.net/wsdl/hertz_reserve.wsdl#HertzReserveB
inding
</overviewURL>

6.4.1 An Abstraction API

Writing a Java program that creates a complete web service registration to a UDDI registry
requires a lot of effort: an understanding of SOAP, accessing a UDDI registry using the
correct SOAP messages, and ensuring that WSDL documents are placed in the correct
locations in a UDDI registry. A developer can easily make mistakes when following this
model.

It didn't take long for companies to begin developing abstraction APIs that facilitate this
process. It is argued that companies and developers will use the UDDI/WSDL/SOAP model
more than any other model since it is a worldwide standard and supported by every major
technology business. As such, providing an abstraction layer that simplifies publishing
documents following this model makes sense.

IBM created an API that does this abstraction very cleanly. This API is called the Service
Registry Proxy (SRP) and is contained as part of the UDDI4J project at IBM. This
pseudocode demonstrates how to publish a new web service exposed by WSDL into a UDDI
registry:

// Create an active connection to a UDDI registry
ServiceRegistryProxy srp = new ServiceRegistryProxy(
 "http://localhost:8080/wasp/uddi/inquiry/",
 "https://localhost:8443/wasp/uddi/publishing/",
 "admin",
 "changeit");

// Create a category list for an existing tModel (<categoryBag> document)
CategoryList categoryList = new CategoryList(
 TModelKeyTable.getTModelKey(TMODEL_UUID_VALUE_HERE),
 "uddi-org:types",
 "wsdlSpec");

// Create service provider (<businessService> document)
ServiceProvider serviceProvider = new ServiceProvider(
 "Demi Credit",
 "Financing Company",
 categoryList);

Java Web Services

137

// Publish the service to UDDI
srp.publish(serviceProvider);

The ServiceRegistryProxy class creates connections to an inquiry and publishing access
point. The program instantiating the proxy passes in all the information needed to create these
connections, including the username and password needed to get an authentication token. The
CategoryList object creates the equivalent of a <categoryBag> document for a specific
<tModel>. Since WSDL <tModel> documents are supposed to have a special categorization,
creating a CategoryList instance and passing this instance as an input parameter to the
ServiceProvider constructor creates this categorization. A ServiceProvider object is an
abstraction of a <businessService> document. Finally, the ServiceProvider object has a
series of methods that allow a program to perform such actions as publish, unpublish, and
find. All of these actions result in SOAP messages that are sent to the UDDI server.

Java Web Services

138

Chapter 7. JAX-RPC and JAXM
The Java API for XML Messaging (JAXM) and the Java API for XML-based RPC
(JAX-RPC) are both part of the Java Web Services Developer Pack, Winter 01 release.1 These
APIs are a key part of Sun's plans to integrate web services interfaces into future versions of
the J2EE platform. JAXM provides a common set of Java APIs for creating, consuming, and
exchanging SOAP envelopes over various transport mechanisms. It is intended mainly for
a document-style exchange of information because it requires the use of low-level APIs to
manipulate the SOAP envelope directly. JAX-RPC provides a means for performing RMI-like
Remote Procedure Calls over SOAP. In addition, JAX-RPC provides rules for such things as
client code generation, SOAP bindings, WSDL-to-Java and Java-to-WSDL mappings, and
data mappings between Java and SOAP.

Fundamentally, JAXM supports synchronous communications. In fact, if you don't run your
JAXM provider in a J2EE web container (i.e., it is implemented as a message-driven bean or
servlet), then it supports only synchronous communications. You don't get asynchronous
exchanges unless you use the connection provider. Don't get hung up by the "M" versus
"RPC" mislabeling. You can use JAXM to exchange document- or RPC-style SOAP
messages, just as you can with JAX-RPC. The real distinction between JAXM and JAX-RPC
is that JAXM forces the developer to work directly with the SOAP envelope constructs, and
JAX-RPC provides a high-level, WSDL-based framework that hides details of the SOAP
envelope from the developer. JAX-RPC uses WSDL to generate your messages and provides
an object-oriented (i.e., RMI-like) interface to the developer. JAXM doesn't use WSDL, so
the developer must construct messages by hand and send or process them explicitly. You
could make an analogy in terms of database access. You can access a database using JDBC, in
which case the developer must construct SQL queries and work with the details of the
database schema. Or, the developer can use JDO, which hides details of the database schema
from the developer and allows the developer to work with the data as a set of Java objects.

JAXM defines the javax.xml.soap package, which includes the APIs for constructing and
deconstructing a SOAP envelope directly, including a MIME-encoded multipart SWA (SOAP
with attachments) message. Both JAXM and JAX-RPC share this package. Even if you only
care about RPC, you should still go through the JAXM section to understand the SOAP
Envelope APIs.

7.1 Java API for XML Messaging (JAXM)

JAXM consists of two main areas. The "messaging" capability provides a pattern for sending
and receiving SOAP messages, with or without attachments. The SOAP packaging part
provides APIs for constructing and deconstructing SOAP and MIME envelopes. Generally,
the functionality is separated cleanly between the javax.xml.messaging package and
javax.xml.soap packages.2

1 Sun remamed the Java XML Pack to the Java Web Services Developer Pack in February 2002. The new name is confusing—the Java XML Pack
still exists and remains unchanged; the Web Services Developer Pack is the XML Pack with the addition of Tomcat, Ant, and other tools. We don't
know what name Sun is likely to use in the future, so be prepared for some confusion when you go to their web site.
2 We say "generally" because of the subtleties relating to the placement of the send() and call() methods, which we will cover in a later section.

Java Web Services

139

7.1.1 Where's the Messaging?

The word "messaging" means different things to different people. For some, it refers to instant
messaging or email. For others, it means reliable, asynchronous transport of critical business
data, such as with Java Message Service (JMS)3 or ebXML Message Service. In JAXM, the
"M" could be any or none of those things. Like a chameleon, JAXM can take on the
personality of another existing messaging protocol through the use of profiles.

Don't infer that JAXM doesn't support synchronous request/response interactions. JAXM can
do both asynchronous, one-way communication and a synchronous request/response with the
send() and call() methods, respectively. It can even do an RPC call. We will see an RPC
call later when we revisit the GetBookPrice example using JAXM.

7.1.2 Simple Servlet Deployment

There's that word again—"simple." The bare minimum runtime requirement for JAXM is that
it be deployable in a J2SE environment. This requirement means that there is no dependency
on anything, except for the ability to send something over HTTP and receive it via a servlet
interface, as illustrated in Figure 7-1.

Figure 7-1. JAXM invocation in a servlet-based environment

In this type of environment, one can't rely on having a JNDI store available. Therefore,
instead of performing a lookup() to obtain a connection, you can get a connection by
calling the static newInstance() method on the javax.xml.soap.SOAPConnectionFactory
object:

SOAPConnectionFactory scf = SOAPConnectionFactory.newInstance();
SOAPConnection connection = scf.createConnection();

For sending messages in this kind of environment, we use
the javax.xml.soap.SOAPConnection.call() method. We will encounter this method
again later.

Receiving the message is fairly straightforward. To receive a message, the application
implements the onMessage() method. In a simple servlet environment,

3 For more information on JMS, please refer to Java Message Service, by Richard Monson-Haefel and David Chappell (O'Reilly).

Java Web Services

140

JAXMServlet.doPost() delegates the call to onMessage(). There is no concept of
registering a message listener. In the provider situation, the provider may invoke the
onMessage() method any way it likes, in accordance with its own particular delivery
semantics:

public class ReceivingServlet extends JAXMServlet implements OnewayListener
{
 ...
 public void onMessage(SOAPMessage msg) {
 System.out.println("onMessage() called in receiving servlet");
 msg.writeTo(System.out);
}

The onMessage() method may return void or return a SOAP message, depending on
whether it is intended for one-way message processing or two-way request/response. The
class that implements the onMessage() method must extend either the OnewayListener or
ReqRespListener interface to indicate its intent. Remember that you aren't allowed to
overload return values; therefore, these two versions of onMessage() must be defined in
different interfaces.

7.1.3 The SOAP Package

Table 7-1 shows classes and interfaces found in the javax.xml.soap package. These items
represent the Envelope API, which is shared by both JAXM and JAX-RPC. Collectively, they
provide all the functionality you need for constructing and deconstructing a SOAP or a SOAP
with Attachments envelope. In Chapter 3, we used Apache SOAP, portions of the
org.w3c.dom.DocumentBuilder interface, and portions of the JavaMail API to accomplish
the same thing.

Table 7-1. The SOAP package
Interface/class Description
AttachmentPart A single attachment to a SOAPMessage object
Detail A container for DetailEntry objects
DetailEntry The content for a Detail object, giving details for a SOAPFault object
MessageFactory A factory used to create SOAPMessage objects
MimeHeader An object that stores a MIME header name and its value

MimeHeaders A container for MimeHeader objects, which represent the MIME headers
present in a MIME part of a message

Name A representation of an XML name

Node A representation of a node (element) in a DOM representation of an XML
document that provides tree manipulation methods

SOAPBody An object that represents the contents of the SOAP body element in a SOAP
message

SOAPBodyElement An object that represents the contents in a SOAPBody object

SOAPConnection
A point-to-point connection that a client can use to send messages directly to a
remote party (represented by a URL, for instance) without using a messaging
provider

SOAPConnectionFactory A factory used to create SOAPConnection objects

SOAPConstants The definition of constants pertaining to the SOAP 1.1 protocol (e.g.,
URI_SOAP_ACTOR_NEXT and URI_NS_SOAP_ENCODING)

Java Web Services

141

SOAPElement

An object representing the contents of a SOAPBody object, the contents of a
SOAPHeader object, the content that can follow the SOAPBody object in a
SOAPEnvelope object, or what follows the detail element in a SOAPFault
object

SOAPElementFactory A factory for XML fragments that eventually end up in the SOAP part

SOAPEnvelope The container for the SOAPHeader and SOAPBody portions of a SOAPPart
object

SOAPFault An element in the SOAPBody object that contains error and/or status
information

SOAPFaultElement A representation of the contents in a SOAPFault object
SOAPHeader A representation of the SOAP header element

SOAPHeaderElement An object representing the contents in the SOAP header part of the SOAP
envelope

SOAPMessage The root class for all SOAP messages
SOAPPart The container for the SOAP-specific portion of a SOAPMessage object
Text A representation of a node whose value is text

Let's see how these classes and interfaces fit together in some working examples.

7.1.4 The JAXM Sender—Request/Reply Client

This example shows how to construct a simple SOAP message and send it to a synchronous
request/reply service that is expected to respond back. Let's start by running the sender and
looking at the results. Run the following command in a command window:

java SimpleJAXMClient

This command produces the following output in the sender window:

Starting SimpleJAXMClient:
 host url =
http://localhost:8080/examples/servlet/SimpleJAXMReceive

Sending message to URL:
http://localhost:8080/examples/servlet/SimpleJAXMReceive
Received reply from:
http://localhost:8080/examples/servlet/SimpleJAXMReceive
Result:
<soap-env:Envelope
 xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/">
<soap-env:Header/><soap-env:Body><Response>This is the response</Response>
</soap-env:Body></soap-env:Envelope>

In the Tomcat servlet engine window, you should see:

On message called in receiving servlet
There are: 0 message parts
Here's the message:
<soap-env:Envelope
 xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/">
<soap-env:Header/><soap-env:Body><Text>Some Body text</Text>
</soap-env:Body></soap-env:Envelope>

Java Web Services

142

Soon we'll inspect the sending code in detail and look at the receiving code that sends the
response. First, here is the sending client in its entirety:

import java.io.*;
import java.util.*;

public class SimpleJAXMClient {

 //Default values used if no command line parameters are set
 private static final String DEFAULT_HOST_URL =
 "http://localhost:8080/examples/servlet/SimpleJAXMReceive";
 private static final String URI = "urn:oreilly-jaws-samples";

 //Member variables
 private String m_hostURL;

 public SimpleJAXMClient(String hostURL) throws Exception
 {
 m_hostURL = hostURL;

 System.out.println();
 System.out.println
 ("__");
 System.out.println("Starting SimpleJAXMClient:");
 System.out.println(" host url = " + m_hostURL);
 System.out.println
 ("__");
 System.out.println();
 }

 public void sendJAXMMessage()
 {
 try {
 javax.xml.soap.SOAPConnectionFactory scf =
 javax.xml.soap.SOAPConnectionFactory.newInstance();
 javax.xml.soap.SOAPConnection connection =
 scf.createConnection();

 // Get an instance of the MessageFactory class
 javax.xml.soap.MessageFactory mf =
 javax.xml.soap.MessageFactory.newInstance();

 // Create a message from the message factory. It already
 // contains
 // a SOAP part
 javax.xml.soap.SOAPMessage message = mf.createMessage();

 // Get the message's SOAP part
 javax.xml.soap.SOAPPart soapPart = message.getSOAPPart();

 // Get the SOAP part envelope.
 javax.xml.soap.SOAPEnvelope envelope = soapPart.getEnvelope();

 // Get the Body from the SOAP envelope
 javax.xml.soap.SOAPBody body = envelope.getBody();

 // Add an element and content to the Body
 javax.xml.soap.Name name = envelope.createName("Text");
 javax.xml.soap.SOAPBodyElement bodyElement =
 body.addBodyElement (name);
 bodyElement.addTextNode ("Some Body text");

Java Web Services

143

 // Send the message
 System.err.println("Sending message to URL: " + m_hostURL);

 // Synchronously send the message to the endpoint and wait for
 // a reply
 javax.xml.soap.SOAPMessage reply =
 connection.call(message,
 new javax.xml.messaging.URLEndpoint (m_hostURL));

 System.out.println("Received reply from: " + m_hostURL);

 // Display the reply received from the endpoint
 boolean displayResult = true;
 if(displayResult) {
 // Dump out message response.
 System.out.println("Result:");
 reply.writeTo(System.out);
 }

 connection.close();

 } catch(Throwable e) {
 e.printStackTrace();
 }
 }

 public static void main(String args[]) {

 ...
 }
}

7.1.5 Understanding the Simple JAXM Sender

We'll start our examination of the code with the main() method. It's not unlike the main()
method in the other examples we have covered in the book. This method parses incoming
parameters, calls the constructor, and then calls sendJAXMMessage() to do the real work:

 public static void main(String args[]) {

 . . .

 // Start the SimpleJAXMClient
 try
 {
 SimpleJAXMClient jaxmClient = new SimpleJAXMClient(hostURL);
 jaxmClient.sendJAXMMessage();
 }
 . . .
 }

sendJAXMMessage()does all the interesting work; it creates and populates the SOAP
envelope. First, we obtain a connection factory and use it to create a connection:

Java Web Services

144

 public void sendJAXMMessage()
 {
 try {
 javax.xml.soap.SOAPConnectionFactory scf =
 javax.xml.soap.SOAPConnectionFactory.newInstance();
 javax.xml.soap.SOAPConnection connection =
 scf.createConnection();

7.1.5.1 Creating the message

Next, we obtain a message factory and create an instance of a SOAP message. The simple call
to MessageFactory.createMessage() creates the SOAP envelope with header and body
elements already in it.

Here is an example:

 javax.xml.soap.MessageFactory mf =
 javax.xml.soap.MessageFactory.newInstance();
 javax.xml.soap.SOAPMessage message = mf.createMessage();

If we were to look inside the SOAP message created so far, we would see that it already has
the following contents:

<soap-env:Envelope
 xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/">
<soap-env:Header/>
<soap-env:Body/>
</soap-env:Envelope>

These contents are accessible using the SOAPPart, SOAPEnvelope, SOAPHeader, and
SOAPBody objects. In JAXM, a message is accessible using parts: either a SOAPPart or an
AttachmentPart. The SOAPPart is the portion of the message that contains the envelope. The
envelope contains the SOAPHeader and the SOAPBody:

 // Get the message's SOAP part
 javax.xml.soap.SOAPPart soapPart = message.getSOAPPart();

 // Get the SOAP envelope.
 javax.xml.soap.SOAPEnvelope envelope = soapPart.getEnvelope();

 // Get the Body from the SOAP envelope
 javax.xml.soap.SOAPBody body = envelope.getBody();

7.1.5.2 Adding content to the message

The pieces of the message to which we add content are SOAPHeader and SOAPBody; we can
also add content indirectly by adding attachments to the message using the AttachmentPart
object. In a later example, we will show how to add attachments. For now, we'll add some
simple content to our Body. To do so, we must use the addBodyElement() method of the
Body object. Each body element or header element must be associated with a Name object,
which you obtain from the SOAPEnvelope using the createName() method. This method
has two signatures: one takes a simple String argument, and the other requires a String, a
prefix designation, and a URI designation. The latter approach is intended to create an
element in a specific namespace.

Java Web Services

145

After creating the Name object and using it to create a Body element, we add content by calling
addTextNode() on the body element we just created:

 // Add an element and content to the Body
 javax.xml.soap.Name name = envelope.createName("Text");
 javax.xml.soap.SOAPBodyElement bodyElement =
 body.addBodyElement (name);
 bodyElement.addTextNode ("Some Body text");

7.1.5.3 Making the call

To execute the call, we use SOAPConnection.call(), passing it the message we created and
a URLEndpoint. The URLEndpoint object, which inherits from Endpoint, specifies an
absolute URL as a destination. The call blocks until a response is received:

 // Send the message
 System.err.println("Sending message to URL: " + m_hostURL);

 // Synchronously send the message to the endpoint and wait for a reply
 javax.xml.soap.SOAPMessage reply =
 connection.call(message,
 new javax.xml.messaging.URLEndpoint (m_hostURL));

 System.out.println("Received reply from: " + m_hostURL);

To dump the SOAP response from the called service, we use a convenience method that
JAXM provides: writeTo(). This method sends the raw SOAP message to the specified
output stream. This method even handles attachments correctly, as we'll see later. When
complete, we free resources by closing the connection explicitly:

 // Display the reply received from the endpoint
 boolean displayResult = true;
 if(displayResult) {
 // Dump out message response.
 System.out.println("Result:");
 reply.writeTo(System.out);
 }
 connection.close();

7.1.6 Understanding the JAXM Receiver

The JAXM Receiver used in these examples is a simple request/reply servlet. There's nothing
profound here that we haven't already covered. The servlet receives the SOAP message from
the sender and responds with a SOAP message. The servlet code in the following listing
creates a message factory during its initialization phase:

import java.io.*;
import java.util.*;

public class SimpleJAXMReceive
 extends javax.xml.messaging.JAXMServlet
 implements javax.xml.messaging.ReqRespListener {

 static javax.xml.soap.MessageFactory fac = null;

Java Web Services

146

 static {
 try {
 fac = javax.xml.soap.MessageFactory.newInstance();
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }

 public void init(javax.servlet.ServletConfig servletConfig)
 throws javax.servlet.ServletException {
 super.init(servletConfig);
 }

Next, onMessage() dumps the contents of the message to the console by using writeTo();
then it constructs a new message to return to the sender. Later, we will see how this same
receiver and method can handle multipart messages with attachments:

 // This is the application code for handling the message. We simply
 // display the message and create and send a response.

 public javax.xml.soap.SOAPMessage onMessage
 (javax.xml.soap.SOAPMessage message) {

 System.out.println("On message called in receiving servlet");
 try {

 int count = message.countAttachments();
 System.out.println("There are: " + count + " message parts");

 /// Dump the raw message out
 System.out.println("Here's the message: ");
 message.writeTo(System.out);

 /// Construct and send SOAP message response
 javax.xml.soap.SOAPMessage msg = fac.createMessage();
 javax.xml.soap.SOAPPart part = msg.getSOAPPart();
 javax.xml.soap.SOAPEnvelope env = part.getEnvelope();
 javax.xml.soap.SOAPBody body = env.getBody();
 javax.xml.soap.Name name = env.createName("Response");
 javax.xml.soap.SOAPBodyElement bodyElement =
 body.addBodyElement (name);
 bodyElement.addTextNode ("This is the response");

 return msg;

 } catch(Exception e) {
 System.out.println(
 "Error in processing or replying to a message");
 return null;
 }
 }
}

7.1.7 Using JAXM for SOAP with Attachments

We will now show how to modify our sending client to use the JAXM API to add attachments
and headers. To see the behavior and output of this new client, execute the following
command:

Java Web Services

147

java GenericJAXMSWAClient

This client assumes that files named PO.xml and attachment.txt are in the current directory.
You should see the following output from the sending client:

Starting GenericJAXMSWAClient:
 host url =
http://localhost:8080/examples/servlet/SimpleJAXMReceive
 data file = PO.xml
 attachment = Attachment.txt

Sending message to URL:
http://localhost:8080/examples/servlet/SimpleJAXMReceive

Received reply from:
http://localhost:8080/examples/servlet/SimpleJAXMReceive
Result:
<?xml version="1.0" encoding="UTF-8"?>
<soap-env:Envelope
 xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/">
<soap-env:Header/><soap-env:Body>
<Response>This is the response</Response>
</soap-env:Body></soap-env:Envelope>

The sender's output is similar to the output from the previous example. The real difference is
what is seen in the Tomcat console window. The same receiver we used before generates
much different results because we're now sending a multipart message. Note the MIME
boundaries that separate the message's parts. The first part of the message is the SOAP
envelope; the next two parts are the added attachments:

On message called in receiving servlet
There are: 2 attachment parts
Here's the message:
--2023334682.1010158929328.JavaMail.chappell.nbchappell3
Content-Type: text/xml

<soap-env:Envelope
 xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/">
<soap-env:Header/><soap-env:Body><PurchaseOrder>
<shipTo country="US">
<name>Joe Smith</name>
<street>14 Oak Park</street><city>Bedford</city><state>MA</state>
<zip>01730</zip></shipTo><items><item partNum="872-AA">
<productName>Candy Canes</productName>
<quantity>444</quantity><price>1.68</price>
<comment>I want candy!</comment></item></items></PurchaseOrder>
</soap-env:Body></soap-env:Envelope>
--2023334682.1010158929328.JavaMail.chappell.nbchappell3
Content-Type: text/plain

This is an attachment.
--2023334682.1010158929328.JavaMail.chappell.nbchappell3
Content-Type: text/plain; charset=ISO-8859-1

Another Part
--2023334682.1010158929328.JavaMail.chappell.nbchappell3--

Java Web Services

148

7.1.8 Understanding the SwA Sender

Here's the code for the new sender, GenericJAXMSWAClient. We will break it down and walk
through the new parts in a moment.

First, however, look at the whole thing:

import java.io.*;
import java.util.*;

public class GenericJAXMSWAClient {

 //Default values used if no command line parameters are set
 private static final String DEFAULT_DATA_FILENAME = "PO.xml";
 private static final String DEFAULT_HOST_URL
 = "http://localhost:8080/examples/servlet/SimpleJAXMReceive";
 private static final String URI = "urn:oreilly-jaws-samples";
 private static final String DEFAULT_ATTACHMENT_FILENAME
 = "Attachment.txt";

 //Member variables
 private String m_hostURL;
 private String m_dataFileName;
 private String m_attachment;

 public GenericJAXMSWAClient(String hostURL, String dataFileName,
 String attachment)
 throws Exception
 {
 m_hostURL = hostURL;
 m_dataFileName = dataFileName;
 m_attachment = attachment;

 System.out.println();

System.out.println("__");
 System.out.println("Starting GenericJAXMSWAClient:");
 System.out.println(" host url = " + m_hostURL);
 System.out.println(" data file = " + m_dataFileName);
 System.out.println(" attachment = " + m_attachment);

System.out.println("__");
 System.out.println();
 }

 public void sendJAXMMessage()
 {
 try {

 // for doing JAXP transformations
 javax.xml.transform.TransformerFactory tFact
 = javax.xml.transform.TransformerFactory.newInstance();
 javax.xml.transform.Transformer transformer
 = tFact.newTransformer();

 // Create an specific URLEndpoint
 javax.xml.messaging.URLEndpoint endpoint
 = new javax.xml.messaging.URLEndpoint(m_hostURL);

Java Web Services

149

 // Create a connection
 javax.xml.soap.SOAPConnectionFactory scf
 = javax.xml.soap.SOAPConnectionFactory.newInstance();
 javax.xml.soap.SOAPConnection connection =
 scf.createConnection();

 // Get an instance of the MessageFactory class
 javax.xml.soap.MessageFactory mf
 = javax.xml.soap.MessageFactory.newInstance();

 // Create a message from the message factory.
 // It already contains a SOAP part
 javax.xml.soap.SOAPMessage message = mf.createMessage();

 // Get the message's SOAP part
 javax.xml.soap.SOAPPart soapPart = message.getSOAPPart();

 // Get the SOAP envelope from the SOAP part of the message.
 javax.xml.soap.SOAPEnvelope envelope = soapPart.getEnvelope();

 // Read in the XML that will become the body in the SOAP
 // envelope

 javax.xml.parsers.DocumentBuilderFactory dbf =
 javax.xml.parsers.DocumentBuilderFactory.newInstance();
 javax.xml.parsers.DocumentBuilder db =
 dbf.newDocumentBuilder();
 org.w3c.dom.Document poDoc = db.parse(m_dataFileName);

 // Get the empty SOAP envelope as a generic Source
 // and put it into a DOMResult
 javax.xml.transform.Source spSrc = soapPart.getContent();
 javax.xml.transform.dom.DOMResult domResultEnv
 = new javax.xml.transform.dom.DOMResult();
 transformer.transform(spSrc, domResultEnv);

 // Now that we have the empty SOAP envelope in a DOMSource, we
 // need to put it together with the DOM we just built from the
 // input file.
 // Get the document
 org.w3c.dom.Node envelopeRoot = domResultEnv.getNode();
 if (envelopeRoot.getNodeType()==org.w3c.dom.Node.DOCUMENT_NODE)
 {
 // Get the root element of the document.
 org.w3c.dom.Element docEl =
 ((org.w3c.dom.Document)envelopeRoot).getDocumentElement();

 // Find the <SOAP-ENV:Body> tag using the envelope
 // namespace
 org.w3c.dom.NodeList nList = docEl.getElementsByTagNameNS(
 javax.xml.soap.SOAPConstants.URI_NS_SOAP_ENVELOPE,"Body");
 if (nList.getLength() > 0)
 {
 // Found our <PurchaseOrder> element. Plug it in
 org.w3c.dom.Node bodyNode = nList.item(0);
 org.w3c.dom.Node poRoot = poDoc.getDocumentElement();

Java Web Services

150

 // Import the node into this document.
 org.w3c.dom.Node importedNode =
 ((org.w3c.dom.Document)envelopeRoot).importNode(poRoot,
 true);
 bodyNode.appendChild(importedNode);

 // Now shove it all back into the envelope.
 javax.xml.transform.dom.DOMSource domSource =
 new javax.xml.transform.dom.DOMSource(envelopeRoot);
 soapPart.setContent(domSource);
 }
 }
 else if (envelopeRoot.getNodeType() ==
 org.w3c.dom.Node.ELEMENT_NODE)
 System.out.println("ElementNode");
 else
 System.out.println("Unknown Node type");

 // Get the Header from the SOAP envelope
 javax.xml.soap.SOAPHeader header = envelope.getHeader();

 // Add an element and content to the Header
 javax.xml.soap.Name name
 = envelope.createName("MessageHeader",
 "jaxm","urn:oreilly-jaws-samples");
 javax.xml.soap.SOAPHeaderElement headerElement
 = header.addHeaderElement(name);

 // Add an element and content to the Header
 name = envelope.createName("From");
 javax.xml.soap.SOAPElement childElement
 = headerElement.addChildElement (name);
 childElement.addTextNode ("Me");

 // Add an element and content to the Header
 name = envelope.createName("To");
 childElement = headerElement.addChildElement(name);
 childElement.addTextNode ("You");

 // Add additional Parts to the message
 javax.activation.FileDataSource fds
 = new javax.activation.FileDataSource(m_attachment);
 javax.activation.DataHandler dh
 = new javax.activation.DataHandler(fds);
 javax.xml.soap.AttachmentPart ap1
 = message.createAttachmentPart(dh);
 message.addAttachmentPart(ap1);

 javax.xml.soap.AttachmentPart ap2
 = message.createAttachmentPart("Another Part",
 "text/plain; charset=ISO-8859-1");
 message.addAttachmentPart(ap2);

 // Save the changes made to the message
 message.saveChanges();

 System.err.println("Sending message to URL: " +
 endpoint.getURL());

Java Web Services

151

 // Send the message to the endpoint and wait for a reply
 javax.xml.soap.SOAPMessage reply
 = connection.call(message, endpoint);

 System.out.println("Received reply from: " + endpoint);

 // Display the reply received from the endpoint
 boolean displayResult = true;

 if(displayResult) {
 // Document source, do a transform.
 System.out.println("Result:");
 javax.xml.soap.SOAPPart replyPart = reply.getSOAPPart();
 javax.xml.transform.Source src = replyPart.getContent();
 javax.xml.transform.stream.StreamResult result =
 new javax.xml.transform.stream.StreamResult(System.out);
 transformer.transform(src, result);
 System.out.println();
 }
 connection.close();

 } catch(Throwable e) {
 e.printStackTrace();
 }
 }

 //
 // NOTE: the remainder of this deals with reading arguments
 //
 /** Main program entry point. */

 public static void main(String args[]) {

 // Process command line, etc
 ...
 // Start the GenericJAXMSWAClient
 try
 {
 GenericJAXMSWAClient jaxmClient =
 new GenericJAXMSWAClient(hostURL, dataFileName, attachment);
 jaxmClient.sendJAXMMessage();

 }
 catch(Exception e)
 {
 System.out.println(e.getMessage());
 }
 }
...
}

7.1.8.1 Attaching an XML fragment to the SOAP envelope

Much of the code in this chapter deals with attaching PO.xml to the SOAP envelope. When
trying to port our Apache SOAP example from the previous chapter, we ran into a bit of a
gotcha. Attaching an existing XML document to a SOAP envelope is reasonable—but you
can't do it, at least not simply. This flaw is by far the biggest we have encountered in the API.
The MessageFactory creates an envelope with empty <Header> and <Body> elements. APIs
exist for creating and manipulating elements individually, but nothing lets you take a whole

Java Web Services

152

document and attach it. A SOAPPart.setContent() method takes a document source and
attaches it as the SOAP part of the message, but the document that you give it must have the
envelope structure in place already. This sort of defeats the purpose. If we had corporate data
that was already packaged in full SOAP envelopes, we wouldn't need an API at all, would
we?

Evidence suggests that this package was created solely for the purpose of providing an API
for connecting to an ebXML infrastructure. In ebXML, the body of the envelope is intended
to be a manifest and the actual payload of the message is intended to be an attachment. What
if you don't want to use it in that way?

Enough of the soapbox. Our solution converts both the envelope and the XML document into
DOM trees, plugs them together, and assigns the whole thing back into the envelope. To help
do this, we use a JAXP Transformer object. The javax.xml.transform package is an API
in JAXP, which is mainly intended for transforming documents using XSLT stylesheets. We
use it as a utility to convert the envelope and the XML document between a DOM tree
representation and the javax.xml.transform.Stream datatype that is required by some
JAXM envelope methods we will use:

 // for doing JAXP transformations
 javax.xml.transform.TransformerFactory tFact
 = javax.xml.transform.TransformerFactory.newInstance();
 javax.xml.transform.Transformer transformer
 = tFact.newTransformer();

First, read in the XML document (PO.xml) from a disk and put it into a document:

 // Read in the XML that will become the body in the SOAP
 // envelope
 javax.xml.parsers.DocumentBuilderFactory dbf =
 javax.xml.parsers.DocumentBuilderFactory.newInstance();
 javax.xml.parsers.DocumentBuilder db =
 dbf.newDocumentBuilder();
 org.w3c.dom.Document poDoc = db.parse(m_dataFileName);

After creating the message and getting its SOAPPart, getContent() retrieves the envelope
as a generic javax.xml.transform.Source object. The Source object is the superclass of
either DOMSource, SAXSource, or StreamSource. Likewise, the Result object is the
superclass of DOMResult, SAXResult, and StreamResult. The transformer can take any
Source object and do the right thing automatically, regardless of its subtype, and convert it to
the desired Result, as shown in the following listing:

 // Get the empty SOAP Envelope as a generic Source
 // and put it into a DOMResult
 javax.xml.transform.Source spSrc = soapPart.getContent();
 javax.xml.transform.dom.DOMResult domResultEnv
 = new javax.xml.transform.dom.DOMResult();
 transformer.transform(spSrc, domResultEnv);

Now that we have the envelope as a DOMResult, retrieve the Document and its root element:

Java Web Services

153

 org.w3c.dom.Node envelopeRoot = domResultEnv.getNode();
 if (envelopeRoot.getNodeType() ==
 org.w3c.dom.Node.DOCUMENT_NODE)
 {
 // Get the root element of the document.
 org.w3c.dom.Element docEl =
 ((org.w3c.dom.Document)envelopeRoot).getDocumentElement();

Next, find the <SOAP-ENV:Body> tag using the namespace of the envelope and plug in the
purchaseOrder document:

 // Find the <SOAP-ENV:Body> tag using the envelope
 // namespace
 org.w3c.dom.NodeList nList =
 docEl.getElementsByTagNameNS(
 javax.xml.soap.SOAPConstants.URI_NS_SOAP_ENVELOPE,"Body");
 if (nList.getLength() > 0)
 {
 // Found our <PurchaseOrder> element. Plug it in
 org.w3c.dom.Node bodyNode = nList.item(0);
 org.w3c.dom.Node poRoot = poDoc.getDocumentElement();

Now we have the two elements that need to be attached to one another: the SOAP Body
element and the PurchaseOrder element. However, you can't just reparent a Node from one
document to another; doing so causes an error. Each element keeps track of its owning
Document, which is checked by the individual routines that insert elements. Move a Node into
another document properly by importing the Node and its subelements into the Document first.
This operation performs a copy. The second parameter to import() is a Boolean that
indicates whether this is a deep copy of all subnodes or just the current one. Once the nodes
are imported into the Document that represents the envelope, we can simply attach the root
Node as the immediate child of the <Body> element:

 org.w3c.dom.Node importedNode =
 ((org.w3c.dom.Document)envelopeRoot).importNode(poRoot,
 true);
 bodyNode.appendChild(importedNode);

If you use DOM level 3, there is an alternative to doing a copy. An
experimental adoptNode() method reassigns an actual instance of a
Node from one Document to another.

Now that the envelope is joined to the PO document, we take the root Node, convert it to a
DOMSource, and place the whole thing into the messages's SOAPPart:

 javax.xml.transform.dom.DOMSource domSource =
 new javax.xml.transform.dom.DOMSource(envelopeRoot);
 soapPart.setContent(domSource);

7.1.8.2 Adding a header dynamically

You will encounter no surprises here. This code is symmetric to the Body APIs that we saw at
the beginning of this section:

Java Web Services

154

 // Add an element and content to the Header
 javax.xml.soap.Name name
 = envelope.createName("MessageHeader",
 "jaxm","urn:oreilly-jaws-samples");
 javax.xml.soap.SOAPHeaderElement headerElement
 = header.addHeaderElement(name);

 // Add an element and content to the Header
 name = envelope.createName("From");
 javax.xml.soap.SOAPElement childElement
 = headerElement.addChildElement (name);
 childElement.addTextNode ("Me");

 // Add an element and content to the Header
 name = envelope.createName("To");
 childElement = headerElement.addChildElement(name);
 childElement.addTextNode ("You");

7.1.8.3 Adding MIME attachments

Next, let's look at two (of many) ways to add attachments to our SOAP message. The simple
sender uses both methods. No matter how you add an attachment, though, it requires two
steps: call createAttachmentPart() with the appropriate content to get an attachment and
addAttachmentPart() to add the attachment to the message.

The first method is arguably more complex; we use it to insert an external file (in this case, a
purchase order, formatted as XML) as an attachment. First, we use the Activation Framework
to create a FileDataSource that points at our external purchase order. We then convert the
FileDataSource to a DataHandler; in turn, we use the DataHandler to create our first
attachment, ap1, by calling createAttachmentPart(). Finally, we call
addAttachmentPart() to add the attachment to the message.

Note that we don't need to specify the content type anywhere; the content type is provided
automatically by the DataHandler object:

 // Add additional Parts to the message
 javax.activation.FileDataSource fds
 = new javax.activation.FileDataSource(m_attachment);
 javax.activation.DataHandler dh
 = new javax.activation.DataHandler(fds);
 javax.xml.soap.AttachmentPart ap1
 = message.createAttachmentPart(dh);
 message.addAttachmentPart(ap1);

Perhaps a more intuitive way to create an attachment is to call createAttachmentPart()
with the content and content type as arguments, as we've done here in the attachment ap2:

 javax.xml.soap.AttachmentPart ap2
 = message.createAttachmentPart("Another Part",
 "text/plain; charset=ISO-8859-1");
 message.addAttachmentPart(ap2);

Java Web Services

155

7.1.9 JAXM Profiles

JAXM is capable of morphing itself into an API that frontends any number of SOAP-based
messaging frameworks through the use of "profiles." A key part of a message profile is the
ability to automate the creation of message headers and body elements that may be specific to
Framework. We will describe this concept in more detail in a moment. In the 1.0 reference
implementation, an ebXML MS profile and a SOAP-RP profile are provided as examples.

A profile consists of a ProviderConnectionFactory, a ProviderMetaData object that
provides a list of profiles via a getSupportedProfiles() method, and a custom
MessageFactory used to create messages specific to the profile being used. Let's look at how
these are used.

7.1.9.1 ProviderConnectionFactory

ProviderConnectionFactory allows a JAXM client to obtain a ProviderConnection to a
messaging provider, such as an ebXML Message Service, or a JMS provider that supports
SOAP over JMS. A ProviderConnectionFactory can be configured administratively and
retrieved via a JNDI lookup(). From there, a ProviderConnection is established:

 ctx = new InitialContext();
 ProviderConnectionFactory pcf =
 (ProviderConnectionFactory)ctx.lookup("GuaranteedMessaging");
 ProviderConnection pc = pcf.createConnection();

7.1.9.2 Obtaining the profile via ProviderMetaData

Once the ProviderConnection is instantiated, the ProviderMetaData class can be queried
to discover whether this connection supports a desired profile. The getSupportedProfiles(
) returns an array of Strings that lists the profiles that the ProviderConnection supports.
For example, if ebXML is supported, the array will contain the string "ebXML":

ProviderMetaData pMetaData = pc.getMetaData();
String[] supportedProfiles = pMetaData.getSupportedProfiles();
String desiredProfile = null;

for(int i=0; i < supportedProfiles.length; i++) {
 if(supportedProfiles[i].equalsIgnoreCase("ebxml")) {
 desiredProfile = supportedProfiles[i];
 break;
 }
}

7.1.9.3 Using the custom MessageFactory to create profile-specific messages

It is possible to plug in a custom MessageFactory that creates a message in the form
expected by the transport being used. For example, a MessageFactory for an ebXML profile
might create a message with a SOAP envelope, which is prepopulated with the
<MessageHeader> element in the SOAP header. In the following code, the
EbXMLMessageImpl is a custom extension of the javax.xml.soap.SOAPMessage:

MessageFactory mf = pc.createMessageFactory(desiredProfile);
EbXMLMessageImpl ebxmlMsg = (EbXMLMessageImpl)mf.createMessage();

Java Web Services

156

7.1.9.4 Sending the message

You can send a message with JAXM in two ways. One way uses the
ProviderConnection.send() method. The other uses SOAPConnection.call(). The two
methods have different purposes and different semantics. Since we are on the subject of
ProviderConnection, we will talk about send() first and defer SOAPConnection.call()
to Section 7.1.2.

The ProviderConnection.send() method assumes that one-way asynchronous sending
can occur. Whether the send() method blocks and waits for the operation to occur depends
on the provider's underlying message delivery semantics.

If you look at the API document for ProviderConnection.send(), you may notice that
there is no way to specify a destination as part of the method signature. It assumes that the
destination is established and somehow already associated with the SOAP message. There are
a number of reasons for this design:

• The JAXM API is intended to be agnostic with regard to the underlying workings of
the provider. The API is designed to work with many different providers, and
specifying the destination as a parameter to send() may not always be appropriate.

• Whether the destination is a URI, URN, or an absolute URL is a function of the
underlying infrastructure to which the JAXM API is attached. For instance, the
messaging provider may provide an administration piece that maps generic URIs to
specific destinations such as a URL or a JMS Topic or Queue.

• The SOAP header element stores the destination (or destinations). The SOAP header
is constructed using the Envelope APIs (just like any other part of the message).

To facilitate setting the destination, JAXM provides an Endpoint class that specifies a URI as
a destination. The following code assumes that the profile-specific message has defined
additional setFrom() and setTo() methods, and that the underlying infrastructure knows
how to interpret the URI string used to construct the Endpoint object:

ebxmlMsg.setFrom(new Endpoint(from));
ebxmlMsg.setTo(new Endpoint(to));
pc.send(ebxmlMsg);

A strange inconsistency seems to exist in the API here: the code one would use to connect and
send SOAP messages depends on how the client is deployed. When using a
ProviderConnection, you send a message using the
java.xml.messaging.ProviderConnection.send() method. Otherwise, you send the
message using the javax.xml.soap.SOAPConnection.call() method. One could argue
that the two scenarios are sufficiently different and don't warrant consistent APIs. If you write
an application that is intended to connect to a larger framework, which implies using the
ProviderConnection approach, many things specific to that framework have to be coded
into the application (beyond just the connect and send operations).

Java Web Services

157

7.2 JAX-RPC

JAX-RPC is a specification that is developing through the Java Community Process (JCP). It
aims to provide a JCP-sanctioned standard set of Java APIs for both a client-side and server-
side programming model.

These APIs leverage interoperable communications within Java applications with a protocol
design center based on, but not limited to, SOAP. It covers the following areas:

• A Java code generation model for client-side stubs and server-side tie classes, based
on a set of conventions for mapping WSDL to Java and Java to WSDL.

• An API for dynamic SOAP-RPC and a Call interface that is conceptually similar to
Apache SOAP. Call semantics include synchronous invoke and synchronous
invoke/one-way. JAX-RPC does not address asynchronous invocation in its 1.0
rendition. A true asynchronous model would require callbacks (onMessage, etc). The
one-way invocation model defined in the API is considered synchronous.

• A model for defining a service, registering it, and invoking it within the J2EE and
J2SE environments. This model covers typical J2EE/J2SE deployment issues such as
creating deployment descriptors and packaging Web Application Archive (WAR)
files.

• A binding to SOAP, including SOAP Fault handling through Java exceptions and
HeaderFault processing.

• Type mappings between Java and XML datatypes.
• A service-side invocation handler mechanism used to chain together service method

invocations.
• A reference implementation (RI) that provides a runtime implementation and a code

generation tool, xrpcc.
• A serialization framework for marshalling and unmarshalling data between Java and

XML based on soap-encoding rules. The RI from Sun includes an implementation of
this framework.

JAX-RPC is a funny kind of animal. Finding the right kinds of things to write about it in the
context of this book was a challenge. At the time of writing, the specification was still
evolving. This chapter is based on a Version 0.6 snapshot of the specification's first public
draft, issued as part of the Winter 01 Java Web Services Developer Pack. There are no known
implementations, except for the RI (which is evolving with the specification) and the Apache
Axis project (which is in alpha stage and based on Version 0.5 of the specification).
Therefore, many examples in this section are repurposed directly from the specification.
Several areas in the specification are in flux, need more definition, and are extremely likely to
change before it hits a 1.0 status. Currently, the specification is 152 pages long and has
enough information in it to comprise a whole book when it's finally finished.

In spite of its al dente status, the JAX-RPC specification has a brief working tutorial (as do all
JAX products) that walks you through installation and setup and guides you through building
a simple "Hello World" example. The RI runtime requires Tomcat; its installation, code
generation tool, and deployment tool are based on Ant.

Most of the specification iterates over details and rules for mapping things between Java,
XML, SOAP, and WSDL—not only for infrastructure provider runtime interactions, but also

Java Web Services

158

to provide directives and guidelines for code generation tools. If you are building a code
generation tool, you will need more than we are presenting in this book.

Considering these factors, we still chose to write about JAX-RPC because it is a significant
piece of functionality that is slated for J2EE 1.4. Therefore, its "baketime" will have to be
short. We'll focus on the things that are baked and concentrate on the things that are exposed
to the application developer. As the specification progresses, we will update our examples and
provide new examples to go with them. Check this book's home page on the O'Reilly web site
(http://www.oreilly.com/catalog/javawebserv) occasionally to see what we have placed there.

7.2.1 Stubs and Tie Classes

The concepts of "stub" and "tie" are not unique to JAX-RPC. The terms have been used in
many other distributed-computing technologies, such as RMI, CORBA, and DCE RPC. Some
of you may also be familiar with the terminology "stubs and skeletons." To understand stubs
and ties, it is important to understand what's so exciting about remote procedure calls in the
first place. The idea behind a remote procedure call is that an application makes a call to a
method on an object, and the actual implementation of that object exists in another process
space. The processes are typically located on different machines separated by a network
connection. The application making the method call (the client) does not need to know that it
actually makes a call to a remote object (the service), nor does it need to worry about the
details of how that happens.

The client application has a local object, the "stub," that acts as a proxy for the remote object.
The stub object has the same methods as the remote object, but does not implement the
business logic. Instead, the stub represents an interface to an underlying infrastructure that is
responsible for packaging the method name and its parameters into an agreed-upon wire
format. This operation is sometimes referred to as marshalling or encoding. Upon reaching its
destination, the skeleton or tie class is responsible for unmarshalling the wire format and
reconstructing the data into a form that is recognizable by the server application. In the case of
a remote procedure call, this means invoking the actual method with the expected parameters
and datatypes, then marshalling return values back to the sender.

An assumption here is that a tool generates the stub and tie code, isolating the developer from
the details of the marshalling and the transport protocol. In other distributed-computing
technologies, in which both sides of the conversation are under the domain of a single vendor,
a tool typically generates the stub and the skeleton at the same time, based on a generic
description of an interface. With SOAP and web services, we break tradition because we can't
assume that the invoking client and the receiving service are part of the same software
infrastructure. It is likely that each end of the conversation is built upon different software
platforms. The one constant in the picture is that each side needs to interact with the same
interface definition defined in WSDL and speak the same interoperable protocol, such as
SOAP, which is also specified in WSDL as a binding.

Stub generation by a tool is only one option in JAX-RPC. We will discuss other options in
Section 7.4.

Java Web Services

159

7.2.2 WSDL to Java, Java to WSDL

JAX-RPC defines a mapping of datatypes between WSDL and Java. The mappings cover
simple datatypes, such as short, int, long, float, and double. It also has some fairly dry
and boring rules about the mapping of arrays, structs and complex types, and enumerations.
The good news is that this part of the specification is intended for vendors who build code
generation tools that hide all these details behind a stub class.

You should also be familiar with definitions of parameter-passing modes. Some highlights
that we will cover include remote references, pass-by-copy, and Holder classes.

7.2.2.1 Remote references

The generally accepted definition of a remote reference is an instance of a proxy that
represents a particular instance of a remote object or service that can be transferred from one
client to another. Remember that JAX-RPC doesn't support remote references in its pre-1.0
rendition, largely because SOAP doesn't have a model for remote references, either. A JAX-
RPC client or server must be able to support any arbitrary SOAP message to or from a non-
JAX-RPC entity.

7.2.2.2 Pass-by-copy and Holder classes

In a WSDL operation, a message part can be specified to appear within the input message
only. This message part is considered an In parameter. A WSDL message part appearing only
within an operation's output message can be thought of as an out parameter. Message parts
appearing in both input and output messages within a WSDL operation can be called inout
parameters.

A parameter marked as in indicates that the sending client has no further concern with what
that remote procedure does with it once it is sent over the wire. This concept is commonly
referred to as pass-by-value or pass-by-copy. An out parameter is a return value. An inout
parameter is expected to be modified by the remote procedure, causing the calling client to
see the modified value after the method invocation returns.

Generally speaking, you can support inout parameters in two ways: with pass-by-reference
and Holder classes. In distributed-computing environments that support pass-by-reference, an
object reference is a specific datatype that can be passed as a parameter to a remote object. It
can be treated as the handle to an actual instance of the parameter. Once the remote method
call is complete, it may be dereferenced by the client program to obtain the newly modified
value. The underlying infrastructure marshalls the data over the wire to get the right result.

Java doesn't support pass-by-reference natively for primitive types. Instead, JAX-RPC uses
Holder classes, which are classes used by the underlying infrastructure to act as a place to
hold the values. A stub uses a Holder to store the modified values after the method invocation
so the calling client can then access them. Here's an example illustrating the use of Holders:

Java Web Services

160

public interface StockQuoteProvider extends java.rmi.Remote {
// Method returns last trade price
float getStockQuote(String tickerSymbol,
 javax.xml.rpc.holders.IntHolder volume,
 javax.xml.rpc.holders.FloatHolder bid,
 javax.xml.rpc.holders.FloatHolder ask)
 throws java.rmi.RemoteException;
}

//Java
package javax.xml.rpc.holders;
public final class IntHolder {
 public int value;
 public IntHolder() { }
 public IntHolder(int value) {
 this.value = value;
 }
}

Holders are also used to represent complex data structures as parameters. The java.xml.rpc
Holders package defines Holders for all the built-in Java primitives. Beyond that, the code
generation tool is responsible for creating Holders for the parameters. In either case—whether
using the supplied Holder classes or the custom generated ones—-the code generation tool is
also responsible for creating the code that serializes and deserializes data sent across the wire.

7.2.2.3 Generated service interface

JAX-RPC allows a code generation tool to create an implementation class for the Service
interface based on an existing WSDL document. While the implementation details of the
generated class are vendor-specific, the generated interface is required to adhere to the
following design pattern:

public interface <ServiceName> extends javax.xml.rpc.Service {
 public <ServiceDefInterface> get<Name of the wsdl:port>()
 throws JAXRPCException;
 ...
}

In the previous listing, the <ServiceName> of the generated service interface is mapped from
the name attribute of the corresponding wsdl:service definition. The
<ServiceDefInterface> name is mapped from the portType, and the get<Name of the
wsdl:port>() method is mapped from the—you guessed it—wsdl:port definition's name
attribute. For example, given the following WSDL definition:

<service name="StockQuoteService">
 <port name="StockQuoteProviderPort" binding="tns:somebinding">
 <http:address location="http://example.com/"/>
 </port>
</service>

<portType name="StockQuoteProvider">
 <operation name="GetLastTradePrice"
 parameterOrder="tickerSymbol">
 ...
 </operation>
</portType>

Java Web Services

161

a JAX-RPC implementation creates the following Java interface; the get method returns an
instance of a stub class that implements the <ServiceDefInterface>:

package com.example;
 public interface StockQuoteService extends javax.xml.rpc.Service {
 public StockQuoteProvider getStockQuoteProviderPort()
 throws JAXRPCException;
 ...
}

7.2.2.4 Value types

Value types are specific to the generation of WSDL from a Java class. A value type is a
special form of serializable class, containing data values that are capable of being marshaled
between a client and a service. It must implement Serializable, but does not follow the
standard rules for Java serialization. Only public, nontransient data members are mapped to
the WSDL. A value type may also be a JavaBean, in which case, the WSDL generation may
use bean introspection to identify the properties and map them to the WSDL. The methods in
the value class are not mapped to the WSDL; it is strictly for data. Whether a value type
should use the Serializable marker interface or whether a different interface should be
defined is still undecided.

7.3 SOAPElement API

JAX-RPC also allows the use of a javax.xml.soap.SOAPElement object as a parameter
value for a remote method. This object is intended for when you want to bypass an existing
datatype mapping or when a mapping doesn't exist for the data you are using. You can also
use it if you just want to plug in the element by hand. Regardless of the reasons, whatever you
place in the SOAPElement parameter becomes the request envelope's body.

If you recall the JAXM section, we used the SOAPElement like this:

// Add an element and content to the Header
name = envelope.createName("From");
javax.xml.soap.SOAPElement childElement
 = headerElement.addChildElement (name);
childElement.addTextNode ("Me");

In this code, we create the element as a side effect of appending the name to the
headerElement. A more direct way to create an element uses the SOAPElementFactory to
create an element and populate its contents. To create a SOAPElementFactory, call its static
method newInstance():

javax.xml.soap.SOAPElementFactory sef
 = javax.xml.soap.SOAPElementFactory.newInstance();
javax.xml.soap.SOAPElement sel = sef.createElement(...);

The interface for the SOAPElementFactory is:

Java Web Services

162

package javax.xml.soap;
public abstract class SOAPElementFactory{
 public abstract SOAPElement create(Name name)
 throws SOAPException;
 public abstract SOAPElement create(String localName)
 throws SOAPException;
 public abstract SOAPElement create(String localName, String prefix,
 String uri)
 throws SOAPException;
 public static SOAPElementFactory newInstance()
 throws SOAPException;
}

The first public draft of the JAX-RPC specification identifies some problems with this
approach, which may mean that it's likely to change in a future draft. One problem is that the
Name object is created using the Envelope object, which is not available to the JAX-RPC
programmer. "Not available" means that nothing exposed in the JAX-RPC client interface lets
you peek at the envelope that will eventually be sent. The lack of a factory for a Name is not
that big of an issue in itself. The Name interface contains a local name, a namespace prefix,
and a URI. An alternate method signature lets you create the SOAPElement with the desired
result. More significant issues are probably also behind this problem.

7.4 JAX-RPC Client Invocation Models

JAX-RPC defines three different client models used to invoke a remote method: one static
model and two dynamic models. The statically defined stub model is typically based on a
code generation tool. The dynamic proxy invocation model is based on building a proxy
object dynamically using the reflection APIs (java.lang.reflect). The Dynamic Invocation
Interface (DII) is based on a Call object similar to the Apache SOAP Call interface we saw
in Chapter 5.

7.4.1 Statically Generated Stubs

A tool can generate a class that implements the javax.xml.rpc.stub interface, which
contains the following methods:

package javax.xml.rpc;
public interface Stub {
 public void _setProperty(String name, Object value);
 public Object _getProperty(String name);
 public java.util.Iterator _getPropertyNames();
}

In addition to implementing these methods, the generated stub would have a method that
matches the name of the actual service method, such as getLastTradePrice(). The
underlying implementation of this method can be anything the tool and the infrastructure
agree upon. It is not required to be transport-independent; in fact, stubs are usually bound
directly to a transport. The methods in the Stub interface exist to allow dynamic capabilities
in the static stub.

Table 7-2 lists the handful of predefined properties that can be set on the Stub class. These
properties are expected to be set prior to making a method call, based on the assumption that

Java Web Services

163

the underlying transport or infrastructure might need the information contained in these
properties to reach the service successfully.

Table 7-2. Stub properties
Property name Value Description
http.auth.username java.lang.String Username for the HTTP Basic authentication.
http.auth.password java.lang.String Password for the HTTP Basic authentication.
javax.xml.rpc.service.

endpoint.address
java.lang.String

Target service endpoint address. The URI scheme for
the endpoint address specification must correspond to
the protocol/transport binding for this stub class.

By convention, the fully qualified package name should be part of any property name.
Vendor-specific properties should follow the same naming convention, using the vendor's
package-naming style.

As of JAX-RPC 1.0 Public Draft, whether there should be a standard set of accessor methods
for these standard properties was an issue under discussion.

7.4.2 Dynamic Invocation Using the Service Interface

The javax.xml.rpc.Service interface encapsulates two flavors of dynamic invocation that
do not require any generated code. These methods are dynamic proxy invocation via the
getPort() method and the DII using the Call interface. Here is the Service interface
definition:

package javax.xml.rpc;
public interface Service {
 public Call createCall()
 throws JAXRPCException;
 public Call createCall(QName portName)
 throws JAXRPCException;
 public Call createCall(QName portName, java.lang.String operationName)
 throws JAXRPCException;
 public java.rmi.Remote getPort(QName portName,
 java.lang.Class serviceDefInterface)
 throws JAXRPCException;
 public java.util.Iterator getPorts();
 public Qname getServiceName();
 public TypeMappingRegistry getTypeMappingRegistry()
 throws JAXRPCException;
 public java.net.URL getWSDLDocumentLocation();
 public void setTypeMappingRegistry(TypeMappingRegistry registry)
 throws JAXRPCException;
}

The dynamic proxy approach doesn't require any generated code.
javax.xml.rpc.Service.getPort() returns a dynamic proxy for the object being operated
on. Only a QName to identify the port and a compiled interface definition class are required:

com.example.StockQuoteProvider sqp =
 (com.example.StockQuoteProvider)service.getPort(portName,
 StockQuoteProvider.class);

float price = sqp.getLastTradePrice("ACME");

Java Web Services

164

In this code, the getPort() method is passed in an interface definition that will be used as a
template for building a runtime instance of a dynamic proxy. Thus, the returned object is not
the same as the passed-in object. A typical dynamic proxy implementation uses the
java.lang.reflect.Proxy object to build a table of method objects, which are dispatched
using java.lang.reflect.InvocationHandler.invoke(). In the context of JAX-RPC,
that validation would result in constructing the appropriate SOAP envelope and sending it on
its way. getPort() may choose to validate the interface and the port name against its
WSDL if it likes, but this is not required by the specification.

For more information on dynamic proxies, refer to the J2SE documentation for
java.lang.reflect.Proxy and java.lang.reflect.InvocationHandler, found at
http://java.sun.com/j2se/1.3/docs/guide/reflection/.

7.4.3 Dynamic Invocation Interface (DII)

DII is based on a Call object. To get a Call object, use the
javax.xml.rpc.Service.createCall() method. There are three overloaded versions of
createCall():

package javax.xml.rpc;
public interface Service {
 public Call createCall() throws JAXRPCException;
 public Call createCall(QName portName) throws JAXRPCException;
 public Call createCall(QName portName, String operationName)
 throws JAXRPCException;
 ...
}

When the Call object is created, it has little or no information about the invocation that needs
to be made. The information required to execute the call (parameters, types, etc.) is
constructed using its set methods. Here's the definition of the Call interface; note that the
methods that are not highlighted are listed in the specification, but are not yet implemented in
the reference implementation or listed in the javadoc:

public interface Call {
 public boolean isParameterAndReturnSpecRequired();

 // Parameter passing and return type handling
 public void addParameter(String paramName,
 QName xmlType, ParameterMode parameterMode)
 throws JAXRPCException;
 public QName getParameterTypeByName(String paramName);
 public void setReturnType(QName xmlType)
 throws JAXRPCException;
 public QName getReturnType();
 public void removeAllParameters();

 // WSDL operation
 public QName getOperationName();
 public void setOperationName(QName operationName);

 // WSDL portType
 public QName getPortTypeName();
 public void setPortTypeName(QName portType);

Java Web Services

165

 // WSDL endpoint
 public String getTargetEndpointAddress();
 public void setTargetEndpointAddress(String address);

 // properties
 public void setProperty(String name, Object value)
 throws JAXRPCException;
 public Object getProperty(String name);
 public void removeProperty(String name);
 public java.util.Iterator getPropertyNames();

 // Remote Method Invocation methods
 public Object invoke(QName operationName, Object[] inputParams)
 throws java.rmi.RemoteException, JAXRPCException;
 public Object invoke(Object[] inputParams)
 throws java.rmi.RemoteException, JAXRPCException;
 public void invokeOneWay(Object[] inputParams)
 throws javax.xml.rpc.JAXRPCException;
 public java.util.Map getOutputParams()
 throws javax.xml.rpc.JAXRPCException;
}

The Call object in JAX-RPC differs from the Apache SOAP Call object; it encapsulates
both message-style invocation and RPC-style invocation in a single interface. Unlike
ApacheSOAP, Call.invoke() and Message.send() operations aren't separate.

7.4.3.1 Building the method signature

When using a Call object, you can build parameters dynamically by using the
addParameter() method. Two modes of invocation are available: synchronous
request/response (using the invoke() method) and asynchronous fire-and-forget (using
invokeOneWay()). The addParameter() method has the following signature:

public void addParameter(String paramName,
 QName xmlType, ParameterMode parameterMode)

The ParameterMode class evaluates to one of three possible values: in, out, or inout. The
definition of the class is:

// Typesafe Enumeration for ParameterMode
public class ParameterMode {
 private final String mode;
 private ParameterMode(String mode) {
 this.mode = mode;
 }
 public String toString() { return mode; }
 public static final ParameterMode PARAM_MODE_IN =
 new ParameterMode("PARAM_MODE_IN");
 public static final ParameterMode PARAM_MODE_OUT =
 new ParameterMode("PARAM_MODE_OUT");
 public static final ParameterMode PARAM_MODE_INOUT =
 new ParameterMode("PARAM_MODE_INOUT");
}

The Call implementation is required to validate the parameters and the return type. It can do
so by relying on the client code to call the addParameter() and setReturnType()
methods.

Java Web Services

166

Notice that addParameter() doesn't take a value. It is not building a parameter list; it is
simply building the method signature. In JAX-RPC, the values for the parameters are passed
as an array of Objects to invoke() or invokeOneway(). The invoke() implementation
is responsible for validating the parameters with the signature that is built. An implementation
that requires you to build the parameter list must explicitly return true from the
isParameterAndReturnSpecRequired() method.

Alternatively, an implementation may support the definition of a method signature through a
type mapping registry or through another means that matches a signature with its
corresponding WSDL definition. In this case, the client code is not required to call
addParameter() and setReturnType(). If the implementation doesn't require or support
the addParameter()/setReturnType() approach, it must throw a JAXRPCException if the
client code attempts to call these methods. Furthermore, the
isParameterAndReturnSpecRequired() method must return false.

7.4.3.2 Setting the properties

Like the Stub class, the Call class has several predefined properties that are listed in
Table 7-3. These properties are expected to be set prior to making the actual method call,
based on the assumption that the underlying transport or infrastructure might need this kind of
information to reach the service successfully.

Table 7-3. Call properties
Property name Property type Description
javax.xml.rpc.security
.auth.username Java.lang.String Username for Authentication.

javax.xml.rpc.security
.auth.password Java.lang.String Password for Authentication.

javax.xml.rpc.soap
.operation.style Java.lang.String

"rpc" if the operation style is rpc; "document" if
the operation style is document. Note that a Call
implementation may choose not to allow the setting of this
property. In this case, the setProperty method throws
JAXRPCException.

javax.xml.rpc.soap.http
.soapaction.use Java.lang.Boolean Indicates whether SOAPAction will be used.

javax.xml.rpc.soap.http
.soapaction.uri Java.lang.String

Indicates the SOAPAction URI if
the javax.xml.rpc.soap.http.soapaction.use
property is set to true.

javax.xml.rpc.encodingstyle
.namespace.uri Java.lang.String Encoding style specified as a namespace URI. The default

value is the SOAP 1.1 encoding.

7.4.3.3 Making the call and retrieving the results

Regardless of how the method signature is created, the invoke() and invokeOneWay()
methods are responsible for matching up the parameters and return types with the supplied
signature. They are required to generate a JAXRPCException if an error occurs until the client
has delivered its payload onto the wire. Examples of errors that can occur include
signature/parameter mismatch, or specifying an out or inout parameter and calling
invokeOneWay(). The invoke() method must continue to block until the remote service
receives the method call and returns either a response or a remote exception. The

Java Web Services

167

invokeOneWay() method is not allowed to propagate a remote exception—another subtle
difference between JAX-RPC and Apache SOAP.

Once the invocation has taken place, you can obtain the out and inout parameters by calling
the getOutputParams() method:

// create the call object.
javax.xml.rpc.Call call = service.createCall(portName, "<operationName>");

// build the method signature.
call.addParameter("param1", <xsd:string>, ParameterMode.PARAM_MODE_IN);
call.addParameter("param2", <xsd:string>, ParameterMode.PARAM_MODE_OUT);
call.setReturnType(<xsd:int>);

// build the parameter list itself.
Object[] inParams = new Object[] {"<SomeString>"};

// invoke the remote method
Integer ret = (Integer) call.invoke(inParams);

// get the output parameters
Map outParams = call.getOutputParams();
String outValue = (String)outParams.get("param2");

Note that the number of calls to addParameter() does not necessarily match the number of
parameters placed on the parameter list. This mismatch is not obvious at first. The reason for
the discrepancy is that some parameters are purely output parameters, as specified by the
ParameterMode.PARAM_MODE_OUT.

7.4.4 Service Context Propagation and SOAP Message Handlers

Remember the discussion we had about SOAP headers in Chapter 3? A typical use for a
header element would be to pass around a transaction ID; that is one example of propagating
conversational or contextual information between service clients and service implementations.
In JAX-RPC, this contextual information is referred to as a Service Context . A Service
Context is implementation-dependent and may include such things as a transaction ID, a
security token, or some sort of conversation ID.

A Service Context may be handled explicitly or implicitly by the JAX-RPC runtime
environment. Those of you familiar with CORBA OTS or JTA should be familiar with the
notions of implicit and explicit propagation. For implicit propagation, the generated client
stub code may transparently propagate a security token by marshalling it into the SOAP
header when it generates the envelope. In the explicit case, the generated stub code has
additional parameters appended to the end of each method signature. For example:

public interface StockQuoteProvider extends java.rmi.Remote {
 // Method returns last trade price
 float getStockQuote(String tickerSymbol, StringHolder context)
 throws java.rmi.RemoteException;
}

The SOAP Message Handler APIs provide a way to expose implicit context propagation to
the application developer. The Handler interface is basically a way to plug your own
interceptors into the runtime infrastructure for both the client-side stub implementation or the

Java Web Services

168

server-side invocation. Simply write a class that extends the
javax.xml.rpc.handler.Handler interface and plug it into a Handler chain. At runtime,
your Handler.handle() method is invoked and is passed a SOAPMessageContext object.
The SOAPMessageContext gives you full access to the SOAP envelope, to do with what you
wish.

Java Web Services

169

Chapter 8. J2EE and Web Services
This book has discussed in detail how Java and web services fit together. Web services use
standards-based frameworks to extend an application's reach. However, a web service isn't the
application itself. The web service must still be implemented on a proven application
infrastructure—one that supports reliability, availability, serviceability, transactions, security,
and other critical enterprise needs. Ultimately, J2EE tries to define just such an infrastructure.
Thus, if web services and Java can fit together, and J2EE is the Java form of application
infrastructure, the question of how web services fit together with J2EE comes straight to the
forefront.

This chapter discusses different approaches of integrating J2EE and web services. How does a
web service map into an EJB, a servlet, or J2EE Connector Architecture (CA) adapter? This
chapter discusses these topics, looks at some existing standards initiatives, and speculates on
what might happen over the next few years.

8.1 The SOAP-J2EE Way

Since SOAP is the cornerstone of interoperability and web services, understanding how J2EE
and web services work together comes down to analyzing how SOAP and J2EE can work
together. SOAP is a wire protocol that can be layered upon other wire protocols such as
HTTP, FTP, and SMTP. J2EE supports these Internet protocols through servlets. Therefore, it
makes sense that servlets and JSP technology will become the entry point into a J2EE
framework for web services. Let's look at how this occurs.

Within J2EE, servlets, JSPs, EJBs, JMS resources, JDBC drivers, and J2EE CA adapters
provide access to the business logic and enterprise resources that a web service needs.
Servlets and JSPs are designed to encapsulate page-based flow and logic and can also work
with numerous Internet protocols. It makes sense that servlets will become the entry point for
web services and an automatic bridge between a web service message and the other J2EE
services contained within an application server (see Figure 8-1).

Figure 8-1. SOAP servlet integration

Even though Figure 8-1 presents a simplistic view of SOAP and J2EE integration, a servlet
must work hard to make this integration possible. Let's look at some of the issues involved.

Java Web Services

170

8.1.1 SOAP Parsing

First, servlets are responsible for extracting the SOAP contents from another wire packet.
The SOAP contents must then be parsed so the servlet can acquire access to the elements and
attributes contained within the SOAP document. A servlet must contain the logic for:

Envelope parsing

The servlet must gain access to the SOAP envelope. The servlet must be able to
extract the SOAP header and body portions of the envelope separately.

Parsing attachments

SOAP messages may use attachments to transport payload information. Therefore,
the servlet must be able to access all attachments.

Validating message format

If the servlet is the entry point for an endpoint represented by another WSDL file, it
must confirm that the format of the SOAP message conforms to the abstract message
defined in the corresponding WSDL file. If the incoming message does not conform to
the constraints as defined in the corresponding WSDL file, the servlet must create
a SOAP Fault message and deliver it to the client.

Validating XML

The SOAP message is in XML format and may be bound to an external XML Schema.
The servlet must determine the different namespaces for the elements contained in the
SOAP packet and validate the contents of the XML payload against those namespace
schema definitions.

Rapid XML parsing

An XML parser that does full validation of elements, attributes, and datatypes won't
be the fastest parser on the market. Since many J2EE applications are designed for
performance, a servlet has a responsibility to find unique ways to parse the XML
payload rapidly. For example, a vendor could implement a parser that specializes in
small XML packets if it expects that most SOAP messages will be tiny. Or, if the
servlet is invoked by SOAP clients that are trusted to deliver prevalidated messages,
the servlet may have a SOAP parser that does only partial validation

XML-Java binding

After an XML packet is parsed and its elements are understood, some data contained
within the SOAP payload may need to be converted to a Java object. This conversion
might be necessary if the SOAP message is an RPC-style message that requires
invocation of an EJB method. EJB interfaces are entirely in Java, so any SOAP
payload information that must be delivered as an input parameter needs to be
converted to a Java object. The XML-Java binding can be custom binding from an

Java Web Services

171

application server provider, or it can take a standards-based approach such as one
proposed by JAXB.

Payload conversion

If the SOAP message is a message-style invocation, the XML data contained within
the SOAP packet is placed into a JMS destination. The XML data contained within the
SOAP message must be converted to a message type that is valid to JMS. This
message type could simply be a BytesMessage, TextMessage, or ObjectMessage—
or it could be a specialized extended type designed to handle XML and SOAP with
Attachments payloads.

Explicit versus implicit servlet processing

The mapping and translation between a SOAP-over-HTTP message and a backend
J2EE component such as an EJB or JMS destination may not be exposed explicitly in
the servlet layer. Higher-level layering may implicitly hide that information from the
programmer. Or, the servlet API may actually be extended across an RMI or JMS
infrastructure and exposed to the service at the ultimate remote destination. We will
refer to the servlet layer abstractly, mainly because that layer is easily identifiable in
the J2EE architecture diagrams.

8.1.2 Behavior Handling

Based upon how WSDL, JAXM, and JAX-RPC eventually define the behavior of web
services, four fundamental types of messages can be transported over SOAP:

• Request/response
• Solicit/response
• One-way
• Notification

The format and behavior of these transmission primitives are described in more detail in
Chapter 5. These primitives provide an intriguing technical challenge for application server
architects, however, since servlets were primarily designed to handle client-invoked, request-
response behavior. A servlet that supports web services obviously needs to support familiar
request-response behavior; however, it must also support server-invoked, solicit-response
behavior and other server-initiated invocations.

This topic is technically challenging because a servlet must be engineered to receive
asynchronous notifications from other resources located in the same application server.
Servlets are invoked synchronously by a wire protocol, but to support asynchronous web
services, they need to be engineered to receive asynchronous messages while they execute for
inclusion on any outgoing response. Additionally, a servlet is generally thought of as
something that reacts to inbound requests passively. It must now also be able to actively
generate an outbound SOAP-over-HTTP solicitation. Your SOAP provider is responsible for
implementing this servlet behavior. Vendor offerings such as BEA WebLogic Server,
SonicXQ, CapeClear Studio, and Systinet WASP all provide these implementations to
developers transparently.

Java Web Services

172

8.1.3 Figuring Out What to Invoke

After a servlet parses the SOAP message, it needs to either do an RPC-style invocation or
deliver the XML message to another resource, such as a JMS destination. Before the servlet
can pass processing on to the next resource, though, it must determine what that resource is.
How does it do this? A servlet has some options for determining the next step in the process:

SOAPAction header field

The SOAPAction header field value can contain information that indicates which JMS
destination or EJB needs to be invoked. Or, the value of this field can contain the
information needed to perform a lookup in a web services routing table that an
application server supports.

Determine through WSDL

If the application server knows which WSDL file the incoming message belongs to, it
may contain an internal mapping indicating how EJBs and JMS destinations map to
SOAP messages. An application server can provide tools for mapping message
definitions in a WSDL file to the resources available within an application server.

Contained within the SOAP message

The SOAP header and body may contain proprietary information that helps the servlet
determine how to route the message. However, any vendor that decides to use custom
tags for routing probably makes its service nonportable as a result.

Mapping of header information

Converting HTTP header information or SOAP Header elements into JMS properties
for server-side filtering may be desirable, particularly if a response to a request will be
handled asynchronously or at a later time.

One of the interesting problems posed by this scenario is how an application server should
handle conversational web services. SOAP, in its basic form, does not have a standardized
way to track session tokens. Session tokens are needed to associate a message with an
established conversation. For servlets, conversations are associated with a sessionID variable
that accompanies every HTTP request. SOAP messages can carry these session tokens, but
since no standardized way exists for them to be incorporated into the message, any session
enablement of a SOAP message is nonportable. Despite this factor, conversational web
services are very important and many vendors are building the extensions needed to support
them.

If web services are going to be conversational, then the servlet SOAP handler needs to handle
conversations, too. This means that a servlet implementation must figure out whether a
message is part of a conversation, where that conversation is managed, and whether any
special routing needs to occur as a result of the conversational dynamics.

Java Web Services

173

8.1.4 RPC-Style Invocations

Mapping web service invocations to EJBs is important because EJBs provide the component
framework necessary for implementations of reliable and highly available business logic.
EJBs have access to a range of enterprise technologies and provide a portable way to
encapsulate the business logic necessary to interact with them. Mapping SOAP to EJBs is
important because it allows application developers to continue to develop portal logic
solutions for their systems while leveraging the benefits offered by web services. Figure 8-2
depicts the steps involved in generating an EJB invocation from a SOAP message:

Figure 8-2. SOAP-EJB invocation model

1. An inbound SOAP message arrives at a SOAP protocol handler. The SOAP protocol
handler parses the message and determines which EJB instance needs to be invoked.
This process may or may not involve a JNDI lookup. The reference to the EJB may
already be cached within the handler.

2. The SOAP handler invokes the EJB with the appropriate input parameters. The EJB
can be a stateless session, a stateful session, or an entity EJB. If the EJB is a stateful
session or an entity EJB, the SOAP message must have some way to maintain
the session token or primary key of the entity EJB.

3. The EJB can invoke any number of backend resources, including other EJBs,
databases, J2EE CA adapters, or JMS destinations. The EJB should contain the meat
of the web service implementation.

4. The EJB sends its response to the SOAP handler. The SOAP handler must convert
the response from the EJB to XML to be part of the SOAP response payload. If the
EJB throws a system exception, then the SOAP handler needs to create a SOAP Fault
for delivery to the client.

5. The SOAP handler creates the SOAP envelope for the response and delivers
the message to the client.

This process is pretty straightforward. It's so simple, in fact, that most vendors now have
toolkits that, given an EJB, perform most of these steps automatically. If you have a stateless
session EJB, a SOAP handler generator creates the servlet that serves as the SOAP handler,
creates the necessary deployment descriptors, and generates any WSDL necessary to map
SOAP messages to an EJB. The code generator also creates any Java-XML binding that needs
to occur. This process allows EJB developers to develop EJBs to implement their business
logic without having to worry about the semantics of SOAP development. It provides a
seamless transition from one paradigm to the other. In the next section, we provide
pseudocode that shows how a servlet might integrate SOAP and JMS. That pseudocode can
be extended to do the same for integrating SOAP and EJBs.

Java Web Services

174

8.1.5 Message-Style Invocations

A very important notion for B2B, workflow, and system connectivity is the idea of mapping
a WSDL endpoint to a JMS Topic or Queue. The Topic or Queue may have either
a Message-Driven Bean or a standalone JMS client registered as a listener.

The interface between a web service and JMS is important because the world out there is
"usually connected." An organization may have many occasionally connected business
partners. Legacy systems, which may be designed to move data around via bulk nightly batch
processes, need to connect to more modern infrastructures designed to communicate in near-
real time. JMS provides reliable asynchronous communication, and thus allows for a loosely
coupled distributed architecture in which all parts of a distributed system don't have to run
constantly for the whole system to remain healthy. If you recall, one of the defining
characteristics of web services is that they are also loosely coupled. Therefore, mapping web
services to JMS is natural and important. Figure 8-3 shows the steps required to receive
a SOAP message and, as a result, send a JMS message to a JMS destination.

Figure 8-3. SOAP-JMS invocation model

In Figure 8-3, the SOAP-JMS invocation can begin in two ways. First, a SOAP message sent
by a client starts a request/response scenario or a one-way invocation that causes a JMS
message to be placed onto a destination. In the second model, a message is placed onto a JMS
destination monitored by an outbound SOAP handler. Any messages initiated by a JMS client
are converted into SOAP messages and delivered using a solicit-response model.

1. An inbound SOAP message arrives at a SOAP protocol handler. The SOAP protocol
handler parses the message and determines which JMS destination the message should
be delivered to. This step may or may not involve a JNDI lookup.

2. The XML payload is converted to a JMS message and placed onto the appropriate
JMS destination. This destination can be a JMS Topic or Queue. The conversion may
be a thorough deep mapping into a natively supported JMS message type such as
BytesMessage, TextMessage, or ObjectMessage. Alternatively, it may use a vendor-
supplied extension that allows the SOAP envelope to be retained in its natural form
and dealt with as SOAP throughout its lifespan in the system. HTTP header fields and
SOAP header elements need to be preserved as part of the mapping in the event that
the message response, or a related descendant of it, is eventually reconstructed as an
outbound SOAP-over-HTTP message.

Java Web Services

175

3. A JMS consumer consumes the JMS message and performs any related business logic.
Depending on what type of mapping is used to create the message, the consumer may
use either JMS APIs directly or API extensions that allow a DOM interface, JAXM
APIs, or Apache SOAP APIs.

4. If the SOAP invocation is a one-way, asynchronous invocation, the Message-Driven
Bean does not need to deliver a response. However, if the transmission behavior is
request-response, the JMS client needs to place the response message onto the JMS
destination indicated by the ReplyTo field of the original JMS request message.

5. The SOAP protocol handler acts as a message consumer on the response JMS
destination. It waits for a response message. When the response is delivered, the
SOAP protocol handler converts the JMS response into a SOAP response or fault
message.

6. The SOAP protocol handler delivers the message to the SOAP client that initiated the
process.

7. If an error occurs during the request/response processing, a SOAP Fault may be
generated and sent back to the SOAP client originating the request.

8. If an error occurs during the processing of an asynchronous invocation, a SOAP Fault
may be generated and sent to a known Fault destination that is monitored
administratively and dealt with at the application level.

The same process occurs for the solicit-response model, except that it is initiated by a backend
resource that places a JMS message onto a queue monitored by a SOAP protocol handler. The
protocol handler must then wait for responses from the clients to which the SOAP message is
delivered. In the case of a one-way or notification model, no response is necessary—the rest
of the steps are identical. In fact, a truly asynchronous environment may consist entirely of
one-way and notification operations.

8.1.6 A Simple Example

To demonstrate how integration between web services and J2EE works in practice, we have
provided pseudocode that shows how an application server or JMS vendor might create a
servlet that receives SOAP messages, parses their content, creates a JMS message, and places
that message onto a JMS destination. Since most vendors provide this type of implementation,
you will never have to write this code yourself. We provide it to show how things work
internally and to give you a better understanding of how web services and J2EE interact:

// JAVA PSEUDO-CODE FOR INTEGRATING A SERVLET WITH SOAP & JMS
// This code is designed to receive a SOAP message and then
// to parse the message and to place that message onto a JMS Queue
//
// NOTE: This class is not compilable and does not have proper
// Exception handling. It is just pseudo-code to demonstrate
// how Servlet / JMS / SOAP can work together.
//
// This servlet is NOT responsible for receiving JMS messages.
// Web Services are loosely coupled, so a separate servlet is
// responsible for checking to see if a response message has been
// delivered onto the response queue. That receive servlet has to
// be invoked separately to check for the correct contents.
// If the vendor supports asynchronous outbound notifications,
// then polling the servlet for response is not necessary.
//

Java Web Services

176

import javax.jms.*;
import com.vendor.specific.SOAPMessage;
import com.vendor.specific.SOAPMessageFactory;

public class SoapJMSSendServlet extends HttpServlet {

 static String SEND_QUEUE_NAME = "SomeQueueName";
 static String QUEUE_CONNECTION_FACTORY = "SomeConnectionFactoryName";
 static String SOAP_MESSAGE_FACTORY = "SomeSoapMessageFactoryName";
 private Destination destination;
 private ConnectionFactory factory;
 private QueueConnection qConnect;
 private QueueSession qSession;
 private QueueSender qSender;

 private SOAPMessageFactory smf;
 private SOAPMessage soapMessage, responseMessage;
 private long requestTimeout = 180000; // 30 seconds

 public void doPost(HttpServletRequest httpRequest,
 HttpServletResponse httpResponse) throws ServletException {

 // Parse SOAP input from HTTP Stream.
 org.w3c.dom.Document doc
 = SOAPParser.getDocument(
 new InputSource(httpRequest.getInputStream()));

 // This representative "SOAPMessage"
 // could be a JAXM-based message, and ApacheSoap kind of message,
 // or an Axis message. The important thing to note is that it
 // contains a SOAP envelope along with any other runtime-specific
 // information that allows it to be routed appropriately.
 // The runtime-specific information could be derived from HTTP
 // headers, from SOAP headers, WSDL, or deployment descriptors
 soapMessage = smf.createSOAPMessage(doc, request);

 if (soapMessage.isRPC())
 responseMessage = callEJB(soapMessage);
 else if (soapMessage.isJMSSender())
 responseMessage = sendToQueue(soapMessage);

 // We have to send a SOAP response to the client informing them
 // of the success.
 if (responseMessage != null)
 responseMessage.write(httpResponse.getOutputStream());
 }

 // this method converts the SOAPMessage into a JMS message and places
 // it onto a JMS queue. If the message is supposed to be participating
 // in a synchronous request/reply, then it blocks and waits for
 // the reply to be received, or a timer expires - whatever comes first.
 private SOAPMessage sendToQueue(SOAPMessage soapMessage)
 throws ServletException {
 SOAPMessage responseMessage = null;

 // This hypothetical SOAPMessage knows how to marshall itself
 // into a JMS Message
 qSender.send(soapMessage.createJMSMessage());

Java Web Services

177

 // This could be a request/response
 if (soapMessage.needsReply()){
 // receive blocks until either a message is received,
 // or timeout occurs. If timeout occurs, msg is null
 javax.jms.Message msg = qReceiver.receive(requestTimeout);

 if (msg == null)
 // generate fault. This hypothetical SOAPMessage has a
 // static method for doing that
 responseMessage
 = SOAPMessage.createSOAPFault("Request Timed out");
 else
 // The SOAPMessage can also create a SOAP envelope
 // from a JMS message
 responseMessage = SOAPMessage.createSOAPMessage(msg);
 }
 else
 responseMessage
 = SOAPMessage.createSOAPMessage("Message Delivered");
 return responseMessage;
 }

 public void init() throws ServletException {
 // Set up Queue—only needs to occur once.
 InitialContext ctx = new InitialContext();
 factory
 = (ConnectionFactory)ctx.lookup(QUEUE_CONNECTION_FACTORY);
 destination = (Destination)ctx.lookup(SEND_QUEUE_NAME);
 smf = (SoapMessageFactory)ctx.lookup(SOAP_MESSAGE_FACTORY);
 qConnect = factory.createQueueConnection(username, passwd);
 qSession
 = qConnect.createQueueSession(false,
 javax.jms.Session.AUTO_ACKNOWLEDGE);
 qSender = qs.createSender(destination);
 }
}

The code provided here is a standard servlet that acts as a JMS message producer. We'll look
at a few of the more interesting pieces in detail. Since SOAP over HTTP has just the SOAP
payload as part of the HTTP request, the servlet accesses the SOAP envelope by using the
HttpServletRequest object and the InputStream by using the getInputStream()
method. The contents of this method are then passed into a SOAP parser. In this example, a
SOAPParser object represents the SOAP parser:

 // Parse SOAP input from HTTP Stream.
 org.w3c.dom.Document doc
 = SOAPParser.getDocument(
 new InputSource(httpRequest.getInputStream()));
 soapMessage = smf.createSOAPMessage(doc, request);

This representative SOAP message could be based on JAXM, JAX-RPC, Apache SOAP, or
Axis. The important thing to note is that it contains a SOAP envelope along with any other
runtime-specific information that allows it to be routed appropriately. Since the XML in the
SOAP message could represent a message that will be placed on the JMS queue or topic, an
RPC invocation, or something else, our hypothetical SOAP message has an isRPC() and an
isJMSSender() method for determining how to dispatch the message. The dispatching

Java Web Services

178

information could be derived from HTTP headers, SOAP headers, WSDL, or deployment
descriptors.

 if (soapMessage.isRPC())
 responseMessage = callEJB(soapMessage);
 else if (soapMessage.isJMSSender())
 responseMessage = sendToQueue(soapMessage);

The callEJB() method simply deserializes the method name and its parameters, invokes the
appropriate EJB, and then sends the response back. In J2EE 1.4, this method will be based on
the rules defined by JAX-RPC.

The sendToQueue() method needs more explanation since it is a bit more complicated. It
can send the message and optionally wait for a synchronous reply. We will see the JMS
replier side in a moment. For the purpose of our pseudocode example, let's assume that the
createJMSMessage() creates a JMS message and marshals the SOAP content into it. It
doesn't matter what the type is, as long as sufficient APIs are on either side (for accessing the
message by using JMS APIs and accessing the XML content by using JAXP or SOAP
Envelope APIs). The JMS message is created and sent to its destination:

 private SOAPMessage sendToQueue(SOAPMessage soapMessage)
 throws ServletException {
 SOAPMessage responseMessage = null;

 // This fictitous SOAPMessage knows how to marshall itself
 // into a JMS Message
 qSender.send(soapMessage.createJMSMessage());

Next, the SOAP message also knows enough about itself to determine whether it should be an
asynchronous send() or a synchronous request/reply operation. If a reply is expected, the
QueueReceiver.receive() blocks until a message is returned or a timeout occurs. The
timeout is important because we must satisfy the HTTP request with either a response
message or a Fault message before the HTTP request itself times out:

 // This could be a request/response
 if (soapMessage.needsReply()){
 // receive blocks until either a message is received,
 // or timeout occurs. If timeout occurs, msg is null
 javax.jms.Message msg = qReceiver.receive(requestTimeout);

 if (msg == null)
 // generate fault. This hypothetical SOAPMessage has a
 // static method for doing that
 responseMessage
 = SOAPMessage.createSOAPFault("Request Timed out");
 else
 // The SOAPMessage can also create a SOAP envelope
 // from a JMS message
 responseMessage = SOAPMessage.createSOAPMessage(msg);
 }
 else
 responseMessage
 = SOAPMessage.createSOAPMessage("Message Delivered");
 return responseMessage;
}

Java Web Services

179

In JMS, an asynchronous response might result from this message. However, the "response"
may not happen immediately. It may occur hours or days after the request, or the "response"
may be just another message delivered to a new destination that is not related to the SOAP
client that initiated the request. This servlet is responsible only for retrieving any JMS
response messages that might be created for an immediate synchronous response. To handle
the other situations, there are other possibilities:

• A separate servlet could be established to act as a holding mechanism for responses. In
this scenario, a SOAP client sends to one servlet and queries another servlet at a later
point to pick up any responses.

• If the vendor supports asynchronous outbound notifications, then polling the servlet
for response messages is not necessary. The responses are converted to
SOAP-over-HTTP messages as they are created, and delivered in real time to
the receiving party.

8.1.6.1 The JMS replier

The JMS replier also uses our hypothetical SOAP message.1 It first looks to see if the message
contains an attachment. If so, it uses JavaMail Multipart API's to get at the first part of the
message, which is the SOAP envelope:

public class PsuedoJMSSoapReplier
 implements javax.jms.MessageListener
{
// ...
 public void onMessage(javax.jms.Message aMessage)
 {
 if (aMessage instanceof SOAPMessage)
 {
 SOAPMessage sMsg = (SOAPMessage)aMessage;

 int partCount = sMsg.getPartCount();
 //Display number of parts in multipart message
 System.out.println("MultipartMessage received with : "
 + partCount + " parts");

 Part part = null;
 for(int i = 0; i < partCount; i++)
 {
 part = sMsg.getPart(i);
 System.out.println("Multipart message part(" + i
 + ") has content type: "
 + part.getHeader().getContentType());
 System.out.println("Multipart message part(" + i
 + ") has size: "
 + part.getContentBytes().length + " bytes");
 }
 org.w3c.dom.Document doc
 = SOAPParser.getDocument(
 new InputSource(sMsg.getPart(0).getInputStream()));

1 This example is derived from Sonic Software's SonicXQ. The original code is included with the online example archive and is available with
the SonicXQ product.

Java Web Services

180

 if (doc == null)
 {
 throw new org.apache.soap.SOAPException (
 org.apache.soap.Constants.FAULT_CODE_CLIENT,
 "parsing error");
 }

 //Validate the XMLMessage content using Apache SOAP
 org.apache.soap.Envelope msgEnv =
 org.apache.soap.Envelope.unmarshall(doc.getDocumentElement());

 //... Do SOAP Envelope things....

 System.out.println("Successfully processed MultipartMessage");
 }

The destination could be either a response or another destination where one could forward the
message. Any number of mechanisms can be used—the JMSReplyTo destination, for
example, or a WSDL endpoint—to determine which destination to go to next.

 // Check for a ReplyTo Queue and send one if necessary
 javax.jms.Queue replyQueue =
 (javax.jms.Queue) aMessage.getJMSReplyTo();
 if (replyQueue != null){
 // create reply message and send it.
 }else{
 // create a new SOAP message to go to another destination
 String urlEndpoint = sMsg.getNextURLEndpoint();
 ...
 }
 }
}

8.1.7 Content-Based Routing, Data Transformation,and the J2EE Connector
Architecture

In an enterprise environment, the processing of SOAP requests often doesn't fit a simple
request/response model involving a simple servlet interaction; the servlet model doesn't
necessarily work well for a multistep workflow web service. In this section, we will describe
how J2EE technologies such as servlets, JMS, and EJB can be used together with XML-
related technologies to orchestrate a multistep complex business process that supports the
implementation of a web service.

Consider a company that exposes its business interface to its customers as a web service. It
regularly receives purchase orders for its goods from any number of prospective buyers.
Figure 8-4 shows the complex chain of events that occurs when a purchase order is received.
The purchase order may come into the system as a SOAP message over the HTTP protocol.
Upon arriving at the servlet or the SOAP processor, the message may be sent immediately to a
routing service that uses an XPATH expression such as /PurchaseOrder/Items to identify
that it is indeed a purchase order. If the routing service uses a parser that supports JavaScript
extensions, then additional logic may be plugged into the routing service to do some real-time
expression evaluation.

Java Web Services

181

Figure 8-4. Content-based routing, XSLT transformation, and J2EE connectors

The routing service may then determine that this purchase order is valid and needs to proceed
to the next step in the process—performing a credit authorization. It sends the purchase order
on to the next step by placing a message onto a JMS queue. The credit authorization service
listening on that queue may run some business logic and choose to delegate its credit checking
responsibility to another external web service. To accomplish this delegation, it may make a
direct SOAP call over an HTTP connection or choose to create a new JMS message and place
it on a queue destination that is mapped to an outbound SOAP-over-HTTP handler. If that
request for credit approval is denied, then a "credit denied" message is sent back to the sender,
either synchronously or asynchronously, depending on how the whole service is described in
WSDL.

If the credit check is successful, the next step may be to execute some business logic by
invoking an EJB—directly as a synchronous call or asynchronously by sending a message to a
message-driven bean listening on a queue. The business logic might break the purchase order
into its respective line items and send each item to the legacy fulfillment application (EIS)
that resides at the remote warehouse. In the process, several things need to happen: the
purchase order's line items must be broken into separate requests, the data must be converted
from XML into the proprietary format that is used by the EIS, and the logic must
communicate with the EIS in a standardized way.

The breaking of <Items> into multiple entries and the transformation from XML into the
legacy format required by the EIS are both accomplished by routing the purchase order to a
special XSLT-based translation service. Given the appropriate style sheet, we can rely on the
parser to do most of the work.

The next step, communicating with the EIS, is accomplished by using a connector, as defined
by the J2EE Connector Architecture. In Figure 8-4, the implementation of the connector may
reside in the local container, at the remote location, or it may be spread across both places.
After the processing is complete, a final SOAP response message may be generated to travel
back to the sender, using similar processes.

Java Web Services

182

8.1.8 JSR109: Industry in Flux

Unfortunately, although integration between J2EE and web services has matured among many
of the providers, the Java Community Process (JCP) has not yet standardized it. JSR109,
"Implementing Enterprise Web Services," is intended to provide a standardized approach for
J2EE/web services integration. Unfortunately, as of early 2002, JSR109 has stalled, and may
not be delivered to the public until the middle of 2002. This means that any vendor
implementations following the standard probably won't be fully realized until 2003 or 2004.
That is a very long time, given the pace at which technology tends to mature.

One positive, note, however, is the expectation that the contents of JSR109 will be
incorporated into J2EE 1.4, forcing application server vendors to provide a standardized level
of web services support by 2003.

JSR109 is expected to cover several things. Everything is in flux at this point, but some of the
highlights appear to be:

Mapping rules

The main portion of the specification will focus on rules for mapping SOAP and
WSDL onto J2EE 1.3 components such as EJBs and JMS destinations.

JNDI lookup rules

The specification will highlight how J2EE services bound into a JNDI tree map to
services described via WSDL. This process will allow a SOAP protocol handler that
has the WSDL of a web service and access to a J2EE JNDI directory to connect SOAP
messages with J2EE services.

WSDL binding extensions for JMS and EJB

Given a JMS destination or an EJB (and a WSDL file describing abstract messages),
how should those messages be mapped onto the interfaces of J2EE components? For
example, if a WSDL file has a DeliverMe message, is it supposed to map to a
deliverMe() method on an EJB's remote interface, local interface, or the DeliverMe
JMS destination?

WSDL generation rules

Given the deployment descriptor of an EJB, what policies should be followed for the
automatic generation of WSDL from the deployment descriptor?

JAX API integration

The charter of the JSR should eventually have the specification define the official role
of JAX-RPC, JAXR, and JAXM with J2EE.

Java Web Services

183

Service publication

What services developed with the J2EE framework will be published to a UDDI
registry, and how will a J2EE framework automate the publication process?

Security, transactions, and management

How do the web services standards that are trying to add security, transaction contexts,
and management get mapped to the equivalent services offered in an application
server? For example, if a SOAP message has a transaction context associated with it,
what are the semantics for associating the SOAP message with an existing J2EE
transaction or for starting a new J2EE transaction?

8.2 The Java Web Service (JWS) Standard

Not to be confused with the topic of this book, a newly proposed standard called the Java web
service (JWS) standard is currently in development. It is spearheaded by BEA Systems,
which also has a reference implementation.

The JWS is a format designed to integrate non-Java developers with J2EE. Sounds ambitious,
doesn't it? BEA has actually designed a technology that might work. At the core of the JWS
specification is the idea that developers don't create J2EE components. Rather, developers
create a web service, and a single Java class represents web service implementation. The Java
class then has a number of simple, predefined JavaDoc tags that indicate different behavioral
implementations of the web service. Based on the values of the JavaDoc tags inserted into the
Java class, a behind-the-scenes code generator then creates all necessary J2EE components
required to implement the web service.

The JWS JavaDoc system has tags representing a full range of web service behaviors,
including stateless methods, stateful methods, and asynchronous invocations. The challenge
left to JWS implementations is to take the definition of the JavaDoc tags and generate J2EE
components that implement this behavior in a reliable and available manner.

The JWS proposal is appealing because tool vendors can support BEA's prototype
implementation quickly. It comes with a nice IDE that ties together design, coding, and
testing. The concept of deployment is completely hidden from the developer. The goal is to
have a framework for developing web services with J2EE that is similar to working in Visual
Basic.

Let's look at an example. The following listing, HelloWorld.jws, shows all of the code
necessary to create a complete web service:

Java Web Services

184

import com.bea.jws.*;
import com.bea.jws.control.*;

/**
 * A simple web service that returns a string.
 */
public class HelloWorld extends Service
{
 /**
 * @operation
 * @conversation stateless
 */
 public String getHellowWorld()
 {
 return "Hello World";
 }
}

That's it. A JWS file is simply a Java class that implements the Service interface. The
methods of the class implement the web service; the JavaDoc extensions tell the behind-the-
scenes code generator what type of web service to produce. The methods in the Java class
may not be exposed as part of the WSDL of the web service. If the method you create should
be part of the external WSDL, then the @operation tag should be placed in the JavaDoc
before the method. This tag causes the code generator to create necessary definitions in the
WSDL file.

The @conversation tag defines the behavior of this method as part of the web service. The
@conversation tag takes a single parameter that can be stateless, start, continue, or
finish. The stateless parameter means that this method supports only the request/response
paradigm. If the @conversation parameter is start, continue, or finish, then the
underlying generated infrastructure is responsible for associating incoming messages with a
conversation handler for each client. If the start parameter is used, the infrastructure needs
to create a new session when the method is invoked. If the continue parameter is used, the
infrastructure needs to determine which existing session this client belongs to and make sure
the method invocation occurs in that context. Finally, if the finish parameter is used, the
infrastructure executes the method in the appropriate session context and ends the session
afterwards.

JWS can be slightly more complicated. JWS has JavaDoc tags for defining different aspects
of parameters, methods, and the class itself. These parameters include:

Asynchronicity

A method can be made asynchronous with a simple JavaDoc tag. Clients can
implement a polling model to get a result or the web service can do a notification.

Buffering

If the @buffer tag is used on any method, a JMS destination is inserted between any
SOAP messages and the web service implementation. Buffering the messages in JMS
provides better scalability and is transparent to the developer.

Java Web Services

185

Controls

The JWS specification has a simple way to represent EJBs, JMS destinations, J2EE
CA adapters, databases, and other web services through a simple Java interface, called
a Java Web Interface (JWI) file. An enterprise developer who creates one of these
resources is expected to provide a JWI file that is merely a Java interface with
JavaDoc tags. JWS implementations can then access any resource exposed through
JWI either visually or via a straightforward Java invocation. JWI files allow tools to
hide all J2EE semantics from developers and expose these components and services as
simple Java interfaces. Given this factor, any developer with a cursory knowledge of
Java can reuse complex services.

XML maps

JWS provides an extension to ECMAScript that maps the fields of Java objects to
XML (and vice versa). A developer with a cursory understanding of JavaScript or
VBScript can take the XML format of parameters and map them into the fields of the
Java objects used as input parameters on the web service without knowing the details
of how the Java objects are structured.

The simplicity of the JWS standard enables a large body of developers to use J2EE, including
many who do not have enough experience with Java or J2EE to be successful on their own
terms. The number of companies that choose to adopt the standard will certainly factor into
the success of JWS. However, this standard doesn't necessarily have to be adopted by an
application server vendor. A JWS code engine must create J2EE-compliant code, so the
generated web service can operate in any J2EE-certified application server. Adoption of JWS
will probably occur at the tool level and will be driven by whether other tool vendors support
the standard or add extensions to it.

Java Web Services

186

Chapter 9. Web Services Interoperability
9.1 The Concept of Interoperability

Much of the promise of web services is its potential for seamless interoperability across
heterogeneous systems, platforms, applications, and programming languages. Interoperability
is a primary goal of web services. However, it is not a given. Web services standards facilitate
interoperability, but do not ensure it. Many considerations and issues need to be resolved to
achieve full interoperability. As the number of specifications expands to address gaps, so do
the interoperability challenges.

A web service has many potential clients, and this array of clients can use a variety of
libraries and providers to connect. Services can, in turn, become clients of other services.
Ensuring that clients based on different implementations of the standards can interoperate
with the service is critical to the service's success.

This chapter points out many issues that currently prohibit interoperability. It also focuses on
the positive aspects of web services, including community efforts such as the SOAPBuilders
Interoperability Labs, an organization chartered with identifying interoperability problems,
fixing them through consensus, and creating compliance tests. Their goal is to provide a
community environment in which anyone can test for interoperability with other web services
infrastructures.

9.2 The Good, Bad, and Ugly of Interoperability

The primary considerations for achieving interoperability are:

• Using the same version or compatible versions of the specifications Not all
specifications are backward compatible. For example, SOAP 1.2 as proposed in its
latest draft form is not totally backward compatible with SOAP 1.1 or SOAP 1.0. For
instance, according to the 1.2 draft specification, a node complying with SOAP 1.1
generates a SOAP Fault indicating version mismatch if it receives a SOAP Version 1.2
message. A 1.2 node has the option of processing a 1.1 message or generating a SOAP
Fault. The W3C XML Protocol Working Group (XMLP) has used a different
namespace for each version to give implementations a way to distinguish different
versions of the specification.

• Using the same version of the web service Like any software, web services change
over time. New versions are released that may not be compatible with earlier versions.
It's not clear how the standards for web services will support versioning—that is, how
a client will find out what versions of a particular service are available.

• Sharing semantics The semantics must be understood and agreed upon in advance by
the parties through some mechanism.

Beyond these general considerations, interoperability can depend on interpretations or
misunderstandings of specifications, support for optional features within a particular web
services standard, the addition of proprietary extensions, or the lack of a standard.

Interoperability problems can occur at a number of levels:

Java Web Services

187

Service development

The use of a WSDL or not, differing service definition methodologies, incompatible
tools, etc.

Service discovery

The use of different registry mechanisms, service definition and representative syntax,
etc.

Service deployment

Different security mechanisms, wire-level compatibilities (encoding, serialization,
SOAP header extensions and how they're applied through such efforts as BizTalk and
ebXML)

As both authors represent companies that provide web services infrastructure, we have
experienced some of these problems firsthand, either directly or indirectly through colleagues.
As an added exercise, we scoured newsgroups and mailing list archives, including standards
bodies and user discussion threads, to find out what others considered important issues. We
also ran a few of our own tests. What follows represents a broad overview of the types of
interoperability issues that can be encountered and some specific problems and scenarios.

9.2.1 SOAP

Initial SOAP interoperability problems were largely the result of specification ambiguities and
varying interpretations. Implementations that conformed to the specification could still prove
incompatible. In April 2000, Tony Hong from XMethods compiled a detailed list of
interoperability issues between implementations
(http://www.xmethods.net/soapbuilders/interop.html). This list gives an idea of how extensive
interoperability problems were.

SOAP interoperability has improved substantially since then. Much of this improvement can
be attributed to the SOAPBuilders community interoperability test labs and discussion forum.
Many other efforts have helped. A turning point was the development of "A Busy Developer's
Guide to SOAP 1.1" (BDG), developed by Dave Winer (one of the original SOAP authors)
and Jake Savin from UserLand in March 2001 (http://www.soapware.org/bdg). It was a first
attempt to define a common subset for implementations of the specification, something like a
base implementation that developers could agree upon. It also started a dialogue that helped
identify interoperability issues. One outcome of the BDG was the evolution of using a SOAP
Fault to handle a problem in a well-defined way. This provided a way to handle failures
between implementations in a predictable and understandable fashion.

In its draft set of specificationss for Version 1.2, XMLP addressed the interoperability issues
that were identified for Version 1.1, so many problems should be eliminated or at least be less
problematic with SOAP 1.2. XMLP also plans to provide a non-normative Primer (SOAP
Version 1.2 Part 0: Primer), a tutorial on how to use SOAP 1.2. In addition, they are
developing a conformance test suite, which is discussed in more detail in the following
section. The Primer and test suite should help reduce confusion and differences of
interpretation. However, since 1.1 is the currently implemented version and the only one that's

Java Web Services

188

considered a standard, let's look at some areas of interoperability problems in that
specification.

9.2.1.1 Encoding

In Chapter 3, we talked about the two models for using SOAP: the document exchange model
and RPC. In Chapter 4, we introduced SOAP encoding, which defines a serialization
mechanism for exchanging application data. Encoding and how it is used in each model are
some of the biggest challenges to interoperability.

In SOAP 1.1, the RPC model requires the SOAP server to map data from a given native type
into the XML encoding for that type and convert the encoding back from the XML encoding
to the native type. RPC method calls are also encoded into XML, with method names mapped
to the SOAP body child tags and arguments to child tags of the method name. Mapping
between a number of type systems and XML is a difficult challenge, and not all languages can
be mapped equally well. Toolkits may map to and from any given programming language's
type system differently.

There is no default encoding in SOAP. SOAP 1.1 defines a SOAP encoding style, often called
Section 5 encoding (since it appears in Section 5), specifying how to express complex
programming language types in XML. Section 5 encoding provides simple (scalar) and
compound (composed of multiple parts) type categories and a set of rules for serialization.
The specification also allows other encoding styles through the encodingStyle attribute,
which can be used with "any element, and is scoped to that element's contents and all child
elements not themselves containing such an attribute, much as an XML namespace
declaration is scoped" (Section 4.1.1). The encodingStyle attribute identifies serialization
rules. Serialization is discussed in more detail in Section 9.4 later in this chapter.

SOAP 1.1 provides an optional encoding mechanism called literal encoding. With literal
encoding, an XML document is sent as the payload. In contrast, with the standard encoding
style, application data such as primitive types, methods, and objects, are serialized to XML. In
this case, the XML payload is not really a document. The distinction between literal and
encoded SOAP bindings in 1.1 is another source of problems. For example, Apache SOAP
defaults to Section 5 encoding, while ASP.NET uses literal encoding. To get them to
interoperate, one side must specify the encoding explicitly rather than use its default.
ASP.NET can be forced to use Section 5 encoding by applying the SoapRpcService attribute
to the class containing the web methods. To force Apache SOAP to use literal encoding, you
must specify that the method takes a single parameter of type org.w3c.dom.Element as an
argument and returns a response of the same type. You must then create an XML tree for the
input parameter and modify the XML tree for the response.

In contrast with RPC, the document exchange model does not inherently require encoding.
With the XML Schema Recommendation, a native XML type system can be used as well, so
Section 5 encoding or another specialized encoding is not required.

In summary, there are four common combinations of style and encoding. Both ends must
agree on a particular combination. For example, a server that supports only document
exchange using the literal encoding won't be able to communicate with a client that wants to
use RPC with Section 5 encoding. Here's a summary of the possible combinations:

Java Web Services

189

• Document/literal
• Document/encoded (Section 5)
• RPC/literal
• RPC/encoded (Section 5)

9.2.1.2 xsi:type

SOAP 1.1 defines a way to type each value explicitly through the xsi:type attribute. The
xsi:type attribute is optional and generally not required if the type being used is made
known through the use of a schema, WSDL, or another form of metadata exchange. The
specification states:

For each element containing a value, the type of the value MUST be
represented by at least one of the following conditions: (a) the containing
element instance contains an xsi:type attribute, (b) the containing element
instance is itself contained within an element containing a (possibly defaulted)
SOAP-ENC:arrayType attribute or (c) or the name of the element bears a
definite relation to the type, that type then determinable from a schema.
(Section 5.1).

If one implementation expects type information, it probably won't be able to process a
message from an implementation that doesn't include it. For example, earlier versions of
Apache SOAP required explicit declaration of element datatypes. Because they did not use an
external data typing mechanism (such as WSDL), the early Apache releases required explicit
typing to determine how to map into native datatype representations.

While Apache tools required explicit typing of RPC parameters, earlier Microsoft
implementations didn't support it at all. They relied on WSDL, which created a significant
interoperability problem. As of Apache 2.1, a workaround for this problem has been provided.
To deserialize a parameter in a SOAP-RPC, the SOAP engine requires notification of the type
for each parameter (since no metadata is available to the SOAP engine). Because Apache does
not support WSDL, if explicit typing (the xsi:type attribute) is not used, explicit mapping is
an option. The element name of the parameter can be used as the schema type, so the engine
can associate a Java type for mapping. This association requires the user to tell Apache SOAP
what the deserializer is for each type. We will talk about custom types and serialization when
we get to Section 9.4.

Microsoft's BizTalk Framework 2.0 specification now supports the xsi:type attribute.

9.2.1.3 Proprietary datatypes

Implementations often define proprietary datatypes beyond the primitive types specified by
SOAP. An implementation that uses only the SOAP-defined types has much greater
interoperability potential.

9.2.1.4 Serialization

SOAP 1.1 does not specify an order for data serialization. Implementations can choose the
order, which can cause problems between implementations.

Java Web Services

190

9.2.1.5 SOAPAction

The SOAP 1.1 specification leaves the use of this element open for interpretation. For
example, it is defined in the context of the HTTP header as a URI identifying the "intent of
the message." This definition could be interpreted as the intended target for the message or the
name of the target service. Another interpretation extends SOAPAction to accommodate
different versions of the service. Service versioning is an interoperability issue in its own
right, which we'll discuss in the context of WSDL later in this chapter. The fact is that there
are currently several different interpretations of how SOAPAction should be used.

In addition, the use of SOAPAction for transports other than HTTP, or between transports, is
not specified in SOAP 1.1. Providing equivalent functionality for other protocols is up to
the implementation, regardless of which interpretation is applied. As a rule, if another
protocol is used, interoperability issues are likely to arise until standards are defined that
explicitly specify bindings to other protocols.

The functionality that SOAPAction provides is useful. Being able to identify, route, or
dispatch requests without having to parse XML is a good idea. The problem is in the
implementation. In retrospect, it was probably not a good idea to overload the Action verb in
HTTP. If SOAP is truly designed to be layered upon multiple protocols, then what's needed is
some sort of metadata that provides SOAPAction-like functionality. Then the binding to
a particular protocol can map this metadata to whatever headers it likes: SOAPAction,
SOAPRouting, SOAPDispatch, SOAPMethod, etc. To extend the scope of bindings for
SOAP 1.2, the XMLP group defines a Transport Binding Framework. This framework defines
a convention that describes binding property and feature types, a Message Exchange Pattern
(MEP), and an HTTP binding based on the description convention and the MEP.

Even if HTTP is the protocol of choice, there is additional confusion about how SOAPAction
works. Section 6.1.1 states:

The presence and content of the SOAPAction header field can be used by
servers such as firewalls to appropriately filter SOAP request messages in
HTTP. The header field value of empty string ("") means that the HTTP
Request-URI provides the intent of the SOAP message. No value means that
there is no indication of the intent of the message.

In essence, the specification allows two ways to declare the intent (whatever "intent" is
interpreted to mean) of a message: through SOAPAction or through the HTTP Request-URI.
To add to the confusion surrounding SOAPAction, if a SOAP server requires a null value,
HTTP clients that cannot set a null HTTP header value will have problems. Also, no
distinction is made between an empty string ("") and a null value, so both interpretations can
be valid. SOAPAction is definitely a can of worms for interoperability.

The XMLP group has debated whether to keep SOAPAction in 1.2 or deprecate it. The current
wording in the SOAP 1.2 draft Part 2, Adjuncts, Section 8.5.5 is:

Use of the SOAP Action feature is OPTIONAL. SOAP Receivers MAY use it
as a hint to optimise processing, but SHOULD NOT require its presence in
order to operate. Support for SOAPAction is OPTIONAL in implementations.
Implementations SHOULD NOT generate or require SOAPAction UNLESS

Java Web Services

191

they have a particular purpose for doing so (e.g., a SOAP Receivers specifies
its use).

This wording does not guarantee full interoperability between implementations without prior
negotiation, but does improve the current state of affairs.

9.2.1.6 Multireference (id/href)

Not all SOAP implementations support multireference values. Nonetheless, some
implementations, including Microsoft's .NET Framework, do employ them. The .NET
Framework uses multireference values to represent every element of an array.

9.2.1.7 Processing order

The SOAP 1.1 specification does not define the order in which either SOAP headers or the
SOAP body should be processed. Currently, each SOAP processor determines the processing
order. This determination can lead to interoperability issues in scenarios involving
intermediaries, in areas such as error processing, or in consistent, predictable service behavior
across SOAP processors.

9.2.1.8 Header extensions

SOAP is designed to be extensible through the definition of additional headers. While
extensibility is good, it also opens up the potential for abuse. Mandatory headers can be
defined that can turn on or off the processing of other headers. Parties can define headers that
are not standardized or widely supported. For example, BizTalk Server defines proprietary
headers. The BizTalk Framework 2.0 specification defines BizTags, a set of XML tags used
to indicate document handling. BizTags can be mandatory or optional; they are used to create
SOAP headers in an XML BizTalk business document. BizTalk Framework 2.0 compliant
servers, or BFC Servers, must be able to process headers composed of BizTags. However,
SOAP servers that are not BFC-aware are not likely to understand BizTags or BizTalk-
defined header extensions.

Section 7 of the BizTalk Framework specification defines five BizTag header extensions used
to specify document routing, identification and other document properties, requested delivery
services, a catalog of document contents and attachments, and tracking of the full business
process context to which the document belongs. Each extension is comprised of BizTag
elements and attributes (such as to or from, which are used in the endpoints header
extension). These header extensions include:

• endpoints (mandatory—document source and destination)
• properties (mandatory—identify and other properties)
• services (optional—reliable delivery services)
• manifest (optional—document catalog information)
• process (optional—process management information)

Processing and understanding these header extensions is mandatory for a BFC server, and
most, when present, require mustUnderstand="1". The exception is the manifest extension,
which becomes mandatory when the document is part of a compound package. In this case, it
must be present and mustUnderstand="1" is required. If the manifest header is used only to

Java Web Services

192

verify package integrity or catalog what is contained in the document, processing its contents
is not required.

The following example, extracted from the BizTalk Framework 2.0 specification, illustrates
the endpoints header extension:

<SOAP-ENV:Header>
 <eps:endpoints SOAP-ENV:mustUnderstand="1"
 xmlns:eps="http://schemas.biztalk.org/btf-2-0/endpoints"
 xmlns:agr="http://www.trading-agreements.org/types/">
 <eps:to>
 <eps:address xsi:type="agr:department">Book Orders</eps:address>
 </eps:to>
 <eps:from>
 <eps:address xsi:type="agr:organization">Book Lovers</eps:address>
 </eps:from>
 </eps:endpoints>
</SOAP-ENV:Header>

Services incorporating such proprietary header definitions are not fully interoperable with
clients or other servers that don't understand them. While they'll probably be able to fail in a
predictable and understandable fashion through the SOAP Fault, they won't get past that level.

9.2.1.9 Content type

SOAP 1.1 specifies a content type of text/xml in the HTTP header. This type designation is
problematic, though. MIME user agents that do not support text/xml explicitly treat it as
text/plain, displaying the XML MIME part as plain text. This plain text display is not
appropriate for casual users (not programmers) who can't be expected to take interest in the
contents of a SOAP document. The XMLP group has agreed that text/xml should not be
used. One proposal is to use a media type of application/soap, for which application is
the MIME media type name and soap is the MIME subtype name. An extension mechanism
may be provided; for example, application/soap+xml could be used to describe SOAP1.2
messages serialized as XML. Because SOAP 1.2 is based on the XML Infoset, alternate
serializations of messages are permitted. The application/soap+xml content type would
identify SOAP messages using XML 1.0 serialization.

Whatever the outcome of the XMLP discussions, text/xml will not be supported in
SOAP 1.2.

9.2.1.10 mustUnderstand

SOAP 1.1 defines a mustUnderstand attribute, which we discussed in Chapter 4. Apache
SOAP does not support the mustUnderstand attribute. It offers a workaround; an attribute in
the deployment descriptor tells the runtime (per-service) whether to fault if any
mustUnderstand headers are present. This workaround is supported only for RPC-style
SOAP.

SOAP 1.1 defines values for the mustUnderstand attribute as 0 (false) or 1 (true). Some
implementations have used the values false or true. The SOAP 1.2 draft indicates that true
or 1 may be used (and because the value is defined as Boolean, one would assume 0 or false
are also valid). This definition may present a problem with backward compatibility for some

Java Web Services

193

implementations. The use of unique namespaces for each version of SOAP should prevent
most interoperability problems in this regard, however.

There have been some differences in the interpretation of how a given actor should verify that
it understands all headers with mustUnderstand equal to 1 or true. One interpretation is that
all mustUnderstand headers should be checked prior to processing. A second interpretation is
that mustUnderstand headers can be checked and processed individually. The outcome from
these varying approaches can also differ. XMLP has proposed the following change to clarify
this processing order:

A SOAP node's processing of the MU checks needs to 'appear' to be done
before any processing occurs. This is to guarantee that no undesirable side-
effects will occur as a result of noticing an unknown MU header too late.

9.2.1.11 SOAP actor

In SOAP 1.1, the actor attribute provides a targeting capability. An actor is of the type
anyURI and can have more than one URI identifier. The target, or final recipient, can be
designated in two ways: explicitly as the next actor or by the absence of an actor. Providing
multiple ways to identify the targeted destination can result in confusion and interoperability
between implementations.

There is semantic confusion about SOAP 1.1's definitions for the designated roles of actors.
The terms (default actor, anonymous actor, ultimate recipient, and endpoint) are not
commonly understood and are often used interchangeably. For example, the lack of consensus
about what the term "endpoint" means is a problem: does it designate a final destination, or
can an intermediary be considered an endpoint? This lack of semantic consensus has resulted
in misunderstandings between implementations.

9.2.2 WSDL

Two camps represent very different views on the value of WSDL. One camp, including Dave
Winer from UserLand, believes that WSDL and UDDI are impediments to interoperability
because they are too complicated; are less open than HTTP, XML, or SOAP; and encourage
vendor lock-in. They claim that the net effect is limited opportunities for smaller, independent
players. Another camp, which includes vendors such as Microsoft and IBM, argues that
WSDL enhances interoperability and facilitates development and implementation of web
services across platforms and tools through better standardized definition and documentation
of services. Some articles and interviews that discuss these issues are listed in Section 9.6 at
the end of this chapter.

Contrary to some opinions, WSDL is not required for web services interoperability. It may be
very useful in some scenarios, but in others, it may not be necessary or beneficial. For
example, it may be more convenient in some scenerios to exchange service information via
email or configure applications to offer or consume a service through existing tools and
documentation processes.

Java Web Services

194

9.2.2.1 Dynamic languages

WSDL works well with Java and the .NET programming languages, but does not work as
well with dynamic languages such as Python or Perl. This may be because participants from
these development environments were not involved in the initial development of the WSDL
specification. WSDL has since been submitted to the W3C, so it will hopefully be modified to
become a more useful standard across environments.

9.2.2.2 Documentation

WSDL allows <wsdl:documentation> elements to occur at numerous places in a WSDL
document. Depending on how a toolkit works, it may map WSDL documentation in various
ways. For example, Systinet's WASP maps WSDL to Java by generating a Java interface from
the WSDL portType, so the portType documentation element is used for the interface's
javadoc. Methods are generated from portType and its operations, so the corresponding
documentation element is the documentation used for a method's javadoc.

Because this behavior is not standardized, toolkits may map documentation elements
differently.

9.2.2.3 Tool and library variances

Web services tools generate WSDL based on nonstandardized language mappings. The way a
SOAP/XML schema library reads a WSDL document and matches return values can vary
based on the implementation. Furthermore, not all toolkits support the same set of options in
the WSDL standard.

A WSDL file may require some minor customization to function on a specific platform or
with a specific toolkit, depending on the implementation. For example, Microsoft SOAP
Toolkit 2.0 used a namespace of wsdlns when generating a WSDL. The proxy generator tool
in IBM's Web Services Toolkit did not recognize this namespace. To make the tool work,
wsdlns had to be deleted in the tool's local copy of the WSDL.

Initially, incompatibilities existed between the SOAP::Lite WSDL reader for Perl and the
.NET WSDL generator. The SOAP::Lite reader expected all XSD type information to be
contained in a namespace xsd. A .NET-generated WSDL file required modification to change
the XML namespace from:

xmlns:s=http://www.w3.org/2001/XMLSchema

to:

xmlns:xsd=http://www.w3.org/2001/XMLSchema

The XSD namespace version of this declaration can also be problematic and may require
modification in the local copy of the WSDL. For example, if the tool uses the 1999 XSD, it
will not understand the 2001 XSD. We'll go into more detail about XSD versions later.

Although you would think otherwise, you can't assume that tools from the same vendor will
always interoperate. Problems have been reported when reading a WSDL document between
.NET Beta 2 and the SOAP Toolkit Version 2.

Java Web Services

195

Toolkits may add value by hiding interoperability problems from the developer. To do this,
they must map between the vendor-specific features and misfeatures of different web service
platforms. Hiding interoperability problems isn't as good as eliminating them, but it's still a
valuable service.

9.2.2.4 Versioning

Versioning of WSDL (and of web services in general) is not well understood and there isn't
much agreement about how it should work. Currently, WSDL supports implicit versioning
through unique namespaces.

One opinion is that WSDL, similar to a CORBA IDL, represents an immutable contract, and a
new web service requires a new WSDL document, not just a new version of an existing
WSDL. Others feel that a WSDL document can be versioned to support the enhancement of a
web service, allowing one document to support multiple versions of the web service.
Depending on how support is implemented, interoperability can be impacted severely.
Migration to newer versions of web services can also cause problems, creating registry and
implementation interoperability issues.

9.2.2.5 Endpoints

Endpoints are defined through portTypes and operations. However, WSDL does not provide
a standard way to pass this information over the wire. For example, the BizTalk Framework
2.0 defines endpoints in a BizTalk header extension, explained in more detail in the SOAP
section of this chapter. Implementations that do not support BizTalk will not understand
endpoints defined through this mechanism.

9.2.3 UDDI

To facilitate UDDI interoperability, services must be registered consistently and
unambiguously so that registered services can be recognized within and across registries.
There is currently no interoperability test for UDDI registries similar to those available for
SOAP and WSDL. As adoption of UDDI expands and the number of public and private
registries grows, UDDI interoperability may become more of an issue.

ebXML has also defined a registry. The latest draft of Version 2.0 can be found at
http://www.oasis-open.org/committees/regrep/documents/2.0/specs/ebrs.pdf. The
specification outlines a scenario in which a client discovers an ebXML registry in a public
UDDI registry. While the interoperation between ebXML and UDDI registries has gotten
some attention, how successfully these two specifications can interact and work together
remains unclear.

9.2.4 XML Schema

The three versions of the XSD namespace are 1999, 2000/10, and 2001. Using different XML
Schema versions can cause namespace problems or problems with serialization and
deserialization. Several datatypes changed names in the 2001 specification; for example,
timeInstant became dateTime.

Java Web Services

196

Most tools have been modified to accept the 2001 XSD declaration. At this point, 2001 is
probably the safest for new development. However, a number of implementations still rely on
earlier versions. When we get to the examples, we will show how to use a different version of
the XSD namespace with Apache SOAP. The Microsoft SOAP Toolkit 2.0 supported all three
versions, as long as the namespace in the messages matched what was specified in the WSDL
file.

The character set may be specified; if not, it defaults to US-ASCII. UTF-8 and UTF-16 are
also acceptable. UTF-8 has the widest acceptance and is the recommendation for
interoperability. UTF-16 requires a byte order mark (BOM), and some implementations can't
process a BOM.

9.2.5 Intermediaries

The draft SOAP 1.2 glossary defines a SOAP intermediary as follows:

A SOAP intermediary is both a SOAP receiver and a SOAP sender, targetable
from within a SOAP message. It processes a defined set of blocks in a SOAP
message along a SOAP message path. It acts in order to forward the SOAP
message towards the ultimate SOAP receiver.

A web services scenario may include one or more intermediaries. The role of intermediaries
can vary. An intermediary's role can include:

• Value-add or brokering
• Routing or switching

Each role presents interoperability considerations. An intermediary may have or require a
priori knowledge of other nodes, contracts, or trading partner agreements. A lack of this
knowledge can present opportunities for a service to break down in unpredictable ways as
messages traverse the paths between nodes. Interoperability problems can arise even if an
intermediary just relays a message. For example, the intermediary's SOAP processor may
modify SOAP headers when parsing a message to its XML canonical form. The intermediary
may modify a mustUnderstand value of 1 to a value of true. Such actions may have
unexpected results.

If the intermediary role includes processing, the way in which the node repackages the SOAP
message could be different from the original packaging. The ultimate destination might not be
able to process this subsequent packaging successfully.

9.2.6 Transactions

Currently, the coordination or orchestration of transactions in a web services model is not
standardized. Requirements to handle transaction failure within a web services scenario can
extend beyond the X/Open two-phase commit model for distributed transactions. Aggregate
web services may need coordination when backing out a transaction or when processing
errors. Intermediaries add further complications, depending on their role. Currently,
transaction interoperability can be accomplished only through agreements between parties and
customized or proprietary solutions. However, although no standards currently facilitate

Java Web Services

197

interoperability, several efforts, such as the OASIS Business Transaction Technical
Committee (http://www.oasis-open.org/committees/business-transactions/), are underway.

9.2.7 Integration

Backend integration of applications presents another challenge. The J2EE Connector
Architecture aims to solve this problem for J2EE platforms, and .NET provides integration
capabilities through .NET servers (e.g., BizTalk). However, no standard across platforms and
applications that ensures interoperability at this level exists.

9.2.8 .NET and J2EE

Whenever the topic of web services interoperability comes up, interoperability between the
.NET and J2EE platforms is usually part of the discussion. While the web services model is
based on communication and interoperability across heterogeneous platforms, languages, etc.,
there seems to be a great deal of skepticism as to how well web services can truly bridge
.NET and J2EE technologies.

Given the relative immaturity of the open standards, bridging J2EE and .NET actually seems
to work pretty well, as we will see when we discuss the SOAPBuilders Interoperability
project. Extensions to the core web services standards, such as BizTalk and ebXML, present a
greater challenge to interoperability.

The differences in approach between .NET and J2EE and the technical challenges
accompanying them are sometimes significant. However, efforts such as the SOAPBuilders
interoperability test labs have helped broker a high level of interoperability.

The following list details some key differences between .NET and J2EE:

• J2EE is a set of open standards, not a product. .NET, on the other hand, is a product
suite, with some offerings built on standards and others that extend standards in
proprietary ways.

• .NET provides runtime support for SOAP and UDDI as native .NET protocols.
• Integrated support is provided in .NET to build and debug XML-based web services.

J2EE vendors must provide integration between their J2EE-based products and an IDE
offering; requirements for doing so are not part of the standard.

• .NET provides business process management and e-commerce capabilities. These
capabilities may be provided in a J2EE implementation, but are not part of the
standard.

• J2EE is focused on application portability and connectivity between platforms
supporting Java. .NET claims to target application integration between platforms using
XML. The layer of abstraction has been raised in this model. J2EE 1.4 will include
parts of the Java Web Services Developer Pack and web services support.

• Application and backend integration approaches differ. J2EE includes the Connector
Architecture and the Java Message Service (JMS). The Connector Architecture
provides a mechanism for plugging in resource adapters to connect to specific systems
and applications. These resource adapters can be used in any container that supports
the J2EE Connector Architecture. Communication across disparate applications and
platforms is supported through JMS and the Java APIs for XML.

Java Web Services

198

• .NET supports integration through several mechanisms: the Host Integration Server
2000, COM Transaction Integrator (COM TI), Microsoft Message Queue (MSMQ),
and BizTalk Server 2000. Each solution fits a specific integration space (collaboration
transactions across mainframe systems, integrating with legacy systems, integrating
with systems based on protocols such as EDI, etc.).

9.2.9 Unique IDs

There is currently no general agreement about how to represent business entities and business
domains consistently across web services standards. This deficiency presents a large hurdle to
interoperability. Identifier schemes for business entities include Dun & Bradstreet's DUNS
numbers, the International Telecommunication Union (ITU), the Object Identifier scheme
(OID), vertical domain administered schemes such as the International Air Transport
Association (IATA) airline codes, etc. However, there is currently no ubiquitous standard for
web services.

For protocols that include the concept of a "from" and "to" party, the lack of identifiers can
present an interoperability problem. The ebXML Message Service Specification Draft
Version 2.0 contains a PartyID element with a type attribute. The type attribute indicates
the domain of names used for the PartyID (such as DUNS). The PartyID is used in the From
and To elements. However, a common notation or naming convention is not specified. Parties
must agree on the naming convention to interoperate.

Similarily, the BizTalk Framework 2.0 states (Section 7.1):

The source and destination are specified as names of business entities in the
element marked by the <address> BizTag, and these names in general reflect
business-related namespaces (such as DUNS numbers) rather than transport
endpoints.

WSDL defines endpoints through ports, which specify a single address for a service binding,
rather than using a business naming convention.

9.3 Potential Interoperability Issues

There are certainly enough interoperability issues to worry about in the present.
Unfortunately, they aren't the entire story. A number of other issues are poised to become a
problem as web services standards continue to develop.

9.3.1 Layering Decisions

Several extensions, such as security and reliability, are necessary to complete the web services
picture. However, standards bodies have not yet decided where these extensions belong. IBM
has proposed HTTPR (reliable HTTP), while other participants in web services standards
development disagree about whether reliability belongs at the transport protocol level.
ebXML has added reliability in their message protocol standard. The same issue exists for
security (some of these issues are discussed in Chapter 10) and quality of service (QoS).

Java Web Services

199

9.3.2 Standards Development and Proliferation

Currently, the W3C and other standards bodies are trying to identify which gaps in the web
services standards most need to be filled. Reliability and security are mentioned most often,
but beyond that, there is no consensus about which missing standards are most critical or what
the list should even include. Standards groups are not coordinated as they try to address these
gaps, so a proliferation of competing standards often duplicates or overlaps. This proliferation
will undoubtedly cause additional interoperability issues to surface. To add to the confusion,
vertical markets often create their own standards to expedite business exchange within (or
between) markets.

The result is that the most widely implemented standard usually wins, whether or not it
represents the best solution. However, until the dust settles, interoperability will become more
of a nightmare as web services implementations increasingly require a level of sophistication
beyond the existing ubiquitous standards such as SOAP, XML, and HTTP. Here is is an
overview of some of the developing standards that could have an effect on the interoperability
challenge:

9.3.2.1 W3C

In April 2001, the W3C held a Web Services Workshop, during which a number of
presentations proposed work items for the W3C. The following working groups were
identified (in order of priority):

• New Wire working group XML protocol extensions (QoS, reliable messaging,
attachments, messaging models, routing, and publish/subscribe)

• Definition language (conversation, QoS, security, representation for business process
and state changes, contracts, and negotiation)

• Orchestration (conversations, work flow, and business process)
• Discovery/Registration (generic query language and expression of

vocabularies/terminologies)
• Management
• Architecture Group (security and QoS)
• Coordination Group (including external groups)

9.3.2.2 ebXML

The ebXML effort, initiated jointly by OASIS and UN/CEFACT, is developing standards in a
number of areas, including:

• Messaging (based on SOAP with reliability, intermediaries, and some security)
• Business process
• Collaboration party profiles and party agreements

9.3.2.3 OASIS

OASIS efforts include:

• Security Assertion Markup Language (SAML)
• Business Transaction Processing (BTP)
• Universal Business Language (UBL—business process)

Java Web Services

200

• Web Services for Interactive Applications (WSIA—previously the Web Services
Component Model [WSCM])

9.3.2.4 Conformance and interoperability standards

There has been some call for standardized interoperability. This standard would include
definitions of interoperability requirements between deployment environments and strong
conformance statements as part of the standards.1

Another proposed idea is that layers of SOAP interoperability should be defined with a
minimal SOAP implementation and several extended implementations scoped above the
minimum (for example, base SOAP plus reliability). The ebXML Message Specification has
taken this approach in their latest draft (2.0). One argument against this approach is that the
goal is to encourage open communication among implementations; defining optional subsets
increases the risk of interoperability problems.

9.4 SOAPBuilders Interoperability

If you are depressed and skeptical by now, read on. A lot of great work is being developed
that is producing positive results.

The SOAPBuilders group was created to promote interoperability as the SOAP specification
matures. The SOAPBuilders discussion group provides a forum for SOAP implementers to
discuss issues related to interoperability and the various specifications. It has existed since
January 2001. The group has a community of over 750 members and is highly active.

Through SOAPBuilders, two labs for interoperability testing against SOAP 1.1 have been
developed. The test labs provide test suites that can be used by SOAP implementations to test
interoperability. The SOAPBuilders test suite was initially based on tests created to improve
interoperability between Apache SOAP and SOAP::Lite. The tests are a collection of SOAP-
RPC echo invocations. WSDL documents and browser-based clients for using the service are
provided for all test suites. A directory of endpoints for each implementation is maintained on
the lab site.

XMethods (http://www.xmethods.net/ilab/) maintained Round 1, conducted in June 2001. The
SOAPBuilders interoperability activity is now in Round 2, maintained by Bob Cunnings of
White Mesa (http://www.whitemesa.com/interop.htm). For each round, XMethods and White
Mesa provide lists of implementations and WSDL documents that have been tested and
document the test results. Based on this information, you can determine the state of
interoperability for a specific implementation.

Most implementations listed for Round 1 and many listed for initial testing during Round 2
have released updates to correct identified interoperability issues. Many listed Round 1
services are no longer available for testing. The Round 2 tests are better maintained, but don't
support Apache SOAP 2.2 clients because that tool generates an older schema reference in the
SOAP envelope. We will show how to fix this problem later in this chapter; Axis (the next
generation of Apache SOAP) does not have this problem.

1 As we go to press, BEA, IBM, and Microsoft are forming the Web Service Interoperability Organization, which will address some of these issues.
Given the existence of the SOAPBuilders Ineteroperability Labs, the formation of this group raises the spectre of interoperability between different
interoperability groups.

Java Web Services

201

The Round 1 Interoperability Lab included specifications for a Service test suite and a Service
via SOAP Intermediary test suite.

9.4.1 Round 2

The Standard Round 2 Interoperability Lab has been expanded to include specifications for a
Base test suite, a Group B test suite, an echo Header or Group C test suite, a Service via
SOAP Intermediary test suite (which duplicates the methods from the Base suite), Digest
Authentication Implementation, Web Services Routing Protocol (for intermediary nodes as
well), and Document/Literal SOAP Operations.

The Base test suite includes methods to test types (string, string array, integer, integer array,
float, float array, struct, and struct array). Each method accepts the specific type and echoes it
back to the client. Explicit typing information can be carried on the wire, but should not be
required on incoming messages. For example, here is the echoString method client request
(with sample envelopes). It accepts a string as an argument:

POST /interop HTTP/1.0
Host: www.whitemesa.net
User-Agent: White Mesa SOAP Interop Client/1.0
Content-Type: text/xml; charset="utf-8"
Content-Length: 502
SOAPAction: "http://soapinterop.org/"

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <SOAP-ENV:Body>
 <m:echoString xmlns:m="http://soapinterop.org/">
 <inputString>hello world</inputString>
 </m:echoString>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Here is a successful server response; as you'd expect, it returns the same string:

HTTP/1.0 200 OK
Date: Wed, 20 Jun 2001 02:44:16 GMT
Server: WhiteMesa SOAP Server/2.3
Content-Type: text/xml; charset="utf-8"
Content-Length: 508

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

Java Web Services

202

 <SOAP-ENV:Body>
 <m:echoStringResponse xmlns:m="http://soapinterop.org/">
 <return>hello world</return>
 </m:echoStringResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Similar echoing methods are provided for:

echoVoid

Accepts no arguments and returns no arguments

echoBase64

Accepts a binary object and echoes it back

echoHexBinary

Accepts a hex-encoded object and echoes it back

echoDate

Accepts a Date/Time and echoes it back

echoDecimal

Accepts a decimal and echoes it back

echoBoolean

Accepts a Boolean and echoes it back

The Group B test suite includes methods with more complex serialization requirements. It
includes these echo methods:

echoStructAsSimpleTypes

Accepts a single struct and echoes it (decomposed into three output parameters)

echoSimpleTypesAsStruct

Accepts three input parameters and echoes them integrated into a single struct

echo2DStringArray

Accepts a single two-dimensional array of type xsd:string and echoes it

echoNestedStruct

Accepts a single struct with a nested struct type member and echoes it

Java Web Services

203

echoNestedArray

Accepts a single struct with a nested array type member and echoes it back

The echoHeader or Group C test suite offers standard headers used to test header processing.
The SOAP body contains an echoVoid method call. The message recipient is the default
actor, and the mustUnderstand element value can be either 0 or 1 to test conformance to the
SOAP 1.1 specification. The following header entries are provided:

echoMeStringRequest

Contains a string that is echoed in a corresponding response header entry
(echoMeStringResponse)

echoMeStructRequest

Contains a single, echoed struct (echoMeStructResponse)

Unknown

Any header that is not understood by the server. If a server cannot process the header
and mustUnderstand is set to true (1), the server must issue a SOAP Fault if it is the
target of the header entry, based on the value of the actor attribute. If the target is
another server, the server can ignore the header entry. If a server cannot process the
header, and mustUnderstand is set to false (0), the server can ignore the header
entry and is not required to fault (regardless of whether it is the targeted server).

Polymorphic type methods are also available. They include: echoPolyMorph,
echoPolyMorphArray, and echoPolyMorphStruct.

9.4.2 Round 3

Round 3 of interoperability testing, scheduled for the end of February 2002, is co-hosted by
IONA and Microsoft and will focus on WSDL interoperability. A formal plan is not yet
finalized, but proposed testing includes the following success criteria:

• Tools can generate WSDL documents correctly for designated scenarios and consume
WSDLs generated by other tools.

• Tools can consume and reuse WSDL documents.

Discussion topics that have been most active on the SOAPBuilders list will be included in the
tests:

• Import (schema import)
• Document/literal services with multiple schema
• SOAP binding interoperability issues

Java Web Services

204

9.4.3 Understanding the Echo Test

Let's examine the EchoTestClient that comes with Apache SOAP 2.2. We picked Apache
SOAP because we already explained its underpinnings in earlier chapters and wanted to focus
on the test itself. The workings of the test, the interoperability issues, and the concepts of
encoding and serialization are generic enough to apply to any SOAP infrastructure you may
use. The EchoTestClient represents a Java implementation of the SOAPBuilders
Interoperability Labs "Round 1" test and can also be used for the "Round 2: Base"
interoperability tests. It can be found in the soap-2.2\samples\interop directory, or as part of
the examples available on this book's web site (http://www.oreilly.com/catalog/javawebserv).

We also verified some of the test results using the Apache Axis version of the same test and
used other third-party visual interfaces. These interfaces will be shown later.

9.4.3.1 Running the EchoTestClient

To see how these tests work, we need an Internet connection. Let's run the Apache SOAP 2.2
EchoTestClient against the Iona XMLBus echo test service, which Iona has hosted as part of
their participation in the SB Round 2 effort:

java samples.interop.EchoTestClient
 http://interop.xmlbus.com:7002/xmlbus/container/
 InteropTest/BaseService/BasePort

The command must be typed on a single line. If you use the EchoTestClient straight from
the Apache SOAP distribution, you should see the following errors as output:

echoInteger generated fault:
 Fault Code = SOAP-ENV:Server
 Fault String = xsi:type doesn't match. Expected http://www.w3.org/2001/
XMLSchema:int but found http://www.w3.org/1999/XMLSchema:int
echoFloat generated fault:
 Fault Code = SOAP-ENV:Server
 Fault String = xsi:type doesn't match. Expected http://www.w3.org/2001/
XMLSchema:float but found http://www.w3.org/1999/XMLSchema:float
soapAction: http://soapinterop.org/
echoString generated fault:
 Fault Code = SOAP-ENV:Server
 Fault String = xsi:type doesn't match. Expected http://www.w3.org/2001/
XMLSchema:string but found http://www.w3.org/1999/XMLSchema:string
soapAction: http://soapinterop.org/
...

This result illustrates one of the most basic interoperability problems. The receiving service
expected the schema definition http://www.w3.org/2001/XMLSchema, but the sending client
generated a SOAP envelope based on http://www.w3.org/1999/XMLSchema. We will show
how simple it is to fix this problem in a moment, when we get to the code. In the meantime,
when the EchoTestClient works correctly, its output looks like this:

echoInteger OK
echoFloat OK
echoString OK
echoStruct OK
echoIntegerArray OK
echoFloatArray OK

Java Web Services

205

echoStringArray OK
echoStructArray OK

This test may look simple, but quite a bit is going on internally. At the highest level, this test
makes eight RPC calls,2 each with its own unique datatype as a parameter. The receiving
method simply takes that parameter and returns it as the method's return value. The sending
client then compares the returned data with the sent data to verify that it is the same. If the
data are equal, we know that:

• The sending client successfully packaged the method invocation and its parameters
and correctly marshalled it onto the wire as a valid SOAP request.

• The receiving SOAP processor received the request, identified that there was enough
correct information in the SOAP request, and dispatched it to the appropriate service
method.

• The receiving SOAP processor also (optionally) validated the request against the
WSDL that described the service.

• The service method was invoked with the correct data and returned the data intended
for the caller as the return value.

• The server implementation correctly marshaled the return values onto the wire as a
response envelope.

• The sending client's runtime infrastructure successfully unmarshaled the SOAP
response envelope into the appropriate Java object.

• The sent and returned data are equivalent.

The next exercise directs the EchoTestClient at our simple servlet from Chapter 3:

java samples.interop.EchoTestClient http://localhost:8080/examples/servlet/
SimpleHTTPReceive

You will see several errors in the sending client's console because the simple servlet is not set
up to accommodate RPC calls—but that's not important for this discussion. What's important
is that you should see the following output in the Tomcat console window. The raw SOAP
envelopes that were generated by the EchoTestClient are shown here:

Received request.

 SOAPAction = "http://soapinterop.org/"
 Host = localhost
 Content-Type = text/xml; charset=utf-8
 Content-Length = 469

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<SOAP-ENV:Body>
<ns1:echoInteger xmlns:ns1="http://soapinterop.org/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<inputInteger xsi:type="xsd:int">5</inputInteger>
</ns1:echoInteger>

2 The scope of the test has grown to include other datatypes. This version of the test exercises eight of them.

Java Web Services

206

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Received request.

 SOAPAction = "http://soapinterop.org/"
 Host = localhost
 Content-Type = text/xml; charset=utf-8
 Content-Length = 466

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<SOAP-ENV:Body>
<ns1:echoFloat xmlns:ns1="http://soapinterop.org/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<inputFloat xsi:type="xsd:float">55.5</inputFloat>
</ns1:echoFloat>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Received request.

 SOAPAction = "http://soapinterop.org/"
 Host = localhost
 Content-Type = text/xml; charset=utf-8
 Content-Length = 476

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<SOAP-ENV:Body>
<ns1:echoString xmlns:ns1="http://soapinterop.org/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<inputString xsi:type="xsd:string">Hi there!</inputString>
</ns1:echoString>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Received request.

 SOAPAction = "http://soapinterop.org/"
 Host = localhost
 Content-Type = text/xml; charset=utf-8
 Content-Length = 656

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<SOAP-ENV:Body>
<ns1:echoStruct xmlns:ns1="http://soapinterop.org/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

Java Web Services

207

<inputStruct xmlns:ns2="http://soapinterop.org/xsd"
 xsi:type="ns2:SOAPStruct">
<varInt xsi:type="xsd:int">5</varInt>
<varFloat xsi:type="xsd:float">10.0</varFloat>
<varString xsi:type="xsd:string">Hola, baby</varString>
</inputStruct>
</ns1:echoStruct>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Received request.

 SOAPAction = "http://soapinterop.org/"
 Host = localhost
 Content-Type = text/xml; charset=utf-8
 Content-Length = 748

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<SOAP-ENV:Body>
<ns1:echoIntegerArray xmlns:ns1="http://soapinterop.org/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<inputIntegerArray xmlns:ns2="http://schemas.xmlsoap.org/soap/encoding/"
xsi:type="ns2:Array" ns2:arrayType="xsd:int[5]">
<item xsi:type="xsd:int">5</item>
<item xsi:type="xsd:int">4</item>
<item xsi:type="xsd:int">3</item>
<item xsi:type="xsd:int">2</item>
<item xsi:type="xsd:int">1</item>
</inputIntegerArray>
</ns1:echoIntegerArray>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Received request.

 SOAPAction = "http://soapinterop.org/"
 Host = localhost
 Content-Type = text/xml; charset=utf-8
 Content-Length = 762

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<SOAP-ENV:Body>
<ns1:echoFloatArray xmlns:ns1="http://soapinterop.org/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<inputFloatArray xmlns:ns2="http://schemas.xmlsoap.org/soap/encoding/"
xsi:type="ns2:Array" ns2:arrayType="xsd:float[5]">
<item xsi:type="xsd:float">5.5</item>
<item xsi:type="xsd:float">4.4</item>
<item xsi:type="xsd:float">3.3</item>
<item xsi:type="xsd:float">2.2</item>
<item xsi:type="xsd:float">1.1</item>

Java Web Services

208

</inputFloatArray>
</ns1:echoFloatArray>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Received request.

 SOAPAction = "http://soapinterop.org/"
 Host = localhost
 Content-Type = text/xml; charset=utf-8
 Content-Length = 801

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<SOAP-ENV:Body>
<ns1:echoStringArray xmlns:ns1="http://soapinterop.org/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<inputStringArray xmlns:ns2="http://schemas.xmlsoap.org/soap/encoding/"
xsi:type="ns2:Array" ns2:arrayType="xsd:string[5]">
<item xsi:type="xsd:string">First</item>
<item xsi:type="xsd:string">Second</item>
<item xsi:type="xsd:string">Fifth (just kidding :))</item>
<item xsi:type="xsd:string">Fourth</item>
<item xsi:type="xsd:string">Last</item>
</inputStringArray>
</ns1:echoStringArray>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Received request.

 SOAPAction = "http://soapinterop.org/"
 Host = localhost
 Content-Type = text/xml; charset=utf-8
 Content-Length = 1527

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<SOAP-ENV:Body>
<ns1:echoStructArray xmlns:ns1="http://soapinterop.org/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<inputStructArray xmlns:ns2="http://schemas.xmlsoap.org/soap/encoding/"
xsi:type="ns2:Array" xmlns:ns3="http://soapinterop.org/xsd"
ns2:arrayType="ns3:SOAPStruct[5]"><item xsi:type="ns3:SOAPStruct">
<varInt xsi:type="xsd:int">5</varInt>
<varFloat xsi:type="xsd:float">5.55555</varFloat>
<varString xsi:type="xsd:string">cinqo</varString>
</item>
<item xsi:type="ns3:SOAPStruct">
<varInt xsi:type="xsd:int">4</varInt>
<varFloat xsi:type="xsd:float">4.4444</varFloat>
<varString xsi:type="xsd:string">quattro</varString>
</item>

Java Web Services

209

<item xsi:type="ns3:SOAPStruct">
<varInt xsi:type="xsd:int">3</varInt>
<varFloat xsi:type="xsd:float">3.333</varFloat>
<varString xsi:type="xsd:string">tres</varString>
</item>
<item xsi:type="ns3:SOAPStruct">
<varInt xsi:type="xsd:int">2</varInt>
<varFloat xsi:type="xsd:float">2.22</varFloat>
<varString xsi:type="xsd:string">duet</varString>
</item>
<item xsi:type="ns3:SOAPStruct">
<varInt xsi:type="xsd:int">1</varInt>
<varFloat xsi:type="xsd:float">1.1</varFloat>
<varString xsi:type="xsd:string">un</varString>
</item>
</inputStructArray>
</ns1:echoStructArray>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

We will examine some of this output in more detail as we walk through the example. But first,
here is the Apache SOAP 2.2 EchoTestClient in its entirety:

package samples.interop;

import java.util.Vector;
import org.apache.soap.*;
import org.apache.soap.encoding.SOAPMappingRegistry;
import org.apache.soap.encoding.soapenc.*;
import org.apache.soap.rpc.*;
import org.apache.soap.messaging.*;
import java.net.URL;
import org.apache.soap.util.xml.*;
import java.io.*;
import org.w3c.dom.*;
import org.apache.soap.util.*;
import java.lang.reflect.*;

/** A quick-and-dirty client for the Interop echo test services as defined
 * at http://www.xmethods.net/ilab.
 *
 * Defaults to the Apache endpoint, but you can point it somewhere else via
 * the command line:
 *
 * EchoTestClient http://some.other.place/
 *
 * DOES NOT SUPPORT DIFFERENT SOAPACTION URIS YET.
 *
 * @author Glen Daniels (gdaniels@macromedia.com)
 */
public class EchoTestClient
{
 SOAPMappingRegistry smr =
 new SOAPMappingRegistry(Constants.NS_URI_CURRENT_SCHEMA_XSD);

// public static final String DEFAULT_URL =
// "http://nagoya.apache.org:5089/soap/servlet/rpcrouter";
 public static final String DEFAULT_URL =
 "http://localhost:8080/soap/servlet/rpcrouter";

Java Web Services

210

// pick one! First line works for round 1; second for round 2: base
public static final String ACTION_URI = "urn:soapinterop";
// public static final String ACTION_URI = "http://soapinterop.org/";

 public static final String OBJECT_URI = "http://soapinterop.org/xsd";
 public Header header = null;

 public static void main(String args[])
 {
 URL url = null;

 try {
 if (args.length > 0) {
 url = new URL(args[0]);
 } else {
 url = new URL(DEFAULT_URL);
 }
 } catch (Exception e) {
 e.printStackTrace();
 }

 EchoTestClient eTest = new EchoTestClient();
 eTest.doWork(url);
 }

 private static boolean equals(Object obj1, Object obj2) {
 if (obj1 == null) return (obj2 == null);
 if (obj1.equals(obj2)) return true;
 if (!obj2.getClass().isArray()) return false;
 if (!obj1.getClass().isArray()) return false;
 if (Array.getLength(obj1) != Array.getLength(obj2)) return false;
 for (int i=0; i<Array.getLength(obj1); i++)
 if (!equals(Array.get(obj1,i),Array.get(obj2,i))) return false;
 return true;
 }

 public void doWork(URL url)
 {
 IntDeserializer intDser = new IntDeserializer();
 FloatDeserializer floatDser = new FloatDeserializer();
 StringDeserializer stringDser = new StringDeserializer();
 ArraySerializer arraySer = new ArraySerializer();
 DataSerializer dataSer = new DataSerializer();
 smr.mapTypes(Constants.NS_URI_SOAP_ENC,
 new QName(OBJECT_URI, "SOAPStruct"), Data.class, dataSer, dataSer);

 Integer i = new Integer(5);
 Parameter p = new Parameter("inputInteger", Integer.class, i, null);
 smr.mapTypes(Constants.NS_URI_SOAP_ENC,
 new QName("", "Return"), null, null, intDser);
 doCall(url, "echoInteger", p);

 p = new Parameter("inputFloat", Float.class, new Float(55.5), null);
 smr.mapTypes(Constants.NS_URI_SOAP_ENC,
 new QName("", "Return"), null, null, floatDser);
 doCall(url, "echoFloat", p);

 p = new Parameter("inputString", String.class, "Hi there!", null);
 smr.mapTypes(Constants.NS_URI_SOAP_ENC,
 new QName("", "Return"), null, null, stringDser);
 doCall(url, "echoString", p);

Java Web Services

211

 p = new Parameter("inputStruct", Data.class,
 new Data(5, "Hola, baby", (float)10.0), null);
 smr.mapTypes(Constants.NS_URI_SOAP_ENC,
 new QName("", "Return"), null, null, dataSer);
 doCall(url, "echoStruct", p);

 p = new Parameter("inputIntegerArray", Integer[].class, new Integer[]{
 new Integer(5),
 new Integer(4),
 new Integer(3),
 new Integer(2),
 new Integer(1)}, null);
 smr.mapTypes(Constants.NS_URI_SOAP_ENC,
 new QName("", "Return"), null, null, arraySer);
 doCall(url, "echoIntegerArray", p);

 p = new Parameter("inputFloatArray", Float[].class, new Float[]{
 new Float(5.5),
 new Float(4.4),
 new Float(3.3),
 new Float(2.2),
 new Float(1.1)}, null);
 smr.mapTypes(Constants.NS_URI_SOAP_ENC,
 new QName("", "Return"), null, null, arraySer);
 doCall(url, "echoFloatArray", p);

 p = new Parameter("inputStringArray", String[].class, new String[]{
 "First",
 "Second",
 "Fifth (just kidding :))",
 "Fourth",
 "Last"}, null);
 smr.mapTypes(Constants.NS_URI_SOAP_ENC,
 new QName("", "Return"), null, null, arraySer);
 doCall(url, "echoStringArray", p);

 p = new Parameter("inputStructArray", Data[].class, new Data[]{
 new Data(5, "cinqo",
 new Float("5.55555").floatValue()),
 new Data(4, "quattro", (float)4.4444),
 new Data(3, "tres", (float)3.333),
 new Data(2, "duet", (float)2.22),
 new Data(1, "un", (float)1.1)}, null);
 smr.mapTypes(Constants.NS_URI_SOAP_ENC,
 new QName("", "Return"), null, null, arraySer);
 doCall(url, "echoStructArray", p);
 }

 public void doCall(URL url, String methodName, Parameter param)
 {
 try {
 Call call = new Call();
 Vector params = new Vector();
 params.addElement(param);
 call.setSOAPMappingRegistry(smr);
 call.setTargetObjectURI(ACTION_URI);
 call.setEncodingStyleURI(Constants.NS_URI_SOAP_ENC);
 call.setMethodName(methodName);
 call.setParams(params);
 if (header != null)
 call.setHeader(header);

Java Web Services

212

 String soapAction = ACTION_URI;
// System.out.println("soapAction: " + soapAction);
/* if (true) {
 soapAction = soapAction + methodName;
 }
*/
 Response resp = call.invoke(url, soapAction);

 // check response
 if (!resp.generatedFault()) {
 Parameter ret = resp.getReturnValue();
 Object output = ret.getValue();
 Object input = param.getValue();

 if (equals(input,output)) {
 System.out.println(methodName + "\t OK");
 } else {
 System.out.println(methodName + "\t FAIL: " + output);
 }
 }
 else {
 Fault fault = resp.getFault();
 System.err.println (methodName + " generated fault: ");
 System.out.println (" Fault Code = " + fault.getFaultCode());
 System.out.println (" Fault String = " + fault.getFaultString());
 }

 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

9.4.3.2 Getting it to work

Let's examine some of this code in detail. First, here is what we did to get around the
mismatch of the schema namespace URIs. The value passed into the mapping registry is
based on a default, which was initialized to use the older value:

public class EchoTestClient
{
 SOAPMappingRegistry smr =
 new SOAPMappingRegistry(Constants.NS_URI_CURRENT_SCHEMA_XSD);

Apache SOAP 2.2 supports the 2001 schema—it just does not default to it. We could have
simply changed this line of code, but changing it doesn't fix the problem everywhere. Instead,
we got the Constants.java file from the Apache SOAP distribution; updated
Constants.NS_URI_CURRENT_SCHEMA_XSD to default to the desired value; and recompiled
the Constants, SoapEncUtils, and ArraySerializer classes:

Java Web Services

213

/* Changed this:
public static final String NS_URI_CURRENT_SCHEMA_XSI =
 NS_URI_1999_SCHEMA_XSI;
 public static final String NS_URI_CURRENT_SCHEMA_XSD =
 NS_URI_1999_SCHEMA_XSD;
*/
// To this:
 public static final String NS_URI_CURRENT_SCHEMA_XSI =
 NS_URI_2001_SCHEMA_XSI;
 public static final String NS_URI_CURRENT_SCHEMA_XSD =
 NS_URI_2001_SCHEMA_XSD;

We also commented out the following lines in the doWork() method of the test:

 String soapAction = ACTION_URI;
/* if (true) {
 soapAction = soapAction + methodName;
 }
*/
 Response resp = call.invoke(url, soapAction);

Almost every test we tried did not like having the method name appended to the soapAction
header. It's good that the author of the code was aware of this problem and isolated it so it
could be turned on and off easily. Also, depending on what round of tests we wanted to run,
we had to change the action URI; the Round 1 tests expected the URI urn:soapinterop, while
the current Round 2: base tests expect http://soapinterop.org/:

// pick one! First line works for round 1; second for round 2: base
public static final String ACTION_URI = "urn:soapinterop";
// public static final String ACTION_URI = "http://soapinterop.org/";

The Apache Axis version of the same test didn't need any modification because it is a new test
that presumably works only against the Round 2 tests.

9.4.3.3 Default serialization of data

The mapping registry maintains the relationship between the XML datatypes and their
corresponding Java types. It is also a utility that marshals and unmarshals the data between
the Java representation and the SOAP envelope representation. It accomplishes this task by
maintaining a list of serialization and deserialization classes for each datatype it knows about.

By default, the SOAPMappingRegistry is instantiated with the appropriate mappings and
serializers/deserializers for each type that it supports.

The default serialization mapping for the String class creates the XML rendition. The SOAP
envelope resulting from this call looks like:

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

Java Web Services

214

 <SOAP-ENV:Body>
 <ns1:echoString
 xmlns:ns1="urn:soapinterop"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <inputString
 xmlns:ns2="http://www.w3.org/2001/XMLSchema"
 xsi:type="ns2:string">
 Hi there!
 </inputString>
 </ns1:echoString>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Note the inclusion of the xsi:type attribute. Not all SOAP toolkits that participated in the
Round 1 testing supported this attribute.

These default mappings may be overridden by calling the mapTypes() method. The
mapTypes() method takes the following parameters:

• A namespace for the schema
• A QName for the element that represents the parameter/return value3
• An instance of a class that describes the data
• An instance of an object that performs the serialization of the Java object into the

XML representation
• An instance of an object that deserializes the XML data back into the Java object

For example, the following objects are part of Apache SOAP's serialization framework and
are included in the org.apache.soap.encoding.soapenc package:

 IntDeserializer intDser = new IntDeserializer();
 FloatDeserializer floatDser = new FloatDeserializer();
 StringDeserializer stringDser = new StringDeserializer();
 ArraySerializer arraySer = new ArraySerializer();

In the EchoTestClient, the call to mapTypes() is necessary for the "Return" because the
SOAP Toolkit that services the request may not support the placement of the xsi:type
attribute in the response envelope. The type information for the parameter is specified along
with its name and value when the parameter object is constructed:

 p = new Parameter("inputString", String.class, "Hi there!", null);
 smr.mapTypes(Constants.NS_URI_SOAP_ENC,
 new QName("", "Return"), null, null, stringDser);
 doCall(url, "echoString", p);

Default mappings are available for more complicated objects, such as arrays. The following
code constructs a method invocation with a parameter that is an array of 5 integers, with the
values of 1 through 5:

3 A QName is a namespace-qualified element name, for which the namespace is optional.

Java Web Services

215

 p = new Parameter("inputIntegerArray", Integer[].class, new Integer[]{
 new Integer(5),
 new Integer(4),
 new Integer(3),
 new Integer(2),
 new Integer(1)}, null);
 smr.mapTypes(Constants.NS_URI_SOAP_ENC,
 new QName("", "Return"), null, null, arraySer);
 doCall(url, "echoIntegerArray", p);

The serialization framework knows how to traverse the array, using the appropriate
serialization classes for each member element (in this case, all of type Integer). The
serialized output looks like:

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <SOAP-ENV:Body>
 <ns1:echoIntegerArray
 xmlns:ns1="urn:soapinterop"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <inputIntegerArray
 xmlns:ns2="http://schemas.xmlsoap.org/soap/encoding/"
 xsi:type="ns2:Array"
 xmlns:ns3="http://www.w3.org/2001/XMLSchema"
 ns2:arrayType="ns3:int[5]">
 <item xsi:type="ns3:int">5</item>
 <item xsi:type="ns3:int">4</item>
 <item xsi:type="ns3:int">3</item>
 <item xsi:type="ns3:int">2</item>
 <item xsi:type="ns3:int">1</item>
 </inputIntegerArray>
 </ns1:echoIntegerArray>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

9.4.3.4 Custom serialization

Part of the test involves sending a complex data structure represented as a SOAP struct.4
The structure contains three data items: an integer, a string, and a float. Creating a custom
data serialization requires the following steps:

1. Create a Java object to describe the data.
2. Create a custom class to perform the serialization/deserialization.
3. Plug them into the mapping registry.

In the following code, DataSerializer is a custom class that we will explain shortly.
The custom object, the serializer, and the deserializer are plugged into the mapping registry
with the call to mapTypes():

 DataSerializer dataSer = new DataSerializer();
 smr.mapTypes(Constants.NS_URI_SOAP_ENC,
 new QName(OBJECT_URI, "SOAPStruct"), Data.class, dataSer, dataSer);

4 A struct is a complex datatype defined by SOAP encoding.

Java Web Services

216

As shown in the following listing, the setup for call() is similar to the setup that was used
for the "built-in" types:

 p = new Parameter("inputStruct", Data.class,
 new Data(5, "Hola, baby", (float)10.0), null);
 doCall(url, "echoStruct", p);

Here's the SOAP envelope generated by the call:

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <SOAP-ENV:Body>
 <ns1:echoStruct xmlns:ns1="urn:soapinterop"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <inputStruct xmlns:ns2="http://soapinterop.org/xsd"
 xsi:type="ns2:SOAPStruct">
 <varInt xmlns:ns3="http://www.w3.org/2001/XMLSchema"
 xsi:type="ns3:int">
 5
 </varInt>
 <varFloat xmlns:ns4="http://www.w3.org/2001/XMLSchema"
 xsi:type="ns4:float">
 10.0
 </varFloat>
 <varString xmlns:ns5="http://www.w3.org/2001/XMLSchema"
 xsi:type="ns5:string">
 Hola, baby
 </varString>
 </inputStruct>
 </ns1:echoStruct>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The next listing shows the Java class that represents the data structure. It holds the data and
implements an equals() method that the EchoTestClient uses to compare results:

class Data
{
 Integer myInt;
 String myString;
 Float myFloat;

 public Data()
 {
 }

 public Data(int i, String s, float f)
 {
 myInt = new Integer(i);
 myString = s;
 myFloat = new Float(f);
 }

Java Web Services

217

 public String toString()
 {
 return "Data[MyInt=" + myInt + ", MyString='" +
 myString + "', myFloat=" + myFloat + "]";
 }

 /**
 * Equality comparison.
 */
 public boolean equals(Object object) {
 if (!(object instanceof Data)) return false;

 Data that= (Data) object;

 if (!this.myInt.equals(that.myInt)) return false;
 if (!this.myFloat.equals(that.myFloat)) return false;

 if (this.myString == null) {
 if (that.myString != null) return false;
 } else {
 if (!this.myString.equals(that.myString)) return false;
 }

 return true;
 };
}

The custom DataSerializer class implements both the Serializer and Deserializer
interfaces; these interfaces define the marshall() and unmarshall() methods,
respectively. Putting both methods in one class and using that class for both serialization and
deserialization is a common design strategy. The marshall() method simply calls the
individual marshall() method for each datatype in the Java class. Likewise, the
unmarshall() method calls the individual unmarshall() method for each type in the
SOAP struct and returns a JavaBean instance:

package samples.interop;

import java.util.Vector;
import org.apache.soap.*;
import org.apache.soap.encoding.SOAPMappingRegistry;
import org.apache.soap.encoding.soapenc.*;
import org.apache.soap.rpc.*;
import org.apache.soap.messaging.*;
import java.net.URL;
import org.apache.soap.util.xml.*;
import java.io.*;
import org.w3c.dom.*;
import org.apache.soap.util.*;
import java.lang.reflect.*;

public class DataSerializer implements Serializer, Deserializer
{
 public void marshall(String inScopeEncStyle, Class javaType, Object src,
 Object context, Writer sink, NSStack nsStack,
 XMLJavaMappingRegistry xjmr, SOAPContext ctx)
 throws IllegalArgumentException, IOException
 {

Java Web Services

218

 if(!javaType.equals(Data.class))
 {
 throw new IllegalArgumentException(
 "Can only serialize Data instances");
 }

 Data data = (Data)src;

 nsStack.pushScope();
 if(src!=null)
 {
 SoapEncUtils.generateStructureHeader(inScopeEncStyle,
 javaType,
 context,
 sink,
 nsStack,xjmr);

 sink.write(StringUtils.lineSeparator);

 xjmr.marshall(inScopeEncStyle, Integer.class, data.myInt, "varInt",
 sink, nsStack, ctx);
 sink.write(StringUtils.lineSeparator);
 xjmr.marshall(inScopeEncStyle, Float.class, data.myFloat, "varFloat",
 sink, nsStack, ctx);
 sink.write(StringUtils.lineSeparator);
 xjmr.marshall(inScopeEncStyle, String.class,
 data.myString, "varString",
 sink, nsStack, ctx);
 sink.write(StringUtils.lineSeparator);

 sink.write("</" + context + '>');
 }
 else
 {
 SoapEncUtils.generateNullStructure(inScopeEncStyle,
 javaType,
 context,
 sink,
 nsStack,xjmr);
 }
 nsStack.popScope();
 }

 public Bean unmarshall(String inScopeEncStyle, QName elementType,
 Node src, XMLJavaMappingRegistry xjmr,
 SOAPContext ctx)
 throws IllegalArgumentException
 {
 Element root = (Element)src;
 String name = root.getTagName();

 if (SoapEncUtils.isNull(root))
 {
 return new Bean(Data.class, null);
 }

Java Web Services

219

 Data ret = new Data();
 NodeList list = root.getElementsByTagName("varInt");
 if (list == null || list.getLength() == 0) {
 throw new IllegalArgumentException(
 "No 'varInt' Element (deserializing Data struct)");
 }
 Element el = (Element)list.item(0);
 ret.myInt = new Integer(DOMUtils.getChildCharacterData(el));

 list = root.getElementsByTagName("varFloat");
 if (list == null || list.getLength() == 0) {
 throw new IllegalArgumentException(
 "No 'varFloat' Element (deserializing Data struct)");
 }
 el = (Element)list.item(0);
 ret.myFloat = new Float(DOMUtils.getChildCharacterData(el));

 list = root.getElementsByTagName("varString");
 if (list == null || list.getLength() == 0) {
 throw new IllegalArgumentException(
 "No 'varString' Element (deserializing Data struct)");
 }
 el = (Element)list.item(0);
 ret.myString = ((Text)el.getFirstChild()).getData();

 return new Bean(Data.class, ret);
 }
}

Next, the custom structs are aggregated into an array:

 p = new Parameter("inputStructArray", Data[].class, new Data[]{
 new Data(5, "cinqo",
 new Float("5.55555").floatValue()),
 new Data(4, "quattro", (float)4.4444),
 new Data(3, "tres", (float)3.333),
 new Data(2, "duet", (float)2.22),
 new Data(1, "un", (float)1.1)}, null);
 smr.mapTypes(Constants.NS_URI_SOAP_ENC,
 new QName("", "Return"), null, null, arraySer);
 doCall(url, "echoStructArray", p);
 }

The output looks like . . . well, you get the idea. Because the Data type is already plugged into
the serialization framework, the default array handling mechanism can just call
Dataserializer to do its work.

9.4.3.5 The server

All this coding, marshalling, and unmarshalling is required because we are using a dynamic
call interface. On the service side, we don't need any of this work; we just make an RPC call
and Apache SOAP takes care of the rest. The server runtime needs only the information
specified in a deployment descriptor. The EchoTest Java service from Apache SOAP 2.2 is
comparatively uninteresting:

Java Web Services

220

package samples.interop;

/** An implementation of the interop echo service as defined at
 * http://www.xmethods.net/ilab.
 *
 * @author Glen Daniels (gdaniels@macromedia.com)
 */
public class EchoTestService
{
 public void nop()
 {
 }

 public int echoInteger(int i)
 {
 return i;
 }

 public float echoFloat(float f)
 {
 return f;
 }

 public String echoString(String str)
 {
 return str;
 }

 public Data echoStruct(Data data)
 {
 return data;
 }

 public int [] echoIntegerArray(int [] ii)
 {
 return ii;
 }

 public float [] echoFloatArray(float [] ff)
 {
 return ff;
 }

 public String [] echoStringArray(String [] ss)
 {
 return ss;
 }

 public Data [] echoStructArray(Data [] ds)
 {
 return ds;
 }
}

In an environment in which the client and service interfaces are automatically generated by a
tool, such as one that implements JAX-RPC, this coding is moot because it is hidden from the
developer. When you need to understand interoperability issues between clients and services,
however, it is critical to understand the concepts behind them. In the future, we may reach a
state in which interoperability "just works" between almost any client and server-side
implementations; however, that future is still remote.

Java Web Services

221

9.4.4 Fun with Testing

We ran a couple of other tests as well. We tried pointing the Apache SOAP client at the
Round 2: Base tests for MS SOAP Toolkit Version 3.0 and got the following results. The first
three invocations failed, and the other five succeeded:

java EchoTestClient http://mssoapinterop.org/stkV3/Interop.wsdl

[SOAPException: faultCode=SOAP-ENV:Client; msg=No Deserializer found to
deserialize a ':Result' using encoding style
'http://schemas.xmlsoap.org/soap/
encoding/'.; targetException=java.lang.IllegalArgumentException: No
Deserializer
found to deserialize a ':Result' using encoding style
'http://schemas.xmlsoap.org/
soap/encoding/'.]
 at org.apache.soap.rpc.Call.invoke(Call.java:246)
 at EchoTestClient.doCall(EchoTestClient.java:222)
 at EchoTestClient.doWork(EchoTestClient.java:142)
 at EchoTestClient.main(EchoTestClient.java:114)
[SOAPException: faultCode=SOAP-ENV:Client; msg=No Deserializer found to
deserialize a ':Result' using encoding style
'http://schemas.xmlsoap.org/soap/
encoding/'.; targetException=java.lang.IllegalArgumentException: No
Deserializer
found to deserialize a ':Result' using encoding style
'http://schemas.xmlsoap.org/
soap/encoding/'.]
 at org.apache.soap.rpc.Call.invoke(Call.java:246)
 at EchoTestClient.doCall(EchoTestClient.java:222)
 at EchoTestClient.doWork(EchoTestClient.java:147)
 at EchoTestClient.main(EchoTestClient.java:114)
[SOAPException: faultCode=SOAP-ENV:Client; msg=No Deserializer found to
deserialize a ':Result' using encoding style
'http://schemas.xmlsoap.org/soap/
encoding/'.; targetException=java.lang.IllegalArgumentException: No
Deserializer
found to deserialize a ':Result' using encoding style
'http://schemas.xmlsoap.org/soap/
encoding/'.]
 at org.apache.soap.rpc.Call.invoke(Call.java:246)
 at EchoTestClient.doCall(EchoTestClient.java:222)
 at EchoTestClient.doWork(EchoTestClient.java:152)
 at EchoTestClient.main(EchoTestClient.java:114)
echoStruct OK
echoIntegerArray OK
echoFloatArray OK
echoStringArray OK
echoStructArray OK

The errors occurred for the following reasons:

• The generated response did not contain the xsi:type information for the return value.
• The test client we used looked for an element with the name <Return>. The generated

response used the name <Result> instead.
• To compensate for this problem, we added the following code, which adds another

entry in the SOAPMappingRegistry for the "Result" element. This addition is made
for each datatype:

Java Web Services

222

 p = new Parameter("inputString", String.class, "Hi there!", null);
 smr.mapTypes(Constants.NS_URI_SOAP_ENC,
 new QName("", "Return"), null, null, stringDser);
 smr.mapTypes(Constants.NS_URI_SOAP_ENC,
 new QName("", "Result"), null, null, stringDser);

 doCall(url, "echoString", p);

In recognition of this issue, the MS SOAP Toolkit Version 3.0 site supports two versions of
the test: one that expects and returns xsi:type information and one that does not. The test we
picked was the untyped version—hence the errors. The typed version of the test is located at
http://mssoapinterop.org/stkV3/InteropTyped.wsdl.

We could have used that version to begin with and declared victory, but we wanted to go
through the exercise with you because this issue can arise when communicating between two
different kinds of toolkits.

We tried the same test with the Apache Axis version of the Echo Test client and got the
following results:

java TestClient
URL: http://mssoapinterop.org/stkV3/Interop.wsdl
echoString OK
echoStringArray OK
echoInteger OK
echoIntegerArray OK
echoFloat OK
echoFloatArray OK
echoStruct OK
echoStructArray OK
echoVoid OK
echoBase64 OK
echoHexBinary OK
echoDate OK
echoDecimal OK
echoBoolean OK
echoMap Fail: WSDLReader:None of the matching operations
for
soapAction http://soapinterop.org/ could successfully load the incoming
request.
Potential typemapper problem
echoMapArray Fail: WSDLReader:None of the matching operations
for
soapAction http://soapinterop.org/ could successfully load the incoming
request.
Potential typemapper problem

9.4.4.1 Using other test clients through a browser interface

Many SB Interop participants have built a browser client that remotely executes a test client
on your behalf. Figure 9-1 shows the interface to one such site for Iona XMLBus
(http://interop.xmlbus.com:7002/InteropTest/index.jsp). You can type in any known WSDL
endpoint that participates in the testing and learn how an XMLBus client fared against the
remote service.

Java Web Services

223

Figure 9-1. The browser interface used for running SB Interop clients remotely

Figure 9-2 shows an example of the results.

Figure 9-2. Test results from browser-based remote client testing

9.5 Other Interoperability Resources

Given the importance of interoperability to the future of web services, it shouldn't be
surprising that many other developers and corporations have created useful resources. In this
section, we'll look at a few of them. Simon Fell has developed a web site where developers
can post their servers and clients. If a server implementation is updated, the notification
service is called automatically and runs a registered test suite to verify interoperability.
Registering for notifications when server or client updates are posted is also possible.

Java Web Services

224

Several vendors, such as Iona, Borland, and HP, offer interoperability test facilities on their
web sites. These sites provide client- and server-side implementations of the interoperability
labs for testing. Iona also offers a site that features its daily build for interoperability testing.

9.5.1 Microsoft SOAP Toolkit 3.0 Interoperability Test Site

Microsoft offers a SOAP 1.1 message validator to test interoperability (see Section 9.6).
However, it is fairly limited and does not support encoding (either Section 5 or user-defined),
external schema validation, or service description support.

Microsoft differentiates between conformance and validation and offers this tool as a SOAP
message validation tool. In contrast, a conformant SOAP message "does not violate any of the
sections in its specification, and therefore ensures the highest degree of interoperability with
vendor implementations that also conform to the same standard specification."

Microsoft also offers a SOAP Interop server site (see Section 9.6). It provides test services for
ASP.Net, .NET remoting, Microsoft SOAP Toolkit Version 2 and Version 3, and results for
interoperability testing between Microsoft SOAP Toolkit Version 2, ASP.Net and other
environments such as Apache 2.2 and Axis, SOAPLite, and IONA.

9.5.2 SOAP Version 1.2 Test Collection

The W3C XML Protocol Working Group is developing a test collection to verify
implementation compliance to the SOAP 1.2 specification. The latest draft is dated November
16, 2001. The test collection summarizes "testable assertions" from the specification, and the
tests are intended to determine whether a SOAP processor implemented each assertion. The
test suite includes tests for the core specification, encoding, RPC, and HTTP binding. How
the assertions are tested varies. For example, the first assertion (A1), which is part of the Core
specification tests, is:

A SOAP node receiving a SOAP message MUST perform processing
according to the SOAP processing model and, if appropriate, generate SOAP
Faults, SOAP responses and send additional SOAP messages, as provided by
the remainder of this specification.

A specific test is not provided for this assertion because it is tested by the entire test suite.In
other cases, specific tests are provided for the assertion. Assertion A2, also part of Core, states
that:

Each SOAP node MUST act in the role of the special SOAP actor named
"http://www.w3.org/2001/09/soap-envelope/actor/next" and can additionally
assume the roles of zero or more other SOAP actors.

Two tests are provided for this assertion.

The W3C has not determined which parts of the SOAP 1.2 specification are mandatory and
must be supported for an implementation to claim compliance. For example, support for
SOAP encoding could become optional, so an implementation not supporting it could still be
considered compliant with the specification. Compliance, or performing successfully against
the test suite, is not considered W3C certification for an implementation.

Java Web Services

225

9.5.3 Xmethods

Xmethods maintains a list of web services and SOAP implementations. It provides a
mechanism to register new services and manage services that are listed. It also offers a new
service notification subscription, which notifies the subscriber whenever a new service is
added to the site. Xmethods coordinated Round 1 of the SOAPBuilders Interoperability Test
Lab.

9.5.4 SalCentral

SalCentral is a web services brokerage that advertises itself as "the Napster of web services"
and "the world's largest brokerage for schemas, reviews and quality assurance information on
web services." SalCentrals offer a free service called "Web Services Watch" that notifies the
subscriber if a predefined event occurs. One example is a change to the schema or service
details. Independent testing for web services is also provided through a Test Lab, which
includes interoperability testing across several SOAP toolkits (including .NET).

Lucin Corporation, an Internet development company, maintains SalCentral. The site also
coordinates a community mailing list for the exchange of information regarding XML
Schema-defined web services.

9.6 Resources

• SOAPBuilders Interop Lab Round 1: http://www.xmethods.net/ilab/
• SOAPBuilders Interop Lab Round 2: http://www.whitemesa.com/interop.htm
• The SOAPBuilders discussion site: http://groups.yahoo.com/group/soapbuilders/
• The Web Services Interoperability Organization: http://www.ws-i.org/
• SOAPWare.org, a directory for SOAP 1.1 developers, includes links to specifications,

implementations, services, communities, developers, tutorials, articles and news. In
particular, it includes:

o Userland's SOAP 1.1 Validator Web App. It also maintains a list of validated
servers: http://validator.soapware.org/

o "A Busy Developer's Guide to SOAP 1.1" by Dave Winer and Jake Savin of
UserLand Software (4/2/01): http://www.soapware.org/bdg

o White Mesa, which offers a live endpoint for interoperability SOAP-RPC
service requests and links to client applications that can test an interoperability
base service: http://www.whitemesa.com/

• Simon Fell's site to register services and interoperability lab test results:
http://www.pocketsoap.com/registration/

• Simon Fell's PocketSOAP, SOAP-related components, tools and source code (for
Windows, originally developed for PocketPC): http://www.pocketsoap.com/

• The SOAP newbies discussion group: http://groups.yahoo.com/group/soap-newbies
• The SalCentral web services brokerage:

http://www.salcentral.com/salnet/webserviceswsdl.asp
• Paul Kulchenko's Perl modules, which interface with SOAP and a SOAP Cookbook

for Perl: http://www.soaplite.com/
• Apache SOAP: http://xml.apache.org/soap/index.html
• Apache's next generation SOAP implementation, Axis:

http://xml.apache.org/axis/index.html

Java Web Services

226

• Borland Delphi Interop Round 2 test site: http://soap-
server.borland.com/WebServices/Default.htm

• IBM DeveloperWorks web services resources: http://www-
106.ibm.com/developerworks/webservices/?loc=dwmain

• IONA interoperability test client and servers:
http://www.xmlbus.com/work/interoperability/

Microsoft sites are also available:

• The MSDN web services site: http://msdn.microsoft.com/library/
• MSDN SOAP community links:

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnsoap/html/soapcommunity.asp

• MSDN global XML web services interoperability resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnsrvspec/html/globalxmlwebsrvinterop.asp

• The Microsoft SOAP 1.1 message validator:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnsoap/html/soapvalidator.asp

• The Microsoft SOAP Interop Server: http://www.mssoapinterop.org/
• Gotdotnet: http://www.gotdotnet.com/

Several sites have information about SOAP and J2EE:

• Java Community Process: http://www.jcp.org/
• A list of all Java Specification Requests (JSRs):

http://www.jcp.org/jsr/all/index.en.jsp
• The Java Web Services Developer Pack Winter 01 bundle and tutorial:

http://java.sun.com/xml/downloads/javaxmlpack.html

Information on the XML Protocol Working Group:

• SOAP Version 1.2 drafts: http://www.w3.org/2000/xp/Group/
• SOAP Version 1.2 test collection: http://www.w3.org/2000/xp/Group/1/09/ts.html

Magazine articles and interviews:

• "SOAP InterOpera." Steve Gillmor. XML Magazine, June/July 2001:
http://www.devx.com/premier/mgznarch/xml/2001/soapinterview/soapinterview-1.asp

• "Technologist Inteview: Dave Winer, A Challenge to Microsoft." XML Magazine,
December 2001:
http://www.fawcette.com/xmlmag/2001_12/magazine/features/interview2/page6.asp

Java Web Services

227

Chapter 10. Web Services Security
The advent of web services reveals new issues that didn't exist in previous closed
environments. New levels of openness and new characteristics of data exchange and
interoperability also mean that we face new challenges for securing our data and identities:

• Corporate applications and their interfaces are publicly available for all to see. They
are available via port 80, which is generally accepted as an open hole in the firewall
through which all HTTP traffic flows. Don't assume that just because something is
tunneled through port 80 that it is safe. Applications that provide frontends for your
critical data will increasingly be exposed through HTTP and accessible to anyone in
the outside world. If taken to the extreme, these applications can even be published in
a public directory for anyone to discover.

• Data wrapped in SOAP envelopes provides a way to discern the structure and meaning
of data being sent over the wire.

• Sending and receiving parties don't have to be implemented by using the same
software platforms; i.e., they don't have to have the same security libraries from the
same vendor. Therefore, we need a set of standardized, platform-independent security
solutions.

• XML is extremely verbose. Encryption is expensive enough as it is. Wrapping data in
XML can increase the size of the data that needs to be encrypted tremendously.

• The vision of web services includes enabling spontaneous supply-chain communities
or trading communities via dynamic discovery. This vision requires complex
interactions, in which a SOAP message traverses multiple intermediaries. You may
not have a pre-existing business arrangement with some of these intermediaries, and
these intermediaries may not be built on a common infrastructure. How are encryption
keys managed in such an environment?

A new class of security techniques is being developed to address these issues. Many of the
issues are still being identified or have solutions that are still in their early stages. However,
existing security technologies with proven track records won't be abandoned anytime soon. In
fact, these new techniques are intended to build upon or augment existing security
technologies such as Public Key Infrastructures (PKI), Secure HTTP (HTTPS), and the
Secure Sockets Layer (SSL). These technologies are better addressed by a book on general
security issues, so we'll only discuss them minimally. Instead, this chapter focuses on new
security issues and solutions that have come about as a result of web services and their related
technologies.

10.1 Incorporating Security Within XML

The sort of HTTP-based web commerce we've seen so far achieves security by relying on the
SSL, which ultimately places responsibility for security at the level of the transport protocol.
While this approach has been adequate so far, we need a new set of capabilities that allow the
use of digital certificates, digital signatures, and authentication within XML documents; we
should not rely on the underlying transport to do everything. After all, SOAP and web
services are supposed to be protocol-independent, and therefore can't rely on transport
protocols for security. Additionally, incorporating security features within the XML
documents themselves has many benefits for web services, which can now make judgments
about the document payload and what restrictions can be placed on it.

Java Web Services

228

Much of what we discuss here is based on the concepts of PKI and nonrepudiation. Here's a
brief description of what these concepts entail.

10.1.1 Public Key Infrastructure (PKI)

Public key cryptography relies on a mathematical algorithm that generates encryption and
decryption keys that are used in pairs. When a key from a key pair is used to encrypt the data,
only the other key from the pair can be used to decrypt it. One key is public, and the other is
kept private. In sender-receiver/encryption-decryption usage, the sender uses the recipient's
public key to encrypt the data. Only the intended receiving party can decrypt the encrypted
data because only this party has the appropriate private key.

It's also possible to encrypt a document with your private key; then anyone who has access to
your public key (in theory, anyone—the purpose of a public key to be public) can decrypt it.
While this technique doesn't sound useful, it ensures that a digitally signed document has not
been tampered with. We will talk about this topic in more detail in Section 10.3 later in this
chapter.

The problematic part of public key cryptography is the generation, distribution, and
verification of keys. If I want to do business with you, how do I get your key? How do I know
that the key I receive is your key and not a forgery? The PKI is supposed to solve this
problem. We will talk about how the PKI relates to the latest technology proposals in
Section 10.3.2.1.

10.1.2 Nonrepudiation

In the context of web services, nonrepudiation means that the recipient can verify that an
XML document (anything from a purchase order to an RPC request) actually came from the
sender it claims to have come from and hasn't been modified along the way. It's the electronic
equivalent of saying, "You can't tell me that you didn't want your house painted blue; here's
the work order, and here's your signature on it." More technically, nonrepudiation means that
proper authentication is in place (sufficient to verify the identities of all participants in the
transaction), and enough of a digital trail has been left to go back to any given event and
verify that:

• This is you.
• You made a request.
• This is exactly what you requested and you presented the request in this form.

Much of nonrepudiation involves the use of a digital signature.

10.2 XML Digital Signatures

A digital signature (not to be confused with a digital certificate) is the electronic equivalent of
a written signature. It is used by distributed applications to authenticate the identity of
the sender of a message or document. It also ensures that the message or document is
unchanged.

The XML digital signature specification defines an optional XML element that facilitates
the inclusion of a digital signature within an XML document. It provides any web service

Java Web Services

229

with the ability to ensure data integrity, authentication, and nonrepudiation with any other
web service.

In addition to specifying syntax, the specification makes recommendations about the types of
data that require a digital signature. The most thought-provoking recommendation relates to
the signing of visual items (such as Cascading Style Sheets and browser plug-ins) that are
external to the XML data itself, but will eventually be used to render the XML data. As a rule,
the specification recommends that if the representation of XML data is for visual display, then
to preserve validity of the signed information over time, both the XML data and the items
applied for visual representation should be signed. The specification suggests that this
recommendation should be applied to nonvisual renderings, such is audio, as well.

Here is a digitally signed version of PO.xml. The purchase order information is unchanged,
but the document is much larger; most of it now consists of a <Signature> element:

<PurchaseOrder xmlns="urn:oreilly-jaws-samples">
 <shipTo country="US">
 <name>Joe Smith</name>
 <street>14 Oak Park</street>
 <city>Bedford</city>
 <state>MA</state>
 <zip>01730</zip>
 </shipTo>
 <items>
 <item partNum="872-AA">
 <productName>Candy Canes</productName>
 <quantity>444</quantity>
 <price>1.68</price>
 <comment>I want candy!</comment>
 </item>
 </items>
 <Signature Id="EnvelopedSig"
 xmlns="http://www.w3.org/2000/09/xmldsig#">
 <SignedInfo Id="EnvelopedSig.SigInfo">
 <CanonicalizationMethod Algorithm=
 "http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
 <SignatureMethod Algorithm=
 "http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <Reference Id="EnvelopedSig.Ref" URI="">
 <Transforms>
 <Transform Algorithm=
 "http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>
 </Transforms>
 <DigestMethod Algorithm=
 "http://www.w3.org/2000/09/xmldsig#sha1"/>
 <DigestValue>
 yHIsORnxE3nAObbjMKVo1qEbToQ=
 </DigestValue>
 </Reference>
 </SignedInfo>
 <SignatureValue Id="EnvelopedSig.SigValue">
GqWAmNzBCXrogn0BlC2VJYA8CS7gu9xH/XVWFa08eY9HqVnrfU6Eh5Ig6wlcvj4RrpxnNklBnOu
vv
JCKqllQy4e76Tduvq/N8kVd0SkYf2QZAC+j1IqUPFQe8CNA0CfUrHZdiS4TDDVv4sf0V1c6UBj7
zT
7leCQxAdgpOg/2Cxc=
 </SignatureValue>

Java Web Services

230

 <KeyInfo Id="EnvelopedSig.KeyInfo">
 <KeyValue>
 <RSAKeyValue>
 <Modulus>
AIvPY8i2eRs9C5FRc61PAOtQ5fM+g3R1Yr6mJVd5zFrRRrJzB/awFLXb73kSlWqHao+3nxuF38r
RkqiQ0HmqgsoKgWChXmLuQ5RqKJi1qxOG+WoTvdYY/KB2q9mTDj0X8+OGlkSCZPRTkGIKjD7rw4
Vvml7nKlqWg/NhCLWCQFWZ
 </Modulus>
 <Exponent>AQAB</Exponent>
 </RSAKeyValue>
 </KeyValue>
 </KeyInfo>
 </Signature>
</PurchaseOrder>

The first step toward creating a digital signature is ensuring that it and the data being signed
can't be tampered with. This step is accomplished by applying a mathematical algorithm
called a secure hash to a portion of the message data. The result is called the " digest" of the
message. The next step is to take that digest, plus all the additional information that will be
signed (in our example, in the <SignedInfo> element), digest it again, encrypt it, and write it
into the XML message itself as the digital signature. In PO.xml, the selected algorithm and the
initial digest are contained in the <DigestMethod> and <DigestValue> elements. The final
digested, encrypted digital signature is contained in the <SignatureValue> element, and the
decryption key is stored in the <KeyInfo> element. The recipient can determine whether the
signature is valid by decrypting the digest and recreating the whole process that was
performed by the sender to create the digest. If the resulting digest matches the original, the
signed content was probably not tampered with.

10.2.1 The <Reference> Element

The <Reference> element provides information used to generate the message digest. This
information includes any data transformation or normalization used along the way, including
canonicalization. For instance, you can associate a digital signature to an XML document in
different ways:

Enveloped

The signature is a child of the data being signed.

Enveloping

The signature encloses the data being signed.

Detached

The signature is a sibling of the element being signed and is referenced by a local link,
or it can be located elsewhere on the network.

This information needs to be carried within the signature using the <Transforms> tag. In our
example, we chose to use the enveloped method:

Java Web Services

231

 <Transforms>
 <Transform Algorithm=
 "http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>
 </Transforms>

Other examples of transforms are base64 encoding, XPATH filtering, XSLT transformation,
and schema validation.

In our example, the selected algorithm and the digest are specified with these tags:

 <DigestMethod Algorithm=
 "http://www.w3.org/2000/09/xmldsig#sha1"/>
 <DigestValue>
 yHIsORnxE3nAObbjMKVo1qEbToQ=
 </DigestValue>

It's worth taking a more detailed look at the <Signature> element. The <SignedInfo>
element is required; it specifies the data that is actually signed and the algorithms used to sign
it. <SignedInfo> has three elements: <CanonicalizationMethod>, <SignatureMethod>,
and <Reference>.

10.2.2 Canonicalization

A secure hash is intolerant of minor changes in a document. Any change, even the
introduction of a space, produces a completely different hash. This intolerance of change is
essential to the nature of a secure hash; it must be next to impossible to modify the original
document in such a way that it still produces the same hash or to predict how a change to a
document will change the hash. However, this feature presents a problem for XML. XML
documents are frequently parsed and reparsed as they are transferred from the sender to the
recipient, and parsers can make insignificant modifications (such as the elimination of
whitespace). Canonicalization puts the document into a standard format before computing the
digest, so we can be confident that the sender and receiver will compute the same digest
regardless of what processing occurred along the way.

This canonical format was standardized by the W3C in the XML-Canonicalization (xml-c14n)
specification.1 Here are the high-level rules that an xml-c14n-compliant canonical conversion
covers in detail:

• The document is encoded in UTF-8.
• Line breaks are normalized to #xA (hexadecimal A, decimal 10, or ASCII newline) on

input, before parsing.
• Attribute values are normalized, as if by a validating processor.
• Character and parsed entity references are replaced.
• CDATA sections are replaced by their character content.
• The XML declaration and document type declaration (DTD) are removed.
• Empty elements are converted to start-end tag pairs.
• Whitespace outside of the document element and within start and end tags is

normalized.
• All whitespace in character content is retained (excluding characters removed during

line feed normalization).

1 http://www.w3.org/TR/2001/REC-xml-c14n-20010315.

Java Web Services

232

• Attribute value delimiters are set to quotation marks (double quotes).
• Special characters in attribute values and character content are replaced by character

references.
• Superfluous namespace declarations are removed from each element.
• Default attributes are added to each element.
• Lexicographic order is imposed on the namespace declarations and attributes of each

element.

10.2.3 The Signature Method

The second step involved in creating the digest is tracking and specifying the actual method
used to create the signature (denoted by the <SignatureMethod> element). Once the
canonical version of the XML is derived, the data that is part of the <SignedInfo> element
needs to be converted into the actual signature value (and placed in the <SignatureValue>
element). The <SignatureMethod> element dictates the algorithm that will be used for this
operation.

The algorithm used to create the signature and, finally, the signature itself, are specified by
the <SignatureMethod> and <SignatureValue> tags:

 <SignatureMethod Algorithm=
 "http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <Reference Id="EnvelopedSig.Ref" URI="">
 ...
 <SignatureValue Id="EnvelopedSig.SigValue">
GqWAmNzBCXrogn0BlC2VJYA8CS7gu9xH/XVWFa08eY9HqVnrfU6Eh5Ig6wlcvj4RrpxnNklBnOu
vv
JCKqllQy4e76Tduvq/N8kVd0SkYf2QZAC+j1IqUPFQe8CNA0CfUrHZdiS4TDDVv4sf0V1c6UBj7
zT
7leCQxAdgpOg/2Cxc=
 </SignatureValue>

When the receiver gets the message, the signature is decrypted using the sender's public key,
the verified digest, and by verifying the sender's signature. In the following listing, the
<KeyInfo> element holds the decryption key:

 <KeyInfo Id="EnvelopedSig.KeyInfo">
 <KeyValue>
 <RSAKeyValue>
 <Modulus>
AIvPY8i2eRs9C5FRc61PAOtQ5fM+g3R1Yr6mJVd5zFrRRrJzB/awFLXb73kSlWqHao+3nxuF38r
RkqiQ0HmqgsoKgWChXmLuQ5RqKJi1qxOG+WoTvdYY/KB2q9mTDj0X8+OGlkSCZPRTkGIKjD7rw4
Vvml7nKlqWg/NhCLWCQFWZ
 </Modulus>
 <Exponent>AQAB</Exponent>
 </RSAKeyValue>
 </KeyValue>
 </KeyInfo>

Note that the XML signature doesn't address trust of such key information. The application
has to determine how trustworthy the key is. Unless there is another way to verify that
the supplied decryption key does belong to the sender, there is little point to the process.
Anyone could intercept the message, change its contents, regenerate a public/private key pair,
and re-sign the document (asserting that the public key belongs to the sender). This is when

Java Web Services

233

digital certificates come into play. The certificate contains the binding between the identity of
the public key's owner and the key itself. If <KeyInfo> is omitted, the recipient is expected to
identify the key that will be used, based on the application context. This type of issue is
addressed in the XKMS specification, which is discussed in the later Section 10.3.2. Using
XKMS or another PKI infrastructure, the recipient of the message can obtain the digital
certificate, extract the public key from it, and verify that this key does belong to the sender.

10.3 XML Encryption

The next step beyond incorporating a digital signature into an XML document is encrypting
the document (or portions of the document). XML encryption extends the power of the XML
digital signature system by enabling the encryption of the message that has been signed
digitally. The specification outlines a standard way to encrypt any form of digital content and
permits encryption of an entire XML message, a partial XML message, or an XML message
that contains sections that were previously encrypted.2

Here is PO.xml with the contents of the <Items> tag encrypted:

<PurchaseOrder xmlns="urn:oreilly-jaws-samples">
 <shipTo country="US">
 <name>Joe Smith</name>
 <street>14 Oak Park</street>
 <city>Bedford</city>
 <state>MA</state>
 <zip>01730</zip>
 </shipTo>
 <items>
 <EncryptedData Id="ED" Nonce="16"
 Type=http://www.w3.org/2001/04/xmlenc#Content
 xmlns="http://www.w3.org/2001/04/xmlenc#"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 <EncryptionMethod Algorithm
 ="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>
 <ds:KeyInfo>
 <ds:KeyName>jaws</ds:KeyName>
 </ds:KeyInfo>
 <CipherData>
 <CipherValue>
dRDdYjYs11jW5EDy0lucPkWsBB3NmK0AFNxvFjfeUKxP75cx7KP0PB3BjXPg14kJv74i7F00XZ5
Whq
OISswIkdN/pIVeqRZWqOVjFA8izR6wqOb7UCpH+weoGt0UFOEkIDGbemm23eu812Ob5eYVL8n/D
tO8
1OhYeCXksSMGUZiUNj/tfBCAjvqG2jlslQM6n4jJ3QNaR4+B2RisOD6Ln+x2UtNu2J7wIYmlUe7
mSg
ZiJ5eHym8EpkE4vjmr2oCWwTUu91xcayZtbEpOFVFs6A==
 </CipherValue>
 </CipherData>
 </EncryptedData>
 </items>
 <Signature Id="EnvelopedSig"
 xmlns="http://www.w3.org/2000/09/xmldsig#">
 ...
 </Signature>
</PurchaseOrder>

2 http://www.w3.org/TR/xmlenc-core/.

Java Web Services

234

The encrypted part of the document has two new tags: <EncryptedData> and <CipherData>.
The <EncryptedData> element defines the encryption scheme to be applied. Here,
convenience schemes on the W3C web site perform the encryption. The <CipherData>
element is created to contain the encrypted serialization of the <Items> element. In this
example, the result is contained within the <CipherValue>element, although as
an alternative, you can use a URI to point to another location where the cipher resides by
using the <CipherReference> element. The <EncryptionMethod> and <KeyInfo> tags are
optional. As shown earlier, it is possible to obtain information about the sender's public key
through XKMS or other means, such as PKI.

This ability to encrypt data on an as-needed basis is an incredibly powerful tool that allows
web services to provide their own security features. It neatly avoids the limitations
encountered when applying external encryption—in particular, the "all or nothing" nature of
external encryption.

10.3.1 Java Toolkits

When creating the examples used here, we examined a couple of Java toolkits for XML
security: IBM XML Security Suite and the Phaos XML Toolkit. Both were fairly new at
the time, but were sufficient enough to produce these examples. The toolkits both use Xerces
and Xalan to parse the XML data and use their own APIs to assemble the signatures and
encrypt the data. Each has a decent set of sample programs or utilities for generating
a certificate containing a public/private key pair. Each has examples for creating signed
documents using the enveloped, enveloping, or detached method. Each has good samples
for encrypting and decrypting portions of a document based on specifying an element tag.
The IBM toolkit uses its own custom parser extensions so you can use an Xpath expression,
such as /PurchaseOrder/ShipTo, to identify the element to be encrypted. The Phaos sample
simply used parser APIs such as doc.getElementsByTagName(tagName) to access
the element to be encrypted, as shown in the following listing:

// Copyright © Phaos Technologies
public class XEncryptTest
{
 public static void main (String[] args) throws Exception
 {
 ... // usage, command line args...

 // get the XML file and retrieve the XML Element to be encrypted
 File xmlFile = new File(inputFileName);
 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 dbf.setNamespaceAware(true);
 DocumentBuilder db = dbf.newDocumentBuilder();
 Document doc = db.parse(xmlFile);
 Element inputElement = null;
 NodeList list = doc.getElementsByTagName(tagName);
 if (list.getLength() != 0)
 inputElement = (Element) list.item(0);
 else
 {
 System.err.println("XML element with tagName "
 + tagName + " unidentified.");
 System.exit(1);
 }

Java Web Services

235

 // Create a new XEEncryptedData instance with the owner
 // Document of the input xml file,the data type URI and
 // the Id "ED" for this EncryptedData element.
 XEEncryptedData encData
 = XEEncryptedData.newInstance(doc, "ED", dataType);

 ... // determine encryption algorithm

 // set up the EncryptionMethod child element
 XEEncryptionMethod encMethod =
 encData.createEncryptionMethod(algURI);
 encData.setEncryptionMethod(encMethod);

 // set up the symmetric key to be used in encryption
 SymmetricKey key = null;
 File keyFile = new File(keyFileName);

 ... // File stuff

 // set up the ds:KeyInfo child element with the keyName
 XSKeyInfo keyInfo = encData.createKeyInfo();
 keyInfo.addKeyInfoData(encData.createKeyName(keyName));
 encData.setKeyInfo(keyInfo);

 // set a nonce value to be prepended to the plain text
 byte[] nonce = new byte[16];
 encData.setNonce(RandomBitsSource.getDefault().randomBytes(nonce));

 // encrypt the XML element and replace it with the
 // newly generated EncryptedData element
 System.out.print("Encrypting the XML data ... ");
 XEEncryptedData newEncData =
 XEEncryptedData.encryptAndReplace(inputElement, key, encData);
 System.out.println("done");

 // output the XML Document with the new EncryptedData element to a
 // file
 ...
 }
}

The critical piece of this code is the call to encryptAndReplace(). This method does just
what its name implies: it takes the element that we've given it (which we found earlier by
calling getElementsByTagName()), encrypts it by using the given key, and replaces the
original element with the appropriately tagged, encrypted element.

The Phaos toolkit was much easier to set up and run than the IBM toolkit. All the necessary
.jar files were bundled into a single download; the IBM toolkit required downloading a beta
version of Xerces, a beta version of Xalan, and a Java Cryptology Extensions (JCE) toolkit
from IBM, Sun, Cryptix, or IAIK. Both toolkits had the sorts of problems that you would
expect from a 1.0 or pre-1.0 product, but that situation will probably get better over time. Web
services security is a pretty big hole that needs to be filled, and many vendors will have
offerings in this area.

Java Web Services

236

10.3.1.1 Single-sign-on

Single-sign-on authentication is the ability for an end user or application to access other
applications within a secure environment without needing to be validated by each application.
The most common example of single-sign-on technology is in web-based corporate intranet
applications. In this setting, users want to use various applications that allow access to
timesheets, expense reports, 401K plan information, and health benefits. Requiring each
application to authenticate each user individually is inconvenient, slow, and limits the value of
the intranet site. The best approach is to allow access to all applications without additional
intervention after the initial signon, using a profile that defines what the user is allowed to do.

Many companies provide products for web-based, single-sign-on authentication and
authorization, including companies such as Netegrity, Securant (now a part of RSA), Oblix,
and Verisign. In general, these products use an intermediary process that controls and
manages the passing of user credentials from one application to another. Users are assigned a
ticket that carries their rights information and simultaneously allows them to access many
applications without the need to authenticate each one. This ticket allows applications within
the secure environment to shift the burden of authentication and authorization to a trusted
third party, leaving the application free to focus on implementation of business logic.

The single-sign-on concept is easily extended to web services. Web services can be given a
ticket (placed in an XML/SOAP message) that can be used to validate the service with other
web services. However, the secure use of web services will depend on the ability to exchange
user credentials on a scale never seen before. Individual services will reside in a variety of
protected environments, each using various security products and technologies. Providing a
way to integrate these environments and enable their interoperability is critical for the secure
and effective use of these services.

Recognizing the need to provide an interoperable, single-sign-on specification for web
services, the industry leaders in this market have come together to create the adoption of a
standard. Based on XML, the Security Assertion Markup Language (SAML) is an almost
complete specification proposed by the Organization for the Advancement of Structured
Information Standards (OASIS). The primary goal of SAML is to enable interoperability
between different systems that provide security services. The SAML specification does not
define new technology or approaches for authentication or authorization. Rather, it defines a
common XML language that describes the information or outputs generated by these systems.
A completed SAML draft is expected by early 2002. OASIS will accept specifications for
approval during the second quarter of 2002. In the meantime, Microsoft and Sun
Microsystems are both working on competing systems that will offer the same capabilities,
but are platform-specific.

Many single-sign-on vendors have already released toolkits based on early versions of SAML,
with promises for free upgrades once the specification is complete. The first to market was
Netegrity, with the release of the JSAML Toolkit to build Java-based applications that use
SAML. This toolkit allows Java-based web services to incorporate single-sign-on solutions
that work with other SAML-based security environments. It is available for free from their
web site.

Java Web Services

237

10.3.2 Key Management

One of the biggest challenges for deploying all these new encryption, digital signature, and
authentication technologies will be to keep all public and private keys, digital signatures, and
digital certificates organized and secure. Several PKI products currently on the market are
designed to simplify the management of these security components. However, there is still no
standard way to access these systems in a SOAP-based web services environment.

The XML Key Management Specification (XKMS) is an emerging effort under the auspices
of the W3C. It aims to provide standardized XML-based transaction definitions for the
management of authentication, encryption, and digital signature services. XKMS is designed
to complement and enhance the XML Digital Signature and XML Encryption standards
already emerging at the W3C, not compete with them. As discussed in a previous section, the
XML Encryption and XML Digital Signature specifications describe how to use and
incorporate encryption keys and digital certificates. However, these specifications assume that
the web service responsible for processing the XML exists in an environment where keys and
certificates are kept safe and secure. It also assumes that the web service programmer knows
which certificates and keys to use.

XKMS will provide a standardized set of XML definitions that allow developers to have a
trusted third party locate and provide the appropriate keys and certificates. This trusted third
party will act as an intermediary that frees the web service programmer from having to track
the availability of keys or certificates and ensure their validity.

In short, XKMS will provide a standardized set of XML definitions that allow developers to
use remote trusted third-party services that provide encryption and decryption services, and
the creation, management, and authentication of keys and digital signatures. The specification
maps a set of tags that can be used to query external key management and signature validation
services and a set of tags for these services to use when sending responses. For example, a
client might ask a remote service to answer questions such as, "Is this certificate valid?" or, "I
have a reference to a key that you are allegedly managing . . . what is its value?" The next
section provides an overview of some of these requests and responses.

10.3.2.1 Key retrieval

XKMS provides a simple retrieval method for obtaining a decryption key from a remote
source. This retrieval method relies on the use of the <RetrievalMethod> tag within the
<KeyInfo> element, as defined by XML-SIG. The following document assumes that a service
exists that can provide information about a given key:3

 <ds:KeyInfo>
 <ds:RetrievalMethod
 URI="http://www.PKeyDir.test/CheckKey"
 Type="http://www.w3.org/2000/09/xmldsig#X509Certificate"/>
 </ds:KeyInfo>

This lookup is very simple and does not require the service to enforce the validity of the key it
returns.

3 Example from http://www.w3.org/TR/xkms/

Java Web Services

238

10.3.2.2 Location service

The location service defines a set of tags that an application client uses to query a remote
service for information about a public key. For example, if a web service client wants to
encrypt something based on the value of the recipient's public key, it first needs to contact the
key location service to obtain that key. The following listing shows the <Locate> , <Query>,
and <Respond> tags used in the request:

<Locate>
 <Query>
 <ds:KeyInfo>
 <ds:KeyName>Alice Cryptographer</ds:KeyName>
 </ds:KeyInfo>
 </Query>
 <Respond>
 <string>KeyName</string>
 <string>KeyValue</string>
 </Respond>
</Locate>

The <Query> tag provides the name of the requested key, and the <Respond> element lists the
items that the client would like to know about. The response looks like this:

<LocateResult>
 <Result>Success</Result>
 <Answer>
 <ds:KeyInfo>
 <ds:KeyName>Alice Cryptographer</ds:KeyName>
 <ds:KeyValue>Some key value</ds:KeyValue>
 </ds:KeyInfo>
 </Answer>
</LocateResult>

10.3.2.3 Validate Service

The Validate Service is a trusted third party that validates a binding between a key and an
attribute such as a name. For instance, given the following query:

<Validate>
 <Query>
 <Status>Valid</Status>
 <ds:KeyInfo>
 <ds:KeyName>...</ds:KeyName>
 <ds:KeyValue>...</ds:KeyValue>
 </ds:KeyInfo>
 </Query>
 <Respond>
 <string>KeyName</string>
 <string>KeyValue</string>
 </Respond>
</Validate>

the Validate Service would produce the following results:

Java Web Services

239

<ValidateResult>
 <Result>Success</Result>
 <Answer>
 <KeyBinding>
 <Status>Valid</Status>
 <KeyID>http://www.xmltrustcenter.org/assert/20010120-39</KeyID>
 <ds:KeyInfo>
 <ds:KeyName>...</ds:KeyName>
 <ds:KeyValue>...</ds:KeyValue>
 </ds:KeyInfo>
 <ValidityInterval>
 <NotBefore>2000-09-20T12:00:00</NotBefore>
 <NotAfter>2000-10-20T12:00:00</NotAfter>
 </ValidityInterval>
 </KeyBinding>
 </Answer>
</ValidateResult>

In the previous listing, the <Result> and <Status> elements have different meanings. The
Success indicated by the <Result> element simply indicates that the request was processed
successfully by the service. The <Status> indicates the results of the processing—in this
case, the result is Valid. The optional <ValidityInterval> information shows the timespan
for which the Validate Service's results are considered valid. Digital certificates and keys are
not unconditionally valid; they can be (and frequently are) assigned a specific time limit, after
which they expire and are no longer valid. In addition, XKMS also defines requests and
responses for the following areas:

Key registration

How to register your key information with a third-party KMS.

Key revocation

How to send a request to the third-party KMS to tell it that you no longer want it to
manage the key on your behalf.

Key recovery

You forgot your private key. How to send a request to obtain it and what the response
looks like. The specification does not dictate the rules under which the private key
should be returned. For instance, it may be the policy of the service to revoke the old
key and issue a new one. However, that decision is up to the policy of the individual
provider.

Verisign is one of the primary drivers of XKMS. They have already released a Java toolkit
that supports XKMS development. To download the product, visit
http://www.xmltrustcenter.org/xkms/download.htm.

10.4 SOAP Security Extensions

As a container for XML-based messages, SOAP 1.1 has responsibilities to support the use of
XML-based security technologies.

Java Web Services

240

10.4.1 Digital Credentials Extensions to SOAP

As we mentioned in previous sections, to achieve end-to-end application security (encryption,
authorization, and authentication), an exchange of digital credentials is required. Digital
credentials come in different forms. The most commonly used credential is a digital certificate
that conforms to a standard called X.509. Microsoft has recently announced plans to base its
efforts on another type of credential called Kerberos tickets. In either case, these credentials
hold information about the Holder, including information about the encryption methods being
used and the Holder's digital signature.

Microsoft and IBM have proposed extending the SOAP 1.1 specification to include a
security-specific credentials header, which would standardize the use of multiple types of
credentials within a SOAP message. The motivation for the extensions is to give SOAP-based
services the ability to sign portions of the SOAP envelope.

10.4.2 Digital Signature Extensions to SOAP

To use XML Digital Signatures (or any digital signature) effectively in SOAP messages, you
need a standardized way to incorporate them into the message.

To address this need, IBM and Microsoft have proposed a set of SOAP 1.1 header extensions
that standardize the use of digital signatures. The goal is to enable SOAP envelopes to contain
a digital signature that can be used to sign one or more elements contained within the
envelope.

Here is an example of the use of the Digital Signature extensions for SOAP:4

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Header>
 <SOAP-SEC:Signature
 xmlns:SOAP-SEC="http://schemas.xmlsoap.org/soap/security/2000-12"
 SOAP-ENV:actor="some-URI"
 SOAP-ENV:mustUnderstand="1">
 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <ds:SignedInfo>
 <ds:CanonicalizationMethod
 Algorithm="http://www.w3.org/TR/2000/CR-xml-c14n-20001026">
 </ds:CanonicalizationMethod>
 <ds:SignatureMethod
 Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/>
 <ds:Reference URI="#Body">
 <ds:Transforms>
 <ds:Transform
 Algorithm="http://www.w3.org/TR/2000/CR-xml-c14n-20001026"/>
 </ds:Transforms>
 <ds:DigestMethod
 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>MC0CFFrVLtRlk=...</ds:SignatureValue>
 </ds:Signature>

4 From the W3C web site at http://www.w3c.org/TR/SOAP-dsig.

Java Web Services

241

 </SOAP-SEC:Signature>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body
 xmlns:SOAP-SEC="http://schemas.xmlsoap.org/soap/security/2000-12"
 SOAP-SEC:id="Body">
 <m:GetLastTradePrice xmlns:m="some-URI">
 <m:symbol>IBM</m:symbol>
 </m:GetLastTradePrice>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The XML Digital Signature is in its own namespace and is contained within the
<ds:Signature> element. The wrapper for the signature is <SOAP-SEC:Signature>, which
specifies the namespace for the signature and the intended reader of the signature (denoted by
the <actor> element). The <actor> can be a SOAP intermediary or the final recipient of the
message. The SOAP-ENV:mustUnderstand attribute tells intermediaries that they must know
how to understand this header attribute or leave it unprocessed. The members of the XML
Digital Signature are described in the previous Section 10.2.

These extensions provide a standardized way to add digital signatures to SOAP messages. By
extending the SOAP header to use the <SOAP-SEC:Signature> extension, any web service
can add any type of digital signature to a SOAP message.

The proposal also allows enough flexibility to allow the use of XML Encryption to secure
portions of the SOAP messages. The addition of a <SOAP-SEC:Encryption> tag is still in the
works.

10.5 Further Reading

Finally, we promised to suggest some reading. Here are a few suggestions:

Knudsen, Jonathan. Java Cryptography. O'Reilly & Associates, 1998.
Norberg, Stefan. Securing Windows NT/2000 Servers for the Internet. O'Reilly &
Associates, 2000.
Oaks, Scott. Java Security. O'Reilly & Associates, 2001.
Schneier, Bruce. Applied Cryptography. John Wiley & Sons, 1995.
Spafford, Gene and Simson Garfinkel, Practical UNIX and Internet Security. O'Reilly
& Associates, 1996.

XKMS resources:

http://www.w3.org/TR/xkms/
http://www.xmltrustcenter.org/xkms

SOAP-DSIG specification:

http://www.w3c.org/TR/SOAP-dsig (Java Community Process JSRs—currently in
nonpublic stage)

JSR 104 - XML Trust Service APIs:

http://www.jcp.org/jsr/detail/104.jsp

Java Web Services

242

JSR 105 - XML Digital Signature APIs:

http://www.jcp.org/jsr/detail/105.jsp

JSR 106 - XML Digital Encryption APIs:

http://www.jcp.org/jsr/detail/105.jsp

Java Web Services

243

Appendix A. Credits
Many examples in this book are taken from the Apache SOAP distribution. We thank
the Apache Software Foundation for their permission. They have requested that we print their
license:

/*
 * The Apache Software License, Version 1.1
 *
 *
 * Copyright (c) 2001 The Apache Software Foundation. All rights
 * reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 *
 * 3. The end-user documentation included with the redistribution,
 * if any, must include the following acknowledgment:
 * "This product includes software developed by the
 * Apache Software Foundation (http://www.apache.org/)."
 * Alternately, this acknowledgment may appear in the software itself,
 * if and wherever such third-party acknowledgments normally appear.
 *
 * 4. The names "SOAP" and "Apache Software Foundation" must
 * not be used to endorse or promote products derived from this
 * software without prior written permission. For written
 * permission, please contact apache@apache.org.
 *
 * 5. Products derived from this software may not be called "Apache",
 * nor may "Apache" appear in their name, without prior written
 * permission of the Apache Software Foundation.
 *
 * THIS SOFTWARE IS PROVIDED ''AS IS'' AND ANY EXPRESSED OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 * ==

Java Web Services

244

 *
 * This software consists of voluntary contributions made by many
 * individuals on behalf of the Apache Software Foundation. For more
 * information on the Apache Software Foundation, please see
 * <http://www.apache.org/>.
 */

In Chapter 10, we borrowed an example from the documentation for the Phaos XML Toolkit.
We want to thank them for permission. For more information about their products, see
http://www.phaos.com/ (or call 1-888-997-4267).

We've also used, with permission, some pieces of sample code from our employers, Sonic
Software and BEA. For more information about their products, see
http://www.sonicsoftware.com/ (1-866-438-7664) and http://www.bea.com/ (1-800-812-
4232).

Java Web Services

245

Colophon
Our look is the result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to technical
topics, breathing personality and life into potentially dry subjects.

The animal on the cover of Java™ Web Services is a European ibex. The European ibex, also
called the Alpine ibex, is a wild goat that lives in the central and southern European Alps.
The mammal used to be common in high altitudes of the Alps, but is now a rare and protected
species. Male ibexes are distinguished by their long, semicircular horns, which can grow as
long as 30 inches. When threatened, ibexes fight with their horns or hide in rocky areas.

The ibex has played a prominent role in Alpine life for thousands of years. Archeologists
document 13,000-year-old paintings of ibexes in French caves that depict the animal as
a hunting target. Alpine folklore, in which ibex body parts were considered powerful, also
popularized hunting of the animal. Until the 18th century, the European ibex lived throughout
the Austrian, French, Italian, and Swiss Alps and was hunted extensively. Within the next 200
years, the ibex's habitat shrunk considerably, and herds were found only in northern Italy.
Government protection and reintroduction efforts have expanded its habitat in recent decades.
Ironically, hunting has also contributed to the recovery of the ibex population in Europe;
the animal was reintroduced specifically as a trophy game animal in several Alpine regions,
and international hunting expeditions (which feature the ibex and other local wildlife) are now
an important source of income for many local populations.

Ann Schirmer was the production editor and copyeditor for Java™ Web Services. Matt
Hutchinson proofread the book. Claire Cloutier, Jeff Holcomb, and Matt Hutchinson provided
quality control. David Chu, Phil Dangler, Julie Flanagan, Sue Willing, and Leanne Soylemez
provided production assistance. John Bickelhaupt wrote the index.

Emma Colby designed the cover of this book, based on a series design by Edie Freedman.
The cover image is a 19th-century engraving from the Dover Pictorial Archive. Emma Colby
produced the cover layout with QuarkXPress 4.1 using Adobe's ITC Garamond font.

Melanie Wang designed the interior layout, based on a series design by David Futato. Neil
Walls converted the files from Microsoft Word to FrameMaker 5.5.6 using tools created by
Mike Sierra. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed;
and the code font is LucasFont's TheSans Mono Condensed. The illustrations that appear in
the book were produced by Robert Romano and Jessamyn Read using Macromedia FreeHand
9 and Adobe Photoshop 6. The tip and warning icons were drawn by Christopher Bing. This
colophon was written by Ann Schirmer.

	Cover
	Table of Contents
	Preface
	Who Should Read This Book?
	Organization
	Software and Versions
	Conventions
	Comments and Questions
	Acknowledgments

	1. Welcome to Web Services
	1.1 What Are Web Services?
	1.2 Web Services Adoption Factors
	1.3 Web Services in a J2EE Environment
	1.4 What This Book Discusses

	2. Inside the Composite Computing Model
	2.1 Service-Oriented Architecture
	2.2 The P2P Model

	3. SOAP: The Cornerstone of Interoperability
	3.1 Simple
	3.2 Object
	3.3 Access
	3.4 Protocol
	3.5 Anatomy of a SOAP Message
	3.6 Sending and Receiving SOAP Messages
	3.7 The Apache SOAP Routing Service
	3.8 SOAP with Attachments

	4. SOAP-RPC, SOAP-Faults, and Misunderstandings
	4.1 SOAP-RPC
	4.2 Error Handling with SOAP Faults
	4.3 SOAP Intermediaries and Actors

	5. Web Services Description Language
	5.1 Introduction to WSDL
	5.2 Anatomy of a WSDL Document
	5.3 Best Practices, Makes Perfect
	5.4 Where Is All the Java?

	6. UDDI: Universal Description, Discovery, and Integration
	6.1 UDDI Overview
	6.2 UDDI Specifications and Java-Based APIs
	6.3 Programming UDDI
	6.4 Using WSDL Definitions with UDDI

	7. JAX-RPC and JAXM
	7.1 Java API for XML Messaging (JAXM)
	7.2 JAX-RPC
	7.3 SOAPElement API
	7.4 JAX-RPC Client Invocation Models

	8. J2EE and Web Services
	8.1 The SOAP-J2EE Way
	8.2 The Java Web Service (JWS) Standard

	9. Web Services Interoperability
	9.1 The Concept of Interoperability
	9.2 The Good, Bad, and Ugly of Interoperability
	9.3 Potential Interoperability Issues
	9.4 SOAPBuilders Interoperability
	9.5 Other Interoperability Resources
	9.6 Resources

	10. Web Services Security
	10.1 Incorporating Security Within XML
	10.2 XML Digital Signatures
	10.3 XML Encryption
	10.4 SOAP Security Extensions
	10.5 Further Reading

	A. Credits
	Colophon

