
JAVATM STUDIO

FIELD GUIDE
SECOND EDITION

JAVA TECHNOLOGY
OVERVIEW
Topics in This Chapter

• The Java Programming Language
• JavaBeans Components
• NetBeans Software
• The XML Language
• The J2EE Architecture
• JavaServer Faces Technology
• JDBC and Databases
• Ant Build Tool
• Web Services
• EJBs and Portlets

Chapter
elcome to Creator! Creator is an IDE (Integrated Development
Environment) that helps you build web applications. While many
IDEs out in the world do that, Creator is unique in that it is built on
a layered technology anchored in Java. At the core of this technol-

ogy is the Java programming language. Java includes a compiler that produces
portable bytecode and a Java Virtual Machine (JVM) that runs this byte code on
any processor. Java is an important part of Creator because it makes your web
applications portable.

But Java is more than just a programming language. It is also a technology
platform. Many large systems have been developed that use Java as their core.
These systems are highly scalable and provide services and structure that
address some of the high-volume, distributed computing environments of
today.

1.1 Introduction

Creator depends on multiple technologies, so it’s worthwhile touching on them
in this chapter. If you’re new to Java, many of its parts and acronyms can be
daunting. Java technologies are divided into related packages containing
classes and interfaces. To build an application, you might need parts of one sys-
tem and parts of another. This chapter provides you with a road map of Java

W

3

4 Chapter 1 Java Technology Overview
technologies and documentation sources to help you design your web applica-
tions with Creator.

We’ll begin with an overview of the Java programming language. This will
help you get comfortable writing Java code to customize your Creator applica-
tions. But before we do that, we show you how to find the documentation for
Java classes and methods. This will help you use them with confidence in your
programs.

Most of the documentation for a Java Application Program Interface (API)
can be accessed through Creator’s Help System, located under Help in the
main menu. Sometimes all you need is the name of the package or the system
to find out what API a class, interface, or method belongs to. Java consists of
the basic language (all packages under java) and Java extensions (all packages
under javax). Once you locate a package, you can explore the interfaces and
classes and learn about the methods they implement.

You can also access the Java documentation online. Here’s a good starting
point for the Java API documentation.

This page contains links to the Java 2 Platform Standard Edition, which con-
tains the core APIs. It also has a link to all of the other Java APIs and technolo-
gies, found at

Creator is also built on the technology of JavaServer Faces (JSF). You can
find the current JSF API documentation at

JSF is described as part of the J2EE Tutorial, which can be found at

These are all important references for you. We’ve included them at the
beginning of this book so it’s easy to find them later (when you’re deep in the
challenges of web application development). For now, let’s begin with Java as a
programming language. Then we’ll look at some of the other supporting tech-
nologies on which Creator is built.

http://java.sun.com/docs/

http://java.sun.com/reference/docs/index.html

http://java.sun.com/j2ee/javaserverfaces/1.0/docs/api/
index.html

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html

1.2 The Java Programming Language 5
1.2 The Java Programming Language

This cursory overview of the Java programming language is for readers who
come from a non-Java programming environment. It’s not meant to be an in-
depth reference, but a starting point. Much of Creator involves manipulating
components through the design canvas and the components’ property sheets.
However, there are times when you must add code to a Java page bean (the
supporting Java code for your web application’s page) or use a JavaBeans com-
ponent in your application. You’ll want a basic understanding of Java to more
easily use Creator.

Object-Oriented Programming
Languages like C and Basic are procedure-oriented languages, which means
data and functions are separated. To write programs, you either pass data as
arguments to functions or make your data global to functions. This arrange-
ment can be problematic when you need to hide data like passwords, customer
identification codes, and network addresses. Procedure-oriented designs work
fine when you write simple programs but are often not suitable to more com-
plex tasks like distributed programming and web applications. Function librar-
ies help, but error handling can be difficult and global variables may introduce
side effects during program maintenance.

Object-oriented programming, on the other hand, combines data and func-
tions into units called objects. Languages like Java hide private data (fields) from
user programs and expose only functions (methods) as a public interface. This
concept of encapsulation allows you to control how callers access your objects. It
allows you to break up applications into groups of objects that behave in a sim-
ilar way, a concept called abstraction. In Java, you implement an object with a
Java class and your object’s public interface becomes its outside view. Java has
inheritance to create new data types as extensions of existing types. Java also
has interfaces, which allow objects to implement required behaviors of certain
classes of objects. All of these concepts help separate an object’s implementa-
tion (inside view) from its interface (outside view).

All objects created from the same class have the same data type. Java is a
strongly typed language, and all objects are implicitly derived from type
Object (except the built-in primitive types of int, boolean, char, double,
long, etc.). You can convert an object from one type to another with a converter.
Casting to a different type is only allowed if the conversion is known by the
compiler. Creator’s Java editor helps you create well-formed statements with
dynamic syntax analysis and code completion choices. You’ll see how this
works in Chapter 2.

Error handling has always been a tough problem to solve, but with web
applications error handling is even more difficult. Processing errors can occur

6 Chapter 1 Java Technology Overview
on the server but need to propagate in a well-behaved way back to the user.
Java implements exception handling to handle errors as objects and recover
gracefully. The Java compiler forces programmers to use the built-in exception
handling mechanism.

And, Java forbids global variables, a restriction that helps program mainte-
nance.

Creating Objects
Operator new creates objects in Java. You don’t have to worry about destroying
them, because Java uses a garbage collection mechanism to automatically
destroy objects which are no longer used by your program.

Operator new creates an object at run time and returns its address in memory to
the caller. In Java, you use references (p and q) to store the addresses of objects so
that you can refer to them later. Every reference has a type (Point), and objects
can be built with arguments to initialize their data. In this example, we create
two Point objects with x and y coordinates, one with a default of (0, 0) and the
other one with (10, 20).

Once you create an object, you can call its methods with a reference.

As you can see, you can do a lot of things with Point objects. It’s possible to
move a Point object to a new location, or make it go up or to the right, all of
which affect one or more of a Point object’s coordinates. We also have getter
methods to return the x and y coordinates separately and setter methods to
change them.

Why is this all this worthwhile? Because a Point object’s data (x and y coor-
dinates) are hidden. The only way you can manipulate a Point object is through
its public methods. This makes it easier to maintain the integrity of Point
objects.

Point p = new Point(); // create a Point at (0, 0)
Point q = new Point(10, 20); // create a Point at (10, 20)

p.move(30, 30); // move object p to (30, 30)
q.up(); // move object q up in y direction
p.right(); // move object p right in x direction
int xp = p.getX(); // get x coordinate of object p
int yp = p.getY(); // get y coordinate of object p
q.setX(5); // change x coordinate in object q
p.setY(25); // change y coordinate in object p

1.2 The Java Programming Language 7
Classes
Java already has a Point class in its API, but for the purposes of this discussion,
let’s roll our own. Here’s our Java Point class, which describes the functionality
we’ve shown you.

The Point class is divided into three sections: Fields, Constructors, and
Instance Methods. Fields hold internal data, constructors initialize the fields,
and instance methods are called by you with references. Note that the fields for
x and y are private. This enforces data encapsulation in object-oriented pro-
gramming, since users may not access these values directly. Everything else,
however, is declared public, making it accessible to all clients.

The Point class has two constructors to build Point objects. The first con-
structor accepts two double arguments, and the second one is a default con-
structor with no arguments. Note that both constructors call the move()
method to initialize the x and y fields. Method move() uses the Java this key-

Listing 1.1 Point class

// Point.java - Point class
class Point {
// Fields

private double x, y; // x and y coordinates

// Constructors
public Point(double x, double y) { move(x, y); }
public Point() { move(0, 0); }

// Instance Methods
public void move(double x, double y) {

this.x = x; this.y = y;
}
public void up() { y++; }
public void down() { y--; }
public void right() { x++; }
public void left() { x--; }

// getters
public double getX() { return x; }
public double getY() { return y; }

// setters
public void setX(double x) { this.x = x; }
public void setY(double y) { this.y = y; }

}

8 Chapter 1 Java Technology Overview
word to distinguish local variable names in the method from class field names
in the object. The setX() and setY() methods use the same technique.1

Most of the Point methods use void for their return type, which means the
method does not return anything. The ++ and -- operators increment or decre-
ment their values by one, respectively. Each method has a signature, which is
another name for a function’s argument list. Note that a signature may be
empty.

Packages
The Point class definition lives in a file called Point.java. In Java, you must
name a file with the same name as your class name. This makes it convenient
for the Java run-time interpreter to find class definitions when it’s time to
instantiate (create) objects. When all classes live in the same directory, it’s easy
to compile and run Java programs.

In the real world, however, classes have to live in different places, so Java
has packages that allow you to group related classes. A package in Java is both a
directory and a library. This means a one-to-one correspondence exists between
a package hierarchy name and a file’s pathname in a directory structure.
Unique package names are typically formed by reversing Internet domain
names (com.mycompany). Java also provides access to packages from class paths
and JAR (Java Archive) files.

Suppose you want to store the Point class in a package called MyPack-
age.examples. Here’s how you do it.

Package names with dot (.) delimiters map directly to path names, so
Point.java lives in the examples directory under the MyPackage directory. A
Java import statement makes it easy to use class names without fully qualifying
their package names. Import statements are also applicable to class names from
any Java API.

1. The this reference is not necessary if you use different names for the argu-
ments.

package MyPackage.examples;
class Point {

. . .
}

// Another Java program
import java.util.Date;
import javax.faces.context.*;
import MyPackage.examples.Point;

1.2 The Java Programming Language 9
The first import statement provides the Date class name to our Java program
from the java.util package. The second import uses a wildcard (*) to make
all class definitions available from javax.faces.context. The last import
brings our Point class into scope from package MyPackage.examples.

Exceptions
We mentioned earlier that one of the downfalls of procedure-oriented lan-
guages is that subroutine libraries don’t handle errors well. This is because
libraries can only detect problems, not fix them. Even with libraries that sup-
port elaborate error mechanisms, you cannot force someone to check a func-
tion’s return value or peek at a global error flag. For these and other reasons, it
has been difficult to write distributed software that gracefully recovers from
errors.

Object-oriented languages like Java have a built-in exception handling
mechanism that lets you handle error conditions as objects. When an error
occurs inside a try block of critical code, an exception object can be thrown
from a library method back to a catch handler. Inside user code, these catch
handlers may call methods in the exception object to do a range of different
things, like display error messages, retry, or take other actions.

The exception handling mechanism is built around three Java keywords:
throw, catch, and try. Here’s a simple example to show you how it works.

Suppose a method called doSomething() needs to convert a string of char-
acters (input) to an integer value in memory (number). In Java, the call to Inte-
ger.parseInt() performs the necessary conversion for you, but what about
malformed string arguments? Fortunately, the parseInt() method throws a
NumberFormatException if the input string has illegal characters. All we do is
place this call in a try block and use a catch handler to generate an error mes-
sage when the exception is caught.

class SomeClass {
. . .
public void doSomething(String input) {

int number;
try {

number = Integer.parseInt(input);
}
catch (NumberFormatException e) {

String msg = e.getMessage();
// do something with msg

}
. . .

}
}

10 Chapter 1 Java Technology Overview
All that’s left is to show you how the exception gets thrown. This is often
called a throw point.

The static parseInt() method2 illustrates two important points about
exceptions. First, the throws clause in the method signature announces that
parseInt() throws an exception object of type NumberFormatException. The
throws clause allows the Java compiler to enforce error handling. To call the
parseInt() method, you must put the call inside a try block or in a method
that also has the same throws clause. Second, operator new calls the Number-
FormatException constructor to build an exception object. This exception
object is built with an error string argument and thrown to a catch handler
whose signature matches the type of the exception object (NumberFormat Excep-
tion).3 As you have seen, a catch handler calls getMessage() with the excep-
tion object to access the error message.

Why are Java exceptions important? As you develop web applications with
Creator, you’ll have to deal with thrown exceptions. Fortunately, Creator has a
built-in debugger that helps you monitor exceptions. In the Chapter 14, we
show you how to set breakpoints to track exceptions in your web application
(see “Detecting Exceptions” on page 521).

Inheritance
The concept of code reuse is a major goal of object-oriented programming.
When designing a new class, you may derive it from an existing one. Inherit-
ance, therefore, implements an “is a” relationship between classes. Inheritance
also makes it easy to hook into existing frameworks so that you can take on

class Integer {
public static int parseInt(String input)

throws NumberFormatException {
. . .
// input string has bad chars
throw new NumberFormatException("illegal chars");

}
. . .

}

2. Inside class Integer, the static keyword means you don’t have to instan-
tiate an Integer object to call parseInt(). Instead, you call the static
method with a class name rather than a reference.

3. The match doesn’t have to be exact. The exception thrown can match the
catch handler’s object exactly or any exception object derived from it by
inheritance. To catch any possible exception, you can use the superclass
Exception. We discuss inheritance in the next section.

1.2 The Java Programming Language 11
new functionalities. With inheritance, you can retain the existing structure and
behavior of an existing class and specialize certain aspects of it to suit your
needs.

In Java, inheritance is implemented by extending classes. When you extend
one class from another, the public methods of the “parent” class become part of
the public interface of the “child class.” The parent class is called a superclass
and the child class is called a subclass. Here are some examples.

In the first example, Point is a superclass and Pixel is a subclass. A Pixel
“is a” Point with, say, color. Inside the Pixel class, a color field with setter and
getter methods can assist in manipulating colors. Pixel objects, however, are
Point objects, so you can move them up, down, left or right, and you can get or
set their x and y coordinates. (You can also invoke any of Point’s public meth-
ods with a reference to a Pixel object.) Note that you don’t have to write any
code in the Pixel class to do these things because they have been inherited
from the Point class. Likewise, in NumberFormatException, you may intro-
duce new methods but inherit the functionality of IllegalArgumentExcep-
tion.

Another point about inheritance. You can write your own version of a
method in a subclass that has the same name and signature as the method in
the superclass. Suppose, for instance, we add a clear() method in our Point
class to reset Point objects back to (0, 0). In the Pixel class that extends from
Point, we may override the clear() method.4 This new version could move a
Pixel object to (0, 0) and reset its color. Note that clear() in class Point is
called for Point objects, but clear() in class Pixel will be called for Pixel
objects. With a Point reference set to either type of object, different behaviors
happen when you call this method.

It’s important to understand that these kinds of method calls in Java are
resolved at run time. This is called dynamic binding. In the object-oriented para-
digm, dynamic binding means that the resolution of method calls with objects

class Pixel extends Point {
. . .

}

class NumberFormatException extends IllegalArgumentException {
. . .

}

4. Creator uses this same feature by providing methods that are called at dif-
ferent points in the JSF page request life cycle. You can override any of these
methods and thus provide your own code, “hooking” into the page request
life cycle. We show you how to do this in Chapter 6 (see “The Creator-JSF
Life Cycle” on page 151).

12 Chapter 1 Java Technology Overview
is delayed until you run a program. In web applications and other types of dis-
tributed software, dynamic binding plays a key role in how objects call meth-
ods from different machines across a network or from different processes in a
multitasking system.

Interfaces
In Java, a method with a signature and no code body is called an abstract
method. Abstract methods must be overridden in subclasses and help define
interfaces. A Java interface is like a class but has no fields and only abstract pub-
lic methods. Interfaces are important because they specify a contract. Any new
class that implements an interface must provide code for the interface’s meth-
ods.

Here’s an example of an interface.

The Encryptable interface contains only the abstract public methods
encode() and decode(). Class Password implements the Encryptable inter-
face and must provide implementations for these methods. Remember, inter-
faces are types, just like classes. This means you can implement the same
interface with other classes and treat them all as Encryptable types.

Java prohibits a class from inheriting from more than one superclass, but it
does allow classes to implement multiple interfaces. Interfaces, therefore, allow
arbitrary classes to “take on” the characteristics of any given interface.

One of the most common interfaces implemented by classes in Java is the
Serializable interface. When an object implements Serializable, you can
use it in a networked environment or make it persistent (this means the state of
an object can be saved and restored by different clients). There are methods to
serialize the object (before sending it over the network or storing it) and to
deserialize it (after retrieving it from the network or reading it from storage).

interface Encryptable {
void encode(String key);
String decode();

}

class Password implements Encryptable {
. . .
void encode(String key) { . . . }
String decode() { . . . }

}

1.3 JavaBeans Components 13
1.3 JavaBeans Components

A JavaBeans component is a Java class with certain structure requirements. Jav-
abeans components define and manipulate properties, which are objects of a
certain type. A JavaBeans component must have a default constructor so that it
can be instantiated when needed. Beans also have getter and setter methods
that manipulate a bean property and conform to a specific naming convention.
These structural requirements make it possible for development tools and
other programs to create JavaBeans components and manipulate their proper-
ties.

Here’s a simple example of a JavaBeans component.

Why are JavaBeans components important? First and most important, they
are accessible to Creator. When you write a JavaBeans component that con-
forms to the specified design convention, you may use it with Creator and bind
JSF components to bean properties. Second, JavaBeans components can encap-
sulate business logic. This helps separate your design presentation (GUI com-
ponents) from the business data model.

In subsequent chapters, we show you several examples of JavaBeans compo-
nents. We’ll use a LoginBean to handle users that login with names and pass-
words and show you a LoanBean that calculates mortgage payments for loans.
The Point class in Listing 1.1 on page 7 is another example of a JavaBeans com-
ponent.

1.4 NetBeans Software

NetBeans software is an open source IDE written in the Java programming lan-
guage. It also includes an API that supports building any type of application.
The IDE has support for Java, but its architecture is flexible and extensible,
making support for other languages possible.

public class Book {
private String title;
private String author;
public Book() { setTitle(""); setAuthor(""); }
public void setTitle(String t) { title = t; }
public String getTitle() { return title; }
public void setAuthor(String a) { author = a; }
public String getAuthor() { return author; }

}

14 Chapter 1 Java Technology Overview
NetBeans is an Open Source project. You can view more information on its
history, structure, and relationship with Sun Microsystems at its web site

NetBeans and Creator are related because Creator is based on the NetBeans
platform. In building Creator, Sun is offering an IDE aimed specifically at cre-
ating web-based applications. Thus, the IDE integrates page design with gener-
ated JSP source and page bean components. NetBeans provides features such
as source code completion, workspace manipulation of windows, expandable
tree views of files and components, and debugging facilities. Because NetBeans
is extensible, the Creator architects included Java language features such as
inheritance to adapt components from NetBeans into Creator applications with
the necessary IDE functions.

1.5 The XML Language

XML is a metalanguage that dictates how to define custom languages and
describe data. The name is an acronym for Extensible Markup Language. XML
is not a programming language, however. In fact, it’s based on simple character
text in which the data are surrounded by text markup that documents data.
This means you can use XML to describe almost anything. Since XML is self-
describing, it’s easy to read with tools and other programs to decide what
actions to take. You can transport XML documents easily between systems or
across the Internet, and virtually any type of data can be expressed and vali-
dated in an XML document. Furthermore, XML is portable because it’s lan-
guage and system independent.

Creator uses XML to define several configuration files as well as the source
for the JSP web pages. Here’s an example XML file (managed-beans.xml) that
Creator generates for managing a JavaBeans component in a web application.

Every XML file has opening tags (<tag>) and closing tags (</tag>) that
define self-describing information. Here, we specify a managed-bean element

http://www.netbeans.org/

<faces-config>
<managed-bean>

<managed-bean-name>LoanBean</managed-bean-name>
<managed-bean-class>asg.bean_examples.LoanBean

</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>

</managed-bean>
</faces-config>

1.6 The J2EE Architecture 15
to tell Creator what it needs to know about the LoanBean component. This
includes its name (LoanBean), class name and package (asg.bean-
_examples.LoanBean), and the scope of the bean (session). When you add your
own JavaBeans components to Creator as managed beans, Creator generates
this configuration information for you.

Creator maintains and updates its XML files for you, but it’s a good idea to
be familiar with XML syntax. This will allow you to customize the Creator
XML files if necessary.

1.6 The J2EE Architecture

The J2EE platform gives you a multitiered application model to develop dis-
tributed components. Although any number of tiers is possible, we’ll use a
three-tier architecture for the applications in this book. Figure 1–1 shows the
approach.

The client machine supports web browsers, applets, and stand-alone appli-
cations. A client application may be as simple as a command-line program run-
ning as an administrator client or a graphical user interface created from Java
Swing or Abstract Window Toolkit (AWT) components. Regardless, the J2EE
specification encourages thin clients in the presentation tier. A thin client is a
lightweight interface that does not perform database queries, implement busi-
ness logic, or connect to legacy code. These types of “heavyweight” operations
preferably belong to other tiers.

Figure 1–1 Three-tier J2EE architecture

Presentation
Tier

Web
Tier Database

Tier
Business

Tier

Client
Machine

Database
Server Machine

J2EE Server
Machine

16 Chapter 1 Java Technology Overview
The J2EE server machine is the center of the architecture. This middle tier
contains web components and business objects managed by the application
server. The web components dynamically process user requests and construct
responses to client applications. The business objects implement the logic of a
business domain. Both components are managed by a J2EE application server
that provides these components with important system services, such as secu-
rity, transaction management, naming and directory lookups, and remote con-
nectivity. By placing these services under control of the J2EE application server,
client components focus on either presentation logic or business logic. And,
business objects are easier for developers to write. Furthermore, the architec-
ture encourages the separation of business logic from presentation logic (or
model from view).

The database server machine handles the database back end. This includes
mainframe transactions, databases, Enterprise Resource Planning (ERP) sys-
tems, and legacy code. Another advantage of the three-tier architecture is that
older systems can take on a whole new “look” by using the J2EE platform. This
is the approach many businesses are taking as they integrate legacy systems
into a modern distributed computing environment and expose application ser-
vices and data to the web.

1.7 Java Servlet Technology

The Java Servlet component technology presents a request-response program-
ming model in the middle tier. Servlets let you define HTTP-specific servlet
classes that accept data from clients and pass them on to business objects for
processing. Servlets run under the control of the J2EE application server and
often extend applications hosted by web servers. Servlet code is written in Java
and compiled. It is particularly suited to server-side processing for web appli-
cations since each Servlet session is handled in its own thread.

1.8 JavaServer Pages Technology

A JavaServer Pages (JSP) page is a text-based document interspersed with Java
code. A JSP engine translates JSP text into Java Servlet code. It is then dynami-
cally compiled and executed. This component technology lets you create
dynamic web pages in the middle tier. JSP pages contain static template data
(HTML, WML, and XML) and JSP elements that determine how a page con-
structs dynamic content. The JSP API provides an efficient, thread-based mech-
anism to create dynamic page content.

1.9 JDBC API and Database Access 17
Creator uses JavaServer Faces (JSF), which is built on both the servlet and
JSP technologies. However, by using Creator, you are shielded from much of
the details of not only JSP and servlet programming, but JSF details as well.

1.9 JDBC API and Database Access

Java Data Base Connectivity (JDBC) is an API that lets you invoke SQL com-
mands from Java methods in the middle tier. Typically, you use the JDBC API
to access a database from servlets or JSP pages. The JDBC API has an applica-
tion-level interface for database access and a service provider interface to
attach JDBC drivers to the J2EE platform. In support of JDBC, J2EE application
servers manage a pool of database connections. This pool provides business
objects efficient access to database servers.

The JDBC CachedRowSet API is a newer technology that makes database
access more flexible. Creator accesses configured data sources using a Cached-
RowSet object, a JavaBeans component that is scrollable, updatable, and serial-
izable. These components are disconnected from the database, caching its rows
into memory. When web applications modify data in the cached rowset object,
the result propagates back to the data source through a subsequent connection.
By default, Creator instantiates a cached rowset object in session scope.

The concept of data providers is also important because it produces a level of
abstraction for data flow within Creator’s application environment. Creator’s
data providers allow you to change the source of data (say, from a database
table to a web services call or an EJB method) by hooking the data provider to a
different data source.

We introduce data providers in Chapter 8 and show how to use them with
databases in Chapter 9.

1.10 JavaServer Faces Technology

The JavaServer Faces (JSF) technology helps you develop web applications
using a server-side user interface (UI) component framework. The JSF API
gives you a rich set of UI components and lets you handle events, validate and
convert user input, define page navigation, and support internationalization.
JSF has custom tag libraries for connecting components to server-side objects.
We show you these components and tag libraries in Chapter 3.

JSF incorporates many of the lower level tasks that JSP developers are used
to doing. Unlike JSP applications, however, applications developed with JSF
can map HTTP requests to component-specific event handlers and manage UI
elements as stateful objects on the server. This means JSF offers a better separa-

18 Chapter 1 Java Technology Overview
tion of model and presentation. The JSF API is also layered directly on top of
the Servlet API.

1.11 Ant Build Tool

Ant is a tool from the Apache Software Foundation (www.apache.org) that
helps you manage the “build” of a software application. The name is an acro-
nym for “Another Neat Tool” and is similar in concept to older build tools like
make under Unix and gmake under Linux. However, Ant is XML-based, it’s eas-
ier to use, and it’s platform independent.

Ant is written in Java and accepts instructions from XML documents. Ant is
well suited for performing complicated and repetitive tasks. Creator uses Ant
to compile and deploy your web applications. Ant gets its instructions for
building a system from the configuration file, build.xml. You won’t have to
know too much about Ant to use Creator, but you should be aware that it’s
behind the scenes doing a lot of work for you.

1.12 Web Services

Web services are software APIs that are accessible over a network in a hetero-
geneous environment. Network accessibility is achieved by means of a set of
XML-based open standards such as the Web Services Description Language
(WSDL), the Simple Object Access Protocol (SOAP), and Universal Description,
Discovery, and Integration (UDDI). Web service providers and clients use these
standards to define, publish, and access web services.

Creator’s application server (J2EE 1.4) provides support for web services. In
Creator, you can access methods of a web service by dragging its node onto the
design canvas. We show you web services with Creator in Chapter 10.

1.13 Enterprise JavaBeans (EJB)

EJB is a component technology that helps developers create business objects in
the middle tier. These business objects (enterprise beans) consist of fields and
methods that implement business logic. EJBs are server-side components writ-
ten in Java that serve as building blocks for enterprise systems. They perform
specific tasks by themselves, or forward operations to other enterprise beans.
EJBs are under control of the J2EE application server. We show you how to
access an EJB from a Creator application in Chapter 11.

1.14 Portlets 19
1.14 Portlets

A portlet is an application that runs on a web site managed by a server called a
portal. A portal server manages multiple portlet applications, displaying them
on the web page together. Each portlet consumes a fragment of the page and
manages its own information and user interaction. Portlet application develop-
ers will typically target portlets to run under portals provided by various por-
tal vendors.

You can use Creator to develop portlets. Creator builds JSF portlets. This
means your design-time experience in building portlet web application using
the visual, drag-and-drop features of Creator will be familiar. Most of the inter-
action with the IDE is exactly the same as it is for non-portlet JSF projects. We
show you how to create portlets in Chapter 12.

1.15 Key Point Summary

• Creator is an IDE built on layered Java technologies that helps you build
web applications.

• Procedure-oriented languages separate data and functions, whereas object-
oriented languages combine them.

• Encapsulation enforces data hiding and allows you to control access to your
objects.

• Java is a strongly typed object-oriented language with a large set of APIs
that help you develop portable web applications.

• In Java, operator new returns a reference to a newly created object so that
you can call methods with the reference.

• Java classes have fields, constructors, and instance methods. The private
keyword is used for encapsulation, and the public keyword grants access to
clients.

• Java packages allow you to store class files and retrieve them with import
statements in Java programs.

• Java uses try, catch, and throw to handle error conditions with a built-in
exception handling mechanism.

• Inheritance is a code reuse mechanism that implements an “is a”
relationship between classes.

• Dynamically bound method calls are resolved at run time in Java. Dynamic
binding is essential with distributed web applications.

• An interface has no fields and only abstract public methods. A class that
implements an interface must provide code for the interface’s methods.

• The J2EE architecture is a multitiered application model to develop
distributed components.

20 Chapter 1 Java Technology Overview
• Java Servlets let you define HTTP-specific servlet classes that accept data
from clients and pass them on to business objects for processing.

• A JSP page is a text-based document interspersed with Java code that allows
you to create dynamic web pages.

• JDBC is an API for database access from servlets, JSP pages, or JSF. Creator
uses data providers to introduce a level of abstraction between Creator UI
components and sources of data.

• JavaServer Faces (JSF) helps you develop web applications using a server-
side user interface component framework. Creator generates and manages
all of the configuration files required by JSF.

• A JavaBeans component is a Java class with a default constructor and setter
and getter methods to manipulate its properties.

• NetBeans is a standards-based IDE and platform written in the Java
programming language. Java Studio Creator is based on the NetBeans
platform.

• XML is a self-describing, text-based language that documents data and
makes it easy to transport between systems.

• Ant is a Java build tool that helps you compile and deploy web applications.
• Web services are software APIs that are accessible over a network in a

heterogeneous environment.
• EJBs are server-side components written in Java that implement business

logic and serve as building blocks for enterprise systems.
• Portlets are applications that consume a portion of a web page. They run on

web sites managed by a portal server and execute along with other portlets
on the page.

• Portlets help divide web pages into smaller, more manageable fragments.

CREATOR BASICS

Topics in This Chapter

• Creator Window Layout
• Visual Design Editor
• Components and Clips Palette
• Source Editors/Code Completion
• Page Navigation Editor
• Outline Window
• Projects Window
• Servers and Resources
• Creator Help System
• Basic Project Building

23

Chapter

un Java Studio Creator makes it easy to work with web applications
from multiple points of view. This chapter explores some of Creator’s
basic capabilities, the different windows (views) and the way in which
you use them to build your application. We show you how to manipu-

late your application through the drag-and-drop mechanism for placing com-
ponents, configuring components in the Properties window, controlling page
flow with the Page Navigation editor, and selecting services from the Servers
window.

2.1 Examples Installation

We assume that you’ve successfully installed Creator. The best source of infor-
mation for installing Creator is Sun’s product information page at the following
URL.

Creator runs on a variety of platforms and can be configured with different
application servers and JDBC database drivers. However, to run all our exam-
ples we’ve used the bundled application server (Sun Java System Application
Server 8.2) and the bundled database server (Derby). Once you’ve configured

http://developers.sun.com/prodtech/javatools/jscreator/

S

24 Chapter 2 Creator Basics

Creator for your system, the examples you build here should run the same on
your system.

Download Examples
You can download the examples for this book at the Sun Creator web site. The
examples are packed in a zip file. When you unzip the file, you’ll see the
FieldGuide2/Examples directory and subdirectories for the various chapters
and projects. As each chapter references the examples, you will be instructed
on how to access the files.

You’re now ready to start the tour of Creator.

2.2 Creator Views

Figure 2–1 shows Creator’s initial window layout in its default configuration.
When you first bring it up, no projects are open and Creator displays its Wel-
come window.

There are other windows besides those shown in the initial window layout.
As you’ll see, you can hide and display windows, as well as move them
around. As we begin this tour of Creator, you’ll probably want to run Creator
while reading the text.

Welcome Window
The Welcome window lets you create new projects or work on existing ones.
Figure 2–2 shows the Welcome window in more detail. It lists the projects
you’ve worked on recently and offers selection buttons for opening existing
projects or creating new projects. If you hover with the mouse over a recently
opened project name, Creator displays the full pathname of the project in a
tooltip.

To demonstrate Creator, let’s open a project that we’ve already built. The
project is included in the book’s download bundle, in directory FieldGuide2/
Examples/Navigation/Projects/Login1.

Creator Tip

We show you how to build this project from scratch in Chapter 5 (see
“Dynamic Navigation” on page 206). For our tour of the IDE, however, we’ll
use the pre-built project from the examples download.

2.2 Creator Views 25

1. Select the Open Existing Project button and browse to the FieldGuide2/
Examples/Navigation/Projects directory.

2. Select Login1 (look for the projects icon) and click Open Project Folder. This
opens the Login1 project in the Creator IDE.

3. Page1 should display in the visual editor, as shown in Figure 2–3. If Page1
does not open in the design editor, find the Projects view (its default posi-
tion is on the right, under the Properties view).

4. In the Projects view, expand node Login1, then Web Pages. Double-click
Page1.jsp. Page1 should now appear in the design editor.

Welcome Window

Main Menu
Tool Icons

Servers View Palette

Status Bar

Properties Window

Outline View

Figure 2–1 Creator’s initial window layout

Projects View

Bar

Dynamic Help

Files View

Navigator View

26 Chapter 2 Creator Basics

Design Editor
Figure 2–3 shows a close-up of the design canvas (the visual design editor) of
Page1. You see the design grid and the components we’ve placed on the can-
vas. The design editor lets you visually populate the page with components.

Page1 contains a “virtual form.” Virtual forms are accessible on a page by
selecting the Show Virtual Forms icon on the editing toolbar, as shown in
Figure 2–3. Virtual forms let you assign different components to different
actions on the page. We show you how to use virtual forms in “Configure Vir-
tual Forms” on page 216 (for project Login1 in Chapter 5) and in “Virtual
Forms” on page 419 (for project MusicAdd in Chapter 9).

Select the text field component. The design canvas marks the component
with selection and resizing handles. Now move the text field component
around on the grid. You’ll note that it snaps to the gird marks automatically
when you release the mouse. You can temporarily disable the snap to grid fea-
ture by moving the component and pressing the <Shift> key at the same time.
You can also select more than one component at a time (use <Shift-Click>) and

Figure 2–2 Creator’s Welcome window

2.2 Creator Views 27

Creator provides options to align components. We cover the mechanics of page
design in Chapter 7 (see “Using the Visual Design Editor” on page 273).

Note that when you make modifications to a page, Creator indicates that
changes have been made to the project by appending an asterisk to the file
name tab. Once you save your project by clicking the Save All icon in the tool-
bar (or selecting File > Save All from the main menu), the Save All icon is dis-
abled and the asterisk is cleared from the file name tab.

Typically applications consist of more than one page. You can have more
than one of your project’s pages open at a time (currently, there’s just one page
open). When you open other files, a file tab appears at the top of the editor
pane. The file tab lets you select other files to display in the editor pane.

Creator lets you configure your display’s workspace to suit the tasks you’re
working on. All the windows can be hidden when not needed (click the small x
in a window’s title bar to close it) and moved (grab the window’s title bar and
move it to a new location). To view a hidden window, select View from the
menu bar and then the window name. Figure 2–4 shows the View menu with
the various windows you can open, along with a key stroke shortcut for open-
ing each window.

You can also dock Creator windows by selecting the pushpin in the window
title bar. This action minimizes the window along the left or right side of the

Figure 2–3 Creator’s design canvas showing project Login1

File Tab Design Grid

Design Canvas

Label Text Field

Message

Editing Toolbar

Button

Password Field

Virtual Form
Designation

Show Virtual
Forms Toggle

28 Chapter 2 Creator Basics

workspace. Make it visible again by moving the cursor over its docked posi-
tion. Toggling the pushpin icon undocks the window. Figure 2–5 shows the
Properties view with both the Projects and Files windows docked.

Properties
As you select individual components, their properties appear in the Properties
window. Select the text field component on the design canvas. This brings up
its Properties window, as shown in Figure 2–5.

Creator lets you configure the components you use by manipulating their
properties. When you change a component’s properties, Creator automatically
updates the underlying JSP source for you. Let’s look at several properties of
the text field component. If you hold the cursor over any property value, Cre-
ator displays its setting in a tooltip.

Components have many properties in common; other properties are unique
to the specific component type. The id property uniquely identifies the compo-
nent on the page. Creator generates the name for you, but you can change it (as
we have in this example) to more easily work with generated code. The label
property enables you to specify a textual label associated with the text field.
The red asterisk next to the label in the design view indicates that input is

Figure 2–4 Creator’s View Menu allows you to select specific views of your project

2.2 Creator Views 29

required for this component. Property text holds the text that the user sub-
mits. You can use the style property to change a component’s appearance. The
style property’s position tag reflects the component’s position on the page.
When you move the component in the design view, Creator updates this for
you.

Property styleClass takes previously defined CSS style classes (you can
apply more than one). File stylesheet.css (under Web Pages > resources in the
Projects window) is the default style sheet for your projects. We cover style,
styleClass and using Creator’s preconfigured Themes in Chapter 7.

Text field components can take a converter (specified in property con-
verter) and a validator (property validator). The validate and valueChange
properties (under Events) expect method names and are used to provide cus-
tom validation or to process input when the component’s text value changes.

Figure 2–5 Properties window for text field component “userName”

Component
Identifier (id)

Property Customizer
Box

Event Handler
Method

JavaScript
Settings

Style Attributes

input is required

toolTip text

label text

Files and Projects
views docked

30 Chapter 2 Creator Basics

Click on the text field component (again) in the design canvas until Creator
displays a gray outline around the component. Now type in some text and fin-
ish editing with <Enter>. The text you type appears opposite property text in
the Properties window. To reset the property, click the customizer box opposite
property text. Creator pops up a Property Customizer dialog, as shown in
Figure 2–6. Select Unset Property. This is a handy way to return a property
value to its unset state.

Each property’s customizer is tailored to the specific property. For example,
select the Login button on the design canvas. In the Properties window, click
the property customizer box opposite property style. Creator pops up an
elaborate style editor. Experiment with some of the settings (change the font
style or color, for example) and see how the button changes in the design view.
You can also preview the look. Right-click inside the design view and select
Preview in Browser. Figure 2–7 shows a preview of Login1 with a different
appearance for the Login button.

Palette
Creator provides a rich set of basic components, as well as special-function
components such as Calendar, File Upload, Tab Set, and Tree. The palette is
divided into sections that can be expanded or collapsed. Figure 2–8 shows the
Basic Components palette, which includes all of the components on Page1 of
project Login1. In Figure 2–8 you also see the Layout and Composite Compo-
nents palette.

The palette lets you drag and drop components on the page of your applica-
tion. Once a component is on a page, you can reposition it with the mouse or
configure it with the Properties window.

Figure 2–9 shows the Validators and Converters palette. Creator’s converters
and validators let you specify how to convert and validate input. Because con-

Figure 2–6 Property customizer dialog for property text

2.2 Creator Views 31

Figure 2–7 Preview in Browser for Login1

Figure 2–8 Basic, Layout and Composite Components palette

32 Chapter 2 Creator Basics

version and validation are built into the JSF application model, developers can
concentrate on providing event handling code for valid input.

You select converters and validators just like the UI components. When you
drag one to the canvas and drop it on top of a component, the validator or con-
verter binds to that component. To test this, select the Length Validator and
drop it on top of the userName text field component. You’ll see a length valida-
tor lengthValidator1 defined for the text field’s validator property in the
Properties window.

Note that components, validators, and converters all have associated icons
in the palette. Creator uses these icons consistently so you can easily spot what
kind of component you’re working with. For example, select the Login button
component on the design canvas and examine the Outline view. You’ll see that
the icon next to the button components (Login and Reset) matches component
Button in the Basic Components palette.

Outline
Figure 2–10 is the Page1 Outline view for project Login1. (Its default placement
is in the lower-left portion of the display.) The Outline window is handy for
showing both visual and nonvisual components for the page that’s currently

Figure 2–9 Creator Validators and Converters Components palette

2.2 Creator Views 33

displayed in the design canvas. You can select the preconfigured managed
beans, RequestBean1, SessionBean1 and ApplicationBean1. These JavaBeans
components hold your project’s data that belong in either request (page), ses-
sion or application scope, respectively. (We discuss scope issues for web appli-
cation objects in “Scope of Web Applications” on page 224.)

Some components are composite components (they contain nested ele-
ments). The Outline window shows composite components as nodes that you
can expand and compress with ‘+’ and ‘-’ as needed. Suppose, for example, you
select grid panel for layout. When you add components to this grid panel, they
appear nested underneath the panel component in the Outline view.

The length validator component on the userName text field appears as com-
ponent lengthValidator1 in the Outline view. Select the length validator and
examine it in the Properties view. Specify values for properties maximum (use
10) and minimum (use 3). This limits input for the userName text field compo-
nent to a string that is between 3 and 10 characters long.

Now let’s look at the Projects window.

Projects
Figure 2–11 shows the Projects window for project Login1. Its default location
is in the lower-right corner. Whereas the Outline view displays components for
individual pages and managed beans, the Projects window displays your
entire project, organized in a logical hierarchy. (Since Creator lets you open
more than one project at a time, the Projects window displays all currently
opened projects.) Project Login1 contains three JSP pages under the Web Pages
node: Page1.jsp, LoginGood.jsp, and LoginBad.jsp. Double-click any one of

Figure 2–10 Creator’s Outline window for project Login1

Managed Bean SessionBean1
Managed Bean ApplicationBean1

Text Field Component “userName”

Managed Bean RequestBean1

Length Validator “lengthValidator1”

34 Chapter 2 Creator Basics

them to bring it up in the design canvas. When the page opens, Creator dis-
plays a file name tab so you can easily switch among different open files in the
design canvas.

When you create your own projects, each page has its own Java component
“page bean.” These are Java classes that conform to the JavaBeans structure we
mention in Chapter 1 (see “JavaBeans Components” on page 13). To see the
Java files in this project, expand the Source Packages node (click on the ‘+’),
then the login1 folder. When you double-click on any of the Java files, Creator
brings it up in the Java source editor. (We’ll examine the Java source editor
shortly.) Without going to the editor, you can also see Java classes, fields, con-
structors, and methods by expanding the ‘+’ next to each level of the Java file.

The Projects view displays Creator’s “scoped beans.” These are pre-config-
ured JavaBeans components that store data for your project in different scopes.
You can use request scope (Request Bean), application scope (Application
Bean), or session scope (Session Bean). Many of the projects in this text add
properties to these beans. We discuss JSF scoping issues in Chapter 6 (see “Pre-
defined Creator Java Objects” on page 226).

Figure 2–11 Creator’s Project Navigator window for project Login1

2.2 Creator Views 35

The Projects view also lists the resources node, which lives under the Web
Pages node. The resources node typically holds file stylesheet.css and any
image files. Creator uses the libraries listed in the Libraries node to display,
build, and deploy your application. These class files (compiled Java classes) are
stored in special archive files called JAR (Java Archive) files. You can see the
name, as well as the contents (down to the field and method names) of any JAR
file by expanding the nodes under Libraries. We show you how to add a JAR
file to your project in Chapter 13 (see “Add the asg.jar Jar File” on page 595).

Files
The Projects window shows you a logical view of your project. Sometimes you
may need to access a configuration file that is not included in the Projects view.
In such a case, use the Files view, as shown in Figure 2–12.

The Files view shows all of the files in your project. For example, expand
node web > WEB-INF and double-click file web.xml. Creator brings up file
web.xml in a specialized Creator-configuration XML editor, as shown in
Figure 2–13.

Figure 2–12 Files view for project Login1

36 Chapter 2 Creator Basics

File web.xml lets you set various project-level configuration parameters,
such as Session Timeout, Filters, or special error pages. Close this file by click-
ing the small x in the web.xml file tab.

JSP Editor
As you drop components on the page and configure them with the Properties
window, Creator generates JSP source code for your application. You can view
the JSP representation of a page by clicking the JSP button in the editing tool-
bar, as shown in Figure 2–14.

Normally, you will not need to edit this page directly, but studying it is a
good way to understand how Creator UI components work and how to man-
age their properties. You’ll see a close correspondence between the JSP tags
and the components’ properties as shown in the Properties window. If you do
edit the JSP source directly, you can easily return to the design view. Creator
always keeps the design view synchronized with the JSP source.

Tags in the JSP source use a JSF Expression Language (EL) to refer to meth-
ods and properties in the Java page bean. For example, the login button’s
action property is set to #{Page1.login_action}, which references method
login_action() in class Page1.java.

Creator also generates and maintains code for the “page bean,” the Java
backing code generated for each page. Let’s look at the Java source for
Page1.java now.

Figure 2–13 Editing file web.xml

2.2 Creator Views 37

Java Source Editor
Click the Design button and return to the Page1 design view. As you build your
application, not only does Creator generate JSP source that defines and config-
ures your component, but it also maintains the page bean. For example, Cre-
ator makes it easy for you to code event handlers (methods that perform
customized tasks when the user selects an option from a drop down list or
clicks a button). Double-click button Login in the design view. Creator gener-
ates a default event handler for this button and puts the cursor at the method in
the Java source editor. If this method was previously generated (as it was here),
Creator brings up the editor and puts the cursor at the method, as shown in
Figure 2–15. Here you see method login_action() in file Page1.java.

You can always bring up a page’s Java code by selecting the Java button in
the editing toolbar. This Java file is a bean (conforming to a JavaBeans struc-
ture) and its properties consist of the components you place on the page. Each

Figure 2–14 Page1.jsp XML Editor

JSP
button

Creator
UI

Components

38 Chapter 2 Creator Basics

component corresponds to a private variable and has a getter and setter. This
allows the JSF EL expression to access properties of the page bean.

All of Creator’s editors are based on NetBeans. The Editor Module is a full-
featured source editor and provides code completion (we show an example
shortly), a set of abbreviations, and fast import with <Alt-Shift-I>. The editor
also has several useful commands: Reformat Code (handy when pasting code
from an external source), Fix Imports (adds needed import statements as well
as removes unused ones), and Show Javadoc (displays documentation for
classes and methods). There are more selections in the context menu (right-
click inside the editor to see the menu). Sections of the Creator-generated code
are folded by default to help keep the editing pane uncluttered. You can unfold
(select ‘+’) or fold (select ‘-’) sections as you work with the source code.

To see the set of abbreviations for the Java editor, select Tools > Options from
the main menu bar. The Options dialog pops up. Under Options, select Editing
> Editor Settings > Java Editor. On the right side of the display, click the small

Figure 2–15 Page1.java in Java source editor

Java
Button

Login
Button

Reset
Button
Event

Handler

Event
Handler

Code
Folding
Handle

2.2 Creator Views 39

editing box next to Abbreviations. Creator pops up the window shown in
Figure 2–16.

The window lists the abbreviations in effect for your Java editor. (You can
edit, add, or remove any item.) For example, to place a for loop in your Java
source file, type the sequence fora (for array) followed by <Space>. The editor
generates

and places the cursor in front of .length so that you can add an array name.
(.length refers to the length of the array object. This code snippet lets you eas-
ily loop through the elements of the array.)

The Java source editor also helps you with Java syntax and code completion.
All Java keywords are bold, and variables and literal Strings have unique col-
ors.

for (int i = 0; i < .length; i++) {
}

Figure 2–16 Java source editor list of abbreviations

40 Chapter 2 Creator Basics

When you add statements to your Java source code, the editor dynamically
marks syntax errors (in red, of course). The editor also pops up windows to
help with code completion and package location for classes you need to refer-
ence (press <Ctrl-Space> to activate the code completion window). If available,
code completion includes Javadoc help. For example, Figure 2–17 shows the
code completion mechanism as you highlight method equals() and press
<Ctrl-Space>.

When you use the down-arrow to select the second method, equalsIgnore-
Case(), the help mechanism displays its Javadoc documentation. (To retrieve
Javadoc documentation on any class in your source file, select it and press
<Ctrl-Shift-Space>.) The Java Source editor is discussed in more detail in Chap-
ter 4 (see “Using the Java Source Editor” on page 136).

When the Java source editor is active, Creator also activates the Navigator
window, as shown in Figure 2–18. The Navigator window lets you go to a
method or field within the Java source editor by clicking its name in the win-
dow. In Figure 2–18, the cursor hovers over method destroy(), displaying
help in a tooltip.

Figure 2–17 Java source editor code completion

2.2 Creator Views 41

Code Clips Palette
When the Java Source editor is displayed, Creator replaces the Components
palette with the Code Clips palette, as shown in Figure 2–19. Here we show
several sections, including the code clips for Application Data. Highlight clip
Store Value in Session in this section. If you hold the cursor over the clip name,
Creator displays a snippet window. You can drag and drop the clip directly
into your Java source file.

To view or edit a clip, select it, right-click, and choose Edit Code Clip.
Figure 2–20 shows the Store Value in Session code clip.

The Code Clips palette is divided into categories to show sample code for
different programming tasks. For example, if you click Application Data, you’ll
see a listing of clips that let you access application data from different scopes in
your web application.

Figure 2–18 Navigator view and help for method destroy() displayed

42 Chapter 2 Creator Basics

Figure 2–19 Java Clips Palette

Figure 2–20 Code Clips Editor

2.2 Creator Views 43

Page Navigation Editor
Return to the Java Source window and examine method login_action().
You’ll see that login_action() returns one of two Strings (either "loginFail"
or "loginSuccess") to the action event handler. The action event handler then
passes the String on to the navigation handler to determine page flow. Let’s
look at the Page Navigation editor now.

1. From the top of the Java source window, select the Design button. This
returns you to the design canvas for this page.

2. Now right-click in the design canvas and select Page Navigation from the
context menu. Creator brings up the Page Navigation editor for project
Login1, as shown in Figure 2–21.

There are three pages in this project. The Page Navigation editor displays
each page and indicates page flow logic with labeled arrows. The two labels
originating from page Page1.jsp correspond to the return Strings in action
method login_action().

Chapter 5 shows you how to specify navigation in your applications (see
“Page Navigation” on page 188). The Page Navigation editor is also a handy
way to bring up any of the project’s pages: just double-click inside the page.
Once you’ve visited the Page Navigation editor, Creator displays a file tab
called Page Navigation so you can easily return to it.

Figure 2–21 Page navigation editor for project Login1

44 Chapter 2 Creator Basics

Before we explore our project any further, let’s have you deploy and run the
application. From the menu bar, select Run > Run Main Project. (Or, click the
green Run arrow on the icon toolbar, which also builds and runs your project.)

Output Window
Figure 2–22 shows the output window after building and deploying project
Login1. Creator uses the Ant build tool to control project builds. This Ant build
process requires compiling Java source files and assembling resources used by
the project into an archive file called a WAR (Web Archive) file. Ant reads its
instructions from a Creator-generated XML configuration file, called
build.xml, in the project’s directory structure.

If problems occur during the build process, Creator displays messages in the
Output window. A compilation error with the Java source is the type of error
that causes the build to fail. When a build succeeds (the window shows BUILD
SUCCESSFUL, as you see Figure 2–22), Creator tells the application server to
deploy the application. If the application server is not running, Creator starts it
for you. If errors occur in this step, messages appear in the Outline window
from the application server.

Finally, it’s possible that the deployment is successful but a runtime error
occurs. In this situation, the system throws an exception and displays a stack
trace on the browser’s web page. Likely sources for these errors are problems
with JSF tags on the JSP page, resources that are not available for the runtime
class loader, or objects that have not been properly initialized.

Figure 2–22 Output window after building and deploying project Login1

2.2 Creator Views 45

When the build/deployment process is complete, Creator brings up your
browser with the correct URL. (Here the status window displays “Browsing:
http://localhost:28080/Login1/.”) To run project Login1 with the Sun
bundled Application Server, Creator generates this web address.

You use localhost if you’re running the application server on your own
machine; otherwise, use the Internet address or host name where the server is
running. The port number 28080 is unique to Sun’s bundled J2EE application
server. Other servers will use a different port number here.

Note that the Context Root is /Login1 for this application. The application
server builds a directory structure for each deployed application; the context
root is the “base address” for all the resources that your application uses.

Figure 2–23 shows the Login1 project deployed and running in a browser.
The Password field’s tooltip is displayed. Both the User Name and Password
input fields have asterisks, indicating required input. Type in some values for
User Name and Password. If you leave the User Name field empty or type less
than 3 characters or more than 10, you’ll get a validation error. (The minimum
and maximum number of characters only apply if you added a length validator
earlier.) The correct User Name and Password is “rave4u” for both fields.

If you supply the correct values and click the Login button, the program dis-
plays page LoginGood.jsp. Incorrect values display LoginBad.jsp.

http://localhost:28080/Login1/

Figure 2–23 Project Login1 running in a browser

46 Chapter 2 Creator Basics

It’s time now to explore the Servers window, located in the upper-left por-
tion of your Creator display. Click the tab labeled Servers to see this window.

Servers
Figure 2–24 shows the Servers window after you’ve deployed project Login1.
Various categories of servers are listed here, including Data Sources, Enterprise
JavaBeans, Web Services, Deployment Server, Remote Deployment Servers,
and Bundled Database Server.

The Data Sources node is a JDBC database connection. Creator bundles a
database server and the Data Sources node connects to the bundled database
by default. You can configure a different database. Creator comes configured
with several sample databases, which are visible if you expand the Data
Sources node.

Figure 2–24 Servers window

Deployed project Login1

2.2 Creator Views 47

Creator Tip

The Database Server must be running to inspect the sample database tables.
If the Bundled Database Server is not running, right-click node Bundled
Database Server and select Start Bundled Database.

Let’s expand the Travel > Tables node and view the database tables. As you
select different tables, Creator displays their properties in the Properties win-
dow. Expand a table further to examine its database table field names, as
shown in Figure 2–25. Here, we expand table PERSON, displaying field names
PERSONID, NAME, JOBTITLE, and FREQUENTFLYER.

When you double-click a table name, Creator displays the data in the editor
pane with a default query, as shown in Figure 2–26. You can close the table
view by clicking the small x on the Query 1 tab. We discuss creating web appli-
cations that access databases in Chapter 9 (see “Accessing Databases” on
page 374).

The second resource in the Servers window is the Enterprise JavaBeans
node. Creator has a few sample EJBs deployed on the bundled Application
Server, which you can access within your projects. Expand node Enterprise Jav-
aBeans > Travel Center > TravelEJB, as shown in Figure 2–27. The TravelEJB
provides some of the same data as the Travel database. With Creator, you can
bind data to components exactly the same with EJBs as you can with data
source tables. We show you how to use EJBs in Chapter 11.

Figure 2–25 Inspecting the Travel Database tables (Person)

48 Chapter 2 Creator Basics

Another server resource is Web Services, which provides access to remote
APIs from Creator applications. This requires the cooperation of several Java
technologies, which we discussed in Chapter 1. The Creator installation

Figure 2–26 Display data from the Person table

Figure 2–27 EJB and Web Services resources shown in the Servers window

2.2 Creator Views 49

includes a client to access the Google Web Services. In Chapter 10 we show you
how to create an application with the Google web service API. The Google
Search web service methods are shown in Figure 2–27.

The bundled Deployment Server allows you to deploy and run Creator
applications on your machine. The Deployed Components node shows you the
currently deployed components (including the Login1 application you just
deployed). From the Deployment Server node, you can start and stop the
server, access the Administrative Console, or view the server’s log (right-click
Deployment Server to view the context menu with these options).

Creator Tip

The application server must be running for access to the administration
console. Use user name admin and password adminadmin.

Debugging Windows
Creator has a debugger that lets you perform typical debugging tasks, such as
setting breakpoints, tracing the call stack, tracking local variables, and setting
watches. Use the View > Debugging menu to choose which debugging win-
dows to enable, as shown in Figure 2–28.

To run your application in “debug mode,” click on Run > Debug Main
Project from the menu bar. The application server has to stop and restart if it’s
not already in debug mode. In Chapter 14 we walk you through the debugger
options, setting breakpoints, stepping through code, and other debugging
activities.

Figure 2–28 View > Debugging Menu Choices

50 Chapter 2 Creator Basics

Creator Help System
The Creator Help System is probably the most useful window for readers new
to Creator. This help system includes a Dynamic Help display, search capabil-
ity, contents, and an index. The easiest way to access the help system is to select
Help > Dynamic Help from the main menu. The selections displayed are con-
text sensitive.

As an example, in the Page1 design view, select one of the Message compo-
nents and choose Help > Dynamic Help. Creator displays a help window with
topics relating to the message component as shown in Figure 2–29.

When you double-click a selection, Creator displays the help information (see
Figure 2–30).

Figure 2–29 Dynamic Help window

2.3 Sample Application 51

2.3 Sample Application

Now that you’re comfortable with Creator, let’s create a simple web applica-
tion. Even though this application is simplistic, it shows some of the power in
Creator. Figure 2–31 provides a preview of this web application.

Create a Project
Close project Login1 if it’s open.

1. From the Projects window, right-click the project node Login1 and select
Close Project from the context menu.

2. From Creator’s Welcome Page, select Create New Project. From the New
Project dialog, under Categories select Web and under Projects select JSF
Web Application. Click Next.

Figure 2–30 Creator Help system

52 Chapter 2 Creator Basics

3. In the New Web Application dialog, specify Echo for Project Name and click
Finish.

After creating the project, Creator comes up in the design view of the editor
pane. You can now set the title.

4. Select Title in the Properties window and type in the text Echo. Finish by
pressing <Enter>.

Add Components to the Page
Creator makes the Components palette visible after you create a project. Using
the design editor, you’ll add three components to the page: a label, a text field,
and a static text component. Figure 2–32 shows the design view with all the
components added to the page.

1. From the Basic Components palette, select Label and drag it over to the
design canvas. Drop it on the page, near the top on the left side.

2. The label remains selected after you drop it on the page. Supply the text
Type in some text. You may use <i> for formatting. Finish by pressing
<Enter>. Creator sets the text property to this text (verify this in the Proper-
ties view) and displays the text on the page. The default font setting (prop-
erty labelLevel) for a label’s text is Medium(2), which can be changed in
the Properties window.

Figure 2–31 Web application Echo running in a browser

2.3 Sample Application 53

3. From the Basic Components palette, select component Text Field and place it
on the design canvas underneath the label you just added.

4. Make sure the text field is selected. In the Properties window under Behav-
ior, change its toolTip property to The text you enter here will be echoed
below. Finish with <Enter>. This will appear as a tooltip when the user hov-
ers the mouse over the text field in the browser.

5. From the Basic Components palette, select Static Text component and place
it under the text field. Resize it so that it is approximately 11 grids wide, as
shown in Figure 2–32.

6. Select the static text component. In the Properties window under Data,
uncheck property escape. This allows HTML formatting tags to pass through
unaltered to the browser.

You’ve finished adding the components. Now you will use property binding
to bind the text field component text property to the static text component
text property. Here’s how.

1. Select the static text component (staticText1), right-click, and choose
Property Bindings from the context menu. Creator brings up the Property
Bindings dialog as shown in Figure 2–33.

2. Under Select bindable property, choose text Object.
3. Under Select binding target, expand Page1 > page1 > html1 > body1 > form1 by

clicking the ‘+’ at each level.
4. Select component textField1 (the text field component you added). Expand

the component by clicking ‘+’ on textField1 and select text Object. (The
properties are listed in alphabetical order, so text is near the end.)

Figure 2–32 Project Echo in the design view

Label

Text Field

Static Text

54 Chapter 2 Creator Basics

5. Click the Apply button. (If you don’t click the Apply button, Creator doesn’t
set the property binding.) Under Current binding for text property, you
should see the following JSF EL expression

6. Click Close to finish

So, what did all this accomplish? You’ve just configured property binding on
the static text component (id staticText1). This means JSF gets the text prop-
erty (the text that is displayed on the page) for staticText1 from the text field’s
text property (component textField1). This, in turn, means that whatever
you type in for input will be echoed in the static text’s display when you press
<Enter>. Note that Creator and JSF made all this possible without you writing
any Java code!

Is a button necessary to submit the page? As it turns out, when you hit
<Enter> after entering text in the text field, the default action is to submit the

#{Page1.textField1.text}

Figure 2–33 Property Bindings dialog

2.4 Key Point Summary 55

page. This puts the JSF life cycle events in motion and the page is rendered
with the new text displayed in the static text component. We discuss the JSF life
cycle events in detail in Chapter 6 (see “The Creator-JSF Life Cycle” on
page 259). Because you unchecked the escape property, any formatting tags
are unaltered by the component and passed directly through to the browser.

Deploy and Run
You’ve finished creating the application. Now it’s time to build, deploy, and
run it. From the menu bar, select Run > Run Main Project (or select the Run
Main Project green arrow icon on the toolbar). Creator builds the application,
deploys it, and brings up a browser with the Echo web application running.

Figure 2–31 on page 52 shows what the browser window displays after you
type Hello, <i>World Wide Web inside the text field followed by <Enter>.
Note that bold tags mark the word Hello and italic marks the phrase World
Wide Web. The text field tooltip appears as the user hovers the mouse over the
text field component.

This completes our tour of Creator. The next chapter provides a detailed
description of the Creator UI components, validators, and converters.

2.4 Key Point Summary

• Creator has multiple windows to give you different views of the project that
you’re working on. The windows can be sized, docked and undocked, or
hidden.

• From the main menu, select View and the desired window name to enable
viewing.

• Use the Welcome Window to select a Project to open or to create a new
project.

• The design canvas allows you to manipulate components on a page and
control their size and placement. Grid lines provide an easy way to align
components.

• Use the Components palette to drag and drop a component on the design
canvas.

• Use the Converters and Validators sections in the palette to select data
converters and input validators for your project.

• The Properties window allows you to inspect and edit a component’s
properties. Each component type displays a different list of properties.

• A component’s text attribute typically contains text that is rendered on the
page (such as labels on buttons, input text fields, and static text fields). Use
the toolTip property to create a tooltip for the component and the style

56 Chapter 2 Creator Basics

property to change font characteristics. Property styleClass lets you apply
previously defined style definitions.

• You can apply Property Binding and “connect” the value of one component
to another or to a data object in request, session, or application scope.

• The Outline window shows all of the elements on a page, including
nonvisual components such as converters, validators, or EJB or Web Services
clients.

• The Projects view gives you a logical view of your project, including Web
Pages, Source Packages, Libraries, the pre-configured beans, and Page
Navigation.

• The Files view lets you see all the files in your project.
• The JSP Source editor displays a page’s source. Most of the page includes JSF

tags for components and their properties. As you make changes to your
pages in the design canvas, Creator synchronizes the JSP and Java source.

• Creator’s editors are based on NetBeans and reflect a rich functionality for
editing Java source, JSP source, and XML files.

• The Java Source editor displays the Java source for each “page bean,” a
JavaBeans component that manipulates each page’s elements. You typically
place event handler code or custom initialization code in the Java page bean.

• The Java Source editor includes a code completion mechanism that provides
pop-up windows with possible method names (use <Ctrl-Space> to invoke)
and Javadoc documentation for classes and objects in your program (use
<Ctrl-Shift-Space> to invoke). The Java editor also includes a dynamic syntax
analyzer to warn you about compilation errors before you compile.

• The Code Clips palette provides sample Java code to accomplish common
programming tasks. The Clips are organized into categories based on
function. You can select a clip and drop the code into your Java source.

• The Page Navigation editor lets you specify page flow. This editor generates
a navigation configuration file, navigation.xml.

• When you build your project, the Output window provides diagnostic
feedback and completion status.

• The Servers window displays Data Sources, Enterprise JavaBeans, Web
Services, Deployment Server, and Database Server nodes.

• The Deployment Server node lets you start and stop the application server
and undeploy running web applications.

• You can view database table data by expanding the Data Sources node and
selecting individual tables. Creator displays the data in the editor pane
when you right-click a table name and select View Data.

• The Debugger Window displays several views that are helpful when you are
debugging your project. You can set breakpoints and monitor the call stack,
local variables, and watches with the debugger.

• The Creator Help system provides a table of contents, index, and search
mechanism to help you use Creator effectively. The help system is dynamic

2.4 Key Point Summary 57

and displays help information based on how you’re currently interacting
with Creator.

CREATOR
COMPONENTS
Topics in This Chapter

• JSF Overview
• Component Categories
• Basic Components
• Layout Components
• Composite Components
• Converters and Validators
• Component Library Manager
• Importing a Component Library

Chapter
un Java Studio Creator’s design palette presents a wide variety of com-
ponents to choose from. These components include buttons, text fields,
checkboxes, listboxes, radio buttons, hyperlinks, images, tables, tree
nodes, grid panels, and so on—in short, anything you need to design a

web page. You can select a component, drag it to the design canvas, and drop it
at the location of your choice. In addition, you can choose validator compo-
nents to verify user input and converter components for data conversions. Cre-
ator maintains a design canvas with your web page layout and generates Java
code for you, along with JSP and XML statements to configure and deploy your
application.

In this chapter we present a catalog of Creator User Interface (UI) compo-
nents, validators, and converters. We also provide references to examples in
this book where they are used. The examples will help you understand how to
use the Creator UI components in your projects.

3.1 JSF Overview

The Creator UI components work within a JSF web application environment.
With the JSF framework, these components let you handle events, validate and
convert user input, define page navigation, and support internationalization.
JSF also connects components to server side objects. Let’s start with the archi-
tecture of JSF to give you the “big picture” of what’s going on.

S

59

60 Chapter 3 Creator Components
JSF Architecture
Figure 3–1 shows the architecture used with JSF.

Your browser interacts with the web container through one or more JSP
pages (Page1.jsp and Page2.jsp). These are JSP pages containing JSF tags. The
supporting page bean (Page1.java) manages the objects referenced by the JSP
pages. Note that the JSP pages handle HTTP requests when a page is accessed,
whereas the Java files render HTML for the HTTP response.

The JSP Page
Suppose a web page has a static text component (staticText1) that displays
“In what year were you born?”, a button to click (button1), and a text field
(textField1) for the year (restricted to the range 1900 to 1999). When these
components are moved from the palette to the design canvas, Creator gener-
ates the component tags in the JSP file. Each Creator UI component also
becomes a property in the generated Java page bean. To understand how this
all works, let’s start with how the static text component is defined in Page1.jsp.

<ui:staticText id="staticText1"
 binding="#{Page1.staticText1}"
 style="font-size: 18pt; left: 96px; top: 96px;

position: absolute"
 text="In what year were you born?"/>

Figure 3–1 JSF architecture

Browser

Web Container

Page1.jsp

Page2.jsp

Page1.java

HTTP Request
Access Page

HTTP Response
Render HTML

3.1 JSF Overview 61
The JSP file is expressed in XML. Creator generates this file for you and
keeps it synchronized with your page design. As you modify components with
the Properties window, Creator updates the JSP code as well as the Java code as
necessary. Creator generates the required tags for your components in the JSP
page. You can always access the JSP page by selecting the JSP label in the edit-
ing toolbar above the design canvas.

In this example, the static text component displays “In what year were you
born” on the page. Its id property (unique page identification) is staticText1
and its binding property (the corresponding property in the Page1 page bean)
is also staticText1. The style property specifies its location on the page with
the left and top settings in pixels. This property also makes the text appear in
18-point font size.

JSF Expression Language (EL)
JSF uses a specialized syntax to access JavaBeans components with its tags. For
example, the notation

references the staticText1 property in JavaBeans component Page1. In the
JSP file (Page1.jsp), the generated component tags reference properties in the
supporting page bean, as follows.

Now let’s look at the generated tags for a button component in Page1.jsp.

Elements binding and action are UI component tag library properties whose
values are set with JSF EL. Element binding is the button component’s page
bean reference, and action references a special action event method
button1_action(), also in Page1. Here, method button1_action() is called
when the users clicks the button controlled by component button1.

#{Page1.staticText1}

binding="#{Page1.staticText1}"

<ui:button id="button1"
 binding="#{Page1.button1}"
 action="#{Page1.button1_action}"
 style="left: 72px; top: 168px; position: absolute"
 text="Click for your age"/>

62 Chapter 3 Creator Components
Converters and Validators
What about the text field component? Recall that this component must read a
year (in the range 1900 to 1999) from the user. Here’s how the input text field
component is configured in Page1.jsp.

Text field components display and accept text, but textField1 must work with
integer numbers in this example. Consequently, a JSF conversion component
(integerConverter1) is necessary to convert String input to integer values.
Input is restricted to a specific range of numbers (1900 to 1999), so we’ll need a
JSF validator (longRangeValidator1) for the input, too.

In both cases, JSF EL references the components that perform the conversion
and validation.

Event Handling
JSF uses a delegation event model to handle events generated by user actions
(clicking a button, changing a selection in a drop down list, pressing <Enter>
after editing a text field, for example). It’s helpful to have an understanding of
the pieces that work together to make responding to events a well-behaved sys-
tem.

The Event Source is a component that is capable of generating an event. Dif-
ferent components generate different event types. Button components and
hyperlink components (for example) generate action events. Drop down list
components generate value change events.

Event Objects are generated by components (the Event Source). An Event
Object is basically a message that is passed from the Event Source to an Event
Listener. The Event Object contains information about the Event.

Event Listeners are specialized objects created by JSF that know what to do
when an event is generated. Different types of listeners can respond to differ-
ent types of events. For example, ActionEventListeners respond to action
events and ValueChangeListeners respond to value change events.

Using the “Publish-Subscribe” design pattern, Event Listener Registration
keeps track of which objects “care about” an event occurring. Objects that

<ui:textfield id="textField1"
 binding="#{Page1.textField1}"
 converter="#{Page1.integerConverter1}"
 style="left: 192px; top: 168px; position: absolute"
 validator="#{Page1.longRangeValidator1.validate}"/>

converter="#{Page1.integerConverter1}"
validator="#{Page1.longRangeValidator1.validate}"

3.1 JSF Overview 63
“care” are those that register themselves through the Event Listener Registra-
tion. After registering with the Event Source, Event Listeners are notified when
an action occurs. Notification means their special event method is called with
the event object as a parameter. Fortunately, Creator generates all the method
stubs, event listeners, and event registration for you. Here is an example of the
default value change method that JSF calls when a value change event is gener-
ated from a drop down list component.

Web application developers provide the specialized event-processing code
(whatever actions your web application must perform in responding to the
value change event).

Action events are common with most applications and Creator generates the
action event handlers for you. Action events can be used to write processing
code in response to a button click. In addition, action events return String val-
ues to a navigation handler, which allow you to invoke a different web page.
Here is the default event handler Creator generates for a button (with property
id set to button1).

Note that action events implement navigation by returning String values. A
null string means you stay on the same page. A different String ("Button-
Click", for example) instructs the navigation handler to go to a different page.

Java Page Bean
Now let’s show you the Java page bean file, Page1.java. Creator generates Java
code in the Java page bean for the components you select from the design pal-
ette. Each component becomes a property of the supporting page bean, and the
component instance is bound to that property.

public void dropDown1_processValueChange(
ValueChangeEvent event) {

// TODO: Replace with your code
. . .

}

public String button1_action() {
// TODO: Process the button click action.
// Return value is a navigation
// case name where null will return to the same page.
. . .
return null;

}

64 Chapter 3 Creator Components
Here’s the Page1.java file for our simple web application with two text fields
and a button. Again, Creator generates this file for you.

Note that Page1 extends AbstractPageBean. The private fields are generated
for each UI component you place on the page and the getter and setter methods
make them accessible as properties. Here are the getters and setters for the
static text component.

In our example a public init() method calls a private _init() method in
the Java page bean to set the minimum and maximum ranges for the JSF vali-
dator component (longRangeValidator1). When you set these values for the
validator by using Creator’s Properties window, Creator generates the state-

public class Page1 extends AbstractPageBean {

private Button button1 = new Button();
private TextField textField1 = new TextField();
private TextField textField2 = new TextField();
private LongRangeValidator longRangeValidator1 =

new LongRangeValidator();
private IntegerConverter integerConverter1 =

new IntegerConverter();
// getters and setters for components
. . .

public Page1() {
}

// Creator-generated life cycle code omitted . . .
public String button1_action() {

// TODO: Process the button click action.
// Return value is a navigation
// case name where null will return to the same page.
return null;

}
}

public TextField getTextField1() {
return textField1;

}

public void setTextField1(TextField tf) {
this.textField1 = tf;

}

3.2 Components 65
ments in the private _init() method to configure the validator for you. This is
done before the managed components are initialized.

3.2 Components

Creator allows you to select UI components from a design palette for your
application. These components are implemented with a JSP custom tag library
for rendering components in HTML.

When you select a component and drag it to the design canvas, Creator gen-
erates code in the page’s JSP source as well as support code in the associated
Java page bean. Furthermore, Creator displays each component in the Outline
view, including any support components that may not be visible. Once you
place a component on the design canvas, you can modify its properties and
behavior through the Properties window, through the JSP code, or through
modifications to the Java page bean. In general, it’s preferable to edit properties
of a component with Creator’s Properties window. However, writing code to
handle action and value change events must be done in the Java page bean file.

Components Palette
The Components Palette is divided into three groups: Basic, Layout, and Com-
posite. Each component includes the component name and an icon that you

private void _init() throws Exception {
longRangeValidator1.setMaximum(1999L);
longRangeValidator1.setMinimum(1900L);

}

public void init() {
super.init();
try {

_init();
}
catch (Exception e) {

log("Page1 Initialization Failure", e);
throw e instanceof FacesException ?

(FacesException)e : new FacesException(e);
}
// Perform application initialization that must complete
// *after* managed components are initialized
// TODO - add your own initialization code here

}

66 Chapter 3 Creator Components
can drag and drop on the design canvas. Figure 3–2 shows you the component
groups and all of their components.

Creator Tip

The Components palette also includes the Standard Components, the JSF
Reference Implementation components bundled with the first version of
Creator. These are included for backward compatibility with imported
Creator1 projects only. For newly created projects, use the components in the
Basic, Layout, and Composite sections.

Component Properties
This chapter presents a catalog of Creator components so that you can easily
look up their behavior and use them in your applications. Many components
share common properties and code generation features, however. Let’s start
with the definitions of these properties so that you can see how they’re used.

Figure 3–2 Component palette

3.2 Components 67
text
The text property stores a component’s main textual characteristics. Its mean-
ing depends on the component. For example, text stores the text of a button
label, the display text of a static text component, or the input for a text field.
The text property can also store the text for a password field and hidden field
components.

The text property is a Java Object type. Creator allows you to bind a com-
ponent’s text property to a JavaBeans property, a data source, or even a local-
ized message in a properties file.

label
The label property is a text string that provides text labeling for a component
on a web page. Examples of components that have label properties are text
fields, checkboxes, radio buttons, and drop down lists.

The label property is a Java Object type. Creator allows you to bind a com-
ponent’s label property to a JavaBeans property, a data source, or a localized
message in a properties file.

toolTip
The toolTip property is a text string for a component’s tooltip.

style
The style property holds Cascading Style Sheet (CSS) strings for properties
such as font family, font size, and position parameters. These determine the
type of font used, its point size, and placement on the design canvas. Creator
provides a sophisticated CSS style editor that helps you configure a compo-
nent’s style property. (For a detailed discussion of the style editor, see “Using
the Style Editor” on page 282.)

styleClass
The styleClass property allows you to specify predefined CSS style classes.
You can place CSS style class definitions in the default style sheet,
stylesheet.css (found in the Projects window under Web Pages > resources).
We show you examples of property styleClass in Chapter 7 (see “Using Prop-
erty styleClass” on page 284).

id
The id property is a page-unique string that identifies a component on the web
page. Creator generates the component’s id for you, but you can use the Prop-
erties window to change it.

68 Chapter 3 Creator Components
Creator Tip

We recommend renaming the default id when you have components on the
page with event handling methods (action or value change methods).
Providing meaningful names for the id property makes Creator generate
methods with meaningful names. This makes your Java code easier to read.

rendered
The rendered boolean property controls whether a component will be ren-
dered during the Render Response Phase of the JSF life cycle.

visible
The visible boolean property controls whether a rendered component will be
visible on the page.

action
The action property is important for Action and Link components, such as
buttons and hyperlinks. This property references a method in the page bean
that returns a String for JSF’s navigation handler. Chapter 5 discusses page nav-
igation in detail. The application writer may provide application-specific state-
ments in the action method, process information to determine page flow, or
both. To generate an action event handler, double-click the component in the
design canvas. Creator brings up the Java source editor and puts the cursor at
the first line of the action event handler.

binding
Creator sets the binding property for all components you place on the page. A
binding property binds the component instance to a property in the page bean.
Since Creator maintains this property for you, there is no reason for you to
change it. For example, if you add a button component to a web application’s
initial page (Page1.jsp), the default binding property for the button compo-
nent is

This JSF EL expression references the button1 property of managed bean
Page1 and binds the component instance to the bean property. Now you can
write code in the Page1.java page bean to access the button component and
dynamically control its properties.

binding="#{Page1.button1}"

3.2 Components 69
JavaScript
JavaScript allows client side processing activated with mouse events (for exam-
ple, clicking a component, giving focus to a component, or moving the mouse
over a component). The browser executes the JavaScript on the client machine
without any server involvement. You can attach a mouse event to a component
by specifying a JavaScript element in the component’s Properties window for
that event. Not all Creator UI components detect the same mouse events.

For example, suppose you want to obtain a confirmation from the user
before activating a button’s Delete operation. In the design view, select the but-
ton. In the Properties view under JavaScript, specify the following JavaScript
for property onClick.

When the user clicks the button, a confirmation window appears, as shown
in Figure 3–3. If the user selects OK, the button’s action event handler method
is invoked. Otherwise, the button click is ignored.

Input Components
Components that collect input (text field, password field, text area, drop down
list, listbox, for example) share common properties to control and validate
input. Let’s look at some of these properties now.

validator
The validator property references a method that performs validation on its value.
JSF provides three standard validators: a length validator for strings, a long range
validator for integral types, and a double range validator for floating types. You can
also write your own custom validation method. See “Add a Validation Method”
on page 617 (Chapter 13).

return confirm('Are You Sure You Want To Delete?');

Figure 3–3 JavaScript confirmation dialog defined for property onClick

70 Chapter 3 Creator Components
converter
The converter property references a converter component that builds the correct
type of object. Once the conversion has taken place, you can retrieve the object by
casting it to the desired type.

maxlength
The maxlength property limits input to a specified number of characters. (This is
not the same as length validation.) Setting maxlength causes a component to stop
accepting input after the user has typed in the maximum characters allowed. No
error messages are produced.

required
The boolean required property specifies whether or not input is necessary for
the component. If the user leaves an input component’s field empty and
required is set, an error message is produced during the validation phase.

valueChangeListener
A value change event occurs when an input component’s selection changes or
its text changes. If you want to perform processing based on input change,
double-click the component in the design view. Creator generates a process-
ValueChange() event method for you in the Java page bean. You can add your
own processing code to this method.

Auto-Submit on Change
The Auto-Submit on Change feature submits the page for processing when an
input component generates a value change event. To enable Auto-Submit on
Change, select the component in the design canvas, right-click, and choose
Auto-Submit on Change. This sets the onChange property to the following Java-
Script element, shown here for a Text Area component.

The input component has id property textArea1. When the input value of the
text area changes, the page is submitted, allowing immediate processing
(instead of waiting for a button click or hyperlink selection).

Virtual Forms
Virtual Forms allow the application developer to build web pages that provide
more than one function (or use case). For example, a single web page might

common_timeoutSubmitForm(this.form, 'textArea1');

3.2 Components 71
allow a user to either login or create a new username. The login use case
requires a username and password before clicking the “Login” button. The cre-
ate new username use case requires additional fields (perhaps a new password
that must be entered twice, as well as a username). By grouping input compo-
nents into separate virtual forms, you avoid interference when a validator
requires input for a component that is not needed to fulfill another use case.
Here are several examples of virtual forms use shown in the text.

Book Examples

• “Configure Virtual Forms” on page 216 (Chapter 5). Uses virtual forms
allow a Reset button to clear input fields.

• “Virtual Forms” on page 418 and “Configure Virtual Forms” on page 422
(Chapter 9). Uses virtual forms to provide add, update, and cancel use cases
on the same page.

Data-Aware Components
Creator offers a selection of data-aware components that can bind a data pro-
vider to a database table, a web services method, an EJB method, or a Java-
Beans component. The table component is particularly suited for displaying
data, but you can also choose from among the drop down list, checkbox, list-
box, or radio button components.

Creator automatically supplies a converter for non-String data fields when
you bind to a data provider with known data types. If there are any conversion
errors, you will only see error messages if you have placed message compo-
nents on the page.

Creator Tip

We recommend placing a message group component on the page when you’re
using the data-aware components (see “Message Group” on page 89).

Data Providers
A data provider is an abstraction for a data source. Creator has data providers
for database tables, web services, EJBs, maps, arrays, and lists. Data providers
are useful because they offer a common interface for accessing different
sources of data.

When you drop a database table on a data-aware component, Creator con-
figures the appropriate data provider for you. Similarly, if you drop a web ser-
vices method or EJB method on a component, Creator configures a data
provider. You can also explicitly select data providers for arbitrary objects,
such as arrays or lists. Chapter 8 introduces data providers and Chapter 9 uses

72 Chapter 3 Creator Components
data providers with database accesses. Chapter 10 shows you data providers
with web services and Chapter 11 shows you data providers with EJB methods.

3.3 Basic Components

The following catalog of basic components describes each component and
gives you common usage scenarios. To show you how a basic component can
be useful in a Creator project, we also point you to relevant examples in other
chapters of this book. The basic components are listed alphabetically for easy
lookup.

Anchor
The anchor component helps position link targets within a page. Anchor com-
ponents are non-visual and often used with hyperlinks to scroll pages. By
default, an anchor is rendered in HTML as .

Figure 3–4 shows an anchor component dropped on the design canvas.

Suppose, for example, you place a hyperlink at the bottom of a page and
drop an anchor component called anchorTop at the top of the page. To jump to
the top of the page, set the url property of the hyperlink to the following.

It’s also possible to link to anchor components in other pages.

Book Examples

• “Add Components to the Page” on page 299 (Chapter 7). Uses anchor
components with hyperlinks to control page scrolling.

Button
The button component is an example of a “command component.” Buttons
perform an action when they are activated (clicked). This can happen during
server-side processing (a method that processes an action event) or with a nav-
igational action that determines page flow. The button component is one of the

/faces/Page1.jsp#anchorTop

Figure 3–4 Anchor component

3.3 Basic Components 73
most-often-used components in web design. By default, buttons are rendered
as HTML <input type=button> tags.

Figure 3–5 shows a button component and tooltip in a web page with a
browser. The message shown was set in the button’s toolTip property.

Buttons can be used for “simple” or dynamic navigation between web
pages. With simple navigation, a button’s action method returns a String that
matches a case label in the navigation rules generated for the application. We
show you how to create this type of navigation in “Add Page Navigation” on
page 195. Dynamic navigation is useful when you need to figure out the next
page based on some sort of processing. In this case, the action method returns
a String based on the processing. See “Create New Web Pages” on page 212 for
an example of dynamic navigation.

In Creator, you connect the a button click (an action event) to an event pro-
cessing method by double-clicking the button component in the Creator design
canvas. This brings up the matching button_action() method (where button
is the component’s id property) in the Java page bean so that you can add your
processing code.

The button’s text property is its label. You can bind this value to a property
or to a value in a properties file.

Book Examples

• “Add Button Components” on page 193 (Chapter 5). Uses a button to initiate
navigation.

• “Place Button, Label and Static Text Components” on page 256 (Chapter 6).
Uses a button to submit a page for processing.

Figure 3–5 Button component

74 Chapter 3 Creator Components
• “Add a Button Component” on page 454 (Chapter 10). Uses a button to
invoke an action event method.

• “Modify the Components for Localized Text” on page 599 (Chapter 13).
Configures a button for internationalization.

Calendar
The calendar component lets users enter dates on a page, either by typing in a
specific date or by selecting a date from a pop-up calendar. Figure 3–6 is an
example of a calendar component in the visual editor with a Enter Date label.

When you click the calendar icon, a pop-up window lets you select a date
from a drop down list of months and years. Otherwise, just type a specific date
into the component’s text field.

The calendar component automatically validates the input date. You control
the range by setting properties minDate and maxDate. The minimum date
defaults to the current date and the maximum defaults to today’s date four
years from now. Most applications will need to customize these values. Here is
an example that sets the minimum date to January 1, 1975 and the maximum to
December 31, 2020. You typically add this initialization code to the page bean’s
init() method.

// Set minimum date to January 1, 1975
// Method getTime() returns java.util.Date
calendar1.setMinDate(

new GregorianCalendar(1975, 0, 1).getTime());
// Set maximum date to December 31, 2020
calendar1.setMaxDate(

new GregorianCalendar(2020, 11, 31).getTime());

Figure 3–6 Calendar component

Calendar

Message

Button

3.3 Basic Components 75
Creator Tip

You cannot supply String values for these properties in the Properties
window, but you can provide property binding expressions (to objects of type
Date) or you can set the minimum and maximum values as shown in the
page bean. Use a message group or message component to display validation
error messages on the page.

The date format defaults to the default format for the locale, but you can use
the dateFormatPattern property to select different date format patterns.

Property selectDate holds the user-supplied date, which you can bind to
an object or a data provider. You can also right-click the calendar component
and select Edit Event Handler from the pop-up menu. The validate option
lets you insert Java code that validates user input, and the processVal-
ueChange option lets you insert Java code that executes when a component’s
value has changed.

Book Examples

• “Configure the Calendar Component” on page 357 (Chapter 8). Uses a
calendar component and shows you how to configure its settings.

Checkbox
The checkbox component uses a boolean on/off setting as a choice for a user.
Checkboxes are often used as standalone components (that is, not part of a
checkbox group) on a page. Figure 3–7 shows part of a page with a checkbox
component. Here we set the label property to the text string shown and the
selected property to true, which displays a check mark.

There are two important properties with checkboxes. The selected prop-
erty indicates whether or not a checkbox is selected and checked on the page.
The selectedValue property allows you to store and retrieve an arbitrary data
value associated with the checkbox. A check box is considered to be selected
when the value of the selected property is equal to the value of the selected-
Value property. You can bind the selected property of a checkbox to an object,
such as a JavaBeans property or a data source object.

Use method isChecked() to determine if the component is selected.

Figure 3–7 Checkbox component

76 Chapter 3 Creator Components
Book Examples

• “Configure Checkbox Components” on page 433 (Chapter 9). Uses
checkboxes in columns with table components.

• “Specify Property Bindings” on page 583 (Chapter 12). Uses standalone
checkbox components and binds them to SessionBean properties.

Checkbox Group
The checkbox group component groups a set of checkboxes. You can specify
their items with a dialog accessed from the Properties window or dynamically
fill them from a database or JavaBeans component. When you use a checkbox
group, users may select any number of checkbox options (including none
unless the required property is checked). Checkboxes are rendered as an
HTML <table> element with rows and columns. Figure 3–8 shows a checkbox
group component when you drop it on the design canvas.

A checkbox group component is appropriate when you want to give the
user a list of choices with the phrasing “please check all that apply.”1 The selec-
tion items may be hardcoded with the Properties window or generated
dynamically at run time. Creator automatically supplies a converter for non-
String data fields when you fill the list from a database source. The checkbox
group component also accepts data binding. The selected property of the
checkbox group returns an array of Objects consisting of the checked selec-
tions.

Adding a checkbox group component to your web page creates three ele-
ments: the checkbox group component, an embedded selection list, and a
“default items” list used for initializing the selection choices. To specify the
choices, select checkboxGroup1DefaultOptions in the Outline view. In the
Properties window, click the editing box opposite property options. Creator
pops-up a dialog so that you can add, edit, or remove items. (This is the same

1. If you’d like to limit the choice to only one from a list, use the radio button
group component (see “Radio Button Group” on page 93).

Figure 3–8 Checkbox group component

3.3 Basic Components 77
dialog used to specify Display/Value pairs for the Listbox component. See
Figure 3–20 on page 87.)

Example
Figure 3–9 shows a checkbox group component on a web page. The default lay-
out for a checkbox group is a single vertical column, so we set the columns
property to the number of checkboxes (4) to get a horizontal layout. Note that a
user may select more than one choice (including none or all).

Here is the Java code to display choices selected from the checkbox group
(whose id property is checkboxGroup1) in a static text component. Note that
we assign the selected values to a sides String array. Casting is necessary since
the getSelected() method returns an Object array. The for loop concate-
nates selected values with space delimiters. This code is placed in the button
event handler method.

Drop Down List
The drop down list component is an extremely versatile component, rendered
as an HTML <select> element (a drop down list). A drop down list allows a
user to select one item from a set of items, as shown in Figure 3–10.

The selection items may be hardcoded with a dialog accessed from the Prop-
erties window or generated dynamically at run time. Creator automatically
supplies a converter for non-String data fields when you fill the list from a

 public String button1_action() {
 String choices = "";
 String[] sides = (String[])checkboxGroup1.getSelected();
 for (int i = 0; i < sides.length; i++) {

 choices = choices + " " + sides[i];
 }
 staticText1.setValue(choices);
 return null;

}

Figure 3–9 Checkbox group component

78 Chapter 3 Creator Components
database source. This component also accepts data binding. The selected
property determines the value of the currently selected item.

When a drop down list component is used with a data provider that wrap-
pers a database data source, you typically bind the database table’s primary
key field with the Value field. You select an appropriate field from the data
table for the dropdown component’s Display field. Figure 3–11 shows the Bind
to Data dialog that lets you configure the drop down list and the data provider.
Here the Value field is the RECORDINGID field (the primary key) and the Dis-
play field is RECORDINGTITLE. Thus, the dropdown component’s getSe-
lected() method will return the primary key. This is useful for setting SQL
query parameters from a drop down list component’s selection value (see
Chapter 9, “Connect Dropdown List to Query” on page 408).

The nonvisual component dropDown1DefaultOptions supplies text for the
selections. To input text items, select the dropDown1DefaultOptions element in

Figure 3–10 Checkbox group component

Figure 3–11 Bind to Data dialog with a drop down list

3.3 Basic Components 79
the Outline view and click the options property in the Properties window. A
dialog pops up that lets you type in Display/Value pairs for each selection item
(see Figure 3–20 on page 87).

When the user selects a different item from a drop down list component, the
system generates a value change event. To submit the page for immediate pro-
cessing on a value change event, set the Auto-Submit on Change feature. To
provide event handling code for a value change event, double-click the drop
down list component on the design canvas. Creator generates a default pro-
cessValueChange() method and brings up the Java source editor for you.

Book Examples

• “Add a Drop Down List” on page 202 (Chapter 5). Uses a drop down list
with navigation.

• “Add a Data Source” on page 402 (Chapter 9). Fills the selection list from a
database data source.

• “Specify Property Bindings” on page 583 (Chapter 12). Uses a drop down
list to bind a SessionBean property.

• “Add Components to Page1” on page 607 (Chapter 13). Uses a drop down
list to specify locale.

File Upload
The file upload component lets users locate a file on their system and upload it
to a server. You can upload text files, images, and other types of data files (.zip
or .jar files, even executables). This component is similar to an HTML <input
type="file"> element. Figure 3–12 shows a file upload component on the
design canvas.

For security reasons, file upload components are not supported in portlet
projects. You can upload files up to one megabyte in size by default. To upload
larger files, modify the maxsize parameter for the UploadFilter entry in the
web application’s web.xml file.

The read-only uploadedFile property provides a UploadedFile interface
with methods that let you read the file and write it to disk. There are also meth-
ods to access the file’s name, size in bytes, and type (text/plain or image/
jpeg).

Figure 3–12 File upload component

80 Chapter 3 Creator Components
Creator Tip

Be careful with file names that have spaces, they are not supported. It is also
not possible to nest a file upload component within a tab set component.

Example
Figure 3–13 shows you a web page with a file upload component. Note that the
file upload component has a built-in Browse button to let users locate a file on
their system. When the “Get File Now” button is clicked, the file contents are
written to the server and displayed in the scrollable text area on the page. A
message group component displays status.

Figure 3–13 File upload component

3.3 Basic Components 81
Here is the Java code for the button handler that uploads the file, displays
the file in the text area, and writes the data to the server.

Hidden Field
The hidden field component is a non-visual form field that is not displayed on
the design canvas or in a browser window. The hidden field component is gen-
erated as an HTML <input type="hidden"> element. Hidden field compo-
nents do not appear in the design view, but you can access their properties
from the Outline window.

Web developers typically use hidden field components to store data used by
Javascript on the page. Hidden field components are also handy for storing
page data, as an alternative to saving and restoring in session scope. The text
property of a hidden field component holds the data that is sent to the server.

Note that anyone can examine an HTML documentʹs source to locate a “hid-
den” field. Hidden fields, like password fields, are extended from the same
component classes as text field and therefore have the same configurable prop-
erties.

public String filer_action() {
// read file from client
UploadedFile uploadedFile =

(UploadedFile)fileUpload1.getUploadedFile();
String uploadedFileName = uploadedFile.getOriginalName();
String FileName = uploadedFileName.substring

(uploadedFileName.lastIndexOf(File.separatorChar) + 1);
info("Uploaded file from " + uploadedFileName +

", size is " + uploadedFile.getSize() + " bytes");
// write data to text area component
textArea1.setText(uploadedFile.getAsString());
// save file contents to server on C:
try {

File file = new File("C:" + File.separatorChar + "Saved" +
File.separatorChar + FileName);

info("Saved file to " + file) ;
uploadedFile.write(file);

} catch (Exception ex) {
error("Cannot upload file: " + FileName);

}
return null;

}

82 Chapter 3 Creator Components
Hyperlink
Hyperlink components are action components that provide navigation to other
pages as well as to a location on a page (with the anchor component). A hyper-
link component is also useful when a page’s URL information is data driven
and no processing is necessary (you set property url). Figure 3–14 shows a
hyperlink for a home page in a browser window.

To add event handling code, select the hyperlink component in the design
canvas and double-click. This brings up the hyperlink1_action() method
(where hyperlink1 is the component’s id property) in the Java source editor.

Creator Tip

If you want the hyperlink to show an image rather than text, use the image
hyperlink component (see “Image Hyperlink” on page 84).

Book Examples

• “Add Components to Page LoginBad” on page 213 (Chapter 5). Uses a
hyperlink component with navigation.

• “Using Hyperlink with a Nested Static Text” on page 461 (Chapter 10). Uses
a hyperlink and a nested static text component (for formatting) to provide a
link to URLs returned from a Google web services search.

• “Modify the Components for Localized Text” on page 599 (Chapter 13).
Configures a hyperlink component for localization.

Figure 3–14 Hyperlink component

3.3 Basic Components 83
Image
Image components display graphics from a file or a URL. The image compo-
nent is rendered as an HTML element. Figure 3–15 shows an image com-
ponent after dropping it on the design canvas.

Once you place an image component on the design canvas, there are several
ways to set its image. The image may be a file (JPEG, GIF, PNG), a URL web
location, or a built-in theme. To set the image, right-click on the image compo-
nent and choose Set Image. The Image Customizer dialog appears with radio
buttons Choose File, Enter URL, and Set Theme Icon. Figure 3–16 shows the
Image Customizer dialog with the Set Theme Icon selected and
ALARM_CRITICAL_MEDIUM set for the image.

Selecting Choose File in this dialog lets you navigate to an image file in your
file system and copy it to the resources node in your project. When you choose
this option, the image component’s url property is set to resources/
image_filename, where image_filename is the image file.

Creator Tip

You can also add an image by dragging its file node from the file explorer
dialog to your page.

The dialog also lets you enter a URL to a web location for the file. As before,
the url property of the image component will be set to the URL you enter.
Alternatively, you can select the url property in the Properties window and
select the Use Binding radio button. This allows you to bind the property to a
data object.

Book Examples

• “Add the Google Logo” on page 453 (Chapter 10). Puts an image on the
page.

Figure 3–15 Image component

84 Chapter 3 Creator Components
 Image Hyperlink
The image hyperlink component is similar to a hyperlink, except that it sup-
ports images in addition to text. When you right-click an image hyperlink com-
ponent, the Image Customizer dialog lets you set the image to a file (JPEG, GIF,
PNG), a URL web location, or a built-in theme (see Figure 3–16).

The imageURL property specifies an image file or a URL on the web. The
icon property holds the theme. Figure 3–17 shows an image hyperlink in a
browser window.

As with hyperlinks, you can specify an action event handler. To add event
handling code, select the image hyperlink component in the design canvas and
double-click. Creator generates a default action event method and brings up
the page bean in the Java source editor. The cursor is set to the
imageHyperlink1_action() method (where imageHyperlink1 is the compo-
nent’s id property).

Figure 3–16 Image customizer dialog

3.3 Basic Components 85
Book Examples

• “Banner Page Fragment” on page 310 (Chapter 7). Uses an image hyperlink
with a page fragment.

• “Add an Image Hyperlink Component” on page 484 (Chapter 10). Uses
image hyperlinks to page through Google search results.

• “Add Components to the Page” on page 566 (Chapter 12). Uses image
hyperlinks to page through Google search results.

Label
The label component is typically used to associate text with input components,
such as text fields and checkboxes. Labels are rendered as HTML <label> ele-
ments when they are associated with components and as elements
when they are not. Figure 3–18 shows a label on the design canvas.

A label’s for property associates the label with another component. When
you bind the for property of a label to a text field, for instance, the label com-

Figure 3–17 Image hyperlink component

Figure 3–18 Label component

86 Chapter 3 Creator Components
ponent displays an asterisk if the text field’s required property is set to true.
Furthermore, if invalid input is supplied to the server, the page will highlight
the label component’s text in red. These behaviors make labels highly useful in
pages where input components are heavily used.

Label components also have data binding. You can bind a label’s text prop-
erty to a data source, a JavaBeans property, or text from a resource bundle.

Creator Tip

Input components have a dedicated label property that you can
alternatively use for label text, but these labels cannot be easily resized or
aligned. Instead, use the label component for more flexibility with component
placement and style control.

Book Examples

• “Add a Label Component” on page 207 (Chapter 5). Uses a label to place a
heading on a page.

• “Modify the Components for Localized Text” on page 599 (Chapter 13). Sets
the label’s text from a localized .properties file.

• “Add Components for Input” on page 620 (Chapter 13). Sets the label’s for
property to a text field component and sets the label’s text property from a
localized .properties file.

Listbox
The listbox component allows users to select items from a list of items. The
selection items may be hardcoded with a dialog accessed from the Properties
window or generated dynamically at run time. Figure 3–19 shows a listbox
component on the design canvas after configuring the options list.

Creator automatically supplies a converter for non-String data fields when
you fill the list from a data provider source. The multiple property determines
whether the user may select one item or multiple items in the listbox. (With
multiple set, press <Ctrl-Click> to select more than one item.) The rows prop-
erty controls the number of items to display.

When a listbox component’s data provider wraps a database data source,
you typically bind the database table’s primary key field with the Value field.
You select an appropriate field from the data table for the listbox component’s
Display field. Figure 3–11 on page 78 shows the (equivalent) Bind to Data dia-
log for a drop down list that lets you configure the data provider.

The nonvisual component listbox1DefaultOptions supplies text for the
selections. To specify selection items, select the listbox1DefaultOptions ele-
ment in the Outline view and click the options property in the Properties win-

3.3 Basic Components 87
dow. A dialog pops up that lets you type in Display/Value pairs for each
selection item, as shown in Figure 3–20. Text in the Display column appears on
the page. The selected property (or method getSelected()) returns the cor-
responding text of the selected item from the Value column.

When the user selects a different item from a listbox component, the system
generates a value change event. To submit the page for immediate processing
on a value change event, set the Auto-Submit on Change feature. To provide
event handling code for a value change event, double-click the listbox compo-
nent on the design canvas. Creator generates a default processValueChange()
method and brings up the Java source editor for you.

Figure 3–19 Listbox component

Figure 3–20 Dialog to select text items for listbox component

88 Chapter 3 Creator Components
Book Examples

• “Add a Listbox Component” on page 402 (Chapter 9). Fills the selection list
from a database data source. Uses listbox for a master-detail database read.

• “Add Components to the Page” on page 520 (Chapter 11). Fills the selection
list from an EJB data source.

Message
The message component displays error messages generated by other compo-
nents. Typically, these messages are data conversion or input validation errors.
When the validator or converter detects errors, it sends a message to the JSF
context on behalf of the component. Message components can retrieve and dis-
play these messages. Message components are particularly useful on a web
page that contains multiple input components. When you associate a unique
message component with each input component, validation or conversion
error messages clearly indicate the source of the input error. By default, a mes-
sage component has its ShowSummary property set to true and its ShowDetail
property set to false. Figure 3–21 shows a message component initially
dropped on the design canvas.

To associate a message component to an input component, select the mes-
sage component, press <Ctrl-Shift>, and drag the arrow generated by Creator to
the target component. This sets the for property to the id property of the input
component. Figure 3–22 is an example page with a submit button and two mes-
sage components associated with input text fields. Note that the names of the
text fields (textfield1 and textfield2) appear in the message text, indicating
that the for property has been set for each message component.

You can also use the message component’s style property to format the
appearance of your error messages.

You can also send your own message to a message component with the
info(), error(), fatal(), or warn() methods. These methods are all rendered
using distinct styles. You must include the message component’s target compo-
nent id with the call, however. The following code shows the approach. Here,
inside the listbox’s value change event handler, we send a warning that the list-

Figure 3–21 Message component

3.3 Basic Components 89
box component’s value has changed. Note that component id listbox1 is the
first parameter for method warn().

Creator Tip

The message component displays a single message only. If you need to display
multiple messages, or you don’t want to specify a particular component, use
component Message Group instead.

Book Examples

• “Use Validators and Converters” on page 252 (Chapter 6). Uses a message
component to report data conversion errors for a text field component.

• “Add a Message Component” on page 477 (Chapter 10). Uses a message
component to report validation errors for a text field component.

• “Add Components to the Page” on page 566 (Chapter 12). Uses a message
component to report validation errors.

• “Add Components for Input” on page 620 (Chapter 13). Uses a message
component to report validation errors from a custom validator method.

Message Group
Message group components display run-time errors for page-level messages
originating from multiple components or for system (global) messages. With

public void listbox1_processValueChange(
ValueChangeEvent event) {

warn(listbox1, "Value changed!");
}

Figure 3–22 Message components with for property set

90 Chapter 3 Creator Components
message group components, you can limit the message group to display global
errors only (that is, exclude component errors), or display errors for all compo-
nents on the page, including errors with the page itself.

Figure 3–23 is a page with a submit button, input text fields with associated
message components, and a message group component to report global errors.
The message group component’s showGlobalOnly property is set to true.

Set property showGlobalOnly when one or more message components
appear on the page with a message group component. This prevents a compo-
nent’s validation or conversion error message from appearing twice.

You can also use the message group style property to format the appear-
ance of your error messages in the System Messages box.

Creator Tip

It’s a good idea to routinely place a message group component on your pages,
especially when accessing a database, web service, or EJB. Recall that JSF
writes FacesException messages to the JSF context. You will only see these
messages if a message group or message component is on the page.

Book Examples

• “Add a Message Group Component” on page 388 (Chapter 9). Uses a
message group component to report database access errors.

• “Message and Message Group Components” on page 477 (Chapter 10). Uses
a message group component to report system (global) errors.

Figure 3–23 Message group components

3.3 Basic Components 91
• “Add Components to the Page” on page 506 (Chapter 11). Uses a message
group component to show all error messages when there is only one input
component.

• “Add the Google Web Service Client” on page 569 (Chapter 12). Uses a
message group component to report system (global) errors.

Password Field
The password field component allows users to input a single line of text. Ech-
oed text is replaced by a single character, such as a black dot or an asterisk.
Password field components are useful for handling sensitive data input, like
passwords and PIN numbers. The password field component is rendered as an
HTML <input type=password> element. When a password field is rendered,
its previous value is always cleared. Figure 3–24 shows a password field
dropped on the design canvas.

In all other respects, a password field component behaves just like a text
field. The input string is stored in the component’s password property. When
you change the text, a value change event is generated. The password field’s
getPassword() method reads the text and setPassword() sets it. You can also
bind the password property to an object or data provider.

Password field components can have validators. Length validators, required
validators, and range validators are all possible to check input text. Note that
value change events occur only if no validation errors are detected.

When a password field component generates a value change event, the JSF
implementation invokes the value change event handler for that component.
You can use the password field’s label property to set the label text on a page.
It’s a good idea have message components associated with password fields to
report validation or conversion errors. To create a tooltip, set the password
field’s toolTip property.

Book Examples

• “Create the Form’s Input Components” on page 208 (Chapter 5). Uses a
password field to gather input for a password field.

Figure 3–24 Password field component

92 Chapter 3 Creator Components
• “Bind Input Components” on page 237 (Chapter 6). Shows property binding
with the password field component.

• “Modify the Components for Localized Text” on page 599 (Chapter 13).
Shows how to localize an application that contains a password field (the
password component’s toolTip is bound to the properties file).

Radio Button
The radio button component uses a boolean on/off setting as a choice for a user.
Radio buttons can appear as standalone components on a page (not part of a
radio button group). Figure 3–25 shows part of a page with two radio button
components. Here we set the label property to the text strings shown. You can
treat two or more radio buttons as a group by setting each radio button’s name
property to the same value. When radio buttons are part of the same group,
only one radio button can be selected (set to true).

There are two important properties with radio buttons. The selected prop-
erty indicates that a radio button is selected and clicked on the page. The
selectedValue property allows you to pass data values for the radio button.
It’s also possible to bind the selected property of a radio button to an object,
such as a JavaBeans or a data source. A radio button is considered to be
selected when the value of the selected property is equal to the value of the
selectedValue property.

Use the isChecked() method to determine if the component is selected. To
use radio buttons in table component columns, set the name property to the
same value to group all the radio buttons in the column.

Creator Tip

Radio buttons by themselves (not in a group) are used sparingly in web pages
because users cannot deselect a single radio button once it is selected. If you
want users to select and deselect their choices, use checkboxes (see
“Checkbox” on page 75).

Figure 3–25 Radio button component

3.3 Basic Components 93
Radio Button Group
The radio button group component lets you group radio buttons on a page.
When a user selects a choice from a radio button group, each choice deselects
the previous one. This means only one button within the group is “on” at a
time.2 Radio button groups are rendered as an HTML <table> element with
rows and columns. Figure 3–26 shows a radio button group component after
you drop it on to the design canvas.

The selection items can be hardcoded with the Properties window or
dynamically generated at run time. Creator automatically supplies a converter
for non-String data fields when you fill the list from a database source. This
component also accepts data binding. The selected property of the radio but-
ton group returns the selected item.

To specify the choices, select radioButtonGroup1DefaultItems in the Out-
line view. In the Properties window, click the editing box opposite property
options. Creator pops up a dialog so that you can add, edit, or remove items.
(This is the same dialog box used to specify Display/Value fields for the Listbox
component. See Figure 3–20 on page 87.)

Example
Figure 3–27 shows a radio button group component on a web page. The default
layout for a radio button group is a single vertical column, so we set the col-
umns property to the number of radio buttons (3) to get a horizontal layout.
Note that a user may select only one choice.

2. If you need to select more than one item at a time, use the checkbox group
component (see “Checkbox Group” on page 76.)

Figure 3–26 Radio button group component

94 Chapter 3 Creator Components
Here is the code in the button’s event handler that displays the user’s selec-
tion in a static text component. The code that accesses the radio button group
component is bold.

Static Text
Of all the components, static text is probably used the most often in web pages.
A static text component lets you display any kind of textual information, like
instructions, titles, and headings. Static text components typically display
String data, but you can bind them to objects, JavaBeans properties, and data
providers. Figure 3–28 shows a static text component after dropping it on the
design canvas.

With data converters and formatters, static text components can display
almost any type of data. An embedded static text component is the default for a
table component. Static text components may be embedded in hyperlink com-
ponents to allow embedded HTML in the hyperlink’s text display.

The text property of a static text component stores the text that is dis-
played. From a user’s point of view, static text components are read-only. The
setText() method sets its text and getText() reads it. You can resize static

public String button1_action() {
String choice = (String)ageBracket.getSelected();
staticText1.setText("Your age is " + choice);
return null;

}

Figure 3–27 Radio button group component

Figure 3–28 Static text component

3.3 Basic Components 95
text components on the design page, but Creator expands them if you leave
them unsized.

Static text components are rendered as plain text, which may include HTML
formatting tags. This means you can build entire HTML pages by concatenat-
ing a string of HTML tags with text and assigning it to the component’s text
property.

Creator Tip

To enable correct rendering of HTML tags, make sure you set the escape
property to false in the Properties window. Also, avoid using static text as
labels for other components. Use either a separate label component or the label
property of the component.

Book Examples

• “Place Button, Label and Static Text Components” on page 256 (Chapter 6).
Binds an output component to a JavaBeans property and applies a number
converter.

• “Add Components to the Page” on page 299 (Chapter 7). Uses an embedded
static text component in a grid panel. Builds the static text component’s text
by concatenating HTML tags and unchecking the escape property.

• “Using Hyperlink with a Nested Static Text” on page 461 (Chapter 10). Uses
an embedded static text component in a hyperlink to store HTML text.

• “Configure the Table” on page 480 (Chapter 10). Uses an embedded static
text component to improve HTML formatting.

• “Add Static Text Component to the Page” on page 587 (Chapter 12). Uses a
static text component for formatting text using HTML tags in a portlet.

Table
The table component is a composite component with rows and columns. Tables
typically have nested columns, which in turn contain other display compo-
nents (such as static text components, buttons, or text fields). Table components
render as HTML <table> elements.

A table node in the design palette has nested column and row group compo-
nents (see Figure 3–29). Dragging these components to a table in the design
canvas adds columns and row groups to the table. Figure 3–29 also shows a
table component initially dropped on the design canvas with the default of five
rows by three columns.

Figure 3–30 shows the Outline view for the default table component. Note
that each column in a table has a static text field to display data, but you can
replace it with other components (checkboxes, hyperlinks, for instance). Every

96 Chapter 3 Creator Components
table component also has a default data provider (defaultTableDataPro-
vider, a non-visual component).

Figure 3–29 Table component

Figure 3–30 Table component Outline view

3.3 Basic Components 97
Creator Tip

Creator provides an enhanced selection mechanism for composite
components, such as the table component. In the design canvas, click on any
row in a table column and look in the Outline view and Properties window to
see which component is selected. Now click again and you’ll see the outer
nested component’s properties. Successive clicks let you cycle through each
nesting level of a component.

Table components are typically filled dynamically with data from a data
provider attached to a data source (database table), web services method, EJB
method, or JavaBeans property. When you fill a table component with data
from a data provider, Creator lets you control the layout, including the col-
umns to display, the number of headers and footers, and the component you
use in each column. You can also apply data converters to any field (column).

When you bind a data provider to a table component in the design canvas,
Creator automatically fills the table with the data and generates the needed col-
umns. Creator also generates headers from the field names and applies the nec-
essary converters.

Example
Figure 3–31 shows Creator’s design canvas with a table component bound to
the TRACKS table from the Music Database in Chapter 9. This table has three
columns (with headings from the database metadata). Creator shows the col-
umn’s data type as “123” for numeric data and “abc” for String data. For data
that is not text, Creator applies a converter for you.3 In this table, an embedded
static text component is used for the display.

3. For example, if a primary key field is integer data, Creator applies an Inte-
ger converter to the component. Creator performs this action for all the
data-aware components.

Figure 3–31 Binding table component with an external database table

98 Chapter 3 Creator Components
Creator automatically sizes the columns and dynamically generates the cor-
rect number of rows. When you bind a table component to a database table,
Creator generates a default query for you. You can modify this query by select-
ing the associated rowset from the nonvisual display. We show you how to
work with database queries in Chapter 9 (see “Modify the SQL Query” on
page 405.)

Figure 3–32 shows Creator’s dialog for manipulating a table component’s
layout. Select the table component in the Design or Outline view, right-click,
and choose Table Layout. Here, the dialog shows the columns from the
TRACKS database table. You can choose which columns to display, the header
and footer text, and the underlying component that holds the data.

Figure 3–32 Table Layout dialog: specifying columns

3.3 Basic Components 99
Figure 3–33 shows Creator’s dialog for specifying options for the table. Here
you can set the table’s title, description (summary), footer, and a message to
display if the table is submitted without data. The checkboxes let you enable
various options for the table component, including buttons to select all rows,
clear sorting, open or close the table’s sort panel, and enable pagination and a
page size number. After making your selections, click Apply, then OK.

Book Examples

• “Configure the Table” on page 362 (Chapter 8). Uses a table component with
an object list data provider. Enables table pagination.

• “Configure Table Component” on page 398 (Chapter 9). Uses a table
component with an SQL query parameter.

• “Add a Table Component” on page 404 (Chapter 9). Builds a master-detail
relationship using data binding with a table component.

• “Modify the Table Layout” on page 414 (Chapter 9). Uses a table component
with text field components for updating data.

• “Add Components” on page 431 (Chapter 9). Uses a table component with
checkboxes.

Figure 3–33 Table Layout dialog: specifying options

100 Chapter 3 Creator Components
• “Add a Table Component” on page 480 (Chapter 10). Uses a table
component with an object array data provider and web services.

• “Configure Table Component” on page 560 (Chapter 12). Uses a table
component with portlets and database access.

Text Area
Text area components gather textual information for multiple lines. This com-
ponent is similar to a text field, but you build it with rows and columns (see
Figure 3–34). Its standard look displays several lines, and a vertical scrollbar
appears if the number of lines exceeds the number of rows. Text area compo-
nents let you specify their size, provide text for a tooltip, and bind their text
property to objects or data providers. Text area components are rendered as an
HTML <textarea> element.

Text area components are common with web applications that solicit free-
form text. Examples are composing letters, listing comments, sending email,
posting to guest books, filing bug reports, or reviewing products.

The getText() method retrieves the text and setText() sets it. The text is
sent to the server when the page is submitted. Like the listbox component, text
areas work with value change events and the processValueChange() event
handler. To configure this method, double-click the text area component in the
design view. Creator generates the event handler method in the Java page bean
for you.

Example
You can bind the text property to a session bean property to automatically
save submitted text in session scope. For example, here is the generated JSP

Figure 3–34 Text area component on a web page

3.3 Basic Components 101
code for a text area component that binds its text property to session bean
property userInfo (shown in bold).

Text Field
The text field component enables users to input a single line of text. The input
string is stored in the component’s text property, and a value change event is
generated when you change the text. The component’s getText() method
reads the text and setText() sets it. The text is sent to the server when the
page is submitted. Text field components are rendered as an HTML <input
type="text"> element.

Figure 3–35 shows a text field in a browser window that prompts for a per-
son’s first name. The text field’s label and toolTip properties are set to the
strings shown. The boolean required property makes a red asterisk appear
with the label and alerts the user that input is mandatory.

With text fields, you can attach a length validator, a required validator, or
range validators (with converted numerical values). Value change events occur
only if no validation errors are detected. When a text field component gener-
ates a value change event, the JSF implementation invokes the value change
event handler for that component. Message components are handy for report-
ing validation or conversion errors with text fields. (See “Message” on
page 88.)

You can also attach a data converter to a text field. To do this, select the con-
vertor you want from the converter property in the Properties window under

<ui:textArea binding="#{Page1.textArea1}" id="textArea1"
style="height: 120px; left: 48px; top: 72px;
position: absolute"
text="#{SessionBean1.userInfo}"/>

Figure 3–35 Text field component on a web page

102 Chapter 3 Creator Components
Data. When you apply a data converter, the type of the text property changes
from String (the default) to the converted type. If you don’t want all input com-
ponents on the page to be validated, use virtual forms (see “Configure Virtual
Forms” on page 216).

Text fields may be embedded in table components and you can bind them to
data or other objects. Figure 3–36 shows the Property Bindings dialog box for
binding a text field component to a JavaBeans property. Here, we bind text
field username with the username property in the JavaBeans component login-
Bean.

Book Examples

• “Configure Virtual Forms” on page 216 (Chapter 5). Excludes validation of
text field components with virtual forms.

• “Bind Input Components” on page 237 (Chapter 6). Shows binding
properties with a text field.

Figure 3–36 Property Bindings dialog with text field component

3.3 Basic Components 103
• “Create the Form’s Input Components” on page 250 (Chapter 6). Shows text
fields with converters and validators.

• “Add Components to the Page” on page 299 (Chapter 7). Uses a text field in
a nested grid panel.

• “Modify the Table Layout” on page 414 (Chapter 9). Uses text fields with a
table component.

• “Add Components” on page 419 (Chapter 9). Uses text fields to gather input
for database row insert operations. Uses virtual forms.

• “Add a Text Field Component” on page 454 (Chapter 10). Shows validators.
• “Add Components for Input” on page 620 (Chapter 13). Uses text fields with

a custom validator method.

Tree
The tree component lets you render data in an expandable list with a hierarchi-
cal tree structure. In web applications, trees are useful for navigating through
nested data, like file systems and categories. A tree component contains tree
nodes, which act like hyperlinks. In the design palette, a nested tree node com-
ponent appears when you expand a tree node, as shown in Figure 3–37.

Figure 3–37 also shows you the design canvas for a tree component and its
Outline view. Note that a tree node has an embedded image component. Once
you expand a tree component and drop it on the design page, you can drop
tree node components to build nested structures.

Initially, when you drop a tree component on a page, the root node is labeled
Tree and the subnode is labeled Tree Node 1. The text property lets you set the
strings to be rendered for these nodes, and the toolTip property gives users
more information about the node.

Figure 3–37 Tree component

104 Chapter 3 Creator Components
Creator Tip

When you drop tree node components on tree components, pay attention to
what Creator outlines in blue. If the entire tree component is blue, the tree
node will render as a sibling of the tree component. Otherwise, the tree node
will render as a nested node underneath the node outlined in blue.

There are several important properties with tree components. The url prop-
erty lets you navigate to another page or display data like a PDF or JPEG file.
Binding the action property to an action event handler makes the tree node
automatically submit the current page. The clientSide boolean property con-
trols whether a request to the server is made each time a user expands or col-
lapses a node.

Example
Figure 3–38 shows a tree component called Download Site with tree nodes
Home Page and Music. Underneath the Music node are the nested tree nodes
Jazz, Rock, and Country.

Note that the image for a tree node is a page icon if it is not nested. Other-
wise, a folder icon appears with an arrow if the node has children (nested
nodes). On a web page, users may expand or collapse the folder to see the
nested nodes by clicking the arrow icon.

Suppose a web application displays PDF files for the Jazz, Rock, and Coun-
try music categories. When you select a tree node on the design page and click
the url property customizer box, a dialog appears to set the property. Clicking
the Add File button lets you browse for the location of the PDF file you want to
display. Figure 3–39 shows this dialog for the Jazz tree node.

Figure 3–38 Example tree component

3.4 Layout Components 105
Creator Tip

At the time of this writing, tree node selection events do not work in portlet
projects.

3.4 Layout Components

The following catalog of layout components describes each component and
gives you common usage scenarios. To show you how layout components can
be useful in a Creator project, we also point you to relevant examples in other
chapters of this book. The layout components are listed alphabetically for easy
lookup.

Form
The IDE makes sure that every new page that you create already has one form
component. If you want to add more forms, drag the form component from the
design palette and drop it on the page. This is usually not necessary in most
applications, but you may want to manage certain components in their own
forms. If you add a new form component to a page, it appears in the Outline

Figure 3–39 Url dialog for tree node component

106 Chapter 3 Creator Components
view along with form1, the default form (see Figure 3–40). New form compo-
nents render as selected boxes in the design canvas.

Creator Tip

If you need nested forms, use a virtual form (see “Virtual Forms” on
page 70). Although you can always delete form components that you add to a
page, it is not possible to delete the default form component, since every page
must have one.

Grid Panel
A grid panel component is a general-purpose container that groups other com-
ponents and controls their layout. When you drop a grid panel on the design
canvas, you can place other components inside of the grid panel. Creator fills
the grid panel with your components in a grid (rows and columns) layout. The
components appear on the grid panel in the order that you drop them. (You
can rearrange components later by “re-dropping” them on the grid panel.)
Grid panels render as HTML <table> elements.

By default, grid panels have one column but you can modify the columns
property to add more columns. The grid panel displays its components left to
right to fit the number of columns you specify. It also resizes the number of
rows based on how many components you have in the grid panel. Figure 3–41
shows a grid panel (box of dashed lines) in the design canvas containing a but-
ton, checkbox, and radio button. The grid panel on the left is a vertical layout
(one column, the default). Next to it is a grid panel with columns set to 3.

The grid panel is particularly useful when you don’t know how much space
a component will take up on the page. For example, if a static text component is
built dynamically and you want to place another component after it on the

Figure 3–40 Form component Outline view

3.4 Layout Components 107
page, you can nest both components in a grid panel. The layout mechanism
adjusts the relative position of each component appropriately.

The grid panel component has other properties that control its appearance.
These properties include bgcolor for background color, cellspacing and
cellpadding for cell width spacing, and border for the width of the grid
panel’s border lines.

Creator Tip

Use the Outline view rather than the design canvas to work with nested
components. It’s much easier to place components on top of a desired target
with the Outline view. Rendering in the design view often obscures the
specific target component that you’re trying to drop onto.

Book Examples

• “Add a Grid Panel Component” on page 193 (Chapter 5). Uses a grid panel
to hold button components.

• “Add Components to the Page” on page 299 (Chapter 7). Uses nested grid
panels to help with component layout.

• “Layout and Grouping with Grid Panel” on page 459 (Chapter 10). Uses a
grid panel to group different components and control their rendering.

• “Add Components to the Page” on page 506 (Chapter 11). Uses a grid panel
and nested grid panel to help with layout. Uses static text components as
placeholders in grid panels.

• “Add Components to the Page” on page 525 (Chapter 11). Uses a grid panel
with table components to help with layout.

• “Using Grid Panel to Improve Page Layout” on page 597 (Chapter 13). Uses
a grid panel to handle layout for components rendered with text read from
properties files.

• “Adding Components to the Page” on page 619 (Chapter 13). Uses a grid
panel to help with layout.

Figure 3–41 Grid panel components

108 Chapter 3 Creator Components
Group Panel
A group panel is a general-purpose container that groups components and
controls their layout. Whereas grid panels place components in a grid configu-
ration (you specify the number of columns), a group panel component uses a
flow layout. Depending on the width of the panel, group panels arrange com-
ponents one after the other in a flow. When there’s not enough room in the first
row, Creator continues with placement in a second row. Like grid panels, the
order in which you drop components on a group panel is the same order that
they appear on the page.

A group panel component renders as an HTML element and the
page bean implements a group panel as a PanelGroup object. (If you set prop-
erty block to true, a group panel renders as an HTML <div> element.)
Figure 3–42 shows a group panel (box of dashed lines) in the design canvas
containing a button, checkbox, and radio button.

Creator Tip

Group panels are handy for grouping nested components. It’s possible, for
example, to place a group panel inside cells of a grid panel. This technique lets
you create interesting web pages by placing groups of components in each cell
of a grid panel. From the grid panel’s perspective, these nested components
are treated as a single cell.

Layout Panel
The layout panel component is a container that groups components and lets
you choose a layout mode. When you drag a layout panel component from the
component palette and drop it on the design canvas, the IDE gives you a Flow
Layout by default. As you drop components in the layout panel, the IDE aligns
them from left to right on the top line, moving them to the next line if there is
not enough room. This makes layout panels behave like group panels as you
add components.

If, on the other hand, you’d like to use the design canvas to position compo-
nents at arbitrary (absolute) places in the panel, change the panelLayout prop-

Figure 3–42 Group panel component

3.4 Layout Components 109
erty to Grid Layout (use the drop down list in the Properties window). Now
each component will be positioned relative to the nearest grid lines. This makes
layout panels behave like Creator’s design canvas (the default grid layout).

Figure 3–43 shows a layout panel (box of dashed lines) in flow layout mode
containing a drop down list, a listbox, and a button.

Layout panel components are also the default for tab set components (see
“Tab Set” on page 114).

Book Examples

• “Add Components to the Page” on page 289 (Chapter 7). Uses a layout panel
in Grid Layout mode to position components.

• See TabSet3 project in the Creator download file (FieldGuide2/Examples/
WebPageDesign/Projects/TabSet3). Uses a tab set component with
embedded layout panels for each tab selection.

Page Alert
The page alert component displays messages on a separate page. If you don’t
want to use a separate page, use an alert component from the Composite pal-
ette (see “Alert” on page 118). Page alerts are useful because they have recog-
nizable icons and configurable messages. Figure 3–44 shows the page alert
component after you drop it on the design canvas.

Figure 3–43 Layout panel component

Figure 3–44 Page alert component

110 Chapter 3 Creator Components
The type property in the Properties view contains a drop down list of icons
and alert types. There are four types of alerts: error, warning, information, or
question. The summary property displays a brief text message for the alert, and
the detail property lets you display a longer, more detailed message. You can
also right-click a page alert component and bind its properties to a Javabeans
property or another object.

Figure 3–45 shows two page alerts in a browser window. The left alert dis-
plays a brief information message. The right alert shows an error alert with a
brief reason for the alert followed by a detailed suggestion.

Page Fragment Box
Page fragments are separate, reusable components that you include in multiple
web pages. The Page Fragment Box component generates a JSP directive that
includes a JSP file fragment in your page. Page fragments let you build web
pages that have consistent form. You may, for instance, use page fragments to
include the same graphic header in all pages of an application.

When you select a page fragment component and drop it on the design can-
vas, Creator pops up a dialog that lets you create a new page fragment or select
an existing one. Figure 3–46 shows the Select Page Fragment dialog.

Page fragment files show up in the Projects view Web Pages > resources
node as a .jspf file. In the Outline view, a page fragment box appears as a node
underneath an HTML <div> element. The name of this node has the format
directive.include:fragment_file.jspf, where fragment_file is the name of your
page fragment file. Figure 3–47 shows the Outline view for the Fragment1.jspf
page fragment.

Once you have a page fragment box, you can add visual elements to it as
needed. A typical example is a page fragment consisting of a banner with a
company’s logo (an image component). As you create pages in your web appli-
cation, drag a page fragment box component to the page, position it, and spec-
ify the page fragment name.

Figure 3–45 Page alert components

3.4 Layout Components 111
Creator Tip

When adding components to page fragments, make sure the id of any new
component does not conflict with any component id names on the including
page. Also, virtual forms are not allowed within page fragments.

Book Examples

• “Banner Page Fragment” on page 310 (Chapter 7). Uses page fragment box
components to create uniform looking pages.

• “Using Tab Sets and Page Fragments” on page 329 (Chapter 7). Uses a page
fragment box with tab set components.

Figure 3–46 Select Page Fragment dialog

Figure 3–47 Page fragment Outline view

112 Chapter 3 Creator Components
Page Separator
The page separator component creates a horizontal line on your page. This lets
you separate other components for a better visual layout. Page separator com-
ponents are rendered as HTML <hr> elements. You can change a page separa-
tor’s width and appearance in the Properties view. In the page bean, a page
separator component is a PageSeparator object.

Figure 3–48 shows a page separator with a drop-down list, text field, and
submit button.

Property Sheet
The property sheet component is a layout composite component. In the design
palette, property sheets contain nodes for nested property sheet section com-
ponents and property components (see Figure 3–49).

When you drag a property sheet component to the design canvas, the initial
layout is one sheet section containing one property, as shown in Figure 3–49.
It’s possible to have multiple sheet sections on a page with header strings ini-

Figure 3–48 Page separator component

Page Separator

Figure 3–49 Property sheet component

3.4 Layout Components 113
tialized with the sheet section’s label property. You can also have multiple
property components within each sheet section.

Property components are containers with labels, optional help text, and
default formatting. By default, the property component displays read-only
data, but you can attach input components, such as calendars, drop-down lists,
or text fields. To add new properties, drop a property component on a property
sheet section, or right-click the property sheet section component and select
Add Property. After creating property components, the Outline view is helpful
for dropping input components on a selected property. Figure 3–50 shows a
layout with one sheet section (section1) and four properties. Each property
has its own input component.

There are several important properties for property sheet components. The
requiredFields property displays a required fields message (and red asterisk)
when set to true. A property sheet component also contains an anchor compo-
nent by default (see “Anchor” on page 72). If you set the jumpLinks property,
the property sheet displays links to its sections at the top of the property sheet.
If a property has an input component, you can set the optional required prop-
erty for that component to force data entry on the page.

Example
Property sheets are handy for creating data entry forms. Figure 3–51 shows an
entry form for a rental car reservation in a browser window.

Here, we have one property sheet set up with properties and input compo-
nents. Note that this property sheet has required fields for most of the input

Figure 3–50 Property sheet Outline view

114 Chapter 3 Creator Components
components. The drop-down selection is not required for input and defaults to
the initial string Sub Compact. The requiredFields property is set here to dis-
play the required fields message.

Tab Set
The tab set is a layout composite component. In the design palette, tab sets con-
tain a nested tab component node (see Figure 3–52). Tab set components let
you click tabs to view alternate sets of components or navigate to different
pages. Each tab in a tab set is a tab component with configurable properties. To
add a new tab, right-click the tab set component and choose Add Tab or drop a
new tab component on a tab set (or another tab component for nested tabs).

In the Outline view, tab components provide a default layout panel (see
Figure 3–52) to hold components that become visible when a user clicks a tab.
Each layout panel’s panelLayout property is set to Grid Layout by default, but
you can change it to Flow Layout in the Properties view. If you use tab sets to
navigate between pages, be sure to delete each tab component’s layout panel.
The selected property of a tab set component determines which tab is initially
selected. Tab selections also change color when you select them.

You can create an event handler by double clicking any tab component of a
tab set in the design view. It’s also possible to bind a tab component’s text prop-
erty to an object or data provider.

Figure 3–51 Property sheet example

3.4 Layout Components 115
Creator Tip

When you drop a tab component to the left or right of an existing tab in a tab
set, the tab component appears in the same row of tabs. Otherwise, the tab
component will be a child of the tab component that you drop it on. You can
have at most three levels of tabs in any tab set.

Figure 3–53 shows the design canvas for a tab set with three tab compo-
nents. In the Outline view, each tab component has its own layout panel.

Figure 3–52 Tab set component

Figure 3–53 Design canvas and Outline view of tab set

116 Chapter 3 Creator Components
Book Examples

• “Using Separate Tab Sets” on page 324 (Chapter 7). Uses separate tab set
components to navigate among pages.

• “Add Tab Set and Tabs to CactusBanner” on page 329 (Chapter 7). Uses a tab
set component with a page fragment for navigation.

• See TabSet3 project in the Creator download file (FieldGuide2/Examples/
WebPageDesign/Projects/TabSet3). Uses a tab set component on one page
to display different sets of components.

3.5 Composite Components

The following catalog of composite components describes each component and
gives you common usage scenarios. The composite components are listed
alphabetically for easy lookup.

Add Remove List
The add remove list component lets users select items from one list and add or
remove them from another list. The component displays two listboxes and two
buttons. One listbox displays available options and the other displays selected
options. The buttons let you add or remove options from the two listboxes.

Figure 3–54 shows the layout after you drop the add remove list component
on the design canvas and fill in the selection items in the available listbox.

Figure 3–54 Add remove list component

3.5 Composite Components 117
The selection items can be set through the Properties window or dynami-
cally generated at run time. Creator automatically supplies a converter for non-
String data fields when you fill the list from a data provider. The selected
property of the add remove list returns the selected items. The items property
associates the component with a data provider.

To specify the choices, select the non-visual addRemoveList1DefaultItems
component in the Outline view. In the Properties window, click the editing box
opposite property options. Creator pops up a dialog so that you can add, edit,
or remove items. (This is the same dialog box used to specify Display/Value
fields with the Listbox component. See Figure 3–20 on page 87.)

You can also right-click the add remove list component and select Edit Event
Handler from the pop-up menu. The validate option lets you insert Java code
that validates user input, and the processValueChange option lets you insert
Java code that executes when a component’s value has changed.

Example
Let’s add a submit button and a static text field to the sample page shown in
Figure 3–54. In a browser window, the submit button determines which selec-
tions were made and the static text field displays them. Figure 3–55 shows the
results of clicking the Submit button after adding an email, city, and country to
the selected listbox. The static text field displays the selected string items.

Figure 3–55 Add remove list component with selections

118 Chapter 3 Creator Components
Here is the Java code for the Submit button event handler method that reads
the selections from the add remove list component and displays the strings in
the static text component.

Alert
The alert component lets you display messages on a page. Alerts have recog-
nizable icons and configurable messages. When you drag an alert component
from the palette and drop it on to the design canvas, the default is an error
alert, as shown in Figure 3–56.

The type property in the Property view contains a drop down list of icons
and alert types. The are four types of alerts: success, error, warning, and infor-
mation. The summary property displays a brief text message for the alert, and
the detail property lets you display a longer, more detailed message. If the
summary property is empty, the component won’t display on the page. You can
also right-click a page alert component and bind its properties to a Javabeans
property or another object.

Component alert includes an embedded hyperlink component, which you
access by setting property linkText. To specify an action event handler for the
hyperlink component, right-click the alert component and select Edit action
Event handler.

Example 1
Figure 3–57 shows a page with a success alert directing users to a second page.
To show the check mark icon, we set the alert component’s type property to
success. The summary and detail properties are set to “Item in Stock” and “To
Process Your Order”, respectively. Users are directed to another page via the
linkText property, set to the string “Click Here”.

 public String submit_action() {
String selections = addRemoveList1.getSelectedValues();
staticText1.setText(selections);
return null;

}

Figure 3–56 Alert component

3.5 Composite Components 119
To implement page navigation, we use Creator’s page navigation editor to
specify navigation. Figure 3–58 shows the page navigation editor connecting
the two JSP pages with string “alertOutcome”.

The IDE generates an event handler when you double-click the alert compo-
nent. Here is the Java code for the alert event handler method, which simply
returns the same string used by the page navigator.

Example 2
You can use alert components in place of message or message group compo-
nents. Figure 3–59 shows project Color1 (see “Creating Custom Validation” on
page 611) running in a browser. We replaced the three message components

public String alert1_action() {
return "alertOutcome";

}

Figure 3–57 Success alert with page navigation

Figure 3–58 Page navigation editor

120 Chapter 3 Creator Components
with alert components (with property id of redAlert, greenAlert, and blue-
Alert).

In the page bean method prerender(), we invoke helper method set-
AlertMessage() to set the alert’s summary property with a component-specific
message from the FacesContext.

Method setAlertMessage() obtains the FacesContext and any messages
associated with inComp, its argument’s component. FacesContext method get-
Messages() returns an Iterator of FacesMessages for the component’s
clientId passed as an argument. Conveniently, the alert component does not
display if its summary property is empty.

public void prerender() {
setAlertMessage(alertRed, redInput);
setAlertMessage(alertGreen, greenInput);
setAlertMessage(alertBlue, blueInput);

}

private void setAlertMessage(Alert ac, UIComponent inComp) {
FacesContext context = FacesContext.getCurrentInstance();
Iterator mi = context.getMessages(

inComp.getClientId(context));

Figure 3–59 Using alert instead of message to display validation errors

3.5 Composite Components 121
Breadcrumbs
The breadcrumbs component is a default layout for hyperlinks. The name
comes from an old hiker’s trick where you drop breadcrumbs on a trail to find
your way back and not get lost. With applications having many different web
pages, breadcrumbs typically show a user’s location by displaying the path
through the page hierarchy to the current page.

When you drag a breadcrumbs component from the palette and drop it on
the design canvas, the IDE includes a nested hyperlink component for every
page in the application. Figure 3–60 shows the Design view and Outline view
for a breadcrumbs component with two pages.

In the Design view, the breadcrumbs component separates hyperlinks by
right angle brackets (>). By default, the initial component has a single hyper-
link that points to the current page.

The url and action properties of each hyperlink are set the same way for
breadcrumb components (see “Hyperlink” on page 82). You populate a list of
hyperlinks by setting the pages property of a breadcrumb component to point
to any array or list of HyperLink objects. You can also bind the pages property
to a JavaBeans component or data provider.

String newMessage = "";
while (mi.hasNext()) {

newMessage += ((FacesMessage)mi.next()).getSummary()+" ";
}
ac.setSummary(newMessage);

}

Figure 3–60 Breadcrumbs component

122 Chapter 3 Creator Components
Creator Tip

With portlets, the IDE does not provide a default hyperlink for breadcrumb
components. You must add the hyperlinks yourself.

Example
Suppose an application has separate web pages to help users edit, compile,
debug, and test a program. On the test page, it may be important to refer to the
previous pages for information that relate to testing. Figure 3–61 shows a
breadcrumbs component in a browser with links to the previous pages visited
by the user.

Property url of each hyperlink in the breadcrumbs component is set to the
page that was previously visited.

Inline Help
The inline help component is similar to a label. However, inline help compo-
nents are restricted to displaying short help information for users on web
pages. Once you drop an inline help component on the design canvas, you can
type text directly in the component box. You may resize the box and the text
wraps automatically. Figure 3–62 shows an inline help component on the
design canvas.

Figure 3–61 Breadcrumbs Example

3.5 Composite Components 123
The inline help component has a type property which may be set to page
(the default) or field in the Properties view. Page view is a larger font that
applies to a page, whereas field view is a smaller font to help describe individ-
ual components. You can set the style property of an inline component using
the Style Editor and the styleClass property using the styleClass Property
editor. The text property can also be bound to an object or data provider.

Example
Figure 3–63 shows a page in a web browser with an inline help component at
the top with type property set to page. Below the Confirm Selection button, a
second inline help component appears with its type property set to field.

Figure 3–62 Inline help component

Figure 3–63 Inline help example

Inline Help
 (page)

Inline Help
 (field)

124 Chapter 3 Creator Components
3.6 Validators

Creator provides a set of standard objects that validate user input gathered
through UI components. The JSF architecture builds validation into the page
request life cycle process, making validation an easy task for the developer to
specify. Figure 3–64 shows the available validators in the Creator Components
palette.

Validation Model
In Creator, you attach a validator object to a component by selecting a validator
from the design palette and dropping it onto the component in the design can-
vas. You can also select a validator from the drop down list opposite property
validator in an input component’s Properties view. Validators have properties
that you can manipulate to specify range limits (for example).

The JSF life cycle (see Figure 6–16 on page 261) includes a Process Validation
phase. For components that have registered validators, JSF will validate the
component’s data. When validation errors occur, the affected component is
marked “invalid” and an error message is sent to the JSF context.

Validation errors affect the life cycle process. Validation errors cause the
page to proceed directly to the Render Response phase, skipping the Update
Model Values phase and Invoke Application phase. This means events such as
button clicks are not processed. When a page has multiple components with
registered validators, all input is validated. This is helpful to the user since
feedback (error messages) for the entire page can be displayed. Table 3.1
describes the validators in more detail.

There are three standard validators: a Double Range Validator for floating
types, a Length Validator for strings, and a Long Range Validator for integral
values. You can also write your own custom validation method. Note that each
standard validator has properties for minimum and maximum values. The
Length validator works with String data, and the Double Range and Long

Figure 3–64 Validators

3.7 Converters 125
Range validators are typically used with converters to convert a component’s
data to the correct type.

Table 3.1 also points you to examples in the book that show you how to use
the validators. This includes an example of a custom Validate Method called
validateHexString() that checks for a 2-digit hexadecimal string in a web
application.

3.7 Converters

JSF strives to separate presentation data (the data that users read and possibly
modify) from internal data or model data. To accomplish this, you should use
JavaBeans components, EJB components, JDBC cached rowsets, and other
application-specific structures to represent model data and behaviors. JSF also
makes sure that any data conversions between the two views are consistent
and well-defined.

Figure 3–65 shows the available converters in the Creator design palette.

Table 3.1 JSF Validators

Name Description Example
Double Range Validator Specify minimum and

maximum values.
“Use Validators and Converters” on
page 252 (Chapter 6). Uses a Double
Range Validator with a text field to
check the range of a double.

Length Validator Specify minimum and
maximum values. Does
not detect empty input
fields (you use required
property of component).

“Add a Validator” on page 475
(Chapter 10). Uses a Length
Validator with a text field.

Long Range Validator Specify minimum and
maximum values.

“Place Interest Rate and Term
Components” on page 255 (Chapter
6). Uses a Long Range Validator
with a text field to check the range of
an Integer value.

Custom Validate Method validate-
HexString() method
checks for a 2-digit hex
string

“Add a Validation Method” on
page 617 (Chapter 13). Shows how
to implement your own validation
method.

126 Chapter 3 Creator Components
Conversion Model
A UI component (components for input such as text fields or components for
output such as labels and static text components) can take a data converter to
convert its data to a specific type. Typically (but not always), the component
may be bound to a JavaBeans property of that type. For example, in project
Payment1 (see “LoanBean” on page 242), we bind a text field component
(loanAmount) to the amount property of LoanBean. Property amount is a Dou-
ble, so we apply a Double converter to the text field component.

Like the validation process, JSF sets aside specific times to perform conver-
sions. For an input component, conversion applies to the submitted input
before validation. When errors occur, the affected component is marked
“invalid” and conversion error messages are sent to the JSF context. JSF pro-
ceeds to the Render Response phase in this case.

Creator applies converters automatically to data-aware components when
the source data type is not a String. Table 3.2 describes the converters available
on Creator’s palette.

Most of the converters are straightforward and provide a conversion that’s
obvious from their name. Note that all converters use wrapper classes (sub-
classed from Object) instead of the primitive types. This allows the text prop-
erty (type Object) to accept all of these types.

Figure 3–65 Converters

3.7 Converters 127
The Date time converter, Number converter, and Sql Timestamp converter
require a bit more explanation, however, so let’s do that now.

Date Time Converter
The Date Time Converter converts a component’s data to a java.util.Date.
When you apply a Date Time Converter to a text field, the textual input is con-
verted. The field on the page is updated with a standard format during the
Render Response phase. You can always configure a Date Time Converter’s
format if you need to. If you don’t specify a locale, the Date Time Converter
uses the default locale (see “A Word About Locales” on page 593).

The Date Time Converter uses the format rules and patterns of the Date-
Format class. See the tutorial at http://java.sun.com/docs/books/
tutorial/i18n/format/dateFormat.html for more information on format-
ting; see also the Javadoc for the DateFormat class at http://java.sun.com/
j2se/1.4.2/docs/api/java/text/DateFormat.html.

The Date Time Converter uses a default pattern if you don’t configure it dif-
ferently. The data are assumed to be a date (as opposed to time) using the pat-

Table 3.2 JSF Converters

Name Description/Example
Big Decimal Converter Converts between String and java.math.BigDecimal.

Boolean Converter Converts between String and Boolean.

Byte Converter Converts between String and Byte.

Calendar Converter Converts between String and java.util.Calendar.

Character Converter Converts between String and Character.

Date Time Converter “Configure the Table” on page 362 (Chapter 8). Converts
between String and java.util.Date.

Double Converter “Use Validators and Converters” on page 252 (Chapter 6).
Shows a double converter with an interest rate value and a
loan amount value.

Float Converter Converts between String and Float.

Integer Converter “Place Interest Rate and Term Components” on page 255
(Chapter 6). Shows an integer converter with a loan term
value.

Long Converter Converts between String and Long.

Number Converter “Place Button, Label and Static Text Components” on
page 256 (Chapter 6). Shows a number converter with a
currency value.

Short Converter Converts between String and Short.

Sql Timestamp Converter Converts between String and java.sql.Timestamp.

128 Chapter 3 Creator Components
tern MMM d, yyyy. Although full names for the month are accepted, the Date
Time Converter shortens it to three letters and rejects numerical values. On
input, you must supply a comma. See “Configure the Table” on page 362 for an
example of applying the Date Time Converter to a table column.

Of course, your choices for other formats are more flexible. Table 3.3 shows
the results of applying the Date Time Converter to a specific date (April 5,
1985) in String format. The table shows several formatting patterns and the
effect of setting the dateStyle property to medium, long, and full.

Number Converter
A Number Converter lets you manipulate numerical data using either a pat-
tern, or specifying minimum and maximum digits and fraction digits. Since
numbers are sensitive to language and locale, a Number Converter can use
locale.

The Number Converter uses a pattern with separate properties for manipu-
lating a format (such as currency symbol, integer digits, fraction digits, and
locale). We use a Number Converter to convert a double to a dollar (String)
value here (see “Place Button, Label and Static Text Components” on page 256).
Also see Figure 11–8 on page 509, which shows the Number Format dialog. We
use it in Figure 11–8 to convert a BigDecimal value to String for output, using
pattern “USD #,###.00” for a currency amount in U.S. dollars.

Sql Timestamp Converter
The Sql timestamp converter converts data between String values and
java.sql.Timestamp data types. It is also useful for binding a component to a
database column of type TIMESTAMP. You can use to convert input data to
type TIMESTAMP or display TIMESTAMP values on the web page.

Table 3.3 Date Time Converter

Property/Pattern Result
medium Apr 5, 1985

long April 5, 1985

full Friday April 5, 1985

MM-dd-yy 04-05-85

EEE, MMM d, "yy Fri, Apr 5, ‘85

3.8 AJAX Components 129
3.8 AJAX Components

Asynchronous JavaScript Technology and XML (AJAX) is a web development
technique for building interactive web applications. Its main purpose is to
allow asynchronous updates on a web page without refreshing the whole page
and without performing a submit and postback. Creator provides a component
library that includes experimental-technology AJAX components. To use these
components, install the Update Center’s most recent AJAX component library
and add it to the Components palette. Figure 3–66 shows the BluePrints AJAX
Components and Support Beans installed in the Components palette.

In this section, we’ll show you how to use the Component Library Manager
to add the AJAX component library to the palette. We show you how to use the
AJAX-enabled Auto Complete Text Field component in Chapter 13 (see “Using
AJAX-Enabled Components” on page 629 and “Using AJAX-Enabled Compo-
nents with Web Services” on page 642).

Creator Tip

Since the AJAX-enabled components are under development, you should
make sure you have installed the most recent component library from the
Update Center.

Importing a Component Library
The first step in using one of the AJAX-enabled components is to import the
target component library into Creator.

Figure 3–66 BluePrints AJAX Components and Support Beans

130 Chapter 3 Creator Components
1. From the Creator main menu, select Tools > Component Library Manager.
Creator brings up the Component Library Manager dialog, as shown in
Figure 3–67. (Alternatively, right-click on one of the Component sections in
the Components palette and select Manage Component Libraries.)

2. Click Import. Creator brings up the Import Component Library dialog.
3. Click Browse and navigate to the directory samples/complib.
4. Select ui.complib and click Open.
5. You’ll see BluePrints AJAX Components and Support Beans in the text field

under radio button Import into Palette Categories defined by Library, as
shown in Figure 3–68. Click OK.

6. The Component Library Manager dialog now shows the BluePrints AJAX
Components listed under the Component Libraries. The Component List
includes the Auto Complete Text Field, Map Viewer, Progress Bar, and
Select Value TextField (and support beans) as shown in Figure 3–69. Click
Close to close the Component Library Manager dialog.

7. From the Components palette, open the BluePrints AJAX Components sec-
tion to see these components added to the palette (as shown in Figure 3–66).

Creator Tip

More components will be included in the BluePrints AJAX Components
Library as they are developed.

Figure 3–67 Component Library Manager Dialog

3.8 AJAX Components 131
Figure 3–68 Import Component Library Dialog

Figure 3–69 After importing the BluePrints AJAX component library

132 Chapter 3 Creator Components
3.9 Key Point Summary

• Creator’s design palette contains components, validators, converters, and
data providers.

• Creator’s components are rendered in HTML.
• Creator components share many properties in common, such as text,

toolTip, style, id, and binding.
• Creator components that manipulate data can accept converters to convert

data to an from String form. You can also use converters to format data on
output.

• Input components share common properties, such as validator,
maxlength, required, valueChangeListener, and onChange.

• A value change event occurs when an input component’s selection changes
or its text changes.

• Creator generates a processValueChange() method when you double-click
an input component.

• The Auto-Submit on Change feature submits a page when an input
component fires a value change event. Creator generates a JavaScript
element and configures the component’s onChange property to implement
this feature.

• Table components (table and grid panel) have properties to control
appearance, such as bgcolor, border, cellspacing, cellpadding, and
columns.

• Creator provides component binding with data providers that wrap data
sources, JavaBeans components, web services return objects, and EJB return
objects. You can also apply property binding to arbitrary application data.
This simplifies transferring data between the presentation view and the
model view.

• A table component is data aware and offers sophisticated layout choices. By
specifying headers, footers, and embedded component types for its
columns, the page designer can build a custom page for displaying data.

• You can enable paging controls with table components. This is useful for
database queries or other data that produce more than a single page of data.

• JSF has data converters that encourage the separation of model and
presentation data. The Creator converters seamlessly convert presentation
data to and from model data.

• The Creator validators validate user input before events are processed.
Validation and conversion errors short-circuit the normal life cycle request
mechanism and re-render the page with error messages.

• Use a message or message group component to display validation or
conversion errors on a web page.

• Use message group components to display system or global errors.

3.9 Key Point Summary 133
• You can write your own custom validation method and hook it into the JSF
validation cycle.

• Use the Component Library Manager to import component libraries to
Creator’s Components palette, as well as to configure the palette.

• Creator includes a bundled BluePrints AJAX Components library, an
experimental technology set of components that use AJAX.

SOFTWARE
DEVELOPMENT
Topics in This Chapter

• Editing Java Code
• Refactoring
• Source Code Control with CVS
• Creating Non-Web Projects

Chapter
un Java Studio Creator has an integrated development environment
(IDE) that greatly simplifies the “edit-compile-deploy” cycle of complex
web applications. Based on NetBeans, the IDE has code generation and
navigation features that make it easy and pleasurable to edit and com-

pile programs. In addition to keyboard shortcuts and code completion, the IDE
also provides code refactoring and CVS source code control. All of these fea-
tures make up a development environment that helps you create, manage, and
maintain your web applications.

This chapter shows you how to use the Source Editor to write Java code
effectively. You will learn how to customize the IDE to your tastes and create a
comfortable environment to develop applications. We’ll also show you how to
refactor your code when it becomes necessary to make large changes, like
changing the name of a method or a heavily-used class. Because source code
maintainability is so vital today with complex web projects, we’ll show you
how to put your code under CVS source code control. Along the way, there will
be plenty of examples to help you understand how to use these features1 in
Creator projects.

1. This chapter focuses only on editing, refactoring, and versioning in
the IDE. To learn more about Creator’s software development fea-
tures beyond these topics, consult the NetBeans documentation.

S

27

28 Chapter 4 Software Development
4.1 Using the Java Source Editor

The Java source editor is where you’ll spend a lot of your time in Creator. This
section shows you useful features that make it easier to develop your applica-
tions.

Finding What You Need
Creator allows you to customize the Java editor to suit your individual tastes. If
you select Tools > Options from the Creator toolbar and select Java Editor
under the Editing > Editor Settings node, you will see General and Expert set-
tings for the editor, as shown in Figure 4–1.

Note that you can do basic things like change code formatting rules, add
new editor abbreviations, or modify code folding for imports and methods. If
you are feeling like an expert, you can change fonts and colors, key bindings,
and even the insertion blink rate (to save on your eyes). Take a few moments to
click on the customizer boxes with several of the features here, and you will
learn a lot about what you can do to customize the editor.

Figure 4–1 Java Editor Basic Options

4.1 Using the Java Source Editor 29
If you click the Advanced radio button in the Options dialog, you will see
the Java Code Formatting Rule settings under the Editing > Code Formatting
Rules node. Figure 4–2 shows the list of configurable rules that affect code for-
matting.

Formatting Code
Java code is automatically formatted in Creator according to default rules.
Members of classes, for example, are indented four spaces, continued state-
ments are indented eight spaces, and any tabs that you enter are converted to
spaces. No spaces are placed before an opening parenthesis, and an opening
curly brace is put on the same line as a class or method declaration.

To reformat all the code in any file in Creator, type <Ctrl-Shift-F>. This is very
handy right after you paste a code fragment from another file into your source
code. To indent blocks of code manually, type <Tab> or <Ctrl-T>. Typing <Shift-
Tab> or <Ctrl-D> reverses indents.

Figure 4–2 Java Editor Advanced Options

30 Chapter 4 Software Development
You can change any of Creator’s default settings for code formatting by
accessing the Java Indentation Engine. This can be done directly with the Java
Code Formatting Rule in the Advanced Options dialog (see Figure 4–2), or by
clicking on the customizer box for Code Formatting Rule in the Basic Options
dialog (see Figure 4–1).

Fonts and Colors
The Basic Options dialog (Figure 4–1) lets you configure font size and style, as
well as the foreground and background colors of the editor. Under Expert, click
the customizer box for Fonts and Colors. Figure 4–3 shows the settings for Java
Method calls.

Clicking the customizer box for a Foreground or Background Color brings
up a color palette to choose a different RGB value. Likewise, clicking the cus-
tomizer box for a Font allows you to change its style and point size. The Inherit

Figure 4–3 Fonts and Colors Dialog

4.1 Using the Java Source Editor 31
checkbox indicates whether or not a font or color should be inherited from the
Default syntax category.

Code Completion
One of the handier features of the IDE is code completion, which lets you type
part of a Java identifier and let the IDE finish the expression for you. To use this
feature, activate a code completion box with one of the following:

• Type a few characters in an expression, then press <Ctrl-Space> or <Ctrl-\>.
• Pause after you type a period (.) in an expression (this gives you a choice of

method names).
• Type the import keyword followed by a space.

A code completion box contains a list of choices to select from. After you
choose what you want, just press <Enter> to finish. To close the code completion
box without choosing anything, press the <Esc> key.

Figure 4–4 shows a code completion box and associated Javadoc popup win-
dow. Here we typed new List followed by <Ctrl-\> and selected ListDataPro-
vider in the code completion box. Note that the Javadoc window provides the
documentation for this class. After you press <Enter>, the IDE completes the
class name and adds the import statement for the class to your code.

Figure 4–4 Code Completion and Javadoc popup

32 Chapter 4 Software Development
Disabling Code Completion
You can disable the code completion box and Javadoc popups if you don’t want
them active. To do this, choose Tools > Options from the Creator menu, expand
the Editing > Editor Settings node, and select Java Editor. Under General, select
from any of the following.

• To disable the code completion box - uncheck the checkbox for Auto Popup
Completion Window.

• To disable Javadoc popups - uncheck the checkbox for Auto Popup Javadoc
Window.

• To change the code completion box display delay time - modify the default
of 500 milliseconds for the Delay of Completion Window Auto Popup.

Note that changing these options disables only the automatic appearance of
what the IDE does. Once disabled, you can still manually activate code comple-
tion with <Ctrl-Space> (or <Ctrl-\>). Likewise, typing <Ctrl-Shift-Space> manu-
ally activates Javadoc popups.

Code Folding
The Editor lets you collapse (or fold) certain sections of code to make room for
other lines. You may fold methods, inner classes, import blocks, and Javadoc
comments. Clicking a box icon in the left margin allows you to fold/unfold
code that is bracketed by a vertical line extending down from the icon.

It’s also possible to configure the IDE to fold code for you automatically. To
do this, click Tools > Options from the toolbar and select Editing > Editor Set-
tings > Java Editor. In the property window for Code Folding, click the custom-
izer box (see Figure 4–1) and select the checkbox for any code element that you
would like folded by default.

To access the code folding commands, right-click in the editor window and
select Code Folds from the context menu. Or, select Window > Code Folds from
the toolbar. Figure 4–5 shows the context menu for Code Folding and its short-
cuts.

Handling Imports
There are several ways to manage import statements in Creator. Here are the
choices:

• Fast Import (<Alt-Shift-I>) - lets you add an import statement to your code
for the currently selected identifier. Figure 4–6, for example, shows an
Import Class dialog for the selected identifier, ListDataProvider. Although

4.1 Using the Java Source Editor 33
only one import shows up here, this technique lets you choose the import
statement you want from a list in the dialog.

• Fix Imports (<Alt-Shift-F>) - lets you insert any missing import statements
for the entire file. Figure 4–7 shows the context menu when you right-click
in the editor window and move the cursor to the Fix Imports selection.

Figure 4–5 Code Folds

Figure 4–6 Fast Import using <Alt-Shift-I>

34 Chapter 4 Software Development
• Code Completion - you can also generate import statements with code
completion. Just type part of the class name with an open code completion
box and an import statement will be added to your code automatically.

Using Javadoc
A Javadoc popup window appears for any selected class when you type <Ctrl-
Shift-Space>. Press <Esc> to remove it. Additionally, you may open a web
browser for a selected class within the IDE. Just right-click the class and choose
Show Javadoc (or <Alt-F1>) from the context menu. You may close the internal
browser window by clicking the x in the Javadoc tab.

Abbreviations
The editor has an internal list of abbreviations that generate commonly used
keywords, identifiers, and code idioms. Just click on the Abbreviations custom-
izer box in the Basic Options dialog under General (see Figure 4–1). Figure 4–8
shows the default list of abbreviations. Type the abbreviation, press the
<Space>, and the editor fills in the expanded keywords or expressions for you.
If an abbreviation is the same as the text you want to type, press <Shift-Space>
to keep it from expanding.

The fora and fori abbreviations are very handy for generating for loops
and the trc, trcf, and trf abbreviations for try/catch/finally can save a lot

Figure 4–7 Fix Imports using <Alt-Shift-F>

4.1 Using the Java Source Editor 35
of typing time. Note that the Abbreviations dialog allows you to edit or remove
an abbreviation or add your own.

Generating Methods
The IDE helps you generate code when extending a class or implementing an
interface. Let’s show you how to do this now.

Overriding Methods
When you extend a class, overriding multiple methods and getting everything
right can be a tedious process. Creator’s IDE has an Override and Implement
Methods dialog to help you generate the code from a list of allowable methods
for an extended class. Here are the steps.

1. Define your class and type extends ClassName.
2. Select Tools > Override Methods from the toolbar (or press <Ctrl-I>).
3. Select the method(s) you want the IDE to override for your extended class.

Figure 4–9 shows the Override and Implements Methods dialog for a class
extended from ListProvider. Here we override the appendRow() and can-
InsertRow() methods. The Generate Super Calls checkbox makes the IDE
include calls to the super implementation of the method. Uncheck this box if
you don’t want this behavior.

Figure 4–8 Abbreviations Dialog

36 Chapter 4 Software Development
Implementing Interfaces
When you create a class that implements an interface, there can be many meth-
ods to implement. The IDE’s Synchronize feature helps you generate the neces-
sary methods. Here are the steps.

1. Define your class and type implements InterfaceName.
2. Select Tools > Synchronize from the toolbar.
3. Select the method(s) you want the IDE to implement.

You can also have the IDE automatically prompt you to generate methods
when you create a class that implements an interface. Here are the steps.

1. Select Tools > Options from the toolbar and click the Advanced radio button.
2. Expand the Editing > Java Sources node and select Source Synchronization.

Under General in the properties window, select the Synchronization
Enabled checkbox.

Figure 4–10 shows a Confirm Changes dialog when creating a class that imple-
ments the DataProvider interface.

Figure 4–9 Override and Implement Methods Dialog

4.1 Using the Java Source Editor 37
Generating Properties
With the IDE, it’s easy to generate properties that conform to the JavaBeans
component model. Here are the steps.

1. In the Projects window, expand your project node.
2. Right-click on a bean pattern node (Session Bean, Application Bean, etc.)
3. Choose Add > Property.
4. In the New Property Pattern dialog, type in the name of your property and

select its type (String is the default). Under Mode, select Read/Write
(default), Read Only, or Write Only.

5. Choose the options you want for code generation of the property.
6. When you click OK, the IDE will generate a field for the property and the

getter and setter methods for the field.

Figure 4–11 shows a New Property Pattern dialog for the status property.

Searching and Replacing
The IDE has several find commands that help you search and replace in your
code. These commands work with the current open file or with other project
files. Let’s show you how to use these different find commands.

Figure 4–10 Confirm Changes Dialog for Implementing Interfaces

38 Chapter 4 Software Development
Find Command
Selecting Edit > Find from the toolbar (or typing <Ctrl-F>) lets you find specific
character combinations in your current open file. You can match case, look for
whole words, search backwards, and use regular expressions in your search.
After you close a Find dialog, you can move to the next occurrence with <F3> or
move to the previous occurrence with <Shift-F3>.

To search and replace, select Edit > Replace from the toolbar (or type <Ctrl-
H>) and fill in the fields for Find What and Replace With. Figure 4–12 shows a
Find command that searches for isRowAvailable in the current open file.

Find Usages Command
The Find Usages command displays lines in your project according to what
you specify. Just select Edit > Find Usages from the toolbar (or type <Alt-F7>).
You may also bring up this command by right-clicking on a class, method, or
field name and selecting Find Usages from the context menu. The Find Usages
command is case-insensitive and doesn’t match parts of words, but you can
have it look for a variety of different things, such as:

• Class, interface, method, or field declarations

Figure 4–11 New Property Pattern Dialog

4.1 Using the Java Source Editor 39
• Method declarations or variables of classes and interfaces
• Specific occurrences, like new instances, imports, extending classes,

implementing interfaces, casts, and throwing exceptions
• Methods or fields of a specific type
• Getters and setters of a field
• Method invocation
• Overriding methods
• Comments that refer to an identifier

The results of the Find Usages command appear in a separate Usages window
at the bottom of your screen (like the Output window). Figure 4–13 shows an
example of a Usages window. Here we show the results of a Find Usages com-
mand for the variable retValue. Double-clicking on any of the retValue
occurrences takes you to the spot in the file where it’s used.

Find in Projects Command
The Find in Projects command lets you search project files for characters in a
file, filename characters, file type, file modification dates, and version control
status. Just select Edit > Find in Projects (or type <Ctrl-Shift-F>) from the toolbar,

Figure 4–12 Find command

Figure 4–13 Find Usages command

40 Chapter 4 Software Development
or right-click a folder in the Files window and select Find from the context
menu. Figure 4–14 shows the Find in Projects dialog for the text SessionBean.

The results of a Find in Projects command appear in a Search Results win-
dow at the bottom of your screen. With full-text searches, you can expand
nodes to see which files contain your patterns. Double-clicking on any of the
occurrences takes you to the spot in the file where it is used. Figure 4–15 shows
the Search Results window for the text SessionBean.

Navigating Files
When you right-click in the editor window and select Go To, a context menu
lists ways to navigate from your current file to other places. You may navigate
to the super implementation of a class, a specific line number, a declaration, or
to the source code for a class, method, or field. Figure 4–16 shows the context
menu for Go To and its shortcuts.

If you right-click in the editor window and choose Select in, you can navi-
gate to other project files or to other files in the same package. These options
are also available from the toolbar by clicking Window > Select Document in.
Figure 4–17 shows the context menu for Select In and its shortcuts.

Figure 4–14 Find in Projects command

4.1 Using the Java Source Editor 41
Task Lists
During a hectic software development project, who wants to write notes on
post-its to remind themselves to do something important? To help with this,
the IDE supports task lists. Task lists provide a way to document and clean up
any loose ends in your code.

Figure 4–15 Search Results window

Figure 4–16 Navigation with Go To

42 Chapter 4 Software Development
Task lists manage special “tag” words that you mark in your code. These tag
words typically appear in comments, such as

To see what tag words are available for your task list, click Tools > Options
from the toolbar, click the Advanced radio button, and select the Editing > To
Do Settings node. Click the Task tags customizer box to see the list of tags and
their priorities. Figure 4–18 shows the Task Tags dialog.

// TODO: add your event handler here..
// PENDING: Gail will write this code

Figure 4–17 Navigation with Select in

Figure 4–18 Task Tags dialog

4.2 Refactoring 43
Note that it’s possible to change or delete the default list of tags, and you can
add you own tag to the task list. You can also change a tag’s priority. The avail-
able priorities are High, Medium-High, Medium, Medium-Low, and Low. By
default, all tags have Medium priority, except the <<<<<<< tag, which has High
priority.

To view the task list, select View > To Do (or type <Ctrl-6>) from the toolbar.
This brings up the To Do window, which appears at the bottom of your screen
(like the Output window). Inside the To Do window, you can view tasks for the
current file, all open files, or for a specific folder. If you right-click in the win-
dow and select List Options, you can sort the task list by task, location, or pri-
ority. If you double-click any tag line in the task list, the editor highlights the
source code line in the file where the tag appears. Figure 4–19 shows an exam-
ple of a task list in the To Do window for opened files.

The To Do window also supports a handy feature called filters, which allow
you to limit what you see in this window. If you click on the filter icon (to the
left of the combo box on the toolbar), the IDE brings up an Edit Filters dialog.
To create a new filter, click on the New button and type a filter name in the
Name field. Below this, you may specify more than one criteria and match any
or all of the criteria. When you’re done, your newly defined filter will appear in
the combo box on the toolbar of the To Do window.

Figure 4–20 shows you how to create a filter for the PENDING tag. This
makes the To Do window display only the PENDING tag lines when you select
PENDING in the Combo box.

4.2 Refactoring

Sometimes you need to make “global” changes to your project, like renaming a
heavily-used class, field, or method. You might also have to add a new param-
eter to a method or move a class to a different package. You could do these
things manually, but it would be tedious, error-prone, and well, a lot of work.
A better approach is to have the IDE help you. Making these kinds of modifica-

Figure 4–19 To Do window

44 Chapter 4 Software Development
tions is called refactoring. In this section we’ll show you how to use the refactor-
ing features of the IDE. This knowledge can save you a lot of time, especially in
large projects with many files.

What is Refactoring?
Refactoring is transforming and restructuring source code so that the refac-
tored code behaves the same as the original source. In an object-oriented devel-
opment environment like Java, refactoring must apply to classes, fields, and
methods. Some examples of refactoring are relatively simple, like renaming a
class, field, or a method. Other types of refactoring are more complicated, like
changing the signature of a method or moving a class to a different package.

Here are several reasons why you would refactor your source code.

• You want to add a new feature to your code.
• You need to remove unnecessary repetitions.
• You want to reduce complexity for better understanding.
• You want to make your code more maintainable for others.

Let’s explore how Creator’s IDE helps you refactor. We’ll show you how to use
the refactoring features in the IDE and explain how to use them with existing
projects. As you will see, the IDE not only lets you preview the changes before
you make them, but the IDE also gives you a chance to undo your refactoring
changes if you make a mistake.

Here are the refactoring features in the IDE.

Figure 4–20 Task Edit Filters dialog

4.2 Refactoring 45
• Find Usages - determine where classes, fields, and methods are used in your
source code.

• Renaming - change the name of a class, field, or method. Automatically
updates all the references to these elements in your source code.

• Encapsulating Fields - generates getter and setter methods for fields.
Optionally updates all references to a field using the getters and setters.

• Change Method Signatures - add parameters to methods and change the
method’s visibility.

• Move Classes - move a class to another package or inside another class.
Automatically updates your source code to reference the class from its new
location.

Refactoring Window
All the refactoring commands make use of a refactoring window, which
appears at the bottom of your screen in the IDE (in the same place as the output
window). This window is created when you execute a refactoring command.
The window provides a preview of files and class elements that are affected by
each refactoring command.

Here’s what you can do in the Refactoring window.

• Allow or disallow a refactoring change.
• Open the file in the editor for the line(s) to be refactored.
• Refresh the refactoring preview.
• Exit without making any changes.
• Apply the refactoring changes.

We’ll show you how to use the refactoring window in the forthcoming exam-
ples.

Payment Project
Let’s begin with an existing Creator project called Payment1, a monthly pay-

ment calculator. (Project Payment1 is in the download for this book under
FieldGuide2/Examples/JavaBeans/Projects.) Open Project Payment1 and
deploy it by selecting Run Main Project on the Creator toolbar (or click the Run
icon). When the web page comes up in your browser, you will see the payment
for a default loan amount, interest rate, and loan term. Try different values for
each parameter and click the Calculate button to see the recalculated loan pay-
ment.

We’ll actually have you build this project from scratch in a later chapter, but
let’s use it now to demonstrate refactoring.

46 Chapter 4 Software Development
Copy Project
This step is optional. If you don’t want to copy the project, simply skip this sec-
tion and make modifications to the Payment1 project.

1. Bring up project Payment1 in Creator, if it’s not already opened.
2. From the Projects window, right-click node Payment1 and select Save

Project As. Provide the new name PaymentRF.
3. Close project Payment1. Right-click PaymentRF and select Set Main Project.

You’ll make changes to the PaymentRF project.
4. Expand PaymentRF > Web Pages and open Page1.jsp in the design view.
5. Click anywhere in the background of the design canvas of the PaymentRF

project. In the Properties window, change the page’s Title property to Pay-
ment Calculator - Refactor.

Find Usages
When it’s time to refactor, the first thing you’ll want to do is issue a Find
Usages command. You already know how to determine where classes, fields,
and methods are used in your source code (see “Find Usages Command” on
page 38), but let’s look at this technique again as it relates to refactoring.

The Payment Calculator project uses a LoanBean class to calculate payments
from the input parameters supplied on the web page. Let’s use the Find Usages
command to determine where this LoanBean class is used in our source code.

1. Bring up the Projects view, if it is not already opened.
2. Expand the Source Packages > asg.bean_examples node.
3. Right-click LoanBean.java and select Find Usages in the context menu.
4. In the Find Usages dialog, click the Search in Comments checkbox, then

click the Next button.
5. The IDE displays a Usages window. Click the Show Physical View icon in

the bottom left margin of the window. The Usages window shows you all
the occurrences of the LoanBean class in the project (see Figure 4–21).

6. Double-click any of the LoanBean references in the window. This takes you
to the appropriate line in LoanBean.java or SessionBean1.java where these
statements appear.

Renaming Classes
Let’s change the name of the LoanBean class in this project. The Find Usages
command shows the LoanBean object is instantiated in SessionBean1.java. It
also lists the other places in this file where the LoanBean class is referenced.

Here are the refactoring steps to change the name of the LoanBean class and
all its references in the project.

4.2 Refactoring 47
1. Double-click LoanBean.java in the Projects view. This brings up this file in
the editor window.

2. Find the LoanBean class declaration in LoanBean.java and right-click the
LoanBean name. Select Refactor > Rename from the context menu.

3. In the Rename dialog, type MyLoanBean in the New Name field and click
the Apply Rename on Comments checkbox.

4. Make sure the Preview All Changes checkbox is checked in the Rename dia-
log.

5. Click the Next button.
6. The IDE displays a Refactoring window. Click the Show Physical View icon

in the bottom left margin of the window. Figure 4–22 shows seven occur-
rences (including comments) of the LoanBean class in the project.

The Refactoring window lists all the occurrences of LoanBean in two files,
LoanBean.java and SessionBean1.java. The checkboxes next to each refactor-
ing line let you allow (checked) or disallow (unchecked) the refactoring. There
are buttons in the left margin of the window to refresh the refactoring data, col-

Figure 4–21 Find Usages for LoanBean

Figure 4–22 Refactoring window

48 Chapter 4 Software Development
lapse the nodes in the tree, and show the logical and physical views of the
refactoring lines.

Let’s finish the class name refactoring now.

1. Leave all the checkboxes checked in the Refactoring window.
2. Click the Do Refactoring button.
3. Click the x in the top right corner of the Usages window to remove this win-

dow from the display.
4. Verify that the file name MyLoanBean.java now appears in the Projects

view.
5. Right-click the MyLoanBean class name in MyLoanBean.java and select

Find Usages in the context menu. In the Find Usages dialog, make sure the
Search in Comments checkbox is still checked.

6. Click the Next button. In the Usages window, click the Show Physical View
icon in the bottom left margin of the window. You should see the newly
applied changes from the refactoring, including MyLoanBean as the new
class name (Figure 4–23).

7. Right-click the PaymentRF project in the Projects window and select Clean
and Build Project (this may take a few moments). Verify that your project
compiles without errors.

Undo and Redo
Everything should have worked fine here, but let’s show you the Undo and
Redo commands anyway. Select Refactor > Undo [Rename] from the Creator
toolbar (you can also right-click in the editor and select this from the context
menu). You’ll see all your refactoring changes restored back to their original
values. This can be very valuable when you realize that a refactoring did not do
exactly what you wanted.

After an undo command, it’s possible to redo refactoring changes by select-
ing Refactor > Redo [Rename] from the toolbar or from the context menu. Let’s

Figure 4–23 Find Usages for MyLoanBean

4.2 Refactoring 49
leave our changes undone for now and show you another way to refactor
classes.

Refactoring for Renamed Files
Refactoring is also done when you rename class files in the Projects or Files
window. This brings up the Refactor Code for Renamed File(s) dialog. Let’s
show you how to rename your LoanBean class with this technique.

1. Switch from the Projects view to the Files view.
2. Under PaymentRF, open the src > asg > bean_examples node.
3. Right-click LoanBean.java and select Rename.
4. In the Rename dialog, type MyLoanBean in the New Name field. Click OK.
5. The Refactor Code for Renamed File(s) dialog appears (see Figure 4–24).

Click Next.
6. The IDE displays a Refactoring window. Click the Show Physical View icon

in the bottom left margin of the window. The refactoring changes should be
the same as what you did before (see Figure 4–22 on page 47).

7. Click Do Refactoring.
8. Verify that the file name MyLoanBean.java now appears in the Files view.
9. Right-click the PaymentRF project in the Projects window and select Clean

and Build Project (this may take a few moments). Verify that your project
compiles without errors.

Creator Tip

Make sure you use the IDE to rename class files. If you rename your files with
Windows explorer or other file system utilities, Creator won’t be able to track
your changes.

Figure 4–24 Refactor code for renamed file

50 Chapter 4 Software Development
Renaming Fields and Methods
Renaming a class field or method is done the same way as renaming a class.
Here are the steps.

1. Find the field or method you want to rename in the editor. In the Projects
view, expand the source file nodes until you find the field or method you
want.

2. Right-click the field or method and select Refactor > Rename from the con-
text menu.

3. In the Rename dialog, type the New Name for the field or method.
4. Click the Next button.
5. In the Refactoring window, review the lines of code that will be refactored.

Clear any checkboxes for code that you do not want changed.
6. Click the Do Refactoring button to make the changes.
7. Right-click on your project name in the Projects view and select Clean and

Build Project. Verify that your project compiles without errors.

Creator Tip

Be careful with refactoring fields and methods of JavaBeans components.
With JavaBeans, the setters and getters use naming conventions which could
be disrupted by an improper refactoring. Refactoring JavaBeans could also
adversely affect bindings and other assumptions made by the IDE.

Encapsulating Fields
Refactoring lets you encapsulate fields, which insures that class fields can only
be accessed by getter and setter methods. This type of encapsulation enforces
data hiding and improves maintainability. Typically, a class field’s visibility is
restricted to private, whereas the getter and setters for the field are marked as
public. Other visibility choices are possible (protected with inheritance access,
for instance).

The IDE supports the following refactoring features for Encapsulating
Fields.

• Generate getter and setter methods for fields.
• Modify the visibility modifier for the fields and the getters and setters.
• Replace references to field names with calls to the getters or setters.

Let’s modify our Payment Calculator project and show you how to encapsu-
late a field and generate setters and getters for the field. Here are the steps.

1. Open MyLoanBean.java in the editor if it is not already open.

4.2 Refactoring 51
2. Add the following field declaration to your code, right below the MyLoan-
Bean constructor.

3. Select the version field. Choose Refactor > Encapsulate Fields from the tool-
bar (or right-click the version field and select this option from the context
menu).

4. In the Encapsulate Fields dialog, make sure the version field’s checkbox is
checked. Select protected in the combo boxes for both the Fields’ Visibility
and the Accessors’ Visibility (see Figure 4–25). Click Next.

5. The IDE displays a Refactoring window. Click the Show Physical View icon
in the bottom left margin of the window. The Refactoring window shows the
changes that will be made to encapsulate the version field (Figure 4–26).

6. Click Do Refactoring. Verify that the code for setter method setVersion()
and getter method getVersion() now appear in MyLoanBean.java with
protected visibility. The version field should be protected as well.

7. Right-click your project name in the Projects view and select Clean and
Build Project (this may take a few moments). Verify that your project com-
piles without errors.

Changing Method Signatures
The design of class methods is crucial to the behaviors of object-oriented
designs and reusable classes. During the early stages of development, it’s easy

private String version = "Version 1.0";

Figure 4–25 Encapsulate Fields dialog

52 Chapter 4 Software Development
to develop methods with several parameters and change them when you need
to. But near the end of a large development cycle, changing the signature of a
heavily used class method can be a time-sink, because the change often propa-
gates to a large number of invocations in source code. Refactoring can be a big
help here, because the IDE can update all the method calls for you.

The IDE supports the following refactoring features for Changing Method
Signatures.

• Add parameters to a method’s signature.
• Reorder the parameters in a method’s signature.
• Change the visibility for a method.

Creator Tip

Refactoring does not allow you to remove a parameter from a method’s
signature. You can’t refactor a method’s return type, either. If you need to do
these things in your project, you’ll have to do it manually.

Generate New Method
Before we show you how to refactor a method’s signature, let’s add a new
method to the MyLoanBean class and call it from the Payment Calculator. Here
are the steps.

1. Open MyLoanBean.java in the editor if it is not already open.
2. Add the following method to your code, right below the setVersion() and

getVersion() methods.

3. Return to Page1.java in the editor and click the Design button to bring up
the design view.

public String getInfo() { return version; }

Figure 4–26 Refactoring window for Encapsulate Fields

4.2 Refactoring 53
4. Double-click the Calculate button. This generates a calculate_action()
method in Page1.java. Add the following code before the return statement
(new code is in bold).

5. Click the Run icon on the toolbar to deploy the Payment Calculator applica-
tion. Type input values on the page and click the Calculate button.

6. In the Servers window, right-click Deployment Server and select View
Server Log.

7. In the Output window, you should see the string “Version 1.0” appear in the
server log.

Add Method Parameter
Now let’s add a new parameter to our getInfo() method and refactor it in our
project. Here are the steps.

1. Select the getInfo() method in the editor. Select Refactor > Change Method
Parameters from the toolbar (or right-click the getInfo() method and select
this option from the context menu).

2. In the Change Method Parameters dialog, type who for Name, String for
Type, and “paul” for Default Value. To edit these, you’ll need to double-
click each cell.

3. Leave the Access Modifier public and make sure the Preview All Changes
checkbox is checked (see Figure 4–27). Click Next.

4. The IDE displays a Refactoring window. Click the Show Physical View icon
in the bottom left margin of the window.The Refactoring window shows the
changes that will be made to refactor the getInfo() method (see Figure 4–
28).

public String calculate_action() {
// TODO: Process the button click action...
log(getSessionBean1().getLoanBean().getInfo());
return null;

}

Figure 4–28 Refactoring window for Changing a Method’s signature

54 Chapter 4 Software Development
5. Click Do Refactoring. Verify that a new parameter was added to the get-
Info() method in MyLoanBean.java. Modify this code as follows (new
code is bold).

6. Verify that the call to getInfo() in Page1.java was modified, too. Here’s
what it should look like (new code is bold).

Now deploy, run, and test the project.

1. Right-click your project name in the Projects view and select Clean and
Build Project (this may take a few moments). Verify that your project com-
piles without errors.

2. Click the Run icon on the toolbar to deploy the Payment Calculator applica-
tion. Type input values on the page and click the Calculate button.

3. In the Servers window, right-click Deployment Server and select View
Server Log.

public String getInfo(String who) {
return version + "-" + who;

}

public String calculate_action() {
// TODO: Process the button click action...
log(getSessionBean1().getLoanBean().getInfo("paul"));
return null;

}

Figure 4–27 Change Method Parameters dialog

4.2 Refactoring 55
4. In the Output window, you should see the string “Version 1.0-paul” appear
in the server log.

Reordering Parameters
Reordering parameters in a method’s signature is done the same way as adding
a parameter. Here are the steps.

1. Select the method you want in the editor. Select Refactor > Change Method
Parameters from the toolbar (or right-click the method and select this option
from the context menu).

2. Select the parameter you want to move and click Move Up or Move Down.
This changes its position in the list. Click Next.

3. In the Refactoring window, review the lines of code that will be refactored.
Clear any checkboxes for code that you do not want changed.

4. Click Do Refactoring to make the changes.
5. Right-click your project name in the Projects view and select Clean and

Build Project. Verify that your project compiles without errors.

Changing a Method’s Visibility
The refactoring commands for a method’s visibility are very similar to the oth-
ers. Here are the steps.

1. Select the method you want in the editor. Select Refactor > Change Method
Parameters from the toolbar (or right-click the method and select this option
from the context menu).

2. Select an Access Modifier for the method’s visibility from the combo box
(options are public, protected, private, or default). Click Next.

3. In the Refactoring window, review the lines of code that will be refactored.
Clear any checkboxes for code that you do not want changed.

4. Click the Do Refactoring button to make the changes.
5. Right-click your project name in the Projects view and select Clean and

Build Project. Verify that your project compiles without errors.

Creator Tip

Note that the code for the getInfo() method refers to the version field
directly. By refactoring, you can make this method use the getter method for
the field instead. To do this, select the version field and choose Refactor >
Encapsulate Fields. Make sure the checkbox is checked for Use Accessors
Even When Field is Accessible. Click Do Refactoring. You will see code in
getInfo() that now calls getVersion() to get the version field’s value.

56 Chapter 4 Software Development
Moving Classes to Different Packages
Another important refactoring feature is moving a class from one package to a
another. This kind of code change can certainly be a hassle to do manually, so
refactoring is a big help here.

There are two approaches for moving a class between packages, so let’s
show you how to do both. Here are the steps for the first approach.

Moving Classes
1. Bring up the Projects view, if it is not already opened.
2. Under PaymentRF, expand the Source Packages > asg.bean_examples node.

Note that MyLoanBean.java is contained in this package (Figure 4–29).

3. Right-click MyLoanBean.java and select Refactor > Move Class from the
context menu.

4. In the Move Class dialog, select payment1 from the combo box for To Pack-
age (see Figure 4–30).

5. Make sure the Preview All Changes checkbox is checked. Click Next.
6. The IDE displays a Refactoring window. Click the Show Physical View icon

in the bottom left margin of the window.The Refactoring window shows the
refactoring statements that move the MyLoanBean class to the payment1
package (Figure 4–31).

7. Click Do Refactoring to make the changes. Verify that MyLoanBean.java
has been moved to the payment1 package in the Projects View (see
Figure 4–32).

Figure 4–29 Projects window before refactoring

4.2 Refactoring 57
8. Right-click your project name in the Projects view and select Clean and
Build Project (this may take a few moments). Verify that your project com-
piles without errors.

9. Click the Run icon on the toolbar to deploy the Payment Calculator applica-
tion. Verify that everything works.

Refactoring for Moved Files
The IDE has other ways to move class files between packages. The Refactor
Code for Moved Class dialog opens whenever you perform the following
actions:

• Cut and paste files in the Projects or Files window.
• Drag and drop files in the Projects or Files window.

Figure 4–30 Move Class dialog

Figure 4–31 Refactoring window for Move Class

58 Chapter 4 Software Development
• Type a new package name in the Projects window for a package node.
• Type a new folder name in the Files window for a folder node.

Let’s show you how to use this technique. Here are the steps.

1. Select Refactor > Undo [Move class] to put the MyLoanBean class back in the
original package.

2. In the Projects view under PaymentRF, open the Source Packages >
asg.bean_examples node.

3. Right-click LoanBean.java and select Cut.
4. Right-click package payment1 and select Paste.
5. The Refactor Code for Moved Class dialog appears (Figure 4–33). Click

Next.
6. The IDE displays a Refactoring window. Click the Show Physical View icon

in the bottom left margin of the window. The refactoring changes should be
the same as what you did before (see Figure 4–31 on page 57).

7. Click Do Refactoring.
8. Verify that MyLoanBean.java has been moved to the payment1 package in

the Projects View (see Figure 4–32 on page 58).
9. Right-click the PaymentRF project in the Projects window and select Clean

and Build Project (this may take a few moments). Verify that your project
compiles without errors.

Figure 4–32 Projects window after refactoring

4.3 Source Code Control with CVS 59
4.3 Source Code Control with CVS

Version control allows developers to track the changes they make to their
source code. With version control, you can determine when a change was made
and by whom. You can also use version control to track bugs and generate spe-
cific builds that might customize certain parts of your system. All this works
for a single developer working on a project as well as a group working on the
same project code.

Creator supports several Version Control Systems (VCS), but we’ll show you
CVS (Concurrent Versioning System) which is very popular with developers.
You’ll learn how to create CVS working directories and repositories, import
source code into CVS, and check out modules. You’ll also see how to commit
editing changes to CVS, compare revisions, and examine log histories of code
changes. As before, we’ll use our Payment Calculator project to show you how
to use CVS with Creator.

Copy Project
This step is optional. If you don’t want to copy the project, simply skip this sec-
tion and make modifications to the Payment1 project.

1. Bring up project Payment1 in Creator, if it’s not already opened.
2. From the Projects window, right-click node Payment1 and select Save

Project As. Provide the new name PaymentCVS.

Figure 4–33 Refactor Code for Moved Class dialog

60 Chapter 4 Software Development
3. Close project Payment1. Right-click PaymentCVS and select Set Main
Project. You’ll make changes to the PaymentCVS project.

4. Expand PaymentCVS > Web Pages and open Page1.jsp in the design view.
5. Click anywhere in the background of the design canvas of the PaymentCVS

project. In the Properties window, change the page’s Title property to Pay-
ment Calculator - CVS.

Setting up CVS
The IDE provides two ways to work with CVS in Creator. You can use the built-
in CVS client in Creator (written in Java) that helps you connect to CVS reposi-
tories on remote machines. Or, you can install CVS locally and have the IDE
work with CVS directly on your machine. This is the approach we’ll show you
here.

Installing CVS
If you don’t have CVS installed on your system already, it’s fairly easy to find
an open source version on the web for CVS. Download the appropriate version
for your machine and install it. Make sure you can run the cvs command from
a command prompt window.

Create CVS Profile
In CVS, you will need to setup two directories: a repository directory, which
stores a project’s full revision history, and a working directory to store the files
in your project. Here are the steps.

1. Outside the IDE, create a directory or folder for your CVS repository. Make
sure this is a safe place where accidental deletions are unlikely (a temp
directory, for instance, would be a poor choice).

2. Outside the IDE, create a directory or folder for your CVS working directory.
(You can skip this step if you already have a directory with source files and
you’re willing to use this directory for version control.)

3. From the Creator toolbar, select Versioning > Versioning Manager. In the
dialog box, click the Add button.

4. In the Add Versioned Directory dialog, select CVS for the System Profile.
5. Fill in the location of the CVS working directory you created in Step 2.
6. Set the Repository Path to the name of the CVS repository you created in

Step 1.
7. Click the Use Command-Line CVS Client radio button and make sure cvs is

set for your CVS executable.
8. Uncheck the Perform Checkout checkbox and Click Finish (see Figure 4–34).
9. When you return to the Add Versioned Directory dialog, you should see

your working directory appear. Click Close to exit this dialog.

4.3 Source Code Control with CVS 61
Initialize CVS Repository
Now that the CVS repository directory has been created, you need to initialize
it. Here are the steps.

1. From the Creator toolbar, select Versioning > CVS > Init Local Repository.
This brings up the CVS Init dialog.

2. Select your Repository Path in this dialog, click the Set As Default button to
remember these values, then click OK (see Figure 4–35).

Figure 4–34 CVS Profile Dialog

62 Chapter 4 Software Development
Importing Files
Now that you’ve setup and initialized your CVS directories, the next step is to
import source files into the CVS repository. This is very straightforward, the
only thing you have to watch are your own binary file types, like images and
jar files.

Creator Tip

Version control works by storing your changes as textual diff statements. You
don’t want to import your own binary files (images, jar files, etc.) into the
repository, because textual diffs won’t work. The easiest thing to do is to
remove binary files from your project directory before you import. After you
checkout the files into your working directory, you can use the CVS > Add
command to put the binary files back in your project. (See “Creator Tip” on
page 72.)

Here are the steps to import the Payment source files into the CVS reposi-
tory.

1. From the Creator toolbar, select Versioning > CVS > Import. This brings up
the CVS Import dialog.

2. In this dialog, set Directory to Import to the location of your source files to
import.

3. Choose local for the CVS Server Type.
4. Set the Repository Path to your CVS repository directory.
5. Type PaymentCVS for your Repository directory.
6. Click the Use Command-Line CVS Client radio button and make sure cvs is

set for your CVS executable.

Figure 4–35 Initialize CVS Repository

4.3 Source Code Control with CVS 63
7. Fill in Logging Message, Vendor Tag, and Release Tag as shown, and
uncheck the Perform Checkout After Import checkbox.

8. Click the Set As Default button to store these values.
9. Click OK (see Figure 4–36). In the VCS Output window under Standard

Output, you should see a list of imported files in your repository.

Checking Out Files
Now that the files are residing in the CVS repository, you must check them out
into your CVS working directory. This directory is where you will make your
changes under version control. Here are the steps.

Figure 4–36 CVS Import Dialog

64 Chapter 4 Software Development
1. From the Creator toolbar, select Versioning > CVS > Check Out. This brings
up the CVS Checkout dialog.

2. In this dialog, set the Working Directory to the name of your CVS working
directory.

3. Choose local for the CVS Server Type.
4. Set the Repository Path to your CVS repository directory.
5. Click the Use Command-Line CVS Client radio button and make sure cvs is

set for your CVS executable.
6. Click the Module(s) radio button and type in PaymentCVS.
7. Click OK (see Figure 4–37). In the VCS Output window under Standard

Output, you should see a list of checked-out files in your working directory.

Figure 4–37 CVS Checkout Dialog

4.3 Source Code Control with CVS 65
Updating Source Files
In this section we’ll show you how to access files in your working directory,
edit their contents, then update them under CVS version control.

Versioning Window
Before you make a change to your code, let’s open the Versioning window and
see what the PaymentCVS project looks like. Here are the steps.

1. From the Creator toolbar, Select View > Versioning > Versioning (or type
<Ctrl+8>).

2. The Versioning window appears in the top left portion of the screen. Expand
the source nodes for src > asg > bean_examples > LoanBean.java, src >
payment1 > Page1.java, and web > Page1.jsp (see Figure 4–38).

Figure 4–38 CVS Versioning Window

66 Chapter 4 Software Development
Note that all .java and .jsp files are listed as Up-to-date with 1.1.1.1 being the
Initial revision.

Editing Source Files
Let’s modify our project code and test it. Here are the steps.

1. Bring up Page1.jsp in the Design view. On the page for the Payment Calcu-
lator, double click the Calculate button. This generates a
calculate_action() button handler code in Page1.java.

2. Let’s write to the log file for a button push. Add the following code before
the return statement (new code is in bold).

3. Save your changes. Note that Page1.java and Page1.jsp are marked as
Locally Modified in the Versioning window.

4. Click the Run icon on the toolbar to deploy the Payment Calculator applica-
tion. Type input values on the page and click the Calculate button.

5. In the Servers window, right-click Deployment Server and select View
Server Log.

6. In the Output window, you should see the string “Version 1.1” appear in the
server log.

Committing Source Files
Now that you’ve tested the code to make sure it works, let’s store your changes
under version control. Here are the steps.

1. In the Versioning window, right-click Page1.java and select CVS > Update.
This ensures that your local copies of the files are up-to-date. You should see
a successful update appear in the VCS Output window under the Standard
Output tab.

2. Right-click Page1.java again and choose CVS > Commit. This brings up a
CVS Commit dialog for Page1.java.

3. In the window for Enter Reason, type log button push.
4. Follow these same steps for Page1.jsp. Provide the same input log button

push for Enter Reason when you commit.
5. The Versioning window should now mark the Page1.java and Page1.jsp

files Up-to-date as revision 1.2 (see Figure 4–39).

public String calculate_action() {
// TODO: Process the button click action...
log("Version 1.1");
return null;

}

4.3 Source Code Control with CVS 67
Comparing File Revisions
During a hectic software development cycle, it’s often necessary to compare file
revisions and track down what happens as code evolves. This helps everyone
understand what changes were made, by whom, and when.

At this point, you have revision 1.1 (initial) and revision 1.2 (log button
push) for both the Page1.java and Page1.jsp files. Let’s look at Page1.java and
show you how to see the changes you just made to the project for that file. Here
are the steps.

1. In the Versioning window, right-click on the 1.1 Initial revision under
Page1.java and select Diff Graphical.

Figure 4–39 Commit CVS files

68 Chapter 4 Software Development
2. A Page1.java [VCS Diff] graphical visualizer window appears, showing
you the changes between revision 1.1 on the left and your working file (revi-
sion 1.2) on the right (see Figure 4–40).

The Graphical Visualizer gives you a side-by-side view of the changes in the
main window. You’ll see changed lines highlighted in blue, lines added since
an earlier revision highlighted in green, and lines removed highlighted in red.
Try the Graphical Visualizer with Page1.jsp to see the differences between its
two revisions. You can also <Shift-Click> revision nodes in the Versioning win-
dow and right-click either of the nodes to select Diff Graphical.

Creator Tip

The Visualizer also lets you see the differences between revisions as text
differences. To see your changes in this format, click the Visualizer combo box
and select Textual Diff Viewer.

Viewing History
During software development, it’s important to track the changes that have
made to a module and by whom. This sections shows you how to use the CVS
History command to get this information.

Figure 4–40 CVS Graphical Visualizer

4.3 Source Code Control with CVS 69
History Log
The CVS History Log command gives you a full list of a file’s revisions, tags,
and commit history. Let’s show you what this looks like for the changes we
made to Page1.java. Here are the steps.

1. Right-click Page1.java in the Versioning window.
2. Select CVS > History > Log.
3. A history log should appear in the IDE main window displaying the com-

plete revision history of Page1.java (see Figure 4–41).

History Annotation
Another useful CVS history command is annotation. The CVS History Annota-
tion command displays information about each line in source file, including
when a line was changed and by whom. Let’s try this out with our Page1.java
file. Here are the steps.

1. Right-click Page1.java in the Versioning window.
2. Select CVS > History > Annotate.
3. A history annotation should appear in the IDE main window displaying the

revision history of Page1.java line-by-line. In Figure 4–42, we show you
which lines in the file were introduced for revision 1.2 and by whom.

Figure 4–41 CVS History Log

70 Chapter 4 Software Development
Adding and Removing Files
After you import your source files and check them out, CVS allows you to add
and remove source files from your CVS working directory. This section shows
you how to use these commands.

Add Command
The CVS Add command lets you schedule a new file to be added to your work-
ing directory. The CVS status of a file must be set to Local, or the CVS Add
command is not available for that file.

Let’s create a new java file in our working directory and add it to the reposi-
tory. We’ll also commit this file and put it under version control. Here are the
steps.

1. In the Files window, right-click src > asg > bean_examples and select New >
Java Class.

2. Type DemoBean for the New Class Name in the New Java Class dialog.
Click the Finish button.

3. In the Versioning window, the DemoBean.java file should appear under the
bean_examples node, marked as Local.

4. Right-click DemoBean.java and select CVS > Add. This brings up the CVS
Add dialog.

5. Type Demo Bean for the File Description and click the Textual radio button.

Figure 4–42 CVS History Annotation

4.3 Source Code Control with CVS 71
6. Check the Proceed with Commit If Add Succeeds checkbox. Click OK (see
Figure 4–43).

7. In the VCS Output window, an Update tab will open and display status.
Since you clicked the commit radio button in the CVS Add dialog, CVS will
commit the file after the Add succeeds. In the CVS Commit dialog, type Ini-
tial revision in the window for Enter Reason.

8. The Versioning window should now reflect the CVS status change of Demo-
Bean.java to Up-to-date with revision 1.1 (see Figure 4–44).

Figure 4–43 CVS Add Dialog

Figure 4–44 CVS Add New File

72 Chapter 4 Software Development
Creator Tip

Check the Textual radio button for text files and the Binary radio button for
binary files. Use the CVS > Add command to restore binary files (images and
jar files) that you removed during a CVS import. (See “Creator Tip” on
page 62.) If you do not check the commit checkbox in the Add dialog, your file
will not be added to CVS until you run the CVS > Commit command.

Remove Command
The CVS Remove command deletes your local copy and schedules the file for
removal from the CVS repository. To show you how this works, let’s delete the
DemoBean.java file you just added. Here are the steps.

1. In the Versioning window, right-click DemoBean.java and select CVS >
Remove.

2. Click Yes in the Question dialog. The CVS Remove dialog will appear.
3. Check the Proceed with Commit If Remove Succeeds checkbox. Click OK

(see Figure 4–45).

4. In the VCS Output window, an Update tab will open and display status.
Since you clicked the commit radio button in the CVS Remove dialog, CVS
will commit the file after the Remove succeeds. In the CVS Commit dialog,
type Not necessary in the window for Enter Reason.

5. In the Versioning and Projects windows, the DemoBean.java will not
appear.

Configuring CVS Settings
The IDE lets you configure CVS with settings that apply to a single local work-
ing directory or globally for all projects under version control. Let’s show you
how to access these settings for CVS management.

Figure 4–45 CVS Remove File

4.3 Source Code Control with CVS 73
Local Settings
The IDE lets you view or change settings for your working directory. Here are
the steps for the PaymentCVS project.

1. From the Creator toolbar, select Versioning > Versioning Manager. In the
Versioning Manager dialog, select the working directory and click Edit. (Or,
right-click the working directory in the Versioning window and select Cus-
tomize.)

2. The Customizer dialog has four tabs: Profile, Advanced, Environment, and
Properties. Figure 4–46 shows the settings under the Properties tab. Note
that changes made in the Customizer apply only to the working directory
you select.

Global Settings
It’s also possible to view or modify global settings that apply to all CVS work-
ing directories and repositories. Here are the steps.

Figure 4–46 CVS Customizer for Working Directory

74 Chapter 4 Software Development
1. From the Creator toolbar, select Tools > Options.
2. Click the Advanced radio button.
3. Expand the Source Creation and Management node and Version Control

Settings node.
4. Click CVS. Figure 4–47 shows the General Properties window. Clicking any

customizer box here grants you access to a wide variety of different configu-
ration parameters that you can view or modify.

Advanced CVS Features
The IDE also implements more advanced features of CVS, such as branches
and merging. A branch allows you to maintain different versions of a code base.
This can be handy when a customer requires a different version of your code or
you need to build a demo program. After creating a branch, any committed
changes that you make apply only to that branch.

CVS also supports code merging. This can be useful when it’s time to incor-
porate branch code back into a code “trunk” or to merge file revisions. Merging
in CVS can be a bit tricky because merge conflicts are possible. This can happen
when more than one developer changes the same line of source code. The IDE
helps you graphically resolve merge conflicts before committing the code to
version control.

Branches and merging are beyond the scope of this book, but you should
know enough about CVS now to apply these advanced features if you need
them.

Figure 4–47 CVS Global Options

4.4 Creating Non-Web Projects 75
4.4 Creating Non-Web Projects

While Creator is a great IDE for creating and managing web applications, you
might also want to create non-web projects, such as stand-alone Java programs.
With general projects, the IDE generates an Ant script to build, run, and debug
your project. You can also add testing. In this section, you’ll step through build-
ing a general project with a very useful goal: the project creates a sample data-
base that you’ll use later on in this book to explore Creator’s database access
facilities.

The MusicBuild project consists of a single Java class, a library that you’ll
add through the Library Manager, and the default JDK that comes installed
with Creator. When you run the project, it generates sample database tables,
table constraints, and records for a Music Library.

This project is included in the book’s download. If you don’t want to step
through the building process, you can bring up the project in the IDE. The
project is located at FieldGuide2/Examples/Projects/MusicBuild.

Create a General Project
Here are the steps to create the MusicBuild project.

1. Close any projects that are open. From the Creator Welcome page, click the
Create New Project button.

2. In the New Project dialog, select General under Categories and Java Class
Library under Projects. Click Next.

3. In the New Java Class Library dialog, specify project name as MusicBuild.
4. Click Finish.

After creating the project, Creator builds the structure for your project,
which you can inspect through the Projects window.

Add a Java Package
Here are the steps to add a Java package under the Source Packages node.

1. In the Projects window, expand the Source Packages node. You’ll see that
Creator generates a default package node for you.

2. Right-click the Source Packages node and select New > Java Package. Cre-
ator displays the New Java Package dialog.

3. For Package Name, specify asg. Click Finish. Creator replaces the default
package node with package asg.

4. Right-click package asg and select New > Java Package to add a second
package.

76 Chapter 4 Software Development
5. In the New Java Package dialog, specify Package Name databuild.
6. Click Finish.

Add a Java Class File
Here are the steps to add the PBCreateMusicDB.java file to this project.

1. In the Projects window, select package asg.databuild. Right-click and select
New > Java Class.

2. In the New Java Class dialog, specify class name PBCreateMusicDB. Creator
generates class file PBCreateMusicDB.java.

3. Copy and paste the contents of PBCreateMusicDB.java found in your Cre-
ator book download at FieldGuide2/Examples/Database/utils.

4. Go ahead and build the project (don’t run it yet, though). From the main
menu, select Build > Build Main Project. Creator asks you to set the project as
the Main Project. Select OK. There should be no build errors in the Output
window.

Add a Library
The PBCreateMusicDB program uses Java’s JDBC package to connect to the
bundled PointBase database. In order for this program to work, you must make
the database driver class available at runtime. You must also make sure that
PointBase is running.

Here are the steps to add the PBClient library to the project.

1. From the Projects window, select Libraries, right-click, and select Add
Library from the context menu. Creator displays the Add Library dialog.

2. Select Manage Libraries. Creator displays the Library Manager dialog.
3. Select Add JAR/Folder button on the right of the dialog. Creator displays a

file chooser dialog.
4. Browse to the Creator2 installation directory under Sun and locate the PB Jar

file, <Creator2 Installation Directory > /rave2.0/core/pbclient.jar. Click Add
JAR/Folder, as shown in Figure 4–48.

5. Make sure that pbclient.jar is selected and click New Library.
6. In the New Library dialog, specify Library Name as PBClient. Click OK.
7. Creator adds PBClient to the list of managed libraries. Click OK.
8. Creator returns to the Add Library dialog. Select library PBClient.

After adding the PBClient library to your project, the Projects window
should display its name under Libraries, as shown in Figure 4–49.

4.4 Creating Non-Web Projects 77
Build and Run Project
Now you are ready to build and run project MusicBuild. Click the green Run
Main Project icon from the icon toolbar or select Run > Run Main Project from
the main menu.

Figure 4–48 Library Manager Browse JAR/Folder dialog

Figure 4–49 Projects view for project MusicBuild

78 Chapter 4 Software Development
After running the program, the Output window should tell you the Music
database was created. Once you add the Music schema as a data source to Cre-
ator’s IDE, you can build web applications with design-time support for data-
aware components. We show you how to do this in Chapter 9. See “Configur-
ing for the PointBase Database” on page 270.

4.5 Key Point Summary

• The IDE greatly simplifies the “edit-compile-deploy” cycle of complex web
applications.

• Keyboard shortcuts and code completion help make coding easier.
• The IDE lets you format your code, change fonts and colors, collapse (fold)

sections of code, generate import statements, and use abbreviations for
heavily used Java keywords and expressions.

• Javadoc popup windows make it easy to locate documentation for Java
classes.

• The IDE helps you generate code when extending a Java class or
implementing a Java interface.

• The IDE generates properties that conform to the JavaBeans component
model.

• Task lists provide a way to document and clean up loose ends in your code.
• Refactoring is transforming and restructuring source code so that the

refactored code behaves the same as the original source.
• With refactoring, you may rename a class, field, or method, generate getter

and setter methods for fields, change method signatures, and move classes
to another package.

• The IDE supports Undo/Redo for refactoring commands.
• Creator supports CVS (Concurrent Version System), one of several Version

Control Systems (VCS).
• With CVS, you may place source code under version control, generate

revisions, compare revisions, and examine log histories of code changes.
• A CVS repository is a directory that stores a project’s full revision history.
• A CVS working directory stores the source code of your project.
• The IDE lets you setup CVS profiles and configure the CVS environment

when you work with project code under version control.
• Importing files in CVS is placing project source code under version control.
• Committing source files is storing your edited changes in CVS.
• The IDE has a Graphical Visualizer to help you compare different revisions

in CVS.
• History logs in CVS help you document what source code lines were

changed in each revision and by whom.

4.5 Key Point Summary 79
• After importing source code files into the repository and checking them out
to your working directory, you may add new files to your project or remove
them.

• The IDE also lets you create non-web projects, such as stand-alone Java
programs.

PAGE NAVIGATION
Topics in This Chapter

• JSF Navigation Model
• Page Navigation Editor
• Navigation Rules
• Command Components and Navigation
• Static Navigation
• Simple Navigation
• Noncommand Components
• Dynamic Navigation
• Action Event Handlers
• Virtual Forms

Chapter
ost web applications consist of multiple pages. A significant design
task in building web applications is deciding page flow: that is, how
you get from one page to another. Many commercial web sites con-
sist of a “main” (or home) web page with links to other pages. These

are frequently static links that simply bring up the requested page without any
processing or decision making. Other web sites require more flexibility in their
page navigation. Even if the next page is known, the web application may per-
form bookkeeping tasks or other processing before launching the next page.
Finally, clicking a button may involve dynamic processing whose outcome
determines the next page. For example, a login sequence results in either a suc-
cessful login (and you go to the Welcome page) or a failed login (where you are
rebuffed or are invited to try again).

Fortunately, Creator excels at page navigation. It uses the JavaServer Faces
navigation model in concert with an easy-to-use Page Navigation editor that
lets you draw page flow arrows to define navigation rules. Creator generates
the underlying configuration files for you. You retain the needed flexibility
through coding the action methods that return outcome Strings to the naviga-
tion handler. Let’s see how this works.

M

81

82 Chapter 5 Page Navigation
5.1 Navigation Model

JSF navigation is a rule-based system. Each application contains a navigation
configuration file, navigation.xml, that has rules for choosing the next page to
display after a user clicks a button or a hyperlink component. Like the other
configuration files, navigation.xml consists of XML elements. Here is a sample
rule for changing pages from Page1 to MusicBrowser.

Element from-view-id identifies the origination page and to-view-id
identifies the target page. Element from-outcome specifies the String value that
is returned from an action method or action label associated with a command
component. Clicking that component generates the String which is passed to
the navigation handler. With these rules, the navigational handler can then
identify the target page.

In Creator, you specify the navigation rules by connecting your web pages
with labeled page flow arrows in the Page Navigation editor. For each rule you
construct, Creator generates an origin page, a destination page, and the out-
come label that identifies it. Creator assumes that your origin page contains
either a hyperlink component or a button component that generates an action
event when the user clicks it. The action event implements the navigation. That
is, it returns the string that matches the label associated with that navigation
rule.

Figure 5–1 is a UML activity diagram summarizing the steps in the naviga-
tion system.

Creator implements both static and dynamic navigation. With static naviga-
tion, a command component specifies an action label that matches the from-
outcome property value from the navigation rules. Often, however, you need to
process information before you can determine which page to invoke (for exam-
ple, a login scenario can succeed or fail). To do this, the component’s action
property specifies an action method. The action method returns a navigation
label that depends on the results of its processing.

By the way, the navigation model understands a default rule. If the action
method returns null or a string that isn’t defined in the navigation rules, the
navigation model renders the same page. You’ll see this behavior if you add a
button to your page but do not define an action method. Or, if you don’t

<navigation-rule>
<from-view-id>/Page1.jsp</from-view-id>
<navigation-case>

<from-outcome>musicBrowse</from-outcome>
<to-view-id>/MusicBrowser.jsp</to-view-id>

</navigation-case>
</navigation-rule>

5.2 Simple Navigation 83
change the default return value of null. When you click the button, it appears
as if nothing happens. However, JSF invokes the page request process and the
current page is redisplayed.

5.2 Simple Navigation

The first example we work through illustrates simple navigation. That is, each
button component (or you could just as easily use a hyperlink component)
takes the user to one page. No processing is involved after the user clicks the
button. For simple navigation you can either use action labels or action event
handlers. We’ll show you both here.

Figure 5–1 JSF Navigation Model: Page Navigation UML activity diagram

User Command
Component

Event
Listener

Navigation
Handler

Click
Button

Generate
Action Event

Handle
Action Event

Invoke
Action Method

Execute
Action Method

Get Action
Result String

Select Next
Page, Using
String and

Navigation Rules

staticdynamic
navigation navigation

84 Chapter 5 Page Navigation
Create a New Project
1. In the Welcome Page, select button Create New Project.
2. In the New Project dialog, select Web under Categories and JSF Web Applica-

tion under Project. Click Next.
3. In the New JSF Web Application dialog, specify project name as Navigate1.

Click Finish.

After creating the project, Creator comes up in the design view of the editor
pane. You can now set the title.

4. Select property Title in the Properties window and type the text Navigate 1.
Finish by pressing <Enter>. (Alternatively, if you click in the small square
opposite the property name, a pop-up dialog lets you edit the title. Click OK
to complete editing.) Figure 5–2 shows the components you’ll add to the
project’s initial page.

Add a Label Component
First, use a label component to place a heading on the page.

1. From the Basic Components palette, select Label. Drag it over to the design
canvas and place it near the top of the page. Don’t resize it.

Figure 5–2 Design view for project Navigate1

Label

Grid Panel

Button

5.2 Simple Navigation 85
2. Make sure that it’s selected and type in Welcome to the Music Store, ending
with <Enter>. This changes the text property. The component should now
display these words.

3. In the Properties window under Appearance, edit the labelLevel property.
Select Strong (1) from the drop down menu.The output text should now
appear with its new style characteristics (bold and larger).

Add a Grid Panel Component
A grid panel component is a container that holds nested components, orga-
nized as a grid. You’ll use it to hold two button components in a single row.
(Adding a grid panel component for this project is optional.)

1. Expand the Layout section of the components palette, if it’s not already.
Select Grid Panel from the Layout Components palette and drag it to the
design canvas. Place it underneath the label component. Creator builds a
grid panel component with id property set to gridPanel1.

2. Make sure the grid panel is selected. In the Properties window under Gen-
eral, specify lightyellow for property bgcolor.

3. Still in the Properties window, change border to 3, cellpadding to 3, cell-
spacing to 3, and columns to 2.

Creator Tip

Grid panel is a container component that uses a grid layout. It places the
components in the container in the order that you drop them on the panel. A
grid panel dynamically creates rows to hold the components according to how
many columns you’ve specified. (If you don’t specify the number of columns,
it defaults to 1.) After you add the button components, you’ll see them nested
beneath the grid panel node in the page’s Outline view.

Add Button Components
Now add two button components to the grid panel.

1. From the Basic Components palette, select Button and drag the component
to the design canvas. Drop it directly on top of the grid panel you added
previously. Change its id property to browseMusic and its text property to
Browse Music Titles. Note that the grid panel automatically resizes itself as
you add components to it.

86 Chapter 5 Page Navigation
Creator Tip

Changing the id property is important here because you want more
meaningful names than those generated by Creator. When you have multiple
components that generate action events, it is much easier to work with
meaningful method and property names in the Java page bean.

2. Select a second Button and drop it onto the grid panel. Creator will place the
second button to the right of the first.

3. Change the button’s id property to loginButton and its text property to
Members Login.

Besides buttons, you can also use hyperlink components. These components
have action methods and can be used with the JSF navigation model, too.

Deploy and Test Run
Your web application is only partially done, but this is a good point to deploy
and run it. Click the green arrow on the Creator toolbar. Note that the page is
redisplayed when you click the buttons; that’s because there are no navigation
rules yet. Figure 5–3 shows what the initial page looks like.

Figure 5–3 Simple navigation web application

5.2 Simple Navigation 87
Add Page Navigation
Creator makes it particularly easy to add page navigation to your web applica-
tion. In this section, we show you how to do this with the Page Navigation edi-
tor. Let’s enhance your application to have a total of three web pages. The first
page, Page1, contains all of the components you just added, which include two
buttons that take the user to separate pages in the application. Here are the
steps to create the new pages and add page flow definitions with Creator’s
Page Navigation editor.

1. From the design canvas view, place the mouse in the canvas (anywhere in
the background), right-click, and select Page Navigation. This brings up the
Page Navigation editor. You see the initial web page, Page1.jsp, in the Page
Navigation editor pane.

2. Place the mouse anywhere in the editor pane (in the background area) and
right-click. From the context menu select New Page. Provide the name
MusicBrowser instead of the default (Page2). This creates a new page called
MusicBrowser.jsp.

3. Repeat this process to create another page called LoginStart.

The Page Navigation editor now displays the three pages of your applica-
tion in the editor pane: Page1.jsp, MusicBrowser.jsp, and LoginStart.jsp. (You
can see the pages in the Projects view as well, under the Web Pages node.)

There is also a tab at the top of the editor pane labeled Page Navigation.
This refers to the XML-based configuration file (navigation.xml) that contains
your application’s navigation rules. As you define page flow cases, Creator
generates the navigation rules for you.

New Rules!
In this next step, you’ll connect the pages and provide navigation case labels
that the navigation handler uses to control page flow.

1. Click the mouse inside page Page1.jsp. The page changes color, enlarges,
and displays its buttons.

2. Inside page Page1.jsp, select button browseMusic, click, and drag the arrow
to page MusicBrowser.jsp. When you unclick, you’ll see an arrow with a
label. Change the label from case1 to musicBrowse (finish by pressing
<Enter>). Be sure to select the button. When you enlarge the page, you’ll see the nav-
igation arrow originates directly from the button.

3. For the second case, start once again inside Page1.jsp, select button loginBut-
ton, click, and drag the arrow to page LoginStart.jsp. This time change the
label name to userLogin.

88 Chapter 5 Page Navigation
Figure 5–4 shows the Page Navigation editor pane with the web pages and
navigation labels you just created. Note that the page flow arrows originate
from the buttons in Page1.jsp and point to the target pages.

Creator Tip

As you create your navigation rules, Creator displays the property values in
the Properties window for that rule. For example, if you select the
musicBrowse arrow, you’ll see the properties for that rule displayed (see
Figure 5–5). You can always use the Properties window to change a selected
page flow arrow or rename a label.

Figure 5–4 Navigating from page Page1.jsp

Figure 5–5 Properties window for a navigation rule

5.2 Simple Navigation 89
To view the navigation configuration file that Creator generates, select the
Source button at the top of the Page Navigation editor pane. Here is the file for
this application.

This XML code defines one navigation rule with two separate navigation
cases. Creator can collapse both cases into a single rule since they share the
same origination page (Page1.jsp, the value of property from-view-id). The
from-outcome property corresponds to the labels you supplied to the Page
Navigation editor. These are the labels that Creator uses to configure the but-
ton components’ action properties. Let’s look at that now.

1. Click the tab labeled Page1 at the top of the editor to return to the design
view for this page.

2. Now click the JSP button in the editing toolbar. Creator displays the JSP
source for this page.

3. Scroll down to the JSP specification for the buttons as shown here.

When you configure the navigation rules, Creator updates the JSP source for
these components to specify an action label (static navigation). In the browser,
JSF sends the string to JSF’s Navigation Handler that corresponds to the but-
ton’s action label. Action labels provide a simple, straightforward way to spec-
ify navigation rules. However, they preclude using an action event handler to
provide additional processing. After you finish building the application, you’ll
add action event handlers. This provides another way to use command compo-
nents with navigation.

<faces-config>
 <navigation-rule>
 <from-view-id>/Page1.jsp</from-view-id>
 <navigation-case>
 <from-outcome>musicBrowse</from-outcome>
 <to-view-id>/MusicBrowser.jsp</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>userLogin</from-outcome>
 <to-view-id>/LoginStart.jsp</to-view-id>
 </navigation-case>
 </navigation-rule>
</faces-config>

<ui:button action="musicBrowse" binding="#{Page1.browseMusic}"
id="browseMusic" text="Browse Music Titles"/>

<ui:button action="userLogin" binding="#{Page1.loginButton}"
id="loginButton" text="Members Login"/>

90 Chapter 5 Page Navigation
Add Label Components
Before testing the application, you’ll now add label components to both target
pages (MusicBrowser.jsp and LoginStart.jsp). You can access the design can-
vas of each page by double-clicking the page in the Page Navigation editor, by
selecting the page name in the tab at the top of the editor pane (if it has been
opened previously), or by double-clicking the page name in the Projects win-
dow.

1. For each page, select it and bring it up in the page design editor.
2. From the Basic Components palette, select Label and drag it to the design

canvas.
3. Modify its text attribute so that it displays a title that indicates which page

you navigated to.
4. Optionally, modify the labelLevel property to manipulate the text font and

size.

Deploy and Run
Go ahead and deploy the application. When you click a button, the system dis-
plays the appropriate page. You can use the browser’s back arrow to return to
the main page. If you’d prefer to have a button or hyperlink component to nav-
igate back, you can easily add these components to each of the target pages. Of
course, you’ll need to define the additional navigational rules in the Page Nav-
igation editor. Figure 5–3 on page 86 shows the initial page in this web applica-
tion.

Creator Tip

When you navigate to one of the target pages, the page loads slowly the first
time. This is because the application server must generate Java source from
the JSP, compile, and execute the code. It is faster after the first time because
the code has already been generated and compiled.

Add Event Handler Code
Now let’s add event handler code for the two buttons you just added.

1. Bring up Page1 in the page design editor. Select the Browse Music Titles but-
ton (make sure the you select the button and not the grid panel). Double-
click the button. Creator generates the event handler method for you and
places the cursor inside the method in Page1.java.

2. Return to the design view and double-click the second button. Creator gen-
erates the action method in Page1.java for the loginButton component.

5.2 Simple Navigation 91
The action methods for both buttons follow. Note that the return values (in
bold) match the case labels you used in the Page Navigation editor. Creator
uses the action labels and automatically supplies these as the return String
value in the action event handler.

Action methods have a consistent format: they are always public methods
that return a String and take no parameters. A null return value is ignored by
the navigation handler (and therefore redisplays the same page).

Why use an action method instead of a simple action label? The action event
handler gives you the added flexibility to add processing code before you nav-
igate to a new page. It also allows you to set the value of the return string based
on the outcome of some processing—we’ll see this later in the chapter (see
“Dynamic Navigation” on page 98).

When you define action methods, Creator generates the necessary JSP
source for the button components. Click the JSP button in the editing toolbar.
Here are the tags. Note that now the action property references the event
method in the Java page bean.

Return to the Page Navigation editor and select Page1.jsp, as shown in
Figure 5–6. Note that now each button includes an event handler icon to show
that the component has an associated action method instead of an action label.

Deploy and Run
Deploy the application. The navigation will work the same as before.

public String browseMusic_action() {
// TODO: Replace with your code
return "musicBrowse";

}

public String loginButton_action() {
// TODO: Replace with your code
return "userLogin";

}

<ui:button action="#{Page1.browseMusic_action}"
binding="#{Page1.browseMusic}" id="browseMusic"
text="Browse Music Titles"/>

<ui:button action="#{Page1.loginButton_action}"
binding="#{Page1.loginButton}" id="loginButton"
text="Members Login"/>

92 Chapter 5 Page Navigation
Draggable Mode
Before moving on to the next project, let’s take a closer look at the Navigation
Editor and some of its user interface options.

1. With Project Navigate1 open in the IDE, return to the Navigation Editor
(right-click in the background of any page and select Navigation Editor
from the context menu). Creator brings up the three pages and shows the
navigation cases linking the pages.

2. Right-click anywhere in the background and select Draggable from the con-
text menu. This puts the editor in draggable mode, as shown in Figure 5–7.

In draggable mode you can move the pages around. Move a page by hold-
ing down the Shift key while you select the page and move it. When a project
contains a large number of pages, it’s useful to move the pages to control how
the links are laid out.

You can also change the link style. Figure 5–7 shows the links in the stan-
dard style (links are drawn with direct lines). To change the link style, right-
click in the background and select Wired Link. Now the links are drawn with
line segments, as shown in Figure 5–8.

Creator Tip

You can only change the link style when the Navigation Editor is in
Draggable Mode.

Figure 5–6 Navigation using action event handlers

5.3 Noncommand Components 93
5.3 Noncommand Components

The JSF navigation model is set up to work with command components (those
components that generate action events). Action event handlers return a String
that the navigation handler uses to determine which page to launch next.

Figure 5–7 Draggable mode in the Navigation Editor

Figure 5–8 Changing the link style to Wired Link

94 Chapter 5 Page Navigation
However, you can use other components to initiate navigation, although it’s
not quite as seamless. Basically, you need to provide a String directly to the
navigation handler that matches the navigation rules you defined. Let’s modify
the Navigate1 project to use a drop down list component instead of buttons to
hold the navigation choices.

Copy the Project
To avoid starting from scratch, copy the Navigate1 project to a new project.
This step is optional. If you don’t want to copy the project, simply skip this sec-
tion and continue making modifications to the Navigate1 project.

1. Bring up project Navigate1 in Creator, if it’s not already opened.
2. From the Projects window, right-click node Navigate1 and select Save

Project As. Provide the new name Navigate2.
3. Close project Navigate1. Right-click Navigate2 and select Set Main Project.

You’ll make changes to the Navigate2 project.
4. Expand Navigate2 > Web Pages and open Page1.jsp in the design view.
5. Click anywhere in the background of the Navigate2 project. In the Proper-

ties window, change the page’s Title property to Navigate 2.

Delete the Buttons
1. From the design canvas of the first page Page1.jsp, select and delete the two

button components. (Make sure you select the buttons and not the grid
panel. Use the page’s Outline view to select and delete them if you want.)

2. In the editing toolbar, select the Java button to bring up the Java page bean.
3. In the Java source (Page1.java), remove the action methods associated with

the button components you just deleted. These are browseMusic_action()
and loginButton_action().

Add a Drop Down List
1. Return to the design canvas by selecting the Design button at the top of the

editor pane. From the Basic Components palette, select Drop Down List and
drop it on top of the grid panel component. (If you elected not to use the
grid panel component, just place the Drop Down List onto the page.)

2. In the Page1 Outline view, select the dropDown1DefaultOptions element (at
the very bottom of the view).

3. In its Properties window, click the small editing square opposite property
options. An options editing dialog box appears. Replace the default items
by double-clicking inside each table cell to edit. For the first entry, use Home
for Display and Value home. The second entry is Display Browse Music Titles
and Value musicBrowse. The third entry is Display Members Login and

5.3 Noncommand Components 95
Value userLogin. Figure 5–9 shows the drop down component options edit-
ing dialog. When you’re done, click OK.

4. In the design canvas, select the drop down list component. Right-click and
check Auto-submit on change (it’s currently unchecked). This sets the Java-
Script property onChange to common_timeoutSubmitForm(this.form,
'gridPanel1:dropDown1'); which submits the page when the user
changes the drop down list component’s selection.

Value Change Event vs. Action Event
Before we go any further, an explanation is warranted for adding three naviga-
tion choices to the drop down menu component. Why is this necessary?
Remember, the event type is called value change. If we present the user with a
drop down menu item that contains navigation choices and one of the choices
is preselected, this preselection prohibits the user from selecting it with an
accompanying value change event. Simply, there is no change in value since it is
already selected. Therefore, we create an initial (preselected) choice, Home,
representing the current page.

A page designer has another choice. You can always place a button next to
the drop down menu. After the user makes a selection (whether it be a value
change or not), he or she clicks the button and the button’s action event handler
can return the drop down menu selection’s String value.

Creator Tip

When you key off a value change event, the event handler will only be called if
the selection component has actually changed. The event handler will not be
called when you select the displayed choice.

Figure 5–9 Drop down options editing dialog

96 Chapter 5 Page Navigation
Match the Navigation Labels
The drop down list component’s default options includes both a label (which is
displayed in the drop down’s menu) and a value, which is returned by method
getSelected()). Therefore, the navigation labels you specified using the Page
Navigation editor work just fine with the matching values you supplied to the
drop down component’s options (musicBrowse and userLogin).

Add Event Handler Code
When the user changes the selection in a drop down list component, a value
change event is generated. A value change event is not hooked into the naviga-
tion system the way that an action event is. But in the event handler, we can
grab the new value and pass it directly to the navigation handler. You’ll be add-
ing code to do this.

Creator Tip

The code you are about to add will cause the Java source editor to complain
because it doesn’t have all of the necessary import statements. After you add
the code, we’ll show you a shortcut for fixing the imports.

1. Make sure that Page1 is active in the page design editor.
2. Double-click on the drop down list. Creator brings up the Java page bean

and puts the cursor in the newly generated event handling method for the
drop down list component, dropDown1_processValueChange().

3. Add the code from the book’s download examples (copy and paste file
FieldGuide2/Examples/Navigation/snippets/Navigate2_valueChange.txt).
This code “gets at” the context and application objects associated with this
web application to access the navigation handler. The last statement sends
the navigation String (the selected value in the drop down list component)
to the navigation handler. The added code is bold.

public void dropDown1_processValueChange(
ValueChangeEvent vce){

// TODO: Replace with your code
FacesContext context = FacesContext.getCurrentInstance();
Application application = context.getApplication();
NavigationHandler navigator =

application.getNavigationHandler();
navigator.handleNavigation(context, null,

(String)dropDown1.getSelected());
}

5.3 Noncommand Components 97
Your code will be underlined in red because the Java file is lacking import
statements. Here’s how to add the needed import statements.

4. Click anywhere inside the word FacesContext and type <Alt-Shift-F>. Cre-
ator pops up the Fix Imports dialog and adds the following import state-
ments to the source at the top of Page1.java:

This procedure eliminates the red underlines in your code and any “unre-
solved symbol” errors in the event handler code. (You can add the import state-
ments individually using <Alt-Shift-I> but fixing them all at once is easier.)

Add Button Components
You’ll now add button components to return to the Welcome (home) page of
the application.

1. In the Projects window, expand the Web Pages node and double-click Login-
Start.jsp. Creator brings up the page in the design view.

2. From the Basic Components palette, select Button and drop it onto the page.
3. The button label text will be selected. Type in Home followed by <Enter>.
4. Repeat these steps to add a button to page MusicBrowser.jsp. Make its label

Home as well.

You’ll now add navigation rules for the button components you just added.

1. Right-click in the background of the MusicBrowser page and select Page
Navigation. Creator brings up the Navigation editor.

2. Click inside MusicBrowser.jsp. Creator enlarges the page. Click the button
component inside MusicBrowser.jsp, drag the cursor to Page1.jsp, and
release the mouse. Creator draws a navigation arrow.

3. Change the case label to home.
4. Now click inside LoginStart.jsp. When the page enlarges, click the button

component inside LoginStart.jsp, drag the cursor to Page1.jsp, and release
the mouse.

5. Change the case label to home.

Deploy and Run
Deploy and run the application. Figure 5–10 shows the drop down list compo-
nent with the page navigation choices. You can see that command components

import javax.faces.application.Application;
import javax.faces.application.NavigationHandler;
import javax.faces.context.FacesContext;

98 Chapter 5 Page Navigation
(button and hyperlink) are easier to use for navigation, but with a bit of extra
coding you can make other components work too.

Creator Tip

If you use the browser’s back arrow to return to the home page, the drop down
component displays the page you came from. If you return using the Home
button, however, the drop down displays Home.

5.4 Dynamic Navigation

You’ve seen an example of simple navigation, in which each component’s
action event returns a label that corresponds to a navigation rule. Now you’re
going to work through an example that shows dynamic navigation. Here, an
action method can return a different label depending on some processing it
performs. You’ll see that dynamic navigation is also straightforward with Cre-
ator.

This example sets up a login sequence whereby the user is required to give a
username and password to gain access to the next page. We’ve simplified the

Figure 5–10 Using a drop down list component for navigation

5.4 Dynamic Navigation 99
processing criteria to concentrate on the navigation issues, but in the next chap-
ter we expand this example for an improved architectural configuration (using
JavaBeans component architecture).

Create a New Project
Creator Tip

In this section, you will use the same name (Login1) as the project we showed
you in Chapter 2 (“Creator Basics”). However, this time you’ll build the
project from scratch. If project Login1 is already included in your default
Creator Projects directory, you may want to delete it or move it before
continuing.

1. In the Welcome Page, select button Create New Project.
2. In the New Project dialog, select Web under Categories and JSF Web Applica-

tion under Project. Click Next.
3. In the New Web Application dialog, specify project name as Login1. Click

Finish.

After creating the project, Creator comes up in the design view of the editor
pane for Page1.jsp. You can now set the title.

4. Select Title in the Properties window and type in the text Login 1. Finish by
pressing <Enter>.

Add a Label Component
You’ll use a label component to place a heading on the page.

1. From the Basic Components palette, select Label. Drag it over to the design
canvas and place it near the top of the page.

2. Make sure that it’s selected. Start typing Members Login and press <Enter>.
The text attribute in the Properties window will show these words and the
label component will display them.

3. In the Properties window under Appearance, edit the labelLevel attribute.
Using the drop down menu, select option Strong (1) to alter the font style
and size of the text. The label’s text should now appear with its new style
characteristics.

100 Chapter 5 Page Navigation
Create the Form’s Input Components
The application uses the next set of components to gather input for the mem-
ber’s username and password. For the username, you’ll add a a text field and a
message component. Figure 5–11 shows the design canvas with all the compo-
nents added to the page. Note that this project uses virtual forms, which you’ll
configure later.

1. From the Basic palette, select Text Field and add it to the design canvas.
Change its id property to userName.

2. In the text field’s Properties window under Appearance, change the label
property to User Name: .

3. In the Properties window under Data, check the required property. This
automatically adds a red asterisk in front of its label, letting the user know
that input is required. Now when you process the input in the event han-
dler, you don’t have to worry about checking for null values or empty
strings.

4. In the Properties window under Behavior, change the toolTip property to
Please type in your username. When the application is running and the user
holds the mouse over the text field, this tooltip will appear.

5. From the Basic Components palette, select Message and add it to the design
canvas to the right of the userName text field.

6. Press and hold <Ctrl+Shift> while dragging the mouse (you’ll see an arrow),
releasing the mouse when it is over the text field component. This step asso-

Figure 5–11 Design canvas showing components for project Login1

Label Text Field Message

Message

Button

Password Field

Virtual Form
Designation

5.4 Dynamic Navigation 101
ciates the message component with the text field, making any conversion or
validation error messages associated with the userName text field appear in
this message component. This step sets the message component’s for prop-
erty (in the Properties window under Behavior) to the id of the text field
component (userName).

For the password field, you’ll need a password field component and a mes-
sage component for error messages. The password field component performs
several functions that make it particularly suitable for gathering sensitive data.
First, it replaces the text that you enter with a constant character (the default is
a black dot or an asterisk). Second, when the page is refreshed or you return to
the page, the field is cleared. Thus, if you leave your workstation and someone
else uses your computer, the new user can’t “borrow” your password entry by
simply selecting the browser’s back button until the login page is reached.

Place the password components directly underneath the username compo-
nents added above. You will follow the same procedure.

1. From the Basic Components palette, select Password Field and add it to the
design canvas. Change its id property to password.

2. In the password field’s Properties window under Appearance, change the
label property to Password: .

3. In the Properties window under Data, check the required property.
4. Still in the Properties window under Behavior, change the toolTip property

to Please type in your password.
5. From the Basic Components palette, select Message and add it to the design

canvas to the right of the password field.
6. Press and hold <Ctrl+Shift> while dragging the mouse, releasing the mouse

when it is over the password field component. This sets the message compo-
nent’s for property to the id of the password field component (password).

Creator Tip

To align the password field on the right with the userName text field, select
the password field and hold the <Shift> key. Now you can use the mouse to
adjust its placement without having it snap to the grid lines.

To check the placement of the components on the page, right-click in the
design canvas and choose Preview in Browser. Creator renders the components
in a page in your browser.

Add Button Components
This application uses two button components: one to submit the form data to
be processed for logging in. The second button clears the two input fields so

102 Chapter 5 Page Navigation
that the user can start over. After adding the components, you’ll add code for
the button event handlers.

1. From the Basic Components palette, select the Button component and drag
it to the design canvas. Position it under the two input components.

2. Make sure it’s selected and type the text Login followed by <Enter>. This sets
the button’s text property, which is displayed as its label.

3. In the Properties window under General, change its component name (id
property) to login.

4. Repeat these steps and add a second button to the design canvas.
5. Make sure it’s selected and change its text property to Reset.
6. In the Properties window under General, change its id property to reset.

tabIndex Property
Components that can be selected, such as input components like text fields or
command components such as buttons, have an inherent “tab order” on the
page. The default tab order is the order that you place them on the page. For
example, if you followed these instructions exactly, the tab order of this page is
the text field, the password field, the login button, and lastly, the reset button.
While the application is running, if you place the cursor in the text field and hit
the <Tab> key, you will select the components in the tab order.

To change the tab order, supply a value for property tabIndex (in the Prop-
erties window under Accessibility) beginning with 1 for the first component
that should be selected. You can skip numbers if you think you’ll add compo-
nents in the middle later.

Deploy and Test Run
Although you haven’t yet added any functionality to the button components,
it’s a good idea to deploy and run the application now. Go ahead and click the
green chevron in the toolbar. When the login page comes up, type in user-
names and passwords. Of course, clicking the buttons won’t do anything, but
you should see an error message if you leave an input field empty. Figure 5–12
shows the initial page of the Login1 web application. The user is holding the
cursor over the password field to display the tooltip.

Add Event Handler Code
Now let’s add event handler code to both of the buttons on Page1.

1. Make sure that Page1 is in the design canvas. The button components
should be visible.

5.4 Dynamic Navigation 103
2. From the design view, double-click the Reset button. This takes you to the
Java page bean, Page1.java. Creator generates the event handler method for
you and places the cursor inside the method.

3. Add following code to the Reset button event handler, reset_action(),
which clears the input components. Copy and paste from the file
FieldGuide2/Examples/Navigation/snippets/Login1_resetAction.txt. (The
added code is bold.)

4. Return to the design view by clicking the Design button in the editing tool-
bar. Double-click the Login button component. Creator now generates the
event handler for the Login button.This takes you to the Java page bean,
Page1.java.

public String reset_action() {
// TODO: Replace with your code
userName.setText("");
password.setText("");
return null;

}

Figure 5–12 Login page web application

104 Chapter 5 Page Navigation
5. Add the following code to the Login button event handler, login_action().
Copy and paste from file FieldGuide2/Examples/Navigation/snippets/
Login1_loginAction.txt. The added code is bold. (Be sure to delete the
return null statement.)

(Ignore the errors flagged in red for now.) The "loginSuccess" and "login-
Fail" String values correspond to the page’s navigation rules for going to page
LoginGood.jsp and LoginBad.jsp, respectively. This is called “dynamic” navi-
gation because the event handler dynamically figures out the outcome accord-
ing to the result of the if statement.

6. Add the following two lines of code (place them above method
login_action()). These statements define values for private variables
myUserName and myPassword. These are the “correct” values the user must
supply for a successful login. Choose whatever values you’d like for testing
the application (and they don’t have to be the same). Here’s the code. Copy
and paste from file FieldGuide2/Examples/Navigation/snippets/
Login1_declareVars.txt. (After you add this code, the errors flagged in red
will disappear.)

Create New Web Pages
This application has a total of three web pages. The first page, Page1, contains
all of the components you have just added, including a Login button that will
take the user to either a LoginGood page (if the login process succeeds) or Log-
inBad page (if the login process fails). First you’ll create these new pages, add
components to them, and then specify the page navigation rules.

1. In the Projects view for project Login1, expand node Web Pages. Right-click
Web Pages and select New > Page. Creator pops up the New Page dialog.

2. Specify LoginGood for File Name and click Finish. Creator brings up page
LoginGood.jsp in the design view and adds LoginGood.jsp to the Projects
view under Web Pages.

public String login_action() {
// TODO: Replace with your code
if (myUserName.equals(userName.getValue()) &&

myPassword.equals(password.getValue())) {
return "loginSuccess";
} else return "loginFail";

}

private String myUserName = "rave4u";
private String myPassword = "rave4u";

5.4 Dynamic Navigation 105
3. Repeat these steps and add page LoginBad.jsp. Creator now displays page
LoginBad.jsp in the design view and adds LoginBad.jsp to the Projects
view.

Add Components to Page LoginBad
When the login process fails because the values typed into the input fields do
not match the Strings stored in the Java page bean, the system loads page Log-
inBad.jsp. Here you display a failure message to the user and include a hyper-
link component to return to the login page, Page1.jsp.

1. Make sure that LoginBad.jsp is active in the design view.
2. In the Properties window, supply the text Failed Login followed by <Enter>

for the page’s Title property.
3. From the Basic Components palette, select component Static Text and drag it

onto the design canvas. Position it at the top.
4. Make sure the component is selected and type Invalid username or password.

To try again, click. Finish by pressing <Enter>. This changes the text property.
5. Now select the Hyperlink component from the Basic Components palette

and drag it onto the design canvas. Position it to the right of the static text
component.

6. Make sure that the hyperlink component is selected and type in the text
HERE followed by <Enter>. This changes its text property.

7. In the Properties view, change the hyperlink’s id property to loginpage.

Add a Component to Page LoginGood
Now you’ll add a component to LoginGood.jsp.

1. Make sure that page LoginGood.jsp active in the design view by selecting
its tab from the top of the editor pane.

2. In the Properties window, supply the text Login Good followed by <Enter>
for the page’s Title property.

3. From the Basic Components palette, select component Label and drag it
onto the design canvas. Position it at the top.

4. Make sure the component is selected and type in Welcome to our Members-
Only Page. Finish by pressing <Enter>.

5. In the Property window under Appearance, modify the labelLevel prop-
erty to Strong (1) using the drop down selection.

6. Click the Save All icon to save all the project’s pages (or select File > Save All
from the main menu).

106 Chapter 5 Page Navigation
Specify Page Navigation
In the next steps, you’ll connect the pages and provide navigation case labels
that you use to control the page flow.

1. Page LoginGood.jsp should be active in the design view. Right-click any-
where in the background of the page and select Page Navigation from the
context menu. Creator brings up the Page Navigation editor and displays
the project’s three pages.

2. Place the mouse inside page Page1.jsp and click. The page enlarges and the
navigation editor displays its two command components. Make sure that
you don’t select the buttons (click anywhere in the blank page area) and
drag the arrow to page LoginGood.jsp. When you unclick, you’ll see an
arrow with a label. Change the label from case1 to loginSuccess.

3. Once again, select Page1.jsp (again, don’t select any components) and drag
the arrow to page LoginBad.jsp. This time change the label name to login-
Fail.

4. Finally, you’ll add a third rule. Select page LoginBad.jsp. The navigation
editor enlarges the page and displays the hyperlink component (loginpage)
you added previously. Select the hyperlink component and hold and drag
the mouse to page Page1.jsp. Change its label to loginPage. This sets the
static navigation label for the hyperlink component.

Figure 5–13 shows the Page Navigation editor pane with the web pages and
navigation labels you just created.

Figure 5–13 Page Navigation editor pane with three navigation rules

5.4 Dynamic Navigation 107
Behind the scenes Creator is generating code for its Navigation Rules in file
navigation.xml. To see what it generates, select the Source tab at the top of the
Page Navigation editor pane. Here is the file.

This XML file has two rules originating from Page1.jsp and one rule from
page LoginBad.jsp. The from-outcome attribute corresponds to the labels you
supplied to the Page Navigation editor. Note that these labels match the strings
returned in the Login button’s action event handler on Page1.jsp. What about
the hyperlink component?

1. Select the tab labeled LoginBad on top of the editor pane. Creator displays
the design view for this page.

2. Now select the JSP button in the editing toolbar to see the JSP source.
3. Scroll down to view the hyperlink component’s JSP, as follows.

The action="loginPage" supplies the required navigation case label when
the user selects the hyperlink component making a specific action event han-
dler unnecessary.

<faces-config>
 <navigation-rule>
 <from-view-id>/Page1.jsp</from-view-id>
 <navigation-case>
 <from-outcome>loginSuccess</from-outcome>
 <to-view-id>/LoginGood.jsp</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>loginFail</from-outcome>
 <to-view-id>/LoginBad.jsp</to-view-id>
 </navigation-case>
 </navigation-rule>
 <navigation-rule>
 <from-view-id>/LoginBad.jsp</from-view-id>
 <navigation-case>
 <from-outcome>loginPage</from-outcome>
 <to-view-id>/Page1.jsp</to-view-id>
 </navigation-case>
 </navigation-rule>
</faces-config>

<ui:hyperlink action="loginPage"
binding="#{LoginBad.loginpage}" id="loginpage"
style="left: 336px; top: 48px; position: absolute"
text="HERE"/>

108 Chapter 5 Page Navigation
Deploy and Test
Deploy and test the application by clicking the green chevron on the toolbar.
Go ahead and type in test usernames and passwords. Check both the failure
and success cases (type rave4u for both the username and password), as well as
leaving one or more of the input fields blank. You’ll note that in order for the
Reset button to clear the fields, both fields must contain some text. Let’s remove
this constraint.

Configure Virtual Forms
This project is an excellent example illustrating virtual forms. Why do you
need virtual forms here? The page has two buttons, and each button performs a
distinct (and opposing) function. The login button submits the username and
password values to an event handler that determines whether or not the user
has supplied correct values. Before this processing takes place, component val-
idation makes sure there is input in each component. If validation fails, the JSF
life cycle process skips to the Render Response phase and displays the error
message. If validation succeeds, normal event processing occurs and the login
button’s event handler is invoked. (We delve into the JSF life cycle later. See
“JSF Life Cycle” on page 152.)

If the user selects the Reset button, its event handler clears the input for both
the text field and password field components. However, if one or more of these
components is already blank, component validation kicks in and once again
processing skips to the Render Response phase. The user becomes quickly
annoyed because he or she has to supply input before the Reset button’s event
handler can be invoked to clear the form!

The solution is to use virtual forms. Configure the Reset button in its own
virtual form (which excludes the input components). When the user selects the
Reset button, the input components are not included with the page submission
and validation is not performed. Here are the steps to do this.

1. Make sure that Page1 appears in the Design view. Select the Reset button
component, right-click, and select Configure Virtual Forms Creator pops
up the Configure Virtual Forms dialog for component reset.

2. Click the New button. Creator makes a new virtual form with color code
blue. Edit the virtual form’s Name to resetForm (double-click the field name
and it becomes editable) and change the Submit field to Yes using the drop
down selection. Figure 5–14 shows what the dialog looks like at this point.

3. Click Apply then OK. The Design view now shows the Reset button with a
blue-dotted line, indicating that it is the submit component for the blue vir-
tual form.

5.4 Dynamic Navigation 109
If the Design view does not show the virtual form, toggle the Virtual Form
icon on the editing toolbar, as shown in Figure 5–15. The Virtual Form icon is
next to the Refresh icon above the editing pane.

Placing the Reset button in its own virtual form almost fixes the problem.
When the user clicks the Reset button, the input components are not included
in the page submission. Even though the required property for the input com-
ponents is checked, validation does not take place when user clicks the Reset
button. Since all of the input components go with the Login button, these do
not need to go into a separate virtual form. Therefore, a second virtual form for
the Login button, the text field, and the password field components is not nec-
essary.

Figure 5–14 Configure Virtual Forms dialog

Figure 5–15 Show Virtual Forms icon

110 Chapter 5 Page Navigation
However, if you deploy and run the project as is, you’ll see that now the
Reset button does not clear the submitted input from the two text field compo-
nents. (Submitted values are the unconverted and unvalidated data in the
input fields.) When you use virtual forms, all submitted values of non-partici-
pating components are retained by default. This prevents the loss of any non-
participating input, saving the user from having to re-submit unprocessed
data. In this situation, however, we must override the default behavior and dis-
card the submitted values for the two input field components.

1. From the Page1 design view, double-click the Reset button. Creator brings
up Page1.java and places the cursor at the first line of the reset_action()
event handler.

2. Add following code to the Reset button event handler, reset_action().
Copy and paste from the file FieldGuide2/Examples/Navigation/snippets/
Login1_discard.txt. (The added code is bold.)

The form1 Form component includes method discardSubmittedValue() to
discard submitted values of non-participating input fields. Its argument is the
component id of the input component (which must be non-participating). A
second form of the method (discardSubmittedValues()) accepts a virtual
form name and discards the submitted values of all participating components
in the named virtual form. The virtual form specified cannot be the form sub-
mitted during the current request.

Deploy and Run
Deploy and run the application. Test using the Reset button with the input
components empty and not empty. You can see that using virtual forms has
made handling this web page much cleaner. Also, note that when you return to
the login page, the password input field is cleared. Figure 5–12 on page 103
shows the login page.

public String reset_action() {
// TODO: Replace with your code
form1.discardSubmittedValue(userName);
form1.discardSubmittedValue(password);
userName.setText("");
password.setText("");
return null;

}

5.5 Key Point Summary 111
Design Tip

The login_action() event handler performs a simple String comparison
between the input field values and the private variables in the Java page bean.
We elected to show you this code because it is simple and we really wanted to
emphasize page navigation. However, it is better to remove the computation
for determining the “success” of a login from the action method and
encapsulate it in a JavaBeans object. The changes are small, but the
architectural advantages are striking. In Chapter 6 (“Anatomy of a Creator
Project”), we show you how to encapsulate this computation.

5.5 Key Point Summary

• JSF navigation is a rule-based system. When you create page flow links,
Creator generates the rules for you and stores them in the XML
configuration file, navigation.xml.

• Creator supports static, simple, and dynamic navigation.
• In static navigation, the command component’s action property supplies a

string to the navigation handler.
• In simple navigation, the command component’s action event handler

returns a String that matches a navigation case label. You can optionally
specify processing code within the action method.

• In dynamic navigation, the command component’s action event handler
performs some processing that affects the String value that it returns.

• The action event listener passes the String associated with clicking a button
or hyperlink component to the navigation handler.

• You can use other components with navigation, but you have to manually
code their event handlers to pass an appropriate String to the navigation
handler.

• Dynamic navigation provides more flexibility than static navigation. With
dynamic navigation you can add processing in the event handler (to
determine the next page or just to perform some housekeeping updates).

• With Creator’s Page Navigation editor, you can create new web pages and
connect the pages in your application with page flow case labels. Creator
generates the navigation rules that the navigation handler uses to manage
your application’s page flow.

• Use Virtual Forms to control which input components are included in a
page submission. Virtual Forms make it easier to control when conversion
and validation take place for each component that supplies input.

ANATOMY OF A
CREATOR PROJECT
Topics in This Chapter

• JavaBeans Components and Properties
• Managed Beans
• Object Scope
• Value Binding
• Conversion and Validation
• Life Cycle Events

Chapter
efore you wonder if we’re trying to slip in a science class topic, let’s
explain what we mean by the anatomy of a Creator project. A Creator
project has a certain structure that is dictated by the JSF model, as well
as the structure imposed by the HTTP request-response protocol. Cre-

ator does a great job managing this structure for you, and you can build quite a
range of applications without having to delve into the various configuration
files that support the application. However, to best leverage both JSF and the
artifacts included with the Creator product, an understanding of what we call
the application model, that is, the structure of the application as well as its behav-
ior, will be helpful as you design and build your web application.

To that end, in this chapter we’ll introduce the concept of a JavaBeans object
and the JSF and Creator life cycle. JSF’s architecture includes the concept of
managed beans. A managed bean is a JavaBeans object whose life cycle and
scope is controlled by JSF. By carefully defining its public methods, you can
make your managed bean and all of its properties available to the pages of a
web application.

The JSF life cycle encompasses the steps that JSF performs to handle user
requests and program events. Creator projects let you hook into this life cycle
by providing methods that will be invoked at specific points in your applica-
tion. While you can access the full JSF life cycle phases if you want, Creator pre-
sents a simplified model. We’ll show you why this is useful.

JSF components support conversion, validation, and property binding. We’ll
give you project examples that use conversion, validation, and property bind-
ing and show how these fit into the life cycle phases.

B

113

114 Chapter 6 Anatomy of a Creator Project
The first step is to learn what a JavaBeans object is.

6.1 What Is a Bean?

A JavaBeans object or component (bean) is a Java class with certain structure
requirements. When a Java class conforms to this structure, other programs
(like Creator) can access the bean and inspect it intelligently. Furthermore, pro-
grams can inspect instances (objects) of the bean.

Because they follow certain design standards, beans can be reused in vari-
ous applications. The JSF architecture is set up to allow the JSF user interface
(UI) components to access JavaBeans objects.

Properties
One the most important characteristic of a bean is its ability to define and
manipulate properties. A JavaBeans property is a value of a certain type. With a
bean, you provide public methods to access a bean’s properties. A property is
frequently implemented by an instance variable, but not always. Sometimes
properties are derived from the values of other instance variables in the Java
class (especially with read-only properties). Properties can also be tied to
events and have listeners that detect a change to a property’s value.

Properties usually contain a single value. These are called simple properties.
They can also be represented by an array of values. These are called indexed
properties.

Setters and Getters
The public setters and getters define a bean’s properties. A setter provides
write access to a property and a getter provides read access. The names of these
access methods are set by standards and determine the name of the property.

A getter is a public method that returns a reference to an object of the prop-
erty’s type (or if the type is a built-in type, it returns a value). It combines the
word “get” with the property name, capitalizing its first letter. For example, if a
JavaBeans object implements a property called customer (a String), its getter is

Similarly, a setter is a public method that takes an object of the property’s
type and returns void. Using the same convention, setters combine the word

public String getCustomer() {
return customer;

}

6.1 What Is a Bean? 115
“set” with a property name whose initial letter is capitalized. A setter for the
above customer property is

A boolean property’s getter may have one of two forms. Suppose a Java-
Beans object has a property called onMailingList (a boolean). Its getter can be
implemented as

or the traditional

Creator Tip

When you create a boolean or Boolean property through the IDE, Creator uses
the isPropertyName() form for the getter.

Note that what determines a bean’s properties is the accessor methods you
provide. When you create a JavaBeans object through Creator’s IDE, Creator
supports these conventions.

Default Constructor
There is one important rule to remember with JavaBeans components. A bean
must define a public default constructor, that is, a constructor with no argu-
ments.1 Typically, JavaBeans objects are instantiated by a mechanism that pre-
cludes passing arguments to the constructor. The constructor’s job is to provide
any necessary initialization steps for the bean, including default values for the
bean’s properties.

Property Binding
When you write a JavaBeans object that conforms to these design standards,
you can use them with Creator and bind JSF components to JavaBeans proper-

public void setCustomer(String c) {
customer = c;

}

public boolean isOnMailingList() { ... }

public boolean getOnMailingList() { . . . }

1. A public class with no constructor is also considered to have a public default
constructor.

116 Chapter 6 Anatomy of a Creator Project
ties. This provides a powerful link between a UI component and the applica-
tion’s “model,” that is, the business data that the application manipulates.

The binding is specified by the JSF EL (Expression Language). Typically, you
bind the text property of a Creator component to a JavaBeans property. Creator
provides a Property Bindings dialog that allows you to select a component’s
bindable property (many properties are bindable) and a binding target (see
Figure 6–3, “Property Bindings dialog for component userName” on page 129).
After you’ve applied the binding, Creator generates the necessary code in the
page’s JSP source. Here is an example of a static text component called cost
bound to the payment property of LoanBean, which we show you later in this
chapter. The binding with the LoanBean component is in bold.

This binding means that the static text’s text property is updated with the
LoanBean’s payment property during the page’s request cycle. When you use
binding in your application, JSF uses Property Resolvers to access the property.
This instantiates the referenced object as needed and invokes the property’s
getters and setters. In this example, the LoanBean object is a property of
SessionBean1 and has session scope. We explain later how this all works in
more detail. But first, let’s discuss object scope in web applications.

Scope of Web Applications
When a web application runs on the server, it consists of various programming
objects whose life cycles depend on their scope. For example, a page generally
lives in request scope and exists during the life cycle of a single request. Certain
data, however, are available throughout the entire session. When a user puts
items in a shopping cart, for example, the cart and all of its contents are gener-
ally in session scope. Each user running the application has his or her own ses-
sion objects.

Sometimes data need to be shared among all users of a web application. For
example, suppose a counter keeps track of how many users have accessed a
web application. Such a counter needs to be accessible throughout all sessions
and therefore must have application scope. Since it’s important to understand
object scope in your Creator projects, we define the different kinds for you.

Session scope means the object is available for one user throughout the entire
session. Each user of the web application is given his or her own instance of
any object with session scope. Objects in session scope exist until the session
terminates—either until the session times out or until the application calls

<ui:staticText binding="#{Page1.cost}"
converter="#{Page1.numberConverter1}" id="cost"
style="left: 264px; top: 288px; position: absolute"
text="#{SessionBean1.loanBean.payment}"/>

6.1 What Is a Bean? 117
invalidate() on the HttpSession object. Session tracking is supported by the
underlying Servlet technology in conjunction with the web application server.

Application scope means the object is available for all sessions within an
application. A component with application scope usually contains application-
wide data or processing, since all sessions share the same object.

Request scope means the object exists only for the duration of an HTTP
request. When the application transitions from one page to the next, items in
request scope are available until the response is sent back to the client making
them available for the next page. This makes request scope objects convenient
for passing temporary information from one page instance to the next. Data
that keeps track of state, however, needs to survive past a single request and
should be placed in session scope.

An object with scope none is instantiated each time it is referenced. This
means that the object is not saved in any scope. You would use scope none
when an object is closely tied to and dependent on another object. For example,
an AddressBean with scope none is instantiated when a CustomerBean refer-
ences it.

If one object references a second one, the allowable scope of the second
object depends on the scope of the first object. Table 6.1 lists the allowable bind-
ings in a JSF application.

In general, (except for scope none) an object with a longer-living scope
should not refer to an object with a shorter life span. For example, an object
with session scope should not reference an object with request scope. On the
other hand, an object of request scope may refer to an object stored in session
scope because session scope has a longer life span. Objects with scope none
may only reference other objects of the same scope (none).

Why is all this important? First of all, you need to understand scoping rules
to create your JavaBeans objects properly in a Creator project. Then you must
understand scoping rules to correctly instantiate and access your JavaBeans
objects in the correctly scoped managed bean. Later in this chapter, we show

Table 6.1 Well-behaved bindings between objects

Object1’s Scope May Refer to Object2 in This Scope

none none

application none, application

session none, application, session

request none, application, session, request

118 Chapter 6 Anatomy of a Creator Project
you how to do this with the LoginBean in session scope (see “Modify Event
Handler” on page 130).

Predefined Creator Java Objects
If you open any Creator project (or create a new one) from Creator’s Projects
window, you’ll see three predefined beans: Session Bean, Request Bean, and
Application Bean. These are all JavaBeans objects installed as managed beans
with application scope, request scope, and session scope, respectively. These
objects will be instantiated by the web server as needed by your application. That
is, these objects (beans) will only be created if there is some reference to them.
If you expand the Source Packages and the main project package nodes (in the
Projects window), you’ll see the Java sources for these beans, as well as the
page beans for your web application’s pages.

Each page has its own page bean. By default, Page1.java is the page bean for
the first page of your application. The page bean is a JavaBeans object consist-
ing of a property for each component you add to your page. Creator generates
the Java source for this file (including the components’ properties), and you
can add code to it (such as event handler methods or user-defined initialization
statements). Page1, therefore, is a JSF managed bean with request scope.

RequestBean1.java provides a place for you to store request scope data for
your application. This is where you store data that is available across different
pages in the same HTTP request. The RequestBean1 component is a better
alternative to SessionBean1 for passing transient user input from one page
request to the next. Object RequestBean1 scales well since it goes away at the
end of the request. See “Master Detail Application - Two Page” on page 283 for
an example of a project that uses RequestBean1 to pass data to a second page.
Here is its source. 2

2. Creator hides (or “folds”) some of the Creator-managed code by default to
keep your editor pane uncluttered. To see this code, click the ‘+’ in the editor
pane’s margin.

package project_name;

import com.sun.rave.web.ui.appbase.AbstractRequestBean;
import javax.faces.FacesException;
public class RequestBean1 extends AbstractRequestBean {

. . . Creator-managed Component Definition . . .

6.1 What Is a Bean? 119
SessionBean1.java is where you place objects that you want to have session
scope. You place data here that keep track of the state of a user’s session. Exam-
ples include the contents of a shopping cart, login information about the user,
or the value of the current row’s primary key in a data table. Here is its source.

public RequestBean1() {
. . . Creator-managed Component Initialization . . .
// TODO: Add your own initialization code here (optional)

}
protected ApplicationBean1 getApplicationBean1() {

return (ApplicationBean1)getBean("ApplicationBean1");
}
protected SessionBean1 getSessionBean1() {

return (SessionBean1)getBean("SessionBean1");
}

}

package project_name;

import com.sun.rave.web.ui.appbase.AbstractSessionBean;
import javax.faces.FacesException;

public class SessionBean1 extends AbstractSessionBean {
 . . . Creator-managed Component Definition . . .

public SessionBean1() {
 . . . Creator-managed Component Initialization . . .

// TODO: Add your own initialization code here (optional)
}

protected ApplicationBean1 getApplicationBean1() {
return (ApplicationBean1)getBean("ApplicationBean1");

}
public void init() {
}
public void passivate() {
}
public void activate() {
}
public void destroy() {
}

}

120 Chapter 6 Anatomy of a Creator Project
If you use SessionBean1 to store data as a property, you can configure it
using the Add Property context menu from the Projects window (we show you
how to do all this in our first example). Creator generates the appropriate get-
ter and setter methods for you. Since SessionBean1 has session scope, all of its
instance variables (including objects that are properties) will have session
scope as well.

You’ll notice that SessionBean1 includes methods for manipulating its state.
An application that has many sessions active at one time may need to be
moved to secondary storage or to a different container if container resources
become scarce. Method passivate() is invoked by the application server
when a session object is about to be transferred. Method passivate() should
release any resources that cannot be serialized. Method activate() is invoked
after the session object is restored to the container. You can place one-time ini-
tialization or resource acquisition code in method init(), which is invoked
once when the object is initially created. Code to release resources or perform
any cleanup goes in method destroy(), which is invoked just before the ses-
sion object goes away.

ApplicationBean1.java will have only one instance within an application
(and only if it is actually referenced) and the instance is shared among all ses-
sions (users). It has similar structure to component SessionBean1 but does not
require methods activate() and passivate(). You use ApplicationBean1 as a
container for objects with application scope. Here is its source.

package project_name;

import com.sun.rave.web.ui.appbase.AbstractApplicationBean;
import javax.faces.FacesException;

public class ApplicationBean1 extends
AbstractApplicationBean {

. . . Creator-managed Component Definition . . .

public ApplicationBean1() {
 . . .Creator-managed Component Initialization . . .

// TODO: Add your own initialization code here (optional)
}
public void init() {
}

public void destroy() {
}

6.2 LoginBean 121
There’s a lot more to tell you about leveraging managed beans, program
scope, and JavaBeans objects, so let’s get started. Once we’ve explored this
chapter’s two example projects, we’ll return to examine the details of the life
cycle phases and how these interact with property binding, page initialization
and cleanup tasks, validation, and conversion issues.

6.2 LoginBean

In our first example using managed beans with Creator, you’ll start with the
web application you built in Chapter 5 (project Login1). You will add a reus-
able “component” (JavaBeans object) called LoginBean. LoginBean is a bean
with the structure described in the previous section. LoginBean’s purpose is
twofold: it holds user login information and it processes a login request. By
encapsulating both the login data and the processing procedure, the client
(which is the JSF web application you are building) is shielded from the imple-
mentation details. Furthermore, by making LoginBean a JavaBeans object with
session scope, any page you define in your project can access it throughout a
session.

LoginBean Outside View
Let’s begin by examining the LoginBean from its outside view, that is, the view
from your application. Then we’ll look at its source and show you how to
install it in your project.

A bean that represents a user logging in should store the user’s name and
password. Therefore, the LoginBean will have two properties, one for user-
name (a String) and another for password (also a String). To access these proper-
ties from JSF tags, use a JSF EL expression, as follows.

Note that username is a property of loginBean, which in turn is a property of
SessionBean1 (the default managed bean with session scope). Likewise, the
expression

public String getLocaleCharacterEncoding() {
return super.getLocaleCharacterEncoding();

}
}

#{SessionBean1.loginBean.username}

#{SessionBean1.loginBean.password}

122 Chapter 6 Anatomy of a Creator Project
references loginBean’s password property in SessionBean1. In Java code, these
map to the property’s accessor methods: getUsername(), setUsername(), get-
Password(), and setPassword().

Once a user of your web application types a username and password and
these values are stored in the LoginBean, the bean can tell you if that user’s
login information is valid. The LoginBean has a boolean property for that,
called loginGood. Since this is a read-only property, you’ll need to provide get-
ter isLoginGood().

Note that a client does not need to know how LoginBean determines
whether a login is valid, making it easier for bean providers to change how this
is done. For example, our initial implementation of LoginBean compares the
web application user’s login data with constants stored in the Java source.
Another implementation could access a database and look up the user’s name
and password. To the client, however, the calling method is unchanged. You
still invoke method isLoginGood().

Advantages of JavaBeans Objects
In an earlier chapter (see “Design Tip” on page 111), we said that using a Java-
Beans object offers striking advantages over placing code in a Java page bean.
We were referring to the ability to change a JavaBeans object’s implementation
without affecting its clients, as well as the ability to encapsulate business logic
and data. For example, in project Login1 you placed the code for a valid login
sequence inside the action event handler of the Java page bean, Page1.jsp. In
general, it’s not a good idea to put business logic in the Java page bean. Instead,
you should encapsulate all business logic inside business components imple-
mented as beans. This approach separates the presentation code (UI compo-
nents and event handlers in the Java page bean) from the model code (business
logic).

Reusability is another big advantage of JavaBeans objects that implement
business logic. Because you don’t put any UI-specific code (output formatting,
for example) in LoginBean, there’s no reason why another web application can-
not easily use it.

Property Binding with Creator Components
When objects are implemented as JavaBeans, it’s easy to use binding with the
JSF components you define on your page. This means you don’t need to write
explicit Java code to set the LoginBean properties using the component’s get-
Text() method. By binding the component’s text property to a property in
LoginBean, you’re essentially performing the Java code implicitly. Suppose, for

6.2 LoginBean 123
example, the following code appears in an event handler that reads a text field
component called username.

Or, in the prerender() method, you might use the following code to display
the value that’s stored in the LoginBean instance.

With object binding, however, all of this is accomplished behind the scenes
(we show you how to specify binding shortly). Creator generates the JSF tags
for you. For example, to bind the userName text field component’s text prop-
erty to the username property of LoginBean, Creator generates the following
JSF tag (the relevant expression is bold).

Binding this JSF component to LoginBean means that JSF displays the text that
is in the username property of LoginBean in the JSF’s component’s input field.
And conversely, JSF puts the text that is in the text property of the text field
component in the username property of LoginBean.

Let’s use LoginBean to improve the Login1 project. Here’s a step-by-step
approach.

Copy the Project
To avoid starting from scratch, copy the Login1 project to a new project called
Login2. This step is optional. If you don’t want to copy the project, simply skip
this section and continue making modifications to the Login1 project.

1. Bring up project Login1 in Creator, if it’s not already opened.
2. From the Projects window, right-click node Login1 and select Save Project

As. Provide the new name Login2.
3. Close project Login1. Right-click Login2 and select Set Main Project. You’ll

make changes to the Login2 project.
4. Expand Login2 > Web Pages and open Page1.jsp in the design view.

loginBean.setUsername(userName.getText());

userName.setText(loginBean.getUsername());

<ui:textField binding="#{Page1.userName}" id="userName"
label="User Name: " required="true"
style="left: 48px; top: 72px; position: absolute"
text="#{SessionBean1.loginBean.username}"
toolTip="Please type in your username"/>

124 Chapter 6 Anatomy of a Creator Project
5. Click anywhere in the background of the design canvas of the Login2
project. In the Properties window, change the page’s Title property to
Login 2.

Add LoginBean to Your Project
LoginBean is a reusable JavaBeans object that you will configure with session
scope. Session scope means that the object is available for the duration of one
user’s session. Each user of the web application is given his or her own instance
of the LoginBean object. To do this, you’ll create the Java source file within the
Login2 project. Then you’ll add the code that provides the LoginBean behavior
we describe earlier. Finally, you’ll add the newly created LoginBean compo-
nent to your project as a Session Bean property.

1. In the Projects window, expand node Source Packages.
2. Right-click Source Packages and select New > Java Package. Creator pops up

a New Java Package dialog.
3. Supply the name asg.bean_examples and click Finish.
4. Select package name asg.bean_examples and select New > Java Class. Cre-

ator pops up a New Java Class dialog as shown in Figure 6–1.

5. For Class Name, specify LoginBean and click Finish. Creator generates Java
source file LoginBean.java and puts it under the package name
asg.bean_examples. Creator writes the file to your project’s source code
directory Login2/src (which is visible in the Files view by expanding Login2
> src > asg > bean_examples).

Figure 6–1 New Java Class dialog

6.2 LoginBean 125
After Creator generates the Java source file, it appears in the Java source edi-
tor so that you can modify it.

Configure LoginBean.java
First let’s add the data fields that maintain the state of the LoginBean compo-
nent, then you’ll add the initialization code to the constructor, and finally,
you’ll add the code that provides access to the component’s properties.

1. Make sure that LoginBean.java is active in the Java source editor.
2. Put the cursor in the file after the LoginBean class declaration (above the

constructor).
3. Copy and paste the following statements that generate data fields. Use file

FieldGuide2/Examples/JavaBeans/snippets/Login2_loginBean_fields.txt
from your Creator book download.

4. Find the LoginBean() constructor and place the cursor after the initial brace.
5. Copy and paste the following initialization code. Use file FieldGuide2/

Examples/JavaBeans/snippets/Login2_loginBean_init.txt. Reformat the
code using <Ctrl+Shift+F> if necessary.

6. Place the cursor after the constructor. The following code provides the set-
ters and getters for properties username and password and the getter for
property loginGood. Copy and paste from file FieldGuide2/Examples/Java-
Beans/snippets/Login2_loginBean_properties.txt.

private String username;
private String password;
private String correctName;
private String correctPassword;

username = "xxx";
password = "xxx";
correctName = "rave4u";
correctPassword = "rave4u";

public boolean isLoginGood() {
return (username.equals(correctName) &&

password.equals(correctPassword));
}

126 Chapter 6 Anatomy of a Creator Project
7. You’re finished editing file LoginBean.java. Click the Save All icon on the
toolbar to save these changes.

LoginBean has three properties, username, password, and loginGood. It also
has two additional fields (correctName and correctPassword), but these
fields are not properties. LoginBean’s default constructor sets the four fields
with initial values. (Property loginGood is read-only and does not correspond
to an instance variable.)

Boolean method isLoginGood() returns true if the login information in
username and password is valid. Our implementation checks the property val-
ues against the internal fields correctName and correctPassword. Other
implementations of valid login information are possible.

The remaining methods implement the setters (setUsername() and set-
Password()) and getters (getUsername() and getPassword()) for the bean’s
other properties.

Add a LoginBean Property to SessionBean1
You’ve added the LoginBean source, but now you need to make the component
accessible within your project. Since LoginBean should have session scope, let’s
add it to managed bean SessionBean1 as a property. This will enable JSF to
automatically instantiate LoginBean when it instantiates SessionBean1. This
will also make LoginBean available to the UI components as a SessionBean1
property.

1. In the Projects window, select component Session Bean, right-click, and
select Add > Property. This pops up the New Property Pattern dialog.

public void setUsername(String name) {
username = name;

}

public void setPassword(String word) {
password = word;

}
public String getUsername() {

return username;
}

public String getPassword() {
return password;

}

6.2 LoginBean 127
2. Fill in the dialog as shown in Figure 6–2. Under Name specify loginBean,
under Type specify asg.bean_examples.LoginBean, and under Mode, select
Read/Write.

Creator Tip

Since Name and Type are case sensitive, make sure you copy the
capitalizations exactly. Also, note that we’re using the fully qualified
pathname for Type. This means you won’t have to provide an import
statement in the Session Bean source.

3. Make sure that options Generate Field, Generate Return Statement, and
Generate Set Statement are all checked. Click OK to add property loginBean
to SessionBean1.

4. Still in the Projects window, double-click the node Session Bean. This brings
up the file SessionBean1.java in the Java source editor. Here are the getter /
setter methods Creator generated.

Figure 6–2 New Property Pattern dialog

128 Chapter 6 Anatomy of a Creator Project
Now you’ll add Java code that instantiates (with operator new) the Login-
Bean object.

5. In the Java source editor (you’re still editing file SessionBean1.java), add
instantiation with operator new for property loginBean inside the
SessionBean1 init() method, as shown.

Creator2 has simplified the event processing life cycle. All of the page beans,
SessionBean1, and ApplicationBean1 include method init(). Customize
init() with code to initialize any required data.

The code that you added to SessionBean1.java makes the loginBean object
a property of SessionBean1. Thus, to access the username property of login-
Bean (for example), use the following JSF EL expression.

/**
 * Holds value of property loginBean.
 */
private asg.bean_examples.LoginBean loginBean;
/**
 * Getter for property loginBean.
 * @return Value of property loginBean.
 */
public asg.bean_examples.LoginBean getLoginBean() {

return this.loginBean;
}
/**
 * Setter for property loginBean.
 * @param loginBean New value of property loginBean.
 */
public void setLoginBean(

asg.bean_examples.LoginBean loginBean) {
this.loginBean = loginBean;

}

public void init() {
loginBean = new asg.bean_examples.LoginBean();

}

#{SessionBean1.loginBean.username}

6.2 LoginBean 129
Creator Tip

Although you’ve added property loginBean to SessionBean1, it is not yet
visible within the IDE. To make it accessible, you’ll build the project, close it,
and then re-open it. From the main menu, select Build > Build Main Project.
Now close the project. When you re-open the project in the IDE, you should
see property loginBean in the SessionBean1 Outline view.

Bind Input Components
To implement binding for both the text field and the password field compo-
nents, return to the design canvas (select the Page1 tab at the top of the editor
pane). Click button Design to make the design view active.

1. From the design canvas, select text field userName.
2. Right-click and choose Property Bindings from the menu. Creator displays

the Property Bindings dialog as shown in Figure 6–3.

3. In the Select bindable property window, choose text Object.
4. In the Select binding target window, expand the SessionBean1 and login-

Bean nodes.

Figure 6–3 Property Bindings dialog for component userName

130 Chapter 6 Anatomy of a Creator Project
5. Select the username property under loginBean. Click Apply. The following
expression is displayed under Current binding for text property.

6. Click Close.
7. Repeat steps 1 through 6 to bind the password property of component pass-

word to #{SessionBean1.loginBean.password}.

Modify Event Handler
You also need to update the Page1.java event handler to invoke the Login-
Bean’s isLoginGood() method. To do that, you have to access the LoginBean
component.

1. From the Page design view, select the Login button and double-click. Cre-
ator brings up the page bean Page1.java in the Java source editor and puts
the cursor at the first statement of the login_action() method.

2. Remove the following private variables myUserName and myPassword from
the code. (This code is left over from project Login1; you’ll find it just above
method login_action().)

3. Move the cursor to the opening brace in method login_action() and press
<Enter> to add a new line.

4. Add the following statement to obtain a reference to the LoginBean object
from SessionBean1.

Method getSessionBean1() returns a reference to the SessionBean1 object,
giving you access to SessionBean1’s loginBean property.

5. We’ve once again introduced syntax errors because of LoginBean. Use the
Fix Imports shortcut <Alt-Shift-F> to have Creator add the import class state-
ment for LoginBean to your source file.

#{SessionBean1.loginBean.username}

private String myUserName = "rave4u";
private String myPassword = "rave4u";

 LoginBean login = getSessionBean1().getLoginBean();

import asg.bean_examples.LoginBean;

6.2 LoginBean 131
6. Modify the if statement to call LoginBean’s getter, isLoginGood().

At this point, no red underlines should appear in your source code. If you
still see them, check the syntax again before moving on.

Listing 6.1 shows the complete method.

After calling getter isLoginGood(), the event handler returns either "login-
Success" or "loginFail". These are the labels you used when you specified
navigation page flow for the project in Chapter 5.

Modify Page LoginGood.jsp
Because the LoginBean has session scope, it’s available throughout the session.
The successful login page, LoginGood.jsp, will access LoginBean to personal-
ize the welcome greeting for the user. You can do this simply enough by bind-
ing the label component to the LoginBean’s username property. Here’s how.

1. In the Projects window, select LoginGood.jsp under the Web Pages node.
2. Double click page LoginGood.jsp. This brings up the design canvas for this

page.
3. Select the label component label1.
4. Right-click and select Property Bindings. The Property Bindings dialog pops

up. Under Select bindable property choose text Object. Under Select binding
target choose SessionBean1 > loginBean > username. Click Apply.

5. Now under New binding expression, edit the JSF EL expression to add the
text Welcome, in front of the binding expression, as shown in Figure 6–4.

if (login.isLoginGood()) {
...

Listing 6.1 Action event handler login_action()

public String login_action() {
LoginBean login = getSessionBean1().getLoginBean();

if (login.isLoginGood()) {
return "loginSuccess";

}
else return "loginFail";

}

132 Chapter 6 Anatomy of a Creator Project
The new binding expression should be set to:

6. Click Apply then Close.

Note that you’ve concatenated a plain string with a property binding
expression. You can also concatenate one or more property binding expres-
sions together. The string and binding expression now appear inside the label
component in the design view.

7. Click the JSP button in the editing toolbar. Here is the updated JSP tag for
the label component you placed on the LoginGood.jsp page. The property
binding is in bold.

Welcome, #{SessionBean1.loginBean.username}

<ui:label binding="#{LoginGood.label1}" id="label1"
labelLevel="1"
style="left: 72px; top: 24px; position: absolute"
text="Welcome,#{SessionBean1.loginBean.username}"/>

Figure 6–4 Property Bindings dialog for component label1

6.2 LoginBean 133
Deploy and Run
Deploy and run the application by clicking the green arrow in the toolbar.
Figure 6–5 shows the login page when the web application first comes up.

Note that the User Name text field component displays “xxx.” This is
because the LoginBean constructor initializes the username field with “xxx.”
When you specify binding, JSF automatically instantiates LoginBean and
updates the text field component’s text property with the initialized value in
LoginBean’s username property.

The same initialization occurs with the password component and Login-
Bean’s password property. However, because the rendering mechanism of the
password field component replaces the text with constant characters to hide
the password, you don’t see LoginBean’s default initialization here (you see
stars or dots).

Go ahead and type in various usernames and passwords. Again, check both
the failure and success cases, and leave one or more of the input fields blank.
Also, note that when you return to the login page, the password field is
cleared.

Figure 6–6 shows page LoginGood.jsp after a successful login scenario.
(Type rave4u for both the username and password.) The page displays the

Figure 6–5 Login web application that uses LoginBean

134 Chapter 6 Anatomy of a Creator Project
Username, thanks to the binding of the label component with the LoginBean’s
username property.

6.3 LoanBean

The project that you’ll build in this section uses a JavaBeans business object
called LoanBean. The LoanBean JavaBeans object is interesting because we
accomplish the web application’s functionality completely through binding
properties with converters and validators to manage input and output. Once
you install LoanBean as a session bean property, there is no code to write! All
the hard work is accomplished by the architecture of the JSF components, the
functionality of the converters and validators, and the ability to plug in an
application-specific bean. Furthermore, the LoanBean code is compact and
straightforward. This is a poster-child example for using layered technologies
in an IDE environment.

LoanBean Outside View
The LoanBean JavaBeans object computes a monthly payment for a long-term,
fixed-rate loan based on a loan amount, annual interest rate, and term (the
length of the loan in years). The monthly payment is returned from getter get-
Payment(), making payment a property of LoanBean. Although payment is a
property of LoanBean, it is a derived property. This means its value is computed
from the values of the bean’s other properties. Since payment is a derived prop-
erty, LoanBean does not require a setter method for it.

Figure 6–6 A successful login session

6.3 LoanBean 135
LoanBean’s other three properties are amount (the loan amount), rate (the
annual interest rate), and years (the loan’s term). Following the conventions of
building a conforming JavaBeans object, LoanBean contains setters and getters
for each of these three properties.

To build this application, you’ll be placing text field components on the
design canvas to allow the user to specify amounts for the LoanBean’s proper-
ties. You’ll use converters to convert String input into the necessary data types
and validators to control the range of these values. You’ll also bind Creator
components’ text properties to the LoanBean properties.

After supplying input parameters for the loan, the user clicks a Calculate
button to see the monthly payment. The application displays the payment
information in a static text component that is bound to the LoanBean’s payment
property. With the help of converters and formatters, JSF updates the page
automatically. Figure 6–7 shows what this web application looks like.

Create a New Project
To build this application, you create the project, place a title on the page, and
add the LoanBean managed bean to the project. After configuring the Loan-
Bean component, you add the other components to gather input and report a

Figure 6–7 Project Payment1 running in a browser

136 Chapter 6 Anatomy of a Creator Project
monthly payment amount. This involves adding labels, specifying tooltips,
applying converters and validators, and specifying binding between the user
interface components (the “presentation” components) and the JavaBeans
objects (the “model”). Let’s begin.

1. From Creator’s Welcome Page, select button Create New Project. Creator
displays New Project dialog. Under Categories, select Web. Under Projects,
select JSF Web Application. Click Next.

2. In the New Web Application dialog under Project Name, specify Payment1.
Click Finish.

After initializing the project, Creator comes up in the design view of the edi-
tor pane. You can now set the title.

3. Click anywhere in the middle of the design canvas and select Title in the
Properties window. Change the title to Payment Calculator. Finish by press-
ing <Enter>.

4. Change the page’s background color. In the Properties window, select the
small editing square next to attribute Background. Creator pops up a color
selection dialog. Choose the yellow swatch in the top row. This corresponds
to RGB value 255, 255, 204 (a variation of yellow).

Add a Label Component
You’ll add a label component to put a heading on the page.

1. From the Basic Component palette, select component Label and drag it to
the top of the page.

2. When you drop it onto the design canvas, it remains selected and you can
begin typing. Type in Monthly Payment Calculator. Finish with <Enter>.
(Don’t resize the component; Creator will stretch it to fit the text.)

3. In the Properties window, change property id to titleLabel.
4. In the Properties window, select Strong(1) for the labelLevel property.
5. Save the changes by selecting File > Save All from the main menu bar.

Add LoanBean to Your Project
These steps create the LoanBean Java source file and add it to your project.

1. Select the Projects window.
2. Under Payment1, expand the Source Packages node.
3. Select the Source Packages node, right-click, and select New > Java Package

from the menu. Creator displays the New Java Package dialog.

6.3 LoanBean 137
4. Specify name asg.bean_examples and click Finish. This adds package
asg.bean_examples under node Java Sources.

5. Select package asg.bean_examples, right-click, and select New > Java Class
from the menu. Creator displays the Java Class dialog, as shown in
Figure 6–8.

6. Specify name LoanBean and click Finish. You’ve just added a stub for class
LoanBean.java, which Creator brings up for you in the Java source editor.
Note that Creator generates standard Javadoc comments for you.

You now define LoanBean’s properties and specify custom code for its con-
structor and one of its getters.

1. The first property you will add is property amount. In the Projects Window,
right-click node LoanBean.java and select Add > Property. Creator displays
the New Property Pattern dialog as shown in Figure 6–9.

2. Fill in the dialog. For Name, specify amount3, for Type select Double4, and
for Mode select Read/Write. Verify that the default Options (Generate Field,
Generate Return Statement, and Generate Set Statement) are all checked.

3. Click OK. You see that Creator has added the code to LoanBean.java for
property amount.

You will add three more properties to LoanBean. Table 6.2 displays the
property name, type, mode (read/write or read-only), and options for each

3. All property names should have an initial lowercase letter.
4. Note that you specify type Double (the wrapper class), not double (the primi-

tive type).

Figure 6–8 New Java Class dialog

138 Chapter 6 Anatomy of a Creator Project
property in LoanBean.java. Use the table as a guide to add the three remaining
properties using the New Property Pattern dialog. Note that property years is
type Integer and property payment is read only. Add these properties now.

Table 6.2 Properties for LoanBean component

Name Type Mode Options
amount Double Read/Write Generate Field

Generate Return Statement
Generate Set Statement

rate Double Read/Write Generate Field
Generate Return Statement
Generate Set Statement

years Integer Read/Write Generate Field
Generate Return Statement
Generate Set Statement

payment Double Read Only Generate Field
Generate Return Statement

Figure 6–9 New Property Pattern dialog

6.3 LoanBean 139
You’ll now supply initialization code for the constructor and payment calcu-
lation code for method getPayment().

1. The Java source editor should still be active with file LoanBean.java.
2. In the code Navigator window (its default position is in the lower-left corner

of the IDE), find the LoanBean constructor and double-click (look for the
diamond icon that identifies the constructor). Creator highlights the con-
structor in the source code editor.

3. Add the constructor initialization code shown. Copy and paste from your
Creator book’s file FieldGuide2/Examples/JavaBeans/snippets/
Payment1_constructor.txt. The added code is bold.

4. Add the getPayment() calculation code. In the code Navigator window,
double-click method getPayment(). Creator puts the cursor at method get-
Payment() in the editor pane.

5. Copy and paste from your Creator book’s file FieldGuide2/Examples/Java-
Beans/snippets/Payment1_getPayment.txt. The added code is bold. Refor-
mat the code (right-click and select Reformat Code) if the indentations are
off.

6. Compile the Java code to make sure that there are no errors. Select Build >
Build Main Project from the main menu bar and verify that the build is suc-
cessful in the Output window. If not, fix the error(s) and rebuild.

This completes the source for LoanBean.

/** Creates a new instance of LoanBean */
public LoanBean() {

amount = new Double(100000);
rate = new Double(5.0);
years = new Integer(15);

}

public Double getPayment() {
double monthly_interest = rate.doubleValue() / 1200;
int months = years.intValue() * 12;
payment = new Double(amount.doubleValue() *

(monthly_interest/(1-Math.pow(1+monthly_interest,
-1*months))));

return payment;
}

140 Chapter 6 Anatomy of a Creator Project
Add a LoanBean Property to SessionBean1
The LoanBean JavaBeans object provides a way to calculate a monthly pay-
ment amount based on input provided by the user. Even though this data is
transient, you’ll add it to session scope. (In this single-page example, adding
LoanBean to either request or session scope makes no practical difference.
However, in a later example, we add a second page and want to maintain the
state of the loan bean property across page requests. Therefore, you’ll add
LoanBean as a property to the managed bean SessionBean1.) By making Loan-
Bean a property of a managed bean, you make it available at design time,
enabling you to easily bind its properties to UI components on the page.

1. In the Projects window, select node Session Bean, right-click, and select Add
> Property.

2. Creator pops up the New Property Pattern dialog.
3. For Name, specify loanBean, for Type specify asg.bean_examples.LoanBean,

and for Mode use the default Read/Write.
4. Click OK to add property loanBean to SessionBean1.
5. In the Projects window, double-click node Session Bean. This brings up the

file SessionBean1.java in the Java source editor.
6. Scroll down to the end of the file where you’ll see the getter and setter meth-

ods Creator generated. Here are the getter / setter methods for property
loanBean.

Now you’ll add Java code that instantiates the LoanBean object.

/**
* Holds value of property loanBean.
*/
private asg.bean_examples.LoanBean loanBean;
/**
* Getter for property loanBean.
* @return Value of property loanBean.
*/
public asg.bean_examples.LoanBean getLoanBean() {

return this.loanBean;
}
/**
* Setter for property loanBean.
* @param loanBean New value of property loanBean.
*/
public void setLoanBean(asg.bean_examples.LoanBean loanBean) {

this.loanBean = loanBean;
}

6.3 LoanBean 141
1. In the Java source editor, add instantiation code with operator new for prop-
erty loanBean in the SessionBean1 init() method, as follows.

2. Save these changes by selecting the Save All icon from the toolbar.

Creator Tip

Although you’ve added property loanBean to SessionBean1, it is not yet
visible within the IDE. To make it accessible, you’ll build the project, close it,
and then re-open it. From the main menu, select Build > Build Main Project.
Now close the project. When you re-open the project in the IDE, you should
see property loanBean in the SessionBean1 Outline view.

LoanBean.java Code
Listing 6.2 contains the source for LoanBean.java. You’ve already seen the
source in the Java source editor, but we show it here for completeness. We omit
the Creator-generated Javadoc comments.

public void init() {
loanBean = new asg.bean_examples.LoanBean();

}

Listing 6.2 LoanBean.java

package asg.bean_examples;

public class LoanBean {
/** Creates a new instance of LoanBean */
public LoanBean() {

amount = new Double(100000);
rate = new Double(5.0);
years = new Integer(15);

}

private Double amount;

public Double getAmount() {
return this.amount;

}

public void setAmount(Double amount) {
this.amount = amount;

}

142 Chapter 6 Anatomy of a Creator Project
Create the Form’s Input Components
The Monthly Payment Calculator web page requires a set of components to
gather input for the parameters of the loan. There are three parameters: the
loan amount, the interest rate, and the term. Each parameter has a label, a text
field to gather input, and a message component to report validation and con-
version errors. Figure 6–10 shows what the design canvas looks like with all of
the components added to the page (we’ve labeled most of them for you).

Here are the steps to create the components for the loan amount parameter:

1. Switch back to the design canvas by selecting the tab labeled Page1 at the
top of the editor pane. Click button Design to make the design view active.

private Double rate;

public Double getRate() {
return this.rate;

}

public void setRate(Double rate) {
this.rate = rate;

}

private Integer years;

public Integer getYears() {
return this.years;

}

public void setYears(Integer years) {
this.years = years;

}

private Double payment;

public Double getPayment() {
double monthly_interest = rate.doubleValue() / 1200;
int months = years.intValue() * 12;
payment = new Double(amount.doubleValue() *

(monthly_interest/(1-Math.pow(1+
monthly_interest,1*months))));

return payment;
}

}

Listing 6.2 LoanBean.java (continued)

6.3 LoanBean 143
2. From the Basic Components palette, select Label and drag it onto the design
canvas.

3. Make sure that the component remains selected and type in the text Loan
Amount. Finish with <Enter>.

4. From the Basic Components palette, select Text Field and drop it onto the
design canvas. Position it to the right of the label component you just added.

5. In the Properties window, change its id attribute to loanAmount.
6. In the Properties window under Data, make sure the required attribute is

selected (checked). This ensures that the user supplies input for this field.
7. In the Properties window under Behavior, set the toolTip property to

Please supply the loan amount in dollars. Finish with <Enter>.
8. In the Design view, select the label. Press and hold <CTRL+ Shift>, left-click

the mouse, and drag the cursor to the loanAmount text field component to
set the labelʹs for property.

Setting the labelʹs for property to the text field defines an association
between the label and the loanAmount text field. When the application is
running, selecting the label as well as the text field places the cursor in the
text field. Furthermore, Creator automatically prepends an asterisk (*) to the
labelʹs text indicating that its text field input is required. Validation and con-
version errors will also affect the labelʹs appearance

Figure 6–10 Design canvas showing placement of components for project Payment1

Label

Label
Text Field

Message

Static Text

LabelButton

144 Chapter 6 Anatomy of a Creator Project
Creator Tip

Here, you can use either a Label component (and have more control over the
placement of the label and its style characteristics) or you can supply label
text through the text field’s label property. Both approaches allow the label
text to reflect required input (with an asterisk) and modify the label’s style
when conversion or validation errors occur.

Use Validators and Converters
The loanAmount text field collects a numerical string that represents the
amount of the loan. The string data is used with UI components for the “pre-
sentation” part of the application. Internally, however, you’ll store this infor-
mation as a Double. Therefore, you need to convert the String to a Double and
make sure its value is within a reasonable range with validation. To do this,
you’ll use a JSF DoubleRangeValidator for validation and a JSF DoubleCon-
verter for conversion. You can add these components to your project from the
Validators and Converters palettes. Here’s how.

1. In the Palette window, expand the Converters node. Select Double Con-
verter, drag it to the design canvas, and drop it on top of the text field compo-
nent loanAmount. In the Properties window, Creator sets the converter
property under Data for loanAmount to doubleConverter1.

2. To see this, select the loanAmount text field. In the Properties window, select
the small editing box opposite property converter under Data. Creator
pops up a dialog that shows the componentʹs converter as shown in
Figure 6–11. Click OK to close the dialog. Note that component
doubleConverter1 appears in the Outline view for Page1.

3. Repeat this step for the validator. In the Palette window, expand the Valida-
tors node. Select Double Range Validator, drag it to the design canvas, and
drop it on top of the loanAmount text field component. Creator sets the val-
idator property under Data for loanAmount to doubleRangeValidator1 in
the Properties window. Component doubleRangeValidator1 also appears
in the Page1 Outline view.

You’ve just applied a range validator for the loan amount. Now you specify
its range (maximum and minimum).

1. In the Outline view, select the validator you just added for the loanAmount
component, doubleRangeValidator1.

2. From the Properties window, set the minimum and maximum values to 1.0
and 1 million (1000000.0), respectively (or other values you deem reason-
able).

6.3 LoanBean 145
Creator Tip

Creator displays properties in alphabetical order within each category,
making property maximum appear before property minimum. Make sure that
you supply the minimum and maximum values to the correct property name.
If you reverse them, validation will always fail!

You also need a message component to display error messages resulting
from conversion and validation errors.

1. Close the Validators and Converters nodes if they’re still expanded in the
Palette window. From the Basic Components palette, select component Mes-
sage. Drag it to the design canvas and position it to the right of the text field
component loanAmount.

2. Press and hold <CTRL+Shift>, left-click the mouse, and drag the cursor to the
loanAmount text field component to set the for property as shown in
Figure 6–12. This ties the message component to the loanAmount text field
component. Any error messages generated by the component’s validator or
converter will be displayed on the page by this message component. In the

Figure 6–11 Component loanAmount’s converter property set

146 Chapter 6 Anatomy of a Creator Project
design view, the message component now displays the text Message sum-
mary for loanAmount.

Specify Property Binding
Now let’s specify binding for the loanAmount text field’s text property.

1. Make sure that the loanAmount component is selected.
2. Right-click and select Property Bindings from the menu. A dialog entitled

Property Bindings for loanAmount pops up.
3. In the Select bindable property window, choose text Object.
4. In the Select binding target window, expand node SessionBean1 > loanBean,

select property amount, and click Apply. Figure 6–13 shows the Property
Bindings dialog.

Figure 6–12 Setting a Message component’s for property

Figure 6–13 Property Bindings for loanAmount

6.3 LoanBean 147
5. In the Current binding for text property, Creator displays the expression

6. Click Close. This binds the text property of the text field component loan-
Amount to the amount property of LoanBean.

7. The text field component now displays the LoanBean’s default value for the
amount property (100,000). In the Properties view, property text displays
the binding icon. If you hold the cursor over this attribute, a tooltip displays
the above binding expression.

Place Interest Rate and Term Components
Ok, you’ve finished placing the components associated with gathering the loan
amount parameter. You’ll need to repeat these steps for the interest rate (which
uses a Double converter and a Double range validator) and the loan term
(which uses an Integer converter and Long range validator). Follow the same
steps we showed you for the loan amount input.

1. First grab a label, then the text field, converter, and validator, and finally, the
message component.

2. To make this easier, we’ve created tables that help you create the compo-
nents and set their values. You may find it helpful to follow the instructions
and descriptions we gave you for the loan amount parameter.Table 6.3 lists
the components and their properties for the interest rate input.

3. Be sure to specify binding for interestRate’s value attribute with the
LoanBean’s rate property. Use the Property Binding dialog and select
SessionBean1 > loanBean > rate.

Creator Tip

You can use the same Double converter for text field interestRate that you
used with text field loanAmount. After placing the text field on the design
canvas, select the drop down opposite the converter property in the
Properties window and choose doubleConverter1.

Table 6.4 lists the components and their Properties settings for the loan term
parameter.

The text field component loanTerm requires an Integer converter and a Long
range validator to control the allowable range. Specify binding with
SessionBean1 > loanBean > years.

#{SessionBean1.loanBean.amount}

148 Chapter 6 Anatomy of a Creator Project
Place Button, Label and Static Text
Components

On the last line of the web application page, you’ll place a button, a label com-
ponent, and a static text component that binds to the payment property of the
LoanBean. Table 6.5 shows the components you need and their properties that
control the payment display. Specify SessionBean1 > loanBean > payment to bind
the static text’s text property with the LoanBean’s payment property.

Let’s see how the button and static text components work with the LoanBean
and the Number converter.

Table 6.3 Components for interest rate input

Component Property Setting
 Label
(label2)

for interestRate
(set this property after you place text
field interestRate on canvas)

text Interest Rate

Text Field id interestRate
toolTip Please specify the interest rate (APR)

converter doubleConverter1
(the same converter you used for
loanAmount; select the drop down
opposite the converter property
and choose doubleConverter1)

required true (checked)

validator doubleRangeValidator2
(select Double Range Validator from
the Validators palette)

text #{SessionBean1.
loanBean.rate}

Double Range Validator
(doubleRangeValidator2)

maximum 15.5

minimum 0.001

 Message
(message2)

for interestRate
(press and hold <CTRL+Shift>, left-
click the mouse, and drag the cursor
to the interestRate component)

6.3 LoanBean 149
The button component does not have an action event handler defined in the
Java page bean. The default action submits the page. This begins the life cycle
process and updates the fields, including the static text component cost.

Static text component cost is bound to the payment property of the Loan-
Bean. Recall that method getPayment() returns a Double. When you define a
number converter for the static text component, the Double generated by the
LoanBean component is converted to a String. We want the payment displayed
in dollars and cents, however. Fortunately, the number converter has a pattern
property that manipulates the Double as a comma-separated number with two

Table 6.4 Components for loan term input

Component Property Setting
Label (label3) for loanTerm

(set this attribute after you place text
field loanTerm on canvas)

text Loan Term (Years)

Text Field id loanTerm
toolTip Please specify term of loan in years

converter integerConverter1
(select Integer Converter from the
Converters palette; will be set after
you drop the converter onto the
component)

required true (checked)

validator longRangeValidator1
(will be set after you drop the
validator onto the component)

text #{SessionBean1.
loanBean.years}

Integer Converter
(integerConverter1)

Long Range Validator
(longRangeValidator1)

maximum 99

minimum 1

Message (message3) for loanTerm
(press and hold <Ctrl+Shift>, left-
click the mouse, and drag the cursor
to the loanTerm component)

150 Chapter 6 Anatomy of a Creator Project
digits to the right of the decimal point and a dollar sign in front. The pattern
that accomplishes this is

The number converter has additional properties to help you control the format
of the output String, but this pattern fully specifies the format we need.

Deploy and Run
Figure 6–14 shows the Outline view of the JSF components, converters, and
validators for project Payment1. Before deploying, you may find it helpful to
compare your Outline view with the components shown here.

Deploy and run the application by clicking the green arrow on the toolbar.
Figure 6–15 shows the web application with new values for the loan amount,
interest rate, and loan term. Note how the tooltip provides context help as the
user holds the cursor over the interest rate text field component.

The payment amount is computed from the new values. When you change
any of the loan parameters and click the Calculate button, a new payment
appears. All this takes place because of the bindings between the text field
components and the LoanBean properties (including the LoanBean payment
property for output). Of course, the converters and validators play important
roles as well.

Table 6.5 Components for monthly payment output

Component Property Setting
Button id calculate

text Calculate

Label (label4) text Payment:

Static Text id cost
converter numberConverter1

(this will be set after you drop the
Number Converter onto the
component)

text #{SessionBean1.
loanBean.payment}

Number Converter
(numberConverter1)

pattern $###,###.00

$###,###.00

6.4 The Creator-JSF Life Cycle 151
6.4 The Creator-JSF Life Cycle

Now that you’ve built two projects in this chapter (Login2 and Payment1) that
involve page navigation, validation, conversion, JavaBeans objects, and saving
state across page requests, you’re ready to delve into the JSF life cycle and
apply it to the Creator application model. We’re going to present the JSF life
cycle phases and explore what sorts of processing occurs in each phase. When
viewed as a step-by-step sequence of events, the life cycle phases make sense
and explain how the framework invokes your application’s code.

What is not so straightforward, however, is how to consistently invoke ini-
tialization and cleanup code and have all scenarios handled. To that end, Cre-
ator provides a set of callback methods that allow you to control initialization

Figure 6–14 Outline view for project Payment1

152 Chapter 6 Anatomy of a Creator Project
code, cleanup code, and code that helps render your page. First, let’s take a
look at the JSF life cycle.

JSF Life Cycle
The JavaServer Faces framework provides a life cycle for a JSP request. The six
steps in this life cycle process are shown in Figure 6–165. While the steps
always occur in the same order, it is important to note that not all six steps will
necessarily be processed for every page request. For example, validation rules
are applied to the request during Step 3 (Process Validations). If a component
fails a validation, the page is returned with an error message and the process
skips directly to Step 6 (Render Response). Furthermore, JSF (and indeed all
HTTP-based frameworks) make a distinction between an initial request (the first
page of a web application) and a postback (handling and processing a request
due to user input). It’s important to note that during an initial request, JSF exe-

5. This diagram is adapted from “JavaServer Faces Standard Request-
Response Life Cycle,” in the J2EE 1.4 Tutorial. See http://
java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html for
more information.

Figure 6–15 Monthly payment calculator that uses LoanBean

6.4 The Creator-JSF Life Cycle 153
cutes only the first (Restore View) and last (Render Response) phases. When
JSF handles a postback it potentially executes all six phases. Let’s describe these
phases.

Figure 6–16 JSF Request-Response Life Cycle Process

Restore
View

Apply Request
Values

Process
Validations

Render
Response

Invoke
Application

Update Model
Values

Process
Events

1 2

34

5 6

Process
Events

Process
Events

Process
Events

Faces
Request

Faces
Response

Response
Complete

Response
Complete

Response
Complete

Response
Complete

Conversion Errors /
Render Response

Validation / Conversion
Errors / Render Response

Render
Response

154 Chapter 6 Anatomy of a Creator Project
Phase 1 - Restore View
This is a system-level phase, meaning that application code is not involved. JSF
builds the view of the page and saves it in the FacesContext instance. (You
accessed the FacesContext when you hooked into the navigation handler using
a noncommand component in project Navigate2. See “Noncommand Compo-
nents” on page 93.) The view consists of a tree of the UI components for the
page. If this is an initial request, the view is empty and the system skips to the
Render Response phase. There is no processing, since there is not yet any input
supplied by the user. If this is a postback, the view already exists and the sys-
tem continues to the Apply Request Values phase.

Phase 2 - Apply Request Values
During the Apply Request Values phase, any new input values are extracted
and stored by the appropriate component. If the component’s local value is not
a String, it must be converted to the correct type. If the conversion fails, several
steps occur.

1. An error message is generated and associated with the component.
2. The error message is queued on the FacesContext (it will be displayed later

in the Render Response phase).
3. The life cycle skips to the Render Response phase when this phase has com-

pleted (all of the components will process their input values).

Skipping to the Render Response phase has several consequences.

• The same page will be rendered. This allows the user to see the input errors
for all of the fields that have errors.

• Since the Process Validations phase is skipped, the system won’t try to
validate badly formed input.

• None of the business data will be updated (this happens in the Update
Model Values phase).

• None of the event handlers will be invoked (this happens in the Invoke
Applications phase).

Creator Tip

If any component on the page has its immediate property set to true, then
the validation, conversion, and events associated with this component take
place during the Apply Request Values phase. For most cases, however, using
virtual forms precludes the necessity of using the immediate attribute.

6.4 The Creator-JSF Life Cycle 155
As an example, in project Payment1 when the user types in new values for
the loan amount, interest rate, and loan term, these values are converted from
the character strings to Double and Integer values in this phase. If the user sup-
plies non-numeric input, the conversion fails. A standard conversion error
message is displayed during the Render Response phase in the relevant mes-
sage component. None of the LoanBean properties are updated with the new
values when the conversion error occurs, since processing skips to the Render
Response phase.

Phase 3 - Process Validations
After component input has been converted (successfully) it is validated during
the Process Validations phase. Validation is typically customized to the appli-
cation. All input that has validation is validated. If any input fails validation,
the same steps described above for failed conversion occur here. Thus, an error
message is queued, processing skips to the Render Response phase, and the
same page is rendered. The user thus receives feedback for all input that fails
validation.

In the Payment1 project, if the user supplies input that can be converted but
is outside the minimum and maximum limits you specify for the validator, the
component is marked invalid.

Phase 4 - Update Model Values
During the Update Model Values phase, all input has been properly converted
and validated. This is the phase which processes property bindings: the model
data is updated with the values from the components. Thus, the model data
has new values. For example, when the user submits a username and password
in project Login2, these values are stored in the LoginBean component during
this phase. Similarly, in project Payment1, the values supplied for the loan
amount, interest rate, and term are stored in the LoanBean component. Because
JSF executes this phase only after successfully completing the Process Valida-
tions phase, you are guaranteed that the updated model values will be valid.
(Of course, the data may violate some business logic, but business logic valida-
tion usually occurs in the Invoke Application phase when event handler code
is executed.)

Phase 5 - Invoke Application
During the Invoke Application phase, JSF processes any application-level
events. Typical events include action events (for command components such as
buttons and hyperlinks) or process value change events (for input components
such as text fields or drop down lists). Action events return a String that is pro-
vided to the navigation handler which determines the next page to be dis-
played.

156 Chapter 6 Anatomy of a Creator Project
In project Login2, when you click the Login button, method
login_action() processes the username and password you supply (this is the
business logic). Depending on the outcome, the method returns either “login-
Success” or “loginFail.” The navigation handler then determines that either the
LoginGood or LoginBad page should be displayed next.

In project Payment1, there are no specified event handlers. The property
bindings mean that the model data (the LoanBean component) is updated with
the user submitted values during Phase 4. Then property bindings come into
play again when the components are rendered with the updated model data
during Phase 6.

Phase 6 - Render Response
During this final phase, the page is rendered. If this is an initial request for this
page, the components are added to the view at this time. If this is a postback,
the components have already been added to the view.

If there are messages queued (from conversion or validation errors) and the
page contains a message or message group component, these will be displayed.
Conversely, if the page does not contain a message or message group compo-
nent, no message will appear.

If there were no errors and if there are property bindings associated with
any of the components, the component values are updated from model proper-
ties. For example, in project Payment1, the static text component that displays
the monthly payment value is updated with the payment property of the Loan-
Bean component at this time. Similarly, in project Login2, the label component
on page LoginGood is updated with the username property of the LoginBean
component.

If there were errors, the component values are not updated from the model
data. To see this behavior, deploy and run project Login2. You’ll note that the
userName text field is initialized from the LoginBean username property (it is
‘xxx’). Change the ‘xxx’ to something else (such as ‘newusername’). Now clear
the field for the password input and click Login. The password field fails vali-
dation, which means that the Process Validations phase skips to the Render
Response phase. Since JSF skips the Update Model Values phase, the username
and password properties in the LoginBean component are not updated. When
the page is re-rendered, the password field is still empty and a validation error
message appears. The username field contains the new input (‘newusername’)
which was left unaltered in the component.

Creator Life Cycle Callback Methods
The JSF life cycle is relatively straightforward. What is a bit tricky is under-
standing the sequence of events when page navigation occurs. Recall that in
the Creator model, each page bean has request scope. Therefore, for each

6.4 The Creator-JSF Life Cycle 157
request the page is created anew. When you navigate from one page to the
next, the second page is created for the Render Response phase. The first page
is not destroyed until after the Render Response phase.

Creator provides hooks into this life cycle process for the application devel-
oper. The initial release of Creator exposed methods that are invoked before
and after each of the JSF life cycle events. For example, method beforeRender-
Response() is invoked before the Render Response phase and afterRender-
Response() is invoked after this phase. The process is muddied, however, by
the following complications:

• Not all of the phases are always executed. If input fails to properly convert
or fails validation, the life cycle process skips from the Process Validations
phase to the Render Response phase.

• Because you may navigate to a new page, the beforeRenderResponse()
method may not belong to the page that actually gets rendered.

• If this is the initial page (a Welcome page, for example) of the application,
JSF has not yet constructed the view (the components that comprise the state
of the application) when the page’s constructor is invoked. Therefore, there
wasn’t a consistent place to put page initialization and cleanup code.

The current release of Creator addresses these issues by supplying callback
methods that are available in any page bean, that is, the Java backing code that
Creator generates for you whenever you create a web page through the IDE.
Table 6.6 lists these methods (and you’ll note that Creator generates stubs for
them so that you can easily provide your own code).

Table 6.6 Creator Page Life Cycle Callback Methods

Method Description

init() Called after JSF either creates the Faces view or restores the Faces view,
depending on whether this is a postback or an initial page. When
navigation is involved, init() is called on the To Page after the
processing is complete but before prerender() is invoked. Place any
page or component initialization code here.

preprocess() Called before Apply Request Values phase for the page bean that is
processing this form submit. Since preprocess() is invoked before
conversion and validation, you are guaranteed that this method will be
called even if conversion or validation errors occur.

158 Chapter 6 Anatomy of a Creator Project
The best way to see how these methods work is to step through a few use
cases. Let’s use project Login2, since this is a multi-page project.

Use Case 1: Initial Request
When you navigate to the web application from a page outside application,
this is an initial request. That is, you supply the following URL to the browser:

Here are the steps.

• JSF executes the Restore View phase for Page1.
Page1() constructor is invoked.
Page1.init() is invoked.

• JSF executes the Render Response phase for Page1. The text field
components are initialized from the values in the LoginBean’s properties.
Page1.prerender() is invoked.
Page1.destroy() is invoked.

Use Case 2: User Clicks Reset
Page1 of the Login2 project is rendered on the page and the user clicks the
Reset button. Because you use virtual forms with this project, the application
does not validate the input associated with the text fields. The text fields are
cleared when the page is re-rendered (no navigation occurs). Here are the
steps.

• JSF executes the Restore View phase for Page1.
Page1() constructor is invoked.
Page1.init() is invoked.
Page1.preprocess() is invoked.

prerender() Called before Render Response for the page bean that is about to be
rendered. When you navigate to a new page, prerender() is always
called on the To Page, not the From Page.

destroy() Called after Render Response for all page beans for which init() was
also called. When you navigate to a new page, destroy() will be
called for both the From Page and the To Page. The From Page’s
destroy() method will be invoked first. Put any page cleanup code
or state saving code here.

http://hostname:port_number/Login2

Table 6.6 Creator Page Life Cycle Callback Methods (continued)

6.4 The Creator-JSF Life Cycle 159
• JSF executes the Apply Request Values, Process Validations, Update Model
Values, and Invoke Application phase.

During the Invoke Application phase, method Page1.reset_action() is
executed, clearing the text field values.

• JSF executes the Render Response phase for Page1. The text field
components are not updated with the LoginBean’s property values.
Page1.prerender() is invoked.
Page1.destroy() is invoked.

Use Case 3: User Fails to Login
In this case, the user supplies new values for username and password. These
values don’t flag validation errors, but the login sequence fails. Thus, the appli-
cation navigates to the LoginBad page.

• JSF executes the Restore View phase for Page1.
Page1() constructor is invoked.
Page1.init() is invoked.
Page1.preprocess() is invoked.

• JSF executes the Apply Request Values, Process Validations, Update Model
Values, and Invoke Application phase.

During the Apply Request Values phase the user input is stored in its associ-
ated component. No conversion is necessary and no errors occur. During the
Process Validations phase, the input for username and password is vali-
dated and no validation errors occur. During Update Model Values, the
input for username and password is copied into the LoginBean’s corre-
sponding properties. During the Invoke Application phase, method
Page1.login_action() is executed. The submitted values stored in Login-
Bean are compared to LoginBean’s correctName and correctPassword
fields. The comparison fails and the String “loginFail” is passed to the navi-
gation handler. JSF navigates to page LoginBad.

• JSF executes the Render Response phase for LoginBad.
LoginBad() constructor is invoked.
LoginBad.init() is invoked.
LoginBad.prerender() is invoked.
Page1.destroy() is invoked (From Page).
LoginBad.destroy() is invoked (To Page).

160 Chapter 6 Anatomy of a Creator Project
Use Case 4: User Login is Successful
From Page1 the user supplies new values for username and password. These
values don’t flag validation errors and the login sequence is successful. Thus,
the application navigates to the LoginGood page.

• JSF executes the Restore View phase for Page1.
Page1() constructor is invoked.
Page1.init() is invoked.
Page1.preprocess() is invoked.

• JSF executes the Apply Request Values, Process Validations, Update Model
Values, and Invoke Application phase.

During the Apply Request Values phase the user input is stored in its associ-
ated component. No conversion is necessary and no errors occur. During the
Process Validations phase, the input for username and password is vali-
dated and no validation error occur. During Update Model Values, the input
for username and password is copied into the LoginBean’s corresponding
properties. During the Invoke Application phase, Page1’s login_action()
is executed. The submitted values stored in LoginBean are compared to Log-
inBean’s correctName and correctPassword fields. The comparison suc-
ceeds and the String “loginSuccess” is passed to the navigation handler. JSF
navigates to page LoginGood

• JSF executes the Render Response phase for LoginGood. The label
component’s text property is set with the value of the LoginBean username
property which was updated with the submitted values during the Update
Model Values phase above.
LoginGood() constructor is invoked.
LoginGood.init() is invoked.
LoginGood.prerender() is invoked.
Page1.destroy() is invoked (From Page).
LoginGood.destroy() is invoked (To Page).

6.5 Key Point Summary

The Login2 and Payment1 web applications illustrate the power of property
bindings with JavaBeans objects that are business components. Used in con-
junction with the appropriate converters (for non-String property values in the
business objects) and validators, you can see how easy it is to isolate business
logic from presentation code in your web applications.

6.5 Key Point Summary 161
Creator provides a set of life cycle call back methods that simplify the JSF
life cycle phases. Use these methods for initialization, cleanup, and page ren-
dering code.

• A JavaBeans object is a Java class that conforms to certain design standards.
• JavaBeans objects implement read-access properties with public getter

methods.
• JavaBeans objects implement write-access properties with public setter

methods.
• A JavaBeans object must have a public default constructor with no

arguments.
• A JavaBeans object is a reusable component and helps separate business

logic from presentation code.
• A JavaBeans object hides its implementation code by carefully defining its

public methods (outside view).
• You can install a JavaBeans object as a property in one of Creator’s default

managed beans. A JavaBeans object configured as a property of the
Request1.java page bean has request scope. Configuring it in
SessionBean1.java gives it session scope and configuring it in
ApplicationBean1.java gives it application scope.

• You can also install a JavaBeans object in a Creator project as a managed
bean and specify its scope explicitly.

• The bean configuration file managed-beans.xml contains your JavaBeans
object’s name, class, and scope. It may also specify other properties of your
bean.

• A managed bean with session scope is available for the duration of the
session for one user.

• A managed bean with request scope is available for the duration of the
request. When the application transitions from one page to the next, items in
request scope are available for the next page.

• To specify a managed bean property within a JSF component tag, use the JSF
EL expression

For example, here loanBean is a property of SessionBean1.

• To specify a JavaBeans object’s property that is itself a property of a
managed bean, use the JSF EL expression

#{ManagedBeanName.propertyName}

#{SessionBean1.loanBean}

#{ManagedBeanName.javaBeanObjectName.propertyName}

162 Chapter 6 Anatomy of a Creator Project
For example, here amount is a property of loanBean.

• To bind a JSF component’s property to a property in a JavaBeans object,
select the JSF component, right-click, and select Property Bindings. Creator
displays the Property Bindings dialog which lets you specify the JSF
component’s bindable property and the binding target. The binding target
can be a property of another JSF component.

• Creator provides four page bean life cycle methods: init(), preprocess(),
prerender(), and destroy().

• Place any page or component initialization code in method init().
• Place any code that should be called before any of the JSF processing phases

in preprocess(). Since preprocess() is invoked before conversion and
validation, you are guaranteed that this method will be called even if
conversion or validation errors occur.

• Place code that should be called before the page is rendered in prerender().
Only the prerender() method of the page that will actually be rendered is
invoked.

• Method destroy() is invoked after the page is rendered. Place any page
cleanup code or code that saves state here. When JSF navigates to a different
page, the destroy() method of the From Page is invoked before the
destroy() method of the To Page.

• Conversion, validation, event handling code and page navigation can all
affect which methods are invoked throughout an application’s life cycle.

#{SessionBean1.loanBean.amount}

WEB PAGE DESIGN
Topics in This Chapter

• Component Style
• Themes
• CSS Style Editor
• Page Layout
• Page Fragments
• Project Templates
• Navigation with Page Fragments
• Tab Sets

Chapter
un Java Studio Creator provides layout components, visual design edi-
tors, and style sheet editors to help you design visually pleasing pages
for a coherent, unified-looking web application. In this chapter we
explore some of the Creator tools and components available to you for

page design.
Once you’ve designed your pages, you’d like to reuse the components, style

settings, and logos and images on subsequent pages or in other projects. Cas-
cading style sheets, page fragments, and project templates help designers build
artifacts that can be reused. Although you will see some event handling code,
page initialization code, and property patterns in the upcoming examples, this
chapter concentrates on Creator’s visual page design.

7.1 Using the Visual Design Editor

Creator’s visual design editor runs in the main editor pane by default when
you create a new project. Its main purpose is to help you select components
and position them on the page using a page grid. You can also turn off the grid,
temporarily disable it, or change the grid size.

S

165

166 Chapter 7 Web Page Design
Create a Project
Let’s explore the main features of the design editor. To do this, you’ll build a
simple project with three static text components. Figure 7–1 shows the project
in the design view with these components.

1. From Creator’s Welcome Page, select button Create New Project. Creator
displays the New Project dialog. Under Categories, select Web. Under
Projects, select JSF Web Application. Click Next.

2. In the New Web Application dialog under Project Name, specify Design1.
Click Finish.

After initializing the project, Creator comes up in the design view of the edi-
tor pane. You can now set the title.

3. In the Properties window, select property Title and specify title Design1.
Finish by pressing <Enter>.

Add Components to the Page
Now let’s add the static text components and specify the text for each one.

1. From the Basic Component palette, select component Static Text and drop it
on the page. Don’t worry about positioning yet.

2. The component is selected so that you can type in some text. Type in the text
The quick brown fox followed by <Enter>.

3. Select component Static Text again and add it to the page under the first
component.

4. Specify its text She sells sea shells.

Figure 7–1 Visual design editor in the editor pane

7.1 Using the Visual Design Editor 167
5. Add a third static text component and specify its text Winter waves crashed
against the cliffs.

Working with Components on the Page
By default, a project’s layout is in grid mode. This allows you to position com-
ponents on the page at an absolute location. The grid helps you with compo-
nent alignment.

1. Select the first static text component. Creator marks the component selected
and displays component resizing handles for you. With the component
selected, you can move it to a different location. You’ll note that it automati-
cally snaps to the grid.

2. Select the same component a second time. The text area is selected (Creator
displays a blue background) and the component is enabled for text editing.
In this mode you can now issue typical editing short cuts, such <Ctrl-C> for
copy or <Ctrl-V> for paste. You can also select a word, use the left and right
arrow keys, or type replacement text.

3. Sometimes you’ll want to move the component so that it doesn’t snap to the
grid lines. To temporarily turn off grid alignment, select the component,
hold the Shift key, and use the mouse to adjust the component on the page.

You can configure Creator to change the grid size or disable it using the
Tools menu.

1. In the main menu, select Tools > Options. In the Options dialog, select Visual
Designer. Creator displays the options for the Visual Design Editor, as
shown in Figure 7–2.

2. After making changes, click Close.

The Show Grid option controls whether or not the grid is visible in the edi-
tor. This is true by default. When the Snap to Grid option is set to true, the com-
ponents align with the grid lines in the designer. The Grid Height and Grid
Width values control the grid size and the Target Browser Window controls the
size of the application’s window in the browser.

Component Alignment
Each component has a context-sensitive menu that becomes visible when you
select a component and right-click the mouse. The Align menu option provides
component alignment criteria. While frequently you can align components by
simply using the default behavior of snapping to the grid lines, occasionally
you’ll want to align components using other criteria. For example, here’s how
to center the three static text components.

168 Chapter 7 Web Page Design
1. Choose one static component and position it on the grid at the desired loca-
tion. Use the Shift Key if you’d like to disable the snap to grid lines option.

2. You can select multiple components by selecting one, then selecting others
while holding the Shift Key. Alternatively, you can draw a box around the
components you’d like to select, as shown in Figure 7–3. Click the mouse at a
spot above and to the left of all the components. Drag the mouse towards the
lower-right until all the components are enclosed in the selection box. When
you release the mouse, all three components are selected.

Figure 7–2 Visual Designer Options dialog

Figure 7–3 Selecting multiple components

7.2 Themes 169
3. Place the mouse over the component that you want to use as the alignment
reference, right-click, and select Align > Center. The three components will be
horizontally centered using the selected component as the alignment refer-
ence.

For horizontal alignment options, select Left, Center, or Right. For vertical
alignment options, select Top, Middle, or Bottom.

Deploy and Run
After aligning the components, deploy and run the application. Figure 7–4
shows project Design1 running in the browser. The components were centered
horizontally using the third component as the reference for the alignment.

7.2 Themes

Creator gives web page designers a number of choices for specifying the look
of a web page. The components from the Basic, Layout, and Composite sec-
tions of the palette are rendered using themes. A theme is a bundled set of cas-
cading style sheets, JavaScript files, and images that apply to the components
and the web page. Creator currently ships with four configured themes. The
available themes for a project are listed in the Projects window under node
Themes, as shown in Figure 7–5. The currently selected theme is marked with a
triangle badge. To change the current theme, right-click a new theme selection
and select Set As Current Theme.

Figure 7–4 Project Design1 running in a browser

170 Chapter 7 Web Page Design
Creator Tip

To make a new theme take effect for deployment, first stop the application
server, then clean and rebuild the project.

The Default Theme provides a gradient blue color, giving the components a
unified look. The Gray and Green Themes provide color variations with the
same gradient appearance. The Gray Theme is useful when you want to give
the components a neutral look (for example, if your color scheme does not
mesh well with either blue or green). The Bike Theme is used with one of Sun’s
sample applications. (Access sample applications at the following url: http://
developers.sun.com/prodtech/javatools/jscreator/ea/jsc2/learn-
ing/tutorials/index.html#sampleapps.)

Changing the Look with Themes
Let’s create a simple application, deploy it, and change its current theme. This
application won’t do much, but you’ll see how several components are affected
by theme selection. Figure 7–6 shows the project running in a browser. The
page contains a hyperlink component, text field, label, static text component,
and table. The application is built with the Default (blue) Theme.

Figure 7–5 Creator Themes available for projects

Preconfigured Themes

http://developers.sun.com/prodtech/javatools/jscreator/ea/jsc2/learning/tutorials/index.html#sampleapps
http://developers.sun.com/prodtech/javatools/jscreator/ea/jsc2/learning/tutorials/index.html#sampleapps
http://developers.sun.com/prodtech/javatools/jscreator/ea/jsc2/learning/tutorials/index.html#sampleapps

7.2 Themes 171
1. From Creator’s Welcome Page, select button Create New Project. Creator
displays the New Project dialog. Under Categories, select Web. Under
Projects, select JSF Web Application. Click Next.

2. In the New Web Application dialog under Project Name, specify Theme1.
Click Finish.

After initializing the project, Creator comes up in the design view of the edi-
tor pane. You can now set the title.

3. In the Properties window, select property Title and specify title Theme1.
Finish by pressing <Enter>.

4. In the Projects window, expand the Themes node and make sure that the
Default Theme is selected as the current theme (it should display a triangle
badge).

Add Components to the Page
Using Figure 7–6 as a guide, add components to the page. Except for the static
text component, all will retain their default settings.

Figure 7–6 Project Theme1 running in a browser

172 Chapter 7 Web Page Design
1. From the Basic Component palette, select component Hyperlink and drag it
to the top-left portion of the page.

2. Select component Button and place it to the right of the hyperlink compo-
nent.

3. Select component Text Field and place it next to the button.
4. Select component Label and place it under the hyperlink component.
5. Select component Static Text and place it to the right of the label component.

When you drop it on the design canvas, it remains selected and you can
begin typing. Type in some text (The quick brown fox) and finish with
<Enter>.

6. Finally, select component Table and place it on the page below the label com-
ponent. Creator generates a table with default rows, columns, and data. The
table component reflects the colors used by the different themes particularly
well.

7. Deploy and run the application by clicking the Run arrow on the toolbar.

Change the Current Theme
Now let’s change the current theme for this project and redeploy the applica-
tion.

1. In the Projects window, expand the Themes node. Right-click Green Theme
and select Set As Current Theme. Creator reminds you that you must stop the
application server, then clean and rebuild the project before redeploying.

2. In the Projects window, expand the Libraries node and scroll down until you
find the JAR file associated with the Green Theme library.

3. Expand the Green Theme library. You’ll see the defaulttheme-green.css file
as well as the images, properties, and JavaScript files associated with this
theme. (You’ll look at a cascading style sheet (.css) file shortly.)

4. In the Servers window, right-click Deployment Server and select Start / Stop
Server. Click the Stop Server button.

5. Return to the Projects window, right-click the Theme1 project name, and
select Clean and Build Project. (This step is necessary to make the application
server use the correct JAR file for the selected theme.)

6. Deploy and run the application by clicking the Run arrow on the toolbar.
The application should now display green-colored components.

7. Repeat Steps 1-6 above to change the current theme to the Bike Theme.

Creator Tip

Instead of deploying the application each time, you can right-click inside the
visual design editor and select Preview in Browser for a quick look at a newly
selected theme.

7.3 About Style 173
Modifying the Default Theme
The Default, Gray, and Green Themes are variations of the same theme. Is it
possible to modify themes for different colors or use a different theme alto-
gether? The style sheets and images that apply to components can theoretically
be modified. The theme JAR files are installed in the Creator2 directory (cur-
rently at rave2.0/modules/ext). You can unpack the JAR file, edit the CSS file
and images, and repackage them. Until Creator includes a theme-based editor,
however, this remains a non-trivial task. Still, there’s much you can do to con-
trol the appearance of your application. Let’s continue to explore web page
design options beginning with style.

7.3 About Style

You’ve probably noticed by now that each component has a style property
that allows you to change the appearance of various features such as font (size,
color, family, style), position, height, width, etc. Some components also contain
“pass-through” HTML attributes, such as border and cellpadding that apply to
table-type components. You specify style attributes by modifying the compo-
nent’s property sheet directly. This gives you control over the look of a specific
component. It is also a handy way to experiment with different styles until you
decide on an overall style for your application.

Property style accepts style declarations in the form

Let’s look at an example.

Copy the Project
You’ll make a copy of project Theme1 (call it Theme2) for this section. This step
is optional. If you don’t want to copy the project, simply skip this section and
continue making modifications to the Theme1 project.

1. Bring up project Theme1 in Creator, if it’s not already opened.
2. From the Projects window, right-click node Theme1 and select Save Project

As. Provide the new name Theme2.
3. Close project Theme1. Right-click Theme2 and select Set Main Project. You’ll

make changes to the Theme2 project.
4. Expand Theme2 > Web Pages and open Page1.jsp in the design view.

property1: value1; property2: value2; . . . propertyN: valueN

174 Chapter 7 Web Page Design
5. Click anywhere in the background of the design canvas of the Theme2
project. In the Properties window, change the pages’s Title property to
Theme2.

6. Select the table component, right-click, and select Delete from the context
menu to remove the component from the page (to simplify the page).

Using the Style Editor
Let’s use the style editor to manipulate a component’s look.

1. For project Theme2, restore the current theme to the Default Theme (blue-
toned). Remember to stop the application server and clean and rebuild the
project before proceeding.

2. In the Design View, select component staticText1.
3. In the Properties view, click the small editing box opposite property style.

Creator pops up the Style Editor, as shown in Figure 7–7.

Creator provides a sophisticated Style Editor that lets you specify a compo-
nent’s style attributes. The Property Selection window lets you choose a prop-
erty to edit. Depending on this selection, the editor displays windows that let
you select values from a list or specify a custom value. When you change an
attribute, the Results Display Window applies the style to the component.

Use the Style Editor to modify the static text component’s style property.

1. Select Font in the Property Selection window.
2. In the Font-Family selection window, select the list of font-family values

beginning with Verdana.
3. In the Size window, select font size 18.
4. In the Style selection window, choose italic from the drop down menu. Note

that the text in the Results Display windows reflects your selections.
5. Now select Background in the Property Selection window. The editor dis-

plays a different set of selection windows.
6. Select color yellow in the Background Color drop down menu.
7. Choose Border in the Property Selection window.
8. In the All selection window for Style select solid, for Width select 1px, and

for Color select gray.

Here is the new CSS Style setting for this component.

border: 1px solid gray; background-color: yellow;
font-family: Verdana,Arial,Helvetica,sans-serif;
font-size: 18px; font-style: italic; left: 120px; top: 72px;
position: absolute

7.3 About Style 175
9. Click OK. The page in the design view reflects the new style characteristics.

Deploy and Run
Right-click in the visual design editor and choose Preview in Browser, or
deploy and run the application to check its appearance.

Figure 7–7 Using the Style Editor

Property

Current Value Display Window Selection Window

Results Display Window

Actual text of style property

Selection

176 Chapter 7 Web Page Design
7.4 Cascading Style Sheets

Using a component’s style property to control its look can be tedious. You
must specify attributes for each component manually by editing its property
sheet. Furthermore, it’s difficult to employ a uniform look for a web page using
only style property settings.

Creator uses Cascading Style Sheets (CSS) to control the look of its compo-
nents and pages. CSS is a standard that allows a web designer to specify style
characteristics. The style characteristics apply to a document in a cascading
fashion: that is, a style applies to a given level and subsequent styles can in turn
apply on top of these “inherited” styles. If you don’t specify a property for an
element, it generally inherits the property from its “parent.” For example, you
can specify that all text in a document is (color) navy. You can then specify that
text in a footer is a smaller text size. The footer text will be both navy and the
smaller size since the footer-specific style inherits all properties specified for
the global style.

You can read more about Cascading Style Sheets at the Cascading Styles
Home Page: http://www.w3.org/Style/CSS/. The web site also includes
tutorials about how to use style sheets.

Using Attribute styleClass
All Creator components include attribute styleClass, which is a comma sepa-
rated list of style classes. You define and store a style class in a text file called a
style sheet. As stated earlier, using property styleClass helps web designers
create a uniform look to all pages in a project. Creator provides a default style
sheet, stylesheet.css, that is included in each project you create. When you add
style classes to the style sheet, you can then reference them in the component’s
styleClass attribute. (Note that the bundled themes include a set of style rules
that also apply to the components.)

A style sheet is a collection of style rules. Each rule consists of a selector and a
declarator. The selector identifies an HTML element(s) or style class name(s) to
which the rule applies. The curly braces encompass the declarator, which is the
semi-colon separated list of property-value pairs. While the component’s style
attribute lists the property-value pairs for a given component, a rule is a collec-
tion of property-value pairs that is named.

Let’s examine the default style sheet, stylesheet.css, in the Style Sheet Editor.
In the Projects window for project Theme2, select Web Pages > resources and
double-click file stylesheet.css. Creator brings up the style sheet in the Style
Sheet Editor and highlights the first rule, .list-header.

http://www.w3.org/Style/CSS/

7.4 Cascading Style Sheets 177
There are three property-value pairs here: property background-color has
value #eeeeee, property font-size has value larger, and property font-
weight has value bold. Rules that contain an initial dot are style classes. Once
you define them in the style sheet for your project, you can specify the class
names in a component’s styleClass attribute.

You can also define rules that apply to HTML elements such as <body>, <th>
(table heading), <td> (table data). The body style rule is a good place to list glo-
bal settings for your web application, such as basic font characteristics, text
color, and background color. Let’s do this now.

1. Scroll to the top and add the following comment.

2. Now add a rule for body followed by opening and closing braces.

3. Put the cursor after the open brace and hit <Enter>. You see that Creator pops
up a property selection dialog. Select background-color followed by <Enter>.

4. Creator now pops up a value selection dialog, as shown in Figure 7–8. Scroll
down to the bottom and choose more . . . and hit <Enter>.

5. Creator pops up a Choose Color dialog. Select tab RGB and specify values
230, 230, 200, as shown in Figure 7–9. Click OK. Creator fills in value #e6e6c8
for property background-color.

6. Continue editing style class body. You can also use the style selection win-
dows below the editing pane. Here is the style to use for body.

.list-header {
 background-color: #eeeeee;
 font-size: larger;
 font-weight: bold;
}

/* Custom style rules */

/* Custom style rules */

body {
}

body {
 background-color: #e6e6c8;
 font-family: Verdana,Arial,Helvetica,sans-serif
}

178 Chapter 7 Web Page Design
Figure 7–8 Using the Style Sheet (CSS) Editor

Figure 7–9 Choose Color dialog

7.5 Page Layout 179
7. Add a style class called .headingStyle, as follows. Use the style selection
windows to specify font-size and font-weight (or just type them in).

8. Select the Save All icon on the toolbar to save the changes and close the Style
Sheet Editor (click the small x in the stylesheet.css tab).

The body rule applies to all HTML <body> elements, as well as any elements
declared inside of <body>. Thus, nested (“children”) elements inherit the prop-
erty-value settings from their enclosing (“parent”) elements.

Return to the Page1 design view. You’ll see that the background color and
the font-family setting reflect the body style rule you defined. Now you’ll
apply the .headingStyle style class to the static text component.

1. In the design view, select the static text component (its text is “The quick
brown fox”).

2. Select the editing box opposite the style property. When the style editor
pops up, select Unset Property. Creator clears its style setting (including its
position value). The component is now in the upper-left corner.

3. Select it and move to its previous location (restoring its position values).
4. Make sure the component is still selected and type in the text headingStyle

for property styleClass (do not use the initial dot from the style sheet file)
followed by <Enter>. The static text component now has the extra large font
size and is bold.

Deploy and Run
Deploy and run the project. Figure 7–10 shows the application running in a
browser.

7.5 Page Layout

Creator provides several components that help you manipulate the layout of
your web page. In this section, we’ll examine components layout panel, grid
panel, and anchor (paired with hyperlink). We’ll keep the projects simple in
order to concentrate on page layout issues.

.headingStyle {
 font-size: XX-large;
 font-weight: bold
}

180 Chapter 7 Web Page Design
Layout Panel
Creator’s palette includes several component containers that group or nest
embedded components. With containers, you can uniformly control the “chil-
dren” components’ appearance, including position, style, and rendering. The
layout panel component positions its components with either a flow layout,
placing each component directly after the previous one, or a grid layout, letting
you position components using the design editor. For this project, we’ll also
show you how to inspect the CSS style rules and HTML rendering that Creator
generates for you. Finally, we’ll show you how to center components on the
page, even when the user resizes the browser window.

Create a Project
In the following project, you’ll control components by grouping them together,
allowing the components to share common style, position, and rendering
attributes. You’ll see how the layout panel lets you position components using
the standard grid.

1. From Creator’s Welcome Page, select button Create New Project. Creator
displays the New Project dialog. Under Categories, select Web. Under
Projects, select JSF Web Application. Click Next.

2. In the New Web Application dialog under Project Name, specify Layout1.
Click Finish.

After initializing the project, Creator comes up in the design view of the edi-
tor pane. You can now set the title.

Figure 7–10 Project Theme2 running in a browser

7.5 Page Layout 181
3. In the Properties window, select property Title and specify title Layout and
Style. Finish by pressing <Enter>.

Add Components to the Page
Figure 7–11 shows the design view of project Layout1. Use this as a guide as
you add components to the page.

1. From the Layout section of the Component palette, select Layout Panel and
drop it on the page. Enlarge it so that it is approximately 20 grids wide and
10 grids high.

2. Make sure the layout panel component is selected. In the Properties window
opposite property panelLayout, select Grid Layout from the drop down list.
This lets you use the design view’s grid to position components that you’ll
add to the panel.

3. Still in the Properties window for the layout panel, click the small editing
box opposite property style. Creator pops up the Style Editor.

As you’ve seen, there are several ways to modify a components’ style prop-
erty. We’ll step you through using the editor, but you can also type in the style
attributes manually. Refer to Figure 7–7 on page 175 for the window labels
used here.

Figure 7–11 Design view for project Layout1

Layout Panel Button

Static
Text

Button

182 Chapter 7 Web Page Design
4. In the Property Selection window, select Font. In the center Font Family
Selection Window, choose Georgia,́ Times New Roman ,́times,serif. In the Size
Selection Window, choose 12. In the Style window, select italic from the drop
down list. In the Weight window, select bold from the drop down list. In the
Color window, select gray from the drop down list.

5. Now select Background in the Property Selection window. In the Back-
ground Color window, type the value rgb(255,255,204) followed by <Enter>.
The small color indicator on the right will change to a muted yellow.

6. Select property Border. In the top row labeled All, for Style select solid and
for Width select 2px. Select OK to close the Style Editor. The layout panel
now has a border and a new background color.

By changing the layout panel’s style settings, you’ll see how the children
components are affected by the layout panel’s style. Some style attributes are
inherited (such as font characteristics); others are not (such as border). And
some settings are overridden by more specific settings. We’ll examine this in
more detail after you add components to the layout panel.

1. From the Basic Components palette, select Static Text and drop it on the lay-
out panel component. The static text component appears in the Page1 Out-
line view nested under the layout panel.

2. Type in the text The quick brown fox jumped over the lazy yellow dogs fol-
lowed by <Enter>.

3. Change the static text id property to line1.
4. Add two more static text components with text She sells sea shells and Peter

Piper picked a peck of pickled peppers. Change the id properties to line2 and
line3. All three static text components will be nested under the layout panel
in the Page1 Outline view, as shown in Figure 7–12. (The screen shot also
shows two button components, which you’ll add later.)

Let’s position the three static text components so that they’re centered on the
layout panel.

1. First, use the grid lines to evenly space the static text components vertically.
Leave some room at the bottom of the panel for a button component.

2. Select the first static text component. Use <Shift-click> to select all three static
text components, as well as the layout panel.

3. Position the cursor inside the layout panel (anywhere in the background)
and right-click. Select Align > Center from the context menu. Creator centers
all three text components horizontally, using the layout panel as the refer-
ence component. The components should now be centered, as shown in
Figure 7–11 on page 181.

7.5 Page Layout 183
Creator Tip

Note that the components are positioned relative to the layout panel
component. If you re-position the layout panel on the page, the nested
components retain their relative position inside the panel.

Now let’s add two button components: one inside the layout panel and one
outside.

1. From the Basic Component palette, select component Button and place it
inside the layout panel. Position it under the three text components off-cen-
ter to the right.

2. Change its text label to Click the Button (note that the button’s font inherits
the font style from the panel).

3. Change the button’s id property to disappearButton.
4. From the Basic Component palette, select component Button again and

place it on the page, centered above the layout panel (outside of the panel).
The button component is not nested inside the panel component in the
Page1 Outline view. Its font characteristics are therefore independent of the
layout panel’s settings.

5. Change its text label to Restore.
6. Change the button’s id property restoreButton.

Figure 7–12 Page1 Outline view for project Layout1

184 Chapter 7 Web Page Design
The event handling code for the buttons will make the layout panel disap-
pear from the page (disappearButton) and then will restore it on the page
(restoreButton).

1. In the design view, double-click the first button (disappearButton). Creator
generates a default action event handler and brings up the Java source editor
so that you can add event handling code.

2. Add the following code to the disappearButton_action() event handler
(the added code is shown in bold).

The event handler sets the rendered property of the layout panel to false,
causing it (and all of its nested components) to disappear from the page. It
makes the Restore button appear on the page.

1. Click label Design in the editing pane to return to the design view.
2. Double-click the Restore button, which brings up the action event handler in

the Java source editor.
3. Add the following code to the restoreButton_action() event handler. The

added code is bold. When the user clicks the button, the layout panel and all
of its nested components will be rendered on the page. At the same time, the
Restore button will disappear.

4. Click label Design in the editing pane to return to the design view.
5. Select the Restore button. In the Properties view under Advanced (scroll

down to see it), uncheck property rendered. The button disappears from the
design view.

Creator Tip

Even though the component no longer appears on the design view, you can
still select it in the Page1 Outline view. If you want to adjust it visually, turn
the rendered property back on, make adjustments, and then turn it off again.

public String disappearButton_action() {
layoutPanel1.setRendered(false);
restoreButton.setRendered(true);
return null;

}

public String restoreButton_action() {
layoutPanel1.setRendered(true);
restoreButton.setRendered(false);
return null;

}

7.5 Page Layout 185
Deploy and Run
Deploy and run the application by selecting the green arrow in the icon toolbar.
Figure 7–13 shows project Layout1 running in a browser. When you click the
inside button, the layout panel disappears and the Restore button is rendered.
Clicking the Restore button makes the layout panel reappear.

More CSS Style Issues
Although this project is very simple, there are subtle style issues illustrated
here. The style that a component finally acquires is an amalgamation from var-
ious sources, some of which may not be obvious. For example, the Creator
components acquire a basic style from the pre-configured Theme style sheets.
(This is why the button component has a gradient blue background image.)
When you nest components inside container components, the nested ones can
inherit styles from the enclosing component. (Thus, the button and the text
components have a bold, italic font.) To help you figure out where style defini-
tions originate, Creator has a hidden Document Object Model (DOM) inspector
(hidden because it is not a formal part of the product). Let’s examine several
components in this project with the DOM inspector.

You access the DOM inspector by selecting a component with <Ctrl-Alt-
click>. Creator displays a Layout Inspector window that contains a tree of the
page’s components. HTML components are shown in angle <> brackets and the

Figure 7–13 Project Layout1 running in a browser

186 Chapter 7 Web Page Design
Creator component id appears (if there is one). The Properties window dis-
plays property values that can help you with various style attributes.

For example, select the third static component and type <Ctrl-Alt-click>.
Depending on where you actually place the cursor, a word is highlighted in red
on the design view. Figure 7–14 shows the Layout Inspector (on the left) and
the corresponding Properties window (on the right).

Let’s say you want to determine exactly where the text is set to italic. In the
Properties window under Styles, there are several helpful windows. Com-
puted Styles tells you where a style setting originates. Local Styles are the style
rules set for this element (values not inherited), Rules are the CSS rules that
apply to this element, and Styles is the grand total of all the styles that apply to
this element.

In the Properties window, click the small box opposite property Local Styles.
In the property customizer, you’ll see that this element contains only position-
ing styles. Click Close. Now select property Rules. These are the style rules that
apply to this element (found in file css_master.css). Click Close. Now select
property Computed Styles. Creator pops up the customizer shown in Figure 7–
15. Scroll up until you find the property setting for font-style (shown high-
lighted in the figure). You see that it’s set to italic and it references Line 12 in
Page1.jsp. Click Close and select JSP in the editing pane to open Page1 in the

Figure 7–14 Creator DOM Inspector

7.5 Page Layout 187
JSP editor. Line 12 contains the component definition for <ui:panelLayout>,
the layout panel that contains the text components. Thus, the text component
inherited its font-style property value from the layout panel.

Finally, return to the design view (click Design in the editing toolbar) and re-
select the text component with <Shift-Alt-click>. Now select Styles (under
Styles) in the Properties window. You’ll see all of the styles that apply to the
static text component.

Centering Components on a Page
Let’s continue our exploration of manipulating style attributes to center the
components in your browser window. You can apply centering horizontally,
vertically, or both. To center a component horizontally, you must know the
width of the target component. Likewise, to center a component vertically, you
must know its height. The convenience of using containers is that you can cen-
ter the container on the page, and then all of its children components retain
their relative positions in the centered container.

We’re going to center the components on the page both horizontally and
vertically. You center the layout panel and separately center the Restore button
(you might want to enable rendering for the Restore button until you’re done
modifying its style).

1. From the Page1 design view, select the layout panel. In the Properties win-
dow, select property style and bring up the style editor.

Figure 7–15 Computed Styles property

188 Chapter 7 Web Page Design
2. At the bottom on the window, you’ll see the style settings for the compo-
nent. Note the property settings for width and height. It will be something
similar to the following (depending on how you sized the layout panel).

To center horizontally, use left: 50%. To center vertically, use top: 50%.
Unfortunately, these values will center the top-left corner of the layout panel.
To compensate for this calculation, you adjust using negative values for
margin-left and margin-top. The value should be half the size of the compo-
nent’s width (for margin-left) and half the size of its height (for margin-top).

Therefore, the new positioning values are as follows.

3. Provide the above values for the layout panel’s positioning and Click OK.
Creator will center the layout panel in the design view.

4. In the Page1 Outline view select the Restore button. In the Properties win-
dow under Advanced, enable rendering (check property rendered). The
button will appear on the design canvas.

5. In the Properties window, select property style and bring up the style edi-
tor.

Creator Tip

Note that there are no set values for a button’s height and width, because the
component automatically sizes itself according to the text label. To find out its
approximate size, you can resize it slightly and Creator will then make its size
static. Use these values for the centering calculations and then return the
component to automatic sizing by removing the static values for width and
height.

6. The position values for the Restore button are as follows. Provide the values
for the button in the Style editor and click OK.

7. In the Restore button’s Properties window under Advanced, uncheck prop-
erty rendered.

height: 212px; width: 460px;

margin-left: -230px; margin-top: -106px; left: 50%; top: 50%;

margin-left: -33px; margin-top: -12px; left: 50%; top: 50%;

7.5 Page Layout 189
Creator Tip

Note that if you adjust the position of the layout component or the Restore
button in the design view, Creator replaces the percentage values you
supplied for left and top with absolute position values. You’ll have to re-edit
the style property and supply the percentage settings.

Deploy and Run
Deploy and run project Layout1. Resize the browser window and check that
the layout panel component remains centered. After you click the button, the
Restore button appears. It should also be centered on the page. Figure 7–16
shows the component centered in the browser window.

Grid Panel
Creator provides another container component called a grid panel. The grid
panel (as its name implies) provides a grid layout, whereby you specify the
number of columns if you require more than the default of one. Creator places
each component in the grid, positioning the component in the next available
cell. With a single column, a component goes into a cell in the next row.

The grid panel gives the page designer additional options for controlling the
page layout. For example, you can nest grid panels to achieve some advanced
layout designs. In this section, we’ll use the grid panel to control the page lay-

Figure 7–16 Project Layout1 with centered components

190 Chapter 7 Web Page Design
out. We’ll show you how to control component placement when you want to
position a component after a variable-sized component (such as a table that
contains an indeterminate number of rows).

Create a Project
In the following project, you’ll control page layout by nesting components
inside grid panels. Project LayoutMadness displays a table of numbers and
their squares. The user specifies how many numbers should be displayed. To
keep everything simple, the event handling code will generate HTML tags on
the fly to build the table. This is a handy technique when you want to generates
your own HTML tags.

1. From Creator’s Welcome Page, select button Create New Project. Creator
displays the New Project dialog. Under Categories, select Web. Under
Projects, select JSF Web Application. Click Next.

2. In the New Web Application dialog under Project Name, specify Layout-
Madness. Click Finish.

After initializing the project, Creator comes up in the design view of the edi-
tor pane. You can now set the title.

3. In the Properties window, select property Title and specify title Layout
Madness. Finish by pressing <Enter>.

Add a RequestBean Property
This web application requires a number from the user that is then stored in
request scope for later processing. Property myNumber is an Integer you’ll add
to Request Bean.

1. In the Projects window, right-click Request Bean and select Add > Property.
Creator pops up the New Property Pattern dialog.

2. For Name specify myNumber. For Type specify Integer (upper case ‘I’). For
Mode leave the default of Read/Write. Click OK.

3. Creator generates the field, getter, and setter for property myNumber. In the
Projects window, double-click Request Bean to bring up file
RequestBean1.java in the Java source code editor.

4. Scroll to the end of the file and find the field declaration for property myNum-
ber. Add initialization code for property myNumber. Modify the field declara-
tion to include initialization with operator new, as follows.

private Integer myNumber = new Integer(0);

7.5 Page Layout 191
5. Click the Save All icon on the toolbar to save these modifications. Close the
editor window for RequestBean1.java by clicking the small ‘x’ in the
RequestBean1.java tab.

Add Components to the Page
You’ll add a grid panel to help with page layout. Inside, you’ll add a nested
grid panel that will hold a text field and button to gather and process the input.
A static text component will display (using generated HTML elements) the
table of squares and two hypertext/anchor component pairs will help with
page scrolling. Figure 7–17 shows the design view.

Creator Tip

Note that we assigned contrasting background colors to the grid panels. This
is helpful when you want to see how the grid panel is rendered and how it lays
out its nested components. When you’re satisfied with the layout, you can
restore the grid panels’ default background colors.

Figure 7–18 shows the Page1 Outline view for this project. You might want
to consult it from time to time as you add the components to make sure that the
nesting levels for the components are correct.

Figure 7–17 Design view for project LayoutMadness

Anchor

Nested

Grid Panel

Text Field

Message

Hyperlink

Anchor

Static Text

Hyperlink

Grid Panel

192 Chapter 7 Web Page Design
Creator Tip

Creator lists the components nested in the grid panel in the order that you
place them on the page. If you need to rearrange the order, you can select a
component, drag it up to its parent container, and re-drop it. This moves the
component to the end of the list for that container.

1. From the Basic Components palette, select Anchor and place it on the page
in the upper-left corner.

2. In the Properties window, change its id to anchorTop.
3. From the Layout Components palette, select Grid Panel and place it on the

page.
4. In the Properties window for the grid panel, select property style and bring

up the Style Editor.
5. In the Style Editor, select property Background. In the window for Back-

ground Color, provide the following RGB values.

rgb(255, 255, 215)

Figure 7–18 Page1 Outline view for project LayoutMadness

7.5 Page Layout 193
6. Select property Text Block. For Horizontal Alignment, select center from the
drop down list.

7. Select property Position. Under Size, set Width to 400px. Click OK to close
the Style Editor. The grid panel will have a muted yellow background in the
design view.

8. In the Properties window, set property cellpadding to 3 and property
cellspacing to 3. This will create space around the nested components.

Now you’ll add a second grid panel and nest it inside the first one.

1. In the Layout Components palette, select a Grid Panel component and drop
it on top of the previous grid panel.

2. In its Properties window, set property columns to 2, property cellpadding
to 6, and property cellspacing to 2.

3. Click the editing box opposite property style and bring up the Style Editor
for the nested grid panel.

4. In the Style Editor, select property Background. In the window for Back-
ground Color, provide the following RGB values.

5. Select property Text Block. For Horizontal Alignment, select center from the
drop down list. Click OK to close the Style Editor.

You’ll place a button and a text field component inside the nested grid panel
(component gridPanel2).

1. From the Basic Components palette, select Button and drop it on the nested
grid panel. Make sure that the smaller, light-green panel is outlined in blue
before you release the mouse.

2. The button’s label is selected. Change its label to Get Table.
3. In the Properties window, change its id property to doTable.
4. From the Basic Components palette, select Text Field and drop it on top of

the nested grid panel. Again, make sure that the panel is outlined in blue
before you release the cursor.

5. In the Properties window for the text field, check property required.
6. In the Properties window for the text field, set property label to Input a

Number. Because the field is required, Creator prepends an asterisk to the
label.

The button and text fields components should be nested inside the second
grid panel. Since the nested grid panel has two columns, these components are
rendered side-by-side (each in its own cell in the same row). Let’s configure the
text field component now: you’ll add an integer converter, a long range valida-

rgb(232, 245, 202)

194 Chapter 7 Web Page Design
tor, and bind its text property to the RequestBean property myNumber you
added earlier.

1. From the Converters Components palette, select Integer Converter and drop
it on top of the text field component. The converter property for the text
field is now set to integerConvert1.

2. From the Validators Components palette, select Long Range Validator and
drop it on top of the text field component.

3. In the Page1 Outline view, select longRangeValidator1. In its Properties
window, set maximum to 200 and minimum to 1.

4. Select the text field component, right-click, and select Property Bindings.
Creator pops up a dialog entitled Property Bindings for textField1. For
Select bindable property, choose Text Object. For Select binding target,
choose RequestBean1 > myNumber. Click Apply then Close. Creator gener-
ates the following binding expression for property text.

Now you’ll add the rest of the components to the outer grid panel (compo-
nent gridPanel1).

1. Since you’ve attached a validator and converter to the text field, you’ll need
a message component to display error messages. From the Basic Compo-
nents palette, select Message and drop it on top of the outer grid panel.
(Check component selection if you use the design view. Alternatively, you
can drop the component on gridPanel1 in the Page1 Outline view.)

2. In the design view, place the cursor inside the message component. Type
<Ctrl-Shift>, hold, and left-click the mouse, releasing the cursor when it’s
over the text field component. The message component now displays “Mes-
sage summary for textField1” on the design view.

3. From the Basic Components palette, select Hyperlink and drop the compo-
nent on the outer grid panel.

4. Its text is selected. Change its text property to Jump to End followed by
<Enter>. Change its id property to jumpEnd. You’ll set its url property later.

5. From the Basic Components palette, select Static Text and drop it on the
outer grid panel. In the Properties window, change its id property to
tableResult. Under Data, uncheck property escape. This allows HTML tags to
be interpreted.

6. From the Basic Components palette, select a second Hyperlink component.
Drop it on the outer grid panel.

7. Change its text to Top followed by <Enter>. Change its id property to jump-
Top.

8. From the Basic Components palette, select an Anchor component and drop
it on the outer grid panel. Change its id property to anchorBottom.

#{RequestBean1.myNumber}

7.5 Page Layout 195
The Page1 Outline view should now match the one shown in Figure 7–18 on
page 192. Let’s configure the two hyperlinks and connect them to the anchor
components.

1. In the design view, select hyperlink component jumpEnd. In the Properties
window, click the editing box opposite property url. Creator pops up the
url property customizer, as shown in Figure 7–19.

2. Select anchorBottom and click OK. This sets property url to

3. Repeat steps 1 and 2 for the jumpTop hyperlink component and set its url
property to anchorTop.

Let’s finally add the event handling code for the button component.

1. In the design view, double-click button Get Table. Creator generates the
default event handler and brings up Page1.java in the Java source editor.

2. Supply the following code. Copy and paste from the Creator download file
FieldGuide2/Examples/WebPageDesign/snippets/
layout_doTable_action.txt. The added code is bold.

/faces/Page1.jsp#anchorBottom

public String doTable_action() {
String str = "<table border=\"2\"" +

" cellpadding=\"2\" width=\"400px\">";
int nrows = getRequestBean1().getMyNumber().intValue();

Figure 7–19 Customizer for property url

196 Chapter 7 Web Page Design
Method doTable_action() reads the value from RequestBean property
myNumber and uses it to compute a table of squares for that many numbers. The
method generates the HTML code to dynamically build the table.

There’s a few layout and design decisions we made that affect this project.

• First, we used grid panel to hold the components because we can’t tell ahead
of time how much space the static text (that holds the table of squares) will
consume. By using a grid panel, Creator places all the components after each
other in the next cell. If you tried to use absolute positioning you would not
be able for format cleanly any component that came after the static text
component.

• Second, we used anchor components since there is a possibility that the table
won’t fit on the page. This way, the user can easily jump to the end to view
the bottom of the table. For the same reason, we added an anchor
component so that the user can jump back to the top of the page.

• You configured the nested grid panel to have two columns, which holds
both the button and the text field component in a single row. Then, the
message component (which can display rather long messages) is in the outer
grid panel in its own row.

• You can optionally center the outer grid panel using the component
centering technique presented in the previous section. However, because the
height of the grid panel is unknown, you cannot center it vertically. To center
it horizontally, supply the following style positioning values for
gridPanel1.

str = str + "<tr><th>Number</th><th>Square</th></tr>";
for (int i = 1; i < nrows+1; i++) {

str = str + "<tr><td>" + (i) +
"</td><td>" + (i*i) + "</td></tr>";

}
str = str + "</table><p>";
if (nrows > 0)

tableResult.setValue(str);
else tableResult.setValue(null);
return null;

}

width: 400px; left: 50%; margin-left: -200px

7.6 Page Fragments 197
Deploy and Run
Deploy and run project LayoutMadness. Figure 7–20 shows the project run-
ning in a browser (centered). The cursor is about to click the hyperlink compo-
nent to jump to the end of the page.

7.6 Page Fragments

Page fragment components can be valuable to web page designers because
they define building blocks for web pages. You can place components inside
page fragments and then use the fragments within subsequent pages. Typi-
cally, page fragments hold parts of a web page that are standardized for a uni-
form look, such as images used as page headers, standard menus or navigation
links, or even footers that contain copyright notices.

A page fragment is a helpful mechanism for reuse, but it does have some
caveats. For one, page fragments are inserted inline into their containing docu-
ment on the server. This means that a page fragment can only contain elements
that are valid at the point of inclusion. As you work through the example in
this section, note that page fragments are embedded in a <div> element (gener-

Figure 7–20 Project LayoutMadness running in a browser

198 Chapter 7 Web Page Design
ated by Creator) and do not contain elements such as <head> or <body>, which
already exist in the containing page.

To use page fragments in Creator, you first create a page fragment and then
place it on the page. As an example, let’s build a project for the hypothetical
company called Cactus Consortium. This project has three pages: a Home
(login) page, a Courses page, and a Books page. Figure 7–21 shows the layout
of the Home page. The header is a page fragment that contains an image
hyperlink component, the footer is a page fragment that contains a static text
component, and the left menu is a page fragment that consists of a grid panel
component holding navigation links (hyperlink components).

This web application requires users to login with their first and last names.
The names are stored in session scope and adorn the navigation menu on the
left. The user must login before navigating to subsequent pages.

The Books and Courses pages are prototype pages containing titles (and the
page fragments for the uniform look).

Figure 7–21 Page layout using page fragments

CactusBanner Page Fragment

CactusFooter Page Fragment

NavigationPanel

Static Text

Text Field

Message

ButtonPage Fragment

7.6 Page Fragments 199
Create a New Project
1. From Creator’s Welcome Page, select button Create New Project. Creator

displays the New Project dialog. Under Categories, select Web. Under
Projects, select JSF Web Application. Click Next.

2. In the New Web Application dialog under Project Name, specify Cactus1.
Click Finish.

After initializing the project, Creator comes up in the design view of the edi-
tor pane. You can now set the title.

3. In the Properties window, select property Title and specify title Cactus Con-
sulting. Finish by pressing <Enter>.

Modify Default Style Sheet
Now you’ll add some style rules to the default style sheet.

1. In the Project Navigator window, expand the resources node. You’ll see the
default style sheet, stylesheet.css.

2. Double click the stylesheet.css file name. Creator brings up this file in the
editor pane.

3. Copy and paste the contents of file FieldGuide2/Examples/WebPageDe-
sign/snippets/stylerules.txt, adding the new style rules to the beginning of
the file. The new style rules are shown Listing 7.1.

Listing 7.1 New CSS Style Rules

/* Custom Style Rules for Cactus Consortium */

body {
 background-color: rgb(230,230,200);
 color: olive;
}

.headerStyle {
 font-family: Georgia,'Times New Roman',times,serif;
 font-size: 200%
}

200 Chapter 7 Web Page Design
You’ll apply the style classes as you build the project. The body style rule
applies to the entire project, setting the background color and the font color.

4. Save the modified CSS file by selecting the Save All icon on the toolbar and
close file stylesheet.css (click the small x on the stylesheet.css tab). Note that
Page1 now has a new background color.

Use the Gray Theme
The image and background colors for this application look better with the
more neutral gray theme components.

1. In the Projects view, expand the Themes node, right-click Gray Theme and
select Set as Current Theme.

.footerStyle {
 font-family: Georgia,'Times New Roman',times,serif;
 border-top-color: olive;
 border-top-style: solid;
 border-top-width: 1px;
 font-size: 75%
}

.bannerStyle {
 font-family: Georgia,'Times New Roman',times,serif;
 font-size: 24pt;
 font-style: italic;
 font-weight: bold
}

td, th {
 padding-left: .5em;
 padding-top: 1em;
 padding-bottom: 1em;
 padding-right: 1em;
}

.tableStyle {
 font-family: Georgia,'Times New Roman',times,serif;
 width: 200px;
 border-left-color: olive;
 border-left-style: solid;
 border-left-width: 1px;
}

Listing 7.1 New CSS Style Rules (continued)

7.6 Page Fragments 201
2. After you restart the application server, Clean and Build the project to have
the new theme take effect.

Add SessionBean1 Properties
This application displays the user’s first and last names in different places
(both in the navigation panel and the home page display). It also keeps track of
whether the user is logged in or not. Since the application must save these val-
ues for each user session, you store all three variables in session scope. Pro-
gram data scope is covered in detail in Chapter 6 (see “Scope of Web
Applications” on page 116). Here’s how to add these three properties (first
name, last name, and login status) to SessionBean1, which puts the data in ses-
sion scope.

1. In the Projects window, right-click Session Bean and select Add > Property.
Creator pops up the New Property Pattern dialog.

2. For Name specify firstname, for Type specify String, and for Mode, specify
the default Read/Write, as shown in Figure 7–22.

3. Click OK.
4. Repeat steps 1 through 3 and add property lastname to SessionBean1.
5. Add property loggedIn to SessionBean1. For this property, specify Name

loggedIn, Type is Boolean (with an uppercase ‘B’), and Mode is Read/Write.
Click OK.

Figure 7–22 Select Page Fragment dialog

202 Chapter 7 Web Page Design
When you add properties to SessionBean1, Creator generates code for the
data field, as well as the getters and setters you need to access the data. Now
you’ll supply initialization code that you’ll add to the SessionBean1() con-
structor.

1. In the Projects window, double-click Session Bean to bring
SessionBean1.java up in the Java source editor.

2. Find the SessionBean1() constructor and add the following code after the
comment, as shown. Copy and paste from the Creator download file
FieldGuide2/Examples/WebPageDesign/snippets/cactus1_session_init.txt.
The added code is bold.

Banner Page Fragment
Figure 7–21 on page 198 shows the general layout of the home page, Page1.jsp.
The first step is to create the banner page fragment, CactusBanner.jspf, placed
across the top portion of the page.

1. Bring up Page1 in the design editor.
2. From the Layout Components palette, select Page Fragment Box and drag it

over to the top-left corner of the page. Creator pops up the Select Page Frag-
ment dialog.

3. Click Create New Page Fragment. Creator displays the Create Page Frag-
ment dialog.

4. Specify Name CactusBanner and click OK. When you return to the Select
Page Fragment dialog, CactusBanner.jspf appears in the selection window,
as shown in Figure 7–23.

5. Click Close. Creator displays the (empty) CactusBanner page fragment in
the design view and adds a <div> component and include directive to the
Page1 Outline view.

Now you’ll add components to the CactusBanner page fragment, as shown
in Figure 7–24.

1. In the Page1 design view, double-click the CactusBanner page fragment to
bring up the design view for editing the page fragment.

public SessionBean1() {
// Creator-managed Component Initialization (folded)
// TODO: Add your own initialization code here (optional)

firstname = "";
lastname = "";
loggedIn = new Boolean(false);

}

7.6 Page Fragments 203
2. Creator sets a page fragment’s default size to 400px (width) by 200px
(height). The white area in the design view indicates the page fragment’s
boundary.

3. In the Properties view, change the Height to 130px and the Width to 700px.

Place an image hyperlink on the page fragment.

1. From the Basic Components palette, select Image Hyperlink and place it in
the top-left of the design view. Its top and left position parameters should
both be zero. (Hold the mouse cursor over the style property in the Proper-
ties view to check its value.)

2. In the Properties window, click the editing box opposite property imageURL.
Creator pops up a custom property editor.

3. Click Add File, navigate to your Creator download directory, and select file
FieldGuide2/Examples/WebPageDesign/images/cactus_banner.JPG.

Figure 7–23 Select Page Fragment dialog

Figure 7–24 CactusBanner Page Fragment

Page Fragment Box

Static Text

Image Hyperlink

204 Chapter 7 Web Page Design
4. Select Add File. Creator copies the file to your project’s resources directory.
Make sure cactus_banner.JPG is selected and click OK. The image appears
in the design view.

5. In the Properties window, click the editing box opposite property text.
Click Unset Property in the property editor dialog. This removes the image
hyperlink’s default text from the design view.

6. In the Properties window under Behavior, set the toolTip to Return to Home
Page. (When the user clicks on the image, you’ll navigate back to the home
page.)

Place a static text component on the page fragment.

1. From the Basic Components palette, select Static Text and place it inside the
page fragment under the image on the design canvas.

2. It will be selected. Type in the text Cactus Consortium followed by <Enter>.
3. In the Properties window opposite property styleClass, specify banner-

Style. (This is one of the styles rules you added earlier to the project’s style
sheet.) The text now appears in a larger italic font and its color is olive.

4. Select the Save All icon on the toolbar to save these changes to your project.

Navigation Page Fragment
This project uses a grid panel to hold hyperlink components for navigation.
You’ll put this in a separate page fragment, NavigationPanel.jspf.

1. Return to the Page1 design view by selecting the Page1 tab above the editing
pane.

2. From the Layout Components palette, select Page Fragment Box and drag it
over to the left side of the page under the CactusBanner page fragment. Cre-
ator pops up the Select Page Fragment dialog.

3. Click Create New Page Fragment. Creator displays the Create Page Frag-
ment dialog.

4. Specify Name NavigationPanel and click OK. When you return to the Select
Page Fragment dialog, NavigationPanel.jspf appears in the selection win-
dow.

5. Click Close. Creator displays the (empty) NavigationPanel page fragment in
the design view.

Now you’ll add components to the NavigationPanel page fragment, as
shown in Figure 7–25.

1. In the Page1 design view, double-click the NavigationPanel page fragment
to bring it up in the design view.

2. In the Properties view, change the Height to 250px and the Width to 200px.

7.6 Page Fragments 205
Place a grid panel to hold the navigation links.

1. From the Layout Components palette, select Grid Panel and place it on the
page fragment in the top-left corner.

2. In the Properties view for property styleClass, specify tableStyle.

Add components to the grid panel.

1. From the Basic Components palette, select Static Text and drop it on the grid
panel component. Make sure that the grid panel component is outlined in
blue before you release the mouse.

2. The static text component is selected. Specify Menu for #{SessionBean1.first-
name} #{SessionBean1.lastname} for the component’s text property. This con-
catenates Session Bean property firstname and lastname with some text
for the menu’s heading.

As you add components to the grid panel, you’ll see the effects of the style
class you applied to the grid panel. For example, Creator wraps the text onto
multiple lines instead of stretching the grid panel component because its width
is fixed at 200 pixels. Also, the grid panel’s cells have a generous margin
because of the style rules applied to HTML elements <th> and <td> (Creator’s
grid panel is rendered with an HTML <table> element). Finally, the grid panel
has a solid, 1px olive border on its left margin, which lengthens as you add
components.

Figure 7–25 NavigationPanel Page Fragment

Page Fragment Box

Grid Panel

Static Text

Hyperlink

206 Chapter 7 Web Page Design
1. In the Properties window for the static text component, change the id prop-
erty to leftHeader.

2. From the Basic Component palette, select Hyperlink and drop it on the grid
panel component. (Again, make sure the grid panel is outlined in blue.)

3. Specify Books for its text property.
4. In the Properties window, change its id property to booksPage.
5. Repeat steps 4 through 6 to add a hyperlink component with text Courses

and id coursesPage.
6. Repeat steps 4 through 6 to add a hyperlink component with text Home

and id homePage.
7. Finally, add a hyperlink component with text Log Out and id logout.
8. Select the Save All icon on the toolbar to save these changes.

You’ll specify the navigation for this project after you’ve added the Books
and Courses pages.

CactusFooter Page Fragment
Each page in this project has a footer with a copyright designation. This infor-
mation goes in its own page fragment, CactusFooter.jspf.

1. Return to the Page1 design view.
2. From the Layout Components palette, select Page Fragment Box and drag it

over to the bottom-left of the design view under the NavigationPanel page
fragment. Creator pops up the Select Page Fragment dialog.

3. Click Create New Page Fragment. Creator displays the Create Page Frag-
ment dialog.

4. Specify Name CactusFooter and click OK. When you return to the Select Page
Fragment dialog, CactusFooter.jspf appears in the selection window.

5. Click Close. Creator displays the (empty) CactusFooter page fragment in the
design view.

Now you’ll configure the CactusFooter page fragment, as shown in
Figure 7–26.

Figure 7–26 CactusFooter Page Fragment

Page Fragment
Box

Static Text

7.6 Page Fragments 207
1. In the Page1 design view, double-click the CactusFooter page fragment to
bring it up in the design view.

2. In the Properties view, change the Height to 50px and leave the Width at the
default 400px.

3. From the Basic Components palette, select Static Text and drop it on the
page fragment. Place it in the top-left corner.

4. The static text component is selected. Specify Copyright 2005-2006 Cactus
Consulting Consortium for the component’s text property.

5. In the Properties window, specify footerStyle for property styleClass.
You’ll see the font size shrink and a top border appear above the text.

6. Select the Save All icon on the toolbar to save the changes to your project
and select the Page1 tab to return to the Page1 design view.

Add Pages
You’ve finished creating the page fragments. Now you’ll create two more
pages and add the page fragments to these pages as well.

1. Close the page fragments to keep the editor pane uncluttered. For each page
fragment, click the small ’x’ on the tab.

2. In the Projects window, right-click the Web Pages node and select New >
Page. Creator displays the New Page dialog.

3. For File Name specify BooksPage and click Finish. Creator creates the new
page and brings it up in the design view. Note that it has the new default
background color you configured for this project.

4. Click anywhere in the background of the design view. In the Properties win-
dow for property Title, specify Cactus Consulting - Books.

5. Repeat Steps 1 through 3 and add another page with file name CoursesPage
and page property Title Cactus Consulting - Courses.

6. Select the Save All icon on the toolbar to save the changes to your project
and select the Page1 tab to return to the Page1 design view.

You have several ways to add the page fragments to CoursesPage and
BooksPage. The brute-force approach is to simply add the three page frag-
ments one at a time, positioning each one on the page at the same location. An
easier approach is to copy and paste the three page fragments as a group onto
the new pages. This second approach is more efficient and the one we’ll use
now.

1. Bring up Page1 in the design view. In the Page1 Outline view, use <Shift-
Click> to select all three div elements and their nested page fragments, as
shown in Figure 7–27. All three page fragments will also be selected in the
design view.

2. From the main menu, select Edit > Copy to copy the page fragments.

208 Chapter 7 Web Page Design
3. Now select the BooksPage tab on top of the editing pane to bring up Books-
Page in the design view. In the BooksPage Outline view, expand nodes
page1 > html1 > body1 and select node form1. Right-click and select Paste
from the context menu. Creator copies all three page fragments to the
BooksPage, placing them in the equivalent positions on the page.

4. Select the CoursesPage tab and repeat the Paste operation on the form1 com-
ponent in the CoursesPage Outline view.

Page-Specific Content for Page1
You’ve created three pages that all share the same content. Now you’ll add the
page-specific components to each page. Let’s start with Page1.

1. Select the Page1 tab above the editing panel to bring it up in the design view.
Figure 7–21 on page 198 shows the design view with the page fragment
boxes and the page-specific components. Note that the page has a heading
text component, a second static text component, text field components to
provide login information, message components, and a button.

2. From the Basic Components palette, select Static Text and drop it on the
page to the right of the navigation panel.

3. Specify the text Home Page.
4. In the Properties window, set the id property to pageHeader.
5. In the Properties window, set the styleClass property to headerStyle. The

font-size and font-family now reflect the headerStyle style rule.
6. From the Basic Components palette, select Static Text and drop it on the

page under static text component pageHeader.

Use <Shift-Click>
to select all three
div elements

Figure 7–27 Selecting all three div elements and the nested page fragments

7.6 Page Fragments 209
7. In the Properties window, set its id property to instructText.

You’ll now add two text field components and message components to go
with them.

1. From the Basic Components palette, select Text Field and drop it on the page
under the static text components you added.

2. In the Properties window, set the component’s properties as follows. Set
property id to firstname, property label to First Name, property
labelLevel to Weak (3), and property required to true (it should be
checked). When you set the required property to true and provide label
text, Creator prepends an asterisk to the label text so that the user knows the
field is required.

3. In the design view, select the text field component, right-click, and select
Property Bindings. Creator pops up the Property Bindings dialog. Under
Select bindable property, click text Object. Under Select binding target,
expand SessionBean1 and select firstname. Click Apply and Close. This
binds the text field to the SessionBean1 firstname property,
#{SessionBean1.firstname}.

4. From the Basic Components palette, select Text Field and drop it on the page
under the text field component you just added.

5. In the Properties window, set the component’s properties as follows. Set
property id to lastname, property label to Last Name, property labelLevel
to Weak (3), and property required to true (it should be checked).

6. In the design view, select the text field component, right-click, and select
Property Bindings. Creator pops up the Property Bindings dialog. Under
Select bindable property, click text Object. Under Select binding target,
expand SessionBean1 and select lastname. Click Apply and Close. This binds
the text field to the SessionBean1 lastname property,
#{SessionBean1.lastname}.

You need a message component to display error messages if the user does
not provide input for the text components.

1. From the Basic Components palette, select Message and place it on the page
to the right of the firstname text field component.

2. Press and hold <Ctrl+Shift> and left-click the mouse inside the message com-
ponent. Drag the mouse and release it over the text field component. This
sets the message component’s for property to firstname, the id of the text
field component. This means that the message component will display mes-
sages from the Faces context that are designated for the text field compo-
nent. The message component’s display text now reads “Message summary
for firstname.”

210 Chapter 7 Web Page Design
3. Repeat Steps 1 and 2 and set the for property to the lastname text field
component.

You’ll use a button component to submit the login information.

1. From the Basic Components palette, select Button and drop it on the page
below the text field components.

2. Change the button’s text property to Login Now.
3. Change the button’s id property to login.
4. In the design view, double-click the Login Now button. Creator generates a

default action handler and brings up Page1.java in the Java source editor.
5. Add the following event handler code (add the code in bold).

This appears to be a rather terse event handler. The code sets the session
bean property loggedIn to true. No special code is needed to check whether or
not the user provided login information (validation does that for you) or spe-
cifically set the firstname and lastname session bean properties (the text field
components property bindings do that for you). The only task left, then, is to
set the loggedIn property.

When the page is rendered, it should display the logged in values stored in
properties firstname and lastname. And, if the user has not logged in, it
should display an instruction line requesting the user to log in. You’ll put this
logic in the predefined prerender() method.

1. Page1.java should still be active in the Java source editor. Locate method
prerender().

2. Add the following code. Copy and paste from FieldGuide2/Examples/
WebPageDesign/snippets/cactus1_prerender.txt. The added code is bold.

public String login_action() {
getSessionBean1().setLoggedIn(new Boolean(true));
return null;

}

public void prerender() {
// see if user is logged in
if (getSessionBean1().getLoggedIn().booleanValue()) {

instructText.setValue(
"Welcome, " + getSessionBean1().getFirstname() + " "
+ getSessionBean1().getLastname());

7.6 Page Fragments 211
Page-Specific Content
Now let’s add the header text for the BooksPage and CoursesPage.

1. Select the BooksPage tab from the top of the editor pane to bring up Books-
Page in the design view.

2. From the Basic Components palette, select Static Text and place it on the
page at the same location as the Home Page static text component on Page1.

3. Set its text property to Books Page, its id property to pageHeader, and its
styleClass property to headerStyle.

4. Repeat Steps 1 through 3 to add a static text component to CoursesPage. Use
the text Courses Page, id property pageHeader, and styleClass header-
Style.

5. Make sure that the pageHeader static text component is in the same location
for all three pages. You can check visually or hold the cursor over the style
property in the Properties window for the static text component and verify
that the position attributes for all three components are the same.

Page Fragments and Navigation
You’ll now provide the navigation rules for this application. The page frag-
ment, NavigationPanel.jspf, contains the hyperlink components for naviga-
tion. Since this page fragment is on each page, you must specify navigation rules
for each page. You can certainly do this in the Navigation Editor. You’ll need
six cases: two navigation arrows originate from each page to specify the other
two pages. However, just a slight increase in the number of pages results in a
messy graph using the Page Navigation visual editor. Therefore, you’re going
to cheat! Basically, you want three navigation cases (both the hyperlink compo-
nents for Home and Log Out should navigate to Page1; the hyperlink image
component also navigates to Page1), as follows.

1. Navigation label Books specifies page BooksPage.jsp.
2. Navigation label Courses specifies page CoursesPage.jsp.
3. Navigation label Home specifies page Page1.jsp.

As it turns out, JSF provides a sophisticated navigation handler that allows
wildcard expressions. You’ll define some basic rules and then modify the navi-
gation configuration in the source editor to provide the wildcard expression.

} else
instructText.setValue(

"Please login using the form below.");
}

212 Chapter 7 Web Page Design
1. Bring up the Page Navigation. Right-click anywhere in the background of
any of the pages in the design editor and select Page Navigation from the
context menu. You’ll see the three pages in the Page Navigation editor.

2. Select Page1.jsp and when it enlarges, select the booksPage hyperlink and
drag a navigation arrow to BooksPage.jsp.

3. Creator displays a navigation arrow. Change the case label to Books.
4. Select Page1.jsp and draw a navigation arrow from the coursesPage hyper-

link to CoursesPage.jsp.
5. Change the case label to Courses.
6. Now select CoursesPage.jsp and when it enlarges, select the image hyper-

link component and drag a navigation arrow to Page1.jsp. Change the case
label to Home.

7. Starting with CoursesPages.jsp again, repeat this two more times, selecting
the hyperlink components logout and homePage. For both of these naviga-
tion cases, change the case label to Home.

Using the navigation editor, you’ve configured all of the components so that
their action property contains the correct navigation case label. Now you just
have to generalize the cases so that the navigation handler goes to the correct
page from any starting page. You have one rule and three cases.

1. Click the Source button in the navigation editor’s toolbar to bring up naviga-
tion.xml in the source editor.

2. Modify the configuration file so that you have only one navigation rule with
three navigation cases. Change the <from-view-id> element to /* (which
matches any page).

3. Here is the modified file. (You can copy and paste from file FieldGuide2/
Examples/WebPageDesign/snippets/cactus1_navigation.txt or provide the
modifications by hand.)

<faces-config>
<navigation-rule>

<from-view-id>/*</from-view-id>
<navigation-case>

<from-outcome>Books</from-outcome>
<to-view-id>/BooksPage.jsp</to-view-id>

</navigation-case>
<navigation-case>

<from-outcome>Courses</from-outcome>
<to-view-id>/CoursesPage.jsp</to-view-id>

</navigation-case>

7.6 Page Fragments 213
4. Click the Save All icon on the toolbar and click the Navigation button to
return to the Navigation editor. Figure 7–28 shows the Navigation view
after you modify the navigation.xml source file.

Logout Event Handler
The last task is to add the logout event handler code, which will reset the ses-
sion bean properties. The hyperlink logout is in the NavigationPanel page
fragment.

1. Bring up NavigationPanel.jspf page fragment in the design editor.
2. Double-click hyperlink component logout. Creator generates the hyper-

link’s event handler, logout_action(). Note that Creator transforms the
action property “Home” to the correct return String value in the event han-
dler.

<navigation-case>
<from-outcome>Home</from-outcome>
<to-view-id>/Page1.jsp</to-view-id>

</navigation-case>
</navigation-rule>

</faces-config>

Figure 7–28 Navigation editor with source code wildcard expressions

214 Chapter 7 Web Page Design
3. The logout_action() method will reset the values for the three session
bean properties. Copy and paste file FieldGuide2/Examples/WebPageDe-
sign/snippets/logout_action.txt. The added code is bold.

Deploy and Run
Deploy and run project Cactus1. Figure 7–29 shows project Cactus1 running in
the browser displaying CoursesPage. The image hyperlink’s tooltip is visible.

public String logout_action() {
getSessionBean1().setFirstname("");
getSessionBean1().setLastname("");
getSessionBean1().setLoggedIn(new Boolean(false));
return "Home";

}

Figure 7–29 Project Cactus1 running in a browser

7.7 Introducing TabSets 215
Reuse with Project Templates
Once you have the look and feel of your application defined, Creator lets you
save the project as a template. Project templates promote reuse and uniformity
within an organization. When you create a new project, you can select a project
template as a starting point. Let’s create a template from project Cactus1.

1. In the Projects window, right-click the project node Cactus1 and select Save
Project As. Creator pops up the Save Project As dialog.

2. For Project Name specify CactusTemplate. Click the Add Project to Template
List checkbox, as shown in Figure 7–30. Click OK.

Now when you create a project, you can select My Templates and view a list
of saved project templates for your new project. This is the approach we’ll take
with project Cactus2 (see “Using Tab Sets and Page Fragments” on page 221.)

7.7 Introducing TabSets

As we continue exploring Creator’s components and configuration options for
web applications, let’s show you another useful layout component, the tab set.
Many applications use tab set components for navigation and complex page
management. With tab sets, you can display only those components that are
relevant to the task at hand.

The tab set is a composite component. You place a tab set component on a
page and then add tab components to the tab set. You have more than one way
to manage an application with tab sets, however.

The simplest way places a separate tab set component on each page. If your
application consists of three pages, for example, each page will hold its own
distinct tab set and each tab set holds three tab components. Furthermore, each
tab set has one tab that is always selected. The other two non-selected tabs act

Figure 7–30 Adding a project to the Template List

216 Chapter 7 Web Page Design
as hyperlink components and provide navigation to the other two pages where
a different tab is always selected. This method is straightforward because you
never have to manage the state of the tab sets. You place the components on
each page with the visual design editor. Furthermore, you don’t have to nest
the page’s components under the tab set.

A second approach is to put the tab set and tabs in a page fragment and
include the page fragment on each page. Again, you place the components for
each page directly on the page (you don’t nest them under the tab set compo-
nent). Because there is only one tab set component, you must maintain the state
of its selected tab, however. Like the first approach, the tabs are used to navi-
gate to the other pages. The advantage of using a page fragment for the tab set
is that any customizing for the tab set must only be specified once.

A third approach uses a single page: the tab set and its tabs all go on one
page. In this approach, you use the nested layout panel to hold the components
corresponding to each tab. When the user selects a tab, the tab set renders only
those components under the selected tab. Furthermore, the tab set automati-
cally marks the selected tab, so you don’t need to do anything to maintain its
state. The disadvantage of this approach is that it is more difficult to design the
page and the page is more complex.

We’ll take you through building a project using the first approach. Then,
you’ll implement a version of the Cactus project (Cactus2), incorporating both
a tab set and a navigation panel containing hyperlink components to perform
navigation. The Cactus2 project uses the page fragment method for the tab set
component. We illustrate the third approach in project TabSet3, which is
included in the Creator2 download directory under FieldGuide2/Examples/
WebPageDesign/Projects/TabSet3.

Using Separate Tab Sets
The first example uses a separate tab set on each page. For this project, you’ll
create three pages. Each page contains a tab set component with three tabs. The
tabs enable users to navigate to the other pages.

Create a New Project
1. From Creator’s Welcome Page, select button Create New Project. Creator

displays the New Project dialog. Under Categories, select Web. Under
Projects, select JSF Web Application. Click Next.

2. In the New Web Application dialog under Project Name, specify TabSet1.
Click Finish.

After initializing the project, Creator comes up in the design view of the edi-
tor pane. You can now set the title.

7.7 Introducing TabSets 217
3. In the Properties window, select property Title and specify title TabSet1 -
Page1. Finish by pressing <Enter>.

Add Components to Page1
Figure 7–31 shows the design view of Page1.

1. From the Layout Components palette, select Tab Set and drop it on the page.
Position it in the top-left corner.

2. When you add the tab set component, Creator preconfigures a single tab
nested in the tab set. Inside the tab component, Creator also preconfigures a
layout panel. The tab should be selected. Change its text property to First
Page, followed by <Enter>.

3. In the Page1 Outline view, select the nested layout panel, layoutPanel1.
Right-click and select Delete from the context menu. Since you’re placing a
separate tab set on each page, you don’t need the layout panel to hold the
page’s components.

4. In the Page1 Outline view, now select the tab set component. In the Proper-
ties window for the tab set component, add the property-value ; width: 100%
to the style property that is already configured. The background behind
the tabs will expand.

5. From the Layout Components palette, expand node Tab Set and select the
nested component Tab. Drop it on top of the tab set component that’s on the
page. Creator configures this as component tab2. In the Page1 Outline view,
make sure that component tab2 is at the same nesting level as tab1.

6. Component tab2 should be selected. Change its text property to Second
Page.

7. In the Page1 Outline view, delete the nested layout panel component (repeat
the step you followed to delete the nested layout panel in the first tab).

Figure 7–31 Page1 design view for project TabSet1

Tab Set

Selected Tab
Unselected Tab

Label

218 Chapter 7 Web Page Design
8. From the Layout Components palette, select another Tab component and
drop it on top of the tab set component. This is component tab3. Change its
text property to Third Page and delete its nested layout panel component.

9. In the design view, click on component tab1 (First Page) to make it selected.

Creator Tip

As you configure the tab set on each page, you specify the selected tab for that
page. Each page has a different tab selected. Figure 7–31 shows tab1 selected
(the Page1 configuration).

Now you’ll add a label component to the page to hold a page header.

1. From the Basic Components palette, select component Label and drop it on
the page. (Drop it on the page, not on the tab set component.) In the Page1
Outline view, the label component should be nested under form1, at the
same level as component tabSet1.

2. Set its text property to Page 1.

You’ll now create a second and third page and copy and paste these compo-
nents to the new pages.

1. In the Projects view, right-click the Web Pages node and select New > Page.
Creator pops up the New Page dialog.

2. Specify File Name Page2 and click Finish. Creator brings up Page2 in the
design view.

3. Set the Title property to TabSet1 - Page 2.
4. Repeat steps 1 through 3 to add a third page with file name Page3 and Title

TabSet1 - Page 3.

Since each page holds the same components (the tab set, three tabs, and a
label) it’s easier to copy and paste these components from Page1 and reconfig-
ure them as needed for Page2 and Page3.

1. Select the Page1 tab above the editor pane to bring up Page1 in the design
view.

2. In the Page1 Outline view, select component tabSet1 and label1 (use
<Shift-click> for multiple selection). The nested tabs will also be selected.

3. From the main menu bar, select Edit > Copy.
4. Now select the Page2 tab above the editor pane. In the Page2 Outline view,

expand page1 > html1 > body1 and select component form1.
5. Right-click on form1 and select Paste from the context menu. This copies the

Page1 components to Page2, maintaining the same position and other style
attributes.

7.7 Introducing TabSets 219
6. Repeat Steps 4 and 5 with Page3, pasting the components on this page.

Now you’ll configure the tab set and label components for Page2 and Page3.

1. Select the Page2 tab above the editor pane to bring up Page2 in the design
view.

2. In the design view, click on component tab2 (Second Page) to make it
selected. The tab will turn white and the other two tabs will be blue.

3. Select the label component and change its text property to Page 2.
4. Repeat Steps 1 through 3 for Page3. Make tab3 (Third Page) selected and

change the label’s text property to Page 3.

Configure Navigation
The tab components behave like hyperlink components because you can define
action event handlers or action labels for navigation. You’ll define six naviga-
tion cases: each page will have two cases that originate from a tab component
and terminate in one of the other two pages.

1. In the design view, right-click anywhere in the background and select Page
Navigation from the context menu. Creator brings up the Navigation Editor.

2. You see the three pages that you defined for this project. Select Page1.jsp.
When it enlarges, you’ll see the three tab components.

3. Select tab2, click, and drag an arrow to Page2.jsp. Change the case label to
second.

4. Select Page1.jsp again, click tab3, and drag an arrow to Page3.jsp. Change
the case label to third.

5. Now repeat this sequence for Page2.jsp. Draw an arrow from component
tab1 to Page1.jsp. Use case label first. Draw a second arrow from compo-
nent tab3 to Page3.jsp. Use case label third.

6. Finally, configure the navigation cases for Page3.jsp. Draw an arrow from
component tab1 to Page1.jsp. Use case label first. Draw the second arrow
from component tab2 to Page2.jsp. Use case label second. Figure 7–32
shows the Navigation Editor with all of the cases configured and Page2.jsp
enlarged.

Deploy and Run
Deploy and run project TabSet1. Figure 7–33 shows Page2 in the browser and
the cursor is over the third tab.

220 Chapter 7 Web Page Design
Figure 7–32 Navigation Editor for project TabSet1

Figure 7–33 Page2 of project TabSet1 running in a browser

7.7 Introducing TabSets 221
Using Tab Sets and Page Fragments
You’ll now add a tab set to the CactusBanner page fragment from project
Cactus1. Instead of copying project Cactus1, you’ll create a new project and use
the project template you saved earlier.

1. From the Welcome page, click Create New Project.
2. Creator pops up the New Project dialog. In the Categories window, select

My Templates. Creator displays a list of available project templates.
3. Select CactusTemplate and click Next.
4. Creator displays the New JSF Web Application dialog. For Project Name

specify Cactus2 and click Finish.
5. Creator brings up Page1 of project Cactus2 in the design view. Click any-

where in the background of the design canvas of the Cactus2 project. In the
Properties window, change the page’s Title property to Cactus Consulting 2.

Let’s add another style rule to stylesheet.css to make the tab set blend with
the pages better.

1. In the Projects window, expand the Web Pages > resources node and double-
click stylesheet.css to bring it up in the Style Editor.

2. Add the following style rule for TabGrp.

Creator Tip

The standard Themes uses style rule TabGrp to apply styles to tab sets. By
customizing this rule, you can change the background color of the page
behind the tabs. The default color is a gradient gray for the Gray Theme.

Add Tab Set and Tabs to CactusBanner
First, let’s add components to the CactusBanner page fragment. Figure 7–34
shows the design view for the CactusBanner page fragment with the tab set
component added.

1. In the Projects window, double-click CactusBanner.jspf to bring up the
CactusBanner page fragment in the design view.

2. Click in the blue area to select the page fragment.
3. In the Properties view, change the page fragment’s height to 150px.

.TabGrp {
background-color: rgb(230,230,200);

}

222 Chapter 7 Web Page Design
4. Select the Cactus Consortium static text component and move it over to the
right to make room for the tab set component.

5. From the Layout Components palette, select Tab Set and drop it on the page
fragment below the image hyperlink component.

6. The first tab is selected. Change its text to Home.
7. In the Outline view, select the nested layout panel, layoutPanel1, right-

click and select Delete from the context menu.
8. In the Outline view, select the nested tab component, tab1. In the Properties

window for the tab, change its id property to homeTab.

Creator Tip

The selected property of the tab set component takes the id (passed as a
String) of the tab that’s selected. Renaming the component’s id with
meaningful names makes your code more readable.

9. Now select component tabSet1 in the Outline view. In the Properties win-
dow for the tab set, check the property mini. This changes the appearance of
the tab set and makes the tabs smaller.

Add two more tabs to the tab set.

1. From the Layout Components palette, expand the Tab Set component and
select the nested Tab component. Drop it on top of the tab set you added.
(Make sure that the new tab is at the same nesting level as component
homeTab.)

2. Change the tab’s text property to Books.

Figure 7–34 Design view for CactusBanner.jspf

Tab SetSelected
Tab

Unselected
Tabs

Static Text

Image
Hyperlink

7.7 Introducing TabSets 223
3. Change the tab’s id property to booksTab.
4. Delete the nested layout panel under tab booksTab.
5. Repeat this and add another tab with text Courses and id coursesTab.

Delete the nested layout panel under tab coursesTab.
6. Reposition the tab set component so that it is within the page fragment

boundary (the white area) and that its left edge is flush with the fragment
boundary (the left style attribute should be 0).

7. In the CactusBanner Outline view, select the Cactus Consortium static text
component, drag it up to the f:subview component, and drop it on top of
the subview.

The static text component is now listed after the tab set component in the
CactusBanner Outline view. This makes the static text component render on top
of the tab set component. When you moved the component in the Outline view,
its style property was cleared. The component now appears in the design
view in the upper-left corner (on top of the image).

8. In the design view, move the static text component back (next to) the tab set
component, placing it to the right of the third tab.

Add style and styleClass attributes to the tab set component.

1. Select the tab set component. In the Properties view for property style, add
attribute ; width: 696px to the end. This aligns the width of the tab set compo-
nent with the image hyperlink component.

2. In the tab set Properties view for property styleClass, specify TabGrp.
3. In the tab set Properties view opposite property selected, click the check

mark for the drop down list corresponding to the tabs. Choose the first,
blank entry. Even though the property sheet will display Home (homeTab),
property selected should not appear in bold.

Creator Tip

If the tab set’s selected property is bold, then Creator has generated a tag in
the JSP file to set it. Because you’ll set the tab set’s selected property in
each enclosing page’s prerender() method, you must not generate the
corresponding JSP tag. The JSP code executes after the prerender()
method, rendering the method ineffective.

4. Select the Save All icon on the toolbar to save these changes.

224 Chapter 7 Web Page Design
Setting the Currently Selected Tab
As you’ve seen from working with the tab set component in the first tab set
example, the tab set displays tabs and renders them as either “selected” or “not
selected.” A selected tab (there can only be one selected tab) has a contrasting
color and its link is inactive. It is the current tab. A non-selected tab has an
active link. In this example, the action associated with clicking a non-selected
tab causes page navigation. When the new page is rendered, the tab set must
reflect the newly selected tab.

The most straightforward way to maintain the state of the currently selected
tab is to set it in the enclosing page’s prerender() method. Setting the selected
tab in each page ensures that the correct tab is selected even when navigation
to a new page happens through the hyperlink components in the Navigation-
Panel page fragment or the image hyperlink.

As mentioned in the previous page’s Creator Tip, the only caveat is you
must ensure that Creator does not generate JSP code to set the tab set’s
selected property, since this will take precedence over the prerender() code.

1. In the Projects window under Web Pages, double-click Page1.jsp to bring it
up in the design view.

2. Select the Java button in the editing toolbar to edit the Java source.
3. Add the following code to method prerender(). Copy and paste from

FieldGuide2/Examples/WebPageDesign/snippets/
cactus2_page1_tabset.txt. The added code is bold.

You’ll add the same code to the prerender() methods in Courses.java (with
String "coursesTab") and Books.java (with String "booksTab").

1. Bring up Courses.java in the Java source editor. Add the same code to the
prerender() method.

2. Change the tab set’s setSelected() argument to "coursesTab".
3. Bring up Books.java in the Java source editor. Add the same code to the

prerender() method and change the tab set’s setSelected() argument to
"booksTab".

4. Select the Save All icon on the toolbar to save these changes.

public void prerender() {
CactusBanner cactusBanner = (CactusBanner)getBean(

"CactusBanner");
cactusBanner.getTabSet1().setSelected("homeTab");
// see if user is logged in
. . .

}

7.7 Introducing TabSets 225
Configure Action Method for Tabs
The navigation rules have already been configured for this project. Because
you used navigation wildcard notation in project Cactus1, these rules will
apply to the tab set component as well. You do not need to make any adjust-
ments to the navigation rules. However, you do need to specify the return
string for each tab’s action method. To do this, you’ll generate action methods
through the IDE and provide the code for the action event handler.

1. Bring up CactusBanner in the design view.
2. Double-click tab component homeTab. Creator generates the default

homeTab_action() event handler and brings up CactusBanner.java in the
Java source editor.

3. Replace the return null with return "Home" as shown.

4. Return to the design view (click Design in the editor toolbar) and repeat
steps 2 and 3 for tab component booksTab. Replace the return null with
return "Books".

5. Return to the design view and repeat steps 2 and 3 for tab component
coursesTab. Replace the return null with return "Courses".

6. Make sure that the tab set’s selected property is not set in the Properties
view. If it’s bold, select the first (blank) entry in the drop down list for prop-
erty selected. The property name should no longer be bold.

7. Click the Save All icon on the toolbar to save these changes.

public String homeTab_action() {
// TODO: Replace with your code
return "Home";

}

public String booksTab_action() {
// TODO: Replace with your code
return "Books";

}

public String coursesTab_action() {
// TODO: Replace with your code
return "Courses";

}

226 Chapter 7 Web Page Design
Check Pages with Modified CactusBanner
Check and adjust the placement of the page fragments on each page. Once
you’ve done this, deploy and run the application.

Creator Tip

Since the grid panel contains a vertical line on the left border, align this
border with the first tab’s left edge. This creates a pleasing visual connection
between the grid panel component and the tab set component. The easiest way
to adjust the page is to simultaneously select the NavigationPanel and
CactusFooter page fragments. Then, while holding down the Shift key, move
the fragments down and to the left to make the alignment with the tab set
component. By moving both fragments together, you keep their relative
position constant.

When you run the application, check to make sure the tab set component
reflects the correct page navigation, whether you use the hyperlink compo-
nents or the tab set component for navigation. Figure 7–35 shows project
Cactus2 running in a browser with page BooksPage rendered.

Figure 7–35 Project Cactus2 running in a browser

7.8 Key Point Summary 227
7.8 Key Point Summary

This chapter explores some of Creator’s tools and components that web design-
ers use to compose web pages and visually organize their projects.

• Creator’s visual editor helps you compose web pages by providing
component dragging, dropping, and page positioning.

• By default the visual editor displays a grid that helps you align components.
You can turn off the grid or change its size using the Tools > Options > Visual
Designer menu. You can temporarily disable grid alignment by
repositioning the component while holding down the <Shift> key.

• You can select multiple components by dragging a mouse around the target
components, enclosing them in a box. You can also use <Shift-Click> to add
components to those that are already selected.

• To align components with one another, select the target components,
position the mouse over the reference component, right-click, and select
Align. This brings up the Align context menu with choices for alignment.

• For horizontal alignment options, select Left, Center, or Right. For vertical
alignment options, select Top, Middle, Bottom.

• Creator’s Basic, Layout, and Composite components are rendered using
themes. A theme is a bundled set of cascading style sheets, JavaScript files,
and images that apply to the components and page. The available themes
are listed in the Projects window under node Themes.

• To change the current theme, right-click a new theme selection in the
Projects window and select Set As Current Theme. To make the new theme
take effect for deployment, stop the application server and clean and rebuild
the project.

• You can control the look of a component by modifying its style property.
Property style accepts property-value pairs to control style attributes such
as color, background color, font characteristics and page position.

• Creator provides a style editor to manipulate a component’s style property.
To use the style editor, click the editing box opposite property style.

• In addition to the style property, Creator also uses Cascading Style Sheets
(CSS) to control the look of its components and pages. You can add style
classes to a project’s default style sheet, stylesheet.css. You can also provide
your own style sheet.

• To edit the default style sheet, double-click file stylesheet.css in the Projects
window under Web Pages > resources. Creator brings up the style sheet in
the Style Sheet Editor.

• Apply one or more style classes to a component by specifying them in a
comma separated list for the component’s styleClass property.

• Using a style sheet with the styleClass property is easier than configuring
a component’s style property to achieve a uniform look.

228 Chapter 7 Web Page Design
• Creator provides several components that provide grouping and layout
capabilities. The layout panel component provides the option of using a grid
layout which lets you use the design view to easily position nested
components.

• The grid panel component provides a cell for each nested component.
Creator places each component in the next available cell. The default
number of columns is one, but you can change this value in the grid panel’s
Properties window. The grid panel is especially useful when you want to
include one or more components after a component with indeterminate
sizing (such as a table that can have any number of rows).

• The anchor and hyperlink components control page scrolling. The hyperlink
component jumps to a spot on the page marked by the anchor component.
Jumping to an anchor does not perform a page request.

• Page Fragments are page building blocks for web applications. Typically,
you use page fragments to hold parts of your web page that you’d like to
standardize for a uniform look, such as page headers, standard menus, or
footers.

• You can save a project as a template. When you create a new project, you can
then select a saved template as a starting point.

• You can use wildcards in page navigation rules. Select the Source button in
the Page Navigation editor and modify the navigation.xml source file
directly. Wildcards simplify navigation rules by reducing the number of
navigation cases you define.

• The tab set is a composite component that contains nested tabs. Under each
nested tab is a layout panel component. Tabs are similar to hyperlinks in that
you can specify action event handling code as well as navigation strings.

• You can use tab sets with page fragments or put a tab set and its nested tabs
all on one page. You may also put a separate tab set on its own page.

• A tab set’s selected property holds the component id (as a String) of the tab
that is currently selected.

INTRODUCING DATA
PROVIDERS
Topics in This Chapter

• Data Providers Class Hierarchy
• Property Binding with Data Providers
• Common Table Data Provider Methods
• Object Data Provider
• Object List Data Provider
• Cached RowSet Data Provider

Chapter
ew to Creator 2 is the standardization of a data layer in between a
web application’s components and its persistence tier, such as a data
base. This data layer allows the programmer to access data in a con-
sistent way, even though the data may come from different sources. In

this chapter, we’ll introduce the Creator data providers and show you how
they’re used.

8.1 Data Provider Basics

Let’s begin by examining the components in the Data Provider section of the
Components Palette, as shown in Figure 8–1. All the data providers implement
the basic DataProvider interface, which provides a consistent way to access
data in an object using FieldKeys that correspond to property names. With the
TableDataProvider interface, you can also use the concept of cursor-based
access (using the “current” row) and random access (you specify both a Field-
Key and a RowKey). We’ll show you how to manipulate the data providers in
this chapter.

More elaborate data providers provide transactional behavior (Transaction-
alDataProvider interface) and caching behavior (RefreshableDataProvider
interface). The CachedRowSetDataProvider implements both of these inter-
faces.

N

231

232 Chapter 8 Introducing Data Providers
The data provider you use depends on the source of the data and how you
want to manipulate the data. For example, if your data originates from a data
source, a cached row set table data provider, that is refreshable and transac-
tional is suitable. On the other hand, if your data comes from another persistent
source that is transactional but not a cached rowset, then you’ll use an object
list data provider that is transactional. Figure 8–2 depicts Creator’s data pro-
vider class hierarchy, which shows the different data provider interfaces and
their implementation classes.

Table 8.1 lists these data providers with descriptions of their use.

Figure 8–1 Data Providers Palette

8.1 Data Provider Basics 233
AbstractDataProvider

Interfaces

DataProvider

TableDataProvider

TransactionalDataProvider

RefreshableDataProvider

AbstractTableDataProvider

CachedRowSetDataProvider

ListDataProvider

ObjectArrayDataProvider

ObjectListDataProvider

MapDataProvider

ObjectDataProvider

TableRowDataProvider

ObjectFieldKeySupport

RowKey

FieldKey

Supporting Classes:

MapDataProvider.MapFieldKey

IndexRowKey
ObjectArrayRowKey
ObjectRowKey

Implementation Class

Figure 8–2 Creator data provider class hierarchy

234 Chapter 8 Introducing Data Providers
Table Data Providers
The Table Data Provider interface provides access to a set of data through row
keys that identify a particular row and field keys that identify fields or col-
umns in the table data provider. Let’s examine some common tasks you’ll per-
form with table data providers. For these examples, assume that recordingsDP
is a CachedRowSetDataProvider that wraps a CachedRowSet. A Cached-
RowSetDataProvider is both transactional and refreshable. Unless otherwise
noted, however, all of these examples apply to any Table Data Providers.

Row Data
You can get a single row from a table data provider. For example, if you have a
Table component whose source variable is bound to a table data provider,
here’s how to obtain the current row of data getBean() helper function.

Table 8.1 Creator Basic Data Providers

Data Provider Description

Object Data Provider Wraps the contents of a single object. Key fields have id values
matching the properties of the object.

Object Array Data
Provider

Wraps the contents of an array of objects. Key fields have id
values matching the properties of the object type. Since an array’s
size is fixed, canAppend(), canInsert(), and
canRemove() return false.

Object List Data
Provider

Wraps the contents of a list of objects. Key fields have id values
matching the properties of the object type. Objects can be added
and removed to and from the list.

List Data Provider Wraps the contents of a list. Key fields are ignored.

Map Data Provider Wraps the contents of a map. Key fields have id values that
match the keys of the wrapped map.

CachedRowSet Table
Data Provider

Wraps a cached row set. This data provider is transactional and
refreshable (cached).

Table Row Data
Provider

Wraps a single row from a table data provider.

TableRowDataProvider rowdata = (TableRowDataProvider)
getBean("currentRow");

8.1 Data Provider Basics 235
Row Key
A row key is an index into a table row data provider. Many of the methods for
manipulating the table row data provider use a row key parameter to identify
the target row. Here’s how you get the row key from a table row data provider
(rowdata).

The table data provider maintains a cursor marking the current row. Here’s
how to obtain the row key from the current row of a table data provider
(recordingsDP).

You can manipulate the current row (the row key cursor) using a set of
methods that change the cursor. The following methods, for example, set the
current row to the first, next, previous, and last row, respectively. These meth-
ods return a boolean that give you the option of checking the validity of the
cursor after calling the method.

You can also set the cursor by searching the data for a value of a particular
field, as follows. The following example looks for the first occurrence of field
RECORDINGTITLE that matches string ʺxyzʺ.

Getting Data
You get data with the getValue() method and a field key. A row key fetches
the data from the specified row. Otherwise, you get the data from the current
row.

RowKey rowKey = rowdata.getTableRow();

RowKey rowKey = recordingsDP.getCursorRow();

boolean ok = recordingsDP.cursorFirst();
ok = recordingsDP.cursorNext();
ok = recordingsDP.cursorPrevious();
ok = recordingsDP.cursorLast();

recordingsDP.setCursorRow(recordingsDP.findFirst(
"RECORDINGS.RECORDINGTITLE"), "xyz"));

// use row key
String t = recordingsDP.getValue("RECORDINGS.RECORDINGTITLE",

rowKey);

236 Chapter 8 Introducing Data Providers
Setting Data
You set data with the setValue() method and a field key. A row key sets the
data in the specified row. Otherwise, you set the data in the current row.

Property Binding
You can bind a UI component’s property to a field in a data provider. Here is a
binding expression to bind the value of a particular field (RECORDINGTITLE)
in the current row.

For a component that’s part of the UI Table component, use variable
currentRow, as follows.

Refreshable
A refreshable data provider is cached. To load (or reload) data into the table
data provider from the underlying data source, use method refresh(). (You

// use current row
String t = recordingsDP.getValue("RECORDINGS.RECORDINGTITLE");
// access through row data object
TableRowDataProvider rowdata = (TableRowDataProvider)

getBean("currentRow");
String t = rowdata.getValue("RECORDINGS.RECORDINGTITLE");

// use row key
String t = new String("title");
recordingsDP.setValue("RECORDINGS.RECORDINGTITLE", rowKey, t);
// use current row
String t = new String("title");
recordingsDP.setValue("RECORDINGS.RECORDINGTITLE", t);
// use row data object
TableRowDataProvider rowdata = (TableRowDataProvider)

getBean("currentRow");
String t = new String("title");
rowdata.setValue("RECORDINGS.RECORDINGTITLE", t);

#{Page1.recordingsDP.value[’RECORDINGS.RECORDINGTITLE’]}

#{currentRow.value[’RECORDINGS.RECORDINGTITLE’]}

8.1 Data Provider Basics 237
only use refresh() with data providers that implement the RefreshableData-
Provider interface.)

Working With the Data Provider
Here’s how to loop through a table data provider and perform an action on
each row.

Removing a Row
Here’s how to remove row rowkey from a table row data provider. Note that
we check to see if the data provider can be resized before calling method
removeRow().

recordingsDP.refresh();

// only refresh if refreshable
if (recordingsDP instanceof RefreshableDataProvider)

recordingsDP.refresh();
if (recordingsDP.cursorFirst()) {

do {
RowKey rowkey = recordingsDP.getCursorRow();
try {

info("Doing something to rowkey ", rowkey);
recordingsDP.doSomething(rowkey);

} catch(Exception e) {
error("Failed for rowkey ", rowkey);

}
} while (recordingsDP.cursorNext());

} // end if

boolean ok = true;
if (recordingsDP.canRemoveRow(rowkey) {

try {
recordingsDP.removeRow(rowkey);

} catch (Exception e) {
error("Cannot remove row ", rowkey);
ok = false;

}
}
if (recordingsDP instanceof TransactionalDataProvider) {

// commit or roll back changes depending on boolean ok
}

238 Chapter 8 Introducing Data Providers
Appending a Row
Here’s how to append row rowkey to a table row data provider. Note that we
check to see if the data provider can be appended to before calling method
appendRow().

Working With Transactional Data
Providers

Here’s how to commit or rollback changes with a transactional data provider.
Use these to commit appends, removes, and insert operations. Methods com-
mitChanges() and revertChanges() are also used to commit (or not) data that
the user edits from within a UI table component.

if (recordingsDP.canAppendRow()) {
try {

RowKey rowKey = recordingsDP.appendRow();
// do this for each field
recordingsDP.setValue("tablename.fieldname", rowKey,

value);
// after all fields are set, commit changes
if (recordingsDP instanceof TransactionalDataProvider)

recordingsDP.commitChanges();
} catch (Exception e) {

error(" . . . ");
}

}

if (ok) {
try {

recordingsDP.commitChanges();
} catch (Exception e) {

error(" . . . ");
try {

recordingsDP.revertChanges();
} catch (Exception e2) {

error(" . . . ");
}

}

8.2 Object Data Provider 239
Working With RowSets
When a data provider wraps a row set, you may need to access the row set
directly to set a query parameter. Here is an example of obtaining a query
parameter from a SessionBean1 property and using it to execute the query. The
refresh() method executes the underlying SQL query.

Chapter 9 (beginning on page 267) shows you projects that access a database
for reading, updating, inserting new data, and deleting data.

8.2 Object Data Provider

The object data provider component wraps an individual JavaBeans compo-
nent instance. This allows code in your web application to bind to the object
data provider, isolating the instantiation of the underlying JavaBeans compo-
nent. The client code (application code) accesses the properties of the Java-
Beans component using a data provider. The object data provider wraps the
JavaBeans component through its object property, which you can set in the
Properties window. Data providers let you access the JavaBeans component
both in the Java page bean code (such as event handlers) and in the property
binding dialogs of the IDE.

Object Data Provider Methods
You access individual properties of the JavaBeans component using FieldKey
objects. The data provider object provides the FieldKeys through method get-

} else {
try {

recordingsDP.revertChanges();
} catch (Exception e) {

error(" . . . ");
}

}

try {
getSessionBean1().getRecordingsRowSet().setObject(1,

getSessionBean1().getValue_of_query_parameter());
recordingsDP.refresh();

} catch (Exception e) {
error(" . . . ");

}

240 Chapter 8 Introducing Data Providers
FieldKey(propertyName) where propertyName is the JavaBeans component
property.

Let’s see how all of this works using the JavaBeans component you’ve
already used in project Login2 (see “LoginBean” on page 121).

In project Login2, the JavaBeans component LoginBean is instantiated in ses-
sion scope in SessionBean1 as property loginBean. In both the Page1 and Log-
inGood web pages, property bindings provide direct access to the object. For
example,

binds the username property of the LoginBean object to the text property of
the userName text field. Similarly, in the Page1 login_action() event handler,
you access the LoginBean object using

Rather than access this SessionBean1 property directly, let’s use an object
data provider. All calls to the LoginBean component go through data provider
calls. This lets you change the underlying mechanism for instantiating and
maintaining this JavaBeans component without affecting your web application
access code. For example, the object data provider loginDP provides access to
the username property, as follows.

Method getFieldKey() returns the data provider’s field key that correctly
accesses the corresponding property value.

Here’s how to bind the LoginBean username property to text field compo-
nent userName using the following expression.

Access to LoginBean boolean property loginGood is similar.

#{SessionBean1.loginBean.username}

LoginBean login = getSessionBean1().getLoginBean();
if (login.isLoginGood() . . .)

loginDP.setObject(
(java.lang.Object)getValue("#{SessionBean1.loginBean}"));

// display the user name in a message component
info(loginDP.getValue(loginDP.getFieldKey("username")));

#{Page1.loginDP.value[’username’]}

boolean loginOK = ((Boolean)loginDP.getValue(
loginDP.getFieldKey("loginGood"))).booleanValue();

8.2 Object Data Provider 241
Copy the Project
Let’s add the object data provider to project Login2. To avoid starting from
scratch, make a copy of the Login2 project and save it as Login3. This step is
optional. If you don’t want to copy the project, simply skip this section and
continue making modifications to the Login2 project.

1. Bring up project Login2 in Creator, if it’s not already opened.
2. From the Projects window, right-click node Login2 and select Save Project

As. Provide the new name Login3.
3. Close project Login2. Right-click Login3 and select Set Main Project. You’ll

make changes to the Login3 project.
4. Bring up Page1 in the design view.
5. Click anywhere in the background of the Page1 design canvas. In the Prop-

erties window, change the page’s Title property to Login 3.

Add the Object Data Provider
Now you’ll add and configure the object data provider.

1. Make sure that Page1 is active in the design window.
2. From the Components palette, scroll down and expand the Data Providers

section.
3. Select component Object Data Provider and add it to the page (drop it on

top of the page background). Creator adds the data provider component.
Since the data provider is a non-visual component, it shows up in the Page1
Outline view.

4. Select the data provider component in the Page1 Outline view and in the
Properties window, change its id to loginDP.

5. In the Properties window, select the editing box opposite property object.
Creator pops up the loginDP - object dialog.

6. From the list, select loginBean (SessionBean1) and click OK, as shown in
Figure 8–3. This is all you need to do to wrap the LoginBean JavaBeans com-
ponent in the object data provider. Creator generates the following Java
code in the Page1() constructor.

Provide Binding to Components
The text field and password components on the page currently bind directly to
the SessionBean1 LoginBean component. You’ll now update the binding on
these components.

loginDP.setObject(
(java.lang.Object)getValue("#{SessionBean1.loginBean}"));

242 Chapter 8 Introducing Data Providers
1. From the Page1 design canvas, select text field component userName.
2. Right-click and select Property Bindings. The Property Bindings dialog for

component userName pops up.
3. Property text Object should already be selected under Select bindable prop-

erty.
4. Under Select binding target, select loginDP > key username String, as shown

in Figure 8–4.
5. Click Apply then Close. Creator generates the following binding expression

for the text field’s text property.

6. Repeat steps 1-5 for component password. The binding expression for this
component is now

Modify Event Handler Code
Now you’ll modify the event handler code to use the object data provider.

1. From the Page1 design view, double-click the Login button. This brings up
Page1.java and method login_action() in the Java source editor.

#{Page1.loginDP.value[’username’]}

#{Page1.loginDP.value[’password’]}

Figure 8–3 Set property object for data provider loginDP

8.2 Object Data Provider 243
This method currently queries property loginGood (a boolean) to see if the
login process is successful. Rather than access the SessionBean1 property
loginBean, you’ll use the object data provider.

2. Provide the following code for method login_action(). Copy and paste
from FieldGuide2/Examples/DataProviders/snippets/
login3_login_action.txt.

Modify LoginGood Page
Note that page LoginGood displays the username after the user has success-
fully logged in. You can’t use the same object data provider from Page1 since it

public String login_action() {
boolean loginOK = ((Boolean)loginDP.getValue(

loginDP.getFieldKey("loginGood"))).booleanValue();
if (loginOK) {

return "loginSuccess";
} else

return "loginFail";
}

Figure 8–4 Use loginDP object data provider for property binding

244 Chapter 8 Introducing Data Providers
has page (request) scope. Therefore, you’ll use a second object data provider
for this page and bind to the same underlying session bean property, the Login-
Bean object.

Creator Tip

You could optionally add the object data provider directly to SessionBean1 by
dragging and dropping from the palette to SessionBean1 in the Outline view.
Then you can use the same data provider in Page1 and LoginGood.

Here are the steps that configures an object data provider and binds it with
the label component on the LoginGood page.

1. Double-click LoginGood.jsp under Web Pages in the Projects window to
bring up this page in the design view.

2. From the Data Providers Components palette, select Object Data Provider
and drop it on the page (anywhere on the background). Creator instantiates
an object data provider, which you see in the Outline view under Login-
Good.

3. Select the object data provider and in the Properties window, change its id
property to loginDP2. (The name does not have to be different than the
Page1 object data provider, but a different name helps reduce confusion.)

4. In the Properties window, select the small editing box opposite property
object. In the dialog, select loginBean (SessionBean1) from the list. Click OK.
This wraps SessionBean1 property loginBean with the data provider.

5. In the LoginGood design view, select the label component, right-click, and
select Property Bindings.

6. Under Select binding target, select loginDP2 > key username String and click
Apply.

7. In the New binding expression window, add the text Welcome, in front of the
generated binding expression. Click Apply then Close. The binding expres-
sion for property text should now be set to

Deploy and Run
Deploy and run project Login3. Although using the data provider here makes
accessing the LoginBean component rather obtuse, you’ll note that there are no
dependencies on LoginBean’s structure, as well as no dependencies on how it
is acquired. The advantage of using data providers is that accessing data is sim-
ilar regardless of the underlying structure. Later in this chapter we’ll enhance

Welcome, #{LoginGood.loginDP2.value['username']}

8.3 Object List Data Provider 245
the LoginBean component itself to access a database (through a data provider)
to determine the success of the login process.

Other Singleton Object Data Providers
The Object Data Provider is meant to wrap a singleton data object. Creator also
provides the Map Data Provider and the Table Row Data Provider (under
Advanced Data Providers in the Palette window). The Map Data Provider
wraps a data object that is a map construct. The Table Row Data Provider gives
access to a structure that is a single row in a table.

8.3 Object List Data Provider

The Object List Data Provider is useful for wrapping an ArrayList (or other list-
type) of objects. To illustrate this data provider, we’re going to enhance the
LoanBean component and add a property that provides an ArrayList of
objects. This list is a payment schedule (an amortization table) of the fixed rate
loan.

Because an array list is a dynamic array, the Object List Data Provider (poten-
tially) allows you to insert and remove items. Potentially means that the ability
to resize the list is dependent on several conditions.

• The underlying collection must be resizeable. An ArrayList is resizeable, an
array of Objects is not.

• The object type (in our case PaymentVO) must have a zero-argument public
constructor.

• The collection itself should be writable. In our case, property
monthlyAmortTable is a read-only property.

The Table Data Provider interface provides methods that allow you to check
the data provider to see if it can perform an insert, append, or remove opera-
tion (canInsertRow(), canAppendRow(), and canRemoveRow()). You should
call these methods before attempting the resize operations. The Payment2
example does not perform any resizing.

Copy the Project
To avoid starting from scratch, make a copy of the Payment1 project and save it
as Payment2. This step is optional. If you don’t want to copy the project, simply
skip this section and continue making modifications to the Payment1 project.

1. Bring up project Payment1 in Creator, if it’s not already opened.

246 Chapter 8 Introducing Data Providers
2. From the Projects window, right-click node Payment1 and select Save
Project As. Provide the new name Payment2.

3. Close project Payment1. Right-click Payment2 and select Set Main Project.
You’ll make changes to the Payment2 project.

4. Bring up Page1 in the design view.
5. Click anywhere in the background of the Page1 design canvas. In the Prop-

erties window, change the page’s Title property to Payment Calculator 2.

Replace LoanBean.java
In project Payment1, you added Source Packages asg.bean_examples and Java
class LoanBean.java. In this project you’ll replace the LoanBean.java source
file with a version that includes additional properties. The new LoanBean.java
will include property startDate (the beginning point for a payment schedule)
and monthlyAmortTable (the loan’s complete payment schedule).

1. In the Projects window, open the Source Packages > asg.bean_examples
nodes.

2. Double-click file LoanBean.java to bring up the file in the Java source editor.
3. Replace the entire file using copy/paste with the source found in the Creator

download at FieldGuide2/Examples/DataProviders/snippets/Loan-
Bean.java. (There will be some syntax errors flagged. You can ignore these
for now.)

Add PaymentVO.java
The enhanced LoanBean component uses a PaymentVO object to build the
amortization schedule. Let’s add this Java class to your project and then copy
the contents of the file from the Creator download. Here are the steps.

1. In the Projects window, select node Source Packages > asg.bean_examples,
right-click, and select New > Java Class.

2. Creator pops up the New Java Class dialog.
3. Provide Class Name PaymentVO (for Payment Value Object) and click Fin-

ish.
4. Replace the entire file using copy/paste with the source found in the Creator

download at FieldGuide2/Examples/DataProviders/snippets/Pay-
mentVO.java.

5. Build project Payment2, close it, and reopen it in the IDE. This ensures that
the new LoanBean properties are visible in the Property Bindings dialogs.
All of the files should now be free of syntax errors.

8.3 Object List Data Provider 247
Deploy and Run
Project Payment2 should run the same as Payment1 without any further modi-
fications. Test to make sure the application runs by deploying and running
Payment2 now.

LoanBean Bean Patterns
Look at component LoanBean’s bean patterns. From the Projects window,
expand node Source Packages > asg.bean_examples > LoanBean.java > LoanBean >
Bean Patterns, as shown in Figure 8–5. You’ll see the properties you created ear-
lier (amount, payment, rate, and years), as well as two new properties (month-
lyAmortTable and startDate). Property monthlyAmortTable is a read-only
property that returns an array list of payment objects. Property startDate is a
read-write Calendar object that stores the beginning date of the loan. When
you select LoanBean.java you see the Members View simultaneously dis-
played in the Navigator window (also shown in Figure 8–5).

PaymentVO Bean Patterns
Method getMonthlyAmortTable() is the getter for property monthlyAmortTa-
ble. Let’s look at the data that this method returns. The data consists of the val-
ues that apply to each monthly payment for a fixed-rate loan: the payment

Figure 8–5 Bean Patterns and Class Members for LoanBean

248 Chapter 8 Introducing Data Providers
number, date, interest amount, principal amount, accumulated interest and
principal, and loan balance. This information is encapsulated in the Pay-
mentVO component.

In the Projects window, scroll down a bit and select the PaymentVO.java
node. Expand the PaymentVO > Bean Patterns nodes. The Projects window
shows the bean patterns and the Navigator window shows the fields and prop-
erty getters and setters, as shown in Figure 8–6. When you add a table compo-
nent to the page, you’ll access these properties through the table row data
provider.

Add Components to Page1
You need a calendar component to obtain a starting date from the user and a
button to display the payment schedule. Virtual forms will separate the Calcu-
late use case from the Payment Schedule use case. The payment schedule will
be displayed on a separate page using a table component. Recall that the Loan-
Bean component is a property of SessionBean1, so it is accessible from any
page throughout the session. Figure 8–7 shows the Page1 design view with the
new components added.

1. Make Page1 active in the design view.

Figure 8–6 Bean Patterns and Class Members for PaymentVO

8.3 Object List Data Provider 249
2. From the Basics Components palette, select component Calendar and drop it
on the page below the Calculate button.

3. From the Basic Component palette, select Button and drop it on the canvas
below the calendar component.

4. While it is still selected, type in the text Get Payment Schedule to set the label
text.

5. Change the button’s id property to schedule.

Since the calendar component input is required and it performs validation,
you’ll need a message component.

1. From the Basic Components palette, select Message and add it to the canvas
to the right of the calendar component.

2. Hold the <Shift+Ctrl> keys, left-click the mouse, drag the cursor over to the
calendar component, and release the mouse. This sets the message compo-
nent’s for property.

Configure the Calendar Component
You’ll bind the calendar component’s selectedDate property to the Loan-
Bean’s startDate (time) property as well as configure some of its other prop-
erties.

Figure 8–7 Design view for Page1 of project Payment2

Calendar

MessageButton

250 Chapter 8 Introducing Data Providers
1. Select the calendar component. In the Properties window, set the label prop-
erty to Start Date.

2. In the Properties window, check the required property.
3. Select the calendar component, right-click, and select Property Bindings.

Creator displays the now familiar Property Bindings dialog.
4. Under Select bindable property, select selectedDate Date.
5. Under Select binding target, select SessionBean1 > loanBean > startDate > time,

as shown in Figure 8–8. Click Apply then Close. Note that Creator displays
today’s date in the calendar component.

The Calendar component contains a built-in range validator for its select-
edDate property. If you don’t specify the range, the default minimum is today’s
date and the default maximum is four years from today’s date. For Payment2,
there’s no reason to restrict the date to preclude specifying a date in the past or
limiting a date further into the future. We’ll use January 1, 1975 for the mini-
mum start date and December 31, 2020 for the maximum start date. You can’t
specify a literal date through the Properties window, but you can add code in
the page bean’s init() method to set properties minDate and maxDate.

Figure 8–8 Binding the selectedDate property to the LoanBean startDate.time
property

8.3 Object List Data Provider 251
1. Click the Java button on the editing toolbar to bring up Page1.java in the
source editor.

2. Find method init() and add the following code to the end. Copy and paste
from FieldGuide2/Examples/DataProviders/snippets/
payment2_calendar_init.txt. The added code is bold.

The calendar component method setMinDate() takes a java.util.Date
object, which you can construct using the GregorianCalendar class. To read the
corresponding Javadoc for this class, select it in the editor and press <Ctrl-
space>. Creator pops up a detailed description of the class with examples on its
use. The getTime() method returns the needed Date object.

Configure Virtual Forms
You can improve the user interaction with project Payment2 by using virtual
forms. If you put all of the input components for the LoanBean calculation in
one virtual form (excluding the calendar component) and make the Calculate
button the submitter, then the user is not required to provide valid calendar
input when requesting the payment calculation. However, because all fields
are submitted for the payment schedule (including the loan parameter fields
used for the payment calculation), the Get Payment Schedule button does not
require a separate virtual form. By default, user input for all components will
be converted and validated, which is the behavior we want.

1. From the Page1 design view, select text field components loanAmount,
interestRate, and loanTerm (use <Shift-click> to select all three compo-
nents).

2. Right-click and select Configure Virtual Forms from the context menu. Cre-
ator pops up the Configure Virtual Forms dialog.

3. Click button New. Creator makes a new virtual form with color code blue.
Edit the virtual form’s Name to calculateForm (double-click the field name
and it becomes editable) and change the Participate field to Yes using the
drop down selection.

public void init() {
. . .

// set minimum date to January 1, 1975
calendar1.setMinDate(

new GregorianCalendar(1975, 0, 1).getTime());
// set maximum date to December 31, 2020
calendar1.setMaxDate(

new GregorianCalendar(2020, 11, 31).getTime());
}

252 Chapter 8 Introducing Data Providers
4. Click Apply then OK. The three text field components are outlined in a solid
blue line indicating that they participate in the calculateForm virtual form.

5. Now select the Calculate button, right-click, and select Configure Virtual
Forms.

6. Creator displays the calculateForm virtual form in the dialog. Change the
Submit field to Yes using the drop down selection. Click Apply and OK. The
design view now shows the Calculate button with a blue-dotted border,
indicating that it is the submit component for the blue virtual form.

Add a New Page
The application displays the payment schedule on a separate page.

1. In the Projects window, right-click Web Pages and select New > Page. Cre-
ator displays the New Page dialog.

2. Supply Name Schedule and click Finish. Creator generates page Sched-
ule.jsp and brings it up in the design view.

3. Click anywhere in the background and set the Title attribute to Payment
Schedule.

Add Components to Schedule Page
The Schedule page contains a label and a static text component for the heading,
a hyperlink to return to the loan parameters page, and a table component to
display the payment schedule.

1. From the Basic Components palette, select Label and place it near the top of
the page. Type in the text Monthly Payment Schedule for payment: followed
by <Enter>.

2. Make sure the label is still selected. In the Properties window, change the
labelLevel to Strong(1).

3. From the Basic Components palette, select Static Text and place it on the
page just to the right of the label.

4. Right-click the static text component and select Property Bindings.
5. In the Property Bindings dialog, under Select bindable property, select text

Object. Under Select binding target, select SessionBean1 > loanBean > pay-
ment. Click Apply, then Close.

Since the LoanBean’s payment property is a Double, you’ll need a converter.
Use a number converter so that you can format the amount.

1. From the Converters Components palette, select Number Converter and
drop it on the static text component. Creator pops up the Number Format
dialog so that you can configure the converter.

8.3 Object List Data Provider 253
2. Select the Pattern radio button and provide pattern #,###.00, as shown in
Figure 8–9. This pattern supplies a comma separator if the value is greater
than 999 and supplies two digits to the right of the decimal point. (You can
test the pattern by providing a sample number in the Example field and
click Test. The resulting conversion appears in the Results window.) Click
Apply, then OK to close the dialog.

3. The number in the static text display should now read 790.70. (If the static
text displays 0, close Schedule.jsp and reopen it in the design view. If it is
not formatted correctly, in the Properties window opposite property con-
verter, select numberConverter1 from the drop down list opposite prop-
erty converter.)

4. From the Basic Components palette, select Hyperlink and place it on the
page below the label you added previously.

5. Type in the text Return to Loan Parameters Page followed by <Enter>. This is
the hyperlink’s text. You’ll set the navigation links later.

6. From the Basic Components palette, select Table and drop it on the page
under the hyperlink component. Creator configures a standard table with a
default table data provider.

7. The table’s title is selected for you. Type in the text Amortization Table fol-
lowed by <Enter> to set the title.

Figure 8–9 Number Format dialog for number converter

254 Chapter 8 Introducing Data Providers
Configure the Table
You’ll provide a different data provider for the table and wrap the monthly-
AmortTable property of the LoanBean component.

1. Open the Data Providers section of the Components palette. Select Object
List Data Provider and drop it on the Table component. Make sure the entire
table is outlined in blue before you release the mouse. The table displays No
items found.

2. In the Outline view, select the object list data provider. In the Properties win-
dow, select the small editing box opposite property list.

3. In the pop up dialog, select SessionBean1 > loanBean > monthlyAmortTable
property. This wraps the ArrayList property of the LoanBean component.
Creator adds the following setList() call to the Schedule() constructor.

Now you’ll configure the table layout.

1. In the design view, select the table component, right-click, and select Table
Layout. Creator brings up the Table Layout dialog.

2. In the dialog, select the Options tab.
3. In the Options settings, enable pagination and set the number of rows to 12.

Click Apply.
4. Now select the Columns tab. The PaymentVO component has seven fields

(columns), which you’ve seen already in the PaymentVO Bean Patterns dis-
play. Creator binds these fields to the table columns for you automatically.
Click the double arrow button (>>) to move all the PaymentVO fields from
the Available window to the Selected window. Click Apply. Creator displays
the columns in the table component in the design view.

5. Rearrange the columns to the following order by selecting the Up and Down
buttons as needed. Change the Header Text to the text opposite each column
name as shown here. Click Apply.

objectListDataProvider1.setList((java.util.List)getValue(
"#{SessionBean1.loanBean.monthlyAmortTable}"));

paymentDate
paymentNumber
currentPrincipal
currentInterest
balance
accumPrincipal
accumInterest

Payment Date
Payment Number
Current Principal
Current Interest
Balance
Accumulated Principal
Accumulated Interest

8.3 Object List Data Provider 255
6. In order to apply a date time converter to the paymentDate column, you
must first access its time property. Select the paymentDate column. Change
its value expression from the default to the following (add the .time quali-
fier to the end of the expression). Click Apply then OK.

7. Apply the number converter (the one you already configured for the pay-
ment display) to the current principal, current interest, balance, accumu-
lated principal, and accumulated interest columns. For each of these
columns, select numberConvert1 from the Outline view (the same compo-
nent you used for the static text component) and drag it over to the table to
the target column. When the entire column is outlined in blue, release the
mouse. The column will be reformatted with the number converter’s pat-
tern.

8. From the Converters palette, select Date Time Converter and drop it on the
table’s Payment Date column. Select the date time converter in the Outline
view, and specify MMM yyyy followed by <Enter> for its pattern. The table
will now display the date as a month and year only.

Figure 8–10 shows what the page looks like (running in a browser) after
you’ve configured the table component and applied the number and date time
converters to the appropriate columns.

Configure Page Navigation
You’ll use simple navigation for this project. The Get Payment Schedule button
on Page1 takes you to the Schedule page and the hyperlink on the Schedule
page returns you to Page1.

1. Right-click in the background of the Schedule design view and select Page
Navigation. Creator brings up the Navigation editor.

2. Click inside Page1.jsp and draw a navigation arrow from the schedule but-
ton and release the mouse inside Schedule.jsp.

3. Supply the navigation case label schedulePage on the navigation arrow and
hit <Enter>.

4. Now click inside Schedule.jsp, select the hyperlink component, drag the
cursor and release the mouse inside Page1.jsp.

5. Supply the navigation case label loanPage on the navigation arrow and hit
<Enter>.

#{currentRow.value[’paymentDate’].time}

256 Chapter 8 Introducing Data Providers
Deploy and Run
Deploy and run project Payment2. Test the application by providing different
values for the loan parameters, as well as different start dates. Figure 8–10
shows the schedule page for the default values of the LoanBean component.
Note that the user is about to display the next page of the table data. The rele-
vant tooltip is configured for you.

8.4 Cached RowSet Data Provider

When you drop a database table on your project, Creator generates a Cached
Rowset component, as well as a Cached Rowset Data Provider. This data pro-
vider wraps the CachedRowSet object. You manipulate the data in the same
way using row keys and field keys, although the CachedRowSetDataProvider

Figure 8–10 Project Payment2 running in the browser

8.4 Cached RowSet Data Provider 257
provides additional methods, such as refresh(), that are specific to the
wrapped CachedRowSet.

Creator Tip

When you add a JDBC table to a page, by default Creator adds
CachedRowSetDataProvider to the page and the wrapped CachedRowSet to
SessionBean1. This enables you to reuse the CachedRowSet object in another
data provider (as long as the SQL query is the same). To override the default
behavior and place the CachedRowSet object in request scope, uncheck option
Create RowSets in Session from Tools > Options > Advanced > Data Source
Drag and Drop.

In this example, you’ll modify the LoginBean component to access the data-
base to determine whether or not the login parameters the user submits are
valid. This is a simple database access and it will get your feet wet for the more
involved database operations presented in the next chapter. First, you’ll create
the data base table and populate it with data by running a stand-alone utility
program (provided with the book’s download) from the IDE.

Configuring the Database
For the Login example, you’ll use the bundled PointBase database. Here are the
steps to configure the Login Data Source in Creator for PointBase.

1. Make sure that PointBase is running. If PointBase is running, the Bundled
Database Server node in the Servers window includes a green up-arrow
badge. To start the server, select the Bundled Database Server node, right-
click, and choose Start Bundled Database.

2. Open project UserBuild. Project UserBuild is included in the Creator book’s
download at FieldGuide2/Examples/Projects/UserBuild. When the project
comes up in the IDE, Creator displays a Reference Problems dialog. The
UserBuild program references class com.pointbase.jdb.jdbcUniversalD-
river to access the PointBase database server. You need to add the appropri-
ate JAR file to the project. Click Close to remove the dialog.

3. In the Projects window expand the UserBuild node and right-click Libraries.
Select Add JAR/Folder from the context menu. Creator pops up the Add
JAR/Folder dialog.

4. Browse to the <Creator2 installation directory>/SunAppServer8/pointbase/
lib and select file pbclient.jar. Click Open. Creator adds the JAR file to your
project.

258 Chapter 8 Introducing Data Providers
5. The UserBuild project is a stand-alone program that generates the sample
Users database. You can inspect the code by expanding the UserBuild >
Source Packages > asg.databuild nodes. Double-click PBLoginDB.java.

6. Run the project. Select the green arrow icon or select Run > Run Main Project
from the main menu. Make sure that you see the following diagnostic in the
Output window after running the application.

7. When you’re finished, close the Project. Right-click on the project name and
choose Close Project.

Creator Tip

You can run project UserBuild multiple times to re-generate the Login
database.

Add Data Source
Once you’ve generated the sample data, you’ll add the Login schema as a data
source. You’ll add it as a schema using the same URL (sample) as the pre-
installed database tables.

1. In the Servers window, right-click Data Sources, and select Add Data
Source.

2. Creator displays the Add Data Source dialog. Supply the values shown in
Table 8.2. Click Select and set the Validation Table to VALIDATIONONLY.

3. When you’re finished filling in the dialog, click Test Connection to verify
that all the values are correct. Click Add to finish.

Figure 8–11 shows the Add Data Source dialog filled in. Now when you
open the Login and Tables node, you’ll see two tables in the Login database:
USERS and VALIDATIONONLY (used for testing the connection).

Login database was created.

8.4 Cached RowSet Data Provider 259
Table 8.2 Add Data Source Dialog

Prompt Value

Data Source Name Login
Server Type Pointbase Bundled
Driver Class com.pointbase.jdbc.jdbcUniversalDriver
Database Name (blank)

Host Name (blank)

User ID login
Password login
Database URL jdbc:pointbase:server://localhost:29092/sample
Validation Table LOGIN.VALIDATIONONLY

Figure 8–11 Add Data Source dialog

260 Chapter 8 Introducing Data Providers
Inspect the Data Source
As you saw from Chapter 2, you can view the actual data from a database table
interactively from the IDE. This allows a web developer to inspect the data and
experiment with queries before building an application. Let’s do that now.

1. From the Servers window, select Data Sources > Login > Tables > USERS.
Open the USERS node (click on ‘+’) and Creator displays the field names.

2. Double-click the USERS node. Creator displays the table’s data in the editor
pane. We show this view in Figure 8–12.

The display not only shows the data, but it also provides an interactive
query window at the top so that you can edit and run the query.

Copy the Project
Next, you’ll modify the LoginBean component from projects Login2 and
Login3. In this new project (Login4), the LoanBean isLoginGood() method
will access the USERS data base table to determine valid login submissions.
First, let’s copy the project and save it as Login4. This step is optional. If you
don’t want to copy the project, simply skip this section and continue making
modifications to your Login3 project.

Figure 8–12 USERS Query View

8.4 Cached RowSet Data Provider 261
1. Bring up project Login3 in Creator, if it’s not already opened.
2. From the Projects window, right-click node Login3 and select Save Project

As. Provide the new name Login4.
3. Close project Login3. Right-click Login4 and select Set Main Project. You’ll

make changes to the Login4 project.
4. Bring up Page1 in the design view.
5. Click anywhere in the background of the Page1 design canvas. In the Prop-

erties window, change the page’s Title property to Login 4.

Add the Data Source
Now add the Login data source (the USERS data table) to SessionBean1 of the
project. Creator will generate all the row set and data provider configuration
code for you.

1. In the Outline window, expand SessionBean1. You’ll see loginBean listed as
a SessionBean1 property.

2. In the Servers window, expand Data Source > Login > Tables.
3. Select table USERS and drop it under the SessionBean1 section of the Out-

line window. (Move the mouse over to the left edge of the Outline window
and make sure that a rectangular, dotted icon is visible before you release
the cursor.) You’ll see two new SessionBean1 properties: usersData-
Provider and usersRowSet. The LoginBean component will access these to
look up the user’s username and password.

Replace LoginBean.java
The majority of the changes you’ll make to the LoginBean object are the modifi-
cations to method isLoginGood(), which accesses the USERS table through the
data provider you added to SessionBean1. However, because LoginBean
accesses the database, it is convenient to access some Creator/JSF structures
(SessionBean1) and services (methods error() and log()). This is easy if we
make LoginBean extend AbstractSessionBean. Here are the steps to replace
LoginBean.java.

1. In the Projects window, expand the Source Packages > asg.bean_examples
node.

2. Double-click file LoginBean.java. Creator brings up the file in the Java
source editor.

3. Replace file LoginBean.java with the file in your Creator’s download direc-
toy. Copy and paste file FieldGuide2/Examples/DataProviders/snippets/
LoginBean.java.

262 Chapter 8 Introducing Data Providers
Here’s the code for the updated isLoginGood() method. Note that we
obtain references the to data provider (usersDataProvider) and the row set
(usersRowSet) components you added to SessionBean1.

The code in this method still compares the submitted values stored in the
LoginBean object to those in LoginBean’s correctName and correctPassword
fields. However, the method now sets these fields by searching through the
data provider for a matching USERNAME field using method findFirst(),
setting the row cursor with method setCursorRow(). The refresh() call exe-
cutes the underlying SQL query and the getValue() calls read the data. The

Listing 8.1 Method isLoginGood()

public boolean isLoginGood() {
boolean ok = true;
CachedRowSetDataProvider usersDataProvider =

getSessionBean1().getUsersDataProvider();

CachedRowSetXImpl usersRowSet =
getSessionBean1().getUsersRowSet();

try {
if (usersDataProvider instanceof

RefreshableDataProvider)
usersDataProvider.refresh();

usersDataProvider.setCursorRow(
usersDataProvider.findFirst(

"USERS.USERNAME", username));

correctName =
(String)usersDataProvider.getValue("USERS.USERNAME");

correctPassword =
(String)usersDataProvider.getValue("USERS.PASSWORD");

usersRowSet.release();
usersRowSet.close();

} catch (Exception e) {
error("Cannot read USERS database: " + e.getMessage());
log("Cannot read USERS database: ", e);
usersRowSet.close();
ok = false;

}
return (ok && username.equals(correctName) &&

 password.equals(correctPassword));
}

8.4 Cached RowSet Data Provider 263
release() and close() calls to the underlying rowset free up any data source
resources.

Method error() writes its error message to the FacesContext, which is dis-
played when the page is rendered. Therefore, you’ll add a message group com-
ponent to page LoginBad next.

Add a Message Group
Examine the code in LoginBean.java’s isLoginGood() method. You’ll see that
database access is inside a try block. If an exception is thrown (for whatever
reason), then method error() writes its arguments to the FacesContext. A
message group component on page LoginBad is necessary to display the error
message on the page.

1. In the Projects view, expand node Web Pages and double-click LoginBad.jsp
to display this page in the design view.

2. From the Basic Components palette, select Message Group and place it on
the page.

Now any error messages generated due to a thrown exception inside
isLoginGood() will be displayed on the LoginBad page.

Deploy and Run
Deploy and run project Login4. Test various valid and invalid username and
password combinations (you can determine valid login data by displaying the
USERS data table in the main editor pane.) Figure 8–13 shows a valid login sce-
nario for username “margarita” and password “master.”

Figure 8–13 Successful login scenario

264 Chapter 8 Introducing Data Providers
8.5 Key Point Summary

Data providers supply a powerful link between UI components and a persis-
tence layer. With data providers, you isolate code that is dependent on the
source of data and implement a consistent interface where access to this data is
required.

• All data providers implement the basic DataProvider interface. This
provides a consistent way to access data in an object using field keys that
correspond to property names.

• The TableDataProvider interface defines row keys that give you cursor-
based access as well as random access.

• Data providers that wrap an underlying database provide transactional
behavior and caching behavior.

• Each data provider depends on the source of the data and how you want to
manipulate the data.

• A row key is an index into a table data provider. You can manipulate the
current row with methods that change the cursor (the current row key).

• A table data provider has methods to remove a row, append a row, and
insert a row. Not all table data providers are resizeable, however. Use
methods canRemoveRow(), canAppendRow(), and canInsertRow() to test
resizeability before invoking the table size modifying methods.

• Transactional data providers allow you to commit or revert changes made to
the data with methods commitChanges() and revertChanges(),
respectively. You can check whether a data provider is transactional with

• Use an object data provider to wrap an individual JavaBeans object instance.
• Use an object list data provider to wrap an ArrayList of objects.
• Use an object array data provider to wrap an array of JavaBeans objects. (We

show you how to use this data provider in the chapter on accessing web
services. See “Add a Data Provider” on page 351.)

• Use a cached rowset data provider to wrap a CachedRowSet object. When
you drag and drop a JDBC database table onto a page, Creator configures a
cached row set data provider for you, as well as the wrapped
CachedRowSet object.

if (myDataProvider instanceof TransactionalDataProvider) . . .

ACCESSING
DATABASES
Topics in This Chapter

• Database Basics
• JDBC Cached RowSet Technology
• Using Data Providers
• Master-Detail Relationship
• SQL Query Editor
• Converters
• Database Operations: Update, Create, Delete
• Cascading Deletes

Chapter
ne of Creator’s key goals is to simplify web application development
with databases. To that end, Creator lets you add data sources to your
projects and select them from the Servers window. Once you config-
ure a data source, you can view individual tables, field names and

data types, and actual data.
Creator also gives you components that are data aware. Using the design

canvas, you can select a number of different components and visually position
them on your web page. You can select data source tables and add them to
your application as cached rowsets, binding the components to the data using
intermediary data providers. You can visually select or deselect columns to dis-
play, add tables to create database queries with “join” commands, and modify
queries to include query parameters.

Creator relies on multiple technologies to make this all happen. Besides
using the UI components and event models that we’ve already shown you,
Creator makes use of JDBC and JDBC CachedRowSet technology to simplify
accessing the database. Furthermore, Creator adds a “data provider” layer
between the JDBC CachedRowSets and the data aware components. The data
provider layer gives you flexibility in configuring your application and lets you
isolate your client code from the persistence strategy that you choose. By using
the data provider in the web application, you can change the persistence layer
(say, use EJBs) without changing the client code (your web application).

In this chapter, we use a Music Collection Database for the project examples.
Before we start, we review database and JDBC fundamentals and show you the
organization of our Music database.

O

267

268 Chapter 9 Accessing Databases
9.1 Database Fundamentals

We begin with an overview of databases and JDBC, discussing database tables
and how to access data with JDBC. If you’re already familiar with these sub-
jects, you can skip to the next section.

A relational database consists of one or more tables, where each row in a
table represents a database record and each column represents a field. Within
each table, a record must have a unique key. This key, called a primary key,
enables a database to distinguish one record from another. If a single field in a
database table does not uniquely identify a record, a composite primary key can
be used. A composite primary key combines more than one field to uniquely
identify records in a database table. Each field of a composite primary key
should be defined as a primary key.

A field within a table is either a primary key, a foreign key (used by the data-
base to reference another table), or just plain data. To set up a database table,
you must define fields so that the database software can maintain the integrity
of the database. If a field is not “just data,” then constraints are attached to the
field. The description of the table’s fields, data types, and constraints make up
the metadata associated with the table. Creator uses metadata to help you con-
figure your web application to access the database efficiently.

A very simple database consists of only a single table. However, many data-
base schemata require multiple tables to efficiently represent related data. For
example, our Music Collection database centralizes the information about each
recording artist in one table. This table also cross-references a
RecordingArtistID field in another table that stores data about a specific
recording. Thus, if a recording artist has more than one recording, you don’t
have to duplicate the recording artist information.

To achieve cross-referencing and to avoid data duplication, you can mark a
field in a database table as a foreign key. A foreign key in one table always
matches either a primary or foreign key in another table. This is what helps you
“relate” two or more tables.

Music Collection Database
The Music Collection database consists of four related tables. The database
stores information about music recordings, a generic term we apply to music
CDs and older LPs (long-playing records). Figure 9–1 shows the four tables,
the fields in each table, and how they relate to each other through the foreign
keys.

The Recordings table contains the bulk of the information about a recording.
Its primary key (denoted PK) is the field RecordingID. It has two foreign key

9.1 Database Fundamentals 269
fields (denoted FK): RecordingArtistID and MusicCategoryID. These foreign
key fields refer to records in the Recording Artists table and the Music Catego-
ries table, respectively. For each row in the Music Categories table, there may
be multiple rows in the Recordings table. (We indicate this relationship by
placing the word Many next to the Recordings table and the numeral 1 next to
the Music Categories table.) Similarly, for each row in the Recording Artists
table, there may be multiple rows in the Recordings table. In the diagram, we
show foreign key field names on the lines that relate two tables.

The Tracks table contains information about each track belonging to a
recording. To determine which recording a track belongs to, we include the
RecordingID as a foreign key in the Tracks table. Thus, for each row in the
Recordings table, there are multiple rows in the Tracks table.

Recordings Table

RecordingID (PK)
RecordingTitle
RecordingArtistID (FK)
MusicCategoryID (FK)
RecordingLabel
Format
NumberofTracks
Notes

Music Categories
Table

MusicCategoryID (PK)
MusicCategory

RecordingArtistID (PK)
RecordingArtistName
Notes

Recording Artists
Table

MusicCategoryID

RecordingID

RecordingArtistID

Many Many

Many

TrackID (PK)
TrackNumber
TrackTitle
TrackLength
RecordingID (FK)

Tracks Table

Figure 9–1 Music Collection Database Schema

1

1

1

270 Chapter 9 Accessing Databases
JDBC CachedRowSets
Java DataBase Connectivity (or JDBC) evolved as a standard way for Java pro-
grams to perform relational database operations. The JDBC API is database
independent and relies on a JDBC driver that translates standard JDBC calls
into specific calls required by the database it supports. Different drivers pro-
vide access to different database products.

Creator accesses the configured data sources using a CachedRowSet object, a
JavaBeans component that is scrollable, updatable, and serializable. It is gener-
ally disconnected from the database, caching its rows into memory. The web
application can modify the data in the cached rowset object. It then propagates
back to the data source through a subsequent connection. By default, Creator
instantiates a cached rowset object in session scope.

When you select a data source from Creator’s Servers window, Creator gen-
erates code in session scope to access the data source through CachedRowSet
objects. As you build the projects in this section, we’ll look at the code Creator
generates to access the data source, as well as connecting the data providers to
the cached rowset.

Now let’s build the sample data base and configure the data source.

9.2 Data Sources

The first step in our application is to create a Music database and make it avail-
able to Creator. Creator is bundled with the PointBase database server and its
JDBC driver for database access through Creator’s IDE. Creator requires JDBC
3.0-compliant drivers. As of this writing, the Creator IDE includes drivers for
DB2, Oracle, PointBase, SQLServer, and Sybase. If you are using any of these
database products, you should be able to configure Creator with the provided
drivers to access your database. You can also add drivers to the IDE.

Configuring for the PointBase Database
For our Music database example, we assume you’re using the bundled Point-
Base database. Here are the steps to configure the Data Source in Creator for
PointBase.

1. Make sure that PointBase is running. If PointBase is running, the Bundled
Database Server node in the Servers window includes a green up-arrow
badge. To start the server, select the Bundled Database Server node, right-
click, and choose Start Bundled Database.

2. Open project MusicBuild. Project MusicBuild is included in the Creator
book’s download at FieldGuide2/Examples/Projects/MusicBuild. When the

9.2 Data Sources 271
project comes up in the IDE, Creator displays a Reference Problems dialog.
The MusicBuild program references class com.pointbase.jdb.jdbcUni-
versalDriver to access the PointBase database server. You need to add the
appropriate JAR file to the project. Click Close to remove the dialog.

3. In the Projects window expand the MusicBuild node and right-click Librar-
ies. Select Add JAR/Folder from the context menu. Creator pops up the Add
JAR/Folder dialog.

4. Browse to the <Creator2 installation directory>/SunAppServer8/pointbase/
lib and select file pbclient.jar. Click Open. Creator adds the JAR file to your
project.

5. The MusicBuild project is a stand-alone program that generates the sample
Music database. You can inspect the code by expanding the MusicBuild >
Source Packages > asg.databuild nodes. Double-click PBCreateMu-
sicDB.java.

6. Run the project. Select the green arrow icon or select Run > Run Main Project
from the main menu. Make sure that you see the following diagnostic in the
Output window after running the application.

7. When you’re finished, close the Project. Right-click on the project name and
choose Close Project.

Creator Tip

You can run project MusicBuild multiple times to re-create the Music
database. This is handy during testing of the projects that alter data in the
database.

Add Data Source
Once you’ve generated the sample data, you must add the Music tables as a
data source. You’ll add it as a schema using the same URL (sample) as the pre-
installed database tables.

1. In the Servers window, right-click Data Sources, and select Add Data
Source.

2. Creator displays the Add Data Source dialog. Supply the values shown in
Table 9.1. Click Select and set the Validation Table to MUSIC.VALIDATION-
ONLY.

Music database was created.

272 Chapter 9 Accessing Databases
3. When you’re finished filling in the dialog, click Test Connection to verify
that all the values are correct. Click OK, then Add to finish.

Figure 9–2 shows the Add Data Source dialog filled in. Now when you open
the Music and Tables node, you’ll see five tables in the Music database: MUS-
ICCATEGORIES, RECORDINGARTISTS, RECORDINGS, TRACKS, and VALI-
DATIONONLY (used for testing the connection).

Inspect the Data Source
As you saw from Chapter 2, you can view the actual data from a database table
interactively from the IDE. This allows a web developer to inspect the data and
experiment with queries before building an application. Let’s do that now.

1. From the Servers window, select Data Sources > Music > Tables > RECORD-
INGS. Open the RECORDINGS node (click on ‘+’) and Creator displays the
field names.

2. Double-click the RECORDINGS node. Creator displays the table’s data in
the editor pane. We show this view in Figure 9–3.

The display not only shows the data, but provides an interactive query win-
dow so that you can edit and run the query. The data display provides controls
for perusing lengthy result sets. Let’s look at a second table from the Music
schema.

Table 9.1 Add Data Source Dialog

Prompt Value

Data Source Name Music
Server Type Pointbase Bundled
Driver Class com.pointbase.jdbc.jdbcUniversalDriver
Database Name (blank)

Host Name (blank)

User ID music
Password music
Database URL jdbc:pointbase:server://localhost:29092/sample
Validation Table MUSIC.VALIDATIONONLY

9.2 Data Sources 273
1. From the Servers window, select Data Sources > Music > Table > TRACKS.

Figure 9–2 Add Data Source dialog

Figure 9–3 RECORDINGS Query View

274 Chapter 9 Accessing Databases
2. Double-click the TRACKS node. Creator displays the tracks table and the
query used to read the data. It truncates the number of rows to 25. Note that
all the tracks are returned in the result set from all the recordings.

3. Add the following WHERE clause to the query (the query is case insensi-
tive).

4. Click the Run Query button. Now you only see the tracks with RecordingID
equal to 4. Creator displays the new results in the data window as shown in
Figure 9–4.

5. Close the query windows by clicking the small ’x’ on each Query tab above
the editor pane.

Creator Tip

A word about case sensitivity: database field names (RecordingID) and table
names (RECORDINGS) are NOT generally case sensitive. Java code,
however, is. Thus, component id’s, property names, method names, variable
names, and data types are ALL case sensitive.

where music.tracks.recordingid = 4

Figure 9–4 TRACKS Query View

9.2 Data Sources 275
Loading Other Data Sources
If you configure Creator to use a Data Source other than PointBase, see the
sql_readme.txt file in your Creator book’s examples (FieldGuide2/Examples/
Database/utils). We also provide an SQL script (createMusicDB.sql) that you
can adapt to any SQL-compliant database. This script loads sample music data
into a Music database. After the database tables and data have been built, you
tell Creator how to access the database.

Here are the steps to configure a new (non-PointBase) Data Source in Cre-
ator.

1. In the Server Navigator window, right-click Data Sources and select Add
Data Source from the menu.

2. Under Server Type, select the database product from the dropdown list.
3. Creator supplies default values for the Host Name (localhost), Database

URL, and Driver Class. You’ll need to supply values for the Data Source
Name, Database Name, User ID (if applicable), and Password (if applicable).
Figure 9–5 shows an example screen shot of the Add Data Source window.

4. Use Test Connection to verify that Creator has all the information it needs to
establish a connection to the database.

5. If the Test Connection succeeds, click Add. You should see the newly added
Data Source under the Data Sources node in the Servers window.

Figure 9–5 Add Data Source window

276 Chapter 9 Accessing Databases
9.3 Accessing the Music Database

Now that you have a configured database, let’s use Creator’s data-aware com-
ponents to access it. You’ll build several small projects that will help you learn
about the Creator cached row set data provider, the data base row sets, and the
data-aware components.

Create a New Project
In this section, you’ll create a very simple project that reads the Music Collec-
tion database and displays the records in a table component. You’ll see that
with minimum configuration of the table layout and the underlying SQL
query, you can get a nicely formatted display.

1. From Creator’s Welcome Page, select button Create New Project. From the
New Project dialog, under Categories select Web and under Projects select
JSF Web Application. Click Next.

2. In the New Web Application dialog, specify MusicRead1 for Project Name
and click Finish.

After creating the project, Creator comes up in the design view of the editor
pane. You can now set the title.

3. Select Title in the Properties window and type in the text Music Read 1. Fin-
ish by pressing <Enter>.

Add Components
Add a label component to place a title on the page and a table component to
hold the data.

1. From the Basic Components palette, select Label and drop it on the page
near the top.

2. Make sure that it is still selected and type in the text Music Collection Data-
base - Read followed by <Enter>.

3. In the Properties window opposite property labelLevel select option
Strong(1) from the drop down menu.

4. From the Basic Components palette, select component Table and drop it on
the page under the label component you just added. Creator builds a table
with default column and rows. Creator also adds a non-visual component, a
default table data provider, which you can see in the Page1 Outline view.

9.3 Accessing the Music Database 277
5. The table title is selected for you. Change the title to Recordings. Figure 9–6
shows the design view after adding the table component with its default
row and column configuration.

Add a Database Table
Since you configured the Music Database source, you can now add it to your
project by dragging and dropping a table onto the page.

1. From Servers window, expand Data Sources > Music > Tables nodes.
2. Select table RECORDINGS and drop it on top of the table component.

Creator Tip

Make sure that the entire table component is selected (it should be outlined in
blue) before releasing the mouse. Otherwise Creator will display a Choose
Target dialog. If you see this, select radio button table1 (Render a table) and
click OK.

When you drop the database table onto the the table component, Creator
configures the table component to accommodate the RECORDINGS data and
generates supporting components and code for you as well.

Figure 9–6 Default table component

278 Chapter 9 Accessing Databases
• The table component now contains a column for each field in the
RECORDINGS table and each column heading contains the name of the
field.

• The table row group component specifies the data provider for the table. To
see this, click on the tableRowGroup1 component under table1 in the
Outline view. In the Properties window under Data, examine properties
sourceData (the data provider for this table) and sourceVar (how you
access the data).

• Creator generates static text components to display data for each column.
Select a static text component under one of the table column components in
the Page1 Outline view. In the Properties view, hold the cursor over the text
property. You see the following binding expression.

Token fieldname is the matching field name in the RECORDINGS table
and currentRow specifies the current row of the data provider.

• Creator generates a cached row set data provider to wrap the row set object
that communicates directly to the database source. You can see the cached
row set data provider in the Outline view for Page1 (component
recordingsDataProvider).

• Creator generates a CachedRowSet object in session scope to communicate
directly with the database. In the Outline view under SessionBean1 you can
see component recordingsRowSet.

Creator Tip

If the cached row set already exists in session scope (from a previous Data
Source selection added to your project), Creator will ask you how to configure
the new cached row set object. For example, if you add the RECORDINGS
table to the page again, Creator pops up the Add New Data Provider with
RowSet for Table RECORDINGS dialog as shown in Figure 9–7. The default
selection uses the same RowSet object already configured in session scope.
The other choice is to create a new RowSet object in the Page1, RequestBean1,
SessionBean1, or ApplicationBean1 bean. You can use the same RowSet
object if the SQL query is the the same and the scoping requirements are the
same. Otherwise, select the scope that matches the requirements of your
application and edit the SQL query as needed.

Before proceeding, let’s look at the Java code Creator generates for you.

#{currentRow.value[’RECORDINGS.fieldname’]}

9.3 Accessing the Music Database 279
1. Select the Java button in the editing toolbar. Creator brings up Page1.java in
the editor pane.

2. In the Navigator window, double-click the private method _init(), which
takes you to the method in the editor pane. Here is the code that connects
the data provider, recordingsDataProvider, to the cached row set in ses-
sion scope (recordingsRowSet).

3. Now examine the Java code for SessionBean1. In the Projects view, expand
the MusicRead1 node.

4. Double-click the Session Bean node. Creator brings up SessionBean1.java in
the editor pane.

private void _init() throws Exception {
recordingsDataProvider.setCachedRowSet(

(javax.sql.rowset.CachedRowSet)getValue(
"#{SessionBean1.recordingsRowSet}"));

}

Figure 9–7 Add New Data Provider with RowSet dialog

280 Chapter 9 Accessing Databases
5. In the Navigator window, double-click the private method _init(), which
takes you to the method in the editor pane. Here is the code that initializes
the cached row set. Method setCommand() configures the SQL query.

Add a Message Group Component
It’s a good idea to add a message group component to your web application to
display possible error messages.

1. Return to the Page1.jsp design view. Click the Page1 tab above the editor
pane and then click the Design button in the editing toolbar.

2. From the Basic Components palette, select Message Group and place it on
the page to the right of the page’s title label. You may need to move the table
component down to make room.

Deploy and Run
Deploy and run project MusicRead1. You’ll see the entire RECORDINGS table
displayed on the web page, including the primary key field and both foreign
key fields. You’ve done no configuration of the data displayed, and some of the
fields are more confusing than helpful. Let’s modify the query, alter the table
layout, and see if we can improve this display.

Query and Table Configuration
Note that two columns display foreign keys: RecordingArtistID and MusicCat-
egoryID. Let’s show the actual recording artist name and the music category
label instead of numbers that represent foreign keys. To accomplish this, you
add two tables to the query, creating an inner join clause.

1. From the Outline view, expand SessionBean1 and double-click the cached
row set component, recordingsRowSet. This brings up Creator’s Query Edi-
tor in the editor pane, as shown in Figure 9–8. (Close the Output window to
make more room for the query editor.)
The Query editor consists of a table view, a spreadsheet view, and the SQL

query text. Creator updates these views as you make modifications. Here,

private void _init() throws Exception {
recordingsRowSet.setDataSourceName(

"java:comp/env/jdbc/Music");
recordingsRowSet.setCommand(

"SELECT * FROM MUSIC.RECORDINGS");
recordingsRowSet.setTableName("RECORDINGS");

}

9.3 Accessing the Music Database 281
you’ll add both the RECORDINGARTISTS table and the MUSICCATEGORIES
table to the query so that the page displays names and category labels instead
of foreign keys.

2. Right-click inside the table view and select Add Table from the context
menu.

3. Creator pops up the Select Table(s) to Add dialog, as shown in Figure 9–9.
Select both tables MUSICCATEGORIES and RECORDINGSARTISTS. (Use
<CTRL-click> to select both tables.) Click OK. Creator adds an Inner Join
clause to the query text. You now see two more tables in the Table view.

4. In the Table view, uncheck RECORDINGARTISTID and MUSICCATEGO-
RYID from the RECORDINGS table. Uncheck MUSICCATEGORYID from

Table View

Spreadsheet View

SQL Query Text

Primary Key

Foreign Keys

Figure 9–8 Query Editor

282 Chapter 9 Accessing Databases
the MUSICCATEGORIES table and uncheck RECORDINGARTISTID from
the RECORDINGARTISTS table.

5. Select File > Save All to save these changes.
6. Return to the Design view by selecting the Page1 tab at the top of the editor

pane. Select the Design button in the editing toolbar if the Design view is not
active.

You’ll note that the table component has not changed even though you mod-
ified the underlying query. You’ll now configure the table layout to display
exactly the columns that you want.

1. Select the table component on the design view, right-click, and select Table
Layout. Creator brings up the Table Layout dialog.

2. Because you unchecked some of the fields in the query editor, there are
unused columns in the Selected window. Remove these by selecting each
one and clicking the left-arrow button (<).

3. Remove RECORDINGS.RecordingID, RECORDINGS.Notes, RECORD-
INGS.NumberOfTracks, RECORDINGS.Format, and RECORDINGAR-
TISTS.Notes from the Selected window by clicking the left-arrow button.
(There should be two columns remaining in the Selected window.)

4. Move RECORDINGARTISTS.RecordingArtistName and MUSICCATEGO-
RIES.MusicCategory to the Selected window using the right-arrow button.

5. Move the RecordingArtistName field up in the Selected window so that it is
second.

6. Click Apply then OK.
7. The table component now has four columns. Expand the table component

and widen the RecordingTitle column. Select the table component and use
the handles to adjust the overall width. Then adjust the columns.

Figure 9–9 Select Tables to Add dialog

9.4 Master Detail Application - Two Page 283
Deploy and Run
Deploy and run project MusicRead1 again. The RECORDINGS table now looks
better; you see actual artist names and music categories displayed instead of
foreign keys. Figure 9–10 shows MusicRead1 running in a browser.

9.4 Master Detail Application - Two
Page

Web application MusicRead1 doesn’t do much. While it displays data from the
Recordings table in a pleasing format, a useful enhancement is to display the
tracks when the user selects the recording. There are several ways to do this.

1. Replace the static text components in the first column with either a button
component or a hyperlink component. These are both “command” compo-
nents, allowing you to write event handler code to display the track infor-
mation. You can place the tracks table on the same page, but it creates a
rather busy, messy page. Navigating to a second page is preferable in this
case.

2. Use a drop down component (instead of a table) to hold the recording data,
displaying only the recording title. When the user selects a recording from

Figure 9–10 MusicRead1 running in a browser

284 Chapter 9 Accessing Databases
the drop down component, the tracks belonging to that recording are dis-
played in a table. Because the drop down component takes up much less
real estate than a table component, the tracks table fits nicely on the same
page.

The the first method displays more information about the recording (you get
the artist name, the label, the music category, etc.) However, you navigate to a
second page and then return to choose another recording. The drop down
component allows the web application to fit easily on a single page, but the art-
ist name and other information are no longer displayed. Of course, one of the
advantages of using Creator is that you can easily experiment with the layout
on a single page and pick the configuration you’d like. We’re going to go
through both methods (using a command component in a table with a second
page and using the drop down component on a single page) because each
strategy shows you different features of Creator.

Copy the Project
Let’s begin with the two-page approach. To avoid starting from scratch, copy
the MusicRead1 project to a new project called MusicRead2. This step is
optional. If you don’t want to copy the project, simply skip this section and
continue making modifications to the MusicRead1 project.

1. Bring up project MusicRead1 in Creator, if it’s not already opened.
2. From the Projects window, right-click node MusicRead1 and select Save

Project As. Provide the new name MusicRead2.
3. Close project MusicRead1. Right-click MusicRead2 and select Set Main

Project. You’ll make changes to the MusicRead2 project.
4. Expand MusicRead2 > Web Pages and open Page1.jsp in the design view.
5. Click anywhere in the background of the design canvas of the MusicRead2

project. In the Properties window, change the page’s Title property to
Music Read 2.

Add a RecordingID Request Bean Property
When the user clicks the hyperlink component associated with a specific title,
you need a way to communicate the selected RecordingID to the second page.
You can use either a Session Bean property or a Request Bean property.

Recall that the Request Bean property exists in the current HTTP request,
making it available to the next page. Since the requesting page does not need to
remember which track list is displayed, there’s no need to put this information
in session scope.

9.4 Master Detail Application - Two Page 285
1. In the Projects view, expand the MusicRead2 node, select Request Bean,
right-click, and select Add > Property.

2. Creator pops up the New Property Pattern dialog. For name, specify record-
ingID, for type specify Integer, and for Mode keep the default Read/Write.

3. Click OK. Creator adds property recordingID to RequestBean1.java.

Add a RecordingTitle Request Bean Property
It’s a nice touch to also include the recording title on the second page. There are
several approaches for accessing the recording title. You can add the RECORD-
INGS table to the Tracks row set, creating an inner join. A second approach is
to add a second property to request scope to include the recording title. Let’s
use the request bean property approach.

1. In the Projects view, select MusicBean2 > Request Bean, right-click, and
select Add > Property.

2. Creator pops up the New Property Pattern dialog. For name, specify record-
ingTitle, for type specify String, and for Mode keep the default Read/Write.

3. Click OK. Creator adds property recordingTitle to RequestBean1.java.
4. In the Outline view expand the RequestBean1 node. You’ll see the two

request bean properties you just added.

Command Components in a Table Column
Now you’ll modify the Table Layout to use a hyperlink component instead of
the default static text component.

1. Bring up Page1.jsp in the design view. Select the table component, right-
click, and select Table Layout.

2. In the Selected window, select RECORDINGS.RECORDINGTITLE.
3. Under Column Details for Component Type, select Hyperlink from the drop

down list, as shown in Figure 9–11. (You could also use Button here. The
function is the same; the look is a bit different.)

4. Click Apply then OK. The component in the first column is now a hyperlink
component.

5. In the Outline view, select the hyperlink component under the first column
of the table.

6. Change the id property of the hyperlink component to hyperlinkTitle.
7. In the Outline view, right-click the hyperlink component and select Edit

action Event Handler. Creator generates an action event handler and brings
up the Java source editor.

8. Copy and paste the event handler code from the Creator book download
FieldGuide2/Examples/Database/snippets/

286 Chapter 9 Accessing Databases
musicRead2_hyperlinkTitle_action.txt. The added code is bold. Note that
you replace the return null statement with return "tracks".

Listing 9.1 Method hyperlinkTitle_action()

public String hyperlinkTitle_action() {
// TODO: Replace with your code
TableRowDataProvider rowData = (TableRowDataProvider)

getBean("currentRow");
getRequestBean1().setRecordingID(

(Integer)rowData.getValue("RECORDINGS.RECORDINGID"));
getRequestBean1().setRecordingTitle(

(String)rowData.getValue(
"RECORDINGS.RECORDINGTITLE"));

return "tracks";
}

Figure 9–11 Table Layout dialog

9.4 Master Detail Application - Two Page 287
When the user selects a hyperlink from a particular row, the currentRow
property holds data for the selected row. The RecordingID and RecordingTitle
values of the selected row (object rowData) are then saved in request scope to
make them available to the tracksDetail.jsp page, which you’ll add to the
project in the next section.

1. Right-click and select Fix Imports to fix the syntax errors.
2. Save these modifications by selecting the Save All icon on the toolbar.

Add a New Page
Now let’s create a new page to display the track data. First, you’ll place a label,
a message group, and a table component on the new page. You’ll then add the
Music TRACKS table.

1. In the Projects view, right-click on node Web Pages and select New > Page
from the context menu.

2. Creator pops up the New Page dialog. Specify tracksDetail for the file name
and click Finish. Creator brings up page tracksDetail.jsp in the design view.

3. Click anywhere inside the page in the design view. In the Properties win-
dow opposite property Title, type in the following text followed by
<Enter>.

This displays the recording title in the browser’s title bar.

4. From the Basic Components palette, select component Label and place it on
the page, near the top left side.

5. Make sure it’s selected and type in the text Tracks Detail and finish with
<Enter>.

6. In the Properties window, specify Strong(1) for property labelLevel.
7. From the Basic Components palette, select component Message Group and

drop it onto the page near the top to the right of the label you just added.
When you post error messages to the faces context for this page, the message
group component will display them.

8. From the Basic Components palette, select component Table and drop it
onto the page. Creator builds a table with default generated rows and col-
umns and a default table data provider.

9. From the Servers view, select the Data Sources > Music > Tables > TRACKS
table and drop it on top of the table component you just added. Make sure
that you select the entire table component when you release the mouse (it
will be outlined in blue). Creator modifies the table to match the database

Tracks Detail - #{RequestBean1.recordingTitle}

288 Chapter 9 Accessing Databases
fields from the TRACKS table and instantiates the tracksRowSet compo-
nent in session scope.

Modify SQL Query
As it is currently configured, the tracksRowSet returns all of the track records
from the Music database. You need to limit the query so that only the tracks
that match the RecordingID selected in the Page1 table are returned. To do this,
specify a query criteria so that each record in the Tracks row set matches the
RecordingID saved in request scope. You’ll use the query editor to modify the
SQL query for the Tracks row set.

1. Open the SessionBean1 node in the Outline view and double-click the
tracksRowSet component. Creator brings up the query editor. Close the
Output window if it’s open (to make more room).

2. In the spreadsheet view of the query editor, right-click opposite field
RECORDINGID and select Add Query Criteria.

3. In the Add Query Criteria dialog, use the default (= Equals) for Compari-
son and select radio button Parameter, as shown in Figure 9–12. Click OK.
Creator modifies the query text to include a WHERE clause.

4. In the spreadsheet view of the query editor, click inside cell Sort Type oppo-
site column TRACKNUMBER and select Ascending from the drop down
selection. This returns the records sorted by track number (in ascending

Figure 9–12 Add Query Criteria dialog

9.4 Master Detail Application - Two Page 289
order). Here is the modified SQL query text with the WHERE and ORDER
BY clauses you just added (shown in bold).

5. Save these modifications by selecting File > Save All from the main menu.

Add Page Navigation
Recall that the event handler code for the hyperlink components returns the
string “tracks”. This is the string JSF will send to the navigation handler. You’ll
now add the appropriate page navigation rule.

1. In the Projects view, double-click the Page Navigation node. Creator brings
up the page navigation editor. You’ll see the two pages, Page1.jsp and
tracksDetail.jsp.

2. Select Page1.jsp and drag the cursor from the hyperlink component to page
tracksDetail.jsp, releasing the mouse inside the page. Creator displays a
navigation arrow.

3. Change the default name to tracks, as shown in Figure 9–13.

SELECT ALL MUSIC.TRACKS.TRACKID,
 MUSIC.TRACKS.TRACKNUMBER,
 MUSIC.TRACKS.TRACKTITLE,
 MUSIC.TRACKS.TRACKLENGTH,
 MUSIC.TRACKS.RECORDINGID,
FROM MUSIC.TRACKS
WHERE MUSIC.TRACKS.RECORDINGID = ?
ORDER BY MUSIC.TRACKS.TRACKNUMBER ASC

Figure 9–13 Adding page navigation

290 Chapter 9 Accessing Databases
Add Prerender Code
It’s time to add the code that will specify the query parameter for the tracks-
RowSet component and update the tracksDataProvider.

1. Select the tracksDetail tab from the top of the editor pane. This displays the
page in the design view.

2. Select the button labeled Java in the editing toolbar. Creator brings up
tracksDetail.java in the Java editor.

3. Locate method prerender() and add the following code. Copy and paste
from the book download file FieldGuide2/Examples/Database/snippets/
musicRead2_tracksDetail_prerender.txt. The added code is bold.

This code obtains the RecordingID from request scope and uses it to set the
tracksRowSet query parameter. It forces an update of the tracks data provider
with the refresh() call. Any errors are recorded in the Server Log (using
method log()) and displayed in the message group component (using method
error()).

Configure Table Component
The final step is to configure the table component.

1. Return to the design view by selecting the Design button in the editing tool-
bar.

2. Select the table component, right-click, and select Table Layout. Creator dis-
plays the Table Layout dialog.

3. Remove TRACKS.TRACKID and TRACKS.RECORDINGID from the
Selected window using the left arrow (<).

public void prerender() {
try {

getSessionBean1().getTracksRowSet().setObject(1,
getRequestBean1().getRecordingID());

tracksDataProvider.refresh();
} catch (Exception e) {

error("Cannot read tracks for " +
getRequestBean1().getRecordingTitle() +
": " + e.getMessage());

log("Cannot read tracks for " +
getRequestBean1().getRecordingTitle() + ": ", e);

}
}

9.4 Master Detail Application - Two Page 291
4. Click Apply then OK.
5. In the design view, select the table component. In the Properties window,

click the small editing box opposite property title.
6. Creator pops up a property editing dialog. Select radio button Use binding

and tab Bind to an Object.
7. In the Select binding target window, choose RequestBean1 > recordingTitle as

shown in Figure 9–14 and click OK. This binds the table’s title to the selected
recording title from request scope.

8. In the design editor, resize the table so that the TracksTitle column is wider.
First expand the table component and then adjust the columns.

Deploy and Run
It’s time to deploy and run this project. Click the green arrow on the icon tool-
bar. Test out the application by selecting different titles. Use the browser’s back
arrow button to return to Page1. Figure 9–15 shows the tracks detail page for
recording Graceland. Note that the recording title appears in the table title, as
well as the browser’s title bar. The track numbers appear in ascending order
and the track title column is expanded to hold the longer titles.

Figure 9–14 Use binding dialog for property title

292 Chapter 9 Accessing Databases
9.5 Master Detail Application - Single
Page

Project MusicRead2 provides a master-detail example using two pages. Now
we’ll build a master-detail project in a single page. A drop down list compo-
nent will hold the “master” information from which the user selects a record-
ing. You use the selected RecordingID to display the track information in a
table component.

Create a New Project
Even though this project is very similar to the one you just built, it is easier to
start with a new project. Close project MusicRead2 if it’s open.

1. From Creator’s Welcome Page, select button Create New Project. From the
New Project dialog, under Categories select Web and under Projects select
JSF Web Application. Click Next.

Figure 9–15 Tracks detail for Graceland

9.5 Master Detail Application - Single Page 293
2. In the New Web Application dialog, specify MusicRead3 for Project Name
and click Finish.

After creating the project, Creator comes up in the design view of the editor
pane. You can now set the title.

3. Select Title in the Properties window and type in the text Music Read 3. Fin-
ish by pressing <Enter>.

Add Components
In this project, you’ll add a label component to place a title on the page, a drop
down list to display the recordings, and a message group component.

1. From the Basic Components palette, select Label and drop on the page near
the top.

2. Make sure that it is still selected and type in the text Music Collection Data-
base - Master Detail followed by <Enter>.

3. In the Properties window opposite property labelLevel select option
Strong(1) from the drop down menu.

4. From the Basic Components palette, select component Message Group and
place it on the page to the right of the label you just added.

5. From the Basic Components palette, select component Drop Down List and
drop it on the page under the label component you just added. Creator con-
figures the drop down list with a default options selections component. You
can specify the options selections by editing the Properties window, or you
can bind this component to a data provider and obtain the selection choices
from a database (which is what you’ll do for this project).

Creator Tip

Instead of a Drop Down List Component, you can also use a Listbox
component here. The functionality is the same, but the Listbox is rendered as
a box with all of its choices displayed at once. If the selection list is too long,
the component includes a vertical scrollbar. If you’d like to use a Listbox
component, skip this section and follow the steps under “Add a Listbox
Component” .

6. Make sure that the drop down list component is selected. In the Properties
window, change its id property to recordingsDropdown.

Skip over the next section “Add a Listbox Component” unless you’ve chosen
to use a listbox in place of the drop down list component.

294 Chapter 9 Accessing Databases
Add a Listbox Component
Instead of using a drop down list component to hold the data from the
RECORDINGS table, let’s use a listbox component. You can substitute the steps
in this section for those outlined for the dropdown list component above.
When you’ve finished the steps for adding a listbox component, continue to the
next section (“Add a Data Source”).

A listbox component creates a fixed list of choices that are all displayed. If
the list is longer than the space allocated to the component, a vertical scrollbar
provides access to the other choices. Just like the dropdown list component,
you can specify the listbox choices directly by editing the Properties window,
or you can bind this component to a data provider.

1. From the Basic Components palette, select Listbox and drag it to the design
canvas. Center it under the previously placed label component.

2. Resize it so that it is wider and longer. (You can experiment with its size by
right-clicking in the design canvas and selecting Preview in Browser.)

3. In the Properties window, change the id of the listbox component to record-
ingsListbox.

The rest of the build steps assume you selected the drop down list compo-
nent, although the steps are the same for the listbox component.

Add a Data Source
You’ll now add the Recordings data base table to your web page.

1. From the Servers window, expand the Data Sources, Music, and Tables
nodes.

2. Select the RECORDINGS table and drag it to the design view. Drop it on top
of the drop down list component. Make sure that the drop down component
is outlined in blue before you release the mouse.

3. Creator automatically applies a converter (because the primary key is type
Integer).

Let’s see how Creator has configured the drop down list component.

1. Right-click the drop down list component. From the context menu, choose
Bind to Data.

2. Make sure that the tab Bind to Data Provider is selected. You have already
completed the binding in the previous steps, but this step shows you the
database table’s metadata (its fields and table names). Creator displays a dia-
log with the configured data provider, a Value field, and a Display field, as
shown in Figure 9–16.

9.5 Master Detail Application - Single Page 295
The drop down list component’s value attribute is assigned field RECORD-
INGS.RECORDINGID, which is the primary key. Thus, when you invoke
method

you’ll get the value of the primary key for that selection.

The text that’s displayed in the dropdown list is the field selected in the Dis-
play field, which is set to RECORDINGS.RECORDINGTITLE.

3. Click OK to return to the design canvas.

Deploy and Run
Although we have only a page heading and a drop down list, it’s a good idea to
deploy and run the application at this point. Go ahead and click the green
arrow on the toolbar.

recordingsDropdown.getValue();

Figure 9–16 Bind to Data dialog

296 Chapter 9 Accessing Databases
When you run the application, you’ll see seven recording titles in the drop
down list (or listbox component). Right now, selecting one doesn’t do anything
other than display a different title.

Part of the power of data binding is that you can associate the component’s
value with a primary key. To display a field other than the primary key typically
has more meaning, however. The component in this example displays the
recording’s title. When a user selects a specific title, the corresponding primary
key is fetched from the component’s value attribute. The primary key allows
you to build additional queries to the database and obtain more details about
the recording associated with that primary key.

Add a Table Component
Now you’re ready to do something when the user selects a recording title in the
drop down list. In this section, you will display the recording’s track informa-
tion: the track number, its title, and its length. The track information is stored in
the TRACKS table and is associated with the recording information through its
foreign key, the RECORDINGID. In the Servers window, expand the TRACKS
table under the Data Sources > Music > Tables node (click on ‘+’) to see the field
names. TRACKID is the primary key for the TRACKS table, and RECORD-
INGID is the foreign key (you may also want to refer to the diagram in
Figure 9–1 on page 269 again).

Figure 9–17 Drop down component

9.5 Master Detail Application - Single Page 297
1. Bring up the design canvas (Page1.jsp).
2. Select the Table component from the Basic Components palette and drop it

onto the design canvas under the drop down list component that’s already
there.

3. Go to the Data Sources node in the Servers window, choose the TRACKS
table, and drop it onto the data table. Make sure that the table is outlined in
blue (indicating that the entire table is selected) before you release the
mouse.

The next step is to modify what the table component displays.

1. Select the table component. Now right-click and choose Table Layout.

The Table Layout dialog appears. The Columns tab should be selected.
There are two lists: Available columns and Selected columns.

2. In the Selected window, remove columns TRACKS.TRACKID and
TRACKS.RECORDINGID by selecting these columns and clicking the left-
arrow (<) button. There are now three columns in the Selected list, as shown
in Figure 9–18.

3. Select Apply, then OK. The data table component should now have only
three columns.

Creator generates code to populate the data table component and builds
headers in the table with the column names. Figure 9–19 shows the design can-
vas with the data table component configured for the TRACKS table.

4. In the Outline view, select the nested static text component, table1Title. In
the Properties window, click the small editing box opposite property text.

5. Creator pops up a property editing dialog. Select radio button Use binding
and tab Bind to Data Provider.

6. In the drop down window, choose recordingsDataProvider (Page1).
7. In the Data Field window, choose RECORDINGS.RECORDINGTITLE and

click OK, as shown in Figure 9–20. (Hold the mouse cursor over the text
property in the Properties window to see the binding expression.) This
binds the title property to

Modify the SQL Query
You’ll now use the Query Editor to modify the default query for the tracks-
RowSet object.

#{Page1.recordingsDataProvider.value
[’RECORDINGS.RECORDINGTITLE’]}

298 Chapter 9 Accessing Databases
1. In the Outline view, expand the SessionBean1 node, if necessary.
2. Double-click the tracksRowSet object. This opens the Query Editor for the

tracksRowSet object, as shown in Figure 9–21. (Close the Output window to
give more space to the Query Editor.)

When a user selects a recording title from the drop down list component,
you want to display only those tracks that belong to the selected recording. You
identify these tracks by matching the track’s RECORDINGID foreign key with
the drop down list component’s value attribute, the primary key of the
RECORDINGS database table. Let’s do this now.

1. In the spreadsheet view, right-click the RECORDINGID field and choose
Add Query Criteria from the context menu.

2. The Add Query Criteria dialog appears. Select radio button Parameter.
Leave the Comparison at the default (= Equals), and click OK. These steps
add a WHERE clause to the query.

Figure 9–18 Table Layout dialog

9.5 Master Detail Application - Single Page 299
3. Locate the TRACKNUMBER field in the spreadsheet view of the Query Edi-
tor. Opposite this field, select the Sort Type cell. Select Ascending from the
drop down menu. This step adds an ORDER BY clause to the query.

4. In the table view of the Query Editor, uncheck the RECORDINGID and
TRACKID fields. (Although the RECORDINGID field participates in the
selection criteria of the query, we don’t include this field in the data that are
returned in the RowSet object.)

Here is your modified query, shown at the bottom of the Query Editor.

The WHERE clause expects a parameter to match with the RECORDINGID
field, and the results will be ordered (in ascending order) by the TRACKNUM-
BER field.

SELECT ALL MUSIC.TRACKS.TRACKNUMBER,
 MUSIC.TRACKS.TRACKTITLE,
 MUSIC.TRACKS.TRACKLENGTH
FROM MUSIC.TRACKS
WHERE MUSIC.TRACKS.RECORDINGID = ?
ORDER BY MUSIC.TRACKS.TRACKNUMBER ASC

Figure 9–19 Data-aware table component bound to TRACKS table

300 Chapter 9 Accessing Databases
Connect Dropdown List to Query
All that’s left is to detect the change in the drop down list component’s selection
and use it to set the parameter for the query with the tracksRowSet object.

1. Return to the Page1 design canvas and double-click the drop down list com-
ponent. Creator generates the default event handler, method
recordingsDropdown_processValueChange(), and brings up Page1.java in
the Java source editor with the cursor at the first line of the method.

Figure 9–20 Binding table’s title property to recordingsDataProvider

9.5 Master Detail Application - Single Page 301
2. Add code to the recordingsDropdown_processValueChange() method.
Copy and paste from your Creator book’s file FieldGuide2/Examples/Data-
base/snippets/musicRead3_Dropdown.txt. (The added code is bold).

Listing 9.2 Method recordingsDropdown_processValueChange()

public void recordingsDropdown_processValueChange(
ValueChangeEvent vce) {

// TODO: Replace with your code
try {

recordingsDataProvider.setCursorRow(
recordingsDataProvider.findFirst(
"RECORDINGS.RECORDINGID",
recordingsDropdown.getSelected()));

Figure 9–21 Query Editor for TRACKS table

Table View

Spreadsheet View

SQL Query Text

Primary Key

Foreign Key

302 Chapter 9 Accessing Databases
Note that the first statement in the try block sets the recordings data pro-
vider’s cursor to the selected entity of the drop down component. This enables
you to access any field in the current row of the recordings data provider. By
keeping the recordings data provider in sync with the drop down’s selection,
you can access the data provider (for example, to bind the table title to the
recording title).

The code in the drop down list’s event handler sets the parameter of the
tracksRowSet query to the value attribute of the recordingsDropdown com-
ponent (the primary key of the specific record in the RECORDINGS table). The
refresh() method forces the data provider to be in sync with the underlying
rowset object, which in turn executes the query.

3. Locate method prerender() and add initialization code. If the drop down
component has not been selected yet, the code initializes the recordings data
provider to the first row. It then sets the tracksRowSet object’s query param-
eter to the RecordingID of the first selection. The refresh() call to the data
provider for the tracks table executes the tracksRowSet query and popu-
lates the table component with the corresponding track information. Copy
and paste from your Creator book’s file FieldGuide2/Examples/Database/
snippets/musicRread3_prerender.txt. (The added code is bold.)

getSessionBean1().getTracksRowSet().setObject(1,
recordingsDropdown.getSelected());

tracksDataProvider.refresh();
} catch(Exception e) {

error("Cannot read recording for " +
recordingsDataProvider.getValue(
"RECORDINGS.RECORDINGTITLE") + ": " + e.getMessage());

log("Cannot read recording for " +
recordingsDataProvider.getValue(
"RECORDINGS.RECORDINGTITLE") + ": ", e);

}
}

Listing 9.3 Method prerender()

public void prerender() {
if (recordingsDropdown.getSelected() == null) {

try {
recordingsDataProvider.cursorFirst();

Listing 9.2 Method recordingsDropdown_processValueChange()

9.5 Master Detail Application - Single Page 303
4. Return to the design canvas (select Design button in the editing toolbar).
5. Right-click the drop down list component and enable Auto-submit on

change. This adds the JavaScript

to the drop down list component’s JavaScript Events onchange attribute in
the Properties window. Now when a user selects a new title from the menu,
the system submits and updates the page with the new track list.

6. Save these modifications by selecting the Save All icon on the toolbar.

Deploy and Run
It’s time to deploy and run this web application. Figure 9–22 shows what the
page looks like as the user is selecting a title in the drop down list. Note that as
the user selects different recording titles, the data table is updated with the cor-
responding track information. The selected recording name appears in the
table title and the number of rows as well as the width of the columns changes
with the new data. You also see that the track numbers appear in ascending
order. (Some of the recordings do not have track lengths.)

getSessionBean1().getTracksRowSet().setObject(1,
recordingsDataProvider.getValue(
"RECORDINGS.RECORDINGID"));

tracksDataProvider.refresh();
} catch (Exception e) {

error("Cannot read tracks for " +
recordingsDataProvider.getValue(
"RECORDINGS.RECORDINGTITLE") + ": " +
e.getMessage());

log("Cannot read tracks for " +
recordingsDataProvider.getValue(
"RECORDINGS.RECORDINGTITLE") + ": ", e);

}
}

common_timeoutSubmitForm(this.form, 'recordingsDropdown');

Listing 9.3 Method prerender() (continued)

304 Chapter 9 Accessing Databases
9.6 Database Updates

The previous examples accessed the Music Collection database in a read-only
mode. Furthermore, the embedded components of the data table component
are static text components, which are read-only components.

In this section you’ll create a project that allows a user to modify data fields
in the MUSICCATEGORIES table of the Music database. You’ll see that by
using the data providers, the code to update a database is quite simple. Let’s
begin by creating a new project. Close Project MusicRead3 if it’s open.

Create a New Project
1. From Creator’s Welcome Page, select button Create New Project. From the

New Project dialog, under Categories select Web and under Projects select
JSF Web Application. Click Next.

2. In the New Web Application dialog, specify MusicUpdate for Project Name
and click Finish.

After creating the project, Creator comes up in the design view of the editor
pane. You can now set the title.

Figure 9–22 The Music Collection Database application: selecting title Imagine

9.6 Database Updates 305
3. Select Title in the Properties window and type in the text Music Category:
Update. Finish by pressing <Enter>.

Add Components
In this project, you’ll add a label component to place a title on the page, a mes-
sage group component for system messages, button controls, and a table com-
ponent to hold the data. Figure 9–23 shows the design canvas with the
components added for this project and the table layout modified.

1. From the Basic Components palette, select Label and drop on the page near
the top.

2. Make sure that it is still selected and type in the text Update Music Category
followed by <Enter>.

3. In the Properties window opposite property labelLevel select option
Strong(1) from the drop down menu.

4. From the Basic Components palette, select component Message Group and
place it on the page to the right of the label component. You’ll use the mes-
sage group component to display information and error status to the user.

Figure 9–23 Design canvas after adding components and modifying the table layout

306 Chapter 9 Accessing Databases
Add Buttons and a Table
You’ll now add two button components: one to submit editing changes to the
database and a second to cancel the edited table data.

1. From the Basic Components palette, select component Button and place it
on the page below the label component.

2. It should be selected. Type in the text Update Categories followed by <Enter>.
3. In the Properties window, change its id property to update.
4. Add a second button. Set its text to Cancel.
5. In the Properties window, change its id property to cancel.
6. From the Basic Components palette, select component Table and drop it on

the page under the Cancel button you just added. Creator builds a table with
default column and rows. Creator also adds a non-visual component, a
default table data provider (visible in the Page1 Outline view).

7. The table title is selected for you. Change the title to Music Categories.
8. From the Servers view, select the Data Sources > Music > Tables > MUSIC-

CATEGORIES table and drop it on top of the table component you just
added. Make sure that you select the entire table component when you
release the mouse (it will be outlined in blue). Creator modifies the table to
match the database fields from the MUSICCATEGORIES table and instanti-
ates the musiccategoriesRowSet component in session scope. Creator also
replaces the default table data provider with musiccategoriesData-
Provider, a cached row set data provider.

Modify the Table Layout
Now let’s modify the data table’s layout.

1. Select the data table component, right-click, and choose Table Layout.

The Table Layout dialog appears. The Columns tab should be selected. Both
columns appear in the Selected columns window.

2. Under the Selected window, select column MUSICCATEGORIES.MUSIC-
CATEGORY (the second column). From the drop down menu, change the
default component type to Text Field.

3. Click Apply, then OK. Figure 9–24 shows the Table Layout dialog for this
step.

The data table component displays two columns. The first column (Music-
CategoryID) holds the primary key and retains the default display component,
static text. The second column (MusicCategory) uses a text field component to
enable editing.

9.6 Database Updates 307
Add the Button Event Handlers
The event handler for the Update Categories button will commit the changes to
the database and the handler for the Cancel button will revert the fields in the
data providers to the original data.

1. From the design canvas, double-click the Update Categories button compo-
nent you added earlier. Creator brings up Page1.java in the Java source edi-
tor with the cursor at the update_action() method.

2. Add code to the event handler. Copy and paste from your Creator book’s file
FieldGuide2/Examples/Database/snippets/musicUpdate_update.txt. (The
added code is bold.)

Figure 9–24 Table Layout dialog: changing the component type

308 Chapter 9 Accessing Databases
This event handler updates the editing changes to the database by calling
Data Provider method commitChanges(), which causes any cached changes to
values of the data elements to be written to the supported data store. Method
log() records the update in the Server Log and method info() writes its text
argument to the FacesContext, which is displayed by the message group com-
ponent you added to the page.

3. Return to the Design view by selecting the button labeled Design in the edit-
ing toolbar.

4. Double-click the Cancel button. Creator brings up Page.java in the Java edi-
tor with the cursor at the cancel_action() method.

5. Add code to the event handler. Copy and paste from your Creator book’s file
FieldGuide2/Examples/Database/snippets/musicUpdate_cancel.txt. (The
added code is bold.)

Listing 9.4 Method update_action()

public String update_action() {
// TODO: Process the button click action.
// Return value is a navigation
// case name where null will return to the same page.

try {
musiccategoriesDataProvider.commitChanges();
log("update: changes committed");
info("Update committed");

} catch(Exception e) {
log("update: cannot commit changes ", e);
error("Cannot commit changes: " + e.getMessage());

}
return null;

}

Listing 9.5 Method cancel_action()

public String cancel_action() {
// TODO: Process the button click action.
// Return value is a navigation
// case name where null will return to the same page.

9.7 Database Row Inserts 309
This event handler cancels the editing changes by calling Data Provider
method revertChanges(). Any cached changes to values of the data elements
are discarded, restoring the initial values.

Creator Tip

After clicking the Update Categories button, cancel has no effect on the
updated data since they are already written to the database. Cancel restores
the initial values from the database before Update Categories is clicked.

Deploy and Run
Deploy and run the application. Figure 9–25 shows you what the page looks
like after the user changes the Rock category to Rock & Roll and clicks the
Update Categories button. Note that you can make changes to more than one
row before updating the database. You can’t edit the primary key field, how-
ever. To confirm the music category data changes, select Data Sources from the
Server Navigator window. Expand Music > Tables and double-click table
MUSICCATEGORIES. Creator displays the table’s data (including the changed
fields) in the editor pane.

9.7 Database Row Inserts

Let’s modify the Music Update project to allow the user to insert new rows into
the data base table, as well as make editing changes. This application is
straightforward and demonstrates how to manipulate a Data Provider to insert
a row.

try {
musiccategoriesDataProvider.revertChanges();
log("cancel: revert changes");
info("Update cancelled");

} catch(Exception e) {
log("cancel: cannot revert changes ", e);
error("Cannot revert changes: " + e.getMessage());

}
return null;

}

Listing 9.5 Method cancel_action() (continued)

310 Chapter 9 Accessing Databases
While the Data Provider layer provides a consistent API, not all Data Pro-
viders are the same. For example, a Data Provider that wraps an object array
cannot grow, and hence, you cannot insert “rows.” The approach here is to pro-
vide a text field component that allows the user to supply a new category name
and a way to obtain a new primary key. Then after you add the new values to
the data provider, the application should display a revised music category list
in the table. Of course, the user can then edit the new category as well.

Virtual Forms
You’ll use virtual forms in this application to separate the new music category
input from the Cancel and Update MusicCategories actions. You want to make
new music category input required, but only if the user is adding a new row.
Therefore, the text field component and its associated button to add the data
should fall under the same virtual form. To prevent the Cancel and Update
MusicCategories buttons from triggering validation for the new input, you’ll
place these in separate virtual forms. We’ll provide the step-by-step approach
to do this during the project construction.

Figure 9–25 The Music Collection Database: updating the Music Categories table

9.7 Database Row Inserts 311
Copy the Project
This step is optional. If you don’t want to copy the project, simply skip this sec-
tion and continue making modifications to the UpdateMusic project.

1. Bring up project MusicUpdate in Creator, if it’s not already opened.
2. From the Projects window, right-click node MusicUpdate and select Save

Project As. Provide the new name MusicAdd.
3. Close project MusicUpdate. Right-click MusicAdd and select Set Main

Project. You’ll make changes to the MusicAdd project.
4. Expand MusicAdd > Web Pages and open Page1.jsp in the design view.
5. Click anywhere in the background of the design canvas of the MusicAdd

project. In the Properties window, change the page’s Title property to
Music Category - Update/Add.

6. Select label component label1 and change its text property to Music Cate-
gory - Update and Add.

Add Components
First, you’ll add components to effect the new category portion of the web
application. This includes a text field component, label, validator, message
component, and button. Figure 9–26 shows the design view with the new com-
ponents added. It also shows the configured virtual forms. You might want to
refer to this figure as you add components to the project.

1. From the Basic Components palette, select Text Field. Place it on the page to
the right of the Update Categories button. In the Properties window change
its id property to newCategory.

2. In the Properties window, check property required.
3. From the Basic Components palette select Label and place it above the text

field component you just added.
4. It should be selected. Type in the label text New Music Category: and finish

with <Enter>.
5. Connect the label to the text field. Click inside the label component, type

<Ctrl+Shift> and drag the cursor to the text field component. When you
release the mouse, the label should have an asterisk indicating that its asso-
ciated component is a required field.

Creator Tip

You’re using a separate label component here instead of the text field’s built-
in label property because the label component’s placement is more flexible. By
default Creator places the built-in label on the left.

312 Chapter 9 Accessing Databases
The database field MUSICCATEGORY is a VARCHAR with maximum
length 20. You’ll need a validator to make sure that its length doesn’t exceed
this maximum.

Creator Tip

You can check the type and other properties of a database table column
through the Data Source portion of the Servers window. For example, to
check the maximum size of the MUSICCATEGORY field, select Data Source
> Music > Tables > MUSICCATEGORIES in the Servers window and right-
click field MUSICCATEGORY. Select Properties from the context menu.
Creator pops up a Properties window as shown in Figure 9–27. You see that
the column size is 20 and its SQL Type is VARCHAR.

1. In the Palette window, expand the component Validators section and select
Length Validator. Drag the component to the page and release the mouse
over the text field component. Creator instantiates lengthvalidator1 on
your page.

Figure 9–26 Music Category Add project’s design view

9.7 Database Row Inserts 313
2. In the Page1 Outline view, select lengthValidator1. In the Properties win-
dow, specify property maximum as 20 and property minimum as 3.

3. Select the text field component and make sure its validator property is set
to lengthvalidator1 in the Properties window. (If it’s not set, choose
lengthvalidator1 from the drop down menu opposite property valida-
tor.)

You’ll need a message component since the text field has validation and its
required property is enabled.

1. From the Basics Components palette, select component Message and place it
on the design canvas directly under the text field component.

2. Type <Ctrl-Shift> and drag the cursor to the text field component, releasing
the mouse when the cursor is over the component. This sets the message
component’s for property to the text field. The message component will dis-
play “Message summary for newCategory,” as shown in the Design View in
Figure 9–26.

As it is currently configured, the message group component you added in
the previous section will display validation messages associated with the text
field component newCategory. This means that a validation message will
appear in both the message component you just added as well as the message

Figure 9–27 Examine the Properties of a database column

314 Chapter 9 Accessing Databases
group component that’s already on the page. You’ll now limit the message
group component so that it displays global (page-level) messages only.

1. Select the message group component.
2. In the Properties window under Behavior, check the property ShowGlobal-

Only. Creator now displays “List of global message summaries” in the com-
ponent’s box in the design view.

Now let’s add the Add New Music Category button component.

1. From the Basics Components palette, select component Button and place it
on the page under the message component.

2. Type in the text Add New Music Category for its label.
3. In the Properties window, change its id property to addNewCategory. (As

with the other buttons on this page, you’re changing the id property to
reflect the button’s function.)

4. Select the Cancel button. In the Properties view, change its text property to
Cancel Update.

This completes the new component additions to the page. You might want
to compare the page in your project with Figure 9–26 on page 312.

Configure Virtual Forms
Like many pages that have more than one “function,” this page needs virtual
forms to keep the various components correctly grouped. While any given
form can have more than one component that participates in a virtual form,
only one component can submit the form. Table 9.2 shows the command com-
ponents on the page and which virtual form they submit.

With virtual forms, you decide which component submits the form and
which component(s) participate in the form. For example, the newCategory
text field participates in the addCategory virtual form. Therefore, if you click
the addNewCategory button and neglect to specify a category in the text field,
validation kicks in and provides feedback to the user. However, if you click the
cancel or update buttons, you do not want the newCategory text field to be

Table 9.2 Virtual Form Description

Activity Submitting Component Virtual Form Name
Add a new category addNewCategory button addCategory (blue)
Update edits to database update button updateCategory (green)
Cancel edits cancel button cancelCategory (red)

9.7 Database Row Inserts 315
validated. Therefore, it should not participate in the updateCategory or cancel-
Category virtual forms. Table 9.3 lists the two input components and assigns
them to the appropriate virtual forms. Note that textField1 belongs to the
table component and must participate in the update and cancel operations for
these components to correctly display the modified data.

Let’s configure the virtual forms for this page now.

1. In the design view, select button Add New Music Category, right-click, and
select Configure Virtual Forms. Creator brings up the Configure Virtual
Forms dialog. Component addNewCategory, the button’s id property, is dis-
played near the top of the dialog.

2. In the dialog, click button New. Creator builds a new virtual form with code
color blue.

3. Double-click inside cell virtualForm1 under Name and change the name to
addCategory.

4. Under column Submit, select Yes from the drop down menu. Don’t change
the Participate column. Click Apply, then OK.

5. Enable the Virtual Form Legend in your design view by toggling the Show
Virtual Forms icon in the editing toolbar (use the tooltips to identify the
icon). The Virtual Form Legend appears in the lower-right portion of the
design editor. The Add New Music Category button is now outlined in a
dotted blue line, indicating that it is the submitting component for the blue
virtual form.

Creator Tip

To change the default color legend Creator uses, select an alternate color from
the drop down menu in the Color column for each virtual form.

Now let’s add two more virtual forms to the page (one for updating edited
category text and one for canceling edited category text).

Table 9.3 Virtual Form Participation

Component Activity Virtual Form Participation
newCategory
(text field)

user supplies new category name addCategory (blue)

textField1
(text field)

user edits column2 in data table updateCategory (green)
cancelCategory (red)

316 Chapter 9 Accessing Databases
1. In the design view, select button Update Categories, right-click, and select
Configure Virtual Forms. Creator brings up the Configure Virtual Forms
dialog and component update is displayed near the top of the dialog.

2. In the dialog, click button New. Creator builds a new virtual form with code
color green.

3. Double-click inside cell virtualForm1 under Name and change the name to
updateCategory.

4. Under column Submit for the updateCategory virtual form (green), select
Yes from the drop down menu. Don’t change the Participate column. Click
Apply, then OK.

5. The Update Categories button is now outlined in a dotted green line, indi-
cating that it is the submitting button for the green virtual form.

6. Follow the same steps (Steps 1 through 5 above) to add virtual Form cancel-
Category for button Cancel Update. Change the Submit column for virtual
form cancelCategory to Yes for the Cancel button. When you’re finished the
Cancel button will be outlined in a red dotted line, indicating that it is the
submitting button for the red virtual form.

Now you’ll specify which input components (not buttons) participate in the
virtual forms you’ve created. There are two text fields on the page: the text field
in which users supply a new music category name (id newCategory) and the
text field that is generated for each row in the table (id textField1).

1. Select text field newCategory, right-click, and select Configure Virtual
Forms.

2. You’ll see all three virtual forms in the Configure Virtual Forms dialog.
3. Select Yes from the drop down menu under heading Participate for virtual

form addCategory (blue). Click Apply then OK. The component is now out-
lined in a solid blue line, indicating that it participates in the blue virtual
form.

4. Now select textField1 from the table (or select it from the Outline view),
right-click, and select Configure Virtual Forms.

5. Select Yes from the drop down menu under heading Participate for both vir-
tual forms updateCategory (green) and cancelCategory (red). Click Apply
then OK. The second column (the text field) is now outlined in both solid
green and solid red lines, indicating that it participates in both the green and
red virtual forms.

Add ApplicationBean1 Property
When you insert data into a database, you have to have a way to generate
unique primary keys. You also have to allow other users to add data at the
same time.

9.7 Database Row Inserts 317
Recall that application scope endures for the lifetime of the application and
all data stored in application scope is shared among all sessions and users.
Therefore, we’ll put the primary key generation code in application scope,
assuring that only one instance of this code exists at a time. You’ll create a
property, nextCategoryId, whose getter will return the next primary key for
the MusicCategories database table. First you’ll create the property, then con-
figure a row set and data provider that will enable you to generate the next pri-
mary key. The new primary key will be the next integer value above the
maximum primary key returned from an SQL query for the MusicCategories
table.

Primary Keys

There are several ways to tackle the problem of generating unique primary
keys. One approach is to generate a unique string using the current time, the
IP address of the host machine concatenated with a hash code of the address of
the current object, and a secure random number as a three-part hexadecimal
string. A scheme which gets the next primary key from a database is simple
and works with our example. However, getting the next primary key from a
database could create a bottleneck with a high-usage system.

Let’s add an Integer property to ApplicationBean1 that is read-only and
does not have an associated instance variable (since its value is generated each
time).

1. Expand the MusicAdd node in the Projects window and right-click Applica-
tion Bean. Select Add > Property from the context menu.

2. Creator pops up the New Property Pattern dialog. For Name, specify next-
CategoryId, for Type select Integer, and for Mode select Read Only. Uncheck
the Generate Field option, as shown in Figure 9–28. (Check that your capital-
izations exactly match those in the figure.) Click OK.

Before adding the code for the property’s getter, let’s add the
MusicCategories table to ApplicationBean1.

1. Double-click Application Bean in the Projects window. Creator brings up
ApplicationBean1.java in the source editor. By default, Creator displays the
Navigate window when the Java source editor is active.

2. Select the Outline tab and scroll down until you see the ApplicationBean1
node.

3. From the Servers window, select Data Sources > Music > Tables > MusicCat-
egories and drop it on top of the ApplicationBean1 node. This creates a mus-
iccategoriesRowSet object and musiccategoriesDataProvider in
application scope.

318 Chapter 9 Accessing Databases
You’ll now edit the query and configure property nextCategoryId.

1. Open the ApplicationBean1 node and double-click the musiccategories-
RowSet. This brings up the SQL Query editor in the editing pane. (Close the
Output window to give more space to the editor.)

2. In the MUSICCATEGORIES Table, uncheck field MUSICCATEGORY.
3. In the Query Text view, edit the query as shown below.

4. Save the changes (select the Save All icon in the toolbar) and close the SQL
Query editor.

5. Return to ApplicationBean1.java in the Java editor and expand the Creator-
managed Component Initialization code in the ApplicationBean1() con-
structor. You’ll see the modified musiccategoriesRowSet command.

6. Scroll to the end of the file and add the following code to the nextCatego-
ryId getter, getNextCategoryId(). (Ignore any red-underlined errors for
now.) Copy and paste from your Creator book’s file FieldGuide2/Examples/

SELECT ALL MAX(MUSIC.MUSICCATEGORIES.MUSICCATEGORYID)
AS MAXCATEGORYID

FROM MUSIC.MUSICCATEGORIES

Figure 9–28 Add property nextCategoryId to application scope

9.7 Database Row Inserts 319
Database/snippets/musicAdd_GetNextCategory.txt. (The added code is
bold.)

Each time the method is called, the row set connects to the database and exe-
cutes the command (the data provider refresh() method causes all of this).
Field name “MAXCATEGORYID” returns the maximum primary key. This value is
then increased by one and returned to the caller. Note that the row set is
released and closed, making access available for the next caller.

Add Button Event Handler Code
You’ll now add the event handler code that adds the new music category to the
MusicCategories table.

1. Return to the Page1 design view and double-click button Add New Music
Category. Creator generates a default button event handler for you and
brings up Page1.java in the Java editor with the cursor set to the
addNewCategory_action() method.

Listing 9.6 Method getNextCategoryId()

public Integer getNextCategoryId() {
// force execution of command from underlying rowset
musiccategoriesDataProvider.refresh();
musiccategoriesDataProvider.cursorFirst();
// get the max value returned (see rowset's sql query)
Integer maxCategoryId =

(Integer)musiccategoriesDataProvider.getValue(
"MAXCATEGORYID");

// close the rowset
try {

musiccategoriesRowSet.release();
musiccategoriesRowSet.close();

} catch (Exception e) {
log("[getNextCategoryId]: Cannot close/release rowset");

}
Integer nextCategoryId = new Integer(

maxCategoryId.intValue() + 1);
return nextCategoryId;

}

320 Chapter 9 Accessing Databases
2. Copy and paste from your Creator book’s file FieldGuide2/Examples/Data-
base/snippets/musicAdd_addNewCategory_action.txt. (The added code is
bold.)

3. From within the Java source editor, right-click and select Fix Imports. This
adds the import statement for class RowKey.

Listing 9.7 Method addNewCategory()

public String addNewCategory_action() {
// TODO: Process the button click action.
// Return value is a navigation
// case name where null will return to the same page.

// Add a new music category to the data base
if (musiccategoriesDataProvider.canAppendRow()) {

try {
RowKey rowKey =

musiccategoriesDataProvider.appendRow();
// put the new data in the data provider
musiccategoriesDataProvider.setValue(

"MUSICCATEGORIES.MUSICCATEGORYID", rowKey,
getApplicationBean1().getNextCategoryId());

musiccategoriesDataProvider.setValue(
"MUSICCATEGORIES.MUSICCATEGORY", rowKey,
newCategory.getText());

musiccategoriesDataProvider.commitChanges();
info("New Category " + newCategory.getText() +

" added to MUSICCATEGORIES table");
newCategory.setText(null);

} catch (Exception e) {
log("Cannot add new music category ", e);
error("Cannot add new music category: " +

e.getMessage());
}

} else {
log("Cannot append new music category");
error("Cannot append new music category");

}
return null;

}

9.7 Database Row Inserts 321
Deploy and Run
Deploy and run the application. Figure 9–29 shows project MusicAdd running
in a browser after category Hip Hop is added.

After running the MusicAdd web application, you can check the status of
the database by inspecting the tables using the Servers window. Select Data
Sources > Music > Tables > MUSICCATEGORIES. Double-click the MUSIC-
CATEGORIES table. Creator displays the data in the editor pane.

Figure 9–29 After the insert row operation to the MusicCategories table

322 Chapter 9 Accessing Databases
9.8 Database Deletions

Four database operations are represented by the acronym CRUD: Create
(insert), Read, Update, and Delete. The previous sections have shown you all
these operations except delete.

Delete operations are typically more involved than the others in a relational
database schema, since you (or the underlying database software) must take
into account what to do if you attempt to delete a record to which other records
refer. You have two choices: you can disallow the delete of records that have
links (foreign keys), or you can perform a cascading delete.

When you target a row for deletion that is referenced with a foreign key in
another (related) table, you will have to delete the related records first. For
example, to delete a record in the MUSICCATEGORIES table that is referenced
in the RECORDINGS table, you must first delete the related row in the
RECORDINGS table. You can locate the row by matching its foreign key value
for MusicCategoryID.

Furthermore, to delete the row in the RECORDINGS table, you’ll also have
to delete the related rows in the TRACKS table. These you find by locating all
tracks with a foreign key that matches the RecordingID. This “cascading” effect
that trickles through the database is called cascading deletes.

The database enforces data integrity by preventing deletes on rows refer-
enced by other tables. In our example, deleting a row in the MUSICCATEGO-
RIES table means we have to find and delete the related records in the
RECORDINGS table and TRACKS table.

Alternatively, you can decide to only allow delete operations on records that
don’t have foreign key references to them. In the initial version of the MusicDe-
lete project, this is the approach you’ll take. How do you prevent delete opera-
tions on these records? Fortunately, the underlying database software prevents
deletions by throwing an exception during the data provider’s commit-
Changes() call. By putting this method call in a try block, you can invoke the
data provider’s revertChanges() method in the corresponding catch handler.
This puts the database back in a consistent state. In the second version of the
MusicDelete project, you’ll add code to perform cascading deletes.

Copy the Project
This step is optional. If you don’t want to copy the project, simply skip this sec-
tion and continue making modifications to the MusicAdd project.

1. Bring up project MusicAdd in Creator, if it’s not already opened.
2. From the Projects window, right-click node MusicAdd and select Save

Project As. Provide the new name MusicDelete.

9.8 Database Deletions 323
3. Close project MusicAdd. Right-click MusicDelete and select Set Main
Project. You’ll make changes to the MusicDelete project.

4. Expand MusicDelete > Web Pages and open Page1.jsp in the design view.
5. Click anywhere in the background of the design canvas of the MusicDelete

project. In the Properties window, change the page’s Title property to
Music Category - Update/Add/Delete.

6. In the design view, select component label1 (it holds the title that’s dis-
played on the page). Change its text to Music Category - Update/Add/Delete.

7. In the Properties window for label1, change property labelLevel to
Medium (2). This provides more space on the page for the other components.

Add Components
First, you’ll add components to implement the delete function of the web appli-
cation: a “Delete” checkbox column in the table so that users can delete more
than one row at once, a button to perform the delete operation, and a corre-
sponding virtual form. Figure 9–30 shows the design view with the new com-
ponents added. It also shows the newly configured virtual form (yellow). You
might want to refer to this figure as you add the components to the project.

Figure 9–30 Music Category Delete project’s design view

324 Chapter 9 Accessing Databases
1. Make sure that Page1 is active in the design view.
2. Select the table component, right-click, and select Table Layout from the con-

text menu. You’re going to add a new column at the beginning (left-side) of
the table.

3. Click button New to add a new column. Click button Up to move it up in the
Selected window until it is at the top.

4. Under Header Text, type in Delete.
5. Under Component Type, select Checkbox from the drop down menu. Select

Apply then OK. Figure 9–31 shows the Table Layout for the new column.

6. From the Basic Components palette, select Button and drop it on the page in
the design view. Place it directly above the table, aligned on the left.

7. Change its text property to Delete Selected Rows; change its id property to
delete.

8. Using Figure 9–30 as a guide, arrange the Delete Selected Rows, Update Cat-
egories, and Cancel Update buttons in a row above the table component.

9. Select the label, text field, message, and button components associated with
adding a new music category and move these components over to the left
side of the page.

Figure 9–31 Table Layout for checkbox column

9.8 Database Deletions 325
Configure Checkbox Components
There are several steps involved in building the code to maintain the set of
checked rows in the table. First, you create a Page1 boolean property
(selected) and bind this to the checkbox component. Second, you create a
HashSet object to hold the selected RowKeys from the table’s data provider.
This keeps track of the selected rows. Then you provide the setter and getter
methods for the selected property that either adds a row key to the selected
set or removes it from the selected set. You don’t ever need to call the setSe-
lected() and isSelected() methods yourself; Creator takes care of that
when you bind the checkbox’s selected property to the Page1 selected prop-
erty.

1. From the Projects window, expand the Source Packages and default package
name node.

2. Right-click Page1.java and select Add > Property from the context menu.
Creator pops up the New Property Pattern dialog.

3. For Name specify selected, for Type specify boolean, and for Mode use the
default Read/Write. Uncheck the Generate Field checkbox. Click OK. Creator
adds property selected to Page1.

4. From the design view, select the checkbox component (its id is checkbox1
unless you changed it). In the Properties window, select the small editing
box opposite property selected. Creator pops up a property editing dialog.

5. Select radio button Use Binding. From the list of properties, select Page1 >
selected Boolean and click OK. This binds the checkbox selected property to
#{Page1.selected}.

You’ll now provide the code for methods isSelected() and setSe-
lected().

1. Click the Java button in the editing toolbar to bring up Page1.java in the Java
source editor.

2. Locate method isSelected(), which was generated by Creator when you
added property selected to Page1. (Use the Navigator window to locate
isSelected() in the methods list and double-click.)

Note that when you added property selected, you specified that Creator
should not generate the field. Therefore, Page1.java has compilation errors
because the default getter and setter assume that field selected exists.
These errors will disappear when you add the proper code for these meth-
ods.

326 Chapter 9 Accessing Databases
3. Add private variable selectedRows above method isSelected(), as fol-
lows.

Type <Alt+Shift+F> to fix imports.

4. Supply the following code for method isSelected(). Type <Alt+Shift+F> to
fix imports, if necessary. Copy and paste from your Creator book download
FieldGuide2/Examples/Database/snippets/musicDelete_isSelected.txt.

This method is invoked for every row in the table. (When you bind the
checkbox selected property to the Page1 selected property, this method is
called for every checkbox.) The method iterates through selectedRows hash
set to find a match with the current row’s row key.

// HashSet of RowKeys to keep track of selected rows
private Set selectedRows = new HashSet();

Listing 9.8 Method isSelected()

public boolean isSelected() {
// called for every row
// returns true if rowkey exists in HashSet
TableRowDataProvider trdp = (TableRowDataProvider)getBean(

"currentRow");

if (trdp == null) {
return false;

}
RowKey rowKey = trdp.getTableRow();
boolean exists = false ;

for(Iterator i = selectedRows.iterator(); i.hasNext();) {
RowKey rk = (RowKey)i.next() ;
if (rk.equals(rowKey)) {

exists = true ;
break ;

}
}
return exists;

}

9.8 Database Deletions 327
5. Supply the following code for method setSelected(). Copy and paste
from your Creator book’s download FieldGuide2/Examples/Database/snip-
pets/musicDelete_setSelected.txt.

Method setSelected() is also invoked for every row in the table. If the cur-
rent row’s checkbox component is checked, the corresponding row key is
added to the selectedRows hash set. Otherwise, the row key is removed
from the hash set.

Add the Delete Button Event Handler
You’ll now add the code to the Delete button’s event handler.

1. Return to the Page1 design view. Double-click button Delete Selected Rows.
Creator generates the default action event method and brings up Page1.java
in the Java source editor with the cursor set to the delete_action()
method.

2. Provide the following code for method delete_action(). Type
<Alt+Shift+F> to fix imports. This method does not perform cascading
deletes, but calls method revertChanges() when the database disallows a

Listing 9.9 Method setSelected()

public void setSelected(boolean selected) {
// called for every row
TableRowDataProvider trdp = (TableRowDataProvider)

getBean("currentRow");

RowKey rowKey = trdp.getTableRow();
if (checkbox1.isChecked()) {

selectedRows.add(rowKey);

} else {
selectedRows.remove(rowKey);

}
}

328 Chapter 9 Accessing Databases
row delete. Copy and paste from the Creator book download FieldGuide2/
Examples/Database/snippets/musicDelete_delete_action.txt.

Listing 9.10 Method delete_action()

public String delete_action() {
// TODO: Process the button click action.
// Return value is a navigation
// case name where null will return to the same page.

// Make sure all the selected rows can actually be removed
boolean ok = true;
Iterator rowKeys = selectedRows.iterator();
while (rowKeys.hasNext()) {

RowKey rowKey = (RowKey) rowKeys.next();

if (!musiccategoriesDataProvider.canRemoveRow(rowKey)){
error("Cannot delete row " + rowKey);
log("Cannot delete row " + rowKey);
ok = false;

}

}
if (!ok) {

return null;
}

// Delete the currently selected rows
rowKeys = selectedRows.iterator();
while (rowKeys.hasNext()) {

RowKey rowKey = (RowKey) rowKeys.next();
try {

musiccategoriesDataProvider.removeRow(rowKey);

} catch(Exception e) {
log("Cannot delete row " + rowKey + ": ", e);
error("Cannot delete row " + rowKey + ": " + e);
ok = false;

}
}

9.8 Database Deletions 329
This delete_action() performs the following tasks.

1. It calls the data provider method canRemoveRow() for each row key in the
selectedRows hash set. The data provider associated with this table may
not be a CachedRowSetDataProvider and it may not allow row removals.

2. If all rows are removable, data provider method removeRow() is invoked for
each row key in the selectedRows hash set.

// Commit or rollback the database transaction
if (musiccategoriesDataProvider instanceof

TransactionalDataProvider) {
if (ok) {

try {
musiccategoriesDataProvider.commitChanges();

} catch (Exception e) {
log("Cannot commit deletes ", e);
error("Cannot commit deletes: " + e);
try {

musiccategoriesDataProvider.revertChanges();
musiccategoriesDataProvider.refresh();

} catch (Exception e2) {
log("Cannot roll back deletes ", e2);
error("Cannot roll back deletes: " + e2);

}
}

 } else {
log("Rolling back deletes");
info("Rolling back deletes");
try {

musiccategoriesDataProvider.revertChanges();
musiccategoriesDataProvider.refresh();

} catch (Exception e) {
log("Cannot roll back deletes ", e);
error("Cannot roll back deletes: " + e);

}
}

}

// Clear the checkboxes
selectedRows = new HashSet();
info("Cleared selectedRows");
return null;

}

Listing 9.10 Method delete_action()(continued)

330 Chapter 9 Accessing Databases
3. Once the rows are removed, data provider method commitChanges() is
invoked if the data provider is transactional (such as the CachedRowSet-
DataProvider). This is the call that will fail if the target row has referrals
from other tables.

4. If an exception is thrown, method revertChanges() restores the underlying
row set to a consistent state. Data provider method refresh() makes sure
the data provider and the underlying row set are in sync with each other.

5. Finally, if ok is false, this means that the removeRow() call failed and meth-
ods revertChanges() and refresh() must be called to put the underlying
row set in a consistent state with the data provider.

Configure Virtual Forms
Return now to the design view to configure virtual forms.

1. In the design view, right-click button Delete Selected Rows and select Con-
figure Virtual Forms from the context menu. Creator brings up the Config-
ure Virtual Forms dialog. Component delete, the button’s id property, is
displayed near the top of the dialog.

2. In the dialog, click button New. Creator builds a new virtual form with code
color yellow.

3. Double-click inside cell virtualForm1 under Name and change the name to
deleteCategory.

4. Under column Submit, select Yes from the drop down menu. Click Apply,
then OK. The Delete Selected Rows button is now outlined in a dotted yel-
low line, indicating that it is the submitting component for the yellow vir-
tual form.

5. Select both the checkbox and text field components in the table (use <Shift-
Click> to select more than one component). Right-click and select Configure
Virtual Forms. Creator displays the Configure Virtual Forms dialog with
both components listed above (checkbox1 and textField1) and all four vir-
tual forms.

6. Select Yes from the drop down menu under heading Participate for virtual
form deleteCategory (yellow). Select Apply then OK. In the design view,
both the checkboxes in the first column and the text field components in the
third column are outline in solid yellow lines.

Deploy and Run
It’s now time to test the application with all functions: Update, Add, and
Delete. You’ll probably want to open project MusicBuild in Creator and period-
ically run this project to re-initialize the data base so that’s it is in a known, con-
sistent state. Here’s how to run MusicBuild.

9.8 Database Deletions 331
1. From the Welcome Page, select button Open Existing Project and select
MusicBuild. (If a Library Reference error appears, ignore it.)

2. From the Projects menu, select MusicBuild, right-click and select Set Main
Project.

3. Again select MusicBuild, right-click and select Run Project. You should see
the diagnostic Music database was created in the Output window.

4. Now select project MusicDelete, right-click and select Set Main Project.
5. Deploy and run project MusicDelete. Figure 9–32 shows this project running

in a browser.

6. Delete a music category and verify that it was deleted. You can check the sta-
tus of the database by inspecting the tables using the Servers window. Select
Data Sources > Music > Tables > MUSICCATEGORIES. Double-click the
MUSICCATEGORIES table. Creator displays the data in the editor pane.

Figure 9–32 Project MusicDelete running in a browser

332 Chapter 9 Accessing Databases
9.9 Handle Cascading Deletes

As you test the MusicDelete project, you’ll note that if you attempt to to delete
Music Category Classical or Rock, the commitChanges() call throws an excep-
tion. This is because the RECORDINGS table contains foreign keys that refer-
ence these rows. You’ll now implement a version of this project that checks the
RECORDINGS table to see if its foreign key for MUSICCATEGORYID matches
the target row in method delete_action(). If the recording matches, then it
will be removed from the RECORDINGS table. Likewise, you must remove all
tracks in the TRACKS table that have a foreign key RECORDINGID that
matches the target recording.

In order for the RECORDINGS data provider’s commitChanges() call to suc-
ceed, the referring tracks must be removed first. Likewise, in order for the
MUSICCATEGORIES data provider’s commitChanges() call to succeed, the
referring recordings must be removed. The algorithm you will use is as fol-
lows.

1. Identify the music category row that you want to delete and get its primary
key (MUSICCATEGORYID).

2. Set the recordingsRowSet query parameter to this MUSICCATEGORYID
and refresh the data provider. This will build a data provider row set with
recordings whose MUSICCATEGORYID foreign key matches the target
MUSICCATEGORIES row.

3. For each recording, get its primary key and set the tracksRowSet query
parameter to this RECORDINGID. This will build a data provider row set
with tracks whose RECORDINGID foreign key matches the target
RECORDINGS row.

4. For each track, remove the row from the data provider.
5. When you’re finished, commit the changes. This will update the TRACKS

table in the data base.
6. Now remove the target recording and get the next recording, building a new

data provider row set with tracks. Remove these tracks and commit the
changes. Repeat until all the matching recordings and their tracks have been
removed.

7. When you’ve finished removing all the target recordings, commit the
changes. This will update the RECORDINGS table in the data base.

8. Remove the target music category row.
9. Repeat with the next music category row that’s been selected on the web

page. When all the music category rows have been deleted, you can now
commit the changes. The commitChanges() call will succeed, since there are
no more RECORDINGS with a matching MUSICCATEGORYID. If you
select a music category that has no matching recordings, the recordings-

9.9 Handle Cascading Deletes 333
DataProvider.refresh() call builds an empty data provider object and
recordingsDataProvider.cursorFirst() returns false.

Copy the Project
This step is optional. If you don’t want to copy the project, simply skip this sec-
tion and continue making modifications to the MusicDelete project.

1. Bring up project MusicDelete in Creator, if it’s not already opened.
2. From the Projects window, right-click node MusicDelete and select Save

Project As. Provide the new name MusicCascadeDelete.
3. Close project MusicDelete. Right-click MusicCascadeDelete and select Set

Main Project. You’ll make changes to the MusicCascadeDelete project.
4. Expand MusicCascadeDelete > Web Pages and open Page1.jsp in the design

view.
5. Click anywhere in the background of the design canvas of the Music-

CascadeDelete project. In the Properties window, change the page’s Title
property to Music Category - Cascade Deletes.

6. In the design view, select component label1 (it holds the title that’s dis-
played on the page). Change its text to Music Category - Cascade Deletes.

Include Additional Data Source Tables
Because the cascade delete operation has to access some of the other tables
from the Music database, you’ll need to add these to the page. When you add
them, Creator also adds the corresponding row set objects to SessionBean1.
Note that except for these data source tables, you don’t add any new compo-
nents to this project.

1. From the Data Sources > Music > Tables node in the Servers window, select
the RECORDINGS table and drop it directly on top of the design canvas.
(Don’t drop it on any components.)

Creator adds the recordingsDataProvider component to Page1 (it’s visible
in the Outline view) and recordingsRowSet component to SessionBean1
(also visible in the Outline view).

2. Again from the Data Sources > Music > Tables node in the Servers window,
select the TRACKS table and drop it directly on top of the design canvas.

The tracksDataProvider component appears in the Outline view under
Page1 and the tracksRowSet component appears under SessionBean1.

334 Chapter 9 Accessing Databases
Modify the SQL Queries
When you access these tables from the application, you’ll perform a query to
select only those rows that have matching foreign keys for the target row dele-
tion in the MUSICCATEGORIES table (for the recordingsRowSet object) or the
target row deletion in the RECORDINGS table (for the tracksRowSet object).
Therefore, you’ll need to modify the default query for both of these objects to
add query criteria. This is the same type of master-detail relationship you built
in the MusicRead2 and MusicRead3 projects. Let’s modify the recordings-
RowSet’s query first.

1. In the Outline view under SessionBean1, double-click the recordings-
RowSet object. This brings up the Query Editor.

2. In the spreadsheet view, right-click the MUSICCATEGORYID field and
choose Add Query Criteria from the context menu.

3. The Add Query Criteria dialog appears. Select radio button Parameter and
leave the Comparison at the default (= Equals). Click OK.

This adds a WHERE clause to the query. Here is the modified query as
shown at the bottom of the Query Editor.

4. Close the query editor for the recordingsRowSet object.
5. In the Outline view under SessionBean1, double-click the tracksRowSet

object.
6. In the spreadsheet view, right-click the RECORDINGID field and choose

Add Query Criteria.
7. In the Add Query Criteria dialog, select radio button Parameter and click

OK. Here is the modified query for the tracksRowSet.

SELECT ALL MUSIC.RECORDINGS.RECORDINGID,
 MUSIC.RECORDINGS.RECORDINGTITLE,
 MUSIC.RECORDINGS.RECORDINGARTISTID,
 MUSIC.RECORDINGS.MUSICCATEGORYID,
 MUSIC.RECORDINGS.RECORDINGLABEL,
 MUSIC.RECORDINGS.FORMAT,
 MUSIC.RECORDINGS.NUMBEROFTRACKS,
 MUSIC.RECORDINGS.NOTES
FROM MUSIC.RECORDINGS
WHERE MUSIC.RECORDINGS.MUSICCATEGORYID = ?

SELECT ALL MUSIC.TRACKS.TRACKID,
 MUSIC.TRACKS.TRACKNUMBER,
 MUSIC.TRACKS.TRACKTITLE,

9.9 Handle Cascading Deletes 335
8. Close the Query Editor for the tracksRowSet object and save the changes
(select the Save All icon on the toolbar).

Modify Button Event Handler Code
You’ll now modify method delete_action() to perform the cascading delete
operation.

1. From the Page1.jsp design canvas, double-click the Delete Selected Rows
button. This brings up Page1.java in the Java source editor and places the
cursor at the delete_action() event handler.

2. Find the while loop in the delete_action() method that begins with the
comment “Delete the currently selected rows.” Replace the code with the
following statements. The added lines are in bold (all the rest of the code is
unchanged). Copy and paste from your Creator book’s file FieldGuide2/
Examples/Database/snippets/musicDelete_deleteMods.txt.

After you add the code for method cascadeDelete(), the red underlines
will disappear.

 MUSIC.TRACKS.TRACKLENGTH,
 MUSIC.TRACKS.RECORDINGID
FROM MUSIC.TRACKS
WHERE MUSIC.TRACKS.RECORDINGID = ?

// Delete the currently selected rows
rowKeys = selectedRows.iterator();
while (rowKeys.hasNext()) {

RowKey rowKey = (RowKey) rowKeys.next();
Integer pK = (Integer)

musiccategoriesDataProvider.getValue(
"MUSICCATEGORIES.MUSICCATEGORYID", rowKey);

log("Removing music category PK = " + pK);
try {

cascadeDelete(pK);
musiccategoriesDataProvider.removeRow(rowKey);

} catch (Exception e) {
log("Cannot delete row " + rowKey + ": ", e);
error("Cannot delete row " + rowKey + ": " + e);
ok = false;

}
}

336 Chapter 9 Accessing Databases
Add Method Cascade Delete
Let’s discuss the cascadeDelete() method before you add it to your project.
Its argument is a key, specifically, the MUSICCATEGORYID corresponding to
the selected row in the MUSICCATEGORIES table. This method finds the
related records in both the RECORDINGS and TRACKS tables.

Creator Tip

Method cascadeDelete() may not be necessary for some database
configurations. Check with your database software.

Method cascadeDelete() has a throws clause. This allows you to call
RowSet object methods without creating a new try block. Since the button
event handler calls cascadeDelete() within its own try block, it will catch
any thrown exceptions from cascadeDelete(). Inside the method, nested
while loops iterate through the data. The outer while loop steps through the
recordings data provider and finds the related records in the TRACKS table.
The inner while loop steps through the tracks data provider.

Here is the code for the cascadeDelete() method, which you can place in
front of or after the button handler. (Type <Alt+Shift+F> to fix imports.) Copy
and paste your Creator book’s file FieldGuide2/Examples/Database/snippets/
musicDelete_cascade.txt.

Listing 9.11 Method cascadeDelete()

private void cascadeDelete(Integer foreignKey)
throws SQLException

{
getSessionBean1().getRecordingsRowSet().setObject(

1, foreignKey);
recordingsDataProvider.refresh();
if (!recordingsDataProvider.cursorFirst()) return;
boolean ok = true;
do {

getSessionBean1().getTracksRowSet().setObject(1,
(Integer)recordingsDataProvider.getValue(
"RECORDINGS.RECORDINGID"));

tracksDataProvider.refresh();

9.9 Handle Cascading Deletes 337
if (tracksDataProvider.cursorFirst()) {
// delete all tracks with matching RECORDINGID FK
do {

RowKey rowKey = tracksDataProvider.getCursorRow();
try {

log("Removing track PK=" +
tracksDataProvider.getValue(
"TRACKS.TRACKID", rowKey));

tracksDataProvider.removeRow(rowKey);

} catch (Exception e) {
log("Cannot delete tracks row " + rowKey

+ ": ", e);
error("Cannot delete tracks row " + rowKey

+ ": " + e);
ok = false;

}
} while (tracksDataProvider.cursorNext());

if (ok) {
try {

tracksDataProvider.commitChanges();
} catch (Exception e) {

log("Cannot commit changes for tracks: ", e);
error("Cannot commit changes for tracks: " + e);

}

} else {
log("rolling back deletes for tracks");
info("rolling back deletes for tracks");
try {

tracksDataProvider.revertChanges();
} catch (Exception e) {

log("Cannot revert changes for tracks: ", e);
error("Cannot revert changes for tracks: " + e);

}
} // end else

}

Listing 9.11 Method cascadeDelete() (continued)

338 Chapter 9 Accessing Databases
Deploy and Run
Deploy and run project MusicCascadeDelete. Figure 9–33 shows the applica-
tion after the user has selected and deleted categories Classical (primary key 1),
Country (primary key 5), and Musical Theatre (primary key 6). Because the
cascading delete function is implemented, the application also removes the
recording whose category is set to Classical (Orff: Carmina Burana). As you
test the application, use project MusicBuild to return the Music database to its
original state.

// delete matching recording
RowKey rk = recordingsDataProvider.getCursorRow();
try {

log("Removing recording PK=" +
recordingsDataProvider.getValue(
"RECORDINGS.RECORDINGID", rk));

recordingsDataProvider.removeRow(rk);
} catch (Exception e) {

log("Cannot delete tracks row " + rk + ": ", e);
error("Cannot delete tracks row " + rk + ": " + e);
ok = false;

}
} while (recordingsDataProvider.cursorNext());

if (ok) {
try {

recordingsDataProvider.commitChanges();
} catch (Exception e) {

log("Cannot commit changes for recordings: ", e);
error("Cannot commit changes for recordings: " + e);

}

} else {
log("rolling back deletes for recordings");
info("rolling back deletes for recordings");
try {

recordingsDataProvider.revertChanges();
} catch (Exception e) {

log("Cannot revert changes for recordings: ", e);
error("Cannot revert changes for recordings: " + e);

}
} // end else

}

Listing 9.11 Method cascadeDelete() (continued)

9.10 Key Point Summary 339
9.10 Key Point Summary

• The Java Database Connectivity (JDBC) and JDBC RowSets technology
provide a portable way to access a relational database using SQL.

• Creator provides components that allow you to easily connect component
behavior with underlying data from a JDBC-compliant database.

• Creator generates code in session scope (by default) to access the data source
using JDBC CachedRowSets.

• A JDBC CachedRowSet object is a disconnected rowset that extends a
ResultSet object.

Figure 9–33 MusicCascadeDelete after deleting categories Classical, Country, and
Musical Theatre

340 Chapter 9 Accessing Databases
• Creator adds a data provider layer between the JDBC CachedRowSets and
the data aware components, enabling you to isolate client code from the
persistence strategy.

• When you select a data source (a table) from Creator’s Servers window,
Creator generates code in the Java page bean to manipulate this data
through a data provider. It configures the data-aware component, applies
converters when necessary, and provides configuration dialogs that allow
you to customize the component.

• The Music Collection Database consists of four related tables, as
diagrammed in Figure 9–1 on page 269. Relational databases use foreign
keys to relate records from one table to records of another table.

• A dropdown list creates a selection menu from a fixed list of choices. You
can drop a database table onto the component to obtain the selection choices
from a database. Creator builds and configures the data provider and
cached row set for you.

• A listbox component creates a fixed list of choices that are all displayed. You
can also bind this component to a data provider.

• Selection components (such as dropdown and listbox) let you specify a
database field for display and a different database field for its value. This
allows meaningful text to be displayed to the user and at the same time the
selection is automatically tied to a row’s primary key.

• You can add a Creator table component and bind it to a data provider. You
can modify which columns are displayed and the embedded component to
use with the table (static text is the default). Creator’s table component
provides a paging mechanism, sort controls, and options for selecting and
deselecting rows.

• You can control the data that is returned by invoking the Query Editor.
• You can use the Query Editor to sort the rowset, add a criterion based on a

parameter or a fixed value, or create a JOIN by adding additional database
tables.

• You use data provider methods to manipulate the underlying data, such as
appendRow(), deleteRow(), commitChanges(), revertChanges(), and set/
get values.

• You can edit and update data in your underlying database when you bind a
data table component to a rowset and edit the fields in the component.

• You can insert or delete rows in a database by manipulating the data’s
RowSet object.

• Database applications that perform delete operations must handle cascading
delete situations when the database contains related tables.

ACCESSING WEB
SERVICES
Topics in This Chapter

• Google Web Services
• Adding and Testing a Web Service
• Nested Components
• Exceptions and Error Handling
• Message and Message Group Components
• Hyperlink Component
• String Validation
• Table Component and Data Providers
• Saving and Restoring Page Data

Chapter
eb services are software APIs that are accessible over a network in a
heterogeneous environment. This network accessibility is achieved
with a set of XML-based open standards such as the Web Services
Description Language (WSDL), the Simple Object Access Protocol

(SOAP), and Universal Description, Discovery, and Integration (UDDI). Both
web service providers and clients use these standards to define, publish, and
access web services.

Creator’s default application server provides support for web services. Pre-
installed with Creator is a Google Web Service client, which appears in the
Servers window under node Web Services > Samples > GoogleSearch. The
Google Web Service APIs provide a SOAP interface to search Google’s index,
accessing information and web pages from its cache. With SOAP and WSDL,
Google enables clients to access these services in a variety of programming
environments (including, of course, Java).

This chapter shows you how to create an application that uses the Google
Web Service API. Then, you’ll enhance it. After creating a project that uses web
services, you’ll (hopefully) exclaim, “Is that all?” because the steps are fairly
simple. And that’s the way technology should be when industry-wide stan-
dards are adopted. You’ll see that once we drag and drop the web service onto
the design canvas in Creator, we spend most of our time showing you elabo-
rate ways to manipulate and display the data that Google returns.

W

343

344 Chapter 10 Accessing Web Services
10.1 Google Web Services

We’ve divided this example into several projects that incrementally build on
features of the previous project. With each increment, you’ll start with the
project you previously built. Alternatively, you can pull up any of the projects
from the Creator download and make changes to these projects.

Note

You must register with Google before using their web service. You’ll also
want to download the Google Web APIs developer’s kit since it has additional
documentation. Registration is free and painless. Once you register, Google
will email you a key, which is required for access to their service. The Google
Web Service URL is at http://www.google.com/apis/.

Let’s look at a summary of the projects you’ll be building. In this first ver-
sion, you’ll submit a search query to Google’s search service and display just
the first result that’s returned. This is equivalent to the “I’m Feeling Lucky”
submit button on the Google web site. In subsequent versions, you’ll add vali-
dation for the query text field and display (up to) all ten results returned.
Finally, you’ll add pagination so that you can obtain and display subsequent
groups of results.

Figure 10–1 shows Creator’s design canvas with the components you’ll add
for project Google1. The image component holds Google’s recognizable logo, a
button component initiates the search, and a text field holds the search string.
For the results display, static text component timeCount displays the search
time and results count, the hyperlink component and an embedded static text
component display the target URL, and static text component snippet dis-
plays the URL’s “snippet” description. You’ll bind these components to the var-
ious properties of the result object and you’ll nest them inside a grid panel
container to more easily manipulate them as a group.

Create a New Project
1. From Creator’s Welcome Page, select button Create New Project. From the

New Project dialog, under Categories select Web and under Projects select
JSF Web Application. Click Next.

2. In the New Web Application dialog, specify Google1 for Project Name and
click Finish.

After creating the project, Creator comes up in the design view of the editor
pane. You can now set the title.

10.1 Google Web Services 345
3. Select Title in the Properties window and type in the text Google Search 1.
Finish by pressing <Enter>.

Add the Google Logo
It’s a nice touch to include the Google logo when building a web application
with Google’s search service. To do this, use an image component and set its
url property to the Google logo.

1. In the Basic Components palette, select Image and drag it onto the editor
pane. Place the image component in the upper-left corner of the canvas.

2. Make sure that the image component is selected, right-click, and select Set
Image from the context menu. Creator pops up an Image Customizer dialog
that allows you to specify the URL, File, or Theme Icon for the image.

3. In the dialog, select radio button Choose File, browse to the Creator book
download, and specify directory FieldGuide2/Examples/WebServices/
images for the field labeled “Look in:”, as shown in Figure 10–2.

4. Select file Logo_40wht.gif. Click Apply. Creator displays the logo in the dia-
log’s Preview window and the image appears on the design canvas.

5. Click OK. Creator copies the image file to the project’s Web Pages >
resources directory.

Figure 10–1 Creator’s design canvas view showing project Google1’s components

Image Button

Text Field

Static Text (timeCount)
Hyperlink/Nested Static Text
Static Text (snippet)

Grid Panel
Message

Group

346 Chapter 10 Accessing Web Services
Add a Text Field Component
You’ll need a text field component to obtain the user’s search query.

1. In the Basic Components palette, select component Text Field and drag it
onto the design canvas. Place it below the Google logo.

2. Make sure it is selected and stretch it so that it’s approximately 15 grid units
wide.

3. In the Properties window, change its id property to searchString.
4. To provide a tooltip for this text field, type the text Type in a search string fol-

lowed by <Enter> for the toolTip property (under Behavior).

Add a Button Component
In this application, a button component initiates a search using Google’s Web
Service API.

Figure 10–2 Image Customizer dialog for image component

10.1 Google Web Services 347
1. In the Basic Components palette, select Button and drag it onto the design
canvas. Place it to the right of the Google logo.

2. Make sure the button is still selected. Type in the text Google Search fol-
lowed by <Enter>. Creator resizes the button to accommodate the longer text
string, which now appears inside the button on the design canvas. This sets
the button’s text property.

3. In the Properties window, change the button’s id attribute to search.
4. To provide a tooltip for the button, edit its toolTip property in the Proper-

ties window (under Behavior). Type in the text Search Google for the Search
String followed by <Enter>.

5. Align the Google logo with the button. Select the button component in the
design canvas. While pressing <Shift>, move the mouse to the Google logo
and left-click, which simultaneously selects the logo.

6. With both components selected, make sure the mouse is over the logo and
right-click. Select option Align > Middle from the context menu. The button
will move so that it is centered vertically in relation to the logo.

Creator Tip

Creator provides several ways to help you place components on the canvas.
By default, components “snap to the grid lines.” To adjust components
without regard to the grid lines, hold the <Shift> key as you move the
component on the canvas. You can select multiple components using the
<Shift> key while you left-click with the mouse. Then it is possible to move
the selected components as a group. Finally, make adjustments between
components by selecting them and right-clicking the mouse inside the
“anchor” component, as described above. The Align menu selection has
several options that you can use to manipulate the selected components.

Add the Google Web Services
Since the Google Web Service client is preinstalled for you, you can simply
drag and drop this component to add it to your project.

1. In the Servers window, expand the Web Services > Samples > Google-
Search nodes.

2. Drag the doGoogleSearch node and drop it anywhere on the editor pane.
Nothing appears in the design canvas; however, you will see
googleSearchClient1 and googleSearchDoGoogleSearch1 in the Outline view
for Page1, as shown in Figure 10–6 on page 355.

348 Chapter 10 Accessing Web Services
Adding a Web Service to the IDE
The Creator installation process configures the Google web service as well as
other web services listed under the Web Services > Samples node in the Serv-
ers window. Creator also provides a way to add a web service to the Services
view. For example, here are the steps to load the Google web service client into
Creator manually.

Creator Tip

Since the GoogleSearch web service client is included with Creator, you do
not need to follow these steps to access it from a Creator project. We include
this procedure in case you’d like to add a web service that has not been pre-
configured with Creator.

Before you can add a web service, you must provide the location (URL) of its
Web Services Description Language (WSDL) page. This is the information that
describes the particular web service’s API.

We’re going to step through the process to add the Google Search to Creator
as an example. Once you’ve determined the Web Service URL, you can use
these steps to add any web service.

1. Go to the Servers view.
2. Right-click on Web Services.
3. Select Add Web Service. Creator pops up the Add Web Service dialog.
4. In the URL field at the top, supply the URL of the WSDL file of the target

web service. Here is the URL for Google’s WSDL file.

This is the location of the WSDL (Web Services Description Language) file
for the Google Search Service.

5. Click Get Web Service Information. The Google web service API appears in
the Web Service Information window, as shown in Figure 10–3.

6. Scroll through the information in the Web Service Information window. Cre-
ator displays detailed information about the web service, including its
name, the package name, port name, port display name, port address, and
the methods. Information on the methods include the method names, the
parameters and their types, and the return type. We’ll examine the search
method doGoogleSearch() in more detail later in this chapter.

7. Click Add. The name GoogleSearch appears under the Web Services node in
the Servers window.

http://api.google.com/GoogleSearch.wsdl

10.1 Google Web Services 349
Once a web service is listed in the Servers view, you can select it and add it
to your Creator project (as you did with GoogleSearch).

Add Search Result Properties to Page1
The trick to easily manipulating the results of the Google search web service is
make the return object accessible through the IDE. The search web service
returns an object (GoogleSearchResult) that contains information that you’ll
access. Object GoogleSearchResult also includes an object array (result-
Elements) that contains specific information on the search result sites. You’ll
make both of these objects properties, then add an object array data provider to
bind to the components on the page.

Figure 10–3 Add Web Service dialog

350 Chapter 10 Accessing Web Services
1. In the Projects window, expand the Sources Packages > google1 nodes.
2. Right-click on Page1.java and select Add > Property. Creator pops up the

New Property Pattern dialog, as shown in Figure 10–4.

3. For Name, specify mySearchResult, for Type, use GoogleSearchResult, and
for Mode select Read Only. Name and Type are case sensitive, so be sure to
match the capitalizations. Click OK.

4. Add a second property to Page1. For Name, specify resultArray, for Type
specify ResultElement[], and for Mode select Read Only.

Creator Tip

Make sure that property resultArray is NOT an indexed property, but that
Type includes the array notation [].

5. Select the Java label in the editing toolbar to bring up Page1.java in the Java
source editor.

6. Scroll to the end of the file where you’ll see the generated code that added
properties mySearchResult and resultArray. You’ll see syntax errors. Fix
these using the shortcut <Alt-Shift-F> (fix imports), or <Alt-Shift-I> (import

Figure 10–4 Adding property mySearchResult to Page1.java

10.1 Google Web Services 351
shortcut). (You must put the cursor anywhere inside GoogleSearchResult
and ResultElement[] before using the <Alt-Shift-I> import shortcut.)

7. Add the following initialization statement to the end of method init() in
Page1.java, as shown (the added code is bold). This allows you to control
the visibility of the grid panel container component by binding its rendered
property to whether or not property mySearchResult is null.

8. Save the project files by clicking the Save All icon on the toolbar.

Add a Data Provider
Using an object array data provider will make the types contained in Result-
Element visible through the IDE. This, in turn, will make component binding
easy.

1. Select Design in the editing toolbar to return to the design view.
2. Expand the Data Providers node in the Components palette.
3. From the Data Providers Components palette, select Object Array Data Pro-

vider and drop it on the design view.You’ll see component objectArray-
DataProvider1 in the Page1 Outline view.

4. In the Properties window, change the object array data provider’s id prop-
erty to myResultObject.

5. Still in the Properties window, select the drop down opposite property
array and select resultArray. This connects the data provider to the array
returned in the GoogleSearchObject.

Layout and Grouping with Grid Panel
You’ll now add the components that will display the results of the Google
Search. Because you want to control these components as a group, you’ll use a
Grid Panel component as a container for the display components.

1. From the Components palette, expand the Layout node, if necessary.
2. From the Layout Components palette, select Grid Panel and place it on the

page below the text field component.

public void init() {
. . .

super.init();
. . .

// Creator-managed Component Initialization
. . .

mySearchResult = null;
}

352 Chapter 10 Accessing Web Services
3. In the Properties window under Advanced, uncheck property rendered. This
sets the rendered property to false and causes the grid panel to disappear
from the design view.

4. Select the JSP label in the editing toolbar to bring up Page1.jsp in the editor
pane.

5. Scroll down to the grid panel tag and locate the rendered property. Change
its setting from false to the following.

This means that the grid panel (and all of its sub-components) will be ren-
dered (displayed) if Page1.mySearchResult is not empty (null).

Creator Tip

By nesting the display components (static text and hyperlink components)
inside a grid panel, we can control the rendering of all of these components by
specifying the rendered property of the container component (the grid panel).

6. Return to the design view by selecting the Design label in the editing tool-
bar. The grid panel should reappear on the design canvas.

7. Check the setting for property rendered. In the Properties window, locate
property rendered and hold the mouse pointer over the cell. Creator dis-
plays a tooltip with the current setting for this property, as shown in
Figure 10–5.

rendered="#{not empty Page1.mySearchResult}"

Figure 10–5 Showing the grid panel’s rendered property binding expression

10.1 Google Web Services 353
Add a Static Text Component
Next, let’s add a static text component to display some of the search results
from Google. You’ll add this component to the grid panel container.

1. From the Basic Components palette, select Static Text. Place it on top of the
grid panel. You can make it a sub-component of grid panel by dropping it
on top of the grid panel component in the Outline view, or dropping it on
the grid panel in the design view.

2. In the Properties window, change its id property to timeCount.

The static text component timeCount will display the amount of time in sec-
onds that the search request took on Google’s server, as well as the estimated
number of search results found. Although Google’s search returns at most ten
results, this number is the estimated total (anywhere from zero to thousands).

Using Hyperlink with a Nested Static Text
The hyperlink component allows application writers to submit a form, navi-
gate to an external URL, or navigate to an anchor within the same page. You’ll
use it to hold the URL returned in the Google search results. Normally, the
text property of the hyperlink component is sufficient to display descriptive
text for its URL. However, in this situation, the text will contain embedded
HTML code supplied by the Google search web service. To correctly render
this, use a nested static text component and uncheck its escape property.

1. In the Basic Components palette, select Hyperlink and drop it onto the grid
panel in the Page1 Outline view. It should appear nested under the grid
panel at the same level as the timeCount static text component you already
added. The id property of this component is hyperlink1.

2. In the Basic Components palette, select Static Text and drop it directly on top
of the hyperlink component you just added. (You can drop it on top of the
component on the design canvas, or you can drop it on top of the hyperlink
displayed in the Page1 Outline view.)

Creator Tip

When you drop it on top of the hyperlink component in the design view, make
sure that the hyperlink component is outlined in blue. This is an indication
that you have selected it for placement and that the static text component will
be nested. If you drop it onto the hyperlink component in the Outline view,
the hyperlink component should be selected (white text in a blue background),
making the static text component nested.

354 Chapter 10 Accessing Web Services
3. Make sure that the nested static text component is selected. In the Properties
window, change its id property to nestedText.

4. Under Data in the Properties window, uncheck the escape property. This
allows correct rendering of HTML tags embedded within the text.

5. Add another static text component and drop it on top of the grid panel in
the Outline view. This second static text component will display the “snip-
pet” returned by the Google search.

6. In the Properties window, change the id property to snippet.
7. The snippet that Google returns will also contain embedded HTML tags. To

display the HTML formatting correctly, uncheck the escape property in the
static text’s Properties window.

Add a Message Group to Display Errors
When you access an external web service, there is always a possibility that the
access could fail. The server that provides the web service could be inaccessi-
ble, the machine that runs the web application could fail, or the access key may
be incorrect. In any case, you want to know that the web services call has failed
and why.

We’ll show you the code that guards against any type of failure later in this
section. For now, you’ll use a Message Group component to display messages
for this web application.

• From the Basic Components palette, select Message Group component and
drop it onto the design canvas. Place it to the right of the text field.

The Message Group component renders messages that are tied to any com-
ponent, as well as messages generated by the message routines, info(),
warn(), error(), and fatal(). You can use these routines to report infor-
mation back to the user from any bean (Java class) that extends class Faces-
Bean.

You’ve finished adding the components to the page. Compare the compo-
nents you have placed on the page with those shown in Figure 10–6, the Out-
line view for Page1.

10.1 Google Web Services 355
Deploy and Run
Creator Tip

Although you haven’t added the calls to the Google Web Service yet, let’s
build and run the web application anyway. When the application runs, the
page is redisplayed when you click the Search Google button (admittedly, not
much).

To run the project, click the green arrow in the toolbar or select Run > Run
Main Project from the main menu. The page should display the Google logo in
the upper-left corner, as well as the text field and button. The grid panel and all
of its nested components will not be visible since property mySearchResult is
empty (null). You can type in a test search string, but clicking the button does
not (yet) access the Google web service. It does, however, redisplay the page.

Now it’s time to look at the methods in the Google web service API.

Figure 10–6 Page1 Outline view of project Google1

356 Chapter 10 Accessing Web Services
Inspect the Web Service
The Google web service is already included in your application, so let’s use
Creator to learn more about it.

When you added the Google web service to your page, Creator modified the
Java page bean file (Page1.java) to import the Google web service package, as
shown here.

In the Navigator window Creator displays the Page1 methods (orange circle
icon), the constructor (yellow diamond icon), and private variables (blue rect-
angle icon). Find the blue rectangle next to variable googleSearchClient1 and
double-click. In the Creator-managed code, you’ll see private variable
googleSearchDoGoogleSearch1 defined as follows.

This is the object that you use to make calls to Google’s web service API, as
follows.

Creator Tip

At this point, you will undoubtedly find Google’s documentation to be
helpful. A detailed description of the methods and their parameters can be
found on the Google Web Site: http://www.google.com/apis/
reference.html

Table 10.1 contains a list of the parameters for initiating a search with the
googleSearchDoGoogleSearch object. The search returns a GoogleSearch-
Result object.

import webservice.googlesearchservice.googlesearch.
GoogleSearchClient;

import webservice.googlesearchservice.googlesearch.
GoogleSearchDoGoogleSearch;

private GoogleSearchDoGoogleSearch googleSearchDoGoogleSearch1
= new GoogleSearchDoGoogleSearch();

mySearchResult = (GoogleSearchResult)
googleSearchDoGoogleSearch1.getResultObject();

10.1 Google Web Services 357

Table 10.2 contains some of the methods for return object GoogleSearch-
Result. Note that these methods are the getter form of JavaBeans object prop-
erties. Therefore you can call the getter method, or access the property using a
JSF EL expression, such as the following.

which evaluates to the starting index of the returned results.

Table 10.1 doGoogleSearch() parameters

Name Type Description
key String Key provided to you by Google. A key is

required for access to the Google service.

q String Search query.

start int Zero-based index of the first desired result.

maxResults int Number of results desired per query. This
is at most 10.

filter boolean Specifies whether or not you want filtering,
which helps eliminate very similar results.

restricts String Limits the search to a subset of the Google
Web index.

safeSearch boolean Enables filtering of adult content.

lr String Language Restrict–limits the search to
documents with the specified languages.

ie String Input Encoding–deprecated.

oe String Output Encoding–deprecated.

#{Page1.mySearchResult.startIndex}

358 Chapter 10 Accessing Web Services
Finally, each response includes an array of ResultElement objects. Some of
the methods you use to access a ResultElement object are listed in Table 10.3.

Table 10.2 GoogleSearchResult public methods

Name Return Type Description
getDirectoryCategories Array Array of the Directory

Category items
corresponding to the
ODPa directory matches
for this search.

getEndIndex int Index (1-based) of the last
search result in the
ResultElements array.

getEstimatedTotalResultsCount int Estimates of the total
number of results for the
query.

getResultElements ResultElement[] Array containing the
results.

getSearchComments String Search comments.

getSearchQuery String Search query you
provided.

getSearchTime double Time it took the Google
server to compute the
results.

getSearchTips String Tips for searching.

getStartIndex int Index (1-based) of the first
search result in the
ResultElements array.

isDocmentFiltering boolean True if document filtering
is enabled.

isEstimateIsExact boolean True if the total results
estimate is exact.

a. “The Open Directory Project is the largest, most comprehensive human-edited direc-
tory of the Web. It is constructed and maintained by a vast, global community of volunteer
editors.” (See About the Open Directory Project, http://dmoz.org.)

10.1 Google Web Services 359
Testing the Google Web Service
Creator provides a web services testing mechanism. This is a quick way to
study the method, provide parameters, and look at the results. Here’s how.

1. In the Servers window under Web Services > Samples > GoogleSearch,
right-click method doGoogleSearch() and select Test Method. Creator pops
up the Test Web Service Method dialog.

2. Fill in the dialog as shown in Figure 10–7. For key, provide your key (sent to
you by Google after you register at their web site), for q, provide a query
string (we used “I M Pei Louvre”), and for maxResults, use 1. You can use
default values for all of the other parameters.

3. Click Submit. A successful test displays the results in the Results window.
Expand GoogleSearchResult > ResultElement[] > ResultElement to see the
results.

4. Click Close to finish.

Table 10.3 ResultElement public methods

Name Return Type Description
getCachedSize String Size of the cached

document.

getDirectoryCategory DirectoryCategory Name of the ODP
category in which the
result occurs.

getDirectoryTitle String Name of the result as it
appears in the Open
Directory.

getHostName String Hostname of the result.

getSnippet String Short description of the
result page.

getSummary String Description of the
result as it appears in
the Open Directory.

getTitle String Page title of the result.

getURL String URL of the result page.

isRelatedInformationPresent boolean True if there are related
documents to this
result.

360 Chapter 10 Accessing Web Services
Configure Web Service Call
Instead of supplying method parameters in the event handling code, you can
configure the web service through the Properties window, as follows.

1. Select googleSearchDoGoogleSearch1 in the Page1 Outline view.
2. In the Properties window, the method’s arguments are all listed under the

General heading. For property key, provide your key (the one Google sent to
you) and for maxResults, use 10. These are the only properties that you need
to set.

Figure 10–7 Testing Web Service Method doGoogleSearch

10.1 Google Web Services 361
Creator Tip

Make sure you include your Google Web API’s License Key for property key.
Otherwise, your application will return an exception. You’ll configure the
search query (property q) later.

Add Event Handling Code for Button
You’ll now add the Java code to access Google’s search method. You’ll put the
code in the action method associated with the Google Search button on the
page.

1. Make sure the Page1 design view is active in the editor pane.
2. Double-click the Google Search button. Creator generates default code for

the button’s action method, search_action() and brings up Page1.java in
the Java source editor.

3. Add the following code to the search_action() method. From your Cre-
ator book download, copy and paste the file FieldGuide2/Examples/Web-
Services/snippets/google1_search.txt into the search_action() event
handler. The added code is bold.

Handling Exceptions and Error Messages
Let’s examine the search button’s action event code.

Listing 10.1 Method search_action()

public String search_action() {
try {

mySearchResult = (GoogleSearchResult)
googleSearchDoGoogleSearch1.getResultObject();

resultArray = mySearchResult.getResultElements();
myResultObject.setArray(

(java.lang.Object[])getValue("#{Page1.resultArray}"));
} catch (Exception e) {

log("Remote Connect Failure: ", e);
mySearchResult = null;
error("Remote Site Failure: " + e.getMessage());

}
return null;

}

362 Chapter 10 Accessing Web Services
Because method doGoogleSearch() (which you invoke through the client
googleSearchDoGoogleSearch1) throws RemoteException, you should
include its call inside a try block. In this case, the accompanying catch handler
will catch any exception, including RemoteException. The catch handler per-
forms several tasks. First, it logs the error with the application server’s log. You
can view the log by selecting Deployment Server in the Servers window.
Right-click and select View Server Log. Creator displays the log in the Output
window (by default this is below the editor pane) under the tab for the applica-
tion server host machine and port (ours is localhost:24848).

The next line sets the Page1 property mySearchResult to null. Recall that
you bound the rendered property of the grid panel to whether or not this
property is empty. Since there is nothing to display when an exception occurs,
it makes sense to make sure the screen is not cluttered with a previous call’s
results.

The last line of the catch handler is a call to method error(). Method
error() posts a message to the FacesContext. This message is not associated
with a particular component, but is a generic user message. Generic messages
will be displayed by a message group component if there is one on the page.
(This is why you placed a message group component on the page.) Along with
method error(), Creator provides methods info(), warn(), and fatal() for
reporting messages back to the user. These message reporting methods render
differently on the page, depending on their severity level.

If the call to googleSearchDoGoogleSearch1 succeeds, you store the results
in variable mySearchResult (a property), making the results accessible to the
rest of the web application. You also set property resultArray and the data
provider’s array property. In the next section, you’ll bind the components
using these Page1 components.

Specify Binding for the Display Components
The static text and hyperlink components that you nested inside the grid panel
display portions of the result returned from the call to Google’s search method.
Instead of setting these components’ properties inside the event handler, you
can specify the bindings through the Properties window. Let’s provide the
bindings now. (You may want to refer to Table 10.3 on page 359, which lists the
properties for the returned result object.)

Design Note

Because taking small steps is always better than attempting a giant leap, let’s
display only the first result on your web page. In a later section, we’ll have
you display all of the returned results (a maximum of ten).

10.1 Google Web Services 363
1. Click the Design label in the editing toolbar to return to the design view.
2. Select the static text component timeCount. In the Properties window for

property text, type in the following binding expression. (Note that this
expression combines literal text with expressions.) Type in the complete text
on a single line and finish with <Enter>. The text will appear on the design
canvas.

This will display the search time and the estimated total number of results
returned from the search.

Creator Tip

If you hold the mouse over the text property in the Properties window, the
value is displayed in a tooltip. Use this to check that you entered the
expressions and literal text correctly.

Now you’ll bind the display components to the object array data provider,
myResultObject.

1. Select the hyperlink component (use the Outline view). In the Properties
window, select the editing box opposite property text. Creator pops up a
property customizer. Click button Unset Property to remove the default text,
Hyperlink.

2. The hyperlink component holds the URL property of the result returned
from the Google search. In the Properties window, select the editing box
opposite property url. Creator displays the url property customizer.

3. Select radio button Use binding and tab Bind to Data Provider. Make sure that
data provider myResultObject is selected, as shown in Figure 10–8. Select
property URL in the Data field window. Click OK.

Creator generates the following binding expression for the hyperlink’s url
property.

4. Select the nested static text component nestedText. This component will
display the title of the returned search result. In the Properties window for
property text, click the editing box to bring up the text property customer.

Search Time: #{Page1.mySearchResult.searchTime}; Approx.
Results: #{Page1.mySearchResult.estimatedTotalResultsCount}

#{Page1.myResultObject.value['URL']}

364 Chapter 10 Accessing Web Services
5. Select radio button Use binding, tab Bind to Data Provider, Data Provider
myResultObject, and Data field title. Select OK. Creator generates the follow-
ing expression.

6. Make sure that the escape property for this static text component is
unchecked (set to false). This allows the embedded HTML elements that Goo-
gle supplies to be rendered correctly on the page.

7. Select the static text component snippet. This components displays a short
description of the returned URL. In the Properties window, bring up the cus-
tomizer for property text.

8. Select radio button Use binding, tab Bind to Data Provider, Data Provider
myResultObject, and Data field snippet. Select OK. Creator generates the fol-
lowing expression.

#{Page1.myResultObject.value['title']}

#{Page1.myResultObject.value['snippet']}

Figure 10–8 Bind url property to the object array data provider myResultObject

10.1 Google Web Services 365
9. Make sure that the escape property for this static text component is also
unchecked (set to false).

Finally, you’ll bind the text field searchString to the query parameter q in
the googleSearchDoGoogleSearch1 object.

1. In the Design view, select text field component searchString. In the Proper-
ties window, bring up the customizer for property text.

2. Select radio button Use binding and tab Bind to an Object.
3. In the Select binding target window, expand googleSearchDoGoogleSearch1

node and select property q, as shown in Figure 10–9. Click OK.

Deploy and Run
You’re ready to test this initial version of the Google search web application.

Figure 10–9 Bind searchString text property to property q (query)

366 Chapter 10 Accessing Web Services
• From the main menu bar, select Run > Run Main Project or select the green
arrow on the icon bar. You can test the Google Search API by typing in
various search queries. Click on the URL (displayed as the title) and go to
that web page. Figure 10–10 shows a screen shot of the application.

10.2 Validation - Project Google2

You have created a simple web application that uses a published web service.
Now you’re going to build on this example and enhance it in the following
ways.

• Provide validation for the text field component and require that the user
provide something. That is, you want to prevent a zero-length string and
require a minimum length for the search string (three characters).

• Place a message component on the page to report validation errors
associated with the text field component.

• Configure the message group component so that it displays global messages
only.

Figure 10–10 First version of the Google Web Search application

10.2 Validation - Project Google2 367
Copy the Project
To avoid starting from scratch, make a copy of the Google1 project. This step is
optional. If you don’t want to copy the project, simply skip this section and
continue making modifications to Google1.

1. Bring up project Google1 in Creator, if it’s not already opened.
2. From the Projects window, right-click node Google1 and select Save Project

As. Provide the new name Google2.
3. Close project Google1. Right-click Google2 and select Set Main Project.

You’ll make changes to the Google2 project.
4. Expand Google2 > Web Pages and open Page1.jsp in the design view.
5. Click anywhere in the background of the design canvas of the Google2

project. In the Properties window, change the page’s Title property to Goo-
gle Search 2.

Add a Validator
It’s always a good idea to validate user input. Included in the components pal-
ette are a set of validators to help with this task. With text strings, two valida-
tors are of interest. First, a length validator can control a String’s length. You
can specify a maximum and a minimum for the number of characters input.
Interestingly enough, if you want to prevent a zero-length string, you cannot
use the length validator (and set the minimum to 1). Instead, you must use the
component’s required attribute. The required attribute is set in the Properties
window for each text field component. If you check it (set it to true) and the
component’s value is a String, then its length must be greater than zero.

Validation in this application is important for two reasons. First, the web
application developer has better control over user input and can give feedback
to increase program usability. Secondly, by requiring valid input at the applica-
tion’s server site, you prevent access to Google’s web site with an invalid search
request.

For this example, let’s prevent a zero-length string and set a length mini-
mum of three characters and a maximum of 2,048 characters (this is the maxi-
mum search query allowed by Google).

368 Chapter 10 Accessing Web Services
Creator Tip

For testing, you’ll set the length minimum to 3 and its maximum to 25.
Coupled with the required validator, you should get the following behavior. If
the user leaves the text field empty, you’ll get a message from the required
validator saying that a value is required. If you type in a 1- or 2-character text
value, you’ll get feedback from the length validator saying that it was less
than the minimum of 3. Likewise, if you type in more than 25 characters, the
length validator will complain that the string was more than the maximum.
Note that a zero-length string does not trigger the length validator even if the
minimum is set to 1. You must use the required attribute of the component!

Let’s add validation to the application now.

1. Make sure Page1 is active in the design canvas.
2. Select the text field component, searchString.
3. In the Properties window, click the checkbox for the required attribute. This

means the text field component cannot be empty.
4. From the Components palette, expand the Validators node, select Length

Validator, and drop it on top of the searchString text field component. Cre-
ator sets the validator attribute for searchString to lengthValidator1.
Component lengthValidator1 appears in the Page1 Outline view.

You’ve instantiated a length validator for the text field component. Now you
have to give it length boundaries: the minimum and maximum allowable.

5. Select lengthValidator1 in the Outline view. In its corresponding Proper-
ties window, change attribute maximum to 25 and minimum to 3.

These values are probably not the limits you’d want to use in your produc-
tion application, but they’re good values for testing. Once you’re convinced
that the application is working the way you want, set the maximum to 2048,
which is the maximum imposed by Google. The advantage of using the valida-
tor instead of letting Google complain is that you save a trip to the Google
server.

Note also that the private _init() method in the Java page bean has been
modified to include the minimum and maximum settings you defined in the
Properties window, as follows. (Unfold the Creator-managed Component Defi-
nition block to see the _init() method.)

lengthValidator1.setMaximum(25);
lengthValidator1.setMinimum(3);

10.2 Validation - Project Google2 369
Add a Message Component
You’ve already placed a message group component on the page. And, if you
run the web application now, the message group component will display error
messages detected during validation. However, the look of the message group
component is not really what you want, since validation messages aren’t really
“System Messages.” For validation error reporting, use the message compo-
nent. Like the message group component, the message component retrieves
messages from the JSF context. The difference is that the message component is
associated with a single component. That way, the web application designer
can control exactly where on the page the error message for a specific input
component appears. This is particularly useful for pages that contain many
input components (such as a form that submits a whole page of personal infor-
mation). Thus, when the validator sends an error message to the JSF context, it
identifies the component whose input is marked invalid. A message compo-
nent tied to this input component will pick up the error message and display it
on the page.

1. Return to the Design view.
2. From the Basic Components palette, select Message component and drop it

onto the design canvas. Place it in between the text field and the grid panel.
3. When you place the message component on the canvas, you can associate it

with the text field using the mouse. Press and hold <CTRL+Shift>, left-click
the mouse, and drag the cursor to the searchString text field. This sets the
message component’s for property. In the design view, the message compo-
nent now displays the text Message summary for searchString.

Message and Message Group Components
Go ahead and run the web application (select Run > Run Main Project from the
main menu). Either leave the input field blank or type in less than three charac-
ters and press the Google Search button. You’ll see that the application displays
the error message twice: both the message component (which is tied to the text
field) and the message group component (which displays all messages) display
the validation error.

By default, a message group component displays all messages associated
with a page, both messages tied to a specific component (such as the validation
error message you just saw) and system messages (such as a problem with
your Google authorization key). But when you also use message components
specific to an input component, it’s better to restrict a message group compo-
nent to display global messages only. Global messages are those that are not
tied to a specific component.

1. Make sure that Page1 is active in the design view.

370 Chapter 10 Accessing Web Services
2. Select the message group component.
3. In the Properties window, check property showGlobalOnly (set it to true).

The message group component now displays the text “List of global mes-
sage summaries.”

4. Rerun the application and check its behavior for reporting validation errors
as well as system errors. To simulate a system error, temporarily disconnect
your test machine from the internet or use an incorrect access key. The Goo-
gle web services call will fail. Figure 10–11 shows the application running
with a validation error message (from the length validator).

Creator Tip

During testing, note that when you complete a successful search and follow
this with invalid input, the previous results are cleared from the page. You get
this behavior because you reset property mySearchResult to null during the
Page1 method init(). JSF calls method init() with each page access,
assuring that the page will only render results from a new, valid call to
doGoogleSearch() method.

10.3 Displaying Multiple Result
Elements

The previous version of the application displays only the first result element
returned from a Google search. Most of the time, the Google search returns an

Figure 10–11 Google Web Search with input validation

10.3 Displaying Multiple Result Elements 371
array of ten results. You get the first ten results of the query if parameter start
is set to zero and maxResults is set to 10. To get the next set of ten results, set
start to 10 (instead of 0). For the third set of ten results, set start to 20, and so
on.

Google returns the total result count with method getEstimatedTotalRe-
sultsCount(); you can easily determine the number of results returned by get-
ting the length attribute of the ResultElement array. This will be at most ten.
Furthermore, Google imposes a 1,000 count limit, so even if the query returns
30,000 hits, Google will give you at most 1,000 (in ten-count page increments).

In this version of our Google search application, you’re going to display all
(up to ten) elements of the ResultElement array (that is, the first page). You’ll
use Creator’s Table component and the object array data provider you already
configured.

Our approach is not so different from the project you just built: you use a
hyperlink component to hold the ResultElement’s URL, a nested static text
holds the result’s title, and a second static text component holds the result’s
snippet. To make sure that the snippet information starts on its own line in the
table, you’ll use a static text component to hold the HTML
 tag, which
forces a line break in the table cell.

Here are the enhancements that you’re going to make to this project.

• Use a Table component to format and display the results from a Google
search web service call.

• Use an Object Array Data Provider (component myResultObject) to map
the ResultElements[] array into the table component.

• Specify binding expressions for the table title, column title, as well as each
component that you’ll add to the table column.

Copy the Project
To avoid starting from scratch, make a copy of the Google2 project. This step is
optional. If you don’t want to copy the project, simply skip this section and
continue making modifications to Google2.

1. Bring up project Google2 in Creator, if it’s not already opened.
2. From the Projects window, right-click node Google2 and select Save Project

As. Provide the new name Google3.
3. Close project Google2. Right-click Google3 and select Set Main Project.

You’ll make changes to the Google3 project.
4. Expand Google3 > Web Pages and open Page1.jsp in the design view.
5. Click anywhere in the background of the design canvas of the Google3

project. In the Properties window, change the page’s Title property to Goo-
gle Search 3.

372 Chapter 10 Accessing Web Services
Add a Table Component
The table component is a convenient way to present tabular data, such as an
array of objects. You’ll be using a single column (to mimic the display you see
from Google’s web site). In each cell, you’ll display the result web site’s title fol-
lowed by the snippet. The title is the text for the hyperlink to the result’s site.

1. Make sure that Page1 is active in the design view. Close the Output window
to give yourself more room to work in the design editor.

2. From the Basic Components palette, select Table and drag it to the canvas.
Place it below the grid panel component that’s already on the page. (You’ll
delete the grid panel component later. For now, leave it on the page.) You’ll
see a default table rendered on the design canvas and the default table data
provider, defaultTableDataProvider1, appears in the Outline view.

3. When you place the table component on the canvas, the table’s title is
selected so that you can provide your own title.

4. Type in the following text to set the title.

Type the text all on a single line and finish with <Enter>. The title text will
appear in the table’s title area.

Configure the Table
When you place the table component on the page, creator configures it with a
default data provider. You’ll use the object array data provider you configured
earlier instead.

1. Select the table component, right-click, and choose Table Layout from the
context menu.

2. In the drop down menu for Get Data From, choose myResultObject. Creator
displays the data fields in the Selected window.

3. Use the < (left arrow) to remove all fields except URL, snippet, and title.
Click Apply.

4. Select column URL and change the component type to Hyperlink. Click
Apply and OK to close the dialog.

Creator binds each of these columns to the URL, snippet, and title fields of
the data provider for you. You’ll need a bit more customizing to get a look
that’s similar to the page the Google web site builds. Look at the Page1 Outline
view. You’ll see the table component (table1), a nested table row group, and

Search Results (#{Page1.mySearchResult.startIndex} to
#{Page1.mySearchResult.endIndex})

10.3 Displaying Multiple Result Elements 373
three table column components with headings URL, snippet, and title. You’ll
now rearrange these components a bit.

1. From the Page1 Outline view, select the static text component under the col-
umn entitled title and drop it on top of the hyperlink component under the
URL column. (This should nest component staticText3 under component
hyperlink2.)

2. In the Properties window for staticText3, change its id property to nested-
Text and uncheck its escape property.

3. In the Properties window, hold the cursor over the text property and verify
that its binding is set to the following.

4. Now select the hyperlink component (hyperlink2). In the Properties win-
dow, set property url to the following. (By default, Creator binds the text
property instead.)

5. In the Properties window for the hyperlink component, select the editing
box opposite property text to bring up the property customizer and select
Unset Property.

6. From the Basic Components palette, select Static Text and drop it on compo-
nent tableColumn1 in the Page1 Outline view. The static text should appear
at the same level as the hyperlink component.

7. In the Properties window, uncheck its escape property and set its text prop-
erty to
. (This will provide a line break in the table cell and improve the
formatting.)

8. From the Page1 Outline view, select the static text component under the col-
umn entitled snippet and drop it on top of component tableColumn1.

9. In the Properties window, change its id property to snippet and uncheck its
escape property. Now hold the cursor over the text property and verify
that its binding is set to the following.

You’ll now make final configuration changes to the table component.

1. In the Page1 Outline view, remove components tableColumn2 and
tableColumn3 (there shouldn’t be any nested components in these unused
columns).

2. Select the table component. In the Properties view, set property width to 500.

#{currentRow.value[’title’]}

#{currentRow.value[’url’]}

#{currentRow.value[’snippet’]}

374 Chapter 10 Accessing Web Services
3. In the Page1 Outline view, select static text component timeCount and bring
up the property customizer for property text. Copy it using <Ctrl-C> and
click OK.

4. Now select component tableColumn1 and bring up the property customizer
for property headerText. Paste (use <Ctrl-V>) the value from timeCount’s
text property. Click OK. The column’s header shows the new value.

5. Select the table component. In the Properties view, uncheck property ren-
dered. The table disappears from the design view.

6. Click button JSP to bring the the JSP source editor.
7. Change the table’s rendered property to the following. (You might want to

copy and paste from the grid panel’s rendered property.)

8. Return to the design view. Delete the grid panel component (and all of its
nested components).

9. Move the table component up so that it is directly underneath the message
component, as shown in Figure 10–12.

#{not empty Page1.mySearchResult}

Figure 10–12 Google Search application using Data Provider and Table components

10.4 Displaying Multiple Pages 375
Deploy and Run
• Deploy and run the Google application. Depending on the input you

provide for the search query, you should see up to ten results displayed on
the page. Figure 10–13 shows an example screen shot.

10.4 Displaying Multiple Pages

Each Google request displays up to ten results. It’s time to add controls that
move forward to retrieve additional results or move backward to display ear-
lier results. You’ve seen how to use a button component to initiate an action.
Now you’ll use two image hyperlink components. The images will be forward
and backward pointing arrows. Since a hyperlink component is a command
component, you can configure an action method that will be invoked when the
hyperlink (that is, the arrow image) is clicked.

Figure 10–13 Google Web Search application using HTML to build a results table

376 Chapter 10 Accessing Web Services
The image files you’ll use are in your Creator book’s FieldGuide2 download
bundle (FieldGuide2/Examples/WebServices/images), but if you’d like to use
arrow graphics of your own, simply substitute the appropriate .gif or .jpg file.

The modifications for this project include adding two new image hyperlink
components and image files for their display. You’ll also install action event
methods for the hyperlink components to page forward or backward through
the Google search results. These additions are straightforward. What’s a bit
tricky is that you have to keep track of some of the parameters across page
requests when you call Google. That means you can’t use local variables with
request scope inside Page1.java, since the Page1 bean is instantiated with each
page request. Therefore, you’ll need to save and restore these control variables
in session scope using the Page1 methods destroy() and init(). (Ironically,
destroy() refers to the destruction of Page1 but is used to save session state
before said destruction. To review the different types of scope for web applica-
tion objects, see “Scope of Web Applications” on page 116.)

Although Creator’s table component has sophisticated paging controls,
these are used to page through a large data set. In this application, the maxi-
mum array size is ten. In order to access the subsequent results, you must sub-
mit a new call to the Google web service search method with a different
starting index and obtain a new result array.

Copy the Project
To avoid starting from scratch, make a copy of the Google3 project. This step is
optional. If you don’t want to copy the project, simply skip this section and
continue making modifications to Google3.

1. Bring up project Google3 in Creator, if it’s not already opened.
2. From the Projects window, right-click node Google3 and select Save Project

As. Provide the new name Google4.
3. Close project Google3. Right-click Google4 and select Set Main Project.

You’ll make changes to the Google4 project.
4. Expand Google4 > Web Pages and open Page1.jsp in the design view.
5. Click anywhere in the background of the design canvas of the Google4

project. In the Properties window, change the page’s Title property to Goo-
gle Search 4.

Add an Image Hyperlink Component
Before you add components to project Google4, look at Figure 10–14, the
design canvas for this project. You can see the placement of the image hyper-
link components (the two arrows).

10.4 Displaying Multiple Pages 377
1. From the Basic Components palette, select Image Hyperlink and drop it
onto the design canvas under the Google Search button.

2. In the Properties window, change its id property to previous.

Creator Tip

You’re changing the standard id that Creator uses because it’s easier to keep
track of the components in the Java page bean file. By using meaningful id
names (such as previous and next), the associated action methods that
Creator generates will have meaningful names, too.

3. In the Properties window under Behavior, set property toolTip to View the
previous set of results.

4. Make sure that the image hyperlink component is selected, right-click, and
select Set Image from the context menu. Creator pops up an Image Custom-
izer dialog that allows you to specify the URL, File, or Theme Icon for the
image.

5. In the dialog, select radio button Choose File, browse to the Creator book
download, and specify directory FieldGuide2/Examples/WebServices/
images for the field labeled “Look in:”, as shown in Figure 10–15.

Figure 10–14 Design canvas showing component layout for project Google4

Image Hyperlink
Components

378 Chapter 10 Accessing Web Services
6. Select file nav_previous.gif. Click Apply. Creator displays the arrow in the
dialog’s Preview window and the image appears on the design canvas.

7. Click OK. Creator copies the image file to the project’s Web Pages >
resources directory.

8. In the Properties window for the image hyperlink, click the editing box
opposite property text and select Unset Property in the customizer dialog.

A Second Image Hyperlink Component
Follow the same procedure to add a second image hyperlink component and a
second image to the page.

1. From the Basic Components palette, select Image Hyperlink and drop it
onto the design canvas under the Google Search button.

2. In the Properties window, change its id property to next.
3. In the Properties window under Behavior, set property toolTip to View the

next set of results.

Figure 10–15 Image Customizer dialog for image component

10.4 Displaying Multiple Pages 379
4. Make sure that the image hyperlink component is selected, right-click, and
select Set Image from the context menu.

5. In the dialog, select radio button Choose File, browse to the Creator book
download, and specify directory FieldGuide2/Examples/WebServices/
images for the field labeled “Look in:”. Select file nav_next.gif. Click OK.
Creator copies the image file to the resources folder and the right-arrow
image should now appear on the design canvas.

6. In the Properties window for the image hyperlink, click the editing box
opposite property text and select Unset Property in the customizer dialog.

7. Adjust the image hyperlink components so that they’re aligned vertically to
each other. Select the hyperlink component next, press and hold the <Shift>
key, and then select the hyperlink component previous. With both compo-
nents selected, right-click and select Align > Middle from the context menu.

Deploy and Run
You might want to experiment with the placement of these newly added
graphic components. Right-click and select Preview in Browser. Check the
placement of the components and adjust them if necessary. Now deploy and
run project Google4. (The arrow buttons won’t do anything useful, but you
should be able to display the ten results as before.)

Creator Tip

The arrow buttons erase the table (why?). To see the search results again, click
the Google Search button. The table is cleared because clicking an arrow
button generates an action event, which initiates the JSF page life cycle
process. You haven’t specified any action, but the system proceeds through the
different life cycle phases anyway. When JSF instantiates the Page1 page
bean, it invokes Page.init(), which sets mySearchResult to null and
the table component is not rendered.

Add SessionBean1 Properties
You will soon add control variables to the Page1.java file. These values keep
track of the current index and other controls you need for displaying more than
the first page of results. To maintain these values across page requests, you add
them to the SessionBean1 managed bean as properties. This automatically puts
them in session scope. The following properties are all type Integer and mode
Read/Write:

• startIndex - index of the first result (parameter start)
• currentCount - length of the ResultElements[] array

380 Chapter 10 Accessing Web Services
• totalCount - estimated total number of results for the query; used to test
end conditions

Here are the steps to add properties to SessionBean1.

1. From the Projects window, select Session Bean, right-click and select Add >
Property.

2. Creator pops up the New Property Pattern dialog.
3. For Name, specify startIndex, for Type, specify Integer, and for Mode, select

the default Read/Write. Click OK.
4. Repeat these steps for currentCount and totalCount. Specify Type Integer and

Mode Read/Write for both.
5. In the Projects window, double-click node Session Bean. This brings up file

SessionBean1.java in the Java source editor.
6. Add the following code to the end of method init() to initialize the three

properties. Copy and paste from file FieldGuide2/Examples/WebServices/
snippets/google4_session_init.txt. The added code is bold.

Specify the Action Code
When a user clicks the right-arrow hyperlink, the web application should dis-
play the next ten results from the Google search. Conversely, clicking the left-
arrow hyperlink displays the previous ten results. Because you’ll make similar
calls to the Google search API, you should place this code in its own method.
Once you determine the correct start index, you can call this method from the
action event handlers for the search button and from both hyperlinks.

1. To return to the design view for Page1, select the tab labeled Page1.jsp at the
top of the editor pane.

2. In the design canvas, select the right-arrow hyperlink next and double-click.
3. Creator brings up the Java page bean file, Page1.java, and displays the gen-

erated event handler, next_action().
4. To keep track of the index variables and the result count information that

Google returns, you’ll need integer control variables. Place these declara-

public void init() {
. . .

startIndex = new Integer(0);
currentCount = new Integer(0);
totalCount = new Integer(0);

}

10.4 Displaying Multiple Pages 381
tions above method next_action(). Copy and paste file FieldGuide2/Exam-
ples/WebServices/snippets/google4_variables.txt.

The startIndex, currentCount, and totalCount integer variables are
saved and restored in session scope for the action handlers. To do this, you’ll
use the Page1 methods destroy() and init() to save and restore the
SessionBean1 properties. Recall that method init() is invoked after the page
is constructed and method destroy() is invoked after the page is rendered.
(Table 6.6 on page 157 describes these life cycle methods.)

1. Add the following code to method destroy(). Copy and paste from
FieldGuide2/Examples/WebServices/snippets/google4_destroy.txt. This
code calls setters to store startIndex, currentCount, and totalCount as
equivalently named properties in the SessionBean1 object. The added code
is bold.

2. Next, add the following code to the end of method init(). Copy and paste
from FieldGuide2/Examples/WebServices/snippets/google4_init.txt. The
added code is bold.

private int startIndex = 0;
private int prevIndex = 0;
private int currentCount = 0;
private int totalCount = 0;

Listing 10.2 Method destroy()

private void destroy() {
getSessionBean1().setStartIndex(new Integer(startIndex));
getSessionBean1().setCurrentCount(

new Integer(currentCount));
getSessionBean1().setTotalCount(new Integer(totalCount));

}

Listing 10.3 Method init()

private void init() {
. . .

mySearchResult = null;
startIndex = getSessionBean1().getStartIndex().intValue();
currentCount =

getSessionBean1().getCurrentCount().intValue();
totalCount = getSessionBean1().getTotalCount().intValue();

}

382 Chapter 10 Accessing Web Services
Most of the code that resides in the search_action() event handler can be
pulled out and placed in a method that all three action event handlers will call.
Let’s call this new method doSearch(). The difference is that the start index,
which was previously hard-coded to zero, has been parameterized (int
start). The second difference is that we’re saving the total search count
(totalCount) and the length of the ResultElements[] array (currentCount).

3. To create the doSearch() method, use FieldGuide2/Examples/WebServices/
snippets/google4_doSearch.txt and place it directly before the
search_action() method (near the end of the Java page bean file). Note
that this method sets the starting index value by calling method set-
Start(). It also sets totalCount and currentCount from the
mySearchResult object.

4. The search_action() method is now simpler, since all that’s required is to
reset the index control variables and call doSearch(). Copy and paste from

Listing 10.4 Method doSearch()

public void doSearch(int start) {
try {

googleSearchDoGoogleSearch1.setStart(start);
mySearchResult = (GoogleSearchResult)

googleSearchDoGoogleSearch1.getResultObject();

resultArray = mySearchResult.getResultElements();
myResultObject.setArray(

(java.lang.Object[])getValue
("#{Page1.resultArray}"));

totalCount =
mySearchResult.getEstimatedTotalResultsCount();

currentCount =
mySearchResult.getResultElements().length;

} catch (Exception e) {
log("Remote Connect Failure: ", e);
mySearchResult = null;
error("Remote Site Failure: " + e.getMessage());

}
}

10.4 Displaying Multiple Pages 383
file FieldGuide2/Examples/WebServices/snippets/google4_search_action.txt to
modify this method. Here’s the new code.

Clicking the right-arrow hyperlink returns the next set of results from Goo-
gle. To effect this return, update the start parameter (see Table 10.1 on
page 357) of the doGoogleSearch() method. Also note that the code in the
action handler next_action() is similar to the code in the above
search_action(). You just need to check for upper limits in the index control
variables.

5. Add code to the next_action() event handler. Copy and paste from file
FieldGuide2/Examples/WebServices/snippets/google4_next_action.txt. Note
that the index variables from the session object are automatically restored
and saved through methods init() and destroy(). (The added code is
bold.)

Now let’s add a previous_action() method to handle action events associ-
ated with the left-arrow hyperlink.

6. Return to the design canvas by selecting Design from the editing toolbar.

Listing 10.5 Method search_action()

public String search_action() {
startIndex = 0;
prevIndex = 0;
doSearch(startIndex);
return null;

}

Listing 10.6 Method next_action()

public String next_action() {
prevIndex = startIndex;
startIndex = startIndex + currentCount;
if (startIndex >= totalCount||startIndex>= 1000) {

startIndex = prevIndex;
prevIndex -= currentCount;

}
doSearch(startIndex);
return null;

}

384 Chapter 10 Accessing Web Services
7. Select the left arrow hyperlink previous and double-click. This creates the
event handler method in the Java page bean for you and places the cursor at
the beginning of the method.

8. Add the following code to the default previous_action() method. Copy
and paste from file FieldGuide2/Examples/WebServices/snippets/
google4_previous_action.txt. The added code is bold.

You’ll note that the structure of previous_action() is similar to the
next_action() method.

Deploy and Run
Deploy and run the project. You should be able to page through multiple result
sets by using the arrow graphics “right” and “left.” Figure 10–16 shows the
fourth page of a result set.

10.5 Key Point Summary

Creator provides an easy drag and drop feature for accessing a web service
through your project. You can add a web service so that it is accessible through
the Servers window, test a web service method, and view the returned results.

• Web services provide a standard way to access services over a network in a
heterogeneous environment.

• You can add a web service client to Creator by supplying the URL of its Web
Service Description Language (WSDL) page.

Listing 10.7 Method previous_action()

public String prev1_action() {
prevIndex = startIndex - currentCount;
startIndex = prevIndex;
if (startIndex <= 0) {

startIndex = 0;
prevIndex = 0;

}
doSearch(startIndex);
return null;

}

10.5 Key Point Summary 385
• You can test a web service by selecting one of its methods, right-clicking on
the method, and selecting Test Method. Creator displays a Test Web Service
Method dialog in which you supply parameter values, submit the call, and
examine the results.

• You can access methods of a web service by dragging its node onto the
design canvas. Web services appear in the Outline view for the page.

• The Google web service API provides a SOAP interface to search Google’s
index of pages.

• Initiate a search of the Google engine by dragging the doGoogleSearch web
service onto your page.

• Web service methods should be invoked within a try block.
• Use image components to add graphics to your web pages.
• Use a static text component to display read-only text. Setting its escape

attribute to false allows correct rendering of HTML tags. JSF dynamically
sizes the output text component for you.

• Use a hyperlink component to submit a form, navigate to an external URL,
or navigate to an anchor within the same page.

• Use an image hyperlink component to render an action component using an
image.

Figure 10–16 The Google Web Search application displaying the third page of results

386 Chapter 10 Accessing Web Services
• You can nest a static component within a hyperlink component and use it to
display the text for the hyperlink. This allows you to render HTML tags
correctly by unchecking the escape property.

• You can control whether or not a component is displayed through its
rendered property.

• You can nest components inside a grid panel or other layout component.
This allows you to easily control the rendering on these components as a
group through the parent component’s rendered property.

• The length validator makes sure that input is within a certain range for
length. It does not check for empty fields.

• The required attribute makes sure the field is not empty.
• Validators write error messages to the JSF context. Use a message

component to display error messages generated by a specific component.
• Use the message group component to display generic user messages. Set its

showGlobalOnly property to true to suppress error messages that are
already displayed through component-specific message components.

• You can generate user messages using one of info(), warn(), error(), and
fatal() from within any FacesBean object.

• Page1 lives in request scope. You can maintain information you need to access
across page requests as properties in SessionBean1, which is defined in
session scope.

• Use page bean method destroy() to save session state in SessionBean1. Use
page bean method init() to restore session state from SessionBean1.

USING EJB
COMPONENTS
Topics in This Chapter

• Consuming EJBs
• Adding EJB Clients to Projects
• Adding EJB Method Data Providers to Projects
• Invoking EJB Methods
• Initializing EJB Method Data Providers
• Using EJBs that Supply Data
• Adding a Set of Session EJBs to Creator

Chapter
nterprise JaveBeans (EJBs) are server-side components that encapsulate
an applications’s business logic. While they are similar to JavaBeans
components that you’ve already used and incorporated into your
projects, the underlying architecture of EJBs are different. First of all,

EJBs are distributed objects. They execute within a J2EE application server. A
web application can access them remotely. Furthermore, EJBs provide a level of
abstraction between the web application and a backend data store, such as a
database. By using EJBs to access a database, the details of the structure and
location of the database access are not exposed to the web application. EJBs
also provide a highly scalable model. Since a web application can access EJBs
remotely, more of an application’s processing can be distributed among sepa-
rate machines if needed.

Furthermore, when you drop an EJB method on your page, Creator gener-
ates a data provider for you (if the EJB method has a non-void return), allowing
you to bind components (such as drop down lists and tables) exactly like data-
base sources. In fact, with some of the examples, you’ll access a data base indi-
rectly through the EJB.

11.1 Consuming EJBs

Creator comes bundled with several sets of session EJBs. These EJBs are all
stateless session beans. This means that user state is not saved and that users

E

497

498 Chapter 11 Using EJB Components
may share an instance of the bean in the application container. It also means the
application server can create multiple copies of the bean to improve perfor-
mance. Before we start building examples, let’s take a moment to examine
some of the EJBs that are pre-configured with Creator’s IDE and pre-deployed
in the bundled application server.

1. Open the Servers view (select View > Servers) if it’s not already open.
2. Expand node Enterprise JavaBeans and open Currency Converter > Conver-

terEJB, HelloWorld Application > GreeterEJB, and Travel Center > TravelEJB.
Figure 11–1 shows the Servers view with these nodes expanded.

With the Servers view, you can determine the EJBs available and the meth-
ods exposed through the EJB. In the Servers window, if the method is associ-
ated with a data provider, then the icon includes a data provider badge (a
table-like grid image). Creator provides two ways to consume EJBs:

• Invoke the EJB method through the Creator-generated client (using Java
statements in a page bean or other managed bean).

Figure 11–1 Servers view showing Enterprise JavaBeans display

11.1 Consuming EJBs 499
• Instantiate a data provider that invokes the EJB method for you. Currently,
all “EJB” data providers are for retrieving data only—you cannot use the EJB
data providers to update data. (Invoke the EJB method through the Creator-
generated client to update data.)

The method you choose depends on several factors, so let’s briefly describe
these two approaches. We’ll use both approaches in the examples that you’ll
build. Along the way, we’ll show you the advantages of each method.

Invoke the EJB Method
In order to invoke an EJB method in your page bean, you select the EJB and
drop it on the page. For example, to invoke method getGreeting() in the
GreeterEJB, select GreeterEJB under the HelloWorld Application and drop it on
your page. Creator generates an EJB Client (greeterClient1). You can then
invoke method getGreeting(), as follows. Here, greeting is the id property
associated with a static text component.

How do you determine what arguments to supply to the method (if any),
and the expected return value? (Since all EJB methods throw at least Remote-
Exception, you always need to put the method call inside a try/catch block or
specify a throws clause.)

When you select an EJB method name in the Servers view, Creator displays
the information you need in the Properties window. Here is the Properties win-
dow for method getGreeting under HelloWorld Application > GreeterEJB in the
Servers window.

From its signature, you see the method returns a String, takes no arguments,
and throws RemoteException.

Let’s look at another EJB method. In the Servers window under Currency
Converter > ConverterEJB, select dollarToYen. Figure 11–3 shows the Properties
window for this method. Here, the method expects a BigDecimal argument
(the amount in dollars) and returns a BigDecimal. To invoke this method
through the Creator-generated client, use the following steps.

1. From the Servers window under Currency Converter, select ConverterEJB
and drop it on the page. Creator generates the EJB client
(converterClient1) you’ll need to call the EJB method.

try {
greeting.setText(greeterClient1.getGreeting());

} catch (Exception ex) {
log("Error Description", ex);
error("GreetingEJB: " + ex);

}

500 Chapter 11 Using EJB Components
2. Provide the following code to invoke the method.

Here, dollars is the id property of a static text component. Since method dol-
larToYen() returns a BigDecimal, you would apply a number converter to for-
mat the display.

There are several advantages for calling an EJB method through the client.
One, you can call it exactly where you need to in your code. You may need to
gather input for a method’s argument (for example, the dollar amount required
by dollarToYen()), so placing the call in the appropriate event handler after
processing user input is straightforward. Second, the method call is trivial. You
simply invoke it using the Creator-generated client. Third, as stated earlier, you

BigDecimal amount = new BigDecimal(10.0);
try {

dollars.setText(converterClient1.dollarToYen(amount));
} catch (Exception ex) {

log("Error Description", ex);
error("ConverterEJB: " + ex);

}

Figure 11–2 Properties view for GreeterEJB’s method getGreeting

Figure 11–3 Properties view for ConverterEJB’s method dollarToYen

11.1 Consuming EJBs 501
must invoke a method through the client to update or create data through an
EJB method.

Instantiate a Data Provider
The second approach lets you select a method name from the Servers window
and drop it on the page. In this case, Creator generates the client (as in the first
approach) and also generates a data provider that wraps the return object (or
objects) from the call. Creator configures the data provider to hold a reference
to the client. When you bind the data provider to a component (such as a drop
down list, a static text component, or even a table), the property resolver mech-
anism invokes the method through the client for you. This approach is also
straightforward, but you must initialize any required arguments beforehand
(usually in the page bean’s init() method). This method is especially appro-
priate when the EJB is connected to a data store and the method returns one or
more data transfer objects.

Note that only EJB methods that return non-void types have data providers.
If a method does not return anything, then there is no data provider generated
for the method and the method is not droppable. Note that if the method is
associated with a data provider, then the method’s icon in the Servers window
includes a data provider badge (a table-like grid image).

Let’s look at an example that shows how simple this approach is.

Creator Tip

If you want to deploy this small example, go ahead and create a new project.
Call the project EJBTest. When the page comes up in the design view, set the
page title to EJB Test.

1. Make sure that the bundled database server is running. In the Servers menu
the Bundled Database Server should have a green up-arrow badge next to
the database icon. If not, right-click the server name and select Start Bundled
Database from the context menu.

2. From the Basic Components palette, select Drop Down List and place it on
the page.

3. From the Servers window under Travel Center > TravelEJB, select method
getPersons and drop it on top of the drop down list. (Hold the mouse over
the drop down list component until it is outlined in blue. Be patient.) When
you release the mouse, you’ll see that Creator generated the EJB client
(travelClient1), the data provider (travelGetPersons1), and an Integer
converter (dropDown1Converter).

4. Select the drop down list component, right-click, and select Bind to Data.
Creator pops up the Bind To Data dialog.

502 Chapter 11 Using EJB Components
5. The dialog has a Value window and a Display window (corresponding to
the value and display properties of the drop down list). Make sure personId
is selected for Value and name is selected for Display, as shown in Figure 11–
4. Click Apply then OK to close.

6. Deploy and run the application. You’ll see the drop down list populated
with names supplied by the EJB.

Let’s see how all this magic works.

1. First, select method getPersons in the Servers window under Travel Center >
TravelEJB and examine the Properties view, as shown in Figure 11–5.

Method getPersons() takes no arguments and returns a PersonDTO (Per-
son Data Transfer Object) array. A PersonDTO contains fields (these are dis-
played in the Bind to Data dialog in Figure 11–4). Here, you are binding the
drop down component to the key fields of the data provider.

Figure 11–4 Bind to Data dialog

Figure 11–5 Properties view for TravelEJB’s getPersons method

11.2 EJBs as Business Objects 503
2. Now click Java in the editing toolbar to bring up Page1.java in the Java edi-
tor.

3. Double-click private method _init() in the Navigator view to display this
method in the Java editor. Method _init() holds the Creator-generated
code that configures the data provider.

Method _init() invokes setTravelClient() to connect data provider
travelGetPersons1 with the TravelEJB client. Once this is configured, JSF’s
property resolvers invoke EJB method getPersons() to populate the data pro-
vider and honor the data binding between the drop down list component and
the data provider.

Since method getPersons() does not require any arguments, no initializa-
tion is necessary. Furthermore, _init() has a throws clause in its signature;
hence, the call to setTravelClient() does not have to be inside a try block.

When an EJB method requires no arguments, there’s no need to provide ini-
tialization code. However, if an EJB method requires an argument (for example
TravelEJB method getTripsByPerson()), you must provide this argument
during initialization (typically in method init()). We’ll show you how to do
this shortly when you build a more involved example project.

Data providers are extremely convenient when binding components to data.
You access and manipulate a data provider interfaced with an EJB method in
exactly the same way as a data provider interfaced with a database (as we did
in Chapter 9). This transparency allows an application the flexibility to change
how it acquires data without restructuring or refactoring the code.

Creator Tip

The data providers for EJBs (as well as web services) are read-only. That is,
you cannot update the data source using the data provider. For update
operations, you invoke the EJB method directly.

11.2 EJBs as Business Objects

You can implement business objects with JavaBeans components. You can also
implement them with Enterprise JavaBeans components, providing scalability

private void _init() throws Exception {
travelGetPersons1.setTravelClient(

(travel.ejb.session.travel.TravelClient)
getValue("#{Page1.travelClient1}"));

}

504 Chapter 11 Using EJB Components
within a distributed environment. In our first example, let’s show you the Con-
verterEJB sample bundled with the Creator software.

This example is more suited to calling the EJB method directly. After com-
pleting the project, however, you’ll go back and implement this application
with the data provider method. This approach, although not as straightfor-
ward (in this example), is very instructive for familiarizing yourself with the
requirements for using data providers with EJB components.

Create a Project
1. From Creator’s Welcome Page, select Create New Project. Creator displays

the New Project dialog. Under Categories, select Web. Under Projects, select
JSF Web Application. Click Next.

2. In the New Web Application dialog under Project Name, specify EJBCon-
verter. Click Finish.

After initializing the project, Creator comes up in the design view of the edi-
tor pane. You can now set the title.

3. In the Properties window, select property Title and specify title Currency
Converter. Finish by pressing <Enter>.

4. In the Properties window, select the customizer box opposite property
Background. Creator displays a property customizer dialog. Select the yel-
low swatch from the top row of the color chooser and click OK to close. This
sets the background color to RGB(255, 255, 204).

Add an EJB Client
Like the Web Services node and the Data Sources node, the Enterprise Java-
Beans node in Creator’s Servers window provides information about the avail-
able services you can add to your project. Once you select one of the EJB
session sets, you can inspect the methods and determine how to call them in
your project. For now, let’s look at Currency Converter node under Enterprise
JavaBeans.

1. In the Servers view, expand Enterprise JavaBeans > Currency Converter.
2. Select ConverterEJB and drop it on the page in the design view. Creator

adds component converterClient1 to the Page1 Outline view. That’s all
you need to access the methods provided by the ConverterEJB.

3. Now expand node ConverterEJB and you’ll see two methods: dollar-
ToYen() and yenToEuro().

4. Right-click on the first method, dollarToYen(), and select Properties. Cre-
ator displays a method Properties window, as shown in Figure 11–6. This
window shows you the complete method signature, including the type of

11.2 EJBs as Business Objects 505
each parameter, the return type, and the Exceptions thrown. You’ll need this
information when you write event handling code that invokes these meth-
ods.

Add Session Bean Properties
This converter application stores monetary data and conversion results in ses-
sion scope. Session scope is preferable to request scope because the project can
then easily be implemented as a portlet (see “Portlet Life Cycle” on page 545
for a discussion on differences between portlet and non-portlet applications).

You’ll add three properties to session scope, all of type BigDecimal: myDol-
lar, myYen, and myEuro.

1. From the Projects view, select Session Bean, right-click, and select Add >
Property. Creator pops up the New Property Pattern dialog.

2. For Name specify myDollar, for Type specify BigDecimal, and for Mode,
select the default Read/Write. Click OK to add the property.

3. Repeat Steps 1 and 2 and add properties myYen and myEuro. The Type and
Mode of all three properties are the same.

4. Double-click node Session Bean to bring up SessionBean1.java in the source
editor.

5. Right-click anywhere inside the editor pane and select Fix Imports. This
adds the import statement for type BigDecimal.

Figure 11–6 Visual design editor in the editor pane

506 Chapter 11 Using EJB Components
6. Add the following code to the end of method init(). Copy and paste from
FieldGuide2/Examples/EJB/snippets/converter_session_init.txt. The
added code is bold.

Note that property myDollar is set to 10. The other two properties are set to
zero.

Add Components to the Page
Figure 11–7 shows the project in the design view with the components added.
To help with the layout, a grid panel with two columns holds the components,
using static text components as place holders. The three static text components
that display dollars, yen, and euros are nested in a second grid panel with three
columns.

public void init() {
. . .
// TODO - add your own initialization code here
myDollar = new BigDecimal(10);
myYen = new BigDecimal(0);
myEuro = new BigDecimal(0);

}

Figure 11–7 Visual design editor in the editor pane

Grid Panel

Nested
Grid Panel

Place Holders

Message
Group

Static Text

Text Field

Label

11.2 EJBs as Business Objects 507
First, you’ll add a label component for the page title and a grid panel to help
with the layout.

1. From the Basic Components palette, select component Label and drop it on
the page. Specify Welcome to the Currency Converter for its text property.

2. From the Layout Components palette, select Grid Panel and place it under
the Label you just added.

3. In the Properties window, set property bgcolor to #eeeeee, cellpadding to
10, and columns to 2. The grid panel’s background color changes to a light
grey-blue.

Next, you’ll add components to the grid panel. Recall that the order you add
components determines their placement. If you need to rearrange the compo-
nents, you can drag and re-drop them on top of the grid panel (it’s easier if you
use the Outline view).

1. From the Basic Components palette, select component Label and drop it on
the grid panel component in the Page1 Outline view. Set its text to Input
Amount in Dollars.

2. From the Basic Components palette, select Text Field and drop it on the grid
panel (using the Outline view).

3. In the Properties window, check property required.
4. Select the Label component and in the Properties view, set property for to

textField1 using the drop down list. A red asterisk appears in front of the
label’s text.

5. From the Validators Components palette, select Double Range Validator and
drop it on top of the text field component in the design view. This sets prop-
erty validator to doubleRangeValidator1.

6. From the Converters Components palette, select BigDecimal Converter and
drop it on top of the text field component in the design view. This sets prop-
erty converter to bigDecimalConverter1, converting the text field’s string
input to BigDecimal.

7. In the design view, select the text field component, right-click, and choose
Property Bindings from the context menu.

8. In the Property Bindings dialog, for Select bindable property, choose text
Object. For Select binding target, choose SessionBean1 > myDollar BigDeci-
mal. Click Apply then Close for the setting to take effect.

9. In the Page1 Outline view, select component doubleRangeValidator1. In
the Properties view, set maximum to five million (5000000) and minimum to one
(1).

You’ve configured the first row of the grid panel. Now you’ll add a place
holder (static text) and a button for the second row.

508 Chapter 11 Using EJB Components
1. From the Basic Components palette, select Static Text and drop it on the grid
panel component in the Page1 Outline view. Set its id property to
placeholder1. This component will occupy the first cell in the second row of
the grid panel (below the label).

2. From the Basic Components palette, select Button and drop it on the grid
panel component in the Page1 Outline view. Set its id property to convert
and its text property to Convert. You’ll configure its action event handler
later.

The third row of the grid panel contains another place holder component
and a second grid panel. Nested inside the grid panel, you’ll add three static
text components to display the dollar, yen, and euro amounts.

1. From the Basic Components palette, select Static Text and drop it on the grid
panel component in the Page1 Outline view. Set its id property to
placeholder2. This component occupies the first cell in the third row of the
grid panel.

2. From the Layout Components palette, select Grid Panel and drop it on the
first grid panel (gridPanel1) component in the Outline view.

3. In the Properties window, set property id to nestedPanel, cellpadding to 5,
and columns to 3.

Each column in the nested grid panel holds a static text component. The first
one displays the amount in dollars, which requires configuring a number con-
verter.

1. From the Basic Components palette, select Static Text and drop it on the
nested grid panel in the Outline view.

2. In the Properties window, set property id to dollar.
3. Select the static text component, right-click and select Property Bindings

from the context menu. Creator pops up the Property Bindings dialog.
4. In the Property Bindings dialog, for Select bindable property, choose text

Object. For Select binding target, choose SessionBean1 > myDollar BigDeci-
mal. Click Apply then Close.

5. In the Converters Components palette, select Number Converter and drop it
on top of the static text component dollar in the design view. This sets prop-
erty converter to numberConverter1. Creator pops up the Number Format
dialog, as shown in Figure 11–8.

6. Select radio button Pattern and provide pattern USD #,###.00, which uses the
accepted abbreviation for U.S. Dollars (USD) followed by the pattern. Click
Apply then the Test button to test the pattern. Click OK to close the dialog.
USD 0 should now display in the static text component.

You’ll now repeat these steps for the second static text component, which
displays the amount in yen.

11.2 EJBs as Business Objects 509
1. From the Basic Components palette, select Static Text and drop it on the
nested grid panel in the Outline view.

2. In the Properties window, set property id to yen.
3. Select the static text component, right-click and select Property Bindings

from the context menu. Creator pops up the Property Bindings dialog.
4. In the Property Bindings dialog, for Select bindable property, choose text

Object. For Select binding target, choose SessionBean1 > myYen BigDecimal.
Click Apply then Close.

5. In the Converters Components palette, select Number Converter and drop it
on top of the static text component dollar in the design view. This sets prop-
erty converter to numberConverter2. Creator pops up the Number Format
dialog.

6. Select radio button Pattern and provide pattern YEN #,###.00. Click Apply
then OK to close the dialog. YEN 0 should now display in the static text com-
ponent.

Finally, repeat these steps for the third static text component, which displays
the amount in euros.

Figure 11–8 Number Format dialog

510 Chapter 11 Using EJB Components
1. From the Basic Components palette, select Static Text and drop it on the
nested grid panel in the Outline view.

2. In the Properties window, set property id to euro.
3. Select the static text component, right-click and select Property Bindings

from the context menu. Creator pops up the Property Bindings dialog.
4. In the Property Bindings dialog, for Select bindable property, choose text

Object. For Select binding target, choose SessionBean1 > myEuro BigDecimal.
Click Apply then Close.

5. In the Converters Components palette, select Number Converter and drop it
on top of the static text component dollar in the design view. This sets prop-
erty converter to numberConverter3. Creator pops up the Number Format
dialog.

6. Select radio button Pattern and provide pattern EURO #,###.00. Click Apply
then OK to close the dialog. EURO 0 should now display in the static text
component.

The last component to add is a message group. Since the text field requires
both conversion and validation, you’ll need some type of message component.
Furthermore, to access the EJB component, you’ll put the method call inside a
try block. The catch handler will produce a system error message.

Creator Tip

A single message group component allows you to use one component for all
error messages (system, validation, and conversion). This is a typical practice
if the page contains only one input component and the source of any
conversion or validation errors is clear to the user.

• From the Basic Components palette, select Message Group and drop it on
the page below the grid panels.

Figure 11–9 shows the Outline view with all of the components added,
including the Session Bean properties and the EJB client component
(converterClient1).

Add Event Handling Code
When the user clicks the Convert button, the action event handler invokes the
methods from the ConverterEJB to convert the dollars to yen and yen to euros.
The methods’ parameters are set from session bean properties and likewise the
results are stored in the session bean properties.

1. In the Page1 design view, double-click the Convert button.

11.2 EJBs as Business Objects 511
2. Creator generates default code for method convert_action() and brings
up Page1.java in the source editor with the cursor at the first line of this
method.

3. Add the following code to the event handler. Copy and paste from
FieldGuide2/Examples/EJB/snippets/converter_convert_action.txt. The
added code is bold.

Listing 11.1 Method convert_action()

public String convert_action() {
try {

getSessionBean1().setMyYen(converterClient1.dollarToYen(
getSessionBean1().getMyDollar()));

getSessionBean1().setMyEuro(converterClient1.yenToEuro(
getSessionBean1().getMyYen()));

Figure 11–9 Outline view for project EJBConverter

512 Chapter 11 Using EJB Components
Since both methods potentially throw RemoteException, you must either
encase the call in a try block (as shown here), or include a throws clause with
method convert_action(). To control the application when an exception is
thrown here, we use a catch handler to record the error message in the server
log (with log()) and write an appropriate message to the faces context (with
error()). JSF displays the error using the message component you added to
the page.

Deploy and Run
Deploy and run the application by clicking the Run icon on the main toolbar.
Figure 11–10 shows application EJBConverter running in a browser. Try out
several numbers to convert, including input that fails either validation or con-
version to test these scenarios.

The event handling code in this example invokes the EJB methods through
the Creator-generated client. Now let’s show you how to implement this same
application with a data provider.

} catch (Exception ex) {
log("Error Description", ex);
error("ConverterEJB: " + ex);

}
return null;

}

Listing 11.1 Method convert_action()

Figure 11–10 Currency Converter application running in a browser

11.2 EJBs as Business Objects 513
Copy the Project
To avoid starting from scratch, copy the EJBConverter project to a new project
called EJBConverter2. This step is optional. If you don’t want to copy the
project, simply skip this section and continue making modifications to the EJB-
Converter project.

1. Bring up project EJBConverter in Creator, if it’s not already opened.
2. From the Projects window, right-click node EJBConverter and select Save

Project As. Provide the new name EJBConverter2.
3. Close project EJBConverter. Right-click EJBConverter2 and select Set Main

Project. You’ll make changes to the EJBConverter2 project.
4. Expand EJBConverter2 > Web Pages and open Page1.jsp in the design view.
5. Click anywhere in the background of the design canvas of the

EJBConverter2 project. In the Properties window, change the page’s Title
property to Currency Converter 2.

Add EJB Method Data Providers
Instead of adding the EJB to your page, you’ll add the EJB method.

1. From the Servers window under Enterprise JavaBeans > Currency Converter
> ConverterEJB, select dollarToYen and drop it on the page. Creator uses
converterClient1 and generates converterDollarToYen1 data provider.

2. Repeat this and add method yenToEuro to the page. Creator uses
converterClient1 and generates converterYenToEuro1 data provider.

Bind Components to Data Object
Currently, the static text components yen and euro are bound to their respec-
tive session bean properties. Instead, you’ll bind these components to the data
object returned within the data provider.

1. From the Page1 design view, select static text component yen. In the Proper-
ties view, click the property customizer box opposite property text. Creator
pops up the text customizer dialog.

2. Tab Bind to an Object should be set. Retain this setting.
3. Under Select binding target, choose Page1 > converterDollarToYen1 > result-

Object BigDecimal, as shown in Figure 11–11. Click OK. Binding target
resultObject holds the EJB method’s returned object. The text component
now displays YEN 123.

4. Repeat Steps 1 through 3 for static component euro, binding its text prop-
erty to Page1 > converterYenToEuro1 > resultObject BigDecimal.

514 Chapter 11 Using EJB Components
Modify Event Handler Code
Instead of invoking the EJB methods directly, you’ll manipulate the Creator-
generated data providers.

1. From the Page1 design view, double-click button Convert. Creator brings up
Page1.java in the editor and places the cursor at the button’s event handler,
method convert_action().

2. Replace the event handler code with the following. Copy and paste from
FieldGuide2/Examples/EJB/snippets/converter2_convert_action.txt. The
replaced code is bold.

Listing 11.2 Method convert_action()

public String convert_action() {
// get dollar amount from session to set method parameter
converterDollarToYen1.setDollar(

getSessionBean1().getMyDollar());

Figure 11–11 Bind to an Object dialog for component yen

11.2 EJBs as Business Objects 515
Compare the code in this listing with Listing 11.1 on page 511. To modify the
event handler to use the EJB-connected data provider requires three steps in
place of the single EJB method call: you provide the method parameter, invoke
refresh() (which calls the actual EJB method), and obtain the result (with
getResultObject()). As verbose as this approach seems to be, it is the pre-
ferred tactic when the EJB method returns an array (or collection) of data trans-
fer objects. The returned objects are mapped to a data provider and then to one
of Creator’s data-aware components, such as the drop down list, listbox, or
table component.

Method setDollar() allows you to provide the method’s argument. Recall
that method dollarToYen() takes a BigDecimal method parameter that is the
amount in dollars. Once you’ve provided a new dollar amount, you then
update the data provider with refresh(). This invokes the EJB method.
Method getResultObject() returns the BigDecimal return value.

Specify Data Provider Initialization
If you deployed and ran the project now, you’d get a run time exception. That’s
because the data provider’s return value is bound to the static text component.
During the JSF life cycle, the property resolving mechanism attempts to obtain
the result object. However, you haven’t yet set the method parameter. This you
need to do during initialization, in the Page1 method init().

1. Page1.java should still be active in the Java editor. Scroll up and find
method init().

// refresh() calls method dollarToYen()
converterDollarToYen1.refresh();
// store resultObject in session property
getSessionBean1().setMyYen(

(BigDecimal)converterDollarToYen1.getResultObject());
// get yen amount from session to set method parameter
converterYenToEuro1.setYen(getSessionBean1().getMyYen());
// refresh() calls method yenToEuro()
converterYenToEuro1.refresh();
// store resultObject in session property
getSessionBean1().setMyEuro(

(BigDecimal)converterYenToEuro1.getResultObject());
return null;

}

Listing 11.2 Method convert_action() (continued)

516 Chapter 11 Using EJB Components
2. Add the following code to the end of the method. Copy and paste from
FieldGuide2/Examples/EJB/snippets/converter2_init.txt. The added code is
bold.

This code is similar to the event handling code. Here, it is not necessary to
call refresh(), since this is the initial call to getResultObject().

Deploy and Run
Deploy and run application EJBConverter2. There is a slight difference in the
run time behavior between EJBConverter and EJBConverter2. Since
EJBConverter2 provides initialization code, the static text components yen and
euro are initialized when the page is rendered in the browser the first time.
These amounts were set to zero in project EJBConverter, where the first EJB call
occurred in the event handling code.

11.3 Greeting Two Ways

Let’s now build an application that uses the data provider method, since is the
most straightforward approach here. After, we’ll make a modification that uses
the method call approach.

The GreeterEJB (under HelloWorld Application in the Servers view) has two
methods: getGreeting() and getTime(). Neither method requires parameters
and both methods return Strings. When you use the data provider approach,
you can bind a static text component to resultObject to display a return
value. Here, you’ll use a button component to submit the page and update the
display. (Method getTime() returns a new, updated time with each call.)

public void init() {
. . .
// TODO - add your own initialization code here
converterDollarToYen1.setDollar(

getSessionBean1().getMyDollar());
getSessionBean1().setMyYen(

(BigDecimal)converterDollarToYen1.getResultObject());
converterYenToEuro1.setYen(getSessionBean1().getMyYen());
getSessionBean1().setMyEuro(

(BigDecimal)converterYenToEuro1.getResultObject());
}

11.3 Greeting Two Ways 517
Create a Project
1. From Creator’s Welcome Page, select Create New Project. Creator displays

the New Project dialog. Under Categories, select Web. Under Projects, select
JSF Web Application. Click Next.

2. In the New Web Application dialog under Project Name, specify EJBGreet-
ing. Click Finish.

After initializing the project, Creator comes up in the design view of the edi-
tor pane. You can now set the title.

3. In the Properties window, select property Title and specify title EJB - Sim-
ple Greeting. Finish by pressing <Enter>.

Add Components to the Page
Figure 11–12 shows the project in the design view with the components added.
The page includes an Update button and two static text components.

1. From the Basic Components palette, select component Button and drop it on
the page. Specify Update for its text property.

2. From the Basic Components palette, select Static Text and place it under the
button you just added.

3. In the Properties window, set property id to greeting.
4. Repeat Steps 2 and 3 and add a second static text component. Set its id prop-

erty to time.

Add EJB Method Data Providers
You’ll now add both EJB methods to the page.

Figure 11–12 Page1 design view for EJBGreeting

Static Text

Button

518 Chapter 11 Using EJB Components
1. From the Servers window under Enterprise JavaBeans > HelloWorld Appli-
cation > GreeterEJB, select getGreeting and drop it on the page. Creator gen-
erates EJB client greeterClient1 and greeterGetGreeting1 data provider.

2. Repeat this step and add method getTime to the page. Creator reuses
greeterClient1 and generates greeterGetTime1 data provider.

Bind Components to Data Object
You’ll bind the two static text components to the data object returned within
the data provider.

1. From the Page1 design view, select static text component greeting, right-
click, and select Bind to Data. Creator pops up the Bind to Data dialog.

2. Select tab Bind to an Object.
3. Under Select binding target, choose Page1 > greetingGetGreeting1 > resultOb-

ject String. Click Apply then OK, as shown in Figure 11–13. The text compo-
nent now displays abc.

4. Repeat Steps 1 through 3 for static component time, binding its text prop-
erty to Page1 > greetingGetTime1 > resultObject String.

Figure 11–13 Page1 design view for EJBGreeting

11.3 Greeting Two Ways 519
Deploy and Run
Deploy and run application EJBGreeting. Note that as you successively click
Update, the time is refreshes. If you run the application at different times of the
day, the text of the greeting changes as well. Figure 11–14 shows the EJBGreet-
ing project running in a browser.

Let’s now personalize this application by having the user select a name from
the sample Travel database. You’ll use the TravelEJB to access the list of names.
Instead of binding the static text components to the GreetingEJB data provid-
ers, you’ll call the EJB methods directly in the event handler code.

Copy the Project
To avoid starting from scratch, copy the EJBGreeting project to a new project
called EJBGreeting2. This step is optional. If you don’t want to copy the project,
simply skip this section and continue making modifications to the EJBGreeting
project.

1. Bring up project EJBGreeting in Creator, if it’s not already opened.
2. From the Projects window, right-click node EJBGreeting and select Save

Project As. Provide the new name EJBGreeting2.
3. Close project EJBGreeting. Right-click EJBGreeting2 and select Set Main

Project. You’ll make changes to the EJBGreeting2 project.
4. Expand EJBGreeting2 > Web Pages and open Page1.jsp in the design view.
5. Click anywhere in the background of the design canvas of the EJBGreeting2

project. In the Properties window, change the page’s Title property to EJB -
Simple Greeting 2.

Figure 11–14 Application EJBGreeting running in a browser

520 Chapter 11 Using EJB Components
Delete Unneeded Components
Since you’re accessing the GreetingEJB methods directly, you no longer need
the Creator-generated data providers. You also don’t need the button.

1. Bring up Page1 in the design view.
2. In the Page1 Outline view, select component greeterGetGreeting1, right-

click, and select Delete. Creator removes the component from the page and
the greeting static text component displays the default Static Text.

3. In the Page1 Outline view, select component greeterGetTime1, right-click,
and select Delete. The time static text component also displays the default
Static Text.

4. In the design view, select the Update button, right-click, and select Delete.
This leaves the two static text components on the page.

Add Components to the Page
Next, you’ll add a listbox component to display the selection of names from the
Travel database, a message group component to report errors, and a label com-
ponent. Figure 11–15 shows the page with the new components.

1. Make sure that the bundled database server is running. In the Servers menu
the Bundled Database Server should have a green up-arrow badge next to
the database icon. If not, right-click the server name and select Start Bundled
Database from the context menu.

2. Use Figure 11–15 as a guide for component placement. Before adding the
additional components, move the two static components as shown.

Figure 11–15 Project EJBGreeting2 Page1 design view

Message
Group

Static Text

Label

Listbox

11.3 Greeting Two Ways 521
3. Select static text component time. In the Properties view, uncheck property
escape. This allows HTML characters to be interpreted by the browser.

4. From the Basic Components palette, select Label and drop it on the page. Set
its text to Please check in:.

5. From the Basic Components palette, select Listbox and drop it on the page
under the label you just added.

6. In the Properties view, check property required.
7. Resize the listbox so that it is approximately 5 by 5 grids.
8. In the design view, select the label component. In the Properties view, select

component listbox1 from the drop down list opposite property for. This
connects the label to the list box. A red asterisk appears in front of the label’s
text since the listbox has its required property set to true.

9. From the Basic Components palette, select Message Group and place it on
the page. This component will display any system error messages, as well as
validation error messages generated from listbox input.

Add EJB Method Data Provider
The GreetingEJB client is already included with the Page1’s components. You’ll
now add one of the TravelEJB methods to the page.

1. From the Servers window under Enterprise JavaBeans > Travel Center >
TravelEJB, select getPersons and drop it on the listbox component. Don’t
release the mouse until the listbox component is outlined in blue. (Be
patient.) Creator generates EJB client travelClient1 and
travelGetPersons1 data provider. Creator binds the data provider to the
listbox component. The listbox component displays abc in the selection area.

2. Select the listbox component, right-click, and select Bind to Data. Creator
pops up the Bind to Data dialog, as shown in Figure 11–16.

3. Make sure that travelGetPersons1 (Page1) is selected in the Data Provider
selection window.

4. Select name String for both the Value and Display fields. The listbox compo-
nent (like the drop down list component) uses a Value field and a Display
field. The Value field is returned with method getSelected() and the Dis-
play field is what is displayed in the component. In this application, you use
the Person field name for both the Value and the Display fields. Click Apply
then OK to close the dialog.

Add Event Handling Code
When the user selects a name from the listbox, the process value change event
handler invokes the methods from the GreetingEJB to display a greeting and
the time.

522 Chapter 11 Using EJB Components
1. In the Page1 design view, right-click the listbox component and select Auto-
Submit on Change. This submits the page when the user changes the selec-
tion.

2. Now double-click the listbox.
3. Creator generates default code for method listbox1_process-

ValueChange() and brings up Page1.java in the source editor with the cur-
sor at the first line of this method.

4. Add the following code to the event handler. Copy and paste from
FieldGuide2/Examples/EJB/snippets/greeting2_listbox1.txt. The added
code is bold.

Listing 11.3 Method listbox1_processValueChange()

public void listbox1_processValueChange(
ValueChangeEvent event) {

String name = listbox1.getSelected().toString();
String greetingStr = "";
String timeStr = "";

Figure 11–16 Bind to Data dialog

11.4 Implementing a Master-Detail Page with EJBs 523
The event handler uses String methods indexOf() and substring() to
manipulate the Strings returned from EJB method getGreeting() and listbox
method getSelected().

Deploy and Run
Deploy and run application EJBGreeting2. As you change the listbox selection,
the greeting changes as well as the time. Figure 11–17 shows the EJBGreeting2
project running in a browser.

Note that this application does not require initialization code for the EJB-
connected data provider, since EJB method getPersons() does not take a
parameter.

11.4 Implementing a Master-Detail
Page with EJBs

In a previous chapter (see “Master Detail Application - Single Page” on
page 400) you built an application that accessed a database. From the Servers
window, you selected specific tables and dropped them on the page. You then
built the appropriate query by adding criteria. You supplied the necessary
search parameters by selecting the search criteria data from a drop down list
component. To display data in the table, you attached various data fields to the
table component’s columns.

This method of accessing the database through the IDE requires that the
application developer know the structure of the data. If, on the other hand, you

try {
greetingStr = greeterClient1.getGreeting();
timeStr = greeterClient1.getTime();

} catch (Exception ex) {
log("Error Description", ex);
error("GreetingEJB: " + ex);

}
int stop1 = greetingStr.indexOf(',');
int stop2 = name.indexOf(',');
greeting.setText(greetingStr.substring(0, stop1+2)

+ name.substring(stop2+2) + "!");
time.setText("Today is: " + timeStr);

}

Listing 11.3 Method listbox1_processValueChange()

524 Chapter 11 Using EJB Components
access the data through EJB components, knowledge of the database structure
is not necessary. The EJB component developer decides how to expose the data
by providing methods that you call through the EJB client. This level of indirec-
tion means that the data store details can change as long as the EJB compo-
nent’s outside view remains constant.

In this section, you’ll build a master-detail application based on TravelEJB,
the sample Travel Center EJB included in Creator. From the Servers window,
expand Enterprise JavaBeans > Travel Center > TravelEJB. Table 11.1 lists the
available methods in TravelEJB.

Table 11.1 TravelEJB Methods

Method Name Parameter Return Type

getCarRental tripId (Integer) CarRentalDTO

getDepartureFlight tripId (Integer) FlightDTO

getHotelReservation tripId (Integer) HotelReservationDTO

getPersonById id (Integer) PersonDTO

getPersons none PersonDTO []

getReturnFlight tripId (Integer) FlightDTO

Figure 11–17 Application EJBGreeting2 running in a browser

11.4 Implementing a Master-Detail Page with EJBs 525
For example, method getPersons() returns a PersonDTO array and takes
no parameters. Method getPersonById() requires parameter id (an Integer)
and returns a single PersonDTO. Method getTripsByPerson() requires
parameter personId (an Integer) and returns a FlightDTO array. Let’s use these
three methods to build our master-detail example.

Creator Tip

The Enterprise JavaBeans components bundled with Creator that access the
database perform database reads only. This is a limitation only when using
the data provider wrapper. Other database operations with remote session
EJBs are possible, as long as the EJB method is invoked directly. EJBs must be
remote session beans (consuming entity beans is not supported).

Create a Project
1. From Creator’s Welcome Page, select Create New Project. Creator displays

the New Project dialog. Under Categories, select Web. Under Projects, select
JSF Web Application. Click Next.

2. In the New Web Application dialog under Project Name, specify EJBTravel.
Click Finish.

After initializing the project, Creator comes up in the design view of the edi-
tor pane. You can now set the title.

3. In the Properties window, select property Title and specify title EJB Travel.
Finish by pressing <Enter>.

Add Components to the Page
Figure 11–18 shows the project in the design view with the components added.
The page includes a grid panel for layout, a drop down list for selection, and
two tables to display the selected data. You’ll start by adding components to
the page. Then, you’ll select the EJB methods and bind them to the appropriate
components.

getTripFlights tripId (Integer) FlightDTO []

getTripsByPerson personId (Integer) FlightDTO []

Table 11.1 TravelEJB Methods (continued)

526 Chapter 11 Using EJB Components
1. From the Layout Components palette, select Grid Panel and drop it on the
page.

2. In the Properties view, set property bgcolor to #eeeeee, cellpadding to 15,
columns to 1, and width to 90%. The grid panel’s background color changes
to a light blue-gray.

3. From the Layout Components palette, select a second Grid Panel and drop it
on top of the grid panel you just added.

4. In the Properties view, change its id property to nestedPanel, cellpadding
to 10, and columns to 2. This nested grid panel will hold a drop down list
and a message group component.

5. From the Basic Components palette, select Drop Down List and drop it on
top of the nested grid panel (either use the Page1 Outline view or check that
the desired target component is outlined in blue in the design view).

Figure 11–18 Page1 design view for EJBTravel

Grid PanelMessage Group
Drop Down

List

Table (Flights)

Table (Person)

Label

Nested
Grid Panel

11.4 Implementing a Master-Detail Page with EJBs 527
6. From the Basic Components palette, select Message Group and drop it on
top of the nested grid panel. The message group will appear next to the drop
down list component.

You’ll now add two tables and a label component to the page.

1. From the Basic Components palette, select Table and drop it on top of the
top-level grid panel component (gridPanel1). Use the Outline view.

2. Change the table’s title to Scheduled Flights.
3. From the Basic Components palette, select Label and drop it on top of the

top-level grid panel component. Set its text to You chose person:.
4. From the Basic Components palette, select a second Table and drop it on top

of the top-level grid panel in the Outline view.
5. Change the table’s title to Person.

Add EJB Method Data Providers
Now let’s add the EJB methods to the page. Table 11.1 on page 524 lists the
available methods with TravelEJB. Only one method, getPersons(), does not
require a parameter. This is the method you’ll use to perform the initial data
display.

1. From the Servers window under Enterprise JavaBeans > Travel Center >
TravelEJB, select getPersons and drop it on top of the drop down list.
(Release the mouse after the drop down list is outlined in blue.) Creator gen-
erates EJB client travelClient1 and travelGetPersons1 data provider.

2. In the design view, select the drop down list component, right-click, and
select Bind to Data.

3. Creator pops up the Bind to Data dialog. The Bind to Data Provider tab
should be selected.

4. In the Value field window, select personId int. In the Display field window,
select name String. Click Apply and OK to close. Creator will generate a con-
verter for the personId integer field.

You’ll now add two more EJB methods: getTripsByPerson() and getPer-
sonById().

1. From the Servers window under Enterprise JavaBeans > Travel Center >
TravelEJB, select getTripsByPerson and drop it on top of the first table
(table1). (Release the mouse after the table is outlined in blue.) Creator gen-
erates data provider travelGetTripsByPerson1. Creator configures the
table component to reflect the fields in the travelGetTripsByPerson1 data
provider.

2. Repeat this step and add getPersonById. Drop it on top of the second table
component (table2). Again, wait until the table is outlined in blue. Creator

528 Chapter 11 Using EJB Components
configures the table component to reflect the fields in the
travelGetPersonById1 data provider.

Configure the Table Components
You’ll now configure the first table component.

1. Select component table1, right-click, and select Table Layout. Creator pops
up the Table Layout dialog.

2. Move columns personId and tripId from the Selected window to the Avail-
able window using the left-arrow (<).

3. Using the Up and Down buttons, rearrange the order of the Selected fields
to depDate, depCity, destCity and tripType.

4. Select column depDate and change its Header Text to Departure Date.
5. Select column depCity and change its Header Text to Departure City.
6. Select column destCity and change its Header Text to Destination City.
7. Select column tripType and change its Header Text to Trip Type.
8. Select Apply then OK to close the dialog. The design view reflects the recon-

figured table.

Make similar configuration changes to the second table.

1. Select component table2, right-click, and select Table Layout. Creator pops
up the Table Layout dialog.

2. Using the Up and Down buttons, rearrange the order of the Selected fields
to name, personId, jobTitle, freqFlyer.

3. Select column name and change its Header Text to Name.
4. Select column personId and change its Header Text to Person ID.
5. Select column jobTitle and change its Header Text to Job Title.
6. Select column freqFlyer and change its Header Text to Frequent Flyer.
7. Select Apply then OK to close the dialog. The design view reflects the recon-

figured table.

Add a Session Bean Property
This application requires a session bean property to keep track of the currently
selected value from the drop down list component. This requirement is subtle
and is only necessary if a user selects one of the sorting options on the table.
When a sorting selection is made, the page is rendered and the Page1 method
init() is invoked. Method init() must make sure it uses the currently
selected value stored in session scope. (This will be clearer when you add the
initialization code to the Page1 method init().)

11.4 Implementing a Master-Detail Page with EJBs 529
1. In the Projects view, right-click Session Bean and select Add > Property. Cre-
ator pops up the New Property Pattern dialog.

2. For Name specify myPersonId, for Type specify Integer, and for Mode keep
the default Read/Write. Click OK to close the dialog.

3. Double-click node Session Bean. Creator brings up SessionBean1.java in the
Java source editor.

4. Add the following code to the end of method init(). The added code is
bold.

Add Event Handling Code
When a user selects a name from the drop down list, the process value change
event handler provides parameters to refresh the data providers and supply
the requested data to the tables.

1. In the Page1 design view, right-click the drop down list component and
select Auto-Submit on Change. This submits the page when the user
changes the selection.

2. Now double-click the drop down list component.
3. Creator generates default code for method dropDown1_process-

ValueChange() and brings up Page1.java in the source editor with the cur-
sor at the first line of this method.

4. Add the following code to the event handler. Copy and paste from
FieldGuide2/Examples/EJB/snippets/travelEJB_dropDown1.txt. The
added code is bold.

public void init() {
. . .
// TODO - add your own initialization code here
myPersonId = null;

}

Listing 11.4 Method dropDown1_processValueChange()

public void dropDown1_processValueChange(
ValueChangeEvent event) {

Integer personId = (Integer)dropDown1.getSelected();
travelGetTripsByPerson1.setPersonId(personId);
travelGetTripsByPerson1.refresh();
travelGetPersonById1.setId(personId);
travelGetPersonById1.refresh();
getSessionBean1().setMyPersonId(personId);

}

530 Chapter 11 Using EJB Components
The event handler obtains personId from the drop down list and calls
method setPersonId() for the travelGetTripsByPerson1 data provider. The
refresh() call invokes the EJB method for that data provider. The event han-
dler also uses personId from the drop down list to call method setId() for the
travelGetPersonById1 data provider. Method refresh() updates the second
data provider as well. The last statement saves the newly selected personId in
session scope.

Specify Initialization
The design approach for this application requires an initial value for the per-
sonId. Otherwise, an attempt to invoke the data providers’ methods without
valid arguments causes a run time exception.

1. Page1.java should still be active in the Java editor. Scroll up and find
method init().

2. Add the following code to the end of the method. Copy and paste from
FieldGuide2/Examples/EJB/snippets/travelEJB_init.txt. The added code is
bold.

Here init() checks to see if a non-null value for session bean property
myPersonId exists. If not, the data provider method getValue() obtains an ini-
tial personId using FieldKey. The rest of init() uses this value to initialize
property myPersonId, the drop down component, and the method parameters.

Deploy and Run
Deploy and run application EJBTravel. Figure 11–19 shows one result for a
selection from the drop down list.

public void init() {
. . .
// TODO - add your own initialization code here
Integer personId = getSessionBean1().getMyPersonId();
if (personId == null) {

personId = (Integer)travelGetPersons1.getValue(
travelGetPersons1.getFieldKey("personId"));

getSessionBean1().setMyPersonId(personId);
}
dropDown1.setSelected(personId);
travelGetTripsByPerson1.setPersonId(personId);
travelGetPersonById1.setId(personId);

}

11.5 Adding EJBs to Creator 531
11.5 Adding EJBs to Creator

When you use EJBs in Creator applications, you’ll need to add application tar-
get EJBs to the IDE. These EJBs must be deployed, but they don’t have to be
deployed on your local server. Adding EJBs to the Servers window involves
inspecting deployed JAR files and extracting the information Creator needs to
invoke EJB method calls. This is not a difficult task, but there are a few guide-
lines to follow.

• Creator supports the consumption of remote session beans only. In reality,
this restriction shouldn’t be prohibitive, since a common way of accessing
entity beans is through a session facade EJB.

• You must deploy the EJB before you can add it to Creator’s Servers window.

Figure 11–19 Application EJBTravel running in a browser

532 Chapter 11 Using EJB Components
• Currently, Creator supports adding EJBs from application servers listed in
Table 11.2.

• You must provide a Server Host and RMI-IIOP port for the application
server. (With the bundled application server, use localhost for the Server
Host and 23700 for the default RMI-IIOP port. With the nonbundled Sun
Application Server, the default RMI-IIOP port is 3700.)

• You supply an EJB Set Name and the name and location of the client JAR
file.

(The client JAR file contains all the necessary classes for a client (that is, your
web application) to call the EJBs. If the web application is running in a J2EE
environment, the client JAR file needs to include the home interfaces,
remote interfaces, and the classes those interfaces depend on. Creator also
requires the EJB deployment descriptors in order to display the EJBs in the
Servers window.)

• As you step through adding the EJB set to the IDE, you’ll have a chance to
specify the element class for collection return values (if applicable), as well
as the names of any method parameters. The default method parameter
name is arg0 (the historical influence of the C Programming Language lives
on).

Creator Tip

If an EJB returns an Array of objects, Creator figures out the element class for
the return values. A Collection (such as ArrayList) return value requires that
you specify the element class when you add the EJB to the Servers window.

Table 11.2 Supported Application Servers for EJB Adds

Sun Java System Application Server 8.1

Sun Java System Application Server 8

Sun Application Server 7

BEA WebLogic 8.1

IBM WebSphere 5.1

11.5 Adding EJBs to Creator 533
Add LoanEJB
Let’s add an example EJB to the Servers window in Creator. Before you can
manipulate the Enterprise JavaBeans node, you must deploy the EJB. Let’s do
that now.1

1. Make sure the Deployment Server is running. From the Servers window, the
Deployment Server node should display a green up-arrow badge indicating
that it is running.

2. If the application server is not running, right-click the Deployment Server
node and select Start / Stop Server. Creator displays the Server Status dialog.

3. Click Start Server.

You’ll now deploy the EJB (jar file) provided with the book’s examples. This
requires that you login into the server’s Admin Console. Here are the steps.

1. From Creator’s Servers window (the Deployment Server should be run-
ning), right-click Deployment Server and select View Admin Console.

2. Creator pops up a Log In window.
3. For User Name specify admin and for Password use adminadmin.
4. Under Common Tasks, select Application Server > Applications > EJB Mod-

ules. The Admin Console displays all deployed EJB Modules (if any).
5. Select button Deploy. The Admin Console displays Deploy EJB Module.
6. Under Location, select Specify a package file to upload to the Application

Server and select Browse.
7. In the File Upload dialog, browse to your Field Guide download directory,

select file FieldGuide2/Examples/EJB/ejb-jar-loanBean.jar, and click Open.
8. Select Next and then OK. Figure 11–20 shows the console after you finish

deployment.
9. Select the LOGOUT button at the top of the window to end your session.

Now that the LoanEJB is deployed, let’s add it to the IDE so you can access it
in your projects. Note that you can access EJBs deployed on other machines as
well (not just the local machine), as long as the application server is listed in
Table 11.2 on page 532.

1. The Deployment Server should be running and LoanEJB should be
deployed.

2. From the Servers window, right-click Enterprise JavaBeans and select Add
Set of Session EJBs. Creator displays the Add Set of Session EJBs dialog.

1. This EJB example is taken from “The Loan Enterprise Bean,” Anderson and
Anderson, Enterprise JavaBeans Component Architecture, Sun MicroSystems
Press, Prentice Hall, 2002.

534 Chapter 11 Using EJB Components
3. For EJB Set Name specify LoanEJB, for Application Server use the default
Sun Java System Application Server 8.1, and for RMI-IIOP port specify 23700.

Creator Tip

Do not use 3700 (the displayed value). The correct value for the bundled
application server RMI-IIOP port is 23700.

4. Click Add to add the client jar.
5. Browse to <Creator-install-directory>/SunAppServer8/domains/creator/

applications/j2ee-modules/ejb-jar-loanBean/ejb-jar-loanBeanClient.jar
and click Open. (The client jar file is embedded in the deployed EJB jar file.)
Click Next.

6. You’ll now configure the EJB methods annualAmortTable, monthlyAmort-
Table, and monthlyPayment. The first two methods require an Element
Class for the ArrayList return object. Use asg.LoanEJB.PaymentVO for both
methods. You should also change the method parameter name from arg0 to
loanVO (use lower-case for the initial letter) for all three methods. Class
LoanVO stands for Loan Value Object. Table 11.3 shows the settings.

Figure 11–20 System Application Server Admin Console

11.5 Adding EJBs to Creator 535
When you’re finished configuring the methods, each of them should have an
orange circle next to the method name. Figure 11–21 shows the setting for
method monthlyAmortTable.

7. Click Finish. The Servers window should now include LoanEJB under node
Enterprise JavaBeans, as shown in Figure 11–22. Note that each method
includes a data provider badge with the icon. This means the method is
droppable and its return value(s) can be wrapped by a data provider.

Consuming the LoanEJB
In this section, you’re going to modify project Payment1 (see “LoanBean” on
page 242 from Chapter 6) to use an EJB component instead of the project’s
LoanBean JavaBeans component. The design approach is similar to Payment1,
where you’ll define a session bean property to hold loan information. The dif-

Table 11.3 EJB Method Configuration for LoanEJB

Method Name Element Class Parameter Name
annualAmortTable asg.LoanEJB.PaymentVO loanVO

monthlyAmortTable asg.LoanEJB.PaymentVO loanVO

monthlyPayment not applicable loanVO

Figure 11–21 Configure EJB Methods during Add

536 Chapter 11 Using EJB Components
ference is you’ll invoke EJB method monthlyPayment() to calculate the mort-
gage’s payment.

Copy the Project
To avoid starting from scratch, copy project Payment1 to a new project called
EJBPayment1. This step is optional. If you don’t want to copy the project, sim-
ply skip this section and continue making modifications to project Payment1.

1. Bring up project Payment1 in Creator, if it’s not already opened. (If you
didn’t build project Payment1, use the pre-built project found in
FieldGuide2/Examples/JavaBeans/Projects/Payment1.)

2. From the Projects window, right-click node Payment1 and select Save
Project As. Provide the new name EJBPayment1.

3. Close project Payment1. Right-click EJBPayment1 and select Set Main
Project. You’ll make changes to the EJBPayment1 project.

4. Expand EJBPayment1 > Web Pages and open Page1.jsp in the design view.
5. Click anywhere in the background of the design canvas of the EJBPayment1

project. In the Properties window, change the page’s Title property to EJB -
Payment Calculator.

Figure 11–22 Servers view showing LoanEJB added to Enterprise JavaBeans node

11.5 Adding EJBs to Creator 537
Add an EJB Method
Use the Servers window to add the LoanBean method data provider to your
project.

1. In the Servers view, expand Enterprise JavaBeans > LoanEJB > LoanBean.
2. Select monthlyPayment and drop it on the page in the design view. Creator

adds EJB client loanClient1 and data provider loanMonthlyPayment1 to
the Page1 Outline view.

Delete Local LoanBean Component
You’ll replace the asg.bean_examples/LoanBean component you added to the
project to build Payment1. In this step, you’ll first delete the source for this
component and then delete the corresponding session bean property.

1. In the Projects view, expand EJBPayment1 > Source Packages. You’ll see a
node for payment1 as well as asg.bean_examples.

2. Right-click asg.bean_examples and select Delete to remove this node (and
all source code under it) from the project. Select Yes in the confirmation dia-
log.

3. In the Outline view, expand the SessionBean1 node, right-click loanBean,
and select Delete. This deletes session bean property loanBean from your
project.

4. In the Projects view, double click node Session Bean to bring up
SessionBean1.java in the source editor.

5. Find method init() and delete the initialization statement of loanBean
from the method.

6. Delete the remaining comments from the deleted loanBean property (at the
end of the file).

Add a Session Bean Property
You’ll now add a session bean property to replace the loanBean property you
just deleted.

1. In the Projects view, right-click node Session Bean and select Add > Prop-
erty.

2. For name specify loanBean, for type specify LoanVO, and for Mode specify
Read/Write. Click OK. Recall that LoanVO stands for Loan Value Object,
which is the method parameter type required by the EJB monthlyPayment()
method.

3. Double click node Session Bean to bring up SessionBean1.java in the Java
source editor.

538 Chapter 11 Using EJB Components
4. Place the cursor in the background, right-click, and select Fix Imports to add
the import statement for class LoanVO. This also removes the import state-
ment for the removed asg.bean_examples.LoanBean class.

5. Add an initialization statement to the end of method init(), as follows. The
added statement is bold.

Provide Property Bindings
The three text field components hold the amount, interest rate, and term. You’ll
bind the text property of each of these components to the related property of
the LoanVO session property.

1. In the Page1 design view, select text field component loanAmount, right-
click, and select Property Bindings. Creator pops up the Property Bindings
dialog.

2. Under Select bindable property choose text Object. For Select binding target,
choose SessionBean1 > loanBean > amount double. Select Apply and Close.

3. Repeat Steps 1 and 2 for text field component interestRate. Choose bind-
ing target SessionBean1 > loanBean > rate double.

4. Repeat Steps 1 and 2 for text field component loanTerm. Choose binding tar-
get SessionBean1 > loanBean > years int.

You’ll now bind the static text component cost with the resultObject
(return object) of the loanMonthlyPayment1 data provider.

1. In the Page1 design view, select static text component cost. Right-click and
select Bind to Data.

2. Select tab Bind to an Object. In the Select binding target window, choose
Page1 > loanMonthlyPayment1 > resultObject Double. Click Apply and Close
as shown in Figure 11–23. The cost component now renders as $123.45 in
the design view.

Since method monthlyPayment() requires a parameter, you need to invoke
method setLoanVO() to initialize it.

1. Click the Java label in the editing toolbar to bring up Page1.java in the Java
source editor.

public void init() {
. . .
loanBean = new LoanVO(100000.0, 5.0, 15);

}

11.5 Adding EJBs to Creator 539
2. Add the following initialization statement to the end of method init(), as
follows. The added code is bold.

Deploy and Run
Deploy and run application EJBPayment1. Figure 11–24 shows the project run-
ning in a browser with the tooltip for the Loan Amount field displayed.

Project Payment2 Alternative
You can also adapt project Payment2 (see “Object List Data Provider” on
page 353) to use LoanEJB method monthlyAmortTable. Follow the same modi-
fications for implementing EJBPayment1 from project Payment1. Drop month-
lyAmortTable directly on the table component in Schedule.jsp. You can then

public void init() {
. . .
// TODO - add your own initialization code here
loanMonthlyPayment1.setLoanVO(

getSessionBean1().getLoanBean());
}

Figure 11–23 Bind to Data dialog

540 Chapter 11 Using EJB Components
configure the table with the desired fields from the EJB data provider. We show
this implementation in FieldGuide2/Examples/EJB/Projects/EJBPayment2.

11.6 Key Point Summary

Enterprise JavaBeans (EJBs) provide an important architectural option for add-
ing scalable functionality to a web application. Creator allows you to consume
session beans by generating clients that access the EJB methods. It also builds a
data provider interface so that you can bind method return objects to Creator’s
data-aware components.

• EJBs are server-side components that encapsulate an application’s business
logic. They provide a distributed alternative to JavaBeans components.

• Creator comes bundled with several sample sets of session EJBs that you can
add to your projects.

• If you add an EJB component to your design page, Creator generates a client
that invokes the desired EJB method. When used in this way, you place the
method call in a try block.

Figure 11–24 Application EJBPayment1 running in a browser

11.6 Key Point Summary 541
• If you add an EJB method to your design page, Creator generates both a client
and a data provider that invokes the method and generates return values.
You can access these return values through the data provider.

• If you bind a component to an EJB method data provider, you must provide
initialization data if the method takes a parameter.

• You can bind Creator’s data-aware components to the EJB method data
providers. This is a convenient way to fill components such as list box, drop
down list, and table.

• When an EJB method is selected, the Properties window displays important
usage information about the method, such as its signature, name, return
type, and method parameter.

• You can add sets of session EJBs to the Creator Servers window. The EJBs
must be deployed on one of the supported application servers listed in
Table 11.2 on page 532. The EJBs can be deployed on an application server
on the local machine or a remote server.

• When you add an EJB set that’s deployed on the bundled application server,
use RMI-IIOP port 23700.

• You can configure an EJB method during the process that adds the EJB set to
Creator’s Servers window. You specify the element class for any method that
returns a collection. You also rename the method parameter (from the
default name arg0).

• If the EJB method returns an Array then Creator can determine the element
class for the return value, making Arrays the preferred return type (instead
of Collections).

PORTLETS
Topics in This Chapter

• JSF Portlets and JSR-168
• Design Time Experience with Portlets
• Portlet View Mode, Edit Mode, Help Mode
• Page Navigation with Portlets
• Page Layout with Portlets
• Portlet Life Cycle

Chapter
ortlets provide a customized view within a fragment of a web page. The
job of the portal is to aggregate portlets into a complete page. With Cre-
ator, you can create a JSF portlet application that conforms to the Java
Specification Request (JSR) 168 Portlet specification, ensuring that your

portlet application works with any JSR-168 compliant portlet server.
In this chapter we look at portlet application development using Creator. We

show you how portlet development differs from non-portlet Creator web
applications and show you how to leverage Creator’s IDE to build portlet
applications. You’ll see that many of the web application features apply to
portlets, such as JavaBeans objects, page navigation, and database, web service,
and EJB access.

12.1 What Are Portlets?

A portlet is an application that runs on a web site managed by a server called a
portal. A portal server manages multiple portlet applications, displaying them
on the web page together. Each portlet consumes a fragment of the page and
manages its own information and user interaction. Portlet application develop-
ers will typically target portlets to run under portals provided by various por-
tal vendors. JSR-168 establishes a standard for creating portlets, which allows
any portlet that conforms to JSR-168 to run in any JSR- 168 compliant portal.

P

391

392 Chapter 12 Portlets
Creator includes a bundled portal driver called Pluto, developed at the
Apache Software Foundation. Pluto is a reference implementation of the
JSR-168 specification for portal servers. When you deploy a portlet project, Cre-
ator deploys the portlet container for you and brings up your portlet project in
Pluto in your target web browser.

You can also deploy the portlet application to other JSR-168 compliant portal
servers. Creator provides a dialog that allows you to export the portlet Web
Archive (WAR) and configure it for deployment on the target portal server.
Final deployment takes place on the target system where you can also specify
deployment options (which may also include portal-specific configuration).

Creator builds JSF portlets. This means your design-time experience in
building portlet web application using the visual, drag-and-drop features of
Creator will be familiar. Most of the interaction with the IDE is exactly the
same as it is for non-portlet JSF projects.

Portlet Modes
Portlets have three standard modes: View, Edit, and Help. The portal server
manages the modes for an application and provides page decorations that
allow you to switch modes.

View mode is the default and normal mode for user interaction with a port-
let. When you develop a portlet with Creator, the initial page, PortletPage1.jsp,
is the initial View mode page. Edit mode allows users to customize the portlet
and Help mode provides information about the portlet to the user. You can cre-
ate Edit and Help mode pages (and additional View mode pages) for your
portlet through the IDE.

Portlet Navigation
JSF-based portlets use the standard JSF navigation engine. Thus, you can use
Creator’s navigation editor to provide navigation for your portlet. Each portlet
mode has its own navigation rules. As a portlet designer, you should treat each
mode separately for navigation. Therefore, if your View mode contains three
pages, you’ll define the navigation among these three pages in isolation of any
Edit or Help mode interaction. Similarly, you would define Edit mode naviga-
tion in isolation of View or Help modes.

12.1 What Are Portlets? 393
Creator Tip

Creator’s IDE lets you define navigation links to any page, regardless of its
mode. However, mixing modes through JSF navigation presents a confusing
model for the user, since the portal server manages navigation among a
portlet’s modes. To keep the user experience consistent, don’t define
navigation links across portlet modes.

Portlet Real Estate
Because a portlet is a page fragment (managed by the portal server), you’ll
have a smaller area to work with when building the portlet application. Like
the page fragment box component that Creator provides, the IDE design view
for portlets is a subset of a full page. Creator marks the usable design area with
a white background. This reduced real estate means that your mind set must
shift a bit when designing portlet applications. Typically, you’ll “down size”
your target page layout. You’ll start thinking in terms of “small is good” or
“how can I display this information in a small area?”

Some of Creator components have alternate, “lite” or “mini” versions that
are more suitable for portlets. For example, the button component has a mini
property which renders a smaller version of a button. The table and tab set
component also offer smaller (lite) versions.

Portlet Life Cycle
You’ve seen the life cycle of a JSF application in a previous chapter (see “The
Creator-JSF Life Cycle” on page 151). Here, we’ll briefly describe the JSF portlet
life cycle. A portlet application shares the browser page with other portlets.
The user interacts with only one portlet at a time. Thus, only one portlet pro-
cesses user input and possibly invokes event handlers. All portlets on the page,
however, must go through the render phase. For this reason, the normal JSF life
cycle for portlets is split into two cycles—one for the form submit processing
and one for rendering.

How does this difference affect the portlet application model? It means you
cannot use request scope objects to transfer data from the form submission
phase to the rendering phase. Request scope objects include objects within
RequestBean1.java and any request scope managed beans (the page beans).
You can, however, use session scope objects to cache data. You can pull data
out of session scope objects in method prerender() for the rendering phase, or
use property bindings with session scope objects. For example, during a form

394 Chapter 12 Portlets
submission (without navigating to a new page), the JSF life cycle phases and
framework calls are as follows.

Thus, data acquired in the page bean during the first cycle (Restore View Phase
through the first page bean destroy() call) will not be retained when the page
bean is instantiated during the rendering process.

If you navigate to a new page, the framework calls the second init()
through destroy() on the new page (here, PortletPage2) during the rendering
process, as follows.

The JSF component tree (containing the actual UI component objects) is
maintained throughout the JSF life cycle. Therefore, you can store data in the
components themselves. However, using session scope objects to pass data to
the render phase is the method we’ll use in our example projects.

Note that currently you can deploy only one portlet at a time using the bun-
dled portal server in Creator.

Restore View Phase
PortletPage1.init()
PortletPage1.preprocess()

Apply Request Values Phase
Process Validations Phase
Update Model Values Phase
Invoke Applications Phase

PortletPage1.destroy()
PortletPage1.init()
PortletPage1.prerender()

RenderResponse Phase
PortletPage1.destroy()

Restore View Phase
PortletPage1.init()
PortletPage1.preprocess()

Apply Request Values Phase
Process Validations Phase
Update Model Values Phase
Invoke Applications Phase

PortletPage1.destroy()
PortletPage2.init()
PortletPage2.prerender()

RenderResponse Phase
PortletPage2.destroy()

12.2 Creating a Portlet Project 395
12.2 Creating a Portlet Project

Let’s begin with a simple portlet application. Our example is a portlet that ech-
oes text provided by the user. You’ll see how the development steps generally
mirror non-portlet applications. Along the way, we’ll point out differences
between portlet applications and non-portlet applications built with Creator.

Create a Portlet Project
1. From Creator’s Welcome Page, select button Create New Project. From the

New Project dialog, under Categories select Web and under Projects select
JSR-168 JSF Portlet Project. Click Next.

2. In the New Portlet dialog, specify PortletEcho for Project Name and click
Next.

3. Creator displays the New Project dialog which includes the Portlet Deploy-
ment Descriptor for the portlet project, as shown in Figure 12–1. Accept the
defaults and click Finish.

Figure 12–1 New Project dialog for JSF portlet projects

396 Chapter 12 Portlets
Creator Tip

You can change default information about the portlet, including its display
name, description, and titles (regular and short). You can also edit this
deployment descriptor later. In the Projects window, right-click the portlet
project name and select Edit Deployment Descriptor.

After initializing the project, Creator comes up in the design view of the edi-
tor pane. It creates an initial page with default name PortletPage1 and uses the
div element (similar to the Page Fragment Box) to contain the page’s form ele-
ment. The portlet page fragment default size is 400 by 400 pixels.

Add Components to PortletPage1
The portlet page is configured in a white background by default and the design
editor displays a contrasting background for the area outside the fragment
boundary. Figure 12–2 shows the design view with several components added.
You’ll use normal drag-and-drop component selection to add components to
the page.

1. From the Basic Components palette, select Label and drop it on the page
near the top, left-hand portion of the design area.

2. The label will be selected. Type in the text Please type in some text. You may
use HTML. followed by <Enter>.

3. From the Basic Components palette, select Text Field and drop it on the page
under the label component.

Figure 12–2 PortletPage1 design view for project PortletEcho

Label

Text Field
Button

Static Text

Portlet Page
Width Boundary

12.2 Creating a Portlet Project 397
4. From the Basic Components palette, select Button and place it below the text
field component. Supply the text Display Text followed by <Enter> to set the
button’s label.

5. Make sure the button is still selected. In the Properties view, change prop-
erty id to display.

6. From the Basic Components palette, select Static Text and place it below the
button component.

7. Make sure the component is still selected. In the Properties view, uncheck the
escape attribute. This allows HTML tags to be interpreted by the browser.

Figure 12–3 shows the PortletPage1 Outline view after the components are
added to the page.

Add a Save Text Session Bean Property
We now encounter one of the biggest differences between portlet JSF projects
and non-portlet JSF projects. With portlet projects, you cannot use request
scope objects to cache data within a HTTP request. With regular JSF projects,
data in request scope survives the HTTP request, allowing the rendering page
to access data that comes from processing the request. Therefore, instead of
binding component textField1 to the static text component staticText1, we
use a session scope property for data caching. To do this, we’ll add a property
to SessionBean1 called saveText (a String).

1. In the Projects window, right-click Session Bean and select Add > Property.
Creator displays the New Property Pattern dialog.

2. For Name, specify saveText, for Type use String, and for Mode, select the
default Read/Write.

3. Click OK to add the property.

Figure 12–3 PortletPage1 Outline view

398 Chapter 12 Portlets
Specify Property Bindings
You can use the JSF property binding mechanism to display the text that the
user provides. When you bind both the text field and the static text compo-
nents to the saveText property, user-provided text is stored in property save-
Text during the Update Model Values phase. Similarly, the data in property
saveText is transferred to both the text field and the static text component dur-
ing the Render Response phase. If the user provides formatting tags, such as
 pairs, these will affect the text in the static text component since its
escape property is unchecked.

1. In the PortletPage1 design view, select text field component textField1,
right-click, and select Property Bindings. Creator displays the Property
Bindings dialog.

2. In the Select bindable property window, select text Object. In the Select bind-
ing target window, select SessionBean1 > saveText String. Click Apply, as
shown in Figure 12–4.

3. Click Close. Creator sets the text field’s text property to

4. Repeat the property binding for component staticText1. Select the compo-
nent, right-click, and select Property Bindings.

#{SessionBean1.saveText}

Figure 12–4 Property Bindings for textField1

12.2 Creating a Portlet Project 399
5. Select text Object for the bindable property and SessionBean1 > saveText
String for the binding target. Click Apply and Close.

Deploy and Run
Click the Run icon on the toolbar to build, deploy, and run the portlet applica-
tion. The Output window displays several status lines pertaining to the portlet
container (which is deployed within the application server). When your portlet
comes up in the browser, it is running within the Pluto portlet container, as
shown in Figure 12–5. Note that the project’s name and title is displayed on the
page.

Figure 12–5 Portlet project PortletEcho running in the portlet container

400 Chapter 12 Portlets
12.3 Database Access with Portlets

Creating a portlet that accesses a database is the same as creating a non-portlet
JSF project using Creator. The differences are smaller browser real estate and
portlet life cycle treatment of request-scope data.

Let’s adapt project MusicRead2 (see “Master Detail Application - Two Page”
on page 283) and implement it as a portlet. The approach is the same— a table
component lists recordings on the first page with a hyperlink component to
take users to the second page. This second page displays track details for the
selected recording. Because the target application is a portlet, however, you’ll
make several changes. First, the table component will display only two col-
umns. Second, you’ll store the selected RecordingID and RecordingTitle values
in session scope rather than request scope. On the tracksDetail page, the table
component will implement pagination, limiting the number of rows to seven.

Create a Portlet Project
1. From Creator’s Welcome Page, select button Create New Project. From the

New Project dialog, under Categories select Web and under Projects select
JSR-168 JSF Portlet Project. Click Next.

2. In the New Portlet dialog, specify PortletMusic for Project Name and click
Next.

3. Creator displays the New Project dialog which includes the Portlet Deploy-
ment Descriptor for the portlet project. Accept the defaults and click Finish.

After initializing the project, Creator comes up in the design view of the edi-
tor pane. The initial page has the default name PortletPage1.

Add Session Bean Properties
When the user selects a recording, you’ll need to save the RecordingID and the
RecordingTitle so that components on the tracksDetail page can access the
data. Recall that project MusicRead2 used request scope to store the data, since
request scope data is available to the next page in a standard JSF application.
With portlets, you must use session scope.

1. In the Projects view, expand the PortletMusic node, select Session Bean,
right-click, and select Add > Property.

2. Creator pops up the New Property Pattern dialog. For name, specify record-
ingID, for type specify Integer, and for Mode keep the default Read/Write.

3. Click OK. Creator adds property recordingID to SessionBean1.java.

Now add a second property, recordingTitle, to session scope.

12.3 Database Access with Portlets 401
1. In the Projects view, select PortletMusic > Session Bean, right-click, and
select Add > Property.

2. Creator pops up the New Property Pattern dialog. For name, specify record-
ingTitle, for type specify String, and for Mode keep the default Read/Write.

3. Click OK. Creator adds property recordingTitle to SessionBean1.java.
4. In the Outline view expand the SessionBean1 node. You’ll see the two ses-

sion bean properties you just added.

Add Components to the Page
The design view marks the default portlet area, so you’ll position the compo-
nents inside this white background. You’ll need a label for the title, a message
group component for error messages, and a table component to display the
data, as shown in Figure 12–6. The first column uses a hyperlink component
and the second columns uses a static text component (the default).

1. Make sure that PortletPage1 is active in the design view.
2. From the Basic Components palette, select Label and drop it on the page in

the top left corner.
3. Supply the text Music Collection followed by <Enter> to specify the label’s

text.
4. From the Basic Components palette, select Message Group and drop it on

the page to the right of the label.

Figure 12–6 PortletPage1 design view for project PortletMusic

Label
Message

Group

Hyperlink Static
TextTable

Portlet
Boundary

402 Chapter 12 Portlets
5. From the Basic Components palette, select Table and drop it on the page.
Place it flush to the left and as high as possible without overlapping the mes-
sage group component. Creator configures the table with a default data pro-
vider and default columns and rows.

6. The table title is selected. Change the title to Recordings. You’ll configure the
rest of the table after you add the database table.

Add a Database Table
You can now add the database table to the page. (If you haven’t configured the
Music database, do this now. See “Configuring for the PointBase Database” on
page 270 in Chapter 9.)

1. From the Servers window, expand Data Sources > Music Tables nodes.
2. Select table RECORDINGS and drop it on top of the table component (make

sure the table component is outlined in blue before releasing the mouse).

Creator configures the table component to accommodate the RECORDINGS
data and generates a cached rowset data provider to wrap the cached rowset in
session scope.

Query and Table Configuration
You’ll first modify the default SQL query and then configure the table compo-
nent. The portlet will display the recording title and the recording artist name.
The recording artist name requires an inner join.

1. From the Outline view, expand SessionBean1 and double-click the cached
row set component, recordingsRowSet. This brings up the Query Editor in
the editor pane. (Close the Output window to make more room for the
query editor.)

2. Right-click inside the table view (the top area that shows the RECORDINGS
table) and select Add Table from the context menu. Creator pops up the
Select Table(s) to Add dialog. Select table RECORDINGARTISTS and click
OK. Creator adds an Inner Join clause to the query text. You now see a sec-
ond table in the Table view.

3. In the Table view, uncheck all fields in the RECORDINGS table except
RECORDINGID and RECORDINGTITLE. Uncheck all fields in the
RECORDINGARTISTS table except RECORDINGARTISTNAME. (Only
three fields total are now checked.)

4. Select File > Save All to save these changes.
5. Return to the design view by selecting the PortletPage1 tab at the top of the

editor pane.

12.3 Database Access with Portlets 403
You’ll now configure the table layout to display the columns that you want.

1. Select the table component in the design view, right-click, and select Table
Layout. Creator brings up the Table Layout dialog.

2. Move the fields between the Available window and the Selected window so
that RECORDINGS.RECORDINGTITLE and RECORDING-
ARTISTS.RECORDINGARTISTNAME are both in the Selected window.
(Make sure that field RecordingTitle is listed first.) Field RECORD-
INGS.RECORDINGID should be in the Available window.

Creator Tip

Although you won’t display field RECORDINGID, you still need it to
identify the relevant tracks in the TRACKS table. That’s why this field
remains checked in the query editor.

3. In the Selected window, select RECORDINGS.RECORDINGTITLE.
4. Under Column Details for Component Type, select Hyperlink from the drop

down list. Click Apply then OK. The table component has two columns and
the component in the first column is now a hyperlink component.

5. In the Properties window for the table component, set property width to 400
(the default width of the portlet area).

6. Still in the Properties window, check property lite (this provides a more
streamlined looking table component appropriate for portlets).

Now let’s provide event handling code for the table’s hyperlink component.

1. In the Outline view, select hyperlink component under the first column of
the table.

2. Change the id property of the hyperlink component to hyperlinkTitle.
3. In the Outline view, right-click the hyperlink component and select Edit

action Event Handler. Creator generates a default action event handler and
brings up the Java source editor.

4. Copy and paste the event handler code from the Creator book download
FieldGuide2/Examples/Portlets/snippets/portletMusic-

404 Chapter 12 Portlets
_hyperlinkTitle_action.txt. The added code is bold. (Be sure to replace the
return null statement with return "tracks".)

The RECORDINGID and RECORDINGTITLE values of the selected row
(object rowData) are saved in session scope properties so that they are available
to the tracksDetail.jsp page, which you’ll add to the project in the next section.

1. Right-click and select Fix Imports to fix the syntax errors.
2. Save these modifications by clicking the Save All icon on the toolbar.

Add a New Page
Now let’s create a new page to display track data. First, you’ll place a label,
message group, hyperlink and table component on the tracksDetail page.
You’ll then add the Music TRACKS table. Figure 12–7 shows the tracksDetail
page in the design view.

1. In the Projects view, right-click on node Web Pages and select New > Portlet
Page from the context menu.

2. Creator pops up the New Portlet Page dialog. Specify tracksDetail for the file
name and click Finish. Creator brings up page tracksDetail.jsp in the design
view.

3. From the Basic Components palette, select component Label and place it on
the page, near the top left side.

4. Make sure it’s selected and type in the text Tracks Detail and finish with
<Enter>.

5. From the Basic Components palette, select component Message Group and
drop it onto the page near the top to the right of the label you just added.
When you post error messages to the faces context for this page, the message
group component will display them.

6. From the Basic Components palette, select component Hyperlink and place
it on the page underneath the label component.

Listing 12.1 Method hyperlinkTitle_action()

public String hyperlinkTitle_action() {
TableRowDataProvider rowData = (TableRowDataProvider)

getBean("currentRow");
getSessionBean1().setRecordingID(

(Integer)rowData.getValue("RECORDINGS.RECORDINGID"));
getSessionBean1().setRecordingTitle(

(String)rowData.getValue("RECORDINGS.RECORDINGTITLE"));
return "tracks";

}

12.3 Database Access with Portlets 405
7. Specify Return to Recordings for its text. You’ll use this component to navi-
gate back to PortletPage1.

8. From the Basic Components palette, select component Table and drop it
onto the page. Creator builds a table with default generated rows and col-
umns and a default table data provider.

9. From the Servers view, select the Data Sources > Music > Tables > TRACKS
table and drop it on top of the table component you just added. Make sure
that you select the entire table component when you release the mouse (it
will be outlined in blue). Creator modifies the table to match the database
fields from the TRACKS table and instantiates the tracksRowSet compo-
nent in session scope.

Modify SQL Query
As it is currently configured, the tracksRowSet returns all track records from
the Music database. You need to limit the result set so that only the tracks that
match the RecordingID selected in the PortletPage1 table are returned. To do
this, specify a query criteria so that each record in the Tracks row set matches
the RecordingID saved in session scope. You’ll use the query editor to modify
the SQL query for the Tracks row set.

1. Open the SessionBean1 node in the Outline view and double-click the
tracksRowSet component. Creator brings up the query editor. Close the
Output window if it’s open (to make more room).

Figure 12–7 tracksDetail design view for project PortletMusic

Label

Message
Group

Table
Hyperlink

Pagination
Controls

406 Chapter 12 Portlets
2. In the spreadsheet view of the query editor, right-click opposite field
RECORDINGID and select Add Query Criteria.

3. In the Add Query Criteria dialog, use the default (= Equals) for Compari-
son and select radio button Parameter, as shown in Figure 12–8. Click OK.
Creator modifies the query text to include a WHERE clause.

4. In the Table view, uncheck all fields except TRACKNUMBER and TRACK-
TITLE in the TRACKS table.

5. In the spreadsheet view of the query editor, click inside cell Sort Type oppo-
site column TRACKNUMBER and select Ascending from the drop down
selection. This returns the records sorted by track number (in ascending
order). Here is the modified SQL query text with the WHERE and ORDER
BY clauses you just added (shown in bold).

6. Save these modifications by selecting File > Save All from the main menu.

Add Page Navigation
Recall that the event handler code for the first page table’s hyperlink compo-
nent returns the string “tracks”. This is the string JSF will send to the naviga-
tion handler. You’ll now add the appropriate page navigation rule. You’ll also
add the navigation rule to return to PortletPage1 from the tracksDetail page.

SELECT ALL MUSIC.TRACKS.TRACKNUMBER, MUSIC.TRACKS.TRACKTITLE
FROM MUSIC.TRACKS
WHERE MUSIC.TRACKS.RECORDINGID = ?
ORDER BY MUSIC.TRACKS.TRACKNUMBER ASC

Figure 12–8 Add Query Criteria dialog

12.3 Database Access with Portlets 407
1. In the Projects view, double-click the Page Navigation node. Creator brings
up the page navigation editor. You’ll see the two pages, PortletPage1.jsp
and tracksDetail.jsp.

2. Select PortletPage1.jsp and drag the cursor from the hyperlink component
to page tracksDetail.jsp, releasing the mouse inside the page. Creator dis-
plays a navigation arrow.

3. Change the default name to tracks, as shown in Figure 12–9.

4. Now select page tracksDetail.jsp and drag the cursor from the hyperlink
component to page PortletPage1.jsp. Release the mouse inside the page.

5. Change the default name to recordings.

Add Prerender Code
It’s time to add the code that will specify the query parameter for the tracks-
RowSet component and update the tracksDataProvider. This code belongs in
method prerender(), since the page bean object during this portion of the life
cycle is the one used for rendering the page.

1. Select the tracksDetail tab from the top of the editor pane. This displays the
page in the design view.

2. Select the button labeled Java in the editing toolbar. Creator brings up
tracksDetail.java in the Java editor.

Figure 12–9 Adding page navigation

408 Chapter 12 Portlets
3. Locate method prerender() and add the following code. Copy and paste
from the book download file FieldGuide2/Examples/Portlets/snip-
pets/portletMusic_tracksDetail_prerender.txt. The added code is bold.

This code obtains the RecordingID from session scope and uses it to set the
tracksRowSet query parameter. The call to refresh() forces an update of the
tracks data provider. Any errors are recorded in the Server Log (using method
log()) and displayed in the message group component (using method
error()).

Configure Table Component
The final step is to configure the table component on the tracksDetail page.

1. Return to the tracksDetail design view by selecting the Design button in the
editing toolbar.

2. Select the table component, right-click, and select Table Layout. Creator dis-
plays the Table Layout dialog.

3. Make sure that both TRACKNUMBER and TRACKTITLE appear in the
Selected window. Click Apply.

4. Select the Options tab and check option Enable Pagination. Specify 7 for the
number of rows. Click Apply and OK.

5. In the design view, select the table component. In the Properties window,
click the small editing box opposite property title.

6. Creator pops up a property editing dialog. Select radio button Use binding
and tab Bind to an Object.

7. In the Select binding target window, choose SessionBean1 > recordingTitle
String as shown in Figure 12–10 and click OK. This binds the table’s title to
the selected recording title from session scope.

public void prerender() {
try {

getSessionBean1().getTracksRowSet().setObject(1,
getSessionBean1().getRecordingID());

tracksDataProvider.refresh();
} catch (Exception e) {

error("Cannot read tracks for " +
getSessionBean1().getRecordingTitle() +
": " + e.getMessage());

log("Cannot read tracks for " +
getSessionBean1().getRecordingTitle() + ": ", e);

}
}

12.4 Web Services and Portlets 409
8. Make sure the table component is still selected. In the Properties window,
uncheck the box opposite property paginateButton. (This removes the pag-
inate toggle from the table.)

9. Still in the Properties window, set the table’s width property to 400 (to match
the width of the portlet).

Deploy and Run
Figure 12–11 shows project PortletMusic running in a browser displaying the
initial portlet page. Figure 12–12 shows the tracksDetail page after selecting the
hyperlink for Congratulations I’m Sorry.

12.4 Web Services and Portlets

In this section you’ll create a portlet that accesses the Google Search web ser-
vice. It’s a repeat of the project you built in the web services chapter (the final
version is discussed in “Displaying Multiple Pages” on page 375), but you’ll
make changes specifically to adjust to the smaller foot print of a portlet. You’ll
also make adjustments to the application to accommodate the life cycle differ-
ences with portlet applications. You can read about the Google Search web ser-

Figure 12–10 Use binding dialog for property title

410 Chapter 12 Portlets
vice in “Inspect the Web Service” on page 356. In the following discussions, we
assume you’re familiar with the Google Search web service and the general
organization of project Google4 built previously.

Create a Portlet Project
1. From Creator’s Welcome Page, select button Create New Project. From the

New Project dialog, under Categories select Web and under Projects select
JSR-168 JSF Portlet Project. Click Next.

2. In the New Portlet dialog, specify PortletGoogle for Project Name and click
Next.

3. Creator displays the New Project dialog which includes the Portlet Deploy-
ment Descriptor for the portlet project. Accept the defaults and click Finish.

After initializing the project, Creator comes up in the design view of the edi-
tor pane. The initial page has the default name PortletPage1. Project Portlet-

Figure 12–11 Project PortletMusic running in a browser

12.4 Web Services and Portlets 411
Google will use a different background color and default page fragment size,
since Google search results default to a wider format.

1. In the Properties window, select the custom editor box opposite property
Background. Creator pops up the Background property editor.

2. Select tab RGB and specify values 234 for Red, 234 for Green, and 255 for
Blue. Click OK. The new background is a light blue.

3. In the Properties window opposite property Width, specify 500 to change the
width to 500 pixels.

Add Session Bean Properties
Recall that to display multiple pages from the Google search result, you must
keep track of the start index, the current count, and the total results count in
session scope variables. You’ll also place the query search string in session

Figure 12–12 Portlet page tracksDetail in browser

412 Chapter 12 Portlets
scope and bind it to the input text field component, which you’ll add in the
next section. Furthermore, the object array data provider and the google search
result variables will be in session scope. This is necessary to maintain the port-
let’s rendering state. Let’s add the bookkeeping counters startIndex, cur-
rentCount, and totalCount first.

1. In the Projects view, expand the PortletGoogle node, select Session Bean,
right-click, and select Add > Property.

2. Creator pops up the New Property Pattern dialog. For name, specify start-
Index, for Type specify Integer, and for Mode keep the default Read/Write.

3. Click OK. Creator adds property startIndex to SessionBean1.java.
4. Repeat these steps to add properties currentCount and totalCount, both Type

Integer and Mode Read/Write.

Now add String property query to hold the search query.

1. In the Projects view, select PortletGoogle > Session Bean, right-click, and
select Add > Property.

2. Creator pops up the New Property Pattern dialog. For name, specify query,
for type specify String, and for Mode keep the default Read/Write.

3. Click OK. Creator adds property query to SessionBean1.java.

Now let’s add two properties to keep track of the Google search results,
mysearchResult and resultArray.

1. In the Projects view, select PortletGoogle > Session Bean, right-click, and
select Add > Property.

2. Creator pops up the New Property Pattern dialog. For name, specify
mySearchResult, for type specify GoogleSearchResult, and for Mode keep the
default Read/Write.

3. Click OK. Creator adds property mySearchResult to SessionBean1.java.
4. Repeat these steps to add property resultArray. For Type, specify Result-

Element[] and Mode Read/Write.

Creator Tip

Make sure you specify type ResultElement[] (use the array notation).
Also, do NOT use the Indexed Property menu option.

Finally, you’ll need a data provider component in SessionBean1. You can use
Creator’s drag and drop facility to add the data provider component to
SessionBean1 in the Outline view.

1. From the Components palette, expand the Data Providers section.

12.4 Web Services and Portlets 413
2. Select data provider Object Array Data Provider and drag the mouse to
SessionBean1 in the Outline View. Release the mouse while the cursor is
over SessionBean1. Creator adds component objectArrayDataProvider1
to SessionBean1.

3. Make sure the object array data provider is selected. In the Properties win-
dow, change its id property to myResultObject.

4. In the Outline view expand the SessionBean1 node. You’ll see the session
bean properties (and object array data provider component) you just added,
as shown in Figure 12–13.

You’ll now fix the imports in the SessionBean1.java file, as well as add ini-
tialization code for the properties you just added.

1. In the Projects window, double-click Session Bean to bring up
SessionBean1.java in the Java source editor.

2. Right-click and select Fix Imports to include import statements for types
ResultElement and GoogleSearchResult.

3. Add the following code to the end of method init() to initialize the proper-
ties you added. Copy and paste from file FieldGuide2/Examples/Port-
lets/snippets/portletGoogle_session_init.txt. The added code is bold.

public void init() {
. . .
mySearchResult = null;
query = new String("");
startIndex = new Integer(0);
currentCount = new Integer(0);
totalCount = new Integer(0);

}

Figure 12–13 SessionBean1 properties and components for project PortletGoogle

414 Chapter 12 Portlets
Creator Tip

Note that we initialize mySearchResult to null. Recall from building this
project earlier (see “Creator Tip” on page 370) that property
mySearchResult is used to compute the rendering of the table component.
Because of portlet life cycle differences, mySearchResult must be set to null
in the page’s preprocess() method as well. This keeps the display clear of
old results and leaves more room for validation error messages. (See “Portlet
Life Cycle Issues” on page 425 where you’ll add the initialization code.)

Add Components to the Page
The design view marks the default portlet area in a lighter color, so you’ll posi-
tion the components inside this background. You’ll use a text field component
for the query, an image component for the Google logo, hyperlink image com-
ponents for the left and right arrows, a button component to submit the query,
and a table component to display the results (see Figure 12–14). Hidden behind
the table are the message and message list components to report validation
errors and system errors, respectively. As in the previous (non-portlet) versions
of this project, the table component consists of a single column containing
hyperlink and static text components.

1. Make sure that PortletPage1 is active in the design view.

Figure 12–14 PortletPage1 design view for project PortletGoogle

Text Field

Button

Image

Table

Message (hidden)
Message Group (hidden)

Image Hyperlink

Portlet Boundary

12.4 Web Services and Portlets 415
2. From the Basic Components palette, select Text Field and drop it on the page
in the top left corner. Expand it so that it is approximately 14 grids wide.

3. In the Properties window, change its id to searchString.
4. In the Properties window, check property required.
5. In the Properties window, click the editor box opposite property text. Cre-

ator pops up a custom property editor.
6. Select radio button Use binding, then tab Bind to Object. Expand node

SesionBean1 and select property query String, as shown in Figure 12–15.
Click OK to close. This sets property text to

You’ll need a length validator and a message component to validate the
query string.

1. From the Components palette, expand the Validators node, select Length
Validator, and drop it on top of the searchString text field component. Cre-

#{SessionBean1.query}

Figure 12–15 Property binding to session bean property query

416 Chapter 12 Portlets
ator sets the validator attribute for searchString to lengthValidator1.
Component lengthValidator1 appears in the PortletPage1 Outline view.

2. Select lengthValidator1 in the Outline view. In its corresponding Proper-
ties window, change attribute maximum to 2,048 (the limit imposed by the
Google web services) and minimum to 3.

3. From the Basic Components palette, select Message component and drop it
onto the design canvas. Place it below the text field component, leaving
room for the Google logo and search buttons that you’ll add next.

4. Press and hold <Ctrl+Shift>, left-click the mouse, and drag the cursor to the
searchString text field. The sets the message component’s for property. In
the design view, the message component now displays the text Message
summary for searchString.

An image component displays the Google logo and a button component
submits the search.

1. In the Basic Components palette, select Image and drop it on the canvas
below the text field (consult Figure 12–14 for positioning).

2. In the Properties window, click the editing box opposite property url. Cre-
ator pops up the custom property editor. In the file window under
resources, select file Logo_40wht.gif and click OK. This places the Google
image on the page.

3. In the Basic Components palette, select Button and drag it onto the design
canvas. Place it to the right of the Google logo (leave room for the left-arrow
hyperlink image).

4. Make sure the button is still selected. Type in the text Google Search fol-
lowed by <Enter>. Creator resizes the button to accommodate the longer text
string, which now appears inside the button on the design canvas. This sets
the button’s text property.

5. In the Properties window, change the button’s id attribute to search.
6. To provide a tooltip for the button, edit its toolTip property in the Proper-

ties window (under Behavior). Type in the text Search Google for the Search
String followed by <Enter>.

Two image hyperlink components provide paging of the search results.

1. From the Basic Components palette, select Image Hyperlink and drop it
onto the design canvas to the left of the Google Search button.

2. In the Properties window, change its id property to previous.
3. In the Properties window under Behavior, set property toolTip to View the

previous set of results.
4. In the Properties window, click the editing box opposite property imageURL.

In the file window under resources, select file nav_previous.gif and click OK.
Creator displays the arrow on the design canvas.

12.4 Web Services and Portlets 417
5. In the Properties window for the image hyperlink, click the editing box
opposite property text and select Unset Property in the customizer dialog.

6. Follow the same steps to add a second image hyperlink component, placing
it to the right of the Google Search button.

7. Specify next for property id, set property toolTip to View the next set of
results, and set property imageURL to nav_next.gif.

8. In the Properties window for the image hyperlink, click the editing box
opposite property text and select Unset Property in the customizer dialog.

Now align the Google image, image hyperlink, and button components
together.

1. Use <Shift-Click> to multiply-select the four components: the Google image,
the two image hyperlink components, and the button.

2. Hold the mouse over the Google image and right-click. Select Align > Middle
from the context menu. This aligns all four components vertically on the
canvas.

3. In the Design view, select the button component and right-click. Select Bring
to Front from the context menu. This ensures that neither image hyperlink
component will block the edges of the button component.

Add the Google Web Service Client
Creator comes with the Google Web Service client preinstalled. Here are the
steps to add the Google web service client and the message group component
that displays system errors.

1. In the Servers window, expand the Web Services > Samples > Google-
Search nodes.

2. Drag the doGoogleSearch node and drop it anywhere on the editor pane.
Nothing appears in the design canvas; however, you will see
googleSearchClient1 and googleSearchDoGoogleSearch1 in the Outline view
for PortletPage1.

3. From the Basic Components palette, select Message Group and drop it onto
the design canvas. Place it directly below the message component you
added earlier.

4. In the Properties window, check property showGlobalOnly (set it to true).
The message group component now displays the text “List of global mes-
sage summaries.” (Recall that since the project contains both a message com-
ponent and a message group component on the same page, setting this
property to true prevents the message group component from displaying
validation error messages.)

418 Chapter 12 Portlets
Configure Web Service Call
You can configure some of the web service parameters through the Properties
window, as follows.

1. Select googleSearchDoGoogleSearch1 in the PortletPage1 Outline view.
2. In the Properties window, the method’s arguments are listed under the Gen-

eral heading. For property key, provide your key (the one Google sent to
you) and for maxResults, use 5. Note that 5 (instead of the maximum pos-
sible, 10) is more suitable for the smaller portlet foot print. These are the
only properties that you need to set.

Creator Tip

Make sure you include your Google Web API’s License Key for property key.
Otherwise, your application will return an exception. You’ll set the search
query parameter (property q) in the event handler code.

Add a Table Component
Next, you’ll need a table component to work with the object array data pro-
vider you added previously. The table displays the results from the Google
search web service call.

1. From the Basic Components palette, select Table and drag it to the canvas.
Place it on top of the message and message group components. You’ll see a
default table rendered on the design canvas and the default table data pro-
vider, defaultTableDataProvider1, appears in the Outline view.

2. When you place the table component on the canvas, the table’s title is
selected so that you can provide your own title.

3. Type in the following text to set the title.

Type the text all on a single line and finish with <Enter>. The title text will
appear in the table’s title area.

Configure the Table
Only a single column is required to mimic the display you see from Google’s
web site. In each cell, you’ll display the result web site’s title followed by the
snippet. The title is the text for the hyperlink to the result’s site.

Search Results (#{SessionBean1.mySearchResult.startIndex} to
#{SessionBean1.mySearchResult.endIndex})

12.4 Web Services and Portlets 419
1. Select the table component, right-click, and choose Table Layout from the
context menu.

2. In the drop down menu for Get Data From, choose myResultObject
(SessionBean1). Creator displays the data fields in the Selected window.

3. Use the < (left arrow) to remove all fields except URL, snippet, and title.
Click Apply.

4. Select column URL and change the component type to Hyperlink. Click
Apply and OK to close the dialog.

Creator binds each of these columns to the URL, snippet, and title fields of
the data provider for you. You’ll need a bit more customizing to get a look
that’s similar to the page the Google web site builds. Look at the PortletPage1
Outline view. You’ll see the table component (table1), a nested table row
group, and three table column components with headings URL, snippet, and
title. You’ll now rearrange these components a bit.

1. From the PortletPage1 Outline view, select the static text component under
the column entitled title and drop it on top of the hyperlink component
under the URL column. (This should nest component staticText2 under
component hyperlink1.)

2. In the Properties window for staticText2, change its id property to nested-
Text and uncheck its escape property.

3. In the Properties window, hold the cursor over the text property and verify
that its binding is set to the following.

4. Select the hyperlink component (hyperlink1). In the Properties window, set
property url to the following. (By default, Creator binds the text property
instead.)

5. In the Properties window for the hyperlink component, select the editing
box opposite property text to bring up the property customizer and select
Unset Property.

6. From the Basic Components palette, select Static Text and drop it on compo-
nent tableColumn1 in the PortletPage1 Outline view. The static text should
appear at the same level as the hyperlink component.

7. In the Properties window, uncheck its escape property and set its text prop-
erty to
. (This will provide a line break in the table cell and improve the
formatting.)

8. From the PortletPage1 Outline view, select the static text component under
the column entitled snippet and drop it on top of component tableColumn1.

#{currentRow.value[’title’]}

#{currentRow.value[’URL’]}

420 Chapter 12 Portlets
9. In the Properties window, change its id property to snippet and uncheck its
escape property. Now hold the cursor over the text property and verify
that its binding is set to the following.

Let’s make a few more configuration changes to the table component.

1. In the PortletPage1 Outline view, remove components tableColumn2 and
tableColumn3 (there shouldn’t be any nested components in these unused
columns). Right-click and select Delete from the context menu.

2. Select the table component. In the Properties view, set property width to 500.
3. In the PortletPage1 Outline view, select component tableColumn1 and bring

up the property customizer for property headerText. Select radio button
Use value and provide the following text (type it on a single line). Click OK
to close the dialog. The column’s header shows the new value.

4. Select the table component. In the Properties view, uncheck property ren-
dered. The table disappears from the design view.

5. Still in the Properties window, check property lite (rendering a lighter ver-
sion of a table).

6. Click button JSP to bring the the JSP source editor.
7. Change the table’s rendered property to the following.

8. Click the Save All icon to save these changes. Figure 12–16 shows the
PortletPage1 Outline view with the components configured.

Add Event Handling Code
You’ve configured all of the components. Now it’s time to add the event han-
dling code. The code is the same you used in project Google4, except that the
properties storing the query and the results data are now in session scope.

1. Make sure that PortletPage1 is active in the design view. Double-click the
Google Search button. Creator generates the default action event handler
(search_action()) and brings up PortletPage1.java in the Java source edi-
tor.

#{currentRow.value[’snippet’]}

Search Time:
#{SessionBean1.mySearchResult.searchTime};

Number of Results:
#{SessionBean1.mySearchResult.estimatedTotalResultsCount}

#{not empty SessionBean1.mySearchResult}

12.4 Web Services and Portlets 421
2. To keep track of the index variables and the result count information that
Google returns, you’ll need integer control variables. Place these declara-
tions above method search_action(). Copy and paste file
FieldGuide2/Examples/Portlets/snippets/portletGoogle_variables.txt.

The startIndex, currentCount, and totalCount integer variables are
saved and restored in session scope for the action handlers. To do this, use
PortletPage1 methods destroy() and init() to save and restore the corre-
sponding SessionBean1 properties. Recall that methods init() and destroy()
are invoked during the portlet request and rending phases.

1. Add the following code to method destroy(). Copy and paste from
FieldGuide2/Examples/Portlets/snippets/portletGoogle_destroy.txt. This
code calls setters to store startIndex, currentCount, and totalCount as

private int startIndex = 0;
private int prevIndex = 0;
private int currentCount = 0;
private int totalCount = 0;

Figure 12–16 PortletPage1 Outline view for project PortletGoogle

422 Chapter 12 Portlets
equivalently named properties in the SessionBean1 object. The added code
is bold.

2. Next, add the following code to the end of method init(). Copy and paste
from FieldGuide2/Examples/Portlets/snippets/portletGoogle_init.txt. The
added code is bold.

Method doSearch() is the common method that is invoked when the user
clicks either the Google Search button or the left or right arrow image hyper-
link components.

3. To create the doSearch() method, use FieldGuide2/Examples/Portlets/snip-
pets/portletGoogle_doSearch.txt and place it directly before the
search_action() method (near the end of the Java page bean file). Note
that this method sets the starting index parameter by calling method set-

Listing 12.2 Method destroy()

private void destroy() {
getSessionBean1().setStartIndex(new Integer(startIndex));
getSessionBean1().setCurrentCount(

new Integer(currentCount));
getSessionBean1().setTotalCount(new Integer(totalCount));

}

Listing 12.3 Method init()

private void init() {
. . .

// TODO - add your own initialization code here
startIndex = getSessionBean1().getStartIndex().intValue();
currentCount =

getSessionBean1().getCurrentCount().intValue();
totalCount = getSessionBean1().getTotalCount().intValue();

}

12.4 Web Services and Portlets 423
Start() and the query by calling method setQ(). It also sets totalCount
and currentCount from the mySearchResult object.

4. The search_action() method is exactly the same code you used in the
Google4 project. Copy and paste from file FieldGuide2/Examples/Port-
lets/snippets/portletGoogle_search_action.txt to add the code. The added
code is bold.

Clicking the right-arrow returns the next set of results from Google.

Listing 12.4 Method doSearch()

public void doSearch(int start) {
try {

googleSearchDoGoogleSearch1.setStart(start);
googleSearchDoGoogleSearch1.setQ(

getSessionBean1().getQuery());
getSessionBean1().setMySearchResult((GoogleSearchResult)

googleSearchDoGoogleSearch1.getResultObject());

getSessionBean1().setResultArray(getSessionBean1().
getMySearchResult().getResultElements());

getSessionBean1().getMyResultObject().setArray(
(java.lang.Object[])getValue(
"#{SessionBean1.resultArray}"));

totalCount = getSessionBean1().getMySearchResult().
getEstimatedTotalResultsCount();

currentCount = getSessionBean1().getMySearchResult().
getResultElements().length;

} catch (Exception e) {
log("Remote Connect Failure: ", e);
getSessionBean1().setMySearchResult(null);
error("Remote Site Failure: " + e.getMessage());

}
}

Listing 12.5 Method search_action()

public String search_action() {
startIndex = 0;
prevIndex = 0;
doSearch(startIndex);
return null;

}

424 Chapter 12 Portlets
1. Return to the design canvas by selecting Design from the editing toolbar.
2. Select the right arrow hyperlink image next and double-click. This creates

the event handler method in the Java page bean for you and places the cur-
sor at the beginning of the method.

3. Add code to the next_action() event handler. Copy and paste from file
FieldGuide2/Examples/Portlets/snippets/portletGoogle_next_action.txt. The
added code is bold.

Now add the previous_action() method to handle action events associ-
ated with the left-arrow image hyperlink.

1. Return to the design canvas by selecting Design from the editing toolbar.
2. Select the left arrow hyperlink image previous and double-click. This cre-

ates the event handler method in the Java page bean for you and places the
cursor at the beginning of the method.

3. Add the following code to the previous_action() method. Copy and paste
from file FieldGuide2/Examples/Portlets/snippets/portlet-
Google_previous_action.txt. The added code is bold.

Listing 12.6 Method next_action()

public String next_action() {
prevIndex = startIndex;
startIndex = startIndex + currentCount;
if (startIndex >= totalCount || startIndex >= 1000) {

startIndex = prevIndex;
prevIndex -= currentCount;

}
doSearch(startIndex);
return null;

}

Listing 12.7 Method previous_action()

public String previous_action() {
prevIndex = startIndex - currentCount;
startIndex = prevIndex;
if (startIndex <= 0) {

startIndex = 0;
prevIndex = 0;

}

12.4 Web Services and Portlets 425
Portlet Life Cycle Issues
If you run the PortletGoogle project as it is, any validation error messages will
appear on top of the previously displayed results table. Solving this problem
requires an understanding of the portlet life cycle.

Recall that the rendered property of the table depends on the session scope
property mySearchResult, as follows.

The non-portlet version of this project included the initialization

in the page bean’s init() routine. However, with portlets, a page’s init() rou-
tine is invoked twice, and the second time would wipe out the results you
stored in session scope in the doSearch() event handler. You can’t put this
code in method destroy() for the same reason. Putting the initialization code
in the event handler won’t work either, since the event handler is not invoked
when a validation error occurs. Where should this initialization code go?

The answer is in method preprocess(), which is invoked during the page
submission cycle but not during page rendering. By setting the session bean
property mySearchResult to null in preprocess(), you are assured that if a
validation error occurs, the table component will not be rendered. Further-
more, once valid data from the Google search call is stored in session scope, it
remains there until the next request cycle.

1. You should still have PortletPage1.java active in the Java source editor.
2. Find method preprocess() and add the following call to setMy-

SearchResult(), as follows. The added code is bold.

3. Click the Save All icon to save these changes.

doSearch(startIndex);
return null;

}

rendered="#{not empty SessionBean1.mySearchResult}"

mySearchResult = null;

public void preprocess() {
getSessionBean1().setMySearchResult(null);

}

Listing 12.7 Method previous_action() (continued)

426 Chapter 12 Portlets
Deploy and Run
It’s time to deploy and run the project. Page through multiple results sets.
Then, leave the search query empty to test component validation. Figure 12–17
shows the Google Search application running as a portlet, displaying the sec-
ond page of results.

12.5 Portlet Edit Mode

Portlet applications have three modes: View, Edit, and Help. View is the
default mode, and the mode you have been working with in the previous

Figure 12–17 The Google Web Search application running as a portlet

12.5 Portlet Edit Mode 427
examples. In this section, you’ll add an Edit mode to the PortletGoogle applica-
tion that allows a user to adjust the Google search parameters. In the next sec-
tion, you’ll add a Help mode so that users can learn about configuring the
Google search parameters.

Copy the Project
To avoid starting from scratch, make a copy of the PortletGoogle project. This
step is optional. If you don’t want to copy the project, simply skip this section
and continue making modifications to PortletGoogle.

1. Bring up project PortletGoogle in Creator, if it’s not already opened.
2. From the Projects window, right-click node PortletGoogle and select Save

Project As. Provide the new name PortletGoogleEdit.
3. Close project PortletGoogle. Right-click PortletGoogleEdit and select Set

Main Project. You’ll make changes to the PortletGoogleEdit project.

Add a New Edit Mode Page
You add an edit mode page by first creating a new portlet page. Then you des-
ignate the page as the initial edit mode page. Here are the steps.

1. In the Projects view, right-click on node Web Pages and select New > Portlet
Page from the context menu.

2. Creator pops up the New Portlet Page dialog. Specify EditParams for the file
name and click Finish. Creator brings up page EditParams.jsp in the design
view.

3. In the Projects view under Web Pages, right-click node EditParams.jsp and
select Set as Initial > Edit Mode Page. Creator changes the page’s icon and sets
EditParams as the initial edit mode page. When the user selects Edit on the
portlet page, the portal server will display this page.

Creator Tip

Note that if you don’t define an Edit mode page, the Edit selector does not
appear on the portlet page. Similarly, the Help selector only appears if you
define a Help mode page.

4. Click anywhere inside the page. In the Properties window, select the custom
editor box opposite property Background. Creator pops up the Background
property editor.

5. Select tab RGB and specify values 234 for Red, 234 for Green, and 255 for
Blue. Click OK. This light blue color matches the background color for the
View page.

428 Chapter 12 Portlets
Add SessionBean1 Properties
Before you add components to the page, you’ll add the session bean properties
that store submitted values for the Google search parameters. You’ll have three
properties: property safeSearch (Boolean), property filter (Boolean), and
property languageRestrict (String).

1. From the Projects window, select Session Bean, right-click and select Add >
Property.

2. Creator pops up the New Property Pattern dialog.
3. For Name, specify languageRestrict, for Type, specify String, and for Mode,

select the default Read/Write. Click OK.
4. Repeat these steps for filter and safeSearch. Specify Type Boolean and Mode

Read/Write for both.
5. In the Projects window, double-click node Session Bean. This brings up file

SessionBean1.java in the Java source editor.
6. Add the following code to the end of method init() to initialize the three

properties. Copy and paste from file FieldGuide2/Examples/Portlets/snip-
pets/portletGoogleEdit_session_init.txt. The added code is bold.

Add Components to the Page
Figure 12–18 shows the components added to the Edit mode page that allow
you to specify the filter, safe search, and language restrictions search parame-
ters. Table 10.1 on page 357 lists the parameters. You’ll provide check box com-
ponents to edit boolean parameter safeSearch and filter and a drop down
list component to specify parameter lr (language restrict).

1. From the Basic Component palette, select Image and drop it on the page in
the upper-left corner.

2. In the Properties window, click the editing box opposite property url. Cre-
ator pops up the custom property editor. In the file window under
resources, select file Logo_40wht.gif and click OK. This places the Google
image on the page.

3. From the Basic Components palette, select Label and drop it on the page to
the right of the logo. Specify Edit Google Search Parameters for its text.

4. In the Properties window, change property labelLevel to Strong(1).

public void init() {
. . .

safeSearch = new Boolean(false);
filter = new Boolean(false);
languageRestrict = new String("");

}

12.5 Portlet Edit Mode 429
Now you’ll add the input components for the Google search parameters.

1. From the Basic Components palette, select Checkbox and place it on the
page under the logo.

2. Change its label to Enable adult content filtering. Change property
labelLevel to Medium(2).

3. In the Properties window, change its id to safeCheckbox.
4. From the Basic Components palette, select Checkbox and place it under the

checkbox component you just added.
5. Change its label to Enable similar results filtering. Change property

labelLevel to Medium(2).
6. In the Properties window, change its id to noDuplicateCheckbox.
7. From the Basic Components palette, select Label and place it below the two

checkbox components. Change its text to Restrict to the following language.
8. From the Basic Components palette, select Drop Down List and place it

below the label you just added.

Creator Tip

You can also use a text field component here. However, the drop down list
component restricts its selections to a specific set of options, ensuring that the
parameter submitted with the Google search is valid.

Figure 12–18 Design view for EditParams edit mode page

Label

Image

Checkbox

Label

Drop Down List

Button

430 Chapter 12 Portlets
9. From the Basic Components palette, select Button and place it below the
drop down list. Change the button’s text to Submit Selections.

Creator Tip

The button component will submit the page, but you do not need to supply an
action event handler. Page submission will update the session bean properties
that hold the Google search parameter values.

Now supply the selections for the drop down list. Table 12.1 lists the Display
and Value for each item. Here’s how to add these selections.

1. In the EditParams Outline view, select component
dropdown1DefaultOptions.

2. In the Properties window, select the editing box opposite property options.
3. Delete Item1, Item2, and Item3.
4. Click New 29 times to create 29 new options. Using the <Tab> key to select

each field, edit the Display and Value text for each item as shown in
Table 12.1. Click OK when you’re finished.

Creator Tip

The first selection, No language restrictions, has value empty (null),
matching the default value for the parameter.

Table 12.1 Language Restriction Parameter Selections

Display Value Display Value

No language
restrictions

[empty] Icelandic lang_is

Arabic lang_ar Italian lang_it

Chinese (S) lang_zh-CN Japanese lang_ja

Chinese (T) lang_zh_TW Korean lang_ko

Czech lang_cs Latvian lang_lv

Danish lang_da Lithuanian lang_lt

Dutch lang_nl Norwegian lang_no

English lang_en Portuguese lang_pt

12.5 Portlet Edit Mode 431
Specify Property Bindings
You’ll now specify property bindings between the EditParams components and
the Session Bean properties and connect these Session Bean properties to the
Google Search web services call.

1. In the EditParams design view, select checkbox component safeCheckBox,
right-click, and select Property Bindings. Creator pops up the Property
Bindings dialog.

2. For Select bindable property, choose Selected Object. For Select binding tar-
get, choose SessionBean1 > safeSearch Boolean. Click Apply then Close. In
the Properties window opposite property selected, you’ll see the following
binding expression.

3. Repeat this step using property selected for component noDuplicate-
Checkbox. Specify the binding with SessionBean1 property filter. Creator
generates the following binding expression.

4. Finally, specify the binding using property selected for component
dropdown1 with SessionBean1 property languageRestrict. Creator gener-
ates the following binding expression.

5. Click the Save All icon on the toolbar to save these changes.

Estonian lang_et Polish lang_pl

Finnish lang_fi Romanian lang_ro

French lang_fr Russian lang_ru

German lang_de Spanish lang_es

Greek lang_el Swedish lang_sv

Hebrew lang_iw Turkish lang_tr

Hungarian lang_hu

#{SessionBean1.safeSearch}

#{SessionBean1.filter}

#{SessionBean1.languageRestrict}

Table 12.1 Language Restriction Parameter Selections (continued)

432 Chapter 12 Portlets
6. Bring up PortletPage1 in the design view. Click the Java button to bring up
PortletPage1.java in the Java editor.

7. Add the following code to method doSearch() at the beginning of the try
block. Copy and paste from the Creator download file FieldGuide2/Exam-
ples/Portlets/snippets/portletGoogleEdit_doSearch.txt. The added code is
bold.

Deploy and Run
Deploy and run the portlet. When the initial View page comes up in the
browser, the page will now include an Edit option. Click Edit and the applica-
tion displays the initial Edit mode page, EditParams.jsp, as shown in
Figure 12–19. After customizing the Google search options, return to the View
page by selecting View and run the Google search.

12.6 Portlet Help Mode

The final step is to add a Help mode page to your Google portlet. The Help
page will describe the Google Search parameters that a user can configure.

Copy the Project
To avoid starting from scratch, make a copy of the PortletGoogleEdit project.
This step is optional. If you don’t want to copy the project, simply skip this sec-
tion and continue making modifications to PortletGoogleEdit.

1. Bring up project PortletGoogleEdit in Creator, if it’s not already opened.
2. From the Projects window, right-click node PortletGoogleEdit and select

Save Project As. Provide the new name PortletGoogleHelp.
3. Close project PortletGoogleEdit. Right-click PortletGoogleHelp and select

Set Main Project. You’ll make changes to the PortletGoogleHelp project.

public void doSearch(int start) {
try {

googleSearchDoGoogleSearch1.setLr(
getSessionBean1().getLanguageRestrict());

googleSearchDoGoogleSearch1.setSafeSearch(
getSessionBean1().getSafeSearch().booleanValue());

googleSearchDoGoogleSearch1.setFilter(
getSessionBean1().getFilter().booleanValue());

. . .

12.6 Portlet Help Mode 433
Add a New Help Mode Page
You add a help mode page to your portlet by first creating a new portlet page.
Then you designate the page as the initial help mode page. Here are the steps.

1. In the Projects view, right-click on node Web Pages and select New > Portlet
Page from the context menu.

2. Creator pops up the New Portlet Page dialog. Specify GoogleHelp for the file
name and click Finish. Creator brings up page GoogleHelp.jsp in the design
view.

Figure 12–19 Portlet Edit mode page running in a browser

434 Chapter 12 Portlets
3. In the Projects view under Web Pages, right-click node GoogleHelp.jsp and
select Set as Initial > Help Mode Page. Creator changes the page’s icon and
sets GoogleHelp as the initial help mode page. When the user selects Help
on the portlet page, the portal server will display this page.

4. Click anywhere inside the page. In the Properties window, select the custom
editor box opposite property Background. Creator pops up the Background
property editor.

5. Select tab RGB and specify values 234 for Red, 234 for Green, and 255 for
Blue. Click OK. This light blue color matches the background color for the
View and Edit pages.

Add ApplicationBean1 Property
You’ll add a read-only application scope property to hold the help contents
that the Help page displays. Recall that application scope objects are shared
among all users of the application.

1. From the Projects window, select Application Bean, right-click and select
Add > Property.

2. Creator pops up the New Property Pattern dialog.
3. For Name, specify helpContents, for Type, specify String, and for Mode,

select Read Only. Click OK.
4. From the Projects view, double-click node Application Bean to bring up

ApplicationBean1.java in the Java source editor.
5. Add the following code to the end of method init() to initialize property

helpContents. Copy and paste from file FieldGuide2/Examples/Portlets/snip-
pets/portletGoogleHelp_application_init.txt. The added code is bold.

public void init() {
. . .
// TODO - add your own initialization code here
String hc = new String(

"Google Search Parameters<p/>");
hc = hc + "Enable adult content filtering
- ";
hc = hc +

"When checked, filters out adult-content results<p/>";
hc = hc + "Enable similar results filtering
- ";
hc = hc +

"When checked, helps eliminate very similar results<p/>";
hc = hc + "Language restrict
- ";
hc = hc +

"Limits search to documents with the chosen language<p/>";
helpContents = new String(hc);

}

12.6 Portlet Help Mode 435
Add Static Text Component to the Page
Figure 12–20 shows the single static text component added to the Help mode
page.

1. From the Basic Component palette, select Static Text and drop it on the page
as shown in Figure 12–20.

2. In the Properties window, uncheck property escape. This allows HTML tags
to be interpreted by the browser.

Specify Property Binding
You’ll now specify property binding between the GoogleHelp static text com-
ponent and the Application Bean property helpContents.

1. In the GoogleHelp design view, select the static text component, right-click,
and select Property Bindings. Creator pops up the Property Bindings dialog.

2. For Select bindable property, choose text Object. For Select binding target,
choose ApplicationBean1 > helpContents String. Click Apply then Close. In
the Properties window opposite property text, you’ll see the following
binding expression.

3. Click the Save All icon on the toolbar to save these changes.

#{ApplicationBean1.helpContents}

Figure 12–20 Design view for page GoogleHelp (help mode page)

Static Text (with property binding)

436 Chapter 12 Portlets
Deploy and Run
Deploy and run the portlet. When the initial View page comes up in the
browser, you’ll see a Help option as well as the Edit option. Click Help and the
application displays the initial Help mode page, GoogleHelp.jsp, as shown in
Figure 12–21.

12.7 Key Point Summary

Creator allows you to build a JSF portlet application that conforms to the
JSR-168 Portlet specification.

• A portlet is an application that runs on a web site managed by a server
called a portal.

• A portal server manages multiple portlet applications, displaying them on
the web page together. Each portlet consumes a fragment of the page and
manages its own information and user interaction.

Figure 12–21 Portlet Help mode page running in a browser

12.7 Key Point Summary 437
• When you deploy a portlet project, Creator deploys the portlet container for
you and brings up your portlet project in Pluto in the target web browser.

• Portlets have three standard modes which Creator supports: View, Edit, and
Help. The portal server manages the modes for the application.

• JSF-based portlets use the standard JSF navigation engine. Although it is
possible, it is not a good idea to define navigation rules across portlet
modes. You should treat each mode separately for navigation.

• The design time experience for building portlet applications (component
placement, specifying property values and property binding, and adding
event handling code) is the same as with non-portlet applications.

• Portlets must share a web page with possibly other concurrently running
portlets.

• The reduced real estate for portlets means you should design applications
that stay within the defined page fragment size of the portlet page.

• Creator offers some components (such as the table component or the button
component) that have smaller or “lighter” versions more appropriate for the
portlet environment.

• The portlet page life cycle differs from a non-portlet page life cycle. A portlet
application shares the browser page with other portlets. The user interacts
with only one portlet at a time. Hence, only one portlet processes user input
and possibly invokes event handlers. All of the portlets on the page,
however, must go through the render phase.

• The normal JSF life cycle for portlets is split into two cycles—one for the
form submit processing and one for rendering.

• Don’t use request scope objects to transfer data from the form submission
phase to the rendering phase. Instead, use session scope objects to cache
data.

• Currently you can deploy only one portlet at a time using the bundled
portal server in Creator.

• The default portlet page size is 400 by 400 pixels.
• You can build portlets that access a database, call a web service, or use EJBs.
• You designate a portlet page as an initial view mode, edit mode, or help

mode page using the Projects window.

CUSTOMIZING
APPLICATIONS WITH

CREATOR
Topics in This Chapter

• Localizing and Internationalizing Applications
• Setting Up Properties Files
• Locales and Languages
• Configuring Your Browser
• Setting a Locale from Your Application
• Creating Custom Validation
• Working with AJAX-Enabled Components

Chapter
n IDE like Creator is only as good as its supporting technology. Fortu-
nately, Creator is built on the solid foundation of JSF, and under that,
live a host of other Java technologies that we’ve touched upon. One
area that you’ll explore in this chapter is the duo of localization and

internationalization.
Another important facet of web application design is providing custom vali-

dation. We show you how to write a custom validator method for your Creator
project. You’ll validate a component’s input, control error message display with
a message component, and use localized error messages.

As JSF and Creator both mature, more third-party component libraries
become available. One such component is an AJAX-enabled completion text
field. We’ll show you how to import the component library and use the com-
pletion text field in several project examples.

13.1 Localizing an Application

Localization means you customize an application to a given locale. The Java
programming language has the concept of a locale that affects many objects.
For example, the String class has a version of toLowerCase() that takes a
Locale object as its argument. When you supply this argument, toLowerCase()
uses the Locale’s idea of translating a String to lowercase letters. More com-

A

439

440 Chapter 13 Customizing Applications with Creator
monly, you use Locale to control the format of a Date object or a monetary
amount, using the local currency symbol.

Consider the following Java code fragment.

The DateFormat class uses the locale argument (if provided) to determine how
to format the date. Here we provide a locale language (“en” for English) and
country (“US” for the United States). The println statement produces

But if we change the country locale to “GB” for Great Britain, the output
becomes

to reflect the customary British date format. Furthermore, if we use Spanish
and Spain (“es” and “ES” for español and España, respectively), we get

However, it’s not good enough to simply customize an application for a spe-
cific locale. You also need to make your application language independent. To
accomplish this task, you gather all the text messages, error messages, and
labels from your web page and put them in a “properties” file. Each properties
file isolates messages for a specific Locale. To run a program, you “bundle”
those messages that are specific to the user’s Locale. This creates a Resource-
Bundle containing locale-specific objects.

The project example in this section shows you how to

• create a property file that holds localized messages;
• configure your application to accept localized messages;
• create and load the resource bundle that makes localized messages available

to the pages in your application; and

import java.util.*;
import java.text.*;
. . .
Locale currentLocale = new Locale("en", "US");
Date myDate = new Date();
DateFormat df = DateFormat.getDateInstance(

DateFormat.LONG, currentLocale);
System.out.println(df.format(myDate));

April 2, 2006

02 April 2006

2 de abril de 2006

13.1 Localizing an Application 441
• allow users to dynamically change the locale.

A Word About Locales
Locales designate both a language and a country (or region). Many readers are
aware of the differences between British English and American English, for
example, so specifying just a language isn’t always good enough. The Spanish
spoken in Mexico is different from that spoken in Spain. Similarly, the French
spoken in Montreal is distinct from the French spoken in Paris.

On the other hand, specifying a generic language (without a country) may
be just fine. A locale may represent just a language or a language and a country.

You can learn more about internationalization1 from the following tutorial.

To learn about internationalization support in Java, visit

Localize Application Labels and Text
All too often we neglect to plan ahead for localization and are therefore forced
to localize an application after it’s already written. In our first example, let’s
localize project Login2 from Chapter 6. Then we’ll internationalize it and pro-
vide a way for the user to select the application’s language. We’ll also discuss
some layout tricks for accommodating variable-sized labels and text.

Localizing an application means that the messages and labels on the page
are determined by the locale. When there are no explicit instructions to use a
particular locale, a properly localized application simply uses the default
locale. Let’s start with opening up project Login2 from Chapter 6.

Copy the Project
To avoid starting from scratch, copy project Login2 to a new project called
Login2I18N. This step is optional. If you don’t want to copy the project, simply
skip this section and continue making modifications to the Login2 project.

1. Bring up project Login2 in Creator.
2. From the Projects window, right-click node Login2 and select Save Project

As. Provide the new name Login2I18N.

http://java.sun.com/docs/books/tutorial/i18n/index.html

1. The term “i18n” refers to the word internationalization: the 18 letters sand-
wiched between the initial i and final n.

http://java.sun.com/j2se/corejava/intl/index.jsp

442 Chapter 13 Customizing Applications with Creator
3. Close project Login2. Right-click Login2I18N and select Set Main Project.
You’ll make changes to the Login2I18N project.

4. Expand Login2I18N > Web Pages and open Page1 in the design view.
5. Click anywhere in the background of the design canvas of the Login2I18N

project. In the Properties window, change the page’s Title property to
Login2-I18N.

Isolate Labels and Text Messages
Go ahead and deploy project Login2I18N unchanged. Recall that the project
consists of three pages: the initial page (Page1.jsp), the page you get when you
successfully login (LoginGood.jsp), and the login failure page (LoginBad.jsp).
Provide input for a successful login as well as errors. (For a successful login,
type “rave4u” for both the username and password fields.) Note that you get
validation errors when you fail to provide any input. (Fortunately, the JSF vali-
dators are already localized components. You’ll notice that when you provide
support for different locales, these components automatically provide locale-
specific text.)

To isolate the text in a web page, you must extract each label or message and
place it in a property file. (You don’t need to extract validation error messages.)
Let’s look at the localized property file in English for this application.

Fortunately, there are not many messages and component labels to extract,
but the format here is important. The format includes a key (for example, wel-
comeGreeting listed above), an equal sign (=), followed by the message or label
text. Spaces around the equal sign are optional. You place these key/value pairs
in a text file and give it a name with a .properties extension. If the file repre-
sents the default locale, the name doesn’t need a locale identifier. Otherwise,
append _LOCALE to the base filename.

Listing 13.1 asg.messages.login.properties

welcomeGreeting = Welcome
loginPageTitle = Members Login Page
usernameLabel = Username
passwordLabel = Password
usernameTip = Please type in your username

passwordTip = Please type in your password
loginButtonLabel = Login
resetButtonLabel = Reset
badLogin = Invalid username or password. To try again click
hereHyperlink = HERE

13.1 Localizing an Application 443
With English as the default locale, the name of this file is login.properties
(with no locale designation) in package asg.messages. Later, you’ll implement
translations to German and Spanish. These files will have the names
login_de.properties (for German) and login_es.properties (for Spanish).

With country codes as well as language codes, use login_es_ES.properties
(for Spanish in Spain) and login_de_DE.properties for German in Germany.
(By the way, American English is login_en_US.properties and British English
is login_en_GB.properties.) Adding country-specific translations involves cre-
ating additional translations with the country-specific filename. You can easily
add these to your application later.

Add the asg.jar Jar File
The login.properties file is in JAR file asg.jar found in the Creator2 download.
Once you add the JAR file to your project, you can access the login properties
file.

1. In the Projects window right-click Libraries. Select Add JAR/Folder from the
context menu. Creator pops up the Add JAR/Folder dialog.

2. Browse to the FieldGuide2/Examples and select file asg.jar. Click Open.
Creator adds the JAR file to your project.

Creator lets you view the properties file as a key-value database in the editor
pane, showing all of the locales. Here’s how you can view it.

1. In the Projects window under Libraries, expand the asg.jar > asg.messages
nodes.

2. Select login.properties file and double-click. Creator displays the key-value
data in the editor as shown in Figure 13–1.

Localize the JSF Source
Once you’ve created a properties file for at least one locale, you must tell your
program where to access these messages. JSF has a loadBundle tag that accom-
plishes this. Let’s put a <f:loadBundle/> tag in each of your page’s JSP source
files, as follows.

1. Bring up Page1 in the design editor.
2. Click the JSP label in the editing toolbar to bring up the file in the JSP editor.
3. Directly after the <f:view/> tag, open a new line and add the following

loadBundle tag. (Put the tag all on one line.)

<f:loadBundle basename="asg.messages.login" var="messages"/>

444 Chapter 13 Customizing Applications with Creator
The loadBundle tag now appears in the Page1 Outline view.

With the loadBundle tag, JSF loads the resource bundle from the properties
file with basename login in package asg.messages. This selects the properties
file that corresponds to the current locale. If no locale is specified, JSF loads
resource property file login.properties.

The var property specifies how you’ll refer to the message text in the rest of
the JSF source. Here, you’ve set var to “messages,” so the value binding
expression that grabs the text corresponding to the key welcomeGreeting is

Note that messages is the value of the var property and welcomeGreeting is
the key in the properties file that corresponds to the text you want.

Creator Tip

There is a big advantage to having a distinct var property specify a “handle”
to the properties file. If the properties file name changes, you only have to
modify the basename attribute of the loadBundle tag. All of the value
binding expressions for your application’s components remain unaffected,
since they reference the var property.

#{messages.welcomeGreeting}

Figure 13–1 Viewing the properties file in Creator’s editor pane

13.1 Localizing an Application 445
Now add the loadBundle tag to pages LoginGood.jsp and LoginBad.jsp.

1. In the Projects view, expand Web Pages and double-click the filename.
2. Click the JSP label to bring the file up in the JSP editor.
3. Copy and paste the loadBundle tag into each JSP source file at the same

spot.

Using Grid Panel to Improve Page Layout
When you build an application with just one language, you can determine the
placement of the components on the page. You just use the design view editor
to align components in the grid. However, when labels and other text are
locale-specific, you cannot gage component placement. Either components are
placed too far apart to accommodate translated text that is longer than the orig-
inal, or text overwrites adjacent components.

Fortunately, the grid panel component helps immensely. Figure 13–2 shows
the Page1 design view with grid panel components holding the text field and
password components (as well as their labels and message components). You’ll
also put the two button components inside their own grid panel. Page Login-
Bad contains two adjacent components that nest inside a grid panel as well.
(We modified the components to display the key from the properties file. You’ll provide
a more complete value binding expression, which we’ll show you during component
configuration.)

Before you modify the components to use the properties file, let’s update the
layout with grid panel components. You’ll also use the label component
instead of the built-in label property with the text field and password compo-
nents.

Figure 13–2 Page1 with components nested in grid panels

Label Grid Panel

Grid Panel

446 Chapter 13 Customizing Applications with Creator
1. Bring up Page1 in the design view.
2. From the Layout Components palette, select Grid Panel and drag it to the

page. Place it under the label component that holds the title. (Don’t worry
about its exact placement; you can easily move it later.)

3. Make sure the grid panel is still selected. In the Properties window, change
property id to gridPanelInput.

4. In the Properties window under Appearance, specify 10 for cellpadding
and 3 for columns.

5. From the Basic Components palette, select Label and drop it on top of the
grid panel component (make sure the grid panel is outlined in blue before
you release the mouse).

6. Leave the label’s text property set to Label for now. Make sure the label is
selected. In its Properties window, set property id to usernameLabel and
property for to userName (the text field component) from the drop down
list. The label component will now include a red asterisk.

7. Select the text field component and unset property label (it should be
empty).

8. In the Page1 Outline view, select component userName and drag it, dropping
it on top of the grid panel component you just added.

9. Repeat this step for the message component associated with the userName
component. Since the grid panel contains three columns, the label, text field,
and message components will appear adjacent to each other in the grid
panel’s first row.

You’ll organize the password components in the same way.

1. From the Basic Components palette, select Label and drop it on top of the
grid panel component (make sure the grid panel is outlined in blue before
you release the mouse).

2. Leave the label’s text property set to Label. Make sure the label is selected.
In its Properties window, set property id to passwordLabel and property for
to password from the drop down list. The label component will now include
a red asterisk.

3. Select the password component and unset property label (it should be
empty).

4. In the Page1 Outline view, select component password and drag it, dropping
it on top of the grid panel component.

5. Repeat this step for the message component associated with the password
component.

You’ll put the two button components in a separate grid panel.

1. From the Layout Components palette, select Grid Panel and drag it to the
page. Place it under the first grid panel component.

13.1 Localizing an Application 447
2. Make sure the grid panel is still selected. In the Properties window, change
property id to gridPanelButtons.

3. In the Properties window under Appearance, specify 10 for cellpadding
and 2 for columns.

4. In the Page1 Outline view, drag the Login button and drop it on top of com-
ponent gridPanelButtons.

5. Repeat this step with the Reset button. Both buttons should appear side by
side in the second grid panel.

6. Adjust the grid panel components on the page so that the layout is the way
you want it.

7. Click the Save All icon from the toolbar to save these changes.

Page LoginBad also needs a grid panel component to accommodate the var-
ious lengths of the text in both components.

1. Bring LoginBad up in the design view.
2. From the Layout Components palette, select Grid Panel and drag it to the

page. (Don’t worry about its exact placement.)
3. Make sure the grid panel is still selected. In the Properties window under

Appearance, specify 10 for cellpadding and 2 for columns.
4. In the LoginBad Outline view, drag the static text component and drop it on

top of the grid panel.
5. Repeat this step with the hyperlink component. Both components should

appear side by side in the grid panel.
6. Click the Save All icon from the toolbar to save these changes.

Modify the Components for Localized Text
It’s time to return to the task of configuring the components to use the text in
the properties file.

Creator Tip

If the Design View does not render the component correctly after you’ve
specified the properties file notation, use the Outline view to select the
component and use the Properties window to modify the text.

1. Bring up Page1 in the design view.
2. Select the label component that displays the page’s title. Property text is set

to Members Login. In the Properties window, replace property text with the
following expression followed by <Enter>.

#{messages.loginPageTitle}

448 Chapter 13 Customizing Applications with Creator
3. Select label component usernameLabel. In the Properties window, replace
property text with the following expression.

4. Repeat this process for the password component’s label (its text property),
the Login button’s text property, and the Reset button’s text property. Use
the following value binding expressions.

5. The text field component and password component both have tooltips.
Change the toolTip property for components userName and password to
the following.

Each of the other two pages contains components as well.

6. Bring up LoginGood in the design view. Select the static text component
(there’s only one) and change its text property to the following (type it on a
single line).

This expression concatenates the welcome greeting text with the user’s login
name. Figure 13–3 shows page LoginGood in the design view.

#{messages.usernameLabel}

#{messages.passwordLabel}
#{messages.loginButtonLabel}
#{messages.resetButtonLabel}

#{messages.usernameTip}
#{messages.passwordTip}

#{messages.welcomeGreeting},
#{SessionBean1.loginBean.username}!

Figure 13–3 Using localized messages and property binding

13.2 Internationalizing an Application 449
7. Select tab LoginBad to make it active in the design view. There are two com-
ponents: a static text component and a hyperlink component.

8. Change the text property of the static text component to

9. Change the text property of the hyperlink component to

Deploy and Run
Ok, you’ve completed the steps for localization, so now it’s time to deploy and
run the application. If you’ve done everything right, you should not see any
changes from the Login2 application (except for the slight layout changes due
to nesting components inside the gird panels). The messages are still in English
and the login procedure is unchanged. Underneath, however, there is a big dif-
ference. No hard-wired English labels or messages appear on the page. Every-
thing is read from the properties file you reference for the default locale. The
next step is internationalization.

Creator Tip

If you’re having trouble with your application working correctly, here are
some things to check. First, if deploying throws an exception, open the Page1
in the JSP editor and make sure you have the asg.messages.login properties
file spelled correctly in the <f:loadBundle> tag. Check the other pages, too.
If the application deploys but doesn’t work properly, use the Properties
window or the JSP source to check the value binding expressions.

13.2 Internationalizing an Application

A localized application is much easier to internationalize than one that is not
localized. Since you’ve already extracted the messages and labels, it won’t be
difficult to configure your application to access translated versions of the text.

Provide Translations
Fortunately, you can provide translations at any time once you’ve isolated the
text that requires translation. (This is when you hire a bank of native speakers

#{messages.badLogin}

#{messages.hereHyperlink}

450 Chapter 13 Customizing Applications with Creator
who can translate your English language text into the target languages.) Here
is our translation for Spanish, in file login_es.properties.

Here is the translation for German, in file login_de.properties.

Note that the text keys are unchanged from the original version. In any prop-
erties file, the keys remain constant across all translations. In the Projects win-
dow, expand Libraries > asg.jar > asg.messages > login.properties to see all
three properties files listed (see Figure 13–4). With Spanish and German text
isolated into properties files, the only step left is to tell JSF which locales the
application supports.

Listing 13.2 asg.messages.login_es.properties

welcomeGreeting = !Bienvenido
loginPageTitle = Página del Registro Para Los Miembros
usernameLabel = Username
passwordLabel = Contraseña
usernameTip = Proporcione por favor su Username
passwordTip = Proporcione por favor su Contraseña

loginButtonLabel = Conexión
resetButtonLabel = Despeje
badLogin = Username o contraseña inválido. Para tratar otra
vez escoge
hereHyperlink = Aquí

Listing 13.3 asg.messages.login_de.properties

welcomeGreeting = Willkommen
loginPageTitle = LOGIN-Seite Des Mitgliedes
usernameLabel = Username
passwordLabel = Kennwort
usernameTip = Tippen Sie bitte Ihr Username ein
passwordTip = Tippen Sie bitte Ihr Kennwort ein

loginButtonLabel = LOGIN
resetButtonLabel = Zurückstellen
badLogin = Unzulässiges Username oder Kennwort. Um es erneut
zu versuchen klicken Sie
hereHyperlink = HIER

13.2 Internationalizing an Application 451
Specify Supported Locales
You specify supported locales in the XML configuration file faces-config.xml.
Creator includes it in your project; you just have to remove the comments
around the XML tags.

1. Select the Files tab to activate the Files view (or select View > Files from the
main menu if the Files tab is not visible).

2. Expand nodes Login2I18N > web > WEB-INF and you’ll see several XML
files Creator generates for each project.

3. Double-click file faces-config.xml to bring it up in the XML editor. You’ll see
the template of the file you’ll need. Delete the comment lines (<!-- and -->)
surrounding the <application> </application> tags.

4. Delete locale fr (or provide the necessary French properties file for this
project). Here is the modified file faces-config.xml.

Listing 13.4 faces-config.xml

<faces-config>
 <application>
 <locale-config>
 <default-locale>en</default-locale>
 <supported-locale>es</supported-locale>
 <supported-locale>de</supported-locale>
 </locale-config>
 </application>
</faces-config>

Figure 13–4 Properties files for English (default), German, and Spanish locales

452 Chapter 13 Customizing Applications with Creator
The default locale is English (en); Spanish (es) and German (de) are sup-
ported locales.

Configure Your Browser
If you normally use English, you’ll have to configure your browser to see the
German and Spanish versions of project Login2I18N. Here are the steps you
need with Internet Explorer.

1. Select Tools > Internet Options > Languages. Click the Add button and select
the following lines in the supported languages box.

2. Click OK.
3. To change your locale, select the target language and move it to the top with

the Move Up button.

If you use Netscape Navigator (version 8) as your browser, follow these
steps.

1. Select Tools > Options.
2. Select category General from the options on the left.
3. Select Languages.
4. From the drop down component in the middle of the dialog, select the lan-

guage you’d like to add. Then click Add to add it to the list.
5. Select the target locale and move it to the top with the Move Up button, as

shown in Figure 13–5. Click OK when you’re finished.

Deploy and Run
With the preceding changes, the application runs in either English, Spanish, or
German by configuring your browser for these different locales. Note that if
you don’t supply a username or password, the application displays error mes-
sages in the selected language. This is because the JSF validator is already con-
figured to get its text from locale-specific messages.

Figure 13–6 shows the login page in the Spanish version (with Netscape 8)
and Figure 13–7 displays the German version (with Internet Explorer).

Spanish [es]
English [en]
German [de]

13.2 Internationalizing an Application 453
Figure 13–5 Configuring Netscape for other languages

Figure 13–6 Logging in with the Spanish version

454 Chapter 13 Customizing Applications with Creator
13.3 Controlling the Locale from the
Application

You may want users of your web application to select a language directly with-
out having to modify browser configurations or change default locale settings.
In this example, you’ll add a drop down list component to the initial page that
offers language selection for the application. Since the web application has
already been internationalized (for three languages, at least), these modifica-
tions are minor.

Here’s the approach. You’ll use a drop down list to hold the locale choices.
When the user changes the locale, you save the choice as a property in session
scope by binding the selected value of the drop down component to the session
bean property. Then, when the user returns to the application’s initial page, the
correct language is still selected in the drop down component. Your first step,
then, is to copy the project and add a property to session scope.

Copy the Project
To avoid starting from scratch, copy project Login2I18N to a new project called
Login2I18N-Alt. This step is optional. If you don’t want to copy the project,

Figure 13–7 Logging in with the Spanish version

13.3 Controlling the Locale from the Application 455
simply skip this section and continue making modifications to the Login2I18N
project.

1. Bring up project Login2I18N in Creator.
2. From the Projects window, right-click node Login2I18N and select Save

Project As. Provide the new name Login2I18N-Alt.
3. Close project Login2I18N. Right-click Login2I18N-Alt and select Set Main

Project. You’ll make changes to the Login2I18N-Alt project.
4. Expand Login2I18N-Alt > Web Pages and open Page1 in the design view.
5. Click anywhere in the background of the Page1 design canvas. In the Prop-

erties window, change the page’s Title property to Login2-I18N-Alt.

Add a SessionBean1 Property
In this project, you will save the drop down list’s current selection in session
scope. Call the property myLocale; it will be type String. Here are the steps to
add property myLocale to SessionBean1.

1. In the Projects window, right-click Session Bean and select Add > Property.
Creator displays the New Property Pattern dialog.

2. Fill in the fields as follows. For Name specify myLocale, for Type select
String, and for Mode select Read/Write. Click OK.

Now you you’ll provide code to initialize property myLocale to English in
SessionBean1 method init().

1. From the Projects window, double-click node Session Bean to bring up
SessionBean1.java in the Java source editor.

2. Add the following initialization code to the end of method init(). The
added code is bold.

Add Components to Page1
You’ll place the drop down list component at a prominent place at the top of
the page. To account for the variable size of the page title’s text, place both the
title and the drop down list component inside a grid panel. Figure 13–8 shows
the design view with the components placed inside grid panels and the drop

public void init() {
. . .
// Default to English locale
myLocale = new String("en");

}

456 Chapter 13 Customizing Applications with Creator
down component added. Note that the drop down component submits its own
virtual form (green localeForm).

1. Bring up Page1 in the design view.
2. From the Layout Components palette, select Grid Panel and drag it to the

page. (Don’t worry about its exact placement.)
3. Make sure the grid panel is still selected. In the Properties window, change

its id property to gridPanelTitle.
4. In the Properties window under Appearance, specify 10 for cellpadding

and 2 for columns.
5. In the Page1 Outline view, drag the label component (that holds the page

title) and drop it on top of the grid panel.
6. From the Basic Components palette, select Drop Down List and drop it on

top of the grid panel you just added. The label component and the drop
down list will appear adjacent to each other inside the grid panel. In the
Page1 Outline view, these components will be nested under the grid panel.

Now you’ll define the options for the drop down list.

1. In the Page1 Outline view, select component dropdown1DefaultOptions (it’s
near the bottom of the Outline view).

2. In the Properties window, select the small editing box opposite property
options. A dialog pops up.

3. Replace the default items with English, Deutsch, and Español under Display
and en, de, and es under Value, as shown in Figure 13–9.

4. Click OK to close the dialog.

Figure 13–8 Design view showing component layout for Login2I18N-Alt

Grid Panel

Drop Down List

13.3 Controlling the Locale from the Application 457
The drop down list requires its own virtual form (so that the text field and
password components are not validated during language selection).

1. Toggle the Virtual Forms icon in the editing toolbar to enable the virtual
forms display. There should be one virtual form defined (blue resetForm).

2. Select the drop down component, right-click, and select Configure Virtual
Forms. Creator pops up the Configure Virtual Forms dialog.

3. Click New to create a new form (green). Change its name to localeForm and
select Yes under heading Submit.

4. Click Apply and OK. A dotted, green outline now encloses the drop down
list component.

Method processValueChange() is invoked when the user changes the
selection in the drop down component.

1. Select the drop down list component. Right-click and select Edit Event Han-
dler > processValueChange from the context menu. Creator generates
method dropDown1_processValueChange() and brings up Page1.java in
the Java source editor.

2. Add the following code to method dropDown1_processValueChange().
Copy and paste from file FieldGuide2/Examples/Custom/snippets/
login2I18N_dropdown.txt. The added code is bold.

public void dropDown1_processValueChange(
ValueChangeEvent event)

{
FacesContext context = FacesContext.getCurrentInstance();
UIViewRoot viewRoot = context.getViewRoot();

Figure 13–9 Specifying language selections for the drop down component

458 Chapter 13 Customizing Applications with Creator
This method retrieves the faces context and the root view (the top level for
all the components on the page). It then obtains the selected value from the
drop down list (either en, de, or es for English, German, and Spanish, respec-
tively) and uses it to set a new locale.

Fix the syntax errors by defining the necessary import statements.

3. Right-click anywhere inside the file and select Fix Imports from the context
menu. This should take care of any syntax errors.

4. Click the Save All icon on the toolbar to save these changes.

Final Configurations
There’s a few more settings to configure for the drop down list component.

1. Return to the Page1 design view by selecting Design in the editing toolbar.
2. Select the drop down list component, right-click, and check selection Auto-

Submit on Change from the context menu. This submits the page for process-
ing when the user changes the drop down selection.

3. Right-click the drop down list again and select Property Bindings from the
context menu. Creator pops up the Property Bindings dialog.

4. For Select bindable property, choose selected Object. For Select binding tar-
get, choose SessionBean1 > myLocale, as shown in Figure 13–10. Click Apply
then Close. Property binding between the drop down component’s selected
value and property myLocale saves the chosen locale in session scope.

Finally, you’ll remove the locale configurations from file faces-config.xml.
This is to prevent the locale settings performed by the event handler from inter-
fering with the settings indicated by your browser. Without the configuration
information in faces-config.xml, the drop down component’s event handler
will determine the current locale.

1. Select the Files tab to activate the Files view.
2. Expand nodes Login2I18N-Alt > web > WEB-INF. Under WEB-INF, double-

click file faces-config.xml. This brings it up in the XML editor.
3. Add comments <!-- and --> around the <application> and </applica-

tion> tags to comment-out the locale configuration (or remove the XML
tags from the file).

4. Click the Save All icon and close file faces-config.xml.
5. Click Projects to return to the Projects view.

String loc = dropDown1.getSelected().toString();
viewRoot.setLocale(new Locale(loc));

}

13.4 Creating Custom Validation 459
Deploy and Run
Deploy and run the application. You can now select the target language with-
out configuring your browser. Figure 13–11 shows the initial page (in German)
as the user is about to select Spanish.

13.4 Creating Custom Validation

Sometimes you need to provide your own validation for input. There are two
approaches to take here. One is to write a custom validator that you can use
with other projects. Writing your own validator is a lot more work, but it gives
you a reusable component. The other approach is to write a validation method
and add it to your page bean. This is appropriate when you don’t expect to use
the validation with other pages or other applications. It’s the easier of the two
approaches and a good first step if you’re thinking about creating a validator.

We’ll show you how to write your own validation method. This technique is
not difficult and you can always convert it to a validation component later if
you want.

You learned about localization and internationalization in the previous sec-
tions. Now we’ll show you how to make your validation method access the
current locale for error messages and post messages to the faces context. Using

Figure 13–10 Specifying property bindings for the drop down component

460 Chapter 13 Customizing Applications with Creator
the current locale, you can provide international support for your validator
error messages. Also, by posting error messages to the faces context, you can
use Creator’s message components to report validation errors generated by
your custom validation method.

You’ll accomplish all this with a simple application that uses a JavaBeans
component called ColorBean to store red-green-blue (RGB) color values. Each
color property of ColorBean stores its value as a two-digit hexadecimal string.
A getColor() method returns a String that sets HTML colors. The String’s for-
mat is #rrggbb, where rr is a two-digit hex value for red, gg is a two-digit hex
value for green, and bb is a two-digit hex value for blue.

A user can modify the two-digit value of each color, but a custom validator
makes sure that user input is only two digits in length and that the digits are
valid. The validator also allows upper- and lowercase letters for the hex digits a
through f.

This application comes up with all color properties set to the String "ff"
(white). See Figure 13–12 for the page layout. When the user modifies an RGB
color value, the background color of the enclosing grid panel changes to the
new color.

Create a Project
Let’s start by creating a project called Color1. When the design canvas comes
up, change the Page1 title to Color 1.

Figure 13–11 Setting the locale from the application

13.4 Creating Custom Validation 461
Add a JAR File to Your Project
Before you add components, configure properties files, and create a faces-con-
fig.xml file, you’ll add a JAR file to your project. You’ll use the same JAR file
from the previous project. This file contains ColorBean.java (the source for
your JavaBeans component), ColorBean.class (the compiled class file), and the
.properties files that internationalize the application.

1. In the Projects view, right-click the Libraries node and select Add JAR/
Folder from the context menu. Creator opens up the Add JAR/Folder dialog.

2. Browse to your Creator2 download to FieldGuide2/Examples.
3. Select file asg.jar and click Open.
4. Expand the Libraries node and you’ll see file asg.jar listed.

Add a ColorBean Property to SessionBean1
Now that you’ve added the JAR file containing the ColorBean class file, you’ll
need to make it accessible within your project. Since the ColorBean should
have session scope, let’s add it to the managed bean SessionBean1 as a prop-
erty. This enables JSF to automatically instantiate the bean when it instantiates
SessionBean1. The bean will also become available to the UI components as a
SessionBean1 property.

Figure 13–12 Using custom validation

462 Chapter 13 Customizing Applications with Creator
Creator Tip

You could just as easily put the ColorBean object in RequestBean1, which
uses request scope (unless you plan on implementing the project as a portlet).

1. In the Projects view, right-click the node Session Bean and select Add > Prop-
erty. Creator pops up the New Property Pattern dialog, as shown in
Figure 13–13.

2. Fill in the dialog as follows. Under Name specify colorBean, under Type
specify ColorBean, and under Mode, select Read/Write.

Creator Tip

Since Name and Type are case sensitive, make sure you copy the
capitalizations exactly.

3. Keep the default for options Generate Field, Generate Return Statement, and
Generate Set Statement as shown. Click OK to close the dialog.

4. Still in the Projects window, double-click node Session Bean. This brings up
SessionBean1.java in the Java source editor.

5. You’ll see that the code is marked with syntax errors because type Color-
Bean is unknown in the current compilation scope. Right-click anywhere
inside the file and select Fix Imports from the context menu. This adds the

Figure 13–13 New Property Pattern dialog

13.4 Creating Custom Validation 463
following import statement for the ColorBean class near the top of source
file SessionBean1.java.

Now you’ll add the Java code that instantiates (with operator new) the Color-
Bean object.

1. Still editing file SessionBean1.java, place the cursor after the comment line
at the end of method init().

2. Add instantiation with operator new for property colorBean, as follows.

The code you added to SessionBean1.java makes the colorBean object a
property of SessionBean1. To access the redColor property of colorBean (for
example), use the following JSF EL expression.

This is how you’ll bind the UI components on your web page to the Color-
Bean’s properties. Before you specify binding for the components, however,
let’s look at the source code for ColorBean.java.

ColorBean.java Code
The source for ColorBean.java is included in the asg.jar JAR file. Since the JAR
file is installed in your project as a library, you can easily view the file in Cre-
ator’s Java source editor.

1. In the Projects window under Libraries, expand nodes asg.jar >
asg.bean_examples.

import asg.bean_examples.ColorBean;

public void init() {
. . .
// TODO - add your own initialization code here
colorBean = new ColorBean();

}

#{SessionBean1.colorBean.redColor}

464 Chapter 13 Customizing Applications with Creator
2. Double-click file ColorBean.java. Creator brings it up in the Java source edi-
tor as a read-only file. Listing 13.5 shows the source for ColorBean.java.

ColorBean has four properties: three are read/write and the fourth is a read-
only property (color). All properties have String values. You will bind three
text field components to the properties redColor, greenColor, and blueColor.
You’ll also bind the background color of a grid panel to the color property.

Isolate Localized Text
This time you’ll plan ahead for localization. Your application will have a page
title, labels for three text field components, a button label, and two different
error messages that result from validation. The properties file contains the
labels and error messages in (American) English. The name of this file is

Listing 13.5 ColorBean.java

// ColorBean.java

package asg.bean_examples;

public class ColorBean {
 private String redColor;
 private String greenColor;
 private String blueColor;

 /** Creates a new instance of ColorBean */
 public ColorBean() {
 redColor = "ff";
 greenColor = "ff";
 blueColor = "ff";
 }

 // Setters
 public void setRedColor(String c) { redColor = c; }
 public void setGreenColor(String c) { greenColor = c; }
 public void setBlueColor(String c) { blueColor = c; }

 // Getters
 public String getRedColor() { return redColor; }
 public String getGreenColor() { return greenColor; }
 public String getBlueColor() { return blueColor; }
 public String getColor() {
 return "#" + redColor + greenColor + blueColor;
 }
}

13.4 Creating Custom Validation 465
color1.properties and it lives in the asg.jar library under package asg.mes-
sages. The file’s text is shown in Listing 13.6.

Creator Tip

You can also view the properties file with Creator. In the Projects window
under Libraries, expand the asg.jar > asg.messages folders. Double-
click color1.properties. Creator displays each key-value pair for both the
default locale and Spanish locale in the editor pane.

You’ll now add a JSF loadBundle tag to your Page1.jsp source page. This
tells JSF to use the resource bundle from the current locale. Here are the steps.

1. Bring up Page1 in the design view.
2. Click the JSP label in the editing toolbar.
3. Add the <f:loadBundle> tag after the <f:view> tag in the JSP source. Here’s

the JSF tag. (Put the tag all on one line.)

With the loadBundle tag you’ll be able to bind the components that you place
on the page to the text messages in the .properties files.

Add a Validation Method
To “hook” into JSF’s component validation process, all custom validation meth-
ods must conform to the correct format. Specifically, they must accept argu-
ments that include the faces context, the input component that’s being
validated, and the input string that’s being validated.

Furthermore, to keep with the stipulation that all messages are localized,
you’ll have to access the resource bundle from the current context to build the
error message. Once the error message is formed, you add the message to the
faces context and mark the component “not valid.”

Listing 13.6 asg.messages.color1.properties

pageTitleLabel = Color Fun
redValueLabel = Red Value
greenValueLabel = Green Value
blueValueLabel = Blue Value
updateButtonLabel = Update Color
lengthError = Hex numbers must be two digits exactly.
digitError = Hex characters must be [0-9][A-F][a-f] only.

<f:loadBundle basename="asg.messages.color1" var="messages"/>

466 Chapter 13 Customizing Applications with Creator
Custom method validateHexString() calls toLowerCase() to convert pos-
sible uppercase letters to lower case. Note that we supply the optional Locale
argument to the call.

1. Click the Java label in the editing toolbar to open Page1.java in the Java
source editor.

2. Place the validateHexString() method at the end of the file, as shown in
Listing 13.7. Copy and paste from file FieldGuide2/Examples/Custom/snip-
pets/color1_validateHexString.txt.

Listing 13.7 Method validateHexString()

public void validateHexString(FacesContext context,
UIComponent toValidate, Object value) {

String hexString = value.toString().toLowerCase(
context.getViewRoot().getLocale());

boolean valid = true;
String message = "";

if (hexString.length() != 2) {
valid = false;
message = hexString + ": " +

lookup_message(context, "lengthError");
}

else {
for (int i = 0; i < 2; i++) {

char hd = hexString.charAt(i);
int v = Character.digit(hd, 16);

if (v < 0 || v > 15) {
valid = false;
message = hexString + ": " +

lookup_message(context, "digitError");
break;

}
}

}

if (!valid) {
((UIInput)toValidate).setValid(false);
context.addMessage(toValidate.getClientId(context),

new FacesMessage(message));
}

}

13.4 Creating Custom Validation 467
You’ll see some syntax errors due to missing import statements. You’ll fix
these errors after you add the code for the lookup_message() method.

Method lookup_message() is a private helper function that looks up the
resource bundle associated with this context and locale. This method finds the
message text with the key from the resource bundle.

3. Add method lookup_message() to Page1.java, as shown in Listing 13.8
Copy and paste from file FieldGuide2/Examples/Custom/snippets/color1_-
lookup_message.txt.

4. To fix the syntax errors, right-click anywhere in the background and select
Fix Imports from the context menu. Here are the import statements.

Adding Components to the Page
With all the setup work complete, it’s time to add components to the page.
Figure 13–14 shows the design canvas with the components you need. (We
modified the components to display the key from the properties file. You’ll provide a
more complete value binding expression during component configuration.)

You’ll add all the components to the page first. Then you’ll configure them
to access the properties file.

Listing 13.8 Method lookup_message()

private String lookup_message(
FacesContext context, String key) {

String text = null;

try {
ResourceBundle bundle =

ResourceBundle.getBundle("asg.messages.color1",
context.getViewRoot().getLocale());

text = bundle.getString(key);

} catch (Exception e) {
text = "???" + key + "???";

}
return text;

}

import java.util.ResourceBundle;
import javax.faces.application.FacesMessage;
import javax.faces.component.*;
import javax.faces.context.FacesContext;
import javax.faces.validator.*;

468 Chapter 13 Customizing Applications with Creator
1. Bring up Page1 in the design view.
2. From the Basic Components palette, select Label and drag it to the canvas.
3. From the Layout Components palette, select Grid Panel and add it to the

page. This component lets you nest components within a grid. It’s useful
when components are not a constant size (for example, when using localized
text for labels).

4. In the Properties window, change cellpadding to 10 and columns to 3.
5. Bind the grid panel’s bgcolor property to the ColorBean color property.

Select the grid panel component, right-click, and choose Property Bindings.
Creator pops up the Property Bindings dialog.

6. For Select bindable property, choose bgcolor String. For Select binding tar-
get, choose SessionBean1 > color String. (See Figure 13–15 for the Property
Bindings dialog.) Click Apply then Close. Creator sets the binding expres-
sion to the following.

Add Components for Input
For each of the three color values (red, green, and blue) you’ll need a label, a
text field component to gather input, and a message component for validation
error messages. Each color will occupy a column in the grid panel.

There are a lot of components to add here, so it’s best to place all three labels
on the page first, followed by all three text field components, and finally all

#{SessionBean1.colorBean.color}

Figure 13–14 Design canvas with components added to Page1 for project Color1

Grid PanelLabel
Text Field

MessageButton Static Text

13.4 Creating Custom Validation 469
three message components. As you add the components, check the Outline
view to make sure you’re nesting components properly.

Creator Tip

You might find it easier to drop each of the components onto the grid panel in
the Outline view. Creator places them in the grid according to the order that
you add them. Each cell in the grid panel is used in order until the first row is
full. Creator uses the columns property to determine how many columns it
should create. You can always re-arrange the components by moving them on
top of the grid panel again. This moves the component to the “end” of the
grid. Figure 13–16 shows the Outline view after all the components have
been added.

1. From the Basic Components palette, select Label and drop it on top of the
grid panel in the Outline view. You’ll set its text property later.

2. In the Properties view, change its id property to labelRed.
3. Repeat this and add two more label components, dropping each one on top

of the grid panel in the Outline view. Change the second label’s id property
to labelGreen and the third one’s to labelBlue. There should now be three
label components side by side in the first row of the grid panel.

4. From the Basic Components palette, select Text Field and drop it on top of
the grid panel in the Outline view.

Figure 13–15 Property Bindings dialog

470 Chapter 13 Customizing Applications with Creator
5. Configure the text field component as follows. Set its id property to red-
Input, check the required property (set it to true), and bind its text property
to the redColor property of the ColorBean object, as follows. (Figure 13–17
shows the Property Bindings dialog.)

6. From the Basic Components palette, select Text Field and drop it on top of
the grid panel in the Outline view. This is the second text field component
used for green color input.

7. Configure the text field component as follows. Set its id property to green-
Input, check the required property (set it to true), and bind its text property
to the greenColor property of the ColorBean object, as follows.

#{SessionBean1.colorBean.redColor}

#{SessionBean1.colorBean.greenColor}

Figure 13–16 Outline view for project Color1

13.4 Creating Custom Validation 471
8. From the Basic Components palette, select Text Field and drop it on top of
the grid panel in the Outline view. This is the third text field component
used for blue color input.

9. Configure the text field component as follows. Set its id property to blue-
Input, check the required property (set it to true), and bind its text property
to the blueColor property of the ColorBean object, as follows.

There are now three text field components, all in the second row of the grid
panel component. You’ll now add the three message components and tie them
to their respective text field components.

1. From the Basic Components palette, select Message and drop it on top of the
grid panel in the Outline view.

2. Type and hold <Ctrl+Shift> and drag the mouse to the first text field compo-
nent. The message component should display “Message summary for redIn-
put.”

3. Repeat steps 1 and 2 and add two more message components to the grid
panel. Use <Ctrl+Shift> to associate each message component with the cor-
rect text field component.

4. Now select the first label component. In the Properties view, set its for prop-
erty using the drop down list. Choose redInput for the first label.

#{SessionBean1.colorBean.blueColor}

Figure 13–17 Property Bindings dialog to specify binding for text field redInput

472 Chapter 13 Customizing Applications with Creator
5. Repeat this step and set the second label’s for property to greenInput. Set the
third label’s for property to blueInput. The labels should all have red aster-
isks indicating required input.

Add a Button and a Static Text Component
You’ll now add the button and static text components.

1. From the Basic Components palette, select Button and drop it on top of the
grid panel in the Outline view. The button should appear in the fourth row
of the grid panel. You’ll set its text property later.

2. From the Basic Components palette, select Static Text and drop it on top of
the grid panel in the Outline view.

3. Select the static text component, right-click, and select Property Bindings.
Bind the text property of the static text component to property color of the
ColorBean, as follows.

The grid panel is now set. It has three component labels, three text fields,
and three inline messages. In the last row (the fourth row), it has the button
and the static text component.

Note that this example does not require an action method for the button
component. That’s because we just want the page to be submitted when the
user clicks the button. All the work is done by input validation and component
binding.

Configure for the Validator Method
You must set the validator property for each text field component. Normally,
you select a validator from the drop down list in the Properties window or sim-
ply drag a validator onto the text field component. With a custom validator
method, however, you set the validate property under Events in the Proper-
ties window.

1. Select the text field component redInput.
2. In the Properties window under Events, set property validate to validate-

HexString. After you save these changes, the JSP tag contains the following
element.

3. Repeat these two steps and set the validate property (to the same method
name) for the other two text fields.

#{SessionBean1.colorBean.color}

validator="#{Page1.validateHexString}"

13.4 Creating Custom Validation 473
Configure the Components for Localized Text
It’s time to configure the components to use the text in the properties file. The
page title label, the three labels in the grid panel, and the button component
will all reference keys in the properties file.

Creator Tip

If the Design View does not render the component correctly after you’ve
specified the properties file notation, use the Outline view to select the
component and use the Properties window to modify the text.

Use Table 13.1 for the correct binding expression for each component.

Deploy and Run
Deploy and run the application by clicking the Run icon on the toolbar.
Figure 13–18 shows the page after the user changes the color to yellow
(#ffff00) and then supplies invalid input for the red color value.

Creator Tip

If you’re having trouble with your application working correctly, here are
some things to check. First, if deploying throws an exception, open the
Page1.jsp file in source mode and make sure you have the
asg.messages.color1 properties file spelled correctly in the
<f:loadBundle> tag. If the application deploys but doesn’t work properly,
use the Properties window in Creator to check that all the property bindings
are correct.

Table 13.1 Binding to the Properties File

Component Id Property Setting
label1 (Label) text #{messages.pageTitleLabel}
labelRed (Label) text #{messages.redValueLabel}
labelGreen (Label) text #{messages.greenValueLabel}
labelBlue (Label) text #{messages.blueValueLabel}
button1 (Button) text #{messages.updateButtonLabel}

474 Chapter 13 Customizing Applications with Creator
Internationalize for Spanish
In keeping with our two-step process for internationalization (localization
being the first step), let’s look at the Spanish text for the keys we already cre-
ated in the default color1.properties file. We’ll call this file color1_es_ES.prop-
erties (for Spanish as it’s spoken in Spain). The file is already in the asg.jar file
installed in your project. You can view all locales by double-clicking file
color1.properties under Libraries > asg.jar > asg.messages in the Projects view.
Here is the properties file.

Listing 13.9 asg.messages.color1_es_ES.properties

pageTitleLabel = Diversión con color
redValueLabel = Valor Rojo
greenValueLabel = Valor Verde
blueValueLabel = Valor Azul
updateButtonLabel = Fije el Color
lengthError = Los números hexadecimales deben ser dos dígitos

exactamente.
digitError = Los caracteres hexadecimales deben ser

[0-9][A-F][a-f] solamente.

Figure 13–18 Custom validation with localized error messages in English

13.4 Creating Custom Validation 475
Specify Supported Locales
Specify supported locales in the faces-config.xml file. Here are the steps.

1. Select the Files tab to activate the Files view (or select View > Files from the
main menu if the Files tab is not visible).

2. Expand nodes Color1 > web > WEB-INF. You’ll see several XML files Cre-
ator generates for each project.

3. Double-click file faces-config.xml to bring it up in the XML editor. This is
the template of the file you’ll need. Delete the comment lines (<!-- and -->)
surrounding the <application> </application> tags.

4. Delete locale fr and de (French and German). Add a region notation to
English (en_US) and Spanish (es_ES). Here is the modified file faces-con-
fig.xml.

Configure Your Browser
Here are the steps you need to configure your browser to use other locales with
Internet Explorer.

1. Select Tools > Internet Options > Languages. Click the Add button and select
the following lines in the supported languages box.

2. Click OK.
3. To change your locale, select the target language and move it to the top with

the Move Up button.

If you use Netscape Navigator (version 8) as your browser, follow these
steps.

Listing 13.10 faces-config.xml

<faces-config>
<application>

<locale-config>
<default-locale>en_US</default-locale>

<supported-locale>es_ES</supported-locale>
</locale-config>

</application>
</faces-config>

Spanish [es-ES]
English [en-US]

476 Chapter 13 Customizing Applications with Creator
1. Select Tools > Options.
2. Select category General from the options on the left.
3. Select Languages.
4. From the drop down component in the middle of the dialog, select the lan-

guage you’d like to add. Then click Add to add it to the list.
5. Select the target locale and move it to the top with the Move Up button.

Click OK when you’re finished.

Deploy and Run
Deploy and run the application by clicking the Run icon on the toolbar.
Figure 13–19 shows the page after the user changes the color to #88eedd and
then supplies invalid input for the red color value. Note that when you config-
ure your browser for Spanish, the system automatically displays the messages
you supplied for the Spanish locale.

Figure 13–19 Custom validation with localized error messages in Spanish

13.5 Using AJAX-Enabled Components 477
13.5 Using AJAX-Enabled
Components

Asynchronous JavaScript Technology and XML (AJAX) is a web development
technique for building interactive web applications. Its main purpose is to
allow asynchronous updates on a web page without refreshing the whole page
and without performing a submit and postback. Even though calls are made to
the server, the overall experience for the user is an extremely responsive web
application, since only a small portion of the page’s display is affected.

The AJAX approach relies on a group of (mostly) standardized technologies
working together; it is not itself a new technology. AJAX incorporates

• page markup and presentation using XHTML and CSS (Creator’s generated
JSP pages use XHTML code and CSS style sheets);

• an application programming interface to access and modify the content,
structure and style of a document using Document Object Model (DOM)
(DOM is a description of an HTML or XML document in an object-oriented
representation);

• asynchronous data retrieval using an XMLHttpRequest object;
• JavaScript to perform the client-side processing.

Readily accessible web applications that use AJAX include Google Suggest,
Google Maps, and Flickr (a photo sharing web site). For example, with Google
Suggest you can begin typing in a search query and, with the first key stroke,
the application gives you a set of suggested search strings that match what
you’ve typed in so far. As you continue typing, the list of suggestions dynami-
cally (and instantly) changes. Even though each key stroke causes a call to the
server, the amount of data returned is very small and the page update is mini-
mal. User perceived bandwidth is excellent.

The good news for JSF (and Creator) users is that it is possible to build JSF
components with built-in AJAX support. This means that the necessary Java-
Script and the required artifacts to communicate asynchronously with the
server are built into the component. The end result is sweeter still when the JSF
component is enhanced to run within the Creator IDE. This section will take
you through the steps of installing an AJAX-enabled text completion JSF com-
ponent in Creator’s Component palette and show you how to use it in a Cre-
ator project.

478 Chapter 13 Customizing Applications with Creator
Importing a Component Library
The first step in using the AJAX-enabled text completion component is to
import the target component library into Creator. The library we’ll use is in a
zip file and is available on Sun’s Creator web site at

Creator Tip

The actual link may change with the official Creator2 release, but you should
be able to find the relevant zip file by referencing the Creator Tutorials on the
Web (an active link on the Creator Welcome page). The tutorial that
references the zip file is “Using an AJAX Text Completion Component.”

1. Download file ajax-components-0.96.zip. Open it and extract its contents
into a directory on your hard drive.

2. From the Creator main menu, select Tools > Component Library Manager.
Creator brings up the Component Library Manager dialog, as shown in
Figure 13–20.

3. Click Import. Creator brings up the Import Component Library dialog.

http://developers.sun.com/prodtech/javatools/jscreator/ea/
jsc2/learning/tutorials/textcompletion/
ajax-components-0.96.zip

Figure 13–20 Component Library Manager Dialog

13.5 Using AJAX-Enabled Components 479
4. Click Browse and navigate to the directory where you saved the component
library.

5. Select ajax-components-0.96.complib and click Open.
6. You’ll see AJAX JSF Components 0.96 in the text field under radio button

Import into Single Palette Category, as shown in Figure 13–21. Click OK.

7. The Component Library Manager dialog now shows the AJAX JSF Compo-
nents listed under the Component Libraries. The Component List includes
the Completion Text Field component, as shown in Figure 13–22. Click Close
to close the Component Library Manager dialog.

8. From the Components palette, open the AJAX JSF Components 0.96 section
to see the Completion Text Field component (see Figure 13–23).

State Codes Completion Example
The project that you’ll build requests a two-letter state postal code, and based
on what the user types in, will provide up to ten two-letter strings that the user
can select. After making a selection, the user clicks the Submit button. As a
later enhancement, the application will display the state name associated with
the provided code in a static text component.

1. From Creator’s Welcome Page, select button Create New Project. From the
New Project dialog, under Categories select Web and under Projects select
JSF Web Application. Click Next.

Figure 13–21 Import Component Library Dialog

480 Chapter 13 Customizing Applications with Creator
2. In the New Web Application dialog, specify StateCodes for Project Name
and click Finish.

Figure 13–22 After importing the AJAX JSF component library

AJAX Completion Text Field
Component

Figure 13–23 AJAX Completion Text Field component added to palette

13.5 Using AJAX-Enabled Components 481
After creating the project, Creator comes up in the design view of the editor
pane. You can now set the title.

3. Select Title in the Properties window and type in the text AJAX Example 1.
Finish by pressing <Enter>.

Add myStateCode Session Property
To keep track of the state code that the user selects, you’ll use a String property
called myStateCode and add it to session scope.

1. In the Projects view under StateCodes, select Session Bean, right-click, and
select Add > Property.

2. Creator pops up the New Property Pattern dialog. For name, specify
myStateCode, for type specify String, and for Mode keep the default Read/
Write.

3. Click OK. Creator adds property myStateCode to SessionBean1.java.
4. In the Projects window, double-click Session Bean to bring up

SessionBean1.java in the Java editor.
5. Add the following initialization code to the end of method init() in

SessionBean1.java, as follows (the added code is bold).

6. Scroll to the end of the file and you’ll see the generated code for property
myStateCode.

7. Add the call to method toUpperCase() in the setter for property myState-
Code, as follows (the modified statement is bold).

Add stateCodes Application Property
The AJAX completion component uses a sorted array of Strings to find poten-
tial matches. It matches the prefix that the user has typed in so far and grabs
the ten strings that potentially match the prefix. Since the array of Strings is
sorted, it only needs to find a potential match for the first item.

 public void init() {
. . .
// TODO - add your own initialization code here
myStateCode = new String();

}

public void setMyStateCode(String myStateCode) {
this.myStateCode = myStateCode.toUpperCase();

}

482 Chapter 13 Customizing Applications with Creator
The array of Strings goes in application scope since it is read-only and it can
be shared by all users of the application. First you’ll add the property, then
you’ll insert the code to initialize the array with the state code data.

1. In the Projects view under StateCodes, select Application Bean, right-click,
and select Add > Property.

2. Creator pops up the New Property Pattern dialog. For name, specify state-
Codes, for type specify String[], and for Mode select Read Only.

3. Click OK. Creator adds property stateCodes to ApplicationBean1.java.

Creator Tip

Make sure you specify Type String[] using array notation.

4. In the Projects window, double-click Application Bean to bring up
ApplicationBean1.java in the Java editor.

5. Add the following code to the end of the init() method in
ApplicationBean1.java. Copy and paste from FieldGuide2/Examples/Cus-
tom/snippets/ajax_stateCodes_init.txt. The added code is bold.

6. Click the Save All icon on the toolbar to save these changes.

(The state postal codes are available on the U.S. Postal Service’s web site.)
Note that the state codes are in alphabetical order here and that this order is
different than the alphabetical order of the state names. Also, note that there
are several codes that refer to non-state territories and countries, such as MP
(Northern Mariana Islands) and PR (Puerto Rico).

public void init() {
. . .
// TODO - add your own initialization code here
stateCodes = new String[] {

"AK", "AL", "AR", "AZ", "CA", "CO", "CT", "DC", "DE",
"FL", "FM", "GA", "GU", "HI", "IA", "ID", "IL",
"IN", "KS", "KY", "LA", "MA", "MD", "ME", "MH",
"MI", "MN", "MO", "MP", "MS", "MT", "NC", "ND",
"NE", "NH", "NJ", "NM", "NV", "NY", "OH", "OK",
"OR", "PA", "PR", "PW", "RI", "SC", "SD", "TN",
"TX", "UT", "VA", "VI", "VT", "WA", "WI", "WV", "WY"

};
}

13.5 Using AJAX-Enabled Components 483
Add Components to the Page
Figure 13–24 shows this simple one-page application in the design view. Use
the figure as a guide when you add these components to your project.

1. Select the Page1 tab to bring up Page1 in the design view.
2. From the Basic Components palette, select component Label and place it on

the page, near the top left side.
3. Make sure it’s selected and type in the text State and finish with <Enter>.
4. From the end of the Components palette, expand section AJAX JSF Compo-

nent 0.96 and select component Completion Text Field. Drag it to the design
canvas and drop it on the page to the right of the label you just added.

5. Make sure it’s selected. Adjust its size so that it’s smaller (it only needs to
hold 2 letters.)

6. In the Properties window under Appearance, opposite property title, type
in Please specify the two-letter code for your state followed by <Enter>. This sets
the tooltip for the completion text field component.

7. In the Properties window under Data, check property required.
8. In the design view, select the label component. In the Properties window

under Appearance, select ajaxTextField1 from the drop down list opposite
property for. This ties the label component to the completion text field com-
ponent. The label will have a red asterisk before the label text, indicating
that the field is required.

You’ll now add a button, a message, and a static text component.

1. From the Basic Components palette, select component Button and drop it
onto the page to the right of the completion text field component.

Figure 13–24 AJAX Completion Text Field component added to palette

Label

AJAX Completion
Text Field

Button

Static Text
Message

484 Chapter 13 Customizing Applications with Creator
2. Type in the text Submit followed by <Enter> to set the button’s label.
3. From the Basic Components palette, select component Message and drop it

onto the page under the completion text field component. The message com-
ponent will display input validation errors associated with the text field.

4. Select the message component, type and hold <Ctrl+Shift>, and drag the
mouse, releasing it when it is over the completion text field. This sets the
message component’s for property to ajaxTextField1.

5. From the Basic Components palette, select component Static Text and drop it
onto the page below the message component.

6. In the Properties view, change its id to stateResult.
7. In the design view, select the static text component, right-click, and select

Property Bindings. In the Property Bindings dialog, under Select bindable
property, choose text Object. Under Select binding target, choose
SessionBean1 > myStateCode. Click Apply, as shown in Figure 13–25, then
Close.

8. Repeat this step and bind the completion text field value property to the
same session bean property, myStateCode.

Now you’ll add a length validator for the completion text field component.

1. From the Validators section of the Components palette, select Length Valida-
tor and drop it onto the page.

2. Now select the completion text field (ajaxTextField1). In the Properties
window under Data, select lengthValidator1 from the drop down list oppo-

Figure 13–25 Property Bindings dialog

13.5 Using AJAX-Enabled Components 485
site property validator. This applies the length validator to the completion
text field component.

3. In the Page1 Outline view, select lengthValidator1. In the Properties win-
dow, specify 2 for both the minimum and maximum properties.

4. Click the Save All icon on the toolbar to save your project.

Configure the AJAX Component
The completion text field’s ability to supply the asynchronous feedback to the
user is its completionMethod property, which you can bind to a method that
provides data to display on the page. Let’s do this now.

1. In the design view, double-click the completion text field component. Cre-
ator generates the completion method event handler and brings up
Page1.java in the Java source editor.

2. Add the call to addMatchingItems() to the ajaxTextField1_complete()
event handler. Here’s the method with the call to addMatchingItems()
added (in bold).

Method ajaxTextField1_complete() has three arguments. Argument
prefix is the text that the user has typed in so far. Argument result is an
array of Strings that the embedded JavaScript will access to display the current
“choice list.” You can add items to the result array manually inside the com-
pletion event handler (as shown by the statements that are commented-out).

Our example uses a utility method included with the AJAX component
library to build the result array. This method, addMatchingItems(), builds
the result array using the prefix String (match target) and a sorted array of
Strings as its match source. In our example, the match source is the application
scope property stateCodes, whose getter returns a (sorted) array of Strings.

As the user types in letters in the completion text field, each key stroke
causes a call to addMatchingItems() to build a new result array. Since the call
is made outside of the normal HTTP Request cycle, only the small pop-up con-
taining the selection choices needs rendering.

public void ajaxTextField1_complete(FacesContext context,
String prefix, CompletionResult result) {

// TODO: Return your own list of items here
// based on the prefix
//result.addItem("Hello");
//result.addItem(prefix.toUpperCase());
AjaxUtilities.addMatchingItems(

getApplicationBean1().getStateCodes(), prefix, result);
}

486 Chapter 13 Customizing Applications with Creator
You’ll now configure the completion text field to limit input to two charac-
ters.

1. Select the JSP label in the editing toolbar. This brings up Page1.jsp in the JSP
editor.

2. Find the tag for <ajaxTags:completionField . . . />. Add the following
maxlength property value within the completionField tag. (Property max-
length limits the number of characters that can be input. The property is not
accessible through the Properties window.)

Creator Tip

Although the length validator makes sure that the length is exactly two and
the required property makes sure that the user doesn’t leave the field empty,
property maxlength prohibits input beyond two characters. This avoids
server-side validation for three or more characters since the user can’t type in
more than two characters to begin with.

Deploy and Run
Build, deploy and run the application by selecting the Run icon on the toolbar.
When you initially click inside the completion text field, a list pops up that con-
sists of the first 10 entries in the state code String array, as shown in Figure 13–
26. If the user then types the letter ‘m’, a new list pops up, starting with the first
entry that begins with the letter m. The second window shows this scenario.

After the user selects an entry (such as MN, as shown in Figure 13–26) and
clicks the Submit button, the state code is displayed in the static text field. If the
user leaves the field empty or clicks the button after entering only one letter,
the validator kicks in and a validation message is displayed.

If the user selects one of the choices from the pop-up, the selection will be in
all upper case. However, if the user types in a code manually, then the setter for
property myStateCode converts it to all upper case. In this case, it will be dis-
played in upper case both in the text field and in the static text component only
after the user clicks the Submit button.

We’ll now enhance the application to display the state name (instead of its
code) in the static text component. This requires adding an application prop-
erty to access a mapping of the codes to the state names and creating a session
property to store the user’s state selection (to bind to the static text component).
By converting the state code to uppercase, we don’t have to worry about case
sensitivity when using the state code as a lookup key for the map.

maxlength="2"

13.5 Using AJAX-Enabled Components 487
Add statesMap Application Property
You’ll continue making modifications to the StateCodes project.

1. In the Projects view under StateCodes, select Application Bean, right-click,
and select Add > Property.

2. Creator pops up the New Property Pattern dialog. For name, specify states-
Map, for type specify LinkedHashMap, and for Mode select Read Only.

3. Click OK. Creator adds property statesMap to ApplicationBean1.java.

Creator Tip

LinkedHashMap implements the java.util.Map interface and is useful for
retrieving the state name that corresponds to the state code (the key).

4. In the Projects window, double-click Application Bean to bring up
ApplicationBean1.java in the Java editor.

5. Inside the editor pane right-click and specify Fix Imports to generate the
import statement for class LinkedHashMap.

6. Add the following code to the end of the init() method (after the initializa-
tion you already provided for property stateCodes) in Application-
Bean1.java. Copy and paste from FieldGuide2/Examples/Custom/snippets/

Figure 13–26 AJAX Completion Text Field component responding to user input

488 Chapter 13 Customizing Applications with Creator
ajax_statesMap_init.txt. The added code is bold. (To save space, we omit
many of the calls to put(). There will be a put() call for each state code.)

7. Click the Save All icon on the toolbar to save these changes.

Add myStateName Session Property
To keep track of the state name, you’ll use a read-only String property called
myStateName and add it to session scope.

1. In the Projects view under StateCodes, select Session Bean, right-click, and
select Add > Property.

2. Creator pops up the New Property Pattern dialog. For name, specify
myStateName, for type specify String, and for Mode select Read Only.

3. Click OK. Creator adds property myStateName to SessionBean1.java.
4. In the Projects window, double-click Session Bean to bring up

SessionBean1.java in the Java editor.
5. Scroll to the end of the file and you’ll see the generated code for property

myStateName.

public void init() {
. . .
statesMap = new LinkedHashMap(stateCodes.length);
statesMap.put("AK", "Alaska");
statesMap.put("AL", "Alabama");
statesMap.put("AR", "Arkansas");
statesMap.put("AS", "American Samoa");

. . .
statesMap.put("WA", "Washington");
statesMap.put("WI", "Wisconsin");
statesMap.put("WV", "West Virginia");
statesMap.put("WY", "Wyoming");

}

13.5 Using AJAX-Enabled Components 489
6. Replace the code for getter getMyStateName() with the following code.
Copy and paste from FieldGuide2/Examples/Custom/snippets/
ajax_getMyStateName.txt. The modified code is bold.

Method getMyStateName() uses the LinkedHashMap get() method with
myStateCode property for the key. If the LinkedHashMap can’t find the key, it
returns null.

7. Click the Save All icon on the toolbar to save these changes.

Configure Static Text Component
You’ll now re-configure the static text component stateResult and bind it to
the myStateName session bean property.

1. Click tab Page1 at the top of the editor pane to return to the design view.
2. Select the static text component stateResult, right-click, and select Prop-

erty Bindings from the context menu. Creator pops up the Property Binding
dialog.

3. The Select bindable property should already be set to text Object. Under
Select binding target, choose SessionBean1 > myStateName and click Apply.
This changes the binding expression to

4. Click Close to exit the dialog.

Deploy and Run
Deploy and run project StateCodes. Figure 13–27 shows the page when it ini-
tially comes up in a browser. The second screen shot shows the page after the
user has selected “FM” for Federates States of Micronesia and is about to select
“IL” for Illinois. The AJAX completion displays the matching codes beginning

public String getMyStateName() {
myStateName = (String)

getApplicationBean1().getStatesMap().get(
getMyStateCode());

if (myStateName == null) {
myStateName = new String("State Code Not Set");

}
return myStateName;

}

#{SessionBean1.myStateName}

490 Chapter 13 Customizing Applications with Creator
with “FM.” Note that the state name display is not updated until after the user
clicks the Submit button.

13.6 Using AJAX-Enabled
Components with Web Services

In the previous example, the AJAX complete() method invoked the supplied
AJAX utility addMatchingItems() to build the completion array. You are not
limited to using the component this way; you can build the result array by
accessing a database, an EJB method, or a web service method (for example). In
this section, we’ll show you how to use the supplied Dictionary Web Service to
perform the text completion function of the AJAX component.

Adding the Dictionary Web Service
The Dictionary Web Service included with the Creator product was built to
work with the AJAX completion text field. In order to use it, you must add it to
the Web Services section in the Servers window. It should be deployed by the
bundled application server. To check, do the following.

1. If the server isn’t running, start it. From the Servers window, right-click node
Deployment Server and select Start / Stop Server. Creator pops up the Server
Status dialog.

Figure 13–27 AJAX Completion Text Field component responding to user input

13.6 Using AJAX-Enabled Components with Web Services 491
2. Click Start Server to start the deployment server.
3. When the server is running, Creator displays a green-arrow badge on the

Deployment Server node.
4. In the Servers window under the Deployment Server node, expand the

Deployed Components node. You should see the Dictionary Service web
service listed.

Now you’ll add the Dictionary Service to the Web Services section.

1. In the Server window, right-click the Web Services node and select Add Web
Service. Creator pops up the Add Web Service dialog.

2. You access the Google Web Service Web Service Description Language
(WSDL) file (for example) remotely. Here, however, you’ll access the Dictio-
nary Web Service WSDL locally. Under Select Web Service Source, click radio
button Local File and then Browse, as shown in Figure 13–28.

3. Creator pops up a file selection dialog. It will default to the websvc direc-
tory under your user configuration directory for Creator. Select file Dictio-
naryService.wsdl and click Open.

4. Creator parses the WSDL file and displays information about the methods
as shown in Figure 13–29. Click Add to add the Dictionary Web Service to
the Web Services node.

Figure 13–28 Add Web Service dialog

492 Chapter 13 Customizing Applications with Creator
The Dictionary Web Service consists of two methods, as follows.

Method matchPrefix() performs the same function as the AJAX utility
addMatchingItems() you used in the previous section. Here, matchPrefix()
returns an array of Strings from its 180,00 word dictionary that matches the
user-typed prefix. You then use addItems() to build the result array used by
the completion text field. Method define() returns the definition of the word
supplied as its argument. You’ll use both these methods to provide a dictionary
lookup application that performs auto-completion on the input text field.

java.lang.String[] matchPrefix(java.lang.String prefix)
java.lang.String define(java.lang.String word)

Figure 13–29 Add Web Service dialog displaying the Dictionary Web Service

13.6 Using AJAX-Enabled Components with Web Services 493
Create a New Project
Let’s build the dictionary lookup application.2

1. From Creator’s Welcome Page, select button Create New Project. From the
New Project dialog, under Categories select Web and under Projects select
JSF Web Application. Click Next.

2. In the New Web Application dialog, specify AjaxLookup for Project Name
and click Finish.

After creating the project, Creator comes up in the design view of the editor
pane. You can now set the title.

3. Select Title in the Properties window and type in the text AJAX Lookup.
Finish by pressing <Enter>.

Add Components to the Page
Figure 13–30 shows the dictionary lookup project in the design view. Use the
figure as a guide when you add the components to your project.

2. This application is based on the Creator/AJAX Demo presented by Sun
Microsystems’ Tor Norbye at JavaOne.

Figure 13–30 Design View for project AJAXLookup

AJAX
Completion
Text Field

Label

Button

Label

Static
Text

Message
Group

494 Chapter 13 Customizing Applications with Creator
1. From the Basic Components palette, select component Label and place it on
the page, near the top left side.

2. Make sure it’s selected and type in the text Type a word: and finish with
<Enter>.

3. From the AJAX Components palette, select component Completion Text
Field. Drag it to the design canvas and drop it on the page below the label
you just added.

4. Make sure the AJAX component is selected. In the Properties window under
Appearance, opposite property title, specify Type in a word for dictionary
lookup followed by <Enter>. This sets its tooltip.

You’ll now add a button, a second label, a static text component, and a mes-
sage group component.

1. From the Basic Components palette, select component Button and drop it
onto the page to the right of the completion text field component.

2. Type in the text Look Up followed by <Enter> to set the button’s label.
3. In the Properties view, change its id to lookup.
4. From the Basic Components palette, select component Label and drop it

onto the page under the completion text field component.
5. Type in the text Definition: and finish with <Enter> to set its label.
6. From the Basic Components palette, select component Static Text and drop it

onto the page below the label component.
7. In the Properties view, change property id to meaning and uncheck property

escape.
8. In the design view, resize the static text component so that it is approxi-

mately 12 grids wide and 5 grids high.
9. From the Basic Components palette, select Message Group component and

drop it onto the design canvas. Place it on top of the static text component as
shown in Figure 13–30.

Add the Dictionary Web Service to the Page
Before you can make any calls to the Dictionary Web Service, you must add it
to your project.

• In the Servers window, select Web Services > DictionaryService and drag it
to the Page1 design view. Nothing appears in the design canvas; however,
you will see dictionaryServiceClient1 in the Page1 Outline view.

13.6 Using AJAX-Enabled Components with Web Services 495
Configure the Event Handlers
You’ll now provide the code for the AJAX component’s auto-completion event
handler. You’ll also add the event handling code for the button component to
perform the dictionary lookup.

1. In the design view, double-click the completion text field component. Cre-
ator generates the completion method event handler and brings up
Page1.java in the Java source editor.

2. Add the following code to the ajaxTextField1_complete() event handler.
Copy and paste from FieldGuide2/Examples/Custom/snippets/
ajax_lookup_match.txt. The added code is bold.

Recall that prefix contains the text that the user has typed in so far. Method
matchPrefix() returns an array of Strings (up to ten words) that match the
provided prefix. These you add to the completion method’s result array for
display in the completion popup window.

The catch handler includes a call to error() which will display any system
errors in the message group component you added to the page.

1. Return to the design view by clicking the Design label on the editing toolbar.
2. Double-click the Look Up button component. Creator generates the action

event handler for the button and brings up Page1.java in the Java source edi-
tor.

public void ajaxTextField1_complete(FacesContext context,
String prefix, CompletionResult result) {

try {
String[] items =

dictionaryServiceClient1.matchPrefix(prefix);
result.addItems(items);

} catch (Exception ex) {
log("Error Description", ex);
error("Could not access dictionary service matchPrefix: "

+ ex);
}

}

496 Chapter 13 Customizing Applications with Creator
3. Add the following code to the lookup_action() method. Copy and paste
from FieldGuide/Examples/Custom/snippets/ajax_lookup_action.txt. The
added code is bold.

When the user clicks the Look Up button, the event handler calls the Dictio-
nary Service method define() with the text in the AJAX completion text com-
ponent. The define() method returns the word’s definition, which method
lookup_action() stores in the static text component’s text property.

Deploy and Run
Build, deploy and run the application by selecting the Run icon on the toolbar.
Figure 13–31 shows the application after the user types an initial ‘x’. If the user
then types the letter ‘i’, a new list pops up, matching the prefix ‘xi’.

Figure 13–32 shows the application after the user selects entry ‘Xiphioid.’

13.7 Key Point Summary

• Localization and internationalization enable your applications to run in a
global environment.

• Java uses a Locale to customize an application for a target language and
region.

• To localize an application, first isolate all textual labels and messages and
organize them into key-value pairs.

• Java uses a properties file to hold key-value pairs of text to identify text data.
• Use the loadBundle JSF tag to identify the resource bundle of the current

locale.

public String lookup_action() {
try {

String definition =
dictionaryServiceClient1.define(

ajaxTextField1.getText());
meaning.setText(definition);

} catch (Exception ex) {
log("Error Description", ex);
error("Could not access dictionary service define: "

+ ex);
}
return null;

}

13.7 Key Point Summary 497
• To internationalize an application, translate the messages and labels in the
properties file to the target languages you intend to support.

• Each supported locale has its own properties file.
• Components access message keys in the properties file instead of using

literal text. JSF uses value binding for this.

Figure 13–31 AJAX Completion Text Field component responding to user input

Figure 13–32 AJAX Lookup application displays the definition for ‘Xiphioid’

498 Chapter 13 Customizing Applications with Creator
• When you want to support more than one locale by configuring your
browser, specify the supported locales in file faces-config.xml. Creator
supplies a template for this file, which you can access in the Files view.
Expand the project name node, then web > WEB-INF.

• You can also control the locale programmatically by invoking the
setLocale() method of UIViewRoot.

• You can provide custom validation by writing a validation method in your
Java page bean.

• You must modify a component’s validator property to use a custom
validator method.

• The custom validator method should access the current locale to obtain
localized error messages.

• The custom validator should add error messages to the faces context so that
you can use message components to display them.

• Creator lets you import third-party component libraries and add them to the
Components palette.

• Asynchronous JavaScript Technology and XML (AJAX) is a web
development technique that provides (asynchronous) updates on a web
page. Calls are made to the server to obtain new data, but only a portion of
the page’s display is affected. User perceived bandwidth and application
responsiveness is excellent.

• An AJAX-enabled JSF completion text component is available on Sun’s web
site for importing.

• The AJAX completion text field includes the necessary JavaScript and other
artifacts to communicate asynchronously with the server.

• Creator generates the completion method event handler when you double-
click the AJAX completion text field component in the design view.

• The completion method is invoked with each user keystroke in the
completion text field.

• Inside the completion method, you build a result object (an array of
Strings) that is then displayed in a popup menu on the page.

• The AJAX component library includes utility addMatchingItems(), which
you invoke inside the completion method to build the result object.

• You can alternatively build the result object by accessing a web service, a
database, or EJBs.

DEBUGGING WITH
CREATOR
Topics in This Chapter

• Planning for Debugging
• Debugging Commands
• Breakpoints
• Stepping Through Your Code
• Tracking Variables
• Setting Watches
• Using the Call Stack
• Detecting Exceptions
• Debug Methods
• Using the HTTP Monitor

Chapter
et’s face it, everyone makes mistakes. Designing and coding a web
application is certainly no exception. Even simple web applications can
be complex to work with, and there are lots of things to keep track of.
As a programmer you have to be conversant with Java programming as

well as XML. If all goes well, there’s no problem. But when things don’t work
right, you can use all the help you can get.

Fortunately, Creator has a built-in debugger that can assist you in trouble-
shooting your web applications. The debugger is smart, includes lots of fea-
tures, and has a user-friendly interface. You can use the debugger to monitor
program flow, find out why variables aren’t set to proper values, and help deci-
pher why you’re getting a Java exception. All this is not difficult if you know
what to do. This chapter shows you how. And if you haven’t used a debugger
before, don’t worry, we take it one step at a time.

This chapter shows you the different features of the Creator debugger as we
look at an application that you’ve already seen. We’ll examine breakpoints,
watches, call stacks, variable tracking and show you how to apply the debug-
ging features of Creator while your web application is running. You’ll also
learn about the HTTP monitor, a very useful tool that tracks the data flow
between your application and the web server it’s communicating with. To
make it easier to follow, we include lots of screen shots so you can see what’s
going on. You are also welcome to perform each step as you read along, too.

Before we begin, however, let’s talk about debugging in general.

L

501

502 Chapter 14 Debugging with Creator
14.1 Planning for Debugging

Unless you are very bold and confident, it’s best to plan ahead for debugging.
This mode of operation is often called defensive programming. Although a broad
topic that covers many things, the main philosophy here is to simply plan
ahead. Don’t be too fancy with your code and follow some simple rules. Here
are some of our rules.

• Keep methods short in size. Call other methods as needed (this practice is
often called stepwise refinement).

• Use local variables to store important data so that it’s easier to track the data
with a debugger.

• Use assertions in your program to perform consistency checks on
assumptions you’ve made (such as “This value will never be null.”).

• Use log files to record data, monitor program flow, or document the capture
of a critical exception.

• Provide catch handlers to capture uncaught or unexpected exceptions early
in your designs.

Although we won’t show you all these suggestions in this chapter, here are
several to look at.

Local Variables
In the following method, the calculation of a monthly interest payment is per-
formed in the return statement. This approach makes it difficult to access the
payment amount in a debugger.

A better approach for debugging is to store the payment in a local variable
before returning its value, as follows.

public double getPayment() {
double monthly_interest = this.rate / 1200;
int months = this.years * 12;
return this.amount * (monthly_interest /

(1-Math.pow(1+monthly_interest,-1*months)));
}

14.1 Planning for Debugging 503
Now you can track the pmt variable in memory as you test out the algorithm
with different input values. A class field, rather than a local variable, can also
be used here.

Assertions
Another programming technique for debugging is a Java assertion.1 There are
two formats.

An assertion is a boolean expression that is expected to be true at run time. In
the first format, an AssertionError is thrown if expression1 evaluates to
false. The second format customizes the message for AssertionError from
expression2, which is typically a String.

There are many ways to use assertions in Java. Here’s an example with a pri-
vate class method that tests a precondition.

Displaying Debug Information
The last example of defensive programming is a simple output statement, stra-
tegically placed where it might be important to see in a log file or in a message
component. Here’s an example with Creator’s log() method, which writes to
the application server’s log file.

public double getPayment() { {
double monthly_interest = this.rate / 1200;
int months = this.years * 12;
double pmt = this.amount * (monthly_interest /

(1-Math.pow(1+monthly_interest,-1*months)));
return pmt;

}

1. Java assertions were introduced in JDK 1.4.

assert expression1;
assert expression1 : expression2;

private void myMethod(int arg) {
assert arg >=0 && arg <= 100 : "Bad argument: " + arg;
// rest of code here...

}

log("button was clicked");

504 Chapter 14 Debugging with Creator
You can also use Creator’s info() method to write to a message group compo-
nent on a web page.

We discuss these methods in more detail in “Debug Methods” on page 524.

14.2 Debugger Overview

The Creator Debugger has a lot of helpful features. Before you run your project
with the debugger, let’s show you the debugging commands in Creator and
what they mean. We’ll also discuss the contents of the Debugger Window,
which gives you a visual look at your running program.

Debugger Features
What kinds of things can you do with the Creator debugger? Here’s a list of
some of the major features.

• Step through application code or JDK source code a line at a time.
• Execute part of your code using breakpoints as delimiters.
• Suspend execution at a breakpoint, which can be at a specific line number in

your code, a condition that is met, or when an exception is thrown.
• Track the value of a variable or an expression.
• Use a fixed watch to track an object referenced by a variable in your

program.
• Use the Apply Code Changes command to fix code on the fly within the

current debugging session.
• Monitor and control the execution of threads in your program.
• View the call stack to see what methods were called and when.
• Run multiple debugger sessions at the same time.
• Use the HTTP monitor to track data flow between your application and the

web server.

Debugger Windows
To work effectively with the Creator debugger, you’ll need to use Debugger
windows. On the Creator toolbar, the View > Debugging menu offers you var-
ious options for displaying debug information in a debugger window.
Figure 14–1 shows you the debugger views that are available and the hot keys
you can use to enable them.

info("database updated");

14.2 Debugger Overview 505
We’ll examine these windows later as we show you how to use the debug-
ger.

Debugging Commands
The Run menu on the Creator menu bar lists the following debugging com-
mands. Most of these commands also have hotkeys listed in the menu.

Debug Main Project runs Creator in debugging mode, and Finish Debug-
ger Session stops the debugging session. You can use the Test Project and Run
File commands to test your code or run a selected file with your project,
respectively. The Apply Code Changes command lets you fine tune your code
in the middle of a debug session and the Stack command lets you view the call
stack during the execution of your program.

Run Main Project
Debug Main Project
Test Project
Run File
Finish Debugger Session
Pause
Continue
Step Over
Step Into
Step Out
Run to Cursor
Apply Code Changes
Stack
Toggle Breakpoint
New Breakpoint
New Watch

Ctrl+F5
F5
Alt+F6

Shift+F5

Alt+F5
F10
F11
Shift+F11
Ctrl+F10

F9
Ctrl+B
Ctrl+Shift+W

Figure 14–1 The Debugger views

506 Chapter 14 Debugging with Creator
Most of the other commands deal with breakpoints, a central concept in a
debugger. A breakpoint is a spot in your program at which you can stop the
execution of your program. Once you’re at a breakpoint, you can examine the
values of program variables or monitor program flow by means of a call stack
of method calls. Breakpoints allow you to use other debugging commands to
find out why your code is not working correctly. Here is a description of the
debugging commands that affect breakpoints.

• Pause – Temporarily halt the execution of your program.
• Continue – Execute to the next breakpoint or if there are no more

breakpoints, run until the program completes.
• Step Over – Execute only the next statement, then pause again. If the

statement is a method call, execute the entire method code and pause after
returning from it.

• Step Into – Execute only the next statement, but if it’s a method, pause
before executing the first statement in the method.

• Step Out – Execute the rest of the current method and pause in the method
that called it.

• Run to Cursor – Execute up to the point where the cursor is positioned.

We’ll show you how to set breakpoints and use these debugging commands
later in this chapter.

14.3 Running the Debugger

Let’s fire up the Creator Debugger now and show you some of its handy fea-
tures.

Open Project and Files
We’ll start our tour of the Creator Debugger with the Monthly Payment Calcu-
lator program from Chapter 6 (see “LoanBean” on page 134). Here’s what you
do.

1. From the Welcome Page, select project Payment1 from the list of projects.
Or, select the button entitled Open Existing Project, browse to project
Payment1, and select Open.

2. Expand the Payment1 > Web Pages nodes in the Projects window and dou-
ble-click Page1.jsp. You should see the Page1.jsp page appear in the design
view.

3. In the Projects window, expand Source Packages and asg.bean_examples
nodes. Double-click LoanBean.java to bring it up in the source editor.

14.4 Setting Breakpoints 507
4. You’ll need to see line numbers in both Java files, so move the cursor to the
darkened left margin area of the editor pane. Right-click and choose Show
Line Numbers. (This will make line numbers visible in Creatorʹs editors for
all of your source files.)

Run and Deploy in Debug Mode
Now let’s run the Payment program in debug mode with Creator.

• In the Creator toolbar, select Run, then Debug Main Project (or use the F5
shortcut)

Creator will compile and deploy the system. If the server is already running,
Creator will stop the server and restart it in debug mode. After deployment,
the Calculator page appears in the browser window. You can execute the pro-
gram by typing in various input values for the loan amount, interest rate, and
loan term (in years). Figure 14–2 shows the Design view and Debugger win-
dow.

Debugging Views
You’ll note that in Figure 14–2 we currently have Watches, Local Variables,

and Call Stack enabled in our Debugging Window. To see these views in your
display, select View > Debugging > Watches (<Alt+Shift+2>) from the Creator
toolbar. This brings up the Watches display. Select View > Debugging > Local
Variables (<Alt+Shift+1>) to bring up the Local Variables display and View >
Debugging > Call Stack (<Alt+Shift+3>) to bring up the Call Stack display.

It’s also possible to change the display format of any view in the Debugger
window. If you right-click the title bar of an individual display, you can maxi-
mize (<Shift+Esc>), minimize (<Ctrl+Backspace>), or close the window
(<Ctrl+F4>).

Now you are ready to work with the Debugger window and learn its fea-
tures. Let’s start with breakpoints.

14.4 Setting Breakpoints

Go to the Calculator Page and exit the browser to end the current session.
Switch back to Creator. The first thing you’ll do now is set a breakpoint. Recall
that a breakpoint is a place in your program at which the debugger stops the

508 Chapter 14 Debugging with Creator
execution of your program. In Creator, you can set a breakpoint for any of the
following.

For line breakpoints, Creator marks the line in red and you may specify addi-
tional conditions. Exception breakpoints let you stop execution when an excep-
tion is caught, uncaught, or both. For variables, you can suspend execution
when a variable is read or modified. Thread breakpoints can be set for the start
of a thread, the death of a thread, or both.

Line
Method
Exception
Variable
Thread
Class

Suspend before executing line.
Suspend when method is called.
Suspend when exception occurs.
Suspend when variable is accessed.
Suspend when thread is started or terminated.
Suspend when class is referenced

Figure 14–2 The Debugger window

14.4 Setting Breakpoints 509
Let’s set breakpoints for a line2 and a method in our Java code. Here’s what
you do.

1. Click the LoanBean.java tab to open this file in the Java source editor.
2. Set a breakpoint in the constructor at the line where the amount field is ini-

tialized. Right-click Line 21 and select Toggle Breakpoint. (Or, move the
cursor to the darkened left margin where the line numbers are displayed
and left-click the mouse.) Creator will highlight Line 21 in red for you,
showing that a breakpoint has been set, as shown in Figure 14–3.

3. Move the cursor down to the getPayment() method at line 104. Put the cur-
sor on the line and click the left button of the mouse. The selected line is
highlighted in yellow.

4. Select Run > New Breakpoint from the Creator toolbar. Creator pops up the
New Breakpoint dialog.

5. You will see a Breakpoint Type selection menu at the top of the New Break-
point dialog. Select Method from this list. (See Figure 14–4.) This is how you
set a breakpoint to a Java method. This means the Creator debugger will
stop the execution of your program when the method is called.

6. Click OK to finish setting the breakpoint.

Enable the Breakpoints window by selecting View > Debugging > Break-
points. Figure 14–5 shows you the Breakpoints Display, indicating the two
breakpoints you just set.

2. The format of your program may be slightly different than ours. If so, use
your line numbers from the same spots in the program.

Figure 14–3 Setting a breakpoint

510 Chapter 14 Debugging with Creator
Now you are ready to run and deploy the program again, so select Run >
Finish Debugger Session. Select Run > Debug Main Project from the main
menu. Several things will happen.

Line 21 changes color from red to green in the LoanBean.java window. This
means that the first breakpoint was reached and the program has stopped.
Since we are inside the LoanBean constructor at this point and Creator has not
finished initializing the LoanBean object, Page1 cannot be rendered. Hence,
your browser window is empty.

Figure 14–4 New Breakpoint dialog

Figure 14–5 Breakpoints display

14.5 Managing Breakpoints 511
14.5 Managing Breakpoints

Before we step though the code, let’s show you how to manage your break-
points. If you right-click any breakpoint in the Breakpoints window, a context
menu gives you several options to choose from. Figure 14–6 shows you what’s
available when you right-click the getPayment() method breakpoint.

Note that you can Enable/Disable/Delete all breakpoints, or disable/delete
an individual breakpoint. It’s also possible to consolidate breakpoints under
one node to make the Breakpoints window less cluttered. To do this, select the
breakpoints you want to group, then choose Set Group Name. The breakpoints
will be grouped under an expandable node with the name you choose.

The Customize command lets you manage other aspects of a breakpoint.
Figure 14–7 shows you the Customize Breakpoint window when you select
this command from the menu.

The Condition box lets you set up a breakpoint to suspend execution only if
a certain condition is met. You could type in expressions like i==10 or
pVar!=null, for example. It’s also possible to log a breakpoint without sus-
pending execution. Instead of stopping your program at the breakpoint, a mes-
sage is written in the Debugger console window. To enable this option with a
breakpoint, choose No thread (continue) in the Suspend combo box under
Actions.

Figure 14–6 Managing Breakpoints Options

512 Chapter 14 Debugging with Creator
The Customize command also lets you create your own console messages
when breakpoints are hit. The Print Text combo box contains a default mes-
sage, but you can use the following substitution codes to customize messages.

Now let’s show you how to step through code using breakpoints.

14.6 Stepping Through the Code

Debuggers typically allow you to execute your code one line at a time as it exe-
cutes. This is called stepping. Let’s step through the LoanBean constructor code
now with the Creator debugger to initialize the LoanBean’s fields. This is
where we’ll use the Debugger window, so make sure you have that window
open. Here’s what you do.

{className}
{lineNumber}
{methodName}
{threadName}
{variableValue}
{variableType}

Name of class where breakpoint was hit.
Line number where execution was suspended.
Method in which execution was suspended.
Thread in which the breakpoint was hit.
Value of variable, with variable or exception breakpoints.
Type of variable, with variable or exception breakpoints.

Figure 14–7 Customizing Breakpoints

14.7 Tracking Variables 513
1. Modify your Debugger window so that the Local Variables display is visi-
ble. (Click the tab labeled Local Variables.) The Local Variables window dis-
plays all variables currently in scope for the execution context of your
program.

2. Click the ’+’ for the this reference. Underneath this name, you will see the
fields for the LoanBean constructor: amount, rate, years, and payment. If
you right-click any field and select Go to Source, you can jump to the state-
ment in the source code where it’s defined.

3. From the toolbar, select Run > Step Over (you may also hit the F10 key).
This makes the Creator debugger execute Line 21 and stop at Line 22, which
will now be displayed in green.

In the Local Variables display, the amount field should be set to 100000.0, as
shown in Figure 14–8.

4. Now Step Over Line 22 to Line 23, and then Step Over again to Line 24.
5. In the Local Variables display, the rate field should now be 5.0 and the

years field should be 15.

Figure 14–9 shows you what the screen looks like after the LoanBean con-
structor has finished executing.

TroubleShooting Tip

It’s easy to change the value of a local variable in memory with Creator. Just
click the rounded box to the right of the variable you want to change and use
the custom editor to modify its value. If the variable is an object (Integer,
Double, etc.) make sure you use new to create it with the value you want.
This feature can be very handy for checking out boundary conditions and
algorithm correctness during debugging.

Creator Tip

There are other ways to step through your code in Creator. You can, for
instance, select Run > Step Into a method or Run > Step Out of a method.
You can also move the cursor to a line and select Run > Run to Cursor.

14.7 Tracking Variables

Now let’s make Creator execute our program to the next breakpoint. To do this,
click Run > Continue from the main menu. The Continue command makes the

514 Chapter 14 Debugging with Creator
Creator debugger continue execution from the current breakpoint to the next
one.

Inside the LoanBean.java window, you’ll see that Creator has stopped exe-
cution at the second breakpoint. This is the first statement in the getPayment()
method (Line 105), and is highlighted in green. Note that this method calcu-
lates the loan payment, using local variables to store data. Let’s see how to
monitor these variables with a Creator debugger feature called tracking. Here
are the steps.

1. In the Local Variables display, you should see the same values for the Loan-
Bean fields as before.

Figure 14–8 After issuing a Step Over command

14.7 Tracking Variables 515
2. Click Run > Step Over (or F10) from the main toolbar. This moves the focus
to Line 106. In the Local Variables display, a new entry appears below the
this reference. The local variable monthly_interest shows up with a value
of 0.00416666.

3. Click Run > Step Over from the toolbar. This moves the focus to Line 107.
The local variable months appears in the Local Variables display with a
value of 180.

4. Click Run > Step Over one more time. The LoanBean payment field changes
to a value of 790.79362. Figure 14–10 shows the result. Note that the browser
page is still blank.

Figure 14–9 Display after LoanBean constructor executes

516 Chapter 14 Debugging with Creator
5. Click Run > Continue from the toolbar and switch to the Payment Calcula-
tor page in your browser. You will see a Loan Payment of $790.79 displayed
on the page.

Figure 14–10 Displaying getPayment() local variables

14.8 Setting Watches 517
TroubleShooting Tip

You can repeat this whole exercise again by changing any of the input fields
on the Calculator page. When you click the Calculate button and return to the
Creator screen, you will see the program stop at the same breakpoint. By
stepping through getPayment() as before, you can see the changed values in
the Local Variables display. When you click Run > Continue from the toolbar,
the Payment Calculator page will show the new payment. This is a handy
way to test an algorithm and see whether a method is working correctly for a
wide range of input test values.

14.8 Setting Watches

With the debugger, you can monitor the running values of fields and local vari-
ables in several different ways.

• Move the cursor to an identifier in the Source Editor. A tool tip displays the
value of the identifier in the current debugging context.

• Use the Local Variables window to display the values of fields and local
variables.

• Set a watch for an identifier and track its value in the Watches window.

There are several local variables inside the getPayment() method, but the
LoanBean payment field is the most interesting. Since this field holds the pay-
ment amount that will be displayed on our web page, let’s use another feature
of the Creator debugger called a watch. With watches, you can monitor key
variables as they change values during the execution of a program. Whereas
the Local Variables window shows values for variables in the currently execut-
ing method, the Watch window monitors values of variables selected by you
(including class fields). Watches also persist across debugging sessions. Here’s
how to set a watch.

1. Return to Creator. Click the small ʹxʹ on the Local Variables tab to close the
Local Variables display.

2. To enable the Watches display, select View > Debugging > Watches from the
main menu.

3. Click the Breakpoints tab to show the current list of breakpoints.
4. In the Breakpoints display, disable all the breakpoints by clicking the check-

boxes underneath the Enabled heading. (Alternatively, you can right-click in
the Breakpoints display and select Disable All.)

5. Put a new breakpoint at line 109 in LoanBean.java at method getPay-
ment()ʹs return statement. (Again, use the line numbers relevant to your file

518 Chapter 14 Debugging with Creator
if the line numbers donʹt match exactly.) To do this, place the cursor on the
line number, right-click, and select Toggle Breakpoint. Line 109 should now
be highlighted in red and appear enabled in the Breakpoints display in the
Debugger window.

6. Right-click line 109 on the payment variable and select New Watch. Creator
pops up the New Watch dialog and displays the payment variable for the
Watch Expression.

7. Click OK to make payment a watch variable. Click the Watches tab in the
Debugger window. The payment variable appears in the Watches display.
Note that its value is not defined at this point (no current context).

8. Return to your browser to interact with the Calculator page. Change the
Loan Term field to 30 and click the Calculate button. Switch back to the Cre-
ator window.

Creator Tip

If your current session has timed out, then the changes you submitted in the
browser window are thrown away and the payment variable remains 790.79
in the Watches display. In this case, select Run > Continue and return to the
browser. Resubmit the Loan Term input and click the Calculate button once
more.

Figure 14–11 shows the result for the Watches display. The value of the pay-
ment field is now set to the current payment (536.821 . . .). (If you didn’t sup-
ply the same input fields on the Calculator page, your payment variable will
have a different value.)

Figure 14–11 Monitoring watches

14.9 Using the Call Stack 519
9. Select Run > Continue from the main menu. When you go back to the Cal-
culator page, you will see the same loan payment amount displayed
(rounded to 2 places after the decimal point).

10.Now type in various input values for the amount, interest rate, and loan
term. Click the Calculate button again and switch back to the Creator screen.

11.The breakpoint at line 109 is reached and is highlighted in green. Click Run
> Continue. Each time you do this, the payment watch variable displays the
new loan payment. This is the same value that is printed on the Calculator
web page in your browser.

TroubleShooting Tip

Watches are a handy way to monitor how a variable changes during the
execution of a program. Use Run > Continue in Creator to step through the
breakpoints as you do this.

Creator Tip

You can also create a fixed watch to monitor an object that is assigned to a
variable, rather than the value of the variable. In the Local Variables window,
right-click a field or local variable and select Create Fixed Watch. Fixed
watches have a different icon in the Watches window and are removed when
the debugging session terminates.

14.9 Using the Call Stack

The Java Virtual Machine executes your Java code and maintains a call stack
list. This list shows the order of method calls that have been invoked but have
not yet returned (this type of list is often called a call chain). The current method
is at the top of the list, and the invocations of each parent method appears
below it as you work down the call list.

To see the Call Stack in action, perform the following steps

1. Click the Calculate button on the Calculator web page in your browser.
2. Now switch back to Creator and make sure line 109 (or the line number you

used earlier) is highlighted in green.
3. Select View > Debugging > Call Stack to enable the Call Stack display.

520 Chapter 14 Debugging with Creator
Figure 14–12 shows the result. At the top of the Call Stack is the current
method LoanBean.getPayment(), which was called from a series of methods
in the underlying system. If you scroll through this display, you’ll see various
calls to binder methods, UI components, and servlets. At the very bottom of the
Call Stack is WorkerThread.run(), which starts it all.

Creator also lets you manipulate the Call Stack. When you click Run > Stack
on the Creator menu bar, you’ll see a list of choices in a dropdown list. With the
Call Stack, you can select from any of the following.

The first two commands let you change the current method of the call stack.
The pop command removes the current method from the top of the stack.

Make Callee Current
Make Caller Current
Pop Topmost Call

Ctrl+Alt+Up
Ctrl+Alt+Down

Figure 14–12 Displaying the Call Stack

14.10 Detecting Exceptions 521
TroubleShooting Tip

The Call Stack display is useful when your program calls a method and you
aren’t sure why. When you set a breakpoint at a method and run your
program, the Call Stack tells you the call chain of methods up to and
including the breakpoint. Call stacks are also handy when you need to
determine which method threw an exception.

14.10 Detecting Exceptions

When using Creator’s debugger, you can detect and track thrown exceptions.
We’ll show you how to do this now.

Our working Calculator program doesn’t throw any exceptions directly, but
it does generate an internal exception that is handled by JSF. This happens
when you don’t type anything in one of the input text fields and click the Cal-
culate button. In this case, an error message appears on the Calculator page,
because an exception was thrown and handled.

Here are the steps for detecting an exception with the debugger.

1. Remove all breakpoints. To do this, open the Debugger window and bring
up the Breakpoint display. Right-click anywhere in the Breakpoint display,
and select Delete All.

2. Select Run > New Breakpoint from the main toolbar. Creator pops up the
New Breakpoint dialog

3. In the dropdown list for Breakpoint Type, select Exception.
4. In the dropdown list for Package Name, select java.util. (If the package

name does not appear in the list, type it in.)
5. In the dropdown list for Exception Class Name, choose MissingResource-

Exception. (Again, type in the name if it doesn’t appear in the dropdown
list.)

6. In the dropdown list for Stop On, choose Caught, as shown in Figure 14–13.
7. Click OK. In the Breakpoint display of the Debugger window, you should

see the breakpoint on Exception MissingResourceException caught
enabled.

8. Click Run > Continue from the main toolbar. Switch to the Calculator page
and clear the input for the Interest Rate field.

9. Click the Calculate button and then switch back to Creator. Figure 14–14
shows you what the Call Stack in the Debugger window looks like. Because
you did not type anything into the interest rate input field, a MissingRe-
sourceException was caught by the ResourceBundle() method. At the top

522 Chapter 14 Debugging with Creator
of the Call Stack, you will see ResourceBundle.getObject() as the current
method.

10.Now view the Output Display (select View > Output). Click the Debugger
Console tab. Inside the window, you should see this message:

11.Disable the breakpoint. From the Breakpoints display, uncheck the break-
point.

12.Select Run > Continue and switch to the browser window. Youʹll see that the
application displays a validation error message for the missing interest rate
text field input.

Exception breakpoint hit in java.util.ResourceBundle at line
326 by thread httpWorkerThread-28080-8. Thread httpWorker-
Thread-28080-8 stopped at ResourceBundle.java:326.

Figure 14–13 Setting a breakpoint on a caught exception

14.10 Detecting Exceptions 523
Creator Tip

In Creator, click Run > New Breakpoint again from the main toolbar. In the
dialog box for Breakpoint Type, choose Exception at the top and then peruse
the choices in the checkbox for Exception Class Name. Note that there are
lots of choices. If you select an exception class name from this list, you will see
the corresponding package name that it belongs to. If you examine the
checkbox for Stop On, you’ll notice that you can monitor uncaught
exceptions as well as caught exceptions, or both. All this gives you a variety
of ways to track exceptions as you debug your applications with Creator.

Figure 14–14 Exception caught

524 Chapter 14 Debugging with Creator
14.11 Finish Debugging

To finish your debugging session, click Run > Finish Debugger Session (or
type <Shift+F5>) on the Creator tool bar.

TroubleShooting Tip

A good way to end a debugging session is to clear all breakpoints before you
finish the session. In the Breakpoints display of the Debugger window, you
can either disable your breakpoints or delete them.

14.12 Debug Methods

It’s easy to record debugging information as your application runs. You can use
method calls to write text to a message group component on a web page or
write data to a log file. These techniques work for any managed bean class
extended from FacesBean. Let’s look at message group component methods
first.

Method info()
The info() method, defined in FacesBean, can display debug information on a
web page. You can use this to verify that some event has occurred or to provide
some visual output to the user. The info() method has two formats.

The first format is handy for writing event information (such as “button
clicked”) to a message group component. The second format displays error
messages for components with invalid entries. We’ll use the first format for
info() to display debug information in a message group component.

Recall that info() can only be called from Creator’s preconfigured managed
bean files, since it extends the FacesBean class. Calls to info(), therefore, are
valid only in Page1.java, RequestBean1.java, SessionBean1.java, Application-
Bean1.java, or other page beans that you create in your project.

Let’s show you how info() works for debugging. Here’s what you do.

1. Bring up Page1 in the design view.

void info(String);
void info(UIComponent, String);

14.12 Debug Methods 525
2. Drag a Message Group component from the Component Palette and drop it
underneath the Calculate button in the design view.

3. Double-click the Calculate button. This makes Creator write Java code for
the button action method. Creator opens the Page1.java file and puts the
cursor in the calculate_action() method.

4. Add the following call to info() in the button handler.

You don’t really need a button handler in this program, but we include it to
show you how to write text to the message group component. When the user
clicks the Calculate button, JSF submits the page. If no validation errors occur,
JSF invokes the button handler method. The text in the message group compo-
nent tells us that the calculate_action() method was invoked.

Recompile and redeploy the program. Click the Calculate button with valid
entries for the amount, interest rate, and loan term.3 The loan payment should
appear on the Calculator page. You should also see the text “button clicked”
appear in the System Messages message group component (see Figure 14–15).

Method log()
The log() method, also defined in FacesBean, is useful for writing debugging
information to the server log file. Like the info() method, you can only invoke
method log() from Creator’s preconfigured managed bean files or other page
beans that you create in your project.

The log() method has two formats.

public String calculate_action() {
info("button clicked");
return null;

}

3. Remember that validation errors cause the life cycle process to skip some of
life cycle stages and calculate_action() won’t be called (see “The Cre-
ator-JSF Life Cycle” on page 151).

void log(String);
void log(String, Throwable);

526 Chapter 14 Debugging with Creator
The first format is handy for printing event information (such as “button
clicked”). The second format is useful in catch handlers with thrown excep-
tions.

Note that this form of the log() method uses the Exception object with the
textual message you want to use.

catch (Exception e) {
log("SQL ROWSET UPDATE ERROR", e);
throw new FacesException(e);

}

Figure 14–15 Message Group Display

14.13 Using the HTTP Monitor 527
The information from the log() method is available in Creator’s output
window. To see what this looks like, replace the info() statement in your but-
ton handler with a call to log(), as follows.

Now deploy and run the application. After you click the Calculate button
and return to Creator, here’s how to display the log file.

1. Click the Servers tab and right-click Deployment Server to select View
Server Log. The server log is displayed in its own Output window at the
bottom of your screen.

2. Move the scroll bars to the bottom and to the right to see the most recent
information written to the log file. Near the end of the file you should see
output similar to the following.

(The output from the server log file on your system may be slightly differ-
ent.) Note that the output from the log() method shows you more than the
text you called it with. The output includes date and time information, the
thread ID of your application, and the web module name (project name).

It’s also possible to access the server log file directly in your file system, if
you need to print it out or parse the information in the file. Here is the location
on our system (yours may be slightly different).

14.13 Using the HTTP Monitor

Another useful tool in the Creator debugger is the HTTP monitor. This tool lets
you track the HTTP GET and POST commands that can occur in a deployed
web application. Specifically, the HTTP monitor lets you monitor the data flow
from JSP and servlet execution on the web server. When debugging applica-
tions, the HTTP monitor can let you see what’s happening “under the hood” as
you isolate problems between web application components.

public String calculate_action() {
log("button clicked");
return null;

}

[#|2005-08-30T22:48:51.250-0700|INFO|
sun-appserver-pe8.1_02|
javax.enterprise.system.container.web|_ThreadID=39;
|WebModule[/payment1]button clicked|#]

D:\Sun\Creator2\SunAppServer8\domains\creator\logs\server.log

528 Chapter 14 Debugging with Creator
Enabling the HTTP Monitor
Before you can use the HTTP Monitor, you need to make sure it’s enabled
within the Application Server in Creator. To do this, perform the following
steps.

1. Bring up the Servers window if it’s not already visible by clicking the Servers
tab.

2. Right-click the Deployment Server’s node and select Properties.
3. Find the Enable HTTP Monitor property and examine its value.
4. If it’s set to false, the Monitor is not enabled. Use the checkbox to change the

value to true, as shown in Figure 14–16. This enables the HTTP monitor.

5. Click Close to close the Servers Properties window.

The Application Server can now record HTTP events for deployed applica-
tions.

The HTTP Monitor Window
Let’s use the HTTP Monitor window with our Payment calculator web applica-
tion. To bring up the HTTP Monitor window for viewing in the debugger, fol-
low these steps.

1. From the Creator toolbar, select View > Debugging- > HTTP Monitor (or
use <Ctrl+Shift+5>). Figure 14–17 shows the HTTP monitor window.

Figure 14–16 Enabling the HTTP Monitor

14.13 Using the HTTP Monitor 529
The HTTP Monitor window consists of two panels. The left panel is a tree view
of HTTP request records for the client-side of your application. This includes
current records that you are processing and saved records from previous ses-
sions. Every HTTP request made to the web server is recorded by the HTTP
Monitor as your web application executes. Current records persist across
restarts of the server, but you can delete them during a session or have them
cleared automatically when you exit Creator. The Saved Records, however, will
persist until you explicitly delete them. There are also icons on the tool bar in
the left panel to reload the records, sort them, and show/hide time stamp infor-
mation for each record.

The right panel is additional information for any HTTP request that you
select in the left panel. For each record, you can display request information,
cookie name/value pairs, session data, and servlet context. You can also view
HTTP header data and client-server information, such as client protocol and IP
address, and the server platform and host name.

Viewing Record Data
1. Now click the green run icon (or select Run > Run Main Project from the

Creator toolbar) to deploy the Payment1 application.
2. After the payment page appears in your browser window, switch back to

Creator. Expand the Current Records node in the left panel and select the
GET Payment1 record. Figure 14–18 shows the request information that
appears in the right panel for this record.

3. Select some of the other tabs in the right panel to view additional informa-
tion about this GET record. You will see a wealth of information displayed
to tell you everything you need to know about the data flow between your
JSP page and the servlet execution on the web server. Figure 14–19 shows
the client/server information for the GET record on our system.

Figure 14–17 HTTP Monitor Window

530 Chapter 14 Debugging with Creator
Editing HTTP Requests
The HTTP monitor lets you edit HTTP records and replay them during a
debug session. Before we show you how to do this, let’s generate a POST
record in our HTTP monitor window. Here are the steps.

1. Click the Request tab in the right panel of the HTTP monitor window.
2. Switch to your browser and return to the Payment page. Type in 200,000 for

the loan amount, 5.5 for the interest rate, and 30 for the loan term.

Figure 14–18 HTTP GET Request

Figure 14–19 HTTP Client/Server Data

14.13 Using the HTTP Monitor 531
3. Click the Calculate button and switch back to Creator. You should see a
POST record appear in the HTTP monitor window. Click the POST record to
see the request information, as shown in Figure 14–20.

Note that the input numbers that you typed on the calculator page in your
browser now appear in the Parameters window as input forms for the POST
request.

4. Right-click the POST Page1.jsp record in the left pane of the HTTP monitor
window. Creator displays a context menu, as shown in Figure 14–21.

5. Select Edit and Replay from this list.
6. An Edit and Replay window will appear to let you edit fields in the POST

request record. Let’s change the loan term to 15 years. Select the form1:loan-
Term field and click the rounded box at the far right. Edit the field and
change its value from 30 to 15. Figure 14–22 shows you what the display
should look like at this point.

7. Click the Send HTTP Request button and switch back to your browser. You
should see the loan term set to the new value (15) and the loan payment will
change, too. This all happens because we resent the modified POST request
to the web server.

Saving HTTP Requests
As we said earlier, HTTP requests in the HTTP monitor do not survive a
debugging session unless you explicitly save them. Let’s save our POST request
now. To do this, perform the following steps.

Figure 14–20 HTTP POST Request

532 Chapter 14 Debugging with Creator
1. If the POST request record is not already selected, select it now in the left
pane of the HTTP monitor window.

2. Right-click the POST request record and choose Save. The POST request
record will be saved under the Saved Records node in the left pane of the
HTTP monitor window.

Figure 14–21 HTTP POST Menu Selections

Figure 14–22 Edit and Replay dialog

14.13 Using the HTTP Monitor 533
3. Expand the Saved Records node and select the POST record. Click the
Request tab in the right pane of the HTTP monitor window. Figure 14–23
shows you what the display looks like.

Now if you exit from Creator and start a new debugger session, you can replay
the POST request record at any time.

Replaying HTTP Requests
With Saved Records, there are several options available to you. If you right-
click the POST Page1.jsp record, a list of option appears (Figure 14–24).

Figure 14–23 HTTP Saved Records

Figure 14–24 HTTP Saved Record Selections

534 Chapter 14 Debugging with Creator
The Delete option deletes Saved Records when you no longer need them.
Note that you may Replay Saved Records at any time and Edit and Replay
them as well.

Creator Tip

All of these examples used the HTTP monitor window with a deployed
application (Run Main Project). You can also use the HTTP monitor in
debug mode (Debug Main Project). Together with breakpoints, local
variables, and watches, the HTTP monitor can be a powerful tool to help you
debug web applications across the enterprise.

14.14 Key Point Summary

• Defensive programming means that you plan ahead for debugging.
• An assertion is a boolean expression that is expected to be true at run time. If

an assertion fails, the Java Virtual Machine throws an AssertionError.
• You can run and deploy programs with Creator in debug mode.
• Creator has debugging features with which you can set breakpoints, step

through code, track variables, and set watches.
• When using the Creator Debugger, you can examine sessions, threads, the

call stack, local variables, watches, classes, breakpoints, and properties.
• A breakpoint is a spot in your program at which the debugger stops the

execution of your program.
• The Creator debugger can step you through your code one line at a time.

You can also step in or out of a method or run your program to a selected
line.

• Tracking allows you to follow the creation and initialization of a local
variable in a method. Tracking is a handy way to see if a method is working
correctly for a range of test values.

• Watches let you monitor key variables as they change values during the
execution of a program. Creator lets you display watches as your program
runs.

• The Call Stack shows you the order of method calls as your program runs,
with the most recent method at the top. Call stacks are useful for
determining when a method was called and which method threw an
exception.

• The Creator debugger lets you select exception breakpoints from a wide
variety of different Java packages.

• In debugging mode, you can set a breakpoint when an exception is caught,
uncaught, or both.

14.14 Key Point Summary 535
• Creator lets you view the server log to which you can write from your code.
Log files are useful to monitor program flow, show intermediate data, and
determine whether an event occurred.

• The info() and log() methods are handy for displaying debug information
during debugging. These methods can only be called from Creator’s
preconfigured managed bean files. The info() method writes text to a
message group component on a web page and log() writes text to the
server log file.

• The HTTP monitor lets you monitor the data flow from JSP and servlet
execution on the web server. The HTTP monitor can display request
information, cookie name/value pairs, session data, and servlet context. You
can also save HTTP request records between debug sessions and replay
them to track down bugs.

	Java Studio Creator Field Guide 2nd Ed
	Chapter 1 Java Technology Overview
	1.1 Introduction
	1.2 The Java Programming Language
	Object-Oriented Programming
	Creating Objects
	Classes
	Listing 1.1 Point class

	Packages
	Exceptions
	Inheritance
	Interfaces

	1.3 JavaBeans Components
	1.4 NetBeans Software
	1.5 The XML Language
	1.6 The J2EE Architecture
	Figure 1–1 Three-tier J2EE architecture

	1.7 Java Servlet Technology
	1.8 JavaServer Pages Technology
	1.9 JDBC API and Database Access
	1.10 JavaServer Faces Technology
	1.11 Ant Build Tool
	1.12 Web Services
	1.13 Enterprise JavaBeans (EJB)
	1.14 Portlets
	1.15 Key Point Summary

	Chapter 2 Creator Basics
	2.1 Examples Installation
	Download Examples

	2.2 Creator Views
	Figure 2–1 Creator’s initial window layout
	Welcome Window
	Figure 2–2 Creator’s Welcome window

	Design Editor
	Figure 2–3 Creator’s design canvas showing project Login1
	Figure 2–4 Creator’s View Menu allows you to select specific views of your project
	Figure 2–5 Properties window for text field component “userName”

	Properties
	Figure 2–6 Property customizer dialog for property text
	Figure 2–7 Preview in Browser for Login1

	Palette
	Figure 2–8 Basic, Layout and Composite Components palette
	Figure 2–9 Creator Validators and Converters Components palette

	Outline
	Figure 2–10 Creator’s Outline window for project Login1

	Projects
	Figure 2–11 Creator’s Project Navigator window for project Login1

	Files
	Figure 2–12 Files view for project Login1
	Figure 2–13 Editing file web.xml

	JSP Editor
	Figure 2–14 Page1.jsp XML Editor

	Java Source Editor
	Figure 2–15 Page1.java in Java source editor
	Figure 2–16 Java source editor list of abbreviations
	Figure 2–17 Java source editor code completion
	Figure 2–18 Navigator view and help for method destroy() displayed

	Code Clips Palette
	Figure 2–19 Java Clips Palette
	Figure 2–20 Code Clips Editor

	Page Navigation Editor
	Figure 2–21 Page navigation editor for project Login1

	Output Window
	Figure 2–22 Output window after building and deploying project Login1
	Figure 2–23 Project Login1 running in a browser

	Servers
	Figure 2–24 Servers window
	Figure 2–25 Inspecting the Travel Database tables (Person)
	Figure 2–26 Display data from the Person table
	Figure 2–27 EJB and Web Services resources shown in the Servers window

	Debugging Windows
	Figure 2–28 View > Debugging Menu Choices

	Creator Help System
	Figure 2–29 Dynamic Help window
	Figure 2–30 Creator Help system

	2.3 Sample Application
	Figure 2–31 Web application Echo running in a browser
	Create a Project
	Add Components to the Page
	Figure 2–32 Project Echo in the design view
	Figure 2–33 Property Bindings dialog

	Deploy and Run

	2.4 Key Point Summary

	Chapter 3 Creator Components
	3.1 JSF Overview
	JSF Architecture
	Figure 3–1 JSF architecture

	The JSP Page
	JSF Expression Language (EL)
	Converters and Validators
	Event Handling
	Java Page Bean

	3.2 Components
	Components Palette
	Figure 3–2 Component palette

	Component Properties
	text
	label
	toolTip
	style
	styleClass
	id
	rendered
	visible
	action
	binding
	JavaScript
	Figure 3–3 JavaScript confirmation dialog defined for property onClick

	Input Components
	validator
	converter
	maxlength
	required
	valueChangeListener
	Auto-Submit on Change

	Virtual Forms
	Data-Aware Components
	Data Providers

	3.3 Basic Components
	Anchor
	Figure 3–4 Anchor component

	Button
	Figure 3–5 Button component

	Calendar
	Figure 3–6 Calendar component

	Checkbox
	Figure 3–7 Checkbox component

	Checkbox Group
	Figure 3–8 Checkbox group component
	Figure 3–9 Checkbox group component

	Drop Down List
	Figure 3–10 Checkbox group component
	Figure 3–11 Bind to Data dialog with a drop down list

	File Upload
	Figure 3–12 File upload component
	Figure 3–13 File upload component

	Hidden Field
	Hyperlink
	Figure 3–14 Hyperlink component

	Image
	Figure 3–15 Image component
	Figure 3–16 Image customizer dialog

	Image Hyperlink
	Figure 3–17 Image hyperlink component

	Label
	Figure 3–18 Label component

	Listbox
	Figure 3–19 Listbox component
	Figure 3–20 Dialog to select text items for listbox component

	Message
	Figure 3–21 Message component
	Figure 3–22 Message components with for property set

	Message Group
	Figure 3–23 Message group components

	Password Field
	Figure 3–24 Password field component

	Radio Button
	Figure 3–25 Radio button component

	Radio Button Group
	Figure 3–26 Radio button group component
	Figure 3–27 Radio button group component

	Static Text
	Figure 3–28 Static text component

	Table
	Figure 3–29 Table component
	Figure 3–30 Table component Outline view
	Figure 3–31 Binding table component with an external database table
	Figure 3–32 Table Layout dialog: specifying columns
	Figure 3–33 Table Layout dialog: specifying options

	Text Area
	Figure 3–34 Text area component on a web page

	Text Field
	Figure 3–35 Text field component on a web page
	Figure 3–36 Property Bindings dialog with text field component

	Tree
	Figure 3–37 Tree component
	Figure 3–38 Example tree component
	Figure 3–39 Url dialog for tree node component

	3.4 Layout Components
	Form
	Figure 3–40 Form component Outline view

	Grid Panel
	Figure 3–41 Grid panel components

	Group Panel
	Figure 3–42 Group panel component

	Layout Panel
	Figure 3–43 Layout panel component

	Page Alert
	Figure 3–44 Page alert component
	Figure 3–45 Page alert components

	Page Fragment Box
	Figure 3–46 Select Page Fragment dialog
	Figure 3–47 Page fragment Outline view

	Page Separator
	Figure 3–48 Page separator component

	Property Sheet
	Figure 3–49 Property sheet component
	Figure 3–50 Property sheet Outline view
	Figure 3–51 Property sheet example

	Tab Set
	Figure 3–52 Tab set component
	Figure 3–53 Design canvas and Outline view of tab set

	3.5 Composite Components
	Add Remove List
	Figure 3–54 Add remove list component
	Figure 3–55 Add remove list component with selections

	Alert
	Figure 3–56 Alert component
	Figure 3–57 Success alert with page navigation
	Figure 3–58 Page navigation editor
	Figure 3–59 Using alert instead of message to display validation errors

	Breadcrumbs
	Figure 3–60 Breadcrumbs component
	Figure 3–61 Breadcrumbs Example

	Inline Help
	Figure 3–62 Inline help component
	Figure 3–63 Inline help example

	3.6 Validators
	Figure 3–64 Validators
	Validation Model
	Table 3.1 JSF Validators

	3.7 Converters
	Figure 3–65 Converters
	Conversion Model
	Table 3.2 JSF Converters
	Date Time Converter
	Table 3.3 Date Time Converter
	Number Converter
	Sql Timestamp Converter

	3.8 AJAX Components
	Figure 3–66 BluePrints AJAX Components and Support Beans
	Importing a Component Library
	Figure 3–67 Component Library Manager Dialog
	Figure 3–68 Import Component Library Dialog
	Figure 3–69 After importing the BluePrints AJAX component library

	3.9 Key Point Summary

	Chapter 4 Software Development
	4.1 Using the Java Source Editor
	Finding What You Need
	Figure 4–1 Java Editor Basic Options
	Figure 4–2 Java Editor Advanced Options

	Formatting Code
	Fonts and Colors
	Figure 4–3 Fonts and Colors Dialog

	Code Completion
	Figure 4–4 Code Completion and Javadoc popup

	Code Folding
	Figure 4–5 Code Folds

	Handling Imports
	Figure 4–6 Fast Import using <Alt-Shift-I>
	Figure 4–7 Fix Imports using <Alt-Shift-F>

	Using Javadoc
	Abbreviations
	Figure 4–8 Abbreviations Dialog

	Generating Methods
	Figure 4–9 Override and Implement Methods Dialog
	Figure 4–10 Confirm Changes Dialog for Implementing Interfaces

	Generating Properties
	Figure 4–11 New Property Pattern Dialog

	Searching and Replacing
	Figure 4–12 Find command
	Figure 4–13 Find Usages command
	Figure 4–14 Find in Projects command
	Figure 4–15 Search Results window

	Navigating Files
	Figure 4–16 Navigation with Go To
	Figure 4–17 Navigation with Select in

	Task Lists
	Figure 4–18 Task Tags dialog
	Figure 4–19 To Do window
	Figure 4–20 Task Edit Filters dialog

	4.2 Refactoring
	What is Refactoring?
	Refactoring Window
	Payment Project
	Copy Project
	Find Usages
	Figure 4–21 Find Usages for LoanBean

	Renaming Classes
	Figure 4–22 Refactoring window
	Figure 4–23 Find Usages for MyLoanBean

	Undo and Redo
	Figure 4–24 Refactor code for renamed file

	Renaming Fields and Methods
	Encapsulating Fields
	Figure 4–25 Encapsulate Fields dialog
	Figure 4–26 Refactoring window for Encapsulate Fields

	Changing Method Signatures
	Figure 4–27 Change Method Parameters dialog
	Figure 4–28 Refactoring window for Changing a Method’s signature

	Moving Classes to Different Packages
	Figure 4–29 Projects window before refactoring
	Figure 4–30 Move Class dialog
	Figure 4–31 Refactoring window for Move Class
	Figure 4–32 Projects window after refactoring
	Figure 4–33 Refactor Code for Moved Class dialog

	4.3 Source Code Control with CVS
	Copy Project
	Setting up CVS
	Figure 4–34 CVS Profile Dialog
	Figure 4–35 Initialize CVS Repository

	Importing Files
	Figure 4–36 CVS Import Dialog

	Checking Out Files
	Figure 4–37 CVS Checkout Dialog

	Updating Source Files
	Figure 4–38 CVS Versioning Window
	Figure 4–39 Commit CVS files

	Comparing File Revisions
	Figure 4–40 CVS Graphical Visualizer

	Viewing History
	Figure 4–41 CVS History Log
	Figure 4–42 CVS History Annotation

	Adding and Removing Files
	Figure 4–43 CVS Add Dialog
	Figure 4–44 CVS Add New File
	Figure 4–45 CVS Remove File

	Configuring CVS Settings
	Figure 4–46 CVS Customizer for Working Directory
	Figure 4–47 CVS Global Options

	Advanced CVS Features

	4.4 Creating Non-Web Projects
	Create a General Project
	Add a Java Package
	Add a Java Class File
	Add a Library
	Figure 4–48 Library Manager Browse JAR/Folder dialog
	Figure 4–49 Projects view for project MusicBuild

	Build and Run Project

	4.5 Key Point Summary

	Chapter 5 Page Navigation
	5.1 Navigation Model
	Figure 5–1 JSF Navigation Model: Page Navigation UML activity diagram

	5.2 Simple Navigation
	Create a New Project
	Figure 5–2 Design view for project Navigate1

	Add a Label Component
	Add a Grid Panel Component
	Add Button Components
	Deploy and Test Run
	Figure 5–3 Simple navigation web application

	Add Page Navigation
	New Rules!
	Figure 5–4 Navigating from page Page1.jsp
	Figure 5–5 Properties window for a navigation rule

	Add Label Components
	Deploy and Run
	Add Event Handler Code
	Figure 5–6 Navigation using action event handlers

	Deploy and Run
	Draggable Mode
	Figure 5–7 Draggable mode in the Navigation Editor
	Figure 5–8 Changing the link style to Wired Link

	5.3 Noncommand Components
	Copy the Project
	Delete the Buttons
	Add a Drop Down List
	Figure 5–9 Drop down options editing dialog

	Value Change Event vs. Action Event
	Match the Navigation Labels
	Add Event Handler Code
	Add Button Components
	Deploy and Run
	Figure 5–10 Using a drop down list component for navigation

	5.4 Dynamic Navigation
	Create a New Project
	Add a Label Component
	Create the Form’s Input Components
	Figure 5–11 Design canvas showing components for project Login1

	Add Button Components
	tabIndex Property
	Deploy and Test Run
	Figure 5–12 Login page web application

	Add Event Handler Code
	Create New Web Pages
	Add Components to Page LoginBad
	Add a Component to Page LoginGood
	Specify Page Navigation
	Figure 5–13 Page Navigation editor pane with three navigation rules

	Deploy and Test
	Configure Virtual Forms
	Figure 5–14 Configure Virtual Forms dialog
	Figure 5–15 Show Virtual Forms icon

	Deploy and Run

	5.5 Key Point Summary

	Chapter 6 Anatomy of a Creator Project
	6.1 What Is a Bean?
	Properties
	Setters and Getters
	Default Constructor
	Property Binding
	Scope of Web Applications
	Table 6.1 Well-behaved bindings between objects

	Predefined Creator Java Objects

	6.2 LoginBean
	LoginBean Outside View
	Advantages of JavaBeans Objects
	Property Binding with Creator Components
	Copy the Project
	Add LoginBean to Your Project
	Figure 6–1 New Java Class dialog

	Configure LoginBean.java
	Add a LoginBean Property to SessionBean1
	Figure 6–2 New Property Pattern dialog

	Bind Input Components
	Figure 6–3 Property Bindings dialog for component userName

	Modify Event Handler
	Listing 6.1 Action event handler login_action()

	Modify Page LoginGood.jsp
	Figure 6–4 Property Bindings dialog for component label1

	Deploy and Run
	Figure 6–5 Login web application that uses LoginBean
	Figure 6–6 A successful login session

	6.3 LoanBean
	LoanBean Outside View
	Figure 6–7 Project Payment1 running in a browser

	Create a New Project
	Add a Label Component
	Add LoanBean to Your Project
	Figure 6–8 New Java Class dialog
	Figure 6–9 New Property Pattern dialog
	Table 6.2 Properties for LoanBean component

	Add a LoanBean Property to SessionBean1
	LoanBean.java Code
	Listing 6.2 LoanBean.java �

	Create the Form’s Input Components
	Figure 6–10 Design canvas showing placement of components for project Payment1

	Use Validators and Converters
	Figure 6–11 Component loanAmount’s converter property set
	Figure 6–12 Setting a Message component’s for property

	Specify Property Binding
	Figure 6–13 Property Bindings for loanAmount

	Place Interest Rate and Term Components
	Table 6.3 Components for interest rate input
	Table 6.4 Components for loan term input

	Place Button, Label and Static Text Components
	Table 6.5 Components for monthly payment output

	Deploy and Run
	Figure 6–14 Outline view for project Payment1
	Figure 6–15 Monthly payment calculator that uses LoanBean

	6.4 The Creator-JSF Life Cycle
	JSF Life Cycle
	Figure 6–16 JSF Request-Response Life Cycle Process

	Creator Life Cycle Callback Methods
	Table 6.6 Creator Page Life Cycle Callback Methods �

	6.5 Key Point Summary

	Chapter 7 Web Page Design
	7.1 Using the Visual Design Editor
	Create a Project
	Figure 7–1 Visual design editor in the editor pane

	Add Components to the Page
	Working with Components on the Page
	Figure 7–2 Visual Designer Options dialog

	Component Alignment
	Figure 7–3 Selecting multiple components

	Deploy and Run
	Figure 7–4 Project Design1 running in a browser

	7.2 Themes
	Figure 7–5 Creator Themes available for projects
	Changing the Look with Themes
	Figure 7–6 Project Theme1 running in a browser

	Add Components to the Page
	Change the Current Theme
	Modifying the Default Theme

	7.3 About Style
	Copy the Project
	Using the Style Editor
	Figure 7–7 Using the Style Editor

	Deploy and Run

	7.4 Cascading Style Sheets
	Using Attribute styleClass
	Figure 7–8 Using the Style Sheet (CSS) Editor
	Figure 7–9 Choose Color dialog

	Deploy and Run
	Figure 7–10 Project Theme2 running in a browser

	7.5 Page Layout
	Layout Panel
	Create a Project
	Add Components to the Page
	Figure 7–11 Design view for project Layout1
	Figure 7–12 Page1 Outline view for project Layout1

	Deploy and Run
	Figure 7–13 Project Layout1 running in a browser

	More CSS Style Issues
	Figure 7–14 Creator DOM Inspector
	Figure 7–15 Computed Styles property

	Centering Components on a Page
	Deploy and Run
	Figure 7–16 Project Layout1 with centered components

	Grid Panel
	Create a Project
	Add a RequestBean Property
	Add Components to the Page
	Figure 7–17 Design view for project LayoutMadness
	Figure 7–18 Page1 Outline view for project LayoutMadness
	Figure 7–19 Customizer for property url

	Deploy and Run
	Figure 7–20 Project LayoutMadness running in a browser

	7.6 Page Fragments
	Figure 7–21 Page layout using page fragments
	Create a New Project
	Modify Default Style Sheet
	Listing 7.1 New CSS Style Rules �

	Use the Gray Theme
	Add SessionBean1 Properties
	Figure 7–22 Select Page Fragment dialog

	Banner Page Fragment
	Figure 7–23 Select Page Fragment dialog
	Figure 7–24 CactusBanner Page Fragment

	Navigation Page Fragment
	Now you’ll add components to the NavigationPanel page fragment, as shown in Figure�7–25.
	Figure 7–25 NavigationPanel Page Fragment

	CactusFooter Page Fragment
	Figure 7–26 CactusFooter Page Fragment

	Add Pages
	Figure 7–27 Selecting all three div elements and the nested page fragments

	Page-Specific Content for Page1
	Page-Specific Content
	Page Fragments and Navigation
	Figure 7–28 Navigation editor with source code wildcard expressions

	Logout Event Handler
	Deploy and Run
	Figure 7–29 Project Cactus1 running in a browser

	Reuse with Project Templates
	Figure 7–30 Adding a project to the Template List

	7.7 Introducing TabSets
	Using Separate Tab Sets
	Create a New Project
	Add Components to Page1
	Figure 7–31 Page1 design view for project TabSet1

	Configure Navigation
	Figure 7–32 Navigation Editor for project TabSet1

	Deploy and Run
	Figure 7–33 Page2 of project TabSet1 running in a browser

	Using Tab Sets and Page Fragments
	Add Tab Set and Tabs to CactusBanner
	Figure 7–34 Design view for CactusBanner.jspf

	Setting the Currently Selected Tab
	Configure Action Method for Tabs
	Check Pages with Modified CactusBanner
	Figure 7–35 Project Cactus2 running in a browser

	7.8 Key Point Summary

	Chapter 8 Introducing Data Providers
	8.1 Data Provider Basics
	Figure 8–1 Data Providers Palette
	Figure 8–2 Creator data provider class hierarchy
	Table 8.1 Creator Basic Data Providers
	Table Data Providers

	8.2 Object Data Provider
	Object Data Provider Methods
	Copy the Project
	Add the Object Data Provider
	Figure 8–3 Set property object for data provider loginDP

	Provide Binding to Components
	Figure 8–4 Use loginDP object data provider for property binding

	Modify Event Handler Code
	Modify LoginGood Page
	Deploy and Run
	Other Singleton Object Data Providers

	8.3 Object List Data Provider
	Copy the Project
	Replace LoanBean.java
	Add PaymentVO.java
	Deploy and Run
	LoanBean Bean Patterns
	Figure 8–5 Bean Patterns and Class Members for LoanBean

	PaymentVO Bean Patterns
	Figure 8–6 Bean Patterns and Class Members for PaymentVO

	Add Components to Page1
	Figure 8–7 Design view for Page1 of project Payment2

	Configure the Calendar Component
	Figure 8–8 Binding the selectedDate property to the LoanBean startDate.time property

	Configure Virtual Forms
	Add a New Page
	Add Components to Schedule Page
	Figure 8–9 Number Format dialog for number converter

	Configure the Table
	Configure Page Navigation
	Deploy and Run
	Figure 8–10 Project Payment2 running in the browser

	8.4 Cached RowSet Data Provider
	Configuring the Database
	Add Data Source
	Table 8.2 Add Data Source Dialog
	Figure 8–11 Add Data Source dialog

	Inspect the Data Source
	Figure 8–12 USERS Query View

	Copy the Project
	Add the Data Source
	Replace LoginBean.java
	Listing 8.1 Method isLoginGood() �

	Add a Message Group
	Deploy and Run
	Figure 8–13 Successful login scenario

	8.5 Key Point Summary

	Chapter 9 Accessing Databases
	9.1 Database Fundamentals
	Music Collection Database
	Figure 9–1 Music Collection Database Schema

	JDBC CachedRowSets

	9.2 Data Sources
	Configuring for the PointBase Database
	Add Data Source
	Table 9.1 Add Data Source Dialog
	Figure 9–2 Add Data Source dialog

	Inspect the Data Source
	Figure 9–3 RECORDINGS Query View
	Figure 9–4 TRACKS Query View

	Loading Other Data Sources
	Figure 9–5 Add Data Source window

	9.3 Accessing the Music Database
	Create a New Project
	Add Components
	Figure 9–6 Default table component

	Add a Database Table
	Figure 9–7 Add New Data Provider with RowSet dialog

	Add a Message Group Component
	Deploy and Run
	Query and Table Configuration
	Figure 9–8 Query Editor
	Figure 9–9 Select Tables to Add dialog

	Deploy and Run
	Figure 9–10 MusicRead1 running in a browser

	9.4 Master Detail Application - Two Page
	Copy the Project
	Add a RecordingID Request Bean Property
	Add a RecordingTitle Request Bean Property
	Command Components in a Table Column
	Figure 9–11 Table Layout dialog
	Listing 9.1 Method hyperlinkTitle_action()

	Add a New Page
	Modify SQL Query
	Figure 9–12 Add Query Criteria dialog

	Add Page Navigation
	Figure 9–13 Adding page navigation

	Add Prerender Code
	Configure Table Component
	Figure 9–14 Use binding dialog for property title

	Deploy and Run
	Figure 9–15 Tracks detail for Graceland

	9.5 Master Detail Application - Single Page
	Create a New Project
	Add Components
	Add a Listbox Component
	Add a Data Source
	Figure 9–16 Bind to Data dialog

	Deploy and Run
	Figure 9–17 Drop down component

	Add a Table Component
	Figure 9–18 Table Layout dialog
	Figure 9–19 Data-aware table component bound to TRACKS table
	Figure 9–20 Binding table’s title property to recordingsDataProvider

	Modify the SQL Query
	Figure 9–21 Query Editor for TRACKS table

	Connect Dropdown List to Query
	Listing 9.2 Method recordingsDropdown_processValueChange() �
	Listing 9.3 Method prerender() �

	Deploy and Run
	Figure 9–22 The Music Collection Database application: selecting title Imagine

	9.6 Database Updates
	Create a New Project
	Add Components
	Figure 9–23 Design canvas after adding components and modifying the table layout

	Add Buttons and a Table
	Modify the Table Layout
	Figure 9–24 Table Layout dialog: changing the component type

	Add the Button Event Handlers
	Listing 9.4 Method update_action() �
	Listing 9.5 Method cancel_action() �

	Deploy and Run
	Figure 9–25 The Music Collection Database: updating the Music Categories table

	9.7 Database Row Inserts
	Virtual Forms
	Copy the Project
	Add Components
	Figure 9–26 Music Category Add project’s design view
	Figure 9–27 Examine the Properties of a database column

	Configure Virtual Forms
	Table 9.2 Virtual Form Description
	Table 9.3 Virtual Form Participation

	Add ApplicationBean1 Property
	Figure 9–28 Add property nextCategoryId to application scope
	Listing 9.6 Method getNextCategoryId() �

	Add Button Event Handler Code
	Listing 9.7 Method addNewCategory() �

	Deploy and Run
	Figure 9–29 After the insert row operation to the MusicCategories table

	9.8 Database Deletions
	Copy the Project
	Add Components
	Figure 9–30 Music Category Delete project’s design view
	Figure 9–31 Table Layout for checkbox column

	Configure Checkbox Components
	Listing 9.8 Method isSelected() �
	Listing 9.9 Method setSelected() �

	Add the Delete Button Event Handler
	Listing 9.10 Method delete_action()�

	Configure Virtual Forms
	Deploy and Run
	Figure 9–32 Project MusicDelete running in a browser

	9.9 Handle Cascading Deletes
	Copy the Project
	Include Additional Data Source Tables
	Modify the SQL Queries
	Modify Button Event Handler Code
	Add Method Cascade Delete
	Listing 9.11 Method cascadeDelete() �

	Deploy and Run
	Figure 9–33 MusicCascadeDelete after deleting categories Classical, Country, and Musical Theatre

	9.10 Key Point Summary

	Chapter 10 Accessing Web Services
	10.1 Google Web Services
	Figure 10–1 Creator’s design canvas view showing project Google1’s components
	Create a New Project
	Add the Google Logo
	Figure 10–2 Image Customizer dialog for image component

	Add a Text Field Component
	Add a Button Component
	Add the Google Web Services
	Adding a Web Service to the IDE
	Figure 10–3 Add Web Service dialog

	Add Search Result Properties to Page1
	Figure 10–4 Adding property mySearchResult to Page1.java

	Add a Data Provider
	Layout and Grouping with Grid Panel
	Figure 10–5 Showing the grid panel’s rendered property binding expression

	Add a Static Text Component
	Using Hyperlink with a Nested Static Text
	Add a Message Group to Display Errors
	Figure 10–6 Page1 Outline view of project Google1

	Deploy and Run
	Inspect the Web Service
	Table 10.1 doGoogleSearch() parameters
	Table 10.2 GoogleSearchResult public methods
	Table 10.3 ResultElement public methods

	Testing the Google Web Service
	Figure 10–7 Testing Web Service Method doGoogleSearch

	Configure Web Service Call
	Add Event Handling Code for Button
	Listing 10.1 Method search_action() �

	Handling Exceptions and Error Messages
	Specify Binding for the Display Components
	Figure 10–8 Bind url property to the object array data provider myResultObject
	Figure 10–9 Bind searchString text property to property q (query)

	Deploy and Run
	Figure 10–10 First version of the Google Web Search application

	10.2 Validation - Project Google2
	Copy the Project
	Add a Validator
	Add a Message Component
	Message and Message Group Components
	Figure 10–11 Google Web Search with input validation

	10.3 Displaying Multiple Result Elements
	Copy the Project
	Add a Table Component
	Configure the Table
	Figure 10–12 Google Search application using Data Provider and Table components

	Deploy and Run
	Figure 10–13 Google Web Search application using HTML to build a results table

	10.4 Displaying Multiple Pages
	Copy the Project
	Add an Image Hyperlink Component
	Figure 10–14 Design canvas showing component layout for project Google4
	Figure 10–15 Image Customizer dialog for image component

	A Second Image Hyperlink Component
	Deploy and Run
	Add SessionBean1 Properties
	Specify the Action Code
	Listing 10.2 Method destroy()
	Listing 10.3 Method init()
	Listing 10.4 Method doSearch()
	Listing 10.5 Method search_action()
	Listing 10.6 Method next_action()�
	Listing 10.7 Method previous_action() �

	Deploy and Run
	Figure 10–16 The Google Web Search application displaying the third page of results

	10.5 Key Point Summary

	Chapter 11 Using EJB Components
	11.1 Consuming EJBs
	Figure 11–1 Servers view showing Enterprise JavaBeans display
	Invoke the EJB Method
	Figure 11–2 Properties view for GreeterEJB’s method getGreeting
	Figure 11–3 Properties view for ConverterEJB’s method dollarToYen

	Instantiate a Data Provider
	Figure 11–4 Bind to Data dialog
	Figure 11–5 Properties view for TravelEJB’s getPersons method

	11.2 EJBs as Business Objects
	Create a Project
	Add an EJB Client
	Figure 11–6 Visual design editor in the editor pane

	Add Session Bean Properties
	Add Components to the Page
	Figure 11–7 Visual design editor in the editor pane
	Figure 11–8 Number Format dialog
	Figure 11–9 Outline view for project EJBConverter

	Add Event Handling Code
	Listing 11.1 Method convert_action()

	Deploy and Run
	Figure 11–10 Currency Converter application running in a browser

	Copy the Project
	Add EJB Method Data Providers
	Bind Components to Data Object
	Figure 11–11 Bind to an Object dialog for component yen

	Modify Event Handler Code
	Listing 11.2 Method convert_action() �

	Specify Data Provider Initialization
	Deploy and Run

	11.3 Greeting Two Ways
	Create a Project
	Add Components to the Page
	Figure 11–12 Page1 design view for EJBGreeting

	Add EJB Method Data Providers
	Bind Components to Data Object
	Figure 11–13 Page1 design view for EJBGreeting

	Deploy and Run
	Figure 11–14 Application EJBGreeting running in a browser

	Copy the Project
	Delete Unneeded Components
	Add Components to the Page
	Figure 11–15 Project EJBGreeting2 Page1 design view

	Add EJB Method Data Provider
	Figure 11–16 Bind to Data dialog

	Add Event Handling Code
	Listing 11.3 Method listbox1_processValueChange()

	Deploy and Run
	Figure 11–17 Application EJBGreeting2 running in a browser

	11.4 Implementing a Master-Detail Page with EJBs
	Table 11.1 TravelEJB Methods �
	Create a Project
	Add Components to the Page
	Figure 11–18 Page1 design view for EJBTravel

	Add EJB Method Data Providers
	Configure the Table Components
	Add a Session Bean Property
	Add Event Handling Code
	Listing 11.4 Method dropDown1_processValueChange()

	Specify Initialization
	Deploy and Run
	Figure 11–19 Application EJBTravel running in a browser

	11.5 Adding EJBs to Creator
	Table 11.2 Supported Application Servers for EJB Adds �
	Add LoanEJB
	Figure 11–20 System Application Server Admin Console
	Table 11.3 EJB Method Configuration for LoanEJB
	Figure 11–21 Configure EJB Methods during Add
	Figure 11–22 Servers view showing LoanEJB added to Enterprise JavaBeans node

	Consuming the LoanEJB
	Copy the Project
	Add an EJB Method
	Delete Local LoanBean Component
	Add a Session Bean Property
	Provide Property Bindings
	Figure 11–23 Bind to Data dialog

	Deploy and Run
	Figure 11–24 Application EJBPayment1 running in a browser

	Project Payment2 Alternative

	11.6 Key Point Summary

	Chapter 12 Portlets
	12.1 What Are Portlets?
	Portlet Modes
	Portlet Navigation
	Portlet Real Estate
	Portlet Life Cycle

	12.2 Creating a Portlet Project
	Create a Portlet Project
	Figure 12–1 New Project dialog for JSF portlet projects

	Add Components to PortletPage1
	Figure 12–2 PortletPage1 design view for project PortletEcho
	Figure 12–3 PortletPage1 Outline view

	Add a Save Text Session Bean Property
	Specify Property Bindings
	Figure 12–4 Property Bindings for textField1

	Deploy and Run
	Figure 12–5 Portlet project PortletEcho running in the portlet container

	12.3 Database Access with Portlets
	Create a Portlet Project
	Add Session Bean Properties
	Add Components to the Page
	Figure 12–6 PortletPage1 design view for project PortletMusic

	Add a Database Table
	Query and Table Configuration
	Listing 12.1 Method hyperlinkTitle_action()

	Add a New Page
	Figure 12–7 tracksDetail design view for project PortletMusic

	Modify SQL Query
	Figure 12–8 Add Query Criteria dialog

	Add Page Navigation
	Figure 12–9 Adding page navigation

	Add Prerender Code
	Configure Table Component
	Figure 12–10 Use binding dialog for property title

	Deploy and Run
	Figure 12–11 Project PortletMusic running in a browser
	Figure 12–12 Portlet page tracksDetail in browser

	12.4 Web Services and Portlets
	Create a Portlet Project
	Add Session Bean Properties
	Figure 12–13 SessionBean1 properties and components for project PortletGoogle

	Add Components to the Page
	Figure 12–14 PortletPage1 design view for project PortletGoogle
	Figure 12–15 Property binding to session bean property query

	Add the Google Web Service Client
	Configure Web Service Call
	Add a Table Component
	Configure the Table
	Figure 12–16 PortletPage1 Outline view for project PortletGoogle

	Add Event Handling Code
	Listing 12.2 Method destroy()
	Listing 12.3 Method init()
	Listing 12.4 Method doSearch()
	Listing 12.5 Method search_action()
	Listing 12.6 Method next_action()�
	Listing 12.7 Method previous_action() �

	Portlet Life Cycle Issues
	Deploy and Run
	Figure 12–17 The Google Web Search application running as a portlet

	12.5 Portlet Edit Mode
	Copy the Project
	Add a New Edit Mode Page
	Add SessionBean1 Properties
	Add Components to the Page
	Figure 12–18 Design view for EditParams edit mode page
	Table 12.1 Language Restriction Parameter Selections �

	Specify Property Bindings
	Deploy and Run
	Figure 12–19 Portlet Edit mode page running in a browser

	12.6 Portlet Help Mode
	Copy the Project
	Add a New Help Mode Page
	Add ApplicationBean1 Property
	Add Static Text Component to the Page
	Figure 12–20 Design view for page GoogleHelp (help mode page)

	Specify Property Binding
	Deploy and Run
	Figure 12–21 Portlet Help mode page running in a browser

	12.7 Key Point Summary

	Chapter 13 Customizing Applications with Creator
	13.1 Localizing an Application
	A Word About Locales
	Localize Application Labels and Text
	Copy the Project
	Isolate Labels and Text Messages
	Listing 13.1 asg.messages.login.properties

	Add the asg.jar Jar File
	Figure 13–1 Viewing the properties file in Creator’s editor pane

	Localize the JSF Source
	Using Grid Panel to Improve Page Layout
	Figure 13–2 Page1 with components nested in grid panels

	Modify the Components for Localized Text
	Figure 13–3 Using localized messages and property binding

	Deploy and Run

	13.2 Internationalizing an Application
	Provide Translations
	Listing 13.2 asg.messages.login_es.properties �
	Listing 13.3 asg.messages.login_de.properties
	Figure 13–4 Properties files for English (default), German, and Spanish locales

	Specify Supported Locales
	Listing 13.4 faces-config.xml

	Configure Your Browser
	Figure 13–5 Configuring Netscape for other languages

	Deploy and Run
	Figure 13–6 Logging in with the Spanish version
	Figure 13–7 Logging in with the Spanish version

	13.3 Controlling the Locale from the Application
	Copy the Project
	Add a SessionBean1 Property
	Add Components to Page1
	Figure 13–8 Design view showing component layout for Login2I18N-Alt
	Figure 13–9 Specifying language selections for the drop down component

	Final Configurations
	Figure 13–10 Specifying property bindings for the drop down component

	Deploy and Run
	Figure 13–11 Setting the locale from the application

	13.4 Creating Custom Validation
	Figure 13–12 Using custom validation
	Create a Project
	Add a JAR File to Your Project
	Add a ColorBean Property to SessionBean1
	Figure 13–13 New Property Pattern dialog

	ColorBean.java Code
	Listing 13.5 ColorBean.java �

	Isolate Localized Text
	Listing 13.6 asg.messages.color1.properties

	Add a Validation Method
	Listing 13.7 Method validateHexString() �
	Listing 13.8 Method lookup_message() �

	Adding Components to the Page
	Figure 13–14 Design canvas with components added to Page1 for project Color1
	Figure 13–15 Property Bindings dialog

	Add Components for Input
	Figure 13–16 Outline view for project Color1
	Figure 13–17 Property Bindings dialog to specify binding for text field redInput

	Add a Button and a Static Text Component
	Configure for the Validator Method
	Configure the Components for Localized Text
	Table 13.1 Binding to the Properties File

	Deploy and Run
	Figure 13–18 Custom validation with localized error messages in English

	Internationalize for Spanish
	Listing 13.9 asg.messages.color1_es_ES.properties

	Specify Supported Locales
	Listing 13.10 faces-config.xml

	Configure Your Browser
	Deploy and Run
	Figure 13–19 Custom validation with localized error messages in Spanish

	13.5 Using AJAX-Enabled Components
	Importing a Component Library
	Figure 13–20 Component Library Manager Dialog
	Figure 13–21 Import Component Library Dialog
	Figure 13–22 After importing the AJAX JSF component library
	Figure 13–23 AJAX Completion Text Field component added to palette

	State Codes Completion Example
	Add myStateCode Session Property
	Add stateCodes Application Property
	Add Components to the Page
	Figure 13–24 AJAX Completion Text Field component added to palette
	Figure 13–25 Property Bindings dialog

	Configure the AJAX Component
	Deploy and Run
	Figure 13–26 AJAX Completion Text Field component responding to user input

	Add statesMap Application Property
	Add myStateName Session Property
	Configure Static Text Component
	Deploy and Run
	Figure 13–27 AJAX Completion Text Field component responding to user input

	13.6 Using AJAX-Enabled Components with Web Services
	Adding the Dictionary Web Service
	Figure 13–28 Add Web Service dialog
	Figure 13–29 Add Web Service dialog displaying the Dictionary Web Service

	Create a New Project
	Add Components to the Page
	Figure 13–30 Design View for project AJAXLookup

	Add the Dictionary Web Service to the Page
	Configure the Event Handlers
	Deploy and Run
	Figure 13–31 AJAX Completion Text Field component responding to user input
	Figure 13–32 AJAX Lookup application displays the definition for ‘Xiphioid’

	13.7 Key Point Summary

	Chapter 14 Debugging with Creator
	14.1 Planning for Debugging
	Local Variables
	Assertions
	Displaying Debug Information

	14.2 Debugger Overview
	Debugger Features
	Debugger Windows
	Figure 14–1 The Debugger views

	Debugging Commands

	14.3 Running the Debugger
	Open Project and Files
	Run and Deploy in Debug Mode
	Figure 14–2 The Debugger window

	Debugging Views

	14.4 Setting Breakpoints
	Figure 14–3 Setting a breakpoint
	Figure 14–4 New Breakpoint dialog
	Figure 14–5 Breakpoints display

	14.5 Managing Breakpoints
	Figure 14–6 Managing Breakpoints Options
	Figure 14–7 Customizing Breakpoints

	14.6 Stepping Through the Code
	Figure 14–8 After issuing a Step Over command
	Figure 14–9 Display after LoanBean constructor executes

	14.7 Tracking Variables
	Figure 14–10 Displaying getPayment() local variables

	14.8 Setting Watches
	Figure 14–11 Monitoring watches

	14.9 Using the Call Stack
	Figure 14–12 Displaying the Call Stack

	14.10 Detecting Exceptions
	Figure 14–13 Setting a breakpoint on a caught exception
	Figure 14–14 Exception caught

	14.11 Finish Debugging
	14.12 Debug Methods
	Method info()
	Figure 14–15 Message Group Display

	Method log()

	14.13 Using the HTTP Monitor
	Enabling the HTTP Monitor
	Figure 14–16 Enabling the HTTP Monitor

	The HTTP Monitor Window
	Figure 14–17 HTTP Monitor Window

	Viewing Record Data
	Figure 14–18 HTTP GET Request
	Figure 14–19 HTTP Client/Server Data

	Editing HTTP Requests
	Figure 14–20 HTTP POST Request
	Figure 14–21 HTTP POST Menu Selections
	Figure 14–22 Edit and Replay dialog

	Saving HTTP Requests
	Figure 14–23 HTTP Saved Records

	Replaying HTTP Requests
	Figure 14–24 HTTP Saved Record Selections

	14.14 Key Point Summary

