
Java networking and awt bible

Introduction
Installing the CD-ROM
About the Authors

Part I—Java Applets And Graphic Components
Chapter 1—Applets And Graphics
Applets
The Essential Applet Methods
Applet Parameters
Communications Between the Applet and the Browser
Using Threads in Applets
Inter-Applet Communications Within the Browser
Graphics
The Graphics Class Concept
The Coordinate System of the Drawing Surface
Obtaining Graphics Objects
The Geometric Primitives
The Painting Mode
Applet and Associated Class Summaries
The Applet and Graphics Project: The Game of Life
Project Overview
Assembling the Project
How It Works
Double-Buffered Rendering
Overriding Update()
Animation Techniques
Chapter 2—The Component Class
Component Hierarchy
Component Positioning
Common Component States
On-Screen Rendering
Delivering and Handling Events
Preparing Images for Display
Summary of the Component Methods
The Component Project: A Hotspot Custom Component
Assembling the Project
How It Works

Part II—Windows And Text Handlers

Chapter 3—Toolkit, Window, Container, And Events
A Window in Java
Windows as Pseudo-I/O Devices
Events
Window Repainting in AWT
Components, Containers, and Top-Level Windows
Containers
Windows
Peers and the Toolkit
The Toolkit
Toolkit, Window, Container, and Event Summaries
The Project: FontLab
Assembling the Project
How It Works
Chapter 4—Windowing Components And Layout Classes
Windowing Components
Layouts
Summary of Windowing Component and Layout Classes
The Layout Demonstration
Assembling the Project
How It Works
Chapter 5—Handling Text, Dialogs, And Lists
Handling Text
Dialogs in Java
Lists
Text, Dialog, and List Class Summaries
API Reference Interface Application
Building the Project
How It Works

Part III—Selection And Image Processing Tools
Chapter 6—Choice, Menus, And Checkboxes
The Choice Class
Menu-Related Classes
Checkbox Classes
Choice, Menu, and Checkbox Summary
The Selections Interface Application
Building Your Application
How It Works
Chapter 7—Color, Font, Images, And Shapes
Colors
The HSB Color Model
Using Colors
Fonts: The Facts About Rendering Text
Measuring a Font: The FontMetrics Class
Geometric Helper Classes

Graphical Object API Summaries
The Graphical Object Project: Doodle
Assembling the Project
How It Works
Use of Rectangles in Doodle
Chapter 8—AWT Image Processing
Image Data in Java
Passing Image Data: The ImageProducer and ImageConsumer Interfaces
ImageFilters
AWT Image Processing API Summaries
The AWT Image Processing Project: The MultiFilter Application
Assembling the Project
How It Works
Loading and Storing the Base Image
ConfiguredFilterFactory
The ContrastFilter
The InvertFilter
Applying Filters to the Workspace Image
Adding Your Own ImageFilters to MultiFilter
Chapter 9—AWT Peer Interfaces
AWT Peer Interface Summaries

PART IV—Networking in Java
Chapter 10—Network And Sockets
Client-Server Applications
Connection-Oriented Protocol
Connectionless Protocol
Internet Address
Why Sockets?
Network and Socket Summaries
The Network and Sockets Project: A Client-Server Rendezvous Applet
Building Your Applet
How It Works
Chapter 11—Handling URLs And Networking Exceptions
URLs, Protocols, and MIME
Java and the World Wide Web
URL and Networking Exception Summaries
The URL Class Project
Building the Project
How It Works

Part V—Java Utilities
Chapter 12—Data Structures And Random Number Generation
Dictionary and Hashtable
Vector and Stack
Random Numbers

Data Structure, Properties, and Random Class Summaries
Java Appointment Organizer Applet
Building the Project
How It Works
Chapter 13—Date And Advanced Classes
BitSet
StringTokenizer
Date
Observable-Observer
Date and Advanced Classes Summaries
Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Index

Introduction

Welcome to the world of Java, the language of choice for anyone who wants to develop
creative and effective applications on the Internet and the World Wide Web. Java allows
programmers to create applets, programs that may be “embedded” inside Web pages; on
the other hand, it is a full-fledged object-oriented language that lets you implement
object-oriented applications very effectively. The Java Development Kit (JDK) provides
a wealth of APIs to help you develop applications quickly. These APIs support
developing networking applications, building platform-independent GUIs, multithreading
for efficient use of system resources, implementing applets to launch from Web browsers,
handling input and output streams, and many others that will help you build applets as
well as stand-alone applications. Until now, information on the details of the APIs and
how to use them effectively has been hard to come by. We’ve written the Java™
Networking and AWT API SuperBible to give you a head start in exploring this new
standard in Web and Internet programming.

Why a SuperBible?

To make the best use of the Java APIs in developing killer applications, you need nothing
less than a SuperBible. The Waite Group’s Java™ Networkingand AWT API SuperBible
is a complete reference to Java’s windowing, applet, and networking APIs. It provides
more information about Java than any other source. Java’s Abstract Window Toolkit
(AWT) helps you build graphical user interfaces without having to know the underlying
windowing environment. You can develop client-server applications by exploiting Java’s
networking capabilities even if you don’t understand much about the underlying
operating system and architecture. You can skip developing often used data structures
and utilities over and over again because the JDK provides a set of utilities so you can

concentrate on application design. Java offers so much that it takes a SuperBible to bring
it all together for you.

How Is the Book Organized?

We’ve divided the Java™ Networking and AWT API SuperBible into five logical parts
grouped by their functionality. Each chapter discusses a set of classes in a Java package.
Under each class, its methods are discussed in alphabetical order. Chapters are arranged
by their functionality so you have a detailed walk-through and example of each API.
You’ll also find a project at the end of each chapter that will give you some hands-on
practice using the APIs. Here’s a quick rundown of the topics covered in each part and
chapter.

Part I: Java Applets and Graphic Components

Part I explains the methods needed to build applets and to use the Graphics class and
Component class in windowing applications. You’ll find every piece of information
about Java applets, graphical components, and generic abstract windowing toolkit
components in these chapters.

Chapter 1, Applets and Graphics, describes the applet API class and the Graphics class,
which are useful for working with graphical components of windowing applications.
Chapter 2, The Component Class, discusses the Component class needed to develop
windowing applications and to subclass many window components for implementation.

Part II: Windows and Text Handlers

Part II, Windows and Text Handlers, covers the APIs necessary for creating windows and
window components, and for handling text, dialogs, and lists. It also explains the event
handlers and APIs that deal with component layout. Chapter 3, Toolkit, Window,
Container, and Events, presents the APIs used to bind abstract AWT classes to a
particular native toolkit implementation and to develop windows and containers for
various components. Chapter 4, Windowing Components and Layout Classes, discusses
the methods to implement windowing components including Button, Canvas, Frame,
ScrollBar, Insets, and available Layout APIs. Chapter 5, Handling Text, Dialogs, and
Lists, covers the Text, Dialog, FileDialog, and List classes. Text handling to display and
obtain text data is important for any window program; dialog windows are required to
display messages and obtain information from the user.

Part III: Selection and Image Processing Tools

Selection through menus and choice buttons is an important part of a user interface and,
in this age of multimedia applications, image processing is vital. Part III describes the
functions used for filtering and manipulating images to suit the user’s creativity and
requirements and the windowing components that enable selection. Chapter 6, Choice,
Menus, and Checkboxes, covers the Choice, Menu, and Checkbox classes. The classes

that encapsulate color, font, images, and shapes are covered in Chapter 7, Color, Font,
Images, and Shapes. Chapter 8, AWT Image Processing, focuses on the classes and
interfaces that help programmers process an image. The details of peers that get created
for the AWT components are described in Chapter 9, AWT Peer Interfaces.

Part IV: Networking in Java

Part IV, Networking in Java, focuses on methods that enable network programming in
Java. It covers the functions required to develop client-server applications and to write
programs that use information from Web pages across the Internet. Chapter 10, Network
and Sockets, covers the classes that encapsulate the functionality of Internet addresses
and sockets. Chapter 11, Handling URLs and Networking Exceptions, describes the Java
classes that encapsulate URLs that provide a standard in addressing WWW document
pages and exceptions which may be generated in networking applications.

Part V: Java Utilities

The Java utitlity APIs implement utilities and make them available to users. Part V
discusses data structure APIs, the random generator class, and advanced utility classes.
Chapter 12, Data Structures and Random Number Generation, covers the classes
Dictionary, Hashtable, Vector, and Stack as well as the Properties class for maintaining
the properties of objects. The Enumeration interface that provides the methods necessary
to enumerate a given set of elements from the vector or hash table is also covered, along
with two additional classes, EmptyStackException and NoSuchElementException, which
define the exceptions related to these data structures. Chapter 13, Date and Advanced
Classes, looks at more advanced utilities. It discusses the class that deals with sets of bits
and the class that helps to tokenize a stream of strings, as well as a Wrapper class for
finding dates, and advanced classes that encapsulate the Observable-Observer design
pattern.

Appendices

Class and interface diagrams, cross references for the exceptions generated, steps
involved in native method integration with Java, and information about Java Script are
presented as appendices. The class and interface diagrams that present the diagramatic
representation of inheritance hierarchy are presented in Appendix A, Class and Interface
Inheritance Diagrams. For quick reference, Appendix B, Exception Cross Reference,
presents a list of the exceptions covered in this book. You can integrate native methods
written in C/C++ with the Java programs. The steps involved in writing and integrating
the native methods are presented in Appendix C, Writing Native Methods in C/C++.
JavaScript is a scripting lanaguage used to activate the Web and is described in Appendix
D, JavaScript. Terms used throughout this book are contained in, Appendix E, Glossary.
Appendix F, Using the Enclosed CD-ROM, provides an overview of the contents of the
CD that comes with this book.

Code Your Way to Java Expertise

To help you master Java, each chapter contains many program listings and a complete
project. Source code for the complete programs is in the chapters and is also provided on
the accompanying CD-ROM, so you can modify and experiment with the code. For ease
of use, we’ve arranged the directories on the CD by chapter number. The CD also has
additional information and bonus programs. Enjoy!

A Matter of Taste

Everybody likes a different cup of java; that is, each person thinks differently and runs
Java applications on a distinct platform. In this book, the implementation of programs
differs in the way the authors approach a problem, and the appearance of the windows
varies depending on the windowing environment the application runs on. These
variations are intentional. We believe they will help you understand the behavior of Java
in different environments and ultimately make you a more versatile Java applications
developer.

We hope you enjoy using this book as much as we’ve enjoyed writing it. Good luck
exploring Java!

Part I
Java Applets And Graphic Components

Chapter 1
Applets And Graphics

Packaging interactive content in small, easily distributed objects was a design feature that
had high priority to the developers of Java. To meet this design goal, they created the
Applet class, along with several objects and interfaces designed to simplify image and
audio processing.

An Applet is a custom interface component object, similar in concept to a Windows
custom control, or an X-Windows widget. Applet-aware applications (or "applet
browsers") can load and construct Applet objects from URLs pointing to .CLASS files
anywhere on a network, including the Internet, the largest network of them all. The Java
Developer Kit’s (JDK) HotJava World Wide Web browser is an example of an applet-
aware application. Using it, you can access interactive Applets from anywhere on the
Internet, or Applets developed on the local file system. Security features of the Java
language ensure distributed applets cannot damage or compromise the security of a local
system.

Using the graphical capabilities of Java, applets are visually exciting multimedia
elements. Through objects of the class java.awt, Graphics applets can create graphical on-

screen content. The Graphics class is included in this chapter because of the need for
applets to display exciting visuals.

Because of all these features, applets have become the preferred method for distributing
interactive content on the World Wide Web. A library of reusable, extensible Applets is
one of the cornerstones of an Internet content creator’s toolkit.

The project for this chapter is an Applet implementation of Conway’s Game of Life. This
project illustrates the use of "double-buffered" animation, the preferred method of
graphics animation in Java.

Applets

Figure 1-1 illustrates the Applet class hierarchy. Most ancestors of Applet in this
hierarchy are Abstract Windows Toolkit (AWT) classes. Through them, the Applet class
inherits windowing capabilities. Specifically, the Applets display, surface drawing, and
mouse and keyboard event handling functionalities are gained through these ancestors.
AWT’s windowing capabilities are covered in Chapter 9. All examples and discussions in
this chapter stop short of utilizing AWT methods other than those that provide applets
with their graphical capabilities. But keep in mind the rich set of facilities the AWT
classes have when designing your own custom Applet classes.

Figure 1-1 The Applet class hierarchy

Applet objects are created and controlled by a container application called an applet
browser. The applet browser (see Figure 1-2) arranges applet objects visually on the
screen and dedicates a rectangle of screen space for the applet to display itself. Most
applet browsers can manage more than a single Applet object at a time, and actually
provide an interface for the Applet instances to communicate with each other.

Figure 1-2 Example of an applet browser (JDK’s AppletViewer) with a Java Applet
running

The Essential Applet Methods

The actions of a custom Applet object are ruled by four essential methods: Applet.init,
Applet.start, Applet.stop, and Applet.destroy. The browser itself invokes these methods at

specific points during the applet’s lifetime. The java.applet.Applet class declares these
methods and provides default implementations for them. The default implementations do
nothing. Custom applets override one or more of these methods to perform specific tasks
during the lifetime of the custom Applet object. Table 1-1 lists these four methods, details
when each is called by the browser, and shows what a custom applet’s overriding
implementation should do.

Table 1-1 Descriptions of the essential applet methods

Method Description

init Called once and only once when the applet is first loaded.

Custom implementations allocate resources that will be
required throughout the lifetime of the Applet object.

destroy Called once and only once just before the Applet object is to
be destroyed. Custom implementations release allocated

resources, especially Native resources, which were loaded
during init or during the lifetime of the Applet object.

start Called each time the applet is displayed or brought into the
user’s view on-screen. Custom implementations begin active

processing or create processing threads.
stop Called each time the applet is removed from the user’s view.

Custom implementations end all active processing.
Background processing threads should either be destroyed in

stop, or put to sleep and destroyed in the destroy method.

The proper place to allocate objects or load data required by the applet throughout its
lifetime is init. This method is called only once during the lifetime of the applet, right
after the object is created by the browser. Most custom Applets allocate resources
required throughout the lifetime of the Applet object in this method. Another very
common operation performed during init is to resize the applet’s on-screen display
surface using the inherited method Component.resize. Some browsers display applets
correctly only if the applet calls resize() in init(). The Component class is described in
Chapter 2.

Listing 1-1 defines an applet that plays an audio clip in a continuous loop. This applet
could be used to play "theme music" while a particular Web page was being viewed.
Notice that the essential methods init, start, stop, and destroy are given overriding
implementations to manage what the applet does in the browser.

Listing 1-1 Example applet

import java.Applet.*;

public class ThemeMusicApplet extends Applet {
 AudioClip audclipTheme;

 public void init() {
 // load the audio clip.
 audclipTheme = getAudioClip(getDocumentBase(),
 "images/theme.au");

 // shrink display surface...never used.
 resize(0, 0);
 }

 public void start() {
 // start the audio loop.
 audclipTheme.loop();
 }

 public void stop() {
 // halt the audio loop.
 audclipTheme.stop();
 }

 public void destroy() {
 // release the audio clip from memory.
 audclipTheme = null;
 }
}

The browser invokes the ThemeMusicApplet’s start method when it is time to present
information to the user, and ThemeMusicApplet.start begins playing the audio clip
loaded in init. You can see why it is necessary for init to be invoked before any call to
start: The audio clip must be loaded before it is played. init is always called before the
first invocation of start.

When the applet drops from view, for example because it is scrolled off the screen in the
browser or the user opens a different document in the browser, the applet’s stop method
is called. This is the proper time for a custom Applet to cease any processing. In our
example, the continuous audio clip started in ThemeMusicApplet.start is halted in stop.

There are two more important technical notes about start and stop:

• Every call to start has a matching subsequent call to stop.
• The start/stop sequence may be repeated more than one time for the same
custom Applet object, for example if the applet is scrolled from the user’s view
and then scrolled back. When it is scrolled from the user’s view, stop will be
invoked. When it is scrolled back, start will be invoked for the second time.

When the applet is finally and definitely to be unloaded from memory, destroy() is
invoked. This is the appropriate time to delete any resources loaded during init(). The
above example applet removes its reference to the AudioClip in destroy. The call to

destroy is guaranteed to occur after the last call to stop. Note that while any resources
allocated by an applet will automatically be cleaned up by Java’s garbage collection
facilities, it is more efficient to remove references to any allocated objects in destroy.
Also note that resources allocated by "native" methods will not be cleaned up by the
garbage collection facilities. Native resources must be explicitly released in destroy.
(Native methods are platform-specific, dynamically loadable libraries accessible from
within Java code. For the most part, Applet classes do not use native methods because of
the severe security constraints placed on Applet objects. Refer to Appendix C for more
information about creating and using native methods in Java.) Figure 1-3 illustrates the
sequence of calls to init, start, stop, and destroy by an applet browser.

Figure 1-3 Sequence of init, start, stop, and destroy calls for an Applet

Applet Parameters

Similar to Java applications, applets can receive and process parameters. Applications
receive parameters in the argv[] argument to the main method. The elements of argv[]
are the command line arguments to the application. Analogous to argv[] , applet
parameters are accessed within the applet code by the Applet.getParameter method.

The use of parameters makes applets extensible. ThemeMusicApplet.init has the theme
music relative URL "audio/theme.au" hardcoded into the init method. This listing uses a
replacement for init, which makes the ThemeMusicApplet applet play whatever audio file
is passed in its "Theme" parameter:

public void init() {
 // Get text of the Theme parameter, use as a relative
 // URL.
 String strTheme = getParameter("Theme");
 if(null == strTheme) strTheme = "audio/theme.au";
 audclipTheme = getAudioClip(getDocumentBase(), strTheme);
}

Conceptually, the browser maintains an internal listing of all the parameters passed to an
embedded Applet object. The getParameter method accesses this internal list and
retrieves the values specified for a uniquely named parameter. Our new listing uses the
getParameter method to look up the value for the parameter named "Theme". If no such
parameter was passed, getParameter would return null.

There is a method defined so that Applet objects can publish a list of valid parameter
names, valid values, and a description of each. By overriding the
Applet.getParameterInfo method, an Applet class can make this information public to any
other object. The default implementation of getParameterInfo simply returns null, but an
overriding implementation should return a String[n][3] 2-dimensional array where n is
the number of unique parameters understood by members of the Applet class. Each row
of three strings in this array should be of the format:

{ "parameter name", "valid value range", "textual description" }

There is no strict requirement on the format of any one of these strings. Each one should
be suitable for textual display so that someone can read it. For example, the "valid value
range" string could be "0-5", meaning the parameters should be an integer between 0 and
5. Listing 1-2 defines a small Applet class called AppletNames that displays, on
System.out, a listing of all other active Applets currently being managed by the browser
and a listing of each Applet object’s parameter information retrieved using each Applet
object’s getParameterInfo method. This Applet class uses its AppletContext to access
other active Applet instances. A detailed description of the AppleContext interface and
methods follows this discussion of Applet parameters.

Listing 1-2 Example using the AppletNames class

import java.applet.*;
import java.util.*;

public class AppletNames extends Applet {
 public void init() {
 resize(0, 0);
 }

 public void start() {
 Enumeration enumApplets;

 enumApplets = getAppletContext().getApplets();
 while(enumApplets.hasMoreElements()) {
 Applet appletCurrent =
 (Applet)enumApplets.nextElement();
 System.out.println("Next applet:");
 String[][] aastrParams =
 appletCurrent.getParameterInfo();
 boolean fDone = false;
 for(int iIi=0 ; !fDone ; iIi++) {
 try {
 System.out.print("\tparam: ");
 System.out.print(aastrParams[iIi][0]);
 System.out.print("; value: ");
 if(appletCurrent.getParameter(
 aastrParams[iIi][0]) == null)
 System.out.println("<null>");
 else
 System.out.println(
 appletCurrent.getParameter(
 aastrParams[iIi][0]));
 } catch(Exception e) {
 fDone = true;
 }
 }
 }

 System.out.println("End of applet list.");
 }
}

Different types of browsers use different methods for passing parameters to applets. For
example, applet-aware World Wide Web browsers generally use the HTML <APPLET>
container tag to refer to applet code and parameters. Between the <APPLET> and
</APPLET> container tags, zero or more <PARAM> tags can appear. These tags have
the form <PARAM name=[param-name] value=[param-val]>. No matter how parameters
are passed into a particular browser, a loaded applet always uses getParameter to retrieve
parameter values.

Listing 1-3 is part of an HTML document with the ThemeMusicApplet embedded in it.
The <APPLET> container refers to the ThemeMusicApplet’s .CLASS file URL. The
<PARAM> tag indicates which audio file to use ("audio/GilligansIsland.au").

Listing 1-3 HTML document

...

<H1>My Theme Music Home Page!</H1>
<P>Just sit right back and you should hear my theme music if
you wait for a moment for audio downloading...

<APPLET SRC="ThemeMusicApplet" width=0 height=0>
<PARAM name="Theme" value="audio/GilligansIsland.au">
</APPLET>

...

Communications Between the Applet and the Browser

Applets obtain information about the state of the browser, what other Applet objects are
currently active, what is the current document opened by the browser, and so on, through
the java.applet.AppletContext interface. The browser is abstracted by an object
implementing this interface.

The browser also exposes some functionalities that an applet can use through this
interface. For example, the loading of image and audio files into Java objects is handled
transparently through the AppletContext interface. The two overloaded versions of
Applet.getAudioClip are actually shallow wrappers around AppletContext.getAudioClip.
The full AppletContext interface is detailed in the API descriptions for this chapter.

Between the AppletContext and the Applet is an AppletStub object. Its purpose is to
provide a pathway for the exchange of applet-specific data between the AppletContext
and the Applet. For example, the parameters for a specific Applet object are accessed by
the Applet through AppletStub.getParameter. Applet.getParameter is actually a shallow
wrapper around this method. In turn, AppletStub methods are translated into native or
custom AppletContext method calls (the implementation of the pathway of data exchange

between the AppletStub and AppletContext is left completely up to the browser
developers). An Applet’s AppletStub is tightly wrapped by the java.applet.Applet
implementation. So much so, that all AppletStub functionalities are exposed as wrapper
methods in the java.applet.Applet class. Therefore, a custom applet should never need to
use its AppletStub directly. Figure 1-4 illustrates the pathways of data exchange between
the Applet, the browser (abstracted by the AppletContext interface), and the AppletStub
(the Applet’s representative to the browser).

Figure 1-4 Pathways of data exchange between the Applet, AppletContext, and
AppletStub objects

Using Threads in Applets

Much the same as applications, applets can create Threads to carry on background
processing. A typical use of this would be an animation applet. To perform animation, the
applet creates a new Thread and starts it running in start. The animation Thread acts as a
timer. Every so often, it wakes and draws a new frame in the animation sequence, then
suspends itself until the next frame is to be drawn. In the applet’s stop method, the
animation thread is shutdown. Two versions of this simple animation technique are
described in greater detail in the section on the Graphics class and methods. The
important point here is that Threads generally are made to begin background processing
in an applet’s start implementation and either suspended or destroyed in the applet’s stop
implementation.

You might assume that Threads created by an applet would be automatically halted by
the browser when the applet is destroyed, so you wouldn’t really need to suspend or
destroy a Thread object explicitly in stop. Instead, you could just leave it to Java’s
garbage collection facilities to destroy your Thread when the Applet object is destroyed.
Many browsers, however, do not properly halt secondary applet threads, even after the
applet has been destroyed, so the thread continues to execute after the applet has been
destroyed. This is a result of applets relying on the Java garbage collection facility to
destroy their threads. To ensure your custom applets behave as you want them to,
including ceasing when you want them to cease, suspend any secondary threads in
Applet.stop, and drop references to them in destroy. As Listing 1-4 shows, the
ClockTickApplet demonstrates using this technique in a multithreaded applet.

Listing 1-4 The ClockTickApplet sourcer

import java.applet.*;

public class ClockTickApplet extends Applet implements Runnable {
 AudioClip audclipTick;
 AudioClip audclipChime;
 Thread threadTicker;
 Thread threadChimer;

 public void init() {
 // create the new threads, but don’t start them
 threadTicker = new Thread(this);
 threadChimer = new Thread(this);

 // get the two clock sounds.
 audclipTick = getAudioClip(getDocumentBase(),
 "audio/tick.au");
 audclipChime = getAudioClip(getDocumentBase(),
 "audio/chime.au");

 // just clock sounds, so no display surface is necessary.
 resize(0, 0);
 }

 public void destroy() {
 // release threads, which should be suspended by now.
 threadTicker = null;
 threadChime = null;

 // release audio clips, which won’t be used any more.
 audclipTick = null;
 audclipChime = null;
 }

 public synchronized void start() {
 // start the ticker thread, which will automatically
 // start the chimer thread at the correct time.
 threadTicker.start();
 }

 public synchronized void stop() {
 // suspend the ticker, shut down the chimer, which
 // will be started again by the ticker at the correct
 // time.
 threadChimer.stop();
 threadTicker.stop();
 }

 // run is what the two threads run in.
 public void run() {
 /* If this is the chime thread, play the chime noise
 * and quit. */
 if(Thread.currentThread() == threadChimer) {
 audclipChime.play();
 return;
 }

 /* Sleep for 1 second at a time. Every full minute,
 * restart the chimer thread. */

 while(null != threadTicker) {
 audclipTick.play();
 // GET TIME, IF SECONDS == 0, THEN...
 audclipChimer.start();
 try { sleep(1000); }
 catch(Exception e) { }
 }
 return;
 }
}

Inter-Applet Communications Within the Browser

You can coordinate the activities of several applets by accessing and manipulating other
Applet objects from within Applet code. Using inter-applet communications you could,
for instance, have a "gas-gauge" Applet report the status of another Applet, which takes a
significant amount of time to initialize.

To obtain references to external Applets from within an applet you use the
AppletContext’s getApplet and getApplets methods. The AppletNames Applet
demonstrates this technique. Once a reference to another Applet is retrieved, your applet
code can access any public member variable or method of the external Applet object.
This code snippet retrieves an applet named "MyApplet" and calls one of its custom
methods.

Applet applet = getAppletContext().getApplet("MyApplet");
if(! (applet instanceof MyAppletClass)) return;
MyAppletClass myapplet = (MyAppletClass)applet;

myapplet.CustomFunc();

getApplet takes an applet "name" and returns a reference to the associated Applet object.
This usage model implies the browser internally stores a unique String name associated
with each applet, which can be used to look up the Applet in the internal browser storage.

Similar to defining applet parameters, the method for naming applets depends on the
specific browser used. For example, applet-aware World Wide Web browsers generally
use a NAME field within the HTML <APPLET> container tag to associate a name with a
particular Applet object. This is how an HTML document would embed an applet named
"Minnow" of class ThreeHourTouringBoat:

...
<APPLET src="ThreeHourTouringBoat" name="Minnow" width="100"
height="100">
<PARAM ...>
...
</APPLET>
...

Graphics

Applets are capable of displaying exciting and complex graphics and multimedia visuals.
This section explains the specifics of graphical drawing, which is done using objects of
the Graphics class and associated classes. Important concepts explaining these classes
will be discussed, as well as the most common technique for visual animation, double-
buffered graphics.

All graphical drawing operations in Java are performed through objects derived from the
Graphics class. Whether you are drawing images downloaded from the Internet, drawing
graphical primitives such as rectangles and arcs, or rendering text, all graphical
operations are done using a Graphics class instance. Use of the Graphics class is not
limited to Applets; it is also used for Java applications that employ graphical elements in
windows.

The Graphics Class Concept

For some beginners, the concept of the Graphics class is a little diffucult to grasp. But it
doesn’t have to be. You can think of a Graphics object as analogous to a graphic artist’s
drafting table, with its associated drawing tools. It is a station of powerful tools dedicated
to creating graphical images.

Each Graphics object is associated with a two-dimensional "drawing surface," analogous
to the piece of paper on the drafting table. For example, the drawing surface can be a
rectangle of a user’s on-screen desktop, as is the case when dealing with Applets or
Windows. Other drawing surface types could also be associated with a Graphics object.
The drawing surface could be a binary image, stored in memory and never directly
displayed to the user. It could also be a page in a printer, or a fax machine, or even a
PostScript or other graphics-format file stored on a disk.

The "tools" of a Graphics object, the methods of the Graphics class, are used to draw onto
the associated drawing surface. Rectangles, ovals, arcs, polygons, lines, text, and images
can all be drawn onto the drawing surface using the various Graphics class methods.

The internal state of a Graphics object can be described by eight state variables, which
can be modified using Graphics class methods.

• The foreground color
• The background color
• The current font
• The painting mode
• The origin of the Graphics object
• The horizontal and vertical scaling factors
• The "clipping" rectangle
• The drawing surface the Graphics object has been associated with

The Coordinate System of the Drawing Surface

All drawing surfaces use the same two-dimensional coordinate system. The X axis is in
the horizontal direction of the drawing surface, and increases from left to right on the
drawing surface. The Y axis is in the vertical direction, and increases from top to bottom.

The Graphics object origin defines where its X and Y axes cross, and is identified by the
point (0,0). A scaling factor is assigned to both axes, which defines how quickly the
coordinates increase along either axis. By default, when the Graphics object is first
created, the origin lies in the upper-left corner of the drawing surface, and the scaling
factor along both axes is one.

The Graphics object’s X and Y axes stretch to what is essentially an infinite distance in
all four directions. However, only coordinates within the Graphics object’s "clipping
rectangle" are of any interest. That’s because graphical operations cannot be performed
outside this rectangle. Such operations will not result in any sort of error, but neither will
they have any effect on the drawing surface.

The clipping rectangle of a Graphics object represents the physical boundaries of the
associated drawing surface. For example, a Graphics object associated with a 100 pixel
by 100 pixel rectangle of the on-screen desktop will have a clipping rectangle with a
width of 100 and a height of 100. For on-screen desktop and in-memory image drawing
surfaces, each Graphics coordinate represents a single pixel of the drawing surface.
Hence, a 100 pixel by 100 pixel rectangle is represented by a 100 by 100 clipping
rectangle in the associated Graphics object.

Obtaining Graphics Objects

A program cannot create its own Graphics objects, but instead must ask the Java runtime
system to create them for specific display surfaces. Without using custom classes
implementing native methods, only two types of display surfaces can be accessed through
Graphics objects:

• Sections of the on-screen desktop surface are accessed through Graphics objects
passed to the update and paint methods.
• In-memory Image objects are accessed through Graphics objects created by
Image.createGraphics.

Applets inherit the update and paint methods from the Component class, which the
Applet class extends. Both of these methods are called automatically by the Java runtime
system when it is time to display information to the user on the desktop. (See Chapter 2,
The Component Class, for an in-depth discussion of the update and paint methods). This
code snippet shows how a custom applet would override the default implementation of
paint to control its display surface:

public class MyApplet extends Applet {
 ...

 public void paint(Graphics g) {
 // Draw on the display surface here.
 }

 ...
}

A Graphics object is automatically created by the Java runtime system and passed to
paint. This Graphics object has a clipping rectangle set to the exact dimensions of the
Applet’s display surface. (In the cases where only a portion of the Applet must be
redrawn, such as when another window temporarily covers part of the Applet’s display
surface, the dimensions may be smaller.)

The only other method for obtaining a Graphics object is using Image.createGraphics. An
applet or application calls this method directly. The Graphics object that is returned is
capable of rendering geometric primitives, text, and other Image objects onto the Image.
This is useful for the so-called "double-buffered" drawing technique, used widely to
effect a smooth transition between animation frames. You’ll learn more about this
technique in the upcoming discussion of animation.

The Geometric Primitives

All Graphics objects are able to render several different types of geometric primitive
drawing objects on a drawing surface. Table 1-2 lists the various geometric primitives
and describes how they are represented by parameters to Graphics rendering methods.

Table 1-2 Geometric primitives

Primitive Representation Through Rendering Methods

Rectangle The point of the upper-left corner of the rectangle relative to the

Graphics origin, the rectangle’s width and height.

Rounded rectangle The point of the upper-left corner of the rectangle relative to the
Graphics origin, the reactangle’s width and height.

3D rectangle The point of the upper-left corner of the rectangle relative to the
Graphics origin, the rectangle’s width, height, and the raising or

depressing implication of the beveled edges.

Oval A bounding rectangle defines the size and shape of the oval. This
rectangle is described the same way as a rectangle geometric

primitive.
Arc An arc is a section, or pie wedge, of an oval. An arc is described

by the bounding rectangle of an oval, the starting angle of the arc,
and the angular length of the arc.

Polygon An ordered set of points defines the vertices of a polygon to
Graphics rendering methods. Alternatively, a Polygon object can
be used, though Polygons are essentially just an ordered set of
vertices. Points are all relative to the Graphics object’s origin.

Line segment Two points defining the two endpoints of the line segment. Both
points are relative to the Graphics object’s origin.

All primitives can be rendered in either outlined or filled form, except the Line primitive,
which cannot be filled. The outlined version of a primitive is rendered using the
primitive’s "draw" method. For example, Graphics.drawRect will render a rectangle as
two sets of parallel lines using the Graphics object’s current foreground color. The "fill"
method is used to render a filled geometric primitive. Graphics.fillRect will render a solid
rectangular block on the display surface using the current foreground color. Listing 1-5 is
a complete example of the Nautilus applet, which uses a succession of filled and outlined
arc segments (using Graphics.fillArc and Graphics.drawArc) to draw a spiral pattern. The
spiral looks something like the cross-section of a nautilus shell, hence the applet class’
name.

Listing 1-5 Example of the Nautilus applet

import java.applet.Applet;
import java.awt.Graphics;
import java.awt.Color;

public class Nautilus extends Applet {
 int nAppletHeight, nAppletWidth;
 float flTightness;

 public void init() {
 resize(500, 500);
 nAppletHeight = nAppletWidth = 500;

 flTightness =
 (new Float(getParameter("tightness")).floatValue();
 }

 public void paint(Graphics g) {
 int nCenter = nAppletHeight / 2;
 float flRadius = nAppletHeight / 2;
 int nDirection = 1;

 for(int nI=0 ; nI<10 ; nI++) {
 int x = (nAppletWidth / 2) - (int)flRadius;
 int y = nCenter - (int)flRadius;

 for(int nJ=0 ; nJ<3; nJ++) {
 if(0 != (nJ + ((1+nDirection) / 2)) % 2)

 g.setColor(Color.red);
 else g.setColor(Color.green);

 g.fillArc(x, y, 2 * (int)flRadius,
 2 * (int)flRadius,
 90 + (nDirection * nJ * 60),
 nDirection * 60);
 }

 g. setColor(Color.black);
 g.drawArc(x, y, 2 * (int)flRadius,
 2 * (int)flRadius, 90, nDirection * 180);

 nCenter += (int)(nDirection * (int)flRadius *
 (1 - flTightness));
 flRadius *= flTightness;
 nDirection *= -1;
 }
 }
}

The Nautilus applet requires a single parameter, the "tightness" parameter, which
describes how tightly the spiral is rendered. The "tightness" parameter’s value is a
floating point number above 0 and below 1. The closer to 1 this parameter is, the tighter
the spiral is. Note that, to preserve code readability, no validation of this parameter has
been added. Figure 1-5 is a screenshot of the Nautilus applet run using the JDK’s
AppletViewer, with a "tightness" parameter of 0.75.

Figure 1-5 Screenshot of the Nautilus applet

The Nautilus applet illustrates how to use the drawArc and fillArc methods of the
Graphics class. Nautilus renders the spiral by drawing successively smaller half-circles
made up of alternately colored arc wedges. The code takes advantage of the fact that the
sign of the arc length parameter to Graphics.drawArc and Graphics.fillArc defines
whether the arc proceeds clockwise or counter-clockwise from the starting angle.

The Painting Mode

The painting mode of a Graphics object is, by default, set to "overwrite" mode. In this
mode, all graphics are rendered by overwriting the pixels of the display surface using the
Graphics object’s current foreground color. You can force the Graphics object into
overwrite mode using Graphics.setPaintMode. When called, this parameterless method
places the Graphics into overwrite mode. Expressed pseudo-mathematically, the color of
destination pixels after rendering is

colorDest(x,y) = graphics.foregroundColor

The other method of modifying a Graphics object’s painting mode is
Graphics.setXORMode. When called, the Graphics object uses XOR mode for rendering
geometric primitives, text, or Images on the drawing surface. Three colors are combined
mathematically to determine the color of destination pixels after rendering, as follows,

colorAfterRendering(x,y) = colorBeforeRendering(x,y)
? graphics.foregroundColor ? graphics.alternateColor

where the ? symbol represents a bitwise XOR operation. The alternateColor of a
Graphics object is specified as the only parameter to Graphics.setXORMode. Listing 1-6
is an example of the Ovals applet, which illustrates XOR painting mode, that can be used
to draw contrasting areas of geometric primitives on the drawing surface.

Listing 1-6 Example of the Ovals applet

import java.applet.Applet;
import java.awt.Graphics;
import java.awt.Color;

public class Ovals extends Applet {
 int nAppletWidth;
 int nAppletHeight;

 public void init() {
 resize(500, 500);
 nAppletWidth = nAppletHeight = 500;
 }

 public void paint(Graphics g) {
 float flLongAxisLength = nAppletWidth;
 float flShortAxisLength = nAppletHeight / 2;
 boolean fLongAxisVertical = true;
 g.setColor(Color.black);

 for(int nI=0 ; nI<10 ; nI++) {
 int x, y, width, height;

 if(fLongAxisVertical) {
 x = (nAppletWidth / 2) -
 (int)(flShortAxisLength / 2);
 y = (nAppletHeight / 2) -
 (int)(flLongAxisLength / 2);
 width = (int)flShortAxisLength;
 height = (int)flLongAxisLength;
 } else {
 x = (nAppletWidth / 2) -
 (int)(flLongAxisLength / 2);
 y = (nAppletHeight / 2) -
 (int)(flShortAxisLength / 2);
 width = (int)flLongAxisLength;
 height = (int)flShortAxisLength;
 }

 g.setXORMode(Color.white);

 g.fillOval(x, y, width, height);

 g.setPaintMode();
 g.drawOval(x, y, width, height);

 flLongAxisLength *= 0.75;
 flShortAxisLength *= 0.75;
 fLongAxisVertical = ! fLongAxisVertical;
 }

 return;
 }
}

Figure 1-6 is a screenshot of Listing 1-6, the Ovals applet, when viewed using the JDK’s
AppletViewer.

Figure 1-6 Screenshot of Ovals applet, demonstrating the XOR painting mode of the
Graphics class

The Ovals applet uses XOR painting mode to highlight overlapping areas of oval
primitives on the drawing surface. The background color of the applet’s drawing surface
is automatically painted light gray (Color.lightGray or RGB 192, 192, 192) by the Java
runtime system.

The foreground color of the Oval’s Graphics object is set to Color.black (RGB 0, 0, 0) by
default. The XOR alternate color is set to Color.white (RGB 255, 255, 255), the value of
the parameter to Graphics.setXORMode. Therefore, the color in which the first oval is
rendered can be deduced using the formula presented earlier.

colorAfterRendering(x,y) = colorBeforeRendering(x,y)
? graphics.foregroundColor ? graphics.alternateColor
= (RGB 192, 192, 192) ? (RGB 0, 0, 0) ? (RGB 255, 255, 255)
= (RGB 63, 63, 63)

When a new oval is rendered so that it intersects an oval that has already been drawn, the
intersecting area of these two ovals will be drawn with the color obtained as follows:

colorAfterRendering(x,y) = colorBeforeRendering(x,y)
? graphics.foregroundColor ? graphics.backgroundColor
= (RGB 63, 63, 63) ? (RGB 0, 0, 0) ? (RGB 255, 255, 255)
= (RGB 192, 192, 192)

In this case the result is Color.lightGray.

It is simple to show that all areas painted with the XOR painting mode using these colors
an odd number of times will have the RGB values (63, 63, 63), which is Color.darkGray.
All areas painted an even number of times will have the RGB values (192, 192, 192), or
Color.lightGray.

Applet and Associated Class Summaries

Table 1-3 lists the classes and interfaces necessary for developing custom Applet objects
in Java. The following sections describe each Class’ methods in more detail.

Table 1-3 Class and interface descriptions

Class/Interface Description

AppletContext Exposes services implemented by the applet browser for use by

Applet objects. Conceptually, all active Applet objects have
access to the same AppletContext.

Graphics Encapsulates a drawing surface, and exposes tools for drawing
graphics and rendering text on that drawing surface. A drawing
surface may be a rectangle of the desktop, an in-memory image,

or even a page in the printer.
Applet Represents an embeddable Applet object.

AppletContext

Purpose
An interface which abstracts the browser to an Applet. Methods for testing and
modifying the current state of the browser are provided as public members of this
interface.

Syntax
interface AppletContext

Description
A running Applet gets its AppletContext using Applet.getAppletContext. Using
this interface, the Applet can get and set some parameters of the browser’s current
state. An Applet can get references to other Applets currently running in the
browser, download images and audio clips, and load a new document into the
browser through the AppletContext interface.

PackageName
java.applet

Imports
java.awt.Image, java.awt.Graphics, java.awt.image.ColorModel, java.net.URL,
java.util.Enumeration

Constructors
None.

Parameters
None.

getApplet

Interface
AppletContext

Purpose
Used to facilitate inter-applet communications within a browser.

Syntax
public Applet getApplet(String strName);

Parameters
None.

String strName
This interface method implies the browser stores, with each loaded applet, a
unique string to identify that applet. It passes to getApplet one of these unique
applet identifiers to gain access to the associated Applet object.

Description
Multiple Applet objects can be simultaneously loaded and run by the same
browser. Each applet runs within its own Thread. Use this method to access other
applets running concurrently. It is completely up to a particular browser how to
associate a particular string with an Applet object. For example, most
commercial-grade World Wide Web browsers which are applet-aware use the
NAME tag in the <APPLET> container tag to associate a name string with a
particular applet, as in the HTML snippet below.

...
<APPLET CODE=MyApplet.class NAME="Chooser" WIDTH=100 HEIGHT=100>
<PARAM NAME="foo" VALUE="bar">
<PARAM NAME="blepharo" VALUE="spasm">
</APPLET>
Imports

None.
Returns

The Applet object associated with the unique String strName. If no applet is
associated with strName, null is returned or if the applet browser does not provide
facilities for inter-applet communications.

See Also
The getApplets method of the AppletContext interface

Example
The following example tries to find a set of other applets loaded by the browser.
A report is written out to System.out indicating whether or not each applet could

be found. The "applet-list" parameter contains a comma-separated list of applet
names to look for. Only up to ten applets will be searched.

import java.applet.*;

public class AppletsSearchApplet extends Applet {
 String[] astrAppletNames = new String[11];

 public void init() {
 // Nothing displayed on browser, so shrink display surface
 resize(0, 0);

 /* Get the "applet-list" parameter, which contains a
 ** comma-separated list of applet names to search for.*/
 String strAppletListParam = getParameter("applet-list");
 if(null == strAppletListParam) {
 System.out.println(
 "No \"applet-list\" parameter provided.);
 return;
 }

 /* Use the applet name list to initialize astrAppletNames.*/
 int iNameIndex = 0;
 int nStartIndex = 0;
 int nNextCommaIndex = 0;

 while((-1 != nNextCommaIndex) && (iNameIndex < 10)){
 if(-1 == (nNextCommaIndex =
 strAppletListParam.indexOf(',', nStartIndex)))
 astrAppletNames[nNameIndex++] =
 strAppletListParam.substring(nStartIndex);
 else
 astrAppletNames[nNameIndex++] =
 strAppletListParam.substring (
 nStartIndex, nNextCommaIndex);

 nStartIndex = nNextCommaIndex + 1;
 }
 }

 public void start() {
 // Look for each named applet in turn and report results.
 for(int iNameIndex = 0
 ; null != astrAppletNames[iNameIndex]
 ; iNameIndex++) {
 Applet applet = getAppletContext().getApplet(
 astrAppletNames[iNameIndex]);
 System.out.print("Applet " +
 astrAppletNames[iNameIndex] + " ");

 if(null == applet)
 System.out.println("not found!");
 else
 System.out.println("found!");
 }
 }

 // stop() does not need to be implemented.

 public void destroy () {
 // Release the array of applet name strings.
 astrAppletNames = null;
 }
}

getApplets

Interface
AppletContext

Purpose
Used to facilitate inter-applet communications within a browser.

Syntax
public Enumeration getApplets();

Parameters
None.

Description
This method allows you to look up all applets currently running in the browser.
The browser which implements this method will give you access to all Applet
objects currently running in the browser.

Imports
None.

Returns
An Enumeration object is returned. Each element in the Enumeration is an Applet
currently active in the browser. Note that an empty Enumeration, or a return of
null, could be interpreted in two ways: Either getApplets() is not fully
implemented by the browser, or no other applets are active in the browser.
No exact specification currently exists describing what getApplets should return
in either of these situations.

See Also
The getApplet method of the AppletContext interface

Example
The following example uses getApplets and a custom interface, named Namable,
to implement an applet-identification facility more complete than the
AppletContext facility provided by getApplet and getApplets.

interface Namable {
 public String getName();
}

Here are the contents of FindNamableApplet.java:

public class FindNamableApplet extends Applet implements Namable {
 Hashtable hashAppletsByName;
 String strName;
 String strNameToFind;

 // getName simply returns the "name" parameter value.
 public String getName() {
 return strName;
 }

 // destroy releases references to object variables.
 public void destroy() {
 hashAppletsByName = null;
 strName = null;
 strNameToFind = null;
 }

 // init fills the applet hash table, and reads in parameters.
 public void init() {
 // Get the two expected parameters.
 if(null == (strName = getParameter("name"))) {
 System.out.println("Name param missing!");
 return;
 }
 if(null == (strNameToFind = getParameter("find"))) {
 System.out.println("Find param missing!");
 return;
 }

 // Add all Namable applets to hash table.
 Enumeration enumApplets = getAppletContext().getApplets();
 while (enumApplets.hasMoreElements()) {
 if(enumApplets.nextElement() instanceof Namable) {
 Namable applet = (Namable)enumApplets.nextElement();
 hashAppletsByName.put(applet.getName(), applet);
 }
 }
 }

 // start() attempts to find strNameToFind applet, reports results
 public void start() {
 System.out.print("Applet " + strNameToFind + " ");

 if(hashAppletsByName.containsKey(strNameToFind))
 System.out.println("found.");
 else
 System.out.println("not found!");
 }

 // Unnecessary to implement stop().
}

getAudioClip

Interface
AppletContext

Purpose
Loads an audio file and readies it to be played by the browser.

Syntax

public AudioClip getAudioClip(URL url);
Parameters
URL url

Points to an audio data file to be loaded by the browser.
Description

Commercial-grade browsers, especially World Wide Web browsers, have built-in
facilities for loading and playing audio files. Applets use the getAudioClip
method to load audio files from any URL the browser can understand. Applets
should use one of the overloaded Applet.getAudioClip methods to access
AudioClips instead of AppletContext.getAudioClip. This method is rarely called
by an Applet directly.

Imports
java.net.URL

Returns
The object returned by this function implements the AudioClip interface. If the
URL is not understood by the browser, null will be returned or if the browser does
not provide this functionality to applets.

Example
See the Applet.getAudioClip code example. Applet.getAudioClip is implemented
as a simple pass-through to AppletContext.getAudioClip, similar to this code
sample:

public Applet extends Panel {
 // Other Applet methods declared and implemented...
 // ...

 public AudioClip getAudioClip(URL url) {
 // Use the AppletContext to load the audio clip
 return getAppletContext().getAudioClip();
 }
}

getImage

Interface
AppletContext

Purpose
To load an image from a URL and prepare it for rendering on a display surface.

Syntax
public Image getImage(URL url);

Parameters
URL url

Points to an image file to be loaded by the browser.
Description

Java applications must implement methods for reading and interpreting image
files, and converting the image data into Image objects. Applets may have this
functionality exposed to them by the browser through the

AppletContext.getImage method. Browsers that can load and interpret various
image formats, such as GIF, JPEG or TIFF, can provide that capability to
applets. Applets simply provide a URL pointing to an image file in a recognized
format. No methods are provided for an applet to query which image formats are
supported by a browser. Therefore, it is usually a good idea to only try to load
images in very common graphics formats, such as GIF or JPEG.

Imports
java.awt.Image

Returns
An Image object will be returned by this object, or null if this facility is not
supported by the browser. The reaction of this method when the URL refers to an
unsupported protocol, or when the image file format is unrecognized, is
unspecified. Generally, it can be assumed that null will be returned if this
capability it not provided by the browser.

See Also
The Image class

Example
The following sample applet loads and displays an image. A relative URL to the
image to be loaded is passed to the applet as the "image" parameter. That
parameter will be interpreted relative to the URL returned by
Applet.getDocumentBase. An object of the MyImageObserver class is needed to
receive an error message if there is a problem with loading or displaying the
image.

import java.applet.*;
import java.awt.*;

class MyImageObserver implements ImageObserver {
 public boolean imageUpdate(Image image, int nInfoFlags,
 int nX, int nY, int nCx, int nCy) {
 // If an error has been detected, report it.
 if(nInfoFlags & ImageObserver.ERROR)
 System.out.println("Error with the image.");
 return true;
 }
}

public class ImageApplet extends Applet {
 Image image;
 MyImageObserver mio = new MyImageObserver;

 public void init() {
 // resize to some fixed size: large images will be clipped
 resize(100, 100);

 // Get the relative URL for the image
 String strRelativeURL = getParameter("image");
 if(null == strRelativeURL) {
 System.out.println("Image parameter missing.");
 return;
 }
 // Load the image.

 image = getAppletContext().getImage(
 getDocumentBase(), strRelativeURL);
 if(null == image)
 System.out.println("Unable to load image.");
 }

 public void destroy() {
 // Get rid of reference to image and image observer.
 image = null;
 mio = null;
 }

 public void paint(Graphics g) {
 // Paint image on display surface, if image exists
 if(null != image)
 g.drawImage(image, 0, 0, mio);
 }
}

showDocument

Interface
AppletContext

Purpose
Opens a new document in the browser. An overloaded version exists to specify
the name of the target browser frame.

Syntax
public void showDocument(URL url); public void showDocument(URL url,
String target);

Parameters
URL url

Points to the document to be opened by the browser. If the protocol referred to
by the URL is not recognized by the browser, this call will be ignored. If the
document format implied by the URL’s file name is not recognized by the
browser, this call will be ignored.

String target
You may specify a named browser-frame for the new document to appear in.
Table 1-4 lists the valid values for this parameter

Table 1-4 Valid values of the String target parameter
Value Meaning

"_self" The same frame the Applet is embedded in.

"_parent" The parent frame of the frame the Applet is embedded in.

"_top" The top-level window this Applet appears in.
"_blank" A new, top-level unnamed frame.

"_blank" A new, top-level unnamed frame.
<other> Any other name causes the browser to search for an extant

frame with this name. If none exists, then a new top-level
frame with this name is created.

Description

In the abstract, Applets are seen as being embedded in distributed "documents,"
such as World Wide Web pages. When implemented, this method allows the
applet to force the browser to open a particular document pointed to by a URL.
Like all other methods in this interface, a particular browser may not implement
this method, in which case the browser will simply ignore a call to this method.
If the second overloaded version of this method is used, then the document will
be opened in a browser frame with the same name as the target parameter.

Imports
java.net.URL

Returns
The Applet object associated with the unique String strName. If no applet is
associated with strName, null is returned or if the applet browser does not
provide facilities for inter-applet communications.

See Also
The getDocumentBase method of the Applet class

Example
This applet asks the browser to reload the current document whenever the
Applet’s stop method is invoked. (Not generally a very nice thing to do.)

public class RestartingApplet extends Applet {

 public void stop() {
 AppletContext ac = getAppletContext();
 if(null != ac)
 ac.showDocument(getDocumentBase());
 }

}

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of
EarthWeb is prohibited. Read EarthWeb's privacy statement.

Graphics

Purpose
An AWT Component (such as an Applet) uses a Graphics object to draw on a
display surface.

Syntax
public class Graphics

Description
A Graphics object is always associated with a "display surface." The display
surface can be a rectangle of the on-screen desktop, an Image in memory, or
potentially any rectangular area that can be drawn on. You use the Graphics class
methods to render graphics and text on the display surface assoicated with the
Graphics object. Figure 1-7 shows the class diagram for the Graphics class.

PackageName
java.awt

Imports
java.awt.*, java.image.ImageObserver

Constructors
None. You cannot create Graphics objects directly, but instead get them from
other Java API methods. For example, Image.getGraphics returns a Graphics
object, which uses the Image as its drawing surface.

Parameters
None.

Figure 1-7 Class diagram for the Graphics class

clearRect

ClassName
Graphics

Purpose
To erase the specified rectangle using the background color of the display surface
associated with the Graphics object.

Syntax
public abstract void clearRect(int x, int y, int width, int height);

Parameters
int x, int y, int width, int height

These four parameters define the rectangle to be erased on the display surface.
Description

This method is used to erase a rectangle from the display surface. The associated
display surface’s background color is used to fill the specified rectangle. This is a
legacy method which was never removed from the alpha release of Java. Use of
this method is not advised. Instead, use Graphics.fillRect, specifying the color you

want to use to erase the rectangle. It is an unfortunate but true fact that the Java
API does not specify an overloaded version of this method which takes a Rect
object as a parameter. The origin and extent of the rectangle must be explicitly
provided in the four parameters to this method.

Imports
None.

Returns
None.

See Also
The fillRect method of the Graphics class

Example
Use of this method is not advised, so an example is not provided.

clipRect

ClassName
Graphics

Purpose
To shrink the clipping rectangle of the Graphics object.

Syntax
public abstract void clipRect(int x, int y, int width, int height);

Parameters
int x, int y

These four parameters define the new clipping rectangle for the Graphics object.
int width
int height
Description

Use this method to modify the clipping rectangle of the Graphics object. The
clipping rectangle restricts drawing on the drawing surface to within the rect. The
resultant clipping rectangle is the intersection of the current clipping rect and the
new one defined by the parameters passed to this method. That is, the clipping
rectangle can never be made larger, only smaller. This is to prevent ill-behaved
Components from enlarging their clipping rectangles to include the entire desktop
and then drawing all over the desktop. The clipping rectangle is one of the
internal state variables of all Graphics objects.

Imports
None.

Returns
None.

See Also
The create method of the Graphics class

Example
public class MyApplet extends Applet {
 public void paint(Graphics g) {
 // Get the current clipping rectangle
 Rect rectClip = g.getClipRect();

 // Try to enlarge the clipping rectangle. Since
 // you can’t enlarge clipping rectangles, resultant
 // clipping rect will be same size as original.
 g.clipRect(0, 0, 1000, 1000);

 // Shrink clipping rect by 10 on all sides. This
 // always returns intersection of old and new
 // rects.
 g.clipRect(rectClip.x+10, rectClip.y+10,
 rectClip.width-20, rectClip.height-20);
 }
}

copyArea

ClassName
Graphics

Purpose
Copies a rectangle of the display surface to a new location on the display surface.

Syntax
public abstract void copyArea(int x, int y, int width, int height, int dx, int dy);

Parameters
int x, int y, int width, int height

These four parameters define the source rectangle to copy from.
int dx

The origin of the target rectangle.
int dy
Description

Copies the pixels of a rectangle of the display surface to another rectangle of the
same display surface. Note that the source rectangle may reside outside the
clipping rectangle of the Graphics object.

Imports
None.

Returns
None.

See Also
The drawImage method of the Graphics class

Example
This example clears the target area by using the XOR drawing mode of the
Graphics object. The target rectangle will be painted with the alternate XOR color
after the operation is complete.

public void paint(Graphics g) {
 g.setXORMode(Color.white);
 Rect rectClip = g.getClipRect();

 // Copy clipping rectangle over itself, which causes
 // image to disappear, leaving only the alternate
 // color (Color.white, in this case).
 g.copyArea(clipRect.x, clipRect.y, clipRect.width,
 clipRect.height, clipRect.x, clipRect.y);

}

create

ClassName
Graphics

Purpose
Creates a copy of this Graphics object.

Syntax
public abstract Graphics create();
public abstract Graphics create(int x, int y, int width, int height);

Parameters
int x, int y, int width, int height

These parameters define the display surface of the returned Graphics object. The
resultant clipping rectangle will be equal to the intersection of the original
Graphics object’s clipping rectangle and the rectangle defined by these
parameters.

Description
Creates a clone of the original Graphics object, attached to the same display
surface and with the same internal state as the original Graphics object. The
second overloaded version makes a new Graphics object attached to a specific
rectangle of the original Graphics object’s display surface. As the example below
illustrates, the create method is most useful when you want to shrink the clipping
rectangle, but get the original, larger clipping rectangle back later.

Imports
None.

Returns
A Graphics object is returned which is a clone of the original. If the second
overloaded version of this method is used, then the clipping rectangle of the
resultant Graphics object will be equal to the intersection of the clipping rectangle
of the original Graphics and the rectangle defined by the parameters to this
method. Also, the origin of the resultant Graphics object will be at the point
defined by the x and y parameters to this method.

See Also
The clipRect method of the Graphics class

Example
This example uses the create method to temporarily shrink the clipping rectangle
of a Graphics object.

public void paint(Graphics g) {
 // Get clipping rect of original Graphics
 Rect rectClip = g.getClipRect();

 // create Graphics with smaller clipping rect.
 Graphics gTemp = g.create(rectClip.x+10, rectClip.y+10,
 rectClip.width-20, rectClip.height-20);

 // use smaller clip rect in temp Graphics
 ...

 // Clip rect of original Graphics is still preserved
 // (can’t do that with Graphics.clipRect!).
}

translate

ClassName
Graphics

Purpose
Moves the origin of the Graphics’ coordinate system.

Syntax
public abstract void translate(int x, int y);

Parameters
int x, int y

These two parameters define a point which is the new origin of the display
surface. The parameters are offsets from the original Graphics object’s origin.

Description
Modifies the origin of the Graphics object. The origin is one of the internal state
variables of Graphics objects.

Imports
None.

Returns
None.

Example
public void paint(Graphics g) {
 // Move the origin ten points to the right and down
 // before using the Graphics object...
 g.translate(10, 10);

 ...
}

draw3DRect

ClassName
Graphics

Purpose
Renders a raised or depressed rectangle on the Graphics’ display surface.

Syntax
public void draw3DRect(int x, int y, int width, int height, boolean raised);

Parameters
int x, int y, int width, int height

The dimensions of the rectangle to be rendered on the display surface
boolean raised

This parameter tells whether the beveling should imply a raised or depressed
effect for the 3D rectangle.

Description

Renders a rectangle with beveled edges to create a 3D visual effect. The beveling
can either imply a raised or depressed 3D rectangle. The shades of the beveling
are choosen based on the current drawing color of the Graphics object. The darker
shading will be roughly 70 percent as bright as the current drawing color. The
lighter color will be roughly 140 percent as bright as the current drawing color.
The beveling will be exactly one pixel wide.

Imports
None.

Returns
None.

See Also
The fill3DRect and drawRect methods of the Graphics class

Example
public void paint(Graphics g) {
 // Draw a raised 3D rectangle, 20x20 in size
 g.draw3DRect(0, 0, 20, 20, true);

 // Draw a depressed 3D rectangle of same dimensions
 g.draw3DRect(10, 10, 20, 20, false);
}

drawArc

ClassName
Graphics

Purpose
Renders the arc of an oval’s wedge on the Graphics’ display surface.

Syntax
public abstract drawArc(int x, int y, int width, int height, int startAngle, int
arcAngle);

Parameters
int x, int y, int width, int height

The dimensions of the rectangle bounding an oval. The arc is taken as part of the
circumference of this oval.

int startAngle
Measured in degrees, this defines the start of the arc. Zero degrees lies in the "3
o’clock" position.

int arcAngle
Measured in degrees, the distance of the arc around the oval. A positive value
indicates a counter-clockwise direction around the oval. Negative indicates
clockwise.

Description
Renders an arc of an oval on the display surface. The oval is defined by a
bounding rectangle, and the arc is described by a starting and stopping angle in
degrees.

Imports
None.

Returns

None.
See Also

The fillArc method of the Graphics class
Example

See the Nautilus example applet earlier in the chapter.

drawBytes

ClassName
Graphics

Purpose
Renders an array (or subarray) of bytes that are interpreted as ASCII character
values, on the Graphics’ display surface.

Syntax
public abstract void drawBytes(byte data[], int offset, int length, int x, int y);

Parameters
byte data[]

The array of byte data of ASCII characters to render on the display surface.
int offset

The zero-based index of the first character to render.
int length

The number of ASCII characters to render.
int x

The horizontal offset from the origin to render the characters on the drawing
surface.

int y
The vertical offset of the baseline where the text is to be rendered. This is
measured from the current origin of the Graphics context.

Description
drawBytes renders text on the drawing surface taken from a subarray of an array
of bytes. The bytes are interpreted as 8-bit ASCII character values. The current
font and drawing color of the Graphics is used to render the text.

Imports
None.

Returns
None.

See Also
The drawString, drawChars, and setFont methods of the Graphics class

Example
public void paint(Graphics g) {
 // Initialize an array of bytes with ASCII character
 // values
 byte[] ab = new byte[10];
 ab[0] = ‘G’;
 ab[1] = ‘i’;
 ab[2] = ‘l’;

 ab[3] = ‘l’;
 ab[4] = ‘i’;
 ab[5] = ‘g’;
 ab[6] = ‘a’;
 ab[7] = ‘n’;

 // Render the ASCII characters to the drawing surface.
 // Baseline is 20 pixels below the origin.
 g.drawBytes(ab, 0, 8, 0, 20);
}

drawChars

ClassName
Graphics

Purpose
Renders an array of ASCII characters on the drawing surface. The array can be a
subarray of a larger set of characters.

Syntax
public abstract void drawChars(char data[], int offset, int length, int x, int y);

Parameters
char data[]

The array of ASCII characters to render on the display surface.
int offset

The zero-based index of the first character to render.
int length

The number of ASCII characters to render.
int x

The horizontal offset from the origin to render the characters on the drawing
surface.

int y
The vertical offset of the baseline where the text is to be rendered. This is
measured from the current origin of the Graphics context.

Description
drawChars renders text on the drawing surface taken from a subarray of an array
of characters. The array values are interpreted as ASCII character values. The
Graphics object’s current font and drawing color are used to render the characters
on the Graphics’ display surface.

Imports
None.

Returns
None.

See Also
The drawBytes, drawString, and setFont methods of the Graphics class

Example
public void paint(Graphics g) {
 // Initialize an array of chars with ASCII character
 // values
 char[] ac = new char[10];

 ac[0] = ‘S’;
 ac[1] = ‘k’;
 ac[2] = ‘i’;
 ac[3] = ‘p’;
 ac[4] = ‘p’;
 ac[5] = ‘e’;
 ac[6] = ‘r’;

 // Render the ASCII characters to the drawing surface.
 // Baseline is 20 pixels below the origin.
 g.drawChars(ac, 0, 8, 0, 20);
}

drawImage

ClassName
Graphics

Purpose
Renders an Image on the Graphics object’s display surface.

Syntax
public abstract boolean drawImage(Image img, int x, int y, ImageObserver
observer);
public abstract boolean drawImage(Image img, int x, int y, int width, int height,
ImageObserver observer);

Parameters
Image img

The Image object to be displayed.
int x, int y

The coordinate of the upper-left corner of the image on the drawing surface
int width, int height

Using the second overloaded version of this method, you can specify the size of
the target rectangle to copy the Image to. By using a different size than the
original Image object, you can stretch/shrink the Image on the drawing surface.

ImageObserver observe
Notifies whether the image is complete or not. (See comments)

Description
The passed Image is copied to the drawing surface. The second overloaded
version of this method allows you to stretch/shrink the Image on the drawing
surface. The ImageObserver is notified about progress of copying the image to the
drawing surface. This is useful especially if the Image object is created from a
URL pointing to a .GIF or other graphics-format on the network. If, for example,
the URL does not actually point to an image, or to an incomplete image file, the
ImageObserver object is notified. This results in a little more overhead in coding,
but the increase in coding results in more robust applets and applications. Note
that all Components, including all Applets, automatically implement the
ImageObserver interface. The default implementation of this interface causes the
Component to be repainted whenever an update of the image is read in.

Imports

None.
Returns

None.
See Also

The getImage method of the Applet class; the getImage method of the Toolkit
class; the ImageObserver interface; and the MediaTracker class

Example
This applet creates an image from a URL in its init implementation. In paint, that
image is rendered twice on the applet’s display surface, once at the Image’s
default size, and a second time stretched to fit the entire surface of the Applet.

public class MyApplet extends Applet {
 Image _img = null;

 // Create the Image from a URL in init.
 public void init() {
 _img = getImage(
 new URL("http://www.sample.com/sample.img"));
 }

 // In paint, render the image once stretched and once not
 // stretched.
 public void paint(Graphics g) {
 // Make sure _img is not null.
 if(null == _img)
 return;

 // Render the imge stretched, using this Applet
 // as the ImageObserver.
 g.drawImage(_img, 0, 0, size().width,
 size().height, this);

 // Render the image not stretched.
 // Again, using this Applet as the ImageObserver.
 g.drawImage(0, 0, this);
}

drawLine

ClassName
Graphics

Purpose
Renders a line between two points on the Graphics object’s display surface.

Syntax
public abstract void drawLine(int x1, int y1, int x2, int y2);

Parameters
int x1

One endpoint of the line segment to render on the drawing surface.
int y1
int x2

Other endpoint of the line segment to render on the drawing surface.
int y2
Description

Renders a line between the two points on the drawing surface. The current
drawing color is used to render the line. Note that there is no way, using the Java
API, to specify lines with a width greater than one pixel. To achieve wide lines,
you must render multiple side-by-side lines on the display surface.

Imports
None.

Returns
None.

Example
The example uses the current drawing color to render a 5x5 grid on the Graphics’
clipping rectangle.

public void paint(Graphics g) {
 // Get the clipping rectangle and figure out grid
 // cell width and height from it.
 Rect rectClip = g.getClipRect();
 int cxCellWidth = rectClip.width / 5;
 int cyCellHeight = rectClip.height / 5;

 // Draw the grid.
 for(int ii=0 ; ii<=5 ; ii++)
 for(int jj=0 ; jj<=5 ; jj++) {
 g.drawLine(ii*cxCellWidth, 0, ii*cxCellWidth,
 size().height);
 g.drawLine(0, jj*cyCellHeight, size().width,
 jj*cyCellHeight);
 }
}

drawOval

ClassName
Graphics

Purpose
Renders an oval defined by a bounding rectangle.

Syntax
public abstract void drawOval(int x, int y, int width, int height);

Parameters
int x, int y, int width, int height

These parameters define the bounding rectangle of the oval.
Description

Renders an oval on the display surface. The oval is defined as being bound by the
four sides of the rectangle described by the input parameters to this method. The
color of the resulting oval is the current drawing color of the Graphics object.

Imports
None.

Returns

None.
See Also

The fillOval method of the Graphics class
Example

See the Ovals example applet earlier in this chapter.

drawPolygon

ClassName
Graphics

Purpose
Renders a polygon on the Graphics object’s display surface.

Syntax
public abstract void drawPolygon(int xPoints[], int yPoints[], int nPoints);
public void drawPolygon(Polygon p);

Parameters
int xPoints[], int yPoints[]

These two arrays describe an ordered set of points which define the vertices of a
polygon to be rendered on the drawing surface.

int nPoints
The number of vertices of the polygon to be rendered. This is also the number of
elements in both the xPoints[] and yPoints[] arrays.

Polygon p
A Polygon object which describes the polygon to be rendered on the drawing
surface

Description
Two overloaded versions of this method, both allow you to render a multisided
polygon on the drawing surface. The logic of the rendering algorithm
automatically closes the polygon by connecting the last point of the polygon to
the first.

Imports
None.

Returns
None.

See Also
The fillPolygon method of the Graphics class; the Polygon class

Example
public void paint(Graphics g) {
 // Instantiate two arrays of coordinates with three
 // values each, indicating the vertices of a triangle.
 int[] acx = new int[3];
 int[] acy = new int[3];

 acx[0] = 0 ; acy[0] = 0 ; // the point (0 , 0)
 acx[1] = 10; acy[1] = 0 ; // the point (10, 0)
 acx[2] = 10; acy[2] = 10; // the point (10, 10)

 // Draw the polygon represented by these three points

 g.drawPolygon(acx, acy, 3);
}

drawRect

ClassName
Graphics

Purpose
Renders a simple rectangle on the drawing surface.

Syntax
public abstract void drawRect(int x, int y, int width, int height);

Parameters
int x, int y, int width, int height

These parameters define the rectangle to be rendered on the drawing surface.
Description

Renders the rectangle defined by the four parameters on the Graphics’ display
surface. Use drawRect(rect.x, rect.y, rect.width-1, rect.height-2) to render the
outline of a particular Rect object. The rectangle is rendered using the Graphics’
current drawing color.

Imports
None.

Returns
None.

See Also
The fillRect method of the Graphics class

Example
public void paint(Graphics g) {
 // Draw a 10x10 rectangle in the upper-left corner of
 // drawing surface.
 g.drawRect(0, 0, 10, 10);
}

drawRoundRect

ClassName
Graphics

Purpose
Renders a rectangle with rounded corners on the Graphics’ display surface.

Syntax
public abstract void drawRoundRect(int x, int y, int width, int height, int
arcWidth, int arcHeight);

Parameters
int x, int y, int width, int height

These parameters define the rectangle to be rendered on the drawing surface.
int arcWidth, int arcHeight

These two parameters define the width and height of the arcs that are each of the
rounded corners. These number are both interpreted as the diameters of the arc at
the four corners. So the width and height of the arc at each corner are 1/2 of the
arcWidth and arcHeight parameters, respectively.

Description
Renders a rectangle with rounded corners on the drawing surface. Through the
parameters to this method, both the width and height of the corner arcs can be
defined. The outline of the rectangle is rendered using the current drawing color
of the Graphics object.

Imports
None.

Returns
None.

See Also
The fillRoundRect method of the Graphics class

Example
public void paint(Graphics g) {
 // Draw a rounded rect around the circumference of this
 // Component. Make the corners 5 pixels wide and tall
 // at the arc.
 Dimension d = size();
 drawRoundRect(0, 0, d.width-1, d.height-1, 10, 10);
}

drawString

ClassName
Graphics

Purpose
Renders a string of text on a drawing surface using the Graphics’ current font
and drawing color.

Syntax
public abstract void drawString(String str, int x, int y);

Parameters
String str

String containing the text to be rendered on the drawing surface. The entire string
will be rendered. To render a substring of a String object, use either the
drawBytes or drawChars Graphics methods.

int x
The horizontal offset from the origin to render the String on the drawing surface.

int y
The vertical offset of the baseline where the text is to be rendered. This is
measured from the current origin of the Graphics context.

Description
Draws the full String using the current font and drawing color. The left-most
point of the baseline is indicated by the x and y parameters.

Imports

None.
Returns

None.
See Also

The drawBytes, drawChars, and setFont methods of the Graphics class

fill3DRect

ClassName
Graphics

Purpose
Renders a filled, raised, or depressed rectangle on the Graphics’ display surface.

Syntax
public void fill3DRect(int x, int y, int width, int height, boolean raised);

Parameters
int x, int y, int width, int height

These parameters define the dimensions of the rectangle to draw on the display
surface.

boolean raised
This parameter tells whether the beveling should imply a raised or depressed
effect for the 3D rectangle.

Description
Renders a rectangle with beveled edges to create a 3D visual effect. The beveling
can either imply a raised or depressed 3D rectangle. The shades of the beveling
are choosen based on the current drawing color of the Graphics object. The
darker shading will be roughly 70 percent as bright as the current drawing color.
The lighter color will be roughly 140 percent as bright as the current drawing
color. The beveling will be exactly one pixel wide. The inside of the rectangle
will be filled using the current drawing color of the Graphics object.

Imports
None.

Returns
None.

See Also
The draw3DRect and fillRect methods of the Graphics class

Example
public void paint(Graphics g) {
 // Draw a filled raised 3D rectangle, 20x20 in size
 g.fill3DRect(0, 0, 20, 20, true);
 // Fill a depressed 3D rectangle of same dimensions
 g.fill3DRect(10, 10, 20, 20, false);
}

fillArc

ClassName
Graphics

Purpose
Renders a wedge of an oval on the Graphics’ display surface.

Syntax
public abstract fillArc(int x, int y, int width, int height, int startAngle, int
arcAngle);

Parameters
int x,int width, int height

The dimensions of the rectangle bounding an oval. The arc is a wedge of int y
this oval.

int startAngle
Measured in degrees, this defines the start of the arc. 0 degrees lies in the "3
o’clock" position.

int arcAngle
Measured in degrees, the distance of the arc around the oval. A positive value
indicates a counter-clockwise direction around the oval. Negative value indicates
a clockwise direction.

Description
Draws a wedge of an oval. The oval is defined by a bounding rectangle, and the
wedge is described by a starting and stopping angle in degrees.

Imports
None.

Returns
None.

See Also
The drawArc method of the Graphics class

Example
See the Nautilus example Applet earlier in the chapter.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions

fillOval

ClassName
Graphics

Purpose
Renders a filled oval defined by a bounding rectangle.

Syntax
public abstract void fillOval(int x, int y, int width, int height);

Parameters
int x, int y, int width

These parameters define the bounding rectangle of the oval to be rendered.

int height
Description

Renders a filled oval on the display surface. The oval is defined as being bound
by the four sides of the rectangle described by the input parameters to this
method. The color of the resulting oval is the current drawing color of the
Graphics object.

Imports
None.

Returns
None.

See Also
The drawOval method of the Graphics class

Example
See the Ovals example Applet earlier in this chapter.

fillPolygon

ClassName
Graphics

Purpose
Renders a filled polygon on the Graphics object’s display surface.

Syntax
public abstract void fillPolygon(int xPoints[], int yPoints[], int nPoints); public
void fillPolygon(Polygon p);

Parameters
int xPoints[], int nPoints, int yPoints[]

These two arrays describe an ordered set of points which define the vertices of a
polygon to render on the drawing surface.
The number of vertices of the polygon to be rendered. This is also the number of
elements in both the xPoints[] and yPoints[] arrays.

Polygon p
A Polygon object which describes the polygon to render on the drawing surface.

Description
Two overloaded versions of this method both allow you to render a multisided
polygon on the drawing surface. The logic of the rendering algorithm
automatically closes the polygon by connecting the last point of the polygon to
the first. The odd-even filling algorithm is used to fill polygons. So for complex
polygons, internal areas may or may not get filled. The general rule of thumb is
that an area will be filled if a line segment drawn from outside the polygon to the
area within the polygon crosses an odd number of the polygon’s line segments. If
an even number is crossed, then the area will not be filled. For example, the center
of a pentagram would not get filled, while each of the five arms of the pentagram
would get filled.

Imports
None.

Returns

None.
See Also

The drawPolygon method of the Graphics class, the Polygon class
Example
public void paint(Graphics g) {
 // Instantiate two arrays of coordinates with three
 // values each, indicating the vertices of a triangle.
 int[] acx = new int[3];
 int[] acy = new int[3];

 acx[0] = 0 ; acy[0] = 0 ; // the point (0 , 0)
 acx[1] = 10; acy[1] = 0 ; // the point (10, 0)
 acx[2] = 10; acy[2] = 10; // the point (10, 10)

 // Draw the polygon represented by these three points
 g.fillPolygon(acx, acy, 3);
}

fillRect

ClassName
Graphics

Purpose
Renders a simple filled rectangle on the drawing surface.

Syntax
public abstract void fillRect(int x, int y, int width, int height);

Parameters
int x, int y, int width, int height

These parameters define the rectangle to render on the drawing surface.
Description

Renders the filled rectangle described by the four parameters on the Graphics’
display surface. Use drawRect(rect.x, rect.y, rect.width-1, rect.height-2) to render
a particular Rect object. The rectangle is rendered using the Graphics’ current
drawing color.

Imports
None.

Returns
None.

See Also
The drawRect method of the Graphics class

Example
public void paint(Graphics g) {
 // Draw a 10x10 rectangle in the upper-left corner of
 // drawing surface.
 g.fillRect(0, 0, 10, 10);
}

fillRoundRect

ClassName
Graphics

Purpose
Renders a filled rectangle with rounded corners on the Graphics’ display surface.

Syntax
public abstract void fillRoundRect(int x, int y, int width, int height, int arcWidth,
int arcHeight);

Parameters
int x, int y, int width, int height

These parameters define the rectangle to render on the drawing surface.
int arcWidth, int arcHeight

These two parameters define the width and height of the arcs that are each of the
rounded corners. These numbers are both interpreted as the diameters of the arc at
the four corners. So the width and height of the arc at each corner is 1/2 of the
arcWidth and arcHeight parameters, respectively.

Description
Renders a filled rectangle with rounded corners on the drawing surface. Through
the parameters to this method, both the width and height of the corner arcs can be
defined. The rectangle is rendered using the current drawing color of the Graphics
object.

Imports
None.

Returns
None.

See Also
The drawRoundRect method of the Graphics class

Example
public void paint(Graphics g) {
 // Draw a rounded rect around the circumference of this
 // Component. Make the corners 5 pixels wide and tall
 // at the arc.
 Dimension d = size();
 g.fillRoundRect(0, 0, d.width-1, d.height-1, 10, 10);
}

getClipRect

ClassName
Graphics

Purpose
Returns a Rect whose members are set to the origin and dimensions of the current
clipping rectangle for this Graphics object.

Syntax
public abstract Rectangle getClipRect();

Parameters
None.

Description
Allows you access to the clipping rectangle dimensions and placement, which is
one of the internal state variables of the Graphics object. Drawing operations are
only valid within the clipping rectangle. Graphics-intensive applet or applications
are easily optimized in the paint method by performing only those operations
valid within the clipping rectangle. For example, an application which renders lots
of images to the drawing surface would see vast improvements in speed by only
drawing those images which overlap with the clipping rectangle, since any
drawing outside the clipping rectangle is ignored anyway.

Imports
None.

Returns
A Rectangle object which represents the position and size of the clipping
rectangle relative to the origin of the Graphics object.

See Also
The clipRect and create methods of the Graphics class

Example
This paint method is responsible for rendering a 100x100 grid of Images on the
drawing surface. The method is optimized by only rendering those Images which
fall within the Graphics’ clipping rectangle.

// Assume a 100x100 array of Images has been initialized...
// each image is 10x10 pixels in size.
Image[][] _aaimg = new Image[100][100];
public void paint(Graphics g) {
 // get the clipping rectangle
 Rect rectClip = g.getClipRect();

 // only draw those images which overlap with the
 // clipping rectangle.
 int ii = rectClip.x/10 + (0 == rectClip.x%10 ? 0 : 1);
 int jj = rectClip.y/10 + (0 == rectClip.y%10 ? 0 : 1);
 int maxi = rectClip.width/10 +
 (0 == rectClip.width%10 ? 0 : 1);
 int maxj = rectClip.height/10 +
 (0 == rectClip.height%10 ? 0 : 1);
 for(; ii<=maxi ; ii++)
 for(; jj<=maxj ; jj++)
 // draw the ii-th, jj-th image, using
 // this Component as the ImageObserver.
 g.drawImage(_aaimg[ii][jj], ii*10, jj*10,
 this);
}

getColor

ClassName
Graphics

Purpose
Gets the current rendering color of the Graphics object.

Syntax

public abstract Color getColor();
Parameters

None.
Description

Accesses the current foreground color of the graphics object, which is one of the
internal state variables of the Graphics object. All graphical primitive and text
rendering operations are done using the foreground color.

Imports
java.awt.Color

Returns
A Color object containing the relative RGB (Red/Green/Blue) values of the
current foreground color of the Graphics object.

See Also
The setColor method of the Graphics class; the Color class

Example
This example uses both getColor and setColor to modify the Graphics’ current
rendering color.

public void paint(Graphics g) {

 // Get current drawing color.
 Color c = g.getColor();

 // Modify current color by switching red and blue
 // color values.
 g.setColor(new Color(c.getBlue(), c.getGreen,
 c.getRed());

 // Do drawing with the new color.
 ...
}

getFont

ClassName
Graphics

Purpose
Gets the current font of the Graphics object.

Syntax
public abstract Font getFont();

Parameters
None.

Description
Accesses the current font of the Graphics object The current font is one of the
internal state variables defining the current state of a Graphics object. All text
rendering operations are done using the currentFont.

Imports
java.awt.Font

Returns
A Font object describing the current font in use by the Graphics object.

See Also
The setFont method of the Graphics class; the Font class

Example
This example uses getFont and setFont to make the current font for rendering text
boldface.

public void paint(Graphics g) {
 // Get the current Font.
 Fonr f = g.getFont();

 // change the Font by making a boldface version of it.
 g.setFont(new Font(f.getName(),
 f.getStyle() | Font.BOLD, f.getSize());

 // Do something with the new font...
 ...
}

getFontMetrics

ClassName
Graphics

Purpose
Returns a FontMetrics object for the Font and the display surface associated with
this Graphics object.

Syntax
public abstract FontMetrics getFontMetrics();
public abstract FontMetrics getFontMetrics(Font f);

Parameters
Font f

A specific Font to get a FontMetrics for. The resultant FontMetrics represents the
metrics of text rendered on the display surface associated with this Graphics
object using Font f.

Description
The same font can actually render differently on different display surfaces,
especially if those display surfaces represent very dissimilar graphical devices. A
FontMetrics object describes how the font will render on a particular Graphics
object’s display surface. The first overloaded version of this method will generate
a FontMetrics describing how the Graphics object’s current font, one of the
variables of the Graphic’s internal state, will display on the drawing surface. The
other overloaded version allows you to pass in a Font object.

Returns
A FontMetrics object describing how the specified font, defined by a Font object,
will be displayed on the Graphic’s drawing surface.

See Also
The getFont and setFont methods of the Graphics class

Example
public void paint(Graphics g) {
 // Get the FontMetrics for the current Font on
 // g’s display surface.

 FontMetrics fm = g.getFontMetrics();

 // Display width of the string "Ginger" to System.out.
 System.out.println("Width of ‘Ginger’ is " +
 fm.stringWidth("Ginger"));
}

scale

ClassName
Graphics

Purpose
Changes the scale of the X and Y axes of this Graphics object’s coordinate
system.

Syntax
public abstract void scale(float xScale, float yScale);

Parameters
float xScale

The new ratio of physical device units of the display surface to logical units of the
Graphics object in the horizontal direction.

float yScale
The new ratio of physical device units of the display surface to logical units of the
Graphics object in the vertical direction.

Description
This method allows you to modify the ratio of physical device units to logical
device units in both the horizontal and vertical directions. The scale of the
Graphics object is one of the internal state variables that can affect the appearance
of rendered geometric primitives, text, and images on the display surface.
The physical device units of a display surface are an atomic measure of the
smallest addressable surface element. For example, the physical device units of
the on-screen desktop are pixels. Pixels are also the physical device units of
Image objects in memory.
Changing the scale of a Graphics object attached to the on-screen desktop to, say,
two would mean that every pixel on the display surface was represented by two
logical units of the Graphics object. In that case, a reference to the point (10,10) in
a Graphics method would actually map to a physical point 5 pixels to the right
and 5 pixels below the origin on the screen.
Different graphical devices have different physical device units. The physical
device units of a laser printer probably would be much smaller than those of a
dot-matrix printer.

Imports
None.

Returns

None.

setColor

ClassName
Graphics

Purpose
Modifies the current rendering color of this Graphics object.

Syntax
public abstract void setColor(Color c);

Parameters
Color c

A Color object containing the RGB (Red/Green/Blue) values of the color to use
for the new foreground color of the Graphics object.

Description
Changes the current foreground color used by the Graphics object when rendering
geometric primitives or text on the display surface. The current foreground color
is one of the internal state variables that defines the current state of a Graphics
object.

Imports
None.

Returns
None.

See Also
The getColor method of the Graphics class; the Color class

Example
See the example for the getColor method of the Graphics class.

setFont

ClassName
Graphics

Purpose
Modifies the font used for rendering text by this Graphics object.

Syntax
public abstract void setFont(Font f);

Parameters
Font f

A Font object describing the font to use when rendering text on the display
surface using any of the Graphics class’ text rendering methods.

Description
Changes the current font used by the Graphics object when rendering text on the
display surface. The current font is one of the internal state variables that defines
the current state of a Graphics object.

Imports
None.

Returns
None.

See Also
The getFont method of the Graphics class; the Font class

Example
See the example for the getFont method of the Graphics class.

setPaintMode

ClassName
Graphics

Purpose
Sets the painting mode of this Graphics object to "overwrite", as opposed to XOR
mode.

Syntax
public abstract void setPaintMode();

Parameters
None.

Description
Changes the current painting mode used by the Graphics object when rendering
geometric primitives or text on the display surface to "overwrite". When using
this mode, all rendering overwrites the current display surface contents using the
current foreground color. The current painting mode is one of the internal state
variables that defines the internal state of a Graphics object.

Imports
None.

Returns
None.

See Also
The setXORmode method for the Graphics class

Example
This example uses both the overwrite and XOR painting modes in the same
custom paint method implementation.

public void paint(Graphics g) {
 // Make sure painting mode is "overwrite".
 g.setPaintingMode();

 // draw a couple of boxes.
 g.fillRect(0, 0, size().width, size().height);
 g.drawRect(0, 0, size().width-1, size().height-1);

 // put Graphics into XOR mode, using white as the
 // alternate color.
 g.setXORMode(Color.white);

 // draw some more boxes. Overlapping areas will
 // be shown as white.
 g.fillrect(10, 10, size().width-20, size().height-20);
 g.drawRoundRect(10, 10, size().width-20,

 size().height-20, 10, 10);
}

setXORMode

ClassName
Graphics

Purpose
Changes the Graphics object’s painting mode to XOR mode, as opposed to
overwrite mode.

Syntax
public abstract void setXORMode(Color c);

Parameters
Color c

A Color object containing the RGB (Red/Green/Blue) values of the color to use
for the alternate to the foreground.

Description
Changes the current painting mode used by the Graphics object when rendering
geometric primitives or text on the display surface to "XOR" mode. In XOR
mode, the color value of a pixel, after a rendering operation, can be determined by
this formula:

outColor(x, y) = inColor(x, y) ? drawingColor ? alternateColor

where the ? symbol denotes the bitwise XOR operation.
Imports

None.
Returns

None.
See Also

The setPaintingMode method of the Graphics class
Example

See the Ovals Applet example earlier in this chapter.

Applet

Purpose
An embeddable interactive Component, suitable for embedding in World Wide
Web pages using special HTML tags.

Syntax
public class Applet extends Panel

Description
A Java Applet is an interactive Component specially designed for use across the
World Wide Web. The Applet class defines methods for controlling the lifetime
of an Applet object, for which your applets provide custom implementations.
Each applet running in an applet-aware browser has its own Thread, which uses
the Applet methods init, start, stop and destroy to control the applet’s lifetime.
The Applet communicates with the browser through AppletContext and

AppletStub objects. Figure 1-8 illustrates the inheritance relationship of the
Applet class.

Figure 1-8 Class diagram of the Applet class

PackageName
java.applet

Imports
java.awt.*

Constructors
None.

Parameters
None.

isActive

ClassName
Applet

Purpose
Indicates whether or not the Applet has been started.

Syntax
public boolean isActive();

Parameters
None.

Description
Just before the Applet’s start method is called, the Applet is marked as "active".
At that point, all calls to this method return true. Before that time and just before
destroy is called, the Applet is marked as not active.

Imports
None.

Returns
True is returned if this method is called at any time from just before the Applet’s
start method is called to just before the Applet’s destroy method is called.

Example
Check to see if Applet "Professor" is active.

...
Applet appletProf =
 getAppletContext().getApplet("Professor");
if(null != appletProf)
 if(appletProf.isActive())
 System.out.println("Professor is active!");
...

getDocumentBase

ClassName
Applet

Purpose
Gets the URL for the document this Applet is embedded in.

Syntax
public URL getDocumentBase();

Parameters
None.

Description
The URL for the document this Applet is embedded in is returned. This method is
a shallow wrapper around AppletStub.getDocumentBase, so if the AppletStub is
not implemented then, a call to this method will cause a NullPointerException to
be thrown.

Imports
java.net.URL

Returns
The URL pointing to the document this Applet is embedded in.

See Also
The getCodeBase method of the Applet class.

Example
...
System.out.println("Doc base is: " + getDocumentBase());
...

getCodeBase

ClassName
Applet

Purpose
Gets the URL for this Applet’s .CLASS file.

Syntax
public URL getCodeBase();

Parameters
None.

Description
The URL for the this Applet’s .CLASS file is returned. This method is a shallow
wrapper around AppletStub.getCodeBase, so if the AppletStub is not
implemented, then a call to this method will cause a NullPointerException to be
thrown.

Imports
java.awt.URL

Returns
The URL pointing to this Applet’s .CLASS file.

See Also
The getDocumentBase method of the Applet class

Example
...
System.out.println("Code base is: " + getCodeBase());
...

getParameter

ClassName
Applet

Purpose
Gets the string value of a particular Applet parameter.

Syntax
public String getParameter(String name);

Parameters
String name

Name of the parameter to retrieve. This is the value of the "name" tag within the
HTML <PARAM> field which defines the Applet.

Description
This method returns one of the parameters to this Applet. Parameters are declared
between the <APPLET>..</APPLET> delimiters in HTML files. The <PARAM>
tag has two possible fields: "name" and "value". By indicating one of the valid
names for this Applet, the corresponding "value" field string will be returned.

Imports
None.

Returns
The String associated with the parameter whose "name" field value is the name
parameter. If no such parameter exists, then null is returned.

See Also
The getParameters method of the Applet class

Example
...
// Retrieve each of the Applet’s parameters and print
// all their values.
String[][] aastrParams = getParameters();
for(int ii=0 ; ii<aastrParams.length ; ii++)
 System.out.println(aastrParams[ii],
 getParameter(aastrParams[ii]));
...

getAppletContext

ClassName
Applet

Purpose
Retrieves the AppletConext for this Applet.

Syntax
public AppletContext getAppletContext();

Parameters

None.
Description

The AppletContext represents the browser this Applet is being displayed on. To
retrieve a reference to an Applet’s AppletContext, use this method.

Imports
java.applet.AppletContext

Returns
A reference to this Applet’s AppletContext is returned. Note that if the Applet is
not instantiated within a proper browser, then this method will return null. That is,
if you have an application which simply creates an Applet instance, then that
Applet’s AppletContext will be null.

See Also
The getAppletStub method of the Applet class

Example
This example uses the AppletContext to get an array of all the applets running
within the browser.

...
Enumeration e = getAppletContext().getApplets();
// do something with each Applet in the Enumeration...
...

showStatus

ClassName
Applet

Purpose
Displays a message on the browser’s status bar.

Syntax
public void showStatus(String msg);

Parameters
String msg

Message to be displayed on the browser’s status bar.
Description

Browsers generally have a status bar below the main display window. Use this
method to place a message within that status bar. This method is a shallow
wrapper around AppletContext.showStatus. If the Applet is not created within the
context of a browser which implements AppletContext, then a call to this method
will throw a NullPointerException.

Imports
None.

Returns
None.

See Also
The showStatus method of the AppletContext class

Example
...
public void start() {
 // Show message indicating the Applet was started...

 showStatus("Applet started!");
...
}
...

play

ClassName
Applet

Purpose
Downloads and plays an AudioClip from an audio data file.

Syntax
public void play(URL url); public void play(URL url, String str);

Parameters
URL url

URL or base of a relative URL to the audio data file for the AudioClip you want
to play.

String str
Relative URL to the URL you want to play.

Description
This method is a simple shorthand for getting an AudioClip and playing it. Use of
this method saves about three lines of explicit coding.

Imports
java.applet.AudioClip, java.net.URL

Returns
None.

See Also
The getAudioClip method of the Applet class; the AppletContext class; the
AudioClip interface

Example
This example reproduces the code of the ThemeMusicApplet, provided earlier in
this chapter.

import java.Applet.*;

public class ThemeMusicApplet extends Applet {
 AudioClip audclipTheme;

 public void init() {
 // load the audio clip.
 audclipTheme = getAudioClip(getDocumentBase(),
 "images/theme.au");

 // shrink display surface...never used.
 resize(0, 0);
 }

 public void start() {
 // start the audio loop.

 audclipTheme.loop();
 }

 public void stop() {
 // halt the audio loop.
 audclipTheme.stop();
 }

 public void destroy() {
 // release the audio clip from memory.
 audclipTheme = null;
 }
}

init()

ClassName
Applet

Purpose
Called by the Applet’s Thread to allow it to initialize itself.

Syntax
public void init();

Parameters
None.

Description
The init() method is one of the four methods which define an Applet’s action
during its lifetime. In your custom applet, implement this method to allocate any
resources you will need for your applet to run. The init() method is called only
once, and always before this first invocation of the applet’s start() method.

Imports
None.

Returns
None.

See Also
The start(), stop(), and destroy() methods of the Applet class

Example
See the project for this chapter, which makes extensive use of the Applet’s init(),
start(), stop(), and destroy() methods.

start()

ClassName
Applet

Purpose
Called by the Applet’s Thread to start it running.

Syntax
public void start();

Parameters

None.
Description

The start() method is one of the four methods which define an Applet’s action
during its lifetime. In your custom applet, implement this method to actually
perform the applet’s behavior. The start() method is potentially called several
times during the lifetime of the applet. Each call to start() is matched by exactly
one subsequent call to stop(), sometime in the future. A typical operation
performed in the start() method is kick-starting the applet’s background Threads.

Imports
None.

Returns
None.

See Also
The init(), stop(), and destroy() methods of the Applet class

Example
See the project for this chapter, which makes extensive use of the Applet’s init(),
start(), stop(), and destroy() methods.

stop()

ClassName
Applet

Purpose
Called by the Applet’s Thread to stop it running.

Syntax
public void stop();

Parameters
None.

Description
The stop() method is one of the four methods which define an Applet’s action
during its lifetime. In your custom applet, implement this method to gracefully
shut down the applet. The stop() method is potentially called several times during
the lifetime of the applet. Each call to stop() is matched by exactly one prior call
to start(). Stop any background Threads from processing before returning from
your custom implementation of this method.

Imports
None.

Returns
None.

See Also
The init(), start(), and destroy() methods of the Applet class

Example
See the project for this chapter, which makes extensive use of the Applet’s init(),
start(), stop(), and destroy() methods.

destroy()

ClassName
Applet

Purpose
Called by the Applet’s Thread to allow it to perform final clean-up.

Syntax
public void destroy();

Parameters
None.

Description
The destroy() method is one of the four methods which define an applet’s action
during its lifetime. In your custom applet, implement this method to deallocate
any resources allocated during the applet’s lifetime. The destroy() method is
called exactly once, just before the Applet object is destroyed.

Imports
None.

Returns
None.

See Also
The init(), start(), and stop() methods of the Applet class

Example
See the project for this chapter, which makes extensive use of the Applet’s init(),
start(), stop(), and destroy() methods.

The Applet and Graphics Project: The Game of Life

Project Overview

The Applet and Graphics class project demonstrates a non-trivial applet, suitable for
embedding in a World Wide Web page and viewing with an applet-enabled Web
browser. This project illustrates animation using double-buffered screen updating to
minimize "flicker", and background Thread processing to create successive animation
images. As with several of the Applet code samples provided in this chapter, the Life
applet uses custom implementations of the essential Applet methods init(), start(), stop(),
and destroy() to manage resources and processing during the lifetime of the Life applet
object.

"The Game of Life" is a simple example of artificial life on the computer, introduced by
Conway in 1970. The "game" is played on a grid. Each cell on the grid is designated as
either "alive" or "not-alive" (i.e., dead), termed the cell’s "state". At each turn of the
game, the computer determines the state of each cell in the grid based on the state of the
cell and its adjacent cells in the previous turn. These are the rules for determining a cell’s
state:

• An alive cell remains alive in the next turn if there are exactly two or three
adjacent alive cells. This is termed the "loneliness rule".
• A dead cell becomes alive in the next turn if there are exactly three adjacent
alive cells. This is termed the "reproduction rule".
• All other cells, whether alive or dead, will be dead the next turn.

It is fun and interesting to watch this program build cell colonies through turn-by-turn
application of the above rules. Huge clusters of cells can die out from over-population,
while small clusters of five or six cells can grow into mammoth cell structures. Figures 1-
9, 1-10, and 1-11 present screenshots from three successive turns, or "generations," of a
particular run through the Game of Life using the Life applet built in this project.

Figure 1-9 Turn or generation of the Game of Life

Figure 1-10 Turn or generation of the Game of Life

Figure 1-11 Turn or generation of the Game of Life

Note that in the Life.java code, an underscore character "_" is prepended to all class
member variables to distinguish them from function names, local variables, etc. This is to
improve the readability of the code.

Assembling the Project

1. Begin the file named Life.java by declaring the Life Applet with its necessary
member variables and object instances:
import java.applet.*;
import java.awt.Graphics;
import java.awt.Image;
import java.awt.image.ImageObserver;
import java.awt.Color;

import java.awt.MediaTracker;
import java.net.URL;

public class Life extends Applet implements Runnable,
 ImageObserver {

 /* State variables. */
 boolean[][] _a2dfGameGrid; // Stores current generation
 int _nGeneration; // keeps track of turn #
 boolean _fGameGridDisplayed; // Has current grid been
displayed?
 Thread _threadNextGen; // Calcs next generation.

 int _nxCells; // Game grid width.
 int _nyCells; // Game grid height.

 int _nxCellPixels; // phys. width of each cell.
 int _nyCellPixels; // phys. height of each cell.
 int _nxCellOrigin; // phys. origin of cell 0,0.
 int _nyCellOrigin; // phys. origin of cell 0,0.

 int _nxPixels; // Applet width in pixels.
 int _nyPixels; // Applet height in pixels.

 Image _imageAlive; // Image to use for "alive"
 cells.
 Image _imageDead; // Image to use for "not-
alive"
 cells.

 Image _image2ndSurface; // Image for 2ble buffering.
 Graphics _gc2ndSurface; // Graphics for 2ble
buffering.

 MediaTracker _medtrack; // To track alive and dead
images.

 /* Constants */
 static final int DEF_XCELLS = 100;
 static final int DEF_YCELLS = 100;
2. The Life class’ overriding implementation of imageUpdate prevents Life
Applet objects from repainting during construction of Images downloaded by the
Applet. Life will later explicitly handle repainting with a background Thread.
 /* ********
 * imageUpdate() is called when the Alive and Dead cell
 * images are being loaded. An ImageObserver-implementing
 * class is required to draw images, which this applet class
 * implements with this method.
 ******** */
 public synchronized boolean imageUpdate(Image img,
 int nFlags, int x, int y, int width, int height) {
 return true;
 }

3. Life’s init implementation reads in the applet parameters, allocates and fills in
the initial generation game grid, resizes the display area of the applet, and loads
the "alive" and "not-alive" images.
public void init() {
 /*
 ** Retrieve the Game Grid dimensions
 ** (_nxCells x _nyCells). If not given,
 ** use default Game Grid size.
 */
 try {
 _nxCells = Integer.parseInt(
 getParameter("xCells"));
 _nyCells = Integer.parseInt(
 getParameter("yCells"));
 } catch (Exception e) {
 _nxCells = DEF_XCELLS;
 _nyCells = DEF_YCELLS;
 }

 /*
 ** Retrieve the physical display size
 ** (_nxPixels x _nyPixels). If not given,
 ** use the Game Grid size (_nxCells x _nyCells).
 */
 try {
 _nxPixels = Integer.parseInt(
 getParameter("xPixels"));
 _nyPixels = Integer.parseInt(
 getParameter("yPixels"));
 } catch (Exception e) {
 _nxPixels = _nxCells;
 _nyPixels = _nyCells;
 }

 /*
 ** Calculate the physical cell size.
 */
 _nxCellPixels = _nxPixels / _nxCells;
 _nyCellPixels = _nyPixels / _nyCells;
 _nxCellOrigin = (_nxPixels / 2) -
 ((_nxCellPixels * _nxCells) / 2);
 _nyCellOrigin = (_nyPixels / 2) -
 ((_nyCellPixels * _nyCells) / 2);

 /*
 ** Create the initial Game Grid, and fill it
 ** with the initial pattern of cells.
 ** Note that setGameGrid automatically repaints
 ** the applet.
 */
 _fGameGridDisplayed = false;
 _a2dfGameGrid = placeInitialPatternToGrid(
 createNewGameGrid(_nxCells, _nyCells),
 _nxCells, _nyCells);
 _nGeneration = 0;

 /*
 ** Create the 2nd surface for double-buffered
 ** drawing.
 */
 _image2ndSurface = createImage(_nxPixels, _nyPixels);
 _gc2ndSurface = _image2ndSurface.getGraphics();
 _gc2ndSurface.setColor(Color.black);
 _gc2ndSurface.setPaintMode();

 /*
 ** Create the media tracker, and start it loading
 ** the alive and dead images.
 */
 _medtrack = new MediaTracker(this);
 _medtrack.addImage(getAliveImage(), 0);
 if(null != getDeadImage())
 _medtrack.addImage(getDeadImage(), 1);
 return;
 }
4. Life’s start method creates the Calc Thread, using this object’s run() method to
do the successive game grid generation.
public synchronized void start() {
 /*
 ** Create the Calc thread and start it running.
 */
 _threadNextGen = new Thread(this);
 _threadNextGen.start();
 return;
 }
5. The Calc Thread, created and started in Life’s start() method implementation,
is made to halt in stop(). The run() method (below) is written so that the Calc
Thread will stop running when the _threadNextGen member variable is null. Note
that both the start() and stop() methods are synchronized to prevent simultaneous
execution by more than one Thread.
public synchronized void stop() {
 /*
 ** Remove references to the Calc thread, which will
 ** cause it to stop processing very soon. The
 ** resume wakes up the (potentially) suspended
 ** Calc thread.
 */
 Thread threadTempRef = _threadNextGen;
 _threadNextGen = null;
 threadTempRef.resume();

 return;
 }
6. Life’s Calc Thread, which calculates successive generations of the game grid,
executes the run() method. The Calc Thread drops out of the continuous loop
when _threadNextGen is set to null in Life.stop(). Once a new game grid is
created, Life’s setGameGrid() method is called to update the display.
public void run() {
 boolean[][] a2dfNewGrid = null;
 int[][] a2dnSums = new int[_nxCells][_nyCells];

 int nI;
 int nJ;

 /*
 ** Make sure the alive and dead images have
 ** been loaded before really doing anything
 ** in this thread.
 */
 try {
 _medtrack.waitForID(0); // the alive image
 if(null != getDeadImage())
 _medtrack.waitForID(1); // the dead image.
 } catch (Exception e) {}

 /*
 ** This continuous loop generates iterative
 ** generations of Life.
 */
 while(null != _threadNextGen) {
 /*
 ** Allocate a new game grid only if current
 ** game grid is using the last one we
 ** allocated, or if we never allocated one
 ** before here.
 */
 if((null == a2dfNewGrid) ||
 (_a2dfGameGrid == a2dfNewGrid))
 a2dfNewGrid = createNewGameGrid(_nxCells,
 _nyCells);

 /*
 ** Clear out the Sums grid for this iteration.
 */
 for(nI=0 ; nI<_nxCells ; nI++)
 for(nJ=0 ; nJ<_nyCells ; nJ++)
 a2dnSums[nI][nJ] = 0;

 /*
 ** To calc next generation: run through current
 ** generation: for each "alive" cell, do this:
 ** Add 1 to the Sums grid of each adjacent cell.
 ** Add 9 to the Sums grid of this cell.
 ** When we're done, only cells with Sum of
 ** 3 (dead w/ 3 adjacent), 11 (alive w/
 ** 2 adjacent), or 12 (alive w/ 3 adjacent)
 ** will be alive in the new grid.
 */
 for(nI=0 ; nI<_nxCells ; nI++)
 for(nJ=0 ; nJ<_nyCells ; nJ++)
 if(_a2dfGameGrid[nI][nJ]) {
 for(int nII=-1 ; nII<2 ; nII++)
 if((0 <= nI + nII) &&
 (_nxCells > nI + nII))
 for(int nJJ=-1 ; nJJ<2 ; nJJ++)
 if((0 <= nJ + nJJ) &&
 (_nyCells > nJ + nJJ))
 a2dnSums[nI+nII]

 [nJ+nJJ] += 1;
 a2dnSums[nI][nJ] += 8;
 }

 for(nI=0 ; nI<_nxCells ; nI++)
 for(nJ=0 ; nJ<_nyCells ; nJ++)
 switch(a2dnSums[nI][nJ]) {
 case 3:
 case 11:
 case 12:
 a2dfNewGrid[nI][nJ] = true;
 break;
 default:
 a2dfNewGrid[nI][nJ] = false;
 }
 /*
 ** Make sure the current game grid
 ** has been displayed before updating
 ** the game grid with the next generation.
 */
 while((! setGameGrid(a2dfNewGrid)) &&
 (null != _threadNextGen))
 try {
 _threadNextGen.suspend(); // this thread
 } catch (Exception e) {}
 }

 return;
 }
7. Paint() is called by the Java system asynchronously whenever the Life Applet
must be updated on screen. This can be in response to an explicit call to
Life.repaint() (done in setGameGrid()), or in response to a windowing event such
as the Life applet being scrolled off and then back on screen. This implementation
of paint uses the current game grid to place multiple copies of the "alive" and
"not-alive" images to an in-memory Image. When the in-memory Image has been
updated, it is copied to the screen. The update() method is overriden to call paint()
without doing anything else.
public synchronized void paint(Graphics g) {
 int nI;
 int nJ;

 /*
 ** Display the grid on the applet surface. This
 ** involves just running through all the cells
 ** and placing the corrosponding image on the
 ** display surface,
 */
 _gc2ndSurface.fillRect(0, 0, _nxPixels, _nyPixels);

 for(nI=0 ; nI<_nxCells ; nI++)
 for(nJ=0 ; nJ<_nyCells ; nJ++)
 if(_a2dfGameGrid[nI][nJ])
 _gc2ndSurface.drawImage(getAliveImage(),
 (nI * _nxCellPixels) + _nxCellOrigin,
 (nJ * _nyCellPixels) + _nyCellOrigin,

 this);
 else if (null != getDeadImage())
 _gc2ndSurface.drawImage(getDeadImage(),
 (nI * _nxCellPixels) + _nxCellOrigin,
 (nJ * _nyCellPixels) + _nyCellOrigin,
 this);
 g.drawImage(_image2ndSurface, 0, 0, this);

 _fGameGridDisplayed = true;
 /*
 ** Use resume() to release the (potentially)
 ** suspended Calc thread.
 */
 _threadNextGen.resume();

 return;
 }

public void update(Graphics g) {
 paint(g);
 }
8. setGameGrid() is called by the Calc Thread after it has completed calculating
the next generation. This is synchronized so paint(), start(), or stop() cannot be
entered while the current game grid is being updated.
private synchronized boolean setGameGrid(
 if(! _fGameGridDisplayed)
 return false;

 try {
 System.arraycopy(a2dfGrid, 0, _a2dfGameGrid,
 0, _nxCells);
 } catch(Exception e) {
 _a2dfGameGrid = a2dfGrid;
 }

 _fGameGridDisplayed = false;
 _nGeneration++;
 repaint();
 return true;
 }
9. Life implements several utility methods to make the code in the previous steps
more readable.
 /* ********
 * createNewGameGrid(x, y) allocates and returns a reference
 * for a 2d array of booleans.
 ******** */
 private boolean[][] createNewGameGrid(int xCells, int yCells
) {
 boolean[][] a2dfNewGrid = new boolean[xCells][yCells];
 return a2dfNewGrid;
 }

 /* ********
 * placeInitialPatternToGrid(boolean[][]) will read in
 * the initial cell pattern from the three applet
 * parameters "xStartPatternCells", "yStartPatternCells",

 * and "strStartPattern". The start pattern will be
 * placed centered on the 2d array passed in.
 ******** */
 private boolean[][] placeInitialPatternToGrid(
 boolean[][] a2dfGrid, int nxGridCells,
 int nyGridCells)
 {
 /*
 ** Get the dimensions of the starting pattern.
 ** xStartPatternCells and yStartPatternCells
 ** are not optional parameters.
 */
 int nxStartCells = Integer.parseInt(
 getParameter("xStartPatternCells"));
 int nyStartCells = Integer.parseInt(
 getParameter("yStartPatternCells"));

 /*
 ** Calculate the X and Y cell offsets to
 ** begin placing the initial pattern on
 ** the grid.
 */
 int nxPatternOffsetCells = (nxGridCells / 2) -
 (nxStartCells / 2);
 int nyPatternOffsetCells = (nyGridCells / 2) -
 (nyStartCells / 2);

 /*
 ** Retrieve the start pattern descriptive string.
 */
 String strStartPattern =
 getParameter("strStartPattern");

 /*
 ** For each cell in the starting pattern, update
 ** the corresponding grid cell.
 */
 int iPatternString = 0;
 for(int nI=0 ; nI<nxStartCells ; nI++)
 for(int nJ=0 ; nJ<nyStartCells ; nJ++) {
 int iNext0 = strStartPattern.indexOf(
 '0', iPatternString);
 int iNext1 = strStartPattern.indexOf(
 '1', iPatternString);

 if((iNext0 < iNext1) &&
 (iNext0 != -1))
 iPatternString = iNext0 + 1;
 else if(iNext1 != -1)
 iPatternString = iNext1 + 1;
 else {
 nI = nxStartCells;
 nJ = nyStartCells;
 continue;
 }

 a2dfGrid[nI+nxPatternOffsetCells]

 [nJ+nyPatternOffsetCells] =
 (strStartPattern.charAt(
 iPatternString - 1) ==
 '1');
 }

 return a2dfGrid;
 }

 /* ********
 * getAliveImage()
 * getDeadImage()
 * These methods are responsible for identifying and loading
 * the "alive" and "not-alive" cell images. The alive image
 * is the only one required. The "urlAliveImage" parameter
 * holds a relative URL to the "alive" cell image, and the
 * "urlDeadImage" parameter holds a relative URL to the
 * "not-alive" cell image.
 ******** */
 private Image getAliveImage() {
 if(null == _imageAlive) {
 URL urlAliveImage = null;
 try {
 urlAliveImage = new URL(getDocumentBase(),
 getParameter("urlAliveImage"));
 } catch (Exception e) {}
 _imageAlive = getImage(urlAliveImage);
 }

 return _imageAlive;
}

 private Image getDeadImage() {
 if(null == _imageDead) {
 if(null == getParameter("urlDeadImage"))
 return null;

 URL urlDeadImage = null;
 try {
 urlDeadImage = new URL(getDocumentBase(),
 getParameter("urlAliveDead"));
 } catch (Exception e) {}
 _imageDead = getImage(urlDeadImage);
 }

 return _imageDead;
 }
};
10. Enter the following HTML code into a file named EXAMPLE1.HTML in the
same directory as Life.java:
<HTML>
<HEAD>
<TITLE>Life Applet Example</TITLE>
</HEAD>
<BODY>
<H1>Life Applet Example</H1>

Below is the Game of Life applet.
<HR>
<CENTER>
<APPLET CODE="Life.class" WIDTH=300 HEIGHT=300>
<PARAM NAME="xPixels" VALUE="300">
<PARAM NAME="yPixels" VALUE="300">
<PARAM NAME="xCells" VALUE="30">
<PARAM NAME="yCells" VALUE="30">
<PARAM NAME="urlAliveImage" VALUE="alive.gif">
<PARAM NAME="xStartPatternCells" VALUE="10">
<PARAM NAME="yStartPatternCells" VALUE="10">
<PARAM NAME="strStartPattern"
 VALUE="1111111100
 1100000011
 1100000011
 1111111100
 1111111100
 1100000011
 1100000011
 1100000011
 1111111100
 1111111100">
</APPLET>
</CENTER>
<HR>
Here's the source
</BODY>
</HTML>

How It Works

Table 1-5 lists the applet parameters, both required and optional, used by the Life applet.

Table 1-5 Life applet parameter descriptions

Parameter Required Description

xCells, yCells Yes The number of columns and rows, respectively,

of the grid of cells to be displayed by the Life
applet.

xPixels, yPixels Yes The physical size of the applet’s display surface
in pixels.

urlAliveImage Yes A URL pointing to an image the applet is to use
to represent alive cells.

urlDeadImage No A URL pointing to an image the applet is to use
to represent dead cells. If this parameter is not
provided, the applet displays nothing in dead

provided, the applet displays nothing in dead
cells.

xStartPattern Cells
and

yStartPatternCells

Yes The number of columns and rows, respectively,
of the initial pattern of cells described by the

strStartPattern parameter.
strStartPattern Yes A string of "1" and "0" characters describing

the initial states of the grid of cells. This string
should have exactly (xStartPatternCells *

yStartPatternCells) "1" or "0" characters in it.
All other characters in the string are ignored.

The string is interpreted as a left-to-right, top-
to-bottom list of cell states. The initial pattern

is centered on the Life grid automatically.

Three important techniques are used by the Game of Life applet:

• Double-buffering to ensure smooth visual transition between successively
displayed frames.
• Overriding Component.update() to avoid "flicker".
• Background processing to generate successive animation frames.

Double-Buffered Rendering

Life’s paint method has the responsibility of displaying a grid of MxN cells. One way this
could be accomplished is by simply rendering each cell on the applet’s drawing surface is
a nested for loop:

public void paint(Graphics g) {
 for(nI=0 ; nI<M ; nI++) {
 for(nJ=0 ; nJ<N ; nJ++) {
 displayCell(nI, nJ, g);
 }
 }
}

The big problem with this method of display is that, especially for large M and N, the
user will see each individual row of the display surface get updated. For less jerky
animation, the successive frames should simply "pop" onto the screen, fully rendered.
That’s what "double-buffered rendering" does: It allows you to update the display surface
all at once, instead of little-by-little.

In double-buffered rendering, an Image object is created in memory with the exact same
dimensions as the applet’s display surface. All rendering is done to a Graphics object
attached to that in-memory Image object. When all rendering is completed, the Image

object is copied to the display surface all at once. This has the practical effect of having
the on-screen display updated instantaneously, instead of little-by-little.

In the Life applet, an in-memory Image, _image2ndSurface, is created during init with
the same dimensions as the applet’s display surface. A Graphics object, _gc2ndSurface,
is created attached to the in-memory Image, like this:

public void init() {
 // ...
 _image2ndSurface = createImage(_nxPixels, _nyPixels);
 _gc2ndSurface = _image2ndSurface.createGraphics();
 // ...
}

In paint(), the individual Life generations (each generation is an animation frame) are
rendered to the _gc2ndSurface Graphics object. When the rendering is complete, the
entire _image2ndSurface is copied to the applet’s display surface.

Overriding Update()

As hinted earlier in this chapter, the Java runtime system will automatically erase an
applet’s drawing surface before paint() is called. For nonanimation sequences, this might
not be a bad thing to do, but for fast screen updating it can prove to be quite annoying to
look at. Between each two frames appears a brief "flicker" when the background is
erased. The code for the default implementation of Component.update, which is
responsible for the "flicker" problem, looks like this:

public void update(Graphics g) {
 // ...
 g.fillRect(0, 0, width, height);
 // ...
 paint(g);
}

To reduce this flicker problem, the Life applet implements its own update method to
override the default implementation it inherits from Component. The overriding
implementation does not call fillRect, so the background is not erased. The custom
implementation looks like this:

public void update(Graphics g) {
 paint(g);
}

Animation Techniques

Two different animation techniques are the opposite poles of a continuum of
implementations for animation in Java:

• Timesliced animation

• Computed frame animation

The simplest animation technique using Java timeslice animation, involves creating a
background Thread to "timeslice", or sleep for some quanta of time before waking up and
repainting the drawing surface. This is the "simplest" method because it involves the least
amount of coding. To implement this animation technique, you need:

• An ordered Vector or array of Image objects, each one a frame to display.
• A "current Image object" variable, which keeps track of which frame is
currently being displayed.
• A background Thread object which wakes up periodically, advances the
"current Image object" indicator to the next frame, and forces the applet to repaint
itself.

The JDK includes a generic Animator applet which uses the timeslicing technique to
perform animation. Through its parameters, you can customize the Animator applet to
display any number of frames, in any order, and even sequence sound with each frame.

The drawback of this animation technique is that it requires all frames of the animation
sequence to have already been rendered onto Image objects in memory. For applets or
applications which must compute and render each frame separately, such as the Life
applet, the timeslicing technique is inadequate. Life uses the "computed frame" technique
of animation.

The computed frame technique works by using a background Thread to compute
sufficient information to render each frame "on the fly". In a continuous loop, the
animation Thread computes a frame, and tells the drawing surface to display it, computes
a frame, displays it, etc. In this technique, the time between the display of each frame is
not necessarily constant, as in timesliced animation. Instead, the time between successive
frames is dependent on how long it takes to compute and render each frame.

It is in Life’s run method that each successive generation of the Life game is computed.
The actual computation involves keeping an accumulated sum for each cell in the target
generation grid. For each generation, run adds values to this accumulator using these two
rules:

• One is added to the accumulator of each cell adjacent to an "alive" cell.
• Nine is added to the accumulator of each "alive" cell.

Based on the rules of the Game of Life presented above, only cells with an accumulated
value of 2, 3, or 12 will be alive in the next generation.

The most important aspect of the run method, however, is how it is sychronized with the
rendering. The synchronization is necessary to prevent a newly computed Life
generation, stored in a 2D grid of boolean values, from overwriting the grid currently
being rendered by the paint method.

It is conceivable under the computed frame technique for there to be a backlog of
unrendered frames. This will occur if the time it takes the background Thread to compute
new frames is less than the time it takes to actually render frames. In such a case, the
background Thread will generate more frames than can be rendered in the same amount
of time. Without proper synchronization, this could lead to frames being skipped, or other
problems.

The Life applet ensures these problems won’t occur by synchronizing access to the
current generation grid. The background Thread will automatically suspend itself if it
attempts to overwrite the current generation grid before it has been rendered on the
drawing surface. A more sophisticated animation applet would utilize a synchronized
storage device for storing any backlog of unrendered grids.

Chapter 2
The Component Class

All visual elements of a graphical interface have functionalities in common. Top-level
windows, visual controls such as text boxes and push buttons, as well as simple elements
for drawing images on the screen have a commonality of capabilities. The Component
class, which implements these common functionalities, is an ancestor class for all
graphical interface elements.

In the Java system, all classes that implement graphical interface elements are subclasses
of the Component class. There are several families of Component class methods, which
allow you to control the internal state and on-screen appearance of all Components. They
cover the following areas of functionality:

• Component hierarchy. Components are placed on the screen within special
Container components. Containers may be placed within other Containers, and so
on, forming an on-screen hierarchy of Components.
• Component positioning and sizing.
• Common Component states. All Components share a basic set of internal state
variables. The Component class implementation provides methods that allow
these state variables to be polled and modified.
• On-screen rendering.
• Delivering and handling events. These include user, custom, and system events
such as mouse events, keyboard and keyboard focus events, and so on.
• Preparing and displaying images.

In addition to the Component classes included in the java.awt package, you can create
your own custom Components. You can create almost any imaginable visual element as a
custom Component. The Project for this chapter demonstrates the creation of a relatively
simple custom Component called a Hotspot.

Component Hierarchy

Each Component object instance is “owned by” a parent Component object. The on-
screen positioning of a Component is restricted to being within the bounds of its parent
Component. More specifically, the rectangle of actual display device pixels, or “bounding
rectangle,” dedicated to a particular Component is restricted to lying completely within
the bounding rectangle of its parent Component. Figure 2-1 illustrates the hierarchy of
Components and Container components of a simple graphical user interface. The
graphical Component controls are contained within Containers, which are in turn
contained within the Frame window, another type of Container component. The Frame
window is a top-level window, and so does not have a parent Container.

Figure 2-1 Component hierarchy of a simple dialog box

Components that can contain other Components are derived from the Container class.
There are several areas of interest specific to the Container class. This chapter will cover
a minority of those topics as necessary to understand the Component class concept.

The getParent method provides a reference to the Container of any Component object:

Container parent = myComponent.getParent();

Components that have not been placed within a parent Container, obviously, will not
have a parent Container object reference returned by getParent. For orphan Components,
as well as for top-level Frame windows, a null will be returned by this method.
Components are placed within Containers using the add method of class Container. The
specifics of the overloaded versions of this method are discussed in Chapter 3. For
simplicity’s sake, you can assume that a call to this method effectively sets the owner of
the Component object to the specific Container. Listing 2-1 adds a single push button (a
type of Component object) to the interface of an Applet (a type of Container object).

Listing 2-1 Adding a Component to a Container using the Container’s add method

public class MyApplet extands Applet {
 ...

 public void init() {
 ...

 add(“OK”, new Button(“OK”));

 ...
 }

 ...
}

Component Positioning

All Component objects have a rectangle of display area in which they render themselves.
This rectangle is called the Component’s bounding rectangle. The size of the
Component’s bounding rectangle can be looked up using the Component’s size method.
The resize method allows you to modify these dimensions:

Dimension dimComp = myComponent.size();
myComponent.resize(dimComp.width + 10, dimComp.height + 10);

Note that the actual rectangle of screen real estate a Component is allowed to render itself
on is the intersection of the component’s bounding rectangle with the parent Container’s
bounding rectangle (which is intersected with its parent’s bounding rectangle, and so on).
Therefore, if a Component has been resized to be larger in dimension than its parent
Container, then the Component will be “clipped” on the screen according to its position
relative to its parent Container.

For the most part, the positioning of a Component object within its parent Container is
under the control of the Container’s LayoutManager object. Chapter 3 discusses how
Components are laid out within a Container by the LayoutManager object. A Component
object is positioned relative to the upper-left corner of its parent Container. The location
method returns the coordinates of a Component relative to the upper-left corner of its
parent Container. That is, the upper-left corner of the parent Container is (0,0) for all
Component positioning coordinates. The move method is called to change the position of
a Component relative to its parent Container:

// Move myComponent 10 pixels right and down.
Point ptLoc = myComponent.location();
myComponent.move(ptLoc.x + 10, ptLoc.y + 10);

A Component’s bounding rectangle can be fully described by its position and
dimensions. The bounds method returns a Rectangle object whose x and y members
indicate the position of the Component, and whose width and height members describe
the dimensions of the bounding rectangle. The reshape method allows you to modify both
the position and dimensions of a Component’s bounding rectangle. Listing 2-2
demonstrates the positioning methods for Components. It centers a Component relative to
its parent Container’s bounding rectangle.

Listing 2-2 Centering a Component with respect to its parent’s bounding rectangle

Component comp;

// ... Comp is set to be a reference to a Component ...

Rectangle rectCompBounds = comp.bounds();
Dimension dimParent = comp.getParent().size();

rectCompBounds.x = (dimParent.width / 2) -
 (rectCompBounds.width / 2);

rectCompBounds.y = (dimParent.height / 2) -
 (rectCompBounds.height / 2);

comp.reshape(rectCompBounds.x, rectCompBounds.y,
 rectCompBounds.width, rectCompBounds.height);

Common Component States

All basic visual elements such as push buttons, list boxes, and check boxes can either be
enabled or disabled. By default, Components are enabled, though they may be disabled.
Disabled Components generally take on a “hampered mode” look and feel, and are
generally unreactive to user actions like mouse clicks or keyboard input. Figure 2-2
illustrates several basic visual elements when enabled and disabled. The disable method
disables a Component object, and enable forces a Component to be enabled. The
isEnabled method returns a boolean true or false, indicating whether the Component is
currently enabled.

Figure 2-2 Enabled and disabled Button, List, and Choice objects

Components can also be hidden or visible. By default, Components when created are
visible, but they can be hidden using hide. A hidden Component is effectively removed
from the visual interface, as are all of that object’s child Components. The Component
positioning and other internal state member methods act exactly the same for a
Component whether the Component is hidden or visible. The show method forces a
Component to be visible. The Component’s isVisible method returns a boolean true or
false, indicating whether the Component is currently visible. Hiding a Component can be
an effective method for removing inappropriate visual elements from the graphical
interface.

The isShowing method tells you whether or not a Component has any display surface real
estate assigned to it. That is, isShowing returns true only if the Component is visible, and
is positioned such that its bounding rectangle intersected with its parent’s bounding
rectangle is non-null.

A Component can also be marked as valid or invalid. The state of the validation flag
indicates whether or not the Component must be laid out using the Component’s layout
method. The default implementation of this method actually does nothing. However, the
Container class overrides the layout method to actually arrange any child Components on
the screen.

Use the invalidate method to mark the Component as invalid. The validate method will
call layout if the state of the Component is invalid (i.e., invalidate was called prior to the
call to validate). If the Component has not been marked as invalid, then validate returns
without doing anything.

On-Screen Rendering

All the basic visual Components, such as list boxes and push buttons, are able to render
themselves on the screen. You can also create custom controls such as gas gauges, spin
dials, or just about any visual element imaginable. The SuperBible project for this chapter
illustrates the creation of just such a custom control. Your custom controls, however,
must render themselves. To actually render custom controls you must re-implement one
or more Component class methods.

The central method used to render a Component on the screen is paint. The paint method
is passed a Graphics object attached to the display device, and clipped to the bounding
rectangle of the Component. (Chapter 1, Applets and Graphics, discussed the Graphics
class in detail and how Graphics objects are used to paint on a drawing surface.) The
simplest custom Component classes re-implement this method to render the Component
in the graphical interface. Listing 2-3 shows a trivial custom paint method
implementation that simply draws a filled oval within the Component’s bounding
rectangle.

Listing 2-3 A simple custom Component

class MyComponent extends Canvas {
 public MyComponent() {
 super();
 }
 public void paint(Graphics g) {
 g.fillOval(bounds());
 }
}

Note that the custom Component class MyComponent actually is derived from the
Canvas class. You cannot derive a class from the Component class directly, since the
Component class has no public constructors. Generally, you will create custom
Component classes, which are derived from the Canvas class, since the Canvas class is
the simplest Component with a public constructor.

The Java system calls a Component’s paint method asynchronously whenever it
determines a Component object must be re-drawn on the display surface. This call is
performed by a Thread created and controlled by the Java system. The Java system
manages the Graphics object passed to paint directly because graphical device contexts
are a limited resource in most graphical operating systems. You must not call paint
directly. To force a repainting of a Component object, use the Component’s repaint
method. Using this method, you can schedule a repainting of the Component within a
specific time period, and you can also restrict the repainting to a subset of the the

Component’s full bounding rectangle. There are four overloaded versions of the repaint
method:

repaint();
repaint(lMillisecs);
repaint(x, y, width, height);
repaint(lMillisecs, x, y, width, height);

The two versions, which do not specify a time limit, instruct the Java runtime system to
schedule a repainting of the Component at some time in the future. The Java system may
not schedule a repainting for ten minutes, or the repainting could happen instantaneously.
Repainting is a relatively low-priority operation, so the system waits until there is a lull in
processing to actually perform the repainting. Using one of the two versions of the
repaint method that take a lMillisecs parameter, you can specify a maximum number of
milliseconds the Java system can wait before forcing a repainting of your Component
object.

The repaint method instructs the Java runtime system to schedule an asynchronous call to
Component.update. The update method is responsible for calling paint. The default
implementation of update erases the entire drawing surface of the Component object
using the Component’s background Color, then selects the Component’s foreground
Color into the Graphics object before calling paint. Figure 2-3 illustrates how Component
rendering is accomplished through the three cooperating methods: paint, repaint, and
update. You can see that the only method a custom Component needs to re-implement is
paint. Re-implementing the update method can be quite useful, especially when
animation techniques are used. A discussion of animation techniques and the update
method is included in Chapter 1.

Figure 2-3 Cooperative methods paint, repaint, and update used to keep on-screen
rendering of a Component up-to-date

Delivering and Handling Events

An event, in Java lingo, is an object that describes some specific occurrence in the
system. For example, there are several types of mouse events to describe a user’s mouse
actions. There are also several types of keyboard events to describe user keyboard
interactions. Event objects are created by the Java runtime system whenever a specific
occurrence is detected, and these Event objects are delivered to specific Components
through the Component class Event delivery and handling methods.

The Component class Event delivery methods implement a system whereby Events are
passed from a Component to its parent Container, to that object’s parent Container, and
so on until the event is “handled.”

The delivery system can best be illustrated through an example. Figure 2-4 is a
screenshot of a very simple user interface in an Applet run within the JDK’s
AppletViewer. This interface is comprised of the Applet object itself, and a Button object
with the caption OK. Imagine the user clicks on the OK Button. This causes an Event
object of type ACTION_EVENT to be generated by the Java system and delivered to the
OK Button. Button objects, by default implementation, do not handle this type of Event,
and so the Event is further delivered to the Button’s Container—the Applet object. The
Applet object may or may not handle this Event. If not, the Event will further be
delivered to the Applet’s Container, and so on until either the Event is handled or a top-
level Container is reached.

Figure 2-4 A very simple Applet interface

Delivering an Event to a Component is done using the Component’s postEvent method.
The Java runtime system delivers mouse, keyboard, or other Events to a specific
Component using this method.

You can also create your own custom Events (objects derived from the Event class) and
deliver them to Components using a similar mechanism. Instead of calling the postEvent
method directly, call Component.deliverEvent. The default implementation of
deliverEvent takes the Event and passes it to postEvent. Thus, the deafult implementation
of deliverEvent is a simple wrapper for postEvent.

The postEvent method is responsible for finding an object to handle each Event it is
passed. postEvent offers the Event to three different objects. If no object handles the
Event, postEvent returns benignly and the Event is forgotten. The three objects postEvent
offers each event to are (in order)

• The Component’s peer, through peer.handleEvent
• The Component itself, through this.handleEvent
• The Component’s parent Container, through parent.postEvent

The handleEvent method returns a boolean true or false value, indicating whether or not
the Event was handled. This pseudo-code in Listing 2-4 illustrates the simple algorithm
used by postEvent to find an object to handle each event passed to a particular
Component.

Listing 2-4 Pseudo-code for postEvent

boolean method postEvent(Event evt):
 1. if peer.handleEvent(evt) == true, return true.
 2. if this.handleEvent(evt) == true, return true.
 3. if parent.postEvent(evt) == true, return true.
 4. return false.
end method postEvent

The default implementation of handleEvent is a giant switch statement. Each Event is
classified according to the type of Event, and an appropriate Component class handling
method is called. For example, the Component class method mouseDown is called by the
default implementation of handleEvent whenever a MOUSE_DOWN Event occurs. The
summary section on the next page details all the Component class Event handling
methods. Custom Component implementations should override these methods to handle
specific types of Events.

Preparing Images for Display

Before an Image object can be rendered onto any drawing surface, a representation of the
Image suitable for painting on that surface must be constructed by the Java system. The
construction is an asynchronous process carried out by the Java system because this
process may include downloading of Image data from a remote server. (Downloading of
any kind of data is always an asynchronous operation.) The Component class includes
methods to manage the Image construction process so that any Component object may
prepare and display Images.

The Image construction process is started by a call to the Component’s prepareImage
method. The Image object to prepare is passed as a parameter to this function. To receive
asynchronous notification of the progress of Image construction, an object must
implement a special interface called java.awt.image.ImageObserver. The
ImageObserver’s imageUpdate method, the only method defined by the ImageObserver
interface, is called by the Java system automatically as the Image object construction
process proceeds.

An implementation of imageUpdate is included in the Component class, so any
Component object may be used as an ImageObserver. The default implementation of this
method schedules an asynchronous repainting of the Component when the Image has
been prepared sufficiently to display. The code snippet in Listing 2-5 illustrates how any
Component can prepare an Image for display.

Listing 2-5 Preparing an Image for display

class MyComponent extends Component {
 Image _img;

 // set the img variable to a reference to an Image object
 // in the object’s constructor.

 ...

 public void myPrepareMethod() {
 prepareImage(_img, this);
 }

 // This re-implementation of Component.imageUpdate() detects
 // when an Image has been fully prepared for rendering.
 public void imageUpdate(Image img, int flags, int x, int y,
 int width, int height) {
 super.imageUpdate(img, flags, x, y, width, height);
 if(flags & ImageObserver.ALLBITS)
 System.out.println(“Image is completely prepared.”);
 }
}

Summary of the Component Methods

Table 2-1 lists all the methods of the Component class, and provides a brief description of
each. The methods are broken down by functional grouping rather than alphabetically.

Table 2-1 Summary of Component methods

Group Method Description

Event Handlers action Handles ACTION_EVENT Events. Button

pushes and menu bar selections are two types
of user interactions.

lostFocus Handles LOST_FOCUS Events. The keyboard

focus has been removed from this Component,
as when the user hits the key in a dialog.

gotFocus Handles GOT_FOCUS Events. The keyboard

focus has been moved to this Component, as
when the user hits the key in a dialog.

keyDown Handles KEY_DOWN Events. For the

Component with keyboard focus, each keypress
by the user creates such an Event.

keyUp Handles KEY_RELEASE Events. For the

Component with the keyboard focus, each time
a key is released such an Event is created.

mouseDown Handles MOUSE_DOWN Events. The user has

clicked the mouse button within the
Component’s bounding rectangle.

mouseDrag Handles MOUSE_DRAG Events. The user has

moved the mouse with the mouse button held

moved the mouse with the mouse button held
down.

mouseEnter Handles MOUSE_ENTER Events. The mouse

cursor has been moved from outside the
Component’s bounding rectangle to within it.

mouseExit Handles MOUSE_EXIT Events. The mouse

cursor has been moved from within the
Component’s bounding rectangle to outside it.

mouseMove Handles MOUSE_MOVE Events. The mouse

has been moved without the mouse button
being held down.

Size and Position bounds Returns a Rectangle object whose x and y
members indicate the position of the upper-left
corner of the Component relative to the origin

of the parent Container’s origin. The
Rectangle’s width and height members hold the

Component’s dimensions.

 inside Tells whether or not a particular point lies
within the Component’s bounding rectangle.

locate Returns a reference to the Component or

subComponent that contains the indicated
point.

location Returns a Point object whose x and y members
indicate the position of the Component’s upper-

left corner relative to the parent Container’s
origin.

move Moves the upper-left corner of the Component

to the indicated point relative to the parent
Container’s origin.

 resize Changes the dimensions of the Component
object’s bounding rectangle.

size Returns a Dimension object whose width and

height members indicate the size of the
Component’s bounding rectangle.

reshape Changes the Component’s position and
dimensions in a single call. The move and

resize methods are actually wrappers around
this method.

minimumSize Override this method to specify the smallest

size a parent Container should dedicate to this
Component.

preferredSize Override this method to specify the preferred

size a parent container should dedicate to this
Component.

Visual State isValid Indicates whether or not the Component has
been marked as valid.

 invalidate Marks the Component as invalid.

 validate If the Component is invalid, calls layout before
resetting the valid flag to valid.

 isVisible Indicates whether or not the Component is
currently marked as visible.

 show Makes the Component visible.
 hide Makes the Component invisible.

 isShowing Returns true only if the Component is visible
and owns some rectangle of the desktop.

 isEnabled Indicates whether or not the Component is
enabled.

 enable Enables the Component.
 disable Disables the Component.

Graphics State getForeground Gets the Color object for the Component’s
foreground color. The Graphics passed to paint
uses this color as its current foreground color.

Uses parent’s foreground if Component’s color
has not been set using setForeground.

 setForeground Sets the current drawing color for the Graphics
passed to paint.

getBackground Gets the color used to erase the Component in
update. Returns parent’s background color if
Component’s background has not been set

using setBackground.

 setBackground Sets the color used by update to erase the
Component.

getFont Returns the Font used to render text in paint.

Parent’s Font is returned if font has not been set
by setFont.

 setFont Sets the Font used to display text in paint.

 getColorModel Returns the color model used by the desktop to
display the Component.

 getGraphics Returns a Graphics object attached to this
Component’s on-screen rectangle.

getFontMetrics Returns a FontMetrics detailing the
Component’s Font (what is returned from

getFont) as rendered to the Graphics display

getFont) as rendered to the Graphics display
surface.

Component

Purpose
Abstracts all window components. Functionalities common to all such
components are implemented in the Component class.

Syntax
public abstract class Component implements ImageObserver;

Description
An abstract windowing component. All Components have a bounding rectangle of
on-screen space in which to render themselves. Java has several predefined
Component classes, such as a TextField, a Checkbox, or a Frame. The Component
class implements methods for Event handling and management of an on-screen
bounding rectangle. Figure 2-5 is an inheritance diagram for the Component class.

Figure 2-5 Inheritance diagram of the Component class

PackageName
java.awt

Imports
java.io.PrintStream,java.awt.peer.ComponentPeer,
java.awt.image.ImageObserver, java.awt.image.ImageProducer,
java.awt.image.ColorModel

Constructors
None.

Parameters
None.

action

ClassName
Component

Purpose
Event handler for ACTION_EVENT Events.

Syntax
public boolean action(Event evt, Object arg);

Parameters
Event evt

The ACTION_EVENT Event object.
Object arg

Argument attached to the Event object evt. This is identical to the arg member of
evt.

Description
Called by the default implementation of handleEvent whenever an
ACTION_EVENT is sent to the Component object. Action events include
selection of a menu item and pressing a button. Override the default
implementation of this method to make your Component react to action events.

Imports
None.

Returns
Returns true if the action event is handled by this Component object. A return
value of false causes the Event to be automatically sent to the parent Container of
this Component. The default implementation simply returns false.

See Also
The handleEvent method of the Component class

Example
The following example alternatively disables and enables a Go button whenever
the Example button is pressed. The action method’s arg in this case is the String
title of the button that was pressed.

public class MyContainer extends Panel {
 Button buttonGo = new Button(“Go”);
 public MyContainer() {
 add(buttonGo);
 add(new Button(“Example”));
 }

 action(Event evt, Object arg) {
 if(!(arg instanceof String))
 return false;

 if(((String)arg).equals(“Example”))
 if(buttonGo.isEnabled())
 buttonGo.disable();
 else
 buttonGo.enable();
 }
}

bounds

ClassName
Component

Purpose
Gets the bounding rectangle for this Component.

Syntax
public Rectangle bounds();

Parameters
None.

Description
This method gets a Rectangle object whose x and y members are set to the
coordinates of the upper-left corner of the Component, relative to the origin of the
parent Container. The width and height members of the Rectangle are set to the
dimensions of the Component.

Imports
None.

Returns
A Rectangle object describing the bounding rectangle of this Component object is
returned. The values expressed are relative to the origin of the parent Container
object. The x and y members describe the upper-left corner of the Component.

See Also
The java.awt.Rectangle class

Example
The following example calculates and writes out the exact coordinates of the
lower-right corner of the Component rectangle.

public class MyComponent extends Component {
 ...

 public void outputLowerRightCoords() {
 Rectangle r = bounds();
 System.out.println(new Point(r.x + r.width,
 r.y + r.height));
 return;
 }

 ...
}

checkImage

ClassName
Component

Purpose
To check the status of construction of an Image.

Syntax
public int checkImage(Image img, ImageObserver observer); public int
checkImage(Image img, int width, int height, ImageObserver observer);

Parameters
Image img

The Image object whose status is to be checked.
int width

The scaled size of the image representation being checked.
int height
ImageObserver observer

An ImageObserver object currently being notified of the progress of construction
of the Image object.

Description

Checks the status of the construction of an Image object. The second overloaded
version of this method checks the construction of a scaled representation of the
Image object.

Imports
None.

Returns
A logical ORing of the ImageObserver flags indicating what information about
the Image is available. This can include one or more of the following
ImageObserver values: WIDTH, HEIGHT, PROPERTIES, SOMEBITS,
FRAMEBITS, ALLBITS, ERROR.

See Also
The ImageObserver interface

Example
This example prevents the Component from painting its surface until the Image
construction flag ALLBITS has been passed to the ImageObserver watching the
image construction process.

public MyComponent extends Canvas {
 Image _img;

 // Constructor takes an Image parameter and begins
 // construction of it.
 public MyComponent(Image img) {
 _img = img;
 prepareImage(_img, this); // using this Component
 // as the ImageObserver.
 }
 // paint does nothing until image has been
 // fully constructed.
 public void paint(Graphics g) {
 if(0 == (ImageObserver.ALLBITS &
 checkImage(_img, this)))
 return;

 // Do something with the image
 ...
 }
}

createImage

ClassName
Component

Purpose
Creates an in-memory Image with a specified width and height, or from the output
of an ImageProducer object.

Syntax
public Image createImage(int x, int y); public Image createImage(ImageProducer
producer);

Parameters
int x

The width and height of the resultant Image object.
int y
ImageProducer producer

The ImageProducer object which will provide the data that defines the resultant
Image.

Description
Creates an Image object of the specified width and height. This Image is suitable
for drawing on for double-buffered screen updating. (See Chapter 1’s discussion
of double-buffered updating.) The resultant Image will have a compatible
ColorModel to the display device associated with this Component object. The
second overloaded version of this method creates the Image using data from the
ImageProducer.

Imports
java.awt.image.ImageProducer

Returns
An Image object. The Image has not been constructed yet. Use
Component.prepareImage() to begin construction of a screen representation of the
Image.

See Also
The ImageProducer class

Example
This example creates an in-memory Image, draws on it, and then renders the
entire in-memory Image to the Component’s display surface.

public void paint(Graphics g) {
 Image imgTemp = createImage(size().width,
 size().height);
 Graphics gTemp = imgTemp.getGraphics();
 for(int ii=0 ; ii<10 ; ii++)
 gTemp.drawLine(0, 0, size().width / ii,
 size().height);
 g.drawImage(imgTemp, 0, 0, this); // Use this Component
 // as the ImageObserver.
}

deliverEvent

ClassName
Component

Purpose
Called within your Java code to deliver an Event to any Component object. The
Java system uses a different mechanism to deliver user-generated Events.

Syntax
public void deliverEvent(Event evt);

Parameters
Event evt

The Event object to deliver to this Component.

Description
Delivers an Event object to this Component. The default implementation simply
calls postEvent. To send a custom Event to a Component object, use the
Component’s deliverEvent method. This ensures the Event will automatically be
routed to the Component’s Container if the Component does not handle the Event.
The Java system uses a different mechanism to deliver user-generated Events to a
Component. That mechanism involves calling the Component’s postEvent
method directly using a special callback Thread, without using deliverEvent.

Imports
java.awt.Event

Returns
None.

See Also
The Event class

Example
This example delivers a custom Event object to a Component. The Component
has been given a custom handleEvent to handle the custom Event type.

public class MyEvent extends Event {
 public static final MY_EVENT_ID = 5000; // any value
 public MyEvent(Component target, Object arg) {
 super(target, MY_EVENT_ID, arg);
 }
}

public class MyClass {
 Component _c;

 public MyClass(Component c) {
 _c = c;
 }

 public deliverEvent(Object arg) {
 c.deliverEvent(new MyEvent(c, arg));
 }
}

disable

ClassName
Component

Purpose
Disables a Component, which prevents delivery of user-interaction Events to the
Component.

Syntax
public void disable();

Parameters
None.

Imports
None.

Description

Disables the component. The Component’s peer is also disabled as a result of
calling this method. Predefined Components, such as Buttons or Labels, take on a
grayed outlook when they are disabled. All Components, either predefined or
custom ones, no longer receive user-interaction events once they are disabled.

Returns
None.

Example
See the example for the action method of the Component class.

enable

ClassName
Component

Purpose
Enables or disables the Component.

Syntax
public void enable(); public void enable(boolean fEnabled);

Parameters
boolean fEnabled

If true, the Component is enabled. If false, the Component is disabled.
Imports

None.
Description

Enables the Component. The Component’s peer is also enabled as a result of
calling this method. The second overloaded version will enable or disable the
Component according to the boolean value passed. A disabled Component no
longer receives user-generated Events, such as mouse or keyboard Events.
Predefined Components, such as Buttons or Labels, take on a grayed out look to
denote to the user that they are disabled. Enabled Components receive all user-
generated Events.

Returns
None.

Example
See the example for the action method of the Component class.

getBackground

ClassName
Component

Purpose
Gets this Component’s current background color.

Syntax
public Color getBackground()

Parameters
None.

Imports

java.awt.Color
Description

Gets the background Color object that is automatically applied to Graphics
objects passed to the paint method.

See Also
The Color class; the getForeground, setForeground, and setBackground methods
of the Component class

Example
This example code snippet demonstrates the default implementation of the update
method of the Component class. The only reference to a Component’s
background color within the Java API is within update, which uses the
background color to erase the Component’s entire display surface.

public void update(Graphics g) {
 g.setColor(getBackground());
 g.fillRect(0, 0, size().width, size().height);
 g.setColor(getForeground());
 paint(g);
}

getColorModel

ClassName
Component

Purpose
Gets the ColorModel for the display surface attached to this Component object.

Syntax
public ColorModel getColorModel();

Imports
java.awt.ColorModel

Description
Gets the ColorModel for the display surface attached to this Component object. A
ColorModel provides methods for converting pixel values to red, green, blue, and
alpha color component values. In Java 1.0, this method returns an
IndexedColorModel, from which you can get the current palette for the system’s
desktop.

Returns
A ColorModel that encapsulates methods for converting pixel values to red,
green,blue, and alpha color components when displayed on the Component’s
display surface.

See Also
The ColorModel class

Example
This example displays the number of bits/pixel for the Component’s display
surface.

public MyApplet extends Applet {
 Button buttonEx = new Button(“Example”);

 public MyApplet() {}

 public void init() {
 add(buttonEx);
 }

 public void start() {
 System.out.println(buttonEx.getColorModel().getPixelSize());
 }
}

getFont

ClassName
Component

Purpose
Gets the Font object associated with this Component.

Syntax
public Font getFont();

Imports
java.awt.Font

Description
Gets the Font associated with this Component. You associate a Font with a
Component using setFont. Note that the Font returned by getFont may still have
to be selected by the Component’s Graphics object using Graphics.setFont. For
the predefined Component classes in the java.awt package, such as Button and
List, it is not necessary for the Graphics object to select the Font. But for custom
Components, you will have to add a line like this to your paint method to ensure
the Component’s Font is selected into the Graphics object:

public void paint(Graphics g) {
 g.setFont(getFont());
 ...
}
Returns

The Font object currently associated with this Component. If a Font has not been
associated with this Component, using setFont will get the parent Container’s
Font.

See Also
The Font class; the setFont method of the Component class

Example
This example method bolds a Component’s Font when called.

public void makeFontBold(Component c) {
 Font f = c.getFont();
 c.setFont(new Font(f.getName(),
 f.getStyle() | Font.BOLD,
 f.getSize()));
}

getFontMetrics

ClassName
Component

Purpose
Gets the FontMetrics for a specified Font as it is rendered on the Component’s
display surface.

Syntax
public FontMetrics getFontMetrics(Font f);

Parameters
Font f

The Font for which to create the FontMetrics.
Imports

java.awt.Font, java.awt.FontMetrics
Description

Gets the FontMetrics for the passed Font. The FontMetrics are for the display
surface associated with this Component. You can use the return value from
getFont as the Font parameter to this method, like so

FontMetrics fm = getFontMetrics(getFont());
See Also

The Font class and the FontMetrics class
Example

This example measures the width in pixels of a given string on the Component’s
display surface using the Component’s Font.

public class MyComponent extends Canvas {
 public int measureString(String str) {
 return getFontMetrics(getFont()).stringWidth(str);
 }
}

getForeground

ClassName
Component

Purpose
Gets the Color used for foreground painting on the Component’s display surface
in the paint method.

Syntax
public Color getForeground();

Parameters
None.

Imports
java.awt.Color

Description
Gets the foreground Color for this Component. The Foreground color is
automatically associated with Graphics objects passed to the paint method by the
default implementation of update. See the example of the getBackground method
to see how this association happens.

Returns

A Color object representing the current color of the Graphics object passed to
paint.

See Also
The Color class; the setForeground method of the Component class

Example
This example sets the foreground and background colors of an in-memory Image
object’s Graphics to be the same as the component’s foreground and background
colors.

public class MyComponent extends Canvas {
 ...

 public Graphics makeImageHaveCompatibleColors(Image img) {
 Graphics g = img.getGraphics();
 g.setColor(getBackground());
 g.fillRect(0, 0, size().width, size().height);
 g.setColor(getForeground());
 return g;
 }

 ...
}

getGraphics

ClassName
Component

Purpose
Gets a Graphics object whose display surface is the rectangle of the on-screen
desktop controlled by this Component.

Syntax
public Graphics getGraphics();

Parameters
None.

Imports
java.awt.Graphics

Description
Returns a Graphics object for this Component. If the Component has not been
added to a Container using Container.add, this method will return null. The
foreground Color, background Color, and Font have been selected by the
Graphics object.

Returns
A Graphics object attached to the on-screen rectangle controlled by this
Component.

See Also
The Graphics class

Example
See the example for the getForeground method of the Component class.

getParent

ClassName
Component

Purpose
Gets the parent Container of this Component.

Syntax
public Container getParent();

Parameters
None.

Imports
java.awt.Container

Description
Gets the Container for this Component object. If the Component is a top-level
Frame window, or the Component has not been added to a Container using
Container.add, then this method will return null.

Returns
A reference to the Container object which controls this Component. If the
Component does not have a parent Container, null will be returned.

See Also
The add method of the Container class

Example
This example places the Component in the lower-right corner of the parent
Container’s bounding rectangle.

public class MyComponent extends Component {
 ...

 public void placeParentsLowerRight() {
 Container parent = getParent();
 Dimension dimParent = parent.size();
 Dimension dimThis = size();
 move(rectParent.width - dimThis.width,
 rectParent.height - dimThis.height);
 }

 ...
}

getPeer

ClassName
Component

Purpose
Gets the ComponentPeer associated with this Component object. The
ComponentPeer is the proxy through which calls to the native windowing system
are made.

Syntax
public ComponentPeer getPeer();

Parameters
None.

Imports
java.awt.peer.ComponentPeer

Description
Gets the Peer object associated with this Component. If this Component has no
Peer, null will be returned.

Returns
A Reference to the ComponentPeer attached to this Component. If no
ComponentPeer exists, as would be the case if the Component has not been added
to a Container using Container.add, then null will be returned.

See Also
The ComponentPeer class

Example
This example implements a virtual Component, which is a Component that does
not have a peer. Virtual Components are useful because they inherit all the
Component bounding rectangle and Event handling methods. Virtual Components
can be used to manage overlapping rectangles of on-screen space, especially
because sibling virtual Components will not “clip” each other on the desktop.

public class VirtualComponent extends Canvas {
 ...

 // Overriding addNotify ensures no ComponentPeer
 // will ever be created for this object.
 public void addNotify() {
 return;
 }

 ...
}

getToolkit

ClassName
Component

Purpose
Gets the Toolkit object, which is the proxy for the native windowing system itself.

Syntax
public Toolkit getToolkit()

Imports
java.awt.Toolkit

Description
Gets the Toolkit object for this Java session. The Toolkit is the proxy for the
native windowing system on the local computer. Through the Toolkit you can
create ComponentPeers and retrieve various windowing system parameters such
as the list of available Fonts.

Returns
A reference to the Toolkit associated with this Component.

See Also
The Toolkit class

Example
The Toolkit can be used to download images or audio clips directly. This example
uses a Component’s Toolkit to download an Image from within a non-Component
object.

public class MyClass {
 Frame _frame = new Frame(“Sample”);
 Image _img;

 public MyClass() {
 _frame.show();

 Toolkit tk = _frame.getToolkit();
 _img = tk.getImage(
 new URL(“http://www.co.com/logo.gif”));
 }
}

gotFocus

ClassName
Component

Purpose
Event handler method for GOT_FOCUS Events.

Syntax
public boolean gotFocus(Event evt, Object arg);

Parameters
Event evt

The GOT_FOCUS Event sent to this Component.
Object arg

The argument to the GOT_FOCUS Event. This parameter is identical to the arg
member of evt.

Imports
java.awt.Event
Description

This notification method is called by the default implementation of handleEvent
when a GOT_FOCUS Event is sent to this Component, indicating that this
Component has the keyboard focus. The default implementation of the Event
handling method simply returns false. Override the default implementation to
allow your Component to react when the Component receives the keyboard focus.

Returns
Have your default implementation return true, indicating the GOT_FOCUS Event
has been handled. If false is returned, then the Event will be posted to the this
Component’s parent Container.

Example
This example reports to System.out when the Component receives or loses
keyboard focus.

public class MyComponent extends Canvas {

 ...

 public boolean gotFocus(Event evt, Object arg) {
 System.out.println(arg + “ got keyboard focus.”);
 return true;
 }

 public boolean lostFocus(Event evt, Object arg) {
 System.out.println(arg + “ lost keyboard focus.”);
 return true;
 }
}

handleEvent

ClassName
Component

Purpose
Called to allow the Component a chance to handle user-generated or other Events.

Syntax
public boolean handleEvent(Event evt);

Parameters
Event evt

The Event to be handled by this Component.
Imports

java.awt.Event
Description

This method acts as a central clearing house for all events sent to this Component,
or unhandled events sent to subcomponents of this object. The default
implementation is a large switch() statement which calls more specific methods,
such as keyDown(), mouseMove(), gotFocus(), etc. The return value indicates
whether the Event has been handled or should be sent to the parent Container.

Returns
A return value of true indicates the Event has been handled. False indicates it has
not, and the Event will be sent to the parent Container.

See Also
All of the Event handle methods of the Component class; the Event class

Example
In this example, it is known that the defined class of Components never handles
any Events. The default implementation of handleEvent will still run through its
long switch statement and attempt to find a handler for the Event. This class is
optimized to stop the Java system from performing that unnecessary handleEvent
code.

public class MyNoHandlerComponent extends Component {
 ...

 public boolean handleEvent(Event evt) {
 return false;
 }

 ...
}

hide

ClassName
Component

Purpose
Makes the Component invisible or “hidden.”

Syntax
public void hide();

Parameters
None.

Imports
None.

Description
Hides the Component. Hidden components are not drawn, nor do they take up
space on the display surface.

Returns
None.

See Also
The show method of the Component class

Example
This example Panel uses a Label to display a countdown. When the countdown
reaches 0, the Label is hidden. Note that this example does not halt its background
Thread in its stop() method implementation for purposes of readablility.

public class MyCountDownApplet extends Applet implements
 Runnable {
 Label _label = new Label();
 int _nCount = 10;

 public MyCountDownApplet() {}

 public void start() {
 add(_label);
 show();
 Thread t = new Thread(this);
 t.start();
 }

 public void run() {
 while(_nCount >= 0) {
 try {
 Thread.currentThread().sleep(1000);
 } catch (Exception e) {}
 _nCount--;
 _label.setText(new String(“”+_nCount));
 }

 _label.hide();
 }

}

imageUpdate

ClassName
Component

Purpose
This is the only method of the ImageObserver interface. The default
implementation repaints the entire Component whenever any progress is made in
the construction of an image.

Syntax
public boolean imageUpdate(Image img, int flags, int x, int y, int width, int
height);

Parameters
Image img

The Image object to check. If progress on a screen representation of this Image
has been made, then the Component will be repainted asynchronously.

int flags
The ImageObserver flags indicating the progress of construction of a screen
representation of the Image object. These ImageObserver flags are ORed together.

int x
Indicates the rectangle of the Image for which the flags parameter is valid.

int y
int width
int height
Imports

None.
Description

Causes an asynchonous repainting of the Component if construction of the
Image’s representation has made progress. The same flags parameter as is
returned by checkImage method is passed. Because this method is implemented in
the Component class, any Component object may act as an ImageObserver.

Returns
Returns true if further notification of image construction should continue. False
causes further notification to be terminated.

See Also
The imageUpdate method of the ImageObserver interface

Example
This example prevents the Component from repainting unless the ALLBIT flag is
passed as part of the flags parameter.

public class MyComponent extends Canvas {
 ...

 public boolean imageUpdate(Image img, int flags, int x,
 int y, int width, int height) {
 if(0 != (flags & ImageObserver.ALLBITS))
 return true;

 repaint();
 return false;
 }

 ...
}

inside

ClassName
Component

Purpose
Checks to see if a particular point lies within this Component’s bounding
rectangle.

Syntax
public boolean inside(int x, int y);

Parameters
int x

The coordinates of the point to check.
int y
Imports

None.
Description

Checks whether a particular point lies inside or outside the Component’s
bounding rectangle. The point to check is specified relative to the parent
Container’s origin (generally its upper-left corner).

Returns
True is returned if the point lies within this Component’s bounding rectangle.
Otherwise false is returned.

Example
This example method moves the Component’s origin to a point if that point does
not lie within the Component’s bounding rectangle.

public class MyComponent extends Canvas {
 ...

 public void moveOver(int x, int y) {
 if(inside(x, y))
 return;

 move(x, y);
 }

 ...
}

invalidate

ClassName
Component

Purpose
Marks the Component as invalid. Calls to Component.validate are ignored unless
the Component has been marked as invalid.

Syntax
public void invalidate();

Parameters
None.

Imports
None.

Description
Sets an internal boolean variable, indicating the Component must be validated.
Use validate to re-validate the Component Container components. In conjunction
with a LayoutManager object, use the invalidate/validate methods to layout
subcomponents. By default implementation, Component objects do not react to
being tagged as invalid.

Returns
None.

See Also
The Container class and the LayoutManager interface

isEnabled

ClassName
Component

Purpose
Tells whether or not the Component is enabled.

Syntax
public boolean isEnabled();

Parameters
None.

Imports
None.

Description
Checks to see if the Component is currently enabled. When created, a Component
is enabled. The disable method is used to disable a Component.

Returns
True if the Component is currently enabled. False if it is not.

Example
The paint method of this Component draws differently if the Component is
disabled.

public class MyComponent extends Canvas {$...

 public void paint(Graphics g) {
 if(isEnabled()) {
 // Draw enabled version of the Component.
 } else {
 // Draw disabled version of the Component.
 }

 }

 ...
}

isShowing

ClassName
Component

Purpose
Tells whether or not any part of the Component is currently showing on the
desktop.

Syntax
public boolean isShowing();

Parameters
None.

Imports
None.

Description
Checks to see whether the Component object is currently showing on the display
screen. The Component is not showing if it is currently hidden. It is not showing
if its bounding rectangle has a 0 dimension along either axis. It is not showing if
the intersection of its bounding rectangle with its parent’s bounding rectangle has
a 0 dimension along either axis. That is, Component positioned outside the
bounds of its parent Container’s bounding rectangle.

Returns
True is returned by this method for all Components which currently have some
rectangle of screen real estate. False is returned otherwise.

See Also
The hide and show methods of the Component class

Example
This Component is optimized by immediately returning from its paint
implementation if it is not currently showing.

public class MyComponent extends Canvas {
 ...

 public void paint(Graphics g) {
 if(!isShowing())
 return;

 // Draw the Component...
 }

 ...
}

isValid

ClassName

Component
Purpose

Tells whether or not this Component is currently flagged as “nvlaid.
Syntax

public boolean isValid();
Parameters

None.
Imports

None.
Description

Checks to see whether the Component object is currently valid. Each Component
has an internal invalid flag. The invalidate method is used to set this flag, and the
validate method is used to clear the flag. The default implementation of validate
actually does nothing except clear the flag. The Container class, however, uses the
invalid flag and the validate method as an indication of when it should rearrange
its child Components with the help of its LayoutManager.

Returns
Valid Components return true from calls to this method. Invalid ones return false.

See Also
The invalidate and validate methods of the Component class

isVisible

ClassName
Component

Purpose
Tells whether or not the Component is currently visible.

Syntax
public boolean isVisible();

Parameters
None.

Imports
None.

Description
Checks to see whether the Component object is currently hidden. To hide a
Component object, call its hide method. The show method will alternatively make
the object unhidden. Components, when created, are not hidden by default.

Returns
If the Component is currently hidden, false is returned. If it is not hidden, true is
returned.

Example
This Component object suspends its background processing Thread while it is
hidden. This is accomplished by overriding its show method and by implementing
the Runnable interface.

public class MyComponent extends Canvas implements
 Runnable {
 Thread _t = new Thread(this);

 public MyComponent() {
 _t.start();
 }

 public synchronized void quit() {
 Thread tTemp = _t;
 _t = null;
 notify();
 }
}

 public synchronized void show() {
 notify();
 super.show();
 }

 public synchronized void run() {
 while(null != _t) {
 if(!isVisible()) {
 wait();
 continue;
 }

 // do one iteration of background processing
 }
 }

 ...
}

keyDown

ClassName
Component

Purpose
Event handler for KEY_PRESS Events.

Syntax
public boolean keyDown(Event evt, int key);

Parameters
Event evt

The KEY_PRESS or KEY_ACTION Event which was sent to this Component.
int key

The key pressed. Note that the key is also stored in the key member of evt.
Imports

java.awt.Event
Description

This method is called by the the default implementation of handleEvent whenever
a KEY_PRESS or KEY_ACTION Event is sent to the Component. The passed
parameters indicate the code for the key pressed. A custom implementation
should return true if the event is handled by the Component and should not be
sent on to the Component’s Container.

Returns
The default implementation of this method simply returns false, indicating the
Event should be passed on to the parent Container’s handleEvent method.

See Also
The Event class; the handleEvent method of the Component class

Example
This example Component changes its background color whenever the spacebar is
pressed. The Component is not repainted until a KEY_RELEASE Event is sent to
the Component.

public class MyComponent extends Canvas {
 static Color[] ac = new Color[2];
 int i = 0;

 public MyComponent() {
 ac[0] = new Color(0, 0, 0);
 ac[1] = new Color(255, 255, 255);
 }

 public boolean keyDown(Event evt, int key) {
 if(‘ ‘ = (char)key) {
 i++;
 i %= 2;
 setBackground(ac[i]);
 return true;
 }

 return false;
 }

 public boolean keyUp(Event evt, int key) {
 if(‘ ‘ == (char)key) {
 repaint();
 return true;
 }

 return false;
 }
}

keyUp

ClassName
Component

Purpose
Event handler for KEY_RELEASE Events.

Syntax
public boolean keyUp(Event evt, int key);

Parameters
Event evt

The KEY_RELEASE or KEY_ACTION_RELEASE Event which was sent to this
Component.

int key
The key pressed. Note that the key is also stored in the key member of evt.

Imports
None.

Description
This method is called by the the default implementation of handleEvent whenever
a KEY_RELEASE or KEY_ACTION_RELEASE Event is sent to the
Component. The passed parameters indicate the code for the key pressed. A
custom implementation should return true if the event is handled by the
Component and should not be sent on to the Component’s Container.

Returns
The default implementation of this method simply returns false, indicating the
Event should be passed on to the parent Container’s handleEvent method.

See Also
The Event class; the handleEvent method of the Component class

Example
See the example for the keyDown method of the Component class.

layout

ClassName
Component

Purpose
Called by the default implementation of validate if the Component is currently
invalid. The default implementation of Component.layout does nothing.

Syntax
public void layout();

Parameters
None.

Imports
None.

Description
Called when invalid Component objects are being validated as part of validate.
This method is primarily used to layout child Components in Container objects.
The default implementation of Component.layout does nothing. The Container
class implementation of layout relies on a LayoutManager object to handle the
laying out of child Components.

Returns
None.

See Also
The validate and invalidate methods of the Component class

list

ClassName
Component

Purpose
To display the internal state of the Component to a PrintStream object.

Syntax
public void list();
public void list(PrintStream out);
public void print(PrintStream out, int indent);

Parameters
PrintStream out

The stream to write a textual description of the state of this Component to.
int indent

The number of space characters (ASCII char 32) to prepend to each line of text
written to out.

Imports
java.io.PrintStream

Description
Outputs a textual description of the internal state of the Component to a
PrintStream. This can be useful for debugging purposes. The first overloaded
version of this method writes the listing to System.out, with an indentation of 0. A
call to list() (without parameters) is equivalent to System.out.println(this).

See Also
The PrintStream class; the toString method of the Component class

Example
This example Container class method displays the Container’s entire subtree of
Components by tracing its hierarchy depth-first, indicating depth by indentation
on the PrintStream. Output is written to System.out.

public class MyContainer extends Panel {
 ...

 public void displayChildren(Container target) {
 displayChildren(target, 0);
 }

 public void displayChildren(Container target, int indent) {
 Component[] acomps =
 new Component[target.countComponents()];

 for(int ii=0 ; ii<acomps.length ; ii++) {
 acomps[ii].list(System.out, indent);
 if(acomps[ii] instanceof Container)
 displayChildren((Component)
 acomps[ii], indent+1);
 }
 }
}

locate

ClassName

Component
Purpose

Returns a reference to this Component if the passed point lies within this
Component’s bounding rectangle.

Syntax
public Component layout(int x, int y);

Parameters
int x
int y

These two parameters describe a point, relative to this Component’s origin, to
test.

Imports
None.

Description
A hit-test method which checks to see which Component, or subcomponent,
contains the point described by the passed x and y parameters. The Container class
uses this method to determine which of its child Component’s contains a
particular point.

Returns
The Component, or subcomponent, that contains the point (x,y). If the point lies
outside the bounds of this Component, null is returned. Container.locate() re-
implements this method to test all subcomponents.

See Also
The Container class

location

ClassName
Component

Purpose
Gets the location of this Component’s origin.

Syntax
public Point location();

Parameters
None.

Imports
None.

Description
Gets the coordinates of the upper-left corner of this Component. The returned
Point is relative to the parent Container’s origin.

Returns
The coordinates of the upper-left corner of this Component.

See Also
The Point class

lostFocus

ClassName
Component

Purpose
Event handler for LOST_FOCUS Events.

Syntax
public boolean lostFocus(Event evt, Object arg);

Parameters
Event evt

The LOST_FOCUS Event sent to this Component.
Object arg

The argument to the LOST_FOCUS Event. This parameter is identical to the arg
member of evt.

Imports
java.awt.Event

Description
This notification method is called by the default implementation of handleEvent
when a LOST_FOCUS Event is sent to this Component, indicating this
Component no longer has the keyboard focus.

Returns
A return value of true indicates the LOST_FOCUS Event is handled by this
Component. Returning false causes the event to automatically be sent to this
Component’s parent Container object.

See Also
The handleEvent method of the Component class

Example
See the example for the gotFocus method of the Component class.

minimumSize

ClassName
Component

Purpose
Allows a Component to tell its parent Container the minimum bounding rectangle
it requires.

Syntax
public Dimension minimumSize();

Imports
None.

Description
Returns the minimum sized rectangle of display surface required for this
Component to display itself. When the Component’s Container lays out its
subcomponents, this method is called to establish a minimum amount of screen
real estate needed by the Component.

Returns

The returned Dimension object should indicate the minimum required width and
height needed for this Component to display itself. The default implementation of
Component.minimumSize() returns the minimum size required as indicated by the
Component’s peer. If no peer exists, the current size of the Component is
returned.

See Also
The preferredSize method of the Component class; the LayoutManager interface;
the Dimension class

Example
This example custom Component reports that it requires at least a 10 x 10
bounding rectangle, but would prefer a bounding rectangle large enough to
display an initializer String.

public class MyComponent extends Canvas {
 String _str;

 public MyComponent(String str) {
 _str = str;
 }

 public Dimension minimumSize() {
 return new Dimension(10, 10);
 }

 public Dimension preferredSize() {
 FontMetrics fm = getFontMetrics(getFont());
 return new Dimension(fm.getHeight(),
 fm.stringWidth(_str));
 }

 ...
}

mouseDown

ClassName
Component

Purpose
Event handler for MOUSE_DOWN Events.

Syntax
public boolean mouseDown(Event evt, int x, int y);

Parameters
Event evt

The MOUSE_DOWN Event sent to this Component.
int x
int y

The on-screen coordinates where the mouse was clicked. The coordinates are
expressed relative to the origin of this Component object. These two parameters
are identical to the x and y members of evt.

Imports
java.awt.Event

Description
This notification method is called by the default implementation of handleEvent
when a MOUSE_DOWN Event is sent to this Component, indicating the user has
clicked the mouse inside this Component.

Returns
A return value of true indicates the MOUSE_DOWN Event is handled by this
Component. Returning false causes the event to automatically be sent to this
Component’s parent Container object.

See Also
The handleEvent, mouseUp, and mouseDrag methods of the Component class

Example
This simple example custom Component prints the coordinates of the mouse
while the mouse button is down.

public class MyComponent extends Component {
 boolean _bMouseIsDown = false;
 Point _ptMouseCoords = null;

 public MyComponent() {}

 public void paint(Graphics g) {
 if((null == _ptMouseCoords) ||
 (false == _bMouseIsDown))
 return;

 g.drawString(“”+_ptMouseCoords, _ptMouseCoords.x,
 _ptMouseCoords.y);
 }

 public boolean mouseDown(Event evt, int x, int y) {
 _ptMouseCoords = new Point(x, y);
 _bMouseIsDown = true;
 repaint();
 }

 public boolean mouseDrag(Event evt, int x, int y) {
 _ptMouseCoords = new Point(x, y);
 _bMouseIsDown = true;
 repaint();
 }

 public boolean mouseUp(Event evt, int x, int y) {
 _bMouseIsDown = false;
 repaint();
 }
}

mouseDrag

ClassName
Component

Purpose
Event handler for MOUSE_DRAG Events.

Syntax
public boolean mouseDrag(Event evt, int x, int y);

Parameters
Event evt

The MOUSE_DRAG Event sent to this Component.
int x
int y

The coordinates where the mouse was dragged to. These parameters are identical
to the x and y members of evt.

Imports
java.awt.Event

Description
This notification method is called by the default implementation of handleEvent
when a MOUSE_DRAG Event is sent to this Component, indicating that the
mouse has been moved while the mouse button is held down.

Returns
A return value of true indicates the MOUSE_DRAG Event is handled by this
Component. Returning false causes the event to automatically be sent to this
Component’s parent Container object.

See Also
The handleEvent, mouseDown, mouseUp, and mouseMove methods of the
Component class; the Event class

Example
See the example for the mouseDown method of the Component class.

mouseEnter

ClassName
Component

Purpose
Event handler for MOUSE_ENTER Events.

Syntax
public boolean mouseEnter(Event evt, int x, int y);

Parameters
Event evt

The MOUSE_ENTER Event sent to this Component.
int x
int y

The argument to the GOT_FOCUS Event. This parameter is identical to the arg
member of evt.

Imports
java.awt.Event

Description

This notification method is called by the default implementation of handleEvent
when a MOUSE_ENTER Event is sent to this Component, indicating that the
mouse cursor has moved onto this Component’s display rectangle. A Component
will only receive a single MOUSE_ENTER Event before a subsequent
MOUSE_EXIT Event is sent. That is, each call to mouseEnter is matched by
exactly one subsequent call to mouseExit.

Returns
A return value of true indicates the MOUSE_ENTER Event is handled by this
Component. Returning false causes the event to automatically be sent to this
Component’s parent Container object.

See Also
The handleEvent and mouseExit methods of the Component class; the Event class

Example
This example component uses the mouseEnter and mouseExit Event handlers to
detect when the mouse cursor is over it. When the mouse is over it, the
Component exchanges its background and foreground colors compared to when
the mouse is not over it.

public class MyComponent extends Canvas {
 ...

 public boolean mouseEnter(Event evt, int x, int y) {
 Color bg = getBackground();
 setBackground(getForeground());
 setForeground(bg);
 return true;
 }

 public boolean mouseExit(Event evt, int x, int y) {
 Color bg = getBackground();
 setBackground(getForeground());
 setForeground(bg);
 return true;
 }

 ...
}

mouseExit

ClassName
Component

Purpose
Event handle for MOUSE_EXIT Events.

Syntax
public boolean mouseExit(Event evt, int x, int y);

Parameters
Event evt

The MOUSE_EXIT Event sent to this Component.
int x
int y

The coordinates of the first point outside the Component’s bounds that the mouse
is moved to after being inside the bounds. Coordinates are relative to the upper-
left corner of the Component.

Imports
java.awt.Event

Description
This notification method is called by the default implementation of handleEvent
when a MOUSE_EXIT Event is sent to this Component, indicating that the mouse
cursor has moved out of this Component’s display rectangle. A Component will
only receive a single MOUSE_ENTER event before a subsequent MOUSE_EXIT
event is sent. That is, each single call to mouseEnter is matched by a single
subsequent call to mouseExit. MOUSE_EXIT Events are still sent to a
Component even if the user is dragging the mouse (that is, moving the mouse
while the mouse button is held down).

Returns
A return value of true indicates the MOUSE_EXIT Event is handled by this
Component. Returning false causes the event to automatically be sent to this
Component’s parent Container object.

See Also
The Event class; the handleEvent and mouseEnter methods of the Component
class

Example
See the example for the mouseEnter method of the Component class.

The MouseMove method is described at the end of this chapter on page 135.

mouseUp

ClassName
Component

Purpose
Event handler for MOUSE_UP Events.

Syntax
public boolean mouseUp(Event evt, int x, int y);

Parameters
Event evt

The MOUSE_UP Event sent to this Component.
int x

The coordinates of the mouse cursor when the mouse button was released.
int y

These parameters are identical to the x and y members of evt.
Imports

java.awt.Event
Description

This notification method is called by the default implementation of handleEvent
when a MOUSE_UP Event is sent to this Component, indicating the user has let
go of the mouse button.

Returns
A return value of true indicates the MOUSE_UP Event is handled by this
Component. Returning false causes the event to automatically be sent to this
Component’s parent Container object.

See Also
The Event class; the handleEvent, mouseDown, mouseMove, and mouseDrag
methods of the Component class

Example
See the example for the mouseDown method of the Component class.

move

ClassName
Component

Purpose
Moves the entire Component within its parent Container.

Syntax
public void move(int x, int y);

Parameters
int x
int y

The new coordinate of the upper-left corner of the Component object. The
coordinates are expressed relative to the upper-left corner of the parent Container.

Imports
None.

Description
Relocates the Component relative to the upper-left corner of the parent Container.
The dimensions of the moved Component are preserved.

Returns
None.

See Also
The location method of the Component class

Example
See the example for the inside method of the Component class.

nextFocus

ClassName
Component

Purpose
Moves the keyboard focus to the next Component within the same Container.

Syntax
public void nextFocus();

Parameters
None.

Imports
None.

Description
Calling this method, moves the keyboard focus to the next Component within the
same Container that is eligible to receive keyboard focus. Calling this method for
a Component which does not currently have keyboard focus is a no-op. Use of the
Component.requestFocus method instead of nextFocus is strongly encouraged.
See the example of the requestFocus method.

Returns
None.

See Also
The requestFocus, gotFocus, and lostFocus methods of the Component class

paint

ClassName
Component

Purpose
Called whenever the Java system determines the Component must repaint its
surface.

Syntax
public void paint(Graphics g);

Parameters
Graphics g

A Graphics object which has been attached to the display surface for the
Component, and whose clipping rectangle has been set to whole or part of the
Component’s bounding rectangle.

Imports
java.awt.Graphics

Description
This method is called whenever the Component should render itself on the display
surface. The Graphics object passed to this method is attached to the display
surface, and is clipped to the Component’s bounding rectangle. Custom
Component objects should override this method. The paint method can be called
by Java at any time, such as when your Java application is covered up by another
application running at the same time. When the other application is removed from
on top of your Java application, a paint call will be issued for all visible
Components.
There are no guarantees on the internal state of the Graphics object, except that
the clipping rectangle will be set to a rectangle equal to or contained by the

Component’s bounding rectangle. If you do not override the Component’s default
update method, then the foreground and background colors are also guaranteed to
be selected in the Graphics object. In general, it is always safe to select the
foreground Color, background Color, Font, and other special drawing features
into the Graphics object, just to be sure that the Graphics’ internal state is as it is
expected to be. Use the repaint method to force an asynchronous paint call to be
issued for the Component.

Returns
None.

See Also
The Graphics class; the repaint method of the Component class

Example
This example Component re-implements both the paint and repaint methods. The
re-implementation of the repaint method guarantees that the foreground Color and
Font are selected into paint’s Graphics parameter, and the Component’s surface
has not been erased at all. Re-implementing the update method, to not erase a
Component’s surface, is the technique usually used to avoid flicker in graphics-
intensive applications.

public class MyComponent extends Canvas {
 ...

 public void update(Graphics g) {
 g.setColor(getForeground());
 g.setFonr(getFont());
 paint(g);
 }

 public void paint(Graphics g) {
 // Draw something to the Component’s surface...
 }

 ...
}

paintAll

ClassName
Component

Purpose
Paints the Component after calling validate.

Syntax
public void paintAll(Graphics g);

Parameters
Graphics g

A Graphics object, which has been attached to the display surface for the
Component, and whose clipping rectangle has been set to whole or part of the
Component’s bounding rectangle.

Imports
java.awt.Graphics

Description
This method paints the Component after calling validate. Note that this method is
usually used to force a Container to repaint itself and all its child Components.

Returns
None.

See Also
The Graphics class; the validate method of the Component class

postEvent

ClassName
Component

Purpose
Routes an Event to its handler method.

Syntax
public boolean postEvent(Event evt);

Parameters
Event evt

The Event object being sent to this Component.
Imports

java.awt.Event
Description

This method handles delivering an Event to either a Component’s peer, the
Component’s handleEvent method, or to the Component’s parent Container
postEvent method (in that order). Note that the Java system calls a Component’s
postEvent method to deliver all Events to the Component. When delivering your
own Events to a Component, use the deliverEvent method. The recursive design
of the postEvent method is used to pass unhandled Events up from Component to
parent Container to parent Container until some Event handler method returns
true. deliverEvent simple calls postEvent. postEvent will actually allow the peer’s
handleEvent method to have a first shot at the Event. If the peer’s handleEvent
returns true, indicating the Event has been handled, then the Component’s own
handleEvent implementation is never called. This is the reason that, say, Scrollbar
objects (which are directly derived from Component) cannot handle a
MOUSE_DOWN or MOUSE_UP Event. Instead, the Scrollbar’s peer handles
these types of Events and changes them into SCROLLBAR_* Events to be
handled by the Scrollbar. If neither the peer’s nor the Component’s handleEvent
method handles the Event, the parent Container’s postEvent method is passed the
Event.

Returns
A return value of true indicates the Event has been handled by either the peer, this
Component itself, or the Component’s parent Container.

See Also
The Event class; the deliverEvent and handleEvent methods in the Component
class

Example

Under some circumstances, you may actually want the Component’s parent
Container to take the first shot at handling the Component’s Events. In this
example, postEvent is re-implemented to allow the parent Container first shot at
all Events.

public class MyComponent extends Canvas {
 ...

 public boolean postEvent(Event evt) {
 if(false == getParent().postEvent(evt))
 return super.postEvent(evt);
 return true;
 }

 ...
}

preferredSize

ClassName
Component

Purpose
Allows the Component to tell its parent Container its preferred amount of on-
screen real estate.

Syntax
public Dimension preferredSize();

Parameters
None.

Imports
java.awt.Dimension

Description
Returns the preferred size of the rectangle of display surface for this Component
to display itself. When the Component’s Container lays out its subcomponents,
this method is called to establish a preferred amount of screen real estate for the
Component. Re-implement this method to request a particular preferred size for
your custom Component.

Returns
The returned Dimension object should indicate the preferred width and height for
this Component to display itself. The default implementation of preferredSize
returns the preferred size as indicated by the Component’s peer. If no peer exists,
the current size of the Component is returned.

See Also
The Dimension class; the minimumSize method of the Component class

Example
See the example for the minimumSize method of the Component class.

prepareImage

ClassName
Component

Purpose
Kick-starts the Image construction process.

Syntax
public boolean prepareImage(Image img, ImageObserver observer); public
boolean prepareImage(Image img, int width, int height, ImageObserver observer);

Parameters
Image img

The Image object to create a screen representation of.
int width
int height

The scaled size of the Image’s representation.
ImageObserver observer

The ImageObserver object that receives notification of the asynchronous progress
of the construction of the Image’s representation.

Imports
java.awt.Image, java.awt.image.ImageObserver

Description
Starts construction of a screen representation of an Image object. The second
overloaded version begins construction of a scaled version of the Image. An
Image must be constructed before it can be displayed on a Component’s surface.
Note, that when you use Graphics.drawImage with a reference to an
unconstructed Image object, the Image’s construction process is automatically
started for you. The prepareImage method allows you to start this process before
the Image is displayed on any surface.

Returns
True is returned if the representation of the Image object is complete. Otherwise,
false is returned and the Image construction process is started.

See Also
The Image class; the ImageObserver interface; the checkImage and updateImage
methods of the Component class

Example
See the example for the checkImage method of the Component class.

print

ClassName
Component

Purpose
To render the Component to a printer device.

Syntax
public void print(Graphics g);

Parameters

Graphics g
A Graphics object that has been attached to a printer device, and whose clipping
rectangle has been set to whole or part of the Component’s bounding rectangle.

Imports
java.awt.Graphics

Description
This method is called whenever the Component should render itself on a printer
device. The Graphics object passed to this method has been attached to a printing
device, and it is clipped to the Component’s bounding rectangle. The default
implementation simply calls paint, using the same Graphics object. Override this
method if your custom Component is to be displayed differently when printed
compared to on a display device. There are no guarantees on the internal state of
the Graphics object, except that the clipping rectangle will be set to a rectangle
equal to or contained by the Component’s bounding rectangle. It is a good idea to
select the foreground Color, background Color, Font, and other special drawing
features into the Graphics object to be sure the Graphics’ internal state is as it is
expected to be. Note that the print method is essentially the same thing as the
paint method. The print method is provided for those instances when you need to
know that your Component is being rendered to a printer.

Returns
None.

See Also
The Graphics class; the paint method of the Component class

Example
See the example for the paint method. The paint method and the print method are
essentially the same thing.

printAll

ClassName
Component

Purpose
Prints the Component after calling validate.

Syntax
public void printAll(Graphics g);

Parameters
Graphics g

A Graphics object that has been attached to a printer device, and whose clipping
rectangle has been set to whole or part of the Component’s bounding rectangle.

Imports
java.awt.Graphics

Description
This method prints the Component after calling validate. Note that this method is
usually used to force a Container to repaint itself and all its child Components.

Returns
None.

See Also
The Graphics class; the validate method of the Component class

repaint

ClassName
Component

Purpose
Requests an asynchronous repainting of the Component.

Syntax
public void repaint();
public void repaint(long lMillisecs);
public void repaint(int x, int y, int width, int height);
public void repaint(long lMillisecs, int x, int y, int width. int height);

Parameters
long lMillisecs

Maximum number of milliseconds to wait before the Component’s update method
is called.

int x
int y
int width
int height

These four parameters define a rectangle of area that should be repainted.
Description

You call this method at any time to force an asynchronous repainting of the
Component. The Java system schedules a repainting of the Component to be
completed by a different Thread at a later time. The second and fourth overloaded
version of this method specify a maximum amount of time for the system to wait
to schedule a repainting of the Component. The third and fourth overloaded
versions allow you to specify a subset of the Component’s bounding rectangle to
repaint. Unless you use one of the overloaded versions of this method, which
allows you to specify a maximum time limit, there is no guarantee on the amount
of time before a repaint will be performed. If multiple repaint calls are made in
quick succession, they will be combined into a single repainting operation.
Repainting is achieved by an asynchronous call to update by the Java system.

See Also
The update and paint methods of the Component class

Example
See the example under the mouseDown method of the Component class.

requestFocus

ClassName
Component

Purpose
If possible, gives the input focus to this Component.

Syntax
public void requestFocus();

Parameters
None.

Imports
None.

Description
Makes a request for the keyboard focus to be switched to this Component. This
Component will be notified by a call to gotFocus when the keyboard focus has
been switched. Note that disabled Components can not gain the keyboard focus.

Returns
None.

See Also
The nextFocus, gotFocus, and lostFocus methods of the Component class

Example
This example Container has two child Components, a text field, and a checkbox.
When the checkbox becomes checked, then the text field is enabled and keyboard
focus is given to it. When the checkbox becomes unchecked, then the text field
becomes disabled and keyboard focus is given to the checkbox.

public class FocusContainerExample extends Panel {
 TextField _tf = new TextField();
 Checkbox _cb = new Checkbox(“Enable text field”);

 public FocusContainerExample() {
 add(_cb);
 add(_tf);
 }

 // An action Event is given to the parent Container
 // when the checkbox is checked or unchecked.
 action(Event evt, Object arg) {
 boolean b = ((Boolean)arg).booleanValue();
 if(!b) {
 _tf.disable();
 _cb.requestFocus();
 } else {
 _tf.enable();
 _tf.requestFocus();
 }
 }
}

reshape

ClassName
Component

Purpose
Changes the origin and dimensions of the Component object in one method call.

Syntax
public void reshape(int x, int y, int width, int height);

Parameters
int x
int y
int width
int height

These four parameters describe a new bounding rectangle for the Component. The
x and y coordinates are relative to the upper-left corner of the parent Container.

Imports
None.

Description
Modifies the bounding rectangle of the Component. The move and resize methods
are actually wrappers around the reshape method. To detect when your (non-
Frame) Component object is being resized or moved, re-implement the reshape
method to set some detection flag before calling the base implementation, as
demonstrated in the example below.

Returns
None.

See Also
The move and resize methods of the Component class

Example
This example Container re-implements reshape so that it can detect when it is
being sized below a particular width and change its LayoutManager accordingly.

public class MyContainer extends Panel {
 ...
 static final int MIN_FLOWCENTER_WIDTH = 100; // any val

 public void reshape(int x, int y, int width, int height) {
 if(width < MIN_FLOW_WIDTH)
 setLayoutManager(new FlowLayout(FlowLayout.LEFT));
 else
 setLayoutManager(new FlowLayout(FlowLayout.CENTER));
 super.reshape(x, y, width, height);
 }

 ...
}

resize

ClassName
Component

Purpose
Changes the dimensions of this Component.

Syntax
public void resize(int width, int height); public void resize(Dimension dim);

Parameters
int width
int height

The new width and height of the Component.

Dimension dim
The width and height members of this object describe the new width and height of
the Component.

Imports
java.awt.Dimension

Description
Modifies the width and height of the bounding rectangle for this Component to be
width pixels in width and height pixels in height. Note that the resize method is
just a wrapper around the reshape method.

See Also
The Dimension class; the move and reshape methods of the Component class

Example
This example Component resizes itself to always be large enough to display a
particular string.

public class MyComponent extends Canvas {
 ...

 String _str;

 public void setString(String str) {
 _str = str;
 FontMetrics fm = getFontMetrics(getFont());
 resize(fm.stringWidth(_str), size().height);
 }

 ...
}

setBackground

ClassName
Component

Purpose
Sets the background color used to erase the Component when it is rendered.

Syntax
public void setBackground(Color c);

Parameters
Color c

The background color to use when rendering the Component in the future.
Imports

None.
Description

Sets the background Color to use when painting or printing this Component on a
drawing surface. The update method uses a Component’s background Color to
erase the Component’s bounding rectangle on the desktop before calling paint. If
update is re-implemented so that it does not erase the Component, then the
background Color is never used and might as well never be set.

Returns
None.

See Also
The Color class; the update method of the Component class

Example
See the example under the mouseEnter method of the Component class.

setForeground

ClassName
Component

Purpose
Sets the foreground color used for rendering in the paint method.

Syntax
public void setForeground(Color c);

Parameters
Color c

The background color to use when rendering the Component in the future.
Imports

java.awt.Color
Description

Sets the foreground Color to use when painting or printing this Component on a
drawing surface. update modifies the foreground Color used by the passed
Graphics to be c before passing the Graphics on to paint. Therefore, Components
that override the default implementation of update must set the foreground color
explicitly in paint or update.

Returns
None.

See Also
The Color class; the getForeground, update, and paint methods in the Component
class

Example
See the example under the mouseEnter method of the Component class.

show

ClassName
Component

Purpose
Makes the Component either hidden or unhidden, according to the parameters
passed.

Syntax
public void show(); public void show(boolean fShow);

Parameters
boolean fShow

True if the Component should be unhidden. False if it should be hidden.
Imports

None.

Description
Shows the Component. Hidden components are not drawn, nor do they take up
space on the display surface. The second overloaded version allows you to hide or
show the Component based on the value of fShow.

Returns
None.

See Also
The hide method of the Component class

Example
This example Component gets hidden whenever it is disabled.

public class MyComponent extends Canvas {
 ...

 public void disable() {
 show(false);
 }

 public void enable() {
 show(true);
 }
 ...
}

size

ClassName
Component

Purpose
Gets the dimensions of this Component object.

Syntax
public Dimension size();

Parameters
None.

Imports
None.

Description
Gets the width and height of this Component.

Returns
A Dimension object whose width and height public member variables contain the
Component width and height in pixels, respectively.

See Also
The bounds method of the Component class

Example
See the examples under the methods resize, getParent, and getForeground of the
Component class.

toString

ClassName
Component

Purpose
Creates a descriptive string detailing the internal state of the Component.

Syntax
public String toString();

Parameters
None.

Imports
None.

Description
Gets a String containing a textual description of this Component object. The
resultant String is a concatenation of the object’s class, and certain information
about the Component’s internal state such as whether or not it is enabled or
hidden.

Returns
A textual description in a String object.

See Also
The toString method of the Object class

update

ClassName
Component

Purpose
Called by the Java system whenever the Component should repaint itself.

Syntax
public void update(Graphics g);

Parameters
Graphics g

A Graphics object attached to the Component’s display device, with a clipping
rectangle equal to or a subset of the Component’s bounding rectangle.

Imports
java.awt.Graphics

Description
Called automatically by the system when it is time to render the Component on a
drawing surface. Calls to repaint cause an asynchronous call to update to be made
by a separate Thread. The default implementation of update passes the Graphics
object on to paint after erasing the entire drawing surface with the background
color and selecting the foreground color into the Graphics object. Many
Components, which require a lot of graphical updating, override update so that the
entire drawing surface will not be erased. This prevents the Component from
appearing to flicker with each graphical update.

See Also
The Graphics class; the paint method of the Component class

Example

See the example for the paint method of the Component class.

validate

ClassName
Component

Purpose
To clear the invalid flag of this Component.

Syntax
public void validate();

Parameters
None.

Imports
None.

Description
Forces the Component to validate itself. When created, Components are marked
as valid. Subsequent calls to the invalidate method mark the Component as
invalid. Invalid Components validate themselves by calling the layout method
before clearing their internal invalid flag. The default implementation of layout
does nothing. The invalidate/validate methods are used mostly by Containers to
force subcomponents to be laid out by a LayoutManager object.

Returns
None.

See Also
The invalidate and layout methods of the Component class; the layout method of
the Container class

The Component Project: A Hotspot Custom Component

The Component Project illustrates the construction of a simple custom Component class:
the Hotspot class. The Hotspot class is a Component that has two Images associated with
it: an ActiveImage and an InactiveImage. The behavior of a Hotspot object is to display
the ActiveImage when the mouse cursor is moved on to the Hotspot. When the mouse is
not over the Hotspot, the InactiveImage is displayed. This is a generic custom
Component suitable for use in your own Java applications or applets.

This project demonstates several key concepts of Components and custom Components:

• Rendering a custom Component by overriding the Component.paint() method.
• Event handling by implementing Hotspot.mouseEnter() and
Hotspot.mouseExit() to make the Hotspot react to user interaction. The Hotspot’s
Container—the HotsportApplet in this project—can also handle mouse click
Events originally delivered to the Hotspot objects.

• Image preparation. The Hotspot implements the ImageObserver interface so
that it can be notified of the progress of construction of the on-screen
representation of the ActiveImage and the InactiveImage.

Figures 2-6 and 2-7 show the active and inactive images used for one of the Hotspot
components in this project.

Figure 2-6 Active image for the first Hotspot component of the Hotspot project

Figure 2-7 Inactive image for the second Hotspot component of the Hotspot project

Assembling the Project

1. Create a file called Hotspot.java using a text editor. This file holds the
implementation of the Hotspot custom Component class. Begin by declaring the
class and its member variables:
import java.awt.*;
import java.awt.image.*;

public class Hotspot extends Canvas implements ImageObserver {
 // The active and inactive images are stored in
 // member variables. A reference to the Image currently
 // being displayed is also kept as a member variable.
 Image _imgActive;
 Image _imgInactive;
 Image _imgCurrent;
2. The Hotspot constructor is passed a reference to the active and inactive
Images. The Constructor stores those references in member variables and begins
preparing the Images for rendering:
public Hotspot(Image imgActive, Image imgInactive) {
 _imgActive = imgActive;
 _imgInactive = imgInactive;
 _imgCurrent = _imgInactive;

 // prepareImage() starts the construction of an
 // on-screen representation of the image objects.
 prepareImage(_imgActive, this);
 prepareImage(_imgInactive, this);
 }
3. When the mouse moves over the Hotspot, the active image should be
displayed. This is performed by the mouseEnter event handler, which is called
automatically whenever a MOUSE_ENTER Event is delivered to the Component.
Similarly, when the mouse is no longer over the Component, then the inactive
image is displayed. This is performed by the mouseExit Event handler, which is
called whenever a MOUSE_EXIT Event is delivered to the Component.
public boolean mouseEnter(Event evt, int x, int y) {
 _imgCurrent = _imgActive;

 repaint();
 return true; // the Event has been handled.
 }

public boolean mouseExit(Event evt, int x, int y) {
 _imgCurrent = _imgInactive;
 repaint();
 return true; // The eEvent has been handled.
 }
4. To reduce flicker, prevent default implementation of update from erasing the
Component before calling paint.
public void update(Graphics g) {
 paint(g);
 }
5. Painting the Hotspot Component merely involves displaying the Image
referred to by _imgCurrent.
public void paint(Graphics g) {
 g.drawImage(_imgCurrent, 0, 0, this);
 }
}
6. Create a second file named HotspotApplet.java in the same directory. This file
holds a sample Applet which displays two Hotspots. The following code
initializes and displays two Hotspot Components on the surface of an Applet.
import java.applet.Applet;
import java.awt.*;
import java.net.URL;

public class HotspotApplet extends Applet {
 Hotspot _hotspot1;
 Hotspot _hotspot2;

 // Applet initialization is the only operation that must
 // be implemented for this Applet class. The Active and
 // Inactive image URLs are passed as the "ActiveImageURL1",
 // "ActiveImageURL2", "InactiveImageURL1", and
 // "InactiveImageURL2" parameters. These four image URLs
 // are used to create two Hotspot components, which are
 // added as Components to the Applet (which acts as the
 // Container).
 //
 // This applet uses a FlowLayout object, which essentially
 // positions Components left-to-right in a line across
 // the Applet.
 public void init() {
 URL urlActive1;
 URL urlActive2;
 URL urlInactive1;
 URL urlInactive2;

 setLayout(new FlowLayout());
 resize(450, 200);
 setBackground(Color.black);

 try {
 urlActive1 = new URL(getDocumentBase(),

 getParameter("ActiveImageURL1"));
 urlActive2 = new URL(getDocumentBase(),
 getParameter("ActiveImageURL2"));
 urlInactive1 = new URL(getDocumentBase(),
 getParameter("InactiveImageURL1"));
 urlInactive2 = new URL(getDocumentBase(),
 getParameter("InactiveImageURL2"));
 } catch(Exception e) {
 System.out.println("Image URLs are missing or " +
 "malformed.");
 return;
 }

 // Create the Image objects from these URLs.
 Image imgActive1 = getImage(urlActive1);
 Image imgActive2 = getImage(urlActive2);
 Image imgInactive1 = getImage(urlInactive1);
 Image imgInactive2 = getImage(urlInactive2);

 // Create the two Hotspot objects and add them
 // as Components of this Applet Container. Resize
 // the hotspots to the size the images
 // are expected to be.
 _hotspot1 = new Hotspot(imgActive1,
 imgInactive1);
 _hotspot2 = new Hotspot(imgActive2,
 imgInactive2);

 add("1", _hotspot1);
 add("2", _hotspot2);

 _hotspot1.resize(204, 140);
 _hotspot2.resize(204, 140);

 return;
 }

 // Re-implementation of the mouseDown() event handling
 // method allows us to react to the user clicking on
 // one of the Hotspot Components.
 public boolean mouseDown(Event evt, int x, int y) {
 if(evt.target == _hotspot1) {
 System.out.println(
 "The first hotspot was clicked!");
 return true;
 }

 if(evt.target == _hotspot2) {
 System.out.println(
 "The second hotspot was clicked!");
 return true;
 }

 return false; // Event was not handled.
 }
}

7. Create a file named Hotspot.html. This is an HTML file with an embedded
HotspotApplet in it. Copy the following text to your Hotspot.html file:
<HTML>
<HEAD>
<TITLE>HotspotApplet Sample Project</TITLE>
</HEAD>

<HTML>
<HEAD>
<TITLE>HotspotApplet Sample Project</TITLE>
</HEAD>

<BODY>
<APPLET CODE="HotspotApplet.class" WIDTH=450 HEIGHT=200>
<PARAM NAME="ActiveImageURL1" VALUE="active1.gif">
<PARAM NAME="ActiveImageURL2" VALUE="active2.gif">
<PARAM NAME="InactiveImageURL1" VALUE="inactive1.gif">
<PARAM NAME="InactiveImageURL2" VALUE="inactive2.gif">
</APPLET>
</BODY>
</HTML>
8. Compile HotspotApplet.java using the JDK’s javac compiler. From the
directory where your .JAVA and .HTML files are located, run this command:
> javac HotspotApplet.java
9. Create four .GIF files to act as your Active and Inactive images. The images
displayed above can be used. They are located on the Java API SuperBible CD
under the directory \FOO\BLAH\WHATEVER. Copy these four files to the same
directory your .JAVA and .HTML files are in. Make sure the names of these four
files are “active1.gif”, “active2.gif”, “inactive1.gif” and “inactive2.gif”,
respectively.
10. Load the HotspotApplet into the JDK’s AppletViewer. From the same
directory where your project files are, type this command:
> appletviewer Hotspot.html

How It Works

The Hotspot class maintains an internal reference to two Image objects. The
Hotspot._imgActive member variable is a reference to an Image to display when the
mouse cursor is over the Hotspot component. The Hotspot._imgInactive member variable
is a reference to an Image to display when the mouse cursor is not over the Hotspot. The
Hotspot._imgCurrent member variable is a reference to the Image to display: either the
active or the inactive Image.

The Hotspot constructor requires references to the active and inactive Image as
parameters. Part of object construction includes kick-starting construction of on-screen
representation of both these Images using Component.prepareImage(). Always, before an
Image can be drawn on a display device, the Image must be prepared by the Java system
for rendering on the display device. The Hotspot object uses its inherited implementation

of the ImageObserver interface, which is implemented by the Component class. The
Component class’ implementation of this interface causes the Component to transparently
schedule a full repainting of the Hotspot component once the Image has been prepared.

The value of _imgCurrent changes whenever the mouse cursor either enters or exits the
bounding rectangle of the Hotspot. Overriding implementations of the mouseEnter and
mouseExit Event handling methods are used to detect the position of the mouse cursor.
Through the Event delivery methods, the Java system calls a Component’s mouseEnter()
method exactly once, when the mouse is moved from outside the Hotspot’s bounding
rectangle to within it. When the mouse cursor is moved from inside to outside the
Hotspot’s bounding rectangle, the mouseExit method is also called exactly once. Each
Hotspot implementation of these methods performs three important tasks:

• Modifies the value of _imgCurrent to indicate either the active or inactive
Image.
• Schedules a repainting of the Hotspot using the parameterless repaint() method.
• Returns true from the Event handling method, indicating that the Event has
been handled and can be discarded.

Hotspot.paint() is implemented to paint the Hotspot’s display surface with the Image
indicated by Hotspot._imgCurrent. Before this can be done, the Hotspot must make sure
the Image has been fully prepared for display on the device. checkImage() will return a
logical ORing of the ImageObserver flags indicating which data for the Image has been
successfully prepared for rendering. Hotspot checks for the ALLBITS flag, which
indicates the Image has been fully prepared. Once this flag is detected, the Hotspot draws
the Image.

Figure 2-8 is a screenshot of the the HotspotApplet running within the JDK’s
AppletViewer. Note that the mouse cursor is over the first of the two Hotspot
Components, so the first Hotspot is displaying its Active image, while the second Hotspot
is displaying its Inactive image.

Figure 2-8 Screenshot of the HotspotApplet running within the JDK’s AppletViewer

mouseMove

ClassName
Component

Purpose
The Event handler for MOUSE_MOVE Events.

Syntax
public boolean mouseMove(Event evt, int x, int y);

Parameters

Event evt
The MOUSE_MOVE Event object that was passed to this Component’s
handleEvent method.

int x
int y

The x and y coordinates, relative to the Component’s origin, where the mouse
cursor was moved to.

Description
The mouseMove method is called by the default implementation of the
handleEvent method of the Component class whenever a MOUSE_MOVE Event
is passed to that method. By handling MOUSE_MOVE Events in the mouseMove
method, your Component can detect where the mouse cursor is currently
positioned within the Component. The first MOUSE_MOVE Event is passed to
your Component only after a MOUSE_ENTER Event (MOUSE_ENTER Events
can be handled by the mouseEnter Event handler). The MOUSE_EXIT Event,
handled by the mouseExit Component method, indicates that the mouse cursor
has left your Component’s bounding rectangle on the desktop, and that you will
no longer receive MOUSE_MOVE Events. If the mouse is being moved with the
mouse button held down, then your Component will receive MOUSE_DRAG
Events, handled by the mouseDrag Event handler method.

Returns
As with all Event handlers, your implementation of this method should return true
if the Event is completely handled by your code. A return value of false will cause
the Event to be passed on to your Component’s Container through the Event
passing mechanism described earlier in this chapter.

See Also
See the mouseDrag, mouseEnter, and mouseExit methods of the Component
class.

Example
This example demonstrates simple handling of MOUSE_MOUSE Events using a
mouseMove method implementation. The method just writes the mouse position
to System.out.

public class MyComponent extends Canvas {
 ...

 public boolean mouseMove(Event evt, int x, int y) {
 System.out.print(“Mouse move detected.”);
 System.out.println(“ Current mouse position is: (“+
 x + “, “ + y + “)”);
 }

 ...
}

Part II
Windows And Text Handlers

Chapter 3
Toolkit, Window, Container, And Events

One of the challenges of designing Java was to make a programming system that was
compatible across different operating systems. Making a system that is also compatible
across the various windowing platforms complicates this problem quite a bit. One of
Java’s greatest strengths is the architecture of its windowing classes, which successfully
achieve the goal of cross-platform compatibility between windowing systems.

Java has been ported into several windowed operating systems: Microsoft Windows 95
and Window NT, Solaris with X-Windows/Motif, and Macintosh System 7. While these
systems are all based on similar concepts of how a windowing system should look and
behave, each has different underlying architecture and implementation details. Java cuts
through the confusion among the various systems, providing a consistent presentation for
all of them.

No matter which windowing system a Java application is actually running on, the system
is accessed through the same generic set of Java classes. These classes have been
abstracted so that they will work on any of the supported windowing systems. This
abstraction layer, which sits between Java applications and the windowed operating
system, is called the Abstract Windows Toolkit, or AWT for short. Figure 3-1 shows how
the AWT classes present a consistent set of API methods to Java applications and applets
regardless of what operating system is actually running the application.

Figure 3-1 The Abstract Windows Toolkit represents the windowed operating system to
Java applications

The AWT is described in detail in this chapter. The window hierarchy, upon which is
based both Event notification routing and on-screen positioning of Containers and
Components, is detailed. This chapter also covers how Events are delivered to
Components and Containers by the Toolkit, as well as how on-screen repainting
operations are scheduled and carried out. The other services provided by the Toolkit are
also discussed.

The project for this chapter, FontLab, is an example of a Java application that utilizes the
system-wide services of the Toolkit to catalogue the Fonts available on a particular
system. FontLab also demonstrates how Component z-ordering, or overlaying of sibling
Components on top of one another, is done in Java.

A Window in Java

No matter what operating system you are using, the basic unit of a windowed user
interface is, of course, the window. What is a generic window? Some basic attributes are
obvious. First, a window occupies a rectangular area of the desktop surface. Second, a
window’s rectangle can be moved and resized to change its position and appearance on
the desktop. Third, a window can be embedded within a parent window. In fact, all top-
level windows can be said to be children of the desktop, which is just another large
window. In Java, these three attributes have been abstracted to the Component class,
which is discussed in Chapter 2.

Windows as Pseudo-I/O Devices

An application’s window can be thought of as the device the application uses to gather
input from the user, just like any other I/O device. One of the most important and basic
services a windowed operating system provides is a way to gather information about a
user’s actions. That is, if the user clicks the mouse on a window, it is the job of the
windowed operating system to provide that input to the window’s application. Only after
the application has received a report of the user’s actions can it react. Figure 3-2 shows
how, among other I/O devices, an application’s window is used to gather user
interactions.

Figure 3-2 An application’s window used to gather user interactions

In Java, user interactions are called events. An Event is an object that contains
information about a single action. One of the most important tasks of the Java AWT is to
deliver Events to your Java application or applet windows.

The Component class has one public method to receive Events: postEvent. Again,
Chapter 2 is dedicated to disussing the Component class in detail, so the particulars of the
postEvent method are discussed there. In that chapter is a description of what happens to
the Events after they have been delivered to a Component object. The question is, How
do Events get delivered to Components in the first place?

It is the job of the AWT to translate user interactions within the windowed operating
system into deliverable Events within Java. To accomplish this, the AWT uses a proxy
architecture. Each Component object in a Java application is mirrored by an object in the
windowed operating system. This object is a native item in the windowed operating
system, whether that be a window in MS Windows, or a widget in the X-Windows/Motif
operating system. Within AWT, a ComponentPeer object acts as the go-between between
the Java Component object and the native operating system object. When a user
interaction is posted to the native operating system object, the AWT and the
ComponentPeer translate that user action into an Event. That Event is then handed to the
Component object through its postEvent method.

More specifically, the AWT manages a Thread dedicated to delivering Events to
Components. Because of their source (the user) Events are always asynchronous in

nature. Figure 3-3 is a screenshot of the System.out output of a very simple Java
application, which intentionally throws an exception when it receives an Event. This
application has a window that throws an ArrayIndexOutOfBounds Exception in its
postEvent implementation. The output displayed in Figure 3-3 is a stack-trace of the
uncaught Exception. Note that the name of the Thread in which the Exception was
thrown is AWT-Callback-Win32. This illustrates the name of the AWT Thread
responsible for delivering Events to windows. In this case, the underlying windowed
operating system is Windows NT. Here is the code for the simple application, called
Spike, which was used to generate the Exception.

Figure 3-3 Stack-trace of the Spike program

import java.awt.*;

public class Spike {

 public static void main(String[] astrArgs) {
 SpikeFrame s = new SpikeFrame(“Spike”);
 s.show();
 }
}

class SpikeFrame extends Frame {

 public SpikeFrame(String strTitle) {
 super(strTitle);
 }

 public boolean postEvent(Event evt) {
 // Throw Array indexOutOfBounds Exception
 // by dereferencing a non-existent Component.
 return getCompoent(0).postEvent(evt);
 }
}

Events

An Event object is designed to encapsulate any type of user interaction. Mouse events
such as mouse movements and clicks, keyboard events like keypresses or keyreleases,
and other interactions are each encodable in a single Event object.

An Event object exposes its member variables rather than forcing you to access the
variable through member methods. Though the object-oriented programming rule-of-
thumb is that member variables shouldn’t be available for other objects to modify directly
(i.e., without at least using member methods to modify the values), Event objects are

simple enough to forgo this kind of strict access control. In addition, it cuts down on code
size to say myEvent.id rather than myEvent.getID().

The id member variable indicates which type of Event has occurred. Here are the possible
values for Event.id which are specific to Window objects, that is, the values that indicate
events created by Java.

Event Type Description

WINDOW_DESTROY The window has received a command to destroy itself. Only

Window class objects will receive this type of Event. Call
Window.dispose() to properly destroy the Window.

WINDOW_EXPOSE The window has become exposed.

WINDOW_ICONIFY The window has become iconified.
WINDOW_DEICONIFY The iconic window has become de-iconified.

WINDOW_MOVED The window has been moved (and possibly resized).

There is nothing stopping an application from creating its own custom Event types and
passing them to Component windows. The Component class description in Chapter 2
describes the keyboard and mouse Events which may be sent to a Component object. In
Chapters 4 and 5 the Event IDs reserved for Scrollbar and List objects are discussed in
detail.

Window Repainting in AWT

As suggested earlier, a window can be thought of as an Input/Output device. AWT’s
architecture creates an efficient system for delivering Events to windows. Events are the
Input end of a window. A window is also an output device. The output is what the
window displays on the surface of its rectangle.

All of the windowing operating systems handle painting windows in a similar manner.
The windowing system determines when a window must repaint itself based on window
management. For example, if two windows are overlapping and the window on top is
removed, then the windowing system flags that the remaining window must be repainted
as soon as possible. (Actually, just the part of the remaining window which was
uncovered is flagged for repainting.)

The repaint operation is an asynchronous operation for a couple of reasons. First, the
system usually determines a window must be repainted as a side effect of some operation
the system is trying to perform. In this case, the repainting operation must be scheduled
for some time in the future. Second, repainting can be a time-intensive procedure. The
system attempts to store as many redundant repainting operations for the same window as

possible. When the system thinks there is enough idle time to repaint the window, then it
will explicitly ask the window to repaint itself.

In the AWT, a window is requested to repaint its surface via Component.update().
Chapter 2 explained what happens within the Component class after the system calls
update(), but what causes update() to be called in the first place? A similar callback
mechanism to the Event delivery procedure described earlier is used. When the
underlying windowing system issues a repaint command to the native window object
associated with a Java Component, the AWT translates this to a call to the Component’s
update() method.

Figure 3-4 shows the Spike2 application. Like the previous Spike application, Spike2
throws an ArrayIndexOutOrBoundsException in the update() method of its main
window. Figure 3-4 also includes a stack-trace at the time the exception is thrown. Notice
the same Thread, AWT-Callback-Win32, controls the repainting operation as controlled
by the Event delivery operation in Spike. Here is the code for the Spike2 application.

Figure 3-4 The Spike2 application

import java.awt.*;

public class Spike2 {

 public static void main(String[] astrArgs) {
 Spike2Frame s = new Spike2Frame(“Spike2”);
 s.show();
 }
}

class Spike2Frame extends Frame {

 public Spike2Frame(String strTitle) {
 super(strTitle);
 }

 public void update(Graphics g) {
 // Throw an ArrayIndexOutOfBounds
 // Exception by dereferencing a non-existent
 // Component.
 getComponent(0).update(g);
 }
}

Of course, rather than throwing Exceptions during repainting or Event handling methods,
your code should handle each call as quickly as possible. Stalling or suspending the
callback Thread will adversely affect your application in unforeseen ways.

Components, Containers, and Top-Level Windows

The Component class defines a child window. That means that a simple Component
window must exist as a child to a parent window. The Component class is written so that
a Component does not have its native windowing system peer created unless the
Component has been added to a parent window. This is reflected in the Java API by the
fact that you can’t display a simple Component, such as a Canvas or Scrollbar, on the
desktop without a parent window.

Containers

A special subclass of Component is the Container class. A Container window is a type of
Component that can be a parent to other Components, including other Containers. To add
a Component as the child of a Container, you use the Container class method add(),
shown here:

Container cont;

// instantiate cont to be a container, such
// as a Frame or a Panel.

Canvas c = new Canvas();

// c does not have a native windowing system peer yet,
// because it does not have a parent window.

cont.add(c);
// c’s peer gets created automatically as a result of
// the call to add.

A Container contains zero or more Components. These Components are called siblings,
since they have the same parent window. One important thing to remember is that sibling
windows “clip” each other. That is, if you had two overlapping sibling windows, one of
the windows appears on top of the other.

The term denoting the relative precedence of sibling Components is z-order. A
Component with a higher z-order will appear on top of its overlapping siblings. The z-
order of sibling Components is determined by the order in which they were added to the
parent Container. The last Component added to a Container has the lowest z-order. Any
Component added before another Component will appear on top if the two overlap within
the parent Container.

Note that all Containers have a LayoutManager which arranges the child Components
within the Container. The Java API includes several types of LayoutManagers to arrange
child Components by different methods. For example, a FlowLayout object will arrange a
Container’s child Components side-by-side, left-to-right, top-to-bottom. Chapter 4
discusses the various LayoutManager classes.

Because the LayoutManager classes, included with the Java API, ensure that sibling
Components never overlap within their parent Containers, our discussion of z-ordering is
academic as long as you use only those LayoutManagers in your Containers. However, in
Containers that do have overlapping child Components (as would be the case if you
implemented your own LayoutManager to cause siblings to overlap, as is done in the
chapter’s project) z-ordering can be important.

You can also remove a Component from its Container. The remove method takes, as a
reference, the Component you want removed as a child for the Container. When the
Component is removed from its parent Container, the Component’s native windowing
system peer is automatically destroyed. Again, a Component can not have a native peer
object unless the Component has a parent.

The following AddButton application demonstrates the use of Container.add() and
Container.remove().The AddButton application includes a “+” and “-” push button. Press
the “+” button to create a new button Component. Press the “-” button to destroy the
oldest button Component. The other buttons do nothing. Figure 3-5 shows the AddButton
application.

Figure 3-5 The AddButton application

import java.awt.*;

public class AddButton {

 public static void main(String[] astrArgs) {
 AddButtonFrame f = new AddButtonFrame("Add Button
Application");
 f.show();
 }
}

class AddButtonFrame extends Frame {
 Button _buttonAdd;
 Button _buttonRemove;
 int _nButtonNum = 1;

 public AddButtonFrame(String strTitle) {
 super(strTitle);
 setLayout(new FlowLayout());

 // Declare add and remove buttons. Note that even
 // though the Button objects have been created, the
 // Button peers in the native windowing system have
 // not, since the Buttons have not been added to a
 // Container yet.

 _buttonAdd = new Button("+");
 _buttonRemove = new Button("-");

 // Add the "+" and "-" buttons. Once added to
 // this Frame, the buttons' peers in the native
 // windowing system are created.
 add(_buttonRemove);
 add(_buttonAdd);
 }

 public boolean action(Event evt, Object what) {
 // Make sure 'what' is a String.
 if(!(what instanceof String))
 return false;

 // If the add button was pressed…
 if("+".equals((String)what)) {
 // NOTE: addition of string and int converts int.
 add(new Button(""+_nButtonNum++),
 countComponents()-1);
 validate();
 }

 // If the remove button was pressed…
 if("-".equals((String)what)) {
 remove(getComponent(1));
 validate();
 }

 return false;
 }
}

Windows

As stated above, a Container is a special type of Component that can be a parent to zero
or more child Components, including other Containers. A Container is still a Component,
however, and, as such, the Container must also have a parent window.

The Window class is a subclass of Container that defines a top-level window. Top-level
windows do not have to have parent windows. The native windowing system peer for a
Window object is a pop-up window on the desktop. Therefore, when creating your user
interface in Java, all Component objects must eventaully be descended from a Window
object in the window hierarchy.

A Frame is a special type of Window. A Frame is a native windowing system top-level
frame window, which has a titlebar, an optional menubar, and a resizable border. Note
that in the sample applications in this chapter, the interface is always controlled by an
object derived from Frame. That Frame is the application’s main window.

Peers and the Toolkit

How do the native windowing system objects, the peers, get created? Where do they
come from? Earlier, we said that Component objects (execpt Window and Frame objects)
do not have a peer created for them in the native windowing system until the Component
is added as a child of a Container. Another way of putting it is: The Component does not
have a peer created on its behalf until it is added to a Container that has a peer.

A Component’s own addNotify method is called to create the Component’s peer.
Component.addNotify() is called by the parent Container. This call can happen either in
Container.add(), as soon as the Component is added to the Container, or in
Container.addNotify(). In the case of addNotify(), when a Container’s peer is created, the
Container also tells its child Components to create their peers.

Simple Component objects, such as a Canvas, create their own peers in overriden
implementations of addNotify(). The Java code for Canvas.addNotify() looks something
like this:

CanvasPeer _myPeer = null;

public void addNotify() {
 myPeer = Toolkit.getDefaultToolkit().createCanvasPeer();
}

Toolkit is the java.awt.Toolkit class.The Toolkit class is the class that represents the
capabilities of the underlying windowing system to Java objects. For example, the
createCanvasPeer method used above, uses native function calls to the underlying
windowing system to create a CanvasPeer object. The CanvasPeer is a representative of a
native windowing object in Java.

Within the Toolkit class is a create method for each of the Component types in the Java
API. There is a Toolkit.createCanvasPeer, Toolkit.createButtonPeer,
Toolkit.createScrollbarPeer, and so on, defined in the Toolkit class. The actual peer
classes are discussed in detail in Chapter 9. The point being made here is that each
Component class object uses the Toolkit to create its peer, and the creation of the peer
occurs within the overriding implementation of addNotify. The Frame class calls its own
addNotify method within Frame.show. That is, as soon as the Frame is supposed to be
shown on the screen, its peer is created.

The Toolkit

The Toolkit represents the windowing system within Java code. Most of the Toolkit’s
public methods are dedicated to the creation of peer components. The native windowing
system provides additional functionalities beyond simply creating and managing
windows. The Toolkit also exposes some of these additional functionalitites. The Toolkit
class currently has methods to provide services in three additional areas: desktop metrics,
available font information, and image downloading/preparation.

The size and composition of the desktop surface can be of great importance to some
applications. Through the Toolkit’s public methods, you can find out more about the
desktop. The following table lists the Toolkit’s desktop metrics methods and provides a
description of each.

Method Description

getScreenSize Returns a Dimension object whose width and height is equal

to the width and height of the desktop, in pixels.

getScreenResolution Returns resolution of the desktop, in pixels-per-inch.
getColorModel Returns the ColorModel of the desktop. If the system uses a

256-color display, then this would be an IndexedColorModel,
which would give you read access to the system palette.

It is through the Toolkit that an application or applet can enumerate the fonts available on
the system. Toolkit.getFontList() returns an array of Strings. Each element of the array is
a typeface name for a font available on the system. To get the FontMetrics for a Font
when it is used on the desktop screen, you can use getFontMetrics, passing in the Font
that is to be measured. Note that FontMetrics are also available through
Graphics.getFontMetrics.

The image methods included in the Toolkit, allow an application to download and display
images. To create an Image object from a graphics-format file, use Toolkit.getImage().
Two overloaded versions of this method are provided. The first version takes a URL
pointing to the network location of the graphics format file. The second version takes a
file path name and loads the image from a file on the local file system.

The Image object returned from getImage represents the graphics format file to Java.
Before the Image can be copied to a display surface, the Image must be fully “prepared,”
or constructed in memory. The Toolkit’s prepareImage method is used to kick-start the
Image construction process. prepareImage takes, as a parameter, an ImageObserver. The
ImageObserver will be notified as to the progress of the Image construction process. Any
errors in the graphics file will also be reported to the ImageObserver. After an Image has
been fully prepared once, it can be drawn on any display surface any number of times.
checkImage is used by objects, other than the ImageObserver, to get information on the
progress of the Image construction process.

Chapter 1 on Applets and Graphics, discusses downloading and preparing images
because image and audio data have such an important application over the Internet.

Toolkit, Window, Container, and Event Summaries

Table 3-1 lists the classes summarized in this chapter and a short description of each.
Table 3-2 lists the methods of the classes from Table 3-1 and provides a short description
of each method.

Table 3-1 Class summaries

Class Description

Container A Container is a special type of Component object which can be

a parent to zero or more Components, including other Containers.
The add() and remove() methods are used to manage the list of

child components. countComponent() and getComponent()
provide read-access to a Container’s list of Components.

Event User-interaction events are delivered by the AWT to Components
in Event objects.

Window A top-level pop-up window. Does not have a title bar or menu
bar. This is the base class for all top-level windows.

Toolkit Abstracts the functionalities of the native windowing system. The
majority of methods are used to create peer native window

objects or “peers” for Java Component objects.

Table 3-2 Summary of methods

Class Method Description

Container countComponents Gets the number of child Components

for a Container.

 getComponent Gets a reference to a specific child of a
Container.

 getComponents Gets an array that enumerates all the
child Components of a Container.

 insets Gets the Insets objects that describe
the border spacing around a Container.

 add Adds a Component as a child of a
Container.

 remove Removes a child Component from a
Container.

 removeAll Removes all child Components from a

Container.
 getLayout Gets a Container’s LayoutManager.

 setLayout Sets a Container’s LayoutManager.

 layout Arranges a Container’s child
Components.

validate Called when a Container should

validate its sizing and positioning, and
that of its child Components

 preferredSize Gets the preferred size of the
Container’s bounding rectangle.

 minimumSize Gets the minimum size of the
Container’s bounding rectangle.

paintComponents Performs a synchronous repainting of

each of a Container’s child
Components.

 deliverEvent Finds an Event handler to handle a
specific Event.

locate Finds the child Component whose

bounding rectangle includes a specific
point.

Event translate Modifies the Event’s x and y member
variables.

shiftDown Indicates whether the SHIFT button

was held down during the keyboard or
mouse Event.

controlDown Indicates whether the CTRL button

was held down during the keyboard or
mouse Event.

metaDown Indicates whether the META button

was held down during the keyboard or
mouse Event.

Window toBack Sends the Window to the bottom of the
desktop z-order.

 toFront Brings the Window to the front of the
desktop z-order.

 dispose Destroys the Window’s native
windowing system peer.

 getWarningString Gets the warning string displayed by
Frame windows created by Applets.

Toolkit createButton Creates a ButtonPeer. The ButtonPeer

knows how to translate button presses
in the native windowing system to

action Events.

createTextField Creates a TextFieldPeer. The
TextFieldPeer knows how to manage a

text field, select its contents and edit
them, etc.

createLabel Creates a LabelPeer, which can get

and set the text and alignment of a
label.

createList Creates a ListPeer, which knows how
to get and set the contents of a list and
work with the selection in the native

windowing system.

createCheckbox Creates a CheckboxPeer, which knows

how to get and set the state of a native
window system checkbox control.

createScrollbar Creates a ScrollbarPeer, which knows
how to get and set the min, max and

value of a native window system
scrolllbar. The peer also translates

scrollbar actions into Java Events for a
Scrollbar object.

createTextArea Creates a TextAreaPeer, which knows
how to get and set the contents of a

multiline text area in the native
window system.

createChoice Creates a ChoicePeer, which knows
how to modify the contrents of a

native window system choice box and
which translates selection messages
into Event for a Choice Component.

createFrame Creates a FramePeer, which knows
how to modify the titlebar of a native

window system frame and can
translate native window system

window actions into Java Window
events.

createCanvas Creates a CanvasPeer, which can

detect and translate mouse and
keyboard user interactions.

createPanel Creates a PanelPeer, which is much

like a Canvas, except that it is also a
Container. The PanelPeer knows how
to add or remove Components to the
Panel in the native window system.

createWindow Creates a WindowPeer, which can
create a simple top-level window and

knows how to translate window
messages from the native window
system into Events for delivery in

Java.

createDialog Creates a DialogPeer, which can create

a modal dialog in the native window
system.

createMenuBar Creates a MenuBarPeer, which knows
how to modify the contents of
menubars in the native window

system.

createMenu Creates a MenuPeer, which knows

how to add and remove menu items
from a native window system menu.

createMenuItem Creates a MenuItemPeer, which knows
how to check and modify the state of a

MenuItem in the native window
system.

createFileDialog Creates a FileDialogPeer, which
knows how to create a file dialog in

the native window system and modify
the contents of the variable file

selection fields.

createCheckboxMenuItem Creates a CheckboxMenuItemPeer,
which knows how to create a menu
item in the native windowing system

and knows how to modify its state as it
appears to be checked.

Container

Purpose
A Container is a Component which can contain other Components, including
other Containers.

Syntax
public abstract class Container extends Component

Description
A Container is a Component that can contain other Components, including other
Containers. A Container, being a Component, must be contained by another
Container in order to be displayed. The Container class is abstract. The simplest
type of realizable Container is a Panel. Figure 3-6 shows the class hierarchy of the
Container class.

PackageName
java.awt

Imports
java.io.PrintStream, java.awt.peer.ContainerPeer

Constructors
None.

Parameters
None.

Figure 3-6 The class hierarchy of the Container class

countComponents

ClassName
Container

Purpose
Gets the number of child Components for this Container.

Syntax
public int countComponents();

Parameters
None.

Description
Returns the number of child Components in this Container.

Imports
None.

Returns
The number of Components that have been added to this Container using add.

See Also
The getComponent and getComponents methods of the Container class

Example
This example Container subclass demonstrates the use of both countComponents
and getComponent to run through the list of a Container’s child Components. The
only method implemented by this class, getChildrenBounds returns a bounding
rectangle of all the child Components.

class ContainerEx extends Container {

 public Rectangle getChildrenBounds() {
 Rectacngle rectRet = null;
 for(int ii=0 ; ii<countComponents() ; ii++) {
 Component c = getComponent(ii);
 Rectangle b = c.bounds();

 if(null == rectRet)
 rectRet = new Rectangle(b.x, b.y, b.width, b.height);

 rectRet.add(b);
 }

 return rectRet;
 }
}

getComponent

ClassName
Container

Purpose
Gets a reference to a specific child Component of this Container.

Syntax
public Component getComponent(int index)

Parameters
index

Zero-based index of the Component to get. This must be between 0 and
(countComponents()-1).

Description
Gets a reference to one of the child Components of this comtainer. An
ArrayIndexOutOfBoundException may be thrown if the index parameter is not
valid.

Imports
java.awt.Component

Returns
A reference to the index-th Component child of the Container will be returned.
Note that if the index parameter is less than 0 or greater than
(countComponents()-1), then an ArrayIndexOutOfBoundsException will be
thrown.

See Also
The Component class; the countComponents and getComponents methods of the
Container class

Example
See the example under countComponents.

getComponents

ClassName

Container
Purpose

Gets an array of references to all child Components of this Container.
Syntax

public Component[] getComponents();
Parameters

None.
Description

Gets an array of Component, with one element for each of the child Components
of the Container. The order of the Components in the array is the order the
Components were added to this Container.

Imports
java.awt.Component

Returns
An array of Component objects. The length of this array will be the same as the
return value from countComponents. Each child Component will appear in the
array. Null may be returned if the Container has no children.

See Also
The Component class; the countComponents and getComponent methods of the
Container class

Example
This is an alternative implementation to the getChildrenBounds function given in
the example for the countComponents method.

class ContainerEx extends Container {

 public Rectangle getChildrenBounds() {
 Rectacngle rectRet = null;
 for(int ii=0 ; ii<countComponents() ; ii++) {
 Component c = getComponent(ii);
 Rectangle b = c.bounds();

 if(null == rectRet)
 rectRet = new Rectangle(b.x, b.y, b.width, b.height);

 rectRet.add(b);
 }

 return rectRet;
 }
}

insets

ClassName
Container

Purpose
Specifies inset spacing between children and the Container’s edge.

Syntax
public Insets insets();

Parameters
None.

Description
A Container can define an Insets object, which defines the border of padding
within the Container. The Insets are used by the LayoutManager in such a way
that no child Components will be placed within the Insets border.

Imports
java.awt.Insets

Returns
An Insets object is returned that describes the border for a LayoutManager to
leave around the Container.

See Also
The LayoutManager class; the Insets class

Example
The default implementation of Insets simply delegates the call to the Container’s
peer. If the peer does not define an Insets, then Insets of 0 are returned. This
implementation of insets and setInsets allows you to define your Container’s
Insets within Java code.

public ContainerEx extends Container {
 Insets _insets = new Insets(0, 0, 0, 0);

 public void setInsets(int left, int top, int right, int bottom) {
 _insets = new Insets(left, top, right, bottom);
 }

 public Insets insets() {
 return _insets;
 }
}

add

ClassName
Container

Purpose
Adds a Component as a child of this Container.

Syntax
public void add(Component c);public void add(Component c, int index);

Parameters
Component c

The Component to add as a child of this Container.
int index

Index to store the Component in the Container’s internal list of Components.
Description

Adds a Component as a child of this Container. The index of the Component,
within the Container’s list of Components, is set by the second parameter, index,

of the second overloaded versions. No matter which version you use, the child
Component has the lower z-order compared to its siblings. If the Component is
currently a child of another Container, it will automatically be removed from the
other Container before being added to this one. If the Component is a parent or
ancestor of this Container, then an IllegalArgumentException will be thrown.

Imports
java.awt.Component.

Returns
None.

See Also
The Component class; the remove method of the Container class

Example
This example builds a simple toolbar of four buttons.

.// A Panel is a type of Container.
Panel p = new Panel();
p.setLayout(new FlowLayout());

p.add(new Button(“Back”));
p.add(new Button(“Forward”));
p.add(new Button(“Home”));
p.add(new Button(“Return”));

remove

ClassName
Container

Purpose
Removes a Component as a child of this Container.

Syntax
public void remove(Component c);

Parameters
Component c

A Component which is a child of this Container.
Description

Removes a Component as a child of this Container. If the Component is not a
child of this Container, then the call is ignored. The Component is added as a
child of this Container using add.

Imports
java.awt.Component

Returns
None.

See Also
The Component class; the add method of the Container class

Example
This example removes all child Components and then adds them back in reverse
order.

public class MyCont extends Panel {
 …

 public void ReverseChildren() {
 Component[] children = getComponents();
 removeAll();
 for(int ii=children.length ; ii>=0 ; ii--)
 add(children(ii);
 }

 …
}

removeAll

ClassName
Container

Purpose
Removes all child Components from this Container.

Syntax
public void removeAll();

Parameters
None.

Description
Removes all the child Components from this Container. Internally, this method is
implemented by running through the list of Components and making repeated
calls to remove.

Imports
None.

Returns
None.

See Also
The remove method of the Container class

Example
See the example under the remove method of the Container class.

getLayout

ClassName
Container

Purpose
Gets the LayoutManager for this Container.

Syntax
public LayoutManager getLayout();

Parameters
None.

Description
Gets the LayoutManager for this Container. The LayoutManager is responsible
for arranging the child Components within the Container’s display rectangle. See

Chapter 4 for a description of the LayoutManager and its relationship with the
Container.

Returns
A reference to the Container’s LayoutManager. Null if the Container has no
LayoutManager.

See Also
The LayoutManager interface; the setLayout method of the Container class

Example
This example uses getLayout to display a Container’s LayoutManager.

public class displayLayout(Container cont) {
 if(null != cont.getLayout())
 System.out.println(cont.getLayout());
}

setLayout

ClassName
Container

Purpose
Sets the LayoutManager for this Container to use.

Syntax
public void setLayout(LayoutManager lm);

Parameters
LayoutManager lm

A LayoutManager to arrange the Components of this Container.
Description

Sets the LayoutManager which will arrange the child Components of this
Container within the Container’s bounding rectangle. See Chapter 4 for a
description of the LayoutManager and its relationship with the Container.

Imports
java.awt.LayoutManager

Returns
None.

See Also
The LayoutManager interface; the getLayout method of the Container class

Example
This example Applet sets its own LayoutManager to a BorderLayout object.

public class MyApplet extends Applet {
 public MyApplet() {
 setLayout(new BorderLayout());
 }

 public void init() {
 add(“Center”, new Button(“Go!”));
 }
}

layout

ClassName
Container

Purpose
Called to allow the Container to arrange its child Components.

Syntax
public void layout();

Parameters
None.

Description
The default implementation of this method forces the LayoutManager to
recalculate the placement of child Components within this Container’s rectangle
using the LayoutManager’s layoutContainer method. The default implementation
of the validate method of the Component class calls Component.layout. The
Container class overrides layout with a custom implementation. See Chapter 4 for
a description of the LayoutManager and its relationship with the Container.

Imports
None.

Returns
None.

See Also
The LayoutManager interface; the validate() method of the Component class

Example
In this example, a custom Container does not rely on a LayoutManager but
instead arranges its child Components in an overridden layout implementation.

public class MyCont extends Panel {
 …

 public void layout() {
 // Layout children vertically, allowing each to be
 // its preferred height, but only as wide as this
 // Container.
 Component[] children = getComponents();
 Dimension dimThis = size();
 int y = 0;
 for(int ii=0 ; ii<children.length ; ii++) {
 Dimension dimChild =
 children[ii].preferredSize();
 children[ii].reshape(0, y, dimThis.width,
 dimChild.height);
 y+=dimChild.height;
 }
 }

 …
}

validate

ClassName
Container

Purpose
Called when the Container should validate is size and positioning and that of its
child Components.

Syntax
public void validate();

Parameters
None.

Description
This overridden version of Component.validate does everything the Component
version of this method does, plus it will validate all the child Components of this
Container. A Container is invalidated by an explicit call to Component.invalidate.
A Container is also invalidated whenever a Component is added to it or removed
from it.

Imports
None.

Returns
None.

Example
See the AddButton example given earlier in this chapter.

preferredSize

ClassName
Container

Purpose
Calculates the preferred size of this Container’s bounding rectangle using the
Container’s LayoutManager.

Syntax
public Dimension preferredSize();

Parameter
None.

Description
This overridden implementation of Component.preferredSize calculates the
Container’s preferred size by asking the LayoutManager to calculate the preferred
size in a call to LayoutManager.preferredLayoutSize. See Chapter 4 for a
description of the LayoutManager and its relationship with the Container.

Imports
None.

Returns
A Dimension object whose width and height member variables hold the preferred
size of this Container.

See Also
The preferredSize method of the Component class; the minimumSize method of
the Container class

Example
See the example of the preferredSize method of the Component class (in Chapter
2).

minimumSize

ClassName
Container

Purpose
Calculates the minimum acceptable size of this Container’s bounding rectangle
using the Container’s LayoutManager.

Syntax
public Dimension minimumSize();

Parameters
None.

Description
This overridden implementation of Component.minimumSize calculates the
Container’s minimum size by asking the LayoutManager to calculate the
minimum size in a call to LayoutManager.minimumLayoutSize. See Chapter 4 for
a description of the LayoutManager and its relationship with the Container.

Imports
None.

Returns
A Dimension object whose width and height member variables hold the preferred
size of this Container.

See Also
The minimumSize method of the Component class; the preferredSize method of
the Container class

Example
See the example for the minimumSize method of the Component class (in Chapter
2).

paintComponents

ClassName
Container

Purpose
Synchronously paints all children Components.

Syntax
public void paintComponents(Graphics g)

Parameters
Graphics g

The Graphics, associated with the display surface, to paint the Components on.
Description

Forces an immediate (synchronous) repainting of all the child Components. A
synchronous repainting of each of the child Components is achieved by creating

multiple clipped versions of the passed Graphics object (using Graphics.create),
and passing the clipped versions to paint for each of the child Components to
render itself.

Imports
java.awt.Graphics.

Returns
None.

See Also
The paint method of the Component class; the create method of the Graphics class

Example
In this example, Container’s paint method is implemented by a simple call to
paintComponents. This repaints the Container’s child Components using the
Graphics object passed to the Container’s paint method.

public class MyContainer extends Panel {
…

 public void paint(Graphics g) {
 paintComponents(g);
 }

…
}

deliverEvent

ClassName
Container

Purpose
Delivers an Event to a Container or one of its child Compnents.

Syntax
public void deliverEvent(Event evt)

Parameters
Event evt

The Event to deliver to this Container.
Description

This overridden version of Component.deliverEvent first passes the Event to the
child Component indicated by the x and y member variables of the Event object.
If the child Component does not handle the event, or the x and y Event member
variables do not indicate a point within any of this Container’s children, then the
Event is posted to this Container through Container.postEvent.

Imports
java.awt.Event.

Returns
None.

See Also
The deliverEvent method of the Component class

Example
In this example, mouse events are successfully delivered to “virtual” (peerless)
child Components of a Container using the Container’s deliver Event method. The
deliverEvent method of the Container class first attempts to post the Event to an
appropriate child Component before letting the Container handle the Event.

//First, here’s our peerless Component class
class PeerlessCanvas extends Canvas {
 public PeerlessCanvas() {}

 public void addNotify() {
 return;
 }

 public boolean mouseDown(Event evt, int x, int y) {
 // This code *will* be reached, because the
 // parent Container’s deliverEvent will find
 // the correct child Component.
 …
 return true;
 }
}
// The Container class to make sure MOUSE_DOWN Events are
// posted to the correct, peerless, child Component.
public class PeerlessContainer extends Panel {
 public PeerlessContainer() {
 setLayout(new BorderLayout());
 add(“North”, new PeerlessCanvas());
 add(“South”, new PeerlessCanvas());
 add(“East”, now PeerlessCanvas());
 add(“West”, new PeerlessCanvas());
 add(“Center”, new PeerlessCanvas());
 }

 // mouseDown Event handler calls deliverEvent
 // to ensure mouse event is posted to correct
 // child Component, even if it's peerless.
 public boolean mouseDown(Event evt, int x, int y) {
 deliverEvent(evt);
 }
}

locate

ClassName
Container

Purpose
Gets the child located at a particular point.

Syntax
Public Component locate(int x, int y);

Parameters
int x, y

Indicates a point relative to the Container’s point of origin.
Description

Finds the Component which occupies the point, passed in the x and y parameters,
to this method. The x and y parameters are expressed relative to this Container’s
origin.

Imports
java.awt.Component

Returns
The Component with lowest index in the Container’s internal list of Components
and which occupies a rectangle that the point falls into, is returned.

Example
This example lists the source code for the Container class’ deliverEvent method.
The deliverEvent method uses the locate method to find the correct child
Component to deliver an Event to.

public void deliverEvent(Event evt) {
 Component c = locate(evt.x, evt.y);

 if ((c != null) && (c != this)) {
 evt.translate(-c.x, -c.y);
 c.deliverEvent(evt);
 } else {
 postEvent(evt);
 }
}

Event

Purpose
Represents an asynchronous event which occurred in the system.

Syntax
public class Event

Description
Represents an asynchronous event which occurred in the system. For example,
user-generated events like mouse moves or keyboard actions. The Event class is
not extended by any class in the Java API, but rather the member variables of the
Event class are sufficient for encoding any definable event. Figure 3-7 shows the
class hierarchy of the Event class.

PackageName
java.awt

Imports
java.io.*

Constructors
public Event(Object target, long when, int id, int x, int y, int key, int modifiers,
Object arg);public Event(Object target, long when, int id, int x, int y, int key, int
modifiers);public Event(Object target, int id, Object arg);

Parameters
The following table lists all of the Event class public member variables and a
short description of each.

Figure 3-7 The class hierarchy of the Event class

Member Variable Description

Object target The Object to which the Event was originally passed.
long when Time stamp of when the event occurred.

id Identifies the type of the Event: mouse movement, keyboard
action, etc. The following table lists all of the different Event
types.

int x, y A point where the Event occurred. These two variables are
ususally only valid for mouse Events.

int key The key pressed if this is a keyboard Event.
modifiers Keyboard Event modifiers, such as whether or not the

key was being held down, whether or not the key was
being held down, etc.

clickCount For multiclicks (e.g., a double-click) this member indicates
how many clicks took place.

Object arg An arbitrary argument, which is different for each type of
Event.

Event evt The next Event. Used when storing Events in a linked list.

The id member variable indicates what type of Event is being represented. Many different
Event class constants have been defined to indicate Event types. The following table list
the possible values for the id field.

Event Type Description

WINDOW_DESTROY This a command for the Window object to destroy itself. To

destroy a Window, use Window.dispose().

WINDOW_ICONIFY The Window has been iconified.
WINDOW_DEICONIFY The iconified Window has been restored.

WINDOW_MOVED The Window has been moved on the desktop.

KEY_PRESS The user has pressed a key. Examine key and modifiers
members to see which key.

KEY_RELEASE A pressed key has been released. Examine key and modifiers
members to see which key.

MOUSE_DOWN The mouse button has been clicked. Examine x and y
members to see where the mouse click occurred.

MOUSE_UP The mouse button has been released. Examine x and y
members to see where the mouse click occurred.

MOUSE_ENTER The mouse has entered the rectangle dedicated to this
Component. Examine x and y members to see where the
mouse click occurred.

MOUSE_EXIT The mouse has left the rectangle dedicated to this Component.
Examine x and y members to see where the mouse click
occurred.

MOUSE_DRAG Same as a MOUSE_MOVE, but with the mouse button held
down.

MOUSE_MOVE The mouse has been moved. Examine x and y members to see
where the mouse cursor was moved to.

SCROLL_LINE_UP The target member holds a reference to the Scrollbar which
the user clicked. The arg member holds the value of the
Scrollbar.

SCROLL_LINE_DOWN The target member holds a reference to the Scrollbar which
the user clicked. The arg member holds the value of the
Scrollbar.

SCOLL_PAGE_UP The target member holds a reference to the Scrollbar which
the user clicked. The arg member holds the value of the
Scrollbar.

SCROLL_PAGE_DOWN The target member holds a reference to the Scrollbar which
the user clicked. The arg member holds the value of the
Scrollbar.

SCROLL_ABSOLUTE The target member holds a reference to the Scrollbar which
the user clicked. The arg member holds the value of the
Scrollbar. This message is sent when the user holds down and
drags the thumb of a Scrollbar.

LIST_SELECT The target member holds a reference to the List which the
user clicked. The arg member holds the value of the selected
list item.

LIST_DESELECTED The target member holds a reference to the List which the
user clicked. The arg member holds the value of the selected
list item.

ACTION_EVENT When a Button is clicked, target is the Button, arg is the
Button’s text. When a menu item was selected, target is the
selected menu item, arg is the Button’s text.

GET_FOCUS The Component in target has just received focus.
LOST_FOCUS The Component in target has just lost focus.

The modifiers member is a bitmap representing the state of special function keys during
keyboard and mouse Events. The following table lists the recognized values which may
be present in the modifiers member. These values are ORed together bitwise to form the
values of the modifiers member.

Mask Description

SHIFT_MASK Set if the key was held down.
CTRL_MASK Set if the key was held down.

META_MASK Set if the key was held down.
ALT_MASK Set if the key was held down.

translate

ClassName
Event

Purpose
Changes the x and y member variables of the Event by some value.

Syntax
public void translate(int dX, int dY);

Parameters
int dX, dY

The Event’s x member variable is modified by adding dX to it, and the Event’s y
member variable is modified by adding dY to it.

Description
Similar to translate, this method modifies the Event’s x and y member variables
by adding a dX and a dY value to them. Internally, this method is called by
Component.postEvent when the Event is passed on to the Component’s Container
in order to reflect the point in terms of the Container’s origin.

Imports
None.

Returns
None.

Example
This Component’s overridden mouseDown and mouseUp Event handlers change
the location of mouse clicks and mouse releases by ten points in the X and Y

directions before allowing the Events to be passed on to the Component’s parent
Container.

public class MyComponent extends Canvas {
 …

 public boolean mouseDown(Event evt, int x, int y) {
 evt.translate(10, 10);
 return false;
 }

 public boolean mouseUp(Event evt, int x, int y) {
 evt.translate(10, 10);
 return false;
 }

 …
}

shiftDown

ClassName
Event

Purpose
Tells whether or not the key was held down when the Event was created.

Syntax
public boolean shiftDown();

Parameters
None.

Description
Tells whether or not the SHIFT_MASK flag is set in the modifiers member
variable. Using this member method is a little easier than testing the modifiers
variable directly. The SHIFT, CTRL, and META masks are only valid for
keyboard and mouse Events.

Returns
True is returned if the SHIFT_MASK flag is set in the modifiers member variable.
Otherwise, false.

See Also
The controlDown and metaDown methods of the Event class

Example
This example mouseDown Event handler sends mouse Events to subhandlers
according to the states of the SHIFT, CTRL, and META flags.

public class MyComponent extends Canvas {
 …

 public boolean mouseDown(Event evt, int x, int y) {
 if(evt.shiftDown())
 return mouseDownShift(evt, x, y);
 if(evt.controlDown())
 return mouseDownCtrl(evt, x, y);
 if(evt.metaDown())
 return mouseDownMeta(evt, x, y);

 return false;
 }

 public mouseDownShift(Event evt, int x, int y) {
 // Do something with mouse clicks while SHIFT is
 // down.
 return true;
 }

 public mouseDownCtrl(Event evt, int x, int y) {
 // Do something with mouse clicks while CTRL is
 // down.
 return true;
 }

 public mouseDownMeta(Event evt, int x, int y) {
 // Do something with mouse clicks while META is
 // down.
 return true;
 }

 …
}

controlDown

ClassName
Event

Purpose
Tells whether or not the key was held down when the Event was created.

Syntax
public boolean controlDown();

Parameters
None.

Description
Tells whether or not the CTRL_MASK flag is set in the modifiers member
variable. Using this member method is a little easier than testing the modifiers
variable directly. The SHIFT, CTRL, and META masks are only valid for
keyboard and mouse Events.

Returns
True is returned if the CTRL_MASK flag is set in the modifiers member variable;
otherwise, false.

See Also
The shiftDown and metaDown methods of the Event class

Example
See the example under the shiftDown method of the Event class.

metaDown

ClassName

Event
Purpose

Tells whether or not the META key was held down when the Event was created.
Syntax

public boolean metaDown();
Parameters

None.
Description

Tells whether or not the META_MASK flag is set in the modifiers member
variable. Using this member method is a little easier than testing the modifiers
variable directly. The SHIFT, CTRL, and META masks are only valid for
keyboard and mouse Events.

Returns
True is returned if the META_MASK flag is set in the modifiers member
variable; otherwise, false.

See Also
The shiftDown and controlDown methods of the Event class

Example
See the example under the shiftDown method of the Event class.

Window

Purpose
The Window class is a top-level Container class.

Syntax
public class Window extends Container

Description
The Window class is a top-level Container class. Window class objects do not
have parent Containers. Instead, Window objects can be thought of as children of
the desktop. The Frame and Dialog classes are special types of Window classes.
Figure 3-8 shows the class hierarchy of the Window class. Do not create a
Window object directly, but instead use either the Frame class or the Dialog class
to create top-level windows. The Window class implements the methods that are
shared between the two specific classes.

PackageName
java.awt

Imports
java.awt.peer.WindowPeer

Constructors
public Window();
public Window(Frame parent);
The first constructor creates a top-level Frame window. The second constructor
creates a top-level window which is a child of the passed Frame, such as a
modeless Dialog.

Parameters
None.

Example
See the examples for the Frame and Dialog classes.

Figure 3-8 The class hierarchy of the Window class

toBack

ClassName
Window

Purpose
Sends the Window to the back of the desktop z-order..

Syntax
public void toBack();

Parameters
None.

Description
Sends the Window to the back of the desktop z-order. If the Window is not
showing, this call is ignored. The Window automatically loses keyboard focus
after this call is made if the window, or any of its children, have the keyboard
focus when the call is made.

Imports
None.

Returns
None.

See Also
The toFront method of the Window class

Example
In this example, a custom Event is delivered to the MyWindow class to cause it to
be sent to the back or the front of the z-order of the top-level windows.

public class MyWindow extends Window {
 public static final CUSTOM_TO_BACK = -1;
 public static final CUSTOM_TO_FRONT = -2;

 public MyWindow() {}

 public boolean handleEvent(Event evt) {
 if(CUSTOM_TO_BACK == evt.id)
 toBack();
 else if(CUSTOM_TO_FRONT == evt.id) {
 toFront();
 else
 return super.handleEvent(evt);

 return true;
 }
}

toFront

ClassName
Window

Purpose
Brings the Window to the front of the desktop z-order..

Syntax
public void toFront();

Parameters
None.

Description
Brings the Window to the front of the desktop z-order. If the Window is not
showing, this call is ignored. The Window automatically gains keyboard focus
after this call is made.

Imports
None.

Returns
None.

See Also
The toBack method of the Window class

Example
See the example for the toBack method of the Window class.

dispose

ClassName
Window

Purpose
Destroys the Window object’s native windowing system peer.

Syntax
public void dispose();

Parameters
None.

Description
Destroys the Window’s native windowing system peer object. Top-level windows
must explicitly destroy (dispose) of their peers. Most commonly used when an
application’s main window receives a WINDOW_DESTROY Event.

Imports
None.

Returns
None.

Example

This example Event handler, for an application’s main Frame window, calls
dispose when it receives a WINDOW_DESTROY Event.

public class MyAppMainFrame extends Frame {
 …

 public boolean handleEvent(Event evt) {
 if(Event.WINDOW_DESTROY == evt.id) {
 dispose();
 return true;
 }

 return super.handleEvent(evt);
 }
 …

}

getWarningString

ClassName
Window

Purpose
Gets the Applet warning string to display in Frame windows created by Applets.

Syntax
public final String getWarningString();

Parameters
None.

Description
The warning string is a string that displays in a Frame window created by an
Applet object. For example, the Netscape Navigator v2.0 displays a string
“Untrusted Applet Window” on every Frame window created by Applets. Note
that this method is final, so your Applet cannot override this implementation. The
warning string is actually a System property called “awt.appletWarning”.

Imports
None.

Returns
A String object containing the warning string to display.

Example
This custom Frame class uses the warning string as the Frame’s caption.

public class MyFrame extends Frame {
 public MyFrame() {
 super(getWarningString());
 }
}

Toolkit

Purpose

The Toolkit class represents the native windowing system in Java.
Syntax

public abstract class Toolkit
Description

The Toolkit class represents the native windowing system in Java. The four
functionalities accessible through the Toolkit class are: Component peer creation,
Font enumeration and metrics, Screen sizing and resolution, and Image loading
and preparation. Figure 3-9 shows the class hierarchy of the Toolkit class. The
Toolkit class is an abstract class, so you cannot create an instance of this class.
Instead, you use the Toolkit class’ getDefaultToolkit method to obtain a reference
to the Toolkit implementation in use on the system currently, as demonstrated in
the example for the getDefaultToolkit method listed below.

PackageName
java.awt

Imports
java.awt.peer.*, java.awt.image.ImageObserver, java.awt.image.ImageProducer,
java.awt.image.ColorModel, java.net.URL

Constructors
None.

Parameters
None.

Figure 3-9 The class hierarchy of the Toolkit class

getScreenSize

ClassName
Toolkit

Purpose
Gets the dimension of the desktop in pixels.

Syntax
public Dimension getScreenSize();

Parameters
None.

Description
Gets the dimension of the desktop in pixels. This is very useful for applications
which would like to layout their Components based on available on-screen real
estate.

Imports
java.awt.Dimension

Returns

The return Dimension object’s width and height members reflect the width and
height of the desktop.

See Also
The getScreenResolution method of the Toolkit class

Example
This example method centers a Frame on the desktop.

public void centerFrameOnDesktop(Frame f) {
 Dimension dim = f.size();
 Dimension dimDesktop =
 Toolkit.getDefaultToolkit().getScreenSize();
 f.move(dimDesktop.x / 2 + dim.x / 2,
 dimDesktop.y / 2 + dim.y / 2);
}

getScreenResolution

ClassName
Toolkit

Purpose
Gets the resolution of the desktop.

Syntax
public int getScreenResolution();

Parameters
None.

Description
Gets the resolution of the desktop in pixels per inch. The number returned is valid
in both the X and Y directions. This is useful for applications which need to know
physical, not logical, distances on the desktop. For example, an application which
is supposed to display a 12-inch ruler would need to know how many pixels from
the upper-left corner of the screen is exactly one inch.

Imports
None.

Returns
The screen resolution in pixels-per-inch. The returned value is valid in both the X
and Y directions.

See Also
The getScreenSize method of the Toolkit class

Example
This example method creates a Frame window which is exactly five inches wide
by five inches tall.

public Frame make5by5Frame() {
 Frame f = new Frame();
 int pixelsPerInch =
 Toolkit.getDefaultToolkit().getScreenResolution();
 f.resize(5 * pixelsPerInch, 5 * pixelsPerInch);
 f.show();
 return f;
}

getColorModel

ClassName
Toolkit

Purpose
Gets the ColorModel describing the color capabilities of the desktop.

Syntax
public ColorModel getColorModel();

Parameters
None.

Description
Returns the ColorModel object for the desktop. The ColorModel describes the
color palette or color capabilities of the desktop.

Imports
java.awt.image.ColorModel

Returns
A ColorModel object describing the color capabilities of the desktop.

See Also
The ColorModel class

Example
This example method profiles the number of colors the desktop is capable of
displaying simultaneously.

public void displaySimulColors() {
 ColorModel cmDesktop =
 Toolkit.getDefaultToolkit().getColorModel();
 int nColorBits = cmDesktop.getPixelSize();
 System.out.println(“Max desktop colors: ” +
 (1 << nColorBits));
}

getFontList

ClassName
Toolkit

Purpose
Lists all the font face names available for rendering text.

Syntax
public abstract String[] getFontList();

Parameters
None.

Description
Use this method to get a list of all available fonts on the system. An array is
returned, each element of which is a String containing a valid font face name. Use
Font.getFont with the font face name to create a Font object for a particular face
name.

Imports
None.

Returns
None.

Example
See the example Project for this chapter, FontLab, which uses getFontList to
enumerate all font face names available on the local system.

getFontMetrics

ClassName
Toolkit

Purpose
Gets the FontMetrics for a particular Font as rendered on the desktop.

Syntax
public abstract FontMetrics getFontMetrics(Font font);

Parameters
Font font

The Font you want to gather metrics for.
Description

This method returns a FontMetrics object describing the metrics of a particular
Font when rendered on the desktop. The Component.getFontMetrics method is
actually a shallow wrapper around this method.

Imports
java.awt.FontMetrics, java.awt.Font

Returns
A FontMetrics object describing the metrics of Font font when rendered on the
desktop.

Example
This example method returns the length, in pixels, of a String when displayed on
the desktop using a particular Font. The Font is described only by a font face
name, such as one of the elements returned by Toolkit.getFontList.

public int getStringWidthInFont(String str, String strFaceName) {
 Font font = Font.getFont(strFaceName);
 FontMetrics fm =
 Toolkit.getDefaultToolkit().getFontMetrics(font);
 return fm.stringWidth(str);
}

getDefaultToolkit

ClassName
Toolkit

Purpose
Gets the Toolkit object used by the AWT.

Syntax
public static synchronized Toolkit getDefaultToolkit();

Parameters
None.

Description
Gets the Toolkit object used by the java.awt.* packages. There is nothing
stopping you from implementing another Toolkit in addition to the default
Toolkit. For example, if you wanted to take advantage of some native windowing
system capabilities, which are not available through Java’s Toolkit object, you
could implement your own and use it instead of Java’s Toolkit object.

Imports
None.

Returns
The Toolkit object used within the Java API classes is returned.

Example
See the examples for the methods getFontMetrics and getScreenResolution in the
Toolkit class.

getImage

ClassName
Toolkit

Purpose
To load an image from a URL and prepare it for rendering on the desktop.

Syntax
public abstract Image getImage(String filename);public abstract Image
getImage(URL url);

Parameters
String filename

The full path name for a graphical format file on the local file system.
URL url

Points to an image file to be loaded by the Toolkit.
Description

This method allows any code in Java to initiate loading of an Image from a
graphical image file. This graphical format file may be a location in a file on the
local file system, or is indicated by a URL (available or the Internet). The first
overloaded version of this method loads images from files on the local file
system, and the second loads images from files available over the Internet.

Imports
java.awt.Image

Returns
An Image object will be returned by this object. The reaction of this method when
the URL refers to an unsupported protocol or when the image file format is
unrecognized or is unspecified. Generally, it can be assumed that null will be
returned if this capability is not provided by the Toolkit.

See Also
The Image class

Example

The following sample Component loads and displays an image. A relative URL to
the image to be loaded is passed to the Component’s constructor. The Component
acts as the ImageObserver for the Image construction process.

public class ImageComp extends Component {
 Image image;

 public ImageComp(URL urlImage) {
 image = Toolkit.getDefaultToolkit().getImage(urlImage);

 public void paint(Graphics g) {
 // Paint image on display surface, if image exists
 if(null != image)
 g.drawImage(image, 0, 0, this);
 }
}

prepareImage

ClassName
Toolkit

Purpose
Kick-starts the Image construction process for an Image to be displayed with a
specified width and height.

Syntax
public boolean prepareImage(Image img, int width, int height, ImageObserver
observer);

Parameters
Image img

The Image object to create a screen representation of.
int width
int height

The scaled size of the Image’s representation.
ImageObserver observer

The ImageObserver object to receive notification of the asynchronous progress of
the construction of the Image’s representation.

Description
Starts construction of a screen representation of an Image object. An Image must
be constructed before it can be displayed on a Component’s surface. Note that
when you use Graphics.drawImage with a reference to an unconstructed Image
object, the Image’s construction process is automatically started for you. The
prepareImage method allows you to start this process before the Image is
displayed on any surface.

Imports
java.awt.Image, java.awt.image.ImageObserver

Returns
True is returned if the representation of the Image object is complete. Otherwise,
false is returned and the Image construction process is started.

See Also

The Image class; the ImageObserver interface; the checkImage method of the
Toolkit class

Example
See the example for the checkImage method of the Toolkit class.

checkImage

ClassName
Toolkit

Purpose
To check the status of construction of an Image.

Syntax
public int checkImage(Image img, int width, int height, ImageObserver observer);

Parameters
Image img

The Image object whose status is to be checked.
int width
int height

The scaled size of the image representation being checked.
ImageObserver observer

An ImageObserver object currently being notified of the progress of construction
of the Image object.

Description
Checks the status of the construction of an Image object. The ImageObserver is
continuously notified about the progress of the image construction process
through its updateImage method. checkImage allows non-ImageObserver objects
to poll for the progress of this process.

Imports
None.

Returns
A logical ORing of the ImageObserver flags indicating what information about
the Image is available. This can include one or more of the following
ImageObserver values: WIDTH, HEIGHT, PROPERTIES, SOMEBITS,
FRAMEBITS, ALLBITS, ERROR.

See Also
The ImageObserver interface

Example
This example prevents the Component from painting its surface until the Image
construction flag ALLBITS has been passed to the ImageObserver watching the
image construction process.

public MyComponent extends Canvas {
 Image _img;

 // Constructor takes an Image parameter and begins
 // construction of it.
 public MyComponent(Image img) {
 _img = img;
 Toolkit.getDefaultToolkit().

 prepareImage(_img, 100, 100, this);
 // uses the comp as the ImageObserver.
 }

 // paint does nothing until image has been
 // fully constructed.
 public void paint(Graphics g) {
 if(0 == (ImageObserver.ALLBITS &
 checkImage(_img, 100, 100, this)))
 return;

 // Do something with the image
 …
 }
}

createImage

ClassName
Toolkit

Purpose
Creates an in-memory Image from pixel data provided by an ImageProducer.

Syntax
public Image createImage(ImageProducer producer);

Parameters
ImageProducer producer

The ImageProducer object which will provide the data defining the resultant
Image.

Description
The resultant Image will have a compatible ColorModel to the display device
associated with this Component object. This method creates the Image using pixel
data provided by the ImageProducer. (See Chapter 8, which describes image
processing methods and techniques in Java.)

Imports
java.awt.image.ImageProducer

Returns
An Image object.

See Also
The ImageProducer class

Example
This example uses createImage along with a fictitious FakeFilter, which is
supposed to be any type of ImageFilter (See Chapter 8 for a discussion of
ImageProducers, ImageConsumers, and ImageFilters).

// Assume a URL has been provided for the
// source Image…

Image imageSource =
 Toolkit.getDefaultToolkit().getImage(urlSource);
Image imgFiltered =
 Toolkit.getDefaultToolkit().createImage(

 new FilteredImageSource(imgSource.getSource(),
 new FakeFilter())
);

The Project: FontLab

The SuperBible Project for this chapter is called FontLab. FontLab is a relatively simple
Java application that illustrates the use of z-ordering to arrange Components within a
Container. All of the FontLab classes are defined within the same .JAVA file,
FontLab.java. The Project can be found on the CD that accompanies this book in the
directory \WHERE\THE\PROJECT\IS.

Figure 3-10 shows the FontLab application running. One thing you may notice right away
about the FontLab interface is that there are several overlapping panels in the main
window. That’s one of the lessons of FontLab: how to make pseudo-MDI (multi-
document interface) applications. Another lesson is z-ordering of child Components.

Figure 3-10 Screenshot of the FontLab project

Assembling the Project

1. Create a file named FontLab.java. This file will hold all the code for this
project.
2. The first class to create is the application class, which will implement our
static main() method. Also, ensure the proper packages are imported. The code for
this step is
import java.awt.*;

public class FontLab {

 public static void main(String[] astrArgs) {
 FontLabFrame f = new FontLabFrame("Font Lab");
 f.resize(700, 500);
 f.show();
 }
}
3. Create our application’s main Frame class. This Frame contains the various
panels to display each Font. The constructor creates each of the display panels and
adds them. The code for this step is
class FontLabFrame extends Frame {
 FontDisplay[] aDisplays;

 public FontLabFrame(String strTitle) {
 super(strTitle);

 // Set background color and NullLayoutManager.
 setBackground(Color.white);
 setLayout(new NullLayout());

 // Get the list of available fonts.
 String[]astrFonts =
Toolkit.getDefaultToolkit().getFontList();

 // Create a display for each typeface name.
 aDisplays = new FontDisplay[astrFonts.length];
 int cxInc = 200/astrFonts.length;
 int cyInc = 200/astrFonts.length;

 for(int ii=astrFonts.length-1 ; ii>0 ; ii--) {
 aDisplays[ii] = new FontDisplay(astrFonts[ii]);
 aDisplays[ii].reshape(ii*cxInc, ii*cyInc, 500, 300);
 add(aDisplays[ii]);
 }
 }
}
4. As with all Frame windows, the FontLabFrame class must handle all
WINDOW_DESTROY Events to dispose of the window. The code for the
handleEvent method of the FontLabFrame class is
public boolean handleEvent(Event evt) {
 if(Event.WINDOW_DESTROY == evt.id) {
 dispose();
 System.exit(0);
 }
 return super.handleEvent(evt);
}
5. When a mouse click occurs anywhere in the application, FontLabFrame should
handle it. When handling a mouse click, locate the child Component on which the
click occurred, then remove and re-add the associated FontDisplay panel so it is
brought to the proper z-order.
public boolean mouseDown(Event evt, int x, int y) {
 Component c = (Component)evt.target;
 while(!((null==c) || (c instanceof FontDisplay)))
 c = c.getParent();

 if(null != c) {
 remove(c);
 add(c);
 validate();
 return true;
 }
 return false;
}
6. A FontDisplay panel displays sample text using a particular Font. The Font is
given to the FontDisplay object’s constructor when it is created. A toolbar is also
provided so the user may change the sample text and the size it is displayed at.
Creation of the toolbar and initialization of the FontDisplay’s member occurs in
the constructor. Here is the code:
class FontDisplay extends Panel {

 Insets _insets = new Insets(5, 5, 5, 5);
 String _strFontName;
 TextField _textString = new TextField("Sample", 15);
 TextField _textSize = new TextField("10", 2);

 public FontDisplay(String strFontName) {
 _strFontName = strFontName;

 // Set background color and BorderLayout.
 setBackground(Color.gray);
 setLayout(new BorderLayout());

 // Create font.
 setFont(new Font(_strFontName, Font.PLAIN, 10));

 // Create title bar.
 Panel panelTitle = new Panel();
 panelTitle.setLayout(new FlowLayout());
 Label labelTitle = new Label(_strFontName);
 panelTitle.add(labelTitle);
 panelTitle.setFont(getFont());
 add("North", panelTitle);

 // Create font selection bar at the bottom
 Panel panelChoose = new Panel();
 panelChoose.setLayout(new FlowLayout(FlowLayout.LEFT, 5,
5));
 Label labelString = new Label("String:");
 Label labelSize = new Label("Height:");
 Button buttonUpdate = new Button("Update");
 panelChoose.add(labelString);
 panelChoose.add(_textString);
 panelChoose.add(labelSize);
 panelChoose.add(_textSize);
 panelChoose.add(buttonUpdate);
 panelChoose.setFont(getFont());
 add("South", panelChoose);
 }
}
7. Add an inset around the FontDisplay so child Components aren’t butted up
against the FontDisplay’s borders. Here is the code:
// Return insets of 5 in all directions
public Insets insets() {
 return _insets;
}
8. The paint method of the FontDisplay class simply draws the sample text using
the indicated Font. The sample text is centered within the FontDisplay object.
Here is the code:
public void paint(Graphics g) {
 Rectangle r = bounds();
 r.move(0, 0);
 g.drawRect(r.x, r.y, r.width-1, r.height-1);

 // Draw the string centered.
 String strText = _textString.getText();
 FontMetrics fm = g.getFontMetrics();

 g.drawString(strText, r.width/2 -
fm.stringWidth(strText)/2,
 r.height/2);
 }
9. When the user hits the Update button on the FontDisplay, the FontDisplay
receives an ACTION_EVENT, handled by the action method. Our
implementation reads in the new sample text and Font size, and updates the
FontDisplay’s member variables accordingly. Here is the code:
 // When the Update button is hit, change to new font
 // size and repaint.
 public boolean action(Event evt, Object what) {
 // Make sure 'what' is a string.
 if(!(what instanceof String))
 return false;

 // If it isn't the Update button, ignore.
 if(!"Update".equals((String)what))
 return false;

 // Get the new font size and create a new font.
 String strSize = _textSize.getText();
 int nSize;
 try {
 nSize = Integer.parseInt(strSize);
 } catch (Exception e) {
 return false;
 }

 setFont(new Font(_strFontName, Font.PLAIN, nSize));
 return true;
 }
10. Finally, implement the NullLayout class, which is a LayoutManager that
essentially does nothing. This allows us to place the FontLabFrame’s child
Components (FontDisplay objects) in overlapping positions. Chapter 6 discusses
LayoutManagers. Here is the code:
// The NullLayout is a no-op layout manager. It just leaves
// all Components in the target alone wherever they have
// been placed through Component.reshape(), move() or
// resize() calls.
class NullLayout implements LayoutManager {
 public void addLayoutComponent(String name,
 Component c) {}
 public void removeLayoutComponent(
 Component c) {}
 public Dimension preferredLayoutSize(Container target) {
 return new Dimension(0, 0);
 }
 public Dimension minimumLayoutSize(Container target) {
 return new Dimension(0, 0);
 }
 public void layoutContainer(Container target) {}
}

How It Works

The FontLab Classes

Within FontLab, there are four predefined classes. Tabele 3-3 lists the four classes and a
description of each.

Table 3-3 Listing the classes of the FontLab project application

Class Description

FontLab The application class, which defines the static main() method.

The only task of the main() method is to create and resize the
FontLab main window. The FontLab main window is of the

FontLabFrame class. The FontLab class is derived from nothing.
FontLabFrame There is only a single instance of the FontLabFrame class in each

instance of the FontLab application. This instance is the main
frame window of the Application. The frame window is

responsible for creating and placing the FontDisplay panels, one
for each of the typefaces available on the system. The

FontLabFrame must also end the application by disposing of
itself when it receives a WINDOW_DESTROY Event.

FontLabFrame is derived from the Frame class.

FontDisplay There is a single instance of FontDisplay for each of the
typefaces available on the system. FontDisplay is derived from
Panel. Looking at Figure 3-10, the FontDisplay objects are the
four overlapping cards in the middle of the main window. The
task of a single FontDisplay object is to display a line of text,
specified by the user, in a particular font with a particular size;

the size is also specified by the user.
NullLayout The NullLayout is a LayoutManager which basically doesn’t do

anything. It allows the child Components of the Container to just
sit wherever their own move() and reshape() methods have placed

them. In FontLab, which has several overlapping FontDisplay
panels within the main window, the main window uses a

NullLayout instance to (not) manage its child Components.

During Program Initialization

When FontLab starts up, the FontLab.main() method is run. The main() method only has
three lines of code:

FontLabFrame f = new FontLabFrame("Font Lab");
f.resize(700, 500);
f.show();

That is, it creates the main window, resizes it to a predefined size, shows the main frame,
and quits.

Most of the initialization work is done within the FontLabFrame’s constructor. That
constructor has two tasks: First, it gets the list of available fonts from the Toolkit, using
Toolkit.getFontList. Second, it creates a FontDisplay object for each of the available
fonts, sizes it, places it, and adds it as a Component of the main frame window. Here’s
the code from the FontLabFrame constructor that performs those steps:

// Get the list of available fonts.
 String[] astrFonts = Toolkit.getDefaultToolkit().getFontList();

 // Create a display for each typeface name.
 aDisplays = new FontDisplay[astrFonts.length];
 int cxInc = 200/astrFonts.length;
 int cyInc = 200/astrFonts.length;

 for(int ii=astrFonts.length-1 ; ii>0 ; ii--) {
 aDisplays[ii] = new FontDisplay(astrFonts[ii]);
 aDisplays[ii].reshape(ii*cxInc, ii*cyInc, 500, 300);
 add(aDisplays[ii]);
 }

The sizing of the FontLabFrame and the various FontDisplay panels is hard-coded to
keep the code complexity to a minimum. What’s not shown above is that the
FontLabFrame sets its LayoutManager to a NullLayout object, but that also occurs within
the FontLabFrame constructor.

The last step in the initialization process is the FontDisplay constructor, which is used to
create each of the FontDisplay panels. As you can see in Figure 3-10, the FontDisplay
panel is made up of three parts: The title at the top of the panel, the sample text in the
center of the panel, and a toolbar allowing the user to write in sample text and a text size
in the lower panel. The FontDisplay constructor creates these three elements before
quiting.

Each FontDisplay panel is supposed to represent one of the available fonts for the system.
The FontDisplay constructor takes the typeface name it is supposed to represent as the
only argument. The FontDisplay stores this typeface name in a member variable, and sets
its font to a 10-point Font based on this typeface name:

public FontDisplay(String strFontName) {
 _strFontName = strFontName;

[…]

 // Create font.

 setFont(new Font(_strFontName, Font.PLAIN, 10));

Next, the FontDisplay constructor creates its titlebar and toolbar. The focus of this
chapter is not on user-interface creation, so we will resist going into detail about that
here.

Changing Z-Order

FontLab was designed with overlapping windows to demonstrate z-ordering. When
FontLab starts, all of the FontDisplay panels are added to the main frame window in
quick succession. If you noticed in the code snippet taken from the FontLabFrame
constructor, the constructor actually adds the panels to the frame in the order they are to
appear initially, top to bottom. That is, the panel which should end up on the top of the z-
order is added first, then the second, and so on. Remember that the component added last
is at the bottom of the z-ordering, so when adding several Components at once to a
Container, you’ll want to add the items in a top-to-bottom order.

FontLab was written so that a user-click on a panel sends the panel to the bottom of the z-
order. The code which changes the z-ordering is in FontLabFrame.mouseDown. In
mouseDown, the frame determines which panel the mouse was clicked in, if any. That
panel is removed from the frame and re-added. This sends the panel to the bottom of the
z-order.

Note that while you might at other times use Container.locate to determine which child
Component a particular point was in, that would not work for FontLab. Remember that
Container.locate does not work when you have overlapping child Components.
FontLabFrame.mouseDown() determines which panel the mouse click occurred in by
examining the target member of the MOUSE_DOWN Event. The target Component will
be one of three types: FontDisplay panel, child Component of a FontDisplay panel, or the
FontLabFrame itself.

FontLabFrame determines which panel to change the z-order for by examining the
ancestors of the Event.target member. The first one that is a FontDisplay is the panel the
mouse click occurred in. If the code gets to the top of the window hierarchy, then the
mouse click was not in a FontDisplay panel, and the mouse click can be ignored. Here’s
the code:

 Component c = (Component)evt.target;
 while(!((null==c) || (c instanceof FontDisplay)))
 c = c.getParent();

 if(null != c) {
 remove(c);
 add(c);
 validate();
 return true;
 }

Chapter 4
Windowing Components And Layout Classes

Building a graphical user interface for an application is an interesting and challenging
task. Every graphical user interface requires components that perform specialized tasks,
such as buttons that invoke actions and data entry areas for users to type in information.
Components also need to be logically grouped. Java’s Abstract Windowing Toolkit
(AWT) provides a rich set of ready-to-use user interface components that application
developers can incorporate into their programs.

This chapter describes the application programming interface of some of the ready-made
GUI components that the Java toolkit provides. It also introduces the concepts involved
in laying out components on the screen using Java’s layout managers. It explains how to
use the Java layout managers and how to implement custom layout managers.
Throughout, detailed explanations of the methods are supplemented with examples that
will assist you in building an attractive GUI. The project, at the end of this chapter, lays
out some of the components described in this chapter using layout managers and
demonstrates the capabilities of each of Java’s layout managers.

Windowing Components

As a developer of GUIs, you will use Java’s GUI components a lot. Some of them, such
as Button, Canvas, Frame, Panel, Label, and Scrollbar are common user-interface
components that nearly all GUI toolkits provide. Some classes, such as Dimension and
Insets, are helper classes that embody abstractions that help make programming in a
graphical environment easy. Figure 4-1 shows several components of a GUI.

Figure 4-1 Components of a graphical user interface

Layouts

All the GUI components in the Java AWT are implemented with subclasses of the
Component class. As you may recall from Chapter 3, the Container is a special type of
component that can contain other components. How does one arrange the Components
within a container? This is where the layout manager plays a role. A layout manager is a
Java object that knows how to position and size or resize components within a container
that appears on the screen. Java provides a number of layout managers, each of which
lays out components differently. Every container has a default layout manager that you

can easily replace with another one. You can also specify absolute positions (for
components) instead of using a layout manager.

Layout managers must implement the methods of the LayoutManager interface. Since all
layout managers implement the same interface, if you know how to use one layout
manager, then switching to a different one is easy. Applications do not invoke the
methods of the LayoutManager interface directly. The Container methods add, remove,
removeAll, layout, preferredSize, and minimumSize result in calls to the corresponding
methods of the layout manager associated with that Container object. The layout
managers that Java’s AWT provides are FlowLayout, GridLayout, BorderLayout,
CardLayout, and GridBagLayout. Figure 4-2 shows two examples of what you can do
with these layout managers.

Figure 4-2 Examples of BorderLayout and GridBagLayout

Summary of Windowing Component and Layout Classes

Table 4-1 summarizes Java’s Windowing Component classes. Java’s layout interfaces
and classes are summarized in Table 4-2.

Table 4-1 Windowing class descriptions

Class Description

Button A class that implements a button, that can be pressed to invoke a

user-defined action/sequence of actions.
Canvas This class implements a generic canvas that drawing operations

can be performed on, using the specified graphics device for the
target device.

Dimension The Dimension class encapsulates the height and width
measurement of a component.

Frame A class that represents a top-level window, which can function as
a container for other components.

Insets A class that specifies an inset from within a rectangular area.

Label This class implements a graphical component, that displays a
single line of noneditable text.

Panel A class that implements a generic container in which other
components can be laid out.

Scrollbar A class that represents a scrollbar.

Table 4-2 Layout class and interface descriptions

Class/Interface Description

LayoutManager This defines an interface that all layout managers must implement

in order to be used for laying out Components.
FlowLayout This is a very simple layout manager that lays out components in

rows, and is the default layout manager for all Panels.
GridLayout This class implements a layout manager that lays out

Components in a grid with a specified number of rows and
columns and resizing the Components so that they are all of equal

size.

BorderLayout This is the default layout manager for all Windows and
configures the layout of the container, using areas named North,

South, East, West, and Center.

CardLayout A layout manager for a Container that arranges its Components
into cards and stacks the cards, so that only one card is visible at

any time.
GridBagConstraints This class specifies the constraints for laying out components

using the GridBagLayout manager.

GridBagLayout A very flexible layout manager that lays out components,
aligning them vertically and horizontally. A set of constraints

specifies how each Component is laid out within its display area.

Button

Purpose
This class represents an on-screen button.

Syntax
public class Button extends Component

Description
This class implements a button that can be pressed to invoke a user-defined action
or sequence of actions. Methods of the Component class can be used with Button
objects. Refer to the Event class, described in Chapter 3, to find out more about
handling button related events. Figure 4-3 shows the inheritance hierarchy for the
Button class.

PackageName

java.awt
Imports

import java.awt.Button;
Constructors

public Button()
public Button(String label)

Parameters
label

The text string to display on the button
Example

The following sample code shows how to construct Button objects.
import java.awt.*;

public class TestButton extends Frame {
 TestButton() {
 super("Testing Button constructors"); // application title
 // Construct buttons
 Button b1 = new Button();
 Button b2 = new Button("Test");
 Button b3 = new Button("Long button label");
 // Add the buttons to the frame window
 add("North", b1);
 add("Center", b2);
 add("South", b3);
 resize(150, 100);
 show();
 }

 public static void main(String args[]) {
 TestButton t = new TestButton();
 }
}

Figure 4-3 Inheritance hierarchy for the Button class

addNotify()

ClassName
Button

Purpose
This method creates a peer object for this Button object.

Syntax
public synchronized void addNotify()

Parameters

None.
Description

This method creates a peer for this Button. The peer allows the programmer to
change the look of the button without affecting its functionality. The addNotify
method is the earliest stage, in the creation of a component, that platform specific
resources (such as color, fonts, and fontmetrics) may be determined. Classes that
override this method must first call super.addNotify() before doing any other
processing in this method.

Imports
import java.awt.Button;

Returns
None.

See Also
The ButtonPeer interface

Example
Refer to the example listed in the addNotify method of the Canvas class in this
chapter and also to the section on ButtonPeer interfaces in Chapter 9.

getLabel()

ClassName
Button

Purpose
To retrieve the text string displayed on the button.

Syntax
public String getLabel()

Parameters
None.

Description
This method retrieves the text label displayed on the button.

Imports
import java.awt.Button;

Returns
The return type of this method is String. This return value contains the text string
displayed on the Button object.

See Also
The setLabel method

Example
The following example demonstrates the use of this method in an application.

import java.awt.*;

public class TestButton extends Frame {
 TestButton() {
 super("Testing Button.getLabel()"); // Application title
 Button b = new Button("Howdy!"); // Construct button
 add("Center", b); // Add the button to the
 frame window

 // print the label of the button on the standard output
device
 terminal)
 System.out.println("Button label: " + b.getLabel());
 resize(150, 100);
 show();
 }

 public static void main(String args[]) {
 TestButton t = new TestButton();
 }
}

paramString()

ClassName
Button

Purpose
To represent the parameters of this Button as a String object.

Syntax
protected String paramString()

Parameters
None.

Description
This method represents the various parameters associated with the Button as a
String and returns the string. Classes that extend the Button class can override this
method to add additional parameter information to the String representation. This
protected method cannot be invoked from an application, but is invoked by the
toString method of the Component class.

Imports
import java.awt.Button;

Returns
The return type of this method is String. This return value contains the text label
of the Button object, in addition to the parameter values of the base class,
Component.

See Also
The toString and paramString methods of the Component class.

Example
The following example demonstrates the use of this method in an application.

import java.awt.*;

public class TestButton extends Frame {
 TestButton() {
 super("Testing Button.paramString()"); // Application title
 Button b = new Button("Howdy!"); // Construct button
 add("Center", b); // Add the button to the frame window
 // print the parameters associated with this Button
 System.out.println("Button label: " + b.toString());
 resize(150, 100);
 show();
 }

 public static void main(String args[]) {
 TestButton t = new TestButton();
 }
}

setLabel(String)

ClassName
Button

Purpose
To set the label on the button to the specified string.

Syntax
public void setLabel(String label)

Parameters
label

The text string for the Button label.
Description

This method changes the text label, that is displayed on button, to the specified
string.

Imports
import java.awt.Button;

Returns
None.

See Also
The getLabel method

Example
The following code illustrates the use of this method in setting the label of a
button.

import java.awt.*;

public class TestButton extends Frame {
 TestButton() {
 super("Testing Button.setLabel()"); // Application title
 Button b = new Button(); // Construct a button with no
label
 b.setLabel("Quit"); // specify the label text
 add("Center", b); // Add the button to the frame
 window
 resize(150, 100);
 show();
 }

 public static void main(String args[]) {
 TestButton t = new TestButton();
 }
}

Canvas

Purpose
A generic canvas type on which graphics operations such as drawing can be
performed.

Syntax
public class Canvas extends Component

Description
This class implements a generic canvas type, on which drawing operations can be
performed using the specified graphics device. Classes that extend the Canvas
class must override the minimumSize method, as the default size of a Canvas is
zero. Figure 4-4 shows the inheritance hierarchy for the Canvas class.

PackageName
java.awt

Imports
import java.awt.Canvas;

Constructors
public Canvas()

Parameters
None.

Example
The following sample code shows how to construct Canvas objects.

import java.awt.*;

public class TestCanvas extends Frame {
 TestCanvas() {
 super("Canvas test"); // Application title
 Canvas c = new Canvas(); // Construct a canvas object
 add("Center", c); // add the canvas to the Frame
window
 resize(150, 200);
 show();
 }

 public static void main(String args[]) {
 TestCanvas t = new TestCanvas();
 }
}

Figure 4-4 Inheritance hierarchy for the Canvas class

addNotify()

ClassName
Canvas

Purpose
To create a peer object for this Canvas object.

Syntax
public synchronized void addNotify()

Parameters
None.

Description
This method creates a peer for this Canvas object that enables you to change the
appearance of the canvas without changing the functionality of the Canvas object.
The addNotify method is the earliest stage in the creation of a component where
platform specific resources (such as color, fonts, and fontmetrics) may be
determined. Classes that override this method must first call super.addNotify()
before doing any other processing in this method.

Imports
import java.awt.Canvas;

Returns
None.

See Also
The interface CanvasPeer

Example
The following code illustrates the use of this method. The ColorCanvas class
initializes the font type and the text color in the addNotify method and uses these
values while painting the Canvas.

import java.awt.*;
class ColorCanvas extends Canvas {
 Font canvasFont_; // The font to use on this canvas
 Color textColor_; // The color to use for text on this
canvas
 public Dimension minimumSize() {
 return new Dimension(150, 150);
 }

 public void addNotify() {
 super.addNotify(); // always call super's addNotify first
 textColor_ = new Color(250, 0, 0); // Red:250 Green:0 Blue:0
 canvasFont_ = new Font("courier", Font.BOLD, 16);
 }

 public void paint(Graphics g) {
 g.setColor(textColor_); // set the text color
 g.setFont(canvasFont_); // set the font
 g.drawString("Custom Canvas", 5, 25); // write a string
 }
}

public class TestCanvas extends Frame {
 TestCanvas() {
 super("Another Canvas demo"); // Application title
 ColorCanvas c = new ColorCanvas(); // Construct the color

 canvas object
 add("Center", c); // add the canvas to the
Frame
 window
 resize(150, 200);
 show();
 }

 public static void main(String args[]) {
 TestCanvas t = new TestCanvas();
 }
}

paint(Graphics)

ClassName
Canvas

Purpose
To paint the Canvas object.

Syntax
public void paint(Graphics g)

Parameters
g

The graphics context object.
Description

This method is invoked to paint the canvas object. Classes that extend the Canvas
class can customize the appearance of the canvas by overriding this method.

Imports
import java.awt.Canvas;

Returns
None.

See Also
The Component and Graphics classes

Example
This sample source code implements a custom canvas type that has horizontal
lines, just like a ruled sheet of paper.

import java.awt.*;

public class TestCanvas extends Frame {
 TestCanvas() {
super("Canvas test"); // Application title
 add("Center", new RuledCanvas()); // create and add the custom
 canvas to the frame
 resize(150, 200);
 show();
 }

 public static void main(String args[]) {
 TestCanvas t = new TestCanvas();
 }
}

// This class implements a ruled canvas type
class RuledCanvas extends Canvas {
 public void paint(Graphics g) {
 Rectangle r = bounds();
 g.setColor(Color.black); // set the line color to
black
 // draw ruled lines across the width of the canvas
 for (int i = 1; i <= r.height/10; i++) {
 g.drawLine(0, i * 10, r.width, i * 10);
 }
 }
}

Dimension

Purpose
A class that represents a height and a width measurement.

Syntax
public class Dimension extends Object

Description
The Dimension class encapsulates the height and width measurement of a
component. The width and height variables of a Dimension object are public and,
hence, can be accessed directly. Figure 4-5 shows the inheritance hierarchy for the
Dimension class.

PackageName
java.awt

Imports
import import java.awt.Dimension;

Constructors
public Dimension()
public Dimension(Dimension d)
public Dimension(int width, int height)

Parameters
d

The source Dimension object from which to copy.
width

The width measurement of the dimension.
height

The height measurement of the dimension.
Example

This code illustrates the different ways of constructing Dimension objects.
import java.awt.Dimension;

public class DimensionTest {
 public static void main(String args[]) {
 // Dimension constructors
 Dimension d1 = new Dimension(); // void constructor
 Dimension d2 = new Dimension(100, 200); // width and height
 specified

 Dimension d3 = new Dimension(d2); // construct a copy of d2
 Dimension d4 = new Dimension();
 d4.width = 25; // set the width and
height
 d4.height = d3.height + 100; // individually
 }
}

Figure 4-5 Inheritance hierarchy for the Dimension class

toString()

ClassName
Dimension

Purpose
To represent the parameter values of the Dimension object as a String.

Syntax
public String toString()

Parameters
None.

Description
This method returns, as a string, the values of the width and height measurements
of this Dimension object prefixed by its classname (java.awt.Dimension).

Imports
import java.awt.Dimension;

Returns
None.

See Also
The toString method of the Object class

Example
import java.awt.Dimension;

public class DimensionTest {
 public static void main(String args[]) {
 // Dimension constructor specifying width and height
 Dimension d = new Dimension(100, 200);
 System.out.println("d.toString() = " + d.toString());
 }
}

When this example is compiled and executed, the following string is printed on
the screen.

d.toString() = java.awt.Dimension[width=100,height=200]

Frame

Purpose

A class that represents a top-level window that can function as a container for
other components.

Syntax
public class Frame extends Window implements MenuContainer

Description
This class implements a window with a title bar and border that can contain a
menu bar, as well as other AWT Components. Frames and Panels are commonly
used as the top-level window GUIs. Most of the functionality for this class is
implemented in the Window, Container, and Component classes. Refer to those
classes in Chapter 2 and Chapter 3 to get a complete picture of what you can do
with Frame objects. The default layout manager for Frame window objects is
BorderLayout. Figure 4-6 shows the inheritance hierarchy for the Frame class.

PackageName
java.awt

Imports
import java.awt.Frame;

Constructors
public Frame()
public Frame(String title)

Parameters
title

The string to display in the title bar of the Frame window.
Example

This example demonstrates Frame construction.
import java.awt.*;

public class FrameTest {
 public static void main(String args[]) {
 // Construct a Frame and put a title on it
 Frame f = new Frame("Frame windows");
 // Component methods such as setBackground() can invoked be on
a
 Frame
 f.setBackground(Color.blue);
 f.resize(200, 200);
 f.show();
 }
}

Figure 4-6 Inheritance hierarchy for the Frame class

addNotify()

ClassName

Frame
Purpose

Creates a peer object for this Frame object.
Syntax

public synchronized void addNotify()
Parameters

None.
Description

This method creates a peer for this Frame object that enables you to change the
appearance of the frame window without changing its functionality. The
addNotify method is the earliest stage, in the creation of a component, that
platform specific resources (such as color, fonts, and fontmetrics) may be
determined. Classes that override this method must first call super.addNotify()
before doing any other processing in this method.

Imports
import java.awt.Frame;

Returns
None.

See Also
The FramePeer interface

Example
Refer to the example listed in the addNotify method of the Canvas class in this
chapter and also to the section on FramePeer interfaces in Chapter 9.

dispose()

ClassName
Frame

Purpose
To release all the resources that are being used by this Frame object.

Syntax
public synchronized void dispose()

Parameters
None.

Description
This method is called to release the resources of a Frame object that is no longer
required.

Imports
import java.awt.Frame;

Returns
None.

See Also
The Window class

Example
Refer to the corresponding method in the Window class description in Chapter 3.

getCursorType()

ClassName
Frame

Purpose
To get the integer constant that represents the cursor type associated with this
Frame object.

Syntax
public int getCursorType()

Parameters
None.

Description
This method gets the integer type, associated with the cursor for this Frame. A list
of cursor types is given in the description of the setCursor method for this class.

Imports
import java.awt.Frame;

Returns
The cursor type, associated with this Frame window, is returned as an integer
value and will be one of the values detailed in the list of cursor types.

Example
This example prints the integer value of the default cursor image.

import java.awt.*;

public class FrameTest {
 public static void main(String args[]) {
 Frame f = new Frame("Testing Frame.getCursorType"); //
application
 title
 System.out.println("Frame.getCursorType() = " +
f.getCursorType());
 f.resize(200, 200);
 f.show();
 }
}

getIconImage()

ClassName
Frame

Purpose
To get the image of the icon of this Frame object.

Syntax
public Image getIconImage()

Parameters
None.

Description

This method gets the image that is displayed when the Frame is iconized.
Imports

import java.awt.Frame;
Returns

This method returns an Image object that represents the icon image used for this
Frame object. Refer to the section on Image objects in Chapter 8 for more
information.

See Also
The Image class

Example
The following example demonstrates the use of this method in an application.

import java.awt.*;

public class FrameTest {
 public static void main(String args[]) {
 Frame f = new Frame("Testing Frame.getIconImage()"); //
application
 title
 // create an Image object and assign it to the Frame as the
Frame's
 // icon image

 f.resize(200, 200);
 f.show();
 }
 // this method is invoked to modify the icon being displayed for this
 image
 protected void modifyIcon(Frame f) {
 Image im = f.geIconImage(); //get the image object
 // modify the icon image

 }
}

getMenuBar()

ClassName
Frame

Purpose
To get the menu bar object associated with this Frame object.

Syntax
public MenuBar getMenuBar()

Parameters
None.

Description
This method gets the MenuBar object that represents the menu bar associated with
this Frame.

Imports
import java.awt.Frame;

Returns
The menu bar information, associated with this Frame window, is returned as a
MenuBar object. Refer to the section on MenuBar objects in Chapter 6 for more
information.

See Also
The MenuBar class

Example
The portion of code given here uses this method.

import java.awt.*;

public class FrameTest {
 public static void main(String args[]) {
 Frame f = new Frame("Testing Frame.getMenuBar()"); //
application
 title
 // create a MenuBar object an attach it to the Frame

 f.resize(200, 200);
 f.show();
 }
 // this method is invoked to modify the menu
 protected void modifyIcon(Frame f) {
 MenuBar mb = f.getMenuBar(); // get the MenuBar object
 // add/delete menu items from the MenuBar

 }
}

getTitle()

ClassName
Frame

Purpose
To get the text string on the title bar of the frame.

Syntax
public String getTitle()

Parameters
None.

Description
This method gets the text label displayed in the title bar of the Frame window.

Imports
import java.awt.Frame;

Returns
This method returns a String object that contains the title of the Frame window as
a text string.

Example
This example prints the title of the Frame window on the standard output device.

import java.awt.*;

public class FrameTest {
 public static void main(String args[]) {
 Frame f = new Frame("Drawing Tool");
 // extract and print the title of the Frame window
 System.out.println("The title on this frame is :" +
f.getTitle());
 f.resize(200, 200);
 f.show();
 }
}

isResizable()

ClassName
Frame

Purpose
Indicates whether this Frame window object is resizable or not.

Syntax
public boolean isResizable()

Parameters
None.

Description
This method is used to test whether or not the dimensions of this Frame object can
be changed.

Imports
import java.awt.Frame;

Returns
If the Frame object is resizable, then the return value is true; otherwise this
method returns false.

Example
The following code illustrates the use of this function in determining whether a
Frame object is resizable or not.

import java.awt.*;
public class FrameTest {

 // method that toggles the state of the resizable property of the
 specified Frame window
 public toggleFrame(Frame f) {
 if (f.setResizable()); // is the Frame resizable ?
 f.setResizable(true); // make the Frame resizable
 else
 f.setResizable(false); // disable resizable property
 }
}

paramString()

ClassName
Frame

Purpose
To return the parameter values associated with this Frame object

Syntax
protected String paramString()

Parameters
None.

Description
The parameter values for this Frame object are returned as a String. This protected
method cannot be invoked directly. The toString method of the Component
superclass invokes this method.

Imports
import java.awt.Frame;

Returns
A String containing the parameter values for this Frame object.

See Also
The toString and paramString methods of the Component class

Example
The following example prints the parameter information for a Frame window
object.

import java.awt.*;

public class FrameTest {
 public static void main(String args[]) {
 Frame f = new Frame("Testing Frame.paramString()"); //
application
 title
 System.out.println("f.toString() = " + f.toString());
 f.resize(200, 200);
 f.show();
 }
}

When this example is compiled and executed, the following string is printed on the
screen.

f.toString() = java.awt.Frame[0,0,0x0,invalid,hidden,
layout=java.awt.BorderLayout,resizable,title=Testing
Frame.paramString()]

remove(MenuComponent)

ClassName
Frame

Purpose
To remove the specified menu bar object from the Frame window.

Syntax
public synchronized void remove(MenuComponent m)

Parameters
m

The MenuComponent object to be removed from this Frame.
Description

This method removes the specified menu bar from this Frame window.
Imports

import java.awt.Frame;
Returns

None.
See Also

The MenuComponent and MenuBar classes
Example

This function removes the menu bar from the specified Frame window.
import java.awt.*;

class FrameTest {
 // construct the frame window and attach a menu bar to it
 ...
 ...
 // method that removes a given Frame's menubar
 public removeMenu(Frame f) {
 MenuBar mb = f.getMenuBar(); // get the MenuBar object
 f.remove(mb); // remove the menu bar from the
Frame
 window
 }
}

setCursor(int)

ClassName
Frame

Purpose
To set the cursor to display when the pointer is within this Frame window.

Syntax
public void setCursor(int cursorType)

Parameters
cursorType

An integer constant that indicates the type of cursor to display within this Frame
window. The cursor types defined in this class are

CROSSHAIR_CURSOR Cursor image is a crosshair
DEFAULT_CURSOR Default cursor image(arrow cursor)
E_RESIZE_CURSOR Cursor image when the window is being resized to

the right
HAND_CURSOR The image for the cursor is a small hand

MOVE_CURSOR The cursor image when the window is being moved
N_RESIZE_CURSOR Cursor image when the window is being resized

upwards
NE_RESIZE_CURSOR Cursor image when the window is being resized by

dragging its north-east corner
NW_RESIZE_CURSOR Cursor image when the window is being resized by

dragging its north-west corner
S_RESIZE_CURSOR Cursor image when the window is being resized

downwards

SE_RESIZE_CURSOR Cursor image when the window is being resized by
dragging its south-east corner

SW_RESIZE_CURSOR Cursor image when the window is being resized by
dragging its south-west corner

TEXT_CURSOR Cursor image when the cursor is in an editable text
window

W_RESIZE_CURSOR Cursor image when the window is being resized to
the left

WAIT_CURSOR Hourglass cursor image
Description

This method specifies the cursor image to display when the pointer is within this
Frame window. The cursor can be any one of the types listed in the Parameters
section of this method.

Imports
import java.awt.Frame;

Returns
None.

Example
This code causes the cursor image to change to an image of a hand when the
mouse pointer is inside the Frame window,.

import java.awt.*;

public class FrameTest {
 public static void main(String args[]) {
 Frame f = new Frame("Hand Cursor"); // application title
 f.setCursor(Frame.HAND_CURSOR); // set the cursor image
 f.resize(200, 200);
 f.show();
 }
}

setIconImage(Image)

ClassName
Frame

Purpose
To set the image of the icon of this Frame object.

Syntax

public void setIconImage(Image image)
Parameters
image

The image to be used for the icon.
Description

This method specifies the image to use when the Frame is iconized. Some
platforms do not support icons for windows.

Imports
import java.awt.Frame;

Returns
None.

See Also
The Image class

Example
The following example demonstrates the use of this method in an application.

import java.awt.*;

public class FrameTest {
 public static void main(String args[]) {
 Frame f = new Frame("Testing Frame.setIconImage()");
 // application title
 // create an Image object
 Image im =

 // assign it to the Frame as the Frame's icon image
 f.setIconImage(im);
 f.resize(200, 200);
 f.show();
 }
}

setResizable(boolean)

ClassName
Frame

Purpose
To enable/disable the resizable feature on this Frame object.

Syntax
public void setResizable(boolean resizable)

Parameters
resizable

A boolean value that represents whether or not the Frame window is resizable. If
set to true, the Frame object is resizable; if set to false, the Frame window is not
resizable.

Description
This method is used to set whether the Frame window is resizable or not.

Imports

import java.awt.Frame;
Returns

None.
Example

The following function toggles the resizable flag of the specified Frame object.
import java.awt.*;

public class FrameTest {

 // method that toggles the state of the resizable property of the
 specified Frame window
 public toggleFrame(Frame f) {
 if (f.isResizable())
 f.setResizable(true); // make the Frame resizable
 else
 f.setResizable(false); // disable resizable property
 }
}

setTitle(String)

ClassName
Frame

Purpose
Sets the text string on the title bar of the frame.

Syntax
public void setTitle(String title)

Parameters
title

The text string to display in the title bar of this Frame.
Description

This method sets the text label displayed in the title bar of the Frame window to
the specified string.

Imports
import java.awt.Frame;

Returns
None.

Example
This method is used in the following example to set the title of a Frame window.

import java.awt.*;

public class FrameTest {
 public static void main(String args[]) {
 Frame f = new Frame(); // a Frame with no title
 // set the title of the Frame window
 f.setTitle("Countries and Capitals");
 f.resize(200, 200);
 f.show();
 }
}

Insets

Purpose
Specifies an inset from within a rectangular area.

Syntax
public class Inset extends Object implements Cloneable

Description
This class represents the top, left, bottom, and right insets. This class is used to
calculate the actual area that may be used inside a rectangular region, after
subtracting the inset on each side of the region. This class is used by layout
managers to lay out components. Figure 4-7 shows the inheritance hierarchy for
the Insets class.

PackageName
java.awt

Imports
import java.awt.Insets;

Constructors
public Insets(int top, int left, int bottom, int right)

Parameters
top

The distance set in from the top of the Container.
left

The distance set in from the left of the Container.
bottom

The distance set in from the bottom of the Container.
right

The distance set in from the right of the Container.
Example

This code shows how to construct an Insets object.
import java.awt.Insets;

public class InsetsTest {
 public static void main(String args[]) {
 // Insets constructor
 Insets i = new Insets(5, 10, 5, 10); // top, left, bottom,
 right inset
 }
}

Figure 4-7 Inheritance hierarchy for the Insets class

clone()

ClassName

Insets
Purpose

To create a duplicate of this Insets object
Syntax

public Object clone()
Parameters

None.
Description

Creates a new instance of an Insets object and makes an exact duplicate of this
Insets object.

Imports
import java.awt.Insets;

Returns
The return value is an Object that is a clone of this Insets object. You must cast
this return value as an Insets object in order to use it as one.

See Also
The clone method of the Object class; the Cloneable interface

Example
import java.awt.Insets;

public class InsetsTest {
 public static void main(String args[]) {
 // Insets constructor
 Insets i1 = new Insets(5, 10, 5, 10);
 Insets i2 = (Insets)i1.clone();
 System.out.println("i1.toString() = " + i1.toString());
 System.out.println("i2.toString() = " + i2.toString());
 }
}

toString()

ClassName
Insets

Purpose
To store the Insets object’s parameter values in a String.

Syntax
public String toString()

Parameters
None.

Description
The values of the top, left, bottom, and right insets are returned as a String object.

Imports
import java.awt.Insets;

Returns
The return value is a String that contains the values of the parameters for the
Insets object. The values are prefixed by a short textual description of the property
they denote.

See Also
The Object class

Example
This method is implemented in the following example.

import java.awt.Insets;

public class InsetsTest {
 public static void main(String args[]) {
 // Insets constructor
 Insets i = new Insets(5, 10, 5, 10); // top, left, bottom,
right
 inset
 System.out.println("i.toString() = " + i.toString());
 }
}

When this example is compiled and executed, the following string is printed on the
screen

i.toString() = java.awt.Insets[top=5,left=10,bottom=5,right=10]

Label

Purpose
A class that represents a single line text label.

Syntax
public class Label extends Component

Description
This class implements a graphical object that displays a single line of non-editable
text. The alignment of the text can be specified. By default, label text is centered
within the label. The methods of the Component class can be applied to this class.
Figure 4-8 shows the inheritance hierarchy for the Label class.

PackageName
java.awt

Imports
import java.awt.Label;

Constructors
public Label()
public Label(String label)
public Label(String label, int alignment)

Parameters
label

The text string to display in the label.
alignment

The alignment mode for the text string’s position in the label.
Example

The following example demonstrates the construction of Label objects.
import java.awt.*;

public class LabelTest extends Frame {
 LabelTest() {
 super("Testing Label constructors"); // application title
 Label l = new Label("First label");
 add("North", l);
 add("Center", new Label("Second label"));
 add("South", new Label("Right aligned label", Label.RIGHT));
 resize(150, 100);
 show();
 }

 public static void main(String args[]) {
 LabelTest t = new LabelTest();
 }
}

Figure 4-8 Inheritance hierarchy for the Label class

addNotify()

ClassName
Label

Purpose
To create a peer object for this Label object.

Syntax
public synchronized void addNotify()

Parameters
None.

Description
This method creates a peer for this Label object, which you can use to change the
appearance of the label without changing its functionality. The addNotify method
is the earliest stage in the creation of a component where platform specific
resources (such as color, fonts, and fontmetrics) may be determined. Classes that
override this method must first call super.addNotify() before doing any other
processing in this method.

Imports
import java.awt.Label;

Returns
None.

See Also
The LabelPeer interface; the Component class

Example
Refer to the example listed in the addNotify method of the Canvas class in this
chapter, and also to the section on LabelPeer interfaces in Chapter 9.

getAlignment()

ClassName
Label

Purpose
To get the alignment mode of the text string displayed on the label.

Syntax
public int getAlignment()

Parameters
None.

Description
This method gets the current alignment of the text displayed on the label. The
mode can be one of Label.RIGHT, Label.CENTER, or Label.LEFT.

Imports
import java.awt.Label;

Returns
This method returns an integer that specifies the alignment of the label.

Example
The following example uses this method to determine a label’s alignment.

import java.awt.*;

public class LabelTest extends Frame {
 LabelTest() {
 super("Testing Label.getAlignment()"); // application title
 Label l = new Label("Plain label", Label.LEFT);
 add("Center", l);
 int align = l.getAlignment();
 switch (align) {
 case Label.LEFT:
 System.out.println("Label text is left aligned");
 break;

 case Label.CENTER:
 System.out.println("Label text is centered");
 break;

 case Label.RIGHT:
 System.out.println("Label text is right aligned");
 break;

 }

 resize(150, 100);
 show();
 }

 public static void main(String args[]) {

 LabelTest t = new LabelTest();
 }
}

getText()

ClassName
Label

Purpose
To get the text string of this Label object.

Syntax
public String getText()

Parameters
None.

Description
This method gets the text string displayed on the label.

Imports
import java.awt.Label;

Returns
This method returns a String object that contains the text string displayed on the
Label.

See Also
The setText method

Example
The following example demonstrates the use of this method in an application.

import java.awt.*;

public class LabelTest extends Frame {
 LabelTest()
 super("Testing Label.getText()"); // application title
 Label l = new Label("Temperature:"); // construct a label
 System.out.println(l.getText()); // extract and print
 the label's text
 add("Center", l);
 resize(150, 100);
 show();
 }

 public static void main(String args[]) {
 LabelTest t = new LabelTest();
 }
}

paramString()

ClassName
Label

Purpose
To return the parameter string associated with this Label object.

Syntax

protected String paramString()
Parameters

None.
Description

This method returns the parameter values associated with the label (such as x, y
coordinates, label text, and so on) as a String object. This protected method
cannot be invoked from an application, but is invoked by the toString method of
the Component class.

Imports
import java.awt.Label;

Returns
The return value is a String that contains the values of the parameters for the
Label object. The values are prefixed by a short textual description of the property
they denote.

See Also
The toString and paramString methods of the Component class

Example
This example prints the parameter values of a label.

import java.awt.*;

public class LabelTest extends Frame {
 LabelTest() {
 super("Testing Label.paramString()"); // application title
 Label l = new Label("Play", Label.LEFT); // create a label
 System.out.println(l.toString()); // print parameter
 information
 add("Center", l);
 resize(150, 100);
 show();
 }

 public static void main(String args[]) {
 LabelTest t = new LabelTest();
 }
}

setAlignment(int)

ClassName
Label

Purpose
To set the alignment of the text string on the label.

Syntax
public void setAlignment(int alignment)

Parameters
alignment

The alignment mode to use for positoining the text on the label.

Description
This method sets the alignment mode to use for positioning the text on the label.
If an invalid value is passed as an alignment mode, then an
IllegalArgumentException is thrown.

Imports
import java.awt.Label;

Returns
None.

See Also
The getAlignment method of the IllegalArgumentException class

Example
In the following example this method is used to set the alignment mode of a label.

import java.awt.*;

public class LabelTest extends Frame {
 LabelTest() {
 super("Testing Label.setAlignment()"); // application title
 // create a label, the default alignment is Label.CENTER
 Label l = new Label("Record");
 l.setAlignment(Label.RIGHT); // force it to be
 left aligned
 add("Center", l);
 resize(150, 100);
 show();
 }

 public static void main(String args[]) {
 LabelTest t = new LabelTest();
 }
}

setText(String)

ClassName
Label

Purpose
To change the text string displayed on the label.

Syntax
public void setText(String label)

Parameters
label

The text for the label.
Description

This method sets the text string displayed on the label.
Imports

import java.awt.Label;
Returns

None.
See Also

The getText method

Example
This method is used in the following sample code.

import java.awt.*;

public class LabelTest extends Frame {
 LabelTest() {
 super("Testing Label.setText()"); // application title
 Label l = new Label(); // construct an empty label
 l.setText("Month name:"); // now, put some text in it
 add("Center", l);
 resize(150, 100);
 show();
 }

 public static void main(String args[]) {
 LabelTest t = new LabelTest();
 }
}

Panel

Purpose
A class that implements a generic container in which other components can be
laid out.

Syntax
public class Panel extends Container

Description
Panels are commonly used as windows in which to arrange other components
(such as Buttons, Labels, etc.). The FlowLayout layout manager is the default
layout manager used for all Panels. Panels do not have a title bar and, unlike
Frame windows, they cannot be used as top-level windows. The methods of the
Container and Component classes can be invoked on Panels. Refer to the
examples in Chapter 2 and Chapter 3 for more information. Figure 4-9 shows the
inheritance hierarchy for the Panel class.

PackageName
java.awt

Imports
import java.awt.Panel;

Constructors
public Panel()

Parameters
None.

Example
In this example, buttons are added to a Panel window within a Frame window.

import java.awt.*;

public class PanelTest {
 public static void main(String args[]) {
 Frame f = new Frame("Panel Test"); // application
 top-level window

 Panel p = new Panel(); // create a Panel
 p.setBackground(Color.yellow);
 p.add(new Label("Labels")); // add components to
 the panel
 p.add(new Label("in"));
 p.add(new Label("a"));
 p.add(new Label("Panel"));
 f.add("South", p); // add the Panel to the
Frame
 f.resize(200, 200);
 f.show();
 }
}

Figure 4-9 Inheritance hierarchy for the Panel class

addNotify()

ClassName
Panel

Purpose
To create a peer for this Panel object.

Syntax
public synchronized void addNotify()

Parameters
None.

Description
This method creates a peer for this Panel object that you can use to change the
appearance of the panel window without changing its functionality. The
addNotify method is the earliest stage in the creation of a component at which
platform specific resources (such as color, fonts, and fontmetrics) may be
determined. Classes that override this method must first call super.addNotify()
before doing any other processing in this method.

Imports
import java.awt.Panel;

Returns
None.

See Also
The PanelPeer interface

Example
Refer to the example listed in the addNotify method of the Canvas class in this
chapter and also to the section on PanelPeer interfaces in Chapter 9.

Scrollbar

Purpose
A class that represents a scrollbar.

Syntax
public class Scrollbar extends Component

Description
This class implements a scrollbar object. Applications use scrollbars to scroll the
data or image displayed on the screen. The scrollbar thumb position indicates the
position of the visible portion of the image or data within a larger image or data
buffer. Scrollbars are associated with a viewing area, and by dragging the thumb
of the scrollbar, a user can change the image or data displayed in the viewing
area. Figure 4-10 shows the inheritance hierarchy for the Scrollbar class.

PackageName
java.awt

Imports
import java.awt.Scrollbar;

Constructors
public Scrollbar()
public Scrollbar(int orientation)
public Scrollbar(int orientation, int value, int visible, int minimum, int maximum)

Parameters
orientation

The orientation of the scrollbar.
value

The current value of the scrollbar’s thumb position.
visible

The size of the visible region of the area that is being scrolled using the scrollbar.
minimum

The minimum value of the scrollbar.
maximum

The maximum value of the scrollbar.
Example

This sample code shows how to construct Scrollbar objects.
import java.awt.*;

public class TestScroll extends Frame {
 TestScroll(String title) {
 super(title); // application title
 resize(200, 300);
 Rectangle r = bounds(); // determine dimensions of
 this Frame window
 Scrollbar sb1 = new Scrollbar(); // default orientation
 is vertical
 add("East", sb1); // attach it to the right of
 the frame
// Scrollbar sb2 = new Scrollbar(Scrollbar.HORIZONTAL);

// add("South", sb2);
 Scrollbar sb3 = new Scrollbar(Scrollbar.HORIZONTAL, 0, 10,
 0, r.width);
 add("South, sb3); // attach this scrollbar to
 the bottom
 show();
 }
 public static void main(String args[]) {
 TestScroll ts = new TestScroll("Testing scrollbars");
 }
}

Figure 4-10 Inheritance hierarchy for the Scrollbar class

addNotify()

ClassName
ScrollBar

Purpose
Creates a peer object for this Scrollbar object.

Syntax
public synchronized void addNotify()

Parameters
None.

Description
Using this method one can change the appearance of the scrollbar without
changing its functionality. The addNotify method is the earliest stage in the
creation of a component at which platform specific resources such as color, fonts
and fontmetrics may be determined. Classes that override this method must first
call super.addNotify() before doing any other processing in this method.

Imports
import java.awt.Scrollbar;

Returns
None.

See Also
The ScrollbarPeer class

Example
Refer to the example listed in the addNotify method of the Canvas class in this
chapter and also to the section on ScrollbarPeer interfaces in Chapter 9.

getLineIncrement()

ClassName
Scrollbar

Purpose
To get the step size, set for decrements/increments when the line up/down arrow
buttons of the scrollbar are invoked.

Syntax
public int getLineIncrement()

Parameters
None.

Description
This method returns an integer that represents the step size that will increment
line.

Imports
import java.awt.Scrollbar;

Returns
This method returns an integer that represents the line increment step size.

Example
The following example demonstrates the use of this method in an application.

import java.awt.*;

public class TestScroll extends Frame {
 TestScroll(String title) {
 super(title); // application title
 resize(200, 300);
 Rectangle r = bounds(); // determine dimensions of this
 Frame window
 Scrollbar sb3 = new Scrollbar(Scrollbar.HORIZONTAL, 0, 10,
 0, r.width);
 add("South", sb3) // attach this scrollbar to the bottom
 System.out.println("sb3. getLineIncrement = " + sb3.
 getLineIncrement());
 show();
 }
 public static void main(String args[]) {
 TestScroll ts = new TestScroll("Testing
 Scrollbar.getLineIncrement()");
 }
}

getMaximum()

ClassName
Scrollbar

Purpose
To determine the value of the maximum position of the scrollbar thumb

Syntax
public int getMaximum()

Parameters
None.

Description

This method gets the value for the maximum position of the thumb for this
Scrollbar object.

Imports
import java.awt.Scrollbar;

Returns
This method returns an integer value that represents the maximum position of the
Scrollbar object.

Example
The following example demonstrates the use of this method in an application.

import java.awt.*;

public class TestScroll extends Frame {
 TestScroll(String title) {
 super(title); // application title
 resize(200, 300);
 Rectangle r = bounds(); // determine dimensions of
 this Frame window
 Scrollbar sb3 = new Scrollbar(Scrollbar.HORIZONTAL, 0, 10,
 0, r.width);
 add("South", sb3); // attach this scrollbar to
 the bottom
 System.out.println("sb3. getMaximum = " +
 sb3.getMaximum());
 show();
 }
 public static void main(String args[]) {
 TestScroll ts = new TestScroll("Testing
 Scrollbar.getMaximum()");
 }
}

getMinimum()

ClassName
Scrollbar

Purpose
To determine the minimum position of the scrollbar thumb.

Syntax
public int getMinimum()

Parameters
None.

Description
This method gets the value for the minimum position of the thumb for this
Scrollbar object.

Imports
import java.awt.Scrollbar;

Returns

This method returns an integer that represents the minimum position of the
Scrollbar object.

Example
The following example demonstrates the use of this method in an application.

import java.awt.*;

public class TestScroll extends Frame {
 TestScroll(String title) {
 super(title); // application title
 resize(200, 300);
 Rectangle r = bounds(); // determine dimensions of this
 Frame window
 Scrollbar sb3 = new Scrollbar(Scrollbar.HORIZONTAL, 0, 10,
 0, r.width);
 add("South", sb3); // attach this scrollbar to the
bottom
 System.out.println("sb3.getMinimum = " +
 sb3.getMinimum());
 show();
 }
 public static void main(String args[]) {
 TestScroll ts = new TestScroll("Testing
 Scrollbar.getMinimum()");
 }
}

getPageIncrement()

ClassName
Scrollbar

Purpose
Gets the step size, set for decrements/increments when the page up/down actions
of the scrollbar are invoked.

Syntax
public int getPageIncrement()

Parameters
None.

Description
This method returns an integer that represents the page increment step size.

Imports
import java.awt.Scrollbar;

Returns
This method returns an integer that represents the page increment step size.

Example
The following example demonstrates the use of this method in an application.

import java.awt.*;

public class TestScroll extends Frame {
 TestScroll(String title) {
 super(title); // application title
 resize(200, 300);

 Rectangle r = bounds(); // determine dimensions of this
 Frame window
 Scrollbar sb3 = new Scrollbar(Scrollbar.HORIZONTAL, 0, 10,
 0, r.width);
 add("South", sb3); // attach this scrollbar to the bottom
 System.out.println("sb3.getPageIncrement = " +
 sb3.getPageIncrement());
 show();
 }
 public static void main(String args[]) {
 TestScroll ts = new TestScroll("Testing
 Scrollbar.getPageIncrement()");
 }
}

getOrientation()

ClassName
Scrollbar

Purpose
To determine the orientation of the scrollbar.

Syntax
public int getOrientation()

Parameters
None.

Description
This method gets the value for the orientation of this Scrollbar object.

Imports
import java.awt.Scrollbar;

Returns
This method returns an integer that represents the orientation of this ScrollBar
object. The value returned is either Scrollbar.HORIZONTAL or
Scrollbar.VERTICAL.

Example
The following example demonstrates the use of this method in an application.

import java.awt.*;

public class TestScroll extends Frame {
 TestScroll(String title) {
 super(title); // application title
 resize(200, 300);
 Scrollbar sb1 = new Scrollbar(); // default orientation
 is vertical
 add("East", sb1); // attach it to the
 right of the frame
 if (sb1.getOrientation() == Scrollbar.VERTICAL)
 System.out.println("Vertical scrollbar");
 else
 System.out.println("Horizontal scrollbar");
 show();
 }
 public static void main(String args[]) {

 TestScroll ts = new TestScroll("Testing scrollbars");
 }
}

getValue()

ClassName
Scrollbar

Purpose
Determines the value of the current position of the scrollbar thumb

Syntax
public int getValue()

Parameters
None.

Description
This method gets the value for the current position of the thumb for this Scrollbar
object.

Imports
import java.awt.Scrollbar;

Returns
This method returns an integer that represents the current position of the Scrollbar
object.

Example
The following example demonstrates the use of this method in an application.

import java.awt.*;

public class TestScroll extends Frame {
 TestScroll(String title) {
 super(title); // application title
 resize(200, 300);
 Rectangle r = bounds(); // determine dimensions of
 this Frame window
 Scrollbar sb3 = new Scrollbar(Scrollbar.HORIZONTAL, 0, 10,
 0, r.width);
 add("South", sb3); // attach this scrollbar to
 the bottom
 System.out.println("sb3.getValue = " + sb3.getValue());
 show();
 }
 public static void main(String args[]) {
 TestScroll ts = new TestScroll("Testing getValue");
 }
}

getVisible()

ClassName
Scrollbar

Purpose
To determine the size of the visible portion of the scrollbar.

Syntax
public int getVisible()

Parameters
None.

Description
This method gets the value for the visible portion of this Scrollbar object.

Imports
import java.awt.Scrollbar;

Returns
This method returns an integer that represents the visible portion of this Scrollbar
object.

Example
The following example demonstrates the use of this method in an application.

import java.awt.*;

public class TestScroll extends Frame {
 TestScroll(String title) {
 super(title); // application title
 resize(200, 300);
 Rectangle r = bounds(); // determine dimensions of this
 Frame window
 Scrollbar sb3 = new Scrollbar(Scrollbar.HORIZONTAL, 0, 10,
 0, r.width);
 add("South", sb3); // attach this scrollbar to the
bottom
 System.out.println("sb3.getVisible = " +
 sb3.getVisible());
 show();
 }
 public static void main(String args[]) {
 TestScroll ts = new TestScroll("Testing
 Scrollbar.getVisible()");
 }
}

paramString()

ClassName
Scrollbar

Purpose
To return the parameter string associated with this Scrollbar object

Syntax
protected String paramString()

Parameters
None.

Description
This method returns the parameter values associated with a Scrollbar object. The
values are prefixed by short descriptive tags. This protected method cannot be

invoked from an application, but is invoked by the toString method of the
Component class.

Imports
import java.awt.Scrollbar;

Returns
The return value is a String that contains the values of the parameters for the
Scrollbar object. The values are prefixed by a short textual description of the
property they denote.

See Also
The toString and paramString methods of the Component class

Example
The following example demonstrates the use of this method in an application.

import java.awt.*;

public class TestScroll extends Frame {
 TestScroll(String title) {
 super(title); // application title
 resize(200, 300);
 Rectangle r = bounds(); // determine dimensions of
 this Frame window
 Scrollbar sb3 = new Scrollbar(Scrollbar.HORIZONTAL, 0, 10,
 0, r.width);
 add("South", sb3); // attach this scrollbar to
 the bottom
 System.out.println("sb3.toString = " + sb3.toString());
 show();
 }
 public static void main(String args[]) {
 TestScroll ts = new TestScroll("Testing
 Scrollbar.toString()");
 }
}

setLineIncrement(int)

ClassName
Scrollbar

Purpose
Sets the step size for decrements/increments when the line up/down arrow buttons
of the scrollbar are invoked.

Syntax
public void setLineIncrement(int l)

Parameters
l

The line increment size.
Description

This method specifies the amount that the area is to be scrolled when the user
invokes the line up/down arrow buttons of the scrollbar. The position of the
scrollbar thumb within the scrollbar is also updated proportional to the value
specified in this method.

Imports
import java.awt.Scrollbar;

Returns
None.

Example
The following example demonstrates the use of this method in an application.

import java.awt.*;

public class TestScroll extends Frame {
 TestScroll(String title) {
 super(title); // application title
 resize(200, 300);
 Rectangle r = bounds(); // determine dimensions of this
 Frame window
 Scrollbar sb3 = new Scrollbar(Scrollbar.HORIZONTAL, 0, 10,
 0, r.width);
 add("South", sb3); // attach this scrollbar to the bottom
 sb3.setLineIncrement(5);
 show();
 }
 public static void main(String args[]) {
 TestScroll ts = new TestScroll("Testing
 Scrollbar.setLineIncrement()");
 }
}

setPageIncrement(int)

ClassName
Scrollbar

Purpose
Sets the step size for decrements/increments when the page up/down actions of
the scrollbar are invoked.

Syntax
public void setPageIncrement(int l)

Parameters
l

The page increment size.
Description

This method specifies the amount that the area is to be scrolled when the user
invokes the page up/down actions. The position of the scrollbar thumb within the
scrollbar is also updated proportional to the value specified in this method

Imports
import java.awt.Scrollbar;

Returns
None.

Example
The following example demonstrates the use of this method in an application.

import java.awt.*;

public class TestScroll extends Frame {
 TestScroll(String title) {
 super(title); // application title
 resize(200, 300);
 Rectangle r = bounds(); // determine dimensions of this
 Frame window
 Scrollbar sb3 = new Scrollbar(Scrollbar.HORIZONTAL, 0, 10,
 0, r.width);
 add("South", sb3); // attach this scrollbar to the
bottom
 sb3.setPageIncrement(25); // override the existing value
 show();
 }
 public static void main(String args[]) {
 TestScroll ts = new TestScroll("Testing
 Scrollbar.setPageIncrement()");
 }
}

setValue(int)

ClassName
Scrollbar

Purpose
Sets the value of the current position of this Scrollbar to the specified value.

Syntax
public void setValue(int value)

Parameters
value

The new value for the current position of the Scrollbar. If this value is less than
the minimum value of the scrollbar, then it becomes the new minimum value of
the scrollbar. Similarly, if this value is more than the maximum value of the
scrollbar, then it becomes the new maximum value of the scrollbar.

Description
This method sets the value for the current position of the thumb for this Scrollbar
object.

Imports
import java.awt.Scrollbar;

Returns
None.

Example
The following example demonstrates the use of this method in an application.

public class TestScroll extends Frame {
 TestScroll(String title) {
 super(title) // application title
 resize(200, 300);
 Rectangel r = bounds(); // determine dimensions of this
 Frame window
 Scrollbar sb3 = new Scrollbar(Scrollbar.HORIZONTAL, 0, 10,

 0, r.width);
 add("South", sb3); // attach this scrollbar to the
bottom
 sb3.setValue(100); // set the thumb in the middle
 of the scrollbar
 show();
 }
 public static void main(String args[]) {
 TestScroll ts = new TestScroll("Testing
 Scrollbar.setValue()");
 }
}

setValues(int, int, int, int)

ClassName
Scrollbar

Purpose
Sets various parameters associated with this ScrollBar object.

Syntax
public void setValues(int value, int visible, int minimum, int maximum)

Parameters
value

The position of the scrollbar thumb in the current window.
visible

The size of the visible region of the area being scrolled using the scrollbar.
minimum

The minimum value of the scrollbar.
maximum

The maximum value of the scrollbar.
Description

This method provides a convenient way to set the various parameters of this
Scrollbar object.

Imports
import java.awt.Scrollbar;

Returns
None.

Example
The following example demonstrates the use of this method in an application.

public class TestScroll extends Frame {
 TestScroll(String title) {
 super(title); // application title
 resize(200, 300);
 Rectangel r = bounds(); // determine dimensions of this
 Frame window
 Scrollbar sb3 = new Scrollbar(Scrollbar.HORIZONTAL);
 add("South", sb3); // attach this scrollbar to the
 bottom
 sb3.setValues(0, 25, 0, r.width); // value, visible, min, max
 show();
 }

 public static void main(String args[]) {
 TestScroll ts = new TestScroll("Testing
 Scrollbar.setValue()");
 }
}

LayoutManager

Purpose
An interface for classes that need to lay out Components in Containers.

Syntax
public interface LayoutManager extends Object

Description
This interface is used to implement the mechanisms required of classes that know
how to lay out Containers. All the layout managers supplied with the Java AWT
implement this interface.

PackageName
java.awt

Imports
import java.awt.LayoutManager;

Constructors
None.

Parameters
None.

Example
See the examples for FlowLayout and GridLayout.

addLayoutComponent(String, Component)

Interface
LayoutManager

Purpose
To add the specified component to the layout, associating the component with the
specified name.

Syntax
public abstract void addLayoutComponent(String name, Component comp)

Parameters
name

Name of the area where the component should be added.
comp

Component object to be added.
Description

This method should be defined in any class that implements the LayoutManager
interface.

Imports
import java.awt.LayoutManager;

Returns

None.
See Also

The Container class
Example

The following example demonstrates the implementation of this method.
import java.awt.*

public class MyLayout implements LayoutManager {
 /* Implement constructors for this class */

 public void addLayoutComponent(String name, Component comp) {
 /* Code to add the component to a specific named area
 of the layout goes here */
 }

 /* Implement all the other methods of the LayoutManager
 interface */
}

layoutContainer(Container)

Interface
LayoutManager

Purpose
To lay out the specified container.

Syntax
public abstract void layoutContainer(Container parent)

Parameters
parent

The Container object to be laid out.
Description

This method causes the specified container to be laid out. It should be defined in
any class that implements the LayoutManager interface.

Imports
import java.awt.LayoutManager;

Returns
None.

See Also
The Container class

Example
The following sample code for a custom layout manager shows the
implementation of this function.

import java.awt.*

public class MyLayout implements LayoutManager {
 /* Implement constructors for this class */

 public void layoutContainer(Container parent){
 /* Calculate every component's size and position and lay
 out the components in the manner desired */

 }

 /* Implement all the other methods of the LayoutManager
 interface */
}

minimumLayoutSize(Container)

Interface
LayoutManager

Purpose
To calculate the minimum size required to lay out the container, taking into
account the components in the specified container.

Syntax
public abstract Dimension minimumLayoutSize(Container parent)

Parameters
parent

The Container that holds the components that need to be laid out.
Description

This method should be defined in any class that implements the LayoutManager
interface.

Imports
import java.awt.LayoutManager;

Returns
The return type of this method is Dimension. This return value contains the
minimum height and width required to layout the container in the specified panel.

See Also
The Container class

Example
Here is an extract from a class that implements the LayoutManager interface.

import java.awt.*

public class MyLayout implements LayoutManager {
 /* Implement constructors for this class */

 public Dimension minimumLayoutSize(Container parent) {
 Dimension dim = new Dimension(0, 0);

 /* Code to calculate the minimum width and height */

 return dim;
 }
 /* Implement all the other methods of the LayoutManager
 interface */
}

preferredLayoutSize(Container)

Interface
LayoutManager

Purpose
To calculate the preferred dimensions required to lay out the container, taking into
account the components in the specified container.

Syntax
public abstract Dimension preferredLayoutSize(Container parent)

Parameters
parent

The Container that holds the components that need to be laid out.
Description

This method should be defined in any class that implements the LayoutManager
interface.

Imports
import java.awt.LayoutManager;

Returns
The return type of this method is Dimension. This return value contains the
preferred height and width required to lay out the container in the specified panel.

See Also
The Container Class

Example
The following example demonstrates the implementation of this method.

import java.awt.*

public class MyLayout implements LayoutManager {
 /* Implement constructors for this class */

 public Dimension preferredLayoutSize(Container parent) {
 Dimension dim = new Dimension(0, 0);

 /* Code to calculate the ideal width and height */
 return dim;
 }
 /* Implement all the other methods of the LayoutManager
 interface */
}

removeLayoutComponent(Component)

Interface
LayoutManager

Purpose
To remove the specified component from the layout.

Syntax
public abstract void removeLayoutComponent(Component comp)

Parameters
comp

The Component to be removed from the layout.
Description

This method should be defined in any class that implements the LayoutManager
interface.

Imports
import java.awt.LayoutManager;

Returns
None.

See Also
The Container class

Example
The following sample code demonstrates the implementation of this method in a
class that implements a custom layout manager.

import java.awt.*

public class MyLayout implements LayoutManager {
 /* Implement constructors for this class */

 public void removeLayoutComponent(Component comp) {
 /* Code to remove the specified component goes here */
 }

 /* Implement all the other methods of the LayoutManager
 interface */
}

FlowLayout

Purpose
A simple layout manager that lays out components in rows (from left to right).

Syntax
public class FlowLayout extends Object implements LayoutManager

Description
This class implements the LayoutManager interface and is used to lay out
components in rows. The components are laid out from left to right and centered
within their row. This is the default layout manager for all Panels. Figure 4-11
shows the inheritance hierarchy for the FlowLayout class.

PackageName
java.awt

Imports
import java.awt.flowlayout;

Constructorts
public FlowLayout()
public FlowLayout(int align)
public FlowLayout(int align, int hgap, int vgap)

Parameters
align

The alignment to use for laying out components (can be LEFT,CENTER, or
RIGHT).

hgap

The horizontal gap to leave between components.
vgap

The vertical gap to leave between components.
Example

This sample code shows how to construct FlowLayout objects using the different
FlowLayout constructors.

/* Default FlowLayout constructor */
FlowLayout f1 = new FlowLayout();

/* FlowLayout object that aligns components to the left */
FlowLayout f2 = new FlowLayout(FlowLayout.LEFT);

/* FlowLayout object that aligns components to the left, with a
 horizontal gap of 30 units between components and a vertical gap
 of 0 units */
FlowLayout f3 = new FlowLayout(FlowLayout.LEFT, 30, 0);

Figure 4-11 Inheritance hierarchy for the FlowLayout class

addLayoutComponent(String, Component)

ClassName
FlowLayout

Purpose
To add the specified component to the area in the layout associated with the
specified name.

Syntax
public void addLayoutComponent(String name, Component comp)

Parameters
name

Name of the component to be added.
comp

Component object to be added.
Description

The FlowLayout class does not divide the layout area into subareas, and hence
does not need to implement any functionality for this method. In order to conform
to the LayoutManager interface, this method is an empty stub in the FlowLayout
implementation.

Imports
import java.awt.FlowLayout;

Returns
None.

See Also
The Container class; the LayoutManager interface

Example
This code invokes the Container’s add method, which in turn invokes this method.

/* Create a Container for the components */
Panel p = new Panel();
/* set the layout manager for this panel */
p.setLayout(new FlowLayout());

/* add the components to be laid out */
/* This results in the component being added to the layout manager */
p.add("North", new Button("This")); // the named areas carry
 significance only for the
p.add("West", new Button("demonstration")); // BorderLayout layout
 manager, other layout
p.add("Center", new Button("is")); // managers ignore
 this parameter
p.add("East", new Button("really"));
p.add("South", new Button("cool !"));

layoutContainer(Container)

ClassName
FlowLayout

Purpose
To lay out the specified container in rows, aligning the components within each
row.

Syntax
public void layoutContainer(Container parent)

Parameters
parent

Container object to be laid out.
Description

The components are laid out from left to right and aligned within a row. The
default alignment is CENTER, but a different alignment (either LEFT or RIGHT)
can be specified while constructing the FlowLayout object. The horizontal gap
between components in a row and the vertical gap between rows can also be
specified in the FlowLayout constructor. Applications do not directly invoke this
method. The layout method of the Container class results in a call to this method.
The layout method of the Container class is invoked when the Container needs to
be displayed on the screen.

Imports
import java.awt.FlowLayout;

Returns
None.

See Also
The LayoutManager interface; the Container class

Example
In the following example, a Frame window is created and displayed.

import java.awt.*;
import java.applet.Applet;

public class LayoutDemo extends Applet {
 /* Main method to start running the applet */
 public static void main(String args[]) {
 Frame f = new Frame("Layout Demonstration");
 f.setLayout(new FlowLayout());
 Button b = new Button("Testbutton");
 f.add("Center", b);
 f.resize(500, 200);
 /* this causes the layout manager associated with
 this Container to lay out the Container and its
 Components on the screen */
 f.show();
 }
}

minimumLayoutSize(Container)

ClassName
FlowLayout

Purpose
To calculate the minimum size required to lay out the container, taking into
account the components in the specified container.

Syntax
public Dimension minimumLayoutSize(Container parent)

Parameters
parent

Container containing components that need to be laid out.
Description

This method calculates and returns the minimum dimensions required by the
FlowLayout manager to lay out the components.

Imports
import java.awt.FlowLayout;

Returns
The return type of this method is Dimension. This return value contains the
minimum height and width required to lay out the container in the specified panel.

See Also
The Container class; the LayoutManager interface

Example
The following sample code is an example of this method in an application.

/* Create a Container for the components */
Panel p = new Panel();
/* set the layout manager for this panel */
p.setLayout(new FlowLayout());

/* add the components to the Container */
/* This results in the component being added to the layout manager */
p.add("North", new Button("This"));
p.add("Center", new Button("is"));

p.add("South", new Button("cool !"));

/* Get the minimum dimensions of the Container */
/* This results in a call to the minimumLayoutSize() method of the
 layout manager */
Dimension d = p.minimumSize();

preferredLayoutSize(Container)

ClassName
FlowLayout

Purpose
To calculate the preferred dimensions for this layout, taking into account the
components in the specified container.

Syntax
public Dimension preferredLayoutSize(Container target)

Parameters
target

Container that needs to be laid out.
Description

This method computes the ideal width and height required by this layout. The
values returned have no effect unless the program specifically enforces these
dimensions.

Imports
import java.awt.FlowLayout;

Returns
The return type of this method is Dimension. This return value contains the ideal
height and width required to lay out the container in the specified panel.

See Also
The Container class; the LayoutManager interface

Example
The following sample code demonstrates the use of this method.

/* Create a Container for the components */
Panel p = new Panel();
/* set the layout manager for this panel */
p.setLayout(new FlowLayout());

/* add the components to the Container */
p.add("North", new Button("This"));
p.add("Center", new Button("is"));
p.add("South", new Button("cool !"));

/* Get the ideal dimensions of the Container */
/* This results in a call to the preferredLayoutSize()
 method of the layout manager */
Dimension d = p.preferredSize();

removeLayoutComponent(Component)

ClassName
FlowLayout

Purpose
To remove the specified component from the layout.

Syntax
public void removeLayoutComponent(Component comp)

Parameters
comp

Component to be removed from the layout.
Description

This method is a dummy stub in the FlowLayout class, as this layout manager
doesn’t need to maintain associations between components and areas on the
display. Applications do not directly invoke this method. The remove method of
the Container class results in a call to this method.

Imports
import java.awt.FlowLayout;

Returns
None.

See Also
The Container class; the LayoutManager interface

Example
The sample code adds buttons to a Panel and then removes one of the buttons.

/* Create a Container for the components */
Panel p = new Panel();
/* set the layout manager for this panel */
p.setLayout(new FlowLayout());

/* add the components to be laid out */
/* This results in the component being added to the layout manager */
Button b1 = new Button("Good");
Button b2 = new Button("Bad");
Button b3 = new Button("Day");
/* add the buttons to the container */
p.add(b1);
p.add(b2);
p.add(b3);
/* remove a specific button from the container */
/* The Container’s remove() method invokes the layout
 manager’s removeComponent() method */
p.remove(b2);

toString()

ClassName
FlowLayout

Purpose
To represent the FlowLayout object’s values as a String.

Syntax
public String toString()

Parameters

None.
Description

The values of the horizontal gap variable, the vertical gap variable, and the
alignment mode variable for this layout are returned as a String object.

Imports
import java.awt.FlowLayout;

Returns
The return value is a String that contains the values of the properties for the
FlowLayout object. The values are prefixed by a short textual description of the
property they denote.

See Also
The toString method of the Object class

Example
This method is implemented in the following function.

void printLayoutInfo(LayoutManager layout) {
 /* print the parameter values of the specified layout
 manager */
 System.out.println("layout.toString(): " +
 layout.toString());
}

GridLayout

Purpose
A layout manager that creates a grid with the specified number of rows and
columns and lays out components on the grid.

Syntax
public class GridLayout extends Object implements LayoutManager

Description
This class implements the LayoutManager interface and is used to lay out
components in grids. It makes all the components of equal size and lays them out
on the grid. Figure 4-12 shows the inheritance hierarchy for the GridLayout class.

PackageName
java.awt

Imports
import java.awt.GridLayout;

Constructors
public GridLayout(int rows, int cols)
public GridLayout(int rows, int cols, int hgap, int vgap)

Parameters
rows

The number of rows in the grid.
cols

The number of columns in the grid.
hgap

The horizontal gap to leave between components.
vgap

The vertical gap to leave between components.
Example

Here is sample source code that illustrates GridLayout construction.
/* GridLayout constructor to lay out components in a single row
 with any number of columns */
GridLayout g1 = new GridLayout(1, 0);

/* GridLayout constructor specifying a grid of 3 rows and 2 columns */
GridLayout g2 = new GridLayout(3, 2);

/* GridLayout object that lays out components in a grid consisting
 of 3 rows and 2 columns. The horizontal gap between columns is
 20 units and the vertical gap between rows is 10 units */
 GridLayout g3 = new GridLayout(3, 2, 20, 10);

Figure 4-12 Inheritance hierarchy for the GridLayout class

addLayoutComponent(String, Component)

ClassName
GridLayout

Purpose
To add the specified component to the layout, associating the component with the
specified name.

Syntax
public void addLayoutComponent(String name, Component comp)

Parameters
name

Name of the component to be added.
comp

Component object to be added.
Description

The GridLayout class does not divide the layout area into subareas, and hence
does not need to implement any functionality for this method. In order to conform
to the LayoutManager interface, this method is an empty stub in the GridLayout
implementation.

Imports
import java.awt.GridLayout;

Returns
None.

See Also
The Container class; the LayoutManager interface

Example

Refer to the example given under the corresponding function in the FlowLayout
class.

layoutContainer(Container)

ClassName
GridLayout

Purpose
To lay out the specified container in rows, aligning the components within each
row.

Syntax
public void layoutContainer(Container parent)

Parameters
parent

Container object to be laid out.
Description

This method lays out the components in the container, in a grid. Applications do
not directly invoke this method. The layout method of the Container class results
in a call to this method.

Imports
import java.awt.GridLayout;

Returns
None.

See Also
The LayoutManager interface; the Container class

Example
Refer to the example given under the corresponding function in the FlowLayout
class.

minimumLayoutSize(Container)

ClassName
GridLayout

Purpose
To calculate the minimum size required to lay out the container, taking into
account the components in the specified container.

Syntax
public Dimension minimumLayoutSize(Container parent)

Parameters
parent

Container that needs to be laid out.
Description

This method calculates and returns the minimum dimensions required by the
GridLayout manager to lay out the components contained within the specified

container. The minimum dimensions are calculated according to the following
formulae:
Minimum width = (Left + Right insets of parent) + (number of columns * width
of widest component in parent) + ((number of columns -1)*inter-column gap)
Minimum height = (Top + Bottom insets of parent) + (number of rows * height of
tallest component in parent) + ((number of rows -1)*inter-row gap)

Imports
import java.awt.GridLayout;

Returns
The return type of this method is Dimension. This return value contains the
minimum height and width required to lay out the container in the specified panel.

See Also
The Container class; the LayoutManager interface

Example
Refer to the example given under the corresponding function in the FlowLayout
class.

preferredLayoutSize(Container)

ClassName
GridLayout

Purpose
To calculate the preferred dimensions for this layout, taking into account the
components in the specified container.

Syntax
public Dimension preferredLayoutSize(Container target)

Parameters
target

Container that needs to be laid out.
Description

This method computes the ideal width and height required by this layout. The
values returned have no effect unless the program specifically enforces these
dimensions.

Imports
import java.awt.GridLayout;

Returns
This method returns a Dimension object. This return value contains the ideal
height and width required to lay out the container in the specified panel.

See Also
The container class; the LayoutManager interface

Example
Refer to the example given under the corresponding function in the FlowLayout
class.

removeLayoutComponent(Component)

ClassName
GridLayout

Purpose
To remove the specified component from the layout.

Syntax
public void removeLayoutComponent(Component comp)

Parameters
comp

Component to be removed from the layout.
Description

This method is a dummy stub in the GridLayout class, as this layout manager
doesn’t need to maintain associations between components and areas on the
display.

Imports
import java.awt.GridLayout;

Returns
None.

See Also
The Container class; the LayoutManager interface

Example
Refer to the example given under the corresponding function in the FlowLayout
class.

toString()

ClassName
GridLayout

Purpose
To represent the values of the GridLayout object as a String.

Syntax
public String toString()

Parameters
None.

Description
This method returns a String representation of this object’s values, namely, the
horizontal gap, the vertical gap, the number of rows, and the number of columns.
Each value is prefixed with a short descriptive tag.

Imports
import java.awt.GridLayout;

Returns
This method returns a String containing the values of the GridLayout object, with
each value prefixed by a descriptive tag.

See Also
The toString method of the Object class

Example

Refer to the example given under the corresponding function in the FlowLayout
class.

BorderLayout

Purpose
A layout manager that divides a rectangular area into five named areas and lays
out components in each of these named areas.

Syntax
public class BorderLayout extends Object implements LayoutManager

Description
This layout manager divides the area of the Container into five named areas:
North, South, East, West, and Center. A container that uses this layout manager
must add a component to a named area. The preferred dimensions of the
components, added to the North, South, East, and West areas, are honored and the
component added to the Center area occupies all the remaining space. This is the
default layout manager for all Window objects (such as Frame windows and
Dialog windows). Figure 4-13 shows the inheritance hierarchy for the
BorderLayout class.

PackageName
java.awt

Imports
import java.awt.BorderLayout;

Constructors
public BorderLayout()
public BorderLayout(int hgap, int

Parameters
hgap

The horizontal gap to leave between the named areas.
vgap

The vertical gap to leave between the named areas.
Example

Here is sample source code that illustrates BorderLayout construction.
/* default BorderLayout constructor */
BorderLayout b1 = new BorderLayout();

// horizontal gap between named areas is 20 units and the vertical
 gap is 10 units */
BorderLayout b2 = new BorderLayout(20, 10);

Figure 4-13 Inheritance hierarchy for the BorderLayout class

addLayoutComponent(String, Component)

ClassName
BorderLayout

Purpose
To add the component to the named area of the container.

Syntax
public void addLayoutComponent(String name, Component comp)

Parameters
name

Name of the area within the container to add the component to.
comp

Component object to be added.
Description

The BorderLayout layout manager divides the Container into five areas and
hence, the parameter name can be one of North, South, East, West, or Center. The
specified component is associated with the area and is added to that portion of the
Container.

Imports
import java.awt.BorderLayout;

Returns
None.

See Also
The Container class; the LayoutManager interface

Example
Refer to the example given under the corresponding function in the FlowLayout
class.

layoutContainer(Container)

ClassName
BorderLayout

Purpose
To lay out the specified container by laying out the components in the areas where
they have been added.

Syntax
public void layoutContainer(Container parent)

Parameters
parent

Container object to be laid out.
Description

This method lays out the components in the container, in the named areas where
they were added. Applications do not directly invoke this method. The layout
method of the Container class results in a call to this method.

Imports
import java.awt.BorderLayout;

Returns
None.

See Also
The LayoutManager interface; the class Container

Example
Refer to the example given under the corresponding function in the FlowLayout
class.

minimumLayoutSize(Container)

ClassName
BorderLayout

Purpose
To calculate the minimum size required to lay out the container, taking into
account the components in the specified container.

Syntax
public Dimension minimumLayoutSize(Container parent)

Parameters
parent

Container that needs to be laid out.
Description

This method calculates and returns the minimum dimensions required by the
BorderLayout manager to lay out the components contained within the specified
container.

Imports
import java.awt.BorderLayout;

Returns
This method returns a Dimension object. This return value contains the minimum
height and width required to lay out the container in the specified panel.

See Also
The Container class; the LayoutManager interface

Example
Refer to the example given under the corresponding function in the FlowLayout
class.

preferredLayoutSize(Container)

ClassName
BorderLayout

Purpose
To calculate the preferred dimensions for this layout, taking into account the
components in the specified container.

Syntax
public Dimension preferredLayoutSize(Container target)

Parameters
target

The Container that needs to be laid out.
Description

This method computes the ideal width and height required by this layout. The
values returned have no effect unless the program specifically enforces these
dimensions.

Imports
import java.awt.BorderLayout;

Returns
This method reutrns a Dimension object. This return value contains the ideal
height and width required to lay out the container in the specified panel.

See Also
The Container class; the LayoutManager interface

Example
Refer to the example given under the corresponding function in the FlowLayout
class.

removeLayoutComponent(Component)

ClassName
BorderLayout

Purpose
To remove the specified component from the layout.

Syntax
public void removeLayoutComponent(Component comp)

Parameters
comp

Component to be removed from the layout.
Description

This method disassociates the component being removed from the named area to
which it was added.

Imports
import java.awt.BorderLayout;

Returns
None.

See Also
The Container class; the LayoutManager interface

Example
Refer to the example given under the corresponding function in the FlowLayout
class.

toString()

ClassName
BorderLayout

Purpose
To represent the values of the BorderLayout object as a String.

Syntax
public String toString()

Parameters
None.

Description
This method returns a String representation of this BorderLayout object’s values,
namely the horizontal gap and the vertical gap between the named areas, that the
BorderLayout organizes its components in. Each value is prefixed with a short
descriptive tag.

Imports
import java.awt.BorderLayout;

Returns
This method returns a String containing the values of the BorderLayout object,
each value prefixed by a descriptive tag.

See Also
The toString method of the Object class

Example
Refer to the example given under the corresponding function in the FlowLayout
class.

CardLayout

Purpose
A powerful layout manager that a container can use to lay out its components as a
stack of cards, only one card being visible at any point of time.

Syntax
public class CardLayout extends Object implements LayoutManager

Description
This layout manager allows the Container to use the same real estate on the screen
to present different views of different components. These views are arranged in a
fashion similar to that of a deck of cards and the individual views can be flipped
back and forth on the view stack. Figure 4-14 shows the inheritance hierarchy for
the CardLayout class.

PackageName
java.awt

Imports
import java.awt.CardLayout;

Constructors
public CardLayout()
public CardLayout(int hgap, int vgap)

Parameters
hgap

The horizontal gap to leave between components on each card.
vgap

The vertical gap to leave between components on each card.
Example

Here is sample source code that illustrates CardLayout construction. The chapter
project demonstrates the use of this layout manager in a more complete manner.

CardLayout c1 = new CardLayout(); // default constructor

// horizontal gap between named areas is 20 units and the vertical
 gap is 10 units */
CardLayout b2 = new CardLayout(20, 10);

Figure 4-14 Inheritance hierarchy for the CardLayout class

addLayoutComponent(String, Component)

ClassName
CardLayout

Purpose
To add the specified component to the layout, associating the component with the
specified name.

Syntax
public void addLayoutComponent(String name, Component comp)

Parameters
name

Name of the component to be added.
comp

Component object to be added.
Description

The CardLayout class maintains the stack of cards to display. This stack is
updated as components are added to the card stack. The parameter name can be
any user-specified string. This parameter name is used by the show method to
bring the named card into view.

Imports
import java.awt.CardLayout;

Returns
None.

See Also
The Container class; the LayoutManager interface; the show method of the
CardLayout class

Example
The chapter project uses a CardLayout to display different views. Refer to it for
more details.

first(Container)

ClassName
CardLayout

Purpose
To make the first card in the card stack visible.

Syntax
public void first(Container parent)

Parameters
parent

The parent Container object that this CardLayout object is the layout manager for.
Description

The first card in the card stack is brought into view and all the Components on
this card are displayed.

Imports
import java.awt.CardLayout;

Returns
None.

Example
This method is used in the project at the end of this chapter.

last(Container)

ClassName
CardLayout

Purpose
To make the last card in the card stack visible.

Syntax
public void last(Container parent)

Parameters
parent

The parent Container object that this CardLayout object is the layout manager for.
Description

The card at the bottom of the card stack is brought into view.
Imports

import java.awt.CardLayout;
Returns

None.
Example

The project at the end of this chapter uses this method.

layoutContainer(Container)

ClassName
CardLayout

Purpose
To lay out the specified container in rows, aligning the components within each
row.

Syntax
public void layoutContainer(Container parent)

Parameters
parent

Container object to be laid out.
Description

This method lays out the components in the container, in the named areas where
they were added. Applications do not directly invoke this method. The layout
method of the Container class results in a call to this method.

Imports
import java.awt.CardLayout;

Returns
None.

See Also
The LayoutManager interface; the Container class

Example
Refer to the example given under the corresponding function in the FlowLayout
class and to the chapter project.

minimumLayoutSize(Container)

ClassName
CardLayout

Purpose
To calculate the minimum size required to lay out the container, taking into
account the components in the specified container.

Syntax
public Dimension minimumLayoutSize(Container parent)

Parameters
parent

Container that needs to be laid out;
Description

This method calculates and returns the minimum dimensions required by the
CardLayout manager to lay out the components contained within the specified
container.

Imports
import java.awt.CardLayout;

Returns
The return type of this method is Dimension. This return value contains the
minimum height and width required to lay out the container in the specified panel.

See Also
The Container class; the LayoutManager interface

Example
Refer to the example given under the corresponding function in the FlowLayout
class and to the chapter project.

next(Container)

ClassName
CardLayout

Purpose
To make the next card in the card stack visible. If the current card is the bottom-
most card in the stack then the first card is made visible.

Syntax
public void next(Container parent)

Parameters
parent

The parent Container object that this CardLayout object is the lay out manager
for.

Description
The card currently in view is hidden and the card just below it is displayed.

Imports
import java.awt.CardLayout;

Returns
None.

Example
The project at the end of this chapter uses this method.

preferredLayoutSize(Container)

ClassName
CardLayout

Purpose
To calculate the preferred dimensions for this layout, taking into account the
components in the specified container.

Syntax
public Dimension preferredLayoutSize(Container target)

Parameters
target

Container that needs to be laid out.
Description

This method computes the ideal width and height required by this layout. The
values returned have no effect unless the program specifically enforces these
dimensions.

Imports
import java.awt.CardLayout;

Returns
The return type of this method is Dimension. This return value contains the ideal
height and width required to lay out the container in the specified panel.

See Also
The Container class; the LayoutManager interface

Example

Refer to the example given under the corresponding function in the FlowLayout
class.

previous(Container)

ClassName
CardLayout

Purpose
To make the previous card in the card stack visible. The previous card to the top-
most card in the stack is deemed to be the card at the bottom of the stack.

Syntax
public void previous(Container parent)

Parameters
parent

The parent Container object that this CardLayout object is the layout manager for
Description

The card currently in view is hidden and the card just above it is displayed.
Imports

import java.awt.CardLayout;
Returns

None.
Example

The project at the end of this chapter uses this method.

removeLayoutComponent(Component)

ClassName
CardLayout

Purpose
To remove the specified component from the layout.

Syntax
public void removeLayoutComponent(Component comp)

Parameters
comp

Component to be removed from the layout.
Description

This method disassociates the component being removed from the named area to
which it was added.

Imports
import java.awt.CardLayout;

Returns
None.

See Also
The Container class; the LayoutManager interface

Example
Refer to the example given under the corresponding function in the FlowLayout
class.

show(Container, String)

ClassName
CardLayout

Purpose
To make the specified card visible.

Syntax
public void show(Container parent, String name)

Parameters
parent

The parent Container object that this CardLayout object is the layout manager for.
name

Name of the card in the stack.
Description

The name parameter is specified when adding cards to the stack. This name is
used to bring the specified card into view.

Imports
import java.awt.CardLayout;

Returns
None.

Example
The project at the end of this chapter uses this method.

toString()

ClassName
CardLayout

Purpose
To represent the parameter values of the CardLayout object as a String.

Syntax
public String toString()

Parameters
None.

Description
This method returns a String representation of this CardLayout object’s values,
namely, the horizontal and vertical gap to leave between components. Each value
is prefixed with a short descriptive tag.

Imports
import java.awt.CardLayout;

Returns
This method returns a String containing the values of the CardLayout object, each
value prefixed by a descriptive tag.

See Also
The toString method of the Object class

Example
Refer to the example given under the corresponding function in the FlowLayout
class and to the chapter project.

GridBagLayout

Purpose
A very sophisticated layout manager that can lay out individual components using
different constraints, in a manner such that components can be of different sizes
and can be aligned vertically and horizontally.

Syntax
public class GridBagLayout extends Object implements LayoutManager

Description
This is the most powerful of all the layout managers that the Abstract Windowing
Toolkit provides. Consequently, it is also the most complex layout manager. This
layout manager can lay out components on a grid of cells, with each component
occupying one or more cells in the grid. The group of cells occupied by a
component is known as its display area. A GridBagConstraints object is
associated with each component and these constraints instruct the layout manager
to lay out the component in a particular manner. Refer to the GridBagConstraints
class in this chapter for more information on customizing the appearance of a
Container using a GridBagLayout layout manager. Figure 4-15 shows the
inheritance hierarchy for the GridBagLayout class.

PackageName
java.awt

Imports
import java.awt.GridBagLayout;

Constructors
public GridBagLayout()

Parameters
None.

Example
Refer to the chapter project for a detailed example of a GridBagLayout layout
manager

Figure 4-15 Inheritance hierarchy for the GridBagLayout class

addLayoutComponent(String, Component)

ClassName

GridBagLayout
Purpose

To add the specified component to the layout.
Syntax

public void addLayoutComponent(String name, Component comp)
Parameters
name

Name of the component to be added.
comp

Component object to be added.
Description

The GridBagLayout uses a GridBagConstraints object to lay out a component and
does not associate a name with a component. In order to conform to the
LayoutManager interface, this method exists but is an empty stub.

Imports
import java.awt.GridBagLayout;

Returns
None.

See Also
The Container class; the LayoutManager interface

Example
Refer to the chapter project to see how components are added to a GridBagLayout
and how a GridBagConstraints object instructs this layout manager how to lay out
the particular component.

AdjustForGravity(GridBagConstraints, Rectangle)

ClassName
GridBagLayout

Purpose
To modify the position and dimensions of the component depending on the
specified constraints.

Syntax
protected void AdjustForGravity(GridBagConstraints c, Rectangle r)

Parameters
c

GridBagConstraints object specifying the constraints.
r

Rectangle specifying the coordinates and dimensions of a component.
Description

The coordinates of the rectangle r and the height and width dimensions are set
according to the constraints, specified in the GridBagConstraints object c. The
GridBagConstraints object specifies the geometry constraint, as well as any
padding that is to be added to the size of the component.

Imports
import java.awt.GridBagLayout;

Returns
None.

Example
This method is a protected method in the GridBagLayout class and is used
internally by the GridBagLayout implementation.

ArrangeGrid(Container)

ClassName
GridBagLayout

Purpose
To lay out the components in the container.

Syntax
protected void ArrangeGrid(Container parent)

Parameters
parent

Container to be laid out.
Description

This protected method implements the layout policy of this layout manager and
causes the components in the specified container to be laid out according to the
constraints associated with each component.

Imports
import java.awt.GridBagLayout;

Returns
None.

Example
This method is a protected method in the GridBagLayout class and is used
internally by the GridBagLayout implementation.

DumpConstraints(GridBagConstraints)

ClassName
GridBagLayout

Purpose
To print the values of the specified GridBagConstraints object.

Syntax
protected void DumpConstraints(GridBagConstraints c)

Parameters
c

GridBagConstraints object whose values are to be printed on the screen.
Description

This method is useful for debugging the implementation of the GridBagLayout
layout manager. It simply prints the values of the variables of the specified
GridBagConstraints object.

Imports
import java.awt.GridBagLayout;

Returns
None.

Example
This method is a protected method in the GridBagLayout class and is only used
for debugging purposes by the GridBagLayout implementation.

DumpLayoutInfo(GridBagLayoutInfo)

ClassName
GridBagLayout

Purpose
To print debugging information contained in the layout parameters of the
specified GridBagLayoutInfo object.

Syntax
protected void DumpLayoutInfo(GridBagLayoutInfo i)

Parameters
i

GridBagLayoutInfo object whose values are to be printed on the screen.
Description

The GridBagLayoutInfo class is used internally by the GridBagLayout class and it
contains information about the layout (such as the number of cells horizontally
and vertically in the layout, the largest minimum width in each row, and other
parameters). This method simply prints these parameter values.

Imports
import java.awt.GridBagLayout;

Returns
None.

Example
This method is a protected method in the GridBagLayout class and is only used
for debugging purposes by the GridBagLayout implementation.

getConstraints(Component)

ClassName
GridBagLayout

Purpose
To get the GridBagConstraints object associated with the specified component.

Syntax
public GridBagConstraints getConstraints(Component comp)

Parameters
comp

Component object whose GridBagConstraints should be retrieved.
Description

This method returns a copy of the GridBagConstraints object associated with the
specified component.

Imports
import java.awt.GridBagLayout;

Returns
The return value of this method is a GridBagConstraints object.

See Also
The GridBagConstraints class

Example
Please refer to the documentation on the GridBagConstraints class in this chapter.

getLayoutDimensions()

ClassName
GridBagLayout

Purpose
To get the largest minimum width measurements of the components in each row
and the largest minimum height measurements of the components in each column
.

Syntax
public int [] [] getLayoutDimensions()

Parameters
None.

Description
This method returns the largest minimum width and height measurements of
components in each row and column of the layout.

Imports
import java.awt.GridBagLayout;

Returns
This method returns a two-dimensional array of integers, where the widths are
specified in the first row of integers and the heights are specified in the second
row.

Example
Please refer to chapter project for an example.

GetLayoutInfo(Container, int)

ClassName
GridBagLayout

Purpose
To determine the GridBagLayoutInfo parameters for the components in the
specified container.

Syntax
protected GridBagLayoutInfo GetLayoutInfo(Container parent, int sizeflag)

Parameters
parent

Container object to be laid out.
sizeflag

Specifies whether to use each components’ preferredSize method or
minimumSize method, to determine the size of each component, while laying out
the container.

Description
The GridBagLayoutInfo class is used internally by the GridBagLayout class and it
contains information about the layout (such as the number of cells horizontally
and vertically in the layout, the largest minimum width in each row, and other
parameters). This method determines these parameter values.

Imports
import java.awt.GridBagLayout;

Returns
This method returns a GridBagLayoutInfo object containing the parameters for
the current layout configuration.

Example
This method is a protected method in the GridBagLayout class and is only used
internally by the GridBagLayout implementation.

getLayoutOrigin()

ClassName
GridBagLayout

Purpose
To get the coordinates of the starting point of this layout.

Syntax
public Point getLayoutOrigin()

Parameters
None.

Description
This method returns the x and y coordinates of the origin of the layout.

Imports
import java.awt.GridBagLayout;

Returns
This method returns a Point object that specifies the origin of the layout.

Example
Please refer to chapter project for an example.

getLayoutWeights()

ClassName
GridBagLayout

Purpose
To get the weights along each row and column.

Syntax
public double [] [] getLayoutWeights()

Parameters
None.

Description
This method returns the weights along each row and column of the layout.
Weights are used to specify how to distribute space among the components of a
row or column. Weights play an important role in the resizing behavior of a
component. If the component is weighted in the direction of the x axis
(GridBagConstraints.weightx), then the component will expand horizontally, and
the component will expand vertically if it is weighted in the direction of the y axis
(GridBagConstraints.weighty).

Imports
import java.awt.GridBagLayout;

Returns
This method returns a two-dimensional array of double precision floating point
numbers that specifies the weights of the components in each row and column.

See Also
The weight and weighty variables of the GridBagConstraints class

Example
Please refer to chapter project for an example.

GetMinSize(Container, GridBagLayoutInfo)

ClassName
GridBagLayout

Purpose
To determine the minimum dimensions for the layout.

Syntax
protected Dimension GetMinSize(Container parent, GridBagLayoutInfo i)

Parameters
parent

Container object to be laid out.
i

GridBagLayoutInfo object containing the parameters of the overall layout
configuration.

Description
This method is used to calculate the minimum width and height measurements
required of the layout. The minimum dimensions are calculated according to the
following formulae:
Minimum width = (Left + Right insets of parent) + (sum of largest minimum
widths in each column)
Minimum height = (Top + Bottom insets of parent) + (sum of largest minimum
heights in each row)

Imports
import java.awt.GridBagLayout;

Returns
This method returns a Dimension object containing the minimum dimensions of
the layout.

See Also
The minimumLayoutSize method of this class

Example
This method is a protected method in the GridBagLayout class and is only used
internally by the GridBagLayout implementation.

layoutContainer(Container)

ClassName
GridBagLayout

Purpose
To lay out the specified container according to the constraints for each
component.

Syntax
public void layoutContainer(Container parent)

Parameters
parent

Container object to be laid out.
Description

This method lays out the components in the container, using the
GridBagConstraints object associated with each component as a guideline for
laying out the components. Applications do not directly invoke this method. The
layout method of the Container class results in a call to this method.

Imports
import java.awt.GridBagLayout;

Returns
None.

See Also
The LayoutManager interface; the Container class

Example
Please refer to chapter project for an example.

location(int, int)

ClassName
GridBagLayout

Purpose
To get the coordinates of the top left corner of the component where the specified
point x, y lies.

Syntax
public Point location(int x, int y)

Parameters
x

The x coordinate of the point.
y

The y coordinate of the point.
Description

This method returns the location of the component containing the specified point.
Imports

import java.awt.GridBagLayout;
Returns

This method returns the coordinates of the component that contains the point
specified by the given x and y values.

Example
Please refer to chapter project for an example

lookupConstraints(Component)

ClassName
GridBagLayout

Purpose
To get the GridBagConstraints object associated with the specified component.

Syntax
protected GridBagConstraints lookupConstraints(Component comp)

Parameters
comp

Component object whose GridBagConstraints should be retrieved.
Description

This method retrieves the GridBagConstraints object associated with the specified
component. The object returned by this method is the actual constraints object
used by the GridBagLayout layout manager, and hence, care should be taken if
one is modifying the parameters of this GridBagConstraints object.

Imports
import java.awt.GridBagLayout;

Returns
This method returns a GridBagConstraints object containing the constraints used
for laying out the specified component.

See Also
The GridBagConstraints class

Example
This method is a protected method in the GridBagLayout class and is only used
internally by the GridBagLayout implementation.

minimumLayoutSize(Container)

ClassName
GridBagLayout

Purpose

To calculate the minimum size required to lay out the container, taking into
account the components in the specified container.

Syntax
public Dimension minimumLayoutSize(Container parent)

Parameters
parent

Container that needs to be laid out.
Description

This method calculates and returns the minimum dimensions required by the
GridBagLayout manager to lay out the components contained within the specified
container.

Imports
import java.awt.GridBagLayout;

Returns
The return type of this method is Dimension. This return value contains the
minimum height and width required to lay out the container in the specified panel.

See Also
The Container class; the LayoutManager interface

Example
This method can be invoked on a GridBagLayout object, similar to the manner in
which it is invoked on the corresponding function in the FlowLayout class.

preferredLayoutSize(Container)

ClassName
GridBagLayout

Purpose
To calculate the preferred dimensions for this layout, taking into account the
components in the specified container.

Syntax
public Dimension preferredLayoutSize(Container target)

Parameters
target

Container that needs to be laid out.
Description

This method computes the ideal width and height required by this layout. The
values returned have no effect unless the program specifically enforces these
dimensions.

Imports
import java.awt.GridBagLayout;

Returns
The return type of this method is Dimension. This return value contains the ideal
height and width required to lay out the container in the specified panel.

See Also
The Container class, the LayoutManager interface

Example

This method can be invoked on a GridBagLayout object, similar to the manner in
which it is invoked on the corresponding function in the FlowLayout class.

removeLayoutComponent(Component)

ClassName
GridBagLayout

Purpose
To remove the specified component from the layout.

Syntax
public void removeLayoutComponent(Component comp)

Parameters
comp

Component to be removed from the layout.
Description

This method is a dummy stub in the GridBagLayout class, as this layout manager
doesn’t need to maintain associations between components and areas on the
display.

Imports
import java.awt.GridBagLayout;

Returns
None.

See Also
The Container class; the LayoutManager interface

Example
This method can be invoked on a GridBagLayout object, similar to the manner in
which it is invoked on the corresponding function in the FlowLayout class.

setConstraints(Component, GridBagConstraints)

ClassName
GridBagLayout

Purpose
To apply the GridBagConstraints to the specified component.

Syntax
public void setConstraints(Component comp, GridBagConstraints constraints)

Parameters
comp

Component object that the constraints are to be applied to.
constraints

Constraints for the component.
Description

This method applies the constraints specified in the constraints parameter to the
specified component. These constraints are used to determine the position and
dimensions of the component.

Imports
import java.awt.GridBagLayout;

Returns
None.

See Also
The GridBagConstraints class

Example
Please refer to the chapter project.

toString()

ClassName
GridBagLayout

Purpose
To represent the values of the GridBagLayout object as a String.

Syntax
public String toString()

Parameters
None.

Description
As the parameters associated with each component may be many in number, this
method just prints the classname of this object (java.awt.GridBagLayout)

Imports
import java.awt.GridBagLayout;

Returns
This method returns a String containing the name of the GridBagLayout object.

See Also
The toString method of the Object class

Example
This method can be invoked on a GridBagLayout object similar to the manner in
which it is invoked on the corresponding function in the FlowLayout class.

GridBagConstraints

Purpose
To specify the constraints for laying out a component using the GridBagLayout
class.

Syntax
public class GridBagConstraints extends Object implements Cloneable

Description
The public variables of this class are used to specify the constraints for laying out
a component within a container that uses a GridBagLayout object as its layout
manager. Every component within the container is associated with an instance of

this class. The GridBagConstraints values specify how the component is laid out
within the container. Figure 4-16 shows the inheritance hierarchy for the
GridBagConstraints class.

PackageName
java.awt

Imports
import java.awt.GridBagConstraints;

Constructors
public GridBagConstraints()

Parameters
None.

Variables
The following are the public variables that can be accessed and modified directly
from within an application.

public int anchor
The value of this variable specifies where in the display area the GridBagLayout
class will anchor this component if its display area is larger than the component.
The point in the display area where the component can be anchored can be
specified using one of the following values:
GridBagConstraints.NORTH
GridBagConstraints.SOUTH
GridBagConstraints.EAST
GridBagConstraints.WEST
GridBagConstraints.NORTHEAST
GridBagConstraints.NORTHWEST
GridBagConstraints.SOUTHEAST
GridBagConstraints.SOUTHWEST
GridBagConstraints.CENTER
The default value is GridBagConstraints.CENTER.

public Insets insets
The top, bottom, left, and right padding to leave between the component and the
edge of its display area.

public int ipadx
The number of pixels to pad on the left and right sides of the component. Twice
this value is added when calculating the minimum size for this component.

public int ipady
The number of pixels to pad on the top and bottom sides of the component. Twice
this value is added when calculating the minimum size for this component.

public int gridx
Row number of the cell that occupies the upper-left corner of the component’s
display area. Setting this value to GridBagConstraints.RELATIVE instructs the
GridBagLayout class to lay out this component to the right of the previously
added component.

public int gridy

Column number of the cell at the upper-left corner of the display area. Setting this
value to GridBagConstraints.RELATIVE instructs the GridBagLayout class to lay
out this component just below the previously added component.

public int gridwidth
Width of the component’s display area expressed as a number of cells in a row.
Setting this value to GridBagConstraints.REMAINDER instructs the
GridBagLayout class that this component is the last in its row. Setting this value
to GridBagConstraints.RELATIVE instructs the GridBagLayout class that this
component is next to the last in its row. The default value for this variable is 1.

public int gridheight
Height of the component’s display area expressed as a number of cells in a
column. Setting this value to GridBagConstraints.REMAINDER instructs the
GridBagLayout class that this component is the last in its column. Setting this
value to GridBagConstraints.RELATIVE instructs the GridBagLayout class that
this component is next to the last in its column. The default value for this variable
is 1.

public double weightx
Specifies whether or not the component’s width should increase if it needs to be
resized. A value must be specified for at least one component in a row. The
default value for this variable is 0.

public double weighty
Specifies whether or not the component’s height should increase if it needs to be
resized. A value must be specified for at least one component in a column. The
default value for this variable is 0.

Example
Refer to the section project for a detailed example that uses this class.

Figure 4-16 Inheritance hierarchy for the GridBagConstraints class

clone()

ClassName
GridBagConstraints

Purpose
To create a duplicate of this GridBagConstraints object

Syntax
public Object clone()

Parameters
None.

Description
A new instance of a GridBagConstraints object is created and an exact duplicate
of this GridBagConstraints is made.

Imports
import java.awt.GridBagConstraints;

Returns
The return value is an Object that is a clone of this GridBagConstraints object.
This return value must be cast as a GridBagConstraints object in order to use it as
one.

See Also
The clone method of the Object class; the Cloneable interface

Example
The following sample code demonstrates the implementation of this method.

import java.awt.GridBagConstraints;

public class GBCTest {
 public static void main(String args[]) {
 // GridBagConstraints constructor
 GridBagConstraints g1 = new GridBagConstraints();
 g1.gridx = 5;
 g1.gridy = 4;
 GridBagConstraints g2 = (GridBagConstraints)g1.clone();
 System.out.println("g1.gridx = " + g1.gridx);
 System.out.println("g2.gridx = " + g2.gridx);
 }
}

The Layout Demonstration

By now you are familiar with the layout manager interface and the API of Java’s ready-
made layout managers. In the following project we will build an application that
demonstrates the functionality of each of the layout managers discussed in this chapter.
The project will help you visualize the effect that each of the layout managers:
FlowLayout, GridLayout, BorderLayout, CardLayout, and GridBagLayout have on the
appearance of the Container. Figure 4-17 shows a screenshot of this project.

Figure 4-17 The Layout Demonstration project

In this project, we present a simple user interface that allows people to see the impact of
each particular layout manager by selecting from a list of choices. The appearance and
position of the components on the screen change with the selection of a new layout. In
this project, a set of buttons is created and these buttons are placed within a Panel using
different layout techniques. The simple user interface lets you flip through different
layout views. This project also demonstrates customizing a layout by specifying
parameters (such as the alignment mode, the horizontal gap between components, and so
on).

Assembling the Project

1. Create and edit a file named LayoutDemo.java and use this file to enter the
code for this project. First, ensure that the necessary Java modules are imported.
import java.awt.*;
import java.applet.Applet;
2. Now create a panel containing buttons. The SlidePanel class does this. The
buttons on this panel will be laid out using different layout managers. By passing
a different layout manager as the argument to the methods of the SlidePanel class,
we can create different layouts of the buttons created by the SlidePanel class. This
is accomplished by associating a layout manager with this Panel. The buttons are
added to different areas of the panel. The significance of these areas depends on
the layout manager being used to lay out the buttons on the panel. A Label
component at the bottom of the panel displays the parameters of the layout
manager used to lay out the components on the panel.
class SlidePanel extends Panel {
 Panel newSlide(LayoutManager layout) {
 Panel parent = new Panel();
 parent.setLayout(new BorderLayout());
 // print the layout manager parameters in a Label
component
 String s = new String("Layout parameters: ");
 s += layout.toString();
 parent.add("South", new Label(s)); // attach the label at
 the bottom
 Panel p = new Panel();
 p.setLayout(layout);
 p.add("North", new Button("This"));
 p.add("West", new Button("demonstration"));
 p.add("Center", new Button("is"));
 p.add("East", new Button("really"));
 p.add("South", new Button("cool !"));
 parent.add("Center", p);
 return parent;
}
3. The GridBagLayout is a complex layout manager that requires constraints to
be associated with each component. Add this method to the SlidePanel class. It
arranges the buttons on the SlidePanel using the GridBagLayout class. The actual
assignment of constraints to buttons and adding them to the layout is implemented
as three protected methods: makeFirstRow, makeSecondRow, and
makeThirdRow. A Label component at the bottom of the panel displays the
parameters of the layout manager used to lay out the components on the panel.
// use the GridBagLayout class to layout buttons
Panel gridBagSlide() {
 Panel parent = new Panel();
 parent.setLayout(new BorderLayout());
 Panel p = new Panel();
 GridBagLayout gbl = new GridBagLayout();
 String s = new String("Layout parameters: ");
 s += gbl.toString();
 parent.add("South", new Label(s)); // attach the label at
 the bottom
 p.setLayout(gbl);
 GridBagConstraints gbc = new GridBagConstraints();

 makeFirstRow(gbc, gbl, p); // assign constraints
 to buttons
 makeSecondRow(gbc, gbl, p); // row by row
 makeThirdRow(gbc, gbl, p); // add the entire
panel
 to the parent
 parent.add("Center", p);
 return parent;
}
4. Assign constraints such that three buttons are laid out on the first row.
Assigning a value to weightx of the GridBagConstraints object ensures that the
buttons will expand horizontally and occupy space along the row, if the window is
resized.
 protected void makeFirstRow(GridBagConstraints gc,
 GridBagLayout gl, Panel pan) {
 // create 2 buttons of width 1 cell each on the same row
 gc.gridx = GridBagConstraints.RELATIVE;
 gc.fill = GridBagConstraints.BOTH;
 gc.weightx = 1.0;
 Button b1 = new Button("Buttons");
 gl.setConstraints(b1, gc);
 pan.add(b1);
 Button b2 = new Button("in a");
 gl.setConstraints(b2, gc);
 pan.add(b2);
 // let this button be the last in this row
 gc.gridwidth = GridBagConstraints.REMAINDER;
 Button b3 = new Button("row");
 gl.setConstraints(b3, gc);
 pan.add(b3);
 }
5. Create and lay out a button such that it occupies all the remaining space in a
row. In addition, add a second button that occupies two rows.
 protected void makeSecondRow(GridBagConstraints gc,
 GridBagLayout gl, Panel pan) {
 // create a button on the next row
 gc.gridwidth = GridBagConstraints.RELATIVE;
 gc.gridheight = 1;
 gc.weightx = 0.0;
 gc.weighty = 0.0;
 Button b4 = new Button("PressMe");
 gl.setConstraints(b4, gc);
 pan.add(b4);

 // create a large button that will expand heightwise if
 resized
 gc.gridwidth = GridBagConstraints.REMAINDER;
 gc.gridheight = 2;
 gc.weightx = 0.0;
 gc.weighty = 1.0;
 Button b5 = new Button("Large Button");
 gl.setConstraints(b5, gc);
 pan.add(b5);
 }
6. On the third row, set the constraints so that a button occupies the entire row.

 protected void makeThirdRow(GridBagConstraints gc,
 GridBagLayout gl, Panel pan) {
 // let this button take up the entire row
 gc.gridwidth = GridBagConstraints.REMAINDER;
 gc.gridheight = 1;
 gc.weightx = 0.0;
 gc.weighty = 0.0;
 Button b6 = new Button("Long Button");
 gl.setConstraints(b6, gc);
 pan.add(b6);
 }
7. The main display needs to be able to display multiple views of the Panel of
buttons, each view implementing a particular layout. The CardLayout layout
manager is ideal for this task. Each view can be a card in the card layout. To
display a layout, the card containing the view has to be made visible. In the
constructor for the SlidePanel class, create new Panels of buttons and associate
each with a different layout manager. The SlidePanel class is now complete.
 SlidePanel() {
 setLayout(new CardLayout());
 // add each slide as a new card and give each slide a
name
 add("FlowLayout1", newSlide(new FlowLayout()));
 add("FlowLayout2", newSlide(new FlowLayout
 (FlowLayout.LEFT)));
 add("FlowLayout3",
 newSlide(new FlowLayout(FlowLayout.LEFT, 30, 0)));
 add("GridLayout1", newSlide(new GridLayout(1, 0)));
 add("GridLayout2", newSlide(new GridLayout(3, 2)));
 add("GridLayout3", newSlide(new GridLayout(3, 2, 20,
10)));
 add("BorderLayout1", newSlide(new BorderLayout()));
 add("BorderLayout2", newSlide(new BorderLayout(10, 20)));
 add("GridBagLayout", gridBagSlide());
 }
}
8. Now create the LayoutDemo class. For this class to run as an applet, it will
have to extend the java.applet.Applet class. It maintains a reference to the card
stack of panels and shuffles this card stack to display the various layout views.
The display area that will contain the card stack of panels is positioned above the
choice control with which you can change the layout being used to place the
buttons on the screen. Using the Center and South areas of a BorderLayout
accomplishes this in a snap. A Panel is used to neatly arrange the choice
component and the layout description label. A Choice component, with the names
of all the different layouts that can be viewed, is added to the Panel. This code is
implemented in the init method of the LayoutDemo class. The following sample
code is an example of what it takes to implement this portion of the project.
public class LayoutDemo extends Applet {
 SlidePanel viewStack; // stack of panels
 public void init() {
 setLayout(new BorderLayout());
 viewStack = new SlidePanel(); // stack of layout views
 Label l = new Label("Using CardLayout to view other
 layouts...");

 add("North", l);
 add("Center", viewStack);
 Panel p = new Panel();
 p.setLayout(new FlowLayout(FlowLayout.LEFT));
 add("South", p);
 Choice c = new Choice(); // add the various layout
 options
 c.additem("FlowLayout1"); // that can be viewed
 c.addItem("FlowLayout2");
 c.addItem("FlowLayout3");
 c.addItem("GridLayout1");
 c.addItem("GridLayout2");
 c.addItem("GridLayout3");
 c.addItem("BorderLayout1");
 c.addItem("BorderLayout2");
 c.addItem("GridBagLayout");
 p.add(c); // add the Choice component
 to the Panel

 // create and add buttons for the user to flip through
the
 cards
 p.add(new Button("First card"));
 p.add(new Button("Last card"));
 p.add(new Button("Next card"));
 p.add(new Button("Previous card"));
 }

All that remains to be implemented is a simple interface for the applet. Using this
interface you can view the different layouts.
9. The following event handler determines which of the controls was activated by
the user and displays the corresponding card. The event handler brings the card,
corresponding to the selected choice, to the top of the view stack.
public boolean action(Event evt, Object arg) {
 if (evt.target instanceof Choice) { // display the choice
 selected
 ((CardLayout)viewStack.getLayout()).
 show(viewStack,(String)arg);
 } else if ("First card".equals(arg)) { // display the first
card
 ((CardLayout)viewStack.getLayout()).
 first(viewStack);
 } else if ("Last card".equals(arg)) { // display the last
card
 ((CardLayout)viewStack.getLayout()).
 last(viewStack);
 } else if ("Next card".equals(arg)) { // display the next
card
 ((CardLayout)viewStack.getLayout()).
 next(viewStack);
 } else if ("Previous card".equals(arg)) { // display the
 previous card
 ((CardLayout)viewStack.getLayout()).
 previous(viewStack);
 }

 return true;
}
10. And now the final step of creating a main function, required to launch the
application if it were executed as a stand-alone Java application. It creates a top-
level Frame window and emulates the behavior of an applet, by invoking the init
methods of the LayoutDemo class.
 public static void main(String args[]) {
 Frame f = new Frame("Layout Demonstration");
 LayoutDemo ld = new LayoutDemo();
 ld.init();
 ld.start();

 f.add("Center", ld);
 f.resize(450, 300);
 f.show();
 }
}

And we are done!
11. Save the LayoutDemo.java file and compile the project by executing the
following command:
javac LayoutDemo.java
12. Now run the program by executing the following command:
java LayoutDemo

How It Works

The Layout Demonstration project used different layout managers to lay out the same set
of buttons on the screen. The CardLayout layout manager was used to present the
different layout views, one at a time, to the user. Panels and Frames were used as
containers for components (such as Buttons and Labels). Choice components and buttons
that initiated actions enabled the user to flip through the various views in the CardLayout.
The ready-made layout managers that are in the Java AWT are sufficient for most
applications. Choose the layout manager or windowing component most suited to your
requirements. By nesting panels within panels, you can use different layout managers for
different parts of your user interface.

Have fun in creating user interfaces for Java applications!

setMenuBar(MenuBar)

ClassName
Frame

Purpose
Sets the menu bar for this Frame to the specified MenuBar object

Syntax
public synchronized void setMenuBar(MenuBar mb)

Parameters
mb

The MenuBar object that represents the menu bar for this Frame
Description

This method specifies the menu bar to use on this Frame window.
Imports

import java.awt.Frame;
Returns

None.
See Also

The Image Class
Example

Refer to the examples in the MenuBar section of Chapter 6.

Chapter 5
Handling Text, Dialogs, And Lists

An application might need input not only at the beginning of execution but at various
stages of a run. The input may not be from a known list of inputs or even if it is, the
number of items might be large. It may be necessary to update the user about the state of
the application at various stages and to obtain his approval before performing the
successive stages. This chapter introduces the properties and use of text handling
components, dialog boxes that “converse” with users, and scrolling lists of items that
offer a large number of choices. We will cover the classes TextComponent, TextArea,
TextField, Dialog, FileDialog and List and describe their methods in detail. The
application developed at the end of this chapter is a basic framework for an API
Reference Interface Application. Using this interface, users can specify a class name and
obtain information about any number of methods in the specified class. They can view
the details of any method and optionally can save them in a file.

Handling Text

Depending on an application’s charateristics, text input from the user can be a single
character, single word, single line, or multiple lines of text. Handling such varying input
types is important for a smooth-running application. In Java, the TextComponent,
TextArea, and TextField classes in the AWT package provide the necessary interface
components for text handling. TextArea and TextFields are subclasses of the
TextComponent class. A TextField accepts a single line of text. Consider an application
that handles e-mail. You know that e-mail addresses are not multiline text; you can use
instances of TextField for the To, Cc, and Subject fields, but for the body of your e-mail
message you need a multiline editor.

The editing capabilities of TextField and TextArea are the same. You can disallow
editing in both. You can point to any location in the area and enter the input. In a
TextField, you have a single line of boxed text visible to you. The number of columns in

the text field is application specific, but you can type as many charaters as you want and
the text will move to the left accommodating more input. To view the text, you have to
move the cursor to the desired location. A TextArea provides two scrollbars (vertical and
horizontal) for viewing different parts of the TextArea and editing with ease. Figure 5-1
shows an example To TextField. The second text field, Cc, contains the sender’s name as
a default string which saves the time required to type in an e-mail id.

Figure 5-1 A single-line TextField component

The text area, allowing multiple lines to be edited, is created using the TextArea class in
the AWT package. Figure 5-2 illustrates the text area provided to edit the body of an e-
mail message. It includes scrollbars that allow you to go back and forth in editing. If a
certain text field or text area should be protected from editing, you can disable it. Also, in
situations where you don’t want the characters you type to appear on the screen, such as
entering a password, TextField can set echo characters that appear on the screen for each
character you enter. Figure 5-3 shows an example in which the user entry is masked by
echo characters.

Figure 5-2 A multiline TextArea component

Figure 5-3 Echo characters in a TextField

Dialogs in Java

A primary window is the root window from which all the other windows used by an
application are generated. In the case of Java GUIs, it is a Frame object for an application
and a Window for an applet. Applications use dialog windows to conduct context-
specific dialog with the user. When a dialog window is closed, its parent is not affected.
But the input given through the dialog window is available to the parent even after the
dialog window is closed. In Java, two classes implement dialog windows: Dialog and
FileDialog. The class Dialog implements a pop-up window to interact with the user. You
can design it as a simple prompt window, a message window, or an input window and so
on. Depending on the input characteristic, you can specify the Dialog window to be
modal or non-modal. A modal Dialog box prevents any action on other windows of the
application until the user responds to the Dialog box with some input. If you specify a
Dialog box to be non-modal, the user can work on other windows without entering any
input for the dialog window. Figure 5-4 shows a Dialog window instance created using
the JDK. The Dialog box provides two buttons: OK and Cancel. Selecting either of them
decides the next step of the application.

Figure 5-4 A sample dialog box in Java

FileDialog is a Java class that implements a pop-up window offering a selection of files
to the user. This type of window can be created in either LOAD or SAVE mode. If in
LOAD mode, the FileDialog window is created and an Open button is provided. In
SAVE mode, a Save button appears in the file selection window. But you (as a
programmer) are responsible for handling the loading and saving of files. You can get the
name of the selected file from the FileDialog window. For example, someone might want
to include a particular file into an e-mail. Figure 5-5 shows the use of a FileDialog
component where directory “chp7” is opened and it contains three subdirectories. By
successively selecting the folders you end up with the directory in which the desired file
resides. On selecting the file and by clicking the Open button, the file is selected using
the given FileDialog component.

Figure 5-5 Using a FileDialog component for loading a file

Lists

Neither menus, checkboxes, nor pull-down menus are adequate when you need an
interface to handle a large number of available options. A scrolling list of selectable items
makes an efficient way to save window space and present a lot of items for selection. In
Java, the class List encapsulates the required behavior of scrolling lists. You can set a
List object to allow only one selection or multiple selections. In the case of a single-
selection List, selecting an item automatically deselects any other item already selected in
the list. In a multiple-selection List, the user can select any number of items from the
List. Figure 5-6 shows a list that allows multiple selections. The List class provides
methods that support selecting items and manipulating the items selected.

Figure 5-6 A List component with multiple selections enabled

Text, Dialog, and List Class Summaries

Table 5-1 summarizes the classes necessary for developing user interfaces in Java using
text, dialogs, and lists.

Table 5-1 Class description for text, dialog, and list components

Class Name Description

TextComponent A component that allows the editing of text. Forms the super

class for TextArea and TextField.
TextArea Provides an area in which to display several lines of text. The

text can be either read-only or edited.
TextField A single-line editor and a subclass of TextComponent.

Dialog A window that takes input from the user.

FileDialog A modal Dialog window displaying a file selection dialog.
List A component that provides a scrolling list of text items from

which the user can select one or many items.

TextComponent

Purpose
A component that allows the editing of text. Forms the super class for TextArea
and TextField.

Syntax
public class TextComponent extends Component

Description
TextComponent is used to implement the window components involved in text
editing. It forms the super class of all text related components.Hence, TextArea
and TextField are subclasses of this class. Methods of the TextComponent class
allow selection of text, manipulating the selected text, and specifying a text
component as either editable or read-only. This class has no public constructors.
Figure 5-7 illustrates the inheritance relationship of the TextComponent class.

PackageName
java.awt

Imports
import java.awt.TextComponent;

Constructors
None.

Parameters
None.

Example

The textDemo class, implemented in the following example (Listing 5-1), uses the
textPanel class to illustrate the usage of methods in the classes TextComponent,
TextArea, and TextField. This application uses all the methods in these classes.
The user can type his name, which is echoed as asterisk and then press the
ChangeText button and see the effect. Pressing CloneTextArea will make a new
image of TextArea. Figure 5-8 shows the resultant window.

Figure 5-7 Class diagram of TextComponent class

Figure 5-8 The textDemo application in action

Listing 5-1 textDemo.java: Program demonstrating the usage of methods in
TextComponent, TextArea, and TextField

import java.awt.*;
import java.io.*;

/**
 Filename: textDemo.java
 classes: textDemo
 textPanel

 Purpose: demonstrating the usage of methods in the classes:
 TextComponent, TextArea and TextField
*/

public class textDemo extends Frame {

 TextPanel txt_p;
 // to demonstrate textarea, textfield classes

 Menubar mbar;

 public textDemo() {

 // panel containing text components
 txt_p = new TextPanel();

 // menu to exit from the application
 mbar = new MenuBar();
 Menu quit = new Menu(“Quit”);
 quit.add(new MenuItem(“Stop”));
 mbar.add(quit);
 setMenuBar(mbar);
 // add the panel to the North
 add(“North", txt_p);

 pack();
 show();

 }

 public boolean action(Event evt, Object arg) {

 // quit menu handler
 if (evt.target instanceof MenuItem) {
 System.exit(0);
 return true;
 }
 return false;

 }

 public static void main(String args[]) {

 textDemo txt_win = new textDemo();
 txt_win.setTitle(“Text Demo”);
 txt_win.pack();
 txt_win.show();
 }

} // end of class textDemo

class TextPanel extends Panel {
 TextField name_f; // text field to get "name"
 // panel that contains text field and area
 Panel txt_p;
 // text area to display manipulated string
 TextArea txt_edit;

 public TextPanel() {
 txt_p = new Panel();
 setLayout(new BorderLayout());

 name_f = new TextField(“Your Name", 15);
 if (!name_f.echoCharIsSet()) {
 name_f.setEchoCharacter('*');
 System.out.print(“ The echo char is ");
System.out.println(name_f.getEchoChar());
 }
 Panel bot_p = new Panel();
 Button name_b = new Button(“ChangeText”);
 bot_p.add(name_f);
 bot_p.add(name_b);
 Button alt_txt = new Button(“CloneTextArea”);
 bot_p.add(alt_txt);

 txt_edit = new TextArea(6,25);
 //6 rows, 25 columns
 txt_edit.setText(“Enter Text Here”);
 txt_p.add(txt_edit);

 add(“North",txt_p);

 add(“South", bot_p);

 show();

 }

 TextArea newArea; // new text area for "cloning"

 public boolean action(Event evt, Object arg) {

 if (evt.target instanceof Button) {
 // if the ChangeText button is pressed do:

 if (“ChangeText".equals(arg)){
 String n_str = name_f.getText();
 if (n_str.equals(“Your Name”))
 n_str = "";

 txt_edit.selectAll();
 int start =txt_edit.getSelectionStart();
 int end = txt_edit.getSelectionEnd();

 String sel_t = txt_edit.getSelectedText();
 System.out.println(“ selected text is " + sel_t);
 txt_edit.replaceText(“Hello! ",0,sel_t.length());
 txt_edit.appendText(“ How are you?”);
 txt_edit.insertText(n_str, 7);

 // demonstrating the usage of following methods
 System.out.println(“ Name field has " +
 name_f.getColumns() + "columns ”);
 System.out.println(“ Min size of
 name field is " +
 name_f.minimumSize().width + “ ” +
 name_f.minimumSize().height);
 System.out.println(“ Preferred size of
 name field is " +
 name_f.preferredSize().width + “ ” +
 name_f.preferredSize().height);
 System.out.println(“ Min size of name
 field with 10 rows is " +
 name_f.minimumSize(10).width);
 System.out.println(“ Preferred size of
 name field with 10 rows is " +
 name_f.preferredSize(10).width + “ ”+
 name_f.preferredSize(10).height);
 }

 // if "CloneTextArea" button is pressed

 if (“CloneTextArea".equals(arg)) {
 System.out.println(“CloneTextArea selected”);
 int t_rows, t_cols;
 t_rows = txt_edit.getRows();
 t_cols = txt_edit.getColumns();
 String t_txt = txt_edit.getText();
 newArea = new

 TextArea(t_txt.getText(),t_rows,t_cols);

 newArea.setEditable(false);
 if (!newArea.isEditable())
 System.out.println(“ the New are is NOT editable”);
 Panel p = new Panel();
 p.add(newArea);

 txt_p.add(“Center",p);
 System.out.println(“ Min size of text area is " +
 txt_edit.minimumSize().width +
 “ ” + txt_edit.minimumSize().height);
 System.out.println(“ Preferred size of text area
 is " + txt_edit.preferredSize().width + “ ” +
 txt_edit.preferredSize().height);
 System.out.println(“ Min size of newtext area is "+
 newArea.minimumSize(10,25).width + “ ” +
 newArea.minimumSize(10,25).height);
 System.out.println(“ Preferred size of newtext area
 is " + newArea.preferredSize(10,25).width +
 “ ” + newArea.preferredSize(10,25).height);

 Object fr = evt.target;
 //obtain the parent frame if you dont have handle
 // this illustrates a way to obtain frame handle

 while (fr!=null && !(fr instanceof Frame))
 fr = ((Component)fr).getParent();
 ((Frame)fr).pack();
 ((Frame)fr).show();
 }
 }
 return true;
 }

} // end of textPanel class

getSelectedText()

ClassName
TextComponent

Purpose
To get the text selected in the target TextComponent object.

Syntax
public String getSelectedText()

Parameters
None.

Description
Users can select text between desired locations or all of the text in a text
component. This method obtains the text selected by the user for further

manipulation according to the application’s characteristics. It returns null if
nothing is selected in the text component.

Imports
import java.awt.TextComponent;

Returns
The selected text contained in the TextComponent; the return type is String.

See Also
The TextArea class; the TextField class; the setText() method of the
TextComponent class

Example
Refer to Listing 5-1. In textPanel class, this method is used to obtain the text in
the text area as a value for the variable sel_t in the action method.

getSelectionEnd()

ClassName
TextComponent

Purpose
To obtain the end index of the selected text.

Syntax
public int getSelectionEnd()

Parameters
None.

Description
Users can select text between desired locations or all of the text in a text
component. This method obtains the end index of the selected text contained in
the target TextComponent object.

Imports
import java.awt.TextComponent;

Returns
Returns the index position of the last character in the selected text; return type is
int.

See Also
The TextArea and TextField classes; the setText() and getSelectedText() methods
of the TextComponent class

Example
Refer to Listing 5-1. After selecting text in the text area using getSelectedText,
this method is used in the textPanel class under the action() method to obtain the
end index of selected text.

getSelectionStart()

ClassName
TextComponent

Purpose
To obtain the start index of the selected text.

Syntax
public int getSelectionStart()

Parameters
None.

Description
User can select text between desired locations or all of the text in a text
component. This method obtains the start index of the selected text contained in
the target TextComponent object.

Imports
import java.awt.TextComponent;

Returns
The index position of the first character in the selected text. Return type is int.

See Also
The setText and getSelectedText methods of the TextComponent class; the
TextArea and TextField classes

Example
Refer to Listing 5-1. After selecting the text in the text area using
getSelectedText, this method is used to obtain the start index of the selected text
in the action method of the textPanel class

getText()

ClassName
TextComponent

Purpose
To obtain the text contained in the target TextComponent object.

Syntax
public String getText()

Parameters
None.

Description
TextComponent contains text and it can be edited if allowed. This method obtains
the text contained in the text component. It is equivalent to selecting all the text
and then getting that selected text.

Imports
import java.awt.TextComponent;

Returns
The text contained in the TextComponent is returned and the return type is String.

See Also
The setText method in theTextComponent class; the TextArea and TextField
classes

Example
Refer to Listing 5-1. The name string entered in the text field is found by using
this method to include the name (variable name_f) in the string to be written into
the text area in the action() method in the textPanel class.

isEditable()

ClassName
TextComponent

Purpose
To obtain the boolean value indicating whether the target TextComponent is
editable or not.

Syntax
public boolean isEditable()

Parameters
None.

Description
Users can edit the text contained in a text component if the component is set to be
editable using the setEditable method in the TextComponent class. This method
finds out whether the text component is editable. It returns true if the text is
editable; false if it is not editable.

Imports
import java.awt.TextComponent;

Returns
The boolean value indicating whether the text component is editable.

See Also
The setEditable method of theTextComponent class; theTextArea and TextField
classes

Example
Refer to Listing 5-1. In the action method in class TextPanel, when
CloneTextArea button is pressed, newArea is created and is set to disallow
editing. This method is used to confirm its mode.

paramString()

ClassName
TextComponent

Purpose
To obtain the parameter String of the target TextComponent object.

Syntax
protected String paramString()

Parameters
None.

Description
Returns the String representation of the target TextComponent object, which
contains the text. This method is protected and hence, can be used only by the
classes within the java.awtpackage.

Imports
import java.awt.TextComponent;

Returns
The parameter string of type String.

See Also
The TextComponent and Component classes

Example
The following code uses paramString by subclassing the TextComponent.

package java.awt;
import java.awt.TextComponent;

class myText extends TextComponent {

 String myStringForm;

 public myText() {
 super(“”);
 }

 public String getmyStringForm() {
 return super.paramString();
 }

 public static void main(String[] args) {
 myText txt = new myText();
 txt.getmyStringForm();
 }
}

removeNotify()

ClassName
TextComponent

Purpose
To remove the peer of this text component.

Syntax
public void removeNotify()

Parameters
None.

Description
A text component peer is used to change the appearance of your text component,
without changing its functionality. This method removes the peer of the target
component.

Imports
import java.awt.TextComponent;

Returns
None.

See Also
The addNotify method of subclasses of TextComponent, namely TextArea and
TextField; the TextComponentPeer class

Example
Refer to the details and information in the Chapter 9 describing Peers and
manipulating peer interfaces.

select(int, int)

ClassName
TextComponent

Purpose
Selects the text between the specified positions in the TextComponent.

Syntax
public void select(int start, int end)

Parameters
start

Index indicating the starting position of the selected text.
end

Index indicating the end position of the selected text.
Description

The textComponent contains a text. The user can select a part of the text or the
entire text. This method selects the text contents between the two specified start
and end positions. If the value of start is greater than end, then no text is selected.

Imports
import java.awt.TextComponent;

Returns
None.

See Also
The TextArea and TextField classes

Example
Refer to Listing 5-1. This method is used in the action method of class textPanel
to obtain the check string after selecting the text or after getting the start and end
position if the whole text is selected.

selectAll()

ClassName
TextComponent

Purpose
Selects all of the text contained in the TextComponent.

Syntax
public void selectAll()

Parameters
None.

Description
TextComponent contains text. User can select any part of the text or the full text.
This method selects all of the text contained in the text component.

Imports
import java.awt.TextComponent;

Returns

None.
See Also

The TextArea and TextField classes
Example

Refer to Listing 5-1. In the action method in the textPanel class; all the text in the
text area is selected and the string is stored in sel_t. This string is used to change
the contents of the text area.

setEditable(boolean)

ClassName
TextComponent

Purpose
The boolean value, indicating whether the target TextComponent should or
should not be editable, is set.

Syntax
public void setEditable(boolean okToEdit)

Parameters
okToEdit

The text component is editable if this is true; not editable if this is false.
Description

The user can edit the text contained in a text component if the component is set to
be editable using this setEditable method in class TextComponent. To set the
TextComponent to be editable, the boolean parameter should be true. To set it to
be noneditable, the parameter should be false.

Imports
import java.awt.TextComponent;

Returns
None.

See Also
The isEditable method of the TextComponent class; the TextArea and TextField
classes

Example
Refer to Listing 5-1, the newArea; the new text area formed is set to noneditable
mode using this method. This occurs in the action method of the textPanel class.

setText(String)

ClassName
TextComponent

Purpose
Sets the specified text to be the contents of the target TextComponent object.

Syntax
public void setText(String new_text)

Parameters
new_text

The text of type String which is to be the new text content of the TextComponent.
Description

TextComponent contains text which can be edited if permitted. This method sets
the specified text to be the text content of the TextComponent. If the component
did not contain any text prior to this method call, then the specified text is set to
be the text. If it did contain text earlier, this method replaces the previous text
with this new one.

Imports
import java.awt.TextComponent;

Returns
None.

See Also
The getText method of the TextComponent class; the TextArea and TextField
classes

Example
Refer to Listing 5-1. In the constructor of textPanel class, this method is used to
set the string in the text field to “Enter text here”.

TextArea

Purpose
Provides an area in which to display several lines of text. The text can either be
read-only or read and edit.

Syntax
public class TextArea extends TextComponent

Description
The TextArea class provides an area in which to display several lines of text or
allow editing of that text. So it can be considered to be a multiline editor, if
editing is allowed. Wordwrap is set to true and both horizontal and vertical
scrollbars are visible. If editing text is allowed, then any position in the text area
can be reached using the mouse or the arrow keys. This allows users to move
through the text as they would in a full-blown editor. TextArea is a subclass of the
TextComponent class. Methods of TextComponent class that allow selection and
manipulation of text can be performed in an editable text area. The setEditable
method of TextComponent can be used to allow editing a TextComponent object.
Figure 5-9 illustrates the inheritance relationship of the TextArea class.

PackageName
java.awt

Imports
import java.awt.TextArea;

Constructors
public TextArea()
public TextArea(int t_rows, int t_cols)
public TextArea(String text)
public TextArea(String text, int t_rows, int t_cols)

Parameters

t_rows
The number of rows specified in the TextArea.

t_cols
The number of columns specified in the TextArea.

text
The text which forms the initial text contents of this TextArea.

Example
Refer to Listing 5-1. In the textPanel class, an instance of this class (TextArea) is
a member of the class. It is constructed with 6 rows and 25 columns.

Figure 5-9 Class diagram of the TextArea class

addNotify()

ClassName
TextArea

Purpose
This method creates a peer of the target TextArea object.

Syntax
public synchronized void addNotify()

Parameters
None.

Description
Creates an instance of the TextAreaPeer as a peer for the target TextArea object.
Using the peer, you can change the appearance of the TextArea without
modifying its functionality. This method is required if you are writing your own
AWT.

Imports
import java.awt.TextArea;

Returns
None.

See Also
The TextAreaPeer class

Example
Refer to Chapter 9, which describes the peers and interface for details.

appendText(String)

ClassName
TextArea

Purpose
Append the specified text to the text content of the target TextArea object.

Syntax
public void appendText(String add_text)

Parameters
add_text

The specified text of type String to be appended to the TextArea.
Description

This method appends the specified string to the text contained in the target
TextArea object.

Imports
import java.awt.TextArea;

Returns
None.

See Also
The insertText method of the TextArea class; the TextArea and TextField classes

Example
Refer to Listing 5-1. The text “How are you?” is appended to the text area in the
action method of the textPanel class.

getColumns()

ClassName
TextArea

Purpose
To obtain the number of columns in the TextArea.

Syntax
public int getColumns()

Parameters
None.

Description
This method returns the number of columns in the target TextArea object. This is
the number of columns of the TextArea during its instantiation.

Imports
import java.awt.TextArea;

Returns
The number of columns of TextArea object; return type is int.

Example
Refer to Listing 5-1. In the action method of the textPanel class, the number of
columns of the text area is used to create a new text area as a clone.

getRows()

ClassName
TextArea

Purpose
To obtain the number of rows in the TextArea.

Syntax

public int getRows()
Parameters

None.
Description

This method returns the number of rows in the target TextArea object. This is the
number of rows in the TextArea during its instantiation.

Imports
import java.awt.TextArea;

Returns
The number of rows of TextArea object; return type is int.

Example
Refer to Listing 5-1. In the action method of the class textPanel class, the number
of rows of the text area that is used to create a new text area as a clone.

insertText(String, int)

ClassName
TextArea

Purpose
Inserts the specified text at the specified index in the TextArea.

Syntax
public void insertText(String ins_text, int index)

Parameters
ins_text

The text to be inserted at specified index of the TextArea.
index

The index location in the existing text of TextArea where the new text is to be
inserted.

Description
This method inserts the specified string at the specified index of the text contained
in the target TextArea object. The value of the index should be less than the
length of the already available text in the TextArea. If the index value exceeds the
length of the existing text, Java will issue a StringIndexOutofBoundsException.

Imports
import java.awt.TextArea;

Returns
None.

See Also
The appendText method of the TextArea class

Example
Refer to Listing 5-1. In the action method of the textPanel class, name
string n_str is inserted in the text area using this method.

minimumSize(int, int), minimumSize()

ClassName

TextArea
Purpose

To obtain the minimum size dimension of the TextArea if no parameter is
specified. If parameters are specified, this method obtains the minimum
Dimensions for the specified number of rows and columns.

Syntax
public Dimension minimumSize(int rows, int cols)
public Dimension minimumSize()

Parameters
rows

The specified number of rows for which minimum size is to be found.
cols

The specified number of columns for which the minimum size is to be found.
Description

The height and width of window Dimensions are different from the number of
rows and columns of the TextArea. If rows and columns are not specified, the
rows and columns of the target TextArea object are taken as the values. The
number of rows and columns indicate the number of characters accommodated
within the space, whereas the Dimension indicates the window dimensions. For
example, this method would be helpful in resizing a window or a frame
containing a TextArea or in determining where to add the text area in the window.

Imports
import java.awt.TextArea;

Returns
The minimum Dimensions for a TextArea with the number of rows and columns.
Return type is Dimension.

See Also
The preferredSize of the TextArea class; the Dimension class

Example
Refer to Listing 5-1. This method is used to print out the minimum width and
height required when the CloneTextArea button is selected. This occurs in the
action method of the textPanel class.

paramString()

ClassName
TextArea

Purpose
To obtain the parameter String of the target TextArea object.

Syntax
protected String paramString()

Parameters
None.

Description
This method obtains the String representation of the target TextArea object
containing the parameters, rows, columns and text contained in it. This method is

protected and hence can be used only by classes within the java.awt package. This
method overrides the paramString method of class TextComponent.

Imports
import java.awt.TextArea;

Returns
The parameter string of type String.

See Also
The paramString method of the TextComponent class; the TextArea class

Example
The following code uses paramString by subclassing the TextArea.

package java.awt;
import java.awt.TextArea;

class myText extends TextArea {

 String myStringForm;

 public myText() {
 super(“”);
 }

 public String paramString() {
 return super.paramString();
 }

 public static void main(String[] args) {
 myText txt = new myText();
 txt.getmyStringForm();
 }
}

preferredSize(int, int), preferredSize()

ClassName
TextArea

Purpose
To obtain the preferred dimension of the TextArea if no parameter is specified. If
parameters are specified, this method returns the preferred dimension for the
specified rows and columns.

Syntax
public Dimension preferredSize(int rows, int cols)
public Dimension preferredSize()

Parameters
rows

The specified number of rows for which the preferred size is to be found.
cols

The specified number of columns for which the preferred size is to be found.
Description

The height and width of window dimensions are different from the number of
rows and columns of the TextArea. If the rows and columns are not specified, the
rows and columns of the target TextArea object are taken as the values. The
number of rows and columns indicate the number of characters accommodated
within the space, whereas the Dimension indicates the window dimensions. For
example, this method would be helpful in resizing a window or frame containing
a TextArea, or in determining where to position the textArea in the window. It
returns the preferred size Dimensions for the text area.

Imports
import java.awt.TextArea;

Returns
The preferred Dimensions for a TextArea with the number of rows and columns.
Return type is Dimension.

See Also
The minimumSize method in the TextArea class; the Dimension class

Example
Refer to Listing 5-1. This method is used to print out the preferred width and
height required when the CloneTextAreabutton is selected. This occurs in the
action method in the textPanel class.

replaceText(String, int, int)

ClassName
TextArea

Purpose
The specified text replaces the existing text between the specified positions in the
TextArea.

Syntax
plic void replaceText(String new_text, int start, int end)

Parameters
new_text

The specified text to replace the existing text between specified positions.
start

The beginning index location in the existing text of TextArea where the
replacement text is to be inserted in place of the existing text.

end
The ending index location in the existing text of TextArea specifying the last
point at which the existing text is to be replaced by the new_text.

Description
This method replaces the text between the specified locations, start and end, with
the specified text, new_text. The length of the new_text need not be the same as
that of the text being replaced; however, the values of the indexes should be less
than the length of the already available text in the TextArea. If the index value
exceeds the length of the existing text, an StringIndexOutofBoundsException is
issued at runtime.

Imports

import java.awt.TextArea;
Returns

None.
See Also

The insertText method in the TextArea class
Example

Refer to Listing 5-1. In the action method of the textPanel class, replaceText
method is used to change the “Enter Text Here” string to “Hello! ”

TextField

Purpose
A single line editor and a subclass of TextComponent.

Syntax
public class TextField extends TextComponent

Description
The TextField provides a single line for editing purposes and an interface for the
user to enter text. It subclasses the TextComponent class with the default set to
editable mode. It can be set to noneditable mode but, in most cases there would be
no reason for you to do so. When is pressed in the TextField, an event
ACTION_EVENT is posted. Appropriate event handling routines (e.g., the
methods action() or handleEvent()) should be overridden to handle the events
generated. Methods of TextComponent class allowing selection and manipulation
of the selected text can be performed on an editable text field. Figure 5-10
illustrates the inheritance relationship of the TextField class.

PackageName
java.awt

Imports
import java.awt.TextField;

Constructors
public TextField()
public TextField(int t_cols)
public TextField(String text)
public TextField(String text, int t_cols)

Parameters
t_cols

The number of columns specified in the TextField.
text

The text which forms the initial text contents of this TextField.
Example

An instance of the TextField class is a member in the textPanel class in Listing 5-
1. The member object is name_f, signifying name field.

Figure 5-10 Class diagram of the TextField class

addNotify()

ClassName
TextField

Purpose
This method creates a peer of the target TextField object.

Syntax
public synchronized void addNotify()

Parameters
None.

Description
An instance of the TextFieldPeer is created as a peer for the target TextField
object. Using the peer, you can change the appearance of the TextArea without
modifying its functionality. Required if you are writing your own AWT.

Imports
import java.awt.TextField;

Returns
None.

See Also
The TextFieldPeer class

Example
Refer to Chapter 9 describing the peers and interface for details.

echoCharIsSet()

ClassName
TextField

Purpose
The boolean value indicating whether a character is set for echoing in the target
TextField object.

Syntax
public boolean echoCharIsSet()

Parameters
None.

Description
In an object of type TextField, you can set an echo character associated with the
field. Whenever you type in a character, only the echo character is displayed in
the field and not the original characters you typed in. This is useful when you
don’t want anyone to see the characters you are entering (for example, in the case
of a password or social security number). This method returns the boolean value

of true if an echo character is set in the target TextField object; otherwise, it
returns false.

Imports
import java.awt.TextField;

Returns
Boolean value of true if echo character is set; false otherwise.

See Also
The setEchoCharacter method of the TextField class

Example
Refer to Listing 5-1. In the constructor of the textPanel class, echo character of ‘*’
is set, if it is not set earlier. This method is used to determine whether the echo
character is already set.

getColumns()

ClassName
TextField

Purpose
To obtain the number of columns in the TextField.

Syntax
public int getColumns()

Parameters
None.

Description
This method returns the number of columns in the target TextField object. This is
the number of columns set for the TextField during its instantiation.

Imports
import java.awt.TextField;

Returns
The number of columns of TextField object; return type is int.

Example
Refer to Listing 5-1. This method is used to print the number of columns in the
text field, name_f, in the action method in the textPanel class.

getEchoChar()

ClassName
TextField

Purpose
To obtain the character used for echoing in the target TextField object.

Syntax
public char getEchoChar()

Parameters
None.

Description
In an object of type TextField, you can set an echo character associated with the
field. Whenever you type in a character, only the echo character is displayed in
the field and not the original characters you typed in. This is useful when you
don’t want anybody nearby to see the characters you are entering (for example, in
the case of password or social security number). This method returns the character
that has been set for echoing in the target TextField object, if it is set. If the echo
character is not set, it returns a null character.

Imports
import java.awt.TextField;

Returns
The character set for echoing in the TextField. Return type is char.

See Also
The echoCharIsSet and setEchoCharacter methods of the TextField class

Example
Refer to Listing 5-1. In the constructor of class textPanel, echo character of '*’ is
set, if it is not set earlier. This method is used to print the echo character to the
standard output.

minimumSize(int), minimumSize()

ClassName
TextField

Purpose
Returns the minimum size dimension of the TextField if no parameter is
specified. If a parameter is specified, then the minimum size dimension for the
specified number of columns is returned.

Syntax
public Dimension minimumSize(int cols) public Dimension minimumSize()

Parameters
cols

The specified number of columns of the TextField for which the minimum size is
to be found.

Description
The width of the window dimension is different from the number of columns in
the TextField. The number of columns for which the minimum size is to be found
can be specified. If it is not specified, the number of columns of the target
TextField object is taken as the value. The number of columns indicates the
number of characters that can be accommodated within the space whereas the
Dimension indicates the window dimensions. For example, this method is helpful
to resize a window or a frame containing a TextField or to determine where in the
window to add the text field.

Imports
import java.awt.TextField;

Returns

The minimum Dimensions for a TextField with the number of columns. Return
type is Dimension.

See Also
The preferredSize method of the TextField class; the Dimension class

Example
Refer to Listing 5-1. This method is used to print out the minimum width and
height required when the ChangeText button is selected. This occurs in the action
method in the textPanel class.

paramString()

ClassName
TextField

Purpose
To obtain the parameter String of the target TextField object.

Syntax
protected String paramString()

Parameters
None.

Description
This method returns the String representation of the target TextField object
containing the parameters column and text contained in it. Because it is protected,
this method can be used only by the classes within the java.awt package. This
method overrides the paramString method in the TextComponent class.

Imports
import java.awt.TextField;

Returns
The parameter string of type String.

See Also
The TextField class; the paramString method of the TextComponent class

Example
Use of this method is similar to the example given for the paramString method in
the TextArea class.

preferredSize(int), preferredSize()

ClassName
TextField

Purpose
Returns a preferred size dimension for the TextField if no parameter is specified.
If parameters are specified, then the preferred size dimensions for the specified
columns is returned.

Syntax
public Dimension preferredSize(int cols)
public Dimension preferredSize()

Parameters

cols
The specified number of columns for which the preferred size is desired to be
found.

Description
The width of window Dimensions is different from the number of columns in the
TextField. The number of columns for which the preferred size is to be found can
be specified. If it is not specified, the number of columns in the target TextField
object is taken as the value. The number of columns indicates the number of
characters that can be accommodated within the space, whereas the Dimension
indicates the window dimensions. For example, this method is helpful to resize a
window or a frame containing a TextField or to determine where in the window to
add the text field. It returns the preferred size Dimensions for the text field.

Imports
import java.awt.TextField;

Returns
The preferred Dimensions for a TextField with the number of rows and columns.
The return type is Dimension.

See Also
The minimumSize method of the TextField class; the Dimension class

Example
Refer to Listing 5-1. This method is used to print out the preferred width and
height required when the ChangeText button is selected. This occurs in the action
method in the textPanel class.

setEchoCharacter(char)

ClassName
TextField

Purpose
Sets the specified character as the echo character for the target TextField object.

Syntax
public void setEchoCharacter(char echo_c)

Parameters
echo_c

The character to be echoed to the screen to represent any input to the text field.
Description

In an object of type TextField, you can set an echo character associated with the
field. Whenever you type in a character, only the echo character is displayed in
the field and not the original characters you typed in. This is useful when you
don’t want anyone to see the characters you are entering (for example, in the case
of a password or social security number). This method sets the specific character
for echoing in the target TextField object. After invocation of this method, a call
to echoCharIsSet returns true.

Imports

import java.awt.TextField;
Returns

None.
See Also

The echoCharIsSet and getEchoChar methods of the TextField class
Example

Refer to Listing 5-1. In the constructor of the textPanel class, this method is used
to set an echo character of ‘*’, if it has not been set earlier.

Dialog

Purpose
Creates a window that takes input from the user.

Syntax
public class Dialog extends Window

Description
The Dialog provides a pop-up window which takes input from the user. It must be
bound to a Frame on construction. The default layout for a Dialog window is
BorderLayout. The dialog window can be made modal, i.e., users are prevented
from performing anything on other windows until they close the dialog. A dialog
can also be non-modal. You can provide the option of resizing the window if
needed. It can have a title and/or a border associated with it. Dialog subclasses the
Window class. It helps in establishing communication between the user and the
application. Figure 5-11 illustrates the inheritance relationship of the Dialog class.

PackageName
java.awt

Imports
import java.awt.Dialog;

Constructors
public Dialog(Frame parent, boolean modal)
public Dialog(Frame parent, String title, boolean modal)

Parameters
parent

The parent frame to which the dialog is bound.
title

The title of the Dialog window.
modal

Boolean value indicating whether you want the Dialog to be modal or not.
Example

The dialogDemo class implemented in the following example, Listing 5-2
illustrates the use of Dialog and FileDialog classes and their member methods.
The SaveDialog class subclasses the Dialog class and is used to indicate that the
Save function is not implemented. Figure 5-12 shows the resultant dialogDemo
window.

Figure 5-11 Class diagram of the Dialog class

Figure 5-12 The dialogDemo window

Listing 5-2 dialogDemo.java: Progam demonstrating the use of methods in Dialog and
FileDialog classes

import java.awt.*;
import java.io.*;

/**
 file name: dialogDemo.java
 classes: dialogDemo
 JavaFilenameFilter
 QuitDialog
 Purpose: Illustration of classes Dialog and FileDialog
*/

public class dialogDemo extends Frame {

 MenuBar mbar;
 Menu f_menu; // to demostrate dialog and file dialog

 public dialogDemo() {

 f_menu = new Menu(“File”);
 f_menu.add(“Open”);
 f_menu.add(“Save”);
 f_menu.add(“Quit”);

 mbar = new MenuBar();
 mbar.add(f_menu);
 setMenuBar(mbar);
 pack();
 show();

 }

 public boolean action(Event evt, Object arg) {

 if (evt.target instanceof MenuItem) {
 if (“Open".equals(arg)) {
 System.out.println(“ File Open called ”);

 // usage of FileDialog
 FileDialog fd = new FileDialog(this, "File Window”);
 fd.setFilenameFilter(new JavaFilter());
 // set the default directory to C: in windows
95

 String dir = new String(“C:”);
 // in case of Solaris set it to /opt
 // String dir = new String(“/opt”);

 fd.setDirectory(dir);
 fd.setFile(“java”);
 fd.show();
 System.out.println(“ file is " + fd.getFile());
 System.out.println(“ Dir is " + fd.getDirectory());
 FilenameFilter f_f = fd.getFilenameFilter();
 System.out.print(“ mode is ”);
 if (fd.getMode()== FileDialog.LOAD)
 System.out.println(“ LOAD ”);
 else if (fd.getMode() == FileDialog.SAVE)
 System.out.println(“ SAVE ”);
 }
 if (“Save".equals(arg)) {
 // usage of dialog
 SaveDialog dial = new SaveDialog(this,"save not
implemented”);
 dial.pack();
 System.out.println(“ Title of the dialog is “ + dial
.getTitle());
 dial.resize(200,100);
 if (dial.isResizable())
 System.out.println(“ Default is resizable”);
 dial.setResizable(false);
 dial.show();
 }
 if (“Quit".equals(arg)) {
 System.exit(0);
 return true;
 }

 }
 return true;
 }

 public static void main(String args[]) {
 dialogDemo dial = new dialogDemo();
 dial.setTitle(“Dialogs Demo”);

 dial.pack();
 dial.show();
 }
}

// SaveDialog subclasses Dialog class

class SaveDialog extends Dialog {

 String str;
 public SaveDialog(Frame parent, String s){

 super(parent,false);
 str = s;
 setBackground(Color.gray);

 setLayout(new BorderLayout());
 setTitle(“Save Dialog”);
 Panel p = new Panel();
 p.add(new Button(“OK”));
 add(“South",p);
 System.out.print(“ I am ”);
 if (!this.isModal())
 System.out.println(“ NOT ”);
 System.out.println(“ modal”);

 }

 public boolean action(Event evt, Object arg) {

 if (“OK".equals(arg)) {
 dispose();
 return true;
 }
 return false;
 }

 public void paint(Graphics g){
 g.setColor(Color.white);
 g.drawString(str, 50,20);
 }
}

// class implementing the FilenameFilter interface

class JavaFilter implements FilenameFilter {

 String suffix;
 public JavaFilter() {
 suffix = ".java";
 System.out.println(“ JavaFilter created ”);
 }

 public boolean accept(File dir, String name) {
 String file = dir.getName();
 if ((file.substring(file.length() - 5,
file.length())).equals(suffix)){

 System.out.println(“ suffix equals java ”);
 return true;
 } else {
 System.out.println(“ suffix not .java”);
 return false;
 }
 }
}

addNotify()

ClassName
Dialog

Purpose
This method creates a peer of the target Dialog object.

Syntax
public synchronized void addNotify()

Parameters
None.

Description
An instance of the DialogPeer is created as a peer for the target Dialog object.
Using the peer you can change the appearance of the Dialog window without
modifying its functionality. Required if you are writing your own AWT.

Imports
import java.awt.Dialog;

Returns
None.

See Also
The DialogPeer class

Example
Refer to Chapter 9 describing the peers and interface for details.

getTitle()

ClassName
Dialog

Purpose
Obtains the title of the Dialog window, if it has already been set.

Syntax
public String getTitle()

Parameters
None.

Description
A Dialog window can be identified by its title. This title appears at the top frame
border of the dialog window. A Dialog can also be constructed without any title.
This method returns the title of the target Dialog object if it has been set.

Imports
import java.awt.Dialog;

Returns
The title of the Dialog window, if set earlier. The return type is String.

See Also
The setTitle method of the Dialog class

Example
Refer to Listing 5-2. The title of the SaveDialog object is printed to the screen
using this method.

isModal()

ClassName
Dialog

Purpose
The boolean value indicating whether or not the target Dialog window is modal is
returned.

Syntax
public boolean isModal()

Parameters
None.

Description
A Dialog window can be modal. This is specified in its constructor. If a dialog
window is modal, the user is prevented from performing any action on the parent
frame when the Dialog window pops up. The user can work on the parent frame
only after the dialog window is closed. This is helpful to convey occurrence of
fatal errors in the application or when input is necessary from the user to perform
the next step in the application. This method returns true if the Dialog window is
modal; false if the window is not modal.

Imports
import java.awt.Dialog;

Returns
Boolean value of true is returned if the target Dialog object is modal; value of
false is returned if the target Dialog object is non-modal.

See Also
Constructors of the Dialog class

Example
Refer to Listing 5-2. This method is used to print whether or not the SaveDialog is
modal.

isResizable()

ClassName
Dialog

Purpose
Returns the boolean value indicating whether the target Dialog window is
resizable.

Syntax
public boolean isResizable()

Parameters
None.

Description
A Dialog window can be made resizable by the user. Using the setResizable
method of the Dialog class, a Dialog object is made resizable or nonresizable. The
default is resizable. This method returns true if the target Dialog object is
resizable; false otherwise.

Imports
import java.awt.Dialog;

Returns
Boolean value of true is returned if the target Dialog object is resizable; false if
the target Dialog object is not resizable.

See Also
The setResizable method of the Dialog class

Example
Refer to the example program in Listing 5-2. The SaveDialog object is verified as
being resizeable by default using this method.

paramString()

ClassName
Dialog

Purpose
Obtains the parameter String of the target Dialog object.

Syntax
protected String paramString()

Parameters
None.

Description
Returns the String representation of the target Dialog object containing the
parameters Frame, title, and value indicating whether it is modal. This method is
protected and hence, can be used only by classes within the java.awt package.
This method overrides the paramString method of the Container class.

Imports
import java.awt.Dialog;

Returns
The parameter string of type String.

See Also
The paramString method of the Container class; the Dialog class

Example
Use this method similar to the example given for the paramString method of the
TextArea class.

setResizable(boolean)

ClassName
Dialog

Purpose
Allows the boolean value indicating whether the target Dialog window is
resizable to be set.

Syntax
public void setResizable(boolean ok2resize)

Parameters
ok2resize

The boolean value indicating whether you want the Dialog window to be
resizable. True indicates that the Dialog window should be resizable. False
indicates that the Dialog window should not be resizable.

Description
A Dialog window can be made resizable or prevented from being resized by the
user by using this method. The default is resizable. The boolean value indicating
whether or not a Dialog window is resizable can be found using the isResizable
method in the Dialog class.

Imports
import java.awt.Dialog;

Returns
None.

See Also
The isResizable method of the Dialog class

Example
Refer to the example in Listing 5-2. In the action method in the dialogDemo class,
the SaveDialog is set to be nonresizable using this method.

setTitle(String)

ClassName
Dialog

Purpose
The title of the Dialog window is set to the specified string value using this
method.

Syntax
public void setTitle(String title)

Parameters
title

A string value which you want to be set as the title of the target Dialog object.
Description

A Dialog window can be identified by its title. This title appears at the top frame
border of the dialog window. A Dialog can be constructed without any title also.
This method can be used to set a title, if one has been set during construction, or
to rename a Dialog window. The getTitle method in the Dialog class is used to
obtain the title if it has been set.

Imports
import java.awt.Dialog;

Returns
None.

See Also
The getTitle method of the Dialog class

Example
Refer to the example program in Listing 5-2. The title of the SaveDialog is set to
“Save Dialog” using this method in the constructor of the class SaveDialog.

FileDialog

Purpose
A modal Dialog window displaying a file selection dialog.

Syntax
public class FileDialog extends Dialog

Description
The FileDialog provides a pop-up window which helps the user select a file.
FileDialog window is a modal window; hence, the user cannot perform any action
on other windows until this FileDialog window is closed. The window is disposed
of once the user selects a file or cancels the selection. A FileDialog window has to
be bound to a frame parent. The frame parent is found if this FileDialog object is
declared a member of a subclass of Frame. Alternatively, you can look back in the
tree hierarchy until you find a parent of type Frame. A FileDialog can be
constructed in either LOAD or SAVE mode. This characteristic can be specified
during construction. The public variable members of this class, LOAD and
SAVE, are used to set the mode. After the user closes the FileDialog window by
selecting a file, the selection is available within the object instance and can be
obtained by using the getFile method of class FileDialog. Figure 5-13 illustrates
the inheritance relationship of class FileDialog.

PackageName
java.awt

Imports
import java.awt.FileDialog;

Constructors
public FileDialog(Frame parent, String title)
public FileDialog(Frame parent, String title, int mode)

Parameters
parent

The parent frame to which the FileDialog is bound.
title

The title of the FileDialog window.
mode

Boolean value indicating whether the FileDialog should be in SAVE or LOAD
mode.

Variables
public final static int LOAD—used to set the FileDialog to load mode as the
selected file is to be loaded.
public final static int SAVE—used to set the FileDialog to save mode as the
selected file is to be saved.

Example
The dialogDemo class in Listing 5-2 uses the FileDialog class to pop up a file
dialog window for selecting a file using this class. This happens when Open is
selected from the File menu in the UI generated by the listing.

Figure 5-13 Class diagram of the FileDialog class

addNotify()

ClassName
FileDialog

Purpose
This method creates a peer of the target FileDialog object.

Syntax
public synchronized void addNotify()

Parameters
None.

Description
An instance of the FileDialogPeer is created as a peer for the target FileDialog
object. Using the peer, you can change the appearance of the FileDialog window
without modifying its functionality. This method is required if you are writing
your own AWT. It overrides the addNotify method in the Dialog class.

Imports
import java.awt.FileDialog;

Returns
None.

See Also
The FileDialogPeer clas

Example
Refer to Chapter 9 describing the peers and interface for details.

getDirectory()

ClassName
FileDialog

Purpose
Obtains the directory of the FileDialog.

Syntax
public String getDirectory()

Parameters
None.

Description
This method gets the directory of the file dialog window. A FileDialog has a
directory, a file, and a filename filter associated with it. The default directory is
the directory where you execute the program. You can change the initial directory
of the FileDialog by using the setDirectory method.

Imports

import java.awt.FileDialog;
Returns

The directory of the FileDialog window is returned. Return type is String.
See Also

The setDirectory method of the FileDialog class
Example

Refer to the example program in Listing 5-2. The directory selected is printed to
the screen after the user closes the file dialog window that pops up when Open is
selected in the File menu.

getFile()

ClassName
FileDialog

Purpose
Obtains the name of the selected file using the FileDialog.

Syntax
public String getFile()

Parameters
None.

Description
This method gets the selected file name using the file dialog window. A
FileDialog has a directory, a file, and a filename filter associated with it. By
selecting a series of the components from the file dialog window, a user finally
selects a file or cancels the selection operation. After the window is closed, this
method can be used to obtain the name of the selected file. The String returned by
this method denotes the file name. If the user has canceled the selection, this
method returns a null String.

Imports
import java.awt.FileDialog;

Returns
The name of the file selected by the user using the FileDialog window, or null if
the selection has been canceled. Return type is String.

See Also
The setFile method of the FileDialog class

Example
Refer to the example program in Listing 5-2. The selected file name is printed to
the screen after the user closes the file dialog window that pops up when Open is
selected in the File menu.

getFilenameFilter()

ClassName
FileDialog

Purpose
Obtains the selected filter using the FileDialog.

Syntax
public FilenameFilter getFilenameFilter()

Parameters
None.

Description
This method gets the filename filter of the FileDialog window. A FileDialog has a
directory, a file, and a filename filter associated with it. You can implement the
FilenameFilter interface in your class and set the filter of a FileDialog object to it.
Invoking this method on a FileDialog object returns the filter to which the
FileDialog is set.

Imports
import java.awt.FileDialog;

Returns
The filename filter of the FileDialog window. Return type is FilenameFilter.

See Also
The setFilenameFilter method of the FileDialog class; the java.io.FilenameFilter
interface

Example
Refer to the example program in Listing 5-2. The string form of FilenameFilter
that is set in the file dialog, is printed to the screen after the user closes the file
dialog window which pops up when Open is selected in the File menu.

getMode()

ClassName
FileDialog

Purpose
Returns the mode of the FileDialog window. It can be either LOAD or SAVE
mode.

Syntax
“public int getMode()

Parameters
None.

Description
A FileDialog can be constructed in either LOAD or SAVE mode. This
characteristic can be specified during construction. The public variable members
of this class, LOAD and SAVE, are used to compare the mode. This method is
used to determine the mode in which a FileDialog window was opened.

Imports
import java.awt.FileDialog;

Returns
The mode in which the target FileDialog object was created. Return type is int
and that value can be compared with the LOAD and SAVE variables of
FileDialog class.

See Also
Constructors in the FileDialog class

Example
Refer to the example program in Listing 5-2. The mode in which the file dialog
window was opened is printed to the screen after the user closes the file dialog
window that pops up when Open is selected in the File menu.

paramString()

ClassName
FileDialog

Purpose
Obtains the parameter String of the target FileDialog object.

Syntax
protected String paramString()

Parameters
None.

Description
This method returns the String representation of the target FileDialog object
containing the parameters file, mode, and directory. This method is protected and
hence, can be used only by the classes within the java.awt package. This method
overrides the paramString method in the Dialog class.

Imports
import java.awt.FileDialog;

Returns
The parameter string of type String.

See Also
The paramString method of the Dialog class; the FileDialog class

Example
Use this method similar to the example given for the paramString method in the
TextArea class.

setDirectory(String)

ClassName
FileDialog

Purpose
Sets the specified directory of the FileDialog.

Syntax
public void setDirectory(String dir)

Parameters
dir

Directory name to be set for the FileDialog window.
Description

This method sets the directory of the file dialog window to the specified directory
name. A FileDialog has a directory, a file, and a filename filter associated with it.

The directory of a FileDialog object can be obtained using the getDirectory
method.

Imports
import java.awt.FileDialog;

Returns
None.

See Also
The getDirectory method of the FileDialog class

Example
Refer to the example program in Listing 5-2. The directory is set to “C:” in
Windows 95. It is set to /opt (to be uncommented in code) in Solaris.

setFile()

ClassName
FileDialog

Purpose
Sets the file for the target FileDialog object to the specified file name.

Syntax
public void setFile(String file)

Parameters
file

Name of the specified file, which is to be set as the file for the dialog window.
Description

This method sets the specified file name for the target FileDialog window. A
FileDialog has a directory, a file, and a filename filter associated with it. A user,
by a series of selections from the components of the file dialog window, finally
selects a file or cancels the selection operation. After the window is closed, the
selected filename is available as a member of the file dialog window and can be
accessed using the getFile method.

Imports
import java.awt.FileDialog;

Returns
None.

See Also
The getFile method of the FileDialog class

Example
Refer to the example program in Listing 5-2. The file is set to “java” in the action
method if Open is selected from the menu.

setFilenameFilter(FilenameFilter)

ClassName
FileDialog

Purpose
Sets the specified filter for the target FileDialog object.

Syntax
public void setFilenameFilter(FilenameFilter filter)

Parameters
filter

The specified FilenameFilter to be set to the target FileDialog window.
Description

This method sets the filename filter of the FileDialog window. A FileDialog has a
directory, a file, and a filename filter associated with it. The FileNameFilter
object assists in masking the directory with the specified string mask. Only files
that are accepted by the filter will form the available selection among all files in
that directory.

Imports
import java.awt.FileDialog;

Returns
None.

See Also
The getFilenameFilter method of the FileDialog class

Example
Refer to the example program in Listing 5-2. FilenameFilter is set to an instance
of JavaFilter.

List

Purpose
A component that provides a scrolling list of text items from which the user can
select one or many items.

Syntax
public class List extends Component

Description
List provides a selection mechanism that allows users to select from an unlimited
number of choices. The choices are provided as a scrolling list of items. Selection
among limited numbers of choices is provided using Menus, Choice, and
Checkboxes which are discussed in Chapter 6. A List can be set such that it
allows either a single or multiple selection. An event gets posted on the selection
of item(s) and appropriate event handling routines are used to take the necessary
action. You have to write your own event handler to handle the LIST_SELECT
and LIST_DESELECT events that are posted when items are selected or
deselected, respectively. Figure 5-14 illustrates the inheritance relationship of the
List class.

PackageName
java.awt

Imports
import java.awt.List;

Constructors
public List()
public List(int visible_rows, boolean multipleOk)

Parameters
visible_rows

The number of rows of visible lines in the List.
multipleOk

Boolean value that specifies whether multiple selection is allowed.
Example

The viewList class implemented in the following example, Listing 5-3, uses the
class List to demonstrate the methods in List. Figure 5-15 shows the window that
results.

Figure 5-14 Class diagram of the List class

Figure 5-15 viewList window created by executing Listing 5-3

Listing 5-3 viewList.java: Demonstrating the usage of methods of the List class

import java.awt.*;
import java.io.*;

/**
 Filename: viewList.java
 classes: viewList
 Purpose: demonstrating the usage of List class and its methods
*/

class viewList extends Frame {
 List list;
 Button cls;
 int selected;
 TextField txt_f;

public viewList() {

 list = new List(3,false);
 // three rows; multiple selection disabled
 add(“North",list);
 setTitle(“List Demo”);
 Panel f_p = new Panel();
 f_p.setLayout(new FlowLayout());
 cls = new Button(“Clear”);
 f_p.add(cls);
 f_p.add(new Button(“Select2”));
 f_p.add(new Button(“Delete”));

 add(“Center",f_p);
 Panel t_p = new Panel();
 txt_f = new TextField(“Standby",10);
 t_p.add(txt_f);
 t_p.add(new Button(“Replace”));
 add(“South",t_p);
 list.addItem(“One”);
 list.addItem(“Two”);
 list.addItem(“Three”);
 list.addItem(“Five”);
 list.addItem(“Four",3);
 int count = list.countItems();
 System.out.println(“count is " + count);
 list.addItem(“Six",count);
 if (!list.allowsMultipleSelections()) {
 list.setMultipleSelections(true);
 }

 selected = 0;
 pack();
 show();
 System.out.println(“ number of visible items is "
 + list.getRows());
 System.out.println(“Min size of list "
 + list.minimumSize().height);
 System.out.println(“Min size with 20 rows: "
 + list.minimumSize(20).height);
 System.out.println(“Preferred size of list "
 + list.preferredSize().height);
 System.out.println(“Preferred size with 20 rows: "
 + list.preferredSize(20).height);
 }

 public boolean handleEvent(Event evt) {

 if (evt.id == Event.LIST_SELECT) {
 selected++;
 System.out.println(“ List items selected are:”);
 String[] items = list.getSelectedItems();
 int[] indexes = list.getSelectedIndexes();
 System.out.println(“ number of visible items is "
 + list.getRows());
 try {
 for (int i =0;items[i]!=null;i++) {
 System.out.print(items[i]);
 if (list.isSelected(indexes[i])) {
 System.out.println(“ index is " + indexes[i]);
 }
 System.out.println(“ visible index is "
 + list.getVisibleIndex());
 if (list.getVisibleIndex()!=0)
 list.makeVisible(0);

 }
} catch (ArrayIndexOutOfBoundsException ae) {}
 // try selecting fourth item at index 3
 if (list.isSelected(3)) {

 list.deselect(3);
 selected--;
 System.out.println(“ Sorry! Item temporarily
 not available”);
 }
 }
 if (evt.id == Event.LIST_DESELECT) {
 selected--;
 System.out.println(“ List items selected are:”);
 String[] items = list.getSelectedItems();
 int i=0;
 try {
 while (items[i]!=null) {
 System.out.println(items[i++]);
 }
 } catch (ArrayIndexOutOfBoundsException ae) {}

 }
 if (evt.id == Event.ACTION_EVENT){

 if (evt.target instanceof Button) {
 Button sel = (Button)evt.target;
 if (sel.getLabel().equals(“Clear”)) {
 list.clear();
 selected =0;
 }
 if (sel.getLabel().equals(“Delete”)) {
 selected--;
 System.out.println(list.getSelectedItem() +
 " is deleted”);
 list.delItem(list.getSelectedIndex());
 // list.delItems(1,3);
 }
 if (sel.getLabel().equals(“Select2”)) {
 list.select(1);
 if (list.allowsMultipleSelections())
 selected++;
 else selected = 1;
 System.out.println(“ List items selected are:”);

 String[] items = list.getSelectedItems();
 // System.out.println(list.getSelectedItem());
 int i=0;
 try {

 while (i<selected) {
 System.out.println(items[i++]);
 }
 } catch (ArrayIndexOutOfBoundsException ae) {
 System.out.println(“ exception”);}
 }
 if (sel.getLabel().equals(“Replace”)) {
 int tmp = list.getSelectedIndex();
 System.out.println(list.getItem(tmp) +
 "is replaced now ”);
 list.replaceItem(txt_f.getText(),tmp);
 }

 }
 }
 return true;

}

 public static void main(String args[]) {
 viewList vl = new viewList();
 vl.setTitle(“List Demo”);
 vl.pack();
 vl.show();
 }
}

addItem(String), addItem(String, int)

ClassName
List

Purpose
An item is added to the scrolling list. If an index is specified, the item is added at
that index of the list; otherwise, it is added to the end of the scrolling list.

Syntax
public synchronized void addItem(String item)
public synchronized void addItem(String item, int index)

Parameters
item

The String representing the item to be added to the List.
index

The position in the list at which to insert the specified item.
Description

This method adds an item to the list of options in this List. The item gets added to
the end of the list if the index is not specified. While specifying the index you
should note that the index starts at zero. So the first item has an index value of
zero, second item has index value of one, and so on. This method is a
synchronized method, so at a given instant only one Thread can add an item when
multiple Threads are trying to add items to the target List object.

Import
import java.awt.List;

Returns
None.

See Also
The delItem(int) and delItems(int, int) methods of the List class

Example
Refer to the Listing 5-3. Items are added using this method in the constructor.

addNotify()

ClassName
List

Purpose
This method creates a peer of the target List object.

Syntax
public synchronized void addNotify()

Parameters
None.

Description
An instance of the ListPeer is created as a peer for the target List object. Using the
peer, you can change the appearance of the List without modifying its
functionality. This method is required if you are writing your own AWT.

Imports
import java.awt.List;

Returns
None.

See Also
The ListPeer class

Example
Refer to Chapter 9 describing the peers and interface for details.

allowsMultipleSelections()

ClassName
List

Purpose
Determines whether multiple selection is allowed in the target List object.

Syntax
public boolean allowsMultipleSelections()

Parameters
None.

Description
You can specify a List to allow multiple selections or only single
selectionaccording to the usage of the List object. This method checks tosee if
thetarget List object allows multiple selection. You can specify whether you want
this List to allow multiple selection by using the setMultipleSelections method.

Imports
import java.awt.List;

Returns
If the target List object allows multiple selection, this method returns true. It
returns false if the List does not allow multiple selections.

See Also
The setMultipleSelections method of the List class

Example

Refer to Listing 5-3. This method is used to allow multiple selections in the
constrcutor, if that has not been allowed earlier. The verification is done using this
method.

clear()

ClassName
List

Purpose
This method clears the list, i.e., it deletes all the items in the List.

Syntax
public void clear()

Parameters
None.

Description
All the items in a List object can be removed by making a single call to this
method.

Imports
import java.awt.List;

Returns
None.

See Also
The delItem and delItems methods

Example
Refer to Listing 5-3. When the Clear button is pressed, the event handler clears
the list using this method.

countItems()

ClassName
List

Purpose
Obtains the number of items in the List.

Syntax
public int countItems()

Parameters
None.

Description
The method counts the number of items in the List. The count is automatically
increased when a new item is added. It is also the maximum index in this List.

Imports
import java.awt.List;

Returns
The number of items in the List at a given instance. Return type is int.

See Also
The getItem() method of the List class

Example
Refer to Listing 5-3. The number of items in the list is printed to the screen using
this method.

delItem(int), delItems(int, int)

ClassName
List

Purpose
Remove an item at the specified index from the List, or remove multiple items
between the specified start and end positions from the scrolling list.

Syntax
public synchronized void delItem(int index)
public synchronized void delItems(int start, int end)

Parameters
index

The index position, in the List, of the item to be deleted.
start

The index of the first item in the selected sequence of items to be deleted.
end

The index of the last item in the selected sequence of items to be deleted.
Description

This method deletes an item at the specified index, if an index is specified. If both
the start and end indexes are specified, all the items between the given indexes are
deleted from the list. The value of start index should not be more than the end
index. When specifying the index you should note that the index starts at zero. So
the first item has an index value of zero, the second item has an index value of
one, and so on. This method is a synchronized method. At any given instance,
only one Thread can delete item(s) from the List when multiple Threads are trying
to access the target List object.

Imports
import java.awt.List;

Returns
None

See Also
The addItem(String) and addItems(String, int) methods of the List class

Example
Refer to Listing 5-3. When the Delete button is pressed after selecting an item in
the list, this method is used to delete the item.

deselect(int)

ClassName
List

Purpose
Deselects the item at the specified index in the List.

Syntax
public void deselect(int index)

Parameters
index

The index of the item to be deselected in the target List object.
Description

The method deselects an item that has been selected earlier. The index of the item
is specified and the value of the index should not be more than the number of
items in the list. If it is so, an IndexOutofBoundsException is issued at runtime. If
you try to deselect a item which is not selected earlier, then there is no effect from
this method.

Imports
import java.awt.List;

Returns
None.

See Also
The select(int) method of the List class

Example
Refer to Listing 5-3. Try selecting the fourth item in the list and observe what
happens. Selection of the fourth item results in that item getting deselected
immediately.

getItem(int)

ClassName
List

Purpose
Returns the item at the specified index in the List.

Syntax
public String getItem(int index)

Parameters
index

The index of the item to be retrieved from the target List object.
Description

The method gets the item at the specified index in the target List object. The index
starts from 0. Hence, the index of the first item is 0, the second item is 1, and so
on. If the specified index is greater than or equal to the number of items,
ArrayOutOfBounds exception is issued at runtime.

Imports
import java.awt.List;

Returns
The item at the specified location in its String form is returned.

See Also
The countItems() method of the List class

Example

Refer to Listing 5-3. When Replace is pressed after selecting an item, this method
is used to print the item replaced.

getRows()

ClassName
List

Purpose
Obtains the number of visible lines in the target List object.

Syntax
public int getRows()

Parameters
None.

Description
This method gets the number of lines visible in the target List object.

Imports
import java.awt.List;

Returns
The number of rows visible in the List. Return type is int.

Example
Refer to Listing 5-3. Number of visible items in the list is determined inside the
constructor using this method.

getSelectedIndex(), getSelectedIndexes()

ClassName
List

Purpose
The selected index is returned in the case of single selection. An array of selected
index values are returned in the case of multiple selection.

Syntax
public synchronized int getSelectedIndex()
public synchronized int[] getSelectedIndexes()

Parameters
None.

Description
The method gets the index(es) of the selected item(s). Invocation of the
getSelectedIndex() method, after selecting multiple items, will result in an
ArrayIndexOutofBoundsException being issued. Invoking the
getSelectedIndexes() method on a single selection List will retrieve the single
selected item. If there is no element selected, both methods will return a value of -
1.

Imports
import java.awt.List;

Returns
The getSelectedIndex() method returns the index of the selected iteminasingle
selection List object. The return type is int. The getSelectedIndexes() method
returns an integer array containing the setofselected indexes.

See Also
The select, deselect, and isSelected methods of the List class

Example
Refer to Listing 5-3. The getSelectedIndexes method is used in the program as it
is a multiple selection list. It is used to print the list of selected items.

getSelectedItem(), getSelectedItems()

ClassName
List

Purpose
In case of single selection, returns the selected item. In the case of multiple
selections, it returns an array of selected items.

Syntax
public synchronized String getSelectedItem()
public synchronized String[] getSelectedItems()

Parameters
None.

Description
The method gets the selected item(s). Invocation of getSelectedItem() method on
multiple selection List will effect in a runtime exception to be issued. Invoking
the getSelectedItems() method on a single selection List will return the selected
item. If there is no element selected, both methods will return null.

Imports
import java.awt.List;

Returns
The getSelectedItem() method returns the String form of the selection item in a
single selection List object. The return type is String. The getSelectedItems()
method returns a String array containing the set of selected items.

See Also
The select, deselect, and isSelected methods of the List class

Example
Refer to Listing 5-3. The getSelectedItems method is used in the program, as it is
a multiple selection list. It is used to print the list of selected items.

getVisibleIndex()

ClassName
List

Purpose
This method returns the index that was last made visible by the makeVisible
method in the List class. Default is -1.

Syntax
public int getVisibleIndex()

Parameters
None.

Description
The method gets the index of the item that was last forcibly made visible in the
List. Though a List object allows users to select from an unlimited number of
items, it can display only a part of them. Users have to scroll up and down to view
other items. The makeVisible method is used to force a previously invisible item
visible. This method returns the index of the item thus made visible. If
makeVisible has not been called earlier, invoking this method will return -1.

Imports
import java.awt.List;

Returns
Index of the last item that was forcibly made visible using the makeVisible
method.

See Also
The makeVisible method of the List class

Example
Refer to Listing 5-3. The visible index is printed out during LIST_SELECT event
occurrence.

isSelected(int)

ClassName
List

Purpose
The method checks to see if the item at the specified index is selected.

Syntax
public boolean isSelected(int index)

Parameters
index

The index of the item that is verified if selected.
Description

The method checks to see if the item at the specified index is selected. If it is
selected, this method returns true. If the item is not selected, the method returns
false. The index starts from 0. Hence, the index of the first item is 0, the second
item is 1, and so on. If the specified index is greater than or equal to the number
of items, an ArrayOutOfBoundsException is issued at runtime.

Imports
import java.awt.List;

Returns
A boolean value indicating whether the item at the specified index has been
selected.

See Also
The select and deselect methods of List class

Example
Refer to Listing 5-3. This method is used to determine if the item at index 3 (the
fourth item) is selected and if so, it deselects it.

makeVisible(int)

ClassName
List

Purpose
The item at the specified index is forcibly made visible in the List.

Syntax
public void makeVisible(int index)

Parameters
index

The index of the item to be made visible in the target List object.
Description

The method forces the item at the specified index in the target List object to be
visible. The index starts at 0. Hence, the index of the first item is 0, the second
item is 1, and so on. If the specified index is greater than or equal to the number
of items, an ArrayOutOfBoundsException is issued at runtime.

Imports
import java.awt.List;

Returns
None.

See Also
The getVisibleIndex() method of the List class

Example
Refer to Listing 5-3. Whatever item you select from the list, the list is reset to be
visible from the first item by using this method.

minimumSize(int), minimumSize()

ClassName
List

Purpose
Obtains the minimum size Dimension of the target List object if no parameter is
specified. If a parameter is specified, then the minimum size Dimensions for the
specified number of rows is returned.

Syntax
public Dimension minimumSize(int rows)
public Dimension minimumSize()

Parameters
rows

The specified number of rows for which minimum size is to be found.

Description
The height and width of the window dimension are different from the number of
rows of a List. If the parameter is not specified, the number of rows of the target
List object is taken as the value. The number of rows indicates the number of
items to be accommodated within the space, whereas the Dimension indicates the
window dimensions. For example, this method is helpful to resize a window or a
frame containing a List or to determine where in the window to add the List
component.

Imports
import java.awt.List;

Returns
The minimum Dimensions for a List with the number of rows. Return type is
Dimension.

See Also
The preferredSize method of the List class

Example
Refer to Listing 5-3. The minimum size details are obtained and printed in the
constructor using these methods.

paramString()

ClassName
List

Purpose
Obtains the parameter String of the target List object.

Syntax
protected String paramString()

Parameters
None.

Description
Obtains the String representation of the target List object containing the selected
item. This method is protected and hence, can be used only by classes within the
java.awt package. This method overrides the paramString method of the
Component class.

Imports
import java.awt.List;

Returns
The parameter string of type String.

See Also
The paramString method of the Component class,; the List class

Example
The following code uses paramString by subclassing the List class.

package java.awt;
import java.awt.List;

class myList extends List {
 String myStringForm;

 public myList() {
 super();
 }
 public String paramString() {
 return super.paramString();
 }
 public static void main(String[] args) {
 myList lst = new myList();
 lst.getmyStringForm();
 }
}

preferredSize(int), preferredSize()

ClassName
List

Purpose
Obtains the preferred size Dimension of the List if no parameter is specified. If a
parameter is specified, the preferred size Dimension for the specified number of
rows is returned.

Syntax
public Dimension preferredSize(int rows)
public Dimension preferredSize()

Parameters
rows

The specified number of rows for which the preferred size is desired to be found.
Description

The width of window dimension is different from the number of rows in the List.
The number of rows for which the preferred size is to be found is specified. If it is
not specified, the number of rows in the target List object is taken as the value.
The number of rows indicates the number of items of the List that are visible at a
time whereas the Dimension indicates the window dimensions. For example, this
method is helpful to resize a window or a frame containing a List or to determine
where, in the window, to add the list to. It returns the preferred size Dimensions
for the List.

Imports
import java.awt.List;

Returns
The preferred Dimensions for a List with the number of rows. Return type is
Dimension.

See Also
The minimumSize method of the List class; the Dimension class

Example
Refer to Listing 5-3. The preferred size details are obtained and printed in the
constructor using these methods.

removeNotify()

ClassName
List

Purpose
Removes the peer of this List object.

Syntax
public void removeNotify()

Parameters
None.

Description
A List peer is used to change the appearance of your list, without changing its
functionality. This method removes the peer of this component.

Imports
import java.awt.List;

Returns
None.

See Also
The ListPeer class

Example
Refer to Chapter 9 describing Peer interfaces.

replaceItem(String, int)

ClassName
List

Purpose
The specified item replaces the existing item at the specified index in the List.

Syntax
public void replaceItem(String new_item, int index)

Parameters
new_item

The specified item to replace the existing item at the specified position.
index

The index location of the existing item of List where the replacement item is to be
inserted instead of the existing item.

Description
This method replaces the item at the specified index with that specified item,
new_item. The values of the indexes should be less than the number of available
items in the List. If the index value exceeds the number of items, an
IndexOutofBoundsException is issued at Java runtime.

Imports
import java.awt.List;

Returns
None.

See Also
The addItemmethod of the List class

Example

Refer to Listing 5-3. This method is used to replace a selected item when the
Replace button is pressed after selecting an item.

select(int)

ClassName
List

Purpose
Selects the item at the specified index in the List.

Syntax
public void select(int index)

Parameters
index

The index of the item to be selected in the target List object.
Description

The method selects an item at the specified index. The value of the index should
not be more than the number of items in the list. If it is so, an
IndexOutofBoundsException is issued at runtime.

Imports
import java.awt.List;

Returns
None.

See Also
The deselect(int) method of the List class

Example
Refer to Listing 5-3. When the Select2 button is pressed, this method is used to
select the item at location 2 in the list.

setMultipleSelections(boolean)

ClassName
List

Purpose
Makes the necessary changes, depending on the passed boolean value, to the
target List object to either allow or disallow multiple selections.

Syntax
public void setMultipleSelections(boolean multipleOk)

Parameters
multipleOk

If the value of this parameter is true, the List object allows multiple selections; if
false, it allows only single selection.

Description

This method specifies a List to allow multiple selections or only a single
selection. You can check whether the target List object allows multiple selections
by using the allowsMultipleSelection method.

Imports
import java.awt.List;

Returns
None.

See Also
The allowsMultipleSelections method of the List class

Example
Refer to Listing 5-3. In the constructor of viewList, this method sets the list to
multiple selection if it has not been set before.

API Reference Interface Application

The application for this chapter is a basic framework for an API Reference Interface
Application. Using the interface provided in this Java application, users can specify a
class name and obtain information about any selection of methods in the specified class.
They can view the details of any method and optionally can save them in a file.

Basically, this application is like a Help uitlity for Java API classes. You will provide an
interface for users to enter a class name. When they confirm their selection, a list of
methods under the specified class will appear from which users can select any number of
methods from the list. After making their selection from the list, users must confirm their
choices. At this stage, details of the methods will be displayed for quick reference.
Optionally, this information can also be saved to a file. For this chapter project it is
enough to establish the basic framework and provide details of only one class. Populating
the application repository with details of all API classes is up to you; however, if a user
specifies a class whose details are not in the code, the application should inform the user
about the omission.

In summary, components required for this application are as follows.

1. A text field for the user to specify the class name.
2. A button to confirm the class name specified.
3. A scrolling list to display the methods under the specified class enabling the
user to make multiple selection of methods she or he desires.
4. A button to confirm the list of selections.
5. A text area where the method details will be displayed.
6. A button for the user to click when to save the displayed details into a file.

Building the Project

1. First create a class apiReference which subclasses a Frame. It can contain a
text field for the user to enter the class name, a list to display the method names
under the class, a text area to display the method details obtained for the specified

<class, methods> pair. The class also has a member to keep track of number of
method names selected. Enter the following code in a file named
apiReference.java.
import java.awt.*;
import java.io.*;

public class apiReference extends Frame {

 TextField class_name;
 List meth_list;
 TextArea meth_desc;
 int selected;
 /* You will enter more code here */
}
2. Having created a basic framework for the class, you can now write its
constructor to create an instance of the class apiReference. Decide on the classes
you plan to use and the layout of the windowing components. Let the main Frame
be in a BorderLayout. Group the components logically for better managment of
the application frame. Initialize the class members declared in Step 1. Initialize
the class_name member to an instance of TextField with 15 rows and the default
class name Dialog. Create a panel for this text field and a button “ClassOK” to
confirm the class name specified. Enter the following constructor code inside the
class apiReference.
public apiReference() {
 setLayout(new BorderLayout());
 // now the layout of the class is BorderLayout
 selected = 0;
 // number of methods selected till now is zero.
 class_name = new TextField(“Dialog”, 15);

 Panel class_p = new Panel();
 class_p.setLayout(new FlowLayout());
 class_p.add(class_name);
 // adds the text field to the panel
 class_p.add(new Button(“ClassOK”));
 // adds a button to the panel to confirm class name
 add(“South”, class_p);
 //adds the panel, class_p, to the South of the main
Frame.
}
3. The next step is to create a list to display the method names. Let only five rows
be visible in the List. Add a button and the multiple-selection list to a panel and
position the panel at the center of the application’s main frame. Enter the
following code inside the constructor defined in Step 2.
 // inside the apiReference() constructor

 meth_list = new List(5, true);
 / 5 rows and allow multiple selectio
 Panel method_p = new Panel();
 method_p.setLayout(new BorderLayout());

 // add the list to the North of the panel
 method_p.add(“North”, meth_list);

 method_p.add(“South”, new Button(“MethodOK”));
 // adds a button to the South of the panel
 add(“Center”, method_p);
 // add the panel to the center of the frame
4. Now you can create the text area for displaying the method details with a
button to be pressed if the user wants to save the information in a file. Also,
provide a menu “Quit,” which has a menu item “Exit”. When a user selects this,
the application should end and the window should be closed. Enter the following
code inside the apiReference constructor.
// create a text area for method description to appear

 meth_desc = new TextArea(10,15);
 Panel info_p = new Panel();
 info_p.setLayout(new BorderLayout());
 info_p.add(“North”, meth_desc);
 info_p.add(“South”, new Button(“SaveInfo”));
 // a button for saving to a file
 add(“East”, info_p); // add the panel to the east

 // a menu for the user to end the application and
 // dispose the window
 Menu quit = new Menu(“Quit”);
 quit.add(“Exit”);
 MenuBar mbar = new MenuBar();
 mbar.add(quit);
 setMenuBar(mbar);
 pack();
 show();
5. This application will be a stand-alone application, so the following main()
method should be defined inside the apiReference class. Include the method
definition in the class apiReference. After this step you can compile and run the
application using the Java interpreter. This is done by typing “java apiReference”
at the prompt. The interface will appear as shown in Figure 5-16, but the buttons
won’t yet be operative.

Figure 5-16 The interface as it appears after Step 5

public static void main(String[] args) {

 apiReference inf = new apiReference();
 api.setTitle(“Method Details App”);
 api.pack();
 api.show();
 }
6. Now you need to write appropriate event handlers to handle user selections,
deselections, and button presses. When the user selects or deselects an item from
the method list, the value of variable “selected” should be changed to reflect the
choice. When a button is pressed, an event ACTION_EVENT is generated. If it is
the ClassOK button, then the text from the text field should be read. The methods

in the selected class should be displayed in the list. When the user clicks on the
MethodOK button, the details about that method are appended to the text area,
thus displaying the method information. Whereas, if the user clicks on the
SaveInfo button, a FileDialog should pop up enabling the user to specify a file
name in which to save the information. The application should be stopped if a
menu item is selected (there is only one “Exit” menu item). The event handling
routine handleEvent takes care of all the above mentioned events. Include the
following code in the apiReference class.
String classReq; // string to get the class requested

 public boolean handleEvent(Event evt) {

 if (evt.id == Event.LIST_SELECT) {
 // if an item is selected from the list of methods
 selected++;
 return true;
 }

 if (evt.id == Event.LIST_DESELECT) {
 // if an item is deselected from the list of methods
 selected--;
 return true;
 }
 if (evt.id == Event.ACTION_EVENT) {
 // ACTION_EVENT is generated

 if (evt.target instanceof Button) {
 Button click = (Button)evt.target;

 if (click.getLabel().equals(“ClassOK”)) {
 // classOK buttton is pressed

 classReq = class_name.getText();
 displayMethodList(classReq); // method to list the
 methods
 // in List
 return true;
 }
 if (click.getLabel().equals(“MethodOK”)) {
 // MethodOK button is pressed
 String[] methods = meth_list.getSelectedItems();
 // for each of the selected methods, display
 the details
 for (int i=0; i < selected; i++) {
 if (i==0)
 meth_desc.setText(Method_Details(classReq,
 methods[i]));
 else {
 meth_desc.appendText(new String(“\n”));

meth_desc.appendText(Method_Details(classReq,
 methods[i]))
 }
 }
 return true;

 }

 if (click.getLabel().equals(“SaveInfo”)) {
 // if the SaveInfo button is pressed to save file
 FileDialog fd = new FileDialog(this, “File
Window”,
 FileDialog.SAVE);

 fd.show();
 String file_name = fd.getDirectory().trim() +
 fd.getFile().trim();
 System.out.println(“ selected file is “
 + file_name);
 // after getting the filname from FileDialog,
save
 the
 // information on to a file using File I/O

 File file = new File(file_name);
 try{
 DataOutputStream f_out = new
DataOutputStream(new
 BufferedOutputStream (new

FileOutputStream(file_name)));
 System.out.println(“ text is ” +
 meth_desc.getText());
 f_out.writeUTF(meth_desc.getText().trim());
 f_out.flush();
 f_out.close();
 } catch (IOException io){}

 return true;
 }
 }

if (evt.target instanceof MenuItem) {
 // Exit the application if a menuitem is selected
 MenuItem click = (MenuItem)evt.target;
 if (click.getLabel().equals(“Exit”))
 System.exit(0);
 }
}

 return false;
}
7. Now implement the displayMethodList method. Given a class name, Dialog,
all the methods in the class are displayed. If any other class is specified, a dialog
window saying that the class details are not yet available is displayed. Enter the
following method implementation in the apiReference class.
private void displayMethodList(String req_class) {

 if (req_class.equals(“Dialog”)) {
 meth_list.addItem(“addNotify”);
 meth_list.addItem(“getTitle”);
 meth_list.addItem(“isModal”);

 meth_list.addItem(“isResizable”);
 meth_list.addItem(“paramString”);
 meth_list.addItem(“setResizable”);
 meth_list.addItem(“setTitle”);
 }
 else {
 meth_list.clear();
 methodDialog dl = new methodDialog(this, false);
 dl.pack();
 dl.resize(250,100);
 dl.show();
 }
}
8. Next comes the code that implements Method_Details, as called in the
MethodOK branch of button event handling. To save space, the details of each
method are not provided. All you have to do is to supply the detail of each method
as a String and return the string as follows:
public String Method_Details(String class_n, String method) {
 // if the class is not yet defined, pop-up a dialog window
 if (!class_n.equals(“Dialog”))

 return new String(“Sorry! Details of ” + class_n
 + “not available now ;-(”
 else {
 // space savers ; you fill the details
 String details = new String(“ ”);
 String ret = new String(“ Details of ” + method +
 are \n” + details);
 return ret;
 }
}
9. The dialog that pops up is defined as a methodDialog class with an OK button
to close the dialog. Enter the following code which defines the class in the file
apiReference.java. After entering this code, compile and run the application.
Figure 5-17 shows the application in action. In Figure 5-17, the class chosen is
Dialog and the two methods selected are addNotify and isModal. The details of
the methods appear in the text area in the main frame. You can see a file dialog
window that appears in front of the main frame, which shows two files in the
directory named “doc” and the name of the file to which the details are to be
saved is specified as methods.txt.

Figure 5-17 The API Reference Interface Application in action

class methodDialog extends Dialog {
 public methodDialog(Frame parent, boolean modal) {
 super(parent, modal);
 setBackground(Color.gray);
 setTitle(“Method Dialog”);
 Panel ok = new Panel();

 ok.add(new Button(“OK”));
 add(“South”, ok);
 }

 public boolean action(Event evt, Object arg) {

 if (“OK”.equals(arg)) {
 dispose();
 return true;
 }
 return false;
 }
 public void paint(Graphics g) {
 g.setColor(Color.white);
 g.drawString(“Method details NOT available ..sorry!“, 20,
20);
 }
}

How It Works

The API Reference Interface Application illustrates the use of TextArea, TextField,
Dialog, FileDialog, List, and other windowing components. In this application, choices
are confirmed using buttons in the interface. This application will form a very useful on-
line reference for Java APIs.

When the application is started, you get a window with a TextField at the bottom where
you can enter a class name. After you confirm your choice of class name using the
ClassOK button, all the methods that form a part of that class are listed in the list area.
The list area is at the left side of the interface. This list is a Java List object in multiple
selection mode. You can get the details of as many methods of the class as you want, by
selecting the appropriate method name from the list that is displayed. Once you confirm
the list of methods you have selected by clicking on the MethodOK button, the
information about what the method does will appear in the text area on the right side of
the interface. You will note that all it gives right now is a string which says “Details of
methodname are ”. If you look up the implementation of the application, in Step 8, you
have implemented a class named Method_Details. Presently, there is implementation for
only the Dialog class and that is very minimal. You can easily extend this project by
entering details of more classes and details of each method of the class. This way you can
have an on-line API reference for the Java APIs.

After obtaining the method details, you have an option of saving the details to a file for
future reference. This is done by clicking on the Save button. This will bring up a file
selection dialog box in which you can navigate around directories and specify a file
name. On clicking the Save button in the FileDialog window, you effectively save the
details to the file you have selected. During the process of using this application, if the
system encounters a request which is not implemented, a Dialog window pops up to
notify you of the problem.

This application makes effective use of the classes covered in this chapter. By proper
extension of this application, you will not only gain a hands-on experience of this
application’s implementation, but also will know how to go about using the classes in a
real-world application. You can exit from the application by pulling down the Quit menu
that is available in the menu bar.

Part III
Selection And Image Processing Tools

Chapter 6
Choice, Menus, And Checkboxes

The objective of any user-interface is to make it easy for users to provide the input values
that an application needs. Your goal is to provide the best possible combination of
available functionality to make the interface user-friendly. Typing in input values for
each and every parameter in an application is the last thing any user wants to do. Choice,
menus, and checkbox related classes in the Java Development Kit (JDK) provide a
comprehensive set of tools for building windowing applications which allow users to
select inputs and actions easily as the program is running.

Devices, ranging from automated greeting card machines to automated bank tellers, offer
users a sequence of selection options. When you call a company’s customer service, you
invariably listen to a series of messages offering selections like “If you are a Java
programmer, press 1 now. If you are a C++ programmer, press 2 now. If you are a
COBOL programmer please stay on the line and a representative will be with you in a
few hours.” Negotiating the selections can be maddening at times. Imagine someone
whose car has broken down, calling a towing company, making a series of selections, and
finally hearing “If you are in a deep pit press 1. If you are in a shallow pit press 2.”.
Obviously a thoughtfully designed selection interface that’s responsive to its user’s needs
is important to a product’s success.

Depending on the characteristics of an application, you can use menus, menu bars, menu
items, choice buttons, checkboxes, and checkbox groups to develop such an interface.
Java provides the classes Choice, MenuComponent, MenuBar, Menu, MenuItem,
Checkbox, CheckboxGroup, and CheckboxMenuItem to implement these selection
mechanisms in GUIs. Figure 6-1 shows an example window containing components that
use these classes and their member functions.

Figure 6-1 A typical window containing choice, menu, and checkbox buttons

In this chapter, we’ll focus on these selection classes and their methods. As usual, we will
provide class method summaries followed by detailed descriptions of each class,
interface, and method. In the project for this chapter, you’ll create the selection interface
shown in Figure 6-1 with a little additional twist. You will add functionality to the
interface, to display a specified string (or a default string) with a combination of font,
color, and size. Now let’s take a quick look at each of the three types of classes you’ll be
using.

The Choice Class

The Choice class represents a set of pop-up choices in a user-interface. It subclasses the
Component class in the Abstract Window Toolkit in Java. The functionalities of adding
options, selecting an item among the choices, and finding the selected choice in a choice
button are provided as member functions of this class. A choice button is a component
that offers a list of options with the selected item displayed as the title of the button. This
is helpful when there is a relatively large number of options, and one of them must be
selected to provide input to the application. In Figure 6-1, a choice button is used for
selecting the font size. The current selection of 12 is displayed as the title of the choice
button. Only the selected item is displayed as the title of the choice button. The other
items are hidden and become visible only when the user clicks on the button. Figure 6-2
illustrates another use of Choice. Three selections for the size of a pizza—small, medium,
and large—are provided as a choice button. When the user selects Large by clicking on
the button and dragging down to the Large option, it is displayed as the title of the button.

Figure 6-2 Use of a choice button to specify the size of a pizza

Menu-Related Classes

A menu enables you to make choices from a small, fixed set of options. The List class,
which is used to deal with large numbers of choices, is described in Chapter 5. Small
pop-up menus are encapsulated into the Menu class in Java. It pops up a list of menu
items when the user clicks on the menu title. In Figure 6-1, Color, Quit, and Help are
Menu objects contained in a MenuBar. These menus contain instances of the MenuItem
class, which form the list of options in the pull-down menu. Menu and MenuItem are
classes that subclass MenuComponent, so they can be contained in a menu container.
Menu containers are encapsulated in the MenuContainer interface. The classes, Menu and
MenuBar, implement this interface and, hence, they can contain other menu components.
The MenuComponent class in Java represents the super-class of all menu related classes
in Java. Items are added to a menu either using their label or as instances of the
MenuItem class. A menu can also contain submenus of type Menu. Menu items can be
individually enabled or disabled from user selection. A disabled menu item is grayed and
cannot be selected. Figure 6-3 shows a menu titled Appetizer, which contains three

elements: GarlicBread, BreadSticks, and CheeseSticks. The item CheeseSticks is
disabled.

Figure 6-3 An Appetizer menu containing menu items

A menu item can also be a checkbox. Such an item should be an instance of the
CheckboxMenuItem class. A CheckboxMenuItem can be selected, and will remain
selected in the menu, until the user clicks on it again. A menu can contain many
checkbox items, as shown in Figure 6-4. This menu titled Beverage contains the items
Java, Tea, Juice, and Soda. A user can select none of the beverages or any number of
them. A separator can be used to partition the items in a menu logically. In Figure 6-4,
hot drinks are separated from cold drinks.

Figure 6-4 A Beverage menu contains checkboxes as menu items

Just as many menu items can be contained in a menu, many menus can be grouped
together and attached to a frame. The MenuBar class is the container that encapsulates
this behavior in Java. A menu bar appears at the top of the window and is attached to a
Frame object. In Figure 6-5, the menus Beverage, Appetizer, and Info are grouped in a
menu bar. As is customary, the Help menu, or as in this case, the Info menu, occupies the
rightmost position.

Figure 6-5 A menu bar containing three menus

Checkbox Classes

When you want to provide an option where the variable can take only one of two possible
values, you can use a Checkbox. The button labeled Bold in Figure 6-1 is a Checkbox
object which, when selected, will display the text in bold style. Two more checkboxes,
labeled Fun and Simple, are grouped into a CheckboxGroup so that only one of them can
be enabled at any time. A checkbox can have one of the two states, on or off (yes or no).
When the state is on (yes), then the checkbox is selected. When it is not selected, it is in
off (no) state. You can use a checkbox when a variable or input has a binary value. The
Checkbox class in Java represents the checkbox in a windowing context.

Unlike menu or choice items, a checkbox need not have a label; however, depending on
the application, you might want to set the label of a checkbox. Figure 6-6 shows a row of
checkboxes. The user can select none or many of the options provided as checkboxes,
namely: Pepperoni, Sausage, Onions, and Peppers. In the figure, Onions and Peppers
have been selected by the user.

Figure 6-6 Multiple checkboxes provided for selection

A set of checkboxes can be specified as a mutually exclusive group. The CheckboxGroup
class can contain many checkboxes, but only one of them can be “on” at any time.
Selection of one checkbox automatically switches the state of the others. Figure 6-7
shows a checkbox group that contains two checkboxes, Dine-In and Carry-Out, only one
of which can be true at any instant. The Dine-In option is selected in the figure.

Figure 6-7 Two mutually exclusive checkboxes in a checkbox group

Choice, Menu, and Checkbox Summary

Table 6-1 summarizes the classes and interfaces necessary for developing user interfaces
in Java using choice buttons, menus, and checkboxes.

Table 6-1 Class and interface description of choice, menu, and checkbox

Class/Interface name Description

Choice Represents a pop-up menu of choices in a user interface.

MenuComponent Represents the super-class of all menu related
components.

MenuBar Encapsulates a menu bar bound to an application’s
frame.

Menu Forms a component of a menu bar.
MenuItem Represents a choice in a menu as a String item.

MenuContainer A Java interface; a class implementing this interface
forms the super-class of all menu-related container

classes.

Checkbox Encapsulates a user-interface element with a boolean
state.

CheckboxGroup Creates a group of mutually exclusive Checkbox items
such that only one item can be “on” at a time.

CheckboxMenuItem Produces a checkbox to represent a choice in a menu.

Choice

Purpose
Represents a pop-up menu of choices in a user-interface.

Syntax
public class Choice extends Component

Description
Choice is used to implement a pop-up menu of options from which the user can
select only one. The selected item will form the header of the choice. When a user
clicks on the header, a menu of options appears. Users can select one of the
options by dragging down with the mouse till the desired selection is highlighted.
The newly selected option then becomes visible and other available options are
hidden. Figure 6-8 illustrates the inheritance relationship of class Choice.

Figure 6-8 Class diagram of the Choice class

PackageName
java.awt

Imports
import java.awt.Choice;

Constructors
public Choice()

Parameters
None.

Example
The class implemented in the following example, Listing 6-1, uses the class
Choice and all the functions of this class. Enter the following code in a file named
choice.java and compile it. Run it using the Java interpreter. Figure 6-9 shows the
resultant window.

Figure 6-9 Java application demonstrating use of Choice

Listing 6-1 choice.java: Usage of Choice related methods

import java.awt.*;
import java.io.*;

class choice extends Panel {

 Choice myc; // Choice component to appear in the window
public choice() {

 myc = new Choice(); // construct a Choice object
 myc.addItem("First"); // use addItem method to add
 items to the Choice
 myc.addItem("Second");
 myc.addItem("Third");
 myc.addItem("Fourth");

 add("Center", myc); // place it at the center of the
 Panel

 int count = myc.countItems();
 System.out.println(" Number of Items in the Choice =
 " + count);
 System.out.println(" Item at location 2 is " +
 myc.getItem(2));
 System.out.println(" Selected item is at location " +
 myc.getSelectedIndex());
 System.out.println(" Selected item is " +
 myc.getSelectedItem());

 System.out.println(" Going to select 3rd item");
 myc.select(3);
 System.out.println(" Going to select item labeled Fourth ");
 myc.select("Fourth");

}

public static void main(String args[]) throws IOException {

 choice c = new choice();
 Frame f = new Frame("choice demo");
 f.add("Center", c);
 f.pack();
 f.resize(200,300);
 f.show();
}
}

addItem(String)

ClassName
Choice

Purpose
To add an item to the target Choice object.

Syntax
public synchronized void addItem(String item)

Parameters
item

The String representing the item to be added to the Choice.
Description

This method adds an item, with the label passed as parameter, to the list of
options in this Choice. The item is added to the end of the list. This method is
synchronized, so when multiple Threads are trying to add items to the target
Choice object, only one Thread can add an item at a given instant.

Imports
import java.awt.Choice;

Returns
None.

See Also
The Choice class

Example
Refer to Listing 6-1, defining the class choice in Choice class description.

addNotify()

ClassName
Choice

Purpose
This method creates a peer for the Choice. It helps to change the look of the
Choice without changing its behavior.

Syntax
public synchronized void addNotify()

Parameters
None.

Description
This method helps change the look of the Choice without changing its behavior. It
overrides the addNotify() method of class Component. It creates a peer for this
Choice.

Imports
import java.awt.Choice;

Returns
None.

See Also
The java.awt.peer.Choice class; Component class

Example
Refer to the example code, Listing 6-1, defining the class choice in Choice class
description.

countItems()

ClassName
Choice

Purpose
To determine the number of items in the Choice.

Syntax
public int countItems()

Parameters
None.

Description
The method counts the number of items in the Choice. The count is automatically
increased when a new item is added. It is also the maximum index in this Choice.

Imports
import java.awt.Choice;

Returns
Return type is int. It is the number of items in the Choice at a given instance.

See Also
The getItem() method in class Choice

Example
Refer to Listing 6-1, defining the class choice in Choice class description. The
variable count represents the number of items in the choice.

getItem(int)

ClassName
Choice

Purpose
To obtain the item with the specified index.

Syntax
public String getItem(int index)

Parameters
index

The index of the item in the Choice to be retrieved.
Description

This method returns the String that represents the item, at the specified index, in
this Choice. The index starts at 0; hence the index of the first item is 0, second
item is 1 and so on. If the specified index is greater than or equal to the number of
items, an ArrayOutOfBounds exception is thrown at runtime.

Imports

import java.awt.Choice;
Returns

The item at the specified index in its String form.
See Also

The Choice class; method addItem() in class Choice
Example

Refer to Listing 6-1, defining the class choice in Choice class description. The
item Third, located at index two, is obtained using this method.

getSelectedIndex()

ClassName
Choice

Purpose
To obtain the index of the selected item in the Choice.

Syntax
public int getSelectedIndex()

Parameters
None.

Description
When an item in the Choice is selected, it is displayed as the title of the menu.
Other items are not visible until the user pulls down this Choice menu to view
other items. Effectively, this method returns the index of the item that appears as
the title of this Choice. The index starts from 0; so if the selected item is in tenth
position in the menu, this method returns the value 9.

Imports
import java.awt.Choice;

Returns
The index which is of type int.

See Also
The Choice class; method getSelectedItem() in class Choice

Example
Refer to Listing 6-1, defining the class choice in Choice class description. By
default getSelectedIndex selects the first item in the menu which is at index 0; so
invoking this method in that example would return 0.

getSelectedItem()

ClassName
Choice

Purpose
To obtain the selected item in its String representation.

Syntax
public String getSelectedItem()

Parameters
None.

Description
This method returns the string representation of the item that is selected. Note that
you can achieve the same result by first using the getSelectedIndex() method to
obtain the index of the selected item, and then passing this index to the method
getItem() and obtaining the String representation.

Imports
import java.awt.Choice;

Returns
The return type is String and it is the string representation of the selected item.

See Also
The Choice class; the getSelectedIndex()method

Example
Refer to Listing 6-1, defining the class choice in Choice class description. The
first item in a choice is selected by default. Usage of this method in the example
returns the item labeled First.

paramString()

ClassName
Choice

Purpose
To obtain the parameter String of this Choice.

Syntax
protected String paramString()

Parameters
None.

Description
This method returns the String representation of this Choice containing its label,
the selected item, and the class information. This method is protected, and hence
can be used only by the classes within the java.awt package.

Imports
import java.awt.Choice;

Returns
The parameter string of type String.

See Also
The Choice and Component classes

Example
The following code uses paramString by subclassing the Choice.

package java.awt;
import java.awt.Choice;

class myChoice extends Choice {

 public myChoice() {
 super();
 }

 public String getmyStringForm() {

 return super.paramString();
 }

 public static void main(String[] args) {
 myChoice ch = new myChoice();
 System.out.println(ch.getmyStringForm());
 }
}

select(int)

ClassName
Choice

Purpose
To select the item whose position is specified.

Syntax
public synchronized void select(int index)

Parameters
index

The index of the selected item in the Choice.
Description

This method selects the item specified by the position as the parameter. The
internal representation of the Choice will recognize the item to be selected. This is
a synchronized method, as the position in the Choice table is shared data and use
of this data by different methods should be consistent. If the specified position is
out of bounds, this method throws an IllegalArgumentException. This need not be
caught using the try and catch construct in Java, as it forms a runtime exception
and hence, is not declared to be thrown.

Imports
import java.awt.Choice;

Returns
None.

See Also
The Choice class; methods getSelectedItem(), and getSelectedIndex()

Example
Refer to Listing 6-1, defining the class choice in Choice class description. The
item whose index is 3 is selected in the example.

select(String)

ClassName
Choice

Purpose
To add an item to the target Choice object.

Syntax
public void select(String item)

Parameters
item

The String representing the item to be selected.
Description

This method selects the item whose String representation matches the parameter
passed. Note that this method need not be synchronized, as you are not accessing
any shared data (such as the position in the Choice).

Imports
import java.awt.Choice;

Returns
None.

See Also
The Choice class; methods getSelectedItem() and getSelectedIndex() in class
Choice

Example
Refer to Listing 6-1, defining the class choice in Choice class description. The
item labeled Fourth is selected in the example.

MenuComponent

Purpose
Represents the super class of all menu-related components.

Syntax
public class MenuComponent extends Object

Description
The common characteristics of all menu related components are encapsulated into
this class. The common functionalities, namely setting and getting the font,
obtaining a handle to the parent container, posting an event to the component,
getting the String representation of the menu components, and handling the peers,
are grouped into this super class. You can use a reference to this class when you
need to remove a menu component from a menu or menu bar, and when you do
not know in advance what component you are removing. The classes Menu,
MenuBar, and MenuItem are ultimately subclasses of this class. Figure 6-10
illustrates the inheritance relationship of class MenuComponent.

Figure 6-10 Class diagram of MenuComponent class

PackageName
java.awt

Imports
import java.awt.MenuComponent;

Constructors
public MenuComponent()

Parameters
None.

Example
The following example in Listing 6-2 includes instances of MenuComponent,
Menu, MenuBar, and MenuItem. All the methods under these classes are also
used in this example. You can enter this source in a file named myMenu.java and
compile it. Figure 6-11 shows the resultant output on execution (except for the
output you see on the terminal giving some information). All the methods in the
above mentioned classes refer to this example for their usage. This example
shows how these methods can be used effectively. The Quit menu is tearable. On
clicking the Exit item, an event is posted to destroy the window. Appropriate
action is taken by the event handler. The Rename item under the File menu should
be disabled from user selection when this code is executed.

Figure 6-11 Resultant window demonstrating the usage of menu-related classes and
methods

Listing 6-2 myMenu.java: Usage of all menu-related methods

import java.awt.*;
import java.io.*;

class myMenu extends Frame {
 // you are going to add a Menu bar and so this class
 should subclass Frame.

 MenuBar mbar; // a member of type MenuBar
 public myMenu() {

// Illustration of methods of class Menu

 Menu file_m = new Menu("File");
 MenuItem load = new MenuItem("Load");
 load.enable();

 file_m.add(load);
 MenuItem save = new MenuItem("Save");
 file_m.add(save);

 MenuItem ren = new MenuItem("Hi");
 ren.setLabel("Rename");
 System.out.println(" the menu ren is labeled " +
 ren.getLabel());
 ren.disable();

 if (ren.isEnabled())
 System.out.println(" The disable function did not
work!");
 file_m.add(ren);

 file_m.addSeparator();
 file_m.add("Close");

 System.out.println(" Parent of load menu item is " +
 load.getParent().toString());

 Menu quit = new Menu("Quit", true);
 quit.add("Exit");
 quit.add("Hide"); // will remove this item soon from the
 menu

 System.out.print(" Quit menu is ");
 if (!quit.isTearOff())
 System.out.println("NOT");
 System.out.println(" a tear-off menu ");
 quit.remove(1);

 Menu tmp = new Menu("Tmp"); //temporary menu; will be
 removed

 Menu info = new Menu("Info");
 info.add("About");

// MenuBar methods illustration
 mbar = new MenuBar();
 mbar.add(file_m);
 mbar.add(quit);
 mbar.add(info);
 mbar.add(tmp);
 mbar.setHelpMenu(info);
 setMenuBar(mbar);
 System.out.println(" Number of menus in menu bar is " +
 mbar.countMenus());
 System.out.println(" Help menu is " +
 mbar.getHelpMenu().toString());

 System.out.println(" Menu at index 1 is " +
 mbar.getMenu(1).toString());
 mbar.remove(tmp);

 // run initially without un-commenting the "remove" method;
 // next time, un-comment the line, compile and run.
 // after that change 3 to 2 and observe the change
 // mbar.remove(3);

// MenuComponent methods illustration
 System.out.println(" Parent of Quit menu is " +
 quit.getParent().toString());

 System.out.println(" paramString of File menu is " +
 file_m.paramString());

 info.setFont(new Font("myFont", Font.BOLD, 16));

 System.out.println(" Font of Info menu is " +
 info.getFont());
 }

public boolean action(Event evt, Object arg) {

 if (evt.target instanceof MenuItem) {
 MenuItem m_it = (MenuItem)evt.target;
 if ("Exit".equals(arg)) {
 // you can use System.exit(0) here but try throwing
 an event
 // and handling it using handleEvent() method

 Event exit_event = new
 Event(m_it,Event.WINDOW_DESTROY,mbar);
 m_it.postEvent(exit_event);
 System.out.println(" Event posted");
 }
 }
 return true;

}

// Method to handle events. This is used here to illustrate the
usage of postEvent method.
// the posted event is handled in this method and appropriate
action is taken.

public boolean handleEvent(Event e)
 {
 // Window Destroy event
 if (e.id == Event.WINDOW_DESTROY)
 {
 // exit the program
 System.exit(0);
 return true;
 }
 // it's good form to let the super class look at any
 // unhandled events
 return super.handleEvent(e);

 } // end handleEvent()

 public static void main(String args[]) {
 myMenu m = new myMenu();
 m.setTitle("menu demo");
 m.pack();
 m.resize(200,200);
 m.show();
 }
}

getFont()

ClassName
MenuComponent

Purpose
To determine the font used for the target MenuItem object.

Syntax
public Font getFont()

Parameters
None.

Description
The current font, to which the menu item is set, is returned by this method when it
is invoked on the menu item. This font corresponds to the style and size of the
String label that represents the menu item. Use setFont method to set or change
the font. It returns null, if it has not been set to any Font earlier.

Imports
import java.awt.MenuComponent;

Returns
The font of the menu item; the return type is Font.

See Also
The MenuComponent class; the setFont() method of the MenuComponent class

Example
Refer to Listing 6-2 defining the class myMenu in MenuComponent class
description. In the example, after setting the font for the Info menu to bold of size
16, this method is used to check it.

getParent()

ClassName
MenuComponent

Purpose
To disclose the parent container object of the target MenuComponent object.

Syntax
public MenuContainer getParent()

Parameters
None.

Description
A menu item or component is contained in a menu container. Any class that
implements the interface MenuContainer forms an instance of MenuContainer
and hence can be treated as an object. Thus instances of Menu and MenuBar can
be considered as objects of type MenuContainer. The parent of a component is the
object (Menu or MenuBar, for example) to which this component is added. This is
helpful when you handle an event and the target you obtain is MenuItem; you can
determine which Menu it belongs to by using this method.

Imports
import java.awt.MenuComponent;

Returns
The parent in which this component is contained.

See Also
The MenuContainer interface

Example
Refer to Listing 6-2, defining the class myMenu in MenuComponent class
description. The parent of the Load menu item is obtained using this method and
this method returns the File menu.

getPeer()

ClassName
MenuComponent

Purpose
To obtain the peer of this menu component.

Syntax
public MenuComponentPeer getPeer()

Parameters
None.

Description
A peer is created for a component on creation or when addNotify() is called. This
method gets the MenuComponentPeer that is created for this component. The peer
allows you to modify the appearance of the menu component without changing its
functionality. Use this method only if you are writing your own AWT
implementation.

Imports
import java.awt.MenuComponent;

Returns
The return type of this method is MenuComponentPeer.

See Also
The MenuComponentPeer class; the addNotify methods of subclasses of
MenuComponent

Example
Refer to Chapter 9 on AWT Peer Interfaces.

paramString()

ClassName
MenuComponent

Purpose
The String parameter of this MenuComponent is returned.

Syntax
protected String paramString()

Parameters
None.

Description

This method is used to obtain the String parameter of the MenuComponent, the
parameters of a Component object. This is a protected method and, hence, this
method can only be called within the java.awt package.

Imports
package java.awt;
import java.awt.MenuComponent;

Returns
The String parameter of this MenuComponent.

Example
The following code uses paramString by subclassing the MenuComponent.

package java.awt;
import java.awt.MenuComponent;

class myMenuC extends MenuComponent {

 public myMenuC() {
 super();
 }

 public String getmyStringForm() {
 return super.paramString();
 }

 public static void main(String[] args) {
 myMenuC mC = new myMenuC();
 System.out.println(mC.getmyStringForm());
 }
}

postEvent(Event)

ClassName
MenuComponent

Purpose
To post the specified event to the menu.

Syntax
public boolean postEvent(Event evt)

Parameters
evt

The event which you want to take place on this MenuComponent.
Description

The specified event is posted to the menu when this method is called. The Event
encapsulates the target object and the type of event that is thrown. For example,
when a user selects Menu item (which is a MenuComponent), you can throw an
event using this method. If appropriate action is specified in the handleEvent()
method, then the purpose of throwing the event is satisfied.

Imports
import java.awt.MenuComponent;

Returns

The return type of this method is boolean; it returns true if the specified event is
successfully posted and false if it is not successfully posted.

See Also
The Event class

Example
Refer to Listing 6-2, defining the class myMenu in MenuComponent class
description. When the user selects the Exit menu item under the Quit menu, a
window destroy event is posted. This is handled by the handleEvent method.

removeNotify()

ClassName
MenuComponent

Purpose
To remove the peer of this menu component.

Syntax
public void removeNotify()

Parameters
None.

Description
A menu component peer is used to change the appearance of your menu
component without changing its functionality. This method removes the
component’s peer.

Imports
import java.awt.MenuComponent;

Returns
None.

See Also
The MenuComponentPeer class; the addNotify methods of subclasses of
MenuComponent

setFont(Font)

ClassName
MenuComponent

Purpose
Sets the font of the target component object to the specified font.

Syntax
public void setFont(Font fnt)

Parameters
fnt

The font to which you want your component to be set.

Description
The current font of the menu item is set to the specified Font fnt. This font
corresponds to the style and size of the String label that represents the menu item.
Use getFont method to get the font of the component.

Imports
import java.awt.MenuComponent;

Returns
None.

See Also
The getFont()method of the MenuComponent class

Example
Refer to Listing 6-2, defining the class myMenu in MenuComponent class
description. In the example, font for the Info menu is set using this method.

toString()

ClassName
MenuComponent

Purpose
The String representation of the values of this MenuComponent s returned.

Syntax
public String toString()

Parameters
None.

Description
The details related to this MenuComponent are returned in a string form. It is
useful for debugging purposes.

Imports
import java.awt.MenuComponent;

Returns
The information on this component in string form.

Example
Refer to Listing 6-2, defining the class myMenu in MenuComponent class
description. In the example, this method is used to get the String form of the
parent menu of load.

MenuBar

Purpose
Encapsulates the concept of a menu bar bound to a Frame.

Syntax
public class MenuBar extends MenuComponent implements MenuContainer

Description
The MenuBar class encapsulates the platform’s concept of a menu bar bound to a
Frame. It is the list of visible menu components which usually appears at the top
of the frame in any user interface. A pull-down menu will appear when one of the

menu items in the list is clicked by the user. A MenuBar is associated with the
Frame using the setMenuBar() method in the class Frame. Because MenuBar can
only be attached to a Frame, you can subclass Frame and set the menu bar in this
class. Another way is to invoke the setMenuBar on an appropriate Frame object.
The MenuBar class contains the methods to add a menu to the menu bar, to
remove a menu, to get a specified menu and to get a help menu. This class is a
MenuComponent by itself, as it extends the MenuComponent class. Hence,
though the methods to set Font and to get Parent are not listed under this class,
these are inherited from the super class MenuComponent. Also, this class
implements the MenuContainer interface and thus, acts as a container which can
contain other menu components. Figure 6-12 illustrates the inheritance
relationship of class MenuBar.

Figure 6-12 Class diagram of the MenuBar class

PackageName
java.awt

Imports
import java.awt.MenuBar;

Constructors
public MenuBar()

Parameters
None.

Example
Refer to Listing 6-2, defining the class myMenu in MenuComponent class
description. Members of the class menu are of type MenuBar (variable mbar).
This variable is instantiated inside the constructor of menu.

add(Menu)

ClassName
MenuBar

Purpose
Add the specified Menu to this MenuBar.

Syntax
public synchronized Menu add(Menu m)

Parameters
m

The menu that has to be added to the MenuBar.
Description

After MenuBar has been constructed, it is populated with menus and related
components using this method. For every addition of a menu, the index of the

MenuBar is incremented. The menus are added from left to right when the
MenuBar appears at the top of the user-interface. This method is synchronized, so
only one Thread of control can add a menu at a given instant.

Imports
import java.awt.MenuBar;

Returns
The return type of this method is Menu. It returns a handle to the Menu, added to
this MenuBar for referencing at a later time.

See Also
The Menu class

Example
Refer to Listing 6-2, defining the class myMenu in MenuComponent class
description. In this example, using this add method, the menus file_m, quit, info,
and tmp are added to the MenuBar object, mbar.

addNotify()

ClassName
MenuBar

Purpose
This method creates a peer of this MenuBar.

Syntax
public synchronized void addNotify()

Parameters
None.

Description
An instance of the MenuBarPeer is created as a peer for this MenuBar item. Using
the peer you can change the appearance of the MenuBar without modifying its
functionality.

Imports
import java.awt.MenuBar;

Returns
None.

See Also
The MenuBarPeer class

Example
Refer to Chapter 9 describing the peers and interface for more details.

countMenus()

ClassName
MenuBar

Purpose
This method returns the number of menus in this MenuBar.

Syntax
public int countMenus()

Parameters
None.

Description
Whenever you use add method to add a menu to the MenuBar, the count is
incremented. This method helps you to obtain the number of Menus in this
MenuBar which is also the number of labels in the MenuBar.

Imports
import java.awt.MenuBar;

Returns
The number of menus in the MenuBar; the return type is int.

See Also
The Menu class

Example
Refer to Listing 6-2, defining the class menu in MenuComponent class
description. In this example, this method is invoked on the member mbar.

getHelpMenu()

ClassName
MenuBar

Purpose
This method returns the menu which is set as the HelpMenu in the MenuBar.

Syntax
public Menu getHelpMenu()

Parameters
None.

Description
The help menu in this MenuBar is accessed using this method. It returns the menu
set by the setHelpMenu method. If you know the index of the Help menu you can
also accomplish this using the getMenu method.

Imports
import java.awt.MenuBar;

Returns
An object of type Menu, which is the help menu in this MenuBar.

See Also
The setHelpMenu and getMenu methods of the MenuBar class

Example
Refer to Listing 6-2, defining the class myMenu in MenuComponent class
description. In the example, the menu object info is set as Help menu. This
method returns a handle to the info menu when invoked on the menu bar.

getMenu(int)

ClassName
MenuBar

Purpose

This method returns the Menu at the specified index.
Syntax

public Menu getMenu(int index)
Parameters
index

The index of the menu to be returned.
Description

The Menus in the MenuBar can be referenced using their respective index. This
method gets the Menu when you specify its index as the parameter. Index starts at
0. To obtain the third Menu in the menu bar, you should index it as 2.

Imports
import java.awt.MenuBar;

Returns
The Menu at the specified index.

Example
Refer to Listing 6-2, defining the class myMenu in MenuComponent class
description. In the example, the Menu at index 1 is obtained by using this method.
The name of the menu is printed by obtaining the string form of the Menu.

remove(int)

ClassName
MenuBar

Purpose
This method removes the Menu at the specified index in this MenuBar.

Syntax
public synchronized void remove(int index)

Parameters
index

The index of the Menu to be removed from the MenuBar.
Description

This method removes a Menu from the MenuBar at the specified index. Index
starts from 0. For example, to remove the third menu from the menu bar, specify
the index as 2. If the specified index is greater than or equal to the number of
menus in the menu bar, an ArrayOutOfBoundsException is thrown at runtime.
After removing the Menu, changes are made to the MenuBar structure to reflect
the removal. This includes the decrement in the count and updating other indices.
To ensure this is performed in a consistent manner by the runtime, this method is
declared a synchronized method.

Imports
import java.awt.MenuBar;

Returns
None.

See Also
The add(Menu) method of the MenuBar class

Example

Refer to Listing 6-2, defining the class myMenu in MenuComponent class
description. The menu tmp is removed from the MenuBar, mbar, by specifying its
index as 3. Un-comment the line mbar.remove(3) in the example code and
observe the change.

remove(MenuComponent)

ClassName
MenuBar

Purpose
This method removes the Menu specified by the MenuComponent parameter.

Syntax
public synchronized void remove(MenuComponent mc)

Parameters
mc

The reference to the MenuComponent object to be removed.
Description

This method removes a Menu specified by the reference in the parameter from the
MenuBar. After the menu is removed, changes are made to the MenuBar structure
to reflect the removal. This includes decrementing the count and updating other
indices. To ensure these tasks are performed in a consistent manner by the
runtime, this method is declared a synchronized method.

Imports
import java.awt.MenuBar;

Returns
None.

See Also
The method add(Menu) in class MenuBar

Example
Refer to Listing 6-2, defining the class menu in MenuComponent class
description. In the example, the object tmp is removed from the menu bar using
this method.

removeNotify()

ClassName
MenuBar

Purpose
This method removes the peer of this MenuBar.

Syntax
public void removeNotify()

Parameters
None.

Description

Removes an instance of the MenuBarPeer, which was a peer for this MenuBar
item. Using the peer you can change the appearance of the MenuBar without
modifying its functionality.

Imports
import java.awt.MenuBar;

Returns
None.

See Also
The MenuBarPeer class; the addNotify()method of the MenuBar class

Example
Refer to the details in Chapter 9 describing the peers and interfaces.

setHelpMenu(Menu)

ClassName
MenuBar

Purpose
This method sets the Help menu in the MenuBar.

Syntax
public synchronized void setHelpMenu(Menu mnu)

Parameters
mnu

The menu, of type Menu, which is to be added to this MenuBar.
Description

The specified menu is set as the help menu in this MenuBar, using this method. It
places the menu at the top-right corner in a frame, i.e., at the right end of a
Menubar. This is the place where the Help menu is made available in all
interfaces. This method is synchronized; hence, only one Thread can be running
this method at a given instant.

Imports
import java.awt.MenuBar;

Returns
None.

See Also
The getHelpMenu and getMenu methods of the MenuBar class

Example
Refer to Listing 6-2, defining the class myMenu in MenuComponent class
description. The menu object info is set to be the help menu in the example. A call
to this method sets info to be the help menu and places the info menu (labeled
“Info”), at the rightmost end of the menu bar.

Menu

Purpose
A Menu serves as a component of a menu bar.

Syntax

public class Menu extends MenuItem implements MenuContainer
Description

A menu bar contains many menus. An instance of class Menu is created with an
associated label. It can be identified by its label or by using the index of its
location in a menu bar. You can specify any menu as a tear-off menu. This means
that the menu will remain visible on the screen even after you release the mouse
button. A frequently used menu can be declared tear-off so that the users need not
pull the menu down from its title every time and then select. A menu which is not
a tear-off menu disappears from the screen when the mouse button is released.
This class includes methods to add menu items, to add separators, to count items,
to get items, and to remove items. It is a subclass of MenuItem and, hence, an
instance of this class can be a part of some menu container. This class also
implements the MenuContainer interface; it can contain other menu components.
Figure 6-13 illustrates the inheritance relationship of class Menu.

Figure 6-13 Class diagram of the Menu class

PackageName
java.awt

Imports
import java.awt.Menu;

Constructors
public Menu(String label)
public Menu(String label, boolean tearOff)

Parameters
label

The string associated with this menu.
tear-off

The boolean value specifying whether or not you want your Menu to be a tear-off
menu.

Example
Refer to Listing 6-2, defining the class myMenu in MenuComponent class
description. Four menus are created in the example, namely, file_m, quit, tmp,
and info.

add(MenuItem)

ClassName
Menu

Purpose

This method adds the specified menu item to the target menu object.
Syntax

public synchronized MenuItem add(MenuItem item)
Parameters
item

The item of type MenuItem to be added to this menu.
Description

A menu consists of many menu items. Those items can be added to the menu
using this method. A handle to this menu item can be obtained by using the
getItem method. This method is synchronized; so only one Thread can be running
this method at a given instant to add an item to the Menu.

Imports
import java.awt.Menu;

Returns
A reference to the added MenuItem

See Also
The add(String), remove(int), and remove(MenuComponent) methods of the
Menu class

Example
Refer to Listing 6-2, defining the class myMenu in MenuComponent class
description. A menu item labeled “Load” is created as a MenuItem and then
placed in the menu file_m.

add(String)

ClassName
Menu

Purpose
This method adds an item with the specified String label to this Menu.

Syntax
public synchronized void add(String label)

Parameters
label

The label of the item to be added to this Menu.
Description

A Menu consists of many menu items with a unique label identifying each of
them. Those menu items can be added to a menu using this method. A handle to
any item can be obtained using the getItem method. Because this method is
synchronized, only one Thread can be running this method at a given instant to
add an item with a specified label to the Menu.

Imports
import java.awt.Menu;

Returns
None.

See Also

The add(MenuItem), remove(int), and remove(MenuComponent) methods of the
Menu class

Example
Refer to Listing 6-2, defining the class myMenu in MenuComponent class
description. In the example, a menu item in the menu file is added using this
method with the label “Save”.

addNotify()

ClassName
Menu

Purpose
This method creates a peer for this Menu.

Syntax
public synchronized void addNotify()

Parameters
None.

Description
You can change the appearance of a menu using the peer created by this method.
This method overrides the addNotify() method of the super class, MenuItem.

Imports
import java.awt.Menu;

Returns
None.

See Also
The MenuPeer interface; the removeNotify()method of the Menu class

Example
Refer to Chapter 9 describing the peers and interface for more details.

addSeparator()

ClassName
Menu

Purpose
This method adds a separator line or a hyphen at the specified position.

Syntax
public void addSeparator()

Parameters
None.

Description
A Menu consists of many menu items. To help the user scan the list of options in
a menu easily you can add a separator between groups of logically related menu
items. You can use this method to add a separator line or a hyphen at any position.

Imports
import java.awt.Menu;

Returns

None.
Example

Refer to Listing 6-2, defining the class myMenu in MenuComponent class
description. A separator is added before the “Close” menu item in the menu
file_m in that example. Also see Figure 6-4, where beverages are listed with a
separator between hot and cold.

countItems()

ClassName
Menu

Purpose
To obtain the number of items in a menu.

Syntax
public int countItems()

Parameters
None.

Description
The method counts the number of items in the Menu. The count is automatically
increased when a new item is added, and becomes the maximum index in this
menu.

Imports
import java.awt.Menu;

Returns
The number of items in the Menu; return type is int.

See Also
The getItem()method in the Menu class

Example
Refer to Listing 6-2, defining the class myMenu in MenuComponent class
description.

getItem(int)

ClassName
Menu

Purpose
This method returns the item with the specified index.

Syntax
public MenuItem getItem(int index)

Parameters
index

The index of the item in this Menu to be retrieved.
Description

The method returns the MenuItem object at the specified index in this Menu.
Index value starts from 0; hence, the index of the third item is 2, the fourth item is
3 and so on.

Imports
import java.awt.Menu;

Returns
The item of type MenuItem at the specified index.

See Also
The Menu class; the addItem()method of the Menu class

Example
Refer to Listing 6-2, defining the class myMenu in MenuComponent class
description.

isTearOff()

ClassName
Menu

Purpose
Determine whether the target Menu object is a tear-off menu or not.

Syntax
public boolean isTearOff()

Parameters
None.

Description
The method determines whether this menu is a tear-off menu. A tear-off Menu is
one which stays visible on the screen even after the user releases the mouse
button.

Imports
import java.awt.Menu;

Returns
Return type is boolean. True means this menu is a tear-off menu; false means it is
not.

See Also
The Menu(String label, boolean tear-off) constructor

Example
Refer to Listing 6-2, defining the class myMenu in MenuComponent class
description. The quit menu is created as a tear-off menu in the example. Using
this method, it is verified that the quit menu is indeed a tear-off menu.

remove(int)

ClassName
Menu

Purpose
This method removes the item at the specified index position in this Menu.

Syntax
public synchronized void remove(int index)

Parameters
index

The index of the item to be removed from the Menu.
Description

This method removes the item from the Menu at the specified index. The index
starts from 0. The first item has an index 0, the second item has an index 1 and so
on. If the specified index is greater than or equal to the number of items in this
Menu, an ArrayOutOfBoundsException is thrown at runtime. After the item is
removed, the Menu structure is changed to reflect the removal. This includes
decrementing the count and updating other indices. To perform this in a consistent
manner by runtime, this method is declared a synchronized method.

Imports
import java.awt.Menu;

Returns
None.

See Also
The add(MenuItem) and add(String) methods of the Menu class

Example
Refer to Listing 6-2, defining the class myMenu in MenuComponent class
description. After the menu quit is created, in the example, two items are added to
it: Exit and Hide. The item Hide is removed using this method with the index
being 1.

remove(MenuComponent)

ClassName
Menu

Purpose
This method removes the item specified by the MenuComponent parameter.

Syntax
public synchronized void remove(MenuComponent mc)

Parameters
mc

The reference to the MenuComponent object to be removed.
Description

This method removes from the menu an item specified by the reference in the
parameter. After the item is removed, changes are made to the Menu structure to
reflect the removal. This includes decrementing the count and updating other
indices. To perform this in a consistent manner by runtime, this method is
declared a synchronized method.

Imports
import java.awt.Menu;

Returns
None.

See Also
The add(MenuItem) and add(String) methods of the Menu class

Example
Refer to Listing 6-2, defining the class myMenu in MenuComponent class
description. A menu tmp is created temporarily and is deleted from the menu bar
using this method.

removeNotify()

ClassName
Menu

Purpose
This method removes the peer of target Menu object.

Syntax
public void removeNotify()

Parameters
None.

Description
Removes an instance of the MenuPeer which was a peer for this MenuBar item.
Using the peer, you can change the appearance of the Menu without modifying its
functionality.

Imports
import java.awt.Menu;

Returns
None.

See Also
The MenuPeer class; the addNotify()method of the Menu class

Example
Refer to Chapter 9 describing the peers and interface for more details.

MenuItem

Purpose
Represents a choice as a string item in a menu

Syntax
public class MenuItem extends MenuComponent

Description
A menu contains a list of choices for the user. These choices are represented in
their string form and are presented as objects of type MenuItem. MenuItem is a
menu component by its inheritance relationship with MenuComponent class.
Figure 6-14 illustrates the inheritance relationship of class MenuItem.

Figure 6-14 Class diagram of the MenuItem class

PackageName
java.awt

Imports
import java.awt.MenuItem;

Constructors
public MenuItem()

Parameters
None.

Example
Refer to Listing 6-2, defining the class menu in MenuComponent class
description.

addNotify()

ClassName
MenuItem

Purpose
This method creates a peer for this MenuItem.

Syntax
public synchronized void addNotify()

Parameters
None.

Description
The appearance of a menu item can be changed using the peer created by this
method.

Imports
import java.awt.MenuItem;

Returns
None.

See Also
The MenuItemPeer interface; the removeNotify()method of the MenuItem class

Example
Refer to Chapter 9 describing the peers and interface for more details.

disable()

ClassName
MenuItem

Purpose
This method disables this MenuItem so that it cannot be selected from the menu.

Syntax
public void disable()

Parameters
None.

Description
A menu item is, by default, enabled on construction. Invoking this method on the
menu item object will disable any action on this item. After this method is called,
this menu item will be grayed and the user will not be able to select it. The
enable() method must be invoked on this menu item to make it again selectable by
the user.

Imports
import java.awt.MenuItem;

Returns
None.

See Also
The enable method of class MenuItem.

Example
Refer to Listing 6-2, defining the class myMenu in MenuComponent class
description. The Rename item in the File menu is disabled using this method.

enable()

ClassName
MenuItem

Purpose
This method enables this MenuItem, making it selectable from the menu.

Syntax
public void enable()

Parameters
None.

Description
A menu item is, by default, enabled on construction. Invoking the disable()
method on the menu item, disables any action on the item. You use this method to
explicitly enable a previously disabled item. After this method is invoked, this
MenuItem will be selectable by the user.

Imports
import java.awt.MenuItem;

Returns
None.

See Also
The enable(boolean) and disable()methods of the MenuItem class

Example

Refer to Listing 6-2, defining the class myMenu in MenuComponent class
description. The Load menu item in the menu file_m in the example is explicitly
enabled using this method.

enable(boolean)

ClassName
MenuItem

Purpose
This method enables this MenuItem if the specified boolean condition is true.

Syntax
public void enable(boolean condn)

Parameters
condn

The condition which, when evaluated, has a boolean value; depending on the
value the MenuItem is enabled or disabled.

Description
A menu item is by default enabled on construction. Invoking the disable() method
on the menu item disables any action on this item. You can use this method to
explicitly enable a previously disabled item depending on a specified boolean
condition. After this method is invoked, this MenuItem will be selectable by the
user if the boolean condition evaluates to true; if the condition evaluates to false,
the MenuItem will remain disabled.

Imports
import java.awt.MenuItem;

Returns
None.

See Also
The enable() and disable()methods of the MenuItem class

Example
Refer to Listing 6-2, defining the class myMenu in MenuComponent class
description.

getLabel()

ClassName
MenuItem

Purpose
This method gets the label of this MenuItem.

Syntax
public String getLabel()

Parameters
None.

Description

Each menu item is associated with a string and can be uniquely identified by that
string. This method gets the label, of type String, associated with this MenuItem.
The label would have been set earlier either during construction or by the
setLabel() method.

Imports
import java.awt.MenuItem;

Returns
The label identifying the MenuItem; return type is String.

See Also
The setLabel(String) method of the MenuItem class

Example
Refer to Listing 6-2, defining the class myMenu in MenuComponent class
description. The label of the menu item ren is obtained using this method on the
ren object.

isEnabled()

ClassName
MenuItem

Purpose
This method checks to see if this MenuItem is enabled.

Syntax
public boolean isEnabled()

Parameters
None.

Description
A menu item is, by default, enabled on construction. Invoking the disable()
method on the menu item disables any action on this item. You can use this
method to check whether or not this MenuItem is enabled. The MenuItem is
enabled and selectable by the user if this method returns true; if it returns false,
this MenuItem is disabled and is not selectable by the user.

Imports
import java.awt.MenuItem;

Returns
A value of type boolean indicating whether this MenuItem is enabled or not.

See Also
The enable(boolean), enable(), and disable()methods of the MenuItem class

Example
Refer to Listing 6-2, defining the class myMenu in MenuComponent class
description. This method is used to verify that the ren menu item is indeed
disabled after the call to disable().

paramString()

ClassName
MenuItem

Purpose
This method obtains the string parameter of this MenuItem.

Syntax
public String paramString()

Parameters
None.

Description
This method is used to obtain the String parameter of this MenuItem which
contains the label of the menu item, apart from the other details of itself being a
MenuComponent. This method overrides the paramString() method of the super-
class MenuComponent. Also, note that this method is public, whereas the method
paramString() of class MenuComponent is protected.

Imports
package java.awt;
import java.awt.MenuItem;

Returns
The String parameter of this MenuItem.

Example
The following code uses paramString by subclassing the MenuItem.

package java.awt;
import java.awt.MenuItem;

class myItem extends MenuItem {

 public myItem() {
 super();
 }

 public String getmyStringForm() {
 return super.paramString();
 }

 public static void main(String[] args) {
 myItem item = new myItem();
 System.out.println(item.getmyStringForm());
 }
}

setLabel(String)

ClassName
MenuItem

Purpose
This method gets the label of this MenuItem.

Syntax
public void setLabel(String label)

Parameters
label

The label to which this menu item has to be set.
Description

Each menu item is associated with a String label and can be identified by this
String. This method sets the label, of type String, associated with this MenuItem.
The label can be retrieved on any MenuItem using the getLabel() method.

Imports
import java.awt.MenuItem;

Returns
None.

See Also
The getLabel()method of the MenuItem class

Example
Refer to Listing 6-2, defining the class myMenu in MenuComponent class
description. The label of a menu item is changed from “Hi” to “Rename” using
this method.

MenuContainer

Purpose
Forms the super-class of all menu related container classes.

Syntax
public interface MenuContainer extends MenuComponent

Description
This is an interface in Java. A class that implements this interface effectively
inherits this interface and hence this interface is said to form the super class of all
menu related container classes. The classes Menu and MenuBar implement this
interface and are container classes. This interface has three methods: getFont(),
postEvent(Event), and remove(MenuComponent). Figure 6-15 illustrates the
inheritance relationship of interface MenuContainer.

Figure 6-15 Inheritance diagram of MenuContainer interface

PackageName
java.awt

Imports
import java.awt.MenuContainer;

Example
Refer to the usage of the methods of this interface in the class menu, given in the
example description for class MenuComponent in Listing 6-2. MenuBar and
Menu implement this interface and so these methods are invoked on instances of
these classes.

getFont()

Interface
MenuContainer

Purpose
This is an abstract method and has to be implemented by the class implementing
this interface.

Syntax
public abstract Font getFont()

Parameters
None.

Description
This method has to be defined in the class that implements the MenuContainer
interface. If it is set earlier using the setFont method, it returns the Font.

Imports
import java.awt.MenuContainer;

Returns
The font of the menu item; the return type is Font.

See Also
The Menu and MenuBar classes

Example
Refer to Listing 6-2, defining the class myMenu in MenuComponent class
description. After setting the font of the info menu, this method is used to print
the details of the font to which it is set.

postEvent(Event)

Interface
MenuContainer

Purpose
This is an abstract method and has to be implemented by the class implementing
this interface.

Syntax
public abstract boolean postEvent(Event evt)

Parameters
evt

The event to be posted to a container object is passed as a parameter.
Description

This method has to be defined in the class that implements the MenuContainer
interface. You can specify an event to be thrown on this MenuItem. The
handleEvent() method should have appropriate action specified to handle this
event to make usage of this method effective.

Imports
import java.awt.MenuContainer;

Returns
This method returns true if successful and false if not; return type is boolean.

See Also
The Menu and MenuBar classes

Example
Refer to Listing 6-2, defining the class myMenu in MenuComponent class
description. WINDOW_DESTROY event is posted using this method, which is
implemented in class Menu.

remove(MenuComponent)

Interface
MenuContainer

Purpose
This is an abstract method and has to be implemented by the class implementing
this interface.

Syntax
public abstract void remove(MenuComponent mc)

Parameters
mc

The MenuComponent object that has to be removed from the container.
Description

This method has to be defined in the class that implements the MenuContainer
interface.

Imports
import java.awt.MenuContainer;

Returns
None.

See Also
The Menu and MenuBar classes

Example
Refer to Listing 6-2, defining the class myMenu in MenuComponent class
description. A menu tmp is created temporarily and is deleted from the menu bar
using this method.

Checkbox

Purpose
Encapsulates a user-interface element with a boolean state.

Syntax
public class Checkbox extends Component

Description
The Checkbox class encapsulates a user-interface element with boolean state. It is
the radio button representation in Java. A Checkbox is either selected or not
selected at any instant. When the user clicks on the Checkbox, its state toggles: if
it was “on” it is reset to “off” and vice versa. A Checkbox item can belong to a
CheckboxGroup, that is a group of Checkboxes. In this scenario, only one of the
checkboxes can be “on” at any time. In case of X-Windows, it is selected in

depressed mode and if it is in raised mode, it is unselected. In Windows95, a
check mark is placed next to the item if it is selected. You can specify to which
group a checkbox will belong, either during construction or by using a method of
this class. By default, a checkbox is initialized to a false state. Figure 6-16
illustrates the inheritance relationship of class Checkbox.

Figure 6-16 Class diagram of the Checkbox class

PackageName
java.awt

Imports
import java.awt.Checkbox;

Constructors
public Checkbox()—constructor to create a Checkbox with no label, no
CheckboxGroup, and initialized to false.
public Checkbox(String label)—constructor to create a Checkbox with a specified
label, no CheckboxGroup and initialized to false.
public Checkbox(String label, CheckboxGroup group, boolean state) —
constructor to create a Checkbox with a specified label, a specified
CheckboxGroup and initialized to a specified state.

Parameters
label

The label, of type String, to be associated with the Checkbox.
group

The CheckboxGroup of which the Checkbox is made to be a member.
state

The specified state to which the Checkbox has to be initialized.
Example

The following code Listing 6-3 implements a class named check. Enter the code
in a file named check.java and compile it. Executing the Java interpreter by typing
java check will pop up the resultant window shown in Figure 6-17. This
application prints either the string “hi” or the string “hello” at the center of the
canvas. Two checkboxes, hi and hello, are provided. They form a group, so only
one of them can be selected and, hence, printed on the canvas at a time. A single
Checkbox is provided for the user to make the string print in red. If it is not
selected, the string will be typed in blue. An OK button allows the user to approve
the changes he makes.

Figure 6-17 Resultant window after compiling and executing check.java

Listing 6-3 check.java: Usage of checkboxes

import java.awt.*;
import java.io.*;

class check extends Frame {
CheckboxGroup group;
Checkbox red;

public check() {

 setLayout(new FlowLayout());
 group = new CheckboxGroup();
 Checkbox hi = new Checkbox("hi”, group, true);
 Checkbox hello = new Checkbox("hello");
 hello.setCheckboxGroup(group);
 hello.setState(false);
 add(hi);
 add(hello);
 System.out.println(" Checkbox 'hello' belongs to the group " +
 hello.getCheckboxGroup().toString());
 group.setCurrent(hi); // set hi to be default
 Button ok = new Button("OK");

 add(ok);

 red = new Checkbox("Red");
 add(red);
 red.setState(false);
 System.out.println(" Label of 'red' Checkbox is " + red.getLabel());

 }

public void paint(Graphics g) {

 //if (ok)
 // ok = false; // set it to false

 if (red.getState()) // if red is selected
 g.setColor(Color.red);
 else
 g.setColor(Color.blue);

 g.setFont(new Font("TimesRoman", Font.BOLD, 18));
 Checkbox cur = group.getCurrent(); // get the current selection:
 hi or hello
 String cur_str = cur.getLabel();
 if (cur_str.equals("hi"))
 g.drawString("hi", 150,100);
 else if (cur_str.equals("hello"))
 g.drawString("hello", 150,100);
 else g.drawString("None",150,100);

}

 public boolean action(Event evt, Object arg) {

 if (evt.target instanceof Button) {
 if ("OK".equals(arg)) {
 // ok = true;
 repaint();
 }
 }
return true;

}

 public static void main(String args[]) {

 check chk = new check();
 chk.setTitle("Checkbox demo");

 chk.pack();
 chk.resize(300,200);
 chk.show();

 }

}

addNotify()

ClassName
Checkbox

Purpose
This method creates a peer for the Checkbox. It lets you change the look of the
Checkbox without changing its behavior.

Syntax
public synchronized void addNotify()

Parameters
None.

Description
This method helps you change the look of the Checkbox without changing its
behavior. It overrides the addNotify() method of class Component, and creates a
peer for this Choice.

Imports
import java.awt.Checkbox;

Returns
None.

See Also
The java.awt.peer; CheckboxPeer interface; the Component class

getCheckboxGroup()

ClassName
Checkbox

Purpose
This method returns the CheckboxGroup of which this Checkbox is a member.

Syntax
public CheckboxGroup getCheckboxGroup()

Parameters
None.

Description
A Checkbox can belong to a CheckboxGroup. This method returns the
CheckboxGroup to which this Checkbox belongs, if it’s a part of a
CheckboxGroup.

Imports
import java.awt.Checkbox;

Returns
None.

See Also
The CheckboxGroup class; the setCheckboxGroupmethod of the Checkbox class

Example
Refer to the example in Listing 6-3. The CheckboxGroup of the hello Checkbox is
obtained in the example using this method.

getLabel()

ClassName
Checkbox

Purpose
This method obtains the label of this Checkbox button.

Syntax
public String getLabel()

Parameters
None.

Description
A Checkbox can be identified by its label. This method is especially helpful when
you are trying to handle an event on a Checkbox and you want to find out which
checkbox button the user has clicked on. This method returns the label of this
Checkbox as a String.

Imports
import java.awt.Checkbox;

Returns
The label of this Checkbox; the return type is String

See Also
The setLabel method of the Checkbox class

Example
Refer to the example in Listing 6-3. This method is used to obtain the label and
find out whether it is a “hi” or “hello” checkbox.

getState()

ClassName
Checkbox

Purpose
This method returns the boolean state of this Checkbox, indicating whether it is
selected or not.

Syntax
public boolean getState()

Parameters
None.

Description
A Checkbox toggles between an “on” and “off” state on every mouse click on the
Checkbox. This method returns the state of the Checkbox at the time of
invocation.

Imports
import java.awt.Checkbox;

Returns
A boolean value indicating the state of the checkbox button.

See Also
The setState method of the CheckboxGroup class

Example
Refer to the example in Listing 6-3. This method is used to find whether “red” or
“blue” is selected by finding the state of the checkbox.

paramString()

ClassName
Checkbox

Purpose
To obtain the parameter String of this Checkbox.

Syntax
protected String paramString()

Parameters
None.

Description
This method returns the parameter String of this Checkbox which is, effectively,
the label associated with this Checkbox and the state of the checkbox button.

Imports
import java.awt.Checkbox;

Returns
Parameter string of type String, of this Checkbox.

See Also
The getLabelmethod of the Checkbox class

Example
The following code uses paramString by subclassing the Checkbox.

package java.awt;
import java.awt.Checkbox;

class myBox extends Checkbox {

 public myBox(String boxname) {

 }

 public String getmyStringForm() {
 return super.paramString();

 }

 public static void main(String[] args) {
 myBox box = new myBox(“TestBox”);
 System.out.println(box.getmyStringForm());
 }
}

setCheckboxGroup(CheckboxGroup)

ClassName
Checkbox

Purpose
This method sets a Checkbox to belong to the specified CheckboxGroup.

Syntax
public void setCheckboxGroup(CheckboxGroup cb_grp)

Parameters
cb_grp

CheckboxGroup to which this Checkbox is added
Description

A Checkbox can belong to a CheckboxGroup. This method sets the group to
which this Checkbox will belong. Only one Checkbox can be “on” at any time
among all the Checkboxes belonging to a group. This formation is helpful when
you are using a CheckboxGroup in your interface to select among a set of options.

Imports
import java.awt.Checkbox;

Returns
None.

See Also
The CheckboxGroup class; the getCheckboxGroupmethod of the Checkbox class

Example
Refer to the example in Listing 6-3. This method is used to set the group of the
“hello” checkbox to the same group as the “hi” checkbox.

setLabel(String)

ClassName
Checkbox

Purpose
The label of this Checkbox button is set to the specified string value.

Syntax
public void setLabel(String label)

Parameters
label

The String type value that forms the label of this button.
Description

A Checkbox can be identified by its label. This method can be used when you
have created a Checkbox, without specifying a label during construction, because
the value might be available only at a later stage and not during construction.

Imports
import java.awt.Checkbox;

Returns
None.

See Also
The getLabel method of the Checkbox class

Example
Refer to the example in Checkbox class description, Listing 6-3.

setState(boolean)

ClassName
Checkbox

Purpose
Sets the boolean state of this Checkbox to the specified state.

Syntax
public void setState(boolean state)

Parameters
state

The state, of type boolean, that indicates whether to set this Checkbox to be
enabled or disabled.

Description
A Checkbox toggles between an “on” and “off” state on every mouse click on the
Checkbox. This method sets the state of the Checkbox to the specified boolean
value. It can be useful when you are initializing your interface environment and
setting some of checkbox values to true and others to false. Also you might want
to set the state of a checkbox button to reflect the occurrence of an event. When
the button is set to true, it will appear in depressed position, and when the value is
false, it will appear in raised position.

Imports
import java.awt.Checkbox;

Returns
None.

See Also
The getState() method of the CheckboxGroup class

Example
Refer to the example in Checkbox class description, Listing 6-3.

CheckboxGroup

Purpose
Helps to create a group of mutually exclusive Checkbox items such that only one
item can be “on” at a time.

Syntax
public class CheckboxGroup extends Object

Description
A set of Checkbox buttons can be grouped together to form a CheckboxGroup.
These buttons are grouped such that only one of them can be “on” at a time.
Clicking on any of the Checkbox buttons in a group, enables that Checkbox and
all other Checkboxes belonging to that group are automatically disabled, which is
also reflected in the appearance of the buttons. This way, you can form a set of
options in an interface, where a user can select only one of the options. You can
specify which group a Checkbox will belong to, either during its construction or
by using a method of Checkbox class. By default, all Checkboxes are initialized
to false. Figure 6-18 illustrates the inheritance relationship of class
CheckboxGroup.

Figure 6-18 Class diagram of the CheckboxGroup class

PackageName
java.awt

Imports
import java.awt.CheckboxGroup;

Constructors
public CheckboxGroup()

Parameters
None.

Example
Refer to the example check.java.

getCurrent()

ClassName
CheckboxGroup

Purpose

This method obtains the currently selected Checkbox among the set of
Checkboxes in this group.

Syntax
public Checkbox getCurrent()

Parameters
None.

Description
In a user-interface, you can find out which Checkbox button the user has selected
by examining the state of all Checkboxes. When Checkboxes are grouped, they
are mutually exclusive. Only one of the Checkboxes can be “on” at a given time.
With this knowledge, it is enough if you know which is the current choice in the
group. With this method, you can obtain the necessary information about the
current choice in a CheckboxGroup without examining each Checkbox. This
method finds the currently selected Checkbox and returns a reference to that
object.

Imports
import java.awt.CheckboxGroup;

Returns
A reference of type Checkbox to the currently selected Checkbox item in the
group.

See Also
The setCurrent method of the CheckboxGroup class

Example
Refer to the example Listing 6-3 in Checkbox class description. The current
selection among the “hi” and “hello” checkboxes is found using this method.

setCurrent(Checkbox)

ClassName
CheckboxGroup

Purpose
This method sets the specified Checkbox as the current choice among all
Checkbox items in this group.

Syntax
public void setCurrent(Checkbox curr_cb)

Parameters
curr_cb

A reference to the Checkbox item which is to be set as the current choice.
Description

A Checkbox gets selected in a group when the user clicks on the Checkbox
button. If you have information that indirectly selects a Checkbox or if you want
to explicitly specify the current choice Checkbox in a group, you can use this
method. This method sets the specified Checkbox to “on,” and other Checkboxes
in the same group are automatically disabled.

Imports
import java.awt.CheckboxGroup;

Returns
None.

See Also
The getCurrent method of the CheckboxGroup class

Example
Refer to the example in Checkbox class description, Listing 6-3. The “hi”
checkbox is set to be the default selected box, using this method.

toString()

ClassName
CheckboxGroup

Purpose
This method obtains the string representation of the values in this
CheckboxGroup.

Syntax
public String toString()

Parameters
None.

Description
A CheckboxGroup contains two or more Checkboxes. Each Checkbox has a
unique label associated with it. This method returns the string form of all the
values of the Checkboxes that are part of this CheckboxGroup.

Imports
import java.awt.CheckboxGroup;

Returns
Values, of type String, representing the values of this CheckboxGroup.

Example
Refer to the example in Checkbox class description, Listing 6-3.

CheckboxMenuItem

Purpose
Produces a Checkbox to represent a choice in a menu.

Syntax
public class CheckboxMenuItem extends MenuItem

Description
A Menu consists of a set of menu items. This class allows you to specify a
checkbox as a menu item. Bacause it subclasses the MenuItem class, an instance
of this class can be a part of a Menu. Since it forms part of the menu, you must
specify a label for the item. Figure 6-19 illustrates the inheritance relationship of
class CheckboxMenuItem.

Figure 6-19 Class diagram of the CheckboxMenuItem class

PackageName
java.awt

Imports
import java.awt.CheckboxMenuItem;

Constructors
public CheckboxMenuItem(String label)

Parameters
label

The String value of this menu item which identifies it among other items in a
menu.

Example
Refer to the Selections Interface application built at the end of this chapter.

addNotify()

ClassName
CheckboxMenuItem

Purpose
This method creates a peer for this CheckboxMenuItem. It helps you change the
look of the Checkbox without changing its behavior.

Syntax
public synchronized void addNotify()

Parameters
None.

Description
This method helps you change the look of the Checkbox menu item without
changing its behavior. It creates a peer for this CheckboxMenuItem, and overrides
the addNotify() method of class MenuItem.

Imports
import java.awt.CheckboxMenuItem;

Returns

None.
See Also

The java.awt.peer; the CheckboxMenuItemPeer interface
Example

Refer to Chapter 9 on peers and interfaces.

getState()

ClassName
CheckboxMenuItem

Purpose
This method returns the boolean state of this CheckboxMenuItem indicating
whether it is selected or not.

Syntax
public boolean getState()

Parameters
None.

Description
A Checkbox toggles between an “on” and “off” state on every mouse click on the
Checkbox. This method returns the state of the CheckboxMenuItem at the time of
invocation. It can be invoked on an instance of menu item which is also a
Checkbox. When the button is depressed or has a check mark next to it, it is “on”
and it is “off” when it is in raised position or when no check mark is placed next
to it.

Imports
import java.awt.CheckboxMenuItem;

Returns
A boolean value, indicating the state of the checkbox button which is apart of a
Menu.

See Also
The setState method of the CheckboxMenuItem class

paramString()

ClassName
CheckboxMenuItem

Purpose
This method obtains the parameter String of this CheckboxMenuItem button.

Syntax
protected String paramString()

Parameters
None.

Description
This method returns the parameter String of this CheckboxMenuItem which is,
effectively, the label associated with this checkbox button in a menu and the state
of the checkbox menu item.

Imports
import java.awt.CheckboxMenuItem;

Returns
A parameter string of type String which applies to this checkbox item.

See Also
The getLabel method of the Checkbox class

Example
The following code uses paramString by subclassing the CheckboxMenuItem.

package java.awt;
import java.awt.CheckboxMenuItem;

class myCItem extends CheckboxMenuItem{

 public myCItem(String lbl) {
 super(lbl);0
 }

 public String getmyStringForm() {
 return super.paramString();
 }

 public static void main(String[] args) {
 myCItem item = new myCItem(“TestItem”);
 System.out.println(item.getmyStringForm());
 }
}

setState(boolean)

ClassName
CheckboxMenuItem

Purpose
This method sets the boolean state of this CheckboxMenuItem to the specified
state.

Syntax
public void setState(boolean state)

Parameters
state

The state of type boolean that indicates whether to set this item to enabled or
disabled.

Description
A Checkbox toggles between an “on” and “off” state on every mouse click on the
Checkbox. This property holds true even when it is a menu item and forms a part
of a menu. This method sets the state of the CheckboxMenuItem to the specified
boolean value.

Imports
import java.awt.CheckboxMenuItem;

Returns
None.

See Also

The getState method of the CheckboxMenuItem class

The Selections Interface Application

Now you’re ready to develop a user-interface application that uses various GUI
components to offer options to the user. The Selections Interface Application is a Java
stand-alone user-interface that allows a user to enter a text string and then choose the size
and color in which the string will be displayed. There’s also an option to use bold style
for the text, and even one to make the text stand still or dance in the middle of the canvas.
There are many ways to implement this application. In this project, you will follow one
method all the way through. Here are the components you will be creating:

1. A text field for the user to enter a string.
2. A menu named Color from which the user can choose red, green, and blue.
3. A tear-off menu titled Quit and that contains Exit as an item.
4. A menu titled Help, that appears at the top right of this application and
contains a menu item labeled Info.
5. A checkbox to the left of the text field that allows the user to display the text in
bold.
6. A Choice button to the right of the text field that allows users to specify the
text font size as 12, 18, 24, or 26 point.
7. You shall place the checkbox, text field, and choice at the top of your window
canvas.
8. Two radio buttons labeled Simple and Fun. When Simple is selected, the text
string will stand still at the center of the canvas. Since the user should be able to
select only one of these two buttons at any time, we’ll use the CheckboxGroup
class to create them.
9. A button labeled OK, to the left of the radio buttons, which the user must press
to confirm any selection. Only when the user presses this button, will any
selection take effect. Until the user presses OK, the earlier selection will remain
displayed.

Building Your Application

1. First create a Selections class. As the interface should contain a menu bar
according to the specification, your Selections class should subclass the Frame.
You can attach a menu bar only to a Frame object using the setMenuBar() method
of Frame. Also, because we’re providing the functionality to make the text dance,
you need a Thread, running in a loop, to choreograph the text’s movements;
hence, the class should implement the Runnable interface. Enter the following
code in a file named Selections.java. The class should be public.
import java.awt.*;
import java.io.*;
import java.lang.*;

/**

 Filename: Selections.java

 Classname: Selections

 Purpose: An application to illustrate the usage of GUI
for
 making selections, providing options in Java. Usage of
Menus,
 Checkboxes, radio buttons, Choice menu in Java's
 AWT classes.

**/

public class Selections extends Frame implements Runnable {

}
2. To add a text field in your interface, you’ll create a member in the class of type
TextField and instantiate this member within the constructor for this class. Make
the initial string in the text field “Hello” and let ten be the number of columns in
the field. Add the following lines in the Selections class.
TextField txt_fld;

public Selection() {

/* TextField to enter any string */
txt_fld = new TextField(“Hello”, 10);
}
3. Now let’s add the Color menu. You should have three colors as items in this
menu. Let a variable, txt_color, be a member in the class so that the selected color
is accessible within this class. Initialize this variable to black so that, by default,
the text will be displayed in black. Construct the non-tear-off menu with title
Color. Enter the following lines inside the class, but outside the constructor.
Color txt_color = Color.black; // add this outside the
constructor

/* Enter the following lines inside the constructor Selections()
to construct the Color menu.
 Provide a menu to choose a color to display the text in */
 Menu col_menu = new Menu("Color", false);
 // not a tear-off menu
 col_menu.add(new MenuItem("Red"));
 // add “Red” as a menu item
 col_menu.add("Green");
 // add Green and blue as labels
 col_menu.add("Blue");
4. Enter the following code in the constructor. This will create the Quit menu
with Exit as a CheckboxMenuItem and will also create a menu titled Help
containing one item labeled Info.
 Menu quit_menu = new Menu("Quit");
 quit_menu.add(new CheckboxMenuItem("Exit"));

 Menu help_menu = new Menu("Help");

 help_menu.add("Info"); //nothing implemented - just for demo
5. Having created the menus, you can create a menu bar to contain all these. Then
the menu bar should be added to the Frame. As Selections is a subclass of Frame,
you can call the setMenuBar() method directly. Position the Help menu on the
rightmost side of the menu bar using the setHelpMenu method. Include the
following lines in the constructor.
/* Add the menu to the menu bar at the top of the frame */
 MenuBar mybar = new MenuBar();
 mybar.add(quit_menu);
 Menu ret = mybar.add(col_menu);
 mybar.add(help_menu);
 mybar.setHelpMenu(help_menu);
 System.out.println(" addmenu returns -> " +
ret.toString());
 setMenuBar(mybar);
6. You can now create a Choice button for selecting the font size. Add 12, 18, 24,
and 26 to the Choice as options for font size. Create a member bold_box of type
Checkbox in class Selections. Initialize this checkbox in the constructor. Add the
following line outside the constructor.
 Checkbox bold_box;
7. Now include the following code inside the constructor where the txt_fld is
initialized so that the Checkbox, text field, and Choice appear at the top of the
canvas in a single row. You’re adding these components to a new panel and
appending the panel to the “North” of the main panel, the frame.
 /* A Checkbox to toggle the text between PLAIN and BOLD styles
*/
 bold_box = new Checkbox("Bold");

 /* TextField to enter any string */
 txt_fld = new TextField("Hello",10);

 /* A Choice menu to provide a list of size options for the
text */
 Choice fontchoice = new Choice();
 fontchoice.addItem("12");
 fontchoice.addItem("18");
 fontchoice.addItem("24");
 fontchoice.addItem("26");

 /* Add the Checkbox, TextField, and Choice to a panel */
 Panel tpanel = new Panel();
 tpanel.setLayout(new FlowLayout());
 tpanel.add(bold_box);
 tpanel.add(txt_fld);
 tpanel.add(fontchoice);

 add("North", tpanel);
8. All that’s left in the interface to create are the OK button and the two radio
buttons at the bottom of the main frame. Create a panel and add the OK button to
it. Also, create two Checkboxes to indicate the selection between Simple and Fun.
Form a CheckboxGroup with these two checkboxes so that only one of them can
be selected by the user. Add this to a panel placed at the “South” of the main
frame. The following code achieves this effect.

 /* A button to confirm any action to be taken */
 Panel p_bot = new Panel(); // panel to attach to the bottom
 p_bot.add(new Button("OK"));

 /* two checkboxes */
 myradiobox = new CheckboxGroup();
 p_bot.add(new Checkbox("Fun", myradiobox, false));
 p_bot.add(new Checkbox("Simple", myradiobox, true));

 add("South", p_bot);
9. Create a Thread and pass the CheckboxGroup from the Selection object as the
target for the Thread. Call this method from the Selections constructor. Define the
method run() as the Selections class implements the interface Runnable. While the
Thread exists, pause it so that the CPU becomes idle and executes the paint
method. Add the following code inside class Selections.
/* A thread to implement jumping text */
 Thread winThread = null;

 /* Method winStart() to start the thread of this class */
 private void winStart() {
 if(winThread == null)
 winThread = new Thread(this);
 winThread.start();
 }

 /* Method run() of interface Runnable defined here */
 public void run() {
 while(winThread !=null) {
 try{
 Thread.sleep(100);
 } catch (InterruptedException e){}
 repaint();
 }
 }
10. Having constructed the interface, you must now handle the events that will be
generated when the user clicks on the OK button or when the user makes a
selection from the Color menu. When the Exit menu item is selected by the user,
you should exit from the application. These events can be handled by using the
action() method. Enter the following code in the Selections class.
boolean ok = false; // a member to track if ok is
pressed by the user

/* Method to handle Events in this GUI
 Action is taken if "OK" button is pressed,
 if Menu is chosen
 Choice is selected
*/
public boolean action(Event evt, Object arg) {
 if(evt.target instanceof Button) {
 if("OK".equals(arg)) {
 ok = true;
 repaint();
 }

 }

 else if(evt.target instanceof Choice) {
 Choice c = (Choice)(evt.target);
 font = c.getSelectedItem();
 }
 else if(evt.target instanceof MenuItem) {
 /* Make changes to reflect the selection of one color
 Make other colors false and selected color true
 */
 // menu item is selected; so get the menu in which
this
 item is a member

 Menu menu = (Menu)evt.target.getParent();
 if (menu == col_menu) {
 if ("Red".equals(arg)) {
 txt_color = Color.red;
 }
 if ("Green".equals(arg)) {
 txt_color = Color.green;
 }
 if ("Blue".equals(arg)) {
 txt_color = Color.blue;
 }
 }
 else if (menu==quit_menu)
 if("Exit".equals(arg)) {
 System.exit(0);
 }
 }

 return true;
}
11. When OK is pressed, note that we are making a call to the method repaint().
This, in turn, will schedule a call to the paint() method with the Graphics object
under current context. You should change the paint() method to implement any
graphical changes in the interface. In the paint() method, we make changes only if
the user presses the OK button. (Note: Even when the OK button is not pressed,
repaint() is called in the run() method). Check the checkbox for Bold style. If it is
enabled, the text should be in bold. Find out which of the Checkboxes in the
CheckBox group is selected, i.e., Simple or Fun type. Obtain the text string from
the TextField. Then either display it on the canvas or make it dance, depending on
the user’s selection task. These are tasks performed in the paint() method defined
here. Add this method to the Selections class.
public void paint(Graphics g) {

 if(ok) {
 g.setColor(txt_color); // set the color to the selected
color
 ok = false; // make it true ONLY when the user clicks on
it.
 Font myfont;
 // set the style to BOLD or PLAIN depending on bold
checkbox
 selection

 if (!bold_box.getState())
 myfont = new Font(font, Font.PLAIN,
 Integer.valueOf(font).intValue());
 else
 myfont = new Font(font, Font.BOLD,
 Integer.valueOf(font).intValue());
 g.setFont(myfont);

 /* Which of the checkboxes is selected?
 To display the text statically or as jumping text?
 */

 String selctn = (myradiobox.getCurrent()).getLabel();

 /* obtain the text entered in the TextField */
 String str = txt_fld.getText().trim();
 if(selctn.equals("Simple"))
 g.drawString(str,200,150);
 else if(selctn.equals("Fun")) {

 char str_chars[];
 /* get the characters in the string and display them
 one by one at random co-ord */
 str_chars = new char [str.length()];

 str.getChars(0,str.length(),str_chars,0);
 for(int i=0;i<str.length();i++)

 {

 int x_coord = (int) (Math.random()*3+10*i+200);

 int y_coord = (int) (Math.random()*10+150);
 g.drawChars(str_chars, i,1,x_coord,y_coord);

 }
 }

 } // end of " if (ok) "
 } // end of paint() method
12.Now that you’ve implemented all these methods, all that is required to
complete this application is to make it stand-alone. Include the following main()
method in the class Selections. This constructs an object of type Selections and
displays it, which forms our required user-interface for providing selections to the
user. Figure 6-20 captures the Selection interface in action.
public static void main(String args[]) throws IOException {
 Selections mywin = new Selections();
 mywin.setTitle("Selections Applet");
 mywin.pack();
 mywin.resize(400,300);
 mywin.show();
}

Figure 6-20 The Selections Interface application in action

How It Works

The Selections Interface application illustrates the use of windowing components that
provide the funtionality of implementing selection and confirmation in user-interface
applications. When the application starts, the window contains a text field to enter a
string. The default string that appears in the text field is “Hello”. There is a checkbox
button to the left of the text field to specify the string to be displayed in bold font. The
choice menu button on the right side of the text field is for selecting the font size of the
text to be displayed. There are three menus provided as a part of the menu bar. The menu
titled Color is provided to select the color in which the text is to be displayed. The menu
titled Quit is to be used to exit from the application and the menu titled Help is placed on
the rightmost side of the menu bar.

There are two checkbox buttons labelled Fun and Simple. If the Simple button is selected,
the string will be displayed on the window. If the Fun button is selected, the displayed
string will start dancing in the window. These two buttons form a mutually exclusive
group, i.e., only one of them can be selected at any given instant. Try changing the string
in the text field and start playing around by varying all these parameters (size, font, color,
Fun, or Simple). Have fun

Chapter 7
Color, Font, Images, And Shapes

The Java API includes several classes designed to make Graphics rendering operations
easier. Classes exist to represent colors, fonts, shapes, and images. Instances of these
classes are passed, as parameters, to Graphics objects to facilitate rendering on a display
surface.

Without these classes, specifying colors, fonts or simple shapes would require passing
multiple parameters to Graphics methods; instead you can simply instantiate an instance
of a particular graphical helper class and pass it to the Graphics object. For example, the
Color class represents a color as three component color member variables: red, green and
blue. Without this class, specifying a color to a Graphics object for rendering some
geometric primitive, such as a line or oval, would require three parameters, one each for
the red, green and blue color components.

The Graphics method for specifying the foreground color is Graphics.setColor(). The
signature of setColor() is

public abstract class Graphics {
 public void setColor(Color c);
}

Without the Color class, this single parameter would be replaced by three, making coding
more complex:

public abstract class Graphics {
 public void setColor(int r, int g, int b);
}

In addition to encapsulating the data, the graphical helper classes also provide methods
for common tasks associated with the data. For example, the Polygon class includes a
getBoundingBox method which calculates the smallest rectangle that completely contains
the polygon. As the project for this chapter, Doodle, demonstrates,
Polygon.getBoundingBox comes in quite handy at times when you are working with
Polygons. In addition, the implementations of common tasks in graphical helper class
methods often cuts down on code size significantly.

The project for this chapter demonstrates use of the graphical helper classes by
implementing a relatively simple Doodle application. In addition, the Doodle application
demonstrates the use of peer-less Components, which I call “virtual Components,” to
manage overlapping rectangular areas of a window.

Colors

In Java, the default way to describe colors is by using the very common RGB color
model. Color class instances assume colors will be presented that way. For those
unfamiliar with this method of describing colors, here’s a quick summary: Every color is
described by a combination of red, green, and blue color components. Each component is
given an absolute magnitude, from zero to some maximum. In Java, each color
component is storable in an unsigned byte, and thus, is in the rangle 0-255. Each unique
color is a unique point in the three-dimensional space illustrated in Figure 7-1. For
example, absolute red is the point (255,0,0) in Java. The color white is represented as
(255,255,255). And black is represented (0,0,0). (I was taught from a wee age that “black
is not a color.” If you, too, were subjected to this philosophy, you may have to realign a
handful of synapses to deal with the fact that black is representable in the RGB color
model, and so, is indeed a “color” for the purposes of this chapter.)

Figure 7-1 The RGB bounded color space

Java API’s Color class has two ways of representing RGB color components to or from a
Color object. Each of the three color components can be passed in a separate integer, as
in the Color class constructor

public Color(int red, int green, int blue);

Alternatively, all three color components can be packed into a single integer. Since each
color component may have only the values 0-255, each can be packed into a distinct byte
of a four-byte integer. Packed RGB components are used in the Color methods, as shown
here

public Color(int rgb); // Constructor taking packed RGB data
public int getRGB(); // Returns Color’s packed components

When RGB color components are packed this way, the resultant integer is formulated like
this: 0xFFrrggbb. That is, the top byte contains 0xFF. (Actually, it may contain any
value. This value is ignored.) The next byte holds the red color component. The next
holds green, and the bottom byte holds the blue color component. This listing shows how
to build a packed integer of RGB color components from three distinct color component
integer variables.

public int packComponents(int red, int green, int blue) {
 int colorRet = 0xFF000000 |
 (red << 16) |
 (green << 8) |
 blue;
 return colorRet;
}

The Color class provides two RGB constructors, one of which is passed three distinct
color component integer parameters for RGB values. The other RGB constructor takes a
single packed integer of the color component data.

Color class instances also expose their RGB values through two types of methods. The
getXXXmethods getRed, getGreen,and getBlue, each return a single integer indicating
the Color’s value for a single RGB color component. The getRGB method, as mentioned
above, returns a packed integer holding all three color component values.

You may notice the similarities between the Color class packed component color format
and the ColorModel packed RGB? format for representing colors in an Image. Although
the formats are very similar, the chief difference is that the ColorModel has a fourth color

component, “translucency” or “?,”, stored in the top byte of the packed integer. Java
Color objects do not deal with translucency values, and thus ignore the values in the top
byte of the packed RGB data

The HSB Color Model

Next to the RGB color model, the most commonly understood color model is the so-
called HSB color model. The Color class provides some methods for automatically
converting color component data between RGB and HSB color models. Figure 7-2
illustrates the HSB color space.

Figure 7-2 The HSB color space

HSB color model methods are provided in the Color class because some color based
operations are better carried out using HSB data. For example, converting a Color to
grayscale using HSB data involves only zeroing-out the S color component. This is a
much harder operation in the RGB color model. On the other hand, it is generally much
easier to recognize the RGB triplet (0,255,0) as the color green, as opposed to the HSB
triplet (1,1,2p/3) which also represents green.

For readers unfamiliar with the HSB color model, here’s a quick summary. The HSB
color model breaks colors into three color components: “brightness,” “saturation,” and
“hue.” Brightness is easiest to understand as the grayscale value of a particular color.
Saturation describes how bold the color is. Less saturated colors are more washed out.
More saturated colors are more vibrant. Note that a color with 0 saturation is actually a
grayscale color. Finally, hue indicates a point on the standard color wheel that is closest
to a particular color.

Generally, HSB values are described on a scale of 0-1 for the brightness (B) and
saturation (S) values. The hue is an angle around the central axis of the HSB color space
(or around the standard color wheel, however you want to look at it). Hue values in Java
are given in radians. All three values are passed as float valiables in the Color class.

The static Color class methods RGBtoHSB and HSBtoRGB provide a simple method for
converting between the RGB and HSB color models. In addition, getHSBColor is a static
method that will create a new Color object given the HSB color components. An HSB
color model constructor is not provided by this class, probably to avoid coding confusion
since it would be diffucult at first glance to tell whether a particular constructor call was
invoking the RGB or HSB color model overloaded constructor version.

Using Colors

Color objects are generally used in AWT methods to refer to a Component object’s
foreground or background colors. Component.setForeground and setBackground each
take a single Color object parameter. Similarly, Component.getForeground and
getBackground return a Color object, representing the colors that the Component uses to
draw in its update and paint methods.

To set the color a Graphics object uses when drawing to its display surface, use
Graphics.setColor, passing it a Color object representing the color you want to use. The
getColor method of the Graphics class returns the color it will use when drawing.

Note that several public, static Color object instances exist in the Color class. Each
instance represents a common color, such as red, magenta, cyan, or white. These Color
instances can be used as a shorthand instead of creating new Color objects to represent
these common colors. The following listing shows how using these static instances can
make coding a little bit easier: The class Palette presents a series of radio buttons. Each
button uses a different background color. Such a panel is the basis for a decent “color
chooser” toolbar for use in any application where the user chooses colors. Figure 7-3
shows an Applet that uses this Palette implementation.

Figure 7-3 The Palette panel allows users to select from one of the static Color members
of the Color class

ublic class Palette extends Panel {
 public Palette() {
 // Radio buttons presented in a series of centered
 // horizontal rows, controlled by a FlowLayout layout
 // manager.
 setLayout(new FlowLayout(FlowLayout,CENTER, 0, 0));

 // Add a radio button for each of the static Color object
 // instances which are members of the Color class.
 CheckboxGroup group = new CheckboxGroup();
 Checkbox white = new Checkbox(“”, group, true);
 Checkbox lightGray = new Checkbox(“”, group, false);
 Checkbox gray = new Checkbox(“”, group, false);
 Checkbox darkGray = new Checkbox(“”, group, false);
 Checkbox black = new Checkbox(“”, group, false);
 Checkbox red = new Checkbox(“”, group, false);
 Checkbox pink = new Checkbox(“”, group, false);
 Checkbox orange = new Checkbox(“”, group, false);
 Checkbox yellow = new Checkbox(“”, group, false);
 Checkbox green = new Checkbox(“”, group, false);
 Checkbox magenta = new Checkbox(“”, group, false);
 Checkbox cyan = new Checkbox(“”, group, false);
 Checkbox blue = new Checkbox(“”, group, false);

 // Set background colors for each radio button using
 // corresponding static Color object instance.
 white.setBackground(Color.white);

 lightGary.setBackground(Color.lightGray);
 gray.setBackground(Color.gray);
 darkGray.setBackground(Color.darkGray);
 black.setColor(Color.black);
 red.setBackground(Color.red);
 pink.setBackground(Color.pink);
 orange.setBackground(Color.orange);
 yellow.setBackground(Color.yellow);
 green.setBackground(Color.green);
 magenta.setBackground(Color.magenta);
 cyan.setBackground(Color.cyan);
 blue.setBackground(Color.blue);

 // Add all of the radio buttons to this panel.
 add(white);
 add(lightGray);
 add(gray);
 add(darkGray);
 add(black);
 add(red);
 add(pink);
 add(orange);
 add(yellow);
 add(green);
 add(magenta);
 add(cyan);
 add(blue);
 }
}

Fonts: The Facts About Rendering Text

Font objects represent individual typefaces and styles used to render text on a drawing
surface. Fonts are specified by a typeface name, and additional style and size indicators
describe variations of the typeface. The Font class constructor is used to instantiate Font
objects.

Font myFont = new Font(“Helvetica”, nStyleFlags, nPointSize);

The set of available typefaces is system-dependent. That is, font typefaces available on
Windows 95 systems are not necessarily the same as those available on a Solaris or
Macintosh. To get the list of available typeface names on any system, you must use the
Toolkit’s getFontList method. The getFontList method returns an array of String objects,
each element of the array containing one typeface name available for AWT Graphics text
rendering.

String[] astrFontList = Toolkit.getDefaultToolkit().getFontList();
for(int ii=0 ; ii<astrFontList.length ; ii++) {
 System.out.println(astrFontList[ii]);
}

The typeface can be modified by style attributes. There are three style attributes defined
for all typefaces. The following Font class static members represent these style flags.

Typeface Style Flag Description

Font.PLAIN Unmodified typeface. The constant Font.PLAIN is

defined as 0.
Font.ITALICS Italicized version of the typeface.
Font.BOLD Bold version of the typeface.

The Font’s style is a bitwise ORing of these flags. Later versions of the Java API will,
undoubtedly, include more Font style flags. For example, to create a Font object using
both the bold and italics styles, you would use the Font constructor like this:

Font myFontObject = new Font(“Helvetica”, FGont.BOLD |
Font.ITALICS, nPointSize);

The size of a font is specified in “points”, which is a typographic unit equal to (just
about) 1/72 inch. This distance specifies the distance from the bottom of descending
characters to the top of ascending characters of the typeface. Figure 7-4 illustrates the
various metrics associated with a typeface, including the height, or point size, of the Font
which is passed as the third parameter of the Font class constructor.

Figure 7-4 Typographical metrics that describe a font

Measuring a Font: The FontMetrics Class

The font metrics illustrated in Figure 7-4 are not directly available from a given Font
object. Instead, you get a FontMetrics for a given Font object. The FontMetrics provides
these metrics through its public class methods. The following lists the metrics of a Font
available through the FontMetrics class, and the methods that provide access to those
metrics.

Metric Methods and Description of the Metric

Leading The suggested distance between successive lines of rendered text.

This is the distance between the bottom of the descending
characters of the previous line and the top of the ascending
characters of the next line. Another way to say this is that the
distance between baselines of successive lines of text should be
the Leading + Ascent + Descent. FontMetrics.getLeading() returns

the Leading of the associated Font.
Ascent The distance from the baseline to the top of asending chartacters.

FontMetrics.getAscent() returns the Ascent of a given Font.
Descent The distance from the baseline to the bottom of descending

characters. FontMetrics.getDescent() returns the Descent of a
given Font.

Height The distance between baselines of successive lines of text, which
is determined as Leading + Ascent + Descent. This is not the same
thing as the font’s typesize, which is simply Ascent + Descent, or
the distance from the top of ascending characters to the bottom of
descending characters. FontMetrics.getHeight() returns the Height
of a given font.

Width Fixed-width fonts have the same width for all characters. Variable-
width fonts, such as the font used to display this sentence, have
characters of different widths. The FontMetrics class includes
methods to measure the width of a particular character, or of a
string of characters. These methods are charWidth(),
stringWidth(), charsWidths(), bytesWidth().

Why have a FontMetrics class at all? Why not have the Font object provide methods to
access a font’s metrics? The reason is, the same font may have different metrics when
used to render text on different display surfaces. For example, a character of 10-point
Helvetica font displayed on the screen may have a different actual size if displayed on a
printer. If the printer must use an alternative font because it does not know the Helvetica
typeface, then the sizes will most certainly be different. The FontMetrics class represents
the metrics of a particular Font when used on a particular display surface.

The FontMetrics constructor accepts a Font object as its only parameter. The FontMetrics
object which is created contains the metrics of the Font when used to render text on the
default display surface (usually the screen), as shown here:

Font f = new Font(“Helvetica”, Font.ITALICS | Font.BOLD, 10);
FontMetrics fm = new FontMetrics(f);

// fm contains metrics of Font f when used to display text on
// the screen.

To get the metrics for text of a particular font when displayed on another display surface,
you must use a Graphics object attached to that display surface. These are the steps:

1. Get a Graphics object associated with the alternative display surface.

2. Associate the Font you want to measure with the Graphics object using
setFont.
3. Get the FontMetrics for the Font when used to display text on the display
surface using getFontMetrics. Here’s how it looks:

Graphics g;

// Instantiate Graphics g by associating with display surface.

g.setFont(myFont);
FontMetrics fm = g.getFontMetrics();

The FontMetrics are very important for determining where to place text. The following
listing is a method called getTextOrigin used to place text within a rectangle. That is, it
accepts a String of text, a Graphics object which will be used to render the text, and a
Rectangle to hold the text. The nFlags parameter is a bitwise ORing of the flags
H_CENTER and V_CENTER. The method returns the x and y coordinates to use as the
drawString method’s x and y parameters to place the String within the Rectangle either
horizontally or vertically centered (or both).

public static final int H_CENTER = 0x00000001;
public static final int V_CENTER = 0x00000002;

public static Point getTextOrigin(String text, Graphics g,
 Rectangle r, int nFlags) {
 FontMetrics fm = g.getFontMetrics();
 int nTypesize = fm.getAscending() + fm.getDescending();
 int nTextwidth = fm.stringWidth(text);

 Point ptRet = new Point(
 nFlags & V_CENTER ? r.width/2 - nTextwidth/2 : 0,
 nFlags & H_CENTER ? r.height/2 - nTypesize/2 :
 fm.getAscending());

 return ptRet;
}

Figure 7-5 shows a simple Applet which demonstrates the use of getTextOrigin. In a two-
by-two grid, the same text is displayed four times. The top left grid cell contains the text
without any centering flags, so the text is left and top flushed. The bottom left cell uses
only the H_CENTER flag, so the text is flush left but centered top-to-bottom. The text in
the top right cell is flush with the top of the cell but centered left-to-right because only
the V_CENTER flag is used. The bottom right cell uses both the H_CENTER and
V_CENTER flags and the text is centered within the cell.

Figure 7-5 A getTextOrigin method to center rendered text within a rectangle
horizonally or vertically

Geometric Helper Classes

A Rectangle is represented within the Java API by a size, measured in width and height,
and a point of origin. The origin is usually the upper-left corner of the Rectangle, though
if you allow for negative widths and heights the origin can be any one of the four corners.
The Rectangle class internally stores four variables, which are exposed as public to make
use of the Rectangle class easier: x, y, width and height. The x and y members describe
the origin of the Rectangle, and the width and height parameters describe the size of the
Rectangle. Positive widths extend to the right of the origin, and positive heights extend
downwards from the origin.

The two accompanying classes to Rectangle are Point and Dimension. A Point is made
up of an X and a Y distance, and represents a two-dimensional point (simple enough). A
Dimension is a two-dimensional vector, and is represented by a width and a height public
member variable.

Dimension objects are used almost exclusively by methods of the Component class to
describe the size of a Component object on the screen. Component.size returns a
Dimension indicating the width and height of the Component. You pass a Dimension
object to a Component’s resize method to change the width or height of the Component,
as shown here:

// Make a Component large by 10 pixels in width and height
Dimension d = myComponent.size();
d.width += 10;
d.height += 10;
myComponent.resize(d);

An alternative, and easier, way to do the same thing is

Rectangle r = myComponent.bounds();
r.grow(10, 10);
myComponent.reshape(r.x, r.y, r.width, r.height);

The Rectangle class includes a rich set of methods to modify a Rectangle’s point of
origin, width, or height. The Rectangle class’ move and translate methods modify a
Rectangle by changing its point of origin without modifying its width or height. The
move method simply changes the origin to the new x and y coordinates specified in its
parameters. To move a Rectangle a relative distance from its current origin, use
translate.The current origin of a Rectangle is always available by directly accessing its x
and y public member variables, as follows:

// Move a Rectangle to the absolute point (10, 10)
Rectangle r = new Rectangle(initX, initY, initWidth, initHeight);
r.move(10, 10);

// Move a Rectangle 10 points to the right, and 10 points down
// from current position
Rectangle r = new Rectangle(initX, initY, initWidth, initHeight);

r.translate(10, 10);

The size of a rectangle is modified by Rectangle.resize() that changes the Rectangle’s
width and height to explicit new values. This is analogous to how Rectangle.move()
changes the point of origin to an explicit new location.

Analogous to how translate changes the point of origin by a relative amount, grow makes
the Rectangle wider and higher than its current size. The grow method is implemented to
keep the Rectangle’s center point exactly the same after the operation. The practical
effect of growing a Rectangle by dX points in width and dY points in height is to move
the origin dX points left and dY points up, and to add 2dX to the Rectangle’s width and
2dY to the Rectangle’s height. Note that positive dX and dY values passed to grow will
actually shrink a Rectangle which has a negative width and height.

Rectangle.reshape takes both new coordinates for the Rectangle’s origin, and new width
and height values. That is, you can change any aspect of a Rectangle’s placement or
dimensions using reshape.

// Mirror the Rectangle about the x=y diagonal line
// by swapping x with y, and width with height...
r.reshape(r.y, r.x, r.height, r.width);

The Rectangle class provides methods for performing two-dimensional unions and
intersections of Rectangles. A union of Rectangles, performed by add, modifies the
Rectangle object’s origin and dimensions to encompass the smallest rectangular area that
contains two different Rectangles. Actually, add does not perform a union in the strict
mathematical sense. Figure 7-6 illustrates the difference between Java’s add method and
a mathematical union operation.

Figure 7-6 The operation performed by Rectangle.add compared to the result of a
mathematical union

An add operation performed on two overlapping rectangles (A) produces a new rectangle
(B) precisely sized to encompass both originals, while a mathematical union of the same
two rectangles results in a new shape (C) that is not a rectangle at all. Similary, an add
operation performed on two non-overlapping rectangles (D), produces another rectangle
(E) just large enough to contain the first two, while a union of these rectangles is simply
the two disjointed shapes taken together (F).

You can also add a Point to a Rectangle. This has the effect of modifying the Rectangle’s
origin and dimension to be the smallest rectangular area which encompasses both the
origin Rectangle and the Point. Two different overloaded versions of add can be used to

add a Point to a Rectangle: one takes a Point object as its only parameter, and the other
takes the X and Y distances as two parameters.

The intersection operation, performed by intersection, modifies a Rectangle’s origin and
dimensions to encompass the rectangular area of overlap of two different Rectangles. Just
as add does not perform a two-dimensional union in the strict sense, the Java intersection
operation is not an intersection in the traditional mathematical sense. If there is no area of
overlap between the two Rectangles, the resulting Rectangle values have an odd
relationship to the original two Rectangles. The resulting rectangular area will have a
negative width and height. The best way to describe its position is that it encompasses the
area between the two non-overlapping rectangles.

Figure 7-7 shows the difference between Java’s intersection operation and a
mathematical intersection. For two overlapping Rectangles (A) there is no difference
between the Rectangle resulting from Java’s intersection operation (B) and the
mathematical intersection (C). But for two non-overlapping Rectangles (D), Java’s
intersection operation results in a non-empty Rectangle (E), while a mathematical
intersection would, of course, be the empty set (F).

Figure 7-7 The operation performed by Rectangle.intersection

It is also possible to intersect a Rectangle and a Point, although the process, shown in
Figure 7-8, is a bit convoluted. To begin, you essentially negate the original Rectangle
(A) by changing the sign of its width and height, and move its origin to the oppposite
corner (B). This has the effect of maintaining the same rectangular area as the original
Rectangle. Next, you use one of the overloaded versions of add to make a union of the
Point with the modified Rectangle (C). Finally change the signs of the resulting
rectangle’s width and height and again move the origin to the opposite corner of the
rectanglur area (D). Strange? No doubt. Here is an implementation of intersection(Point)
as described in this paragraph.

public class RectangleEx extends Rectangle {
 // Appropriate constructors omitted, but you would want
 // to recreate the large set of constructors available to
 // the Rectangle class.

 public void intersection(Point pt) {
 // Modify this rect by changing the sign of the width
 // and height, and moving the origin point to the
 // opposite corner: keeps same area as original.
 x += width;
 y += height;
 width = -width;
 height = -height;

 // now add this rect with the point.

 add(pt);

 // Change the signs of the dimensions back, and move
 // the origin to the diagonal corner again.
 x += width;
 y += height;
 width = -width;
 height = -height;
 }
}

Figure 7-8 Using the Java API to intersect a Rectangle and a Point

Graphical Object API Summaries

Table 7-1 lists the Java graphical object classes summarized in this section. Table 7-2
lists the methods for each of these classes, and a short description of each of them.

Table 7-1 The graphical helper classes

Class Description

Color Represents a color in the RGB color model. Methods are

provided to easily translate colors between the RGB and HSB
(brightness, saturation, hue) color model.

Font Represents a font for rendering text on a display surface.
FontMetrics Stores metrics, describing how a particular Font is rendered on a

particular drawing surface. For example, the Font’s ascending or
descending distances from the baseline, or the width of characters

rendered with that Font.

Image An Image is generated from a graphical format file, or from data
you provide through an ImageProducer. The Image class

implements methods that allow you to draw on Images, just as
you would any other display surface (with some restrictions).

Informational methods are also provided to supply vital metrics
about the image.

Point Encapsulates a two-dimensional coordinate as an X and Y
distance. Helper methods for changing the X and Y distances to

either an absolute distance or a relative distance.
Rectangle A Rectangle object describes a rectangle on the two-dimensional

plane. A Rectangle is described by a point of origin, a width and
a height. Several utility methods are provided with the Rectangle

class implementation because the Component class—the basis for
all Abstract Windows Toolkit (AWT) windowing classes—uses
Rectangles quite a bit. There are several overloaded Rectangle

constructors, as well as several methods for manipulating,
comparing and combining rectangles via common geometric

operations.
Polygon A polygon is represented in Java by a Polygon class instance. A

Polygon object stores an ordered set of vertices, describing a
multipoint polygon in two dimensions. A couple of utility

methods are provided with the Polygon class, although some
methods you would expect to be included in the Java API were

not. This chapter presents implementations for some of the
missing functionality.

Table 7-2 Summary of the Color, Font, Images, and Shapes classes and methods

Class Method Description

Color getRed, getGreen, getBlue Gets the value of one of the principal

color components.

 getRGB Gets the packed RGB representation of
the color.

 brighter Gets a new Color object representing a
color brighter than the original.

 darker Gets a new Color object representing a
color darker than the original.

getColor Creates a Color from a hexadecimal

String representation of a packed RGB
number.

 getHSBColor Creates a new Color object from HSB
color component values.

RGBtoHSB Converts a set of RGB color

components to their equivalent HSB
color components.

 HSBtoRGB Converts a set of HSB color
components to their equivalent RGB

color components.
Font getFamily Gets the text String describing the

Font’s font family.

 getName Gets the text String describing the
Font’s typeface.

getStyle Returns a bitfield of flags indicating the

additional typeface styles for the Font,
such as bold or italics.

 getSize Gets the size of the Font, measured in
points.

 isPlain Tells whether any typeface style flags
are used by the Font.

 isBold Tells whether the Font is a boldface
font.

 isItalic Tells whether the Font is an italics font.

 getFont Static method that creates a Font from
just a typeface name.

FontMetrics getFont Gets the Font that this FontMetrics
measures.

getLeading Gets the suggested leading for the Font.
The leading is the suggested spacing

between successive lines of text,
measured from the top of the tall

characters which extend above the
baseline (the “ascent”) to the bottom of
the characters which extend below the

baseline (the “descent”).

 getAscent Gets the height of characters above the
baseline.

getDescent Gets the distance below the baseline for

characters which hang below the
baseline, such as “p”, “q”, and “j”.

getHeight Gets the suggested distance between

successive lines of text, measured
baseline-to-baseline.

 getMaxAscent Gets the maximum extension of the
tallest character above the baseline.

 getMaxDescent Gets the maximum descension of any
character below the baseline.

 charWidth Gets the width in logical units (e.g., in
pixels for most display surfaces) for a

particular character.

 stringWidth Gets the width in logical units of a
string of characters.

charsWidth Gets the width in logical units of a set

of characters presented as an array of
chars.

bytesWidth Gets the width in logical units of a set

of characters presented as an array of
bytes.

 getWidths Retrieves an array of widths for each
character in the ASCII character set.

Image getWidth Gets the width in pixels of the Image.

 getHeight Gets the height in pixels of the Image.

getSource Creates an ImageProducer which will
deliver the pixel data and ColorModel
of this Image to an ImageConsumer or

ImageFilter.

getGraphics Gets a Graphics object using this Image
as its drawing surface. Only in-memory

Images can successfully use this
method.

getProperty Each Image has an extensible set of
properties telling particulars about the

format, source, and filtering of the
Image. Each property has a unique

String name, and the property’s value
is returned as a human-readable String.

flush Forces all pixel values for the Image to
be forgotten. The next time Image pixel
values are accessed, the Java system

will reconstruct the Image from its
source.

Point move Changes the X and/or Y position of the
point.

translate Moves the X and/or Y position of the

point a specified distance along a
particular axis.

Polygon addPoint Polygon instances are populated with
vertices using this method. Note that
once a vertex is added to a polygon it
can not be removed without directly
manipulating the xpoints and ypoints

Polygon member arrays.

getBoundingBox The smallest rectangle which can
contain all the vertices of the Polygon
is returned. Note that the Rectangle
object returned is actually a member
variable of the Polygon object. Direct

manipulation of this Rectangle will
corrupt it until a new vertex is added to

the Polygon.

inside Tells whether or not a point lies within
the Polygon. Uses the even-odd

insideness rule to calculate whether or
not the point is within the polygon.

Rectangle reshape In a single method call, this method
allows you to change the origin, width,

and height of a Rectangle.

resize Changes the width and height of the

Rectangle without modifying the origin
point.

 move Modifies the origin point without
changing the width and height.

translate Moves the origin point a specified
distance in the X and Y directions
without modifying the width nor

height.

 inside Tests whether or not a point lies within
the Rectangle.

 intersects Tests whether or not another Rectangle
intersects this one.

intersection Computes the rectangle which is an

intersection of this one and another
Rectangle object.

union Computes the smallest Rectangle

which contains both this Rectangle and
another.

add Adding a rectangle to another
Rectangle is the same as a union.
Adding a Point to the Rectangle

computes the smallest rectangle which
contains both this Rectangle and an

external Point.
 grow Grows the Rectangle a specific

distance in all four directions, such that
the center point of the resultant

rectangle is the same as the center point
of the original.

isEmpty Tests whether or not the Rectangle has
a non-zero volume. That is, whether or
not the width and height are both non-

zero.

Color

Purpose
Represents a color as a red, green, and blue color component value.

Syntax
public class Color

Description
Color objects store the red, green, and blue color components for a single Color.
The Graphics class uses Color objects to specify coloring of the foreground,
background, and alternate-color (when the Graphics is in XOR mode). Figure 7-9
shows the class hierarchy of the Color class.

Figure 7-9 The class hierarchy of the Color class

PackageName
java.awt

Imports
java.io.*, java.lang.*

Constructors
public Color(int red, int green, int blue);
public Color(int rgb);
public Color(float flRed, float flGreen, float flBlue);
Specify the red, green, and blue color components separately as integers or as
floats. Alternatively, specify the three color components in a packed int
(0xFFrrggbb).

Example

Several public member variables of the Color class are static Color objects
describing common colors. These members are used as a “shorthand” for
specifying common Colors. For example, the two following lines of code are
equivalent ways to change a Graphics object’s foreground color to yellow.

Graphics g;

g.setColor(new Color(255, 255, 0)); // create new Color object.
g.setColor(Color.yellow); // refer to static yellow Color.

The following table lists the 13 static Colors and their RGB values, expressed in
hexadecimal values.

Color RGB values

white r: 0xFF; g: 0xFF; b: 0xFF
lightGray r: 0xC0; g: 0xC0; b:0xC0

gray r: 0x80; g:0x80; b: 0x80
darkGray r: 0x40; g: 0x40; b: 0x40

black r: 0x00; g: 0x00; b: 0x00
red r: 0xFF; g: 0x00; b: 0x00
pink r: 0xFF; g: 0xAF; b: 0xAF

orange r: 0xFF; g: 0xC8; b: 0xC8
yellow r: 0xFF; g: 0xFF; b: 0x00

green r: 0x00; g: 0xFF; b: 0x00
magenta r: 0xFF; g: 0x00; b: 0xFF
cyan r: 0x00; g: 0xFF; b: 0xFF

blue r: 0x00; g: 0x00; b: 0xFF

getRed

ClassName
Color

Purpose
Gets the value of the red color component of this Color.

Syntax
public int getRed();

Parameters
None.

Imports

None.
Description

Retrieves the value of the red color component of the Color object. This is the
value originally passed as the red color component to the Color class contructor.

Returns
The value of the red color component in the range 0-255 is returned.

See Also
The getGreen, getBlue, and getRGB methods of the Color class

Example
This code sample creates a new Color object that is 75 percent as bright as the
original. Each of the red, green, and blue color components are scaled by the
value 0.75 (float) and converted to a float value 0-1, which is used by the
normalized magnitude version of the Color constructor to create a new, dimmer
Color object.

Color colorOriginal;

// colorOriginal is initialized to some color.

Color colorDimmer = new Color(
 ((float)colorOriginal.getRed() * 0.75) / 255,
 ((float)colorOriginal.getGreen() * 0.75) / 255,
 ((float)colorOriginal.getBlue() * 0.75) / 255);

getGreen

ClassName
Color

Purpose
Gets the value of the green color component of the Color.

Syntax
public int getGreen();

Parameters
None.

Imports
None.

Description
Retrieves the value of the green color component of the Color object. This is the
value originally passed as the green color component to the Color class
constructor.

Returns
The value of the green color component in the range 0-255 is returned.

See Also
The getRed, getBlue, and getRGB methods of the Color class

Example
See the code sample for getRed, which also demonstrates use of getGreen and
getBlue.

getBlue

ClassName
Color

Purpose
Gets the value of the blue color component of the Color.

Syntax
public int getBlue();

Parameters
None.

Imports
None.

Description
Retrieves the value of the blue color component of the Color object. This is the
value originally passed as the blue color component to the Color class constructor.

Returns
The value of the blue color component in the range 0-255 is returned.

See Also
The getRed, getGreen, and getRGB methods of the Color class

Example
See the sample for getRed, which also demonstrates use of getBlue and getGreen.

getRGB

ClassName
Color

Purpose
Gets a packed integer which contains the values of the red, green, and blue color
component for this Color.

Syntax
public int getRGB();

Parameters
None.

Imports
None.

Description
Retrieves a 32-bit integer of packed bitfields describing the values of the red,
green and blue color components of the Color object.

Returns
A 32-bit integer of packed bitfields describing the red, green, and blue color
components is returned. The bitfields are described by this hexadecimal mask:
0x00rrggbb. That is, the red component mask is 0x00FF0000, the green mask is
0x0000FF00, and the blue mask is 0x000000FF.

Example
This method creates a new Color object from an original object, where the output
Color is the same as the original Color with the red and blue color components
switched. It would probably be even easier to implement this method using

getRed and getBlue, but this code sample is sufficient for demonstrating the
getRGB method.

public Color switchRAndG(Color colorIn) {
 int rgbOut = ((colorIn.getRGB() & 0x00FF0000) >> 16) |
 ((colorIn.getRGB() & 0x000000FF) << 16) |
 (colorIn.getRGB() & 0xFF00FF00);

 return new Color(rgbOut);
}

brighter

ClassName
Color

Purpose
Creates a new Color object representing a color which is a brighter version of this
Color.

Syntax
public Color brighter();

Parameters
None.

Imports
None.

Description
Creates a new Color object which is roughly one-and-a-half times as bright as this
Color object. Within the Java API, this method is used to highlight beveled edges,
such as the edge around a 3D rectangle.

Returns
A new Color object representing a color roughly one-and-a-half times as bright as
this Color object. That is, each color component of this Color is multiplied by
about 1.5 and used to create a new color object. Of course, the maximum of any
color component in the new Color object is 255.

Example
The method demonstrated here uses arc segments to create a shaded oval on a
Graphics object’s drawing surface. The shaded oval is drawn with a beveled edge
to look “raised” or “lowered” on the drawing surface, similar to draw3DRect.
Brighter and darker are used to create colors, implying shaded versions of the
Graphics object’s foreground color. The draw3DOval method uses the nThickness
parameter to indicate the thickness of the 3D oval’s border.

public draw3dOval(Graphics g, Rectangle rectOval,
 boolean fRasied, int nThickness) {
 Color colorBase = g.getColor();
 Color colorNW =
 fRaised ? colorBase.brighter() : colorBase.darker();
 Color colorSE =
 fRaised ? colorBase.darker() : colorBase.brighter();

 // The magnitude of nThickness tells how many concentric
 // 3D ovals to draw.
 for(int i=-nThicknewss/2 ; i<nThickness/2 ; I++) {
 Rectangle r = new Rectangle(rectOval.x, rectOval.y,
 rectOval.width, rectOval.height);
 r.grow(i,i);

 // Draw NW sector in colorNW, SE sector in colorSE,
 // and NE, SW sectors in colorBase.
 g.setColor(colorNW);
 g.drawArc(r.x, r.y, r.width, r.height,
 Math.PI, Math.PI/2);

 g.setColor(colorBase);
 g.drawArc(r.x, r.y, r.width, r.height,
 3*Math.PI/2, Math.PI);
 g.drawArc(r.x, r.y, r.width, r.height,
 Math.,PI/2, 0);

 g.setColor(colorSE);
 g.drawArc(r,x, r.y, r.width. r.height,
 0, 3*Math.PI/2);
 }
}

darker

ClassName
Color

Purpose
Creates a new Color object representing a color which is a darker version of this
Color.

Syntax
public Color darker();

Parameters
None.

Imports
None.

Description
Creates a new Color object which is roughly 70 percent as bright as this Color
object. Within the Java API, this method is used to highlight beveled edges, such
as the edge around a 3D rectangle.

Returns
A new Color object representing a color roughly 70 percent as bright as this Color
object. That is, each color component of this Color is multiplied by about 0.7 and
used to create a new color object.

Example
See the code sample for brighter.

getColor

ClassName
Color

Purpose
Creates a Color from a String representation of packed RGB information.

Syntax
public static Color getColor(String nm);
public static Color getColor(String nm, Color v);
public static Color getColor(String nm, int rgb);

Parameters
String nm

The text value of this String is the decimal or hexadecimal value of a 32-bit
integer. This integer has 3 packed 8-bit bitfields representing each of the red,
green, and blue color components. The bitfield format is 0x00rrggbb. For
example, “00FFFFFF” represents the color white.

Color v
The default color to return if the nm parameter is incorrectly formatted. That is, if
the nm parameter does not contain a valid number.

int rgb
An integer of 3 packed 8-bit bitfields representing the color components of the
default Color to return if the nm parameter is incorrectly formatted. That is, if the
nm parameter does not contain a valid number.

Imports
None.

Description
Allows you to create a Color object from a text String. The String is a text version
of a 32-bit packed RGB value. Overloaded versions exist so you can specify an
alternative color if the text String is ill-formated.

Returns
A new Color object representing the color components specified by the nm String
parameter. If the first overloaded version of this method is used, and the nm
parameter is incorrectly formatted, then null will be returned.

Example
The main method of this object prompts the user for a packed RGB integer value
for a new Color object. The getColor method is used to build the Color object,
and Color.toString is used to display what Color was actually created. “Null” will
be displayed if the input text from the user does not represent a valid packed RGB
value. Either decimal or hexadecimal notation may be used.

import java.awt.Color;

public class TestColorProgram {

 public static void main(String[] astrArgs) {
 String strInput = new String();
 String strTerminator = “QUIT”;
 String strPrompt = “Color value (\”QUIT\” to end program): ”;

 System.out.print(strPrompt);
 strInput = System.in.readln();
 while(!strTerminator.equals(strInput)) {

 Color c = Color.getColor(strInput);

 System.out.println(“Color created is: “ +
 c.toString() + “\n\n”);
 System.out.print(strPrompt);
 strInput = System.in.readln();
 }
 }
}

getHSBColor

ClassName
Color

Purpose
Creates a new Color object from HSB color components.

Syntax
public static Color getHSBColor(float h, float s, float b)

Parameters
float h

HSB hue color component for the new Color to create. This is measured in
radians.

float s
0-1 value of the HSB saturation color component for the new Color to create.

float b
0-1 value of the HSB brightness color component for the new Color to create.

Imports
None.

Description
Creates a new Color object from HSB color components. “HSB” is a theoretical
color model in which colors are measured by Hues, Saturation and Brightness.
(Please refer to a textbook on color theory for a complete discussion of the HSB
color model.) Instead of referring to colors in terms of their red, green, and blue
color components, as most the other Color class methods do, this method uses
hue, saturation, and brightness color components.

Returns
A new Color instance is returned, which represents a color with the specified hue,
saturation, and brightness color components.

Example
This example takes an input Color object and uses it to create a new Color object
with a change in the Hue color component of the HSB representation of the Color.
Hue is an angle, measured in radians. This method flips the hue color component
by p radians (180°). Since hue is measured as an angle, the simplest method to
invert the angle by p radians is to invert its sign.

public Color InvertHue(Color c) {
 float[] aflHSB = Color.RGBtoHSB(c.getRed(),

 c.getGreen(), c.getBlue());

 aflHSB[0] = -aflHSB[0]; // 0-th value is hue.
 return new Color(Color.HSBtoRGB(afl[0],
 aflHSB[1], aflHSB[2]));
}

RGBtoHSB

ClassName
Color

Purpose
Converts a set of RGB color components to their HSB equivalents.

Syntax
public static float[] RGBtoHSB(int r, int g, int b, float[] hsbvals);

Parameters
int r

The red color component of the color to convert to the HSB color model. Must be
between 0-255.

int g
The green color component of the color to convert to the HSB color model. Must
be between 0-255.

int b
The blue color component of the color to convert to the HSB color model. Must
be between 0-255.

flaot[] hsbvals
An array of at least three elements. The return values of the conversion are
returned in this array. If hsbvals is null, then an array of three float values is
allocated on behalf of the calling code by Color.RGBtoHSB(). Note that there is
no error checking by RGBtoHSB() to ensure the array is at least three elements
long. An ArrayIndexOutOfBounds exception will be thrown if this array is not at
least three elements long.

Imports
None.

Description
Converts a set of RGB color components to their equivalent HSB color
components. Use this method to convert a color between the RGB and HSB color
representation schemes.

Returns
The same value passed in the hsbvals parameter is returned. If null is passed for
hsbvals, then the return value is a reference to an array allocated by this method
on behalf of the calling code.

See Also
The HSBtoRGB method of the Color class

Example
See the example for the getHSBColor method.

HSBtoRGB

ClassName
Color

Purpose
Converts a set of HSB color components to their RGB equivalents.

Syntax
public static int HSBtoRGB(float hue, float saturation, float brightness);

Parameters
float hue

The hue color component of the color to be converted, measured in radians.
float saturation

The saturation color component of the color to be converted. This value is in the
range 0-1.

float brightness
The brightness color component of the color to be converted. This value is in the
range 0-1.

Description
Converts a set of HSB color components to their equivalent packed 32-bit integer
of RGB color component values. Use this method to convert between the HSB
and RGB color representation schemes.

Returns
A 32-bit integer of packed RGB color components. The red, green, and blue color
components describe the same color as the input hue, saturation, and brightness
parameters.

See Also
The RGBtoHSB method of the Color class

Example
See the example for the getHSBColor method.

Font

Purpose
Represents a Font with which to render text on display surfaces.

Syntax
public class Font

Description
Instances of the Font class describe a typesetting font for displaying text on a
display surface. Fonts are described by a name, size and style. A Font on a
particular display surface is measured by a FontMetrics, which tells the size of
characters when they are displayed on that display surface.
Different Fonts are available for use on different desktops. The AWT Toolkit
object provides the names of available Fonts through Toolkit.getFont.
Figure 7-10 shows the class hierarchy of the Font class.

Figure 7-10 The class hierarchy of the Font class

Package
java.awt

Imports
None.

Constructors
public Font(String name, int style, int size);
Specify a font typeface name, style flags ORed together bitwise, and the size of
the font in points. The Toolkit class method getFont enumerates all the valid font
typeface names.

Parameters
The Font class includes several static constants for specifying font styles.
Generally, these style flags are ORed together bitwise to specify a series of style
indicators for a Font. The following table lists those style constants.

Constant Description

PLAIN The absence of other style indicators.

BOLD The boldface style indicator.
ITALICS The italics style indicator.

Example

This example demonstrates how to create Fonts in Java.
public void SampleFonts(Graphics g) {
 String astrFontList =
 Toolkit.getDefaultToolkit().getFontList();
 int y = 0;
 Font fontOld = g.getFont();

 for(int i=0 ; i<astrFontList.length ; i++) {
 Font f = Font.getFont(astrFont[i]);
 if(null == f) continue;

 g.setFont(f);
 FontMetrics fm = g.getFontMetrics();

 y += fm.getAscent() + fm.getLeading();

 String strSample = astrFontList[i] + “ Aa Bb Cc Dd Ee”;
 g.drawText(strSample, 0, y);

 y += fm.getDescent();
}

getFamily

ClassName
Font

Purpose
Gets the name of the font family that this Font’s typeface belongs to.

Syntax
public String getFamily();

Parameters
None.

Imports
None.

Description
Returns a String value of the Font’s font family. If the font family name is not
available, then the Font’s typeface name is returned. The font family is stored as a
System property under the key “awt.font.<typeface-name>“. If this System
property is not available, then the Font’s typeface name is returned instead.

Returns
A String filled with the name of the font family this Font belongs to.

Example
This example method prints all available information about a particular Font
object, using the various public methods of the Font class.

public void print(String s) {
 System.out.println(s);
}

public void printFontInfo(Font f) {
 // Print the Font family
 print(“Font family: “ + f.getFamily());

 // Print the Font face name.
 print(“Font face name: “ + f.getName());

 // Print the Font’s style attributes
 print(“Font is:”);
 if(f.isPlain()) {
 print(“\tPLAIN”);
 } else {
 print(“\t” + (f.isBold() ? “BOLD” : “NOT BOLD”));
 print(“\t” + (f.isItalic() ? “ITALIC” : NOT ITALIC));
 }
 // Print style flags as demonstrated by the getStyle
 // method.
 print([using getStyle:]”);
 if(0 != (f.getStyle() & Font.PLAIN))
 print(“\tPLAIN”);
 } else {
 print(“\t” + (0 != (f.getStyle() & Font.BOLD) ?
 “BOLD” : “NOT BOLD”);
 print(“\t” + (0 != (f.getStyle() & Font.ITALIC) ?
 “ITALIC” : “NOT ITALIC”);
 // Print the font’s size

 print(“Font size: “ + f.getSize());
}

getName

ClassName
Font

Purpose
Gets the name of the Font’s typeface.

Syntax
public String getName();

Parameters
None.

Imports
None.

Description
Returns the typeface name for the Font. This String should indicate the same
value passed to the Font constructor, or to getFont, whichever was used to create
the Font object.

Returns
The typeface name of the Font is returned in a String object.

See Also
The getFont method of the Font class.

Example
See the example for the getFamily method of the Font class.

getStyle

ClassName
Font

Purpose
Gets the style flags for the Font.

Syntax
public int getStyle();

Parameters
None.

Imports
None.

Description
Gets an integer which describes the style indicators used to create the Font. One
or more of the static Font class constants PLAIN, BOLD, or ITALICS will be
combined to describe the style of the Font.

Returns
The style flags for the Font are ORed together to create the return value for this
method. This should be the same value passed to the Font constructor.

Example
See the example for the getFamily method of the Font class.

getSize

ClassName
Font

Description
Return the size of the Font, measured in points.

Syntax
public int getSize();

Parameters
None.

Imports
None.

Description
The size is the combination of the typeface’s ascension above the baseline plus its
descension below the baseline. The return value is the same as the size parameter
passed to the Font constructor.

Returns
The point size of the Font, measured in “points.” A point is a typesetter’s unit
equal to 1/72 inch.

Example
See the example for the getFamily method of the Font class.

isPlain

ClassName
Font

Purpose
Tells whether the Font’s style is plain or not.

Syntax
public boolean isPlain();

Parameters
None.

Imports
None.

Description
Indicates whether the Font’s style is devoid of any special flags, such as BOLD or
ITALICS.

Returns
True is returned if all style flags for the Font are cleared.

See Also
The isBold and isItalics methods of the Font class

Example
See the example for the getFamily method of the Font class.

isBold

ClassName
Font

Purpose
Tells whether the Font is boldface.

Syntax
public boolean isBold();

Parameters
None.

Imports
None.

Description
Tells whether or not the BOLD style flag for the Font is set.

Returns
Returns true if the Font.BOLD style flags is set for the Font.

See Also
The isPlain and isItalics methods of the Font class

Example
See the example for the getFamily method of the Font class.

isItalic

Class
Font

Purpose
Tells whether the Font is italicized.

Syntax
public boolean isItalic();

Parameters
None.

Imports
None.

Description
Tells whether or not the ITALICs style flag for the Font is set.

Returns
Returns true if the Font.ITALICs style flag is set for the Font.

See Also
The isPlain and isBold methods of the Font class

Example
See the example for the getFamily method of the Font class.

getFont

ClassName
Font

Purpose
Creates a new Font given just a typeface name.

Syntax
public static Font getFont(String nm);
public static Font getFont(String nm, Font font);

Parameters
String nm

The name of the typeface to use for the Font. Only valid typeface names are
acceptable. A list of valid typeface names for the local system can be accessed
through Toolkit.getFontList() which returns an array of typeface names stored in
Strings.

Font font
Default Font object to return if the typeface name passed in the nm parameter is
not a valid typeface name.

Description
This static method creates a new Font object given just a typeface name. In
addition to the typeface name, you can add style attributes to the Font by
prepending style prefixes to the typeface name in the nm parameter.

Returns
A new Font object which uses the typeface indicated by the nm parameter is
returned. Null will be returned by the first overloaded version of this method if
the nm parameter does not indicate a valid typeface name.

Example
This example program asks the user for the name of a typeface to display. Once
provided, a Font of that typeface is created using getFont and is used to display a
sample string in a Label centered in a floating Frame.

import java.awt.*;

public class GetFontTest {

 public static void main(String[] astrArgs) {
 Frame _frame = new Frame(“GetFontTest Program”);
 Label _label = new Label(“This is a test.”);

 _frame.setLayout(new BorderLayout());
 _frame.add(“Center”, _label);

 _frame.show();

 String strInput = new String();
 String strTerminator = “QUIT”;
 String strPrompt = “Font to use (\”QUIT\” to end): ”;

 System.out.print(strPrompt);
 strInput = System.in.readln();
 while(!strTerminator.equal(strInput)) {
 Font f = Font.getFont(strInput);
 if(null == f) {
 System.out.println(strInput +
 “ is not a valid typeface name”);

 continue;
 }

 _label.setFont(f);
 _frame.repaint();

 System.out.print(strPrompt);
 strInput = System.in.readln();
 }
 }

}FontMetrics

Purpose
Encapsulates vital metrics of a Font as it is rendered on a specific display surface.

Syntax
public abstract class FontMetrics

Description
A Font object alone does not contain enough information to compute the size of
characters when they are displayed using that Font. To understand why this
information may not be available, remember that Font objects only store the
Font’s point size. But “point size” does not directly translate into a logical display
size before the Font is actually associated with a particular display surface. For
example, imagine trying to use a 30-point Courier Font to display text on a dot
matrix printer. The printer probably can only display text using a single text size.
In this case, it doesn’t matter whether your Font is 30 points or 3 points in size,
both will produce visible text of exactly the same size.
Once a particular Font is associated with a display surface (that is, a Graphics
object which controls the display surface), then the logical size of the Font’s
characters on that display surface can be calculated. The FontMetrics class
represents the actual size of displayed text on a particular display surface using a
particular Font. The various methods of this class automatically compute the
width and height of one or more displayed characters for that display surface and
Font.
To create a FontMetrics object, you associate the Font you want to use with the
Graphics object associated with the desired display surface. For example, to
calculate the width of the string “Measure Me!” as it is displayed on a Canvas
using a particular Font, you would use code similar to this

public class MyCanvas extends Canvas {
 Font _fontDisplay; // Font to use when printing text.
 String _strTest = “Measure Me!”;

 public MyCanvas() {
 // Obtain a reference to the Font which should be used
 // to display text. Store this value in _fontDisplay.

 setFont(_fontDisplay);
 }

 public void paint(Graphics g) {
 // _fontDisplay has already been associated with this
 // Graphics. Obtain FontMetrics.
 FontMetrics fm = g.getFontMetrics();

 // Measure the test string.
 int width = fm.stringWidth(strTest);
 }
}

Java was originally designed to be a Unicode language. “Unicode,” for those
unfamiliar with the term, is a 16-bit character set designed to encode all the
character sets of all languages in the world. The 8-bit ASCII character set is
actually a subset of the Unicode set. That is, all ASCII codes translate directly to
Unicode value by zero-padding the ASCII value with another byte containing 0.
Unfortunately, the Java 1.0 API does not include Unicode support beyond the
normal ASCII character set. All FontMetrics methods which refer to character
values will only accept ASCII code values. In fact, most FontMetrics methods
assume the 8-bit ASCII character set only is being used. In later versions of Java,
this API will have to be changed to accommodate the full Unicode character set.
Figure 7-11 shows the class hierarchy for the FontMetrics class.

Figure 7-11 The class hierarchy for the FontMetrics class

Package
awt.java

Imports
None.

Constructors
public FontMetrics(Font font);
This constructor creates a FontMetrics measuring the Font font on the default
display device (the desktop). The Graphics method getFontMetrics can be used to
get a FontMetrics for the display surface associated with a particular Graphics
object.

Parameters
None.

Example
See the above example, which demonstrates creation and use of a FontMetrics
object, to measure the size of a String as it is rendered on the desktop.

getFont

ClassName
FontMetrics

Purpose
Gets the Font this FontMetrics was created to measure.

Syntax
public Font getFont();

Parameters
None.

Imports
None.

Description
Retrieves the Font object associated with this FontMetrics object. This will be the
same Font passed to the FontMetrics constructor, or the same Font selected into
the Graphics object which created this FontMetrics through
Graphics.getFontMetrics.

Returns
The Font object associated with this FontMetrics is returned.

Example
This example method ensures that the Graphics object it is passed has a bold font
as its current font.

public void selectBoldFont(Graphics g) {
 FontMetrics fm = g.getFontMetrics();
 Font f = fm.getFont();
 if(!f.isBold())
 f = new Font(f.getName(), f.getStyle() & Font.BOLD,
 f.getSize());
 g.setFont(f);
}

getLeading

ClassName
FontMetrics

Purpose
Gets the leading distance between successive lines of rendered text.

Syntax
public int getLeading();

Parameters
None.

Imports
None.

Description
Returns the internal leading distance between successive lines of text for the
associated Font, as rendered on the associated display surface. The “internal
leading” distance is the suggested distance from the bottom of characters
descending below the text baseline to the top of characters ascending above the
baseline of the subsequent line of text.

Returns

The internal leading value for the associated Font rendered on the associated
display surface is returned. The internal leading is measured in logical units of the
display surface (e.g., in pixels for the on-screen desktop).

Example
This example uses the internal leading value as an inset distance to leave around a
String of text rendered on a display surface.

public class MyStringDisplayComponent extends Canvas {
 String _str;
 public MyStringDisplayComponent(String str) {
 _str = =str;
 }
 public Dimension preferredSize() {
 FontMetrics fm = getGraphics().getFontMetrics();
 Rectangle r = new Rectangle(0, 0, fm.stringWidth(_str),
 fm.getAscent() + fm.getDescent());
 r.grow(fm.getLeading());
 return r.size();
 }
 public void paint(Graphics g) {
 FontMetrics fm = g.getFontMetrics();
 g.drawString(_str, fm.getLeading(),
 fm.getLeading() + fm.getAscent());
 return;
 }
}

getAscent

ClassName
FontMetrics

Purpose
Gets the ascending distance of tall characters.

Syntax
public int getAscent();

Parameters
None.

Description
Retrieves the ascent of tall characters above the baseline. The getMaxAscent()
method returns the ascent of the highest character, while this method returns the
ascent of the majority of tall characters (such as “t”, “h” or “k”).

Returns
Returns the ascent of the Font as rendered on the associated display surface. The
ascent is measured in logical units of the display surface (e.g., for the desktop, the
return value would be in pixels).

Example
See the example for the getLeading method.

getDescent

ClassName
FontMetrics

Purpose
Gets the descending distance of characters that hang below the baseline.

Syntax
public int getDescent();

Parameters
None.

Imports
None.

Description
Retrieves the descent of characters that hang below the baseline. The
getMaxDescent() method returns the descent of the character that hangs lowest
below the baseline for this Font, while this method returns the descent of the
majority of characters which hang below the baseline (such as “q”, “j” or “g”).

Returns
Returns the descent of the Font as rendered on the associated display surface. The
descent is measured in logical units of the display surface (e.g., for the desktop
the return value would be in pixels).

Example
See the example for the getLeading method.

getHeight

ClassName
FontMetrics

Purpose
Gets the total height of a single line of rendered text.

Syntax
public int getHeight();

Parameters
None.

Imports
None.

Description
Retrieves the total height of a line of text drawn using the associated Font on the
associated display surface. This value is the sum of the ascent, the descent, and
the internal leading. The height of a line is a convenient measure of the distance
bewteen baselines of successive lines of text.

Returns
The total height of a line of text rendered on the associated display surface using
the associated Font. This height is measured in logical units of the display surface
(e.g., for the desktop the return value would be in pixels.

Example
The paint method of this example Component paints two lines of text on the
passed Graphics, using the height as a recommended distance between baselines.

String _str1;
String _str2;

// _str1 and _str2 must be initialized somewhere before
// paint() is called.

public void paint(Graphics g) {
 Fontmetrics fm = g.getFontMetrics();

 int y = fm.getAscent() + getLeading();
 g.drawString(_str1, 0, y);
 g.drawString(_str2, 0, y + fm.getHeight());
}

getMaxAscent

ClassName
FontMetrics

Purpose
Gets the maximum ascent above the baseline of any chartacter in the character set.

Syntax
public int getMaxAscent();

Parameters
None.

Imports
None.

Description
This method retrieves the maximum ascent above the baseline of any character in
the character set, rendered on the associated display surface using the associated
Font. The getAscent method retrieves the ascent of the majority of “tall”
characters such as “t”, “h” and “k”.

Returns
The maximum ascent of all characters and the character set if rendered on the
associated display surface using the associated Font. The maximum ascent is
measured in logical units of the display surface (e.g., pixels for the on-screen
desktop).

See Also
The getMaxDescent method of the FontMetrics class

Example
This example method calculates the maximum height of a Font, based on the
Font’s maximum ascent and maximum descent. (The normal getHeight method of
the Font class calculates the Font’s height based on the average ascent and
descent of the Font.)

public int getMaxHeight(Font f) {
 return f.getLeading() + f.getMaxAscent() +
 f.getMaxDescent();
}

getMaxDescent

ClassName
FontMetrics

Purpose
Get the maximum descent below the baseline of any character in the character set.

Syntax
public int getMaxDescent(); public int getMaxDecent();

Parameters
None.

Imports
None.

Description
This method retrieves the maximum descent below the baseline of any character
in the character set, rendered on the associated display surface using the
associated Font. The getDescent() method retrieves the descent of the majority of
characters such as “q”, “j”, and “g”. Note that another version of this same
method exists which is misspelled. The misspelled version maintains backwards
compatibility with alpha and beta versions of the Java API, which were developed
before spellcheckers.

Returns
The maximum descent of all characters and the character set if rendered on the
assoicated display surface using the associated Font. The maximum descent is
measured in logical units of the display surface (e.g., pixels for the on-screen
desktop).

See Also
The getMaxAscent method of the FontMetrics class.

Example
See the example for the getMaxAscent method of the FontMetrics class.

charWidth

ClassName
FontMetrics

Purpose
Gets the width of a specific character.

Syntax
public int charWidth(char ch); public int charWidth(int ch);

Parameters
char ch

Char storing the ASCII code of the character to measure. By design, Java is a
Unicode language which uses 16-bit Unicode character values. Currently,
however, only the 8-bit ASCII code values are recognized by Java.

int ch
32-bit integer storing the ASCII code of the character to measure. When later
versions of Java gain fuller Unicode capabilities, the overloaded version of this
method, which takes an integer parameter, will have to be used to process 16-bit

Unicode values. You can use the overloaded version of this method with ASCII
code values, zero-padded in the top three bytes of this integer parameter.

Imports
None.

Description
Retrieves the width of a single character rendered in the associated Font on the
associated display surface.

Returns
The width (in logical untis of the associated display surface) of a single character.

Example
This example creates an Image object precisely the same size as the character
which is also painted on the Image surface.

public Image getCharImage(char ch) {
 Graphics g = getGraphics();
 g.setFont(getFont());
 FontMetrics fm = g.getFontMetrics();

 Image img = createImage(fm.charWidth(ch), fm.getAscent() +
 fm.getDescent);
 Graphics img_g = img.getGraphics();
 g.setFont(getFont());
 g.drawString(new String(ch));
 return;
}

stringWidth

ClassName
FontMetrics

Purpose
Calculates the width of a String of text.

Syntax
public int stringWidth(String str);

Parameters
String str

The String of text to measure.
Imports

None.
Description

Calculates the width of the String of text rendered on the associated display
surface using the associated Font.

Returns
The total width of the String of text is returned. The return value is in logical units
of the associated display surface (e.g., for the desktop, the return value is in
pixels).

Example
A useful method is getMeasuredSubstring(), listed below. This method breaks the
input String at the last whitespace chartacter which can fit within a particular

width on the default display surface. This is useful for finding the correct place to
break a string when word-wrapping text yourself (instead of depending on a
TextArea to do it).

public int getMeasuredSubstring(String str, Font font, int width) {
 FontMetrics fm = new FontMetrics(font);
 String strRet = new String();
 String strToken = new String();
 int widthAccum = 0;

 StringTokenizer st = new StringTokenizer(str);
 while(widthAccum + fm.stringWidth(strToken) < width) {
 strRet += strToken();
 widthAccum += fm.stringWidth(strToken);

 if(!st.hasMoreTokens())
 break;
 strToken = st.nextToken();
 }
 return strRet;
}

charsWidth

ClassName
FontMetrics

Purpose
Calculates the width of a set of characters stored in an array of characters.

Syntax
public int charsWidth(char[] data, int off, int len);

Parameters
char[] data

Array of characters to measure. Each element holds an 8-bit ASCII character
value.

int off
Zero-based index of the first character to measure in the data array.

int len
Count of characters to measure in the data array.

Imports
None.

Description
Calculates the width of characters in a char array on the associated display surface
using the associated Font object to render the characters. You specify the offset
into the array and the number of characters to measure. Use 0 for the offset and
data.length for the len to measure the entire array of characters.
Note that if the data array passed into this method is not at least (off+len)
elements in length, then this method will throw an ArrayIndexOutOfRange
exception.

Returns

The sum of the widths of the off through (off+len-1) characters in the data array.
Character measurements are in logical units of the associated display surface (e.g.,
in pixels for the on-screen desktop).

Example
This method is very similar to the stringWidth method. See the example for
stringWidth.

bytesWidth

ClassName
FontMetrics

Purpose
Calculates the width of a set of characters stored in an array of bytes.

Syntax
public int bytesWidth(byte[] data, int off, int len);

Parameters
byte[] data

Array of characters to measure. Each element holds an 8-bit ASCII character
value.

int off
Zero-based index of the first character to measure in the data array.

int len
Count of characters to measure in the data array.

Imports
None.

Description
Calculates the width of all the characters in a byte array on the associated display
surface, using the associated Font object to render the characters. Since characters
are stored in bytes, which are always eight bits wide, only ASCII characters can
be measured using this method, even in future version of Java.
Note that if the data array passed into this method is not at least (off+len)
elements in length, then this method will throw an ArrayIndexOutOfRange
exception.

Returns
The sum of the widths of the off through (off+len-1) characters in the data array.
Character measurements are in logical units of the associated display surface (e.g.,
in pixels for the on-screen desktop).

Example
This method is very similar to the stringWidth method. See the example for the
stringWidth method.

getWidths

ClassName

FontMetrics
Purpose

Gets the widths of all characters in the ASCII character set.
Syntax

public int[] getWidths();
Parameters

None.
Imports

None.
Description

Gets an array of the widths of each character in the ASCII character set, as
rendered with the associated Font on the associated display surface.

Returns
A 256 element array of integer values, each element containing the width of the
corresponding character in the ASCII character set. The width of each character is
measured in logical units of the display surface. Note that only the width of the
ASCII characters is returned. Even though Java is designed to be a Unicode
language, only the ASCII character set is supported by the Java 1.0 API.

Example
This is an example implementation of the FontMetrics.charsWidth method which
utilizes getWidths.

public class MyFontMetrics extends FontMetrics {

 public int charsWidth(char[] data, int off, int len) {
 int nRet = 0;
 char[] achWidths = getWidths();

 for(int i=0 ; i<len ; i++)
 nRet += achWidths[data[i+off]];

 return nRet;
 }
}

Image

Purpose
Represents an image which can be rendered on a Graphics object’s display
surface.

Syntax
public abstract class Image

Description
Lots of functionality in the Java API is centered around creating, manipulating,
and displaying images. Images are represented in Java as Image class instances.
Image objects can represent either a single static picture, or a series of animation
frames. The Graphics.drawImage method is built to display both types of Images
on a display surface. A couple of chapters in this book deal with other Java
classes that handle Image objects. Chapter 1 explains in detail the Graphics class,

and touches on the ImageObserver interface which is required to render an Image
on a display surface. Figure 7-12 shows the Image class hierarchy.

Figure 7-12 The class hierarchy of the Image class

Package
java.awt

Imports
java.awt.image.ImageProducer, java.awt.image.ImageObserver

Constructors
None.
No constructor is defined for the Image class, so you cannot create Image objects
directly using the new operator. Instead, four techniques for creating Image
objects indirectly are provided by the AWT API.
First, Image objects can be created by the AWT Toolkit from graphical format
files. Image data is generally stored in formatted files, such as GIF or JPEG files.
The AWT’s Toolkit class exposes methods to create Image objects from popular
graphical image formats. Files in one of these formats can be located either on the
local file system, or anywhere on the network which can be addressed by a URL.
Chapter 3 explains the Toolkit class in detail and explains these methods. For a
list of the file formats which can be read by the AWT Toolkit, see the explanation
of the Toolkit.createImage() method.
The second method for creating Image objects involves using the ImageProducer
interface (discussed in Chapter 8). The ImageProducer API defines an object
which can provide image pixel data in a standard way. Image pixel data is
provided as individual pixel values and a ColorModel. The ColorModel explains
how to convert each pixel’s value into RGB? data. The AWT Toolkit class
provides an overloaded version of the createImage() method, which creates an
Image object from the pixel data provided by an ImageProducer.
The third method for creating an Image object is by using an ImageFilter. The
ImageFilter accepts the pixel data from an ImageProducer and modifies that pixel
data to create a filtered Image. For example, you might want to convert a
particular Image by blurring it or sharpening it. To do this, you would define a
BlurImageFilter, which will be used by the AWT Toolkit to convert a source
image into a blurred image. The technique for defining and using an ImageFilter
is explained in detail in Chapter 8.
Finally, and most simply, the AWT Toolkit also provides an overloaded version
of createImage(), which allows you to create a blank Image of arbitrary width and
height. Images created this way are called “in-memory” Images. In-memory
Images can be drawn on, just like a display surface. This is done by acquiring a
Graphics object associated with the Image as its display surface. You then use the

Graphics’ drawing methods to draw on the Image itself. Only in-memory Images
can be drawn on this way. Images created using any one of the other three Image-
creation techniques cannot be associated with a Graphics object as a display
surface.
Except for in-memory Images, which are just blank, Images must be constructed
from a pixel data source. This source may be a graphical formatted file, an
ImageProducer you have implemented yourself, or an ImageFilter coupled with
an ImageProducer. In any one of these three cases, the Java runtime system
actually compiles the Image’s pixel data only as it is needed. That is, the Image
pixel data is only read into memory allocated on behalf of the Image object when
a query is performed which requires the pixel data. For example, an Image created
from a graphical file URL will just start to read in its pixel data asynchronously
when you ask for the Image to be rendered using Graphics.drawImage.

Parameters
None.

Example
This example uses the Toolkit’s getImage method to read an image from the local
file system.

public class MyComponent extends Canvas {
 Image _img;
 ...

 public MyComponent(String filename) {
 _img = Toolkit.getDefaultToolkit().getImage(filename);
 }

 public MyComponent(URL urlImage) {
 _img = Toolkit.getDefaultToolkit().getImage(utlImage);
 }

 ...
}

getWidth

ClassName
Image

Purpose
Gets the width of the Image in pixels.

Syntax
public int getWidth(ImageObserver observer);

Parameters
ImageObserver observer

Object to receive asynchronous notification of the construction of this Image’s
pixel data if the data has not yet been read into memory.

Imports
java.awt.image.ImageObserver

Description
Retrieves the width of the Image in pixels. Requires an ImageObserver since the
Image may have to be constructed asynchronously from its source.

Returns
The width of the Image in pixels is returned. If the Image pixel data has not yet
been constructed in memory, then the asynchronous construction process is kick-
started right away, and -1 is returned by this method. The ImageObserver
observer will be notified at a later time when the Image’s width is available.

Example
The ImageCanvas class is a visual Component which merely displays an image on
its surface. The constructor to ImageCanvas requires an Image object that is to be
displayed. The ImageCanvas’ preferredSize method attempts to access the
Image’s width and height. The ImageCanvas implements the ImageObserver
interface in case asynchronous construction of the Image is required.

public class ImageCanvas extends Canvas
 implements ImageObserver {
 private Image _img = null;

 // Image object for this canvas to display
 // must be passed in.
 public ImageCanvas(Image img) {
 _img = img;
 }

 // Attempt to get _img Image width and height. If
 // asynchronous construction is required, return a
 // preferred size of (0, 0).
 public Dimension preferredSize() {
 Dimension d = new Dimension(0, 0);
 if(null == _img) return d;

 int nWidth = _img.getWidth(this);
 int nHeight = _img.getHeight(this);
 if((-1 == nWidth) || (-1 == nHeight)) return d;

 d = new Dimension(nWidth, nHeight);
 return d;
 }

 // Just display the _img Image.
 public void paint(Graphics g) {
 if(null == _img) return;

 g.drawImage(_img, 0, 0, this);
 }

 // Default implementation of imageUpdate() forces a repaint
 // always. We only want to do an actual repaint if the
 // _img Image has been completely constructed, indicated
 // by the ALLBITS flag of the infoflags parameter.
 public void imageUpdate(Image img, int infoflags,
 int x, int y, int width, int height) {
 if(_img != img) return;

 if(0 != (infoflags & ALLBITS))
 super.imageUpdate(img, infoflags, x, y,
 width, height);
 }
}

getHeight

ClassName
Image

Purpose
Gets the height of the Image in pixels.

Syntax
public int getHeight(ImageObserver observer);

Parameters
ImageObserver observer

Object to receive asynchronous notification of the construction of this Image’s
pixel data, if the data has not yet been read into memory.

Imports
java.awt.image.ImageObserver.

Description
Retrieves the height of the Image in pixels. Requires an ImageObserver since the
Image may have to be constructed asynchronously from its source.

Returns
The height of the Image in pixels is returned. If the Image pixel data has not yet
been constructed in memory, then the asynchronous construction process is kick-
started right away, and -1 is returned by this method. The ImageObserver
observer will be notified at a later time when the Image’s height is available.

Example
See the example under the method getWidth of the Image class.

getSource

ClassName
Image

Purpose
Gets an ImageProducer that can deliver the pixel data from this Image to an
ImageConsumer.

Syntax
public abstract ImageProducer getSource();

Parameters
None.

Imports
java.awt.image.ImageProducer

Description
Creates a new ImageProducer which will pass this Image’s pixel data to any
ImageConsumer or ImageFilter. This method is most often used in conjunction

with a FilteredImageSource and an ImageFilter to create a filtered version of the
Image’s pixel data, as demonstrated by the example code below.

Returns
An ImageProducer object is returned. This ImageProducer will deliver the pixel
data and ColorModel for this Image to any ImageConsumer or ImageFilter it is
associated with.

Example
The typical use of getSource is to create an ImageProducer to associate with an
ImageFilter. This allows you to create a filtered version of the Image. The code
below demonstrates exactly how you do this using a FilteredImageSource object.

Image imgBase;
ImageFilter filter;

// imgBase is made a reference to a valid Image object.
// filter is made a reference to a valid ImageFilter.

Image imgFiltered = new FilteredImageSource(imgBase.getSource(),
filter);

getGraphics

ClassName
Image

Purpose
Gets a Graphics object which uses this Image as its display surface.

Syntax
public Graphics getGraphics();

Parameters
None.

Description
Retrieves a Graphics object associated with this Image. This Image object is the
display surface for the Graphics, so that all rendering operations performed with
the Graphics will be drawn on this Image. Only in-memory Images, created with
the AWT Toolkit’s overloaded createImage(width, height) method, will
successfully retrieve a Graphics object. If you try to get the Graphics for an Image
created using another technique, then this method will throw an exception.
Image.getGraphics is closely associated with the double-buffered rendering
technique. The double-buffered rendering technique, for fast visual updating,
utilizes an in-memory Image. All drawing operations are performed on the in-
memory Image, through the Graphics retrieved by this method. When all graphics
have been completely rendered, the Image is copied in full to the on-screen
desktop display surface.

Returns
A Graphics object which uses this in-memory Image as its display surface.

Example

This example demonstrates double-buffering. In this example, the
DoubleBufferCanvas’ paint method performs several drawing operations on an
in-memory Image. When all drawing operations on the in-memory Image are
complete, the entire Image is copied to the on-screen display surface. Note that
the DoubleBufferCanvas, which is a Component, acts as an ImageObserver for
the drawImage operation.

public class DoubleBufferCanvas extends Canvas {

 public void paint(Graphics g) {
 // Get size of this canvas, which is the size of the
 // in-memory Image to create.
 Dimension d = size();
 Image imgInMemory = createImage(d.width, d.height);

 // Perform several drawing operations on the in-memory
 // Image using a Graphics associated with it.
 Graphics gInMemory = imgInMemory.getGraphics();
 gInMemory.fillRect(0, 0, d.width, d.height);
 gInMemory.setXORMode(Color.black);
 gInMemory.fillRect(5, 5, d.width-10, d.height.10);
 gInMemory.fillRect(10, 10, d.width-20, d.height-20);
 gInMemory.fillOval(10, 10, d.width-20, d.height-20);
 // A bunch more operations...

 // Now copy the in-memory Image, which has all drawing
 // operations rendered on it, to the on-screen desktop.
 g.drawImage(imgInMemory, 0, 0, this);
 }

}

getProperty

ClassName
Image

Purpose
Gets one of the properties stored with the Image.

Syntax
public Object getProperty(String name, ImageObserver observer);

Parameters
String name

Name of the property to retrieve. Individual properties are specific to the image
format. Only three properties are publicly defined for the Java API, as indicated in
the table below.

ImageObserver observer
If no properties have been read in for this Image yet, the ImageObserver will be
notified about the property value asynchronously.

Description
An extensible list of Image properties is stored within the Image object. Each
property has a text name, which is passed into this method to identify the property
to retrieve. A property’s value is an arbitrary Object.

A comprehensive list of the properties for different image formats is not available
as of this book’s publication. Also, there is no simple way to poll the Image for a
list of its valid properties. The table below lists the three Image properties
currently documented in the Java API.

Property Description

“comments” This property’s value is a String which can describe the

Image, hold a copyright notice, or relay any textual
information about the Image.

“filters” A concatenation of human-readable Strings (into a single
String) listing the ImageFilters used in creating the Image.

“croprect” If a CropImageFilter is used to create the Image, then the
“croprect” property holds the boundaries of the rectangle of
the original Image that was cropped.

Returns

The value of the named property. Note that if the property does not exist for the
Image, then an Object class instance is returned (an Object object). If the
properties for the Image have not yet been retrieved from the Image’s source, then
null will be returned and the object referenced by the observer parameter will be
notified asynchronously when the Image’s properties have been retrieved.

Example
This example prints an Image’s values for the three known Image properties.

public void printImageProps(Image img, ImageObserver io) {
 if(null != img.getProperty(“comments”, io))
 System.out.println(“comments: “ +
 img.getProperty(“comments”, io));

 if(null != img.getProperty(“filters”, io))
 System.out.println(“filters: “ +
 img.getProperty(“filters”, io));

 if(null != img.getProperty(“croprect”, io))
 System.out.println(“croprect: “ +
 img.getProperty(“croprect”, io));
}

flush

ClassName
Image

Purpose
Resets the constructed version of the Image.

Syntax
public void flush();

Parameters
None.

Description
All pixel data for the Image, which has been constructed, is flushed from the
system. After a call to flush(), the Image is as if it had just been created and none
of the image pixel data had been constructed yet. Any query of the Image’s value
would cause the Image to be reconstructed from scratch.

Returns
None.

Example
This example constantly reloads and redisplays an Image on a Canvas-derived
component. This could be useful for doing Web server-based animation. (This
particular example would not work for non-interlaced images, since interlaced
images cause multiple paint calls to be made while the image is rendered in
memory.)

public class ServerBasedAnimator extends Canvas {
private Image _img;

 public ServerBasedAnimator(URL url) {
 _img = getImage(url, this);
 }

 public void paint(Graphics g) {
 g.drawImage(_img);
 _img.flush();
 repaint();
 }
}

Point

Purpose
The Point class represents a two-dimensional point.

Syntax
public class Point

Description
A coordinate on the two-dimensional integer plain is abstracted by the Point class.
The Point is comprised of an x and y coordinate value. Several public methods are
also defined in the Point class for modifying these coordinate values.

Package
java.awt

Imports
None.

Constructors
public Point(int x, int y);
The Point object’s x and y members are assigned the values of the x and y
parameters to the constructor.

Parameters
The following table lists the Point class’ public member variables.

Member Description

int x The distance along the X axis from the origin to this Point.
int y The distance along the Y axis from the origin to this Point.

move

ClassName
Point

Purpose
Sets the x and y values of the Point object.

Syntax
public void move(int x, int y);

Parameters
int x

New X value for the Point.
int y

New Y value for the Point.
Description

Changes the x and y values for the Point object.
Example

See the example for the method translate.

translate

ClassName
Point

Purpose
Adds a dx and a dy value to the Point’s x and y member variables.

Syntax
public void translate(int dx, int dy);

Description
Moves the Point a specified distance along either axis.

Parameters
int dx

Relative distance along the X axis to move the Point.
int dy

Relative distance along the Y axis to move the Point.
Example

The following example method moves the Point about the origin in a circle at the
distance specified by the R parameter. Both move and translate are utilized.

public void CircularMotion(Point p, int R) {
 // Start the point at a 3pi/4-radian angle (270 degrees),
 // a distance R from the origin.

 p.move(0, R);

 for(float flRads=0.0 ; flRads<(2*Math.PI)
 ; flRads+=Math.PI/100) {
 p.translate((int)(Math.cos(flRads)*R/100),
 (int)(Math.sin(flRads)*R/100));
}

Polygon

Description
A Polygon is stored in Java as an ordered set of points on a two-dimensional
plane. Each point represents a vertex of the polygon. The Polygon class includes
some convenience methods to make polygons easier to work with. Also, the
Graphics class includes two methods, fillPolygon and drawPolygon, so that you
can draw your Polygon objects on display surfaces.
Consistent with the other geometric helper classes (Point and Rectangle), the
Polygon class exposes its member variables with no protection.
Figure 7-13 shows the class hierarchy for the Polygon class.

Figure 7-13 Class hierarchy for the Polygon class

Package
java.awt

Imports
None.

Constructors
public Polygon();
public Polygon(int xpoints[], int ypoints[], int npoints);
The parameterless constructor creates a Polygon with no vertices. You must use
the Polygon method addPoint to populate the Polygon with vertices. The second
constructor takes an initial list of vertices, specified by an array of x coordinates
and an array of y coordinates. When using this constructor, make sure your
xpoints and ypoints arrays have at least npoints elements in them, or else an
ArrayIndexOutOfBounds exception will be thrown.

Parameters
The following table lists the public member variables of the Polygon class.

Member Description

int[] xpoints An array of x coordinates.
int[] ypoints An array of y coordinates. The nth element of the xpoints array

and the ypoints array, taken together, indicates the location of the
nth vertex of the Polygon. Both the xpoints array and the ypoints
array are dynamically reallocated to make more room for new
vertices as necessary.

int npoints The number of vertices in the Polygon. The lengths of the xpoints
and ypoints arrays are guaranteed to be at least npoints each.

Example

This example creates a Polygon whose vertices are in a star pattern.
public Polygon makeStar(int radius) {
 Point pt = new Point(0, 0);
 float flAngle = 0;
 Polygon poly = new Polygon();

 for(int ii=0 ; ii<5; ii++) {
 flAngle += Math.PI*4/5;
 pt.x = (int)(Math.cos(flAngle) * radius);
 pt.y = (int)(Math.sin(flAngle) * radius);
 poly.addPoint(pt.x, pt.y);
 }

 return poly;
}

addPoint

ClassName
Polygon

Purpose
Adds a new vertex to the Polygon.

Syntax
public void addPoint(int x, int y);

Parameters
int x

The x coordinate of the vertex to add to the Polygon.
int y

The y coordinate of the vertex to add to the Polygon.
Imports

None.
Description

Appends a new vertex to the Polygon. The new vertex is the last in the list of
vertices, and conceptually is connected by a line to the first vertex and the second-
to-the-last vertex.

Returns
None.

Example

See the example for the Polygon class constructor above.

getBoundingBox

ClassName
Polygon

Purpose
Gets the size of a bounding rectangle for this Polygon.

Syntax
public Rectangle getBoundingBox();

Parameters
None.

Imports
None.

Description
A Rectangle object which represents a rectangle that contains all the vertices of
the Polygon. The Rectangle object which is returned is actually a private member
variable of the Polygon object. This means that if you modify the member
variable of the Rectangle object, and later call getBoundingBox, the changes you
previously made to the Rectangle will be retained.

Returns
A Rectangle object which completely contains the Polygon.

Example
This example Component displays a Polygon. The Component uses the size of the
Polygon’s bounding rectangle as its preferred size.

public class MyPolyComponent extends Canvas {
 Polygon _poly = new Polygon();

 ...

 public Dimension preferredSize() {
 Dimension dim = new Dimension(
 _poly.getBoundingBox().width,
 _poly.getBoundingBox().height);
 return dim;
 }

 ...
}

inside

ClassName
Polygon

Purpose
Tells whether a point lies within the Polygon.

Syntax
public boolean inside(int x, int y);

Parameters

int x
X coordinate of the point to test.

int y
Y coordinate of the point to test.

Imports
None.

Description
Tells whether or not a particular point lies within the Polygon. The evenodd
insideness rule is used to determine whether or not the point is inside the
Polygon’s boundaries.

Returns
True is returned if the point lies inside the Polygon; otherwise false. The even-odd
insideness rule is used to test for insideness.

Rectangle

Purpose
A Rectangle object represents a rectangle on a two-dimensional surface.

Syntax
public class Rectangle

Description
Rectangles are represented by an origin point, which is the upper-left corner of the
rectangle, a width, and a height. Of all the shape classes, the Rectangle is by far
the most completely implemented. Several methods for working with, and
manipulating, rectangles are implemented. For example, methods for computing
the intersection and union of rectangles are included. Also included are methods
for combining rectangles with Point and Dimension objects. Figure 7-14 shows
the class hierarchy for the Rectangle class.

Figure 7-14 Class hierarchy for the Rectangle class

Package
java.awt

Imports
None.

Constructors
public Rectangle();
public Rectangle(int x, int y, int width, int height);
public Rectangle(int width, int height);
public Rectangle(Point p, Dimension d);
public Rectangle(Point p);

public Rectangle(Dimension d);
These six overloaded constructors, taken as a group, allow you to specify none,
one, or both of the Rectangle defining parameters: its points of origin and its
dimensions. Note that the parameterless constructor actually does not initialize the
Rectangle’s member variables. If you use this constructor, be sure to zero-out the
Rectangle using reshape.

Parameters
The following table lists the Rectangle class’ public member variables.

Member Description

int x The x and y parameters define the Rectangle’s point of origin.
int y

int width The width and height parameters define the Rectangle’s dimensions.
int height

reshape

ClassName
Rectangle

Purpose
Used to change both the Rectangle’s origin and dimensions.

Syntax
public void reshape(int x, int y, int width, int height);

Parameters
int x

The x coordinate of the new origin of the Rectangle.
int y

The y coordinate of the new origin of the Rectangle.
int width

The new width of the Rectangle.
int height

The new height of the Rectangle.
Imports

None.
Descriptions

Modifies the origin point, the width, and the height of the Rectangle. Note that
negative values are allowed, as the example for this method shows.

Returns
None.

See Also
The resize method of the Rectangle class.

Example

The Rectangle class allows negative widths and heights. If a Rectangle’s width or
height is less than zero, then the origin point is no longer the upper-left corner of
the rectangle. However, Components, which have a Rectangle of display surface,
do not allow widths nor heights less than zero. To facilitate the use of negative
widths and heights, the following method uses reshape to keep the origin as the
upper-left corner of the rectangle.

public void fixDimension(Rectangle r) {
 int xNew, yNew, wNew, hNew;
 xNew = r.x + Math.min(r.width, 0);
 yNew = r.y + Math.min(r.height, 0);
 wNew = Math.abs(r.width);
 hNew = Math.abs(r.height);
 r.reshape(xNew, yNew, wNew, hNew);
}

move

ClassName
Rectangle

Purpose
Changes the Rectangle’s point of origin.

Syntax
public void move(int x, int y);

Parameters
int x

New x coordinate of the origin of the Rectangle.
int y

New y coordinate of the origin of the Rectangle.
Imports

None.
Description

Moves the Rectangle by changing its point of origin to another specified point.
Returns

None.
Example

See the example for the translate() method of the Rectangle class.

translate

ClassName
Rectangle

Purpose
Moves the Rectangle’s point of origin a specified distance along and X and Y
axes.

Syntax
public void translate(int dx, int dy);

int dx
Distance along the X axis to move the origin of the Rectangle.

int dy
Distance along the Y axis to move the origin of the Rectangle.

Imports
None.

Description
Moves the Rectangle a specified distance along the X and Y axes. The origin after
the call is distance (dX, dY) from the origin before the call.

Example
This example demonstrates how to implement translate as a call to move, since
these two methods are so similar.

public void translate(Rectangle r, int dx, int dy) {
 // translate() is just a relative move()...
 r.move(r.x + dx, r.y + dy);
}

resize

ClassName
Rectangle

Purpose
Modified the dimensions of the Rectangle.

Syntax
public void resize(int width, int height);

Parameters
int width

New width of the Rectangle.
int height

New height of the Rectangle.
Imports

None.
Description

Changes the width and height of the Rectangle without modifying the Rectangle’s
origin.

Returns
None.

Example
The CrossHairs component uses four rectangles to draw a cross-hair that centers
wherever the user clicks the mouse.

public class CrossHairs extends Canvas {
 Rectangle _rNE, _rNW, _rSE, _rSW;

 public CrossHairs() {
 _rNE = Rectangle(0, 0, 0, 0);
 _rNW = Rectangle(0, 0, 0, 0);
 _rSE = Rectangle(0, 0, 0, 0);
 _rSW = Rectangle(0, 0, 0, 0);
 }

 // when component resized, resize rects
 public void resize(int width, int height) {
 super.resize(width, height);

 _rNW.reshape(0, 0, width/2, height/2);
 _rSW.reshape(0, height/2,
 width/2, height/2);

 _rNE.reshape(width/2, 0,
 width/2, height/2);
 _rSE.reshape(width/2, height/2, width/2,
 height/2);
 repaint();
 }

 public void paint(Graphics g) {
 g.drawRect(_rNW.x,_rNW.y,_rNW.width,_rNW.height);
 g.drawRect(_rNE.x,_rNE.y,_rNE.width,_rNE.height);
 g.drawRect(_rSW.x,_rSW.y,_rSW.width,_rSW.height);
 g.drawRect(_rSE.x,_rSE.y,_rSE.width,_rSE.height);
 }

 public boolean mouseDown(Event evt, int x, int y) {
 int width = size().width;
 int height = size().height;

 _rNE.resize(x, y);
 _rSE.reshape(0, y, x, height - y);
 _rNW.reshape(x, 0, width - x, y);
 _rSW.reshape(x, y, width - x, height - y);

 repaint();
 return true;
 }
}

inside

ClassName
Tells whether a point is inside the Rectangle.

Syntax
public boolean inside(int x, int y);

Parameters
int x

The x coordinate of the point to test.
int y

The y coordinate of the point to test.
Imports

None.
Description

Tells whether or not the specified point lies inside the Rectangle. Points which fall
on the border of the Rectangle are considered inside the Rectangle.

Returns
If the given point lies inside the Rectangle, or on its border, then true is returned.
False is returned if the point lies outside the Rectangle.

Example
This example component draws a rectangle whose lower-right corner is the place
where the last mouse click occurred.

public class GrowRect extends Canvas {
 Rectangle _r = new Rectangle(0, 0, 0, 0);

 public GrowRect() {}

 public void paint(Graphics g) {
 g.drawRect(_r.x, _r.y, _r.width, _r.height);
 }

 public boolean mouseDown(Event evt, int x, int y) {
 if(!_r.inside(x, y))
 _r.add(x, y);
 else
 _r.resize(x, y);
 repaint();
 return true;
 }
}

intersects

ClassName
Rectangle

Purpose
Tells whether a Rectangle intersects with another.

Syntax
public boolean intersects(Rectangle r);

Parameters
Rectangle r

This external Rectangle is tested to see if it intersects this Rectangle.
Imports

None.
Description

Tells whether or not another Rectangle intersects this one. Rectangles which share
a segment of border or a corner point are considered to intersect.

Returns
If the external Rectangle intersects this Rectangle, or the two Rectangles share a
segment of border or a corner point, then the Rectangles are said to overlap. In
this case, true is returned. Otherwise, false is returned.

Example
This example shows one possible implementation of the intersects method.

public class Rectangle {
...

 public boolean intersects(Rectangle r) {
 Rectangle r_intersect = intersection(r);
 return r_intersect.isEmpty();
 }

...
}

intersection

ClassName
Rectangle

Purpose
Calculates the intersection of this Rectangle with another.

Syntax
public Rectangle intersection(Rectangle r);

Parameters
Rectangle r

The external Rectangle to intersect with this one.
Imports

None.
Description

Computes the new Rectangle which is the intersection of this Rectangle and an
external Rectangle object. If the two Rectangles do not overlap, then the resulting
intersection has a zero width and a zero height. The origin of this null-intersection
Rectangle has an interesting relationship to the original two Rectangles, but it is
essentially useless. Use isEmpty to test whether the resultant Rectangle represents
an empty intersection.

Returns
A new Rectangle object is created and returned which lies completely within both
the external Rectangle and this Rectangle.

Example
See the example for the intersect method of the Rectangle class.

union

ClassName
Rectangle

Purpose
Finds a bounding Rectangle for this Rectangle and another.

Syntax
public Rectangle union(Rectangle r);

Parameters
Rectangle r

External Rectangle which is to be unioned with this Rectangle.

Imports
None.

Description
Computes a new Rectangle which completely contains this Rectangle and an
external Rectangle object. The resultant union Rectangle is the smallest Rectangle
which can contain both input rectangles.

Returns
The returned Rectangle is a new Rectangle which is the smallest Rectangle which
can contain the two input Rectangles.

add

ClassName
Rectangle

Purpose
Unioning two Rectangles, or a Rectangle and a Point.

Syntax
public void add(int x, int y); public void add(Point pt); public void add(Rectangle
r);

Parameters
int x

The x coordinate of the point to add to this Rectangle.
int y

The y coordinate of the point to add to this Rectangle.
Point pt

Point to add to this Rectangle.
Rectangle r

Rectangle to add to this Rectangle.
Imports

None.
Description

The addition of a Rectangle and a point is analogous to the union operation. The
new dimension of this Rectangle is the smallest which can contain both the
original Rectangle and a given point. The addition of another Rectangle uses the
same procedure as a union operation. The overloaded add methods modify the
origin, width, and height of this Rectangle. The resultant dimensions and
placement of this Rectangle represent the smallest Rectangle which can contain
both the original Rectangle and any external point or external Rectangle object.

Example
See the example for the inside method of the Rectangle class.

grow

ClassName
Rectangle

Purpose

Grows a Rectangle’s Dimensions.
Syntax

public void grow(int h, int v);
Parameters
int h

Distance in the horizonal direction to move the left and right borders away from
the center of the Rectangle. Negative numbers move the borders toward the
center.

int v
Distance in the vertical direction to move the top and bottom borders away from
the center of the Rectangle. Negative numbers move the borders toward the
center.

Imports
None.

Description
Makes the dimensions of the Rectangle larger (or smaller) according to the
magnitude of the horizontal and vertical grow parameters. The Rectangle is
modified in such a way that all broders are moved a uniform distance away from
(or towards) the center of the original Rectangle.

Returns
None.

Example
This example demonstrates how the grow method can be used to shrink
rectangles, too.

public void shrink(Rectangle r, int h, int v) {
 r.grow(-h, -v);
}

isEmpty

ClassName
Rectangle

Purpose
Tells whether either of the Rectangle’s Dimensions are 0.

Syntax
public boolean isEmpty();

Parameters
None.

Imports
None.

Description
Tests the Rectangle to see if it has a non-zero volume. That is, whether or not both
the width and height parameters are non-zero. It is useful to use isEmpty() to see
if the results of the intersection() method produce a non-empty Rectangle object.

Returns
True is returned if the Rectangle indeed has a zero internal volume. This indicates
either the width or the height of the Rectangle is zero (or both).

Example
See the example for the intersects method of the Rectangle class.

The Graphical Object Project: Doodle

The Graphical object SuperBible Project is the Doodle application. Doodle is a simple
whiteboard application. It allows you to draw Lines, Rectangles, Polygons, and text on
the drawing surface. Through simple mouse clicks and drags, you define the shape and
placement of each “doodle” on the whiteboard surface. Figure 7-15 shows the Doodle
application in action. The Java code for the Doodle application is included under the
directory Chap07 on the CD accompanying this book.

Figure 7-15 Screenshot of the Doodle application running

Doodle’s user-interface employs two toolbars: shape and color. The shape toolbar has
five buttons, labeled Line, Rect, Polygon, Image..., and Text. You click on the button for
the type of doodle you want to draw. The Color toolbar contains a set of several radio
buttons. When you select a radio button, all doodles will be drawn using the
corresponding Color.

Doodle employs “virtual Components” to draw each of the doodles you define. For
example, instances of the DoodleLine class, also defined in Doodle.java, draw a single
line on the whiteboard surface. DoodlePoly objects draw a polygon; DoodleRect objects
draw filled rectangles, etc.

A virtual Component is a Canvas-derived class which explicitly prevents its peer from
being created. Why stop the peer from being created? Isn’t the whole point of
Components that it allows you to draw on a rectangle of the on-screen desktop? The
reason is that overlapping Components, created with a peer, automatically “clip” siblings.
That is, Components added to the same Container cover each other, so overlapping
sibling Components are not transparent. Imagine drawing two diagonal lines right next to
each other: If each line was represented by a single DoodleLine Component, then the
Component on top would completely overwrite the Component on the bottom. Doodle
was created with transparent Components to prevent this overwriting problem.

By removing the operating system peer, each Doodle graphical object Component
represents a rectangle of the whiteboard’s surface. The whiteboard uses each Doodle
Component’s paint method to render the doodle on its rectangle, but the Doodle
Component makes sure it does not erase anything. The practical result is transparent
Component objects.

But removing a Doodle Component’s peer has two important side effects:

• No paint() calls are made by the Java runtime system for the Component.
Instead, the whiteboard, which contains the Doodle Components, must explicitly
call each Component’s paint() method to let the Doodles draw themselves.
• No Events, such as mouse or keyboard Events, are delivered by the Java
runtime system to the Doodle Component. Again, the whiteboard must explicitly
deliver these Events to the correct Component object.

The Doodle application overcomes both of these shortcomings to allow each virtual
Component to act like a Canvas with a peer, in addition to being transparent.

Assembling the Project

Follow these steps to assemble the Doodle application.

1. Create a text file named Doodle.java. Make sure the correct packages are
imported and implement the static method, which just creates Doodle’s main
Frame window. Here is the code:
import java.awt.*;
import java.util.Hashtable;
import java.util.Vector;
import java.awt.image.ImageObserver;
public class Doodle {
 public static void main(String[] astrArgs) {
 // Create main window, which is a DoodleFrame.
 // DoodleFrame constructor creates its own
 // child windows.
 DoodleFrame df =
 new DoodleFrame("Doodle Sample Application");
 df.resize(500, 300);
 df.show();
 return;
 }
}
2. Create the Doodle application’s main Frame class. This class manages the
shape and color toolbars. Start by declaring the member variables for these
toolbars. Also declare the DoodleView. The DoodleView is the actual whiteboard
on which we will draw the doodles.
class DoodleFrame extends Frame {
 // Doodle type buttons, which will live
 // in a toolbar panel. Panel is created
 // and filled with the buttons here before
 // being added as a Component of this Frame.
 // Frame keeps track of last button pressed.
 // A label reports which was the last button
 // pressed.
 Button _buttonLastPressed = null;
 Button _buttonLine = new Button("Line");
 Button _buttonRect = new Button("Rect");
 Button _buttonPoly = new Button("Polygon");
 Button _buttonText = new Button("Text");

 Label _labelTool = new Label("No tool selected");
 Panel _panelToolbar = new Panel();

 // There is also a Colorbar, which allows the
 // user to select from among several Colors
 // to paint their doodles. A Hashtable associating
 // checkbox to a Color object is also maintained
 // so Doodle can find which Color to use.
 Checkbox _checkBlack = new Checkbox("Black");
 Checkbox _checkRed = new Checkbox("Red");
 Checkbox _checkGreen = new Checkbox("Green");
 Checkbox _checkBlue = new Checkbox("Blue");
 Checkbox _checkGray = new Checkbox("Gray");
 Panel _panelColorbar = new Panel();
 Hashtable _hashCheckToColor = new Hashtable();

 // The DoodleView keeps track of and displays
 // all the doodles the user has drawn so far.
 DoodleView _DoodleView = null;}
3. The DoodleFrame constructor creates the interface for the Doodle application.
It creates the two toolbars and adds the DoodleView to the Frame. The
DoodleFrame uses a GridBagLayout to arrange the two toolbars and the
DoodleView. See Chapter 6 for an explanation of the LayoutManager classes. In
this application, the GridBagLayout ensures the toolbars and the DoodleView
arrange themselves neatly no matter what the size of the DoodleFrame. Here is
the code for the constructor:
public DoodleFrame(String strTitle) {
 super(strTitle);

 // This Frame uses a GridBagLayout to manage
 // two Components: the toolbar Panel will
 // sit flush left, taking about 20 percent of the
 // height of this Frame. The DoodleView will
 // sit flush right, taking about 80 percent of the
 // height of this Frame.
 GridBagLayout gbl = new GridBagLayout();
 GridBagConstraints gbc = new GridBagConstraints();
 gbc.fill = GridBagConstraints.BOTH;
 gbc.weightx = 1.0;

 setLayout(gbl);

 // Add buttons (created as part of object initialization)
 // to the toolbar panel.
 _panelToolbar.setLayout(
 new FlowLayout(FlowLayout.LEFT));
 _panelToolbar.add(_buttonLine);
 _panelToolbar.add(_buttonRect);
 _panelToolbar.add(_buttonPoly);
 _panelToolbar.add(_buttonText);
 _panelToolbar.add(_labelTool);

 // Add toolbar Panel to this Frame, making
 // the gridheight = 1.
 gbl.setConstraints(_panelToolbar, gbc);

 add(_panelToolbar);

 // Add Colorbar panel to this frame after
 // adding all the checks to it.
 CheckboxGroup cbg = new CheckboxGroup();
 _checkBlack.setCheckboxGroup(cbg);
 _checkBlack.setState(true);
 _checkRed.setCheckboxGroup(cbg);
 _checkGreen.setCheckboxGroup(cbg);
 _checkBlue.setCheckboxGroup(cbg);
 _checkGray.setCheckboxGroup(cbg);

 _panelColorbar.setLayout(new FlowLayout(FlowLayout.LEFT));
 _panelColorbar.add(_checkBlack);
 _panelColorbar.add(_checkRed);
 _panelColorbar.add(_checkGreen);
 _panelColorbar.add(_checkBlue);
 _panelColorbar.add(_checkGray);

 gbc.gridy = 1;
 gbl.setConstraints(_panelColorbar, gbc);
 add(_panelColorbar);

 // Associate each color checkbox with a Color to use
 // when that checkbox is selected.
 _hashCheckToColor.put(_checkBlack, Color.black);
 _hashCheckToColor.put(_checkRed, Color.red);
 _hashCheckToColor.put(_checkGreen, Color.green);
 _hashCheckToColor.put(_checkBlue, Color.blue);
 _hashCheckToColor.put(_checkGray, Color.gray);

 // Create the DoodleView. Add it to the
 // grid bag layout with gridwidth = 4.
 _DoodleView = new DoodleView(this);
 gbc.gridy = 2;
 gbc.weighty = 4.0;
 gbl.setConstraints(_DoodleView, gbc);
 add(_DoodleView);

 return;
}
4. The DoodleFrame must catch WINDOW_DESTROY Events so it knows
when to destroy the main window. Here’s the code for DoodleFrame’s overridden
handleEvent method:
public boolean handleEvent(Event evt) {
 // The WINDOW_DESTROY event must be
 // handled by disposing of this Frame.
 if((evt.target == this) &&
 (evt.id == Event.WINDOW_DESTROY)) {
 dispose();
 System.exit(0);
 return true;
 }

 return super.handleEvent(evt);
}

5. When a toolbar button is pressed, the DoodleFrame catches the event and
“remembers” (in a member variable) the last button pressed. The buttons indicate
what type of doodle the user wants to paint. Here is the code for DoodleFrame’s
overridden action implementation:
// action() will be called whenever one of the
// toolbar buttons is pressed. When this happens,
// report new doodle tool and store reference
// to the button pressed.
public boolean action(Event evt, Object what) {
 // Handle toolbar panel buttons...
 if(evt.target instanceof Button) {
 _buttonLastPressed = (Button)evt.target;
 _labelTool.setText(_buttonLastPressed.getLabel()
 + " tool selected");

 // Tell the DoodleView to abandon the active
 // doodle if its incomplete.
 _DoodleView.notifyToolChanged();

 _panelToolbar.invalidate();
 _panelToolbar.validate();
 return true;
 }

 // Everything else can be ignored.
 return false;
 }
6. The DoodleFrame.createDoodleCompInstance method creates a new Doodle
component (“DoodleComp”) of the type indicated by the last toolbar button
pressed. The DoodleView calls this method when it detects the user has started
drawing a new doodle. Here’s the code for that method:
// createDoodleCompInstance() creates a new DoodleComp
// of the type indicated by the last toolbar button
// that was clicked. This is called by the DoodleView
// when it determines its time to create a new doodle.
public DoodleComp createDoodleCompInstance() {
 // return null if no tool is selected.
 if(null == _buttonLastPressed)
 return null;

 // according to which was last button pressed,
 // make corresponding DoodleComp object.
 if(_buttonLine == _buttonLastPressed)
 return new DoodleLine(getDoodleColor());
 if(_buttonRect == _buttonLastPressed)
 return new DoodleRect(getDoodleColor());
 if(_buttonPoly == _buttonLastPressed)
 return new DoodlePoly(getDoodleColor());
 if(_buttonText == _buttonLastPressed)
 return new DoodleText(getDoodleColor(),
 getFont());

 return null;
}

7. The other thing the DoodleView needs to get from the DoodleFrame is the
color currently selected in the color toolbar. The DoodleFrame.getDoodleColor
method returns the Color corresponding to the color selected in the color toolbar.
Here’s the code for that method:
// getDoodleColor returns the hashtable entry for the
// colorbar checkbox which is currently checked.
public Color getDoodleColor() {
 Checkbox checkCurrent = null;

 Checkbox[] acheckList = new Checkbox[5];
 acheckList[0] = _checkBlack;
 acheckList[1] = _checkRed;
 acheckList[2] = _checkGreen;
 acheckList[3] = _checkBlue;
 acheckList[4] = _checkGray;

 for(int i=0 ; i<acheckList.length ; i++)
 if(true == acheckList[i].getState())
 checkCurrent = acheckList[i];

 if(null == checkCurrent)
 return null;

 return (Color)_hashCheckToColor.get(checkCurrent);
}
8. That was the last DoodleFrame method. The DoodleFrame class is now fully
implemented. Now we declare the DoodleView class. The DoodleView is the
whiteboard panel which is the parent of all the DoodleComp virtual Components.
The DoodleFrame uses double-buffering so that redrawing of the screen is
smooth. Here’s the declaration of the DoodleView class and its member variables:
class DoodleView extends Panel {
 // The panel keeps track of the Doodle Frame
 // so it can query it for current doodling
 // tool.
 DoodleFrame _DoodleFrame = null;
 DoodleComp _ActiveDoodleComp = null;

 // To make visual updating flicker-free, use
 // a permanent in-memory double-buffer.
 Image _img2blBuf = null;
 Graphics _g2blBuf = null;
}
9. The DoodleView constructor requires a reference to the application’s
DoodleFrame to be passed. In the constructor, the DoodleView does some minor
initialization work. Here is the code for the DoodleView constructor:
public DoodleView(DoodleFrame df) {
 _DoodleFrame = df;

 // Background of the DoodlePanel is
 // always white, painting color is
 // always black. (All painting will
 // be done in XOR mode with alternate
 // color white.)
 setBackground(Color.white);

 setForeground(Color.black);

 // Use a NullLayout, which will just
 // leave all Components alone in place.
 setLayout(new NullLayout());
}
10. To avoid “flicker” caused by the default implementation of update,
DoodleView must override update to simply call paint.
public void update(Graphics g) {
 paint(g);
}
11. To implement double-buffering, the DoodleView must keep around an in-
memory Image and associated Graphics object. The Image must be exactly the
same size as the DoodleView itself. To achieve this, DoodleView.reshape is
implemented. The reshape method is automatically called whenever the
DoodleView is resized. So in our implementation, DoodleView calls the base
class implementation of reshape, but also creates a new Image and associated
Graphics of exactly the correct size. Here’s the code:
// Whenever the view is reshaped, must re-allocate
// our in-memory image to be the same size.
public void reshape(int x, int y, int width, int height) {
 super.reshape(x, y, width, height);
 _img2blBuf = createImage(size().width, size().height);

 // Make sure to dispose of unused Graphics.
 if(null != _g2blBuf)
 _g2blBuf.dispose();
 _g2blBuf = _img2blBuf.getGraphics();
}
12. Since DoodleComps have no peers, the Java system never tells them to
repaint themselves. Instead, the DoodleView will explicitly tell each
DoodleComp to paint itself onto the in-memory Image whenever the
DoodleView’s paint method is called. Here is the code for DoodleView’s paint
method:
// Since all DoodleComps have no peers, this
// DoodleView is responsible for making sure
// they paint themselves. Use double-buffering
// to minimize visual flicker.
public void paint(Graphics g) {
 _g2blBuf.setColor(getBackground());
 _g2blBuf.fillRect(0, 0, size().width,
 size().height);
 _g2blBuf.setFont(getFont());
 _g2blBuf.setColor(getForeground());

 for(int i=0 ; i<countComponents() ; i++) {
 Component c = getComponent(i);
 Rectangle r = c.bounds();
 if(true == r.intersects(g.getClipRect())) {
 Graphics gComp =
 _g2blBuf.create(r.x, r.y, r.width,
 r.height);

 c.paint(gComp);

 gComp.dispose();
 }
 }

 // Copy in-memory image to Graphics g.
 g.drawImage(_img2blBuf, 0, 0, this);

 return;
}
13. The DoodleFrame calls the DoodleView’s notifyToolChanged method
whenever the user selects a new shape button on the shape toolbar. This gives the
DoodleView a chance to abort any doodle which is only half-drawn. For example,
let’s say the user was typing some text. The Doodle application requires that the
user clicks with the mouse to notify the application when she is done with a
particular doodle. But instead the user clicks on a different tool on the shape
toolbar. In that case, the DoodleView should remove the half-finished
DoodleComp. That’s what notifyToolChanged does. Here’s the code:
// The DoodleFrame calls notifyToolChanged whenever
// the user selects a doodle tool button. The view
// abandons any incomplete doodles and gets rid
// of them if this happens.
public void notifyToolChanged() {
 if(null != _ActiveDoodleComp) {
 remove(_ActiveDoodleComp);
 _ActiveDoodleComp = null;
 }
 return;
}
14. Interpretation of mouse and keyboard events is left completely up to the
DoodleComps themselves. The DoodleView passes all mouse and keyboard
actions to the DoodleComp currently being edited, if there is one. The
DoodleComp lets the DoodleView know when it is done by either returning false
from the mouse or keyboard Event, or by returning true from its isComplete
method at any time. Here’s DoodleView’s mouse Event methods, which pass the
Events on to the active Doodle:
// If a mouse-down occurs, and there is no active
// doodle, then a new one is created using
// DoodleFrame.createDoodleCompInstance().
public boolean mouseDown(Event evt, int x, int y) {
 if(null == _ActiveDoodleComp) {
 _ActiveDoodleComp =
 _DoodleFrame.createDoodleCompInstance();
 if(null == _ActiveDoodleComp)
 return false;
 add(_ActiveDoodleComp);
 }

 // Pass mouse message on to the active doodle.
 boolean fRet = _ActiveDoodleComp.mouseDown(evt, x, y);

 if((false==fRet) ||
 (true==_ActiveDoodleComp.isComplete()))
 _ActiveDoodleComp = null;

 return fRet;
}

// Mouse drags are simply passed on to the active
// doodle, if there is one. If active doodle
// isComplete() after processing the message, then
// we can drop reference.
public boolean mouseDrag(Event evt, int x, int y) {
 if(null == _ActiveDoodleComp)
 return false;

 boolean fRet =
 _ActiveDoodleComp.mouseDrag(evt, x, y);

 if((false==fRet) ||
 (true==_ActiveDoodleComp.isComplete()))
 _ActiveDoodleComp = null;

 return fRet;
}

// Mouse ups are simply passed on to the active doodle,
// if there is one. If active doodle isComplete() after
// processing the message, then we can drop reference.
public boolean mouseUp(Event evt, int x, int y) {
 if(null == _ActiveDoodleComp)
 return false;

 boolean fRet =
 _ActiveDoodleComp.mouseUp(evt, x, y);

 if((false==fRet) ||
 (true==_ActiveDoodleComp.isComplete()))
 _ActiveDoodleComp = null;

 return fRet;
}
15. Keyboard Events, specifically keyDown events, are treated the same as
mouse Events by the DoodleView. Here’s the code for the DoodleView’s
keyDown Event handler.
// key presses are simply passed on to the active
// doodle, if there is one. If active doodle
// isComplete() after processing the message,
// then we can drop reference.
public boolean keyDown(Event evt, int key) {
 if(null == _ActiveDoodleComp)
 return false;

 boolean fRet =
 _ActiveDoodleComp.keyDown(evt, key);

 if((false==fRet) ||
 (true==_ActiveDoodleComp.isComplete()))
 _ActiveDoodleComp = null;

 return fRet;
}
16. That’s it for the DoodleView. Now for the individual DoodleComp classes.
Each DoodleComp represents, and is able to edit and draw a single doodle, such
as a line or a polygon. All types of DoodleComps are derived from the
DoodleComp class, which does nothing more than implement a few methods
which will be re-used by the individual doodle classes, and declare the
isComplete method. Doodles being edited let the DoodleView know they do not
want any more events passed to them by returning true from the isComplete
method. Here’s the full implementation of the DoodleView class:
abstract class DoodleComp extends Canvas {
 public DoodleComp(Color c) {
 setForeground(c);
 }

 // Avoid adding a peer by overriding addNotify().
 public void addNotify() {
 return;
 }
 // paint() is called explicitly by the Doodle-
 // View when it is painting itself. Graphics
 // has no guarantee of state, so this implementation
 // does a little initialization. Derived classes
 // can call super.paint() to have this code run
 // before doing any actual rendering on the
 // Graphics.
 public void paint(Graphics g) {
 g.setColor(getForeground());
 g.setFont(getFont());
 g.setXORMode(Color.white);
 return;
 }

 // isComplete() returns true if the doodle
 // has been completed.
 public abstract boolean isComplete();
}
17. Now for the individual doodles. The simplest is the DoodleLine. The
DoodleLine just waits for the mouse button to be let go. At that point, the Line is
defined by two points: where the mouse was when the DoodleLine was created,
where the mouse was when the user let go of the mouse button. Here’s the code
for the DoodleLine’s constructor, member variables, and isComplete method
implementation:
class DoodleLine extends DoodleComp {
 Point _pt1 = null;
 Point _pt2 = null;
 Point _ptDrag = null;

 // Must be constructed with a color.
 public DoodleLine(Color c) {
 super(c);
 }

 public boolean isComplete() {

 if((null != _pt1) && (null != _pt2))
 return true;
 return false;
 }
18. The DoodleLine keeps track of where the user is dragging the mouse. This is
important because if the user drags the mouse to the left or upward of the upper-
left corner of the DoodleLine, then the DoodleLine must resize and reposition
itself with its origin far enough towards the application’s upper-left corner to
encompass the new point. Here’s the code for DoodleLine.mouseDrag:
public boolean mouseDrag(Event evt, int x, int y) {
 if(isComplete())
 return false;

 Point pt = location();
 _ptDrag = new Point(x-pt.x, y-pt.y);

 if(_ptDrag.x < 0) {
 _pt1.x += -_ptDrag.x;
 _ptDrag.x = 0;
 }
 if(_ptDrag.y < 0) {
 _pt1.y += -_ptDrag.y;
 _ptDrag.y = 0;
 }

 Rectangle r = bounds();
 r.add(new Point(x, y));
 reshape(r.x, r.y, r.width, r.height);

 getParent().repaint(r.x, r.y, r.width, r.height);

 return true;
}
19. The initial MOUSE_DOWN Event defines where the first point of the
DoodleLine is, and a MOUSE_UP Event causes the DoodleLine to report that it is
done editing. Here’s the code for the mouseDown and mouseUp event handlers of
the DoodleLine class:
public boolean mouseDown(Event evt, int x, int y) {
 if(isComplete())
 return false;

 move(x, y);
 _pt1 = new Point(0, 0);

 Rectangle r = bounds();
 getParent().repaint(r.x, r.y, r.width, r.height);

 return true;
}

public boolean mouseUp(Event evt, int x, int y) {
 if(isComplete())
 return false;

 Point pt = location();

 _pt2 = new Point(x-pt.x, y-pt.y);
 if(_pt2.x < 0) {
 _pt1.x += -_pt2.x;
 _pt2.x = 0;
 }
 if(_pt2.y < 0) {
 _pt1.y += -_pt2.y;
 _pt2.y = 0;
 }

 Rectangle r = bounds();
 r.add(new Point(x, y));
 reshape(r.x, r.y, r.width, r.height);

 getParent().repaint(r.x, r.y, r.width, r.height);

 return true;
}
20. The paint method of all DoodleComps is called explicitly by the DoodleView
from its paint implementation. Here is DoodleLine’s implementation, which
makes sure to call its superclass implementation of paint first
(DoodleComp.paint). The superclass implementation sets up the Graphics with
the proper colors, fonts, and painting mode. Here’s DoodleLine’s painting code:
public void paint(Graphics g) {
 super.paint(g);

 if(null == _pt1)
 return;

 if(isComplete()) {
 g.drawLine(_pt1.x, _pt1.y, _pt2.x, _pt2.y);
 return;
 }

 if(null != _ptDrag)
 g.drawLine(_pt1.x, _pt1.y, _ptDrag.x,
 _ptDrag.y);
 return;
}

The rest of the DoodleComp classes are very similar to DoodleLine. Similarly to
DoodleLine, they handle mouse and keyboard events until the user is done editing the
doodle. They all use pretty much the same code to ensure the bounding rectangle of the
DoodleComp continually contains the location of the mouse.

How It Works

The following table lists all the classes defined in the Doodle application, and a short
description of each.

Class Description

Doodle The class contains the static main() method for the Doodle

application. This is the only public class in the Doodle project.

DoodleFrame The main window of the Doodle application. The DoodleFrame
window creates the two toolbars, allowing the user to select a type
of doodle to draw on the whiteboard surface and a Color to draw
in. The two toolbars and the whiteboard (DoodleView) are the
three Components added to this Container.

DoodleView This is the whiteboard Component. This is where the guts of
making the DoodleComp (doodle Component) virtual Components
work. Mouse and keyboard Events on the whiteboard are delivered
explicitly to the correct DoodleComp. When the whiteboard is
supposed to paint itself, it explicitly calls each DoodleComp’s
paint() method with a unique Graphics attached to the
DoodleComp’s rectangle.

DoodleComp This is the base class for all the doodle Component objects. The
methods, which are implemented the same for each doodle
Component, are implemented in this class.

DoodleLine Each doodle line is a single line the user drew on the whiteboard
surface. It collects a mouseDown() and a mouseUp() Event call
(sent explicitly by the whiteboard) to define a line to draw.

DoodleRect Each doodle rectangle is a filled rectangle the user drew on the
whiteboard surface. It collects a mouseDown() and mouseUp()
Event call to define the upper-left and lower-right corners of the
rectangle.

DoodlePoly Each doodle polygon is a filled Polygon the user drew on the
whiteboard surface. The user defines the polygon by a series of
mouse down,drag, and mouse up actions.

DoodleText Each String of text the user defined to be drawn on the whiteboard
surface is stored as a DoodleText. All keyboard Events sent by the
DoodleView to a DoodleText are stored up by the DoodleText. A
mouse click defines the upper-right corner of the DoodleText’s
surface rectangle.

NullLayout The doodle Components should be placed and sized exactly how
the user defines them with her mouse clicks and drags. The
whiteboard uses a NullLayout as its LayoutManager. NullLayout
does absolutely nothing to the size or position of the doodle
Components. Thus, the doodle Components can place themselves
wherever they want using their own move(), resize(), or reshape()
methods.

PolygonEx There is no translate() method for the Polygon class in the Java

API. The PolygonEx class defines a method to move, or translate,
all the vertices in a Polygon object any distance in either the X or
Y directions.

Use of Rectangles in Doodle

Each doodle object in the Doodle application is represented by a Component object. One
drawback with the Component class is that it does not allow you to specify a negative
width or height when reshaping the Component on the screen. For the Doodle
application, this poses a little problem. While allowing the user to click-and-drag to
define a doodle, say for instance a LineDoodle, the Doodle application must continually
reshape the LineDoodle component. If the user drags the mouse to the right or below the
LineDoodle’s rectangle, then the Doodle application simply adds to the width and/or
height of the LineDoodle Component and redraws it. If, on the other hand, the user drags
the mouse above or to the left of the LineDoodle component, both the origin and
dimensions of the Component must be changed. The trick is to ensure that the upper-left-
most extent of the Component is always the origin.

The code DoodleLine uses whenever it receives a mouse-drag is:

public boolean mouseDrag(Event evt, int x, int y) {
 // If line has already been completed
 // (ie, mouseUp occurred)
 // then ignore this mouseDrag event.
 if(isComplete())
 return false;

 // x and y parameters are relative to Container’s
 // origin. Get Point relative to this Component’s
 // origin in _ptDrag.
 Point pt = location();
 _ptDrag = new Point(x-pt.x, y-pt.y);

 // If _ptDrag is to the left or above this Component,
 // then change the origin of this component to
 // _ptDrag, and change _ptDrag to (0,0).
 if(_ptDrag.x < 0) {
 _pt1.x += -_ptDrag.x;
 _ptDrag.x = 0;
 }
 if(_ptDrag.y < 0) {
 _pt1.y += -_ptDrag.y;
 _ptDrag.y = 0;
 }

 // Reshape this Component to encompass the
 // new mouseDrag point.
 Rectangle r = bounds();
 r.add(new Point(x, y));
 reshape(r.x, r.y, r.width, r.height);

 // Since line has changed, repaint it by repainting
 // its rectangle within the Container’s surface.
 getParent().repaint(r.x, r.y, r.width, r.height);

 // This Component will continue processing events, so
 // return true to indicate line is not yet complete.
 return true;
}

The DoodleRect and DoodlePoly virtual Components use a similar technique to reshape
themselves whenever the user expands them to the left or upward. DoodleRect uses
almost exactly the same code as DoodleLine. The big difference between the two is in the
paint method. DoodleLine paints a line between its internally stored _pt1 and _pt2 Point
member variables, while DoodleRect fills a Rectangle which is its bounds.

The DoodlePoly class is different than DoodleLine or DoodleRect in that the user does
not use a single mouse click-and-drag to define the Polygon. Instead, the user uses a
series of mouse clicks-and-drags, one for each segment of the Polygon to draw. Instead of
using mouseDrag to reshape the Polygon and redraw it, DoodlePoly uses mouseUp.
Nevertheless, the technique is still the same: If the MOUSE_UP event is above or to the
left of the DoodlePoly Component, then the DoodlePoly is moved and reshaped to keep
the origin as the upper-left corner of the Component to avoid having a negative width or
height.

Chapter 8
AWT Image Processing

Several utility classes and interfaces are included in the Java API for image processing.
Using these APIs, Image objects can be created from raw data, the raw data of an existing
Image object can be examined, and filters can be used to make modified versions of
existing images. Image objects that you create from raw data or using filters can be used
in exactly the same ways as Image objects created by the Java runtime system.

In the Java language, Image data is presented in a consistent format by objects which
implement the ImageProducer interface. Image data is used by objects which implement
the ImageConsumer interface. The ImageProducer and ImageConsumer interfaces are the
basis for image processing in the Abstract Windows Toolkit (AWT) of Java.

This chapter details how ImageProducers, ImageConsumers, and ImageFilters work, and
how you use them to create and modify images in Java. First, we will see how image
pixel data is represented using arrays of bytes or integers in Java, and how the
ColorModel object is used to interpret image pixel data. Next, we will see how the
ImageProducer interface passes image pixel and ColorModel information to

ImageConsumers. Finally, this chapter explains the ImageFilter, which is really both an
ImageConsumer and an ImageProducer.

The project for this chapter, “MultiFilter,” is an extensible image filtering application. It
allows the user to apply filters to arbitrary sections of Images. MultiFilter is designed to
be extensible—after you see how it is designed and built, you will be able to drop in and
test any ImageFilter you create.

Image Data in Java

As with most computer representation of images, images in AWT are conceptually a two-
dimensional array of pixels. Each pixel has color data associated with it. According to the
color storage model for the Image, this data can be stored in either a single 8-bit byte, or
in a 32-bit integer.

The default color model stores eight bits each of red, green, blue, and “alpha” or
“transparency” information packed into a single integer. This is the RGBa color model.
Figure 8-1 illustrates the packing of RGBa data into a single integer. All Image objects
have an associated ColorModel object capable of converting the specific Image’s color
data into an RGBa representation. The ColorModel class encapulates the methods
necessary to convert the Image pixel data for single pixels into the default RGBa packed
bits format. Whenever raw Image pixel data is passed to a method, the ColorModel for
that pixel data accompanies it. Sometimes the ColorModel is assumed to be the default
RGBa model, such as in the RGBImageFilter.filterRGB method, which is passed RGBa
pixel data but no ColorModel.

Figure 8-1 RGBa color model

The ColorModel class is an abstract class that defines the methods which must be
implemented by actual ColorModels. The two ColorModel classes included with the
AWT are IndexColorModel and the DirectColorModel, both of which are also
summarized in this chapter.

For example, an Image may use an IndexColorModel, where each pixel’s single byte of
data is actually an index into a color table of 256 RGBa integers. Given a pixel’s 8-bit
index into its color table, the IndexColorModel for the Image can supply the specific
RGBa data for that pixel. All ColorModels implement getRGB to supply RGBa
information for all pixels in the Image. This listing uses getRGB to retrieve RGBa
information associated with pixel value 0.

URL urlImage;

//…
// urlImage is loaded with the URL for an image.
//…

Image img = Toolkit.getDefaultToolkit().getImage(urlImage);

//…
// Image data is allowed to be downloaded, for instance by a
// MediaTracker object.
//…

// Pass to getRBG() the native color data for a particular
// pixel. Below, native data '0’ is passed in, which could
// refer to the first entry in an indexed color table.
ColorModel cm = img.getColorModel();
int rgb = cm.getRGB(0);

The other ColorModel included in AWT is the DirectColorModel. The DirectColorModel
can store packed bits of red, green, blue, and alpha values using arbitrary bitmasks for
each of the color component fields in an integer. The width of the bitfields for each color
component is completely configurable. The DirectColorModel internally computes the
method for converting data stored using arbitrary bitfields into default RGB data. Like all
ColorModel-derived classes, the DirectColorModel implements getRed, getGreen,
getBlue, getAlpha, and getRGB.

For example, you can define a DirectColorModel that stores 12 bits of red data in the 12
highest bits, 4 bits of green data in the bottom 4 bits, 16 bits of blue data in the middle 16
bits, and no alpha data at all. The DirectColorModel can automatically convert this kind
of pixel data into the default RGBa representation.

There are many other ColorModels which could be implemented, each best suited to a
particular real-world application. For example, television images are encoded in the so-
called “YIQ” or “luminescence/chromaticity” color model. One could define a
YIQColorModel so that Images storing pixel data using the YIQ schema could be
rendered on display surfaces by Java.

Passing Image Data: The ImageProducer and ImageConsumer Interfaces

The AWT creates Image objects from data provided by ImageProducers. An
ImageProducer delivers Image pixel data to ImageConsumers through the member
methods of that interface. There are three types of ImageProducers implemented in the
Java API:

• The Toolkit has built-in ImageProducers which can create Images from files
stored on the local file system, or accessed through the network. The Toolkit’s
createImage method takes Image data and an associated ColorModel from an
ImageProducer, and transfers it into structures appropriate for rendering the
Image in a particular operating system.
• Any Image object can provide an ImageProducer which will deliver the Image’s
data to ImageConsumers. Image.getSource returns an ImageProducer that delivers
the pixel data to ImageConsumer objects.
• The MemoryImageSource class is an ImageProducer which can deliver image
data taken from an array of pixel data in memory.

You can create your own ImageProducers to accomplish additional Image creation tasks.
For example, you may want to implement an ImageProducer to create images from
lesser-known or unsupported graphic format files, like PostScript. To do so, just create a
class which implements the ImageProducer interface and delivers pixel data to consumers
through the member methods of the ImageConsumer interface.

ImageProducers require one or more ImageConsumer objects to accept image data.
Figure 8-2 illustrates this relationship as a faucet and one or more buckets. The
ImageProducer funnels its image data to ImageConsumers which have been associated
with the producer.

Figure 8-2 The flow of Image pixel data from ImageProducer to multiple
ImageConsumers

The ImageConsumer interface is implemented by objects wishing to process pixel data.
The ImageProducer passes pixel data in one or, more usually, multiple calls to the
ImageConsumer’s setPixels:

class myConsumer extends ImageConsumer {
 public void setPixels(int x, int y, int width, int height,
 ColorModel model, int pixels[], int off, int scansize) {
 // do something with the 32-bit pixel data.
 }

 public void setPixels(int x, int y, int width, int height,
 ColorModel model, byte pixels[], int off, int scansize) {
 // do something with the 8-bit pixel data.
 }
}

Two overloaded versions of setPixels must be implemented, one to accept 8-bit pixel
data, and the other to accept 32-bit pixel data. A rectangle of pixels from the Image is
passed to setPixels. This rectangle might be the entire Image’s two-dimensional array of
pixels, a single row or “scanline” of the Image, or even a single pixel of data. Multiple
calls to setPixels may even define data for overlapping regions of the Image, in which
case only the last piece of Image data for a particular region should be used. Images may
also contain multiple frames, such as with a video sequence of animation frames.

The ImageProducer calls the ImageConsumer’s setHints method to tell the consumer a
little about how the Image data will be passed. These hints can be used by a consumer to
optimize its processing of the pixel data. Always before the first call to setPixels, setHints
is called. A bitwise ORing of ImageConsumer flags is passed to setHints. See the API
summary of the setHints method later in this chapter for a comprehensive listing of the
ImageConsumer flags.

Producer hints should be used by a consumer to optimize its processing of image data.
For example, one custom ImageConsumer might be an average color calculator which
calculates the average red, green, and blue intensities of an image. For non-
SINGLEPASS images, such a consumer would have to keep a history of data sufficient
to subtract overlapping regions passed to setPixels.

Several other important pieces of information about an image are presented to a
consumer before individual pixel data is sent to setPixels. The ImageConsumer methods
used to pass this additional information are

• setDimensions is called to inform the consumer of the Image’s width and
height.
• setProperties is called to pass the consumer an extensible list of Image
properties. These properties are all stored in a Hashtable as text. The individual
properties might include the name and configuration of any filters used to produce
the Image, any copyright on the Image, etc.
• setColorModel is passed a copy of the ColorModel used predominantly by the
producer. Similar to the hints passed to setHints, the ColorModel may be used by
the consumer to optimize processing of Image color data.

When the producer has finished sending the consumer all information about the image (or
a single frame of the image), the imageComplete method is invoked. Similar to setHints,
imageComplete is passed a bitwise ORing of ImageConsumer flags indicating the status
of the completed image. Here are the ImageConsumer flags that may be passed to
imageComplete:

Flag Meaning

IMAGEERROR An error was encountered while producing the Image data.

The error is unrecoverable, and the image data received so far
is not necessarily viable.

SINGLEFRAMEDONE A single frame in a multiframe Image has been completed.

STATICIMAGEDONE The Image data for a complete single-frame image has been
sent to the consumer. For multi-frame images, this flag
implies all frames have been delivered to the consumer.

IMAGEABORTED The production of the Image has been deliberately aborted.

As you can see, the interpretation of most of these flags is somewhat vague. For example,
the IMAGEERROR flag simply indicates that “some error” has occurred: There is no
way to discover more about what that error is.

The CountFramesConsumer (see the Example section of the ImageConsumer API
Summary below) counts the number of frames in a multiframe Image. The individual

pixel data for the frames is actually ignored by the methods in this class. About the only
information CountFramesConsumer is interested in is the SINGLEFRAME flag to
setHints and the SINGLEFRAMEDONE or STATICIMAGEDONE flags to
imageComplete. The CountFramesConsumer’s constructor is passed an Image object,
whose getSource method returns a Producer to pass the Image’s pixel data to a consumer.
See the API summary of the ImageConsumer interface for an example of an
ImageConsumer.

ImageFilters

An ImageFilter is a special type of ImageConsumer which passes image data on to
another ImageConsumer after suitable processing. Figure 8-3 illustrates ImageFilters as
intermediate compartments in the flow of image data from its producer to its ultimate
consumer. You can see that multiple filters can be chained together.

Figure 8-3 ImageFilters are consumers able to pass modified pixel data on to other
consumers (including other ImageFilters)

The default implementation of ImageFilter is a null filter. That is, it actually does nothing
to the image data, but simply passes it through to another consumer. The filter keeps
track of the ImageConsumer to which it is passing data. All other image filters are
derived from the ImageFilter class, and override its default implementations of the
ImageConsumer interface to actually perform some action on Image data.

Filtering an image involves creating a FilteredImageSource. The FilteredImageSource
requires two parameters to its constructor: an ImageProducer and an ImageFilter. The
FilteredImageSource simply makes the ImageFilter a consumer of the ImageProducer’s
data, and funnels the output of the ImageFilter to a new Image object. This code snippet
shows how to use an ImageFilter to create a filtered version of a particular image.

Image img;
ImageFilter filter;

// img and filter are set to refer to an Image and ImageFilter.

Image imgFiltered = Toolkit.getDefaultToolkit().createImage(
 new FilteredImageSource(img.getSource(), filter));

The simplest image filters to create are ones which modify each pixel’s RGBa data
independant of the pixel data for other pixels in the Image. An example of this type of
filter would be a TintFilter, which modifies the tint of each pixel in an Image uniformly,

much the same as the tint dial on a television set. AWT provides an RGBImageFilter
class to make the creation of such filters much easier.

To create an RGBImageFilter, you need only implement the RGBImageFilter.filterRGB
method in your derived RGBImageFilter class. The filterRGB method is passed the
coordinates of a single pixel and the color data for that pixel (before any filtering) as an
RGBa integer. This method returns a replacement RGBa integer for that particular pixel.
In all RGBImageFilters, each individual pixel in an image is passed through filterRGB.
The following listing is the code for a simple Color2BWFilter. Color2BWFilter converts
a color image to a black-and-white image by making the red, green, and blue components
of each individual pixel equal, essentially converting the image to grayscale.

class Color2BWFilter extends RGBImageFilter {

 // The constructor sets
 // RGBImageFilter.canFilterIndexColorModel to true so that
 // index color entries are passed to filterRGB().
 public Color2BWFilter() {
 conFilterIndexColorModel = true;
 }

 // RGB-alpha data passed to filterRGB is converted
 // to grayscale by setting each of the color components
 // to be equal to the average of the r,g and b values.
 public int filterRGB(int x, int y, int rgb) {
 int r = (rgb & 0x00ff0000) >> 16;
 int g = (rgb & 0x0000ff00) >> 8;
 int b = rgb & 0x000000ff;

 // grayscale value is sqrt(r^2 + g^2 + b^2) / sqrt(3).
 int gray = (int)(Math.sqrt((double)(r*r + g*g + b*b)) /
 Math.sqrt((double)3));

 return (gray << 16) | (gray << 8) | gray |
 (rgb & 0xff000000);
 }
}

Notice that the constructor of the Color2BWFilter sets a canFilterIndexColorModel
member to true. That flag tells the RGBImageFilter implementation that if the image
being filtered is based on an IndexColorModel, then passed the IndexColorModel’s 256
entries through the filter, not the actual pixel data. In the case of the Color2BWFilter, this
means the filter will actually change the values associated with each color index to be a
grayscale color. The pixel data doesn’t change at all. This feature makes
RGBImageFilters remarkably efficient at filtering images based on an IndexColorModel,
since only 256 values need to be modified no matter how big the input image is (or, at
most the number of color entries in the IndexColorModel, which is usually 256).

More complex filtering than RGBImageFiltering, filtering which is not uniform for all
pixels in an image, requires an ImageFilter-derived class which overrides the default
implementations of ImageFilter’s ImageConsumer methods. An example of such a

filtering operation is an image convolution, also known as blurring or sharpening an
image. In convolution, the resultant color data for a particular pixel is dependent on the
color values of the pixels adjacent to it. To perform this type of operation, your
ImageFilter would have to remember the pixel data around the border of regions given to
setPixels for filtering.

For example, let’s say you need the pixel data of nine pixels from the input image (3 x 3
square of pixels) in order to figure out the pixel data of the center pixel in the output
image. You would not be able to calculate the output pixel values for pixels within one
pixel of the edge of a rectangle sent to setPixels. You would not be able to calculate these
pixel values until the adjacent region was sent to setPixels. In this case, you would have
to keep track of the pixel values for these border pixels until you get all adjacent regions.

AWT Image Processing API Summaries

Table 8-1 lists the classes related to AWT Image processing, which are described in this
chapter. Table 8-2 lists the methods associated with the AWT Image processing classes
and interfaces, including a short description of each method.

Table 8-1 The AWT
Image processing classes

and interfaces
summarized

Class Description

ColorModel Defines a storage schema for pixel color data. Can convert

this data to the default RGBa schema.
DirectColorModel An arbitrary, packed bit storage schema for pixel color data.

You can create your own instances with different color
component bit widths and masks.

IndexColorModel A storage schema in which each pixel’s data is actually an
index to a lookup table of colors.

ImageConsumer An Interface implemented by any class whose job is to
collect Image pixel data for whatever reason.

ImageProducer An Interface implemented by objects that supply Image
pixel data to ImageConsumers.

Table 8-2 Methods of the Image processing classes and interfaces

Class Method Description

ColorModel getRGBDefault Gets a ColorModel describing the

default RGBa bit packing scheme.

 getPixelSize Gets number of bits of pixel data
for the ColorModel.

 getRed Gets red component value given a
pixel’s value.

 getGreen Gets green component value given
a pixel’s value.

 getBlue Gets blue component value given
a pixel’s value.

 getAlpha Gets transparency value given a
pixel’s value.

 getRGB Gets RGBa version of a pixel’s
value.

DirectColorModel getRedMask Gets bitmask of red component
data for pixels based on this

DirectColorModel.

getGreenMask Gets bitmask of green component

data for pixels based on this
DirectColorModel.

getBlueMask Gets bitmask of blue component

data for pixels based on this
DirectColorModel.

getAlphaMask Gets bitmask of transparency

component data for pixels based
on this DirectColorModel.

IndexColorModel getMapSize Gets number of indexed colors in
the IndexColorModel.

 getTransparentPixel Gets pixel value reserved for full
transparency.

 getReds Fills array with indexed red
component values.

 getGreens Fills array with indexed green
component values.

 getBlues Fills array with indexed blue
component values.

 getAlphas Fills array with indexed
transparency values.

ImageConsumer setDimensions Called to indicate the size of the
image.

 setProperties Called to pass the consumer the
image’s properties.

setColorModel Indicates the ColorModel for the

majority of pixel data being passed
to the consumer.

setHints Indicates some information about

the order that pixels will be passed
to the consumer.

 setPixels Called to give the consumer image
pixel values.

 imageComplete Indicates status of the completed
image.

ImageProducer addConsumer Registers an ImageConsumer with
the producer.

isConsumer Checks whether an

ImageConsumer is registered with
this producer.

 removeConsumer Unregisters an ImageConsumer
with this producer.

 startProduction Kick-starts the image production
process.

requestTopDownLeftRight
Resend

After image production has
completed, asks the producer to re-

send the data in a single pass, in
top-down, left-right order.

ColorModel

Purpose
Encapsulate methods for interpreting raw pixel data.

Syntax
public abstract class ColorModel

Description
Encapsulates methods for interpreting raw pixel data. Image data is associated
with a particular ColorModel. The ColorModel can then be used to convert the
raw pixel data in RGBa data for the pixel. Figure 8-4 shows the hierarchy of the
ColorModel class.

Package
java.awt.image

Imports
None.

Constructors
public ColorModel(int pixel_bits);
Since this is an abstract class, this constructor is only called from the constructors
of derived classes. Specify the number of bits used to store a single pixel’s data;
this is the same value returned by getPixelSize.

Parameters
int pixel_bits

This member stores the number of bits required to store a single pixel’s data. It is
protected, so it is available to derived classes.

Figure 8-4 The hierarchy of the ColorModel class

getRGBDefault

ClassName
ColorModel

Purpose
Gets a ColorModel object which describes the default RGBa color storage
scheme.

Syntax
public static ColorModel getRGBDefault();

Parameters
None.

Imports
None.

Description
Returns a DirectColorModel object that defines the default storage schema for
RGBa data in an integer. You can use the default RGB ColorModel to unpack
red, green, and blue color components from RGBa data. But since the packing
schema of the default RGB ColorModel is so well known, it is easier just to
unpack the bits yourself. Default RGB packed color data is packed like this:
0xaarrggbb.

Returns
The default RGB ColorModel object.

Example

The example below actually unpacks default RGB color data using two methods:
directly unpacking the data using bitshift operators, and unpacking the data using
the default RGB ColorModel:

class MyFilter extends RGBImageFilter {

 public int filterRGB(int x, int y, int rgb) {
 // unpack the bits directly…
 int alphaUnpacked = (rgb & 0xff000000) >>> 24;
 int rUnpacked = (rgb & 0x00ff0000) >> 16;
 int gUnpacked = (rgb & 0x0000ff00) >> 8;
 int bUnpacked = rgb & 0x000000ff;

 // use default RGB ColorModel to unpack…
 ColorModel defaultCM = ColorModel.getRGBDefault();
 int alphaFromCM = defaultCM.getAlpha(rgb);
 int rFromCM = defaultCM.getRed(rgb);
 int gFromCM = defaultCM.getGreen(rgb);
 int bFromCM = defaultCM.getBlue(rgb);

 return rgb;
 }
}

getPixelSize

ClassName
ColorModel

Purpose
Gets the width of pixel data described by this ColorModel.

Syntax
public int getPixelSize();

Parameters
None.

Imports
None.

Description
Gets the number of bits required to store a single pixel’s color data. This will be
either 8 or 32 bits. IndexColorModels use 8 bits to store the index into a color
table. Most other schemas use 32 bits.

Returns
The number of bits required to store the color data for a single pixel encoded
using this ColorModel.

Example
You can use the results of the getPixelSize method to allocate storage for pixel
data using a particular ColorModel, as in this example:

ColorModel cm;

// Initialize the ColorModel cm…

// Now, allocate an array of 100 elements of the correct
// size to store pixel data.

int[] anPixels = null;
byte[] abPixels = null;

if(cm.getPixelSize() == 32)
 anPixels = new int[100];
else
 abPixels = new byte[100];

getRed

ClassName
ColorModel

Purpose
Gets value of the red color component for a pixel.

Syntax
public int getRed(int pixel);

Parameters
int pixel

The value of a single pixel’s data. If original pixel data is a byte, then it must be
cast to an integer.

Imports
None.

Description
Gets the value of the red color component from an integer of pixel data. This is an
abstract method which must be implemented by all ColorModel-derived classes.

Returns
The red color component from the pixel data.

Example
See the example under the getAlpha method of the ColorModel class, later is this
section.

getGreen

ClassName
ColorModel

Purpose
Gets value of the green color component for a pixel.

Syntax
public int getGreen(int pixel);

Parameters
int pixel

The value of a single pixel’s data. If original pixel data is a byte, then it must be
cast to an integer.

Imports
None.

Description

Gets the value of the green color component from an integer of pixel data. This is
an abstract method which must be implemented by all ColorModel-derived
classes.

Returns
The green color component from the pixel data.

Example
See the example under the getAlpha method of the ColorModel class, later in this
section.

getBlue

ClassName
ColorModel

Purpose
Gets value of the blue color component for a pixel.

Syntax
public int getBlue(int pixel);

Parameters
int pixel

The value of a single pixel’s data. If original pixel data is a byte, then it must be
cast to an integer.

Imports
None.

Description
Gets the value of the blue color component from an integer of pixel data. This is
an abstract method which must be implemented by all ColorModel-derived
classes.

Returns
The blue color component from the pixel data.

Example
See the example under the getAlpha method of the ColorModel class, later is this
section.

getAlpha

ClassName
ColorModel

Purpose
Gets the transparency value from a single single’s data.

Syntax
public int getAlpha(int pixel);

Parameters
int pixel

The value of a single pixel’s data. If original pixel data is a byte, then it must be
cast to an integer.

Imports
None.

Description
Gets the value of the alpha transparency value from an integer of pixel data.
Transparency is generally measured from 0-255, where 255 is fully opaque, and 0
is fully transparent. Note also that the IndexColorModel allows you to specify a
single index as being fully transparent, similar to the GIF format’s transparent
color indicator. getAlpha is an abstract method which must be implemented by all
ColorModel-derived classes.

Returns
The alpha transparency value from the pixel data.

Example
In this example, the ColorModel passed to an ImageFilter’s setPixels method is
used to get the red, green, and blue color components from individual pixels.

public MyFilter extends ImageFilter {
 // Overloaded byte version of setPixels() must also be
 // implemented to make a real ImageFilter.
 public void setPixels(int x, int y, int width, int height
 ColorModel model, int[] pixels, int off,
 int scansz) {
 for(int i=0 ; i<width ; i++) {
 for(int j=0 ; j<height ; j++) {
 int r=model.getRed(pixels[(j*scansz)+i+off]);
 int g=model.getGreen(pixels[(j*scansz)+i+off]);
 int b=model.getBlue(pixels[(j*scansz)+i+off]);
 int a=model.getAlpha(pixels[(j*scansz)+i+off]);

 // Do something with r, g, b and a values
 }
 }
 }
}

getRGB

ClassName
ColorModel

Purpose
Converts pixel data to RGBa schema.

Syntax
public int getRGB(int pixel);

Parameters
int pixel

Raw pixel data stored in the ColorModel’s storage schema.
Description

Converts raw pixel color data to the default RGBa storage schema. The output
pixel data is equivalent in color and transparency to the raw color data.

Returns

A packed integer of red, green, blue, and alpha color values packed using the
default RGB storage schema.

Example
This example demonstrates the technique used by the RGBImageFilter to pass all
pixel data through the filterRGB method. That is, all pixels passed to
RGBImageFilters are converted to the default RGBa storage schema using
getRGB:

class MyRGBConverter implements ImageConsumer {

 // Other ImageConsumer methods are not implemented here,
 // only one of the overloaded versions of setPixels. In
 // setPixels, the individual pixels are each converted to
 // the default RGB-alpha storage schema before being
 // processed.
 public void setPixels(int x, int y, int width, int height,
 ColorModel model, int[] pixels, int off,
 int scansize) {
 for(int i=0 ; i<width ; i++) {
 for(int j=0 ; j<height ; j++) {
 int pixel = pixels[(j*scansize)+i+off];
 processRGB(x, y, model.getRGB(pixel));
 }
 }
 }

 // processRGB does something with the default RGB-alpha
 // data for each pixel. processRGB is very similar to
 // RGBImageFilter.filterRGB.
 public void processRGB(int x, int y, int rgb) {
 // Do something with RGB data here.
 }
}

DirectColorModel

Purpose
Encapsulates methods for interpreting image pixel data based on packed bitfields
of red, green, blue, and alpha color components.

Syntax
public class DirectColorModel extends ColorModel

Description
The DirectColorModel encapsulates methods for interpreting image pixel data
based on packed bitfields of red, green, blue, and alpha color components. The
size and presence of the bitfields for each of these components is completely
configurable. You could, for example, create a DirectColorModel object which
can interpret 5-6-5 16-bit RGB pixel data (16 bits of each pixel’s data are used,
top 5 bits are red, next 6 are green, and bottom 5 are blue). The example below
demonstrates how to create such a DirectColorModel. Figure 8-5 shows the
hierarchy of the DirectColorModel class.

Package
java.awt.image

Imports
java.awt.AWTException

Constructors
public DirectColorModel(int pixel_bits, int redmask, int greenmask, int
bluemask);
public DirectColorModel(int pixel_bits, int redmask, int greenmask, int bluemask,
int alphamask);
The pixel_bits parameter can be 8 or 32 bit, and it specifies how many bits of
pixel data are used per pixel. Specify bitmasks for each of the color components
in the mask parameters. If it is left out, the alphamask is assumed to be
0x00000000.

Parameters
None.

Example
This example builds a DirectColorModel that interprets color data using the
default RGBa storage schema: 0xaarrggbb.

Figure 8-5 The hierarchy of the DirectColorModel class

//…

DirectColorModel dcm =
 new DirectColorModel(32, // 32 bits/pixel
 0x00ff0000, // the red mask
 0x0000ff00, // the green mask
 0x000000ff, // the blue mask
 0xff000000); // the alpha mask

//…

This example creates a DirectColorModel that interprets color data using a 5-6-5 16-bit
RGB shema:

DirectColorModel dcm =
 new DirectColorModel(32, // 32 bits/pixel
 0x0000F800, // red mask
 0x000007E0, // green mask
 0x0000001F, // green mask
 0x00000000); .// no alpha data

getRedMask

ClassName
DirectColorModel

Purpose
Gets bitmask of packed red component values.

Syntax
public int getRedMask();

Parameters
None.

Imports
None.

Description
Gets the bitmask defining the bitfield in which red color data is stored in packed
integers using this DirectColorModel.

Returns
The red bitmask passed to the DirectColorModel’s constructor.

Example
See the example under the getAlphaMask method of the DirectColorModel, later
in this section.

getGreenMask

ClassName
DirectColorModel

Purpose
Gets bitmask of packed green component values.

Syntax
public int getGreenMask();

Parameters
None.

Imports
None.

Description
Gets the bitmask defining the bitfield in which green color data is stored in
packed integers using this DirectColorModel.

Returns
The green bitmask passed to the DirectColorModel’s constructor.

Example
See the example under the getAlphaMask method of the DirectColorModel, later
in this section.

getBlueMask

ClassName
DirectColorModel

Purpose
Gets bitmask of packed blue component values.

Syntax
public int getBlueMask();

Parameters
None.

Imports
None.

Description
Gets the bitmask defining the bitfield in which blue color data is stored in packed
integers using this DirectColorModel.

Returns
The blue bitmask passed to the DirectColorModel’s constructor.

Example
See the example under the getAlphaMask method of the DirectColorModel, later
in this section.

getAlphaMask

ClassName
DirectColorModel

Purpose
Gets bitmask of packed alpha or transparency component values.

Syntax
public int getAlphaMask();

Parameters
None.

Imports
None.

Description
Gets the bitmask defining the bitfield in which alpha color data is stored in packed
integers using this DirectColorModel.

Returns
The alpha bitmask passed to the DirectColorModel’s constructor.

Example
Given an Image which uses a DirectColorModel, this example method displays
how many bits are used to store each color component in the packed raw image
data.

public void displayBitSizes(Image img) {
 // Make sure Image uses DirectColorModel
 if(! (img.getColorModel() instanceof DirectColorModel))
 return;

 DirectColorModel dcm = img.getColorModel();
 int redmask = dcm.getRedMask();
 int greenmask = dcm.getGreenMask();
 int bluemask = dcm.getBlueMask();
 int alphamask = dcm.getAlphaMask();

 int redbits, greenbits, bluebits, alphabits;
 for(int ii=0 ; ii<32 ; ii++)
 redbits += (0 != redmask & 0x00000001 ? 1 : 0);
 greenbits += (0 != greenmask & 0x00000001 ? 1 : 0);
 bluebits += (0 != bluemask & 0x00000001 ? 1 : 0);
 alphabits += (0 != alphamask & 0x00000001 ? 1 : 0);

 redmask >>= 1;
 greenmask >>= 1;
 bluemask >>= 1;
 alphamask >>= 1;
 }

 System.out.println(“red field width is “ + redbits);
 System.out.println(“green field width is “ + greenbits);
 System.out.println(“blue field width is “ + bluebits);
 System.out.println(“alpha field width is “ + alphabits);
}

IndexColorModel

Purpose
Encapsulates methods for interpreting image pixel data based on an indexed color
palette. Most IndexColorModels describe a 256-color palette, although the
IndexColorModel class constructor allows you to specify any number up to 4
billion.

Syntax
public class IndexColorModel extends ColorModel

Description
For some images, the image pixel data is really an index into a color table. The
IndexColorModel represents the color table. The class provides methods for
converting pixel data into actual red, green, blue, and alpha color component
values. Figure 8-6 shows the hierarchy of the IndexColorModel class.

Package
java.awt.image

Imports
None.

Constructors
public IndexColorModel(int bits, int size, byte[] r, byte[] g, byte[] b);
public IndexColorModel(int bits, int size, byte[] r, byte[] g, byte[] b, int trans);
public IndexColorModel(int bits, int size, byte[] r, byte[] g, byte[] b, byte[] a);
public IndexColorModel(int bits, int size, byte[] cmap, int offset, boolean
hasalpha);
public IndexColorModel(int bits, int size, byte[] cmap, int offset, boolean
hasalpha, int trans);
The bits parameter specifies the number of bits of pixel data associated with each
pixel. The size parameter indicates the size of the color map, and the color map is
described by the r, g, b, and a arrays, or by the cmap array.
The cmap array is assumed to have the pattern [r|g|b|a|r|g|b|a|…] or [r|g|b|r|g|b|…].

That is, every third or fourth byte specifies the red color component value for
index entry (byte number/4). Every third or fourth starting at index 1 encodes the
green color component value for successive index entries. Every third or fourth
starting at index 2 encodes the blue component value for successive entries, and
so on.
If the hasalpha parameter is true, then every fourth cmap byte, starting at index 3,
encodes the alpha values for successive index entries.
The trans parameter indicates the index which is to be interpreted as
“transparent.” For example, GIF images allow you to specify a “transparent
color.” All pixels of that color are rendered as transparent when the image is
drawn.

Parameters
None.

Example
This example builds a 256-entry IndexColorModel with colors distributed evenly
around the color wheel. A black color is defined, a white color and a transparent
color, which leaves room for 253 more colors. Even distribution using 6
increments of red, 6 increments or blue, and 7 increments of green creates 252
more color entries. That leaves a single entry which will be defined as gray:

//…

byte r[256];
byte g[256];
byte b[256];

// Create the white, black, gray, and transparent entries as the
// last four entries in each array.
r[255] = g[255] = b[255] = 0; // black
r[254] = g[254] = b[254] = 255; // white
r[253] = g[253] = b[253] = 128; // gray
r[252] = g[252] = b[252] = 0; // used for transparency

// Create evenly distributed sets of RGB entries by allowing
// 6 even increments of red, 6 even increments of blue, and
// 7 even increments of green = 6*6*7 = 252 entries.
for(int iR=0 ; iR<6 ; iR++) {
 for(int iB=0 ; iB<6 ; iB++) {
 for(int iG=0 ; iG<7 ; iG++) {
 int index = iR + (6*iB) + (36*iG);
 r[index] = (iR*42) + 21;
 b[index] = (iB*42) + 21;
 g[index] = (iG*36) + 18;
 }
 }
}

// Create the IndexColorModel
IndexColorModel icm =
 new IndexColorModel(8, // pixels are 8 bit each
 256, // size of color arrays
 r, // the red entries
 g, // the green entries
 b, .. the blue entries

 252); // transparent index

//…

Figure 8-6 The hierarchy of the IndexColorModel class

getMapSize

ClassName
IndexColorModel

Purpose
Gets the number of color entries in the IndexColorModel.

Syntax
public int getMapSize();

Parameters
None.

Imports
None.

Description
Gets the number of color entries in the IndexColorModel. This is the same value
as the size parameter to the IndexColorModel’s constructor. The arrays you pass
to the getReds, getGreens, getBlues, or getAlphas methods must be at least this
long.

Returns
Returns the number of color entries in the IndexColorModel.

Example
This code creates a two-dimensional array to hold the indexed color entries.

public byte[][] getRGBAs(IndexColorModel icm) {
 byte[][] aabRet = new byte[4][icm.getMapSize()];
 icm.getReds(aabRet[0]);
 icm.getGreens(aabRet[1]);
 icm getBlues(aabRet[2]);
 icm getAlphas(aabRet[3]);
 return aabRet;
}

getTransparentPixel

Class

IndexColorModel
Purpose

Gets the index of the “transparent color” of the IndexColorModel.
Syntax

public int getTransparentPixel();
Parameters

None.
Imports

None.
Description

Gets the index of the “transparent color” of the IndexColorModel. This is the
same as the trans parameter to the IndexColorModel constructor.

Returns
The value of the “transparent index” is returned. If there is no transparent color,
then -1 is returned.

Example
In this example ImageFilter, that assumes the ColorModel is an
IndexColorModel, all pixels of a particular color are converted to the transparent
color.

public class TransColorFilter extends ImageFilter {
 byte _substColor;

 public TransColorFilter(byte color_index) {
 _substColor = color_index;
 }

 public void setPixels(int x, int y, int w, int h,
 ColorModel model, byte[] pixels, int off,
 int scansize) {
 if!(model instanceof IndexColorModel)) {
 consumer.setPixels(x, y, w, h, model, pixels,
 off, scansize);
 return;
 }

 IndexColorModel icm = (IndexColorModel)model;
 int trans = icm.getTransparentPixel();
 if(-1 == trans) {
 consumer.setPixels(x, y, w, h, model, pixels,
 off, scansize);
 return;
 }

 for(int xx=x ; xx<x+w ; xx++)
 for(int yy=y ; yy<y+h ; yy++)
 if(pixels[xx * scansize + yy + off] ==
 substColor)
 pixels[xx * scansize + yy + off] =
 (byte)trans;
 consumer.setPixels(x, y, w, h, model, pixels,
 off, scansize);
 }

…
}

getReds

ClassName
IndexColorModel

Purpose
Gets index of red color component values.

Syntax
public void getReds(byte[] r);

Parameters
byte[] r

Array of bytes. This array must have as many elements as indicated by the
getMapSize method.

Imports
None.

Description
Gets an array of red color components. The values of the internal array of red
color values is copied to the passed byte array.

Returns
None.

Example
See the example for the getAlphas method.

getGreens

ClassName
IndexColorModel

Purpose
Gets index of green color component values.

Syntax
public void getGreens(byte[] g);

Parameters
byte[] g

Array of bytes. This array must have as many elements as indicated by the
getMapSize method.

Imports
None.

Description
Gets an array of green color components. The values of the internal array of green
color values is copied to the passed byte array.

Returns
None.

Example
See the example for the getAlphas method.

getBlues

ClassName
IndexColorModel

Purpose
Gets index of blue color component values.

Syntax
public void getBlues(byte[] b);

Parameters
byte[] b

Array of bytes. This array must have as many elements as indicated by the
getMapSize method.

Imports
None.

Description
Gets an array of blue color components. The values of the internal array of blue
color values is copied to the passed byte array.

Returns
None.

Example
See the example for the getAlphas method.

getAlphas

ClassName
IndexColorModel

Purpose
Gets index of alpha transparency component values.

Syntax
public void getAlphas(byte[] a);

Parameters
byte[] a

Array of bytes. This array must have as many elements as indicated by the
getMapSize method.

Imports
None.

Description
Gets an array of transparency components. The values of the internal array of
transparency values is copied to the passed byte array.

Returns
None.

Example
This example writes any IndexColorModel’s full palette of colors to System.out.

public void displayPalette(IndexColorModel icm) {
 int nSize = icm.getMapSize();
 byte[] abReds = new byte[nSize];
 byte[] abGreens = new byte[nSize];

 byte[] abBlues = new byte[nSize];
 byte[] abAlphas = new byte[nSize];

 icm.getReds(abReds);
 icm.getGreens(abGreens);
 icm.getBlues(abBlues);
 icm.getAlphas(abAlphas);

 for(int ii=0 ; ii<nSize ; ii++)
 System.out.println(ii + “=” +
 “r:” + abReds[ii] +
 “, g:” + abGreens[ii] +
 “, b: “ + abBlues[ii] +
 “, a: “ + abAlphas[ii]);
}

ImageConsumer

Purpose
Implement the ImageConsumer interface in your object to receive image pixel
data from an ImageProducer.

Syntax
interface ImageConsumer

Description
The ImageConsumer interface is implemented by objects wishing to process
image data. The ImageConsumer is associated with an ImageProducer, and the
producer sends image pixel data to the consumer through the setPixels method.
Figure 8-7 shows the hierarchy of the ImageConsumer interface.

Package
java.awt.image

Imports
None.

Example
This ImageConsumer counts the number of frames in an image.

Figure 8-7 The hierarchy of the ImageConsumer interface

class CountFramesConsumer implements ImageConsumer {

 // accumulator to keep count of the number of frames seen.
 int _nFrames = 0;

 // Flag to indicate a frame has had an error or has been
 // aborted, as reported to imageComplete().
 boolean _fErrorEncountered = false;
 boolean _fComplete = false;

 // Users of this class should ask isComplete() to see
 // if counting of frames has completed yet.
 public boolean isComplete() {
 return _fComplete;
 }

 // Get the frame count using getFrameCount().
 public int getFrameCount() {
 return _nFrames;
 }

 // constructor requires an Image to count the frames for.
 public CountFramesConsumer(Image img) {
 ImageProducer p = img.getSource();
 p.addConsumer(this);
 p.startProduction(this);
 }

 // To increment the frame counter, the _fComplete flag
 // must not be set.
 public void incrementFrameCount() {
 if(false == _fComplete)
 _nFrames++;
 }

 // Ignore the dimensions, though an implementation of this
 // method is required.
 public void setDimensions(int width, int height) {
 }

 // Ignore properties, though implementation of this method
 // is required.
 public void setPropertires(Hashtable props) {
 }

 // Ignore ColorModel, though implementation of this method
 // is required.
 public void setColorModel(ColorModel model) {
 }

 // Hints might be useful, especially if the SINGLEFRAME hint
 // is passed, indicating calculation is complete.
 public void setHints(int flags) {
 if(0 != (flags & SINGLEFRAME)) {
 incrementFrameCount();
 _fComplete = true;
 }
 }

 // Pixel data can actually be ignored, though both
 // overloaded versions of setPixels() must be implemented.
 public void setPixels(int x, int y, int width, int height,
 byte[] pixels, int off, int scansize) {
 }

 public void setPixels(int x, int y, int width, int height,
 int[] pixels, int off, int scansize) {

 }

 // imageComplete is called whenever an image has been
 // completed. Look out for the IMAGEERROR and IMAGEABORTED
 // flags.
 public void imageComplete(int flags) {
 if(0 != (flags & (IMAGEERROR|IMAGEABORTED)))
 _fErrorEncountered = true;

 if(0 != (flags & SINGLEFRAMEDONE))
 incrementFrameCount();

 if(0 != (flags & STATICIMAGEDONE))
 _fComplete = true;
 }
}

setDimensions

Interface
ImageConsumer

Purpose
Called to indicate the dimensions of the image being processed by the
ImageConsumer.

Syntax
public void setDimensions(int width, int height);

Parameters
int width

The width of the Image being presented to the consumer.
int height

The height of the Image being presented to the consumer.
Imports

None.
Description

The consumer is passed the dimensions of the Image that is being passed to it by
the consumer through this method. The setDimensions method is called by the
producer exactly once. This call is guaranteed to occur before any call to
setPixels.

Example
This example allocates storage for processing an Image based on the size of the
Image. The setColorModel method is also implemented so that the
ImageConsumer knows the size of each pixel’s data.

class MyConsumer implements ImageConsumer {
 int[] anImageProcessingData;
 byte[] abImageProcessingData;
 boolean fIsByteSized = true;
 Dimension dim = null;

 public void setDimensions(int width, int height) {
 dim = new Dimension(width, height);
 aloocate();

 }

 public void setColorModel(ColorModel cm) {
 bIsByteSized = (8 == cm.getPixelSize());
 allocate();
 }

 public void allocate() {
 if(null == dim)
 return;

 if(fIsByteSized) {
 abImageProcessingData =
 new byte[dim.width * dim.height];
 anImageProcesingData = null;
 } else {
 anImageProcessingData =
 new int[dim.width * dim.height];
 abImageProcessingData = null;
 }
 }

 // Other consumer methods implemented…
}

setProperties

Interface
ImageConsumer

Purpose
Called to give the ImageConsumer a list of the image’s properties.

Syntax
public void setProperties(Hashtable props);

Parameters
Hashtable props

Image properties are stored under String keys in the props Hashtable. Properties
may include the filters used to create the Image data, the source of the Image data,
etc.

Returns
None.

Description
An extensible list of Image properties is passed to the consumer by the producer.
The properties are stored in a Hashtable object. Currently, there are only two
documented image properties: comments and filter. The comments property has a
textual description of the image. The filter property describes which filters were
applied to the original Image to get the pixel data being received by this
ImageConsumer. setProperties is guaranteed to be called before any calls to
setPixels.

Example
This example displays all the Image properties on System.out.

class MyConsumer extends ImageConsumer {

 public void setProperties(Hashtable props) {
 System.out.println(“MyConsumer properties: “ + props);
 }

 // Other consumer methods implemented…
}

setColorModel

Interface
ImageConsumer

Purpose
Sets the ColorModel for the majority of the image pixel data.

Syntax
public void setColorModel(ColorModel model);

Parameters
ColorModel model

The ColorModel, which will be used in the majority of calls to setPixels().
Imports

None.
Description

The producer passes to the consumer a ColorModel that will be used in the
majority of calls to setPixels. No assumption should be made by the
ImageConsumer that model will be the only ColorModel passed to the
consumer’s setPixels method, since each set of pixels can be sent with a unique
ColorModel object. For example, an ImageFilter may pass a majority of pixels on
to the consumer without modification. For a minority of those pixels, the filter
may use a ColorModel conducive to the ImageFilter’s filtering process. In that
case, the original producer’s ColorModel will be passed to the consumer through
the filter in the majority of calls to setPixels, and it will be passed to
setColorModel. Note also that setColorModel will be called before the first call to
setPixels.

Returns
None.

Example
See the example under the setDimensions method of the ImageConsumer
interface.

setHints

Interface
ImageConsumer

Purpose

Provides the consumer with some practical information about how pixel data will
be sent to it.

Syntax
public void setHints(int flags);

Parameters
int flags

A set of ImageConsumer flags OR together bitwise. The valid flags, and a
description of each, is presented in the following table:

Flag Meaning

RANDOMPIXELORDER No assumption can be made about the order in which

pixels will be delivered to the consumer.

TOPDOWNLEFTRIGHT Pixels will be delivered to the consumer in top-down,
left-right order.

COMPLETESCANLINES Pixels will be delivered to the consumer in multiples of
complete scanlines. That is, all calls to setPixels() will
have a width parameter equal to the width of the Image.

SINGLEPASS Each pixel’s data will appear in exactly one call to
setPixels().

SINGLEFRAME The Image includes only a single frame. A JPEG image,
for example, includes only a single frame. An MPG
Image, on the other hand, includes multiple frames of an
animation sequence.

Imports

None.
Description

The producer can pass to the consumer some hints about the order that pixels will
be passed to the consumer through setPixels. Those hints are flags passed to the
setHints method.
The hints passed to the consumer in setHints can be used by the consumer to
optimize its processing of image data. For example, a Fourier Transform
consumer could realize significant optimizations in its storage and processing
using the so-called “fast-Fourier transform” algorithm if the Image data is passed
as complete scanlines, indicated by the COMPLETESCANLINES flag being
passed to this method.

Returns
None.

Example
This ImageConsumer calculates the average red, green, and blue color component
values for all the pixels it is passed. The consumer is pretty simple, however, and
requires that each pixel’s value be sent to it only once. This consumer waits for
the SINGLEPASS flag to be passed to its setHints method. If this flag is not
passed, then the consumer doesn’t even try to accomplish its task, since it would

be too hard to keep track of the number of times each pixel was re-sent to the
consumer.

public class MyConsumer implements ImageConsumer {
 int _sumRed, _sumGreen, _sumBlue;
 int _nPixels;
 boolean _fComplete;
 boolean _fCalc;

…

 public MyConsumer() {
 _sumRed = _sumGreen = _sumBlue = 0;
 _nPixels = 0;
 _fComplete = false;
 }

 public void setHints(int flags) {
 _fCalc = (0 != (flags & SINGLEPASS));

 }

…

 public void setPixels(int x, int y, int w, int h,
 ColorModel model, byte[] pixels, int offset,
 int scansize) {
 if(!_fCalc) return;

 for(int xx=x ; xx<x+w ; xx++)
 for(int yy=y ; yy<y+h ; yy++) {
 byte p = pixels[xx*scansize+yy+offset];
 _sumRed += model.getRed(p);
 _sumGreen += model.getGreen(p);
 _sumBlue += model.getBlue(p);
 _nPixels++;
 }
 }

 public void imageComplete(int status) {
 // status parameter not used.
 _fComplete = true;

 // Use these functions to get the results
 // of the averaging.
 public float getAverageRed() {
 if(!_fCalc || 0==_nPixels) return (float)0;
 return (float)_sumRed / (float)_nPixels;
 }

 public float getAverageGreen() {
 if(!_fCalc || 0==_nPixels) return (float)0;
 return (float)_sumGreen / (float)_nPixels;
 }

 public float getAverageBlue() {
 if(!_fCalc || 0==_nPixels) return (float)0;

 return (float)_sumBlue / (float)_nPixels;
 }

 // This method returns true when the consumer
 // is finished with its processing.
 public boolean isComplete() {
 return _fComplete;
 }
}

setPixels

Interface
ImageConsumer

Purpose
All pixel data sent to a consumer is sent through one or both of the overloaded
setPixels methods.

Syntax
public void setPixels(int x, int y, int width, int height, ColorModel model, byte[]
pixels, int offset, int scansize);public void setPixels(int x, int y, int width, int
height, ColorModel model, int[] pixels, int offset, int scansize);

Parameters
int x, int y

The origin or upper-left corner of the rectangle of pixels being passed to the
consumer.

int width, int height
The dimensions of the rectangle of pixels being passed to the consumer.

ColorModel model
The ColorModel defining the storage schema of color and transparency data for
the pixels[] array.

byte pixels[]
An array of 8-bit pixel data. The x, y, width, height, offset and scansize parameters
must be used to determine which elements of this array contain valid pixel data
for the Image.

int pixels[]
An array of 32-bit pixel data. The x, y, width, height, offset and scansize
parameters must be used to determine which elements of this array contain valid
pixel data for the Image.

int offset
Used along with scansize to determine the valid elements of the pixels[] array.

int scansize
Used along with offset to determine the valid elements of the pixels[] array.

Imports
java.awt.image.ColorModel

Description

Image pixels are passed from the producer to the consumer in multiple calls to
setPixels. Each call defines the pixel data for a rectangle of the image. Two
overloaded versions of this method exist, one to accept 8-bit pixel data, and the
other to accept 32-bit pixel data.
Use this formula to find the pixels array element for pixel (M, N):

p(M,N) = pixels[(n * scansize) + M + offset];
Returns

None.
Example

The following example, which assumes the SINGLEPASS flag has been passed to
setHints, calculates the average pixel values of red, green, and blue for all pixel
data passed to MyConsumer:

class MyConsumer implements ImageConsumer {
 double _dRedAccum = 0;
 double _dGreenAccum = 0;
 double _dBlueAccum = 0;
 double _dTotalPixels = 0;
 int _nAverageRed = 0;
 int _nAverageGreen = 0;
 int _nAverageBlue = 0;

// other consumer methods implemented…

 public void setDimensions(int width, int height) {
 _dTotalPixels = (double)width * (double)height;
 }

 // For the sake of brevity, only one of the overloaded
 // versions of setPixels() is implemented here, although
 // your ImageConsumer must implement both the 8-bit and
 // 32-bit versions.
 public void setPixels(int x, int y, int width, int height,
 ColorModel model, int[] pixels, int offset,
 int scansize) {
 for(int I=0 ; i<width ; i++) {
 for(int j=0 ; j<height ; j++) {
 int pixel = pixels[(j*scansize)+i+offset];
 _dRedAccum += (double)model.getRed(pixel);
 _dGreenAccum += (double)model.getGreen(pixel);
 _dBlueAccum += (double)model.getBlue(pixel);
 }
 }
 }

 public void imageComplete(int flags) {
 if(0 != (flags & STATICIMAGEDONE)) {
 _nAverageRed = (int)(_dRedAccum/_dTotalPixels);
 _nAverageGreen = (int)(_dGreenAccum/_dTotalPixels);
 _nAverageBlue = (int)(_dBlueAccum/_dTotalPixels);
 }
 }
}

imageComplete

Interface
ImageConsumer

Purpose
Called to notify the consumer that all image pixel data has been sent.

Syntax
public void imageComplete(int flags);

Parameters
int flags

A bitwise ORing of ImageConsumer flags indicating the state of the production
sequence upon termination. The following table lists the ImageConsumer flags
which can be passed to imageComplete.

Flag Meaning

IMAGEERROR The producer encountered an error while processing the

Image data. No more image data will be passed to the
consumer for this Image.

SINGLEFRAMEDONE A single frame in a multiframe Image has been completed.

STATICIMAGEDONE The entire image, whether a single-frame or a multiframe
Image, has been completely sent to the consumer.

IMAGEABORTED The Image creation process was deliberately aborted.

Imports

None.
Description

This method is called by the producer to notify the consumer that all image pixel
data has been sent to the consumer. The reason for the completion can be an error,
a single-frame of a multiframe Image has been completed, or the entire Image has
been completed. The flags passed to this method indicate the nature of the
completion.
Unfortunately, more specific information about the interpretation of
IMAGEERROR or IMAGEABORTED flags is not available to the consumer,
unless you implement custom methods in your consumers and producers to
provide this information.

Example
See the Example for the setPixels method.

ImageProducer

Purpose
An ImageProducer generates image pixel data and sends it to one or more
ImageConsumers.

Syntax

interface ImageProducer
Description

To have your object generate images for display, have it implement the
ImageProducer interface. The interface sends image pixel data based on a
ColorModel. The image pixel data is sent in potentially overlapping rectangles of
image data. Figure 8-8 shows the hierarchy of the ImageProducer interface.

Package
java.awt.image

Imports
None.

Example
This example ImageProducer generates a color gradient. Specify to the
constructor the size of the image you want produced and the colors at the top and
bottom of the image.

Figure 8-8 The hierarchy of the ImageProducer interface

public class GradientProducer implements ImageProducer {
 private Dimension dim;
 private float flRedInc, flGreenInc, flBlueInc;
 private Color colorStart;
 private Vector vectConsumers = new Vector();

 public GradientProducer(Dimension size, Color top,
 Color bottom) {
 dim = new Dimension(size.width, size.height);
 flRedInc = (float)(bottom.getRed()-top.getRed()) /
 (float)dim.height;
 flGreenInc = (float)(bottom.getGreen()-
 top.getGreen()) /
 (float)dim.height;
 flBlueInc = (float)(bottom.getBlue()-
 top.getBlue()) /
 (float)dim.height;
 colorStart = top;
 }

 public void addConsumer(ImageConsumer ic) {
 if(isConsumer(ic))
 return;
 vectConsumer.append((Object)ic);
 }

 public boolean isConsumer(ImageConsumer ic) {
 return vectConsumers.contains((Object)ic);
 }

 public void removeConsumer(ImageConsumer ic) {
 vectConsumer.remove((Object)ic);
 }

 // To produce the image, create each scanline
 // of the next color in the gradient and give
 // it to the ImageConsumer through setPixels.
 // We are going to use default RGBa encoding.
 public void startProduction(ImageConsumer ic) {
 if(!isConsumer(ic))
 return;

 ic.setHints(ImageConsumer.COMPLETE_SCANLINES |
 ImageConsumer.SINGLE_FRAME);

 int[] apixels = new int[dim.width];
 for(int ii=0 ; ii<dim.height ; ii++) {
 Color c = new Color(colorStart.getRed() +
 (int)(flRedInc * ii),
 colorStart.getGreen() +
 (int)(flGreenInc * ii),
 colorStart.getBlue() +
 (int(flBlue * ii));
 int rgb = c.getRGB();
 for(int jj=0 ; jj<dim.width ; jj++)
 apixels[jj] = rgb;
 ic.setPixels(0, ii, dim.width, 1,
 ColorModel.getRGBDefault(), apixels,
 -ii * dim.width, dim.width);
 }

 ic.imageComplete(ImageConsumer.STATICIMAGEDONE);
 }

 // Ignore requests for re-sends.
 public void requestTopDownLeftRightResend() {
 return;
 }
}

addConsumer

Interface
ImageProducer

Purpose
Registers an ImageConsumer with the ImageProducer. Only registered consumers
can receive pixel data.

Syntax
public void addConsumer(ImageConsumer ic)

Parameters
ImageConsumer ic

A new ImageConsumer that the producer is to send pixel data to. Note that the
producer should take care not to allow the same consumer to be added multiple
times.

Imports
None.

Description

The producer is asked to send pixel data to a new ImageConsumer. The producer
must keep track of more than one consumer, making sure to send each of its
consumers all pixel data for an Image.
The producer may wait for an explicit call to startProduction, or it may begin
sending pixel data to the consumer as soon as it is ready.

Returns
None.

Example
This code stores the list of currently active consumers in a Vector. This code is
suitable for use in your own ImageProducers to keep track of ImageConsumer
objects.

class MyProducer implements ImageProducer {
 Vector _vectConsumers;

 public void addConsumer(ImageConsumer ic) {
 if(isConsumer((Object)ic))
 return;

 _vectConsumer.add((Object)ic);
 }

 public boolean isConsumer(ImageConsumer ic) {
 return _vectConsumers.contains((Object)ic);
 }

 public void RemoveConsumer(ImageConsumer ic) {
 _vectConsumers.remove((Object)ic);
 }

 // startProduction and requestTopDownLeftRightResend
 // must be implemented to create a complete producer.
}

isConsumer

Interface
ImageProducer

Purpose
Checks to see if an ImageConsumer is registered with this ImageProducer.

Syntax
public boolean isConsumer(ImageConsumer ic)

Parameters
ImageConsumer ic

The ImageConsumer to check.
Imports

None.
Description

Tells whether or not an ImageConsumer is currently registered with this producer.
Returns

True if the ImageConsumer is currently registered with the ImageProducer.
Otherwise, false.

Example
See the example listed for addConsumer.

removeConsumer

Interface
ImageProducer

Syntax
public void removeConsumer(ImageConsumer ic)

Parameters
ImageConsumer ic

The ImageConsumer to remove as a consumer of this producer’s pixel data.
Imports

None.
Description

Removes the ImageConsumer as a consumer of pixel data from this producer. If
the consumer is not currently registered with this producer, this method should
return benignly.

Example
See the example listed for addConsumer.

startProduction

Interface
ImageProducer

Purpose
Tells the ImageProducer to start sending pixel data to a specific registered
ImageConsumer.

Syntax
public void startProduction(ImageConsumer ic)

Parameters
ImageConsumer ic

The consumer to begin sending pixel data to.
Imports

None.
Description

This method can be called by any external object to kick-start an image
production process. An ImageProducer may start sending image pixel data to an
ImageConsumer as soon as the consumer gets registered with the producer using
addConsumer. The ImageProducer is not required to send any pixel data to a
consumer until startProduction is called.
If the consumer has not been added to this producer yet, then this method should

return benignly. The minimum implementation of startProduction should call
these ImageConsumer methods:

ic.setHints(<hints>);
ic.setPixels(…); // as many times as needed.
ic.imageComplete(STATICIMAGEDONE);
Returns

None.
Example

See the example under the description of the ImageProducer interface.

requestTopDownLeftRightResend

Interface
ImageProducer

Purpose
To force the producer to re-send all image data in a single pass, in top-down-left-
right order.

Syntax
public void requestTopDownLeftRightResend(ImageConsumer ic)

Parameters
ImageConsumer ic

The consumer to re-send the Image data to. If the consumer has not been added to
this producer yet, then this method should return benignly.

Imports
None.

Description
A request to re-send Image pixel data in TOPDOWNLEFTRIGHT order. The
producer can choose whether or not to grant or ignore this request.
Producers, which present Image data from sources which are too diffucult to
deliver in TOPDOWNLEFTRIGHT order, need not grant this re-send request.

Returns
None.

The AWT Image Processing Project: The MultiFilter Application

The MultiFilter application is a generic application for testing ImageFilters. It is able to
load and display Images from the Internet, or the local file system. MultiFilter’s user-
interaction involves selecting filters to apply to an image as a whole, or to a selected
rectangle of the image. MultiFilter is extensible, so you can add your own ImageFilters to
it easily. Once you understand the workings of MultiFilter, you are encouraged to try
adding some of the sample filters presented earlier in this chapter, or filters of your own.

Two new ImageFilters are included in the MultiFilter application: The ContrastFilter
demonstrates how to build RGBImageFilters. The InvertFilter is a more complex image
filter, capable of flipping an Image horizontally or vertically, and is thus directly derived
from ImageFilter.

In addition to the AWT Image Processing techniques demonstrated by MultiFilter, this
project also demonstrates a user-interface model using modeless dialogs to configure the
individual ImageFilters. In this model, user interactions with floating modeless dialogs
are reported to the application’s main Frame window using the Event delivery pipeline
inherited by all Component objects.

Figure 8-9 is a screenshot of the MultiFilter application running. You can see the image
that is loaded has had both the contrast and invert filters applied to it. Figures 8-10 and 8-
11 are before and after pictures of this image, illustrating how image filtering can be
applied to an image.

Figure 8-9 Screenshot of the MultiFilter application running in Windows

Figure 8-10 Before an image is processed by MultiFilter

Figure 8-11 After an image is processed by MultiFilter

Assembling the Project

Note that all the files listed here are also available on the CD packaged with this book in
the directory “\PROJECTS\GO\HERE\MultiFilter”. Please feel free to copy those files
directly.

1. Create a new directory called MultiFilter.
2. Create a new file in the MultiFilter directory called “MultiFilter.java”. Start by
importing the necessary packages, declaring our application object, and
implementing the static main() method.
import java.awt.*;
import java.awt.image.*;

import java.net.URL;
import java.util.Hashtable;

public class MultiFilter {
 public static void main(String[] astrArgs) {
 // Create main window for the application.
 MultiFilterFrame f = new MultiFilterFrame(
 "MultiFilter Image Filter Lab");
 f.resize(300, 200);
 f.show();

 // Single program parameter may be a file name or
 // a URL to an image file. Load the image. If no
 // parameter given, the loader thread will do
 // nothing.
 ImageLoaderThread t1 = new
 ImageLoaderThread(astrArgs[0], f);
 if(null != t1) t1.start();

 return;
 }

}
3. The application’s main window is a MultiFilterFrame object. Its job is to
display a filtered image (if one has been loaded), and to react to user menu
selections. Here we declare the MultiFilterFrame class, its internal member
variables, and its constructor:
class MultiFilterFrame extends Frame {
 Image _imgBase = null;
 Image _imgWorkspace = null;
 WorkspaceCanvas _canvas = new WorkspaceCanvas();
 Label _labelFeedback = new Label("Initializing…");
 boolean _fActiveSelection;
 ConfiguredFilterFactory _factoryActive = null;

 // Two hashtables to lookup menu string->factory
 // and factory->last configuration.
 Hashtable _hashMonikerToFactory = new Hashtable();
 Hashtable _hashFactoryToConfig = new Hashtable();

 public MultiFilterFrame(String strTitle) {
 super(strTitle);

 // Create the menu shell. That is, the whole menu should
 // look like this:
 // Image
 // + Open…
 // + <separator>
 // + Refresh
 // + <separator>
 // + Exit
 // Filter
 // + Apply to Image
 // + Apply to Region
 // + <separator>
 // + Null Filter

 // + Contrast Filter
 // + Invert Filter
 Menu menuImage = new Menu("Image");
 menuImage.add("Open…");
 menuImage.addSeparator();
 menuImage.add("Refresh");
 menuImage.addSeparator();
 menuImage.add("Exit");

 Menu menuFilter = new Menu("Filter");
 menuFilter.add("Apply to Image");
 menuFilter.add("Apply to Region");
 menuFilter.addSeparator();
 menuFilter.add("Null Filter");
 menuFilter.add("Contrast Filter");
 menuFilter.add("Invert Filter");

 MenuBar mb = new MenuBar();
 mb.add(menuImage);
 mb.add(menuFilter);

 setMenuBar(mb);

 updateMenu();

 // Add the entries for the three filter types to the
 // lookup hashes.
 _hashMonikerToFactory.put("Null Filter",
 new ConfiguredFilterFactory());
 _hashMonikerToFactory.put("Contrast Filter",
 new ContrastFilterFactory());
 _hashMonikerToFactory.put("Invert Filter",
 new InvertFilterFactory());

 // Add the feedback label and display canvas as
components
 // of this Frame.
 setLayout(new BorderLayout());
 add("South", _labelFeedback);
 add("Center", _canvas);
 }
}
4. The ImageLoaderThread class is responsible for loading images from the local
file system or from the Internet. The Thread keeps a reference to the MultiFilter
application’s main window and posts custom Events to that window to indicate
the progress of image loading. Here is the code for the ImageLoaderThread class:
public class ImageLoaderThread extends Thread {
 URL _urlImage;
 String _strLoc;
 Component _compDeliver;
 Image _img;

 // Custom Event IDs:
 public static final int LOCATION_FORMAT_ERROR = -1;
 public static final int IMAGE_LOADING_ERROR = -2;
 public static final int IMAGE_COMPLETED = -3;

 public static final int IMAGE_LOADING = -4;

 // strLoc: a filename or a URL.
 // comp: Component to notify about the image loading
 // process using custom Events.
 public ImageLoaderThread(String strLoc,
 Component comp) {
 _strLoc = strLoc;
 _compDeliver = comp;
 }

 public void run() {
 // Tell component that we are starting to load
 // the image
 _compDeliver.deliverEvent(new Event(_compDeliver,
 IMAGE_LOADING, _strLoc));

 // Attempt to create a URL from the _strLoc.
 // If this fails, assume the string is a local
 // file name. If loading from that file fails,
 // notify the target Component and quit.
 try {
 _urlImage = new URL(_strLoc);
 _img = Toolkit.getDefaultToolkit().
 getImage(_urlImage);
 } catch (Exception e) {
 _img = Toolkit.getDefaultToolkit().
 getImage(_strLoc);
 }

 if(null == _img) {
 _compDeliver.deliverEvent(new Event(
 _compDeliver,
 LOCATION_FORMAT_ERROR, _strLoc));
 return;
 }

 // Use a MediaTracker to wait for the Image to be
 // fully loaded.
 MediaTracker mt = new MediaTracker(_compDeliver);
 mt.addImage(_img, 0);
 try {
 mt.waitForID(0);
 } catch(Exception e) {
 _compDeliver.deliverEvent(new Event(
 _compDeliver,
 IMAGE_LOADING_ERROR, _strLoc));
 return;
 }

 // Deliver completed image to the component.
 _compDeliver.deliverEvent(new Event(
 _img, IMAGE_COMPLETED, _strLoc));

 return;
 }
}

5. The application’s main window will receive the custom Event notifications
from ImageLoaderThreads. In its handleEvent implementation, the
MultiFilterFrame must process these messages, as well as any
WINDOW_DESTROY messages. Here is the code for the Event handling (i.e.,
MultiFilterFrame.handleEvent):
public boolean handleEvent(Event evt) {
 switch(evt.id) {
 case ImageLoaderThread.LOCATION_FORMAT_ERROR:
 case ImageLoaderThread.IMAGE_LOADING_ERROR:
 _labelFeedback.setText("Error loading: " +
 (String)evt.arg);
 return true;

 case ImageLoaderThread.IMAGE_COMPLETED:
 _labelFeedback.setText("Image loaded: " +
 (String)evt.arg);
 _imgBase = (Image)evt.target;

 // Create the Workspace, displayed by
 // canvas. Copy base image to it.
 _imgWorkspace = createImage(
 _imgBase.getWidth(this),
 _imgBase.getHeight(this));
 Graphics g = _imgWorkspace.getGraphics();
 g.drawImage(_imgBase, 0, 0, this);
 g.dispose();

 // Set the canvas' image to display.
 _canvas.clearSelRect();
 _canvas.clearImage();
 _canvas.setImage(_imgWorkspace);

 // Resize frame to fit new image size.
 resize(preferredSize());

 // update the menu.
 updateMenu();

 return true;

 case ImageLoaderThread.IMAGE_LOADING:
 _labelFeedback.setText("Loading image: " +
 (String)evt.arg);
 return true;

 case Event.WINDOW_DESTROY:
 if(evt.target instanceof Window) {
 ((Window)evt.target).dispose();
 if((Window)evt.target == this)
 dispose();
 System.exit(0);
 return true;
 }
 break;

 case WorkspaceCanvas.SELECTION_CLEARED:

 _fActiveSelection = false;
 updateMenu();
 return true;

 case WorkspaceCanvas.SELECTION_CHANGED:
 _fActiveSelection = true;
 updateMenu();
 return true;

 case OpenObjectDialog.OPENOBJECTDIALOG_INPUT:
 ImageLoaderThread t =
 new ImageLoaderThread((String)evt.arg,
 this);
 t.start();
 return true;

 case ConfiguredFilterFactory.
 CONFIGURATION_UPDATE:
 System.out.println("Update to config: " +
 evt.arg);
 _hashFactoryToConfig.put(_factoryActive,
 evt.arg);
 return true;

 default:
 return super.handleEvent(evt);
 }

 return super.handleEvent(evt);
}
6. The MultiFilterFrame’s action method is where menu click Events are
handled. Here is the code:
// action() is where action events are funneled.
public boolean action(Event evt, Object target) {
 // Non-menu item actions are ignored by
 // this program.
 if(!(evt.target instanceof MenuItem))
 return false;

 // "Open…" means we should open a new image.
 // Notification of user's input is passed through
 // deliverEvent().
 if("Open…" == (String)evt.arg) {
 OpenObjectDialog dlg =
 new OpenObjectDialog(this, "Image");
 dlg.show();
 return true;
 }

 // Handle "Exit" menu action by posting a
 // WINDOW_DESTROY to this Frame.
 if("Exit" == (String)evt.arg) {
 deliverEvent(new Event(this,
 Event.WINDOW_DESTROY, null));
 return true;
 }

 // "Refresh" simply redraws the base image to the
 // Workspace, getting rid of all previous
 // filterings to the image or any region of the
 // image. Also gets rid of any selection rectangle.
 if("Refresh" == (String)evt.arg) {
 _imgWorkspace = createImage(
 _imgBase.getWidth(this),
 _imgBase.getHeight(this));
 Graphics g = _imgWorkspace.getGraphics();
 g.drawImage(_imgBase, 0, 0, this);

 // Set the canvas' image to display.
 _canvas.clearSelRect();
 _canvas.clearImage();
 _canvas.setImage(_imgWorkspace);

 // Resize frame to fit new image size.
 resize(preferredSize());

 // update the menu.
 updateMenu();

 return true;
 }

 // "Apply To Image" causes the entire image to be
 // sent through the current active filter.
 if("Apply to Image" == (String)evt.arg) {
 Object objConfig =
 _hashFactoryToConfig.get(_factoryActive);
 Image imgNew =
 createImage(new FilteredImageSource(
 _imgWorkspace.getSource(),
 _factoryActive.createFilter(objConfig)));

 // draw filtered version of selection to
 // workspace image.
 Graphics g = _imgWorkspace.getGraphics();
 g.drawImage(imgNew, 0, 0, this);
 g.dispose();

 // force canvas to display updated image.
 _canvas.repaint();
 return true;
 }

 // "Apply to Region" causes a filtered version
 // of the selection rectangle to be created and drawn
 // over the selection rectangle on the display image.
 if("Apply to Region" == (String)evt.arg) {
 System.out.println("Applying to Region…");

 Object objConfig =
 _hashFactoryToConfig.get(_factoryActive);
 Rectangle r = _canvas.getSelRect();

 // create filtered version of the
 // selection rectangle.
 Image imgRegion = createImage(
 new FilteredImageSource(
 _imgWorkspace.getSource(),
 new CropImageFilter(r.x, r.y, r.width,
 r.height)));
 Image imgFiltered = createImage(
 new FilteredImageSource(
 imgRegion.getSource(),
 _factoryActive.createFilter(objConfig)));

 // draw filtered version of selection to
 // workspace image.
 Graphics g = _imgWorkspace.getGraphics();
 g.drawImage(imgFiltered, r.x, r.y, this);
 g.dispose();

 // force canvas to display updated image.
 _canvas.repaint();

 return true;
 }

 // Attempt to look up a filter factory in the hashes
 // matching this menu item, and create a
 // configuration for that factory.
 ConfiguredFilterFactory factory =
 (ConfiguredFilterFactory)
 _hashMonikerToFactory.get((String)evt.arg);
 if(null != factory) {
 Object objOldConfig =
 _hashFactoryToConfig.get(factory);
 Object objNewConfig =
 factory.createConfiguration(this,
 objOldConfig);
 _hashFactoryToConfig.put(factory,
 objNewConfig);
 _factoryActive = factory;

 // update the menu
 updateMenu();

 return true;
 }

 // Unrecognized menu item, just let it go.
 return false;
}
7. The main frame must insure that only appropriate menu items are enabled. For
example, the “Applet to Image” menu item would be inappropriate if no images
were loaded into the application. Whenever a user action is detected which may
affect the state of one or more menu items, MultiFilterFrame.updateMenu is
called to update the state of the various menu items. Here is the code for that
method:

// updateMenu() is called whenever the program state
// has changed in such a way that any of the menu
// items may become enabled/disabled, etc.
private synchronized void updateMenu() {
 // get all the menu items into local references.
 MenuBar mb = getMenuBar();
 Menu menuImage = mb.getMenu(0);
 MenuItem miOpen = menuImage.getItem(0);
 MenuItem miRefresh = menuImage.getItem(2);
 MenuItem miExit = menuImage.getItem(4);
 Menu menuFilter = mb.getMenu(1);
 MenuItem miApplyToImage =
 menuFilter.getItem(0);
 MenuItem miApplyToRegion =
 menuFilter.getItem(1);
 MenuItem miNullFilter =
 menuFilter.getItem(3);
 MenuItem miContrastFilter =
 menuFilter.getItem(4);
 MenuItem miRotateFilter =
 menuFilter.getItem(5);

 // Image/Open is always available.

 // Image/Refresh is only available if the base
 // image is not null.
 miRefresh.enable(null != _imgBase);

 // Image/Exit is always available.

 // Filter/<filter> is not available if no image is
 // loaded.
 miNullFilter.enable(null != _imgBase);
 miContrastFilter.enable(null != _imgBase);
 miRotateFilter.enable(null != _imgBase);

 // Filter/Apply to Image is not available if no
 // image is loaded, or if no filter is active.
 miApplyToImage.enable((null != _imgBase) &&
 (null != _factoryActive));

 // Filter/Apply To Region is only available if
 // image is loaded, and a region is selected, and
 // a filter is active.
 miApplyToRegion.enable((null != _imgBase) &&
 _fActiveSelection &&
 (null != _factoryActive));
}
8. The Workspace image, which is the filtered copy of the loaded image, is
displayed by a WorkspaceCanvas class object. This Canvas is responsible for
displaying the image, and for tracking user mouse actions so that the user can
select a rectangle of the image for filtering. Here is the declaration of the
WorkspaceCanvas class, its member variables, and its constructor:
class WorkspaceCanvas extends Canvas {
 Image _imgDisplay = null;
 Rectangle _rectSelection = null;

 boolean _fTrackingSelection = false;
 Point _ptSelectionOrigin = null;

 public static final int SELECTION_CLEARED = -10;
 public static final int SELECTION_CHANGED = -11;

 public WorkspaceCanvas() {}
}
9. The WorkspaceCanvas class implements methods to get, set, and delete the
Image object it is supposed to display:
private synchronized Image getDisplayImage() {
 return _imgDisplay;
}

public synchronized void clearImage() {
 _imgDisplay = null;
 return;
}

public synchronized void setImage(Image img) {
 if(img == _imgDisplay)
 System.out.println("Setting to same image.");
 else
 System.out.println("Setting to new image.");

 _imgDisplay = img;
 resize(img.getWidth(this), img.getHeight(this));
 repaint();
 return;
}
10. The WorkspaceCanvas’ update and paint methods are implemented to avoid
flicker and to draw the image to display:
// Avoid flicker in paint() by overriding update
// not to erase background.
public void update(Graphics g) {
 paint(g);
}

// Paint draws the display image and the active
// selection, if there is any.
public synchronized void paint(Graphics g) {
 Image img;

 if(null == (img = getDisplayImage()))
 return;

 // First, draw the display image.
 g.setPaintMode();
 g.drawImage(img, 0, 0, this);

 // Now, draw selection rectangle, if there is one.
 drawSelRect(g);
 return;
}

11. The WorkspaceCanvas uses XOR mode to draw the selection rectangle. This
ensures that no matter what color the display image is, the boundaries of the
selection rectangle are always visible to the user. Here’s the code for the
drawSelRect method:
// Draw the selection rectangle. Use XOR mode so the selection
// rectangle is an XOR drawing.
private void drawSelRect(Graphics g) {
 Rectangle rectSel = getSelRect();
 if(null != rectSel) {
 g.setColor(Color.white);
 g.setXORMode(Color.black);
 g.drawRect(rectSel.x, rectSel.y, rectSel.width,
 rectSel.height);
 }
 return;
}
12. The user defines the selection rectangle using mouse clicks and drags. The
WorkspaceCanvas keeps track of these mouse Events through mouseDown and
mouseDrag. Here’s the code for those methods:
// mouseDown() and mouseDrag() notification methods
// are used to track the selection region.
public synchronized boolean mouseDown(Event evt,
 int x, int y) {
 _ptSelectionOrigin = new Point(x, y);
 clearSelRect();
 repaint();
 return true;
}

public synchronized boolean mouseDrag(Event evt,
 int x, int y) {
 if((null == _ptSelectionOrigin) ||
 (null == _imgDisplay))
 return false;

 Dimension d = new Dimension(
 _imgDisplay.getWidth(this),
 _imgDisplay.getHeight(this));
 if(((x<=_ptSelectionOrigin.x) ||
 (x > d.width)) ||
 ((y<=_ptSelectionOrigin.y) ||
 (y > d.height)))
 return true;

 setSelRect(new Rectangle(_ptSelectionOrigin.x,
 _ptSelectionOrigin.y, x -
 _ptSelectionOrigin.x,
 y - _ptSelectionOrigin.y));
 return true;
}
13. The WorkspaceCanvas also defines helper methods to get, set, and clear the
boundaries of the selection rectangle. Here is the code:
public synchronized Rectangle getSelRect() {
 return _rectSelection;
}

public synchronized void clearSelRect() {
 _rectSelection = null;
 deliverEvent(new Event(this, SELECTION_CLEARED, null));
 repaint();
 return;
}

public synchronized void setSelRect(Rectangle rectNewSel) {
 _rectSelection = rectNewSel;
 deliverEvent(new Event(this, SELECTION_CHANGED,
 _rectSelection));
 repaint();
 return;
}
14. The OpenObjectDialog simply gathers a string from the user. This string can
be either a filename on the local file system or a URL pointing to a file
somewhere on the Internet. An OK and a Cancel Button are also provided. The
MultiFilterFrame uses an OpenObjectDialog whenever the user clicks on the
“Open…” menu item. Here is the code for that class:
class OpenObjectDialog extends Dialog {
 TextField _tfInput;

 public static final int OPENOBJECTDIALOG_INPUT = -20;

 public OpenObjectDialog(Frame frameParent,
 String strType) {
 // Make this a model dialog.
 super(frameParent, "Open " + strType, true);
 String strInstructions =
 "File pathname or URL for " + strType;
 setResizable(false);

 // Create a label with instructions, a text box
 // for user input, an OK and a Cancel button, and
 // a panel to place OK and Cancel buttons on.
 Label l = new Label(strInstructions);
 _tfInput = new TextField();
 Panel p = new Panel();

 p.setLayout(new FlowLayout());
 Button ok = new Button("OK");
 Button cancel = new Button("Cancel");
 p.add(ok);
 p.add(cancel);

 // set layout for Dialog to be a grid with 1 col,
 // 3 rows.
 setLayout(new GridLayout(3, 1));
 add(l);
 add(_tfInput);
 add(p);

 resize(200, 150);
 }

 // Button events are caught using action().
 // Only the OK button has any actions associated with
 // it, and then only if the input field is not empty.
 // Cancel results in the window being destroyed.
 public boolean action(Event evt, Object what) {
 if(!(evt.target instanceof Button))
 return false;

 if("OK" != (String)what) {
 if("Cancel" == (String)what) {
 dispose();
 return true;
 }
 return false;
 }
 if((null == _tfInput.getText()) ||
 ("" == _tfInput.getText()))
 return false;

 String strInput = _tfInput.getText();
 deliverEvent(new Event(this,
 OPENOBJECTDIALOG_INPUT, strInput));
 dispose();
 return true;
 }
}
15. Create a new file named “ConfiguredFilterFactory.java”. This file holds the
declaration of the ConfiguredFilterFactory class. The ConfiguredFilterFactory
class is a base class. In the MultiFilter application, both the ContrastFilterFactory
and the InvertFilterFactory are based on this class. In general, a
ConfiguredFilterFactory should be able to create a new ImageFilter that should be
configured according to the value of an Object. Here is the declaration:
import java.awt.image.ImageFilter;
import java.awt.Frame;

public class ConfiguredFilterFactory {
 public static final int CONFIGURATION_UPDATE = 40;

 public synchronized Object createConfiguration(
 Frame frameParent, Object objLastConfiguration)
 {
 return new Object();
 }

 public synchronized ImageFilter createFilter(
 Object objConfiguration) {
 return new ImageFilter();
 }
}
16. Create a new file called “ContrastFilterFactory.java”. Start off by declaring
the ContrastFilterFactory class, and importing the necessary packages into this
file:
import java.awt.image.ImageFilter;
import java.awt.image.ColorModel;
import java.awt.image.RGBImageFilter;

import java.awt.*;

public class ContrastFilterFactory extends
 ConfiguredFilterFactory {

 public Object createConfiguration(Frame frameParent,
 Object objLastConfiguration) {
 int nContrast = (null==objLastConfiguration) ? -1 :
 ((Integer)objLastConfiguration).intValue();

 ContrastFilterConfigurationDialog dlg = new
 ContrastFilterConfigurationDialog(
 frameParent, nContrast);
 dlg.show();

 return new Integer(dlg.getContrast());
 }

 public ImageFilter createFilter(Object objConfig) {
 return new ContrastFilter(
 ((Integer)objConfig).intValue());
 }
}
17. A ContrastFilter is a type of RGBImageFilter. In its filterRGB
implementation, it increases or decreases the contrast of a particular pixel, based
on its constructor parameters. Here is the code:
class ContrastFilter extends RGBImageFilter {
 int _nContrast;

 public ContrastFilter(int nContrast) {
 canFilterIndexColorModel = true;
 _nContrast = nContrast;
 }

 public int filterRGB(int x, int y, int rgb) {
 int r = (rgb & 0x00ff0000) >> 16;
 int g = (rgb & 0x0000ff00) >> 8;
 int b = rgb & 0x000000ff;

 double dContrastRads = (double)2 * Math.PI *
 ((double)_nContrast/(double)360);
 double dTan = Math.tan(dContrastRads);

 int rNew = Math.min(255, Math.max(0,
 (int)(dTan*(r - 128) + 128)));
 int gNew = Math.min(255, Math.max(0,
 (int)(dTan*(g - 128) + 128)));
 int bNew = Math.min(255, Math.max(0,
 (int)(dTan*(b - 128) + 128)));

 return (rNew << 16) | (gNew << 8) | bNew |
 (rgb & 0xff000000);
 }
}
18. The ContrastFilterConfigurationDialog is used to make the user select a
contrast parameter for a new ContrastImageFilter. It uses a Scrollbar as its

principal input device. A ContrastDisplayCanvas is used in the dialog to display
the contrast function as indicated by the state of the Scrollbar. Here is the code for
those two classes:
class ContrastFilterConfigurationDialog extends Dialog {
 int _nContrast = 45; //0-89 value: angle of contrast
 // function line.
 Scrollbar _scrollContrast = new Scrollbar(
 Scrollbar.HORIZONTAL, 45, 10, 0, 89);
 ContrastFunctionDisplayCanvas _canvas =
 new ContrastFunctionDisplayCanvas(_nContrast);

 public ContrastFilterConfigurationDialog(
 Frame frameParent, int nContrast) {
 super(frameParent, "Contrast Filter Configuration",
 false);

 if(-1 != nContrast)
 _nContrast = nContrast;

 add("South", _scrollContrast);
 add("Center", _canvas);

 resize(200, 200);
 }

 public int getContrast() {
 return _nContrast;
 }

 // Implementation of handleEvent so dialog can handle
 // scrollbar updates.
 public boolean handleEvent(Event evt) {
 switch(evt.id) {
 case Event.SCROLL_LINE_UP:
 case Event.SCROLL_LINE_DOWN:
 case Event.SCROLL_PAGE_UP:
 case Event.SCROLL_PAGE_DOWN:
 case Event.SCROLL_ABSOLUTE:
 _nContrast = _scrollContrast.getValue();
 getParent().deliverEvent(new Event(
 getParent(),
 ConfiguredFilterFactory.
 CONFIGURATION_UPDATE,
 new Integer(_nContrast)));
 _canvas.setContrast(_nContrast);
 return true;
 }

 // all other events passed on.
 return false;
 }
}

class ContrastFunctionDisplayCanvas extends Canvas {
 int _nContrast;

 public ContrastFunctionDisplayCanvas(int nContrast) {
 setContrast(nContrast);
 }

 public void setContrast(int nContrast) {
 _nContrast = nContrast;
 setBackground(Color.black);
 setForeground(Color.white);
 repaint();
 }

 public void paint(Graphics g) {
 // Draw min/max horiz. lines at 5/6 and 1/6 the way
 // up the component.
 Rectangle r = bounds();
 int nMax = (5 * r.height) / 6;
 int nMin = r.height / 6;

 g.drawLine(0, nMax, r.width, nMax);
 g.drawLine(0, nMin, r.width, nMin);

 // Draw contrast line. To keep it between min
 // and max lines, we'll constrict the clipping rectangle
 // to between those lines.
 g.clipRect(0, nMax, r.width, nMin);

 double dContrastRads = (double)2 * Math.PI *
 ((double)_nContrast/(double)360);
 double dTan = Math.tan(dContrastRads);

 if(0 != dTan) {
 int w = (int)(((double)nMax -
 (double)nMin)/dTan);
 g.drawLine(r.width/2 - w/2, nMin,
 r.width/2 + w/2, nMax);
 }
 else
 g.drawLine(0, r.height/2, r.width, r.height/2);
 }
}
19. Create a new file named “InvertFilterFactory.java”. Start off by declaring the
InvertFilterFactory. This is very similar to the ContrastFilterFactory, except that it
creates InvertFilters, and gets its configuration from
InvertFilterConfigurationDialogs. Here is the code for the InvertFilterFactory:
import java.awt.image.ImageFilter;
import java.awt.image.ColorModel;
import java.awt.*;

public class InvertFilterFactory extends
 ConfiguredFilterFactory {

 public Object createConfiguration(Frame frameParent,
 Object objLastConfiguration) {
 int flags = (null==objLastConfiguration) ? -1 :
 ((Integer)objLastConfiguration).intValue();

 InvertFilterConfigurationDialog dlg = new
 InvertFilterConfigurationDialog(frameParent,
 flags);
 dlg.show();

 return new Integer(dlg.getFlags());
 }

 public ImageFilter createFilter(Object objConfig) {
 System.out.println("Creating filter with: " +
 objConfig);
 return new InvertFilter(
 ((Integer)objConfig).intValue());
 }
}
20. The InvertFilter can be configured to invert an input image along either the X
or Y axis, or both. Its setPixels implementation works by swapping individual
pixel values to invert the image. Here is the code for that class:
class InvertFilter extends ImageFilter {
 Dimension _dim = null;
 int _nFlags = 0;

 public static final int HORIZONTAL = 1;
 public static final int VERTICAL = 2;

 public InvertFilter(int flags) {
 _nFlags = flags;
 }

 public void setDimensions(int width, int height) {
 _dim = new Dimension(width, height);
 consumer.setDimensions(width, height);
 return;
 }

 public void setPixels(int x, int y, int w, int h,
 ColorModel cm, byte[] pixels, int off,
 int scansize) {
 // 1. transform rectangle to destination rectangle
 int xNew = (0!=(_nFlags & HORIZONTAL)) ?
 _dim.width-x-w : x;
 int yNew = (0!=(_nFlags & VERTICAL)) ?
 _dim.height-y-h : y;

 // 2. invert pixels in the pixels[] array. This
 // involves transforming the pixels' array about
 // the axis of inversion. Done in two steps:
 // HORIZONTAL, then VERTICAL.
 if(0 != (_nFlags & HORIZONTAL)) {
 for(int j=0 ; j<h ; j++) {
 for(int i=0 ; i<w/2 ; i++) {
 byte bTemp = pixels[(j*scansize)+i+off];
 pixels[(j*scansize)+i+off] =
 pixels[(j*scansize)+(w+x-i-1)+off];
 pixels[(j*scansize)+(w+x-i-1)+off]=bTemp;
 }

 }
 }

 if(0 != (_nFlags & VERTICAL)) {
 for(int i=0 ; i<w ; i++) {
 for(int j=0 ; j<h/2 ; j++) {
 byte bTemp=pixels[(j*scansize)+i+off];
 pixels[(j*scansize)+i+off] =
 pixels[((h+y-j-1)*scansize)+i+off];
 pixels[((h+y-j-1)*scansize)+i+off]=bTemp;
 }
 }
 }

 // send the transformed pixels on to the consumer.
 consumer.setPixels(xNew, yNew, w, h, cm, pixels,
 off, scansize);
 }

 public void setPixels(int x, int y, int w, int h,
 ColorModel cm, int[] pixels, int off,
 int scansize) {
 }
}
21. The InvertFilterConfigurationDialog is a simple dialog with two checkboxes,
one each of horizontal and vertical invert. Here is the code:
class InvertFilterConfigurationDialog extends Dialog {
 int _nFlags = InvertFilter.VERTICAL |
 InvertFilter.HORIZONTAL;
 Checkbox _cbHoriz = new Checkbox("Invert horizontal");
 Checkbox _cbVert = new Checkbox("Invert vertical");
 // Layout of this dialog is one row of controls:
 // + invert horizontal
 // + invert vertical
 public InvertFilterConfigurationDialog(
 Frame frameParent, int flags) {
 super(frameParent, "Invert Filter Configuration",
 false);
 if(-1 != flags)
 _nFlags = flags;

 _cbHoriz.setState(0 !=
 (_nFlags & InvertFilter.HORIZONTAL));
 _cbVert.setState(0 !=
 (_nFlags & InvertFilter.VERTICAL));

 setLayout(new FlowLayout());
 add(_cbHoriz);
 add(_cbVert);

 resize(250, 75);
 }

 public int getFlags() {
 return _nFlags;
 }

 // Capture the checkbox events, and change the
 // configuration as the user wishes. Report all
 // configuration changes to parent window as
 // ConfiguredFilterFactory.CONFIGURATION_UPDATE Events.
 public boolean action(Event evt, Object what) {
 if(!(evt.target instanceof Checkbox))
 return false;

 if((Checkbox)evt.target == _cbHoriz) {
 if(_cbHoriz.getState())
 _nFlags |= InvertFilter.HORIZONTAL;
 else
 _nFlags &= ~InvertFilter.HORIZONTAL;

 getParent().deliverEvent(new Event(getParent(),
 ConfiguredFilterFactory.
 CONFIGURATION_UPDATE,
 new Integer(_nFlags)));
 return true;
 }

 if((Checkbox)evt.target == _cbVert) {
 if(_cbVert.getState())
 _nFlags |= InvertFilter.VERTICAL;
 else
 _nFlags &= ~InvertFilter.VERTICAL;

 getParent().deliverEvent(new Event(getParent(),
 ConfiguredFilterFactory.
 CONFIGURATION_UPDATE,
 new Integer(_nFlags)));
 return true;
 }

 // all other actions passed along.
 return false;
 }
}
22. Compile the project. In the MultiFilter directory, execute this command to
compile the MultiFilter project using the JDK’s javac compiler:
> javac MultiFilter.java

Correct any errors in typing, which will be reported as errors on the command
line.
23. Run the MultiFilter application. Provide an image’s full pathname on your
local system, or an image URL as the first and only argument to this program.
Use this command line:
> java MultiFilter <your-image-file-or-URL>

How It Works

A lot of MultiFilter’s code implements the user-interface of the application. You are
encouraged to study the MultiFilter application’s user-interface model and techniques,
but this discussion will be restricted to the AWT Image Processing functionalities
demonstrated by MultiFilter and how you can extend MultiFilter by adding your own
ImageFilter objects its interface.

Loading and Storing the Base Image

At the heart of MultiFilter are two Image objects: MultiFilterFrame._imgBase is a
pristine copy of an Image as it was loaded from a local file system file, or from a network
URL. MultiFilterFrame._imgWorkspace is a modified version of the base image.
Whenever a filter is applied to either the entire displayed image, or to a region of it, it is
_imgWorkspace which is modified.

The base image is loaded and prepared for use by the ImageLoaderThread object. The
ImageLoaderThread is designed to load Image objects from a local file system file, or
from a network URL, on behalf of a Component. All downloading and preparing of the
Image are done by a background Thread. When the Image has been fully downloaded, the
ImageLoaderThread delivers the Image, as the arg member of a custom Event, to the
Component. The Event ID is ImageLoaderThread.IMAGE_COMPLETE.

ConfiguredFilterFactory

To make MultiFilter as extensible as possible, the ConfiguredFilterFactory was
developed to make creating and configuring generic ImageFilter objects a simple
operation for the MultiFilter application. The jobs of a ConfiguredFilterFactory are

• To perform user-interaction in a modeless dialog, allowing the user to
dynamically modify the configuration of an ImageFilter. createConfiguration is
overridden by classes derived from ConfiguredFilterFactory to create such a
modeless dialog. Enough information to describe a filter configuration must be
able to be stored in a single Object instance, though since all objects in Java
ultimately derive from Object, this is not a constraint on the amount of
information you can cull from the user to configure a filter.
• To create configured ImageFilter objects, the configuration reflecting the user-
input to the modeless dialog is passed to createFilter. This method should return
an ImageFilter object initialized using the configuration information the user input
into the modeless dialog.

The default implementation of ConfiguredFilterFactory creates objects of class
ImageFilter. These objects are null-filters. That is, when applied to an Image, the filtered
output looks exactly the same as the unfiltered input. Furthermore, no user-interaction is
necessary for such an object, since the ImageFilter class takes no parameters. Thus the
default implementations of createConfiguration and createFilter are pretty simple.

The ContrastFilter

The ContrastFilter is an RGBImageFilter. The filter is created with a “contrast”
parameter, which defines how much contrast the output Image should have in it. This
contrast parameter is interpreted as a degree which defines the slope of the linear
relationship between input and output RGB color. If the angle is low, then the slope is
near-horizontal, and the output RGB color components are right around 128. If, on the
other hand, the angle is high then the slope of the linear relationship is high, and slight
differences in the brightness between pixels is magnified in the output image. Figure 8-12
shows the ContrastFilterConfigurationDialog, which is the modeless dialog the user uses
to modify the contrast settings.

Figure 8-12 The ContrastFilterConfigurationDialog

The InvertFilter

The InvertFilter is an ImageFilter-derived class. Because the filtered output of each pixel
of this filter is dependent on other pixels in the image, the InvertFilter could not be
derived from RGBImageFilter.

The internal state of an InvertFilter object is stored as two flags: HORIZONTAL and
VERTICAL, which are both set when the filter is created by parameters to the
InvertFilter constructor. The InvertFilter.setPixels() method flips each individual
rectangle of the input image in the filtered version of the image. Two separate flipping
operations may be necessary: HORIZONTAL flipping, and VERTICAL flipping,
according to the internal state of the InvertFilter.

“Flipping” of a rectangle involves tranforming the coordinates of the rectangle to the
output Image. This transformation ensures the width and height of the rectangle are
preserved in the output image, but the origin of the rectangle in the Image is moved. The
individual pixel values of the rectangle are flipped symmetrically about either the X or Y
axis, according to the internal state of the InvertFilter object. Figure 8-13 illustrates how a
rectangle of pixel data is transformed for the filtered output.

Figure 8-13 InvertFilter translates rectangles so the rectangle covers a symmetrical area
with respect to the horizontal or vertical axis

Once the pixel data has been flipped in the pixels[] array, and the origin of the rectangle
has been transformed for the output Image, the pixel data is passed through to the filter’s
consumer.

Applying Filters to the Workspace Image

A FilteredImageSource object is used to apply the currently selected filter to the whole
Workspace image, or to a selected region of it. This is handled in the
MultiFilterFrame.action() method, where the MenuItem selection action is detected by
the MultiFilterFrame.

In response to the “Apply to Image” menu item being selected, MultiFilter creates a new
Image object which is the output of applying the currently selected filter to the entire
Workspace image. This new Image object then paints over the contents of the Workspace
image, thus essentially replacing the Workspace image with itself.

The WorkspaceCanvas displays the current contents of the Workspace image, so that as
soon as the filter is applied and the Workspace is filled with a copy of the filtered image,
the Workspace is displayed on the screen.

In response to the “Apply to Region” menu item being selected, MultiFilter first creates a
copy of just the selected region using a CropImageFilter and a FilteredImageSource. A
new image is created which is the result of sending the cropped image selection through
the currently selected filter. This filtered version of the selected region is then painted
onto the Workspace image at precisely the same location as the selected region. When the
Workspace is redisplayed, the filtered version of the selected region replaces the original
pixel data there.

Adding Your Own ImageFilters to MultiFilter

MultiFilter was designed to make adding new filters as easy as possible. Follow these
steps to add a new filter to MultiFilter:

1. Create your ImageFilter.
2. Create a modeless Dialog so that the user of MultiFilter can configure your
ImageFilter. For example, if your filter requires, say, a “zoom factor” in its
constructor, then create a Dialog that allows the user to pick a “zoom factor”. This
Dialog object should deliver a
ConfiguredFilterFactory.CONFIGURATION_UPDATE Event to its parent
(result of getParent()) frame whenever the user modifies the values in the Dialog.
See ContrastFilterConfigurationDialog in the MultiFilter application (Step 18) for
an example.
3. Create a ConfiguredFilterFactory for your ImageFilter class. The overridden
version of createConfiguration should create and show a new instance of the
Dialog you defined in Step 2. The overridden version of createFilter should create
and return a new instance of the ImageFilter you defined in Step 1, configured
using the configuration Object passed as a parameter. See ContrastFilterFactory
of the MultiFilter application (Step 16) for an example.

4. Add code to MultiFilterFrame constructor to add a menu item for your new
filter. In the same constructor method, you should also add an entry to Hashtable
_hashMonikerToFactory. For example, if I created a filter class called
MakeImagePretty and corresponding factory and configuration objects called
MakeImagePrettyFactory and MakeImagePrettyConfigurationDialog, then I
would change MultiFilterFrame’s constructor like so:
public MultiFilterFrame(String strTitle) {
 super(strTitle);

 // Create the menu shell. That is, the whole menu should
 // look like this:
 // Image
 // + Open…
 // + <separator>
 // + Refresh
 // + <separator>
 // + Exit
 // Filter
 // + Apply to Image
 // + Apply to Region
 // + <separator>
 // + Null Filter
 // + Contrast Filter
 // + Invert Filter
 // + Make Pretty Filter
 Menu menuImage = new Menu("Image");
 menuImage.add("Open…");
 menuImage.addSeparator();
 menuImage.add("Refresh");
 menuImage.addSeparator();
 menuImage.add("Exit");

 Menu menuFilter = new Menu("Filter");
 menuFilter.add("Apply to Image");
 menuFilter.add("Apply to Region");
 menuFilter.addSeparator();
 menuFilter.add("Null Filter");
 menuFilter.add("Contrast Filter");
 menuFilter.add("Invert Filter");
 menuFilter.add(“Make Pretty Filter”);

 MenuBar mb = new MenuBar();
 mb.add(menuImage);
 mb.add(menuFilter);

 setMenuBar(mb);

 updateMenu();

 // Add the entries for the three filter types to the
 // lookup hashes.
 _hashMonikerToFactory.put("Null Filter",
 new ConfiguredFilterFactory());
 _hashMonikerToFactory.put("Contrast Filter",
 new ContrastFilterFactory());

 _hashMonikerToFactory.put("Invert Filter",
 new InvertFilterFactory());
 _hashMonikerToFactory.put("Invert Filter",
 new MakeImagePrettyFactory());

 // Add the feedback label and display canvas as
components
 // of this Frame.
 setLayout(new BorderLayout());
 add("South", _labelFeedback);
 add("Center", _canvas);
 }
}

That’s it! Recompile MultiFilter and try out your filter on a test image.

Chapter 9
AWT Peer Interfaces

This chapter introduces the concepts behind the peer interfaces of the Java Abstract
Windowing Toolkit (AWT). As a Java application developer you will never need to use
any of the peer classes. The interfaces described in this chapter will be of interest mainly
to programmers who are porting the Java Development Kit (JDK) to a new operating
system. This introduction gives you an insight into the object-oriented design of the peer
interfaces and describes how they help reduce the effort needed to port the Java AWT to
another operating system.

The individual characteristics of the graphics toolkits supported on different operating
systems make the task of implementing a portable windowing toolkit difficult. Separating
the user’s perspective on the windowing abstraction from the operating system’s
perspective poses a problem that involves a lot of programming effort when moving the
toolkit from one platform to another. If the actual implementation of the toolkit is
decoupled from the user’s perspective, then porting the toolkit as a whole is a lot simpler,
as only the implementation module has to be changed to support the new operating
system platform. The peer interfaces of the Java AWT do exactly that. They decouple the
abstractions of the AWT classes (such as Button, List, Label, and so on) from their
implementation on a specific windowing platform (such as the Windows95 operating
system or the Motif windowing toolkit available on Unix systems).

The appearance of a graphical user interface component differs from toolkit to toolkit.
The common problem faced with developing applications using the windowing toolkits
available today is that the user has to relearn the look and feel of the graphical
components when the application is run on a different platform. The Java design team
designed the AWT in such a way that the graphical components would preserve the look-
and-feel of the underlying operating system’s native windowing toolkit. This is one

reason why Java has been accepted as a language for cross-platform application
development.

Figure 9-1 shows two views of a Java application that includes a label, a button, and a
checkbox. The window on the left shows the application running on the Windows95
operating system and the one on the right shows the same application running on the
Solaris operating system (using the Motif windowing toolkit).

Figure 9-1 The same AWT application running on Windows95 and on Solaris (Motif
windowing toolkit)

The GUI-specific code is encapsulated in the classes that implement the peer interface.
These peer classes serve as the interface between the AWT classes such as Component,
Button, Label, Container, and so on, and the underlying operating system’s graphics
primitives. The AWT classes do not communicate directly with the native windowing
toolkit. They create a peer object that serves as a channel of communication between the
AWT class and the native windowing toolkit. Each instance of a class (such as Button) is
associated with an instance of the corresponding peer class (such as ButtonPeer). In order
to port the Java AWT to a windowing toolkit, only the peer interfaces have to be
implemented. The higher level of abstraction such as the Component, Button, or List
class need not change at all. Figure 9-2 shows where the peer interfaces fit into the
overall Java AWT model.

Figure 9-2 The role of peers in the AWT system model

Each of the peer interfaces described in this chapter has to be implemented to create a
GUI-dependent class that performs the task required of the peer. The code for these
methods is written in the C language, using the graphics primitives of the native
windowing toolkit. Chapter 3 on the Toolkit class and Appendix C on writing native code
for Java, provide more information regarding the specifics of implementing native code
for a target windowing system.

Due to the licensing issues involved with modifying the source code of the Java
Development Kit, this chapter does not contain a project implementation and there are no
example entries for individual interfaces or methods. Here is a checklist of the things you
have to do in order to extend the peer interfaces described in this chapter to support a
target native windowing toolkit.

1. Contact Sun Microsystems with regard to licensing the source code of the Java
Development Kit.
2. Identify the graphics primitives used in the target operating system.

3. Implement each of the peer interfaces described in this chapter, using the
native methods of the target windowing system. The implementations for the
windowing toolkits already supported (Motif, WindowsNT, and Windows95) will
help you understand exactly what needs to be done.
4. Extend the java.awt.Toolkit class to create a GUI-dependent class for the target
windowing system. This class will include methods to create each of the peer
classes implemented in Step 3.
5. Compile and install the classes in the appropriate directories.

The Java language is growing in popularity as the language of choice for cross-platform
application development. When porting the Java Development Kit to a new operating
system or to a new windowing system, the peer interfaces have to be ported to conform to
the application programming interface of the target system. The AWT Peer interfaces
clearly separate the platform dependent (physical) abstractions of the windowing toolkit
from the user-interface (logical) abstractions, thus making the job easier for developers
who are porting Java.

AWT Peer Interface Summaries

Table 9-1 summarizes the interfaces described in this chapter. The rest of the chapter
presents the detailed descriptions of the methods defined in each of the interfaces.

Table 9-1 AWT Peer interface descriptions

Interface Description

ComponentPeer This interface defines the API between the Component class

and the underlying operating system GUI primitives used for
querying and modifying the properties associated with an

AWT component.

ButtonPeer This interface defines the API between the Button class and
the underlying operating system GUI primitives used with

button objects
CanvasPeer This interface defines the API between the Canvas class and

the underlying operating system GUI primitives used with
general-purpose canvas objects.

CheckboxPeer This interface defines the API between the Checkbox class
and the underlying operating system GUI primitives used

with checkbox objects.
ChoicePeer This interface defines the API between the Choice class and

the underlying operating system GUI primitives used for
creating and interacting with pop-up menu objects.

LabelPeer This interface defines the API between the Label class and
the underlying operating system GUI primitives used for

creating and interacting with simple label objects that display
a noneditable text string.

ListPeer This interface defines the API between the List class and the
underlying operating system GUI primitives used for

creating and interacting with graphical objects that contain a
scrolling list of text strings.

ScrollbarPeer This interface defines the API between the Scrollbar class
and the underlying operating system GUI primitives used for

creating and interacting with scrollbar objects.
ContainerPeer This interface defines the API between the Container class

and the underlying operating system GUI primitives used for
creating and interacting with graphical objects that can

contain other graphical objects.

PanelPeer This interface defines the API between the Panel class and
the underlying operating system GUI primitives used for

creating and interacting with panel objects.
WindowPeer This interface defines the API between the Window class and

the underlying operating system GUI primitives used for
creating and interacting with top-level windows that have

neither a title bar nor a border.

DialogPeer This interface defines the API between the Dialog class and
the underlying operating system GUI primitives used for

creating and interacting with dialog box objects.

FileDialogPeer This interface defines the API between the FileDialog class
and the underlying operating system GUI primitives used for
creating and interacting with dialog box objects that display a

list of files and allow the user to select from the list.
FramePeer This interface defines the API between the Frame class and

the underlying operating system GUI primitives used for
creating and interacting with top-level frame windows that

have a title bar and borders and can optionally have a menu
bar.

MenuComponentPeer This interface defines the API between the MenuComponent
class and the underlying operating system GUI primitives

used for creating and interacting with menu objects.

MenuBarPeer This interface defines the API between the MenuBar class
and the underlying operating system GUI primitives used for

creating and interacting with menu bar objects.

MenuItemPeer This interface defines the API between the MenuItem class
and the underlying operating system GUI primitives used for

creating and interacting with menu item objects.
CheckboxMenuItemPeer This interface defines the API between the

CheckboxMenuItem class and the underlying GUI primitives
used for creating and interacting with checkboxes that can be

used as menu item objects.

MenuPeer This interface defines the API between the Menu class and
the underlying GUI primitives that can be components of a

menu bar.
TextComponentPeer This interface defines the API between the TextComponent

class and the underlying operating system GUI primitives
used for creating graphical objects in which text can be

edited.

TextAreaPeer This interface defines the API between the TextArea class
and the underlying operating system GUI primitives used for

displaying and editing multiple lines of text.

TextFieldPeer This interface defines the API between the TextField class
and the underlying operating system GUI primitives used for
creating graphical objects that allow editing of a single line

of text.

ComponentPeer

Purpose
This interface defines the API between the Component class and the underlying
operating system GUI primitives used for querying and modifying the properties
associated with an AWT component.

Syntax
public interface ComponentPeer extends Object

Description
This interface defines the API between the Component class and the underlying
operating system GUI primitives used for querying and modifying graphical
components. Native code that uses the API of the underlying GUI toolkit to
perform these tasks is encapsulated in a GUI-dependent class that implements this
interface. Figure 9-3 shows the inheritance hierarchy for the ComponentPeer
interface.

PackageName
java.awt.peer

Imports
import java.awt.peer.ComponentPeer;

Constructors
None.

Parameters
None.

Figure 9-3 Inheritance hierarchy for the ComponentPeer interface

checkImage(Image, int, int, ImageObserver)

InterfaceName
ComponentPeer

Purpose
Returns the status of construction of the specified image object.

Syntax
public abstract int checkImage(Image img, int w, int h, ImageObserver o)

Parameters
img

The Image object whose screen representation is being constructed.
w

The width of the image to check the status of.
h

The height of the image to check the status of.
o

The ImageObserver object that is to be notified as the specified image is being
constructed.

Description
The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific graphical environment to determine the status of
construction of the screen representation of the Image object specified as a
parameter to this method.

Imports
import java.awt.peer.ComponentPeer;

Returns
This method returns an integer value that indicates the status of construction of
the Image object as indicated by the specified class that implements the
ImageObserver interface.

See Also
The checkImage method of the Component class in Chapter 2

createImage(ImageProducer)

InterfaceName

ComponentPeer
Purpose

Creates an Image from the producer object which is an instance of a class that
implements the ImageProducer interface.

Syntax
public abstract Image createImage(ImageProducer producer)

Parameters
producer

The ImageProducer object from which the image is created.
Description

The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific graphical environment to create the image from
the ImageProducer object.

Imports
import java.awt.peer.ComponentPeer;

Returns
The return value of this method is an Image object that represents the image that
was produced by the ImageProducer.

See Also
The createImage(ImageProducer) method of the Component class in Chapter 2

createImage(int, int)

InterfaceName
ComponentPeer

Purpose
Creates an Image of the specified dimensions. This image can be used for
updating the screen using the double-buffering technique.

Syntax
public abstract Image createImage(int width, int height)

Parameters
width

The width of the image to create.
height

The height of the image to create.
Description

The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific graphical environment to create the off-screen
representation of the Image object with the specified width and height.

Imports
import java.awt.peer.ComponentPeer;

Returns
The return value of this method is an Image object that represents the image that
can be used for double-buffering.

See Also
The createImage(int, int) method of the Component class in Chapter 2

disable()

InterfaceName
ComponentPeer

Purpose
Disables the Component (associated with this peer) so that it neither responds to
user actions nor generates events.

Syntax
public abstract void disable()

Parameters
None.

Description
The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific graphical environment to disable the component
from responding to events.

Imports
import java.awt.peer.ComponentPeer;

Returns
None.

See Also
The disable method of the Component class in Chapter 2

dispose()

InterfaceName
ComponentPeer

Purpose
Frees the resources allocated to this peer object.

Syntax
public abstract void dispose()

Parameters
None.

Description
The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific graphical environment to free all resources that
have been allocated to this peer object. The Component object invokes this
method to destroy the ComponentPeer object.

Imports
import java.awt.peer.ComponentPeer;

Returns
None.

See Also
The dispose method of the Component class in Chapter 2

enable()

InterfaceName
ComponentPeer

Purpose
Enables the Component object, so that it responds to events.

Syntax
public abstract void enable()

Parameters
None.

Description
The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific graphical environment such that the Component
object generates events in response to user actions, etc.

Imports
import java.awt.peer.ComponentPeer;

Returns
None.

See Also
The enable method of the Component class in Chapter 2

getColorModel()

InterfaceName
ComponentPeer

Purpose
Obtains the RGB values for the ColorModel used to display the Component on
the current output device.

Syntax
public abstract ColorModel getColorModel()

Parameters
None.

Description
The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific graphical environment to determine the
Component object’s color values in RGB notation.

Imports
import java.awt.peer.ComponentPeer;

Returns
This method returns a ColorModel object that describes the RGB color model
used to display the component on the output device.

See Also
The getColorMethod method of the Component class in Chapter 2; the
ColorModel class in Chapter 7

getFontMetrics(Font)

InterfaceName
ComponentPeer

Purpose
Obtains information about the properties of the specified font for this Component.

Syntax
public abstract FontMetrics getFontMetrics(Font font)

Parameters
font

The font object whose metrics are to be retrieved.
Description

The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific graphical environment to determine the various
metrics of the font used by the Component object.

Imports
import java.awt.peer.ComponentPeer;

Returns
This method returns a FontMetrics object that describes the characteristics of the
font used by the component (associated with this peer).

See Also
The getFontMetrics method of the Component class in Chapter 2; the FontMetrics
class in Chapter 7

getGraphics()

InterfaceName
ComponentPeer

Purpose
Obtains information about the graphics context of the Component that created this
peer object.

Syntax
public abstract Graphics getGraphics()

Parameters
None.

Description
The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific graphical environment to get the graphics context
information for the Component.

Imports
import java.awt.peer.ComponentPeer;

Returns
The Graphics object returned by this method describes the graphics context of the
component. A value of null is returned if the Component is not currently
displayed on the screen.

See Also
The getGraphics method of the Component class described in Chapter 2; the
Graphics class described in Chapter 1

getToolkit()

InterfaceName
ComponentPeer

Purpose
Gets an instance of the GUI-dependent toolkit used to bind the AWT classes to a
particular graphics environment implementation.

Syntax
public abstract Toolkit getToolkit()

Parameters
None.

Description
The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific graphical environment to return a Toolkit object
for the underlying graphics environment.

Imports
import java.awt.peer.ComponentPeer;

Returns
The Toolkit object returned by this method is a GUI-specific implementation of
the Toolkit class. It is the interface between the AWT graphical components and
the graphical components of the native graphical toolkit.

See Also
The getToolkit method of the Component class described in Chapter 2; the
Toolkit class described in Chapter 3

handleEvent(Event)

InterfaceName
ComponentPeer

Purpose
The event handler for events that occur in the Component object that are neither
handled by the object’s event handling method nor its container’s event handling
method.

Syntax
public abstract boolean handleEvent(Event e)

Parameters
e

The event that was detected.
Description

The peer object’s handleEvent method is invoked to handle events that are neither
handled by the component’s handleEvent method nor by its container’s
handleEvent method. If a component’s event handling method (handleEvent) does
not handle an event, the event is passed to the event handling method of the
component’s container. If this container does not handle the event either, then the
event is passed to this method of the component’s peer object.

Imports

import java.awt.peer.ComponentPeer;
Returns

This method returns true if it handles the event, and false if it does not handle the
event.

See Also
The handleEvent method of the Component class described in Chapter 2; the
Event class described in Chapter 3

hide()

InterfaceName
ComponentPeer

Purpose
Hides the Component so that it is not visible on the screen.

Syntax
public abstract void hide()

Parameters
None.

Description
The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific graphical environment to hide the component.

Imports
import java.awt.peer.ComponentPeer;

Returns
None.

See Also
The hide method of the Component class described in Chapter 2

minimumSize()

InterfaceName
ComponentPeer

Purpose
Determines the minimum dimensions of the Component object.

Syntax
public abstract Dimension minimumSize()

Parameters
None.

Description
The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific graphical environment to determine the minimum
dimensions of the Component associated with this peer object.

Imports
import java.awt.peer.ComponentPeer;

Returns

This method returns a Dimension object that contains the minimum width and
height measurements required of the Component object.

See Also
The minimumSize method of the Component class described in Chapter 2

nextFocus()

InterfaceName
ComponentPeer

Purpose
Moves the input focus to the next component.

Syntax
public abstract void nextFocus()

Parameters
None.

Description
The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific graphical environment to shift the input focus to
the next component in the GUI.

Imports
import java.awt.peer.ComponentPeer;

Returns
None.

See Also
The nextFocus method of the Component class described in Chapter 2

paint(Graphics)

InterfaceName
ComponentPeer

Purpose
Paints the Component on the output device using the specified graphics context.

Syntax
public abstract void paint(Graphics g)

Parameters
g

The graphics context object.
Description

The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific graphical environment in order to paint the
appearance of the Component onto the output device whose characteristics are
specified by the graphics context object g.

Imports
import java.awt.peer.ComponentPeer;

Returns
None.

See Also
The paint method of the Component class described in Chapter 2

preferredSize()

InterfaceName
ComponentPeer

Purpose
Determines the ideal dimensions of the Component object.

Syntax
public abstract Dimension preferredSize()

Parameters
None.

Description
The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific graphical environment to determine the preferred
dimensions of the Component object.

Imports
import java.awt.peer.ComponentPeer;

Returns
This method returns a Dimension object that contains the ideal width and height
measurements for the Component object.

See Also
The preferredSize method of the Component class described in Chapter 2

prepareImage(Image, int, int, ImageObserver)

InterfaceName
ComponentPeer

Purpose
Prepares an image (asynchronously) for rendering onto the current output device.

Syntax
public abstract boolean prepareImage(Image img, int w, int h, ImageObserver o)

Parameters
img

The image to prepare for rendering onto this Component.
w

The width of the image to be prepared for rendering.
h

The height of the image to be prepared for rendering.
o

This parameter denotes the ImageObserver object that is notified as the image
specified by img is being prepared for rendering.

Description

The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific graphical environment to prepare an image for
rendering by creating a scaled representation of it.

Imports
import java.awt.peer.ComponentPeer;

Returns
This method returns the value of true if the image to be rendered is already
prepared and ready for rendering, and false if it is not prepared.

See Also
The prepareImage method of the Component class described in Chapter 2

print(Graphics)

InterfaceName
ComponentPeer

Purpose
Prints the Component on the device whose graphics context is specified.

Syntax
public abstract void print(Graphics g)

Parameters
g

The graphics context object to use for printing this Component.
Description

The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific graphical environment to print the Component on
the specified graphics context. The default implementation of this method is to
invoke the paint method.

Imports
import java.awt.peer.ComponentPeer;

Returns
None.

See Also
The print method of the Component class described in Chapter 2

repaint(long, int, int, int, int)

InterfaceName
ComponentPeer

Purpose
Repaints the specified rectangular area of the Component and updates this area as
soon as possible.

Syntax
public abstract void repaint(long tm, int x, int y, int width, int height)

Parameters
tm

The maximum amount of time (expressed in milliseconds) before the update
method is invoked.

x
The x coordinate of the top-left part of the area of the Component to be repainted.

y
The y coordinate of the top-left part of the area of the Component to be repainted.

width
The width of the area of the Component to be repainted.

height
The height of the area of the Component to be repainted.

Description
The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific graphical environment to repaint and update the
rectangular area defined by the parameters to this method.

Imports
import java.awt.peer.ComponentPeer;

Returns
None.

See Also
The repaint method of the Component class described in Chapter 2

requestFocus()

InterfaceName
ComponentPeer

Purpose
Requests that the Component associated with this peer receive the input focus.

Syntax
public abstract void requestFocus()

Parameters
None.

Description
The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific graphical environment requesting the native
toolkit to change the input focus to the Component associated with this peer
object.

Imports
import java.awt.peer.ComponentPeer;

Returns
None.

See Also
The requestFocus method of the Component class described in Chapter 2

reshape(int, int, int, int)

InterfaceName

ComponentPeer
Purpose

Changes the shape of the Component such that it fits into the specified rectangular
area.

Syntax
public abstract void reshape(int x, int y, int width, int height)

Parameters
x

The x coordinate of the top-left corner of the bounding box.
y

The y coordinate of the top-left corner of the bounding box.
width

The width of the bounding box.
height

The height of the bounding box.
Description

The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific graphical environment to alter the shape of the
Component such that it fits the specified bounding box.

Imports
import java.awt.peer.ComponentPeer;

Returns
None.

See Also
The reshape method of the Component class described in Chapter 2

setBackground(Color)

InterfaceName
ComponentPeer

Purpose
Sets the background color of the Component to the specified color.

Syntax
public abstract void setBackground(Color c)

Parameters
c

The Color value for the background of the Component associated with this peer
object.

Description
The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific graphical environment to change the color used
for painting the background of the Component to the specified color.

Imports
import java.awt.peer.ComponentPeer;

Returns
None.

See Also
The setBackground method of the Component class described in Chapter 2

setFont(Font)

InterfaceName
ComponentPeer

Purpose
Changes the font used in the Component to the specified font.

Syntax
public abstract void setFont(Font f)

Parameters
f

The font for the Component associated with this peer object.
Description

The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific graphical environment to change the font used for
writing text in the Component.

Imports
import java.awt.peer.ComponentPeer;

Returns
None.

See Also
The setFont method of the Component class described in Chapter 2

setForeground(Color)

InterfaceName
ComponentPeer

Purpose
Sets the foreground color of the Component to the specified color

Syntax
public abstract void setForeground(Color c)

Parameters
c

The foreground color of the Component associated with this peer object.
Description

The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific graphical environment to change the color used
for painting the foreground of the Component to the specified color.

Imports
import java.awt.peer.ComponentPeer;

Returns
None.

See Also
The setForeground method of the Component class described in Chapter 2

show()

InterfaceName
ComponentPeer

Purpose
Displays the Component.

Syntax
public abstract void show()

Parameters
None.

Description
The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific graphical environment to display the Component
on the current output device.

Imports
import java.awt.peer.ComponentPeer;

Returns
None.

See Also
The show method of the Component class described in Chapter 2.

ButtonPeer

Purpose
Defines the interface that must be implemented by a GUI-dependent class to
create and manage a button object.

Syntax
public interface ButtonPeer extends Object extends ComponentPeer

Description
This interface defines the API between the Button class and the underlying
operating system GUI primitives used with button objects. Native code that uses
the API of the underlying GUI toolkit to create and manage a button object is
encapsulated in a GUI-dependent class that implements this interface. Figure 9-4
shows the inheritance hierarchy for the ButtonPeer interface.

PackageName
java.awt.peer

Imports
import java.awt.peer.ButtonPeer;

Constructors
None.

Parameters
None.

Figure 9-4 Inheritance hierarchy for the ButtonPeer interface

setLabel(String)

InterfaceName
ButtonPeer

Purpose
Displays the specified string on the button.

Syntax
public abstract void setLabel(String label)

Parameters
label

The text string for the Button label.
Description

The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific graphical environment to set the label of the
button object to the string specified as the parameter to this method.

Imports
import java.awt.peer.ButtonPeer;

Returns
None.

See Also
The setLabel method of the Button class described in Chapter 4

CanvasPeer

Purpose
Defines the interface that must be implemented by a GUI-dependent class to
create and manage a Canvas object.

Syntax
public interface CanvasPeer extends Object extends ComponentPeer

Description
This interface defines the API between the Canvas class and the underlying
operating system GUI primitives used with general-purpose Canvas objects.
Native code that uses the API of the underlying GUI toolkit to create and manage
a Canvas object is encapsulated in a GUI-dependent class that implements this
interface. The GUI-dependent class that implements the ComponentPeer interface
implements all the GUI-dependent functionality that is required of a Canvas
object. This GUI-dependent class is the interface between the Canvas class and
the underlying GUI toolkit of the platform on which the Java applications are

being executed. Figure 9-5 shows the inheritance hierarchy for the CanvasPeer
interface.

PackageName
java.awt.peer

Imports
import java.awt.peer.CanvasPeer;

Constructors
None.

Parameters
None.

Figure 9-5 Inheritance hierarchy for the CanvasPeer interface

CheckboxPeer

Purpose
Defines the interface that must be implemented by a GUI-dependent class to
create and manage a checkbox object.

Syntax
public interface CheckboxPeer extends Object extends ComponentPeer

Description
This interface defines the API between the Checkbox class and the underlying
operating system GUI primitives used with Checkbox objects. Native code that
uses the API of the underlying GUI toolkit to create and manage a Checkbox
object is encapsulated in a GUI-dependent class that implements this interface.
Figure 9-6 shows the inheritance hierarchy for the CheckboxPeer interface.

PackageName
java.awt.peer

Imports
import java.awt.peer.CheckboxPeer;

Constructors
None.

Parameters
None.

Figure 9-6 Inheritance hierarchy for the CheckboxPeer interface

setCheckboxGroup(CheckboxGroup)

InterfaceName
CheckboxPeer

Purpose
Associates the Checkbox object that created this peer object with the
CheckboxGroup object specified

Syntax
public abstract void setCheckboxGroup(CheckboxGroup g)

Parameters
g

The CheckboxGroup object to which the Checkbox object associated with this
CheckboxPeer object is assigned.

Description
The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific graphical environment to associate the Checkbox
object that created this peer object with the CheckboxGroup object specified as
the parameter to this method.

Imports
import java.awt.peer.CheckboxPeer;

Returns
None.

See Also
The setCheckboxGroup method of the Checkbox class; the CheckboxGroup class
described in Chapter 6

setLabel(String)

InterfaceName
CheckboxPeer

Purpose
Sets the text label of the Checkbox

Syntax
public abstract void setLabel(String label)

Parameters
label

The text string to display on the label of the Checkbox.
Description

The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific graphical environment to set the label of the
Checkbox object associated with this peer object to the string specified as the
parameter to this method.

Imports
import java.awt.peer.CheckboxPeer;

Returns
None.

See Also
The setLabel method of the Checkbox class described in Chapter 6

setState(boolean)

InterfaceName
CheckboxPeer

Purpose
Sets the checkbox state to on or off.

Syntax
public abstract void setState(boolean state)

Parameters
state

A value of true causes the check mark to appear, and a value of false “unchecks”
the Checkbox object associated with this CheckboxPeer object.

Description
The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific graphical environment to set the state of the
Checkbox to either on (checked) or off (unchecked), depending on whether the
value of state is true or false.

Imports
import java.awt.peer.CheckboxPeer;

Returns
None.

See Also
The setState method of the Checkbox class described in Chapter 6

ChoicePeer

Purpose
Defines the interface that must be implemented by a GUI-dependent class to
create and manage a pop-up menu of choices.

Syntax
public interface ChoicePeer extends Object extends ComponentPeer

Description

This interface defines the API between the Choice class and the underlying
operating system GUI primitives used for creating and interacting with pop-up
menu objects. Native code that uses the API of the underlying GUI toolkit to
create and manage a pop-up menu of choices is encapsulated in a GUI-dependent
class that implements this interface. Figure 9-7 shows the inheritance hierarchy
for the ChoicePeer interface.

PackageName
java.awt.peer

Imports
import java.awt.peer.ChoicePeer;

Constructors
None.

Parameters
None.

Figure 9-7 Inheritance hierarchy for the ChoicePeer interface

addItem(String, int)

InterfaceName
ChoicePeer

Purpose
Adds a text string to the pop-up menu at the specified position in the list of
choices.

Syntax
public abstract void addItem(String item, int index)

Parameters
item

The text to insert into the Choice object associated with this ChoicePeer object.
index

The index at which to insert the specified text in the list of choices.
Description

The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to add the specified text string to the pop-up
menu of choices.

Imports
import java.awt.peer.ChoicePeer;

Returns
None.

See Also

The addItem method of the Choice class described in Chapter 6

select(int)

InterfaceName
ChoicePeer

Purpose
Selects the text string at the index position in the list of choices.

Syntax
public abstract void select(int index)

Parameters
index

The index into the list of choices of the item to select.
Description

The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific graphical environment to select the specified item
in the Choice object associated with this peer object.

Imports
import java.awt.peer.ChoicePeer;

Returns
None.

See Also
The select method of the Choice class described in Chapter 6

LabelPeer

Purpose
Defines the interface that must be implemented by a GUI-dependent class to
create and manage a label object.

Syntax
public interface LabelPeer extends Object extends ComponentPeer

Description
This interface defines the API between the Label class and the underlying
operating system GUI primitives used for creating and interacting with simple
label objects that display a noneditable text string. Native code that uses the API
of the underlying GUI toolkit to create and manage a label object is encapsulated
in a GUI-dependent class that implements this interface. Figure 9-8 shows the
inheritance hierarchy for the LabelPeer interface.

PackageName
java.awt.peer

Imports
import java.awt.peer.LabelPeer;

Constructors
None.

Parameters
None.

Figure 9-8 Inheritance hierarchy for the LabelPeer interface

setAlignment(int)

InterfaceName
LabelPeer

Purpose
Sets the alignment of the text string on the label.

Syntax
public abstract void setAlignment(int alignment)

Parameters
alignment

The alignment mode for the text string to be displayed in the Label object for
which this LabelPeer object was created.

Description
The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to align the label object’s text string as
specified by the alignment parameter.

Imports
import java.awt.peer.LabelPeer;

Returns
None.

See Also
The setAlignment method of the Label class described in Chapter 4

setText(String)

InterfaceName
LabelPeer

Purpose
Changes the text string displayed on the label.

Syntax
public abstract void setText(String label)

Parameters
label

The text for the label.
Description

The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to display the specified text on the label
object.

Imports
import java.awt.peer.LabelPeer;

Returns
None.

See Also
The setText method of the Label class described in Chapter 4

ListPeer

Purpose
Defines the interface that must be implemented by a GUI-dependent class to
create and manage a list object.

Syntax
public interface ListPeer extends Object extends ComponentPeer

Description
This interface defines the API between the List class and the underlying operating
system GUI primitives used for creating and interacting with graphical objects
that contain a scrolling list of text strings. Native code that uses the API of the
underlying GUI toolkit to create and manage a list object is encapsulated in a
GUI-dependent class that implements this interface. Figure 9-9 shows the
inheritance hierarchy for the ListPeer interface.

PackageName
java.awt.peer

Imports
import java.awt.peer.ListPeer;

Constructors
None.

Parameters
None.

Figure 9-9 Inheritance hierarchy for the ListPeer interface

addItem(String, int)

InterfaceName
ListPeer

Purpose

Adds a text string at a specified position in the list.
Syntax

public abstract void addItem(String item, int index)
Parameters
item

The text string to add to the list.
index

The index at which to insert the specified text
Description

The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to add the specified string at the specified
index in the list object for which this peer object was created.

Imports
import java.awt.peer.ListPeer;

Returns
None.

See Also
The addItem method of the List class described in Chapter 5

clear()

InterfaceName
ListPeer

Purpose
Empties the list.

Syntax
public abstract void clear()

Parameters
None.

Description
The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to remove all the text strings from the list
object.

Imports
import java.awt.peer.ListPeer;

Returns
None.

See Also
The clear method of the List class described in Chapter 5

delItems(int, int)

InterfaceName
ListPeer

Purpose
Removes a specified range of items from the list object.

Syntax
public abstract void delItems(int start, int end)

Parameters
start

The position of the first item to be deleted.
end

The index of the last item to be removed.
Description

The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to remove all the text strings between the
start and end indices in the list.

Imports
import java.awt.peer.ListPeer;

Returns
None.

See Also
The delItems method of the List class described in Chapter 5

deselect(int)

InterfaceName
ListPeer

Purpose
Deselects the item at the specified index in the list.

Syntax
public abstract void deselect(int index)

Parameters
index

The position of the text string to deselect.
Description

The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to remove the highlight bar from around the
item at the position specified by index.

Imports
import java.awt.peer.ListPeer;

Returns
None.

See Also
The deselect method of the List class described in Chapter 5

getSelectedIndexes()

InterfaceName
ListPeer

Purpose
Gets the indices of the selected items in the list.

Syntax
public abstract int[] getSelectedIndexes()

Parameters
None.

Description
The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to determine the items in the list that have
been selected.

Imports
import java.awt.peer.ListPeer;

Returns
This method returns an array containing integer values that indicate the positions
that have been selected in the list.

See Also
The getSelectedIndexes method of the List class described in Chapter 5

makeVisible(int)

InterfaceName
ListPeer

Purpose
Forces the item at the specified index in the list to be made visible.

Syntax
public abstract void makeVisible(int index)

Parameters
index

The index of the item in the list that is forced to be made visible.
Description

The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to bring the specified text item into the
visible area of the list box, scrolling the items in the list object if necessary.

Imports
import java.awt.peer.ListPeer;

Returns
None.

See Also
The makeVisible method of the List class described in Chapter 5

minimumSize()

InterfaceName
ListPeer

Purpose
Determines the minimum height and width for a List object containing the
specified number of rows.

Syntax

public abstract Dimension minimumSize(int v)
Parameters
v

The number of rows in the list.
Description

The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to determine the minimum dimension
required if the List object associated with this peer object has v number of rows.

Imports
import java.awt.peer.ListPeer;

Returns
This method returns a Dimension object that contains the minimum width and
height measurements required of the List object.

See Also
The minimumSize method of the List class described in Chapter 5

preferredSize(int)

InterfaceName
ListPeer

Purpose
Determines the ideal dimensions for a List object containing the specified number
of rows.

Syntax
public abstract Dimension preferredSize(int v)

Parameters
v

The number of rows in the list.
Description

The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to determine the ideal dimension required if
the List object associated with this peer object has v number of rows.

Imports
import java.awt.peer.ListPeer;

Returns
This method returns a Dimension object that contains the ideal width and height
measurements required of the List object.

See Also
The preferredSize method of the List class described in Chapter 5

select(int)

InterfaceName
ListPeer

Purpose
Selects the text item at the specified position in the list.

Syntax
public abstract void select(int index)

Parameters
index

The index of the item in the list to be selected.
Description

The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to highlight the item at the position specified
by index.

Imports
import java.awt.peer.ListPeer;

Returns
None.

See Also
The select method of the List class described in Chapter 5

setMultipleSelections(boolean)

InterfaceName
ListPeer

Purpose
Enables and disables multiple selection of items in the list.

Syntax
public abstract void setMultipleSelections(boolean mFlag)

Parameters
mFlag

If the value of mFlag is true, then multiple items in the list can be selected.
If the value of mFlag is false, then the list functions as a single-selection list in
which only one of the items displayed can be selected.

Description
The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI, to set whether or not the user can select
multiple items in the List component associated with this peer object.

Imports
import java.awt.peer.ListPeer;

Returns
None.

See Also
The setMultipleSelections method of the List class described in Chapter 5

ScrollbarPeer

Purpose

Defines the interface that must be implemented by a GUI-dependent class to
create and manage a scrollbar object.

Syntax
public interface ScrollbarPeer extends Object extends ComponentPeer

Description
This interface defines the API between the Scrollbar class and the underlying
operating system GUI primitives used for creating and interacting with scrollbar
objects. Native code that uses the API of the underlying GUI toolkit to create and
manage a scrollbar object is encapsulated in a GUI-dependent class that
implements this interface. Figure 9-10 shows the inheritance hierarchy for the
ScrollbarPeer interface.

PackageName
java.awt.peer

Imports
import java.awt.peer.ScrollbarPeer;

Constructors
None.

Parameters
None.

Figure 9-10 Inheritance hierarchy for the ScrollbarPeer interface

setLineIncrement(int)

InterfaceName
ScrollbarPeer

Purpose
Sets the step size for decrements and increments when the line up or line down
arrow buttons of the scrollbar are invoked.

Syntax
public abstract void setLineIncrement(int l)

Parameters
l

The line increment size.
Description

The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to set the step size for line increments and
decrements of the Scrollbar object associated with this peer object.

Imports
import java.awt.peer.ScrollbarPeer;

Returns
None.

See Also
The setLineIncrement method of the Scrollbar class described in Chapter 4

setPageIncrement(int)

InterfaceName
ScrollbarPeer

Purpose
Sets the step size for decrements or increments when the page up or page down
arrow buttons of the scrollbar are invoked.

Syntax
public abstract void setPageIncrement(int l)

Parameters
l

The page increment size.
Description

The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to set the step size for page increments and
decrements of the Scrollbar object associated with this peer object.

Imports
import java.awt.peer.ScrollbarPeer;

Returns
None.

See Also
The setPageIncrement method of the Scrollbar class described in Chapter 4

setValue(int)

InterfaceName
ScrollbarPeer

Purpose
Sets the value of the current position of the Scrollbar to the specified value.

Syntax
public abstract void setValue(int p)

Parameters
p

The new value for the current position of the Scrollbar.
Description

The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to set the value of the current position of the
Scrollbar object associated with this peer object.

Imports
import java.awt.peer.ScrollbarPeer;

Returns

None.
See Also

The setValue method of the Scrollbar class described in Chapter 4

setValues(int, int, int, int)

InterfaceName
ScrollbarPeer

Purpose
Sets various parameters associated with the ScrollBar object.

Syntax
public abstract void setValues(int value, int visible, int minScroll, int maxScroll)

Parameters
value

The position of the scrollbar thumb in the current window.
visible

The size of the visible region of the area that is being scrolled using the scrollbar.
minScroll

The minimum value of the scrollbar.
maxScroll

The maximum value of the scrollbar.
Description

The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to set the specified parameters for the
Scrollbar object associated with this peer object.

Imports
import java.awt.peer.ScrollbarPeer;

Returns
None

See Also
The setValues method of the Scrollbar class described in Chapter 4

ContainerPeer

Purpose
Defines the interface that must be implemented by a GUI-dependent class to
create and manage a container object.

Syntax
public interface ContainerPeer extends Object extends ComponentPeer

Description
This interface defines the API between the Container class and the underlying
operating system GUI primitives used for creating and interacting with graphical
components that can contain other graphical components. Native code that uses
the API of the underlying GUI toolkit to create and manage a GUI component that

can contain other graphical components is encapsulated in a GUI-dependent class
that implements this interface. Figure 9-11 shows the inheritance hierarchy for the
ContainerPeer interface.

PackageName
java.awt.peer

Imports
import java.awt.peer.ContainerPeer;

Constructors
None.

Parameters
None.

Figure 9-11 Inheritance hierarchy for the ContainerPeer interface

insets()

InterfaceName
ContainerPeer

Purpose
Determines the top, left, bottom, right insets for the Container object.

Syntax
public abstract Insets insets()

Parameters
None.

Description
The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to determine the extra space that must be
added as padding on the top, left, bottom, and right sides of the Container object.

Imports
import java.awt.peer.ContainerPeer;

Returns
This method returns an Insets object that specifies the top, left, bottom, and right
padding that must be subtracted from the dimensions of the Container object in
order to determine the area required for laying out Components within the
Container.

See Also
The insets method of the Container class described in Chapter 3

PanelPeer

Purpose
Defines the interface that must be implemented by a GUI-dependent class to
create and manage a panel object.

Syntax
public interface PanelPeer extends Object extends ContainerPeer

Description
This interface defines the API between the Panel class and the underlying
operating system GUI primitives used for creating and interacting with panel
graphical components. Native code that uses the API of the underlying GUI
toolkit to create and manage a panel object is encapsulated in a GUI-dependent
class that implements this interface. This GUI-dependent class is the interface
between the Panel class and the underlying GUI toolkit of the platform on which
the Java applications are being executed. Figure 9-12 shows the inheritance
hierarchy for the PanelPeer interface.

PackageName
java.awt.peer

Imports
import java.awt.peer.PanelPeer;

Constructors
None.

Parameters
None.

Figure 9-12 Inheritance hierarchy for the PanelPeer interface

WindowPeer

Purpose
Defines the interface that must be implemented by a GUI-dependent class to
create and manage a top-level window object.

Syntax
public interface WindowPeer extends Object extends ContainerPeer

Description
This interface defines the API between the Window class and the underlying
operating system GUI primitives used for creating and interacting with top-level
windows. These windows have neither a title bar nor a border. Native code that
uses the API of the underlying GUI toolkit to create and manage a top-level
container object, is encapsulated in a GUI-dependent class that implements this
interface. Figure 9-13 shows the inheritance hierarchy for the WindowPeer
interface.

PackageName

java.awt.peer
Imports

import java.awt.peer.WindowPeer;
Constructors

None.
Parameters

None.

Figure 9-13 Inheritance hierarchy for the WindowPeer interface

toBack()

InterfaceName
WindowPeer

Purpose
Sends the parent frame object to the back of the Window object associated with
this peer.

Syntax
public abstract void toBack()

Parameters
None.

Description
The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to push the parent Frame window object to
the back of the Window.

Imports
import java.awt.peer.WindowPeer;

Returns
None.

See Also
The toBack method of the Window class described in Chapter 3

toFront()

InterfaceName
WindowPeer

Purpose
Brings the parent frame object to the front of the Window object associated with
this peer.

Syntax
public abstract void toFront()

Parameters

None.
Description

The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to bring the parent Frame window object to
the front of the Window object.

Imports
import java.awt.peer.WindowPeer;

Returns
None.

See Also
The toFront method of the Window class described in Chapter 3

DialogPeer

Purpose
Defines the interface that must be implemented by a GUI-dependent class to
create and manage a Dialog box object.

Syntax
public interface DialogPeer extends Object extends WindowPeer

Description
This interface defines the API between the Dialog class and the underlying
operating system GUI primitives used for creating and interacting with dialog box
object. The GUI-dependent class that creates a dialog box object must implement
this interface. The methods defined in this interface are implemented in native
code, using the API of the underlying GUI toolkit to create and manage a dialog
box object. Figure 9-14 shows the inheritance hierarchy for the DialogPeer
interface.

PackageName
java.awt.peer

Imports
import java.awt.peer.DialogPeer;

Constructors
None.

Parameters
None.

Figure 9-14 Inheritance hierarchy for the DialogPeer interface

setResizable(boolean)

InterfaceName
DialogPeer

Purpose
Sets whether the dialog box can be resized or not.

Syntax
public abstract void setResizable(boolean resizable)

Parameters
resizable

A value of true makes the Dialog component resizable; false means the Dialog
window is not resizable.

Description
The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to enable and disable the resizable property
of the Dialog window object associated with this peer.

Imports
import java.awt.peer.DialogPeer;

Returns
None.

See Also
The setResizable method of the Dialog class described in Chapter 5

setTitle(String)

InterfaceName
DialogPeer

Purpose
Sets the text string on the title bar of the Dialog window.

Syntax
public abstract void setTitle(String title)

Parameters

title
The text to display in the title bar of the Dialog window.

Description
The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to set the title of the Dialog window to the
string specified in the parameter to this method.

Imports
import java.awt.peer.DialogPeer;

Returns
None.

See Also
The setTitle method of the Dialog class described in Chapter 5

FileDialogPeer

Purpose
Defines the interface that must be implemented by a GUI-dependent class to
create and manage a FileDialog window that displays a list of files and allows the
user to select a file.

Syntax
public interface FileDialogPeer extends Object extends DialogPeer

Description
This interface defines the API between the FileDialog class and the underlying
operating system GUI primitives used for creating and interacting with dialog box
windows that display a list of files and allow the user to select from the list. The
GUI-dependent class that creates a file dialog box window must implement this
interface. The methods defined in this interface are implemented in native code
using the API of the underlying GUI toolkit to create and manage a dialog box
window that allows the user to pick a file from a list of filenames. Figure 9-15
shows the inheritance hierarchy for the FileDialogPeer interface.

PackageName
java.awt.peer

Imports
import java.awt.peer.FileDialogPeer;

Constructors
None.

Parameters
None.

Figure 9-15 Inheritance hierarchy for the FileDialogPeer interface

setDirectory(String)

InterfaceName
FileDialogPeer

Purpose
Sets the directory from which the user is prompted to select a file.

Syntax
public abstract void setDirectory(String dir)

Parameters
dir

The name of the directory from which the user is prompted to select a file.
Description

The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to display the text string specified in dir in a
window on the FileDialog box.

Imports
import java.awt.peer.FileDialogPeer;

Returns
None.

See Also
The setDirectory method of the FileDialog class described in Chapter 5

setFile(String)

InterfaceName
FileDialogPeer

Purpose
Sets the directory from which the user is prompted to select a file.

Syntax
public abstract void setFile(String file)

Parameters
file

The name of the (default) file for the FileDialog object associated with this peer
object.

Description
The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to display the text string specified in file as a
label on the FileDialog box.

Imports
import java.awt.peer.FileDialogPeer;

Returns
None.

See Also
The setFile method of the FileDialog class described in Chapter 5

setFilenameFilter(FilenameFilter)

InterfaceName
FileDialogPeer

Purpose
Sets the filter that determines which files to display for users to select from in the
FileDialog box.

Syntax
public abstract void setFilenameFilter(FilenameFilter filter)

Parameters
filter

The file name filter for displaying files in the FileDialog window.
Description

The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to display the text string specified in filter
on a label on the FileDialog box and to perform the appropriate filtering of file
names.

Imports
import java.awt.peer.FileDialogPeer;

Returns
None.

See Also
The setFilenameFilter method of the FileDialog class described in Chapter 5

FramePeer

Purpose
Defines the interface that must be implemented by a GUI-dependent class to
create and manage a Frame window.

Syntax
public interface FramePeer extends Object extends WindowPeer

Description
This interface defines the API between the Frame class and the underlying
operating system GUI primitives used for creating and interacting with top-level
frame windows that have a title bar and borders and can optionally have a menu
bar. Native code that uses the API of the underlying GUI toolkit to create and
manage a top-level frame window object is encapsulated in a GUI-dependent
class that implements this interface. Figure 9-16 shows the inheritance hierarchy
for the FramePeer interface.

PackageName
java.awt.peer

Imports
import java.awt.peer.FramePeer;

Constructors
None.

Parameters
None.

Figure 9-16 Inheritance hierarchy for the FramePeer interface

setCursor(int)

InterfaceName
FramePeer

Purpose
Sets the cursor to display when the pointer is within the Frame window associated
with this peer object.

Syntax
public abstract void setCursor(int cursorType)

Parameters
cursorType

An integer constant that indicates the type of cursor to display within the Frame
window for which this FramePeer was created.

Description
The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to display the appropriate bitmap image
when the pointer is within the bounds of the Frame window associated with this
peer.

Imports
import java.awt.peer.FramePeer;

Returns
None.

See Also
The setCursor method of the Frame class described in Chapter 4

setIconImage(Image)

InterfaceName
FramePeer

Purpose
Sets the image of the icon of the Frame window associated with this peer object.

Syntax
public abstract void setIconImage(Image img)

Parameters
img

The image to be used for the icon.
Description

The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to display the appropriate image when the
Frame window is iconized.

Imports
import java.awt.peer.FramePeer;

Returns
None.

See Also
The setIconImage method of the Frame class described in Chapter 4

setMenuBar(MenuBar)

InterfaceName
FramePeer

Purpose
Sets the menu bar for the Frame to the specified MenuBar object.

Syntax
public abstract void setMenuBar(MenuBar mbar)

Parameters
mbar

The MenuBar object that represents the menu bar for the Frame window.
Description

The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to associate the specified menu bar with the
Frame window associated with this peer object.

Imports
import java.awt.peer.FramePeer;

Returns
None.

See Also
The setMenuBar method of the Frame class described in Chapter 4

setResizable(boolean)

InterfaceName
FramePeer

Purpose
Sets whether or not the Frame window can be resized.

Syntax
public abstract void setResizable(boolean resizable)

Parameters
resizable

A boolean value that represents whether or not the Frame window is resizable. If
this value is set to true, the Frame window is resizable; if it is set to false, the
Frame window is not resizable.

Description
The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to enable and disable the resizable property
of the Frame window associated with this peer.

Imports
import java.awt.peer.FramePeer;

Returns
None.

See Also
The setResizable method of the Frame class described in Chapter 4

setTitle(String)

InterfaceName
FramePeer

Purpose
Sets the text string on the title bar of the frame.

Syntax
public abstract void setTitle(String title)

Parameters
title

The text string to display in the title bar of the Frame window.
Description

The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to set the title of the Frame window to the
string specified in the parameter to this method.

Imports
import java.awt.peer.FramePeer;

Returns
None.

See Also
The setTitle method of the Frame class described in Chapter 4

MenuComponentPeer

Purpose
Defines the interface that must be implemented by a GUI-dependent class to
create and manage a MenuComponent object.

Syntax
public interface MenuComponentPeer extends Object

Description

This interface defines the API between the MenuComponent class and the
underlying operating system GUI primitives used for creating and interacting with
graphical objects associated with menus. Native code that uses the API of the
underlying GUI toolkit to create and manage a menu component object is
encapsulated in a GUI-dependent class that implements this interface. Figure 9-17
shows the inheritance hierarchy for the MenuComponentPeer interface.

PackageName
java.awt.peer

Imports
import java.awt.peer.MenuComponentPeer;

Constructors
None.

Parameters
None.

Figure 9-17 Inheritance hierarchy for the MenuComponentPeer interface

dispose()

InterfaceName
MenuComponentPeer

Purpose
Frees the resources allocated to the MenuComponent.

Syntax
public abstract void dispose()

Parameters
None.

Description
The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to free the resources allocated to the
MenuComponent object associated with this peer.

Imports
import java.awt.peer.MenuComponentPeer;

Returns
None.

See Also
The removeNotify method of the MenuComponent class described in Chapter 6

MenuBarPeer

Purpose

Defines the interface that must be implemented by a GUI-dependent class to
create and manage a MenuBar object.

Syntax
public interface MenuBarPeer extends MenuComponentPeer

Description
This interface defines the API between the MenuBar class and the underlying
operating system GUI primitives used for creating and interacting with menu bar
objects. Native code that uses the API of the underlying GUI toolkit to create and
manage a menu bar object is encapsulated in a GUI-dependent class that
implements this interface. Figure 9-18 shows the inheritance hierarchy for the
MenuBarPeer interface.

PackageName
java.awt.peer

Imports
import java.awt.peer.MenuBarPeer;

Constructors
None.

Parameters
None.

Figure 9-18 Inheritance hierarchy for the MenuBarPeer interface

addHelpMenu(Menu)

InterfaceName
MenuBarPeer

Purpose
Adds the specified menu as the help menu for the menu bar.

Syntax
public abstract void addHelpMenu(Menu m)

Parameters
m

The help menu on the menu bar is set to this menu object.
Description

The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to add the specified menu to the menu bar
and to designate it as the help menu.

Imports

import java.awt.peer.MenuBarPeer;
Returns

None.
See Also

The setHelpMenu method of the MenuBar class described in Chapter 6

addMenu(Menu)

InterfaceName
MenuBarPeer

Purpose
Adds a menu to the MenuBar object associated with this peer object.

Syntax
public abstract void addMenu(Menu m)

Parameters
m

The menu object to be added to the menu bar.
Description

The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to add the specified menu to the menu bar.

Imports
import java.awt.peer.MenuBarPeer;

Returns
None.

See Also
The add method of the MenuBar class described in Chapter 6

delMenu(int)

InterfaceName
MenuBarPeer

Purpose
Removes the specified menu from the menu bar.

Syntax
public abstract void delMenu(int index)

Parameters
index

The index of the menu to remove from the menu bar object associated with this
peer.

Description
The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to remove the specified menu from the
menu bar.

Imports
import java.awt.peer.MenuBarPeer;

Returns

None.
See Also

The remove method of the MenuBar class described in Chapter 6

MenuItemPeer

Purpose
Defines the interface that must be implemented by a GUI-dependent class to
create and manage a MenuItem object.

Syntax
public interface MenuItemPeer extends MenuComponentPeer

Description
This interface defines the API between the MenuItem class and the underlying
operating system GUI primitives used for creating and interacting with menu item
objects. Native code that uses the API of the underlying GUI toolkit to create and
manage a menu item object is encapsulated in a GUI-dependent class that
implements this interface. Figure 9-19 shows the inheritance hierarchy for the
MenuItemPeer interface.

PackageName
import java.awt.peer

Imports
import java.awt.peer.MenuBarPeer;

Constructors
None.

Parameters
None.

Figure 9-19 Inheritance hierarchy for the MenuItemPeer interface

disable()

InterfaceName
MenuItemPeer

Purpose
Makes the MenuItem associated with this peer unselectable by the user.

Syntax
public abstract void disable()

Parameters
None.

Description

The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to make the menu item unselectable by the
user.

Imports
import java.awt.peer.MenuItemPeer;

Returns
None.

See Also
The disable method of the MenuItem class described in Chapter 6

enable()

InterfaceName
MenuItemPeer

Purpose
Makes the MenuItem associated with this peer selectable by the user.

Syntax
public abstract void enable()

Parameters
None.

Description
The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to make the menu item selectable by the
user.

Imports
import java.awt.peer.MenuItemPeer;

Returns
None.

See Also
The enable method of the MenuItem class described in Chapter 6

setLabel(String)

InterfaceName
MenuItemPeer

Purpose
Sets the text label of the MenuItem to the specified string.

Syntax
public abstract void setLabel(String label)

Parameters
label

The text for the label of the MenuItem for which this peer was created.
Description

The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to set the text of the menu item to the string
specified in label.

Imports
import java.awt.peer.MenuItemPeer;

Returns
None.

See Also
The setLabel method of the MenuItem class described in Chapter 6

CheckboxMenuItemPeer

Purpose
Defines the interface that must be implemented by a GUI-dependent class to
create and manage a CheckboxMenuItem object.

Syntax
public interface CheckboxMenuItemPeer extends Object extends MenuItemPeer

Description
This interface defines the API between the CheckboxMenuItem class and the
underlying operating system GUI primitives used for creating and interacting with
checkboxes that can be used as menu item objects. Native code that uses the API
of the underlying GUI toolkit to create and manage a checkbox object that can be
used in menus is encapsulated in a GUI-dependent class that implements this
interface. Figure 9-20 shows the inheritance hierarchy for the
CheckboxMenuItemPeer interface.

PackageName
java.awt.peer

Imports
import java.awt.peer.CheckboxMenuItemPeer;

Constructors
None.

Parameters
None.

Figure 9-20 Inheritance hierarchy for the CheckboxMenuItemPeer interface

setState(boolean)

InterfaceName
CheckboxMenuItemPeer

Purpose

Sets the checkbox state (in the menu) to either on or off.
Syntax

public abstract void setState(boolean t)
Parameters
t

The checkbox is “unchecked” if this value is false. The checkbox is “checked” if
the value of this variable is true.

Description
The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific graphical environment to set the state of the
Checkbox to either on (checked) or off (unchecked), depending on whether the
value of t is true or false.

Imports
import java.awt.peer.CheckboxMenuItemPeer;

Returns
None.

See Also
The setState method of the CheckboxMenuItem class described in Chapter 6

MenuPeer

Purpose
Defines the interface that must be implemented by a GUI-dependent class to
create and manage a Menu object.

Syntax
public interface MenuPeer extends MenuItemPeer

Description
This interface defines the API between the Menu class and the underlying GUI
primitives that can be components of a menu bar. Native code that uses the API of
the underlying GUI toolkit to create and manage a menu object is encapsulated in
a GUI-dependent class that implements this interface. Figure 9-21 shows the
inheritance hierarchy for the MenuPeer interface.

PackageName
java.awt.peer

Imports
import java.awt.peer.MenuPeer;

Constructors
None.

Parameters
None.

Figure 9-21 Inheritance hierarchy for the MenuPeer interface

addItem(MenuItem)

InterfaceName
MenuPeer

Purpose
Adds the specified MenuItem to the Menu object associated with this peer.

Syntax
public abstract void addItem(MenuItem mItem)

Parameters
mItem

The MenuItem to be added to the menu.
Description

The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to add the specified menu item to the Menu
associated with this peer.

Imports
import java.awt.peer.MenuPeer;

Returns
None.

See Also
The add method of the Menu class described in Chapter 6

addSeparator()

InterfaceName
MenuPeer

Purpose
Adds a separator line in the Menu.

Syntax
public abstract void addSeparator()

Parameters
None.

Description
The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to draw a line just below the previous item
that was added to the Menu object assoicated with this peer object.

Imports
import java.awt.peer.MenuPeer;

Returns
None.

See Also
The addSeparator method of the Menu class described in Chapter 6

delItem(int)

InterfaceName
MenuPeer

Purpose
Removes the menu item at the index specified by index from the Menu object
associated with this peer.

Syntax
public abstract void delItem(int index)

Parameters
index

The index of the item to remove from the Menu object associated with this peer.
Description

The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to remove the MenuItem at the specified
index from the Menu object.

Imports
import java.awt.peer.MenuPeer;

Returns
None.

See Also
The remove method of the Menu class described in Chapter 6

TextComponentPeer

Purpose
Defines the interface that must be implemented by a GUI-dependent class to
create and manage a TextComponent object.

Syntax
public interface TextComponentPeer extends Object extends ComponentPeer

Description
This interface defines the API between the TextComponent class and the
underlying operating system GUI primitives used for creating graphical
components in which text can be edited. Native code that uses the API of the
underlying GUI toolkit to create and manage a TextComponent object is
encapsulated in a GUI-dependent class that implements this interface. Figure 9-22
shows the inheritance hierarchy for the TextComponentPeer interface.

PackageName
java.awt.peer

Imports
import java.awt.peer.TextComponentPeer;

Constructors
None.

Parameters
None.

Figure 9-22 Inheritance hierarchy for the TextComponentPeer interface

getSelectionEnd()

InterfaceName
TextComponentPeer

Purpose
Returns the position of the end of the text that the user selected.

Syntax
public abstract int getSelectionEnd()

Parameters
None.

Description
The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to determine the position of the end of the
text selected by the user.

Imports
import java.awt.peer.TextComponentPeer;

Returns
This method returns an integer value that indicates the character position of the
last character in the text selected by the user.

See Also
The getSelectionEnd method of the TextComponent class described in Chapter 5

getSelectionStart()

InterfaceName
TextComponentPeer

Purpose
Returns the position of the start of the text that the user selected.

Syntax
public abstract int getSelectionStart()

Parameters
None.

Description

The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to determine the position of the beginning of
the text selected by the user.

Imports
import java.awt.peer.TextComponentPeer;

Returns
This method returns an integer value that indicates the character position of the
first character in the text selected by the user.

See Also
The getSelectionStart method of the TextComponent class described in Chapter 5

getText()

InterfaceName
TextComponentPeer

Purpose
Returns the text that the TextComponent contains.

Syntax
public abstract String getText()

Parameters
None.

Description
The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to determine the text contained in the
TextComponent object associated with this peer.

Imports
import java.awt.peer.TextComponentPeer;

Returns
This method returns a string containing all the text contained in the
TextComponent.

See Also
The getText method of the TextComponent class described in Chapter 5

select(int, int)

InterfaceName
TextComponentPeer

Purpose
Selects a range of text.

Syntax
public abstract void select(int selStart, int selEnd)

Parameters
selStart

The position at which to start selecting the text.

selEnd
The position at which to stop selecting the text, starting from selStart.

Description
The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to select the range of text between the start
index selStart and the end index selEnd. Highlighting the selected text is a
standard convention followed in most graphical environments.

Imports
import java.awt.peer.TextComponentPeer;

Returns
None.

See Also
The select method of the TextComponent class described in Chapter 5

setEditable(boolean)

InterfaceName
TextComponentPeer

Purpose
Sets whether or not the TextComponent permits editing of the text contained in it.

Syntax
public abstract void setEditable(boolean editable)

Parameters
editable

A value of true makes the text in the TextComponent editable by the user. A value
of false means the text in the TextComponent cannot be edited.

Description
The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to set whether or not the text contained in
the TextComponent can be edited.

Imports
import java.awt.peer.TextComponentPeer;

Returns
None.

See Also
The setEditable method of the TextComponent class described in Chapter 5

setText(String)

InterfaceName
TextComponentPeer

Purpose
Sets the string to display in the TextComponent object associated with this peer.

Syntax
public abstract void setText(String s)

Parameters

s
The text to display in the TextComponent object associated with this peer object.

Description
The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to display the text string s in the
TextComponent.

Imports
import java.awt.peer.TextComponentPeer;

Returns
None.

See Also
The setText method of the TextComponent class described in Chapter 5

TextAreaPeer

Purpose
Defines the interface that must be implemented by a GUI-dependent class to
create and manage a TextArea object.

Syntax
public interface TextAreaPeer extends Object extends TextComponentPeer

Description
This interface defines the API between the TextArea class and the underlying
operating system GUI primitives used for displaying, editing, and managing
multiline text areas. Native code that uses the API of the underlying GUI toolkit
to create and manage a TextArea object is encapsulated in a GUI-dependent class
that implements this interface. Figure 9-23 shows the inheritance hierarchy for the
TextAreaPeer interface.

PackageName
java.awt.peer

Imports
import java.awt.peer.TextAreaPeer;

Constructors
None.

Parameters
None.

Figure 9-23 Inheritance hierarchy for the TextAreaPeer interface

insertText(String, int)

InterfaceName
TextAreaPeer

Purpose
Inserts a string of text at a specified index into the existing text in the TextArea
object.

Syntax
public abstract void insertText(String txt, int pos)

Parameters
txt

The text to insert into the TextArea object.
pos

The position at which to insert the specified text.
Description

The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to insert the text string(txt) at the index
specified by pos into the TextArea component associated with this peer object.

Imports
import java.awt.peer.TextAreaPeer;

Returns
None.

See Also
The insertText method of the TextArea class described in Chapter 5

minimumSize(int, int)

InterfaceName
TextAreaPeer

Purpose
Determines the minimum height and width for a TextArea object containing the
specified number of rows and columns of text.

Syntax
public abstract Dimension minimumSize(int rows, int cols)

Parameters
rows

The number of rows in the TextArea object.
cols

The number of columns in the TextArea object.
Description

The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to determine the minimum dimension
required if the TextArea object associated with this peer object has the specified
number of rows and columns of text.

Imports
import java.awt.peer.TextAreaPeer;

Returns
This method returns a Dimension object that contains the minimum width and
height measurements required of the TextArea object.

See Also
The minimumSize method of the TextArea class described in Chapter 5

preferredSize(int, int)

InterfaceName
TextAreaPeer

Purpose
Determines the ideal height and width for a TextArea object containing the
specified number of rows and columns of text.

Syntax
public abstract Dimension preferredSize(int rows, int cols)

Parameters
rows

The preferred number of rows for the TextArea object.
cols

The preferred number of columns for the TextArea object.
Description

The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to determine the ideal dimension required if
the TextArea object associated with this peer object has the specified number of
rows and columns of text.

Imports
import java.awt.peer.TextAreaPeer;

Returns
This method returns a Dimension object that contains the ideal width and height
measurements required of the TextArea object.

See Also
The preferredSize method of the TextArea class described in Chapter 5

replaceText(String, int, int)

InterfaceName
TextAreaPeer

Purpose
Replaces a specified range of text with another string of text.

Syntax
public abstract void replaceText (String txt, int start, int end)

Parameters
txt

The new text string to use as the replacement text.

start
The starting position of the text in the TextArea to be replaced.

end
The ending position of the text in the TextArea to be replaced.

Description
The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to replace the characters between the indices
specified by start and end, with the text string supplied in txt.

Imports
import java.awt.peer.TextAreaPeer;

Returns
None.

See Also
The replaceText method of the TextArea class described in Chapter 5

TextFieldPeer

Purpose
Defines the interface that must be implemented by a GUI-dependent class to
create and manage a TextField object.

Syntax
public interface TextFieldPeer extends Object extends TextComponentPeer

Description
This interface defines the API between the TextField class and the underlying
operating system GUI primitives used for creating graphical components that
allow editing of a single line of text. Native code that uses the API of the
underlying GUI toolkit to create and manage a TextField object is encapsulated in
a GUI-dependent class that implements this interface.

PackageName
java.awt.peer

Imports
import java.awt.peer.TextFieldPeer;

Constructors
None.

Parameters
None.

minimumSize(int)

InterfaceName
TextFieldPeer

Purpose
Determines the minimum height and width for a TextField object containing the
specified number of columns.

Syntax
public abstract Dimension minimumSize(int cols)

Parameters
cols

The minimum number of columns the TextField object must have.
Description

The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to determine the minimum dimension
required if the TextField object associated with this peer object has cols number
of columns of text.

Imports
import java.awt.peer.TextFieldPeer;

Returns
This method returns a Dimension object that contains the minimum width and
height measurements required of the TextField object.

See Also
The minimumSize method of the TextField class described in Chapter 5

preferredSize(int)

InterfaceName
TextFieldPeer

Purpose
Determines the ideal height and width for a TextField object containing the
specified number of columns of text.

Syntax
public abstract Dimension preferredSize(int cols)

Parameters
cols

The preferred number of columns the TextField object must have.
Description

The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to determine the ideal dimension of the
TextField object associated with this peer object if it has cols number of columns.

Imports
import java.awt.peer.TextFieldPeer;

Returns
This method returns a Dimension object that contains the ideal width and height
measurements required of the TextField object.

See Also
The preferredSize method of the TextField class described in Chapter 5

setEchoCharacter(char)

InterfaceName
TextFieldPeer

Purpose

Sets the character that is echoed when the user enters text in the TextField object
associated with this peer.

Syntax
public abstract void setEchoCharacter(char c)

Parameters
c

The character that should be printed in the TextField when the user enters text in
the TextField object.

Description
The GUI-dependent class that implements this method must make native calls to
the API of the platform-specific GUI to set the echo character for the TextField
object to the specified character.

Imports
import java.awt.peer.TextFieldPeer;

Returns
None.

See Also
The setEchoCharacter method of the TextField class described in Chapter 5

PART IV
Networking in Java

Chapter 10
Network And Sockets

A computer network is a communication system for connecting two or more hosts. Hosts
can be anything from microcomputers to super-computers, which makes establishing
communication among them an involved task for programmers. The goal of Java’s
internetworking facilities is to hide the details of different physical networks from
programmers. This allows the programmer to worry about the more romantic pursuits of
network programming and not to be bogged down by the trivial details of many different
systems. However, this grand achievement of hiding details was no walk in the park for
the Java designers. Hosts can have vastly different physical attributes and may be
dedicated to widely varying tasks. What is needed to make all these different species of
systems happy and able to communicate with each other is a common protocol. A
protocol is a set of rules and conventions between the communicating participants. Using
the higher-level protocol abstractions, the programmer can create Java programs quickly
and with increased productivity. They need not build special versions of application
software to move and translate data between different types of machines.

This chapter introduces the basic concepts of networking. It discusses client-server
applications, tells you how to identify a host using an Internet address, and explains what

sockets are. Following a summary of the classes and interfaces covered in this chapter are
detailed explanations of the methods presented with examples to help you build
networking applications in Java. The project you will develop in this chapter is a client-
server application. The client sends messages to the server requesting it to send the
contents of a file. The server processes the request and sends the contents of the file line-
by-line. On receiving the file’s contents from the server, the client displays it on a
window.

Client-Server Applications

There are several models for building network applications. The most widely used model
is the client-server model which involves two types of processes: a server process and a
client process. When you start a server process on a host, it waits for a client to contact it.
A client process, started on the same host or a different one, sends a request to the server
over the network. The server responds to the request by sending a reply. Figure 10-1
illustrates a typical exchange in a client-server application.

Figure 10-1 A client-server communication scenario(a) Host A, as a client sends a
request for service to server located on host B(b) After processing the request, the server
sends a reply to the client

The communication between a server and a client can be accomplished in two ways:
connection-oriented or connectionless. In a connection-oriented transfer, a dedicated
connection is established between a server and a client. They use this connection to
exchange information. Given that the other type is called connectionless, it doesn’t seem
like a lot of communication actually happens between them. Then how do they
communicate? The client sends the request by specifying the server’s address. This is
received by the server, who is waiting for a message from some client. The server obtains
the client address from the message to which it may then respond.

Connection-Oriented Protocol

In a connection-oriented communication, the client and the server have a dedicated link
established between them. It is similar to the telephone communication system. When
you call someone and the called phone number exists, there is a dedicated line for you to
converse. Whatever you speak is guaranteed to be heard on the other side, with probably
an element of delay. Also the words you speak are heard in the exact order in which they
were spoken. The connection-oriented protocol is a reliable protocol. The messages sent
between any two processes are guaranteed to be delivered and in the proper sequence.
Most of the networking applications are connection oriented, as they require reliable
communication protocol. TCP (Transfer Control Protocol) is a connection-oriented
protocol in the TCP/IP family.

Connectionless Protocol

In a connectionless protocol, there is no dedicated link between the client and the server.
They send messages as datagram packets, each of which contains the destination address.
The underlying network will decipher the targeted destination address from a packet and
routes the packet to the destination. In this sense, each packet is self-contained. They
have the information about the sender and the intended receiver, apart from the core
message. You can consider such a communication to be similar to the U.S. Postal service.
Each letter you send has its destination address contained in it and the postal department
takes the necessary steps to route the mail to the destination. But you should note that the
postal department guarantees neither the delivery nor the sequence of delivery. Similarly,
in the connectionless protocol, the packets are not guaranteed to be delivered, and even it
they are delivered, the order of delivery is not guaranteed. Then the obvious question is:
Where will you ever use the connectionless protocol for communication? You can use
this protocol where the order of messages is not critical. For example, consider a time
server application. The server can keep sending the updated time to the client. The client
need not assume any order of delivery. As it receives messages, logic can be built in the
client application to sense the sequence of received messages. In this application, missing
packets will not create any havoc. In the TCP/IP family, the UDP is the connectionless
protocol.

Internet Address

To identify a particular host in the Internet you need an Internet address. Using Internet
addressing, a host can communicate with another host located in the same physical
network or subnet, or in a different physical network, where both networks are linked by
the Internet. Hence, hosts separated geographically can communicate effectively by
addressing each other by their Internet address. Figure 10-2 illustrates the distribution of
hosts among the Internet, divided into different physical networks.

Figure 10-2 Distribution of hosts among different subnets over the Internet

An Internet address is usually written as four decimal numbers, which are separated by
decimal points. Each decimal digit in this address encodes one byte of the 32-bit Internet
address. The Internet address maps to a unique host and the host can be addressed by a
unique combination of the hostname and the name of the particular network the host is a
part of (i.e., domain name). Conceptual representation of Internet addresses is represented
in Figure 10-3.

Figure 10-3 Conceptual representation of Internet addressing

In the Internet address representation, Internet Id identifies a network in the Internet.
Subnet Id represents a local area network(subnet) and Host Id is the identifier for a given
host in the subnet. The combination of these three identifiers represents a unique host in
the Internet. Here 128.230.32.66 is the Internet address that maps to ratnam.cat.syr.edu,
where ratnam is the machine name and is a part of cat.syr.edu network domain. In this
example, host Id is 66, subnet Id is 32 and the Internet Id is 128.230. The InetAddress
Class in Java encapsulates the methods required to manipulate with an Internet address in
a networking application.

Why Sockets?

To provide an interface between your application and the network you need a socket.
Most of the communication in a client-server application is point-to-point, where the
endpoint of such communication is an application (client or server). A socket acts as an
endpoint for communication between processes on a single system or on different
systems. The applications communicate between themselves by sending messages to one
another. These messages are sent as a sequence of packets at the network level. For each
packet that is sent, there has to be a receiving end. Sockets form such an end point to
receive packets, as well as to send messages. Application programs request the operating
system to create a socket when in need. The system returns a socket identifier, in the form
of a small integer that the application program uses to reference the newly created socket.
A networking application can be identified by a <host, socket> pair (the host on which it
is running and the socket at which it is listening for messages).

Java provides separate classes which encapsulate the functionality of client and server
sockets. The Socket class is used to represent sockets on the client side, while the server
side sockets are represented by the ServerSocket class. The Socket and ServerSocket
form the client and server side sockets in a connection oriented protocol. Once a link is
established between the client and the server, they can exchange messages until one of
them closes the connection. Whereas, the sockets, in the case of connectionless protocol,
are represented by the DatagramSocket class. In this case, both the client and the server
are associated to a datagram socket. Every time a message is to be sent, they create a
DatagramPacket containing the destination address and port number along with the
message to be sent. This packet gets delivered (if it does get delivered) to the targeted
application. To implement various such policies for communication between a client and
a server, Java provides a SocketImpl Class. SocketImplFactory is an Interface that can be
used to generate more instances of the SocketImpl Class for use in your applications.

Network and Socket Summaries

Table 10-1 summarizes the classes and interfaces necessary for developing network
applications using Java.

Table 10-1 Class and interface description

Class/Interface Description

InetAddress Represents Internet addresses.

ServerSocket This class represents the server socket. It uses a SocketImpl class
to implement the actual policies regarding socket operations.

Socket This class represents the client socket. It uses a SocketImpl class
to implement the actual socket policies for its operations.

DatagramSocket This class represents a datagram socket, which is an
implementation of the connectionless protocol.

DatagramPacket This class represents a datagram packet, which is self-contained,
with the details of the destination host and the data to be sent.

SocketImpl This should be subclassed to provide actual implementation. This
class implements the actual socket policies for ServerSocket and

Socket classes.
SocketImplFactory A factory for creating actual instances of SocketImpl is defined in

this interface.

InetAddress

Purpose
Use InetAddress to represent Internet addresses.

Syntax
public final class InetAddress extends Object

Description
The InetAddress class represents the Internet Address. The methods of
InetAddress provide functionality to gain information about raw IP address,
hostname, and network address of a host machine, and hash code of the Internet
address in the hashtable. Figure 10-4 shows the inheritance diagram for the
InetAddress class.

Figure 10-4 Class diagram for InetAddress class

PackageName
java.net

Imports
import java.net.InetAddress;

Constructors
None; see getByName(String) method

Parameters
None

Example
Use the getByName(String) method of the InetAddress class to create an instance
of InetAddress. No public constructors are provided for InetAddress, so an
instance of InetAddress cannot be created using the new statement. In the
following example, the Client obtains the InetAddress of the server to connect to.
It uses the hostname of the server to create an InetAddress object.

import java.net.InetAddress;

public class Client extends Applet implements Runnable {

 Socket sock; // The Client Socket object

 // Client class members
 String servHost; //string containing the server
 hostname
 int servPort; // port number on which the server is
 listening to

 // other members

 public void init() {

 /* Obtain the server hostname using command line arguments or
 from web page */
 // code omitted
 // :
 // :
 // obtain Inetaddress of server by specifying the server’s
 hostname
 servHost = new String(“serval.cat.syr.edu”);
 InetAddress addr = InetAddress.getByName(servHost);
 sock = new Socket(addr, servPort); //create a client socket

 /* Other actions */

 #125; // end of init()

 }

equals(Object)

ClassName
InetAddress

Purpose
Compares the specified object with the object on which the method is invoked.

Syntax
public boolean equals(Object objct)

Parameters
objct

The object with which the invoked object is to be compared.
Description

The method compares the Internet address of the specified object with that of the
object on which the method is invoked. The objects are considered equal if their
Internet addresses are the same.

Imports
import java.net.InetAddress;

Returns
The return type of the method is boolean. It returns true if the objects compared
are the same; if the objects are not the same, the method returns false.

See Also
class InetAddress

Example
The following example obtains the InetAddress of both the Client and the Server.
It compares these objects to verify whether the Client is running on the same host
as the Server by using the equals(object) method of InetAddress class. The result
is displayed.

import java.net.InetAddress;
import java.io.*;

public class Client extends Applet implements Runnable {

 // Client class members
 Socket sock;

 /* other members and methods
 public void printOut(String str){ ..}
 public void init(){ ..}
 :
 */

 public void compareHosts() {
 InetAddress c_inet = InetAddress.getLocalHost();
 InetAddress s_inet = sock.getInetAddress();

 boolean sameHost = c_inet.equals(s_inet);
 if (sameHost) /* returns TRUE */
 printOut(“ Client and Server run on the same host”);

 else /* returns FALSE*/
 printOut(“ Client and Server run on different Hosts”);
 }
 }

getAddress()

ClassName
InetAddress

Purpose
This method returns the raw IP address of the object in network byte order.

Syntax
public byte[] getAddress()

Parameters
None.

Description
The method returns the raw IP address representation of the Internet address in
32-bit format in network byte order. It returns the addr[] byte array, member of
the InetAddress. addr[0] contains the highest order byte position. addr[] is an
array of bytes so that this method is extendable for 64-bit IP addresses also.

Imports
import java.net.InetAddress;

Returns
The value of the addr[] byte array in InetAddress; the return type is a byte array.

See Also
The class InetAddress

Example
The following example gets the raw IP address of machine on which the Server is
running, servHost, into a byte array.

import java.net.InetAddress;
import java.io.*;

public class Client extends Applet implements Runnable {
/*
 Members and methods of the class
 :
 :

 */

 public void RawIp() {
 InetAddress inet = InetAddress.getByName(servHost);

 /* gets the raw IP address in network byte order */
 byte[] raw_ip = inet.getAddress();
 }
}

getAllByName(String)

ClassName
InetAddress

Purpose
Returns an array of all InetAddresses that correspond to the specified hostname.

Syntax
public static synchronized InetAddress[] getAllByName(String host_name)
throws UnknownHostException

Parameters
host_name

The hostname of the machine, the InetAddresses which you are trying to obtain.
Description

A host can have multiple InetAddresses (Internet address mapping). To access all
of those InetAddresses, the hostname is passed to the getAllByName method. The
method finds out the Internet addresses of the given host and returns all of them
as an array of InetAddress objects.

Imports
import java.net.InetAddress;

Returns
The return type of this method is an array of InetAddresses. The array elements
contain all the InetAddresses of the specified host.

See Also
The class InetAddress; method InetAddress.getByName(String hostname)

Example
In the following example, the Client obtains all the InetAddresses of the Server
host into an array of InetAddress.

import java.net.InetAddress;

public class Client extends Applet implements Runnable{
 // Client class members and methods
 // :
 // :

public void ServerInfo(){
 // String servHost; contains host name of Server
 // more code here …

InetAddress[] inet =
 InetAddress.getAllByName(servHost);
}
}

getByName(String)

ClassName
InetAddress

Purpose
This method gets the InetAddress of the specified host.

Syntax
public static synchronized InetAddress getByName(String host_name) throws
UnknownHostException

Parameters
host_name

The hostname of the machine whose InetAddress is returned by this method.
Description

This method returns the InetAddress of a specified host. The InetAddress class
does not have public constructors. You can use this method to create an instance
of the InetAddress for a particular host.

Imports
import java.net.InetAddress;

Returns
The return value of the method is InetAddress. It returns the InetAddress for the
specified host.

See Also
The class InetAddress; method InetAddress.getAllByName(String)

Example
Refer to the code example in the class InetAddress API where the method
getByName is used to obtain the InetAddress of the server host by specifying the
server’s hostname.

getHostName()

ClassName
InetAddress

Purpose
This method returns the hostname for this InetAdress.

Syntax
public String getHostName()

Parameters
None

Description
The method returns the hostname of a machine with the same address as this
InetAddress. So if you know the IP address of a machine, you can find out its
hostname by using this method on the InetAddress object of that address.

Imports
import java.net.InetAddress;

Returns
The return type of the method is String and its value is the hostname of the
machine with this IP address.

See Also
The class InetAddress

Example
The following example illustrates the usage of the getHostName() method to
obtain the hostname of the Client.

import java.net.InetAddress;

public class Client extends Applet implements Runnable{

 // class members and other methods
 // code omitted
 public void ClientInfo(){
 InetAddress c_inet;
 String c_name;
 try {
 c_inet = InetAddress.getLocalHost();
 c_name = InetAddress.getHostName();
 // obtain the string form of InetAddress
 String c_str = c_inet.toString(); //obtained by using
 getLocalHost()

 // get the index where '/’ appears; before that
 // character is the IP address in the InetAddress String
 int index = c_str.indexOf('/’);

 String c_ipaddr = c_str.substring(index+1); //obtain the ip
 address only
 printOut(“ IP Address : “ + c_ipaddr);

 // :
 // :
 } catch (IOException ioE);

 }
}

getLocalHost()

ClassName
InetAddress

Purpose
This method gets the InetAddress of the local host.

Syntax
public static InetAddress getLocalHost() throws UnknownHostException

Parameters
None

Description
This method finds the Internet address of the local machine executing this
program. It creates an instance of InetAddress with this address and returns the
InetAddress object. getLocalHost() can be used to create an instance of
InetAddress for the local machine.

Imports
import java.net.InetAddress;

Returns
The return type of the method is InetAddress. It returns the InetAddress object
representing the Internet address of the local machine.

See Also

The class InetAddress; method InetAddress.getByName()
Example

Refer to the example in getHostName() which contains a call to this method.

hashCode()

ClassName
InetAddress

Purpose
Returns the hash code of this InetAddress object.

Syntax
public int hashCode()

Parameters
None

Description
The method returns the hash code, to be used as an index into the hashtable to
access this InetAddress object. All the InetAddresses accessed during the program
execution are cached in a hashtable. This is done for faster access of previously
accessed Internet addresses.

Imports
import java.net.InetAddress;

Returns
The return type of this method is int, and the value is the hash code of this Internet
address.

See Also
The class InetAddress

Example
The following example gets the hash code for the InetAddress object of the server
host.

import java.net.InetAddress;
import java.io.*;

public class Client extends Applet implements Runnable {
 // class members and methods

 public void ServerInfo() {
 // other code
 InetAddress inet =
 InetAddress.getByName(servHost);
 /* get and prints the hash code of the above inet object */
 int hash = inet.hashCode();
 printOut (“Hash Code for server is: “ + hash);
 }
}

toString()

ClassName
InetAddress

Purpose
This method converts the InetAddress to a string.

Syntax
public String toString()

Parameters
None

Description
This method converts the InetAddress to a String by overriding the toString()
method of the Object class. Raw IP address, host name can also be obtained by
manipulating with the returned String.

Imports
import java.net.InetAddress;

Returns
The return type of the method is String. It returns the String form of the
InetAddress.

See Also
The class InetAddress, method InetAddress.getHostName()

Example
Refer to the code example for getHostName() method of InetAddress class.

ServerSocket

Purpose
Use ServerSocket to implement a server.

Syntax
public final class ServerSocket extends Object

Description
The ServerSocket class represents the server in a client-server application. This
class implements the actual socket policies that go along with a server. It uses a
default SocketImpl class to implement its server policies. These policies can be
changed by implementing a concrete subclass of the abstract SocketImpl class.
This change in policies can be made effective by setting the SocketImplFactory,
using the setSocketFactory method. The methods of ServerSocket class provide
the functionality to create a server socket, accept connection from a client and get
the specifics of the particular ServerSocket object (namely the port to which the
server is connected), and the string form of implementation address, file
descriptor, and port. A ServerSocket object is bound to the local machine on
which it is created. A port number is specified for the ServerSocket to bind and
listen for connections. Figure 10-5 shows the inheritance diagram for the class
ServerSocket.

Figure 10-5 Class diagram for ServerSocket class

PackageName
java.net

Imports
import java.net.ServerSocket;

Constructors
public ServerSocket(int port) throws IOException
public ServerSocket(int port, int lisn_time) throws IOException

Parameters
port

Local port number to which the server binds.
lisn_time

The amount of time the server will listen at the port for connection.
Example

In the following example, an instance of ServerSocket is created and is bound to
the port number specified by port. The listening time for a connection is set to 10.
After creation, the socket waits for a connection from a client and accepts the
connection. After performing its services, the server socket is closed.

import java.net.ServerSocket;
import java.net.Socket;
import java.io.*;

public class Server {

public static void main(String args[]) {
 int port; // port number
 try {
 // obtain the port number or set a default
 // :
 // create a server socket object

 ServerSocket serv = new ServerSocket(port, 10);
 } catch (IOException io) {
 System.out.println(" Error: Creating a server socket");

 }
 try {
 /* Accept a connection from a client */
 Socket clnt = serv.accept();
 } catch (IOException io) {
 System.out.println(" Error: Accepting a connection ");
 }

 // get the string form of the server socket
 String str = serv.toString();

 System.out.println("String form of server socket is : " + str);

 /* perform the services */

 /* Close the socket connection now */
 try {
 serv.close();
 } catch (IOException io) {
 System.out.println(" Error: closing the server socket ");
 }
 } /* end of main() */
} /* end of class Serv */

accept()

ClassName
ServerSocket

Purpose
Blocks until a connection is made with a client. It returns a client socket after the
connection is established. This socket is used for further communication with the
client.

Syntax
public Socket accept() throws IOException

Parameters
None.

Description
This method blocks for a client connection by listening to the port it has bound to.
When a client attempts to connect to this server socket, this method accepts the
connection and returns a client socket (instance of the Socket class). Optionally,
the time limit for listening can also be specified. If it is specified during
construction, then the server blocks for connection for only the specified time.
This socket is later used for all the communication between the server and its
client. The output stream of this socket is the input for the connected client and
vice versa. An IOException is thrown if any error has occurred while establishing
the connection. This has to be caught and relevant exception handling steps
should be taken.

Imports
import java.net.ServerSocket;
import java.net.Socket;

Returns
The return type of the method is a Socket. It returns the Socket instance created
on the server’s side to communicate with the connected client.

See Also
The class ServerSocket; class Socket

Example

Refer to the example for class ServerSocket, given above. In that example, an
instance server of ServerSocket is created and, after creation, the socket waits for
a connection from a client and accepts the connection using the accept() method.

close()

ClassName
ServerSocket

Purpose
Closes the socket of the server.

Syntax
public void close() throws IOException

Parameters
None.

Description
The method closes the socket to which the server is bound. This implies that any
other client socket connected to this server should have been closed prior to this
method call, for proper behavior. So before calling the close method on a server,
all the clients connected to it should have closed their socket connections.

Imports
import java.net.ServerSocket;

Returns
None.

See Also
The class ServerSocket; Exception IOException

Example
Refer the example for the API class ServerSocket

getInetAddress()

ClassName
ServerSocket

Purpose
Returns the InetAddress object, representing the Internet address of the host to
which the server socket is bound.

Syntax
public InetAddress getInetAddress()

Parameters
None.

Description
This method returns the InetAddress of the host machine on which the
ServerSocket is bound. As a server is bound only to a local machine (optionally
specifying a port number), this method helps you identify the host to which the
server is created and uses this InetAddress object to access more information
about the server host.

Imports

import java.net.ServerSocket;
import java.net.InetAddress;

Returns
The return type of the method is InetAddress. It returns the InetAddress object
which represents the Internet Address of the host machine on which the server
socket is created and bound.

See Also
The class ServerSocket; class InetAddress

Example
In the following example, an instance of ServerSocket is created. InetAddress of
the server host is obtained and hostname, IP address details of that host are
retrieved and printed.

import java.net.ServerSocket;
import java.net.InetAddress;
import java.io.*;

public class Server {

public static void main(String args[]) {
 try {
 ServerSocket serv = new ServerSocket(5000, 10);
 } catch (IOException io) {
 System.out.println("Error: Creating a server socket");
 }
 /* get the InetAddress of the server host */
 InetAddress inet = serv.getInetAddress();

 /* Get details of the server host */

 String addr_str = inet.toString();
 byte[] raw_ip = inet.getAddress();
 System.out.println("The InetAddress of server host is : "
 + addr_str);

 /* get the port number of the server socket */
 int port_num = serv.getLocalPort();

 if (port_num == 3001)
 System.out.println("Server port# is 3001 as expected ");
 else
 System.out.println("Server port# is not 3001! ;-(");

 /* close the socket */
 try {
 serv.close();
 } catch (IOException io) {
 }
 } /* end of main() */
} /* end of class Serv */

getLocalPort()

ClassName
ServerSocket

Purpose
Returns the port number to which the server socket connection is established and
is listening.

Syntax
public int getLocalPort()

Parameters
None.

Description
This method obtains the port number to which the ServerSocket is bound and
listens for connection. This number is the port number of the socket at the
machine on which the ServerSocket is connected.

Imports
import java.net.ServerSocket;

Returns
The return type of the method is int. It returns the port number of the
ServerSocket instance created at the server’s side.

See Also
The class ServerSocket

Example
Refer to the example in the getInetAddress() method of ServerSocket class.

setSocketFactory(SocketImplFactory)

ClassName
ServerSocket

Purpose
Sets the system’s server SocketImplFactory interface, which generates SockImpl
instances.

Syntax
public static synchronized void
setSocketFactory(SocketImplFactory fac) throws IOException

Parameters
None.

Description
The desired policies that go with the ServerSocket class are implemented by a
concrete subclass of SocketImpl. Instances of this subclass will be created by the
createSocketImpl() method of the SocketImplFactory interface. When fac, an
instance of this interface, is passed to this setSocketFactory() method, the member
factory of ServerSocket class gets assigned. Thereafter, any instance of
ServerSocket created will have the desired socket policies implemented. The
SocketImplFactory can be specified only once for this ServerSocket class. This
method will not normally be used by programmers, as the APIs for ServerSocket
have a default SocketImpl defined and, hence, there is no need for a factory.

Imports

import java.net.ServerSocket;
Returns

None.
See Also

The class ServerSocket; class SocketImpl; interface SocketImplFactory
Example

The following code outline illustrates how to subclass SocketImpl and use it to
generate instances of that class using a factory. This factory, MyFac, is set to be
the member factory of server class Server so that any new instances of Server will
implement the desired policies as in MySockImpl.

import java.net.ServerSocket;
import java.io.*;

class MySockImpl extends SocketImpl {

/* Implement all the methods of SocketImpl class to adhere by the
desired server socket policies */

}

/** MyFac is the concrete class implementing SocketImplFactory for
this application */

class MyFac implements SocketImplFactory {

 SocketImpl createSocketImpl() {
 /* return an instance of MySockImpl */
 return new MySockImpl();
 }
}

/** Assign MyFac as the factory member of class Serv, representing a
server socket */

public class Server {

 public static void main(String args[]) {
 SocketImplFactory fac = new MyFac();
 ServerSocket.setSocketFactory(fac);

/* Any new instances of ServerSocket created hereafter will implement
 the policies defined by */
 MySockImpl class */

 } /* end of main() */
} /* end of class Serv */

toString()

ClassName
ServerSocket

Purpose

To obtain the implementation address, file descriptor, and port number to which
this ServerSocket is connected.

Syntax
public String toString()

Parameters
None.

Description
This method creates a String object containing the port number, file descriptor,
and address to which the ServerSocket is bound to. The details are merged into
string form within a String object. This method overrides the toString() method in
the class Object.

Imports
import java.net.ServerSocket;

Returns
The return type of the method is String. The returned String object contains the
port number, file descriptor, and address of the machine on which the
SeverSocket is bound.

See Also
The class ServerSocket; class Object (java.lang.Object)

Example
Refer to the example in ServerSocket class description.

Socket

Purpose
Use Socket to implement a client to communicate with a server.

Syntax
public final class Socket extends Object

Description
The Socket class represents a client in a client-server application. This class
implements the actual socket policies that go along with a client. It uses a default
SocketImpl class to implement its client socket policies. These policies can be
changed by implementing a concrete subclass of the abstract SocketImpl class.
This change in policies can be made effective by setting the SocketImplFactory,
using the setSocketImplFactory method. The methods of the Socket class provide
the functionality to create a client socket, by connecting to a server, and to obtain
necessary input and output streams for communication. The class contains
methods to find out the specifics of the particular Socket object namely, the port
to which the client is connected, the string form of implementation address, and
the port number. Figure 10-6 shows the inheritance diagram of the Socket class.

Figure 10-6 Class diagram for Socket class

PackageName
java.net

Imports
import java.net.Socket;

Constructors
public Socket(String host, int port) throws IOException
public Socket(String host, int port, boolean sock_type) throws IOException
public Socket(InetAddress inet, int port) throws IOException
public Socket(InetAddress inet, int port, boolean sock_type) throws IOException

Parameters
host

Name of the host machine to connect to.
port

Local port number to which the server binds.
sock_type

Value specifying whether it is a datagram socket or a stream socket.
inet

InetAddress of the host machine to connect to.
Example

In the following example, an instance of Socket is created in the class Client. A
server is initially created in the Server class. The client is connected to the server
in its init() method. If the server does not exist when the client attempts a
connection, an exception is thrown to indicate unavailable server connection. So
the server should be started before any client attempts to request service.

import java.net.ServerSocket;
import java.net.Socket;
import java.io.*;

/* Server class */

public class Server {

public static void main(String args[]) {2
 try {
 // create a server socket

 ServerSocket serv = new ServerSocket(3001, 10);
 } catch (IOException io) {
 System.out.println(" Error: Creating a server socket");
 }
 try {

 Socket clnt = serv.accept(); // accept connections from clients
 } catch (IOException io) {
 System.out.println(" Error: Accepting connection ");
 }
 /* perform the services */

 try {
 serv.close(); // close the socket connection
 } catch (IOException io) {
 System.out.println(" Error: Closing the server socket ");
 }
}
}

/* Client class implementation */

public class Client extends Applet implements Runnable {
 // members and methods of class Client
/*

 */

 public void init(){
 int servPort = 3001;
 String servHost = “serval.cat.syr.edu”;
 //obtain the server host name in this String object

 try {

 Socket clnt = new Socket(servHost, servPort);
 String sock_str = clnt.toString();
 // usage of toString() method
 System.out.println(“ String form of Socket is “ + sock_str);
 // print the
 // string
 // containing
 // the socket
 // details

 } catch (IOException io) {
 System.out.println(“Error: Connecting to the server”);
 }
 } // end of init()
 /* request services from the server */

 public void run() {
 // interact with the server

 }

 // Applet stop
public void stop() {
 try { // use of close() method of Socket class
 sock.close();
 } catch (IOException ioE) {
 System.out.println(“ Error in socket.close()”);
 }

 }
} // end of class Client

close()

ClassName
Socket

Purpose
Closes the socket of the client.

Syntax
public void close() throws IOException

Parameters
None.

Description
The method closes the client’s socket connection to the server.

Imports
import java.net.Socket;

Returns
It does not return anything. It throws an IOException on an occurrence of an
error, which has to be caught.

See Also
The class Socket; Exception IOException

Example
Refer to the example in Socket class which includes the usage of close() method.

getInetAddress()

ClassName
Socket

Purpose
Returns the InetAddress object, representing the Internet address of the host to
which the client socket is connected, i.e., the server host.

Syntax
public InetAddress getInetAddress()

Parameters
None.

Description
This method returns the InetAddress of the host machine on which the Socket is
connected. As a client connects to a server that is already ready and running, this
method helps you identify the host on which the server is created and use this
InetAddress object to access more information about the server host.

Imports
java.net.Socket;
import java.net.InetAddress;

Returns

The return type of the method is InetAddress. It returns the InetAddress object
which represents the Internet Address of the host machine to which the client has
established connection.

See Also
The class Socket; class InetAddress

Example
Refer to the ServerInfo() method of Client class implemented in the Client-Server
Rendezvous applet at the end of this chapter.

getInputStream()

ClassName
Socket

Purpose
Returns an InputStream for this client socket.

Syntax
public InputStream getInputStream() throws IOException

Parameters
None.

Description
This method returns an InputStream for this client socket. The client receives data
from the server using this stream. It can block on this InputStream until data
arrives from the server. This method is also used on the server side, when the
server obtains a Socket object on accepting a connection from a client. An
InputStream of client is bound to the OutputStream for the Socket on server side
and vice versa.

Imports
import java.net.Socket;

Returns
The return type of the method is InputStream. It returns an InputStream for the
client. This object can further be used to instantiate another kind of stream
suitable for service provided by the server.

See Also
The class Socket; class InputStream

Example
Usage of getInputStream() is important for client-server applications as this is the
method such applications use for establishing stream channels to pass messages.
The server creates an InputStream to obtain data from the client by using the
Socket object, returned by the accept() call. The client obtains an InputStream
from its Socket, which is effectively bound to the server’s OutputStream;
likewise, the client’s OutputStream is bound to the InputStream of the server.
Refer to the init() method of Client class in the Client-Server Rendezvous applet
at the end of this chapter.

getOutputStream()

ClassName
Socket

Purpose
Returns an OutputStream for this client socket.

Syntax
public OutputStream getOutputStream() throws IOException

Parameters
None.

Description
This method returns an OutputStream for this client socket. The client sends data
to the server using this stream. This method is also used on the server side, when
the server sends a message to the client. An OutputStream of client is bound to
InputStream for the Socket on server side and vice versa.

Imports
import java.net.Socket;

Returns
The return type of the method is OutputStream. It returns an OutputStream for the
client. This object can further be used to instantiate another kind of stream,
suitable for service provided by the server.

See Also
The class Socket; class OutputStream

Example
Refer to the init() method of Client class in the Client-Server Rendezvous applet
at the end of this chapter.

getLocalPort()

ClassName
Socket

Purpose
Returns the local port number to which the client socket is connected.

Syntax
public int getLocalPort()

Parameters
None.

Description
This method obtains the local port number to which the Socket is connected. This
number is the port number to which the client socket is connected on the
local(client) side.

Imports
import java.net.Socket;

Returns
The return type of the method is int. It returns the port number to which the
Socket has connected.

See Also
The class Socket

Example
In the following example, an instance of ServerSocket is created and is bound to
the port number 3001. In Class Client, a client socket is created using the Socket
instance and connection is established to the server. The getLocalPort() method is
used to obtain the local port number.

/* Client class implementation */

public class Client {

 public static void main(String args[]) {
 /* String servHost contains server hostname */
 try {
 Socket clnt = new Socket(servHost, 3001);
 } catch (IOException io) {
 System.out.println(" Error: Creating a client socket");
 }

 /* Obtain the port number to which the socket is connected */
 int port_num = clnt.getLocalPort();
 printOut(“ Local port number of client is : “ + port_num);

 /* Close the connection from client side */

 try {
 clnt.close();
 } catch (IOException io) {
 System.out.println(" Error: Closing the connection");
 }
 } /* end of main() */
} /* end of Client class definition */

getPort()

ClassName
Socket

Purpose
Returns the port number on the server side to which the client has established
connection.

Syntax
public int getPort()

Parameters
None.

Description
This method obtains the port number to which the Socket is connected. This
number is the port number on which the server is listening for connections and to
which this client Socket object has established connection.

Imports
import java.net.Socket;

Returns

The return type of the method is int. It returns the port number to which the
Socket has established connection with the server.

See Also
The class Socket

Example
The ClientInfo() method of Client class in the Client-Server Rendezvous applet at
this chapter’s end illustrates the use of getPort() method.

setSocketImplFactory(SocketImplFactory)

ClassName
Socket

Purpose
Sets the system’s client SocketImplFactory interface, which generates SockImpl
instances.

Syntax
public static synchronized void setSocketImplFactory(SocketImplFactory fac)
throws IOException

Parameters
None.

Description
The desired policies that go with the Socket class are implemented by a concrete
subclass of SocketImpl. Instances of this subclass will be created by the
createSocketImpl() method of the SocketImplFactory interface. When fac, which
is an instance of this interface, is passed to this setSocketImplFactory() method,
the member factory of ServerSocket class gets assigned. Thereafter, any instance
of Socket created will have the desired socket policies implemented. This method
will not be normally used by programmers, as the APIs for Socket have a default
SocketImpl defined and hence, there is no need for a factory.

Imports
import java.net.Socket;

Returns
None.

See Also
The class Socket; class SocketImpl; interface SocketImplFactory

Example
In the following example, class MySockImpl is implemented by subclassing
SocketImpl. Instances of this class are generated by using MyFac, an
implementation of SocketImplFactory. The Client’s factory member is set to an
instance of this factory and, thereafter, all instances of Socket are defined by the
implementation in MySockImpl.

import java.net.ServerSocket;

class MySockImpl extends SocketImpl {

/* Implement all the methods of SocketImpl class to adhere by the
desired client socket policies */

}

class MyFac implements SocketImplFactory {

 SocketImpl createSocketImpl() {
 /* return an instance of MySockImpl */
 }
}

public class Client extends Applet implements Runnable {

 public static void main(String args[]) {
 SocketImplFactory fac = new MyFac();
 Socket.setSocketImplFactory(MyFac);

/* Any new instance of Socket created hereafter will implement the
policies defined by MySockImplclass */

 } /* end of main() */
} /* end of class Client */

toString()

ClassName
Socket

Purpose
To obtain the implementation address, file descriptor, and port number to which
this Socket is connected.

Syntax
public String toString()

Parameters
None.

Description
This method obtains a String object containing the port number, local port
number, and address to which the Socket is bound. The details are merged into
string form within a String object. This method overrides the toString() method in
the class Object.

Imports
import java.net.Socket;

Returns
The return type of the method is String. The returned String object contains the
port number to which the socket is connected, local port number of the socket,
and address of the machine on which the Socket is connected.

See Also
The class Socket; class Object (java.lang.Object)

Example

Please refer to the example in the Socket class description which shows the details
of the Socket in string form.

DatagramSocket

Purpose
Use the DatagramSocket class when you develop applications based on
connectionless protocol.

Syntax
public class DatagramSocket extends Object

Description
An instance of this class forms a socket in a client-server application which is
implemented using the connectionless protocol. It uses the UDP/IP protocol over
the Internet. This is the class that should be instantiated on both the server and the
client side, unlike ServerSocket and Socket implementations in connection-
oriented protocol. When you create a DatagramSocket object on the server side,
you can use the contructor that takes the port number as an argument. This way
your server listens for messages at the specified port. The client’s port number
need not be specified. The client sends a packet to the server by specifying the
port number when creating the datagram packet. This class contains the send and
receive methods for handling the packets. Other methods are provided for closing
a connection, getting the local port number and for cleaning up purposes. Figure
10-7 illustrates the inheritance diagram for the DatagramSocket class.

Figure 10-7 Class diagram for DatagramSocket class

PackageName
java.net

Import
import java.net.DatagramSocket;

Constructors
public DatagramSocket() throws SocketException
public DatagramSocket(int port) throws SocketException

Parameters
port
The local port number at which the datagram socket is bound.

Example
Refer to Listing 10-1 in which a message server and a message client are defined.
In the constructor of the messageServer class, a datagram socket is constructed by
specifying the port number 3000. That is the port at which the server waits for

messages. Any client application should send a message to that port number,
which is 3000 in this case, if it wants to communicate with the server. Note that in
the constructor of the messageClient class (Listing 10-2), the port is not specified.

Listing 10-1 messageServer.java: A datagram server class that sends messages to clients

import java.io.*;
import java.net.*;

public class messageServer {

 private DatagramSocket serverSocket;
 private int messageNumber;

 public messageServer() {
 try {

 serverSocket = new DatagramSocket(3000);
 System.out.println("Local port is " +
 serverSocket.getLocalPort());
 messageNumber = 0;
 } catch (SocketException se) {
 System.out.println(" Error creating datagram
 socket");
 }
}
 public void run() {
 while (true)
 processRequests();
 }

 public void processRequests() {
 try {
 byte[] buffer = new byte[256];
 DatagramPacket packet = new DatagramPacket(buffer,
256);
 serverSocket.receive(packet);

 InetAddress clientAddr = packet.getAddress();
 int clientPort = packet.getPort();
 String msg = new String(" This is message #" +
 messageNumber++);
 // convert the string to an array of bytes
 msg.getBytes(0, msg.length(), buffer, 0);

 // construct a new datagram packet to send to the
client

 packet = null;
 packet = new DatagramPacket(buffer, buffer.length,
 clientAddr, clientPort);
 // send the packet to the client
 serverSocket.send(packet);

 } catch (Exception e) {
 System.out.println("Exception in
 processRequests");
 }
 }

 public void finalize() {
 if (serverSocket != null) {
 serverSocket.close();
 serverSocket = null;
 }
 }

 public static void main(String args[]){

 messageServer ms = new messageServer();
 ms.run();
 }
}

Listing 10-2 messageClient.java: A datagram client class that receives messages from
servers

import java.net.*;
import java.io.*;

public class messageClient {

 public static void main(String args[]){
 int serverPort;
 InetAddress serverAddr;

 DatagramSocket clientSocket;
 DatagramPacket packet;
 byte[] buffer = new byte[256];

 try {

 //create the client socket
 clientSocket = new DatagramSocket();

 serverPort = 3000;
 serverAddr =
InetAddress.getByName("serval.cat.syr.edu");

 int i=0;
 while (i++ < 10) {
 packet = new DatagramPacket(buffer, 256, serverAddr,
 serverPort);
 clientSocket.send(packet);

 clientSocket.receive(packet);
 String msg = new String(packet.getData(), 0);

 if (i==1)
 System.out.println(" Packet is recd from: " +
 packet.getAddress().getHostName()
 + " at port " + packet.getPort()
 + " and the length is " +
 packet.getLength());
 System.out.println(" Client received => " + msg);
 packet = null;
 }
 clientSocket.close();
 clientSocket = null;
 serverAddr = null;
 } catch (Exception e) {
 System.out.println(" Exception occurred on client
side");
 }
 }
}

close()

ClassName
DatagramSocket

Purpose
Closes the datagram socket connection.

Syntax
public synchronized void close()

Parameters
None

Description
This method is used when a datagram socket connection is to be closed. Usually
this is done during the clean-up after a client-server communication session ends.
The clients should close the connection before the server.

Imports
import java.net.DatagramSocket;

Returns
None.

Example
Refer to Listing 10-1 where the close method is invoked on the server inside the
finalize method. Before the garbage collector cleans up the object, the socket
connection is closed. In Listing 10-2, the client closes the socket connection after
receiving ten messages from the server.

finalize()

ClassName
DatagramSocket

Purpose
This method gets invoked before the DatagramSocket object is garbage collected.

Syntax
protected synchronized void finalize()

Parameters
None

Description
This method is invoked by the garbage collector Thread before cleaning up the
object. You can write your clean-up routines, such as closing socket connection,
closing streams, and so on, in this method. This method overrides the finalize
method of the class Object.

Imports
import java.net.DatagramSocket;

Returns
None.

Example
In Listing 10-1, the server socket is closed and assigned a null value in the finalize
method.

getLocalPort()

ClassName
DatagramSocket

Purpose
Obtains the port number of the datagram socket.

Syntax
public int getLocalPort()

Parameters
None

Description
This method returns the port number at which the socket is bound. This number
will form a part of any packet that is sent to another datagram socket. If a message
is to be sent from a client, the local port number of the server socket has to be
specified when creating the packet to be sent.

Imports
import java.net.DatagramSocket;

Returns
The port number; return type is int.

Example
In Listing 10-1, the local port of the server socket is obtained by using this
method. The port number 3000, the port at which the server is waiting, is
displayed on the screen.

receive(DatagramPacket)

ClassName

DatagramSocket
Purpose

This method receives the datagram packet that is sent to the target
DatagramSocket object.

Syntax
public synchronized void receive(DatagramPacket packet)

Parameters
packet

The packet that is to be received by the target DatagramSocket object.
Description

This method receives the packet sent to the DatagramSocket object. When
invoked, this method blocks until some input is available. The packet contains the
buffer of bytes (data), packet length, the destination InetAddress, and port
number. Using this method along with the send method, packets are exchanged
between a client and a server. Only one Thread can be invoking a receive on a
socket object as the receive method is synchronized.

Imports
import java.net.DatagramSocket;

Returns
None.

Example
In Listing 10-1, the server socket receives a datagram packet in the
processRequest method. After receiving the packet, the source address and port
are extracted from the packet, so that a reply packet can be constructed.

send(DatagramPacket)

ClassName
DatagramSocket

Purpose
This method sends a datagram packet to a desired datagram socket.

Syntax
public void send(DatagramPacket packet)

Parameters
packet

The datagram packet that is to be sent.
Description

This method sends the specified packet to the destination address. The destination
address and port number are contained within the packet. The underlying network
will take the effort to deliver the packet to the destination. The delivery is not
guaranteed, making the datagram communication unreliable.

Imports
import java.net.DatagramSocket;

Returns
None.

Example

In Listing 10-1, the server constructs a message, such as “This is message#1”, and
constructs a packet by specifying the destination address. In the processRequests
method in messageServer class, the packet is sent to a client using the send
method.

DatagramPacket

Purpose
Use the DatagramPacket class to send messages when you develop applications
based on connectionless protocol.

Syntax
public final class DatagramPacket extends Object

Description
An instance of this class forms a datagram packet in a client-server application,
which is implemented using the connectionless protocol. It uses the UDP/IP
protocol over the Internet. This is the class that should be instantiated to wrap up
the data to be sent. The packet is self contained with the data and the destination
address. It contains the data buffer, the packet length, and the destination
InetAddress and port number. A packet is sent to a target using the send method
of the DatagramSocket class. A packet is received using the receive method of the
DatagramSocket class. When sending a packet, the Datagram(byte[], int,
InetAddress, int) constructor is used to create the packet to be sent. It is created by
specifying the destination address. When receiving a packet, the DatagramPacket
object is constructed using the DatagramPacket(byte[], int) constructor. In either
of the constructors, if the specified length is greater than the buffer length, an
IllegalArgumentException is thrown. Figure 10-8 illustrates the inheritance
diagram for the DatagramPacket class.

Figure 10-8 Class diagram for DatagramPacket class

PackageName
import java.net

Imports
import java.net.DatagramPacket;

Constructors
public DatagramPacket(byte[] buffer, int length)
public DatagramPacket(byte[] buffer, int length, InetAddress dest, int port)

Parameters
buffer

The byte array containing the data.
length

The length of the data buffer.
InetAddress

IP address of the receiving datagram (where the packet is sent).
port

The port number of the receiving datagram.
Example

Refer to the processRequests method in the messageServer class in Listing 10-1.
When a packet is received from the client, the size is specified as 256 and the
packet is filled by using the receive method. Then the packet is constructed by
specifying the destination address along with the data and sent to the client.

getAddress()

ClassName
DatagramPacket

Purpose
Obtains the InetAddress from which the datagram packet was sent.

Syntax
public InetAddress getAddress()

Parameters
None.

Description
This method returns the InetAddress from which the packet was sent. This
address is a part of the packet received. Typically on the server side, the IP
address of the client which sent the packet is determined using this method.

Imports
import java.net.DatagramPacket;

Returns
The Internet address of the source; return type is InetAddress.

See Also
The class InetAddress in the java.net package

Example
In Listing 10-1, the InetAddress of the client datagram is obtained by using this
method. This address is in turn used to construct the reply datagram packet to
specify the destination.

getData()

ClassName
DatagramPacket

Purpose
Obtains the data part of the received message.

Syntax
public byte[] getData()

Parameters
None.

Description
This method returns the data part of the datagram packet. It returns an array of
bytes. If the message is expected to be a string, a String object is created by
passing the byte array as a parameter for its constructor.

Imports
import java.net.DatagramPacket;

Returns
The data part of the packet; return type is byte[].

Example
In Listing 10-2, the message, received from the server, is retrieved from the
packet using this method. A String object msg is constructed by passing, as a
parameter, the byte array returned by this method. The message part of the
received packet is printed to the screen.

getLength()

ClassName
DatagramPacket

Purpose
Obtains the length of the packet.

Syntax
public int getLength()

Parameters
None.

Description
This method returns the length of the datagram packet. It is actually the size of the
buffer containing the data.

Imports
import java.net.DatagramPacket;

Returns
The packet length; return type is int.

Example
In Listing 10-2, the length of the received packet is obtained from the packet
using this method.

getPort()

ClassName
DatagramPacket

Purpose
Obtains the port number from which the datagram packet was sent.

Syntax
public int getPort()

Parameters

None.
Description

This method returns the port number from which the packet was sent. This port
number is a part of the packet received. Typically, on the server side, the port
number of the client which sent the packet is determined using this method

Imports
import java.net.DatagramPacket;

Returns
The port number of the source; return type is int.

Example
In Listing 10-1, the port number of the client datagram is obtained by using this
method. This number is, in turn, used to construct the reply datagram packet to
specify the destination.

SocketImpl

Purpose
An abstract socket implementation class that should be subclassed to provide
actual implementation.

Syntax
public class SocketImpl extends Object

Description
By subclassing this class and implementing the methods, desired policies for
socket implementation can be provided. Then, by using the factory to generate
instances of this implementation class, server socket and client socket can be
implemented. This class and its methods will not be normally used by
programmers because the APIs for Socket and ServerSocket have a default
SocketImpl defined. Once a subclass of this class is defined, it should be
generated by an implementation of SocketImplFactory interface. The factory of
Socket and/or ServerSocket can be set to this factory interface, by using the
setFactory method in those classes. Figure 10-9 illustrates the inheritance diagram
for the SocketImpl class.

Figure 10-9 Class diagram for SocketImpl class

PackageName
java.net

Import
import java.net.SocketImpl;

Constructors

public SocketImpl()
Parameters

None.
Example

Refer to the code example in setSocketImplFactory(SocketImplFactory) method
in the class Socket.

accept(SocketImpl)

ClassName
SocketImpl

Purpose
Make this server socket accept connection from a client socket with the specified
SockImpl policies.

Syntax
protected abstract void accept(SocketImpl s_imp) throws IOException

Parameters
s_imp

SocketImpl of a client socket trying to connect to this server.
Description

This method should be defined in the subclass of the SocketImpl class. It makes
sure that the server socket will accept connection only from a client socket with
specified characteristics. This will help to build firewalls and restrict access by
defining the client sockets that can connect to a server socket.

Imports
import java.net.SocketImpl;

Returns
None.

See Also
The class ServerSocket; interface SocketImplFactory

Example
The following example illustrates a sample implementation of this
accept(SocketImpl) method.

import java.net.ServerSocket;
import java.net.SocketImpl;
import java.net.SocketImplFactory;

/* subclass the SocketImpl class to provide actual implementation of
socket policies */

class MySockImpl extends SocketImpl {

 /* Implement the methods of SocketImpl class to adhere by the desired
client socket policies */

/* defining accept method */

protected synchronized void accept(SocketImpl s_imp) throws
IOException {

 socketAcceptMethod(s_imp);/*call a native method */
 }

private native void socketAcceptMethod(SocketImpl s_imp)
 throws IOException;

}

/* define a factory to generate instances of MySockImpl class*/
class MyFac implements SocketImplFactory {

 SocketImpl createSocketImpl() {
 /* return an instance of MySockImpl */
 }
}

/* A class using server socket and defining its behavior */
public class Server {

 public static void main(String args[]) {
 SocketImplFactory fac = new MyFac();
 Socket.setSocketImplFactory(MyFac);

/* Any new instances of ServerSocket created hereafter will implement
 the policies defined by*/
 MySockImplclass and the accept method will follow the policies
 defined in the native method,*/
 socketAcceptMethod() */

 } /* end of main() */
} /* end of class Serv */

available()

ClassName
SocketImpl

Purpose
Gets the number of bytes that can be read without blocking.

Syntax
protected abstract int available() throws IOException

Parameters
None.

Description
This method should be defined in the subclass of the SocketImpl class. This
returns the number of bytes a socket can read without blocking. This method can
be used to read from the input stream of the socket.

Imports
import java.net.SocketImpl;

Returns
The return type of this method is int.

bind(InetAddress, int)

ClassName
SocketImpl

Purpose
Binds the server socket to the specified port on a host specified by the
InetAddress.

Syntax
protected abstract void bind(InetAddress inet, int port) throws IOException

Parameters
inet

InetAddress of the host to which the socket should be bound.
port

Port number on the above host to bind the socket to.
Description

This method should be defined in the subclass of the SocketImpl class. After
creating a socket instance, this method is invoked to bind the server socket to the
specified port on a host.

Imports
import java.net.SocketImpl;

Returns
None.

See Also
The class InetAddress; interface SocketImplFactory; class ServerSocket

Example
This method is used by ServerSocket class to bind to a specified port on a given
host. You should write your own native method to implement this method by
subclassing the SocketImpl class.

close()

ClassName
SocketImpl

Purpose
Closes the socket connection.

Syntax
protected abstract void close() throws IOException

Parameters
None.

Description
This method should be defined in the subclass of the SocketImpl class. This
method is invoked when Socket.close() or ServerSocket.close() is called.

Imports
import java.net.SocketImpl;

Returns
None.

See Also
The class ServerSocket; class Socket; interface SocketImplFactory

Example
Here is an example usage and definition of this method in a subclass of
SocketImpl.

import java.net.Socket;
import java.net.SocketImpl;
import java.net.SocketImplFactory;

/* subclass the SocketImpl class to provide actual implementation of
socket policies */

class MySockImpl extends SocketImpl {

 /* Implement the methods of SocketImpl class to adhere by the desired
client socket policies */

/* defining close method */

protected synchronized void close(SocketImpl s_imp) throws
IOException {
 socketCloseMethod();/*call a native method */
 }
private native void socketCloseMethod() throws IOException;

}

/* define a factory to generate instances of MySockImpl class*/

class MyFac implements SocketImplFactory {

 SocketImpl createSocketImpl() {
 /* return an instance of MySockImpl */
 }
}

connect(String, int), connect(InetAddress, int)

ClassName
SocketImpl

Purpose
Use these methods to define the connect method of a client socket if you are
providing your own SocketImpl.

Syntax
protected void connect(String name, int port) throws IOException
protected void connect(InetAddress addr, int port) throws IOException

Parameters
name

Name of the host to which the socket is connected.
addr

Address of the host to which the socket is connected.
port

Port number on the host, to which the socket connection is to be established.
Description

These methods should be defined in the subclass of the SocketImpl class. Given
the port number and the name or InetAddress of the host machine where a server
is available, these methods provide the implementation for the connect() method
in Socket class. This method is invoked during construction of a Socket instance,
after create() method is invoked.

Imports
import java.net.SocketImpl;

Returns
None.

See Also
The class Socket; interface SocketImplFactory

Example
The following code illustrates an example implementation outline for these
methods.

import java.net.Socket;
import java.net.SocketImpl;
import java.net.SocketImplFactory;

/* subclass the SocketImpl class to provide actual implementation of
socket policies */

class MySockImpl extends SocketImpl {

 /* Implement the methods of SocketImpl class to adhere by the desired
socket policies */

/* defining connect method */

protected void connect(String host, int port) throws
IOException {
 socketConnectMethod(host, port);
 /*call a native method */
 }

private native void socketConnectMethod(String host, int port)
throws IOException;

protected void connect(InetAddress addr, int port) throws
IOException {
 socketConnectMethod(addr, port);
 /*call a native method */
 }

private native void socketConnectMethod(InetAddress addr, int port)
throws IOException;

}

/* define a factory to generate instances of MySockImpl class*/

class MyFac implements SocketImplFactory {

 SocketImpl createSocketImpl() {
 /* return an instance of MySockImpl */
 }
}

create(boolean)

ClassName
SocketImpl

Purpose
Creates either a stream socket or a datagram socket.

Syntax
protected abstract void create(boolean is_stream) throws IOException

Parameters
is_stream

The value of this variable should be set to true if you need a stream socket; if you
need a datagram socket, this should be set to false.

Description
This method should be defined in the subclass of the SocketImpl class. Depending
on the value of the boolean input, either a stream socket or a datagram socket is
created. This is used while constructing instances of both Socket and
ServerSocket. The default socket created by using the SocketImpl implemented is
a stream socket.

Imports
import java.net.SocketImpl;

Returns
None.

See Also
class ServerSocket; class Socket; interface SocketImplFactory

Example
The following example illustrates a sample implementation outline for this
create(boolean) method.

import java.net.Socket;
import java.net.SocketImpl;
import java.net.SocketImplFactory;

/* subclass the SocketImpl class to provide actual implementation of
socket policies */

class MySockImpl extends SocketImpl {

 /* Implement the methods of SocketImpl class to adhere by the desired
client socket policies */

/* defining create method */

protected synchronized void create(boolean is_stream) throws
IOException
{
 socketCreateMethod(is_stream);/*call a native method */
 }

private native void socketCreateMethod(boolean is_stream)
 throws IOException;

}

/* define a factory to generate instances of MySockImpl class */
class MyFac implements SocketImplFactory {

 SocketImpl createSocketImpl() {
 /* return an instance of MySockImpl */
 }
}

getFileDescriptor()

ClassName
SocketImpl

Purpose
The file descriptor of the socket is returned.

Syntax
protected FileDescriptor getFileDescriptor() throws IOException

Parameters
None.

Description
Each socket has a file descriptor associated with it. It is the way in which the
socket is implemented. This method returns a handle to the file descriptor.

Imports
import java.net.SocketImpl;

Returns
The file descriptor associated with the socket.

getInetAddress()

ClassName
SocketImpl

Purpose
Returns the InetAddress of the machine to which the socket is connected.

Syntax
protected InetAddress getInetAddress()

Parameters
None.

Description

A socket connects to a machine and performs its task of communicating with
other hosts. The InetAddress associated with the server’s host is obtained using
this method.

Imports
import java.net.SocketImpl;

Returns
InetAddress representation of the machine to which the socket is connected.

See Also
The class ServerSocket; class Socket; interface SocketImplFactor

getInputStream()

ClassName
SocketImpl

Purpose
An InputStream for this socket is obtained.

Syntax
protected abstract InputStream getInputStream() throws IOException

Parameters
None.

Description
An InputStream for the socket is returned to communicate with the paired
endpoint of the point-to-point communication. This method should be defined in
the subclass of the SocketImpl class.

Imports
import java.net.SocketImpl;
import java.io.InputStream;

Returns
An instance of InputStream class.

See Also
The class ServerSocket; class Socket; interface SocketImplFactory

Example
The following example illustrates a sample implementation outline for this
getInputStream() method.

 import java.net.*;
 import java.io.InputStream;

class MySockImpl extends SocketImpl {

 /* defining getInputStream method */

 protected synchronized void getInputStream() throws IOException {
 socketgetInputStreamMethod();/*call a native method */
 }

 private native void socketgetInputStreamMethod()
 throws IOException;

 }

getLocalPort()

ClassName
SocketImpl

Purpose
Returns the local port to which this socket is bound.

Syntax
protected int getLocalPort()

Parameters
None.

Description
Every socket has a corresponding local port to which it has connected. For
example, in case of a client, though it has connected to a server socket for service,
it has an associated local port to which the server connects and sends a reply.

Imports
import java.net.SocketImpl;

Returns
Port number of the local port.

See Also
The class ServerSocket; class Socket; interface SocketImplFactory

getOutputStream()

ClassName
SocketImpl

Purpose
An OutputStream for this socket is obtained.

Syntax
protected abstract InputStream getOutputStream() throws IOException

Parameters
None.

Description
An OutputStream for the socket is returned to communicate with other sockets.
This method should be defined in the subclass of the SocketImpl class.

Imports
import java.net.SocketImpl;

Returns
An instance of OutputStream class.

See Also
The class ServerSocket; class Socket; interface SocketImplFactory

Example
The following example illustrates a sample implementation outline for this
getOutputStream method.

 import java.net.*;
 import java.io.OutputStream;

class MySockImpl extends SocketImpl {

 /* defining getOutputStream method */

 protected synchronized void getOutputStream() throws IOException
{
 socketgetOutputStreamMethod();/*call a native method */
 }

 private native void socketgetOutputStreamMethod()
 throws IOException;
 }

getPort()

ClassName
SocketImpl

Purpose
Returns the number representing the server’s port to which the client connects.

Syntax
protected int getPort()

Parameters
None.

Description
A client socket connects to a server at a specified port number, on which the
server listens for connections. This method returns the number of this port.

Imports
import java.net.SocketImpl;

Returns
The number of the port on which the server is listening; return type is integer.

See Also
class Socket; interface SocketImplFactory

listen(int)

ClassName
SocketImpl

Purpose
The server socket listens for connection from a client for a given amount of time.

Syntax
protected abstract void listen(int time_count) throws IOException

Parameters
time_count

The amount of time server will listen for connection from clients.
Description

This method should be defined in the subclass of the SocketImpl class. This
method is invoked during construction of a server socket. After binding to

specified host and port, the server (an instance of ServerSocket) listens for
connection from clients for a specified amount of time.

Imports
import java.net.SocketImpl;

Returns
None.

See Also
The class ServerSocket; interface SocketImplFactory

Example
A sample outline is given below to illustrate the definition of the listen(int)
method in a subclass of SocketImpl class.

 import java.net.*;

class MySockImpl extends SocketImpl {

 /* defining listen method */

 protected synchronized void listen(int time) throws IOException {
 socketListenMethod(time);/*call a native method */
 }

 private native void socketListenMethod(SocketImpl s_imp)
 throws IOException;

}

 /* define a factory to generate instances of MySockImpl class*/
 class MyFac implements SocketImplFactory {

 SocketImpl createSocketImpl() {
 /* return an instance of MySockImpl */
 }
 }

 /* A class using server socket and defining its behavior */
 public class Server {

 public static void main(String args[]) {
 SocketImplFactory fac = new MyFac();
 Socket.setSocketImplFactory(fac);

 /* Any new instances of ServerSocket created hereafter will
 implement the policies defined by MySockImplclass and the
accept()
 method will follow the policies defined in the native method,
 socketListenMethod() */

 } /* end of main() */
 } /* end of class Server */

toString()

ClassName
SocketImpl

Purpose
To get a string form of the socket implementation details.

Syntax
public String toString()

Parameters
None.

Description
This method obtains the port number, file descriptor, and address to which socket
is connected, as a String. The file descriptor, address, and port number are
concatenated into string form within a String object.

Imports
import java.net.SocketImpl;

Returns
The return type of the method is a String containing the port number, file
descriptor, and address of the machine which the server is bound to or to which
the client is connected.

See Also
The class ServerSocket; class Socket

Example
The following example gives an outline of implementing this method.

import java.net.*;

class MySockImpl extends SocketImpl {

 /* defining toString method */

 protected synchronized String toString() throws
 IOException {
 sockettoStringMethod();/*call a native method */
 }

 private native void sockettoStringMethod()
 throws IOException;

 }

SocketImplFactory

Purpose
An interface to define a factory for actual SocketImpl instances.

Syntax
public interface SocketImplFactory extends Object

Description
This interface can be used by various socket classes to implement their policies.
By subclassing the SocketImpl class and implementing its methods, desired
policies for socket implementation can be provided. Then, by using
SocketImplFactory to generate instances of the defined SocketImpl class, a server

socket and client socket can be implemented. The factory of Socket and
ServerSocket should be set to this factory interface, using the setFactory method
in those classes. The factory of Socket or ServerSocket can be specified only
once. This interface should be defined only if SocketImpl is subclassed.

PackageName
java.net

Imports
import java.net.SocketImplFactory;

Constructors
None.

Parameters
None.

Example
Refer to the example in class SocketImpl.

createSocketImpl()

Interface
SocketImplFactory

Purpose
To generate an instance of SocketImpl that defines the actual socket
implementation policies.

Syntax
public abstract SocketImpl createSocketImpl()

Parameters
None.

Description
This method should be used to generate instances of a user-defined SocketImpl
subclass. This subclass will implement the socket policies desired by the user.
This will be invoked by the Socket or ServerSocket constructors to define their
SocketImpl member.

Imports
import java.net.SocketImplFactory;

Returns
This method returns an instance of a subclass of SocketImpl.

See Also
The class SocketImpl

Example
Refer to the example in class SocketImpl.

The Network and Sockets Project: A Client-Server Rendezvous Applet

In the Client-Server Rendezvous applet, a client will contact an existing server and obtain
details. You should provide three buttons: clientinfo, serverinfo, and fileinfo. On clicking
the clientinfo button, the client will print out its details, the host it is running on, and the
port on which it is connected. It should be able to gather the information about the server

and print the details when the serverinfo button is pressed. When the fileinfo button is
pressed, the client will send a request to the server to obtain the contents of a file residing
on the server’s side.

The applet should also be a stand-alone application, so that you can run it from a Java
environment using the Java interpreter or it can also be launched from a Web browser,
supporting Java. The scenario for this applet is illustrated in Figure 10-10. The steps
involved are as follows:

Figure 10-10 Sequence of actions in the Client-Server Rendezvous

1. The server connects to a port on the host, to which it is initialized, and listens
for connections from clients.
2. A client will connect to the server by specifying the hostname and the port on
which the server is listening.
3. The client retrieves the details about itself and displays the information.
4. The client obtains the information about the server and displays it.
5. The client sends a request to the server asking for the contents of a file on the
server’s side.
6. The server, on receiving the request, opens the relevant file, if it exists, and
sends the contents to the client over the socket streams.
7. The client receives the file contents from the server and displays them.
8. Once the necessary processing is completed, the streams and sockets are
closed appropriately.

You must now be able to implement the applet using the APIs described in this chapter.
As you know, any applet for a given specification can be implemented in different ways.
One such implementation is provided here. In this implementation, Threads are used on
the server’s side to process multiple clients. In the given applet, the Server is started on a
given machine. The Client can either be run as a stand-alone application using the Java
interpreter or launched from a Web browser supporting Java. In either case, the server
hostname and port number are passed as arguments to the executable.

Building Your Applet

1. First create a Server class which should accept connection from clients. Make
it a public class and the filename should be Server.java. This class should contain
the following members as listed in Table 10-2.

Table 10-2 Members of Server class

Modifier Type Variable-name Purpose

static ServerSocket ServSock An instance of ServerSocket is

created to enable the server to
accept connections from clients.

static Socket theSocket An instance of Socket that will be
created on the Server side when

ServerSock is instantiated.
static int port Port number on which the server

connects and creates ServerSock

static ServerThread client[] An array of ServerThread objects
which will act as servers for every
client that connects to the server,
so that there is one ServerThread

for one client.

After the addition of these members, your file Server.java should contain the following:

// import the necessary classes relevant to the class Server

import java.net.Socket;
import java.net.ServerSocket;
import java.io.*;
/**
 Class name: Server
*/

public class Server {

 private static Socket theSocket;
 private static ServerSocket ServSock;
 private static ServerThread client[] = new ServerThread[10];
 private static int port = 3001;
}

2. Having created the class, now define the main method for the class. Create an
instance of ServerSocket after specifying the port number. Then the server waits
in a loop for connections from clients. This is done using the accept() method of
ServerSocket. After accepting connection from a client, a server thread is
spawned for each client. This enables exclusive service to the client by a
corresponding server Thread. The start() method of Thread will start the servicing
of the server Thread to the client. Adding these functions to your Server class will
make the Server.java file contain the following code:
import java.net.Socket;
import java.net.ServerSocket;

import java.io.*;

/**
 Class name: Server
 This class is run as a background process.
 eg., % java Server &

 It accepts connection from clients and spawns a server
Thread
 for every such connection and goes back to listen for more
 connections. Maximum of two clients can be active at a
given
 instant. Processing of client requests is done by the
 corresponding server thread.
*/

public class Server {

 static Socket theSocket;
 static ServerSocket ServSock;
 static ServerThread client[] = new ServerThread[10];

 DataInputStream datain;
 DataOutputStream dataout;
 static int port = 3001;

 public static void main(String args[]) {
 int g=0;
 try {
 ServSock = new ServerSocket(port);
 System.out.println("Server started");
 while (true) {
 theSocket = ServSock.accept();
 for (g=0;g<10;g++)
 if ((client[g] == null) || (!client[g].
 isAlive()))
 break;

 if (g<10) {
 client[g] = new ServerThread
 (theSocket,g);
 client[g].start();
 }
 else
 System.out.println("Rejected a
 connection");
 }
 } catch (IOException ioE){
 System.out.println(" Server error ");
 }
 }
}
3. Now you have the necessary code for a Server to run. Next, you should write
the necessary code for implementing the ServerThread the Server spawns for
every Client. Create a public class ServerThread. It should be a subclass of
Thread class in Java and should contain the members specified in Table 10-3.

Table 10-3 Members of ServerThread class

Modifier Type Variable name Purpose

Socket mySocket This Socket object will be the
socket instance on Server’s side
for a connected Client. This is
passed on to this ServerThread

using the constructor.

int myId Every ServerThread has an Id
associated with it, which also

identifies the Client. There can be
only one ServerThread with a
given Id, at a given instance.

DataInputStream datain DataInputStream associated with
every ServerThread (which will

be the Client’s OutputStream) to
receive messages from the Client.

DataOutputStream dataout DataOutputStream associated
with every ServerThread (which
will be the Client’s InputStream)
to send messages to the Client.

With these data members and the constructor for the ServerThread class, your
ServerThread.java should now contain the following:

import java.net.Socket;
import java.io.*;
import java.awt.*;
/**
 Class name: ServerThread

 This class subclasses the Thread class. This thread is spawned
by
 the Server object, that accepts connection from clients.
 Each ServerThread services requests from one client assigned by
 the Server
*/

public class ServerThread extends Thread {

 private Socket mySocket;
 private DataInputStream datain;
 private DataOutputStream dataout;
 private int myId;

 public ServerThread(Socket m, int Id) throws IOException {

 mySocket = m;
 myId = Id;

 datain = new DataInputStream(new
BufferedInputStream(mySocket.getInputStream()));
 dataout = new DataOutputStream(new
BufferedOutputStream(mySocket.getOutputStream()));
 }
}

4. Now you should override the run() method of Thread class in ServerThread
class. Assuming you have a function processRequests() in this class, the run
method will call the processRequests() while there are more requests from the
Client. In the meantime, after processing every request, the Thread should yield to
the other ServerThreads to process their respective Client requests. After all the
requests are processed, you should close the sockets and streams that are open.
Enter the following method into the ServerThread class.
 /**
 The "run" method of Thread class being implemented here
 */

public void run() {
 try {
 while (processRequests())
 yield(); // yield to other threads too!

 CleanUp();
 } catch (IOException E){
 System.out.println("Error in processing request");
 }
 }

 /** clean up when done */

void CleanUp() {
 try {
 datain.close();
 dataout.close();
 mySocket.close();
 catch (IOException io) {
 printOut(" IOEXception!! ");
 printOut(io.getMessage());
 }
 }
5. Let retrieving the contents of a requested file be a service provided by the
ServerThread. When the ServerThread receives a message “File” from a Client
through the DataInputStream, it understands that the Client is requesting a file to
be retrieved and it expects another message from the Client indicating the name of
the file to be retrieved. The ServerThread then reads the file and sends its contents
using the DataOutputStream. If the message is “Bye”, the ServerThread
understands that the Client intends to close the session and so the method returns

false. This makes the ServerThread’s run() method terminate and so the
ServerThread gets disposed. To achieve the described effect, include the
following processRequests() method, whose return type is boolean. This method
assumes the existence of a GetFile() method in this class.
/** This method processes client requests */

 private boolean processRequests() throws IOException {
 try {
 String req = datain.readUTF();
 if (req.equals("File")) {
 String file = datain.readUTF();
 GetFile(file);
 return true;
 }
 else if (req.equals("Bye"))
 return false;
 else {
 System.out.println("Unknown service
requested");
 return false;
 }
 } catch(IOException ioe) {
 System.out.println("Error in input from Client");
 return false;
 }
 }
6. As a final part of our ServerThread class, you should now implement the
GetFile() method. Given a filename, this method will first check to see if the file
exists and if it does, whether it is readable. Then using the file, the method creates
a DataInputStream by passing the FileInputStream as a parameter. Next the
method reads the file line-by-line and sends the line contents to the Client using
the DataOutputStream object named dataout. It follows the file contents with an
EndOfFile message to the Client. Add the following code into the ServerThread
class.
/**
 Method that retrieves contents of a file the client is
 interested in. It uses FileInputStream to achieve the
same */

 private void GetFile(String file_name) {
 //buffer to get all the lines in the file
 StringBuffer buff = new StringBuffer();

 File f = new File(file_name);
 boolean b = (f.exists() || f.canRead());
 if (!b)
 printOut(" File either doesn't exist or is unreadable");
 try {
 DataInputStream f_in = new DataInputStream(new
 BufferedInputStream (new

FileInputStream(file_name)));

 while(f_in.available() !=0) {
 String line = f_in.readLine();
 buff.append(line +"\n");
 dataout.writeUTF(line);
 dataout.flush();
 }
 dataout.writeUTF("EndOfFile");
 dataout.flush();
 } catch (IOException ioE) {
 System.out.println("Error in handling file");
 }
 }
7. The Client class is the next one to be created. Client is the class that will be
launched as an applet from the Web browser. So it extends the applet and in this
implementation, implements the Runnable interface. It acts as a client requesting
service from an existing Server. According to the specification, this should also
run as a stand-alone application. It has instances of Socket, DataInputStream,
DataOutputStream, and Thread as its members. It should also implement user
interface with three buttons: clientinfo, serverinfo and fileinfo. Enter the
following code in the file Client.java.
import java.net.*;
import java.io.*;
import java.applet.*;
import java.awt.*;

/**
 Classname: Client
 This is a class that creates a client socket, Socket, and
 retrieves information about
 client Host or
 server Host or
 requests a File from the server

 Illustrates the usage of APIs in the classes
 java.io.InetAddress
 java.io.Socket
**/

public class Client extends Applet {
 private Socket sock;
 private DataInputStream datain;
 private DataOutputStream dataout;
 private String InpStr[];
 private int count;

 String servHost;
 int servPort;

 boolean standalone;
}
8. You should override the init() method of Applet class by creating a Panel with
three buttons. Then the Client connects to an existing Server at a specified host
and port. It also obtains the input and output streams. If the client is an applet, it

can also obtain some of the parameters from the HTML file. The following init()
method implements these specifications. Include this method in the Client class.
public void init() {
 resize(600,400);
 InpStr = new String[100];

 makePanel(); // create the panel with buttons

 if (!standalone) {
 // initialize parameters using the values from the html doc

 String at = getParameter("servHost");
 servHost = (at != null) ? at : "serval.cat.syr.edu";
 at = getParameter("servPort");
 servPort=(at != null)?Integer.valueOf(at).intValue():3001;
 }

 makeConnection(); // establish connection

 }

private void makePanel() {

 /*to create buttons*/
 Panel p = new Panel();
 p.setLayout(new FlowLayout());
 add("South", p);
 p.add(new Button("clientinfo"));
 p.add(new Button("serverinfo"));
 p.add(new Button("fileinfo"));
}

private void makeConnection() {
 /* Open socket to the server and set up the streams */
 try {
 InetAddress addr = InetAddress.getByName(servHost);
 sock = new Socket(addr,servPort); //create a client socket
 //Obtain input and output stream to communicate with the
server
 datain = new DataInputStream(new
 BufferedInputStream(sock.getInputStream()));
 dataout = new DataOutputStream(new
 BufferedOutputStream(sock.getOutputStream()));

 } catch (IOException E) {
 System.out.println(" IOException in client!!");
 System.out.println(E.getMessage());
 }
}
9. To implement this as a stand-alone application you need to write a method
main(). The following code listing implements this method, which obtains the
server name and port number from the command line. An instance of Client is
created and a method myinit() is invoked to pass the parameters to the Client
object. Then the Client Thread is started and a Frame is initialized to contain the

three buttons to be created. Enter the following code in the Client class to extend
it as a stand-alone application.
public static void main(String args[]) throws IOException {

 Frame f = new Frame("Client-Server Rendezvous");
 // obtain the port number from second parameter on
command
 line.
 int port = (new Integer(args[1])).intValue();
 // convert it to an integer
from
 its string value
 Client Clnt = new Client(); // create an instance of Client
 Clnt.myinit(args[0],port); // initialize and start it
 Clnt.start();

 f.add("Center", Clnt); // create the frame
 f.resize(600,800);
 f.show();
}

public void myinit(String Host, int port) {
 standalone = true;
 servHost = Host;
 servPort = port;
 init();
}
10. Now that you have Buttons in the Panel, you have to override the action()
method so that appropriate action is taken when a button is pressed. The following
code achieves this. Enter the code in the class Client. Also include two variables,
InpStr and count. InpStr is an array of String that will contain the string to be
printed on the canvas. The variable count will keep track of the lines printed out
to the canvas.
String InpStr[];
int count;

 /** Action for Button event */
 public boolean action(Event evt, Object arg) {
 if(evt.target instanceof Button) { // if a Button is pressed
 count=0;
 if("clientinfo".equals(arg)) { // if clientinfo button
 is selected
 int port_num = sock.getPort();
 printOut(" Client has connected to a Server listening
at
 the port number " + port_num);
 ClientInfo();
 printOut("\n\n");
 }
 else if("serverinfo".equals(arg)) { // if serverinfo is
 requested
 ServerInfo();
 printOut("\n\n");
 }
 else if("fileinfo".equals(arg)) { // if fileinfo is

 requested
 try {
 // you are requesting the contents of file
by
 name /etc/motd
 String file_name = new String("/etc/motd");
 MakeRequests(file_name);
 } catch (ArrayIndexOutOfBoundsException a) {
 printOut(" For accessing remote file \n \t \tUsage:
 java Client <filename> ");
 }
 printOut("\n\n"); // a pretty print method available
 within this class
 }
 }
 return true;
 }
11. Information about the Client is to be retrieved when the clientinfo button is
pressed. Including the following method in Client class will make this happen. If
the InetAddress of the local host is made available, then more details can be
obtained from the InetAddress instance that will reflect the client machine
information.
/** Method to obtain information about the client host */

public void ClientInfo() {
 InetAddress c_inet;
 String c_name;

 try {
 c_inet = InetAddress.getLocalHost();
 // InetAddress of the local host
 c_name = c_inet.getHostName();
 // get the host name of the client
 printOut(" Client Host Details ");
 printOut(" HostName : " + c_name);

 // get the string form of the inet address and extract
the IP
 address part of it
 String c_str = c_inet.toString();
 int index = c_str.indexOf('/');
 String c_ipaddr = c_str.substring(index+1);
 printOut(" IP Address : " + c_ipaddr);
 } catch (IOException ioE);
}
12. Server details can be obtained from the server’s InetAddress in a similar
manner as from the Client’s. To get the InetAddress of the server, the Socket
instance is used. The getInetAddress() method of Socket class is used. Include the
following code in the Client class.
/** Method to obtain information about the server */

public void ServerInfo() {
 InetAddress s_inet = sock.getInetAddress();
 String s_name = s_inet.getHostName();
 printOut(" Server Host Details ");

 printOut(" HostName : " + s_name);

 String s_str = s_inet.toString();
 int index = s_str.indexOf('/');
 String s_ipaddr = s_str.substring(index+1);
 printOut(" IP Address : " + s_ipaddr);
}
13. The following MakeRequests() method is used to send the file name to the
server and request the contents of the file. The client then reads the reply from the
server and prints it on the screen until the end of file is reached. The datain and
dataout members of type DataInputStream and DataOutputStream are used by the
Client to communicate with the Server.
/** Client makes its requests to the server by sending messages
 over sockets
 Remote File retrieval is done in this method
*/

public void MakeRequests(String fil_n) {

/* Get a file */

 printOut(" File requested by the client: " + fil_n);
 printOut("\n\n");
 printOut(" The file contains the following: ");
 printOut("\n\n");
 try {
 dataout.writeUTF("File"); // inform the server that you
are
 requesting a File
 dataout.flush(); // send the filename to the
server
 dataout.writeUTF(fil_n);
 dataout.flush(); // always use flush() after
using
 write() method of
 // OutputStream
 String file_contents = datain.readUTF();
 while (!file_contents.equals("EndOfFile")) {
 // get the contents of file line by line and
print
 them
 printOut(file_contents);
 file_contents = datain.readUTF();
 }
 dataout.writeUTF("Bye"); // transaction is
complete
 dataout.flush();
 } catch (IOException ioE){
 // catch the i/o exception
 System.out.println(" Oops! file prob");};
 }
14. Include the following methods in the class Client. To print the strings on the
canvas in an orderly manner, write the printOut() method, which is used by other

methods to print on the canvas. The paint() method is overridden here to write to
the exact locations on the canvas.
/** Method to print the obtained strings to output stream
*/

public void printOut(String str) {
 InpStr[count] = new String(str);
 count++;
 repaint();
 try {
 mythread.sleep(500);
 } catch (InterruptedException ie){};

}

/**
 * Paint it.
 */

 public void paint(Graphics g) {
 Dimension d = size();
 g.setColor(Color.black); // write the contents in black

 // write the contents line by line as string
 //for simplicity there are only maximum 60 lines allowed
 for (int y=60, i = 0; i <count; i++) {
 y +=20; // between each line leave 20 pixels gap

 // draw the string at 40th column and specified line 'y'
 g.drawString(InpStr[i],40,y);
 }
}
15. You should take necessary care to close any open files, streams, or sockets.
This can be done in the stop() method of the Applet, which is called when the
Applet is terminated.
/* Applet stop */
public void stop() {
 System.out.println(" inside Client.stop() ");
 if (mythread != null) {
 mythread.stop();
 mythread=null;
 /* additional cleanup (closings) */
 try {
 dataout.close();
 datain.close();
 sock.close();
 } catch (IOException E);
 }
}
16. The above three files are compiled using javac. The server is executed using
the Java interpreter. Use
 java Server

at the command prompt to run the Server.

17. The Client applet can be launched from the Web using the following HTML
file, csr.html.
<title> Client-Server Rendezvous </title>
<hr>
<applet code=Client.class width=600 height=400>
<param name=servHost value="serval.cat.syr.edu">
<param name=servPort value=3001>
</applet>
<hr>

The applet, when launched, using the command appletviewer csr.html, will create a Panel
that will appear as in Figure 10-11. When you press any of the three keys, appropriate
action is taken and details are printed on the canvas. This applet implements the Client-
Server Rendezvous and exchange of information between the Client and the Server. This
illustrates a typical client-server application.

Figure 10-11 Client-Server Rendezvous applet in action

How It Works

The project developed in this chapter is a client-server application. The server is a stand-
alone application. First, start the server on the host you want to run the server. In the
code, we had the host named as serval.cat.syr.edu. If the host you are running your server
on is foo.bar.usa, change the string serval.cat.syr.edu in the csr.html file to foo.bar.usa.
After starting the server, run the client applet. When the applet comes up, it displays a
window with three buttons: clientinfo, serverinfo, fileinfo. If you click the clientinfo
button, the details of the host, on which the client applet is executed, is displayed on the
canvas. If you click the serverinfo button, the details of the server host, host on which the
server is running, is displayed on the window. Whereas if you click on the fileinfo button,
the contents of the /etc/motd file (in case of Unix systems) is displayed on the screen. If
you are interested in any other file, change the filename in the code to the desired
filename. As an exercise, change the code such that the filename is passed as a parameter
from the command line prompt (in case of stand-alone application) or from the HTML
file (in case it’s launched from a browser). This project gives you a good start in
developing networking applications in Java. Happy networking!

Chapter 11
Handling URLs And Networking Exceptions

If you are developing Java applications for the World Wide Web, this chapter will help
you start writing Java applets that will navigate the Web. It introduces you to some of the
basic concepts of the World Wide Web and explains, in detail, the Java classes that help
you tap into the resources on the Web from within a Java application. In addition, it
describes the exception signals that are thrown when an error is detected while
connecting to or using a resource available over the network. The chapter project
illustrates how you can use the Java classes to access objects specified by Uniform
Resource Locator addresses. This will help you get started with writing your own Java
programs that interact with the Internet.

URLs, Protocols, and MIME

As its name indicates, the World Wide Web is a global network of computers. Web
clients request and receive information from Web servers. Just as in postal addresses in
different countries, the location of information may vary from one computer to another. If
each computer had its own addressing scheme for retrieving its data, then the process of
transparently accessing this information would become very difficult. The architects of
the Web formulated an addressing scheme that could be used by one and all to serve and
access information on the Web. Information on this network is accessible using an
address specification called a URL. URL stands for Uniform Resource Locator. It is a
structured address that uniquely identifies a resource (be it a document, an image, or
whatever) on the World Wide Web.

A complete URL consists of a protocol specifier followed by a string, whose format
depends on the protocol specification. Many protocols are supported on the World Wide
Web, the most popular being the HTTP or HyperText Transfer Protocol. Other popular
protocols are news (to read Usenet newsgroups), gopher (the Gopher protocol) and many
more. The client-server interaction is markedly different among the various protocols.
The basic syntax of a HTTP URL is as follows:

http://hostname[:portnumber]/directory/filename

The http denotes the protocol type. Colons and slashes (/) are used as delimiters. The
hostname field is used to specify an Internet hostname (e.g., www.syr.edu). The
portnumber is an optional field that is used to specify the port on the target host, at which
an http server is running. If it is omitted then the default port for the protocol is used. The
directory and file name fields are used to specify the path name of the document that is to
be retrieved. This path name is relative to the directory that the http server makes public.
Figure 11-1 looks at an example of an HTTP Uniform Resource Locator in detail.

Figure 11-1 Anatomy of a HyperText Transfer Protocol (HTTP) URL

World Wide Web browsers have become very popular. Information that is out there on
the Internet is just a click of the mouse button away. How does the browser distinguish

between image files, text files, audio files, and the many other file formats that exist? Part
of the protocol between the client and the server involves sending some header or context
information about the data that is being sent by the server. The Multipurpose Internet
Mail Extensions (MIME) format specifies this context information. A MIME type is of
the format:

type/subtype.

Using this information, the client (browser) can identify the type of file that it retrieved.
The major types supported on the World Wide Web are: text, image, audio, video, and
application. Even among these major types of files there are different formats. For
example, two popular data formats for image files are GIF (Graphics Interchange Format)
and TIFF (Tagged Image File Format). The subtype of the MIME-type specifies the exact
format of the file. This table lists some sample content types and their corresponding
MIME-types:

Content Type MIME-Type/Subtype

GIF image image/gif

TIFF image image/tiff
Plain text file text/plain

HTML file text/html
Audio file (AU format) audio/basic

Java and the World Wide Web

Java provides many classes that can be used to write applications that access resources on
the World Wide Web. The URL class encapsulates the concept of a Uniform Resource
Locator. The URL class and the Applet class will satisfy most of the needs of Java Web
applications. The designers of the Java Development Kit included a set of extensible
classes that are very useful for programmers who are developing Web browsers and for
those involved in developing protocols to be used on the Web.

Each protocol has its own set of specifications for client-server interaction. If you want to
write your own protocol handler in Java, you must extend and implement a number of
classes. The first of these is the URLStreamHandler class. This class must be extended to
implement the protocol-specific functionality. The URLConnection class represents a
connection to an object referenced by a URL. The implementation of this class also is

protocol-specific. It is this class that determines what type of content is in the file
referenced by the URL.

For each type of file format, (such as GIF or HTML) there is an associated MIME-
type/subtype combination. The ContentHandler class must be extended for each MIME-
type. Figure 11-2 shows the basic relationships between URLs, ProtocolHandlers, and
ContentHandlers.

Figure 11-2 URL class relationships

The basic functionality required of a ContentHandler is very small. A ContentHandler
object should be able to read data off a URLConnection and construct an object that
represents that content type. So if there is a subclass of Image that represents a GIF
image, a ContentHandler for GIF files would simply read the data off the
URLConnection and return a GIFImage object.

The URLStreamHandlerFactory and ContentHandlerFactory interfaces may be
implemented so that the protocol-specific and content-specific classes can be constructed
within the factory object. This provides a simple, uniform interface that the Java classes
use to manufacture different protocol-specific or content-specific classes without
explicitly specifying the class name. All these classes and interfaces provide a useful
abstraction for developers of applications, such as Web browsers. ContentHandlers
provide a means by which even nonstandard data formats can be viewed without having a
viewer installed on your local machine. Using Java, you get the viewer bundled along
with the data!

Implementing a protocol handler or a content handler is highly specific to the nature of
the protocol or the format of the data and is beyond the scope of this book. As a
consequence, some of the method descriptions are not accompanied by concrete
examples. The HotJava browser uses implementations of protocol and content handlers
written in Java. If you develop a protocol handler or a content handler, you will need to
refer to the browser’s documentation to determine the naming policy for these classes and
also to determine where these classes must be installed so that the browser uses your
protocol and content handlers.

URL and Networking Exception Summaries

Exceptions signal abnormal error conditions within the application. In object-oriented
terminology, a method that detects an error may throw (or generate) an exception. In
order to detect this error condition, the application that invoked the method must catch
the exception. The Java keywords try and catch are used to detect exceptions. Exceptions

are usually caught to inform the user that something bad happened. Exceptions related to
URLs and networking are described at the end of the summary section.

Table 11-1 summarizes the classes and interfaces described in this chapter.

Table 11-1 Class/interface descriptions

Class/Interface Description

ContentHandler Interprets data read from a URLConnection object,

and constructs an object that represents a specific
MIME-type/subtype combination, such as

image/gif, text/plain, etc.
ContentHandlerFactory Defines the interface that must be implemented by

classes that know how to create an instance of the
subclass of ContentHandler that handles the

specified MIME-type.

URL Represents a Uniform Resource Locator (URL).
Uniform Resource Locators are references to
objects on the World Wide Web that can be

retrieved by using protocols such as the HyperText
Transfer Protocol (HTTP).

URLConnection Sets or modifies the connection-session parameters
and handles the network connection to the remote
object that is referred to by a Uniform Resource

Locator.
URLEncoder Encodes strings into URL format. Encoding the

strings in this uniform format ensures that the string
is not corrupted by errors, such as character set
variations on different systems (when transmitted

over the network).
URLStreamHandler Specifies an abstract base class that must be

subclassed to implement stream handlers for
specific protocols, such as http, nntp, ftp, etc.

URLStreamHandlerFactory Defines the interface that must be implemented by a
class that knows how to create an instance of a
specific subclass of URLStreamHandler that

handles a protocol.
MalformedURLException Signals that the specified Uniform Resource Locator

(URL) is invalid.

ProtocolException Indicates that an EPROTO error was detected when
the application tried to connect to a socket.

the application tried to connect to a socket.
SocketException Indicates that an error occurred while performing an

operation on a socket.
UnknownHostException Indicates that the address of the host specified by a

network client is not valid.
UnknownServiceException Signals an error indicating that the requested service

is not supported by the client-server protocol.

ContentHandler

Purpose
To interpret data read from a URLConnection object and construct an object that
represents a specific MIME-type/subtype combination, such as image/gif,
text/plain, and so on.

Syntax
public class ContentHandler extends Object

Description
This abstract class must be subclassed to implement content handlers for specific
MIME-type/subtype combinations. ContentHandlers read data from the
URLConnection stream and construct an object that represents the MIME-type.
Subclasses of this class can be used in Web browsers to interpret specific MIME-
type/subtype combinations. Figure 11-2 shows the basic relationships between
URLs, ProtocolHandlers and ContentHandlers. Applications should not construct
ContentHandlers directly. Instead, they should use the getContent methods of the
URL class or the URLConnection class. This method constructs and returns an
instance of a ContentHandler object that is appropriate for the MIME-type of the
connection. By default, the URLConnection class combines the MIME-type and
subtype to form a path name for the Java class. It then looks for a Java .class file
of this name in the sun/net/www/content directory (if such a directory is found
relative to the directory in which the standard Java classes were installed). For
example, if the MIME-type/sub-type returned were image/gif, the default content
handler for this object would be sun/net/www/content/image/gif.class. Figure 11-
3 shows the inheritance diagram for the ContentHandler class.

Figure 11-3 Inheritance diagram for the ContentHandler class

PackageName
java.net

Imports
import java.net.ContentHandler;

Constructors
public ContentHandler()

Parameters
None.

Example
The following example shows how you can write your own content handlers.

// File: tdif.java
// A Java class that represents an image that conforms to a
 fictitious image format known
// as Three D Image Format. Files of this type will have the
 .tdi extension
// [Note: This class is not complete]
package CustomPackage;
import java.awt.Image;
import java.net.*;
import java.io.*;
public class tdif extends Image {
 // Different forms of constructors for this object

 // This constructor constructs a tdif object by reading
 data from a URLConnection stream
 public tdif(URLConnection uc) {
 try {
 DataInputStream data = new
 DataInputStream(uc.getInputStream());
 // read the data and construct the tdif
 object

 data.close();
 } catch (IOException e){
 System.out.println(“Caught
 exception!”);
 }
 }
 // Implementation of the various methods of the Image
 class are added here

}

// File: tdi.java ContentHandler class for image/tdi objects
// For the purposes of this example, assume that the
 MIME-type/subtype combination for objects of
// Three D Image Format are image/tdi.
// Thus, any objects of this format will be handled by the
 sun/net/www/content/image/tdi.class
// content handler class. This class just creates and returns
 a tdif object.

package sun.net.www.content.image;
import CustomPackage.tdif;

public class tdi extends ContentHandler {
 public Object getContent(URLConnection uc) throws
 IOException {
 // if there is an error, then throw an IOException
 // otherwise create and return the appropriate object
 return new tdif(uc);
 }
}

getContent(URLConnection)

ClassName
ContentHandler

Purpose
Reads and interprets the data from a URLConnection stream and constructs an
object that represents the MIME-type/subtype combination handled by this class.

Syntax
public abstract Object getContent(URLConnection urlc) throws IOException

Parameters
urlc

The URLConnection stream from which data must be read and interpreted to
create an object for the MIME-type that this class represents.

Description
This abstract method must be implemented by each subclass of ContentHandler to
read and interpret data from the URLConnection data-stream and create a
representation of the MIME object that the subclass represents. An IOException is
thrown if some error occurs while reading the data from the URLConnection
stream.

Imports
import java.net.ContentHandler;

Returns
This method returns an Object that represents the specific MIME-type/subtype
implemented by this class.

See Also
The getContent method of the URL class and the getContent of the
URLConnection class described in this chapter

Example
The previous example illustrates how you can implement this method in your own
content handlers.

ContentHandlerFactory

Purpose
Defines the interface that must be implemented by classes that know how to
create an instance of a subclass of ContentHandler that handles a specified
MIME-type.

Syntax
public interface ContentHandlerFactory extends Object

Description
As the name implies, a class that implements this interface must know how to
manufacture (construct) instances of subclasses of the ContentHandler class. Each
concrete subclass of the abstract base class, ContentHandler, handles a specific
MIME-type. A class that implements this interface must maintain an association
between the MIME-type strings and the name of the class that handles that
MIME-type/subtype combination. ContentHandlerFactory objects construct (on
demand) the appropriate ContentHandler for a given MIME-type. This class will
mainly be used in subclasses of the URLConnection class. If you are writing
content handlers and you do not want to install these classes in the default
directories, such as sun/net/www/content/, then you can use a class that
implements the ContentHandlerFactory interface to create instances of your
classes. To implement a protocol handler in Java, you must extend the
URLStreamHandler class to provide implementations of streams that are specific
to the protocol. You must also subclass the URLConnection class to provide
implementations of the different types of content that can be handled by the
protocol. The URLConnection class has a static ContentHandlerFactory object as
a member variable. This implies that every instance of the URLConnection class
uses the same source for constructing ContentHandlers. Figure 11-4 shows the
inheritance diagram for the ContentHandlerFactory interface.

Figure 11-4 Inheritance diagram for the ContentHandlerFactory interface

PackageName
java.net

Imports
import java.net.ContentHandlerFactory;

Constructors
None.

Parameters
None.

Example
The example for the createContentHandler method illustrates how you can
implement a custom Content Handler factory class.

createContentHandler(String)

InterfaceName
ContentHandlerFactory

Purpose

Constructs an instance of the specific subclass of ContentHandler that handles the
specified MIME-type.

Syntax
public abstract ContentHandler createContentHandler(String mimetype)

Parameters
mimetype

The Multipurpose Internet Mail Extension (MIME) type for which an instance of
the appropriate subclass of ContentHandler is to be constructed.

Description
Classes that implement the ContentHandlerFactory interface must know the
names and locations of the specific subclasses of ContentHandler that handle the
various MIME-type/subtype combinations. Depending on the MIME-
type/subtype specified, an instance of the appropriate subclass of ContentHandler
is constructed and returned. How does the URLConnection class know which
MIME-type is to be supplied as a parameter to this method? The getContentType
method of the URLConnection class provides the answer to this question. The
getContentType method returns a string that contains the MIME-type/subtype
combination of the URLConnection. This string can then be used as the parameter
to this method.

Imports
import java.net.ConentHandlerFactory;

Returns
This method returns an instance of the ContentHandler subclass that represents
the specified MIME-type.

See Also
The ContentHandler class; the setContentHandlerFactory method of the
URLConnection class; and the getContentType method of the URLConnection
class, all of which are described in this chapter

Example
The following example shows you a class that implements this interface.

// File: CustomContentHandlerFactory.java
// A Java class that implements the ContentHandlerFactory
interface
// This factory looks for classes in the CustomPackage/content
 directory
// It constructs the class name by prepending this “root”
directory
 to the
// MIME-type/sub-type of the object

package CustomPackage;
import java.net.*;

public class CustomContentHandlerFactory implements
ContentHandlerFactory
{
 public ContentHandler createContentHandler(String mimeType) {
 String rootDir = “CustomPackage.content.”;
 // The mimeType string is of the form image/gif
 // Replace the slash (/) with a period (.)

 String mimeClass = mimeType.replace('/', '.');
 String fullClassname = rootDir + mimeClass;
 // create and return the ContentHandler object
 return (ContentHandler) Class.forName(fullClassname).
 newInstance();
 }
}

URL

Purpose
Represents a Uniform Resource Locator (URL). Uniform Resource Locators are
references to objects on the World Wide Web that can be retrieved using
protocols such as the HyperText Transfer Protocol (HTTP).

Syntax
public final class URL extends Object

Description
This class is used to access objects on the World Wide Web. It encapsulates the
concept of a Uniform Resource Locator. Handling the different protocol types
(http, ftp) and content types (GIF images, Postscript files) is transparent to the
application that uses URL objects to access data on the Web. This class cannot be
subclassed, and once constructed, the URL object cannot be modified (i.e.,
instances of the URL class are constant objects). You can create URL objects
either by specifying the absolute path or by specifying a path relative to another
URL. Constructing URL objects by specifying a path relative to another URL
object is useful for creating URLs to references (named anchor tags, e.g.,
“http://www.syr.edu/index.html#LIBRARY”) within a HTML (HyperText
Markup Language) file. If the parameters supplied to the constructor are not valid,
a MalformedURLException is generated, and hence the constructor statements
should be within a try/catch statement pair. The URL class maintains a table of
URLStreamHandler objects that handle different protocols such as http, file,
news, doc, and verbatim. These URLStreamHandler objects are created on
demand and are shared by all instances of the URL class (i.e., the table is a static
member variable of the URL class). When a URL object is created, a
URLStreamHandler object is created. This specific instance of the
URLStreamHandler object depends on the protocol specified in the URL. Figure
11-2 shows the basic relationships between URLs, ProtocolHandlers, and
ContentHandlers. If a URLStreamHandler factory object has been defined, then
this factory is used to generate the URLStreamHandler. If no factory has been
defined, then the URL class looks in certain default directories (for example:
sun/net/www/protocol/http/Handler.class for the http protocol) for the
URLStreamHandler subclass that implements the specified protocol. If you are
writing Java applications that access resources on the World Wide Web, then you
will be using the URL class often. Figure 11-5 shows the inheritance diagram for
the URL class.

Figure 11-5 Inheritance diagram for the URL class

PackageName
java.net

Imports
import java.net.URL;

Constructors
public URL(String protocol, String host, int port, String file) throws
MalformedURLException
public URL(String protocol, String host, String file) throws
MalformedURLException
public URL(String spec) throws MalformedURLException
public URL(URL context, String spec) throws MalformedURLException

Parameters
protocol

The protocol (http, news, and so on) to use for this URL.
host

The Internet name of the host machine to connect to (e.g., www.syr.edu).
port

The port number on the host machine to connect to.
file

The path name of the file on the host.
spec

A string specifying an absolute (unparsed) URL (e.g. “http://www.syr.edu/”).
context

A URL object to be used as a context into which a string specifying a URL
(usually a relative path to the context URL) may be parsed.

Example
The following samples of code illustrate the different ways of constructing URL
objects. Refer to the URLTestControls constructor method in Step 7 of the project
at the end of this chapter for a more complete example.

....
 try {
 URL u1 = new URL(“http://www.syr.edu/”); // absolute
 URL
 URL u2 = new URL(u1, “index.html”); // relative
 URL
 specification
 URL u3 = new URL(“http”, “www.syr.edu”, 80,
“/index.html”
);
 } catch (MalformedURLException e) {
 ... // error

 processing
}

equals(Object)

ClassName
URL

Purpose
Compares the specified URL object to the URL on which this method is invoked
and determines whether the two URL objects are equal or not.

Syntax
public boolean equals(Object obj)

Parameters
obj

The URL object to compare against.
Description

The URL object specified in the parameter of this method is compared to the URL
object on which the method was invoked. The protocol, hostname, port number,
and file specifications of two URL objects are compared.
Note: This method does not make use of facilities like the Unix Domain Name
Service (DNS) to look for aliases of the hostnames. It simply compares the strings
specifying the hostname, protocol, and file specifications. If the hostname strings
do not match, this method evaluates the Internet addresses of the hostnames of the
URL objects being compared.

Imports
import java.net.URL;

Returns
This method returns true if and only if the parameter obj is an instance of the URL
class and the protocol, host, port, and file properties of the two URL objects
match.

Example
The following Java class illustrates the use of this method.

import java.net.*;

public class URLEqualsTest {
 public static void main(String args[]) {
 try {
 URL u1 = new URL(“http”,“web.syr.edu”, 80, “/index.html”);
 URL u2 = new URL(“http://www.syr.edu”);
 URL u3 = new URL(“http://web.syr.edu:80/
 index.html”);
 if (u1.equals(u2))
 System.out.println(“URL u1 = URL u2”); // should NOT
 print this
 if (u1.equals(u3))
 System.out.println(“URL u1 = URL u3”); // should
print
 this
 if (u2.sameFile(u3))
 System.out.println(“URL u2 = URL u3”); // should NOT

 print this
 } catch (MalformedURLException e) {
 System.out.println(“Caught exception !”);
 }
 }
}

getContent()

ClassName
URL

Purpose
Returns an object constructed from the data read from the object referred to by
this URL.

Syntax
public final Object getContent() throws IOException

Parameters
None.

Description
The protocol-specific URLStreamHandler handling this URL determines the
content type of the object referred to by this URL. The ContentHandler for that
MIME-type reads the data from the URLConnection stream and constructs the
content-specific object that is returned.

Imports
import java.net.URL;

Returns
The Object returned by this method is constructed from the data read from the
URLConnection. Depending on the MIME-type of the object referred to by this
URL, a specific instance of a class that represents that content is created. The
instance of operator should be used to determine the class that this object belongs
to. An IOException indicates that an error occurred while reading and interpreting
data from the remote object.

See Also
The ContentHandler class; the getContent method; and the URLConnection class,
described in this chapter

Example
The following example shows how you can use the instance of operator to
determine the type of object that the URL refers to.

// File: URLContentType.java

import java.net.*;
import java.io.IOException;

public class URLContentType {
 public static void main(String args[]) {
 try {
 // Replace the following URL with a URL
 to any text file
 URL u = new URL(“http://cosmos/
 ~asriniva/hello.txt”);

 try {
 Object o = u.getContent();
 // Check the type of object
 if (o instanceof String) {
 // Use this object as a String
 String s = (String) o;
 System.out.println(“This URL
 refers to a String object”);
 System.out.println (“Contents
of
 the URL object: ” + s);

 }

 } catch (IOException ie) {
 System.out.println (“Caught IOE
!”
);

 }
 } catch (MalformedURLException e) {
 System.out.println(“Caught MUE !”);
 }
 }
}

This program prints the following on the screen:
This URL refers to a String object
Contents of the URL object: This is the only line of text in hello.txt!

getFile()

ClassName
URL

Purpose
Gets the filename portion of the URL specification.

Syntax
public String getFile()

Parameters
None.

Description
This method returns the value of the filename portion of the URL specification.
The first two forms of the URL constructor allow you to specify the filename
explicitly. The next two variants of the URL constructor allow you to specify a
URL as a string of text (e.g., “http://www.syr.edu/index.html”) and the URL
constructor parses this string to extract the filename (“/index.html” in this case).

Imports
import java.net.URL;

Returns

The return value of this method is a String object that contains the name of the file
referenced by this URL object.

See Also
Constructors for this class

Example
Refer to the showParams() method in the URLPanel class of the section project
(Step 5) at the end of this chapter.

getHost()

ClassName
URL

Purpose
Retrieves the hostname portion of the Uniform Resource Locator specification.

Syntax
public String getHost()

Parameters
None.

Description
This method returns the value of the hostname portion of the URL specification.
The first two forms of the URL constructor allow you to specify the hostname
explicitly. The next two variants of the URL constructor allow you to specify a
URL as a string of text (e.g., “http://www.syr.edu/index.html”) and the URL
constructor parses this string to extract the hostname (“www.syr.edu” in this
case).

Imports
import java.net.URL;

Returns
The return value of this method is a String object that contains the hostname on
which the file referenced by this URL object resides.

See Also
Constructors for this class

Example
This use of this method is illustrated in the showParams() method in the
URLPanel class of the section project (Step 5) at the end of this chapter.

getPort()

ClassName
URL

Purpose
Gets the port number (on the target host machine) to which this URL object
connects.

Syntax
public int getPort()

Parameters

None.
Description

This method returns the value of the port number of the URL specification. The
first form of the URL constructor allows you to explicitly specify the port
number. The second form of the URL constructor sets the port number to the
default value (which depends on the protocol). The next two variants of the URL
constructor allow you to specify a URL as a string of text (e.g.,
“http://www.syr.edu:80/index.html”) in which you can optionally specify a port
number, and the URL constructor parses this string to extract the port number (80
in this case).

Imports
import java.net.URL;

Returns
This method returns an integer that specifies the port number this URL object
connects to. If the port number was not explicitly specified while constructing the
URL, then the return value of this method is -1.

See Also
Constructors for this class

Example
The use of this method is illustrated in the showParams() method in the
URLPanel class of the section project (Step 5) at the end of this chapter.

getProtocol()

ClassName
URL

Purpose
Gets the protocol used to retrieve the object referenced by this URL.

Syntax
public String getProtocol()

Parameters
None.

Description
This method returns the value of the protocol portion of the URL specification.
The first two forms of the URL constructor allow you to specify the protocol
explicitly. The next two variants of the URL constructor allow you to specify a
URL as a string of text (e.g., “http://www.syr.edu/index.html”) and the URL
constructor parses this string to extract the protocol (“http” in this case).

Imports
import java.net.URL;

Returns
The return value of this method is a String object that specifies the protocol used
to retrieve the object referenced by this URL.

See Also
Constructors for this class

Example

The use of this method is illustrated in the showParams() method in the
URLPanel class of the section project (Step 5) at the end of this chapter.

getRef()

ClassName
URL

Purpose
Gets the anchor tagname for this URL object. Anchors are used to point to a
specific section in a document.

Syntax
public String getRef()

Parameters
None

Description
The # mark indicates a named anchor in a HTML (HyperText Markup Language)
document. By specifying an anchor in a document, one can go directly to that
specified section in the document. This method retrieves the name of the anchor
(if any) from the URL specification.
Note: This method does not detect the reference specification when the URL
object is created using the following form of the URL constructor.
URL u1 = new URL(“http://www.syr.edu/index.html#LIBRARY”);
In this case, u1.getRef() returns the null string.

Imports
import java.net.URL;

Returns
This method returns the anchor tagname (string following the '#’ character) in the
URL.

See Also
The set method of this class and the different forms of constructors for this class

Example
The use of this method is illustrated in the showParams() method in the
URLPanel class of the section project (Step 5) at the end of this chapter.

hashCode()

ClassName
URL

Purpose
Returns a hash value that can be used to index into a hash table.

Syntax
public int hashCode()

Parameters
None.

Description

This method overrides the hashCode method of the Object class. It returns a
number that is the hash value of the URL object on which this method was
invoked.

Imports
import java.net.URL;

Returns
This method returns an integer that represents the hash value for this URL object.

Example
The following Java class shows how to invoke this method in your application.

import java.net.*;

public class URLHashTest {
 public static void main(String args[]) {
 try {
 URL u1 = new URL(“http://web.syr.edu/”);
 System.out.println(“u1.hashCode = ” + u1.hashCode());
 } catch (MalformedURLException e) {
 System.out.println(“Caught exception !”);
 }
 }
}

openConnection()

ClassName
URL

Purpose
Opens a connection to the object referred to by this URL object.

Syntax
public URLConnection openConnection() throws IOException

Parameters
None.

Description
The subclass of URLStreamHandler that handles the protocol specified by this
URL object creates an instance of a subclass of the URLConnection class and
returns this URLConnection object. The specific subclass of the URLConnection
class to instantiate is determined by the URLStreamHandler object that
implements the protocol used by this URL object. An IOException is thrown
when there is an error in establishing a connection to the remote object.

Imports
import java.net.URL;

Returns
This method returns an instance of the protocol-specific subclass of the
URLConnection class that contains a connection to the object referred to by this
URL.

See Also

The URLConnection class; the openStream and getContent methods of the URL
class, described in this chapter

Example
This example illustrates how you can access the URLConnection object
associated with a URL and read data from the URLConnection object over the
network.

// File: URLRead1.java
// A class that reads data from a URL using a URLConnection
object

import java.net.*;
import java.io.*;

public class URLRead1 {
 public static void main(String args[]) {
 try {

 // You can replace this URL with one
 pointing to any
 // HTML file
 URL u = new URL(“http://cosmos/
 ~asriniva/test.html”);
 try {
 // get a handle to the URLConnection
object
 // for this URL
 URLConnection uc = u.openConnection();

 // Check whether this URL object
 can be “read”
 if (uc.getDoInput() == true) {

 // Attach an input stream
 and read from this
 // input stream
 InputStream iStream =
 uc.getInputStream();
 DataInputStream data =
 new
 DataInputStream(iStream);
 String line;
 int lineNumber = 1;
 // Print each line in the
 file, prefixing it
 // with the corresponding
 line number
 while ((line =
 data.readLine())
 != null) {
 System.out.println
 (“Line”
 + lineNumber
 + “: ” +
 line);
 lineNumber++;

 }
 data.close(); // close
 the input stream
 }

 } catch (IOException ie) {
 System.out.println(“Caught IOE !”);
 }
 } catch (MalformedURLException e) {
 System.out.println(“Caught MUE !”);
 }
 }
}

The file test.html contains:
<HTML>
<HEAD>
<TITLE> A Sample HTML file </TITLE>
</HEAD>
<BODY>
<P> This is the first and only paragraph in this file. This file
contains 10 lines.
</BODY>
</HTML>

This example prints the following lines on the screen:
Line 1: <HTML>
Line 2: <HEAD>
Line 3: <TITLE> A Sample HTML file </TITLE>
Line 4: </HEAD>
Line 5: <BODY>
Line 6: <P>
Line 7: This is the first and only paragraph in this file. This file
Line 8: contains 10 lines.
Line 9: </BODY>
Line 10: </HTML>

openStream()

ClassName
URL

Purpose
Opens an input stream to the object referenced by this URL.

Syntax
public final InputStream openStream() throws IOException

Parameters
None.

Description
This function returns an InputStream to the object referred to by the URL. The
InputStream is established by the protocol-specific URLConnection object that
was created by the URLStreamHandler object handling this URL. If the protocol
of this URL object supports input streams, then applications can use this
InputStream object to read the data of the object referred to by the URL.

Imports

import java.net.URL;
Returns

The InputStream object returned by this method can be used to read the data of
the object referred to by this URL object. If the protocol does not support
InputStreams, an UnknownServiceException is thrown. Protocol implementors
can trigger other exceptions while implementing the getInputStream method of
the protocol-specific subclass of the URLConnection class.

See Also
The getInputStream method of the URLConnection class; the openConnection
and getContent methods of the URL class described in this chapter

Example
This example essentially performs the same function as the previous example. It
uses the openStream method of the URL class to read data from the object. This
example uses the same test.html file as the previous example.

// File: URLRead2.java
// A class that reads data from a URL using the URL's
openStream method

import java.net.*;
import java.io.*;

public class URLRead2 {
 public static void main(String args[]) {
 try {
 // You can replace this URL with one
 pointing to any
 // HTML file
 URL u = new URL(“http://cosmos/
 ~asriniva/test.html”);
 try {
 // Attach an input stream and read
 from this
 // input stream
 DataInputStream data = new
 DataInputStream(u.openStream());
 String line;
 int lineNumber = 1;
 // Print each line in the file,
 prefixing it
 // with the corresponding line
 number
 while ((line = data.readLine()) !=
 null) {
 System.out.println(“Line ”
 + lineNumber + “: ” + line);
 lineNumber++;
 }
 data.close(); // close the input
 stream

 } catch (IOException ie) {
 System.out.println(“Caught
 IOE !”);
 }

 } catch (MalformedURLException e) {
 System.out.println(“Caught MUE !”);
 }
 }
}

When executed, this example prints the following lines on the screen:
Line 1: <HTML>
Line 2: <HEAD>
Line 3: <TITLE> A Sample HTML file </TITLE>
Line 4: </HEAD>
Line 5: <BODY>
Line 6: <P>
Line 7: This is the first and only paragraph in this file. This file
Line 8: contains 10 lines.
Line 9: </BODY>
Line 10: </HTML>

sameFile()

ClassName
URL

Purpose
Compares the specified URL object against the object on which this method was
invoked.

Syntax
public boolean sameFile(URL other)

Parameters
other

The URL object that must be compared against the object on which this method is
invoked.

Description
If the four fields (protocol, hostname, port number, and file path name) of the two
URL objects are the same, then the URLs are said to be equal. The reference field,
that indicates an offset in a file, is not taken into account for the comparison.

Imports
java.net.URL;

Returns
This method returns true if the specified URL object is equal to this URL;
otherwise, it returns the boolean value false.

See Also
The equals and set methods of the URL class, described in this chapter

Example
This method is used in the example for the equals method of this class.

set(String, String, int, String, String)

ClassName
URL

Purpose

Sets the individual fields of the URL object. This is a privileged function that is
accessible only to classes in the java.net package.

Syntax
protected void set(String protocol, String host, int port, String file, String ref)

Parameters
protocol

The protocol (http, news, etc) to use for this URL.
host

The Internet name of the host machine to connect to (e.g., www.syr.edu).
port

The port number on the host machine to connect to.
file

The path name of the file on the host.
ref

The name of the reference that indicates a specific offset into the file.
Description

This method is provided so that the parseURL method of the URLStreamHandler
class can set the fields of a URL. It is a protected method that is accessible only to
classes in the java.net package.

Imports
import java.net.URL;

Returns
None.

Example
This method can only be invoked by classes in the java.net package and hence no
example code illustrating the usage of this method is provided here.

setURLStreamHandlerFactory(URLStreamHandlerFactory)

ClassName
URL

Purpose
Specifies the factory object (that implements the URLStreamHandlerFactory
interface) that all URL objects should use to create protocol-specific
URLStreamHandler objects.

Syntax
public static synchronized void
setURLStreamHandlerFactory(URLStreamHandlerFactory fac)

Parameters
fac

The URLStreamHandlerFactory object that must be used for creating protocol-
specific stream handlers.

Description

All objects of the URL class share the same URLStreamHandlerFactory object.
By invoking this method, you can install your own URLStreamHandlerFactory.
An error is generated if a URLStreamHandlerFactory already exists. If you write
new protocol handler classes and install these classes in nonstandard locations,
you will need to create a class that implements the URLStreamHandlerFactory
interface. This factory class will need to know where to find the protocol-specific
implementations of classes such as the URLConnection class and the
URLStreamHandler class.

Imports
import java.net.URL;

See Also
The URLStreamHandlerFactory class and the URLStreamHandler class described
in this chapter

Returns
None.

Example
The following pieces of code illustrate how you might set the
URLStreamHandlerFactory to a custom factory that you have implemented.

// File: myFactory.java
import java.net.*;

public class myFactory implements URLStreamHandlerFactory {
 // implement URLStreamHandlerFactory interface methods
 here

 public URLStreamHandler createURLStreamHandler(String
 protocol) {

 // return the appropriate stream handler for the
 protocol
 }

}

// File: URLSetFactoryTest.java
import java.net.*;

public class URLSetFactoryTest {
 public static void main(String args[]) {
 try {
 URL u1 = new URL(“http://web.syr.edu/”);
 u1.setURLStreamHandlerFactory(new MyFactory());

 } catch (MalformedURLException e) {
 System.out.println(“Caught exception !”);
 }
 }
}

toExternalForm()

ClassName

URL
Purpose

Represents this URL as a text string.
Syntax

public String toExternalForm()
Parameters

None.
Description

The textual representation of this URL is constructed from the individual fields of
the URL (such as protocol, hostname, etc.). Default values (such as default port
number) are omitted from the text string.

Imports
import java.net.URL;

Returns
The String object returned by this method contains a text string that specifies the
protocol, hostname, portnumber (if specified), file name, and reference (if
specified) of this URL object.

See Also
The toString method of this class

Example
This method is invoked by the toString method of this class. The following Java
class shows how to invoke this method in your application.

import java.net.*;

public class URLTestExternalForm {
 public static void main(String args[]) {
 try {
 URL u1 = new URL(“http”, “web.syr.edu”, 80, “/index.html”);
 System.out.println(“u1.toExternalForm = ” + u1.toExternal
 Form());
 } catch (MalformedURLException e) {
 System.out.println(“Caught exception !”);
 }
 }
}

When this example is compiled (javac URLTestExternalForm.java) and executed
(java URLTestExternalForm), the following string is printed on the screen.

u1.toExternalForm = http://web.syr.edu:80/index.html

toString()

ClassName
URL

Purpose
Represents this URL as a text string.

Syntax
public String toString()

Parameters
None.

Description
This method simply invokes the toExternalForm method to represent the URL
object as a text string.

Imports
java.net.URL;

Returns
The String object returned by this method contains a text string that specifies the
protocol, hostname, port number (if specified), file name, and reference (if
specified) of this URL object.

See Also
The toExternalForm method of this class

Example
The use of this method is illustrated in the showParams method in the URLPanel
class of the section project (Step 5) at the end of this chapter.

URLConnection

Purpose
Sets/modifies the connection-session parameters and handles the network
connection to the remote object referred to by a Uniform Resource Locator.

Syntax
public class URLConnection extends Object

Description
This abstract class must be subclassed by protocol-implementors to provide
protocol-specific implementations for connecting to remote objects referred to by
Uniform Resource Locators (URLs). This class will handle the parsing of
protocol-specific message headers and message content. The various properties of
the connection session for a protocol will also be handled by subclasses of this
class. All instances of the URLConnection class share a table of ContentHandlers.
These ContentHandlers represent specific MIME-type/subtype combinations.
Instances of this class (for a specific protocol) are created by the subclass of the
URLStreamHandler class that implements the specified protocol’s stream
handling functionality. Figure 11-2 shows the basic relationships between URLs,
ProtocolHandlers, and ContentHandlers. Figure 11-6 shows the inheritance
diagram for the URLConnection class.

Figure 11-6 Inheritance diagram for the URLConnection class

PackageName
java.net

Imports

import java.net.URLConnection;
Constructors

protected URLConnection(URL url)
Parameters
url

The URL object to which a connection needs to be established.
Example

The constructor method for this class is protected and hence you cannot create
objects of this class. To implement protocol handlers, you will need to extend this
class.

connect()

ClassName
URLConnection

Purpose
Connects to the remote object referred to by the URL for which this
URLConnection object was created.

Syntax
public abstract void connect() throws IOException

Parameters
None.

Description
Invoking this method causes a connection to be established to the object referred
to by the URL. The properties of this connection-session cannot be altered (using
the methods such as setDoInput and setDoOutput) once a connection is
established. This method must be implemented by any class that extends the
URLConnection class.

Imports
import java.net.URLConnection;

Returns
None.

Example
The following code shows a portion of a Java class that extends the
URLConnection class.

// File: CustomURLConnection.java
// URLConnection object for a new protocol
package CustomProtocolConnection;
import java.net.*;

public class CustomURLConnection extends URLConnection {
 // code for the URLConnection class methods that implement
 the specifics of the
 // protocol is written here

 public void connect() throws IOException {

 // Implement the policies of the protocol to connect
 to the
 // object specified by the URL

 }
 ...
}

getAllowUserInteraction()

ClassName
URLConnection

Purpose
Returns the value of the flag that indicates whether the protocol permits user
interaction while establishing the connection to the remote object.

Syntax
public boolean getAllowUserInteraction()

Parameters
None.

Description
Protocols such as http, that have access/security control features, allow user
interaction (such as authentication by asking for a user name and password)
during the process of setting up a connection to an object referred to in a URL.
Protocol implementors specify whether this interaction is permitted by the
protocol or not.

Imports
import java.net.URLConnection;

Returns
The return value is true if the protocol permits user-interaction at the time of
establishing a connection, and false if user-interaction is not permitted by the
protocol.

See Also
The setAllowUserInteraction, getDefaultAllowUserInteraction and
setDefaultAllowUserInteraction methods of this class

Example
The following example illustrates the usage of this method and some of the other
related methods of this class.

// File: URLConnTest1.java
// Illustrates the usage of some of the methods of the
URLConnection class

import java.net.*;
import java.io.IOException;

public class URLConnTest1 {
 public static void main(String args[]) {
 try {
 // Replace the following URL with any valid URL
 URL u1 = new URL(“http://cosmos/~asriniva/index.html”);

 try {
 URLConnection uc = u1.openConnection();
 System.out.println(“URL: ” + u1.toString());
 System.out.println(“getAllowUserInteraction: ” +
 uc.getAllowUserInteraction());
 System.out.println(“getDefaultAllowUserInteraction: ” +

uc.getDefaultAllowUserInteraction());
 System.out.println(“getUseCaches: ” +
 uc.getUseCaches());
 System.out.println(“getDefaultUseCaches: ” +
 uc.getDefaultUseCaches());
 System.out.println(“getDoInput: ” +
 uc.getDoInput());
 System.out.println(“getDoOutput: ” +
 uc.getDoOutput());
 } catch (IOException ie) {
 System.out.println(“Caught IOException !”);
 }
 } catch (MalformedURLException e) {
 System.out.println(“Caught MUE !”);
 }
 }
}

When this program is compiled and executed it prints the following messages on
the screen.

URL: http://cosmos/~asriniva/index.html
getAllowUserInteraction: false
getDefaultAllowUserInteraction: false
getUseCaches: true
getDefaultUseCaches: true
getDoInput: true
getDoOutput: false

getContent()

ClassName
URLConnection

Purpose
Reads the data from the remote object and constructs an instance of the subclass
of ContentHandler that handles the MIME-type of the object this URL refers to.

Syntax
public Object getContent() throws IOException

Parameters
None.

Description
This method determines the MIME-type/subtype of the object referred to by the
URL and constructs the appropriate ContentHandler (if it does not already exist).
The getContent method of the ContentHandler class is invoked and the
ContentHandler object reads the data from this URLConnection stream. Then it

constructs and returns the object referred to by the URL. For example, a plain text
content handler may just read the data from the URLConnection object and return
a String object containing the text read from the remote object, or a content
handler that handles the image/gif MIME-type could construct a GIFImage
object. This GIFImage object would typically be an instance of a subclass of the
Image class.

Imports
import java.net.URLConnection;

Returns
The Object returned by this method is constructed from the data read from the
URLConnection. Depending on the MIME-type of the object referred to by the
URL, a specific instance of a class that represents that content is created. The
instanceof operator should be used to determine the class that this object belongs
to. An IOException indicates that an error occurred while reading and interpreting
data from the remote object.

See Also
The ContentHandler class and the getContent method of the URL class and of the
URLStreamHandler class. These are described in this chapter.

Example
The following example uses the getContent method of the URLConnection class
to access the object referred to by the URL.

// File: URLConnContentType.java
import java.net.*;
import java.io.IOException;

public class URLConnContentType {
 public static void main(String args[]) {
 try {

 // Replace the following URL with a URL
 to any text file
 URL u = new URL(“http://cosmos/
 ~asriniva/hello.txt”);
 try {
 // get a handle to the
 URLConnection object
 // for this URL URLConnection
 uc = u.openConnection();

 Object o = uc.getContent();
 // Check the type of object
 if (o instanceof String) {
 // Use this object as
 a String
 String s = (String) o;
 System.out.println
 (“This URL refers
 to a String object”);
 System.out.println
 (“Contents of the URL
 object: ” + s);

 }
 } catch (IOException ie) {
 System.out.println(“Caught
 IOE !”);
 }
 } catch (MalformedURLException e) {
 System.out.println(“Caught MUE !”);
 }
 }
}

This program prints the following on the screen.
This URL refers to a String object

Contents of the URL object: This is the only line of text in hello.txt!

getContentEncoding()

ClassName
URLConnection

Purpose
Gets the mechanism used to encode the data of the remote object to which this
URLConnection is connected.

Syntax
public String getContentEncoding()

Parameters
None.

Description
One of the MIME header fields that specifies information about the object is the
Content-Encoding field. It specifies the encoding mechanism used to encode the
object data. Content codings are primarily used to allow data to be compressed or
encrypted. Encoding mechanisms such as compress and gzip are used to compact
the data so that less data needs to be transferred over the network.

Imports
import java.net.URLConnection;

Returns
This method returns a String that specifies the encoding mechanism used. If the
encoding mechanism is not known, this method returns a null value. Two
common encoding mechanisms are x-compress and x-gzip.

Example
The following example illustrates the usage of some of the methods of this class.

// File: URLConnTest.java
// Illustrates the usage of some of the methods of the
URLConnection class
import java.net.*;
import java.io.IOException;
import java.util.Date;

public class URLConnTest {
 public static void main(String args[]) {

 try {
 // Replace the following URL with any valid URL
 URL u1 = new URL(“http://cosmos/~asriniva/index.html”);
 try {
 URLConnection uc = u1.openConnection();
 System.out.println(“URL: ” + u1.toString());
 System.out.println(“Content-Type: ” + uc.getContentType
 ());
 System.out.println(“Content-Length: ” +
 uc.getContentLength());
 System.out.println(“Content-Encoding: ” +
 uc.getContentEncoding());
 // Convert the date value to an ASCII string
 Date d1 = new Date(uc.getDate());
 System.out.println(“Date (value): ” +
 uc.getDate() + “ (string): ” +
 d1.toString());
 // Convert the last-modified date value to an ASCII string
 Date d2 = new Date(uc.getLastModified());
 System.out.println(“Last modified on (value): ” +
 uc.getLastModified() + “ (string): ”
+
 d2.toString());
 System.out.println(“Expires on: ” +
 uc.getExpiration());
 } catch (IOException ie) {
 System.out.println(“Caught IOException !”);
 }
 } catch (MalformedURLException e) {
 System.out.println(“Caught MUE !”);
 }
 }
}

When this program is compiled (javac URLConnTest.java) and run (java
URLConnTest), the following text is printed on the screen.

URL: http://cosmos/~asriniva/index.html
Content-Type: text/html
Content-Length: 443
Content-Encoding: null
Date (value): 829693487000 (string): Tue Apr 16 18:24:47 EDT 1996
Last modified on (value): 829686465000 (string): Tue Apr 16 16:27:45
EDT 1996
Expires on: 0

getContentLength()

ClassName
URLConnection

Purpose
Gets the length of the content of the remote object that this URLConnection is
connected to.

Syntax
public int getContentLength()

Parameters

None.
Description

One of the MIME header fields that specifies information about the object is the
Content-Length field. It implies that the object data should be treated as binary
data, and the integer value associated with this field specifies the data size of the
remote object.

Imports
import java.net.URLConnection;

Returns
The integer value returned by this method specifies the size of the content of the
remote object. If the content length cannot be determined, this method returns the
value -1.

Example
This method is used in the example for the getContentEncoding method of this
class.

getContentType()

ClassName
URLConnection

Purpose
Gets the MIME-type/subtype combination of the remote object that this
URLConnection is connected to.

Syntax
public String getContentType()

Parameters
None.

Description
The value associated with the Content-Type field of the MIME header specifies
the MIME-type and subtype of the object that the URL refers to.

Imports
import java.net.URLConnection;

Returns
The String returned by this method contains the MIME-type and subtype
combination of the remote object. If the content type is not known, this method
returns a null value. For example, if the URL referred to a HTML file, this
method would return text/html, whereas if the URL referred to a postscript file,
the string returned by this method would be application/postscript.

Example
This method is used in the example for the getContentEncoding method of this
class.

getDate()

ClassName
URLConnection

Purpose
Gets the date and time that the object was sent.

Syntax
public long getDate()

Parameters
None.

Description
One of the MIME header fields is the Date field. The value associated with this
field specifies the date and time that the data, accompanying this header, was sent.
The Date field of the MIME header contains a string representation of the date,
such as the following text.
Mon, 15 Apr 1996 09:00:00 GMT
This method invokes the parse method of the Date class to convert this string
representation into a time value, and returns this time value.

Imports
import java.net.URLConnection;

Returns
The value returned by this method is obtained by invoking the parse method of
the Date class which returns the number of milliseconds since the beginning
epoch, for the specified date. If the date is not known, the value 0 is returned.

See Also
The parse method of the Date class. This class is described in Chapter 13.

Example
This method is used in the example for the getContentEncoding method of this
class. The Date class is used to convert the number returned by this method to a
string representation of a date and time.

getDefaultAllowUserInteraction()

ClassName
URLConnection

Purpose
Gets the default value of the flag that indicates whether the protocol permits user-
interaction while establishing the connection to the remote object.

Syntax
public static boolean getDefaultAllowUserInteraction()

Parameters
None.

Description
This method can be used to determine whether or not the protocol permits user-
interaction. This property is required of some protocols that require user-
interaction, such as typing in a password, before proceeding further. The variable
that stores the value of the flag associated with this property is a static variable in

the URLConnection class. This ensures uniformity in this policy among all
instances of the URLConnection class for that protocol.

Imports
java.net.URLConnection;

Returns
The return value is true or false, depending on whether or not the default value
associated with this property for this protocol is true or false. The default value
for this variable is false.

See Also
The setDefaultAllowUserInteraction method; the getAllowUserInteraction and the
setAllowUserInteraction methods of this class

Example
This method is used in the example for the getAllowUserInteraction method of
this class.

getDefaultRequestProperty(String)

ClassName
URLConnection

Purpose
Gets the default value associated with the specified field of the request header.

Syntax
public static String getDefaultRequestProperty(String key)

Parameters
key

The name of the request header field for which the default value is to be returned.
Description

In a protocol transaction such as http, the client sends a list of fields to the http
server. Some of these fields (such as Accept and Accept Encoding) convey
information about the capabilities of the client. This method is used to determine
the default values associated with a specified field of the request header. The
request fields (properties) contained in a HTTP protocol header are

From Accept Accept-Encoding
Accept-Language User-Agent Referrer
Authorization Charge-to If-Modified-Since

Pragma

Imports
import java.net.URLConnection;

Returns
This method returns a String object that contains a default value associated with
the specified property. The default implementation of this method (in the
URLConnection class) simply returns a null string.

See Also
The setDefaultRequestProperty method of this class

Example

The following example shows how you can override this method.
// File: CustomURLConnection.java
// URLConnection object for a new protocol
package CustomProtocolConnection;
import java.net.*;

public class CustomURLConnection extends URLConnection {
 // code for the URLConnection class methods that implement
 the specifics of the
 // protocol is written here

 public static String getDefaultRequestProperty(String key) {

 // return the default string for the specified key

 }
 ...
}

To access the contents, click the chapter and section titles.

Java Networking & AWT API SuperBible
(Publisher: Macmillan Computer Publishing)
Author(s): NAGARATNAM, MASO, & SRINVASAN
ISBN: 157169031x
Publication Date: 07/12/96

Search this book:

Go!

Previous Table of Contents Next

getDefaultUseCaches()

ClassName
URLConnection

Purpose
Gets the default value of the flag that indicates whether the protocol should use
the cache to retrieve an object or whether it should ignore the cache and fetch
the object from the remote site.

Syntax
public boolean getDefaultUseCaches()

Parameters
None.

Description
Some protocols use local caches to enable quick access to previously retrieved

objects. The URLConnection class maintains a per-instance boolean variable
that indicates whether or not to use caching. A static boolean variable specifies
the default value for the per-instance variable. This method returns the value of
the static boolean variable.

Imports
import java.net.URLConnection;

Returns
The return value is true or false, depending on whether the URLConnection
should use the cache or ignore the cache. The default value for this variable is
true.

See Also
The setDefaultUseCaches method the setUseCaches and getUseCaches methods
of this class

Example
This method is used in the example for the getAllowUserInteraction method of
this class.

getDoInput()

ClassName
URLConnection

Purpose
Gets the value of the flag that indicates whether this URLConnection can be
used for input (i.e. can be read from).

Syntax
public boolean getDoInput()

Parameters
None.

Description
The value returned by this method indicates whether or not data can be read
from the URLConnection.

Imports
import java.net.URLConnection;

Returns
The boolean value returned is true if the URLConnection can be used for input
and false if not. The default value for this flag is true.

See Also
The setDoInput method of this class

Example
This method is used in the example for the getAllowUserInteraction method of
this class.

getDoOutput()

ClassName
URLConnection

Purpose
Gets the value of the flag that indicates whether this URLConnection can be
used for output (i.e., can be written to).

Syntax
public boolean getDoOutput()

Parameters
None.

Description
The value returned by this method indicates whether or not data can be written
to the remote object that the URLConnection is connected to.

Imports
import java.net.URLConnection;

Returns
The boolean value returned is true if the URLConnection can be used for output
and false if not. The default value for this flag is false.

See Also
The setDoOutput method of this class

Example
This method is used in the example for the getAllowUserInteraction method of
this class.

getExpiration()

ClassName
URLConnection

Purpose
Gets the date after which the information retrieved from the remote object
ceases to be valid and must be reloaded.

Syntax
public long getExpiration()

Parameters
None.

Description
One of the MIME header fields that specifies information about the object is the
Expires field. The value associated with this field specifies the date after which
the information already retrieved ceases to be valid and must be retrieved again.
The object referred to by the URL is considered to be stale after the date/time
specified in this field. This allows the data to be refreshed periodically and also
allows a limited amount of control over caching policies. The Expires field of
the MIME header contains a string representation of the date, such as the
following text.
Mon, 15 Apr 1996 09:00:00 GMT
This method invokes the parse method of the Date class to convert this string
representation into a time value, and returns this time value.

Imports
import java.net.URLConnection;

Returns
The return value indicates the date after which the object needs to be retrieved
again. The value returned by this method is obtained by invoking the parse
method of the Date class that returns the number of milliseconds since the
beginning epoch, for the specified date. If the expiration date is not known then
the value 0 is returned.

See Also
The parse method of the Date class. This class is described in Chapter 13.

Example
This usage of this method is illustrated in the example for the
getContentEncoding method of this class.

getHeaderField(int)

ClassName
URLConnection

Purpose
Gets the value associated with the nth header field of the object’s header.

Syntax
public String getHeaderField(int n)

Parameters
n

The index number of the header field whose value is to be retrieved.
Description

This method retrieves the value associated with a particular header field. The
header field is specified using an index. Without knowing the actual field names
contained in the header, one can use this method and the GetHeaderFieldKey
method to iterate through all the header field names and associated values. The
index n starts at zero.

Imports
import java.net.URLConnection;

Returns
If the index n is less than the number of fields in the header, then the value for
that field is returned. If n is greater than the number of fields in the header, the
return value is null. The default implementation of this method (in the
URLConnection class) simply returns a null string.

See Also
The URLConnection.getHeaderField(String) method

Example
Please refer to the example for the getDefaultRequestProperty method of this
class to see how you can provide a custom implementation of this method in
any class that extends the URLConnection class.

getHeaderField(String)

ClassName
URLConnection

Purpose
Gets the value associated with the specified header field.

Syntax
public String getHeaderField(String name)

Parameters
name

The name of the header field whose value is to be retrieved.
Description

This method retrieves the value associated with a specified header field. The
header field is specified by name (e.g,. Content-Type).

Imports
import java.net.URLConnection;

Returns
The String object returned by this method contains the value associated with the
specified field name. If the header field name was not found in the data stream
read from the remote object, then the value returned by this method is null. The
default implementation of this method (in the URLConnection class) simply
returns a null string. The header fields given with or in relation to objects in
HTTP are

Allowed Public Content-Length

Content-Type Content-Transfer-Encoding Content-Encoding
Date Expires Last-Modified

Message-Id URL Version
Derived-From Content-Language Cost
Link Title

See Also
The getHeaderField method of this class

Example
Please refer to the example for the getDefaultRequestProperty method of this
class to see how you can provide a custom implementation of this method in any
class that extends the URLConnection class.

getHeaderFieldDate(String, long)

ClassName
URLConnection

Purpose
Gets the value associated with the specified header field, reads this value as a date
value, and returns the date value.

Syntax
public long getHeaderFieldDate(String name, long strDef)

Parameters

name
The name of the header field whose value is to be retrieved as a date value.

strDef
The default value to return if the header field name is not found.

Description
This method reads the value associated with the header field and returns this value
as a date value. This method can be used by protocols that have pre-parsed
headers where the formats of individual fields are known. Please refer to the
getDate method description for the format of the date value returned by this
method.

Imports
import java.net.URLConnection;

Returns
This method returns the value specified in strDef if the field name is not known. If
the field name is found, the value associated with it is returned as a long integer.

Example
This helper method, shown below, can be used to extract the contents of a field
and convert it into a long integer representing the number of milliseconds since
the epoch.

// File: CustomURLConnection.java
// URLConnection object for a new protocol
package CustomProtocolConnection;
import java.net.*;

public class CustomURLConnection extends URLConnection {
 // code for the URLConnection class methods that implement
 the specifics of the
 // protocol is written here

 // assume that this protocol has a header field which
 specifies the local time/date
 public long getLocalTime() {
 return getHeaderFieldDate(“local-time”, 0);
 }
 ...
}

getHeaderFieldInt(String, int)

ClassName
URLConnection

Purpose
Gets the value associated with the specified header field, reads this value as an
integer value, and returns the integer value.

Syntax
public int getHeaderFieldInt(String name, int valDef)

Parameters
name

The name of the header field whose value is to be retrieved as an integer value.

valDef
The default value to return if the header field name is not found.

Description
This method reads the value associated with the header field and returns this value
as an integer value. This method can be used by protocols that have pre-parsed
headers, where the formats of individual fields are known.

Imports
java.net.URLConnection;

Returns
This method returns the value specified in valDef if the field name is not known.
If the field name is found, the value associated with it is returned as an integer.

Example
This helper method can be used in a manner similar to that described in the
example for the getHeaderFieldDate method description.

getHeaderFieldKey(int)

ClassName
URLConnection

Purpose
Gets the field name of the nth header field.

Syntax
public String getHeaderFieldKey(int n)

Parameters
n

The index number of the header field whose field name is to be retrieved.
Description

This method retrieves the field name associated with a particular header field. The
header field is specified using an index. Without knowing the actual field names
contained in the header, one can use this method and the GetHeaderField (int)
method to iterate through all the header field names and their associated values.
The index n starts at zero.

Imports
import java.net.URLConnection;

Returns
If index n is less than the number of fields in the header, then the field name for
that field is returned. If n is greater than the number of fields in the header, the
return value is null. The default implementation of this method (in the
URLConnection class) simply returns a null string.

See Also
The getHeader method of this class

Example
Please refer to the example for the getDefaultRequestProperty method of this
class to see how you can provide a custom implementation of this method in any
class that extends the URLConnection class.

getIfModifiedSince()

ClassName
URLConnection

Purpose
Gets the time that is sent as the value of the If-Modified-Since header field of the
request header to determine whether or not an object should be retrieved.

Syntax
public long getIfModifiedSince()

Parameters
None.

Description
The If-Modified-Since field of the request header is sent by the client to the server
in order to make the retrieval of an object conditional. By specifying a time with
this header field, the client instructs the server not to send the object, if the object
has not changed since the time indicated, as the value for this header field. This
method gets the value associated with this field.

Imports
import java.net.URLConnection;

Returns
The return value is a long integer that indicates the time that should be used by a
server to determine whether an object has been modified or not.

Example
This method can be used in a manner similar to the getLastModified method.

getInputStream()

ClassName
URLConnection

Purpose
Gets an input stream from which data from the remote object can be read.

Syntax
public InputStream getInputStream() throws IOException

Parameters
None.

Description
This method opens and returns an InputStream to the remote object that this
URLConnection object is connected to. The object’s data can be read using the
InputStream object returned by this method. Protocols that permit input must
implement this method.

Imports
import java.net.URLConnection;

Returns

This method returns an InputStream object that can be used to read data from the
remote object. An UnknownServiceException is generated if the protocol does
not support input. The default implementation of this method (in the
URLConnection class) simply throws an UnknownServiceException.

Example
This method is used in the example for the openConnection method of the URL
class.

getLastModified()

ClassName
URLConnection

Purpose
Gets the time that the object that this URLConnection is connected to was last
modified.

Syntax
public long getLastModified()

Parameters
None.

Description
One of the MIME header fields that specifies information about the object is the
Last-Modified field. The value associated with this field specifies the time that the
object was last modified. The format of this field is the same as the date format
for the Date field described in the getDate method of this class. The server
compares this value against the value of the If-Modified-Since field of the request
header to determine whether the object needs to be sent to the client.

Imports
import java.net.URLConnection;

Returns
The return value indicates the time that the object this URLConnection is
connected to was last modified. If the time is not known, the value 0 is returned.

See Also
The getIfModifiedSince method of this class; the parse method of the Date class,
and the Date class, described in Chapter 13.

Example
An example of this method is illustrated in the example for the
getContentEncoding method of this class.

getOutputStream()

ClassName
URLConnection

Purpose
Gets an output stream that the remote object can be written to.

Syntax
public OutputStream getOutputStream() throws IOException

Parameters
None.

Description
This method opens and returns an OutputStream to the remote object that this
URLConnection object is connected to. Data can be written to the object using the
OutputStream object returned by this method. Writing to a URLConnection is
similar to the POST method of the HTTP protocol. It provides a means by which
information can be sent to the object referenced by the URL. You can use the
output stream of a URLConnection to send data back to CGI (Common Gateway
Interface) scripts that are running on a World Wide Web server. Protocols that
permit output must implement this method.

Imports
import java.net.URLConnection;

Returns
This method returns an OutputStream object. An UnknownServiceException is
generated if the protocol does not support output. The default implementation of
this method (in the URLConnection class) simply throws an
UnknownServiceException.

Example
The following example is a simple template that you can use to write Java
programs that post and receive data to or from CGI scripts.

// File: URLConnWrite.java
// A template for interacting with CGI scripts

import java.net.*;
import java.io.*;

public class URLConnWrite {
 public static void main(String args[]) {
 try {
 // This URL points to a test cgi
 script that simply
 // echoes the data posted to it, along
 with a list
 // of environment variables
 URL cgiURL = new URL(“http://
 cosmos/cgi-bin/test-cgi.tcl”);
 try {
 // get a handle to the
 URLConnection object
 // for this URL
 URLConnection uc =
 cgiURL.openConnection();

 // Attach an output stream
 and write to this stream
 OutputStream os =
 uc.getOutputStream();
 PrintStream ps = new
 PrintStream(os);
 String data;
 // Fill this string with

 contain the data to be sent
 data = new String(“Java
 AND book AND Waite”);

 // encode the string prior
 to sending it to the server
 data =
URLEncoder.encode(data);
 ps.println(“query
 =” + data); // send
 the string
 ps.close(); // close
 the stream
 // now read the response
 from the CGI script
 InputStream is =
 uc.getInputStream();
 DataInputStream di = new
 DataInputStream(is);
 String line;
 int lineNumber = 1;
 // This example simply
 prints the response on
 the screen
 while ((line =
 di.readLine()) != null) {
 System.out.println
 (“Line ” + lineNumber
 + “: ” + line);
 lineNumber++;
 }
 di.close(); // close
 the input stream
 } catch (IOException ie) {
 System.out.println(“Caught IOE !”);
 }
 } catch (MalformedURLException e) {
 System.out.println(“Caught MUE !”);
 }
 }
}

The output of this program is:
Line 1: <HTML>
Line 2: <HEAD>
Line 3: <TITLE>CGI/1.0 TCL script report:</TITLE>
Line 4: </HEAD>
Line 5: <BODY>
Line 6: <H1>Command Line Arguments</H1>
Line 7: argc is 0. argv is .
Line 8:
Line 9: <H1>Message</H1>
Line 10: <PRE>
Line 11: query = Java AND book AND Waite
Line 12:
Line 13: </PRE>
Line 14: <H1>Environment Variables</H1>

Line 15: <DL>
Line 16: <DT>SERVER_SOFTWARE<DD>NCSA/1.3
Line 17: <DT>SERVER_NAME<DD>199.100.97.2
Line 18: <DT>GATEWAY_INTERFACE<DD>CGI/1.1
Line 19: <DT>SERVER_PROTOCOL<DD>HTTP/1.0
Line 20: <DT>SERVER_PORT<DD>80
Line 21: <DT>REQUEST_METHOD<DD>POST
Line 22: <DT>SCRIPT_NAME<DD>/cgi-bin/test-cgi.tcl
Line 23: <DT>QUERY_STRING<DD>
Line 24: <DT>REMOTE_HOST<DD>cosmos
Line 25: <DT>REMOTE_ADDR<DD>199.100.97.2
Line 26: <DT>CONTENT_TYPE<DD>application/x-www-form-urlencoded
Line 27: <DT>CONTENT_LENGTH<DD>30
Line 28: <DT>HTTP_ACCEPT<DD>
Line 29: */*;
Line 30: *;
Line 31: image/gif,
Line 32: image/jpeg,
Line 33: q=.2
Line 34: q=.2,
Line 35: text/html,
Line 36: </DL>
Line 37: </BODY>
Line 38: </HTML>

getRequestProperty()

ClassName
URLConnection

Purpose
Gets the value associated with the specified request header field name.

Syntax
public String getRequestProperty(String key)

Parameters
key

The request header field name whose associated value is to be returned
Description

In a protocol transaction such as http, the client sends a list of fields to the http
server. These fields are part of the request header. In the http protocol, From,
Accept, If-Modified-Since, and Pragma are some of the field names sent in the
request header. A more comprehensive list of property names is listed in the
getDefaultRequestProperty method description. This method is used to retrieve
the value associated with a specific property. This method should not be invoked
if the URLConnection object is already “connect()”ed.

Imports
import java.net.URLConnection;

Returns
The String returned by this method contains the value of the request header field.
If the header field is not found, then the null value is returned. The default

implementation of this method (in the URLConnection class) throws an
IllegalAccessError if the URLConnection object is already connected; otherwise
it returns a null string.

See Also
The setRequestProperty method of this class

Example
Please refer to the example for the getDefaultRequestProperty method of this
class to see how you can provide a custom implementation of this method in any
class that extends the URLConnection class.

getURL()

ClassName
URLConnection

Purpose
Gets the URL object to which this connection was established.

Syntax
public URL getURL()

Parameters
None.

Description
This method simply returns the URL object that was supplied as a parameter to
the URLConnection constructor.

Imports
import java.net.URLConnection;

Returns
This method returns the URL object that this URLConnection established a
connection to.

Example
This usage of this method is illustrated in the following example.

// File: URLConnTest.java
// Extracts and prints the URL string specification associated
with
// an URLConnection object
import java.net.*;
import java.io.IOException;

public class URLConnTest {
 public static void main(String args[]) {
 try {
 // Replace the following URL with any valid URL
 URL u1 = new URL(“http://cosmos/~asriniva/index.html”);
 try {
 URLConnection uc = u1.openConnection();
 System.out.println(“URL.toString: ” + u1.toString());
 System.out.println(“URLConnection.getURL().toString: ”
+
 uc.getURL().toString());
 } catch (IOException ie) {
 System.out.println(“Caught IOException !”);

 }
 } catch (MalformedURLException e) {
 System.out.println(“Caught MUE !”);
 }
 }
}

getUseCaches()

ClassName
URLConnection

Purpose
Gets the value of the flag that indicates whether this URLConnection object
should use the cache to retrieve an object or whether it should ignore the cache
and fetch the object from the remote site.

Syntax
public boolean getUseCaches()

Parameters
None.

Description
Some protocols use local caches to enable quick access to previously retrieved
objects. The URLConnection class maintains a per-instance boolean variable that
indicates whether or not to use caching. This method returns the value of this
boolean variable.

Imports
import java.net.URLConnection;

Returns
The return value is true or false, depending on whether the URLConnection
should use the cache or ignore the cache. The default value returned by this
method is true.

See Also
The setUseCaches method; the setDefaultUseCaches method and
getDefaultUseCaches methods of this class

Example
This method is used in the example for the getAllowUserInteraction method of
this class.

guessContentTypeFromName(String)

ClassName
URLConnection

Purpose
Guesses the MIME-type/subtype of the specified object by examining its name.

Syntax
static protected String guessContentTypeFromName(String fname)

Parameters
fname

The specification of the remote object (can be a text representation of a URL or
just a plain file name).

Description
This method tries to determine the MIME-type of the specified object,by
examining the file name extension of the object. The file name extension is
compared against a list of extensions for which the MIME-type/subtype
combinations are known. For example, if fname was
http://www.syr.edu/smiley.gif, then the .gif extension would have been identified
as a known MIME-type and would have returned the string image/gif. The
following is a list of file name extensions and the corresponding MIME-
type/subtype combinations that this method returns.

 Extension MIME-type/subtype
 <None> content/unknown
 .uu application/octet-stream
 .saveme application/octet-stream
 .dump application/octet-stream
 .hqx application/octet-stream
 arc application/octet-stream
 .o application/octet-stream
 .a application/octet-stream
 .bin application/octet-stream
 .exe application/octet-stream
 .z application/octet-stream
 .gz application/octet-stream
 .oda application/oda
 .pdf application/pdf
 .eps application/postscript
 .ai application/postscript
 .ps application/postscript
 .rtf application/rtf
 .dvi application/x-dvi
 .hdf application/x-hdf
 .latex application/x-latex
 .cdf application/x-netcdf
 .nc application/x-netcdf
 .tex application/x-tex
 .texinfo application/x-texinfo
 .texi application/x-texinfo
 .t application/x-troff
 .tr application/x-troff
 .roff application/x-troff
 .man application/x-troff-man
 .me application/x-troff-me
 .ms application/x-troff-ms
 .src application/x-wais-source
 .wsrc application/x-wais-source
 .zip application/zip
 .bcpio application/x-bcpio
 .cpio application/x-cpio
 .gtar application/x-gtar
 .shar application/x-shar
 .sh application/x-shar

 .sv4cpio application/x-sv4cpio
 .sv4crc application/x-sv4crc
 .tar application/x-tar
 .ustar application/x-ustar
 .snd audio/basic
 .au audio/basic
 .aifc audio/x-aiff
 .aif audio/x-aiff
 .aiff audio/x-aiff
 .wav audio/x-wav
 .gif image/gif
 .ief image/ief
 .jfif image/jpeg
 .jfif-tbnl image/jpeg
 .jpe image/jpeg
 .jpg image/jpeg
 .jpeg image/jpeg
 .tif image/tiff
 .tiff image/tiff
 .ras image/x-cmu-rast
 .pnm image/x-portable-anymap
 X.pbm image/x-portable-bitmap
 .pgm image/x-portable-graymap
 .ppm image/x-portable-pixmap
 .rgb image/x-rgb
 .xbm image/x-xbitmap
 .xpm image/x-xpixmap
 .xwd image/x-xwindowdump
 .htm text/html
 .html text/html
 .text text/plain
 .c text/plain
 .cc text/plain
 .c++ text/plain
 .h text/plain
 .pl text/plain
 .txt text/plain
 .java text/plain
 .rtx application/rtf
 .tsv text/tab-separated-values
 .etx text/x-setext
 .mpg video/mpeg
 .mpe video/mpeg
 .mpeg video/mpeg
 .mov video/quicktime
 .qt video/quicktime
 .avi application/x-troff-msvideo
 .movie video/x-sgi-movie
 .mv video/x-sgi-movie
 .mime message/rfc822
Imports

import java.net.URLConnection;
Returns

If the extension of the specified object matched a known extension, then the
corresponding MIME-type/subtype combination is returned. The string

content/unknown is returned for file names whose extensions do not match any of
the known extensions.

See Also
The guessContentTypeFromStream method of this class

Example
This protected method can only be accessed by subclasses of the URLConnection
class and by classes in the java.net package. The following code sample shows
how you might invoke this method within a class that extends the
URLConnection class.

// File: CustomURLConnection.java
// URLConnection object for a new protocol
package CustomProtocolConnection;
import java.net.*;

public class CustomURLConnection extends URLConnection {
 // code for the URLConnection class methods that implement the
 specifics of the
 // protocol is written here

 public void connnect() throws IOException {

 String urlSpec = url.toString();
 String contentType = guessContentTypeFromName(urlSpec);
 // Take the necessary action, depending on the content type

 }
 ...
}

guessContentTypeFromStream(InputStream)

ClassName
URLConnection

Purpose
Guesses the MIME-type/subtype of the specified object by inspecting the data
read from the specified InputStream.

Syntax
static protected String guessContentTypeFromStream(InputStream is) throws
IOException

Parameters
is

The InputStream that is connected to the remote object whose content type is to
be determined

Description
This method tries to determine the content type of an object by reading and
examining data from the object. Many content types such as image files have
magic strings as part of the header of the object that identify the object as a
particular image format. Use this method with care!

Imports
import java.net.URLConnection;

Returns
If a valid content type is detected, this method returns the MIME-type/subtype
combination of the object; otherwise, it returns a null value.

See Also
The guessContentTypeFromName method of this class

Example
This protected method can only be accessed by subclasses of the URLConnection
class and by classes in the java.net package. This method can be used in a manner
similar to the way that the guessContentTypeFromName is used. The difference
between the two is that the parameter supplied to this method is an InputStream
object instead of a file name.

setAllowUserInteraction(boolean)

ClassName
URLConnection

Purpose
Sets the value of the flag that indicates whether the protocol permits user-
interaction while establishing the connection to the remote object.

Syntax
public void setAllowUserInteraction(boolean bFlag)

Parameters
bFlag

The boolean value that, if set to true, allows user-interaction or, if set to false,
disables user-interaction.

Description
Protocols such as http, that have access and security control features, allow user-
interaction (such as authentication by asking for a user name and password)
during the process of setting up a connection to an object referred to in a URL.
Protocol implementors must specify whether this interaction is permitted by the
protocol or not. This variable is maintained on a per-instance basis for the
URLConnection class. This method cannot be invoked if the URLConnection
object is already “connect()”ed.

Imports
import java.net.URLConnection;

Returns
None.

See Also
The getAllowUserInteraction, getDefaultAllowUserInteraction, and the
setDefaultAllowUserInteraction methods of this class

Example
The following example illustrates how you might invoke this method to
manipulate whether or not to allow user-interaction.

import java.net.*;
import java.io.IOException;

public class URLConnTest1 {
 public static void main(String args[]) {
 try {
 // Replace the following URL with any valid URL
 URL u1 = new URL(“http://cosmos/~asriniva/index.html”);
 try {
 URLConnection uc = u1.openConnection();
 System.out.println(uc.getAllowUserInteraction());
 uc.setAllowUserInteraction(true);
 System.out.println(uc.getAllowUserInteraction());
 } catch (IOException ie) {
 System.out.println(“Caught IOException !”);
 }
 } catch (MalformedURLException e) {
 System.out.println(“Caught MUE !”);
 }
 }
}

setContentHandlerFactory(ContentHandlerFactory)

ClassName
URLConnection

Purpose
Specifies the factory object (that implements the ContentHandlerFactory
interface) that knows how to create content-specific ContentHandler objects.

Syntax
public static synchronized void
setContentHandlerFactory(ContentHandlerFactory factory)

Parameters
factory

The ContentHandlerFactory object that must be used to create content-specific
content handlers.

Description
All objects of the URLConnection class share the same ContentHandlerFactory
object. By invoking this method, you can install your own
ContentHandlerFactory. An error is generated if a ContentHandlerFactory already
exists. If you write new content handler classes and install these classes in
nonstandard locations, then you will need to create a class that implements the
ContentHandlerFactory interface. This class will need to know where to find the
content-specific implementations of the ContentHandler class.

Imports
java.net.URLConnection;

Returns
None.

See Also
The ContentHandlerFactory class described in this chapter

Example

The following code sample shows how you can direct the URLConnection class
to use a custom ContentHandlerFactory object.

import java.net.*;
import CustomPackage.CustomContentHandlerFactory;

 // in the context of a method in your Java application
 CustomContentHandlerFactory f = new CustomContentHandler
 Factory();
 URLConnection.setContentHandlerFactory(f);
 // henceforth, all URLConnections will use this new factory
 object to
 // create content handlers

setDefaultAllowUserInteraction(boolean)

ClassName
URLConnection

Purpose
Sets the default value of the flag that indicates whether the protocol permits user-
interaction while establishing the connection to the remote object.

Syntax
public static void setDefaultAllowUserInteraction(boolean bFlag)

Parameters
bFlag

The default boolean value for this property.
Description

The variable that stores the value of the flag associated with this property is a
static variable in the URLConnection class. Setting this variable will affect all
future connections made by URLConnection classes created henceforth.

Imports
import java.net.URLConnection;

Returns
None.

See Also
The getDefaultAllowUserInteraction, getAllowUserInteraction, and
setAllowUserInteraction methods of this class

Example
This method is a static method of the URLConnection class and does not need an
object reference to invoke the method. You can invoke the method by prefixing it
with the class name as shown here:

 // somewhere in your Java application
 URLConnection.setDefaultAllowUserInteraction(true);

setDefaultRequestProperty(String, String)

ClassName
URLConnection

Purpose
Sets the default value associated with the specified field of the request header.

Syntax
public static void setDefaultRequestProperty(String fieldName, String fieldValue)

Parameters
fieldName

The name of the field in the request header.
fieldValue

The default value to assign to the above field.
Description

In a protocol transaction such as http, the client sends a list of fields to the http
server. Some of these fields (such as Accept and Accept Encoding) convey
information about the capabilities of the client. This method is used to set the
default values associated with a specified field of the request header. For example,
you may set the default value of the Accept field to text/plain, text/html, and
image/gif. Doing this allows the client to inform the server that it can accept plain
files and HTML files, as well as GIF images. The values set here are used for
initialization whenever a URLConnection object is constructed. The default
implementation of this method (in the URLConnection class) does nothing.

Imports
import java.net.URLConnection;

Returns
None.

See Also
The getDefaultRequestProperty method of this class

setDefaultUseCaches(boolean)

ClassName
URLConnection

Purpose
Sets the default value of the flag that indicates whether the protocol should use the
cache to retrieve an object or whether it should ignore the cache and fetch the
object from the remote site.

Syntax
public void setDefaultUseCaches(boolean bFlag)

Parameters
bFlag

The default boolean value for this property.
Description

Some protocols use local caches to enable quick access to previously retrieved
objects. The URLConnection class maintains a per-instance boolean variable that

indicates whether to use caching or not. A static boolean variable specifies the
default value for the per-instance variable. This method sets the value of the static
boolean variable. Setting this value affects all URLConnection objects created
hereafter.

Imports
import java.net.URLConnection;

Returns
None.

See Also
The getDefaultUseCaches, setUseCaches, and getUseCaches methods of this class

setDoInput(boolean)

ClassName
URLConnection

Purpose
Sets the value of the flag that indicates whether this URLConnection can be used
for input (i.e., can be read from).

Syntax
public void setDoInput(boolean bFlag)

Parameters
bFlag

The boolean value for this property. If set to true, this URLConnection object can
be read from.

Description
The parameter bFlag specifies whether or not this URLConnection object can be
used for input. If it is set to false, data cannot be read from this URLConnection
object. This method should not be invoked if the URLConnection object is
already “connect()”ed.

Imports
import java.net.URLConnection;

Returns
None.

See Also
The getDoInput method of this class

setDoOutput(boolean)

ClassName
URLConnection

Purpose
Sets the value of the flag that indicates whether this URLConnection can be used
for output (i.e., can be written to).

Syntax
public void setDoOutput(boolean bFlag)

Parameters

bFlag
The boolean value for this property. If set to true, this URLConnection object can
be used for output (i.e, it can be written to).

Description
The parameter bFlag specifies whether or not this URLConnection object can be
used for output. If it is set to false, data cannot be written to the remote object
using this URLConnection object. This method should not be invoked if the
URLConnection object is already “connect()”ed.

Imports
import java.net.URLConnection;

Returns
None.

See Also
The getDoOutput method of this class

setIfModifiedSince(long)

ClassName
URLConnection

Purpose
Sets the time sent as the value of the If-Modified-Since header field of the request
header to determine whether or not an object should be retrieved.

Syntax
public void setIfModifiedSince(long timeValue)

Parameters
timeValue

The time value that the server should use for comparison to determine whether or
not the object is to be sent to this URLConnection.

Description
The If-Modified-Since field of the request header is sent by the client to the server
in order to make the retrieval of an object conditional. By specifying a time with
this header field, the client instructs the server not to send the object if the object
has not changed since the time indicated by the value for this header field. This
method sets the value associated with this field. This method should not be
invoked if the URLConnection object is already “connect()”ed.

Imports
import java.net.URLConnection;

Returns
None.

setRequestProperty(String, String)

ClassName
URLConnection

Purpose
Sets the value associated with the specified request header field name.

Syntax
public void setRequestProperty(String key, String value)

Parameters
key

The name of the field in the request header.
value

The default value to assign to the above field.
Description

In a protocol transaction such as http, the client sends a list of fields to the http
server. These fields are part of the request header. In the http protocol, From,
Accept, If-Modified-Since, and Pragma are some of the field names sent in the
request header. This method is used to set the value associated with a specific
property. This method should not be invoked if the URLConnection object is
already “connect()”ed. The default implementation of this method (in the
URLConnection class) throws an IllegalAccessError if the URLConnection object
is already “connect()”ed.

Imports
import java.net.URLConnection;

Returns
None.

See Also
The getRequestProperty method of this class

setUseCaches(boolean)

ClassName
URLConnection

Purpose
Sets the value of the flag that indicates whether this URLConnection object
should use the cache to retrieve an object or whether it should ignore the cache
and fetch the object from the remote site.

Syntax
public void setUseCaches(boolean bFlag)

Parameters
bFlag

The boolean value that indicates whether this URLConnection should use the
caches or not.

Description
Some protocols use local caches to enable quick access to previously retrieved
objects. The URLConnection class maintains a per-instance boolean variable that
indicates whether to use caching or not. This method sets the value of this boolean
variable. This method should not be invoked if the URLConnection object is
already “connect()”ed.

Imports

import java.net.URLConnection;
Returns

None.
See Also

The getUseCaches, setDefaultUseCaches, and getDefaultUseCaches methods of
this class

toString()

ClassName
URLConnection

Purpose
Represents the parameters of the URLConnection object as a String.

Syntax
public String toString()

Parameters
None.

Description
This method is used when the parameters associated with this URLConnection
object are to be printed as a string. This method is generally used for debugging
purposes.

Imports
import java.net.URLConnection;

Returns
This method returns a String object that contains the values of the parameters for
this URLConnection object. The default implementation of this method prints the
class name and the URL that this URLConnection object was created for.
Subclasses of the URLConnection class can override this method to provide more
information.

Example
The following example prints the text representation of a URLConnection object.

import java.net.*;
import java.io.IOException;

public class URLConnPrint {
 public static void main(String args[]) {
 try {
 // Replace the following URL with any valid URL
 URL u1 = new URL(“http://cosmos/~asriniva/index.html”);
 try {
 URLConnection uc = u1.openConnection();
 System.out.println(uc.toString());
 } catch (IOException ie) {
 System.out.println(“Caught IOException !”);
 }
 } catch (MalformedURLException e) {
 System.out.println(“Caught MUE !”);
 }
 }
}

This example prints the following string on the screen:
sun.net.www.protocol.http.HttpURLConnection:http://cosmos/~asriniva/
index.html

URLEncoder

Purpose
Encodes strings into URL format. Encoding a string in this uniform format
ensures that the string is not corrupted by errors such as character set variations on
different systems.

Syntax
public class URLEncoder extends Object

Description
Some protocols use characters (in the URL specification) that may cause
problems due to corruption by imperfect gateways or to a difference in the
character sets used in different environments. You will find this class very useful
if you are writing Java programs that interact with CGI (Common Gateway
Interface) scripts. Figure 11-7 shows the inheritance diagram for the URLEncoder
class.

Figure 11-7 Inheritance diagram for the URLEncoder class

PackageName
java.net

Imports
import java.net.URLEncoder;

Constructors
None.

Parameters
None.

Example
Refer to the example for the encode method of this class. This method is also used
in the example for the getOutputStream method of the URLConnection class
described in this chapter.

encode(String)

ClassName
URLEncoder

Purpose
Returns a URL encoded form of the specified string.

Syntax
public static String encode(String s)

Parameters
s

The string to be encoded.
Description

This method simply translates the text string s into a URL encoded string and
returns this string. The following (sets of) characters are left unchanged in the
encoded form of the text string: characters A through Z, a through z, 0 through 9
and the underscore character (_). The space character () is replaced with the +
sign. All other characters are replaced by a percent sign (%) followed by a 2-digit
hexadecimal number. This hexadecimal number represents the value of the
character.

Imports
import java.net.URLEncoder;

Returns
This method returns a String object that contains the URL encoded representation
of the text in the string s.

Example
Because this method is static, you can invoke it simply by prefixing it with the
class name (URLEncoder), as illustrated in the TestEncoder example shown here.

import java.net.URLEncoder;

public class TestEncoder {

 public static void main(String args[]) {
 String s1 = new String(“http://myschool.edu/index.html”);
 System.out.println(“Source string: ” + s1);
 System.out.println(“URLEncoded version:” +
URLEncoder.encode(s1));
 System.out.println(“”);

 String s2 = new String(“A text-string with 6_words”);
 System.out.println(“Source string: ” + s2);
 System.out.println(“URLEncoded version:” +
URLEncoder.encode(s2));
 }
}

When this example is compiled (javac TestEncoder.java) and run (java
TestEncoder), it produces the following output.

Source string: http://myschool.edu/index.html
URLEncoded version:http%3a%2f%2fmyschool%2eedu%2findex%2ehtml
Source string: A text-string with 6_words
URLEncoded version:A+text%2dstring+with+6_words

URLStreamHandler

Purpose

Specifies an abstract base class that must be subclassed to implement stream
handlers for specific protocols (such as http, nntp, ftp, and so on).

Syntax
public class URLStreamHandler extends Object

Description
To implement a protocol handler in Java, you will need to subclass both the
URLStreamHandler class and the URLConnection class. The URLStreamHandler
object returns a URLConnection object, which is connnected to the specified
URL. This URLConnection object implements the specifics of the protocol. This
class defines the methods that can be overridden in the subclass to implement the
protocol-specific functionality. Except for the constructor, the rest of the methods
of this class are protected, which implies that these methods can be accessed only
from within the package in which the subclasses are defined. An instance of the
subclass that implements the functionality required for a specific protocol is
created within the constructor of the URL class. Figure 11-2 shows the basic
relationships between URLs, ProtocolHandlers, and ContentHandlers.
By convention, the URLStreamHandler class is always called Handler and it is
always created by referring to the absolute path name for the class. The ambiguity
of all the URLStreamHandler subclasses being called Handler is resolved by
referring to each class using its absolute path name specification. The URL class,
by default, looks for a class named Handler in a subdirectory named with the
protocol name in the sun/net/www/protocol directory. The sun/net/www/protocol
directory structure can be found along with the other standard directories
containing the .class files that Java uses. For example, the subclass of the
URLStreamHandler class that handles the http protocol will be located in the
sun/net/www/protocol/http/Handler.class file. If you are writing protocol
handlers, you can either follow this convention or you can write your own class
that implements the URLStreamHandlerFactory interface. This factory should
know how to create instances of your protocol handlers.
Figure 11-8 shows the inheritance diagram for the URLStreamHandler class.

Figure 11-8 Inheritance diagram for the URLStreamHandler class

PackageName
java.net

Imports
import java.net.URLStreamHandler;

Constructors
public URLStreamHandler()

Parameters
None.

Example
The following code shows how you create a custom URL StreamHandler.

// File: CustomURLConnection.java
// URLConnection object for a new protocol
package CustomProtocolConnection;
import java.net.*;

public class CustomURLConnection extends URLConnection {
 // code for the URLConnection class methods that implement
 the specifics of the
 // protocol is written here

 public void connnect() throws IOException {

 }
 ...
 public String getHeaderField(String name) {
 ...
 }
 public InputStream getInputStream() throws IOException {
 ...
 }
 ...
}
// File: Handler.java
// This class will be referred to as sun.net.www.CustomProtocol.
Handler
package sun.net.www.protocol.CustomProtocol;
import java.net.*;
import CustormProtocolConnection.CustomURLConnection;

public class Handler extends URLStreamHandler {
 public URLConnection openConnection(URL u) throws
 IOException {

 // create and return a CustomProtocolConnection
 object that
 // establishes a connection (as per the policies
 of the protocol) with the specified URL
 return new CustomURLConnection(u);
 }
}

openConnection(URL)

ClassName
URLStreamHandler

Purpose
Opens an active connection to the specified URL and returns an object that
represents this connection.

Syntax

protected abstract URLConnection openConnection(URL u) throws IOException
Parameters
u

The URL object specifying the Uniform Resource Locator to which the
connection should be established.

Description
This method must be overridden in the subclass of the URLStreamHandler class
that handles a specific protocol. This method should create and return an instance
of a subclass of the URLConnection class that handles the connection stream to
the protocol-specific data.

Imports
import java.net.URLStreamHandler;

Returns
This method returns an instance of a protocol-specific implementation of the
URLConnection class. This object is used to get access to the actual data the URL
points to.

See Also
The URL.getContent(URL) method

Example
Please refer to the example for the constructor method of this class.

parseURL(URL, String, int, int)

ClassName
URLStreamHandler

Purpose
Parses a string specification of a Uniform Resource Locator into the context of an
existing URL object.

Syntax
protected void parseURL(URL u, String spec, int start, int limit)

Parameters
u

The URL object to use as the context for parsing the string specification (spec).
spec

A string object that specifies a Uniform Resource Locator as a text string.
start

The start index in spec at which to start the parsing.
limit

The character position in spec at which to stop parsing.
Description

The string specification spec is parsed as a URL. If it is an absolute URL, then the
value of the context URL object u is set to this new URL. If the string
specification is a relative path specification, then this path is parsed into u. The
start parameter usually points to the character position immediately following the
':’ character in a URL, and the limit index is normally the last character in the
string or the position of the '#’ reference mark. When a URL object is created, a

URLStreamHandler object for the protocol specified in the URL is created and
this method is invoked on that URLStreamHandler object.This protected method
can be invoked only by the other classes in the java.net package.

Imports
import java.net.URLStreamHandler;

Returns
None. The result of the parsing is stored in the URL object u.

See Also
The URL class constructors described in this chapter

Example
This method can only be invoked by classes in the java.net package and hence no
example code illustrating the usage of this method is provided here.

setURL(URL)

ClassName
URLStreamHandler

Purpose
Sets the fields of the specified URL object. This is used when a string
specification is to be parsed into the context of an existing URL object.

Syntax
protected void setURL(URL u, String protocol, String host, int port, String file,
String ref)

Parameters
u

The URL object that is to be modified.
protocol

The protocol (http, news, etc) to use for the URL.
host

The Internet name of the host machine.
port

The port number on the host machine.
file

The path name of the file on the host.
ref

The name of the reference that indicates a specific offset (to an anchor) into the
file.

Description
This protected method is invoked by the parse(URL, String, int, int) method of
this class to set the individual fields of a URL that is used as a context for parsing
a string specification into.

Imports
import java.net.URLStreamHandler;

Returns
None.

See Also

The parse method of this class
Example

This method can only be invoked by classes in the java.net package and hence no
example code illustrating the usage of this method is provided here.

toExternalForm(URL)

ClassName
URLStreamHandler

Purpose
Represents the specified URL object as a text string.

Syntax
protected String toExternalForm(URL u)

Parameters
u

The URL object that is to be represented as a plain text string.
Description

The specified URL object is queried to extract the individual fields (such as
protocol, hostname, port, file, and reference tag) and these values are
concatenated to form a text string. This text string is then returned to the invoker
of this method. This is a protected method and can be accessed only by the other
classes in the java.net package.

Imports
import java.net.URLStreamHandler;

Returns
This method returns a text string that represents the specified UniformResource
Locator.

See Also
The toString and toExternalForm methods of the URL class, described in this
chapter

URLStreamHandlerFactory

Purpose
Defines the interface that must be implemented by a class that knows how to
create an instance of a specific subclass of URLStreamHandler for a specific
protocol.

Syntax
public interface URLStreamHandlerFactory extends Object

Description
A class that implements this interface must know the specific subclass of
URLStreamHandler that needs to be created for a protocol. As mentioned earlier
in this chapter, the URLStreamHandler class needs to be subclassed to implement
a URLStreamHandler for each protocol that is supported by the browser. The
implementation details of constructing specific instances of the subclasses of

URLStreamHandler are hidden behind this interface. Figure 11-9 shows the
inheritance diagram for the URLStreamHandlerFactory interface.

Figure 11-9 Inheritance diagram for the URLStreamHandlerFactory interface

PackageName
java.net

Imports
import java.net.URLStreamHandlerFactory;

Constructors
None.

Parameters
None.

createURLStreamHandler(String)

InterfaceName
URLStreamHandlerFactory

Purpose
Creates an instance of a subclass of the URLStreamHandler class that knows how
to create and handle streams for a specified protocol.

Syntax
public abstract URLStreamHandler createURLStreamHandler(String protocol)

Parameters
protocol

The protocol for which an instance of a specific subclass of the
URLStreamHandler class (that handles the specified protocol) needs to be
created.

Description
To implement a protocol handler in Java, you must extend the
URLStreamHandler class and implement the specifics of the protocol. One of the
data members of the URL class is an instance of a class that implements the
URLStreamHandlerFactory interface. This data member is the same for all
instances of the URL class (i.e., it is a static member) and can be set using the
setURLStreamHandlerFactory method of the URL class. When you construct an
URL object, the URL class invokes this method on its factory object to create an
instance of the URLStreamHandler subclass that handles the protocol specified in
the constructor of the URL object.

Imports

java.net.URLStreamHandlerFactory
Returns

This method returns an instance of a subclass of the URLStreamHandler object
that handles the specified protocol (http, nntp, and so on).

See Also
The setURLStreamHandlerFactory of the URL class described in this chapter

Example
The following Java class implements the URLStreamHandlerFactory interface.

// File: CustomURLStreamHandlerFactory.java
// A sample implementation of a the URLStreamHandlerFactory
import java.net.*;
public class CustomURLStreamHandlerFactory implements URLStreamHandler
Factory {
 public URLStreamHandler createURLStreamHandler(String protocol)
{
 // In this case, all the protocol handlers are
 located relative to the
 // custom/protocol directory. The custom/protocol
 directory resides
 // under the directory hierarchy where the browser
 knows to look for
 // the Java .class files
 // By convention, the URLStreamHandler class is
 always called Handler and
 // it is always created by referring to the
 absolute pathname for the class
 // By referring to the class using its absolute
 pathname specification, the
 // ambiguity of all the URLStreamHandler
 subclasses being called Handler is resolved.
 // For example, the URLStreamHandler class for
 the http protocol would be placed in a
 // file called Handler.java in the subdirectory
 "http" under the custom/protocol
 // directory and it would be created by creating
 an instance of the
 // custom.protocol.http.Handler class
 URLStreamHandler handler = null;
 try {
 // Construct the absolute pathname of the
 URLStreamHandler subclass
 // that implements the specified protocol
 String absClassName = "custom.protocol."
 + protocol + ".Handler";

 // now create an instance of the class
 and return it
 handler = (URLStreamHandler)Class.forName
 (absClassName).newInstance();
 } catch (Exception e) {
 // Error handling code should go here
 }
 return handler;
 }
}

MalformedURLException

Purpose
Signals that the specified Uniform Resource Locator (URL) is invalid.

Syntax
public class MalformedURLException extends IOException

Description
This exception is used to indicate that the URL specified is not valid. It should be
used by applets to indicate that an error occurred because the specified URL was
not valid. A URL that specifies an unsupported protocol is one example of a case
where this exception is thrown to indicate an error in the specified protocol.
Figure 11-10 shows the inheritance diagram for the MalformedURLException
class.

Figure 11-10 Inheritance diagram for the MalformedURLException class

PackageName
java.net

Imports
import java.net.MalformedURLException;

Constructors
public MalformedURLException()
public MalformedURLException(String msg)

Parameters
msg

A placeholder for a message that can be used to give additional information to the
user about the error that triggered this exception.

Example
The following example shows how this exception can be caught in an application.

import java.net.*;

public class TestCatchingExceptions {
 public static void main(String args[]) {
 try {
 URL u1 = new URL("http//web.syr.edu/"); // Missing
 colon(:) in the URL specification
 } catch (MalformedURLException e) {

 System.out.println("Caught MalformedURLException !");
 }
 }
}

ProtocolException

Purpose
Indicates that an EPROTO error was detected when the application tried to
connect to a socket.

Syntax
public class ProtocolException extends IOException

Description
This exception specifically indicates that a protocol (EPROTO) error was detected
when the application tried to connect to a socket. Figure 11-11 shows the
inheritance diagram for the ProtocolException class.

Figure 11-11 Inheritance diagram for the ProtocolException class

PackageName
java.net

Imports
import java.net.ProtocolException;

Constructors
public ProtocolException()
public ProtocolException(String msg)

Parameters
msg

This string can be used to give a specific description of the error that caused the
ProtocolException to be thrown.

Example
The following code sample shows how you use a try/catch statement pair to catch
this exception.

import java.net.ProtocolException;

 try {
 // method that throws a ProtocolException
 ...
 } catch (ProtocolException e) {
 // error handling code for this exception
 }

SocketException

Purpose
Indicates that an error occurred during an operation using a socket.

Syntax
public class SocketException extends IOException

Description
This exception is used to indicate errors that occur while operations are being
performed on sockets. Applications may specify additional details of the error that
caused this exception to be thrown in the msg parameter of the constructor for this
exception. Figure 11-12 shows the inheritance diagram for the SocketException
class.

Figure 11-12 Inheritance diagram for the SocketException class

PackageName
java.net

Imports
import java.net.SocketException;

Constructors
public SocketException()
public SocketException(String msg)

Parameters
msg

This string can be used to give a specific description of the error that occurred
while using the socket.

Example
The following code sample shows how you use a try/catch statement pair to catch
this exception.

import java.net.SocketException;

 try {
 // method that throws a SocketException
 ...
 } catch (SocketException e) {
 // error handling code for this exception
 }

UnknownHostException

Purpose
Indicates that the address of the host specified by a network client is not valid.

Syntax
public class UnknownHostException extends IOException

Description
This exception is thrown when the host address (specified by an application that is
trying to connect to a server) cannot be resolved as a valid address. Applications
that use the socket classes and the classes that deal with Uniform Resource
Locators use this class to signal and handle error conditions. Figure 11-13 shows
the inheritance diagram for the UnknownHostException class.

Figure 11-13 Inheritance diagram for the UnknownHostException class

PackageName
java.net

Imports
import java.net.UnknownHostException;

Constructors
public UnknownHostException()
public UnknownHostException(String msg)

Parameters
msg

A placeholder for a message that can be used to give additional information to the
user about the error that triggered this exception.

Example
The following code sample shows how you use a try/catch statement pair to catch
this exception.

import java.net.UnknownHostException;

 try {
 // method that throws an UnknownHostException
 ...
 } catch (UnknownHostException e) {

 // error handling code for this exception
 }

UnknownServiceException

Purpose
Signals an error indicating that the requested service is not supported by the
client-server protocol.

Syntax
public class UnknownServiceException extends IOException

Description
This exception is used to indicate that a particular service is not recognized by the
protocol being used to effect the network transaction. This is intended primarily
for use by developers of protocol handlers. Protocol handlers will extend the
URLConnection class to handle specific protocols and it is in this class that this
exception will be used to indicate that a service is not supported by the protocol
handler. Figure 11-14 shows the inheritance diagram for the
UnknownServiceException class.

Figure 11-14 Inheritance diagram for the UnknownServiceException class

PackageName
java.net

Imports
import java.net.UnknownServiceException;

Constructors
public UnknownServiceException()
public UnknownServiceException(String msg)

Parameters
msg

A placeholder for a message that can be used to give additional information to the
user about the error that triggered this exception.

Example
The following code sample shows how you use a try/catch statement pair to catch
this exception.

import java.net.UnknownServiceException;

 try {
 // method that throws an UnknownServiceException
 ...
 } catch (UnknownServiceException e) {
 // error handling code for this exception
 }

The URL Class Project

This applet invokes many of the methods in the URL class. By looking at this applet and
running it, you will become more familiar with using the URL class. The different types
of constructors for URL objects are implemented in this example and the individual fields
of a URL are parsed and displayed on the screen. Data contained in the URL object is
read from it and printed in the TextArea component of the URLtest applet. Figure 11-15
shows the URLtest applet in action.

Figure 11-15 The URLtest applet in action

Building the Project

This applet divides its display area into two regions. In the first region (represented by
class URLPanel), the various parameters of the URL object are displayed to the user. The
second region is the control panel that controls which URL’s fields are displayed in the
URLPanel area. The URLTestControls class implements this simple control panel.

1. The class name for the applet is URLtest, so edit a new file named
URLtest.java and type the following code into this file. (As always, you must first
import the necessary java packages.)
import java.awt.*;
import java.applet.*;

import java.net.*;
import java.io.*;
2. Now create the URLtest class which simply extends the java.applet.Applet
class. It uses the BorderLayout layout manager to lay out the URLPanel and the
URLTestControls objects one below the other. The event handler for this class
traps the WINDOW_DESTROY event and exits if the user closes the application.

It has a main method so that it can be run as an applet or as a stand-alone Java
program.
public class URLtest extends Applet {
 public void init() {
 setLayout(new BorderLayout());
 URLPanel up = new URLPanel();
 add("Center", up);
 add("South",new URLTestControls(up));
 }
 public boolean handleEvent(Event e) {
 switch (e.id) {
 case Event.WINDOW_DESTROY:
 System.exit(0);
 return true;
 default:
 return false;
 }
 }
 public static void main(String args[]) {
 Frame f = new Frame("URLtest");
 URLtest URLTest = new URLtest();
 URLTest.init();
 URLTest.start();

 f.add("Center", URLTest);
 f.resize(500, 500);
 f.show();
 }
}
3. The URLPanel displays the field parameters of the URL that was selected in
the Choice box of the URLTestControls area. This class sets up labels for the
fields of the URL and arranges these labels in a two-column format. A TextArea
component is used to display the data read from the URL object.
class URLPanel extends Panel {
 Label Protocol;
 Label Host;
 Label Port;
 Label Filename;
 Label RefTag;
 Label asString;
 Label ErrorStatus;
 TextArea txtArea;
4. The constructor for the URLPanel class creates a label component for each
field. It also creates a TextArea component that is used to display the data read
from the URL object. The descriptive tags and fields are arranged side by side in a
two-column format within a separate panel. This panel uses the GridLayout layout
manager to lay out the components in two columns. The TextArea component is
laid out below the panel containing the labels using the BorderLayout layout
manager.
 public URLPanel() {
 setLayout(new BorderLayout());

 Panel p1 = new Panel(); // put the fields on
 a separate panel

 p1.setLayout(new GridLayout(0, 2));
 p1.add(new Label("Protocol: "));

 Protocol = new Label();
 p1.add(Protocol);
 p1.add(new Label("Host Name: "));

 Host = new Label();
 p1.add(Host);
 p1.add(new Label("Port Number: "));

 Port = new Label();
 p1.add(Port);
 p1.add(new Label("Filename: "));

 Filename = new Label();
 p1.add(Filename);
 p1.add(new Label("Reference Tag: "));

 RefTag = new Label();
 p1.add(RefTag);
 p1.add(new Label("Text string: "));

 asString = new Label();
 p1.add(asString);
 p1.add(new Label("Status: "));

 ErrorStatus = new Label();
 ErrorStatus.setBackground(Color.red);
 p1.add(ErrorStatus);

 p1.add(new Label("Contents of the URL"));
 add("Center", p1);

 txtArea = new TextArea("", 15, 80);
 txtArea.setEditable(false);
 // add the TextArea below the panel containing
 // the fields
 add("South", txtArea);
}
5. The next method is invoked to parse a URL string specification and display the
individual field values. A URL object is created using the specified string and the
individual fields of the URL are extracted using the methods of the URL class.
The contents of the URL object are read and these contents are displayed in the
TextArea component. An error message is printed in the TextArea if an exception
was caught while reading the contents of the URL. If the specified URL string is
not a valid URL then the MalformedURLException is trapped and an error
message is displayed on the ErrorStatus Label component of this panel.
public void showParams(String urlString) {
 try {
 URL url1 = new URL(urlString);
 Protocol.setText(url1.getProtocol());
 Host.setText(url1.getHost());
 int port = url1.getPort();
 if (port != -1)

Port.setText(String.valueOf(port));
 else
 Port.setText("Default port");
 Filename.setText(url1.getFile());
 RefTag.setText(url1.getRef());
 asString.setText(url1.toString());
 ErrorStatus.setText("Status okay");
 try {
 txtArea.setText(""); // clear
 the TextArea
 // open an input stream to the
 URL object
 DataInputStream d = new
DataInput
 Stream(url1.openStream());
 String line;
 while ((line = d.readLine()) !=
 null) // read data and add it
 txtArea.appendText(line + "\n");
 // to the TextArea
 d.close(); // close the
input
 stream
 } catch (IOException ie) { //
 Error reading data from the URL object
 txtArea.setText("Could not
 read data from the URL!");
 }
 } catch(MalformedURLException mue) {
 ErrorStatus.setText("Caught Exception");
 }
}
6. This event handler exits if the user quits the application.
 public boolean handleEvent(Event e) {
 switch (e.id) {
 case Event.WINDOW_DESTROY:
 System.exit(0);
 return true;
 default:
 return false;
 }
 }
}
7. All you have left to do is put up the main control panel for this applet. The
URLTestControls class is the control panel. It displays a Choice component with
different URLs in it that the user can select. When a URL is selected, the fields of
the URL are displayed in the URLPanel area. This class needs to notify the
URLPanel whenever a selection is made, so it keeps a reference to the URLPanel
object. The constructor utilizes the different forms of constructors for the URL
class and adds the string representation of these URLs to the Choice box. An
invalid URL specification is also added to the list of choices. This will enable you
to see how exceptions are caught.
class URLTestControls extends Panel {
 URLPanel target;

 public URLTestControls(URLPanel target) {
 this.target = target;
 setLayout(new FlowLayout());
 Choice urls = new Choice();
 try {
 // you can experiment by substituting
other
 URLs in place
 // of the ones listed here
 URL url1 = new URL("file", "www.syr.edu",
 8080, "/docs/intro.html");
 URL url2 = new URL("http", "www.syr.edu",
 "/~username/report.ps");
 URL url3 = new URL("http://cosmos/
 ~asriniva/test.html");
 URL url4 = new URL(url3, "http://www.foo.
 org/applets.html#head4");
 URL url5 = new URL(url3,
"docs/hello.gif");
 urls.addItem("http://www.syr.edu/");
 urls.addItem(url1.toString());
 urls.addItem(url2.toString());
 urls.addItem(url3.toString());
 urls.addItem(url4.toString());
 urls.addItem(url5.toString());

urls.addItem("invalid://URLspecification");
 } catch (MalformedURLException mue) {
 System.out.println("Caught MalformedURL
 Exception");
 System.exit(0);
 }
 add(urls);
 this.target.showParams("http://www.syr.edu/");
}
8. When a selection is made from the list of choices, the event handler notifies
the URLPanel to update the URL field parameters, as seen in the following
example.
 public boolean action(Event e, Object arg) {
 if (e.target instanceof Choice) {
 String choice = (String)arg;
 target.showParams(choice);
 return true;
 } else if (e.id == Event.WINDOW_DESTROY) {
 System.exit(0);
 return true;
 }
 return false;
 }
}
9. That’s it, you have finished creating the applet. Now save this file and compile
it by typing javac URLtest.java. Then run the application by typing java
URLtest.

Building the Project

This applet divides its display area into two regions. In the first region (represented by
class URLPanel), the various parameters of the URL object are displayed to the user. The
second region is the control panel that controls which URL’s fields are displayed in the
URLPanel area. The URLTestControls class implements this simple control panel.

1. The class name for the applet is URLtest, so edit a new file named
URLtest.java and type the following code into this file. (As always, you must first
import the necessary java packages.)
import java.awt.*;
import java.applet.*;

import java.net.*;
import java.io.*;
2. Now create the URLtest class which simply extends the java.applet.Applet
class. It uses the BorderLayout layout manager to lay out the URLPanel and the
URLTestControls objects one below the other. The event handler for this class
traps the WINDOW_DESTROY event and exits if the user closes the application.
It has a main method so that it can be run as an applet or as a stand-alone Java
program.
public class URLtest extends Applet {
 public void init() {
 setLayout(new BorderLayout());
 URLPanel up = new URLPanel();
 add("Center", up);
 add("South",new URLTestControls(up));
 }
 public boolean handleEvent(Event e) {
 switch (e.id) {
 case Event.WINDOW_DESTROY:
 System.exit(0);
 return true;
 default:
 return false;
 }
 }
 public static void main(String args[]) {
 Frame f = new Frame("URLtest");
 URLtest URLTest = new URLtest();
 URLTest.init();
 URLTest.start();

 f.add("Center", URLTest);
 f.resize(500, 500);
 f.show();
 }
}
3. The URLPanel displays the field parameters of the URL that was selected in
the Choice box of the URLTestControls area. This class sets up labels for the

fields of the URL and arranges these labels in a two-column format. A TextArea
component is used to display the data read from the URL object.
class URLPanel extends Panel {
 Label Protocol;
 Label Host;
 Label Port;
 Label Filename;
 Label RefTag;
 Label asString;
 Label ErrorStatus;
 TextArea txtArea;
4. The constructor for the URLPanel class creates a label component for each
field. It also creates a TextArea component that is used to display the data read
from the URL object. The descriptive tags and fields are arranged side by side in a
two-column format within a separate panel. This panel uses the GridLayout layout
manager to lay out the components in two columns. The TextArea component is
laid out below the panel containing the labels using the BorderLayout layout
manager.
 public URLPanel() {
 setLayout(new BorderLayout());

 Panel p1 = new Panel(); // put the fields on
 a separate panel
 p1.setLayout(new GridLayout(0, 2));
 p1.add(new Label("Protocol: "));

 Protocol = new Label();
 p1.add(Protocol);
 p1.add(new Label("Host Name: "));

 Host = new Label();
 p1.add(Host);
 p1.add(new Label("Port Number: "));

 Port = new Label();
 p1.add(Port);
 p1.add(new Label("Filename: "));

 Filename = new Label();
 p1.add(Filename);
 p1.add(new Label("Reference Tag: "));

 RefTag = new Label();
 p1.add(RefTag);
 p1.add(new Label("Text string: "));

 asString = new Label();
 p1.add(asString);
 p1.add(new Label("Status: "));

 ErrorStatus = new Label();
 ErrorStatus.setBackground(Color.red);
 p1.add(ErrorStatus);

 p1.add(new Label("Contents of the URL"));

 add("Center", p1);

 txtArea = new TextArea("", 15, 80);
 txtArea.setEditable(false);
 // add the TextArea below the panel containing
 // the fields
 add("South", txtArea);
}
5. The next method is invoked to parse a URL string specification and display the
individual field values. A URL object is created using the specified string and the
individual fields of the URL are extracted using the methods of the URL class.
The contents of the URL object are read and these contents are displayed in the
TextArea component. An error message is printed in the TextArea if an exception
was caught while reading the contents of the URL. If the specified URL string is
not a valid URL then the MalformedURLException is trapped and an error
message is displayed on the ErrorStatus Label component of this panel.
public void showParams(String urlString) {
 try {
 URL url1 = new URL(urlString);
 Protocol.setText(url1.getProtocol());
 Host.setText(url1.getHost());
 int port = url1.getPort();
 if (port != -1)

Port.setText(String.valueOf(port));
 else
 Port.setText("Default port");
 Filename.setText(url1.getFile());
 RefTag.setText(url1.getRef());
 asString.setText(url1.toString());
 ErrorStatus.setText("Status okay");
 try {
 txtArea.setText(""); // clear
 the TextArea
 // open an input stream to the
 URL object
 DataInputStream d = new
DataInput
 Stream(url1.openStream());
 String line;
 while ((line = d.readLine()) !=
 null) // read data and add it
 txtArea.appendText(line + "\n");
 // to the TextArea
 d.close(); // close the
input
 stream
 } catch (IOException ie) { //
 Error reading data from the URL object
 txtArea.setText("Could not
 read data from the URL!");
 }
 } catch(MalformedURLException mue) {
 ErrorStatus.setText("Caught Exception");
 }

}
6. This event handler exits if the user quits the application.
 public boolean handleEvent(Event e) {
 switch (e.id) {
 case Event.WINDOW_DESTROY:
 System.exit(0);
 return true;
 default:
 return false;
 }
 }
}
7. All you have left to do is put up the main control panel for this applet. The
URLTestControls class is the control panel. It displays a Choice component with
different URLs in it that the user can select. When a URL is selected, the fields of
the URL are displayed in the URLPanel area. This class needs to notify the
URLPanel whenever a selection is made, so it keeps a reference to the URLPanel
object. The constructor utilizes the different forms of constructors for the URL
class and adds the string representation of these URLs to the Choice box. An
invalid URL specification is also added to the list of choices. This will enable you
to see how exceptions are caught.
class URLTestControls extends Panel {
 URLPanel target;

 public URLTestControls(URLPanel target) {
 this.target = target;
 setLayout(new FlowLayout());
 Choice urls = new Choice();
 try {
 // you can experiment by substituting
other
 URLs in place
 // of the ones listed here
 URL url1 = new URL("file", "www.syr.edu",
 8080, "/docs/intro.html");
 URL url2 = new URL("http", "www.syr.edu",
 "/~username/report.ps");
 URL url3 = new URL("http://cosmos/
 ~asriniva/test.html");
 URL url4 = new URL(url3, "http://www.foo.
 org/applets.html#head4");
 URL url5 = new URL(url3,
"docs/hello.gif");
 urls.addItem("http://www.syr.edu/");
 urls.addItem(url1.toString());
 urls.addItem(url2.toString());
 urls.addItem(url3.toString());
 urls.addItem(url4.toString());
 urls.addItem(url5.toString());

urls.addItem("invalid://URLspecification");
 } catch (MalformedURLException mue) {
 System.out.println("Caught MalformedURL
 Exception");
 System.exit(0);

 }
 add(urls);
 this.target.showParams("http://www.syr.edu/");
}
8. When a selection is made from the list of choices, the event handler notifies
the URLPanel to update the URL field parameters, as seen in the following
example.
 public boolean action(Event e, Object arg) {
 if (e.target instanceof Choice) {
 String choice = (String)arg;
 target.showParams(choice);
 return true;
 } else if (e.id == Event.WINDOW_DESTROY) {
 System.exit(0);
 return true;
 }
 return false;
 }
}
9. That’s it, you have finished creating the applet. Now save this file and compile
it by typing javac URLtest.java. Then run the application by typing java
URLtest.

How It Works

This project illustrates some of the methods of the URL class. These methods are applied
to different URL strings and the results of these methods are displayed. This project also
shows how you can use the URL class to read data from a remote URL object. Java
programs written for Internet applications will find the URL class invaluable. Classes
such as the ContentHandler class and the URLStreamHandler class can easily be
extended to support custom data formats and protocols.These custom formats can then be
viewed using the class extensions. The classes and interfaces described in this chapter
provide functionality for accessing data on the Internet, and for sending to and receiving
information from the World Wide Web.

Part V
Java Utilities

Chapter 12
Data Structures And Random Number Generation

Java’s utility classes provide a wide range of functionality for your applications. This
chapter explains the utility classes for implementing data structures and random number

generation. These classes form a part of the java.util package in the Java APIs. We will
look at the data structure classes Dictionary, Hashtable, Vector, and Stack as well as the
Properties class for maintaining the properties of objects. The Enumeration interface,
which provides the methods necessary to enumerate a given set of elements from the
vector or hash table is also covered, along with two additional classes:
EmptyStackException and NoSuchElementException, which define the exceptions
related to these data structures. The project developed at the end of this chapter is an
Appointment Organizer application. It’s a Java application that provides a user-interface
to enter appointment details. Details about an appointment including the date and time are
entered using text fields and a text area. Specifying the date and time provides a facility
for retrieving the details. The classes discussed in this chapter will be used in this
application.

Dictionary and Hashtable

Dictionary is an abstract class that maps keys to values in a table. It forms the super class
of Hashtable. You should use hash tables when you want to store and retrieve elements
efficiently. You can associate a key with each element you store, so that you can use the
key to retrieve the element quickly. A function is used to map the key to a particular slot
in the hash table. You should also note that there can be only one element for a given key
in the hash table at a given time. As an example, consider the elements Arizona,
California, New York, and Oregon. If you decide that the key for these elements is their
first character, then mapping them to a hash table will result in the table shown in Figure
12-1(a). If a new element, North Carolina is listed after New York, then two elements
will have the same key (N) resulting in a collision. In the Hashtable implementation of
Java, when collisions occur, the new element replaces the old element. In our example,
the element North Carolina will replace the element New York, resulting in the hash table
shown in Figure 12-1(b).

Figure 12-1 Two hashtables (a) States with one string element (b) North Carolina
replaces New York as both have the same key (N)

Note that we have implicitly assumed in our example that the size of the hash table is 26,
mapping to the 26 characters in the English alphabet. This is called the capacity of the
hash table. You can specify the capacity of the hash table when you create an instance of
Hashtable. You can also specify the load factor. The load factor is the ratio of the number
of elements in the hash table to the size of the hash table. In our example, the load factor
is 4/26. Note that the load factor has a value between 0.0 and 1.0.

In Java, the Hashtable is a subclass of the Dictionary class. The Dictionary class
encapsulates the characteristics of mapping keys to values. The Hashtable object expands
automatically when it gets full. It will maintain the capacity such that the load factor of
the table at any instance is at least the specified load factor. The elements can be any of
the Objects in Java. So you can also have a list of strings as an element. Considering our
example hash table of states, we can specify that elements with the same first character

(key) form a growable list. So if we add North Carolina to the hash table, instead of
replacing New York it will be added to the list of string with ’N’ as the first character.
Figure 12-2 shows the resulting table.

Figure 12-2 A hash table with the element being a list

Vector and Stack

The Vector class in Java represents an extensible array. You will often come across
situations where you do not know the number of items in an array in advance. In such
situations, you can use Vector. Imagine you were having a party to celebrate a promotion.
You might arrange ten chairs in the living room to start. When an eleventh person arrives,
you could fetch another chair, and continue adding one chair for every new guest, or you
could bring three more chairs every time you run out of seats. (See Figure 12-3.) A
Vector is like adding three chairs at a time, but the increased space is a memory unit, i.e.,
on demand for more space, new space gets allocated automatically. As more elements are
stored in a Vector, the vector’s size increases. You can specify it to increase by
increments of size defined by capacityIncrement, a variable defined in the Vector class.

Figure 12-3 Providing seats for incoming guests (a) An eleventh guest needs a chair (b)
Increase the number of chairs by five

A common data structure used in many applications is a stack. It is an ordered vector
(Stack subclasses Vector) in which all insertions and deletions are made at one end,
called the top. Consider four elements A, B, C, and D inserted in a stack in that order.
Stack is a Last-In-First-Out structure, so A would be the bottommost element and D
would be the topmost element, as shown in Figure 12-4. You can access B only after
popping D and C off the stack. Stacks are useful when you want to access the most
recently created items and only after using them will you get to use earlier items.
Compilers typically use stacks to implement computations effectively. As a matter of
fact, the Java interpreter is a stack-based interpreter compared to other register-based
interpreters.

Figure 12-4 A stack of elements

Random Numbers

Random numbers are important in algorithms where you want to provide a variation in
behavior or when you don’t have a fixed option to consider. Assume you have five
options to select from, namely: A, B, C, D, E. If you don’t have any particular preference,
you’ll select one of them arbitrarily. Simulating this behavior in a computer program is
achieved using random numbers. Pure random numbers are very difficult to generate, but
a set of pseudo-random numbers can be generated by many available algorithms.
Suppose you divide the interval between 0 and 1 into five equals units. You generate a
random number and depending on which interval it occupies, one of the 5 elements is
selected, as shown in Figure 12-5. For more accuracy you might want to generate double
precision random numbers. Or you might be interested in integer random numbers. In
Java, the Random class provides the methods to generate pseudo-random numbers. You
can provide a seed to the generator so that it generates a repeatable set of pseudo-random
numbers. This is necessary for users who repeat experiments and study the results at
similar circumstances.

Figure 12-5 Random selection among 5 elements

Enumeration is a Java interface that provides a set of methods to enumerate or a method
to count a set of objects. In the case of an array, you can access elements in the array by
using the index numbers. But in the case of Vector or Stack, you don’t have fixed indices.
To index into these data structures, the Enumeration class is useful. It helps you to
enumerate or count (and effectively index) the elements. The NoSuchElementException
and StackEmptyException classes are defined to throw runtime exceptions while
handling invalid elements in the data structure classes in Java.

Data Structure, Properties, and Random Class Summaries

Table 12-1 summarizes the classes and interface that help implement efficient algorithms
using predefined data structures and utility class for random number generation.

Table 12-1 Class and interface summary for Data structure, Properties and Random
classes

Class/Interface Name Description

Dictionary Maps keys to values and is the parent of Hashtable.
Hashtable Encapsulates the features of a hash table to store and

retrieve values efficiently.
Properties Contains the persistent properties of the associated

object.

Vector Represents an extensible array, designed for space
optimization.

Stack Encapsulates the Last-In-First-Out(LIFO) stack of
objects.

Enumeration Interface that specifies methods to enumerate a set
of objects.

Random Generates pseudo-random numbers.

EmptyStackException A Runtime exception that gets thrown when trying
to pop out an object from an empty stack.

NoSuchElementException A Runtime exception signaling an empty
enumeration.

Dictionary

Purpose
An abstract class that maps keys to values and is the parent of Hashtable.

Syntax
public abstract class Dictionary extends Object

Description
Dictionary is an abstract class and the superclass of Hashtable. It maps keys to
values. Any object can be used in a Dictionary as a key and/or a value. The
Dictionary data structure improves search time for an element by use of its key.
Operations on elements in a Dictonary can be carried out using its key. Figure 12-
6 illustrates the inheritance relationship of class Dictionary.

Figure 12-6 Class diagram of Dictionary class

PackageName
java.util

Imports

import java.util.Dictionary;
Constructors

None.
Parameters

None.
Example

The class inventory applet, below, represents a basic inventory maintenance
program. It uses a hash table for storing entries. Hashtable is a subclass of the
abstract Dictionary class. The program for the inventory class is given in Listing
12-1.

Listing 12-1 inventory.java: Program illustrating use of hash table for inventory control

import java.util.*;

class inventory {

 Hashtable ht;
 Hashtable backup;

 public inventory() {

 ht = new Hashtable(5);
 }

 protected void populate() {
 ht.put("dairy", "Milk");
 ht.put("mag", "Time");
 ht.put("prod", "Tomato");
 ht.put("can", "Soup");
 ht.put("elec", "Bulb");
 backup = (Hashtable)ht.clone();
 }

 protected void addCheese() {
 ht.put("dairy", "Cheese");
 }

 protected void addCereal() {
 ht.put("food", "Cereal");
 }

 protected void listAll() {
 if (ht.isEmpty()){
 System.out.println(" Hash Table is empty ");
 return;
 }

 System.out.println(" Hash table contains the following
 keys/items");
 for (Enumeration e = ht.elements(), k = ht.keys();

 e.hasMoreElements();){
 System.out.println(" " + k.nextElement()
 + " " + e.nextElement());
 }
 }

 protected void removeSoup() {
 if (ht.remove("can") ==null)
 System.out.println(" removal of can item
 unsuccessful");
 System.out.println(" Size of hash table is now " +
 ht.size());

 }

 protected void reset() {
 ht.clear();
 populate();
 }

 private void table() {
 System.out.println(" The table's string form is " +
 ht.toString());
 }
 protected void findChanges() {

 System.out.println(" Following keys/elements are newly
 added");
 for (Enumeration e = ht.elements(), k = ht.keys();
 e.hasMoreElements();){
 Object elem = e.nextElement();
 Object key = k.nextElement();
 if (!backup.contains(elem))
 System.out.println(key + " " +
 elem);
 if (!backup.containsKey(key))
 System.out.println(" Also there is no
 element in " + key + " section ");
 }

 }

 protected void getItem(String key) {
 System.out.println(" Under the section " + key);
 Object item = ht.get(key);
 if (item == null)
 System.out.println(" no item found");
 else
 System.out.println(" The item " + item +
 " is available");
 }
 public static void main(String args[]) {
 inventory inv = new inventory();
 inv.populate();
 inv.listAll();
 inv.addCheese();
 System.out.println(" After adding cheese … \n");

 inv.listAll();
 inv.addCereal();
 System.out.println(" After adding cereal … \n");
 inv.listAll();
 inv.removeSoup();
 System.out.println(" After removing soup … \n");
 inv.listAll();
 // System.out.println(" After resetting the hash table … \n");
 // inv.reset();
 // inv.listAll();
 inv.findChanges();
 inv.getItem("dairy");
 inv.table();
 }
}

elements()

ClassName
Dictionary

Purpose.
Provides an enumeration of the elements.

Syntax
public abstract Enumeration elements().

Parameters
None.

Description
The method returns an enumeration of the elements in Dictionary. This is an
abstract method and should be overridden in its subclass. The enumeration that is
returned can be used to fetch the elements sequentially.

Imports
java.utils.Dictionary

Returns
An Enumeration of elements. Return type is Enumeration.

See Also
The keys method in Dictionary class; Enumeration interface

Example
Refer to the method listAll() in class inventory in Listing 12-1. It gets all the
elements by using this method on a Hashtable object.

get(Object)

ClassName
Dictionary

Purpose
Obtains the Object associated with the specified key in the Dictionary.

Syntax
public abstract Object get(Object key)

Parameters

key
The key, in the Dictionary, of the object to be fetched.

Description
The method returns the Object associated with the key specified. The element for
the key is returned if the key is defined in the hash table. If the key is not defined,
this method returns null. This is an abstract method and should be overridden in
its subclass. The returned object is typecast to a class, which is expected to be
returned in the given context.

Imports
import java.utils.Dictionary;

Returns
The element associated with the key. Return type is Object (note that any class is
a subclass of Object).

See Also
The put method in the Dictionary class

Example
Refer to the getItem method in the inventory class in Listing 12-1. It uses this get
method to get the element with the specified key.

isEmpty()

ClassName
Dictionary

Purpose
Boolean value indicating if the Dictionary contains any elements.

Syntax
public abstract boolean isEmpty()

Parameters
None.

Description
This method returns true if the Dictionary contains no elements. If the Dictionary
contains even one element, this method returns false. This is an abstract method
and should be overridden in its subclass.

Imports
import java.utils.Dictionary;

Returns
True if empty and false if the Dictionary contains one or more elements.

See Also
The elements method in Dictionary class

Example
Refer to the listAll()method in the inventory class in Listing 12-1. It checks if the
hash table is empty using this method.

keys()

ClassName
Dictionary

Purpose
Provides an enumeration of the Dictionary’s keys.

Syntax
public abstract Enumeration keys()

Parameters
None.

Description
This method returns an enumeration of the keys in Dictionary. This is an abstract
method and should be overridden in its subclass. The enumeration that is returned
can be used to list the keys sequentially.

Imports
import java.utils.Dictionary;

Returns
An Enumeration of the Dictionary’s keys. Return type is Enumeration.

See Also
The elements method in the Dictionary class; the Enumeration interface

Example
Refer to the listAll()method in the inventory class in Listing 12-1. It lists all the
elements with the keys by using this method on a Hashtable object.

put(Object, Object)

ClassName
Dictionary

Purpose
Puts the specified Object into the Dictionary using the specified key.

Syntax
public abstract Object put(Object key, Object value)

Parameters
key

The key, in the Dictionary, of the object to be included.
value

The element to be put into the Dictionary.
Description

This method puts the specified Object with the given value into the Dictionary
using the specified key. After inserting the new value, the old value is removed
from the table and returned. The old value corresponding to the key is returned if
it existed. If not, this method returns null. This is an abstract method and should
be overridden in its subclass.

Imports
import java.utils.Dictionary;

Returns
The element associated with the key. Return type is Object (note that any class is
a subclass of Object).

See Also
The get method in the Dictionary class

Example
Refer to the populate method in the inventory class in Listing 12-1. It populates
elements by using this method on a Hashtable object.

remove(Object)

ClassName
Dictionary

Purpose
Removes the specified key in the Dictionary.

Syntax
public abstract Object remove(Object key)

Parameters
key

The key of the object to be removed from the Dictionary.
Description

This method removes the specified key from the Dictionary. If the specified key is
not present in the Dictionary, this method does nothing. This is an abstract
method and should be overridden in its subclass. This method returns the value
associated with the specified key to be removed. If the key was not found, this
method returns null.

Imports
import java.utils.Dictionary;

Returns
The value of the key to be removed or null, if the key is not present in the
Dictionary. Return type is Object.

See Also
The put and get methods in the Dictionary class

Example
Refer to the removeSoup method in the inventory class in Listing 12-1. It removes
the Soup item by removing its key “can” by using this method on a Hashtable
object.

size()

ClassName
Dictionary

Purpose
Obtains the number of elements contained within the Dictionary.

Syntax
public abstract int size()

Parameters
None.

Description

This method returns the number of elements in the Dictionary. This is an abstract
method and should be overridden in its subclass.

Imports
import java.utils.Dictionary;

Returns
The number of elements in the Dictionary. Return type is int.

See Also
The isEmpty method in the Dictionary class.

Example
Refer to the removeSoup method in the inventory class in Listing 12-1. The size
of the hash table is obtained using this method.

Hashtable

Purpose
Encapsulates the features of a hash table to store and retrieve values efficiently
and maps keys to values

Syntax
public class Hashtable extends Dictionary implements Cloneable

Description
Hashtable subclasses the Dictionary class. It maps keys to values. Any object can
be used as a key and/or value in a hash table. The object that is used as a key must
implement the hashCode() and equals() methods to successfully store and retrieve
objects from the hash table. The class defines the method clone() as it implements
the Cloneable interface. When you create an instance of the hash table, you can
specify the initial capacity of the hash table and its desired load factor. The load
factor of the hash table is the ratio of the number of elements present in the table
to the size of the table. This load factor is used to determine the size of the
increment when the hash table’s capacity has to be increased. Figure 12-7
illustrates the inheritance relationship of the Hashtable class.

Figure 12-7 Class diagram of Hashtable class

PackageName
java.util

Imports
import java.util.Hashtable;

Constructors
public Hashtable()
public Hashtable(int init_cap)
public Hashtable(int init_cap, float load_factor)

Parameters
init_cap

Initial capacity of the hash table.
load_factor

Load factor of the hash table contains the ratio of the number of elements, in the
hash table, to the capacity of the table.

Example
The inventory class, in Listing 12-1, contains a member of type Hashtable.

clear()

ClassName
Hashtable

Purpose
Clears the hash table so that there are no elements in it.

Syntax
public synchronized void clear()

Parameters
None.

Description
The method removes all the elements in the hash table and clears it.

Imports
import java.utils.Hashtable;

Returns
None.

Example
Refer to the reset()method in the inventory class in Listing 12-1. It uses this clear
method to clear the hash table.

clone()

ClassName
Hashtable

Purpose
Creates and returns a clone of the hash table.

Syntax
public synchronized Object clone()

Parameters
None.

Description
This method creates a clone of the hash table and returns a handle to it. A shallow
copy of the hash table is made with its characteristics. None. of the elements or
keys of the hash table are cloned in this operation. This cloning operation is
relatively expensive. This method overrides the clone method of class Object.
Typecast the object returned to Hashtable for further operations. This method is
defined as the Hashtable class and implements the Cloneable interface.

Imports
import java.utils.Hashtable;

Returns
A handle to the clone hash table. Return type is Object.

Example
Refer to Listing 12-1. In the populate method, this clone method is used to create
a backup of the original hash table and is kept for future comparisons.

contains(Object)

ClassName
Hashtable

Purpose
Checks if the specified object is an element in the Hashtable.

Syntax
public synchronized boolean contains(Object value)

Parameters
value

The value associated with the element we are searching.
Description

This method checks to see if the specified element is in the Hashtable. It returns
true if the object is in the hash table, false if it is not. If the specified value is null,
this method throws a NullPointerException. Note that searching for a specified
object in a hash table is more expensive than searching for a key in the hash table.

Imports
import java.utils.Hashtable;

Returns
If the object is in the hash table, the method returns true. If the object is not in the
hash table, the method returns false. Return type is boolean.

See Also
The containsKey method in the Hashtable class

Example
Refer to the findChanges method in the inventory class in Listing 12-1. It uses the
contains method to find out the newly added items.

containsKey(Object)

ClassName
Hashtable

Purpose
Checks if an element exists in the hash table associated with the specified key.

Syntax
public synchronized boolean containsKey(Object key)

Parameters
key

The key of the element for which we are searching.
Description

This method checks to see if an object associated with the specified key is in the
Hashtable. It returns true if the object is in the hash table, false if it is not. If the
specified key is null, this method throws a NullPointerException. Note that
searching for an object using its key in a hash table is less expensive than
searching for the object itself in the hash table.

Imports
import java.utils.Hashtable;

Returns
If the object associated with the specified key is in the hash table, the method
returns true. If the object is not in the hash table, the method returns false. Return
type is boolean.

See Also
The contains method in the Hashtable class

Example
Refer to the findChanges method in the inventory class in Listing 12-1. It uses the
containsKey method to find the sections with no item.

elements()

ClassName
Hashtable

Purpose
An enumeration of the elements is returned.

Syntax
public synchronized Enumeration elements()

Parameters
None.

Description
This method returns an enumeration of the elements in Hashtable. This overrides
the elements method in the Dictionary class. The enumeration that is returned can
be used to fetch the elements sequentially.

Imports
import java.utils.Hashtable;

Returns
An Enumeration of elements. Return type is Enumeration.

See Also
The keys method in the Hashtable class; the Enumeration interface

Example
Refer to the listAll() method in the inventory class in Listing 12-1. It gets all the
elements by using this method on the Hashtable object.

get(Object)

ClassName
Hashtable

Purpose

Returns the Object associated with the specified key in the Hashtable.
Syntax

public synchronized Object get(Object key)
Parameters
key

The key, in the Hashtable, of the object to be fetched.
Description

This method returns the Object associated with the specified key. The element for
the key is returned if the key is defined in the hash table. If the key is not defined,
this method returns null. This overrides the get method in the Dictionary class.

Imports
import java.utils.Hashtable;

Returns
The element associated with the key. Return type is Object.

See Also
The put method in the Hashtable class

Example
Refer to the getItem method in the inventory class in Listing 12-1. It uses the get
method for getting the element with the specified key.

isEmpty()

ClassName
Hashtable

Purpose
Boolean value indicating whether or not the Hashtable contains any elements.

Syntax
public boolean isEmpty()

Parameters
None.

Description
This method returns true if the Hashtable contains no elements. If the Hashtable
contains even one element, this method returns false. This method overrides the
isEmpty method in class Dictionary.

Imports
import java.utils.Hashtable;

Returns
True if empty and false if the Hashtable contains one or more elements.

See Also
The elements method in the Hashtable class

Example
Refer to the listAll()method in the inventory class in Listing 12-1. It checks if the
hash table is empty using this method.

keys()

ClassName
Hashtable

Purpose
Obtains an enumeration of the Hashtable’s keys.

Syntax
public synchronized Enumeration keys()

Parameters
None.

Description
This method returns an enumeration of the keys in Hashtable. This method
overrides the keys method in the Dictionary class. The enumeration that is
returned can be used to list the keys sequentially.

Imports
import java.utils.Hashtable;

Returns
An Enumeration of the Hashtable’s keys. Return type is Enumeration.

See Also
The elements method in the Hashtable class; the Enumeration interface

Example
Refer to the listAll()method in the inventory class in Listing 12-1. It lists all the
elements with the keys by using this method on a Hashtable object.

put(Object, Object)

ClassName
Hashtable

Purpose
Puts the specified Object into the Hashtable using the specified key.

Syntax
public synchronized Object put(Object key, Object value)

Parameters
key

The key, in the Hashtable, of the object to be put.
value

The element to be put into the Hashtable.
Description

This method puts the specified Object of given value into the Hashtable using the
specified key. After inserting the new value, the old value is removed and
returned by this method if it existed. If not, this method returns null. The key and
the value cannot both be null. The element that is put into the hash table may be
retrieved using the get method in the Hashtable class, by specifying the same key.
This method overrides the put method in the Dictionary class.

Imports
import java.utils.Hashtable;

Returns
The element associated with the key. Return type is Object.

See Also
The get method in Hashtable class

Example
Refer to the populate method in the inventory class in Listing 12-1. It populates
elements by using this method on a Hashtable object.

rehash()

ClassName
Hashtable

Purpose
The content of the hash table is rehashed into a bigger hash table.

Syntax
protected void rehash()

Parameters
None.

Description
This method rehashes the contents of the hash table into a bigger table. This
method is automatically invoked when the size of the Hashtable exceeds the
threshold as more elements are added to the table. This is a protected method and
hence can be used only by the methods within the java.util package.

Imports
import java.utils.Hashtable;

Returns
None.

Example
This method can be used only in a class that is part of the java.util package, so it
should have package java.util as the first statement in the file. Then it can be used
in the class on a hash table object.

remove(Object)

ClassName
Hashtable

Purpose
Removes the specified key in the Hashtable.

Syntax
public synchronized Object remove(Object key)

Parameters
key

The key of the object to be removed from the Hashtable.
Description

This method removes the specified key from the Hashtable. If the specified key is
not present in the Hashtable, there is no effect. This method overrides the remove

method in the Dictionary class. This method returns the value associated with the
specified key to be removed. If the key is not found, this method returns null.

Imports
import java.utils.Hashtable;

Returns
The value of the key to be removed or null if the key is not present in the
Hashtable. The return type is Object.

See Also
The put and get methods in class Hashtable

Example
Refer to the removeSoup method in the inventory class in Listing 12-1. It removes
the Soup item by removing its key “can” by using this method on a Hashtable
object.

size()

ClassName
Hashtable

Purpose
Obtains the number of elements contained in the Hashtable.

Syntax
public int size()

Parameters
None.

Description
This method returns the number of elements in the Hashtable. This method
overrides the size method in the Dictionary class.

Imports
import java.utils.Hashtable;

Returns
The number of elements in the Hashtable. Return type is int.

See Also
The isEmpty method in the Hashtable class

Example
Refer to the removeSoup method in the inventory class in Listing 12-1. The size
of the hash table is obtained using this method.

toString()

ClassName
Hashtable

Purpose
Converts the instance of Hashtable to its string form.

Syntax
public synchronized String toString()

Parameters

None.
Description

This method converts the target Hashtable object to its string form. It is used
mostly for debugging purposes. The converted string form of the hash table
instance is returned as a lengthy String object. This method overrides the toString
method in the Object class. The string contains a list of <key, object> pair
represented as strings.

Imports
import java.utils.Hashtable;

Returns
The string form of the Hashtable object is returned. Return type is String.

Example
Refer to the table() method in the inventory class in Listing 12-1.

Properties

Purpose
Class containing the persistent properties of the associated object.

Syntax
public class Properties extends Hashtable

Description
Properties subclasses the class Hashtable. This contains the persistent properties
of the associated object, whose properties are stored in the hash table. The
contents can be saved or loaded from a stream. This class contains a protected
member variable named defaults. If a property is not found in the object, it is
searched for in the default properties list. This class allows arbitrary nesting of
properties. This class is most widely used with the System class to obtain system
properties like user name, environment, and so on. Figure 12-8 illustrates the
inheritance relationship of class Properties.

Figure 12-8 Class diagram of Properties class

PackageName
java.util

Imports
import java.util.Properties;

Constructors
public Properties()
public Properties(Properties defaults)

Parameters

defaults
Initial specified default properties.

Example
The propDemo class in Listing 12-2 demonstrates the methods in the Properties
class. The Properties object member in the System class in the java.lang package
is used for demonstration.

Listing 12-2 propDemo.java: Demonstrating the usage of methods in the Properties class

import java.util.*;
import java.io.*;
import java.lang.*;

class propDemo {
 public propDemo() {
 }

 public void printProps() {
 System.out.println(" System key/properties are:\n");
 for (Enumeration e=
 System.getProperties().propertyNames();
 e.hasMoreElements();) {
 String elem = (String)e.nextElement();
 System.out.println(" " + elem +" " +
 System.getProperty(elem));
 }
 }

 private void getProp(String prop){
 System.out.println("Value of property " +
 prop + " is " + System.getProperty(prop));

 }

 private void changeProperties(String file_name){

 File file = new File(file_name);
 try {
 System.getProperties().load(new
FileInputStream(file));
 } catch(IOException ioe){
 System.out.println(" Exception reading file");
 }

 }

 private void saveProperties(String file_name){

 File file = new File(file_name);
 String header = new String(" These are changed properties");
 try {

 System.getProperties().save(new FileOutputStream(file),
 header);
 } catch(IOException ioe){

 System.out.println(" Exception writing to file");
 }
 }

 public final static void main(String args[]) {

 propDemo p = new propDemo();
 // list the properties one by one
 p.printProps();

 // Another way to list the properties is thru list() method
 System.out.println("---------------------------------------");
 System.getProperties().list(new PrintStream(System.out));

 System.out.println("---------------------------------------");
 p.getProp("user.dir");
 p.changeProperties("myJava.prop");

 System.out.println("------------ After loading new properties
 -----");
 System.getProperties().list(new PrintStream(System.out));

 p.saveProperties("Changed.prop");
 }

 }

getProperty(String), getProperty(String, String)

ClassName
Properties

Purpose
Obtain the property with the specified key.

Syntax
public String getProperty(String key)
public String getProperty(String key, String defaultValue)

Parameters
key

The specified key to be searched in the property list.
defaultValue

The string to be returned, if the specified key is not found in the list.
Description

This method searches for the specified key in the property list. If it is not found in
the list, the defaults in the Properties object are searched. If a property is found, it
is returned. If you specify the defaultValue during the method invocation, the
defaultValue is returned if the property is not found in the list or the defaults. If
defaultValue is not specified and if the property is not found either in the property
list or the defaults, then the method returns a null.

Imports
import java.utils.Properties;

Returns

The string form of the property searched for. Return type is String.
Example

Refer to the getProp method in Listing 12-2. The value of the specified property
key is retrieved and printed to the screen using this method.

list(PrintStream)

ClassName
Properties

Purpose
The properties are listed for debugging into the specified PrintStream.

Syntax
public void list(PrintStream out)

Parameters
out

The print stream, into which the properties are to be listed.
Description

This method lists the properties into the specified print stream. This is used for
debugging.

Imports
java.utils.Properties;

Returns
None.

See Also
The save method in the Properties class

Example
Refer to the main method in Listing 12-2. The list method is used to list the
properties of the System object to the screen.

load(InputStream)

ClassName
Properties

Purpose
Loads the properties from the specified InputStream.

Syntax
public void load(InputStream in)

Parameters
in

The input stream that the properties are loaded from.
Description

This method loads the properties from the specified input stream. If there is an
error in reading from InputStream, an IOException is thrown.

Imports
import java.utils.Properties;

Returns

None.
See Also

The save method in the Properties class
Example

Refer to the changeProperties method in Listing 12-2. The properties defined in
file myJava.prop are loaded as the new properties for System object.

propertyNames()

ClassName
Properties

Purpose
Enumerates the property keys.

Syntax
public Enumeration propertyNames()

Parameters
None.

Description
All the keys used for properties in the Properties hash table are enumerated. The
enumeration that is formed is returned by this method. You can use the
enumeration to access the elements sequentially.

Imports
import java.utils.Properties;

Returns
The Enumeration of the keys is returned. Return type is Enumeration.

See Also
Enumeration interface

Example
Refer to the listAll method in Listing 21-2. All the elements are printed to the
screen using the method propertyNames to get the enumeration of the elements.

save(OutputStream, String)

ClassName
Properties

Purpose
Saves the properties to the specified OutputStream.

Syntax
public void save(OutputStream out, String header)

Parameters
out

The output stream that the properties are saved to.
header

Comment to be used at the top of the output stream object.

Description
This method saves the properties to the specified output stream. The specified
header is included as a comment at the top of the output file if the output stream is
a file stream, or the header is printed at the top as a comment.

Imports
import java.utils.Properties;

Returns
None.

See Also
The load method in the Properties class

Example
Refer to the saveProperties method in Listing 12-2. The properties of System
object are saved to the specified file.

Vector

Purpose
Class representing an extensible array designed for space optimization.

Syntax
public class Vector extends Object implements Cloneable

Description
Vector is an extensible array designed for storage optimization. Each vector
maintains a capacity and capacityIncrement to optimize storage management. The
capacity of the Vector is always at least the size of the Vector. Because a vector
increases by chunks of memory of size capacityIncrement, the capacity of the
vector is usually larger than the vector size. If you specify a greater capacity value
during the construction of Vector, then the amount of incremental reallocation
will be reduced. This results in better storage management, but if the specified
capacity is too large, then storage is wasted. You should decide the size with this
in mind. Even if you ignore the capacity while constructing the Vector, it will still
work fine. It will simply be less efficient in terms of storage management. This
class implements the Cloneable interface. So the clone()method is defined in it.
The Vector class has three variables: elementData, elementCount, and
capacityIncrement. The elementData variable is the buffer where elements are
stored. The elementCount variable contains the number of elements in the buffer.
The capacityIncrement variable contains the size of the increment. Figure 12-9
illustrates the inheritance relationship of the Vector class.

Figure 12-9 Class diagram of Vector class

PackageName
java.util

Imports
import java.util.Vector;

Constructors
public Vector()
public Vector(int init_capacity)
public Vector(int init_capacity, int capacityIncrement)

Parameters
init_capacity

Initial specified capacity of the Vector.
capacityIncrement

The size of the increment. If it is 0 then the capacity is doubled every time the
vector needs to grow.

Variables
protected Object elementData[]
protected int elementCount
protected int capacityIncrement

Example
The guestBook class, in Listing 12-3, is used to illustrate the usage of the Vector
class to create an object whose size is not known in advance and whose size will
vary with time. The member variable guests is an object of type Vector.

Listing 12-3 guestBook.java: A guest book maintained using the Vector class to keep log
of guests

import java.util.*;

class guestBook {

 Vector guests;

 public guestBook() {

 guests = new Vector(5, 4);
 }

 private void initialGuests() {
 guests.addElement("Anne");
 guests.addElement("Bob");
 guests.addElement("Chuck");
 guests.addElement("David");
 guests.addElement("Emy");
 guests.addElement("Fred");
 }

 private int bookCapacity() {
 return guests.capacity();
 }

 private boolean visited(Object guest){

 return guests.contains(guest);
 }

 private Object guestNo(int number){
 return guests.elementAt(number);
 }

 protected void listAll() {
 System.out.println(" Guests visited are: ");
 for (Enumeration e = guests.elements(); e.hasMoreElements();){
 System.out.println(" " + e.nextElement());
 }
 /* String str[] = new String[3];
 guests.copyInto(str); */
 }

 protected void minSize(int min) {
 System.out.println("Capacity before setting min " +
 guests.capacity());
 guests.ensureCapacity(min);
 System.out.println("Capacity after setting min is "
 + guests.capacity());

 }
 private void analyze() {
 System.out.println(" First guest is " +
 guests.firstElement());
 System.out.println(" David came after guest #" +
 guests.indexOf("David"));
 int no = guests.lastIndexOf("Emy");
 System.out.println(" Emy came after " +
 guests.elementAt(no-1));
 System.out.println(" Last guest at this time is
 "+guests.lastElement());

 }
 private void replace(Object g1, Object g2) {
 int index = guests.indexOf(g1);
 guests.removeElementAt(index);
 if (!guests.removeElement(g1))
 System.out.println(g1 + "is no more in the guest log");

 guests.insertElementAt(g2, index);
 }
 private void change(Object g1, Object g2){
 int index = guests.indexOf(g1);
 guests.setElementAt(g2, index);
 }

 Vector backup;

 protected void makeBackup() {
 backup = (Vector)guests.clone();
 for (Enumeration e = guests.elements(); e.hasMoreElements();){
 backup.addElement(e.nextElement());
 }
 }

 private void newcapacity(int cap){
 guests.setSize(4);
 System.out.println(" new capacity/size is
 "+guests.capacity()+"/"+guests.size());
 guests.trimToSize();
 System.out.println(" new capacity/size is
 "+guests.capacity()+"/"+guests.size());
 }
 public final static void main(String args[]) {
 guestBook gb = new guestBook();
 // gb.analyze();
 gb.initialGuests();
 System.out.print("after adding 6 guests, the book
 capacity is ");
 System.out.println(gb.bookCapacity());
 System.out.print(" Bob is ");
 if (!gb.visited("Bob"))
 System.out.print("not ");
 System.out.println("one of the guests");

 System.out.println(" The third guest is " +
 gb.guestNo(2));

 gb.listAll(); /* list all the guests visited till now */
 gb.minSize(10);

 gb.analyze();
 gb.replace("Chuck", "Charlie");
 gb.listAll();
 gb.change("Emy", "Ellis");
 gb.listAll();

 gb.newcapacity(4);

 }
}

addElement(Object)

ClassName
Vector

Purpose
Adds the specified element to the Vector.

Syntax
public final synchronized void addElement(Object element)

Parameters
element

The object to be added to the vector.
Description

This method adds the specified element to the end of the vector. The added
element becomes the last element in the vector. If the size of the vector is equal to
the capacity of the vector before adding the element, then the size of the vector is
increased by the size of capacityIncrement.

Imports
import java.utils.Vector;

Returns
None.

See Also
The insertElementAt method in the Vector class

Example
Refer to the initialGuests method in Listing 12-3. Guests are added to the guests
Vector using this addElement method.

capacity()

ClassName
Vector

Purpose
Obtains the current capacity of the vector.

Syntax
public final int capacity()

Parameters
None.

Description
This method gets the current capacity of the vector.

Imports
import java.utils.Vector;

Returns
The current capacity of the vector; the return type is int.

See Also
The ensureCapacity method in the Vector class

Example
Refer to the bookCapacity method in Listing 12-3. The capacity method is used to
return the capacity of the guests vector.

clone()

ClassName
Vector

Purpose
Clones the target Vector object.

Syntax
public synchronized Object clone()

Parameters
None.

Description
This method creates a clone of the vector and returns a handle to it. A shallow
copy of the vector is made with its characteristics. None of the elements of the
vector are cloned in this operation. This cloning operation is a relatively

expensive operation. This method overrides the clone method of the Object class.
For further operations, typecast the Object returned to Vector type. This method is
defined as the Vector class implements the Cloneable interface

Imports
import java.utils.Vector;

Returns
A handle to the cloned instance of the Vector. Return type is Object, which you
can typecast to Vector.

See Also
The insertElementAt method in the Vector class.

Example
Refer to the makeBackup method in Listing 12-3. A new copy of the member
guests is made by using the clone method on the guests object. This forms the
backup member.

contains(Object)

ClassName
Vector

Purpose
Checks if the specified object is an element in the Vector.

Syntax
public final boolean contains(Object elem)

Parameters
elem

The element that we are searching for.
Description

This method checks if the specified element is in the Vector. It returns true if the
object is in the vector, false if it is not. If the specified value is null, then this
method throws a NullPointerException.

Imports
import java.utils.Vector;

Returns
If the object is in the vector, the method returns true. If the object is not in the
vector, the method returns false. Return type is boolean.

Example
Refer to the visited method in Listing 12-3. It verifies if the specified guest has
visited, by checking if the name is in the guests vector. This is implemented using
the contains method on the vector guests.

copyInto(Object[])

ClassName
Vector

Purpose
Copies the elements of the vector into the specified array.

Syntax
public final synchronized void copyInto(Object newArray[])

Parameters
newArray

The array that the elements of the vector are copied into.
Description

This method copies the elements in the vector into the specified array. Note that
the clone() method creates a vector and does not copy the elements. This method
copies the elements into the array. If the array size is less than the size of the
vector, an ArrayIndexOutOfBoundsException is thrown.

Imports
import java.utils.Vector;

Returns
None.

Example
Refer to the listAll method in Listing 12-3. If you uncomment the lines where the
elements are copied into a three element array, an exception will be thrown.

elementAt(int)

ClassName
Vector

Purpose
Obtain the element in the vector at the specified index.

Syntax
public final synchronized Object elementAt(int index)

Parameters
index

The index position of the element that this method retrieves.
Description

This method gets the element at the specified index in the vector and returns the
element. If the specified index is more than the size of the vector, then it throws
an ArrayIndexOutOfBoundsException.

Imports
java.utils.Vector;

Returns
The element at the specified index in the target vector object. Return type is
Object.

See Also
The setElementAt method in the Vector class

Example
Refer to the guestNo method in Listing 12-3. It returns the guest name which is
the specified numbered person to visit. It uses the elementAt method of the Vector
class to get the required name.

elements()

ClassName
Vector

Purpose
Obtains an enumeration of the elements.

Syntax
public final synchronized Enumeration elements()

Parameters
None.

Description
This method returns an enumeration of the elements in a vector. The enumeration
that is returned can be used to fetch the elements sequentially from the vector.

Imports
import java.utils.Vector;

Returns
An Enumeration of elements in the vector. Return type is Enumeration.

See Also
The Enumeration interface

Example
Refer to the listAll method in Listing 12-3. The enumeration of the guests is
obtained by using this elements() method.

ensureCapacity(int)

ClassName
Vector

Purpose
Verifies if the Vector has at least the specified capacity.

Syntax
public final synchronized void ensureCapacity(int minCapacity)

Parameters
minCapacity

The desired minimum capacity of the vector.
Description

The method makes sure that the target Vector object has at least the specified
minimum capacity. If so, it does nothing. If the vector capacity is less than the
minimum capacity, then the capacity of the vector is increased to the desired
minimum.

Imports
import java.utils.Vector;

Returns
None.

See Also
The capacity method in the Vector class

Example

Refer to the minSize method in Listing 12-3, which ensures that the guest book
capacity is at least the specified minimum.

firstElement()

ClassName
Vector

Purpose
Obtains the first element in the vector.

Syntax
public final synchronized Object firstElement()

Parameters
None.

Description
This method returns the first element in the sequence of the target Vector object.
If the sequence is empty, this method throws a NoSuchElementException.

Imports
import java.utils.Vector;

Returns
The first element in the vector. Return type is Object.

See Also
The lastElement method in the Vector class.

Example
Refer to the analyze method in Listing 12-3. The first visitor is found by using the
firstElement method on the guests vector.

indexOf(Object), indexOf(Object, int)

ClassName
Vector

Purpose
Obtains the index of the specified object in the vector.

Syntax
public final int indexOf(Object element)
public final int indexOf(Object element, int startFrom)

Parameters
element

The object to be searched for in the vector.
startFrom

The index location from which to start searching for the element in the vector.
Description

This method searches for the specified element and returns the index position of
the element in the vector, if the element is in the vector. If the element is not in
the vector, an ArrayIndexOutOfBoundsException is thrown. If you specify the
index to start the search from, as a part of the method call, then the search starts
from the specified index in the vector.

Imports
import java.utils.Vector;

Returns
The index position of the searched element in the vector.

See Also
The lastIndexOf(Object) and lastIndexOf(Object, int) methods in the class Vector

Example
Refer to the analyze method in Listing 12-3. The number of guests who arrived
after David is ascertained by using the index of David’s entry in the guests vector.
The indexOf method is used to get the information.

insertElementAt(Object, int)

ClassName
Vector

Purpose
Inserts the specified element at the specified index.

Syntax
public final synchronized void insertElementAt(Object element, int index)

Parameters
element

The element to be inserted into the vector.
index

The index location where the specified element is to be inserted.
Description

This method inserts the specified element at the specified index in the vector. The
indices of the elements existing at and after the index, before this insertion, are
shifted accordingly and their indices are incremented by one. If the specified
index is invalid, then this method throws an ArrayIndexOutOfBoundsException.

Imports
import java.utils.Vector;

Returns
None.

See Also
The removeElementAt method in the Vector class

Example
Refer to the replace method in Listing 12-3. After removing the specified object,
the new object is placed at its position using the insertElementAt method of the
Vector class.

isEmpty()

ClassName
Vector

Purpose
Checks to see if the Vector contains any elements.

Syntax
public final boolean isEmpty()

Parameters
None.

Description
This method returns true if the Vector contains no elements. If the vector contains
even one element, this method returns false.

Imports
import java.utils.Vector;

Returns
True if empty and false if the Vector contains one or more elements; return type is
boolean.

See Also
The elements method in the Vector class

Example
Refer to Listing 12-3. You can check if anyone visited by using this isEmpty
method on the guests vector member. It will return true if no guests visited and
false if at least one guest is in the guests vector.

lastElement()

ClassName
Vector

Purpose
Returns the last element in the vector.

Syntax
public final synchronized Object lastElement()

Parameters
None.

Description
This method returns the last element in the sequence of the target Vector object. If
the sequence is empty, this method throws a NoSuchElementException.

Imports
import java.utils.Vector;

Returns
The last element in the vector. Return type is Object.

See Also
The firstElement method in the Vector class

Example
Refer to the analyze method in Listing 12-3. The last guest to visit is found by
using the lastElement method.

lastIndexOf(Object), lastIndexOf(Object, int)

ClassName
Vector

Purpose
Obtains the index of the specified object in the vector by searching the object
backwards.

Syntax
public final int lastIndexOf(Object element)
public final int lastIndexOf(Object element, int startFrom)

Parameters
element

The object that the vector is to be searched for.
startFrom

The index location from which to start searching for the element in the vector.
Description

This method searches backward from the end of the vector for the specified
element and returns the index position of the element in the vector, if the element
is in the vector. If the element is not in the vector, it returns -1. If you specify the
index to start the search from as part of the method call, then the search starts
from the specified index and moves backward in the vector.

Imports
import java.utils.Vector;

Returns
The index position of the searched element in the vector if the element is found; if
the element is not found, it returns -1.

See Also
The firstIndexOf(Object) and firstIndexOf(Object, int) methods in the Vector
class

Example
Refer to the analyze method in the guestBook class in Listing 12-3. The visitor
number of Emy is found by using this method to scan the vector from the rear.

removeAllElements()

ClassName
Vector

Purpose
Removes all the elements in the vector.

Syntax
public final synchronized void removeAllElements()

Parameters
None.

Description
The method removes all the elements in the vector, leaving the vector empty.

Imports
import java.utils.Vector;

Returns

None.
See Also

The removeElement and removeElementAt methods in the Vector class
Example

Refer to Listing 12-3. You can clear all the names of the guests by invoking the
removeAllElements method on the vector member, guests.

removeElement(Object)

ClassName
Vector

Purpose
Removes the specified element from the vector.

Syntax
public final synchronized boolean removeElement(Object element)

Parameters
element

The element to be removed from the vector.
Description

This method removes the specified element in the vector. If the element is not
found in the vector, this method returns false. If the vector contains two or more
occurrences of the element, only the first occurrence is removed. If the element is
found in the vector, the method returns true after removing the element.

Imports
import java.utils.Vector;

Returns
If the element is found, this method returns true after removing the element. If the
element is not found in the vector, this method returns false.

See Also
The removeAllElements and removeElementAt methods in the Vector class

Example
Refer to the replace method in Listing 12-3. After removing the guest g1 from its
index position, any other instance of a guest with that name is removed or the
method reports that no guest with the given name is present.

removeElementAt(int)

ClassName
Vector

Purpose
Removes the element at the specified index from the vector.

Syntax
public final synchronized void removeElementAt(int index)

Parameters

index
The index of the element to be removed from the vector.

Description
This method removes the element at the specified index in the vector. If the
specified index is more than the capacity of the vector, the method throws
ArrayIndexOutOfBoundsException. After deleting the element at the specified
index, elements with an index greater than the specified index are decremented by
one. This effectively moves the set of elements down the vector by one index
position.

Imports
import java.utils.Vector;

Returns
None.

See Also
The removeAllElements and removeElement methods in the Vector class

Example
Refer to the replace method in Listing 12-3. The index of guest g1 is first found
and then the method removeElementAt is used to remove the guest name from the
determined index position.

setElementAt(Object, int)

ClassName
Vector

Purpose
Sets the element at the specified index in the vector to the specified object.

Syntax
public final synchronized void setElementAt(Object elem, int index)

Parameters
elem

The specified object that is placed at the specified index in the vector.
index

The index in the vector where the new object is to be placed.
Description

This method sets the element at the specified index to the specified object. The
element previously at that index is replaced by the new specified object. If the
specified index is invalid, then ArrayIndexOutOfBoundsException is thrown at
runtime.

Imports
import java.utils.Vector;

Returns
None.

Example
Refer to the change method in Listing 12-3. It replaces guest g1 with guest g2.
Though the functionality is the same as that of the replace method, the change

method implements it in a different way by setting the element at the determined
index location using the setElementAt method.

setSize(int)

ClassName
Vector

Purpose
Sets the size of the vector to the specified size.

Syntax
public final synchronized void setSize(int newSize)

Parameters
newSize

New size that the vector is set to.
Description

This method sets the size of the vector to the specified newSize. If the specified
newSize is more than the size of the vector before the method is invoked, then the
extra elements in the vector are set to null. Whereas, if the specified newSize is
less than the size of the method before the method is invoked, then the vector is
shrunk to the specified newSize and the excess elements are discarded.

Imports
import java.utils.Vector;

Returns
None.

See Also
The size method in the Vector class

Example
Refer to the newcapacity method in Listing 12-3. The specified capacity is set to
be the new capacity by using the setSize method on the guests vector object.

size()

ClassName
Vector

Purpose
Obtains the size of the vector.

Syntax
public final int size()

Parameters
None.

Description
This method returns the size of the vector; that is, the number of elements in the
vector and not the capacity of the vector. The capacity of the vector can be greater
than the size of the vector. Whenever the size is about to exceed the capacity of
the vector, the capacity is incremented by an amount contained in
capacityIncrement.

Imports
import java.utils.Vector;

Returns
None.

See Also
The capacity and setSize methods in the Vector class

Example
Refer to the newcapacity method in Listing 12-3. The size before and after
trimming the capacity to specified size is obtained using the size method.

toString()

ClassName
Vector

Purpose
Converts the instance of Vector to its string form.

Syntax
public final synchronized String toString()

Parameters
None.

Description
The method converts the target Vector object to its string form, used mostly for
debugging purposes. The converted string form is returned as a lengthy String
object. This method overrides the toString method in class Object.

Imports
import java.utils.Vector;

Returns
The string form of the Vector object is returned. Return type is String.

Example
Refer to Listing 12-3. You can invoke guests.toString() in any of the member
methods in the guestBook class. It will convert the guests vector to string form
containing the key-element pair of the vector.

trimToSize()

ClassName
Vector

Purpose
Reduces the capacity of the vector to the size of the vector.

Syntax
Public final synchronized void trimToSize()

Parameters
None.

Description
This method reduces the capacity of the vector to the size of the vector. At any
point, there can be excess allocated space in the vector depending on the

capacityIncrement value and size of the vector. Using this method, the excess
allocated space can be reclaimed for storage management. After using this
method, space is reallocated for any new insertions into the vector.

Imports
import java.utils.Vector;

Returns
None.

See Also
The capacity, size, and setSize methods in the Vector class.

Example
Refer to the newcapacity method in Listing 12-3. The size of the guests vector is
trimmed to the capacity by using this trimToSize method. The changes resulting
from the use of this method are observed from the information printed before and
after the change.

Stack

Purpose
Class encapsulating the Last-In-First-Out(LIFO) stack of objects.

Syntax
public class Stack extends Vector

Description
Stack is the encapsulation of a Last-In-First-Out stack of objects. The object
inserted last is at the top of the stack. It can be retrieved using the pop method. An
object is put on the stack using the push method. Elements not at the top of the
stack cannot be accessed until all the objects above it in the stack are popped out.
Figure 12-10 illustrates the inheritance relationship of class Stack.

Figure 12-10 Class diagram of Stack class

PackageName
java.util

Imports
import java.util.Stack;

Constructors
public Stack()

Parameters
None.

Example
The class stackDemo in Listing 12-4 has a member st, of type Stack.

Listing 12-4 stackDemo.java: Demonstrating the usage of the Stack class and its methods

import java.util.*;

class stackDemo {

 Stack st;

 public stackDemo() {
 st = new Stack();
 }

 public void populateStack(){
 st.push("one");
 st.push("two");
 st.push("three");
 st.push("four");
 st.push("five");
 }

 public void check(Object obj){
 System.out.print(" The object " + obj + " is ");
 if (st.search(obj) == -1)
 System.out.print(" not ");
 System.out.println(" in the stack ");
 }

 private void replaceTop(Object obj){
 System.out.println(" Replacing the object " + st.peek() +
 " with "+obj);
 st.pop();
 st.push(obj);
 }

 private void clearAll() {
 int size = st.size();
 for (int i =0; i<size; i++)
 st.pop();
 if (st.empty())
 System.out.println(" After popping all elements
 off stack
 the stack is empty");
 }

 public final static void main(String args[]){
 stackDemo sd = new stackDemo();
 // sd.replaceTop(“try”);
 sd.populateStack();
 sd.check("two");
 sd.check("seven");
 sd.replaceTop("six");
 sd.clearAll();
 }
}

empty()

ClassName
Stack

Purpose
Boolean value indicating if there is any object on the stack.

Syntax
public boolean empty()

Parameters
None.

Description
This method returns true if the Stack contains no objects. If the stack contains
even one object, this method returns false.

Imports
import java.utils.Stack;

Returns
True if the Stack is empty and false if the Stack contains one or more objects.

Example
Refer to the clearAll method in Listing 12-4. After clearing all the elements from
the stack, this method verifies that the stack is empty.

peek()

ClassName
Stack

Purpose
Peeks at the element at the top of the stack.

Syntax
public Object peek()

Parameters
None.

Description
This method obtains the object at the top of the stack. This method does not affect
the elements on the stack. The top object on the stack remains on the stack, but
only a copy of it is returned. If the stack contains no element, this method throws
EmptyStackException at runtime.

Imports
import java.utils.Stack;

Returns
A copy of the object at the top of the stack, if the stack is not empty.

See Also
The pop method in the Stack class

Example
Refer to the replaceTop method in Listing 12-4. In this method, the top element is
replaced by a specified element. Before popping out the top element, the peek
method is used to find the top element.

pop()

ClassName
Stack

Purpose
Obtains the element at the top of the stack.

Syntax
public Object pop()

Parameters
None.

Description
This method obtains the object at the top of the stack. This method removes the
object from the top of the stack and returns it, leaving the stack with one less
element. If the stack is empty, this method throws an EmptyStackException
during runtime.

Imports
import java.utils.Stack;

Returns
The object at the top of the stack, if the stack is not empty.

See Also
The peek and push methods in the Stack class

Example
Refer to the replaceTop method in the stackDemo class in Listing 12-4. The top
element in the stack is popped off using this method before the specified element
is pushed onto the stack.

push(Object)

ClassName
Stack

Purpose
Pushes the specified object onto the stack.

Syntax
public Object push(Object obj)

Parameters
obj

The object to be pushed onto the stack.
Description

This method pushes the specified object onto the stack. The object is placed on
top of the stack. If the pop method is invoked, the last inserted object will be
popped off the stack. This method places the object onto the stack and returns a
handle to the object

Imports
import java.utils.Stack;

Returns
The object at the top of the stack, after placing it at the top.

See Also
The pop method in the Stack class

Example
Refer to the populateStack method in Listing 12-4. Elements are added to the
stack member by using the push method of class Stack.

search(Object)

ClassName
Stack

Purpose
Searches for the specified object in the stack.

Syntax
public int search(Object obj)

Parameters
obj

The object to be searched in the stack.
Description

This method searches for the specified object in the stack. If the object is found,
its index position from the top of the stack is returned. If the object is not found,
this method returns -1. This method is useful to search for items within the stack
without affecting the stack structure.

Imports
import java.utils.Stack;

Returns
The index location of the object searched for in the stack. If it is not found, a
value of -1 is returned.

Example
Refer to the check method in Listing 12-4. The presence, in the stack, of the
specified object is verified by using the search method in class stack.

Enumeration

Purpose
Interface specifying methods to enumerate a set of objects.

Syntax
public interface Enumeration extends Object

Description
The Enumeration interface specifies a set of methods: hasMoreElements() and
nextElement(). They are used to enumerate or count through a set of values. The
enumeration is consumed as you use it to access the elements and you cannot get
back the used enumeration. So the elements can be counted only once. You have
to obtain the enumeration again if you want to access an enumeration earlier
accessed. Figure 12-11 illustrates the inheritance relationship of interface
Enumeration.

Figure 12-11 Interface diagram of Enumeration

PackageName
java.util

Imports
import java.util.Enumeration;

Example
Refer to Listing 12-4. All the guests are listed in the listAll method. This is done
by first getting the enumeration of guests by using the elements() method of class
Vector.

hasMoreElements()

Interface
Enumeration

Purpose
Determines if the enumeration contains more elements.

Syntax
public abstract boolean hasMoreElements()

Parameters
None.

Description
This method checks if the enumeration has more elements. It returns true if the
enumeration has more elements, and returns false if the enumeration does not
have more elements. This is an abstract method, as it is in an interface and it
should be defined in the class implementing the interface Enumeration.

Imports
import java.utils.Enumeration;

Returns
The boolean value true is returned if the enumeration has more elements. If the
enumeration is empty, the method returns false. Return type is boolean.

Example
Refer to the listAll method in Listing 12-4. All the guests are listed by getting the
enumeration of elements in vector guests. This method, hasMoreElements, is used
on the enumeration in the for loop construct while printing all the guest names.

nextElement()

Interface
Enumeration

Purpose
Returns the next element in the enumeration.

Syntax
public abstract Object nextElement()

Parameters
None.

Description
The method returns the next element in the enumeration. This method enumerates
successive elements. If no more elements exist in the enumeration and this
method is invoked, then a NoSuchElementException is thrown. This is an abstract
method as it is a method in an interface and it should be defined in the class
implementing the interface Enumeration.

Imports
import java.utils.Enumeration;

Returns
The successive object in the enumeration is returned. Return type is Object.

Example
Refer to the method listAll in Listing 12-4. All the guests are listed by getting the
enumeration of elements in vector guests. This method, nextElement, is used on
the enumeration in the for loop construct while printing all the guest names.

EmptyStackException

Purpose
A Runtime exception signaling an empty stack.

Syntax
public class EmptyStackException extends RuntimeException

Description
If a method tries to access an element in an empty stack, EmptyStackException is
thrown. For example, it is thrown when you try to use pop() method on an empty
stack. It is a runtime exception and hence, need not be declared to be thrown. The
constructor of this exception does not have any detailed message associated with
it that describes the exception. Figure 12-12 illustrates the inheritance relationship
of class EmptyStackException.

Figure 12-12 Class diagram of EmptyStackException class

PackageName
java.util

Imports
import java.util.EmptyStackException;

Constructors
public EmptyStackException()

Parameters
None.

Example

If you try to replace the top of the stack using the replaceTop method before
populating the stack, it will throw an EmptyStackException. Try uncommenting
the code before populate method in the main method in Listing 12-4.

NoSuchElementException

Purpose
A Runtime exception signaling an empty enumeration.

Syntax
public class NoSuchElementException extends RuntimeException

Description
If a method tries to access an element in an empty enumeration,
NoSuchElementException is thrown. For example, it is thrown when you try to
use the firstElement() or lastElement() methods on an empty enumeration
sequence. It is a runtime exception and hence, need not be declared to be thrown.
The constructor of this exception does not have any detailed message associated
with it that describes the exception. Figure 12-13 illustrates the inheritance
relationship of class NoSuchElementException.

Figure 12-13 Class diagram of NoSuchElementException class

PackageName
java.util

Imports
import java.util.NoSuchElementException;

Constructors
public NoSuchElementException()

Parameters
None.

Example
Refer to Listing 12-3. If you call the analyze method before the vector is
populated (when it is empty), the NoSuchElementException results when the
firstElement is accessed. If you uncomment the second line in the main method in
that listing, this exception is thrown.

Random

Purpose
A pseudo-random number generator class.

Syntax

public class Random extends Object
Description

The Random class is used to generate a stream of pseudo-random numbers. One
of the constructors is used to create a new random number generator. You can
specify a seed of type long or a random number generator with no seed. When
you specify a seed, the same stream of pseudo-random numbers can be repeated
using the same seed to start the generator. If you don’t specify a seed, a value
based on the current time is used as a seed. If you want to reset the seed to a
different value, you can use the setSeed method. To obtain successive pseudo-
random numbers, you can use one of the other methods in this class (except the
setSeed method). Figure 12-14 illustrates the inheritance relationship of class
Random.

Figure 12-14 Class diagram of Random class

PackageName
java.util

Imports
import java.util.Random;

Constructors
public Random()
public Random(long seed)

Parameters
seed

The single long seed used to create a random number generator.
Example

The randomDemo class in Listing 12-5 illustrates the generation of random
numbers.

Listing 12-5 randomDemo.java: Usage of random numbers

import java.util.Random;

class randomDemo {

 public randomDemo() {
 }

 private void doubleGen() {
 Random r = new Random(10);
 for (int i=0;i<5; i++)
 System.out.print(r.nextDouble() + " ");
 System.out.println("\n\n");
 }
 private void floatGen() {
 Random r = new Random();

 for (int i=0;i<5; i++) {
 float f = r.nextFloat();
 if (f >0.5)
 System.out.print(f + " ");
 }
 System.out.println("\n\n");
 }
 private void gaussianGen() {
 Random r = new Random(10);
 for (int i=0;i<5; i++)
 System.out.print(r.nextGaussian() + " ");
 System.out.println("\n\n");
 }

 private void intGen() {
 Random r = new Random();
 for (int i=0;i<5; i++) {
 int num = r.nextInt();
 if (num > 0)
 System.out.print(num + " ");
 }
 System.out.println("\n\n");
 }
 private void longGen() {
 Random r = new Random();
 r.setSeed(300);
 for (int i=0;i<5; i++) {
 long l = r.nextLong();
 if (l < 1000000)
 System.out.print(l + " ");
 }
 System.out.println("\n\n");
 }

 public final static void main(String args[]) {
 randomDemo rd = new randomDemo();

 System.out.println(" Random generator of numbers of type
Double\n");
 rd.doubleGen();

 System.out.println(" Random generator of numbers of type
Float\n");
 rd.floatGen();

 System.out.println(" Random generator of numbers of type
(Gaussian)
 double\n");
 rd.gaussianGen();

 System.out.println(" Random generator of numbers of type
Int\n");
 rd.intGen();

 System.out.println(" Random generator of numbers of type
Long\n");
 rd.longGen();

 }
}

nextDouble()

ClassName
Random

Purpose
Generates a pseudo-random uniformly distributed double value between 0.0 and
1.0.

Syntax
public double nextDouble()

Parameters
None.

Description
This method generates a pseudo-random number, uniformly distributed double
value between 0.0 and 1.0.

Imports
import java.utils.Random;

Returns
A double value between 0.0 and 1.0.

Example
Refer to the doubleGen method in Listing 12-5. Random double values are
generated with seed 10. For any number of runs of the program, the same
sequence of double values is generated.

nextFloat()

ClassName
Random

Purpose
Generates a pseudo-random uniformly distributed float value between 0.0 and 1.0.

Syntax
public float nextFloat()

Parameters
None.

Description
This method generates a pseudo-random number, uniformly distributed float
value between 0.0 and 1.0.

Imports
import java.utils.Random;

Returns
A float value between 0.0 and 1.0.

Example
Refer to the floatGen method in Listing 12-5. The float values above 0.5 are
printed to the screen. Each time this program is run, the sequence differs. This is

because the Random object is not created with a fixed seed, as in the case of
doubleGen.

nextGaussian()

ClassName
Random

Purpose
Generates a pseudo-random, Gaussian, distributed double value between 0.0 and
1.0.

Syntax
public double nextGaussian()

Parameters
None.

Description
This method generates a pseudo-random number, Gaussian, distributed double
value with mean 0.0 and standard deviation 1.0.

Imports
import java.utils.Random;

Returns
A double value.

Example
Refer to the gaussianGen method in Listing 12-5. It generates values of type
double. As you will note, it can generate negative values, whereas, the doubleGen
method generates only positive double. This illustrates the difference between
nextDouble and nextGaussian, which differs not only in distribution but also in
possible values generated.

nextInt()

ClassName
Random

Purpose
Generates a pseudo-random uniformly distributed int value.

Syntax
public int nextInt()

Parameters
None.

Description
This method generates a pseudo-random number, uniformly distributed int value.

Imports
import java.utils.Random;

Returns
An int value.

Example

Refer to the inGen method in Listing 12-5. Positive integer values are printed to
the output stream. In this method, the generated sequence of numbers varies for
every run of the program.

nextLong()

ClassName
Random

Purpose
Generates a pseudo-random uniformly distributed long value.

Syntax
public long nextLong()

Parameters
None.

Description
This method generates a pseudo-random number uniformly distributed long value.

Imports
import java.utils.Random;

Returns
A long value.

Example
Refer to the longGen method in Listing 12-5. The sequence of numbers generated
remains the same because the seed is set to 300 using the setSeed function. Those
numbers generated below 1 million are printed to the output stream.

setSeed(long)

ClassName
Random

Purpose
Sets the seed of the random number generator using the specified single long
seed.

Syntax
public synchronized void setSeed(long seed)

Parameters
seed

The seed for the pseudo-random number generator.
Description

This method sets the seed for the pseudo-random number generator to the
specified seed. This method can also be used to reset earlier seed values. A
random number generator with a specified seed generates a repeatable stream of
pseudo-random numbers.

Imports
import java.utils.Random;

Returns
None.

Example
Refer to the longGen method in Listing 12-5. The sequence of numbers generated
remains the same bacause the seed is set to 300 using the setSeed function.
Generated numbers below 1 million are printed to the output stream.

Java Appointment Organizer Applet

The applet for this chapter is an appointment organizer. Using Java’s AWT components
you will provide the user-interface for entering appointment details. The user will enter a
date, time, and a text string describing the appointment. Users can save the appointment
information and then retrieve it by specifying the data and the time. To develop the user-
interface for the organizer, you’ll create the following components:

1. A text field for entering the date
2. A text field for entering the hour of appointment
3. A text field for entering the minutes past the hour at which the appointment is
scheduled
4. A choice button to select between setting an appointment and finding the
appointment at a given date and time
5. A text area to enter appointment details
6. A text area to display the details of the requested appointment
7. A button to confirm the user’s selection of setting or finding an appointment.
Appropriate action will be taken after this confirmation button is clicked.

The Java Appointment Organizer is constructed using the classes covered in this chapter.
You will create a javaOrganizer class with member dates. The javaOrganizer class will
subclass the Applet class, because we are building an applet. The member dates will be a
dateVector object with a capacity of 31 elements. The class dateVector is a subclass of
Vector. Date will be used as an index into the dateVector to map to an appointment on a
given date. In this implementation, we’ll consider only the present month. You can build
on this design to implement for 12 months a year and for any specified year. Each object
in the vector, named dates, is a hash table because the time and number of appointments
will vary from day to day. On some days a person might have many appointments and on
others very few. Appointments are arranged with time as the key element and description
as the object. For a given index in the dateVector, an appointmentTable object is stored.
The appointmentTable class is a hash table class.

The user can trigger two actions: setting up a new appointment and retrieving an
appointment at a given date and time. The javaOrganizer includes methods to accomplish
these two actions. Methods in the Vector, HashTable and Date classes provide the
necessary functionality expected from the javaOrganizer.

Building the Project

1. Using the bottom-up approach, we shall first design the appointmentTable
class. It is a subclass of the Hashtable class. We will specify the capacity of the
hash table to be 10. In case you want to include more time, this capacity is
expandable. Enter the following code to define the appointmentTable class.
class appointmentTable extends Hashtable {

 public appointmentTable() {
 super(10);
 // 10 hours a day to start with
 }
}
2. The appointmentTable object is a part of the dates vector. We need to add
functionality for this class to add appointment details for a given time. Date is
determined by the index occupied by this appointmentTable object in the dates
vector. We will add a method addOneAppt. This method will take two
parameters: time and details. The time is the key for this table. This method will
add the given appointment details with the specified key to the table. If there is
already another appointment at the specified time, this method will notify the user
and return without affecting the earlier appointment. Another needed functionality
is the ability to retrieve an appointment detail text, given the time. The apptAt
method will return the String containing the details when the time is passed as a
parameter. Add the following code to the appointTable class, defined in Step 1.
 public boolean addOneAppt(String time, String what)
 {
 if (this.containsKey(time)) {
 System.out.println(“An appt at " + time
 + “ already exists!”);
 return false;
 }

 put(time, what);
 return true;
 }

 public String apptAt(String time) {

 if (!this.containsKey(time)) {
 System.out.println("You have no appt at" + time);
 return null;
 }
 return (String)this.get(time);
 }
3. Having defined the appointmentTable class, we will now define the dateVector
class, which will subclass the Vector class. This class should have the
functionality to add and retrieve appointment details. It is a Vector object with a
size of 31, so we can index into 31 locations into the vector. Without much
optimization, the following code defines the class and its constructor. We
populate all its indices with default appointmentTable objects, so that there is a
table for each day of the month.
class dateVector extends Vector {

 public dateVector() {

 super(31); // vector for 31 days
 for (int i =0; i <31; i ++)
 this.addElement(new appointmentTable());
 }
}
4. Now we’ll add methods to the dateVector class to add and retrieve
appointment tables. Each appointmentTable object is indexed by date. To add a
specified appointmentTable on a particular day, we will define a fixAppt method.
It will take a date as the index into the vector and the appointmentTable as the
element. The knowAppt method will find the appointment table for the specified
date. It returns an object of type appointmentTable. These methods are defined
here. Enter the following code into the dateVector class defined in the previous
step.
public void fixAppt(appointmentTable appt, int date) {
 if (date > 31 || date <1) {
 System.out.print(" Error in adding Appt -");
 System.out.println(" Invalid date " + date);
 return;
 }
 this.setElementAt(appt, date-1);
}

public appointmentTable knowAppt(int date){
 if (date > 31 || date <1) {
 System.out.println(" Error in getting Appt - ");
 System.out.println(" Invalid date " + date);
 return null;
 }
 return (appointmentTable)elementAt(date-1);
}
5. Now that you have defined two classes, dateVector and appointmentTable, you
need to define the javaOrganizer class. The javaOrganizer class is a public class
that subclasses the Applet class because we are implementing this project as an
applet. The class should contain the dateVector object, dates, as its member. It
will be initialized in the init() method and will contain the user interface
components as its members. Enter the following code into the file
javaOrganizer.java, together with classes dateVector and appointment table.
import java.util.*;
import java.awt.*;

public class javaOrganizer extends java.applet.Applet {

 dateVector dates;

 public void init() {
 dates = new dateVector();
 }

 TextArea apptEntry;
 TextArea apptView;
 TextField date;
 TextField hrs;
 TextField mins;

 Choice todo;
}
6. The start method in an applet is run at the start of an applet after initialization.
So we will plug in an implementation of UI, into the start method, for this
organizer. You can find details about the UI code in the chapters in this book
which describes the Java AWT. Enter the following method into the class
javaOrganizer.
public void start() {
 setLayout(new BorderLayout());

 Panel disp = new Panel();
 disp.setLayout(new FlowLayout());

 apptEntry = new TextArea(8,15);
 disp.add(apptEntry);
 apptView = new TextArea(8,15);
 apptView.setEditable(false);
 disp.add(apptView);
 add("Center", disp);

 Panel input_p = new Panel();
 input_p.setLayout(new FlowLayout());
 date = new TextField(2);
 input_p.add(date);
 hrs = new TextField(2);
 input_p.add(hrs);
 mins = new TextField(2);
 input_p.add(mins);

 todo = new Choice();
 todo.addItem("SetAppt");
 todo.addItem("FindAppt");
 input_p.add(todo);

 input_p.add(new Button("OK"));
 add("South", input_p);
 resize(600,200);

 }
7. Having provided the method to start the applet, the next step is to provide the
necessary event handling. When a user clicks on the OK button, appropriate
action is taken, depending on whether the option selected is to set the appointment
or to find an appointment. The values for date, time, and details of an appointment
are gathered from the user-interface. If the appointment is to be scheduled, then
the setAppt method is called. This method adds an appointment to the
appointmentTable object at the specified time and date. For this purpose, the
appointmentTable for a specified date is retrieved and the new appointment is
added. Enter the following code into the javaOrganizer class.
 public boolean action(Event evt, Object arg) {
 if (arg.equals("OK")) {
 if (todo.getSelectedItem().equals("SetAppt")) {
 String time = hrs.getText() + mins.getText();
 String what = apptEntry.getText();
 int dat = Integer.parseInt(date.getText().trim());

 setAppt(dat, time, what);
 }
 if (todo.getSelectedItem().equals("FindAppt")) {
 String time = hrs.getText() + mins.getText();
 int dat = Integer.parseInt(date.getText().trim());
 String what = findAppt(dat, time);
 apptView.setText("The appt on " + dat +" at "+
 time +" is " + what);
 }
 }
 return true;
 }

 public void setAppt(int date, String time, String what){
 appointmentTable appt = dates.getApptTab(date);
 appt.addOneAppt(time, what);
 dates.fixAppt(appt, date);
 }
8. The next step is to define the method for finding the appointments for a
specified date and time. This method returns a String object, which is then
displayed in the view area in the UI. The dateVector object is indexed by the
specified date. By using the knowAppt method of the dateVector class, the
appointment table for the specified date is obtained. Having obtained a handle to
the dateVector for the specified date, the appointmentTable object for the
specified time on that date is obtained by using the apptAt method of the
appointmentTable class. Enter the following code inside the javaOrganizer class.
 public String findAppt(int date, String time){
 String what = ((appointmentTable)dates.knowAppt(date)).
 apptAt(time);

 return what;
 }
9. Having successfully completed the implementation of the javaOrganizer class,
you can compile the class, using the javac compiler. Here is the HTML file to
launch this applet. Enter it in a file named org.html.

<title>Java Appointment Organizer</title>
<hr>
<applet code=javaOrganizer.class width=250 height=250>
</applet>
<hr>

You can improve on this applet by adding methods to save appointments to a file and
later retrieve the appointments from the file. Figure 12-15 shows the user-interface for
this javaOrganizer applet.

Figure 12-15 javaOrganizer: The Java Appointment Organizer in action

How It Works

The applet is launched by either an applet viewer or from a browser. When the applet
starts, it shows a user-interface as shown in Figure 12-15. There are three text fields at the
bottom of the applet. The first field is for specifying the date, the second is for entering
the hour, and the third field is for entering the minutes. Once the date and time are
specified, you can either set an appointment for that time or find any existing
appointment at that time. The choice button to the left of the OK button can be used to
select your option. In the user-interface there are two text areas: one on the left and one
on the right. The text area on the left is the area where you will enter the details of an
appointment. If you want to set an appointment, choose the SetAppt option in the choice
button and enter the details in the text area. Once you have completed the details, press
the OK button to confirm the entry. If you want to find the appointment at the specified
date and time, choose the FindAppt option in the choice button and press the OK button.
The details of the appointment at the specified time are displayed in the text area on the
right side. You can keep track of your appointments by using this applet as long as you
don’t close the applet. You can provide the functionality to store the details to a file and
retrieve it as needed, so that the applet can be closed at any time. You also need not
worry about system crashes and power shutdowns if you extend this applet to provide
that functionality. Good luck!

Chapter 13
Date And Advanced Classes

Chapter 12 described the utility classes for data structures and random number
generation. In this chapter, you will learn more about the other utility classes provided in
the JDK environment. We’ll discuss the class that deals with sets of bits and the class that
helps to tokenize a stream of strings, as well as a wrapper class for finding dates, and
advanced classes that encapsulate the Observable-Observer design pattern.

The BitSet class represents sets of bits and provides operations on sets of bits, like logical
OR, AND, and XOR. The StringTokenizer class is helpful in obtaining tokens from a
string using the delimiter. Because Java is platform independent, manipulating the date
independent of the system is very important and Java’s Date class performs this function.
The advanced utility class Observable provides the necessary behavior for objects to be
observable by many other observer objects. When used with the Observer classes, this
class helps design low-coupled, reusable systems that have a one-to-many dependency on
changes that occur in observable classes. The project developed in this chapter displays
the time using different clocks such as a digital clock and an analog clock. The clocks get
the time from a central time server in a way that any change in time in the time server is
observed and updated by every clock.

BitSet

The BitSet class encapsulates a set of bits. The set can contain many bits and expands as
more bits are added. It can be used to perform logical operations like AND, OR, and
XOR between any two BitSets. Methods for clearing and setting bits are provided as
member methods. You can clone a set of bits, because BitSet implements the Cloneable
interface. This class is used to represent a set of boolean data. Using this class saves
memory, as each value takes on only one bit for representation.

For example, consider two sets of bits A and B. There are four bits in each set. Let the
values of the bits in A be 0, 0, 1, and 1. Let the values of the bits in set B be 0, 1, 0, and 1.
Consider the logical AND, OR, and XOR operation over these two sets. In our
discussion, a value of 1 indicates that the bit is set, and 0 indicates a clear bit. During an
AND operation, the result of ANDing two bits is 1 if both the bits have a value of 1. If
either of the bits is 1, the result is 0. In the case of an OR operation, the result value is 0
only if both the bits are of value 0. If one of them has a value of 1, the result is 1. If both
the bits have the same value and if you perform XOR operation on them, the result is 0.
When you apply an XOR operation on two bits whose values vary, the result is 1. These
relationships are expressed in Figure 13-1.

Figure 13-1 Logical AND, OR, and XOR operations performed on sets of bits

StringTokenizer

In computer languages, compilers play an important role. User-written code is parsed by
the lexical analyzer to separate the individual tokens and verify their validity. In
communications, messages are passed between entities and deciphered by the receiving
party. In either environment, instead of parsing character by character, it is faster and
more logical to parse tokens. A token can be a single word or a set of words. The
delimiter specified in each case determines what constitutes a token. Delimiters are by
default white space characters. Alternatively, you can specify your own delimiter,
providing all the recipients are aware of it. This knowledge of the delimiter is vital in
successful communications. Consider the string “Greetings. You are a Java Expert.” If
you consider white space as the delimiter, parsing the above string will result in six
tokens, whereas, if you consider a period ('.’) as the delimiter, there are only two tokens
as shown in Figure 13-2. You can also specify whether the delimiters should be a part of
the token. The StringTokenizer class in Java is useful to obtain tokens from a specified
string.

Figure 13-2 Tokens form the same string differ if the delimiter is different

Date

In many applications you develop, obtaining the time and date or timing a process is
important. You have to be aware of the system calls or library routines that provide these
details and, most importantly, of how they differ from system to system, depending on
the operating system. In Java, you are relieved of this trouble by the Date utility class, a
wrapper class for dates. You can obtain the local time as well as the Greenwich Meridian
Time (GMT), also known as Universal Time (UT) in technical terms. You can use the
Date class to find out what day of the week you were born on, by specifying your date of
birth. You can also use the Date class to time your processes and applications which will
help you measure their performance. With the support of Java’s AWT, you can generate
graphs and bar charts too! This chapter covers methods available in the Date class and
ways to use them in great detail.

Observable-Observer

Imagine an application in which you want to define a one-to-many dependency between
objects, so that when one of the objects experiences a change in its state, all its dependent
objects are notified and updated automatically. This is a common design issue and the
pattern it suggests is called Model-View, Observable-Observer, or Publish-Subscribe.

Consider the profits of a business firm. The firm concentrates on four major projects. You
want to gather information about the percentage of profit each project contributes to the
firm. Also you are interested in tabulating each profit. Instead of tightly coupling various
information gathering programs, you can use one object to keep track of the profits. If it
finds an observable change in the profit of the company, it notifies all the observer
programs, which update their individual views as illustrated in Figure 13-3. Then if any
observer needs more information, it can request it from the observable object (which is
called the Subject in the Subject-Observer pattern). If the observable notifies the
observers of all the changes, it is push-style programming. If the observable notifies the
observers of a change and then they query for more details, it is pull-style programming.

Figure 13-3 Observable-Observer objects keep track of a firm’s profits

This pattern is an interesting utility provided by the JDK. Observable is a class in Java,
whereas, Observer is an interface. This interface has to be implemented by objects that
want to be one of the observers. Details of using the Observable class and Observer
interface are presented with examples in this chapter.

Date and Advanced Classes Summaries

Table 13-1 summarizes the classes and interface for the BitSet, StringTokenizer,

Observable, Observer, and Date utilities.

Table 13-1 Summary of Utility Classes

Class/Interface Name Description

BitSet Represents a set of bits and expands automatically as

more bits are added to the set.

StringTokenizer Encapsulates the linear tokenization of a String.
Observable The Subject class in a Subject-Observer pattern and

can have many observers.
Observer An Interface, useful for objects to act as observers of

an observable object and keep track of the changes to
it.

Date A wrapper class for dates, useful for manipulating
dates independent of the system.

BitSet

Purpose
Represents a set of bits and expands automatically as more bits are added to the
set.

Syntax
public class BitSet extends Object implements Cloneable

Description
BitSet represents a set of bits. The set size increases as more bits are introduced.
It is useful to logically operate on a set of bits. This class implements the
Cloneable interface and should define the clone() method, so it can be cloned.
BitSet supports operations like AND, OR, and XOR of the target set with another
set. Figure 13-4 illustrates the inheritance relationship of class BitSet.

Figure 13-4 Class diagram of the BitSet class

PackageName
java.util

Imports

import java.util.BitSet;
Constructors

public BitSet()
public BitSet(int size)

Parameters
size

The initial size of the set of bits to be created.
Example

The bitsetDemo class in Listing 13-1 illustrates the use of the BitSet class. It has
a member of type BitSet and is used to demonstrate the methods of this class.

Listing 13-1 bitsetDemo.java: Code demonstrating the usage of Bitset class and its
methods

import java.util.BitSet;

public class bitsetDemo {

 BitSet bs;

 public bitsetDemo() {
 bs = new BitSet();

 }

 public bitsetDemo(int size) {
 bs = new BitSet(size);

 }

 public void debug(String str) {
 System.out.println(str);

 }

 public void setStatus(int bitno) {
 bs.set(bitno);

 }

 public boolean getStatus(int bitno) {
 return bs.get(bitno);

 }

 public BitSet allStatus() {
 debug(“ Cloning bit set of size “ + bs.size());
 return (BitSet)bs.clone();

 }

 public BitSet andWith(BitSet tmp) {
 if (tmp.equals(bs))

 return tmp;

 debug(" When " + tmp + " is ANDed with " + bs +
 " result is ");
 tmp.and(bs);
 debug(" " + tmp + "\n");
 return tmp;
 }

 public BitSet orWith(BitSet tmp) {
 if (tmp.equals(bs))
 return tmp;
 debug(" When " + tmp + " is ORed with " + bs + " result
 is ");
 tmp.or(bs);

 debug(" " + tmp + "\n");
 return tmp;

 }

 public void clearAll() {
 debug(" hashCode of the BitSet is " + bs.hashCode());
 bs.xor(bs);
 debug(" After clearAll --> " + bs.toString());

 }

 public final static void main(String args[]) {
 bitsetDemo bd = new bitsetDemo(5);
 bd.setStatus(0);
 bd.setStatus(4);
 System.out.println(bd.getStatus(0) +
 " , " + bd.getStatus(1));
 bd.setStatus(6);
 BitSet newset = bd.allStatus();
 System.out.println(newset);
 newset.clear(4);
 bd.andWith(newset);
 bd.orWith(newset);
 newset.set(4);
 bd.clearAll();
 }
}

and(BitSet)

ClassName
BitSet

Purpose
Logically ANDs the target object with the specified object.

Syntax
public void and(BitSet bs)

Parameters
bs

The specified BitSet object that the target object is ANDed.
Description

This method applies the logical AND operation to the bits in the target object and
the bits in the specified object, bs. Each bit in the target object is ANDed with the
bits at the corresponding index in the specified bit set. The resultant object is the
modified target object.

Imports
import java.utils.BitSet;

Returns
None.

See Also
The or(BitSet) method in theBitSet class

Example
Refer to the method andWith in Listing 13-1. It ANDs two bit sets by using this
method.

clear(int)

ClassName
BitSet

Purpose
Clears the specified bit.

Syntax
public void clear(int index)

Parameters
index

The index of the bit in the bit set that has to be cleared, that is set to 0.
Description

The bit at the specified index is cleared by using this method. This way you can
selectively clear any individual member in the bit set.

Imports
import java.utils.BitSet;

Returns
None.

See Also
The set method in the BitSet class

Example
Refer to the main method in Listing 13-1. The new_set object has its bit at index 4
cleared using this method.

clone()

ClassName
BitSet

Purpose
This method clones the bit set.

Syntax
public void clone()

Parameters
None.

Description
A clone of the BitSet is created using this method. It doesn’t copy the values into
the new bit set, but creates a shallow copy. This method overrides the clone
method in class Object.

Imports
import java.utils.BitSet;

Returns
The clone of the target BitSet object. Return type is Object, which you may
typecast to BitSet.

See Also
The Cloneable interface

Example
Refer to the allStatus method in Listing 13-1. The Bitset is cloned and the newly
created clone is returned by the method.

equals(Object)

ClassName
BitSet

Purpose
Returns a boolean value indicating if the target object is equal to the specified bit
set object. It returns true if the objects are the same and false if they are not equal.

Syntax
public void equals(Object obj)

Parameters
obj

The object instance to be compared with.
Description

The bit at the specified index is cleared using this method. This way you can
selectively clear any individual member in the bit set.

Imports
import java.utils.BitSet;

Returns
None.

Example
Refer to the main method in Listing 13-1. The new_set object has its bit at index 4
cleared using this method.

get(int)

ClassName
BitSet

Purpose
Obtains the specified bit.

Syntax
public boolean get(int index)

Parameters
index

The index of the bit in the bit set that has to be obtained.
Description

The bit at the specified index is retrieved using this method.
Imports

import java.utils.BitSet;
Returns

A boolean value indicating the value of the bit at the specified location.
See Also

The set method in the BitSet class.
Example

Refer to the getStatus method in Listing 13-1. This method is used to obtain the
bit at the specified location.

hashCode()

ClassName
BitSet

Purpose
Obtains the hash code of the target bit set object.

Syntax
public int hashCode()

Parameters
None.

Description
The hash code of the target bit set object is returned by this method. It overrides
the hashCode method of class Object.

Imports
import java.utils.BitSet;

Returns
The hash code of the target object. Return type is int.

Example
Refer to the clearAll method in Listing 13-1. The hashCode method is used to
debug the object information.

or(BitSet)

ClassName
BitSet

Purpose
Logically ORs the target object with the specified object.

Syntax
public void or(BitSet bs)

Parameters
bs

The specified BitSet object that the target object is ORed.
Description

This method applies the logical OR operation to the bits in the target object and
the bits in the specified object, bs. Each bit in the target object is ORed with the
bits at the corresponding index in the specified bit set. The resultant object is the
modified target object.

Imports
import java.utils.BitSet;

Returns
None.

See Also
The and(BitSet) method in the BitSet class

Example
Refer to the orWith method in Listing 13-1. It ORs two bit sets by using this
method.

set(int)

ClassName
BitSet

Purpose
Sets the specified bit.

Syntax
public void set(int index)

Parameters
index

The index of the bit that has to be set.
Description

The bit at the specified index is set using this method. The value of the bit will be
made 1.

Imports
import java.utils.BitSet;

Returns
None.

See Also
The get method in the BitSet class.

Example
Refer to the setStatus method in Listing 13-1. This method is used to set the value
of the bit at the specified location.

size()

ClassName
BitSet

Purpose
Obtains the size of the bit set.

Syntax
public int size()

Parameters
None.

Description
The size of the bit set is obtained by using this method. This value reflects the
number of bits in the set.

Imports
import java.utils.BitSet;

Returns
A value indicating the size of the bit set is returned. Return type is int.

Example
Refer to the allStatus method in Listing 13-1 where the number of bits in the set is
printed to the screen.

toString()

ClassName
BitSet

Purpose
Obtains the string form of the bit set.

Syntax
public String toString()

Parameters
None.

Description
The string representation of the target BitSet object is returned by this method.
This method will return a string containing the index of the bits that are set in the
bit set. This is usually used for debugging purposes.

Imports
import java.utils.BitSet;

Returns
A string representing the details of the bit set; return type is String.

Example
Refer to the clearAll method in Listing 13-1. This toString method is used to
obtain the string representation of the bit set.

xor(BitSet)

ClassName

BitSet
Purpose

Logically XORs the target object with the specified object.
Syntax

public void xor(BitSet bs)
Parameters
bs

The specified BitSet object that the target object is XORed.
Description

This method applies the logical XOR operation to the bits in the target object and
the bits in the specified object, bs. Each bit in the target object is XORed with the
bits at the corresponding index in the specified bit set. The resultant object is the
modified target object. When two identical objects are XORed, the result is an
object with all bits cleared.

Imports
import java.utils.BitSet;

Returns
None.

See Also
The and() and or() methods in the BitSet class

Example
Refer to the clearAll method in Listing 13-1. All the bits in the bit set are cleared
by the single use of this method on the same object, bs.

StringTokenizer

Purpose
Encapsulates the linear tokenization of a String.

Syntax
public class StringTokenizer extends Object implements Enumeration

Description
StringTokenizer controls the linear tokenizing of strings. It is helpful for parsing
strings and to get tokens out of a string. When messages are exchanged between
two objects, instead of sending strings for every piece of information, it is useful
to send a single string that contains multiple pieces of information, each separated
by a delimiter. You can use an instance of StringTokenizer to tokenize the
individual pieces of information from the message String received. This class
implements the Enumeration interface and, hence, defines the hasMoreElements
and nextElement methods of that interface. Figure 13-5 illustrates the inheritance
relationship of the StringTokenizer class.

Figure 13-5 Class diagram of the StringTokenizer class

PackageName
java.util

Imports
import java.util.StringTokenizer;

Constructors
public StringTokenizer(String str)
public StringTokenizer(String str, String delim)
public StringTokenizer(String str, String delim, boolean returnDelimsToo)

Parameters
str

The string to be tokenized.
delim

The delimiter specified for use in tokenizing.
returnDelimsToo

A boolean value indicating whether or not you want the delimiters to be returned
as tokens.

Example
The docGenerator class in Listing 13-2 demonstrates the use of the
StringTokenizer class and its methods.

Listing 13-2 docGenerator.java: Demonstrating the usage of StringTokenizer and its
methods

import java.util.StringTokenizer;

public class docGenerator extends StringTokenizer {

 String message;
 String delimiter;

 public docGenerator(String msg) {
 super(msg, ":", false);
 message = msg;
 }

 public docGenerator(String msg, String delim) {
 super(msg, delim, false); // skip the delimiter tokens
 message = msg;
 delimiter = delim;
 }

 public void decipherMesg() {
 int num_tokens = countTokens();

 if (num_tokens-- > 0) {
 System.out.print(" The book title is --> ");
 System.out.println(nextElement());

 }

 if (num_tokens-- > 0) {
 System.out.print(" Publisher --> ");
 System.out.println(nextToken());
 }

 if (num_tokens-- > 0) {
 String authors = nextToken();
 System.out.println(" The authors are ");
 docGenerator new_dg = new docGenerator(authors);
 while (new_dg.hasMoreTokens())
 System.out.println(" " +new_dg.nextToken(" "));
 }
 //if (num_tokens-- > 0) {

 }

 public final static void main(String args[]) {
 String s = "Java SuperBible:Waite Group:Nataraj Brian
Arvind";
 docGenerator dg = new docGenerator(s);
 dg.decipherMesg();
 }
}

countTokens()

ClassName
StringTokenizer

Purpose
Obtains the number of tokens in the string using the specified delimiter.

Syntax
public int countTokens()

Parameters
None.

Description
This method counts the number of tokens in the string that is to be tokenized. The
current delimiter is used as the delimiter while counting the tokens. This method
returns the number of tokens in the string. The value returned is the number of
times the nextToken() method is to be called until the end of the stream is
reached.

Imports
import java.utils.StringTokenizer;

Returns
The number of tokens in the string using the current delimiter set. Return type is
int.

See Also
The nextToken method in the StringTokenizer class

Example
Refer to the decipherMesg method in Listing 13-2. The number of tokens is found
using the countTokens method and it is used to decipher each token.

hasMoreElements()

ClassName
StringTokenizer

Purpose
Returns a boolean value indicating whether or not the enumeration has more
elements.

Syntax
public boolean hasMoreElements()

Parameters
None.

Description
This method uses the current delimiter and enumerates the tokens as elements in
the string. It returns true if there are more elements in the enumeration of the
tokens in the string using the current delimiter. If there are no more elements in
the enumeration, this method returns false. This method is defined because the
StringTokenizer class implements the Enumeration interface.

Imports
import java.utils.StringTokenizer;

Returns
A value of true or false, depending on whether or not there are more elements in
the enumeration of the string. Return type is boolean.

See Also
The hasMoreTokens method in the StringTokenizer class; the Enumeration
interface

Example
Refer to the decipherMsg method in Listing 13-2. The tokens of the string
containing the authors’ names with a delimiter of whitespace “ ” are enumerated
using the hasMoreTokens method. Even if you use the hasMoreElements method
instead, the effect is the same.

hasMoreTokens()

ClassName
StringTokenizer

Purpose
Returns a boolean value indicating whether or not there are more tokens in the
string using the current delimiter.

Syntax
public boolean hasMoreTokens()

Parameters
None.

Description
This method uses the current delimiter and obtains all the tokens in the string. It
returns true if there are more tokens to be tokenized in the string using the current
delimiter. If there are no more tokens in the string, this method returns false.

Imports
import java.utils.StringTokenizer;

Returns
A value of true or false depending on whether or not there are more tokens in the
string. Return type is boolean.

See Also
The hasMoreElements method in the StringTokenizer class

Example
Refer to the decipherMsg method in Listing 13-2. The tokens of the string
containing the authors’ names with a delimiter of whitespace “ ” are obtained one
by one using the hasMoreTokens method.

nextElement()

ClassName
StringTokenizer

Purpose
Obtains the next object in the enumeration of the tokens in a string.

Syntax
public Object nextElement()

Parameters
None.

Description
This method uses the current delimiter and enumerates the tokens as elements in
the string. After enumerating the tokens and making successive calls to this
method, the successive elements are returned. It is defined because the
StringTokenizer class implements the Enumeration interface. If there are no
elements in the enumeration, it throws a NoSuchElementException. This
exception should be caught in a try-catch block. It is advisable to use this method
only if the hasMoreElements method returns true.

Imports
import java.utils.StringTokenizer;

Returns
The next element in the enumeration, which is the next token in the string using
the current delimiter. Return type is Object, which can be typecast to String.

See Also
The nextToken method in the StringTokenizer class

Example

Refer to the decipherMesg method in Listing 13-2. The book title is obtained by
getting the first element in the token set using this method. It would have the same
effect if you replace nextElement with the call to the nextToken method.

nextToken()

ClassName
StringTokenizer

Purpose
Obtains the next string token from the enumeration of the tokens in a string.

Syntax
public String nextToken()

Parameters
None.

Description
This method uses the current delimiter and enumerates the tokens as elements in
the string. After enumerating the tokens, successive calls to this method returns
successive elements. It throws a NoSuchElementException if there are no tokens
in the String. This exception should be caught in a try-catch block. It is advisable
to use this only if the hasMoreTokens method returns true.

Imports
import java.utils.StringTokenizer;

Returns
The next token in the string using the current delimiter is returned.
Return type is String.

See Also
The nextElement method in the StringTokenizer class

Example
Refer to the decipherMesg method in Listing 13-2. The publisher’s name is
obtained using this method. It would have the same effect if you replaced
nextToken with a call to the nextElement method.

nextToken(String)

ClassName
StringTokenizer

Purpose
Obtains the next string token from the enumeration of the tokens in a string using
the specified string as delimiter.

Syntax
public String nextToken(String delim)

Parameters
delim

The delimiter to be used when tokenizing the string.
Description

This method uses the specified delimiter and enumerates the remaining tokens as
elements in the string. After enumerating the tokens, successive calls to this
method return successive elements in the enumeration. The default delimiter for
strings if you don’t specify one during construction is “ \n\t\r”, the whitespace
characters. You can switch delimiters using this method to get successive tokens.
If this method is used, the specified delimiter will remain as the default delimiter
for the rest of the tokenizing session, until it is changed again.

Imports
import java.utils.StringTokenizer;

Returns
The next token in the string using the specified delimiter; return type is String.

See Also
The nextElement and nextString methods in the StringTokenizer class

Example
Refer to the decipherMesg method in Listing 13-2. The authors’ names are
obtained using this method. The names are separated by white spaces, while the
categories (title, publisher name, authors’ names) are separated by “:” as
delimiter. Switching the delimiter to a single space is done using this method.

Observable

Purpose
The Subject class in a Subject-Observer pattern, which can have many observers.

Syntax
public class Observable extends Object

Description
This class should be subclassed by an object that is observable by other observers.
This class forms the Subject class in a Subject-Observer pattern or the “data” in
the Model-View paradigm. It defines a one-to-many dependency between objects
so that when this Observable object changes the observer objects are notified.
Notification is achieved by calling the update method of all the observers of this
observable object. This design strategy helps in low coupling between the objects.
It has methods to add and delete observers and to notify them. Figure 13-6
illustrates the inheritance relationship of class Observable.

Figure 13-6 Class diagram of the Observable class

PackageName
java.util

Imports
import java.util.Observable;

Constructors
public Observable()

Parameters
None.

Example
The clockTimer class in Listing 13-3 subclasses the Observable class. During
clock ticks, it notifies all its observer objects, which are instances of digitalClock
in this case.

Listing 13-3 clockTimer.java: Illustrates the usage of Observable class and Observer
interface

import java.util.*;
import java.awt.*;
import java.io.*;
import java.applet.*;
import java.net.*;

public class clockTimer extends Observable implements Runnable {

 int hour;
 int mins;
 int secs;
 Date date;

 public clockTimer() {
 date = new Date();
 hour = date.getHours();
 mins = date.getMinutes();
 secs = date.getSeconds();
 start();
 }

 Thread timeThread;

 public void start() {
 if (timeThread == null) {
 timeThread = new Thread(this);
 timeThread.start();
 }
 }

 public int GetHours() {
 return hour;
 }

 public int GetMinutes() {
 return mins;
 }

 public int GetSeconds() {
 return secs;
 }

 public void run() {
 while (timeThread != null) {
 try {
Thread.currentThread().setPriority(Thread.MIN_PRIORITY);
 tick();
 Thread.sleep(1000);
 } catch (InterruptedException e){
debug("exception");}
 }
 }

 public void debug(String str) {
 System.out.println(str);
 }

 public synchronized void tick() {

 date = null;
 clearChanged();
 Date new_date = new Date();
 if (new_date.getSeconds() != secs) {
 setChanged();
 date = new_date;
 hour = date.getHours();
 mins = date.getMinutes();
 secs = date.getSeconds();
 }
 notifyObservers();
 }

 public final static void main(String args[]) {
 clockTimer ct = new clockTimer();
 ct.start();
 }

}

class DigitalClock implements Observer, Runnable {

 clockTimer myTimer;
 int hours;
 int mins;
 int secs;

 public DigitalClock(clockTimer timer) {
 myTimer = timer;
 hours = myTimer.GetHours();
 mins = myTimer.GetMinutes();
 secs = myTimer.GetSeconds();
 myTimer.addObserver(this);
 start();
 }
 Thread clockThread;

 public void start() {
 if (clockThread == null) {
 clockThread = new Thread(this);

 clockThread.start();
 }
 }

 public void run() {

 while (clockThread != null) {
 try {
 clockThread.sleep(1000);
 } catch (InterruptedException e){}
 }

 }

 public void update(Observable obs, Object arg) {
 if (obs.hasChanged()) {
 myTimer = null;
 myTimer = (clockTimer)obs;
 hours = myTimer.GetHours();
 mins = myTimer.GetMinutes();
 secs = myTimer.GetSeconds();
 }
 display();
 }

 private void debug(String str) {
 System.out.println(str);
 }

 private void display() {
 debug("Notified by observer");
 }

}

addObserver(Observer)

ClassName
Observable

Purpose
Adds the specified observer to the observer list for this observable object.

Syntax
public synchronized void addObserver(Observer obs)

Parameters
obs

The observer object for this observable to be added to the list.
Description

This method adds the specified observer object to the observers list. When a
change occurs in the observable object all its observers are notified, so the
specified object will be notified of changes in the observable object.

Imports
import java.utils.Observable;

Returns
None.

See Also
The deleteObserver and deleteObservers methods in the Observable class

Example
Refer to Listing 13-3. The digitalClock object on construction adds itself to the
observer list using this method on the clockTimer object.

clearChanged()

ClassName
Observable

Purpose
Clears the flag within the observable object indicating no change in observable
object.

Syntax
public synchronized void clearChanged()

Parameters
None.

Description
This method clears any change in the target observable object. No observer will
be notified before a change occurs and the hasChanged method returns true.

Imports
import java.utils.Observable;

Returns
None.

See Also
The setChanged and hasChanged methods in the Observable class

Example
Refer to Listing 13-3. In the tick()method, in the clockTimer class, before any
change is noted in the observable time (any change in seconds), this method is
used to clear the flag that indicates a change in the observable object.

countObservers()

ClassName
Observable

Purpose
Obtains the number of observers in the observers list of this observable object.

Syntax
public synchronized int countObservers()

Parameters
None.

Description

This method counts and returns the number of observer objects that are observing
this observable object. When a change occurs in the observable object all its
observers are notified.

Imports
import java.utils.Observable;

Returns
The count of the number of observer objects in the observer list of the observable
object. Return type is int.

Example
Refer to Listing 13-3. You can use this method in the Observable clockTimer
class to find out the number of observers.

deleteObserver(Observer)

ClassName
Observable

Purpose
Removes the specified observer from the observer list for this observable object.

Syntax
public synchronized void deleteObserver(Observer obs)

Parameters
obs

The observer object, for this observable object to be deleted from the list.
Description

This method deletes the specified observer object from the observer list. The
specified object will not be notified of changes to the observable object.

Imports
import java.utils.Observable;

Returns
None.

See Also
The addObserver and deleteObservers method in the Observable class

Example
Refer to Listing 13-3. You can delete an observer by calling this method. The
observers add themselves by calling addObserver and, when desired, they can
delete themselves from the list using this method.

deleteObservers()

ClassName
Observable

Purpose
Removes all the observers from the observer list for this observable object.

Syntax
public synchronized void deleteObservers()

Parameters

None.
Description

This method deletes all the observer objects from the observer list. There will not
be any observer object to be notified of any change that happens to the observable
object.

Imports
import java.utils.Observable;

Returns
None.

Example
Refer to Listing 13-3. The clockTimer object can delete all observers after a
couple of ticks, and this will result in no update of time in the observer class.

hasChanged()

ClassName
Observable

Purpose
Returns a boolean value, indicating whether or not there is any change in the
observable object.

Syntax
public synchronized boolean hasChanged()

Parameters
None.

Description
This method returns a boolean value indicating whether or not the target
observable object has undergone a change. This method is used to decide whether
the observers should be notified of any change. This method returns true if there
is any change. If there is no change in the observable object, this method returns
false.

Imports
import java.utils.Observable;

Returns
Returns true if there is a change in the observable object; false otherwise. Return
type is boolean.

See Also
The clearChanged method in the Observable class

Example
Refer to Listing 13-3. In the update method in the digitalClock class, before
updating the new values, the observable object is checked to see if there is any
change in the object. If there is, then the values of the observers are changed and
the display method is called.

notifyObservers()

ClassName

Observable
Purpose

Notifies all the observers of the observable object of a change in the object.
Syntax

public synchronized void notifyObservers()
Parameters

None.
Description

This method notifies all the observers in the list of observers in the target
Observable object when a change occurs. It results in a call to the update method
of the observer objects in the list.

Imports
import java.utils.Observable;

Returns
None.

See Also
The notifyObservers(Object) method in the Observable class

Example
Refer to the tick method in the clockTimer class in Listing 13-3. After there is a
change in the time of the clockTimer objects, all the observers (in this case,
digitalClock objects) are notified of the change.

notifyObservers(Object)

ClassName
Observable

Purpose
All the observers of the observable object are notified of the change in the
specified object in the target Observable object.

Syntax
public synchronized void notifyObservers(Object arg)

Parameters
arg

The changed object whose change has to be made known to observer objects.
Description

This method notifies all the observers in the list of observers in the target
Observable object of the change in the specified Object arg. This method is used
to notify the observers when a change occurs, and results in a call to the update
method of the observer objects in the list. The changed variable arg is also passed
as a reference to the update method of the observer objects. This is helpful in that
each object checks this arg parameter for the change the observer is interested in.
The observers need not check for all the changes that have occurred in the target
observable object.

Imports

import java.utils.Observable;
Returns

None.
See Also

The notifyObservers() method in the Observable class
Example

Refer to the tick method in class clockTimer in Listing 13-3. After a change in the
time of the clockTimer objects, all the observers (in this case, digitalClock
objects) are notified of changes. But if you replace this method with the
notifyObservers(arg) method by passing the date object, then the observer can
check the changed date. There can be observers that are not observing the change
in time and can safely ignore the notification of change in time.

setChanged()

ClassName
Observable

Purpose
Sets the flag within the observable object indicating a change in the observable.

Syntax
public synchronized void setChanged()

Parameters
None.

Description
This method sets a flag indicating a change in the target observable object. An
Observer can be notified of this change by calling the notifyObservers method.

Imports
import java.utils.Observable;

Returns
None.

See Also
The clearChanged and hasChanged methods in the Observable class

Example
Refer to Listing 13-3. In the tick() method, in class clockTimer, after the change
in the observable time (any change in seconds) is noted, this method is used to set
the flag that indicates a change in the observable object.

Observer

Purpose
An Interface useful for objects to act as observers of an observable object and
keep track of any changes to the observable object.

Syntax
public interface Observer extends Object

Description

This interface should be implemented by a class that has to behave as an observer
of changes in an observable object. This class forms the Observer class in a
Subject-Observer pattern or the “viewer” in the Model-View paradigm. An object
can behave as an observer for many observable objects. It lists its interest in
observing an observable by adding itself to the observers list of the observable
object. Any change in the observable object will be communicated to the class
implementing this interface by using the update method in this interface. Any
class that implements this interface should define the update class such that when
notified by the observable object, the target observer object takes appropriate
action on the change that has occurred. This design strategy helps in low coupling
between the objects. Figure 13-7 illustrates the inheritance relationship of
interface Observer.

Figure 13-7 Class diagram of the Observer interface

PackageName
java.util

Imports
import java.util.Observer;

Example
The DigitalClock class in Listing 13-3 implements this interface Observer. Any
change in the observable clockTimer class is communicated to this DigitalClock
object, so that the DigitalClock object can take appropriate action by using its
update method.

update(Observable, Object)

ClassName
Observer

Purpose
Method called by the observable when it notifies all the observers.

Syntax
public abstract void update(Observable obs, Object arg)

Parameters
obs

The observable that calls this update method.
arg

The object that has changed in the observable object.
Description

This method is called by the observable object on the target Observer object. The
target object is an observer in the list of observers in the observable object. The
parameter obs, is the observable that notifies of the change. This parameter can be
used to distinguish between notification calls from different observables, when

the target observer object is in the list of many observable objects. This method is
called on the observer object when any of the observable objects change and call
the notifyObservers method. This is an abstract method and should be defined in
the class that implements the Observer interface.

Imports
import java.utils.Observer;

Returns
None.

See Also
The notifyObservers method in the Observable class

Example
Refer to Listing 13-3. The update method is defined in the DigitalClock class,
which implements the Observer interface. In this method the change in time is
observed.

Date

Purpose
A wrapper class for date, which is useful to manipulate dates in a system-
independent way.

Syntax
public class Date extends Object

Description
This is a wrapper object for a date that contains details of date, month, year, hour,
minutes, and seconds. It depends on the local time zone. The standard for time
used in computers is the Greenwich Meridian Time (GMT), which is equivalent
to the Universal Time (UT). The behavior is not 100 percent accurate as it does
not reflect the addition of the 'leap second,’ introduced every year. The time
depends on the underlying operating system and its accurate maintenance of time.
For construction, you can specify a set of values for the Date to be created. The
arguments need not necessarily fall within the specified range. The fields are
normalized before the Date object is created. For example, the 32nd of March will
be interpreted as 1st of April. Figure 13-8 illustrates the inheritance relationship
of class Date.

Figure 13-8 Class diagram of the Date class

PackageName
java.util

Imports
import java.util.Date;

Constructors
public Date()
public Date(long arg)
public Date(int year, int month, int date)
public Date(int year, int month, int date, int hours, int mins)
public Date(int year, int month, int date, int hours, int mins, int secs)
public Date(String str)

Parameters
arg

Time in milliseconds corresponding to the date to be created.
year

A year after 1900.
month

A month number between 0-11.
date

A day of a month with a value between 1-31.
hours

An hour of the day between 0-23.
mins

The minutes past an hour, with a value between 0-59.
secs

The seconds past the minute, with a value between 0-59.
Example

The dateDemo class in Listing 13-4 demonstrates the usage of methods of the
Date class. The member of the class is date of type Date. Methods of this object
are invoked by using the methods of the dateDemo class.

Listing 13-4 dateDemo.java: Demonstrates the usage of methods of Date class

import java.util.Date;

class dateDemo {

 Date date;

 public dateDemo() {
 date = new Date();
 }

 public void debug(String str) {
 System.out.println(str);
 }

 public String whatDay(int day) {
 switch (day) {
 case 0: return "Sunday";
 case 1: return "Monday";
 case 2: return "Tuesday";
 case 3: return "Wednesday";
 case 4: return "Thursday";

 case 5: return "Friday";
 case 6: return "Saturday";
 default: return "Oops!Wrong day";
 }
 }

 public void today() {

 debug("Today is " + whatDay(date.getDay())+ " " +
 date.getMonth() + "/"+date.getDate() +
 "/19" + date.getYear());
 }
 public void newYear(int yr) {
 int day = (new Date(yr, 0, 1)).getDay();
 debug(" The new year's day for the year 19"+ yr
 + " fell on
 a " + whatDay(day));
 }

 public void now() {
 int secs = date.getSeconds();
 String sec_str;
 if (secs < 10)
 sec_str = "0"+secs;
 else
 sec_str = ""+secs;
 debug("Now the time is " + date.getHours() + ":" +
 date.getMinutes()+ ":" + sec_str);
 debug(" Hash code for the date representing this moment is
 "+ date.hashCode());
 debug(" Present time in ");
 debug(" GMT convention is " + date.toGMTString());
 debug(" Locale conventions is " +
 date.toLocaleString());

 debug(" The time zone offset is " + date.getTimezoneOffset()
 + " minutes");
 }
 public void timeTheMethod() {
 Date start = new Date();
 for (int i=0;i<10000;i++);
 Date end = new Date();
 String s = " Time taken for making 10000 loops is ";
 long timing = (end.getTime() - start.getTime());
 s += "" + timing + " milli secs";
 debug(s);
 if (!start.equals(end))
 debug(" Even if dates differ by milliseconds, they
are
 considered different object
 instances of Date class");
 if (start.before(end))
 debug(" And earlier created date object represents
time
 before the later created
 object ..ofcourse, no surprise");
 }

 public void getTimeFromString(String str) {
 debug(" Time value of " + str + " is " + Date.parse(str));
 }

 public void demoUTCtimes() {
 Date d = new Date();
 // "Thu, 22 Feb 1996 12:00:00 GMT"
 d.setDate(22);
 d.setMonth(1);
 d.setYear(96);
 d.setHours(12);
 d.setMinutes(00);
 d.setSeconds(00);
 long time = Date.UTC(96,1,22,12,00,00);
 d.setTime(time);
 if (time == d.getTime())
 debug(" Time obtained by using UTC method and by
 explicitly setting all parameters of
 the date object are the same");

 }

 public final static void main(String args[]){
 dateDemo d_demo = new dateDemo();
 d_demo.today();
 d_demo.newYear(73);
 d_demo.now();
 Date d1 = new Date();

 d1.setDate(21);
 d1.setMonth(1);
 d1.setYear(96);
 String str = " Details for 21/2/96: ";
 str += d1.toString();
 System.out.println(str);

 d_demo.timeTheMethod();
 d_demo.getTimeFromString("Thu, 22 Feb 1996 12:00:00 GMT");
 d_demo.demoUTCtimes();

 }
}

UTC(int, int, int, int, int, int)

ClassName
Date

Purpose
Method that calculates the Coordinated Universal Time (UTC) from the specified
year, month, date, hours, minutes, and seconds values passed as parameters to this

method. The parameters are not interpreted in the local time zone, but in UTC.
This is a static method and hence can be referenced using the class name.

Syntax
public static long UTC(int year, int month, int date, int hours, int mins, int secs)

Parameters
year

A year after 1900.
month

Month of the year, with values between 0-11.
date

Day of the month, with values between 1-31.
hours

Hour of the day, with values between 0-23.
mins

Minutes past an hour, with values between 0-59.
secs

Seconds past the minute, with values between 0-59.
Description

This method is used to calculate a UTC value from the given parameters. The
method interprets the parameters in UTC and not in the local time zone.

Imports
import java.utils.Date;

Returns
Returns the time value; return type is long.

Example
Refer to the demoUTCtimes method in Listing 13-4. This UTC method is used for
finding the UTC time.

after(Date)

ClassName
Date

Purpose
Returns a boolean value indicating whether or not the target date comes after the
specified date.

Syntax
public boolean after(Date date)

Parameters
date

An instance of the Date class.
Description

A date is considered to come after another date, if it occurs after the other date in
chronological order. This method returns true if the date value of the target object
comes after the value of the specified date object; otherwise, this method returns
false.

Imports

import java.utils.Date;
Returns

A boolean value indicating whether the target object came earlier or later than the
specified object.

See Also
The before(date) method in the Date class

Example
Refer to Listing 13-4. In the method named timeTheMethod, this method is used
to determine whether a date falls after a specified date.

before(Date)

ClassName
Date

Purpose
Returns a boolean value indicating whether or not the target date comes before the
specified date.

Syntax
public boolean before(Date date)

Parameters
date

An instance of the Date object.
Description

A date is considered to come before another date, if it occurs before the other date
in chronological order. This method returns true if the date value of the target
object comes before the value of the specified date object; otherwise, this method
returns false.

Imports
import java.utils.Date;

Returns
A boolean value indicating whether the target object came earlier than the
specified object.

See Also
The after method in the Date class

Example
Refer to Listing 13-4. In the method named timeTheMethod, the after method is
used to determine whether a date falls after a specified date. You can use the
before() method in a similar manner.

equals(Object)

ClassName
Date

Purpose
Returns a boolean value indicating whether or not the target date equals the
specified date.

Syntax
public boolean equals(Object date)

Parameters
date

An instance of the Date object.
Description

A Date object is equal to another Date object if they have the same values of date
and time. This method returns true if the target date equals the date object;
otherwise, this method returns false.

Imports
import java.utils.Date;

Returns
A boolean value indicating whether or not the target object is equal to the
specified object.

Example
Refer to Listing 13-4. In the timeTheMethod method execution, the date start and
date end are checked for equality.

getDate()

ClassName
Date

Purpose
Returns the day of the month in a Date object.

Syntax
public int getDate()

Parameters
None.

Description
This method returns the day of the month. The returned value lies between 1 and
31.

Imports
import java.utils.Date;

Returns
The day of the month with a value between 1 and 31. Return type is int.

See Also
The setDate method in the Date class

Example
Refer to Listing 13-4. In the today() method getDate is used to find today’s date.

getDay()

ClassName
Date

Purpose
Returns the day of the week in a Date object.

Syntax
public int getDay()

Parameters
None.

Description
This method returns the day of the week. The returned value lies between 0-6.
Sunday is 0 and Saturday is day 6.

Imports
import java.utils.Date;

Returns
The day of the week with a value between 0 and 6. Return type is int.

See Also
The setDate method in the Date class

Example
Refer to Listing 13-4. This method is used in the today() method to find out what
day today is. This is done with assistance from the whatDay method.

getHours()

ClassName
Date

Purpose
Returns the hour of the day in a Date object.

Syntax
public int getHours()

Parameters
None.

Description
This method returns the hour of the day. The returned value lies between 0 and
23. Midnight is 0 hours, noon is 12, and 23 indicates 11pm.

Imports
import java.utils.Date;

Returns
The hour of the day with value between 0 and 23. Return type is int.

See Also
The setHours method in theDate class

Example
Refer to Listing 13-4. The now()method in the demoDate class uses the getHours
method to find the hours passed for the current day.

getMinutes()

ClassName
Date

Purpose
Returns the minutes in a Date object.

Syntax
public int getMinutes()

Parameters
None.

Description
This method returns the minutes past an hour. The returned value lies between 0
and 59.

Imports
import java.utils.Date;

Returns
The minutes past an hour with a value between 0 and 59. Return type is int.

See Also
The setMinutes method in the Date class

Example
Refer to Listing 13-4. In the now() method, the getMinutes method is used to find
the minutes past the hour.

getMonth()

ClassName
Date

Purpose
Returns the month of the year in a Date object.

Syntax
public int getMonth()

Parameters
None.

Description
This method returns the month of the year. The returned value lies between 0 and
11. January is month 0, February is month 1, December is month 11, and so on.

Imports
import java.utils.Date;

Returns
The month of the year. Return type is int.

See Also
The setMonth method in the Date class

Example
Refer to Listing 13-4. In the today() method, the getMonth method is used to find
the month of the year and mapping to strings is accomplished by using the
whatDay method.

getSeconds()

ClassName

Date
Purpose

Returns the seconds past a minute in a Date object.
Syntax

public int getSeconds()
Parameters

None.
Description

This method returns the seconds past a minute. The returned value lies between 0
and 59.

Imports
import java.utils.Date;

Returns
The seconds past a minute with a value between 0 and 59. Return type is int.

See Also
The setSeconds method in the Date class

Example
Refer to Listing 13-4. In the now() method, the getSeconds method is used to find
the seconds.

getTime()

ClassName
Date

Purpose
Returns the number of milliseconds elapsed since epoch.

Syntax
public long getTime()

Parameters
None.

Description
This method returns the number of milliseconds elapsed since the epoch. This
method can be used to find the timings of program execution by finding the start
and end of the execution.

Imports
import java.utils.Date;

Returns
The milliseconds elapsed since epoch. Return type is long.

See Also
The setTime method in the Date class

Example
Refer to Listing 13-4. In the timeTheMethod method, the time taken to execute
10,000 null loops is found using this method.

getTimezoneOffset()

ClassName
Date

Purpose
Returns the time zone offset between the local time and the standard time,
denoted in minutes.

Syntax
public int getTimezoneOffset()

Parameters
None.

Description
This method returns the difference in time between the local time and the standard
Universal Time. The offset is calculated and returned in minutes.

Imports
import java.utils.Date;

Returns
The difference in time zones in units of minutes. Return type is int.

Example
Refer to Listing 13-4. In the now() method, the getTimezoneOffset method is
used to find the difference in time, between the local time and the standard time,
in units of minutes.

getYear()

ClassName
Date

Purpose
Returns the number of years from 1900 till the current day.

Syntax
public int getYear()

Parameters
None.

Description
This method returns the number of years from 1900 till the current day. For
example, if the current year is 1997, then this method will return a value of 97.

Imports
import java.utils.Date;

Returns
The years since 1900. Return type is int.

See Also
The setYear method in the Date class

Example
Refer to Listing 13-4. In the now() method, the getYear method is used to find the
number of years from 1900 till the current day.

hashCode()

ClassName
Date

Purpose
Obtains the hash code of the target Date object.

Syntax
public int hashCode()

Parameters
None.

Description
The hash code of the target date object is returned by this method. It overrides the
hashCode method of the Object class.

Imports
import java.utils.Date;

Returns
The hash code of the target object. Return type is int.

Example
Refer to the now()method in Listing 13-4. The hashCode method is used to debug
the object information.

parse(String)

ClassName
Date

Purpose
Parses the given time in string format and converts it to time value.

Syntax
public static long parse(String date_string)

Parameters
date_string

The date in one of the string formats.
Description

This method parses the date that is specified in String format, using one of the
standard date specifying conventions. It returns the number of milliseconds
elapsed since epoch. This is a static method and, hence, can be invoked directly
by using the class name without creating a date object for this purpose

Imports
import java.utils.Date;

Returns
The milliseconds elapsed since epoch for the specified string representation of
date. Return type is long.

See Also
The toString, toGMTString, and toLocalString methods in the Date class

Example
Refer to Listing 13-4. The getTimeFromString method takes the string as input
and returns the time. It uses this parse method to accomplish the same.

setDate(int)

ClassName
Date

Purpose
Sets the day of the month in a Date object.

Syntax
public void setDate(int day)

Parameters
day

The day of the month, with values between 1 and 31.
Description

This method sets the day of the month. The value specified lies between 1 and 31.
Imports

import java.utils.Date;
Returns

None.
See Also

The getDate method in the Date class
Example

Refer to Listing 13-4. In the demoUTCtimes method, setDate is used to fix the
date of the Date object.

setHours(int)

ClassName
Date

Purpose
Sets the hour of the day in a Date object.

Syntax
public void setHours(int hours)

Parameters
hours

The hour that the date object is to be set to.
Description

This method sets the hour of the day. The specified value lies between 0 and 23.
Midnight is 0 hours, noon is 12, and 23 indicates 11pm.

Imports
import java.utils.Date;

Returns
None.

See Also
The getHours method in the Date class

Example

Refer to Listing 13-4. The demoUTCtimes()method, in the demoDate class, uses
this setHours method to fix the hours passed on the day.

setMinutes(int)

ClassName
Date

Purpose
Sets the minutes in a Date object.

Syntax
public void setMinutes(int mins)

Parameters
mins

The number of minutes past an hour that is to be set as the minutes in the Date
object.

Description
This method sets the minutes past an hour for the target Date object. The value
lies between 0 and 59.

Imports
import java.utils.Date;

Returns
None.

See Also
The getMinutes method in the Date class

Example
Refer to Listing 13-4. In the demoUTCtimes() method, the setMinutes method is
used to fix the minutes past the hour.

setMonth(int)

ClassName
Date

Purpose
Sets the month of the year in a Date object.

Syntax
public void setMonth(int month)

Parameters
month

Month of the year that is to be set as the month in the target Date object.
Description

This method sets the month of the year in the target Date object. The value lies
between 0 and 11. January is month 0, February is month 1, December is month
11, and so on.

Imports
import java.utils.Date;

Returns

None.
See Also

The getMonth method in the Date class
Example

Refer to Listing 13-4. In the demoUTCtimes()method, the setMonth method is
used to fix the month of the year of the target Date object.

setSeconds(int)

ClassName
Date

Purpose
Sets the seconds past a minute in a Date object.

Syntax
public void setSeconds(int secs)

Parameters
secs

The number of seconds elapsed since the start of the present minute.
Description

This method sets the seconds past the last minute in the target Date object. The
value used lies between 0 and 59.

Imports
import java.utils.Date;

Returns
None.

See Also
The getSeconds method in the Date class

Example
Refer to Listing 13-4. In the demoUTCtimes() method, the setSeconds method is
used to fix the number of seconds in the Date object.

setTime(long)

ClassName
Date

Purpose
Sets the number of milliseconds elapsed since epoch.

Syntax
public void setTime(long time)

Parameters
time

The number of milliseconds since epoch.
Description

This method sets the number of milliseconds elapsed since the epoch. This
effectively sets the date (year, month, day, hours, minutes, seconds).

Imports

import java.utils.Date;
Returns

None.
See Also

The getTime method in the Date class
Example

Refer to Listing 13-4. In the demoUTCtimes method, this method is used to set
the time of the date object whose UTC time is already found by using the UTC
method in class Date.

setYear(int)

ClassName
Date

Purpose
Sets the number of years from 1900 till the specified day.

Syntax
public void setYear(int year)

Parameters
year

The number of years from 1900 for the target Date object.
Description

This method fixes the number of years from 1900 to be the year attribute of the
target Date object. For example, if you want to set the new date to be in 1946,
specify 46 as the parameter to this method. If the year specified is out of bounds
(if you specify 1997 instead of 97), then an IllegalArgumentException is thrown.

Imports
import java.utils.Date;

Returns
None.

See Also
The getYear method in the Date class

Example
Refer to Listing 13-4. This setYear method is used in method demoUTCtimes to
fix the year.

toGMTString()

ClassName
Date

Purpose
Using the GMT conventions, this method converts the date to a string.

Syntax
public String toGMTString()

Parameters
None.

Description
This method converts the target date object into a string representation using the
GMT convention. This GMT convention string is returned by this method.

Imports
import java.utils.Date;

Returns
The GMT convention string representation of the date. Return type is String.

See Also
The toString and toLocaleString methods in the Date class

Example
Refer to the now()method in Listing 13-4. The two conventions of time are
printed to the screen using this toGMTString method with another method,
toLocaleString.

toLocaleString()

ClassName
Date

Purpose
Using the Locale conventions, this method converts the date to a string.

Syntax
public String toLocaleString()

Parameters
None.

Description
This method converts the target date object into a string representation using the
locale convention. This locale convention string is returned by this method.

Imports
import java.utils.Date;

Returns
The locale convention string representation of the date. Return type is String.

See Also
The toString and toGMTString methods in the Date class

Example
Refer to now()method in Listing 13-4. The two conventions of time are printed to
screen using this toLocaleString method with another method, toGMTString.

toString()

ClassName
Date

Purpose
Using the standard unix ctime conventions, this method converts the date to a
string.

Syntax
public String toString()

Parameters
None.

Description
This method converts the target date object into a string representation, using the
standard Unix ctime string format convention. This ctime convention string is
then returned by this method.

Imports
import java.utils.Date;

Returns
The Unix ctime convention string representation of the date. Return type is String.

See Also
The toGMTString and toLocaleString method in the Date class

Example
Refer to the main()method in Listing 13-4. The details of the date are printed to
the standard output terminal using this method.

Display Timer Application

The project for this chapter is a display timer application. It consists of a central timer,
which keeps track of the time, and two clock objects that obtain the time information
from the central timer and display it in their own style. You will use the Date object to
obtain time information. This application will give you some practice in designing
entities that are dependent on another object for information. The main goal of
developing this application is to become familiar with the Observable-Observer design
pattern, which results in low coupling between objects.

First you develop a clockTimer class that will serve as the central timer. This class must
subclass the Observable class, because it will be monitored by other clock classes. This
observable object will notify other observer objects of each notable change in time. The
minimum unit of time you will work with in this application is seconds. When the
seconds value changes, the observer objects (clocks, in this case) will be notified of the
change.

You’ll develop two types of clock: a digital clock and an analog clock, which differ in the
way they display the time obtained from the central timer. These clock classes,
DigitalClock and AnalogClock, implement the Observer interface, so they can register
themselves as observers of the central timer. Implementing the interface means that these
clock classes have to define the update method of the Observer interface, so that it
updates the display of time in their own style of display. The AnalogClock will display
the time with three hands: the hour hand, the minute hand, and the second hand.
DigitalClock will display the hour, minutes, and seconds as numerals.

You will develop these two clocks as separate frames that display the time. When the
DigitalClock and AnalogClock are constructed, they will register themselves as observers

of the clock timer. Whenever there is a notable change in time, the clockTimer will notify
all its observers, and these observer objects will then display the time independently in
their own style.

In this implementation, you’ll develop Threads for each object, so you will have a Thread
that keeps track of the time and notifies the observers of the change in time. The observer
Threads will keep displaying the current time.

Apart from these classes, you shall have a wrapper class to make these three objects
cooperate with each other in displaying the time. This will be displayTimer class, which
will create instances of the clock and timer classes and start all the clocks.

Building the Project

1. The first step is to implement the clockTimer class, which subclasses the
Observable class. This is also a Thread that keeps track of the time, so this class
implements the Runnable interface. This class will have hours, minutes, and
seconds as data members. On construction, it will find the current time and assign
the values to its members. It will have accessor methods to return the values of
these members, when they are requested by other objects. The following code
implements these features.
import java.util.*;
import java.awt.*;
import java.io.*;
import java.applet.*;
import java.net.*;

class ClockTimer extends Observable implements Runnable {

 int hour;
 int mins;
 int secs;
 // Date date;

 public ClockTimer() {
 Date date = new Date();
 hour = date.getHours();
 mins = date.getMinutes();
 secs = date.getSeconds();
 start();
 }

 public int GetHours() {
 return hour;
 }

 public int GetMinutes() {
 return mins;
 }

 public int GetSeconds() {
 return secs;

 }
}
2. The clockTimer class implements the Runnable interface and also calls the
start() method to execute the next step. This method instantiates a Thread for this
class. It can pass itself as the target for creating the Thread, because clockTimer
implements the Runnable interface. You must also define the run() method
because it is the method in the Runnable interface. The run() method will be
called by the Thread that is instantiated in the start() method. Enter the following
code in the clockTimer class.
Thread timeThread; // thread member of the class

public void start() {
 if (timeThread == null) {
 timeThread = new Thread(this);
 timeThread.start();
 }
}

public void run() {
 while (timeThread != null) {
 try {
 tick();
 Thread.sleep(1000);

 } catch (InterruptedException e){
 debug("exception");
 }
 }
}
3. In the run() method, for every 1 second (1000 milliseconds of sleep) a call is
made to a method name tick(). This method updates the clockTimer on every tick
(1 second) of the new time (hours, minutes, and seconds). It notifies all the
observers in the list of observers of this observable object by calling the
notifyObservers() method of the Observable class. Enter the following code inside
the clockTimer class to complete the implementation.
public synchronized void tick() {

 clearChanged(); // clear the flag
 Date date = new Date(); // find the current time
 if (date.getSeconds() != secs) {
 // if there is a change
 setChanged(); // set the flag
 // update the values of the members
 hour = date.getHours();
 mins = date.getMinutes();
 secs = date.getSeconds();
 }
 notifyObservers(); // notify all the observers
of the change
}
4. The next class you’ll implement is the DigitalClock class. It is an Observer
class that has a Thread for updating the display. Also, this will form a separate
frame to display the time. Hence, the DigitalClock class will subclass the Frame

class and implement both Observer and Runnable interfaces. It has members to
keep track of the time and to display the time on the frame. It also has an
Observable object of type clockTimer as a member. This member object is
required to access the time after notification. This implementation uses a pull-
style design where the Observable notifies the observers and the observers ask for
more information from the Observable. Now enter this code for the class
DigitalClock.
class DigitalClock extends Frame implements Observer, Runnable {

 ClockTimer myTimer;
 int hours;
 int mins;
 int secs;

 public DigitalClock(ClockTimer timer) {
 myTimer = timer;
 hours = myTimer.GetHours();
 mins = myTimer.GetMinutes();
 secs = myTimer.GetSeconds();
 myTimer.addObserver(this);
 setTitle("Digital");
 resize(200,100);
 show();
 start();
 }
}
5. The Thread creation and the run method are also implemented for the
DigitalClock class. These tasks are done in the start() and run() methods of the
class. Enter the following code inside the DigitalClock class definition.
Thread clockThread;

 public void start() {
 if (clockThread == null) {
 clockThread = new Thread(this);
 clockThread.start();
 }
 }
 public void run() {

 while (clockThread != null) {
 repaint();
 try {
 clockThread.sleep(1000);
 } catch (InterruptedException e){
 }
 }
}
6. Now you’ve implemented the methods for object creation and Thread
initiation. The DigitalClock implements the Observer interface, so you need to
define the update() method of the interface, which is called when the Observable
makes a call to the notifyObservers() method. If a call to update is received, it
means that a change that interests the class may have occurred, so the Observable
member object is queried for the change. After noting the change, the frame is

repainted with its new values. This is done by overriding the paint method in the
DigitalClock class. After setting a black background, the object displays the time
in green numerals. Enter the following two methods, update and paint, inside the
DigitalClock class.
public void update(Observable obs, Object arg) {
 if (obs.hasChanged()) {
 myTimer = null;
 myTimer = (ClockTimer)obs;
 hours = myTimer.GetHours();
 mins = myTimer.GetMinutes();
 secs = myTimer.GetSeconds();
 }
 repaint();
 }

public void paint(Graphics g) {
 String secs_str;
 if (secs < 10)
 secs_str = "0"+secs;
 else
 secs_str = ""+secs;
 String s = new String(" "+ hours + ":" + mins+ ":"
 +secs_str);
 Dimension d = size();
 g.setColor(Color.black);
 g.fillRect(0,0, d.width, d.height);
 g.setColor(Color.green);
 g.setFont(new Font("TimesRoman", Font.BOLD,20));
 g.drawString(s, 50, 70);
 }
7. The AnalogClock you are going to implement is similar to the DigitalClock,
except that the display changes. They differ mainly in the way they repaint the
screen. Note that implementing the two clocks separately may not be the best
design. Alternatively, you could implement a generic Clock class and subclass the
class as DigitalClock and AnalogClock class. But we are ignoring design criteria
here to focus on implementation issues. Enter the following code to implement
the AnalogClock class.
class AnalogClock extends Frame implements Observer, Runnable {

 ClockTimer myTimer;
 int hours;
 int mins;
 int secs;

 public AnalogClock(ClockTimer timer) {
 myTimer = timer;
 hours = myTimer.GetHours();
 mins = myTimer.GetMinutes();
 secs = myTimer.GetSeconds();
 myTimer.addObserver(this);
 resize(150,150);
 setTitle("Analog");
 start();
 show();

 }

 Thread clockThread;

 public void start() {
 if (clockThread == null) {
 clockThread = new Thread(this);
 clockThread.start();
 }
 }

 public void run() {

 while (clockThread != null) {
 repaint();
 try {
 clockThread.sleep(1000);
 } catch (InterruptedException e){}
 }
 }
}
8. The update method of the Observer interface has to be defined in the
AnalogClock class. It updates the members of this class and makes a call to
repaint the frame so it displays the new time in analog style.
public void update(Observable obs, Object arg) {
 if (obs.hasChanged()) {
 myTimer = null;
 myTimer = (ClockTimer)obs;
 hours = myTimer.GetHours();
 mins = myTimer.GetMinutes();
 secs = myTimer.GetSeconds();
 }
 repaint();
}
9. The purpose of calling to repaint in the update(Observable, Object) method is
to repaint the frame. We want to display the time using an hour hand, a minutes
hand, and a second hand. The hands change their position depending on the
values of the member values. We keep track of the various positions of x and y
coordinates for these hands, first drawing the earlier visible hands with the
background color and then drawing the hands corresponding to the new values of
hours, minutes, and seconds with the red color. The present x and y positions, as
well as the previous positions, are maintained as data members of this class. Enter
the following code inside the AnalogClock class definition.
int xpos;
int ypos;
int lastxpos;
int lastypos;

int Xhours;
int Xmins ;
int Xsecs;

 public void update(Graphics g) {

double x = xpos - 75;
double y = ypos - 75;
double lastx = lastxpos - 75;
double lasty = lastypos - 75;
double angle = Math.atan(-x/y);
double lastangle = Math.atan(-lastx/lasty);
Dimension d = size();
g.setColor(Color.white);
g.fillRect(0,0,d.width,d.height);
g.drawLine(75, 75,
 (int)(75+50*Math.sin((double)(2*3.145*(Xsecs)/60))),
 (int)(75-0*Math.cos((double)(2*3.145*(Xsecs)/60))));
if (secs == 0) {
 g.drawLine(75, 75,
 (int)(75+50*Math.sin((double)(2*3.145*Xmins/60))),
 (int)(75-0*Math.cos((double)(2*3.145*Xmins/60))));
 g.drawLine(75, 75,
 (int)(75+40*Math.sin((double)(2*3.145*(Xhours+Xmins/60.0)
/12))),
 (int)(75-(0*Math.cos((double)(2*3.145*(Xhours+Xmins/60.0)
/12))));
 }
 g.setColor(Color.red);
Xhours = hours;
Xmins = mins;
Xsecs = secs;
g.drawLine(75, 75,
 (int)(75+50*Math.sin((double)(2*3.145*secs/60))),
 (int)(75-50*Math.cos((double)(2*3.145*secs/60))));
g.setColor(Color.black);
g.drawLine(75, 75,
 (int)(75+50*Math.sin((double)(2*3.145*mins/60))),
 (int)(75-50*Math.cos((double)(2*3.145*mins/60))));
g.drawLine(75, 75,
 (int)(75+40*Math.sin((double)(2*3.145*(hours+mins/60.0)
 /12))),
 (int)(75-
40*Math.cos((double)(2*3.145*(hours+mins/60.0)/12)
)));
 if (ypos > 75)
 angle += 3.145;
 if (lastypos > 75)
 lastangle += 3.145;
}
10. Now that you have implemented the three classes for your application, all that
remains is to implement the displayTimer class, which will act as a driver to run
the three threads that display the time in digital and analog styles. This will be the
public class in the implementation. Because the displayTimer will run as a stand-
alone application, implementation of the main method is essential. Enter all the
classes you created earlier and the following class in a file named
displayTimer.java.
public class displayTimer extends java.applet.Applet {
 ClockTimer ct;
 DigitalClock dc;
 AnalogClock ac;

 public void init() {
 ct = new ClockTimer();
 dc = new DigitalClock(ct);
 ac = new AnalogClock(ct);
 }

 public void start() {
 ct.run();
 }

 public final static void main(String args[]) {
 displayTimer dt = new displayTimer();
 dt.init();
 dt.start();
 }
}

When the displayTimer.java file is compiled and the class file is executed using the Java
interpreter, the resultant frames display the analog and the digital clocks, as shown in
Figure 13-9.

Figure 13-9 Digital and analog clocks in action

How It Works

When you start the application using the Java interpreter by typing java displayTimer,
two frames appear on the screen. The frame titled Digital displays the current time in
digital style, where the hours, minutes, and seconds are separated by colons. In Figure 13-
9, the time displayed in the Digital frame is 23:11:16, which is 11 minutes and 16
seconds past 11 pm. The frame titled Analog displays the same time as shown in the
digital clock, in analog style using three hands: hours, minutes, and seconds. Both of
these clocks are Observer objects observing the time from a central time server object,
which acts as an Observable. It’s time to end this chapter!

