Java networking and awt bible

I ntroduction
Installing the CD-ROM
About the Authors

Part |—Java Applets And Graphic Components
Chapter 1—Applets And Graphics

Applets

The Essential Applet M ethods

Applet Parameters

Communications Between the Applet and the Browser
Usng Threadsin Applets

I nter-Applet Communications Within the Browser
Graphics

The Graphics Class Concept

The Coordinate System of the Drawing Surface
Obtaining Graphics Objects

The Geometric Primitives

The Painting M ode

Applet and Associated Class Summaries

The Applet and Graphics Project: The Gameof Life
Project Overview

Assembling the Project

How It Works

Double-Buffered Rendering

Overriding Update()

Animation Techniques

Chapter 2—The Component Class
Component Hierarchy

Component Positioning

Common Component States

On-Screen Rendering

Delivering and Handling Events

Preparing | mages for Display

Summary of the Component M ethods

The Component Project: A Hotspot Custom Component
Assembling the Project

How It Works

Part || —Windows And Text Handlers

Chapter 3—Toolkit, Window, Container, And Events
A Window in Java

Windows as Pseudo-I/O Devices

Events

Window Repaintingin AWT

Components, Containers, and Top-L evel Windows
Containers

Windows

Peersand the Toolkit

The Toolkit

Toolkit, Window, Container, and Event Summaries

The Project: FontL ab

Assembling the Project

How It Works

Chapter 4—Windowing Components And L ayout Classes
Windowing Components

L ayouts

Summary of Windowing Component and L ayout Classes
The L ayout Demonstration

Assembling the Project

How It Works

Chapter 5—Handling Text, Dialogs, And Lists
Handling Text

Dialogsin Java

Lists

Text, Dialog, and List Class Summaries

API Reference Interface Application

Building the Project

How It Works

Part |11—Selection And | mage Processing Tools
Chapter 6—Choice, Menus, And Checkboxes
The Choice Class

M enu-Related Classes

Checkbox Classes

Choice, Menu, and Checkbox Summary

The Selections I nterface Application

Building Your Application

How It Works

Chapter 7—Color, Font, Images, And Shapes
Colors

The HSB Color Modédl

Using Colors

Fonts. The Facts About Rendering Text

Measuring a Font: The FontM etrics Class
Geometric Helper Classes

Graphical Object APl Summaries

The Graphical Object Project: Doodle
Assembling the Project

How It Works

Use of Rectanglesin Doodle

Chapter 8—AWT Image Processing
Image Data in Java

Passing Image Data: The Il mageProducer and I mageConsumer Interfaces
| mageFilters

AWT Image Processing APl Summaries
The AWT Image Processing Project: The MultiFilter Application
Assembling the Project

How It Works

L oading and Storing the Base | mage
ConfiguredFilter Factory

The ContrastFilter

The lnvertFilter

Applying Filters to the Workspace | mage
Adding Your Own ImageFiltersto MultiFilter
Chapter 9—AWT Peer |Interfaces
AWT Peer Interface Summaries

PART |IV—Networking in Java

Chapter 10—Network And Sockets

Client-Server Applications

Connection-Oriented Protocol

Connectionless Protocol

Internet Address

Why Sockets?

Network and Socket Summaries

The Network and Sockets Project: A Client-Server Rendezvous Applet
Building Your Applet

How It Works

Chapter 11—Handling URL s And Networking Exceptions
URLs, Protocols, and MIME

Java and the World Wide Web

URL and Networking Exception Summaries

The URL Class Project

Building the Project

How It Works

Part V—Java Utilities

Chapter 12—Data Structures And Random Number Generation
Dictionary and Hashtable

Vector and Stack

Random Numbers

Data Structure, Properties, and Random Class Summaries
Java Appointment Organizer Applet

Building the Proj ect

How It Works

Chapter 13—Date And Advanced Classes

BitSet

StringT okenizer

Date

Observable-Obser ver

Date and Advanced Classes Summaries

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E

Appendix F
I ndex

| ntroduction

Wecome to the world of Java, the language of choice for anyone who wants to develop
credtive and effective gpplications on the Internet and the World Wide Web. Java dlows
programmers to create applets, programs that may be “embedded” inside Web pages; on
the other hand, it is a full-fledged object-oriented language thet |ets you implement
object-oriented gpplications very effectively. The Java Development Kit (JDK) provides
awedth of APIsto help you develop applications quickly. These APIs support
developing networking gpplications, building platform-independent GUIs, multithreading
for efficient use of system resources, implementing applets to launch from Web browsers,
handling input and output streams, and many others that will help you build gpplets as
well as stand-aone gpplications. Until now, information on the details of the APIsand
how to use them effectively has been hard to come by. We ve written the Java™
Networking and AWT API SuperBible to give you a head sart in exploring this new
gtandard in Web and Internet programming.

Why a SuperBible?

To make the best use of the Java APIsin developing killer applications, you need nothing
less than a SuperBible. The Waite Group's Java™ Networ kingand AWT API SuperBible
is a complete reference to Java s windowing, applet, and networking APIs. It provides
more information about Java than any other source. Java s Abstract Window Toolkit
(AWT) hdpsyou build graphica user interfaces without having to know the underlying
windowing environment. Y ou can develop client-server gpplications by exploiting Java's
networking capabilities even if you don’t understand much about the underlying

operating system and architecture. Y ou can skip developing often used data Structures

and utilities over and over again because the JDK provides a set of utilities so you can

concentrate on application design. Java offers so much that it takes a SuperBible to bring
it dl together for you.

How Isthe Book Organized?

We ve divided the Java™ Networking and AWT API SuperBible into five logicd parts
grouped by their functiondity. Each chapter discusses a set of classesin a Java package.
Under each class, its methods are discussed in aphabetical order. Chapters are arranged
by their functiondity so you have a detailed walk-through and example of each AP!.
You'll dsofind aproject at the end of each chapter that will give you some hands-on
practice using the APIs. Here' sa quick rundown of the topics covered in each part and
chapter.

Part |: Java Applets and Graphic Components

Part | explains the methods needed to build applets and to use the Graphics class and
Component class in windowing applications. You'll find every piece of information
about Java gpplets, graphica components, and generic abstract windowing toolkit
componentsin these chapters.

Chapter 1, Applets and Graphics, describes the gpplet API class and the Graphics class,
which are ussful for working with graphica components of windowing gpplications.
Chapter 2, The Component Class, discusses the Component class needed to develop
windowing applications and to subclass many window components for implementation.

Part I1: Windows and Text Handlers

Part |1, Windows and Text Handlers, coversthe APIs necessary for creating windows and
window components, and for handling text, didogs, and ligs. It dso explains the event
handlers and APIsthat ded with component layout. Chapter 3, Toolkit, Window,
Container, and Events, presents the APIs used to bind abstract AWT classesto a
particular native toolkit implementation and to develop windows and containers for

various components. Chapter 4, Windowing Components and Layout Classes, discusses
the methods to implement windowing components including Button, Canvas, Frame,
ScrollBar, Insets, and available Layout APIs. Chapter 5, Handling Text, Dialogs, and
Lists, coversthe Text, Diaog, FileDiaog, and List classes. Text handling to display and
obtain text data isimportant for any window program; dialog windows are required to
display messages and obtain information from the user.

Part |11: Selection and I mage Processing Tools

Sdection through menus and choice buttons is an important part of a user interface and,
in this age of multimedia gpplications, image processing is vitd. Part 111 describes the
functions usad for filtering and manipulating images to suit the user’s creativity and
requirements and the windowing components that enable selection. Chapter 6, Choice,
Menus, and Checkboxes, covers the Choice, Menu, and Checkbox classes. The classes

that encapsulate color, font, images, and shapes are covered in Chapter 7, Color, Font,
Images, and Shapes. Chapter 8, AWT Image Processing, focuses on the classes and
interfaces that help programmers process an image. The details of peersthat get crested
for the AWT components are described in Chapter 9, AWT Peer Interfaces.

Part IV: Networking in Java

Part 1V, Networking in Java, focuses on methods that enable network programming in
Java. It covers the functions required to develop client-server applications and to write
programs that use information from Web pages across the Internet. Chapter 10, Network
and Sockets, covers the classes that encapsulate the functiondity of Internet addresses

and sockets. Chapter 11, Handling URLs and Networ king Exceptions, describes the Java
classes that encapsulate URL s that provide a standard in addressng WWW document

pages and exceptions which may be generated in networking applications.

Part V: Java Utilities

The Java utitlity APIsimplement utilities and make them available to users. Part V
discusses data structure APIs, the random generator class, and advanced utility classes.
Chapter 12, Data Sructures and Random Number Generation, covers the classes
Dictionary, Hashtable, Vector, and Stack as well as the Properties class for maintaining
the properties of objects. The Enumeration interface that provides the methods necessary
to enumerate a given set of eements from the vector or hash table is aso covered, aong
with two additional classes, Empty StackException and NoSuchElementException, which
define the exceptions related to these data structures. Chapter 13, Date and Advanced
Classes, looks at more advanced utilities. It discusses the class that deals with sets of bits
and the class that helps to tokenize a stream of strings, aswell as a Wrapper classfor
finding dates, and advanced classes that encapsul ate the Observable- Observer design

pattern.
Appendices

Class and interface diagrams, cross references for the exceptions generated, steps
involved in native method integration with Java, and information about Java Script are
presented as gppendices. The class and interface diagrams that present the diagramétic
representation of inheritance hierarchy are presented in Appendix A, Class and Interface
Inheritance Diagrams. For quick reference, Appendix B, Exception Cross Reference,
presentsalist of the exceptions covered in this book. Y ou can integrate native methods
written in C/C++ with the Java programs. The steps involved in writing and integrating

the native methods are presented in Appendix C, Writing Native Methods in C/C++.
JavaScript is a scripting lanaguage used to activate the Web and is described in Appendix
D, JavaScript. Terms used throughout this book are contained in, Appendix E, Glossary.
Appendix F, Using the Enclosed CD-ROM, provides an overview of the contents of the
CD that comes with this book.

Code Your Way to Java Expertise

To help you master Java, each chapter contains many program listings and a complete
project. Source code for the complete programsis in the chapters and is aso provided on
the accompanying CD-ROM, so you can modify and experiment with the code. For ease
of use, we' ve arranged the directories on the CD by chapter number. The CD aso has
additiona information and bonus programs. Enjoy!

A Matter of Taste

Everybody likes a different cup of java; that is, each person thinks differently and runs
Java applications on adigtinct platform. In this book, the implementation of programs
differsin the way the authors approach a problem, and the appearance of the windows
varies depending on the windowing environment the gpplication runs on. These
vaiations are intentiond. We believe they will help you understand the behavior of Java
in different environments and ultimately make you a more versdtile Java goplications
developer.

We hope you enjoy using this book as much as we ve enjoyed writing it. Good luck
exploring Javal

Part |
Java Applets And Graphic Components

Chapter 1
Applets And Graphics

Packaging interactive content in small, easily distributed objects was a design feature that
had high priority to the developers of Java. To meet this design god, they created the
Applet class, dong with severa objects and interfaces designed to smplify image and
audio processng.

An Applet is a custom interface component object, Smilar in concept to a Windows
custom control, or an X-Windows widget. Applet-aware applications (or "applet
browsers") can load and construct Applet objects from URLs pointing to .CLASSfiles
anywhere on a network, including the Internet, the largest network of them dl. The Java
Deveoper Kit's (JDK) HotJava World Wide Web browser is an example of an applet-
aware gpplication. Using it, you can access interactive Applets from anywhere on the
Internet, or Applets developed on the locd file system. Security features of the Java
language ensure distributed gpplets cannot damage or compromise the security of aloca
sysem.

Using the graphica capatiilities of Java, applets are visudly exciting multimedia
elements. Through objects of the class javaawt, Graphics gpplets can create graphica on-

screen content. The Graphics dassisincluded in this chapter because of the need for
appletsto digplay exciting visuds.

Because of dl these features, applets have become the preferred method for distributing
interactive content on the World Wide Web. A library of reusable, extensible Appletsis
one of the cornerstones of an Internet content creator’ s toolKkit.

The project for this chapter is an Applet implementation of Conway’s Game of Life This
project illustrates the use of "double-buffered” animation, the preferred method of
graphics animation in Java

Applets

Figure 1-1 illustrates the Applet class hierarchy. Most ancestors of Applet in this
hierarchy are Abstract Windows Toolkit (AWT) classes. Through them, the Applet class
inherits windowing capahilities. Specificdly, the Applets disolay, surface drawing, and
mouse and keyboard event handling functionalities are gained through these ancestors.
AWT’ swindowing capabilities are covered in Chapter 9. All examples and discussonsin
this chapter stop short of utilizing AWT methods other than those that provide applets
with their graphical cgpabilities. But keep in mind therich st of facilitiesthe AWT
classes have when designing your own custom Applet classes.

Figure1-1 The Applet class hierarchy

Applet objects are created and controlled by a container gpplication caled an applet
browser. The applet browser (see Figure 1-2) arranges applet objects visualy on the
screen and dedicates a rectangle of screen space for the applet to display itsalf. Most
applet browsers can manage more than asingle Applet object at atime, and actudly
provide an interface for the Applet instances to communicate with each other.

Figure 1-2 Example of an gpplet browser (JDK’s AppletViewer) with a Java Applet
running

The Essential Applet Methods

The actions of a custom Applet object are ruled by four essentia methods: Applet.init,
Applet.start, Applet.stop, and Applet.destroy. The browser itself invokes these methods at

specific points during the applet’ s lifetime. The java.gpplet. Applet class declares these
methods and provides default implementations for them. The default implementations do
nothing. Custom applets override one or more of these methods to perform specific tasks
during the lifetime of the custom Applet object. Table 1-1 lists these four methods, details
when each is cdled by the browser, and shows what a custom applet’s overriding
implementation should do.

Table 1-1 Descriptions of the essentia gpplet methods

Method Description

init Cadled once and only once when the applet isfirst loaded.
Custom implementations dlocate resources that will be
required throughout the lifetime of the Applet object.

destroy Called once and only once just before the Applet object isto
be destroyed. Custom implementations rel ease dlocated
resources, especialy Native resources, which were loaded
during init or during the lifetime of the Applet object.

Sart Cadlled each time the gpplet is diplayed or brought into the
user’ s view on-screen. Custom implementations begin active
processing or create processing threads.

stop Cdled each time the gpplet is removed from the user’ s view.
Custom implementations end al active processing.
Background processing threads should either be destroyed in
stop, or put to deep and destroyed in the destroy method.

The proper place to dlocate objects or load data required by the applet throughout its
lifetimeisinit. Thismethod is cdled only once during the lifetime of the gpplet, right
after the object is created by the browser. Most custom Applets allocate resources
required throughout the lifetime of the Applet object in this method. Ancther very
common operation performed during init isto resize the gpplet’ s on-screen display
surface using the inherited method Component.resize. Some browsers display applets
correctly only if the applet calsresze() in init(). The Component classis described in
Chapter 2.

Liging 1- 1 defines an gpplet that plays an audio clip in a continuous loop. This applet
could be used to play "theme music" while a particular Web page was being viewed.
Notice that the essentid methods init, start, stop, and destroy are given overriding
implementations to manage what the applet doesin the browser.

Listing 1-1 Example applet

i mport java. Appl et . *;

public class ThemeMisi cAppl et extends Applet {
Audi oCl i p audcli pThene;

public void init() {
/1 load the audio clip.
audcl i pTheme = get Audi oCl i p(get Docunent Base(),
"i mages/thenme. au");

/1l shrink display surface...never used.
resize(0, 0);

}

public void start() {
/1l start the audio | oop.
audcl i pThene. | oop();

}

public void stop() {
/1 halt the audio |oop.
audcl i pThene. stop();

}

public void destroy() {
/'l release the audio clip from nenory.
audcl i pTheme = nul |

}

}

The browser invokes the ThemeMusicApplet’s start method when it istime to present
information to the user, and ThemeMusicApplet.start begins playing the audio clip
loaded ininit. Y ou can see why it is necessary for init to be invoked before any cdl to
gart: The audio clip must be loaded beforeit is played. init is dways cdled before the
first invocation of gart.

When the applet drops from view, for example because it is scrolled off the screen inthe
browser or the user opens a different document in the browser, the applet’ s stop method
iscaled. Thisisthe proper time for a custom Applet to cease any processing. In our
example, the continuous audio clip garted in ThemeMusicApplet.gtart is hated in stop.

There are two more important technical notes about start and stop:

» Every cdl to gart has a matching subsequent cdl to stop.

* The gtart/stop sequence may be repested more than one time for the same
custom Applet object, for exampleif the gpplet is scrolled from the user’ s view
and then scrolled back. When it is scrolled from the user’ s view, stop will be
invoked. When it is scrolled back, start will be invoked for the second time.

When the gpplet isfindly and definitely to be unloaded from memory, destroy() is
invoked. Thisis the appropriate time to delete any resources loaded during init(). The
above example applet removes its reference to the AudioClip in destiroy. The call to

destroy is guaranteed to occur after the last cdll to stop. Note that while any resources
alocated by an gpplet will autometicaly be cleaned up by Java s garbage collection
facilities, it is more efficient to remove references to any alocated objects in destroy.
Also note that resources alocated by "native' methods will not be cleaned up by the
garbage collection fadilities. Native resources must be explicitly released in destroy.
(Native methods are platform-specific, dynamicaly loadable libraries accessible from
within Java code. For the most part, Applet classes do not use native methods because of
the severe security congtraints placed on Applet objects. Refer to Appendix C for more
information about creating and using native methods in Java.) Figure 1-3 illudrates the
sequence of cdlsto init, start, stop, and destroy by an applet browser.

Figure 1-3 Sequence of init, start, stop, and destroy calls for an Applet
Applet Parameters

Similar to Java applications, applets can receive and process parameters. Applications
receive parametersintheargv|] argument to the main method. The dementsof argv|]
are the command line arguments to the gpplication. Andlogousto argv| |, applet
parameters are accessed within the applet code by the Applet.getParameter method.

The use of parameters makes gpplets extensible. ThemeMusicApplet.init has the theme
music rdaive URL "audio/theme.au" hardcoded into the init method. Thislisting usesa
replacement for init, which makes the ThemeMusicApplet applet play whatever audio file
ispased in its"Theme' parameter:

public void init() {
/1 Get text of the Thene paraneter, use as a relative
/1 URL.
String strTheme = get Paraneter("Thenme");
if(null == strThenme) strTheme = "audi o/thene. au";
audcl i pTheme = get Audi oCl i p(get Docunment Base(), strThenme);

}

Conceptudly, the browser maintains an internd listing of dl the parameters passed to an
embedded Applet object. The getParameter method accessesthisinternd list and
retrieves the vaues specified for a uniquely named parameter. Our new listing usesthe
getParameter method to look up the value for the parameter named "Themé'. If no such
parameter was passed, getParameter would return null.

Thereis amethod defined so that Applet objects can publish alist of vaid parameter
names, valid vaues, and a description of each. By overriding the
Applet.getParameterInfo method, an Applet class can make thisinformation public to any
other object. The default implementation of getParameterInfo smply returns null, but an
overiding implementation should return a String[n][3] 2-dimengona array wheren is
the number of unique parameters understood by members of the Applet class. Each row
of three gtringsin this array should be of the format:

{ "parameter nanme", "valid value range", "textual description" }

Thereis no grict requirement on the format of any one of these strings. Each one should
be suitable for textua display so that someone can read it. For example, the "vdid vaue
range" sring could be "0-5", meaning the parameters should be an integer between 0 and
5. Liding 1-2 definesasmal Applet class caled AppletNames that displays, on
System.out, alisting of al other active Applets currently being managed by the browser
and aligting of each Applet object’s parameter information retrieved using each Applet
object’ s getParameterInfo method. This Applet class uses its AppletContext to access
other active Applet instances. A detailed description of the AppleContext interface and
methods follows this discussion of Applet parameters.

Listing 1-2 Example using the AppletNames class

i nport java. applet.*;
i mport java.util.~*;

public class Appl et Nanmes extends Applet {
public void init() {
resize(0, 0);
}

public void start() {
Enunmer ati on enumAppl et s;

enumAppl et s = get Appl et Cont ext (). get Appl ets();
whi | e(enumAppl ets. hasMoreEl enents()) {
Appl et appletCurrent =
(Appl et) enumAppl et s. next El ement () ;
Systemout.println("Next applet:");
String[][] aastrParanms =
appl et Current. get Parameterlnfo();
bool ean fDone = fal se;

for(int ili=0; !'fDone ; ili++) {
try {

Systemout.print("\tparam ");

Systemout.print(aastrParanms[ili][0]);

Systemout.print("; value: ");

i f(appl et Current. get Paranet er (
aastrParans[ili][0]) == null)

Systemout.println("<null>");
el se

System out. println(
appl et Current. get Par anet er (
aastrParans[ili][0]));
} catch(Exception e) {
f Done = true;
}

Systemout.printin("End of applet list.");

}

Different types of browsers use different methods for passing parameters to applets. For
example, applet-aware World Wide Web browsers generaly usethe HTML <APPLET>
container tag to refer to gpplet code and parameters. Between the <APPLET> and
</APPLET> container tags, zero or more <PARAM> tags can appear. These tags have
the form <PARAM name=[param-name] vaue=[param-va]>. No matter how parameters
are passed into a particular browser, aloaded applet dways uses getParameter to retrieve
parameter values.

Liging 1-3ispart of an HTML document with the ThemeMusicApplet embedded in it.
The <APPLET> container refers to the ThemeMusicApplet’s .CLASSfile URL. The
<PARAM> tag indicates which audio file to use ("audio/Gilligand dand.au”).

Listing 1-3 HTML document

<H1>My Theme Musi c Honme Page! </ H1>
<P>Just sit right back and you should hear ny thene nusic if
you wait for a nmoment for audi o downl oading. . .

<APPLET SRC="ThemeMusi cAppl et” wi dt h=0 hei ght =0>
<PARAM name="Thene" val ue="audi o/ G |1igansl sl and. au">
</ APPLET>

Communications Between the Applet and the Browser

Applets obtain information about the state of the browser, what other Applet objects are
currently active, what is the current document opened by the browser, and so on, through
the java.applet. AppletContext interface. The browser is abstracted by an object
implementing this interface.

The browser aso exposes some functiondities that an gpplet can use through this
interface. For example, the loading of image and audio files into Java objects is handled
transparently through the AppletContext interface. The two overloaded versons of
Applet.getAudioClip are actudly shalow wrappers around A ppletContext.getAudioClip.
The full AppletContext interface is detailed in the AP descriptions for this chapter.

Between the AppletContext and the Applet is an AppletStub object. Its purposeisto
provide a pathway for the exchange of applet- pecific data between the AppletContext
and the Applet. For example, the parameters for a specific Applet object are accessed by
the Applet through AppletStub.getParameter. Applet.getParameter is actualy a shallow
wrapper around this method. In turn, AppletStub methods are trandated into native or
custom AppletContext method cdls (the implementation of the pathway of data exchange

between the AppletStub and AppletContext is left completely up to the browser
developers). An Applet’s AppletStub is tightly wrapped by the javaapplet.Applet
implementation. So much o, that dl AppletStub functiondities are exposed as wrapper
methods in the java.applet. Applet class. Therefore, a custom applet should never need to
use its AppletStub directly. Figure 1-4 illustrates the pathways of data exchange between
the Applet, the browser (abstracted by the AppletContext interface), and the AppletStub
(the Applet’ s representative to the browser).

Figure 1-4 Pethways of data exchange between the Applet, AppletContext, and
AppletStub objects

Using Threadsin Applets

Much the same as gpplications, applets can create Threads to carry on background
processing. A typica use of this would be an animation applet. To perform animation, the
applet creates anew Thread and startsit running in Start. The animation Thread actsasa
timer. Every s0 often, it wakes and draws a new frame in the animation sequence, then
sugpendsitsaf until the next frameisto be drawn. In the gpplet’ s top method, the
animation thread is shutdown. Two versons of this Smple animation technique are
described in greater detail in the section on the Graphics class and methods. The
important point here isthat Threads generdly are made to begin background processing
in an applet’ s sart implementation and elther suspended or destroyed in the applet’s stop
implementation.

Y ou might assume that Threads created by an gpplet would be automaticaly hated by
the browser when the applet is destroyed, so you wouldn't really need to suspend or
destroy a Thread object explicitly in stop. Instead, you could just leave it to Java's
garbage collection facilities to destroy your Thread when the Applet object is destroyed.
Many browsers, however, do not properly halt secondary applet threads, even after the
applet has been destroyed, so the thread continues to execute after the applet has been
destroyed. Thisisareault of gpplets reying on the Java garbage collection facility to
destroy their threads. To ensure your custom applets behave as you want them to,
including ceasing when you want them to cease, suspend any secondary threadsin
Applet.stop, and drop references to them in destroy. As Listing 1-4 shows, the
ClockTickApplet demongtrates using this technique in a multithreaded applet.

Listing 1-4 The ClockTickApplet sourcer

i mport java. appl et.*;

public class Cl ockTi ckAppl et extends Applet inplenments Runnable {
Audi oCl i p audcl i pTi ck;
Audi oCl i p audcl i pChi ne;
Thread t hreadTi cker;
Thread t hreadChi nmer;

public void init() {
/1l create the new threads, but don’t start them

t hreadTi cker = new Thread(this);

t hreadChi mer = new Thread(this);

/1 get the two cl ock sounds.

audcl i pTi ck = get Audi oCl i p(get Docunent Base(),
"audi o/ tick.au");

audcl i pChi me = get Audi oCl i p(get Docunent Base(),
"audi o/ chi me. au");

/1 just clock sounds, so no display surface is necessary.
resize(0, 0);

}

public void destroy() {
/'l release threads, which should be suspended by now.
t hreadTi cker = null
t hreadChi ne = nul |

/'l release audio clips, which won’'t be used any nore.
audcli pTick = null
audcl i pChime = nul |

}

public synchroni zed void start() {
/1l start the ticker thread, which will automatically
/1 start the chimer thread at the correct tine.
t hreadTi cker.start();

}

public synchronized void stop() {
/1l suspend the ticker, shut down the chiner, which
/1l will be started again by the ticker at the correct
Il tinme.
t hr eadChi mer. st op();
t hreadTi cker. stop();

}

/1l run is what the two threads run in
public void run() {
/* If this is the chine thread, play the chine noise
* and quit. */

i f(Thread.currentThread() == threadChimer) {
audcl i pChi me. pl ay();
return;

}

/* Sleep for 1 second at a tine. Every full mnute
* restart the chinmer thread. */

while(null !'= threadTicker) {
audcl i pTi ck. pl ay();
/1 GET TIME, |F SECONDS == 0, THEN..
audcl i pChi mer.start();
try { sleep(1000); }
catch(Exception e) { }
}

return;

}
}

I nter-Applet Communications Within the Browser

Y ou can coordinate the activities of severa applets by accessing and manipulating other
Applet objects from within Applet code. Using inter-applet communications you could,
for ingance, have a"gas-gauge" Applet report the status of another Applet, which takesa
sgnificant amount of timeto initidize.

To obtain references to externd Applets from within an applet you use the
AppletContext’s getApplet and getApplets methods. The AppletNames Applet
demongtrates this technique. Once areference to another Applet is retrieved, your applet
code can access any public member variable or method of the externa Applet object.
This code snippet retrieves an applet named "MyApplet” and cdls one of its custom
methods.

Appl et appl et = get Appl et Context (). get Applet("MyApplet”);
if(! (applet instanceof MyAppletClass)) return;
My Appl et Cl ass nyappl et = (MyAppl et Cl ass) appl et ;

myappl et . Cust onfFunc() ;

getApplet takes an applet "name" and returns areference to the associated Applet object.
This usage mode implies the browser internaly stores a unique String name associ ated
with each applet, which can be used to ook up the Applet in the interna browser storage.

Smilar to defining gpplet parameters, the method for naming applets depends on the
specific browser used. For example, applet-aware World Wide Web browsers generdly
use aNAME fidd within the HTML <APPLET> container tag to associate a name with a
particular Applet object. Thisis how an HTML document would embed an applet named
"Minnow" of dass ThreeHour TouringBoat:

<APPLET src="Thr eeHour Touri ngBoat" name="M nnow' w dt h="100"
hei ght =" 100" >
<PARAM ... >

</ APPLET>

Graphics

Applets are capable of displaying exciting and complex graphics and multimedia visuds.
This section explains the specifics of graphica drawing, which is done using objects of
the Graphics class and associated classes. Important concepts explaining these classes
will be discussed, as well as the most common technique for visud animation, double-
buffered graphics.

All grgphica drawing operations in Java are performed through objects derived from the
Graphics class. Whether you are drawing images downloaded from the Internet, drawing
graphical primitives such as rectangles and arcs, or rendering text, adl graphicd
operations are done using a Graphics class ingtance. Use of the Graphics classis not
limited to Applets, it isadso used for Java gpplications that employ graphicd dementsin
windows.

The Graphics Class Concept

For some beginners, the concept of the Graphics classis alittle diffucult to grasp. But it
doesn't have to be. Y ou can think of a Graphics object as analogous to agraphic artist’s
drafting table, with its associated drawing tools. It is a station of powerful tools dedicated
to creating graphica images.

Each Graphics object is associated with atwo-dimensona "drawing surface" analogous
to the piece of paper on the drafting table. For example, the drawing surface can be a
rectangle of a user’s on-screen desktop, asis the case when dealing with Applets or
Windows. Other drawing surface types could aso be associated with a Graphics object.
The drawing surface could be abinary image, stored in memory and never directly
displayed to the user. It could aso be apagein aprinter, or afax machine, or even a
PostScript or other graphics-format file stored on a disk.

The "tools" of a Graphics object, the methods of the Graphics class, are used to draw onto
the associated drawing surface. Rectangles, ovds, arcs, polygons, lines, text, and images
candl be drawn onto the drawing surface usng the various Graphics class methods.

The internd gtate of a Graphics object can be described by eight Sate variables, which
can be modified using Graphics class methods.

The foreground color

The background color

The current font

The painting mode

The origin of the Graphics object

The horizontd and vertical scaling factors

The"dipping" rectangle

The drawing surface the Graphics object has been associated with

The Coordinate System of the Drawing Surface

All drawing surfaces use the same two-dimensiona coordinate sysem. The X axisisin
the horizontd direction of the drawing surface, and increases from |eft to right on the
drawing surface. The Y axisisin the verticd direction, and increases from top to bottom.

The Graphics object origin defineswhereits X and Y axes cross, and isidentified by the
point (0,0). A scding factor is assgned to both axes, which defines how quickly the
coordinates increase dong ether axis. By default, when the Graphics object isfirst
created, the origin lies in the upper-|€ft corner of the drawing surface, and the scaling
factor dong both axesis one.

The Graphicsobject’'s X and Y axes dretch to what is essentidly an infinite distancein
dl four directions. However, only coordinates within the Graphics object’s "dlipping
rectangle” are of any interest. That's because graphical operations cannot be performed
outside this rectangle. Such operations will not result in any sort of error, but neither will
they have any effect on the drawing surface.

The clipping rectangle of a Graphics object represents the physical boundaries of the
associated drawing surface. For example, a Graphics object associated with a 100 pixel
by 100 pixd rectangle of the on-screen desktop will have a clipping rectangle with a
width of 100 and a height of 100. For on-screen desktop and in-memory image drawing
surfaces, each Graphics coordinate represents asingle pixe of the drawing surface.
Hence, a 100 pixd by 100 pixel rectangle is represented by a 100 by 100 clipping
rectangle in the associated Graphics object.

Obtaining Graphics Objects

A program cannot creete its own Graphics objects, but instead must ask the Java runtime
system to create them for specific display sufaces. Without using custom classes
implementing native methods, only two types of display surfaces can be accessed through
Graphics objects:

* Sections of the on-screen desktop surface are accessed through Graphics objects
passed to the update and paint methods.

 Inrmemory Image objects are accessed through Graphics objects created by
Image.createGraphics.

Appletsinherit the update and paint methods from the Component class, which the
Applet class extends. Both of these methods are called automaticaly by the Javaruntime
system when it istime to display information to the user on the desktop. (See Chapter 2,
The Component Class, for an in-depth discussion of the update and paint methods). This
code snippet shows how a custom applet would override the default implementation of
paint to contral its display surface:

public class MyAppl et extends Applet {

public void paint(G aphics g) {
/1 Draw on the display surface here.
}

}

A Graphics object is automatically created by the Java runtime system and passed to
paint. This Graphics object has a clipping rectangle set to the exact dimensions of the
Applet’ sdisplay surface. (In the cases where only a portion of the Applet must be
redrawn, such as when another window temporarily covers part of the Applet’ s display
surface, the dimensions may be smaller.)

The only other method for obtaining a Graphics object is using Image.cresteGraphics. An
applet or application cdls this method directly. The Graphics object that is returned is
capable of rendering geometric primitives, text, and other Image objects onto the Image.
Thisis useful for the so-called "double-buffered” drawing technique, used widdy to
effect a smooth trangition between animation frames. You'll learn more about this
technique in the upcoming discussion of animation.

The Geometric Primitives
All Graphics objects are able to render severd different types of geometric primitive

drawing objects on a drawing surface. Table 1- 2 ligts the various geometric primitives
and describes how they are represented by parameters to Graphics rendering methods.

Table 1-2 Geometric primitives

Primitive Representation Through Rendering Methods

Rectangle The point of the upper-left corner of the rectangle relative to the
Graphics origin, the rectangl€' s width and height.

Rounded rectangle The point of the upper-left corner of the rectangle rdative to the
Graphics origin, the reactangle’ swidth and height.

3D rectangle The point of the upper-left corner of the rectangle rdaive to the
Graphics origin, the rectangl€ s width, height, and the raising or
depressing implication of the beveled edges.

Ovd A bounding rectangle defines the size and shape of the ovd. This
rectangle is described the same way as a rectangle geometric
primitive.
Arc An arcisasection, or pie wedge, of anovad. An arcisdescribed

by the bounding rectangle of an ovd, the sarting angle of the arc,
and the angular length of the arc.

Polygon An ordered set of points defines the vertices of a polygon to
Graphics rendering methods. Alternatively, a Polygon object can
be used, though Polygons are essentially just an ordered set of
vertices. Points are dl relative to the Graphics object’ s origin.

Line ssgment Two points defining the two endpoints of the line segment. Both
points are relative to the Graphics object’ s origin.

All primitives can be rendered in ether outlined or filled form, except the Line primitive,
which cannot befilled. The outlined verson of a primitive is rendered using the
primitive's "draw" method. For example, Graphics.drawRect will render arectangle as
two sets of parale lines using the Graphics object’ s current foreground color. The "fill*
method is used to render afilled geometric primitive. GraphicsfillRect will render asolid
rectangular block on the display surface using the current foreground color. Listing 1-5is
acomplete example of the Nautilus gpplet, which uses a succession of filled and outlined
arc segments (using GraphicsfillArc and Graphics.drawArc) to draw a spird pattern. The
spird looks something like the cross-section of a nautilus shell, hence the applet class
name.

Listing 1-5 Example of the Nautilus applet

i mport java. appl et. Appl et;
i mport java.awt. Graphics;
i mport java.awt . Col or;

public class Nautilus extends Applet {
i nt nAppl et Hei ght, nAppl et W dt h;
float flTightness;

public void init() {
resize(500, 500);
nAppl et Hei ght = nAppl et Wdth

500;

flTightness =
(new Fl oat (get Paraneter("tightness")).fl oatVal ue();

}

public void paint(Gaphics g) {
int nCenter = nAppl etHeight / 2;
float fl Radius nAppl et Hei ght / 2;
int nDirection 1;

for(int n
int x
int y

I =0 nl <10 ; nl++) {
= (nAppletWdth / 2) - (int)flRadius;
= nCenter - (int)flRadius;

for(int nJ=0 ; nJ<3; nJ++) {
if(0!'=(nJ + ((1+nDirection) / 2)) %2)

g.setColor(Color.red);
el se g.set Col or(Col or.green);

g.fillArc(x, y, 2 * (int)flRadius,
2 * (int)flRadius,
90 + (nDirection * nJ * 60),
nDirection * 60);
}

g. setColor(Color.black);
g.drawArc(x, y, 2 * (int)fl Radius,
2 * (int)flRadius, 90, nDirection * 180);

nCenter += (int)(nDirection * (int)flRadius *
(1- flTightness));

fl Radius *= fl Ti ght ness;

nDirection *= -1,

}

The Nautilus applet requires asingle parameter, the "tightness' parameter, which
describes how tightly the spird isrendered. The "tightness' parameter’ svaueisa
floating point number above 0 and below 1. The closer to 1 this parameter is, the tighter
the spird is. Note that, to preserve code readability, no validation of this parameter has
been added. Figure 1-5 is a screenshot of the Nautilus gpplet run using the JDK's
AppletViewer, with a"tightness' parameter of 0.75.

Figure1-5 Screenshot of the Nautilus applet

The Nautilus applet illustrates how to use the drawArc and fill Arc methods of the
Graphics class. Nautilus renders the spird by drawing successively smdler hadf-circles
made up of dternately colored arc wedges. The code takes advantage of the fact that the
sgn of the arc length parameter to Graphics.drawArc and Graphicsfill Arc defines
whether the arc proceeds clockwise or counter-clockwise from the Sarting angle.

The Painting Mode

The painting mode of a Graphics object is, by default, set to "overwrite' mode. In this
mode, dl graphics are rendered by overwriting the pixels of the display surface using the
Graphics object’ s current foreground color. Y ou can force the Graphics object into
overwrite mode using Graphics.setPaintMode. When cdlled, this parameterless method
places the Graphics into overwrite mode. Expressed pseudo-mathematicdly, the color of
destination pixels after rendering is

col orDest (x,y) = graphics. foregroundCol or

The other method of modifying a Graphics object’s painting mode is
Graphics.setXORMode. When called, the Graphics object uses XOR mode for rendering
geometric primitives, text, or Images on the drawing surface. Three colors are combined
mathematicaly to determine the color of destination pixels after rendering, as follows,

col or Aft er Renderi ng(x,y) = col or Bef oreRenderi ng(x,y)
? graphics. foregroundCol or ? graphics. alternateCol or

wherethe ? symbol represents a bitwise XOR operation. The dternateColor of a
Graphics object is specified as the only parameter to Graphics.setXORMode. Listing 1-6
is an example of the Ova's applet, which illustrates XOR painting mode, that can be used
to draw contrasting areas of geometric primitives on the drawing surface.

Listing 1-6 Example of the Ovds applet

i mport java. appl et. Appl et ;
i mport java.awt. G aphi cs;
i mport java.awt. Col or;

public class Ovals extends Applet {
i nt nAppl et W dt h;
i nt nAppl et Hei ght ;

public void init() {

resi ze(500, 500);

nAppl et Wdth = nAppl et Hei ght = 500;
}

public void paint(Gaphics g) {
float flLongAxisLength = nAppl et Wdt h;
float fl Short Axi sLength = nAppl et Hei ght / 2;
bool ean fLongAxisVertical = true;
g.setCol or(Col or. bl ack);

for(int nl=0 ; nl<10 ; nl++) {
int x, y, width, height;

i f(fLongAxisVertical) {
X = (nAppletWdth / 2) -
(int)(flShortAxisLength / 2);
y = (nAppletHeight / 2) -
(int)(flLongAxisLength / 2);
width = (int)fl Short Axi sLengt h;
hei ght = (int)flLongAxi sLengt h;
} else {
X = (nAppletWdth / 2) -
(int)(flLongAxisLength / 2);
y = (nAppletHeight / 2) -
(int)(flShortAxisLength / 2);
width = (int)fl LongAxi sLengt h;
hei ght = (int)fl Short Axi sLengt h;

g. set XORMbde(Col or.white);

g.fillOval(x, y, width, height);

g. set Pai nt Mode() ;
g.drawOval (x, y, width, height);

fl LongAxi sLength *= 0.75;
fl Short Axi sLength *= 0. 75;
fLongAxi sVertical = ! fLongAxisVertical;

}

return,

}

Figure 1-6 is a screenshot of Ligting 1-6, the Ovd's gpplet, when viewed using the JDK’s
AppletViewer.

Figure 1-6 Screenshot of Ovals gpplet, demondrating the XOR painting mode of the
Graphics class

The Ova's gpplet uses XOR painting mode to highlight overlgpping aress of ova
primitives on the drawing surface. The background color of the applet’ s drawing surface
isautomatically painted light gray (Color.lightGray or RGB 192, 192, 192) by the Java
runtime system.

The foreground color of the Ova’s Graphics object is set to Color.black (RGB 0, 0, 0) by
default. The XOR dternate color is set to Color.white (RGB 255, 255, 255), the value of
the parameter to Graphics.setXORMode. Therefore, the color in which thefirst ovd is
rendered can be deduced using the formula presented earlier.

col or Aft er Renderi ng(x,y) = col orBef oreRenderi ng(x,y)

gr aphi cs. for egroundCol or ? graphics. al t ernat eCol or

(RG&B 192, 192, 192) ? (RGB 0, 0, 0) ? (RGB 255, 255, 255)
(RGB 63, 63, 63)

-

When anew ovd isrendered so that it intersects an ova that has dready been drawn, the
intersecting area of these two ovaswill be drawn with the color obtained asfollows:

col or Aft er Rendering(x,y) = col orBeforeRenderi ng(x,Yy)

gr aphi cs. f or egroundCol or ? graphi cs. backgroundCol or
(RGB 63, 63, 63) ? (RGB 0, 0, 0) ? (RG 255, 255, 255)
(RGB 192, 192, 192)

-9

In this case the result is Color.lightGray.

It issmple to show that al areas painted with the XOR painting mode using these colors
an odd number of timeswill have the RGB vaues (63, 63, 63), which is Color.darkGray.
All areas painted an even number of timeswill have the RGB values (192, 192, 192), or

Color.lightGray.

Applet and Associated Class Summaries

Table 1-3 ligts the classes and interfaces necessary for devel oping custom Applet objects
in Java. The following sections describe each Class methods in more detail.

Table 1-3 Class and interface descriptions

ClasdInterface Description

AppletContext Exposes services implemented by the applet browser for use by
Applet objects. Conceptudly, dl active Applet objects have
access to the same AppletContext.
Graphics Encapsulates a drawing surface, and exposes tools for drawing

graphics and rendering text on that drawing surface. A drawing
surface may be arectangle of the desktop, an in-memory image,
or even apage in the printer.

Applet Represents an embeddable Applet object.

AppletContext

Purpose
An interface which abstracts the browser to an Applet. Methods for testing and
modifying the current state of the browser are provided as public members of this
interface.

Syntax
interface AppletContext

Description
A running Applet getsits AppletContext using Applet.getAppletContext. Using
this interface, the Applet can get and set some parameters of the browser’s current
date. An Applet can get references to other Applets currently running in the
browser, download images and audio clips, and load a new document into the
browser through the AppletContext interface.

PackageName
java.applet

Imports
java.awt.Image, java.awt.Graphics, java.awt.image.ColorModel, java.net. URL,
java.util.Enumeration
Congructors
None.
Parameters
None.

getApplet

Interface
AppletContext

Purpose
Used to facilitate inter- gpplet communications within a browser.

Syntax
public Applet getApplet(String strName);

Parameters
None.

String strName
This interface method implies the browser stores, with each loaded applet, a
unique string to identify that applet. It passesto getApplet one of these unique
applet identifiers to gain access to the associated Applet object.

Description
Multiple Applet objects can be smultaneoudy |oaded and run by the same
browser. Each applet runs within its own Thread. Use this method to access other
gpplets running concurrently. It is completely up to a particular browser how to
asociate a particular string with an Applet object. For example, most
commercid-grade World Wide Web browsers which are applet-aware use the
NAME tag in the <APPLET> container tag to associate a name string with a
particular gpplet, asinthe HTML snippet below.

<APPLET CODE=MyAppl et . cl ass NAME="Chooser" W DTH=100 HEI GHT=100>
<PARAM NAME="f 00" VALUE="bar">

<PARAM NAME="Dbl ephar 0" VALUE="spasni >

</ APPLET>

Imports
None.

Returns
The Applet object associated with the unique String strName. If no applet is
associated with strName, null is returned or if the applet browser does not provide
fadilities for inter-applet communications.

See Also
The getApplets method of the AppletContext interface

Example
The following example tries to find a set of other gpplets |oaded by the browser.
A report iswritten out to System.out indicating whether or not each gpplet could

be found. The "gpplet-lig" parameter contains a comma-separated list of applet

names to look for. Only up to ten applets will be searched.
i mport java. applet.*;

public class Appl etsSearchAppl et extends Applet {
String[] astrAppl etNanes = new String[11];

public void init() {
/1 Nothing displayed on browser, so shrink display surface
resize(0, 0);

/* Get the "applet-list" paraneter, which contains a
** conma-separated |ist of applet names to search for.*/
String strAppletListParam = get Paranmeter("applet-list");
if(null == strAppletListParam) {
System out. println(
“"No \"applet-list\" paraneter provided.);
return,

}

/* Use the applet name list to initialize astrAppletNanmes. */
i nt i Nanel ndex = 0;

int nStartlndex = 0;

i nt nNext Commal ndex = O0;

while((-1 !'= nNextComualndex) && (i Namelndex < 10)){
if(-1 == (nNext Commal ndex =
strAppl et Li st Param i ndexOf (',', nStartlndex)))
astr Appl et Names[nNanel ndex++] =
st r Appl et Li st Param substring(nStartlndex);
el se
astr Appl et Names[nNanel ndex++] =
st r Appl et Li st Param substring (
nSt art 1 ndex, nNext Commal ndex);

nSt art |l ndex = nNext Commal ndex + 1;

}
}

public void start() {
/1 Look for each naned applet in turn and report results.
for(int iNanelndex = 0
; null !'= astrAppl et Names[i Narmel ndex]
;i Narrel ndex++) {
Appl et appl et = get Appl et Cont ext (). get Appl et (
astr Appl et Names[i Nanel ndex]);
Systemout.print("Applet " +

astr Appl et Names[i Nanelndex] + " ");
if(null == applet)
Systemout.println("not found!'");

el se
Systemout.printin("found!'");

/1 stop() does not need to be inplemented.

public void destroy () {
/'l Rel ease the array of applet name strings.
astr Appl et Names = nul |

}
}

getApplets

Interface
AppletContext

Purpose
Used to facilitate inter-gpplet communications within a browser.

Syntax
public Enumeration getApplets);

Parameters
None.

Description
This method alows you to ook up dl applets currently running in the browser.
The browser which implements this method will give you accessto al Applet
objects currently running in the browser.

Imports
None.

Returns
An Enumeration object is returned. Each eement in the Enumeration isan Applet
currently active in the browser. Note that an empty Enumeration, or areturn of
null, could be interpreted in two ways. Either getApplety)) isnot fully
implemented by the browser, or no other applets are active in the browser.
No exact specification currently exists describing what getApplets should return
in ether of these Stuations.

See Also
The getApplet method of the AppletContext interface

Example
The following example uses getApplets and a custom interface, named Namable,
to implement an applet-identification facility more complete than the
AppletContext facility provided by getApplet and getApplets.

i nterface Namabl e {
public String get Name();
}

Here are the contents of FindNamableApplet.java

public class Fi ndNanmabl eAppl et extends Applet inplenents Nanmable {
Hasht abl e hashAppl et sByNane;
String strNane;
String strNameToFi nd;

/1 getNanme sinply returns the "name" paraneter val ue.
public String getName() {

return strNane,
}

/1 destroy rel eases references to object variables.
public void destroy() {

hashAppl et sByNane = nul |

strName = null;

st rNanmeToFi nd = nul |

}

// init fills the applet hash table, and reads in paraneters.
public void init() {
/1l Get the two expected paraneters.

if(null == (strNane = getParaneter("name"))) {
Systemout.println("Nanme param nmissing!");
return;

if(null == (strNaneToFind = getParameter("find"))) {
Systemout.println("Find param m ssing!");
return;

}

/1 Add all Namabl e applets to hash table.
Enuner ati on enumAppl ets = get Appl et Cont ext (). get Appl ets();
while (enumAppl ets. hasMoreEl emrents()) {

i f(enumAppl ets. next El ement () instanceof Namable) {
Namabl e appl et = (Namabl e) enumAppl et s. next El emrent () ;
hashAppl et sByNane. put (appl et. get Name(), applet);

}

}
}

/1 start() attenpts to find strNaneToFi nd applet, reports results
public void start() {
Systemout.print("Applet

+ strNanmeToFind + " ");

i f(hashAppl et sByName. cont ai nsKey(strNameToFind))
System out. println("found.");
el se
Systemout.println("not found!'");
}

/1 Unnecessary to inplenent stop().

}
getAudioClip

Interface

AppletContext
Purpose

Loads an audio file and readiesiit to be played by the browser.
Syntax

public AudioClip getAudioClip(URL wurl);

Parameters

URL url
Points to an audio data file to be loaded by the browser.

Description
Commercia-grade browsers, especially World Wide Web browsers, have built-in
facilities for loading and playing audio files. Applets use the getAudioClip
method to load audio files from any URL the browser can understand. Applets
should use one of the overloaded Applet.getAudioClip methods to access
AudioClipsingead of AppletContext.getAudioClip. This method israrely cdled
by an Applet directly.

Imports
java.net. URL

Returns
The object returned by this function implements the AudioClip interface. If the
URL is not understood by the browser, null will be returned or if the browser does
not provide this functiondity to gpplets.

Example
See the Applet.getAudioClip code example. Applet.getAudioClip isimplemented
as asmple pass-through to AppletContext.getAudioClip, smilar to this code
sample

public Appl et extends Panel {

/1 Other Applet nmethods declared and inpl enented.. .
1.

public AudioClip getAudioClip(URL url) {
/1 Use the AppletContext to load the audio clip
return get Appl et Cont ext (). get Audi oCl i p();
}
}

getlmage

Interface
AppletContext
Purpose
To load an image from a URL and prepare it for rendering on adisplay surface.
Syntax
public Image getlmage(URL wurl);
Parameters
URL url
Points to an image file to be |oaded by the browser.
Description
Java gpplications must implement methods for reading and interpreting image
files, and converting the image data into Image objects. Applets may have this
functiondity exposed to them by the browser through the

AppletContext.getlmage method. Browsers that can load and interpret various
image formats, such as GIF, JPEG or TIFF, can provide that capability to
applets. Applets smply provide a URL pointing to an image file in a recognized
format. No methods are provided for an gpplet to query which image formats are
supported by a browser. Therefore, it is usualy agood ideato only try to load
images in very common graphics formats, such as GIF or JPEG.

Imports
java.awt.Image

Returns
An Image object will be returned by this object, or null if thisfacility is not
supported by the browser. The reaction of this method when the URL refersto an
unsupported protocol, or when the image file format is unrecognized, is
ungpecified. Generdly, it can be assumed that null will be returned if this
capability it not provided by the browser.

See Also
The Image class

Example
Thefollowing sample applet loads and displays an image. A relative URL to the
image to be loaded is passed to the applet asthe "image" parameter. That
parameter will be interpreted relative to the URL returned by
Applet.getDocumentBase. An object of the MylmageObserver class is needed to
receive an error message if thereis a problem with loading or displaying the
image.

i mport java. applet.*;

i mport java.awt.*;

cl ass Myl nageObserver inplenments | nageObserver {
publi c bool ean i mageUpdate(|mage i mage, int nlnfoFl ags,
int nX, int nY, int nCx, int nCy) {
[l 1f an error has been detected, report it.
i f(nlnfoFlags & | mageGbserver. ERROR)
Systemout.printin("Error with the imge.");
return true
}
}

public class | mageAppl et extends Applet {
| mage i mage;
Myl mageObserver m o = new Myl mageCbserver

public void init() {
/1l resize to sone fixed size: large inmages will be clipped
resize(100, 100);

/1 Get the relative URL for the inmage
String strRel ati veURL = get Paraneter("i mage");

if(null == strRelativeURL) {
Systemout.println("lmge parameter mssing.");
return;

}
/1l Load the imge.

i mge = get Appl et Context (). getl mage(
get Docunent Base(), strRelativeURL);
if(null == inage)
Systemout.printin("Unable to load i mge.");
}

public void destroy() {
/1l Get rid of reference to imge and i nmage observer
i mge = null;
mo = null

}

public void paint(Gaphics g) {
/1 Paint image on display surface, if image exists
if(null !'=inmge)
g.drawli mage(imge, 0, 0, mo);
}

}
showDocument

Interface
AppletContext

Purpose
Opens anew document in the browser. An overloaded version exists to specify
the name of the target browser frame.

Syntax
public void showDocument(URL url); public void showDocument(URL wurl,
String target);

Parameters

URL url
Points to the document to be opened by the browser. If the protocol referred to
by the URL is not recognized by the browser, this cal will be ignored. If the
document format implied by the URL’ s file name is not recognized by the
browser, this cal will be ignored.

String target
Y ou may specify a named browser-frame for the new document to appear in.
Table 1-4 ligsthe vdid vauesfor this parameter

Tahle 1-4 VVdid vAiies of the Strina taraoet parameter

Value Meaning
" " The same frame the Applet is embedded in.
" parent” The parent frame of the frame the Applet is embedded in.
" top" The top-level window this Applet appearsin.

" blank" A new, top-leve unnamed frame.

"_blank" A new, top-level unnamed frame.

<other> Any other name causes the browser to search for an extant
frame with this name. If none exigts, then a new top-leve
frame with this name is crested.

Description
In the abstract, Applets are seen as being embedded in distributed "documents,”
such as World Wide Web pages. When implemented, this method dlows the
applet to force the browser to open a particular document pointed to by a URL.
Like dl other methods in thisinterface, a particular browser may not implement
this method, in which case the browser will smply ignore acal to this method.
If the second overloaded version of this method is used, then the document will
be opened in abrowser frame with the same name as the target parameter.

Imports
java.net.URL

Returns
The Applet object associated with the unique String strName. If no gpplet is
associated with strfName, null is returned or if the applet browser does not
provide facilities for inter-gpplet communications.

See Also
The getDocumentBase method of the Applet class

Example
This applet asks the browser to reload the current document whenever the
Applet’s stop method is invoked. (Not generaly avery nice thing to do.)

public class Restarti ngAppl et extends Applet {

public void stop() {
Appl et Cont ext ac = get Appl et Cont ext ();
if(null !'= ac)
ac. showbDocunent (get Docunent Base()) ;

Previous Table of Contents |Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of
EarthWeb is prohibited. Read EarthWeb's privacy statement.

Graphics

Purpose
An AWT Component (such as an Applet) uses a Graphics object to draw on a
display surface.

Syntax
public class Graphics

Description
A Graphics object is aways associated with a"display surface.” The display
surface can be arectangle of the on-screen desktop, an Image in memory, or
potentidly any rectangular areathat can be drawn on. Y ou use the Graphics class
methods to render graphics and text on the display surface assoicated with the
Graphics object. Figure 1-7 shows the class diagram for the Graphics class.

PackageName
java.awt

Imports
java.awt.*, java.image.lmageObserver

Condructors
None. Y ou cannot create Graphics objects directly, but instead get them from
other Java APl methods. For example, Image.getGraphics returns a Graphics
object, which usesthe Image as its drawing surface.

Parameters
None.

Figure 1-7 Classdiagram for the Graphics class
clear Rect

ClassName
Graphics
Purpose
To erase the specified rectangle using the background color of the display surface
associated with the Graphics object.
Syntax
public abgtract void dearRect(int x, int y, int width, int height);
Parameters
int x, inty, int width, int height
These four parameters define the rectangle to be erased on the display surface.
Description
This method is used to erase arectangle from the display surface. The associated
display surface' s background color is used to fill the pecified rectangle. Thisisa
legacy method which was never removed from the dpha release of Java. Use of
thismethod is not advised. Ingtead, use GraphicsfillRect, specifying the color you

want to use to erase the rectangle. It is an unfortunate but true fact that the Java
API does not specify an overloaded version of this method which takes a Rect
object as a parameter. The origin and extent of the rectangle must be explicitly
provided in the four parameters to this method.

Imports
None.

Returns
None.

See Also
The fillRect method of the Graphics class

Example
Use of this method is not advised, so an exampleis not provided.

clipRect

ClassName
Graphics

Purpose
To shrink the clipping rectangle of the Graphics object.

Syntax
public abgtract void clipRect(int x, int y, int width, int height);

Parameters

intx,inty
These four parameters define the new clipping rectangle for the Graphics object.

int width

int height

Description
Use this method to modify the clipping rectangle of the Graphics object. The
clipping rectangle redtricts drawing on the drawing surface to within the rect. The
resultant clipping rectangle is the intersection of the current clipping rect and the
new one defined by the parameters passed to this method. That is, the clipping
rectangle can never be made larger, only smdler. Thisisto prevent ill-behaved
Components from enlarging their clipping rectangles to include the entire desktop
and then drawing al over the desktop. The clipping rectangle is one of the
interna state variables of dl Graphics objects.

Imports
None.

Returns
None.

See Also
The create method of the Graphics class

Example
public class MyAppl et extends Applet {
public void paint(Gaphics g) {
/1 Get the current clipping rectangle
Rect rectClip = g.getClipRect();

/1 Try to enlarge the clipping rectangle. Since

/1 you can’t enlarge clipping rectangles, resultant
/1l clipping rect will be sane size as original.
g.clipRect(0, 0, 1000, 1000);

/'l Shrink clipping rect by 10 on all sides. This

/1 always returns intersection of old and new

/'l rects.

g.clipRect(rectdip.x+10, rectCip.y+10,
rectClip.w dth-20, rectdip. height-20);

}
CopyArea

ClassName
Graphics
Purpose
Copies arectangle of the display surface to a new location on the display surface.
Syntax
public abstract void copyArea(int X, int y, int width, int height, int dx, int dy);
Parameters
int X, inty, int width, int height
These four parameters define the source rectangle to copy from.
int dx
The origin of the target rectangle.
int dy
Description
Copiesthe pixels of arectangle of the display surface to another rectangle of the
same display surface. Note that the source rectangle may reside outside the
clipping rectangle of the Graphics object.
Imports
None.
Returns
None.
See Also
The drawlmage method of the Graphics class
Example
This example clears the target area by using the XOR drawing mode of the
Graphics object. The target rectangle will be painted with the aternate XOR color

after the operation is complete.
public void paint(Gaphics g) {
g. set XORMode(Col or . white);
Rect rectClip = g.getd ipRect();

/1 Copy clipping rectangle over itself, which causes

/1 image to di sappear, leaving only the alternate

/1l color (Color.white, in this case).

g. copyArea(clipRect.x, clipRect.y, clipRect.w dth,
clipRect. height, clipRect.x, clipRect.y);

}
create

ClassName
Graphics

Purpose
Creates a copy of this Graphics object.

Syntax
public abstract Graphics create();
public abstract Graphics create(int x, int y, int width, int height);

Parameters

int x, inty, int width, int height
These parameters define the display surface of the returned Graphics object. The
resultant clipping rectangle will be equd to the intersection of the origina
Grgphics object’s clipping rectangle and the rectangle defined by these
parameters.

Description
Creates a clone of the origina Graphics object, attached to the same display
surface and with the same internal sate asthe origina Graphics object. The
second overloaded verson makes a new Graphics object attached to a specific
rectangle of the origind Graphics object’ s display surface. Asthe example below
illugtrates, the create method is most useful when you want to shrink the clipping
rectangle, but get the origind, larger clipping rectangle back later.

Imports
None.

Returns
A Graphics object is returned which isaclone of the origind. If the second
overloaded verson of this method is used, then the clipping rectangle of the
resultant Graphics object will be equd to the intersection of the dipping rectangle
of the origina Graphics and the rectangle defined by the parametersto this
method. Also, the origin of the resultant Graphics object will be at the point
defined by the x and y parametersto this method.

See Also
The clipRect method of the Graphics class

Example
This example uses the create method to temporarily shrink the clipping rectangle
of aGraphics object.

public void paint(Gaphics g) {

/1l Get clipping rect of original Graphics
Rect rectClip = g.getCipRect();

/1 create Graphics with smaller clipping rect.
Graphics gTenp = g.create(rectClip.x+10, rectCip.y+10,
rectClip.w dth-20, rectdip. height-20);

/'l use smaller clip rect in tenp G aphics

/1 Clip rect of original Graphics is still preserved
/1 (can’t do that with G aphics.clipRect!).

}
trandate

ClassName
Graphics
Purpose
Moves the origin of the Graphics coordinate system.
Syntax
public abstract void trandate(int X, int y);
Parameters
intx,inty
These two parameters define a point which is the new origin of the display
surface. The parameters are offsets from the original Graphics object’ s origin.
Description
Modifies the origin of the Graphics object. The originis one of theinternd State
variables of Graphics objects.
Imports
None.
Returns
None.

Example

public void paint(Gaphics g) {
/1 Move the origin ten points to the right and down
/1 before using the Graphics object...
g.transl ate(10, 10);

}
draw3DRect

ClassName
Graphics
Purpose
Renders araised or depressed rectangle on the Graphics' display surface.
Syntax
public void draw3DRect(int x, int y, int width, int height, boolean rai sed);
Parameters
int x, inty, int width, int height
The dimengons of the rectangle to be rendered on the display surface
boolean raised
This parameter tells whether the beveling should imply araised or depressed
effect for the 3D rectangle.
Description

Renders a rectangle with beveled edges to create a 3D visud effect. The beveing
can elther imply araised or depressed 3D rectangle. The shades of the beveling

are choosen based on the current drawing color of the Graphics object. The darker
shading will be roughly 70 percent as bright as the current drawing color. The
lighter color will be roughly 140 percent as bright as the current drawing color.

The beveling will be exactly one pixe wide.

Imports

None.

Returns

None.

See Also

The fill3DRect and drawRect methods of the Graphics class

Example
public void paint(Gaphics g) {

}

/1 Draw a raised 3D rectangle, 20x20 in size
g. draw3dDRect (0, 0, 20, 20, true);

/'l Draw a depressed 3D rectangl e of same di nensions
g. draw3dDRect (10, 10, 20, 20, false);

drawArc

ClassName

Graphics

Purpose

Renders the arc of an oval’s wedge on the Graphics' display surface.

Syntax

public abgtract drawArc(int x, int y, int width, int height, int artAngle, int
acAngle);

Parameters
int x, inty, int width, int height

The dimensions of the rectangle bounding an ovd. The arc is taken as part of the
circumference of thisovd.

int startAngle

Measured in degrees, this defines the start of the arc. Zero degreesliesin the "3
o'clock” pogition.

int arcAngle

Measured in degrees, the distance of the arc around the ova. A postive vaue
indicates a counter-clockwise direction around the ova. Negative indicates
clockwise.

Description

Renders an arc of an ovad on the display surface. The ovd isdefined by a
bounding rectangle, and the arc is described by astarting and stopping anglein
degrees.

Imports

None.

Returns

None.
See Also
ThefillArc method of the Graphics class
Example
See the Nautilus example applet earlier in the chapter.

drawBytes

ClassName
Graphics
Purpose
Renders an array (or subarray) of bytesthat are interpreted as ASCII character
vaues, on the Graphics' display surface.
Syntax
public abstract void drawBytes(byte datd| |, int offset, int length, int x, int y);
Parameters
byte data]]
The array of byte data of ASCII characters to render on the display surface.
int offset
The zero-based index of the first character to render.
int length
The number of ASCII characters to render.
int x
The horizontal offsat from the origin to render the characters on the drawing
urface.
inty
The vertica offset of the basdine where the text isto be rendered. Thisis
measured from the current origin of the Graphics context.
Description
drawBytes renders text on the drawing surface taken from a subarray of an array
of bytes. The bytes are interpreted as 8-bit ASCI| character vaues. The current
font and drawing color of the Graphicsis used to render the text.
Imports
None.
Returns
None.
See Also
The drawString, drawChars, and setFont methods of the Graphics class
Example
public void paint(Gaphics g) {
/1 Initialize an array of bytes with ASCII| character
/1 val ues
byte[] ab = new byte[10];
ab[0] ‘G
ab[1] i
ab[2] ="1";

ab[3] ;
ab[4] = ‘i";
ab[5]
abl 6]
ab[7]

S o Q

/1 Render the ASCI| characters to the draw ng surface.
/1 Baseline is 20 pixels below the origin.
g. drawBytes(ab, 0, 8, 0, 20);

}

drawChars

ClassName
Graphics
Purpose
Renders an array of ASCII characters on the drawing surface. The array can bea
subarray of alarger set of characters.
Syntax
public abstract void drawCharg(char datd]], int offset, int length, int x, int y);
Parameters
char data[|
The array of ASCII characters to render on the display surface.
int offset
The zero-based index of the first character to render.
int length
The number of ASCII characters to render.
int x
The horizontal offset from the origin to render the characters on the drawing
surface.
inty
The verticd offset of the basdline where the text isto be rendered. Thisis
measured from the current origin of the Graphics context.
Description
drawChars renders text on the drawing surface taken from a subarray of an array
of characters. The array vaues are interpreted as ASCII character vaues. The
Graphics object’s current font and drawing color are used to render the characters
on the Graphics' display surface.
Imports
None.
Returns
None.
See Also
The drawBytes, drawString, and setFont methods of the Graphics class
Example
public void paint(Gaphics g) {
/1 Initialize an array of chars with ASCII| character

/1 val ues
char[] ac = new char[10];

ac[0]
ac[1]
ac[2]
ac[3]
ac[4]
ac[5]
ac[6]

[

/1 Render the ASCI| characters to the draw ng surface.
/1 Baseline is 20 pixels below the origin.
g. drawChars(ac, 0, 8, 0, 20);

}

drawl mage

ClassName
Graphics

Purpose
Renders an Image on the Graphics object’ s display surface.

Syntax
public abstract boolean drawlmage(Image img, int x, int y, ImageObserver
observer);
public abstract boolean drawlmage(image img, int X, int y, int width, int height,
ImageObserver observer);

Parameters

Image img
The Image object to be displayed.

intx,inty
The coordinate of the upper-l€eft corner of the image on the drawing surface

int width, int height
Using the second overloaded version of this method, you can specify the Size of
the target rectangle to copy the Image to. By using a different size than the
origind Image object, you can stretch/shrink the Image on the drawing surface.

I mageObserver observe
Notifies whether the image is complete or not. (See comments)

Description
The passed Image is copied to the drawing surface. The second overloaded
verson of this method alows you to stretchv/shrink the Image on the drawing
surface. The ImageObserver is notified about progress of copying the image to the
drawing surface. Thisis useful especidly if the Image object is created from a
URL pointing to a.GIF or other graphics-format on the network. If, for example,
the URL does not actudly point to an image, or to an incomplete imagefile, the
ImageObserver object is natified. Thisresultsin alittle more overhead in coding,
but the increase in coding resultsin more robust applets and gpplications. Note
that dl Components, including dl Applets, automaticaly implement the
ImageObsarver interface. The default implementation of this interface causes the
Component to be repainted whenever an update of the imageisread in.

Imports

None.

Returns
None.

See Also
The getimage method of the Applet class, the getimage method of the Toolkit
class, the ImageObserver interface; and the MediaTracker class

Example
This applet crestes an image from a URL initsinit implementation. In paint, that
image is rendered twice on the gpplet’ s display surface, once a the Image's

default size, and a second time stretched to fit the entire surface of the Applet.
public class MyAppl et extends Applet {
I mage _ing = null

/l Create the Image froma URL in init.
public void init() {

_img = getl mge(
new URL("http://ww. sanpl e. conf sanple.ing"));

}

/1 In paint, render the inage once stretched and once not
/1 stretched.
public void paint(Gaphics g) {

/1 Make sure _inmg is not null

if(null == _ing)
return;

/1 Render the inge stretched, using this Applet
/1 as the I mgeQCbserver.
g.drawi mage(_inmg, 0O, 0, size().wdth,

si ze().height, this);

/1 Render the inmage not stretched.
/'l Again, using this Applet as the |InageQbserver
g.drawli mage(0, 0, this);

drawLine

ClassName

Graphics
Purpose

Renders aline between two points on the Graphics object’ s display surface.
Syntax

public abgtract void drawLing(int X1, int y1, int X2, int y2);
Parameters
int x1

One endpoint of the line segment to render on the drawing surface.
intyl
int x2

Other endpoint of the line segment to render on the drawing surface.
inty2
Description
Renders aline between the two points on the drawing surface. The current
drawing color is used to render the line. Note that there is no way, usng the Java
AP, to specify lines with awidth greater than one pixd. To achieve wide lines,
you must render multiple sde-by-sde lines on the display surface.
Imports
None.
Returns
None.
Example
The example uses the current drawing color to render a 5x5 grid on the Graphics
clipping rectangle.
public void paint(Gaphics g) {
/1 Get the clipping rectangle and figure out grid
/1 cell width and height fromit.
Rect rectClip = g.getCipRect();

int cxCellWdth = rectCip.width / 5;
int cyCell Height = rectClip.height / 5;

/1 Draw the grid.
for(int ii=0; ii<=5; ii++)
for(int jj=0; jj<=5; jj++) {
g.drawLi ne(ii*cxCel Il Wdth, 0, ii*cxCell W dth,
si ze(). height);
g.drawLi ne(0, jj*cyCell Height, size().wdth,
jj*cyCel |l Hei ght);

}
drawOval

ClassName
Graphics
Purpose
Renders an ova defined by a bounding rectangle.
Syntax
public abgtract void drawOva(int x, int y, int width, int height);
Parameters
int x, inty, int width, int height
These parameters define the bounding rectangle of the ovd.
Description
Renders an ova on the display surface. The ovd is defined as being bound by the
four sides of the rectangle described by the input parameters to this method. The
color of theresulting ova isthe current drawing color of the Graphics object.
Imports
None.
Returns

None.
See Also

ThefillOva method of the Graphics class
Example

See the Ovals example gpplet earlier in this chapter.

drawPolygon

ClassName
Graphics
Purpose
Renders a polygon on the Graphics object’ s display surface.
Syntax
public abstract void drawPolygon(int xPointd], int yPointg], int nPoints);
public void drawPolygon(Polygon p);
Parameters
int xPointg |, int yPointg |
These two arrays describe an ordered set of points which define the vertices of a
polygon to be rendered on the drawing surface.
int nPoints
The number of vertices of the polygon to be rendered. Thisis aso the number of
elementsin both the xPointy | and yPointy | arrays.
Polygon p
A Polygon object which describes the polygon to be rendered on the drawing
surface
Description
Two overloaded versions of this method, both alow you to render amultisided
polygon on the drawing surface. The logic of the rendering agorithm
automaticaly coses the polygon by connecting the last point of the polygon to
the fird.
Imports
None.
Returns
None.
See Also
The fillPolygon method of the Graphics class; the Polygon class
Example
public void paint(Gaphics g) {
/1l Instantiate two arrays of coordinates with three
/1 values each, indicating the vertices of a triangle.
int[] acx = new int[3];
int[] acy = new int[3];

acx[0] =0 ; acy[0] =0 ; [/ the point (O, 0)
acx[1] = 10; acy[l] =0 ; [/ the point (10, 0)
acx[2] = 10; acy[2] = 10; [// the point (10, 10)

/1 Draw the polygon represented by these three points

g. dr awPol ygon(acx, acy, 3);
}

drawRect

ClassName
Graphics
Purpose
Renders a smple rectangle on the drawing surface.
Syntax
public abstract void drawRect(int X, int y, int width, int height);
Parameters
int x, inty, int width, int height
These parameters define the rectangle to be rendered on the drawing surface.
Description
Renders the rectangle defined by the four parameters on the Graphics display
surface. Use drawRect(rect.x, rect.y, rect.width-1, rect.height-2) to render the
outline of a particular Rect object. The rectangle is rendered using the Graphics
current drawing color.
Imports
None.
Returns
None.
See Also
The fillRect method of the Graphics class
Example
public void paint(Gaphics g) {
/1 Draw a 10x10 rectangle in the upper-left corner of

/1 drawi ng surface.
g.drawRect (0, 0, 10, 10);

drawRoundRect

ClassName
Graphics
Purpose
Renders a rectangle with rounded corners on the Graphics' display surface.
Syntax
public abstract void drawRoundRect(int x, int y, int width, int height, int
arcWidth, int arcHeight);
Parameters
int x, inty, int width, int height
These parameters define the rectangle to be rendered on the drawing surface.
int arcWidth, int arcHeight

These two parameters define the width and height of the arcs that are each of the
rounded corners. These number are both interpreted as the diameters of the arc at
the four corners. So the width and height of the arc at each corner are 1/2 of the
arcWidth and arcHelght parameters, respectively.

Description
Renders arectangle with rounded corners on the drawing surface. Through the
parameters to this method, both the width and height of the corner arcs can be
defined. The outline of the rectangle is rendered using the current drawing color
of the Graphics object.

Imports
None.

Returns
None.

See Also
The fillRoundRect method of the Graphics class

Example

public void paint(Gaphics g) {
/1 Draw a rounded rect around the circunference of this
/1 Component. Make the corners 5 pixels wi de and tall
/1 at the arc.
Di mensi on d = size();
dr awrRoundRect (0, 0, d.width-1, d.height-1, 10, 10);

}

drawString

ClassName
Graphics
Purpose
Renders a string of text on a drawing surface using the Graphics' current font
and drawing color.
Syntax
public abstract void drawString(String gtr, int X, int y);
Parameters
String str
String containing the text to be rendered on the drawing surface. The entire string
will be rendered. To render a substring of a String object, use either the
drawBytes or drawChars Graphics methods.
int x
The horizonta offset from the origin to render the String on the drawing surface.
inty
The verticdl offset of the basdline where the text isto be rendered. Thisis
mesasured from the current origin of the Graphics context.
Description
Draws the full String using the current font and drawing color. The left-most
point of the basdineisindicated by the x and y parameters.
Imports

None.
Returns
None.
See Also
The drawBytes, drawChars, and setFont methods of the Graphics class

fill3DRect

ClassName
Graphics
Purpose
Renders afilled, raised, or depressed rectangle on the Graphics' display surface.
Syntax
public void fill3DRect(int x, int y, int width, int height, boolean raised);
Parameters
int x, inty, int width, int height
These parameters define the dimengions of the rectangle to draw on the display
surface.
boolean raised
This parameter tells whether the beveling should imply araised or depressed
effect for the 3D rectangle.
Description
Renders arectangle with beveled edges to create a 3D visud effect. The beveling
can ether imply araised or depressed 3D rectangle. The shades of the beveling
are choosen based on the current drawing color of the Graphics object. The
darker shading will be roughly 70 percent as bright as the current drawing color.
The lighter color will be roughly 140 percent as bright as the current drawing
color. The beveing will be exactly one pixd wide. Theinside of the rectangle
will befilled usng the current drawing color of the Graphics object.
Imports
None.
Returns
None.
See Also
The draw3DRect and fillRect methods of the Graphics class

Example

public void paint(Gaphics g) {
/1 Draw a filled raised 3D rectangle, 20x20 in size
g.fill 3DRect (0, 0, 20, 20, true);
/1 Fill a depressed 3D rectangle of same di nensions
g.fill 3DRect (10, 10, 20, 20, false);

}
fillArc

ClassName
Graphics

Purpose
Renders awedge of an ova on the Grephics display surface.

Syntax
public abgtract fillArc(int X, int y, int width, int height, int gartAngle, int
arcAngle);

Parameters

int x,int width, int height
The dimensions of the rectangle bounding an oval. Thearcisawedge of int'y
thisovd.

int startAngle
Messured in degrees, this defines the start of the arc. O degreesliesin the "3
o' clock™ pogtion.

int arcAngle
Messured in degrees, the distance of the arc around the oval. A positive vaue
indicates a counter-clockwise direction around the oval. Negative vaue indicates
aclockwise direction.

Description
Draws awedge of an ovd. The ovd is defined by abounding rectangle, and the
wedge is described by a starting and stopping angle in degrees.

Imports
None.

Returns
None.

See Also
The drawArc method of the Graphics class

Example
See the Nautilus example Applet earlier in the chapter.

Previous [Table of Contents |Next

Products | Contact Us | About Us | Privacy | AdInfo | Home

Use of this site is subject to certain Terms & Conditions

fillOval

ClassName
Graphics
Purpose
Renders afilled ova defined by a bounding rectangle.
Syntax
public abgract void fillOva(int x, int y, int width, int height);
Parameters
int x, inty, int width
These parameters define the bounding rectangle of the ova to be rendered.

int height

Description
Renders afilled ova on the display surface. The oval is defined as being bound
by the four sides of the rectangle described by the input parametersto this
method. The color of the resulting ovd isthe current drawing color of the
Graphics object.

Imports
None.

Returns
None.

See Also
The drawOva method of the Graphics class

Example
See the Ovas example Applet earlier in this chapter.

fillPolygon

ClassName
Graphics

Purpose
Renders afilled polygon on the Graphics object’ s display surface.

Syntax
public abgtract void fillPolygon(int xPointd], int yPointq], int nPoints); public
void fillPolygon(Polygon p);

Parameters

int xPointg], int nPoints, int yPointg|]
These two arrays describe an ordered set of points which define the vertices of a
polygon to render on the drawing surface.
The number of vertices of the polygon to be rendered. Thisis aso the number of
elementsin both the xPointy] and yPoint] arrays.

Polygon p
A Polygon object which describes the polygon to render on the drawing surface.

Description
Two overloaded versons of this method both alow you to render amultisded
polygon on the drawing surface. The logic of the rendering agorithm
automaticaly coses the polygon by connecting the last point of the polygon to
the first. The odd-even filling dgorithm is used to fill polygons. So for complex
polygons, interna areas may or may not get filled. The generd rule of thumb is
that an areawill befilled if aline segment drawn from outside the polygon to the
areawithin the polygon crosses an odd number of the polygon’s line segments. If
an even number is crossed, then the areawill not be filled. For example, the center
of a pentagram would not get filled, while each of the five arms of the pentagram
would get filled.

Imports
None.

Returns

None.
See Also
The drawPolygon method of the Graphics class, the Polygon class

Example

public void paint(Gaphics g) {
/1l Instantiate two arrays of coordinates with three
/1 values each, indicating the vertices of a triangle.

int[1] acx = new int[3];
int[] acy = new int[3];
acx[0] =0 ; acy[0] =0 ; [/ the point (0, 0)
acx[1] = 10; acy[1l] =0 ; [/ the point (10, 0)
acx[2] = 10; acy[2] = 10; [// the point (10, 10)

/1 Draw the polygon represented by these three points
g.fill Polygon(acx, acy, 3);
}

fillRect

ClassName
Graphics
Purpose
Renders asmple filled rectangle on the drawing surface.
Syntax
public abstract void fillRect(int x, int y, int width, int height);
Parameters
int x, inty, int width, int height
These parameters define the rectangle to render on the drawing surface.
Description
Rendersthe filled rectangle described by the four parameters on the Graphics
display surface. Use drawRect(rect.x, rect.y, rect.width-1, rect.height-2) to render
aparticular Rect object. The rectangle is rendered using the Graphics' current
drawing color.
Imports
None.
Returns
None.
See Also
The drawRect method of the Graphics class

Example

public void paint(Gaphics g) {
/1 Draw a 10x10 rectangle in the upper-left corner of
/1 drawi ng surface.
g.fill Rect (0, 0, 10, 10);

}

fillRoundRect

ClassName
Graphics
Purpose
Renders afilled rectangle with rounded corners on the Graphics' display surface.
Syntax
public abgtract void fillRoundRect(int x, int y, int width, int height, int arcWidth,
int arcHeight);
Parameters
int x, inty, int width, int height
These parameters define the rectangle to render on the drawing surface.
int arcWidth, int arcHeight
These two parameters define the width and height of the arcs that are each of the
rounded corners. These numbers are both interpreted as the diameters of the arc at
the four corners. So the width and height of the arc at each corner is 1/2 of the
arcWidth and arcHeight parameters, respectively.
Description
Renders afilled rectangle with rounded corners on the drawing surface. Through
the parameters to this method, both the width and height of the corner arcs can be
defined. The rectangle is rendered using the current drawing color of the Graphics
object.
Imports
None.
Returns
None.
See Also
The drawRoundRect method of the Graphics class
Example
public void paint(Gaphics g) {
/1 Draw a rounded rect around the circunference of this
/1 Conmponent. Make the corners 5 pixels wide and tall
/1 at the arc.
Di mensi on d = size();
g.fill RoundRect (0, 0, d.width-1, d.height-1, 10, 10);

getClipRect

ClassName
Graphics
Purpose
Returns a Rect whose members are set to the origin and dimensions of the current
clipping rectangle for this Graphics object.
Syntax
public abstract Rectangle getClipRect();
Parameters
None.

Description
Allows you access to the dipping rectangle dimengons and placement, which is
one of the internd date variables of the Graphics object. Drawing operations are
only vaid within the dipping rectangle. Graphics-intensve gpplet or applications
are eadly optimized in the paint method by performing only those operations
vaid within the clipping rectangle. For example, an application which renderslots
of images to the drawing surface would see vast improvements in peed by only
drawing those images which overlap with the clipping rectangle, snce any
drawing outside the clipping rectangle is ignored anyway.

Imports
None.

Returns
A Rectangle object which represents the position and size of the dlipping
rectangle reative to the origin of the Graphics object.

See Also
The clipRect and creste methods of the Graphics class

Example
This paint method is responsible for rendering a 100x100 grid of Images on the
drawing surface. The method is optimized by only rendering those Images which
fdl within the Graphics dipping rectangle.

/1 Assume a 100x100 array of | mages has been initialized...

/1 each image is 10x10 pixels in size.

Image[][] _aaing = new | mage[100][100];

public void paint(Gaphics g) {

/1 get the clipping rectangle
Rect rectClip = g.getClipRect();

/1 only draw those i mages which overlap with the
/1 clipping rectangle.
int ii =rectCip.x/10 + (0 == rectdip.x%d0 ? 0 : 1);
int jj =rectClip.y/10 + (0 == rectdip.y%d0 ? 0 : 1);
int maxi = rectClip.width/10 +
(0 == rectClip.widthsd0o ? 0 : 1);
int maxj = rectClip.height/10 +
(0 == rectCip.heightvd0 ? 0 : 1);
for(; ii<=maxi ; ii++)
for(; jj<=maxj ; jj++)
/!l draw the ii-th, jj-th image, using
/1 this Conponent as the | mageCbserver.
g.drawl mage(_aaing[ii][jj], ii*10, jj*10,
this);
}

getColor

ClassName

Graphics
Purpose

Gets the current rendering color of the Graphics object.
Syntax

public abstract Color getColor();
Parameters
None.
Description
Accesses the current foreground color of the graphics object, which is one of the
internd state variables of the Graphics object. All graphica primitive and text
rendering operations are done using the foreground color.
Imports
java.awt.Color
Returns
A Color object containing the reaive RGB (Red/Green/Blue) vaues of the
current foreground color of the Graphics object.
See Also
The setColor method of the Graphics class, the Color class
Example
This example uses both getColor and setColor to modify the Graphics current

rendering color.
public void paint(Gaphics g) {

/1 Get current draw ng col or.
Color ¢ = g.getColor();

/'l Modify current color by switching red and bl ue
/1 col or val ues.

g. set Col or (new Col or(c.getBlue(), c.getG een,
c.getRed());

/1 Do drawing with the new col or.

}
getFont

ClassName
Graphics
Purpose
Gets the current font of the Graphics object.
Syntax
public abstract Font getFont();
Parameters
None.
Description
Accesses the current font of the Graphics object The current font is one of the
interna state variables defining the current state of a Graphics object. All text
rendering operations are done using the currentFont.
Imports
java.awt.Font
Returns
A Font object describing the current fort in use by the Graphics object.

See Also
The setFont method of the Graphics class; the Font class
Example
This example uses getFont and setFont to make the current font for rendering text

boldface.
public void paint(Gaphics g) {
/1 Get the current Font.
Fonr f = g.getFont();

/1 change the Font by meking a bol df ace version of it.
g. set Font (new Font (f. get Nane(),
f.getStyle() | Font.BOLD, f.getSize());

/1 Do sonmething with the new font...

}
getFontMetrics

ClassName
Graphics

Purpose
Returns a FontMetrics object for the Font and the display surface associated with
this Graphics object.

Syntax
public abstract FontM etrics getFontMetrics();
public abstract FontM etrics getFontM etrics(Font f);

Parameters

Font f
A specific Font to get a FontMetrics for. The resultant FontM etrics represents the
metrics of text rendered on the display surface associated with this Graphics
object using Font f.

Description
The same font can actualy render differently on different display surfaces,
especidly if those display surfaces represent very dissmilar graphicad devices. A
FontMetrics object describes how the font will render on a particular Graphics
object’ s digplay surface. Thefirst overloaded version of this method will generate
a FontMetrics describing how the Graphics object’ s current font, one of the
varigbles of the Graphic’sinternd state, will display on the drawing surface. The
other overloaded version allows you to passin a Font object.

Returns
A FontMetrics object describing how the specified font, defined by a Font object,
will be digplayed on the Graphic's drawing surface.

See Also
The getFont and setFont methods of the Graphics class

Example

public void paint(Gaphics g) {
/'l Get the FontMetrics for the current Font on
/1 g's display surface.

Font Metrics fm= g.getFontMetrics();

/! Display width of the string "G nger" to System out.
Systemout.println("Wdth of *Gnger’ is " +
fmstringWdth("G nger"));

scale

ClassName
Graphics

Purpose
Changes the scale of the X and Y axes of this Graphics object’ s coordinate
system.

Syntax
public abstract void scale(float xScae, float yScale);

Parameters

float xScale
The new ratio of physical device units of the display surfaceto logicd units of the
Graphics object in the horizontd direction.

float yScale
The new ratio of physical device units of the display surfaceto logica units of the
Graphics object in the vertica direction.

Description
This method dlows you to modify the ratio of physica device unitsto logica
device unitsin both the horizontal and verticdl directions. The scde of the
Graphics object is one of the internd state variables that can affect the appearance
of rendered geometric primitives, text, and images on the digplay surface.
The physical device units of adisplay surface are an aomic measure of the
smallest addressable surface e ement. For example, the physical device units of
the on-screen desktop are pixels. Pixels are dso the physica device unitsof
Image objectsin memory.
Changing the scale of a Graphics object attached to the on-screen desktop to, say,
two would mean that every pixd on the display surface was represented by two
logical units of the Graphics object. In that case, areference to the point (10,10) in
a Graphics method would actualy map to aphysica point 5 pixelsto theright
and 5 pixels below the origin on the screen.
Different graphica devices have different physical device units. The physicd
device units of alaser printer probably would be much smaler than those of a
dot-matrix printer.

Imports
None.

Returns

None.

setColor

ClassName
Graphics

Purpose
Modifies the current rendering color of this Graphics object.

Syntax
public abstract void setColor(Color c);

Parameters

Color c
A Color object containing the RGB (Red/Green/Blue) vaues of the color to use
for the new foreground color of the Graphics object.

Description
Changes the current foreground color used by the Graphics object when rendering
geometric primitives or text on the display surface. The current foreground color
isone of theinterna state variables that defines the current Sate of a Graphics
object.

Imports
None.

Returns
None.

See Also
The getColor method of the Graphics class; the Color class

Example
See the example for the getColor method of the Graphics class.

setFont

ClassName
Graphics

Purpose
Modifies the font used for rendering text by this Graphics object.

Syntax
public abstract void setFont(Font f);

Parameters

Font f
A Font object describing the font to use when rendering text on the display
surface using any of the Graphics class' text rendering methods.

Description
Changes the current font used by the Graphics object when rendering text on the
display surface. The current font is one of the interndl state variables that defines
the current state of a Graphics object.

Imports
None.

Returns

None.
See Also

The getFont method of the Graphics class; the Font class
Example

See the example for the getFont method of the Graphics class.

setPaintM ode

ClassName
Graphics

Purpose
Sets the painting mode of this Graphics object to "overwrite”, as opposed to XOR
mode.

Syntax
public abstract void setPaintM ode();

Parameters
None.

Description
Changes the current painting mode used by the Graphics object when rendering
geometric primitives or text on the display surface to "overwrite'. When using
this mode, al rendering overwrites the current display surface contents using the
current foreground color. The current painting mode is one of theinterna Seate
variables that defines the internd state of a Graphics object.

Imports
None.

Returns
None.

See Also
The setX ORmode method for the Graphics class

Example
This example uses both the overwrite and XOR painting modes in the same

custom paint method implementation.
public void paint(Gaphics g) {
/1 Make sure painting node is "overwite".
g. set Pai nti ngMode() ;

/1 draw a coupl e of boxes.
g.fill Rect (0, 0O, size().w dth, size().height);
g.drawRect (0, O, size().w dth-1, size().height-1);

/1 put Graphics into XOR node, using white as the
/1 alternate color.
g. set XORMbde(Col or.white);

/1 draw some nore boxes. Overlapping areas wll

/1 be shown as white.

g.fillrect(10, 10, size().w dth-20, size().height-20);
g. drawRoundRect (10, 10, size().w dth-20,

si ze(). hei ght-20, 10, 10);
}

setXORMode

ClassName
Graphics

Purpose
Changes the Graphics object’ s painting mode to XOR mode, as opposed to
overwrite mode.

Syntax
public abstract void setX ORM odeg(Color ¢);

Parameters

Color c
A Color object containing the RGB (Red/Green/Blue) values of the color to use
for the dternate to the foreground.

Description
Changes the current painting mode used by the Graphics object when rendering
geometric primitives or text on the display surfaceto "XOR" mode. In XOR
mode, the color vaue of apixd, after arendering operation, can be determined by

thisformula
outColor(x, y) = inColor(x, y) ? draw ngColor ? alternateCol or

where the ? symbol denotes the bitwise XOR operation.
Imports

None.
Returns

None.
See Also

The setPaintingMode method of the Graphics class
Example

Seethe Ovals Applet example earlier in this chapter.

Applet

Purpose
An embeddabl e interactive Componernt, suitable for embedding in World Wide
Web pages using specia HTML tags.

Syntax
public class Applet extends Pandl

Description
A Java Applet is an interactive Component specialy designed for use across the
World Wide Web. The Applet class defines methods for controlling the lifetime
of an Applet object, for which your gpplets provide custom implementations,
Each gpplet running in an applet-aware browser hasits own Thread, which uses
the Applet methods init, start, stop and destroy to control the gpplet’ s lifetime.
The Applet communicates with the browser through AppletContext and

AppletStub objects. Figure 1-8 illustrates the inheritance relaionship of the
Applet class.

Figure 1-8 Classdiagram of the Applet class

PackageName
java.applet
Imports
java.awt.*
Congtructors
None.
Parameters
None.

iISActive

ClassName
Applet
Purpose
Indicates whether or not the Applet has been started.
Syntax
public boolean isActive();
Parameters
None.
Description
Just before the Applet’s start method is called, the Applet is marked as "active'.
At that point, dl callsto this method return true. Before that time and just before
destroy is caled, the Applet is marked as not active.
Imports
None.
Returns
Trueisreturned if this method is cdled a any time from just before the Applet’s
gart method is caled to just before the Applet’ s destroy method is called.
Example
Check to see if Applet "Professor” is active.

Appl et appl et Prof =
get Appl et Cont ext (). get Appl et ("Professor");
if(null != appletProf)
i f(appletProf.isActive())
Systemout.println("Professor is active!");

getDocumentBase

ClassName
Applet
Purpose
Gets the URL for the document this Applet is embedded in.
Syntax
public URL getDocumentBas();
Parameters
None.
Description
The URL for the document this Applet is embedded in is returned. This method is
ashdlow wrapper around AppletStub.getDocumentBase, so if the AppletStub is
not implemented then, a cdl to this method will cause a NullPointerException to
be thrown.
Imports
java.net.URL
Returns
The URL pointing to the document this Applet is embedded in.
See Also
The getCodeBase method of the Applet class.
Example

Systemout.println("Doc base is: " + getDocumentBase());

getCodeBase

ClassName
Applet
Purpose
Getsthe URL for this Applet’s .CLASSfile.
Syntax
public URL getCodeBass();
Parameters
None.
Description
The URL for the this Applet’s .CLASSfileisreturned. This method isashdlow
wrapper around AppletStub.getCodeBase, so if the AppletStub is not
implemented, then acall to this method will cause a NullPointerException to be
thrown.
Imports
java.awt.URL
Returns
The URL pointing to this Applet’s .CLASSfile.
See Also
The getDocumentBase method of the Applet class

Example

Systemout.println("Code base is: " + getCodeBase());

getParameter

ClassName
Applet
Purpose
Gets the string value of aparticular Applet parameter.
Syntax
public String getParameter(String name);
Parameters
String name
Name of the parameter to retrieve. Thisisthe vaue of the "name" tag within the
HTML <PARAM> field which defines the Applet.
Description
This method returns one of the parametersto this Applet. Parameters are declared
between the <APPLET>..</APPLET> ddimitersin HTML files. The <PARAM>
tag has two possblefidds: "name"' and "vaue'. By indicating one of the valid
names for this Applet, the corresponding "vaue' fied string will be returned.
Imports
None.
Returns
The String associated with the parameter whose "name’ fidd vaue isthe name
parameter. If no such parameter exigts, then null is returned.
See Also
The getParameters method of the Applet class
Example

/'l Retrieve each of the Applet’s paranmeters and print
/1 all their val ues.
String[][] aastrParanms = getParameters();
for(int ii=0; ii<aastrParams.length ; ii++)
System out . println(aastrParans[ii],
get Paraneter (aastrParans[ii]));

getAppletContext

ClassName

Applet
Purpose

Retrieves the AppletConext for this Applet.
Syntax

public AppletContext getAppletContext();
Parameters

None.

Description
The AppletContext represents the browser this Applet is being displayed on. To
retrieve areference to an Applet’s AppletContext, use this method.

Imports
java.applet.AppletContext

Returns
A reference to this Applet’s AppletContext is returned. Note that if the Applet is
not ingtantiated within a proper browser, then this method will return null. Thet is,
if you have an gpplication which Smply creates an Applet instance, then that
Applet’s AppletContext will be null.

See Also
The getAppletStub method of the Applet class

Example
This example uses the AppletContext to get an array of dl the applets running
within the browser.

Enumer ati on e = get Appl et Cont ext (). get Appl ets();
/1 do sonething with each Applet in the Enuneration...

showStatus

ClassName
Applet

Purpose
Displays amessage on the browser’ s status bar.

Syntax
public void showStatus(String msg);

Parameters

String msg
Message to be displayed on the browser’ s status bar.

Description
Browsers generdly have a status bar below the main display window. Use this
method to place a message within that status bar. This method is a shalow
wrapper around AppletContext.showStatus. If the Applet is not created within the
context of a browser which implements AppletContext, then acall to this method
will throw a NullPointerException.

Imports
None.

Returns
None.

See Also
The showStatus method of the AppletContext class

Example

public void start() {
/1 Show nessage indicating the Applet was started...

showSt at us(" Appl et started!");

play

ClassName
Applet
Purpose
Downloads and plays an AudioClip from an audio datafile.
Syntax
public void play(URL url); public void play(URL url, String tr);
Parameters
URL url
URL or base of ardative URL to the audio datafile for the AudioClip you want
to play.
String str
Rdative URL to the URL you warnt to play.
Description
This method is asmple shorthand for getting an AudioClip and playing it. Use of
this method saves about three lines of explicit coding.
Imports
java.applet.AudioClip, java.net. URL
Returns
None.
See Also
The getAudioClip method of the Applet class, the AppletContext class, the
AudioClip interface
Example
This example reproduces the code of the ThemeMusicApplet, provided earlier in

this chapter.
i mport java. Appl et . *;

public class ThemeMisi cAppl et extends Applet {
Audi oCl i p audcli pThene;

public void init() {
/1 load the audio clip.
audcl i pTheme = get Audi oCl i p(get Docunent Base(),
"i mages/thenme. au");

/1l shrink display surface...never used.

resize(0, 0);
}

public void start() {
/1l start the audio | oop.

audcl i pThene. | oop();
}

public void stop() {
/'l halt the audio | oop.
audcl i pThene. st op();

}

public void destroy() {
/'l release the audio clip from nenory.
audcl i pTheme = nul |

}
}

init()

ClassName
Applet
Purpose
Cdled by the Applet’'s Thread to dlow it to initidize itsdf.
Syntax
public void init();
Parameters
None.
Description
Theinit() method is one of the four methods which define an Applet’ s action
during itslifetime. In your custom gpplet, implement this method to dlocate any
resources you will need for your gpplet to run. The init() method is called only
once, and always before thisfirst invocation of the gpplet’s start() method.
Imports
None.
Returns
None.
See Also
The start(), stop(), and destroy() methods of the Applet class
Example
See the project for this chapter, which makes extensve use of the Applet’ sinit(),
start(), stop(), and destroy() methods.

start()

ClassName
Applet
Purpose
Cadled by the Applet’s Thread to Sart it running.
Syntax
public void gart();
Parameters

None.
Description
The gtart() method is one of the four methods which define an Applet’ s action
during itslifetime. In your custom applet, implement this method to actualy
perform the gpplet’ s behavior. The start() method is potentially called severa
times during the lifetime of the applet. Each cal to sart() is matched by exactly
one subsequent cal to stop(), sometime in the future. A typical operation
performed in the start() method is kick-starting the applet’ s background Threads.
Imports
None.
Returns
None.
See Also
Theinit(), sop(), and destroy() methods of the Applet class
Example
See the project for this chapter, which makes extensve use of the Applet’sinit(),
sart(), stop(), and destroy() methods.

stop()

ClassName
Applet

Purpose
Called by the Applet’s Thread to stop it running.

Syntax
public void stop();

Parameters
None.

Description
The stop() method is one of the four methods which define an Applet’s action
during itslifetime. In your custom gpplet, implement this method to gracefully
shut down the applet. The stop() method is potentidly caled severd times during
the lifetime of the applet. Each cdl to stop() is matched by exactly one prior call
to sart(). Stop any background Threads from processing before returning from
your cusom implementation of this method.

Imports
None.

Returns
None.

See Also
The init(), start(), and destroy() methods of the Applet class

Example
See the project for this chapter, which makes extensive use of the Applet’ sinit(),
start(), stop(), and destroy() methods.

destroy()

ClassName
Applet

Purpose
Cadled by the Applet’s Thread to dlow it to perform find clean-up.

Syntax
public void destroy();

Parameters
None.

Description
The destroy() method is one of the four methods which define an applet’ s action
during itslifetime. In your custom agpplet, implement this method to dedllocate
any resources alocated during the applet’ s lifetime. The destroy() method is
caled exactly once, just before the Applet object is destroyed.

Imports
None.

Returns
None.

See Also
Theinit(), start(), and stop() methods of the Applet class

Example
See the project for this chapter, which makes extensive use of the Applet’ sinit(),
start(), stop(), and destroy() methods.

The Applet and Graphics Project: The Game of Life
Project Overview

The Applet and Graphics class project demonstrates a non-trivia applet, suitable for
embedding in a World Wide Web page and viewing with an applet-enabled Web
browser. This project illustrates animation using double- buffered screen updating to
minmize "flicker", and background Thread processing to create successive animation
images. Aswith severa of the Applet code samples provided in this chapter, the Life
gpplet uses custom implementations of the essentid Applet methods init(), start(), stop(),
and destroy() to manage resources and processing during the lifetime of the Life applet
object.

"The Game of Life" isasmple example of atificid life on the computer, introduced by
Conway in 1970. The "game" is played on agrid. Each cdl onthegrid is designated as
ather "dive' or "not-dive"’ (i.e., dead), termed the cdll’ s "gstate’. At each turn of the
game, the computer determines the state of each cell in the grid based on the state of the
cdl and its adjacent cellsin the previous turn. These are the rulesfor determining acdl’s
state:

* Andivecdl remansdivein the next turn if there are exactly two or three
adjacent dive cdls Thisistermed the "londlinessrule’.

* A dead cell becomesdivein the next turn if there are exactly three adjacent
dive cdls. Thisistermed the "reproduction rul€e".

» All other cdls, whether dive or dead, will be dead the next turn.

It isfun and interesting to watch this program build cdll colonies through turn-by-turn
goplication of the above rules. Huge clusters of cells can die out from over-population,
while small clugters of five or Six cdls can grow into mammoth cell structures. Figures 1-
9, 1-10, and 1-11 present screenshots from three successve turns, or "generations,” of a
particular run through the Game of Life usng the Life gpplet built in this project.

Figure 1-9 Turn or generation of the Game of Life

Figure 1-10 Turn or generation of the Game of Life

Figure1-11 Turn or generation of the Game of Life

Note that in the Life,java code, an underscore character * " is prepended to all class
member variables to digtinguish them from function names, loca varidbles, etc. Thisisto
improve the readability of the code.

Assembling the Project

1. Beginthefile named Lifejava by declaring the Life Applet with its necessary

member variables and object ingtances.

i mport java. applet.*;

i mport java.awt. G aphics;

i mport java.awt. | nage;

i mport java.awt.inage. | mageQbserver;
i mport java.awt . Col or;

i mport java.awt. Medi aTracker
i mport java.net. URL;

public class Life extends Appl et
| mgeCbserver {

/* State variables. */
boolean[][] _a2df GaneGid;
int _nGeneration;

bool ean _f GameGri dDi spl ayed,;
spl ayed?

Thread _threadNext Gen;

di

int _nxCells;
int _nyCells;

int _nxCell Pixels;
int _nyCell Pixels;
int _nxCell Origin;
int _nyCell Origin,;

int _nxPixels;
int _nyPixels;

| mage _imageAlive

| mage _i nageDead,;
alive"

| mge _i mage2ndSurf ace;
Graphics _gc2ndSurf ace;
buffering.

Medi aTr acker _medtrack
i mges.

/* Constants */
static final int DEF_XCELLS
static final int DEF_YCELLS

i npl enents Runnabl e,

/1l Stores current generation
/'l keeps track of turn #
/1l Has current grid been

/1 Cal cs next generation

/1l Gane
/1 Gane

/'l phys.
/'l phys.
/'l phys.
/'l phys.

grid width.
grid height.

wi dt h of each cell
hei ght of each cell
origin of cell 0,0.
origin of cell 0,0.

/1 Applet width in pixels.
/'l Applet height in pixels.

/1 Image to use for "alive"
cells.
/1 Image to use for "not-

cells.

/1 1mage for 2ble buffering.
/'l Graphics for 2ble

// To track alive and dead

100;
100;

2. ThelLifedass overiding implementation of imageUpdate prevents Life
Applet objects from repainting during construction of Images downloaded by the
Applet. Lifewill later explicitly handle repainting with a background Threed.

/* *kkkkkk*k

* imageUpdate() is called when the Alive and Dead cel

* images are being | oaded. An | mageCbserver-inpl enmenting
mages, which this applet class
* inmplements with this method.

* class is required to draw

* kkkkkkk */

publi c synchroni zed bool ean i mageUpdat e(
i nt width,

int nFlags, int x, int vy,
return true;

}

| mage i ng,
int height) {

3. Lifésinit implementation reads in the applet parameters, dlocates and fillsin
theinitia generation game grid, resizes the display area of the applet, and loads
the "dive' and "nat-dive' images
public void init() {
/*
** Retrieve the Game Grid di mensions

** (_nxCells x _nyCells). If not given,
** yse default Gane Gid size.

*/
try {
_nxCells = Integer. parsel nt(
get Paraneter("xCells"));
_nyCells = Integer. parselnt(

get Paraneter("yCells"));
} catch (Exception e) {
_nxCells = DEF_XCELLS;
_nyCells = DEF_YCELLS;
}

/*

** Retrieve the physical display size

** (_nxPixels x _nyPixels). If not given,

** use the Game Grid size (_nxCells x _nyCells).

*/
try {
_nxPi xel s = I nteger. parselnt(
get Paraneter("xPixels"));
_nyPi xel s = I nteger. parselnt(

get Paraneter("yPixels"));
} catch (Exception e) {
_nxPi xels = _nxCells;
_nyPixels = _nyCells;
}

/*
** Cal cul ate the physical cell size.
*/
_nxCel | Pixels = _nxPixels / _nxCells;
_nyCel | Pixels = _nyPixels / _nyCells;
_nxCellOrigin = (_nxPixels /[2) -
((_nxCellPixels * _nxCells) [2);
_nyCell Origin = (_nyPixels / 2) -
((_nyCellPixels * nyCells) [/ 2);

/*
** Create the initial Game Gid, and fill it
** with the initial pattern of cells.
** Note that setGaneGrid automatically repaints
** the applet.
*/

_fGameG i dDi spl ayed = fal se;

_a2df GaneGrid = placelnitial PatternToGri d(

createNewGanmeGri d(_nxCells, _nyCells),
_nxCells, _nyCells);
_nGeneration = 0;

/*
** Create the 2nd surface for doubl e-buffered
** draw ng.

*/
_imge2ndSurface = createl mge(_nxPixels, _nyPixels);
_gc2ndSurface = _i mage2ndSur f ace. get Graphi cs();

_gc2ndSur face. set Col or (Col or. bl ack);
_gc2ndSur f ace. set Pai nt Mode() ;

/*

** Create the nedia tracker, and start it |oading
** the alive and dead i nages.

*/

_medtrack = new Medi aTracker(this);

_medt rack. addl mage(get Ali vel mage(), 0);

if(null !'= getDeadl mage())
_medt rack. addl nage(get Deadl mage(), 1);
return;

}
4. Life'sdart method creates the Calc Thread, using this object’s run() method to
do the successive game grid generation.
public synchronized void start() {
/ *
** Create the Calc thread and start it running.
*/
_threadNext Gen = new Thread(this);
_threadNext Gen.start();
return;
} . . - -
5. The Cdc Thread, created and garted in Life's start() method implementation,
is made to hdt in stop(). The run() method (below) is written so that the Calc
Thread will stop running when the _threadNextGen member varidble is null. Note
that both the start() and stop() methods are synchronized to prevent smultaneous
execution by more than one Thread.
public synchronized void stop() {
/ *
** Renpove references to the Calc thread, which wll
** cause it to stop processing very soon. The
** resume wakes up the (potentially) suspended
** Cal c thread.
*/
Thread threadTenpRef = _threadNext Gen;
_threadNext Gen = nul |
t hreadTenpRef . resune();

return,;
}

6. LifesCac Thread, which calculates successve generations of the game grid,
executes the run() method. The Calc Thread drops out of the continuous loop
when _threadNextGen is st to null in Lifestop(). Once anew game grid is
created, Life' s sstGameGrid() method is called to update the display.
public void run() {

boolean[][] a2df NewGid = null;

int[1[1] a2dnSums = new int[_nxCells][_nyCells];

int nl;
int nJ;

/*
** Make sure the alive and dead i mages have
** peen | oaded before really doing anything
** in this thread.

*/
try {
_medtrack.waitForID(0); // the alive inmage
if(null !'= getDeadl mage())
_medtrack.waitForID(1); // the dead imge.

} catch (Exception e) {}

/*
** This continuous |oop generates iterative
** generations of Life.
*/
while(null !'= _threadNextGen) {
/*
** Allocate a new gane grid only if current
** game grid is using the | ast one we
** allocated, or if we never allocated one
** pefore here.
*/
if((null == a2dfNewGid) ||
(_a2dfGamreGrid == a2dfNewGid))
a2df NewGri d = createNewGanmeGid(_nxCells,

_nyCells);
/*
** Clear out the Sums grid for this iteration.
*/

for(nl=0 ; nl< nxCells ; nl++)
for(nJ=0 ; nJ< nyCells ; nJ++)
a2dnSunms[nl][nJ] = 0O;

/*
** To cal c next generation: run through current
** generation: for each "alive" cell, do this:

** Add 1 to the Sums grid of each adjacent cell
** Add 9 to the Sums grid of this cell
** When we're done, only cells with Sum of
** 3 (dead w 3 adjacent), 11 (alive w
** 2 adjacent), or 12 (alive w 3 adjacent)
** will be alive in the new grid.
*/
for(nl=0 ; nl< nxCells ; nl++)
for(nJ=0 ; nJ< nyCells ; nJ++)
if(_a2dfGmeGid] nl][nJ]) {
for(int nll=-1; nll<2; nll++)
if((0<=nl +nll) &&
(_nxCells >nl + nll))
for(int nJJ=-1; nJJ<2 ; nJJ++)
if((0<=nd +nd)) &&
(_nyCells >nd + ndJ))
a2dnSunms[nl+nll]

[nJ+ndJ] += 1;
a2dnSums[nl][nJ] += 8§;
}

for(nl=0 ; nl< nxCells ; nl++)
for(nJ=0 ; nJ< nyCells ; nJ++)
switch(a2dnSuns[nl J[nJ]) {
case 3:
case 11:
case 12:
a2df NewGrid[nl][nJ]
br eak;
defaul t:
a2df Newaid[nl][nJ] = fal se;
}

true;

/*

** Make sure the current gane grid

** has been displayed before updating

** the game grid with the next generation.

*/
while((! setGaneGid(a2dfNewGid)) &&
(null I'= _threadNextGen))
try {

_threadNext Gen. suspend(); // this thread
} catch (Exception e) {}
}

return;

}

7. Paint() is cadled by the Java system asynchronoudy whenever the Life Applet
must be updated on screen. This can be in response to an explicit cal to
Liferepaint() (done in sstGameGrid()), or in response to a windowing event such
asthe Life gpplet being scrolled off and then back on screen. Thisimplementation
of paint uses the current game grid to place multiple copies of the "dive' and
"not-dive' images to an in-memory Image. When the in-memory Image has been
updated, it is copied to the screen. The update() method is overriden to cal paint()
without doing anything dse.
public synchronized void paint (G aphics g) {

int nl;

int nJ;

/*
** Display the grid on the applet surface. This
** jnvolves just running through all the cells
** and placing the corrospondi ng i rage on the
** di splay surface,
*/
_gc2ndSurface.fill Rect(0, 0, _nxPixels, _nyPixels);

for(nl=0 ; nl< nxCells ; nl++)
for(nJ=0 ; nJ< nyCells ; nJ++)
if(_a2dfGmeGid] nl J[nJ])
_gc2ndSur face. drawl mage(get Al i vel mage(),
(nl * nxCellPixels) + nxCellOrigin
(nJ * nyCellPixels) + nyCellOrigin

this);
else if (null !'= getDeadl nage())
_gc2ndSur f ace. dr awl mage(get Deadl mage(),
(nl * _nxCellPixels) + _nxCell Origin,
(nJ * nyCellPixels) + _nyCell Origin,
this);
g.drawl mage(_i mage2ndSurface, 0, 0, this);

_fGameGri dDi spl ayed = true;

/*
** Use resune() to release the (potentially)
** gsuspended Cal c thread.
*/

_threadNext Gen. resune();

return,;

}

public void update(Graphics g) {
pai nt (g);

}
8. setGameGrid() is caled by the Cac Thread after it has completed calculating
the next generation. Thisis synchronized so paint(), start(), or stop() cannot be
entered while the current game grid is being updated.
private synchroni zed bool ean set GaneGri d(
if(! _fGameGidDisplayed)
return false;

try {
System arraycopy(a2dfGid, 0, _a2df GameGid,

0, _nxCells);
} catch(Exception e) {
_a2df GaneGid = a2df Gri d;

}

_fGameG i dDi spl ayed = fal se;
_nGenerati on++;
repaint();
return true;
}
9. Lifeimplements severd utility methods to make the code in the previous steps
more readable.
/* *kkkkk*kk
* createNewGanmeGid(x, y) allocates and returns a reference

* for a 2d array of bool eans.
*kkhkkkkhkkk*k */

private boolean[][] createNewGaneGid(int xCells, int yCells
) A
boolean[][] a2df NewGrid = new boolean[xCells][yCells];
return a2df New& i d;
}

/ *kkhkkkkk*k*k
placelnitial PatternToGrid(boolean[][]) will read in
the initial cell pattern fromthe three appl et

paranmeters "xStartPatternCells", "yStartPatternCells",

* % * %

* and "strStartPattern". The start pattern will be
* placed centered on the 2d array passed in.
* kkkkkkk */
private boolean[][] placelnitial PatternToGr i d(
boolean[][] a2dfGid, int nxGidCells,
int nyGidCells)

{

/*

** Get the dinmensions of the starting pattern.

** xStartPatternCells and yStartPatternCells

** are not optional parameters.

*/

int nxStartCells = Integer. parselnt(
get Paraneter("xStartPatternCells"));

int nyStartCells = Integer. parselnt(
get Paraneter("yStartPatternCells"));

/*

** Calculate the X and Y cell offsets to

** pegin placing the initial pattern on

** the grid.

*/

int nxPatternOifsetCells = (nxGridCells / 2) -
(nxStartCells / 2);

int nyPatternOifsetCells = (nyGidCells / 2) -
(nyStartCells / 2);

/*

** Retrieve the start pattern descriptive string.
*/
String strStartPattern =

get Paraneter("strStartPattern”);

/*

** For each cell in the starting pattern, update
** the corresponding grid cell.

*/

int iPatternString = 0;
for(int nl=0 ; nl<nxStartCells ; nl++)
for(int nJ=0 ; nJd<nyStartCells ; nJ++) {
int i Next0 = strStartPattern.indexOr(
'0', iPatternString);
int iNextl = strStartPattern.indexOr(
"1, iPatternString);

if((iNextO < iNextl) &&
(iNextO !'=-1))

i PatternString = i Next0 + 1;
else if(iNextl !=-1)
i PatternString = i Next1l + 1;

el se {
nl = nxStartCel | s;
nJ = nyStartCells;
conti nue;

}
a2df Gid[nl+nxPatternOifsetCells]

[nJ+nyPatternOffsetCells] =
(strStartPattern. charAt(
i PatternString - 1) ==

UK
}
return a2df Gri d;
}
/* *kkhkkkkkk*k
* get Alivel mage()
* get Deadl nage()
* These nethods are responsible for identifying and | oading
* the "alive" and "not-alive" cell imges. The alive immge
* is the only one required. The "url Ali vel rage" paraneter
* holds a relative URL to the "alive" cell imge, and the
* "url Deadl rage" paranmeter holds a relative URL to the
* "not-alive" cell inage.
*kkhkkkkhkkk*k */
private |Imge getAlivel mage() {
if(null == _imageAlive) {
URL url Al'i vel mmge = nul |
try {

url Ali vel mage = new URL(get Docunent Base(),
get Paraneter("url Alivel nage"));
} catch (Exception e) {}
_imageAl ive = getlmage(url Alivel mage);

}

return _i mageAlive

}

private | mge getDeadl mage() {
if(null == _inmageDead) {
i f(null == getParaneter("url Deadl mage"))
return null;

URL url Deadl mage = nul |
try {
ur |l Deadl mage = new URL(get Document Base(),
get Paranmeter("url AliveDead"));
} catch (Exception e) {}
_imageDead = getl nage(url Deadl mage);
}

return _i mageDead,;
} }
10. Enter the following HTML code into afile named EXAMPLELHTML inthe
same directory asLifejava:
<HTM>
<HEAD>
<TI TLE>Li fe Appl et Exanpl e</ Tl TLE>
</ HEAD>
<BODY>
<H1>Li fe Appl et Exanpl e</H1l>

Bel ow is the Gane of Life applet.

<HR>

<CENTER>

<APPLET CODE="Life.class" WDTH=300 HElI GHT=300>

<PARAM NAME="xPi xel s" VALUE="300">

<PARAM NAME="yPi xel s" VALUE="300">

<PARAM NAME="xCel | s" VALUE="30">

<PARAM NAME="yCel | s" VALUE="30">

<PARAM NAME="url| Al'i vel mage" VALUE="alive.gif">

<PARAM NAME="xSt art PatternCel | s" VALUE="10">

<PARAM NAME="ySt art PatternCel | s" VALUE="10">

<PARAM NAME="str Start Pattern"
VALUE="1111111100

1100000011
1100000011
1111111100
1111111100
1100000011
1100000011
1100000011
1111111100
1111111100">

</ APPLET>

</ CENTER>

<HR>

Here's the source

</ BODY>

</ HTM.>

How It Works

Table 1-5 lists the applet parameters, both required and optiona, used by the Life applét.

Table 1-5 Life gpplet parameter descriptions

Parameter Required Description
xCdls, yCdls Yes The number of columns and rows, respectively,
of the grid of cdllsto be displayed by the Life

applet.

XPixds, yPixels Yes The physica size of the applet’ s display surface
in pixds.

ulAlivelmage Yes A URL pointing to an image the applet isto use

to represent dive cdls.
urlDeadimage No A URL pointing to an image the applet isto use

to represent dead cells. If this parameter is not

provided, the applet displays nothing in dead

cdls.
xStartPattern Cdlls Yes The number of columns and rows, respectively,
and of theinitiad pattern of cdls described by the
yStartPatternCells strStartPattern parameter.
strStartPattern Yes A dring of "1" and "0" characters describing

theinitid gates of the grid of cdls. Thisstring
should have exactly (xStartPetternCells *

yStartPatternCells) "1" or "0" charactersinit.

All other charactersin the string are ignored.

The gring is interpreted as a left-to-right, top-

to-bottom ligt of cdl dates. Theinitid pattern
is centered on the Life grid automaticdly.

Three important techniques are used by the Game of Life applet:

* Double-buffering to ensure smooth visua trangtion between successvely
displayed frames.

* Overriding Component.update() to avoid "flicker".

» Background processing to generate successive animation frames.

Double-Buffered Rendering

Life s paint method has the respongbility of displaying agrid of MxN cdls. One way this
could be accomplished is by smply rendering each cdll on the applet’ s drawing surface is
anested for loop:

public void paint(Gaphics g) {
for(nl=0 ; nl<M; nl++) {
for(nJ=0 ; nJ<N ; nJ++) {
di splayCell (nl, nJ, g);
}

}

The big problem with this method of display isthat, especidly for large M and N, the
user will see each individua row of the display surface get updated. For lessjerky
animation, the successive frames should Smply "pop" onto the screen, fully rendered.
That’swhat "double-buffered rendering” does: It dlows you to update the display surface
al a once, ingtead of little-by-little.

In double-buffered rendering, an Image object is created in memory with the exact same
dimensions as the applet’ s display surface. All rendering is done to a Graphics object
attached to that in-memory Image object. When al rendering is completed, the Image

object is copied to the display surface dl a once. This has the practical effect of having
the on-screen diplay updated instantaneoudly, instead of little-by-little.

In the Life gpplet, an in-memory Image, _image2ndSurface, is created during init with
the same dimensions as the gpplet’ s display surface. A Graphics object, _gc2ndSurface,
is created attached to the in-memory Image, like this

public void init() {
...

_image2ndSurface = createlmge(_nxPixels, _nyPixels);
_gc2ndSurface = _i mage2ndSurface. creat eG aphi cs();
...

}

In paint(), the individud Life generaions (each generation is an animation frame) are
rendered to the _gc2ndSurface Graphics object. When the rendering is complete, the
entire _image2ndSurface is copied to the gpplet’ s display surface.

Overriding Update&()

As hinted earlier in this chapter, the Java runtime system will autometicaly erase an
applet’ s drawing surface before paint() is caled. For nonanimation sequences, this might
not be a bad thing to do, but for fast screen updating it can prove to be quite annoying to
look at. Between each two frames appears a brief "flicker" when the background is
erased. The code for the default implementation of Component.update, which is
responsible for the "flicker” problem, looks like this:

public void update(Gaphics g) {
...
g.fill Rect (0, O, width, height);
1.,

pai nt(g);
}

To reduce thisflicker problem, the Life gpplet implements its own update method to
override the default implementation it inherits from Component. The overriding
implementation does not cdl fillRect, so the background is not erased. The custom
implementation looks like this

public void update(Graphics g) {
pai nt (g);
}

Animation Techniques

Two different animation techniques are the oppaosite poles of a continuum of
implementations for animation in Java:

¢ Timediced animation

» Computed frame animation

The amplest animation technique using Java timedice animation, involves cregting a
background Thread to "timedice", or deep for some quanta of time before waking up and
repainting the drawing surface. Thisisthe "smplest” method because it involves the least
amount of coding. To implement this animation technique, you need:

» Anordered Vector or array of Image objects, each one aframeto display.

* A "current Image object” variable, which keepstrack of which frameis
currently being displayed.

A background Thread object which wakes up periodicdly, advances the
"current Image object” indicator to the next frame, and forces the applet to repaint
itsdlf.

The JDK includes a generic Animator gpplet which uses the timedicing technique to
perform animation Through its parameters, you can customize the Animator applet to
display any number of frames, in any order, and even sequence sound with each frame.

The drawback of this animation technique isthat it requires dl frames of the animation
sequence to have aready been rendered onto Image objects in memory. For applets or
gpplications which must compute and render each frame separately, such asthe Life
applet, the timedicing technique is inadequate. Life uses the "computed frame” technique
of animation.

The computed frame technique works by using a background Thread to compute
aufficient information to render each frame "on the fly". In a continuous loop, the
animation Thread computes a frame, and tdlls the drawing surface to display it, computes
aframe, digplaysit, etc. In thistechnique, the time between the display of each frameis
not necessarily congtant, as in timediced animation. Insteed, the time between successve
framesis dependent on how long it takes to compute and render each frame.

Itisin Lifeé srun method that each successve generation of the Life game is computed.
The actud computation involves keeping an accumulated sum for each cdll in the target
generation grid. For each generation, run adds vaues to this accumulator using these two
rules

* Oneisadded to the accumulator of each cdl adjacent to an "dive’ cdll.
* Nineisadded to the accumulator of each "dive" cell.

Basad on the rules of the Game of Life presented above, only cdls with an accumulated
vaue of 2, 3, or 12 will be dive in the next generation.

The most important aspect of the run method, however, is how it is sychronized with the
rendering. The synchronization is necessary to prevent anewly computed Life
generation, stored in a 2D grid of boolean vaues, from overwriting the grid currently
being rendered by the paint method.

It is conceivable under the computed frame technique for there to be a backlog of
unrendered frames. Thiswill occur if the time it takes the background Thread to compute
new framesis less than the time it takes to actualy render frames. In such acase, the
background Thread will generate more frames than can be rendered in the same amount
of time. Without proper synchronization, this could lead to frames being skipped, or other
problems.

The Life gpplet ensures these problems won't occur by synchronizing access to the

current generation grid. The background Thread will automaticaly suspend itsdf if it
attempts to overwrite the current generation grid before it has been rendered on the
drawing surface. A more sophigticated animation applet would utilize a synchronized
storage device for storing any backlog of unrendered grids.

Chapter 2
The Component Class

All visua dements of agraphicd interface have functionditiesin common. Top-leve
windows, visud controls such as text boxes and push buttons, aswell as smple dements
for drawing images on the screen have a commondity of cgpabilities. The Component
cdlass, which implements these common functiondities, is an ancestor classfor dl
graphicd interface dements.

In the Java system, al classes that implement graphica interface dements are subclasses
of the Component class. There are severd families of Component class methods, which
alow you to control theinterna state and on-screen appearance of al Components. They
cover the following areas of functiondlity:

» Component hierarchy. Components are placed on the screen within specia
Container components. Containers may be placed within other Containers, and so
on, forming an on-screen hierarchy of Components.

» Component pogitioning and Szing.

» Common Component states. All Components share abasic set of internd state
variables. The Component class implementation provides methods that alow
these gtate variables to be polled and modified.

* On-screen rendering.

* Ddivering and handling events. These include user, custom, and system events
such as mouse events, keyboard and keyboard focus events, and so on.

* Preparing and displaying images.

In addition to the Component classesincluded in the java.awt package, you can create
your own custorm Components. Y ou can create dmost any imaginable visud dement asa
custom Component. The Project for this chapter demonstrates the creetion of aredtively
smple cusom Component called a Hotspot.

Component Hierarchy

Each Component object instance is “owned by” a parent Component object. The on-
screen positioning of a Component isrestricted to being within the bounds of its parent
Component. More specificaly, the rectangle of actud diplay device pixels, or “bounding
rectangle,” dedicated to a particular Component is restricted to lying completely within
the bounding rectangle of its parent Component. Figure 2- 1 illustrates the hierarchy of
Components and Container components of asmple graphica user interface. The
graphica Component controls are contained within Containers, which are in turn
contained within the Frame window, another type of Container component. The Frame
window is atop-level window, and so does not have a parent Container.

Figure2-1 Component hierarchy of asmple diaog box

Components that can contain other Components are derived from the Container class.
There are severa areas of interest specific to the Container class. This chapter will cover
aminority of those topics as necessary to understand the Component class concept.

The getParent method provides a reference to the Container of any Component object:

Cont ai ner parent = myConponent. get Parent ();

Components that have not been placed within a parent Container, obvioudy, will not

have a parent Container object reference returned by getParent. For orphan Components,
aswell asfor top-leve Frame windows, anull will be returned by this method.
Components are placed within Containers using the add method of class Container. The
gpecifics of the overloaded versions of this method are discussed in Chapter 3. For
amplicity’s sake, you can assume that a cal to this method effectively sets the owner of
the Component object to the specific Container. Listing 2-1 adds a single push button (a
type of Component object) to the interface of an Applet (atype of Container object).

Listing 2-1 Adding a Component to a Container using the Container’ s add method

public class MyAppl et extands Applet {
public void init() {

add(“OK’, new Button(“OK"));

Component Positioning

All Component objects have arectangle of digplay areain which they render themsdves.
Thisrectangle is caled the Component’ s bounding rectangle. The sze of the
Component’ s bounding rectangle can be looked up using the Component’ s size method.
The resize method dlows you to modify these dimensions:

Di mensi on di mConp = myConponent . si ze();
myConponent . resi ze(di nConp. wi dth + 10, di mConp. hei ght + 10);

Note that the actual rectangle of screen red estate a Component is alowed to render itsalf
on is the intersection of the component’ s bounding rectangle with the parent Container’s
bounding rectangle (which is intersected with its parent’ s bounding rectangle, and so on).
Therefore, if a Component has been resized to be larger in dimension than its parent
Container, then the Component will be “clipped” on the screen according to its position
reative to its parent Container.

For the most part, the positioning of a Component object within its parent Container is
under the control of the Container’s LayoutManager object. Chapter 3 discusses how
Components are laid out within a Container by the LayoutManager object. A Component
object is pogitioned relative to the upper-left corner of its parent Container. The location
method returns the coordinates of a Component relative to the upper-left corner of its
parent Container. That is, the upper-Ieft corner of the parent Container is (0,0) for dl
Component positioning coordinates. The move method is caled to change the pogition of
a Component relative to its parent Container:

/1 Move nyConponent 10 pixels right and down.
Poi nt ptLoc = myComponent. | ocation();
myConponent . nove(ptLoc.x + 10, ptLoc.y + 10);

A Component’s bounding rectangle can be fully described by its position and

dimensions. The bounds method returns a Rectangle object whose x and y members
indicate the position of the Component, and whose width and height members describe
the dimensions of the bounding rectangle. The reshgpe method alows you to modify both
the position and dimensions of a Component’ s bounding rectangle. Listing 2-2
demondtrates the positioning methods for Components. It centers a Component relative to
its parent Container’ s bounding rectangle.

Listing 2-2 Centering a Component with respect to its parent’ s bounding rectangle
Conponent conp;

/1 ... Comp is set to be a reference to a Conponent ..

Rect angl e rect ConpBounds = conp. bounds() ;
Di mensi on di mParent = conp. getParent().size();

rect CompBounds. x = (dimParent.width / 2) -
(rect ConpBounds.width / 2);

rect CompBounds.y = (di mParent. height / 2) -
(rect ConpBounds. hei ght / 2);

conp. reshape(rect CompBounds. x, rect ConpBounds.y,
rect ConpBounds. wi dt h, rect ConpBounds. hei ght);

Common Component States

All basic visud dements such as push buttons, list boxes, and check boxes can either be
enabled or disabled. By default, Components are enabled, though they may be disabled.
Disabled Components generdly take on a*“hampered mode” look and fed, and are
generaly unreactive to user actions like mouse clicks or keyboard input. Figure 2-2
illustrates severa basic visua eements when enabled and disabled. The disable method
disables a Component object, and enable forces a Component to be enabled. The
isEnabled method returns a boolean true or fase, indicating whether the Component is
currently enabled.

Figure 2-2 Enabled and disabled Button, List, and Choice objects

Components can dso be hidden or visble. By default, Components when created are
vishle, but they can be hidden using hide. A hidden Component is effectively removed
from the visud interface, as are dl of that object’s child Components. The Component
positioning and other internd state member methods act exactly the samefor a
Component whether the Component is hidden or visible. The show method forces a
Component to be visble. The Component’ sisVisible method returns a boolean true or
fdse, indicating whether the Component is currently visible. Hiding a Component can be
an effective method for removing ingppropriate visuad éements from the grephica
interface.

The isShowing method tells you whether or not a Component has any display surface red
edtate assgned to it. That is, isShowing returns true only if the Component is visble, and
is positioned such that its bounding rectangle intersected with its parent’ s bounding
rectangle is nornnull.

A Component can aso be marked asvdid or invaid. The sate of the vaidation flag
indicates whether or not the Component must be laid out using the Component’ s layout
method. The default implementation of this method actually does nothing. However, the
Container class overrides the layout method to actudly arrange any child Componentson
the screen.

Use theinvdidate method to mark the Component asinvdid. The vaidate method will
cdl layout if the state of the Component isinvdid (i.e, invalidate was called prior to the
cdl to vaidate). If the Component has not been marked asinvdid, then validate returns
without doing anything.

On-Screen Rendering

All the basic visud Components, such as list boxes and push buttons, are able to render
themselves on the screen. Y ou can dso create custom controls such as gas gauges, spin
dids, or just about any visud dement imaginable. The SuperBible project for this chapter
illugtrates the creetion of just such a custom control. Y our custom controls, however,
must render themselves. To actudly render custom controls you must re-implement one
or more Component class methods.

The central method used to render a Component on the screen is paint. The paint method
is passed a Graphics object attached to the display device, and clipped to the bounding
rectangle of the Component. (Chapter 1, Applets and Graphics, discussed the Graphics
classin detail and how Graphics objects are used to paint on adrawing surface.)) The
smplest custom Component classes re-implement this method to render the Component
in the graphicd interface. Lidting 2-3 shows atrivid custom paint method

implementation that smply draws afilled ova within the Component’ s bounding
rectangle.

Listing 2-3 A smple cusom Component

cl ass MyConmponent extends Canvas {

publ i ¢ MyConponent () {
super () ;

public void paint(Gaphics g) {
g.fillOval (bounds());
}

}

Note that the custom Component class MyComponent actudly is derived from the
Canvas class. Y ou cannot derive a class from the Component class directly, since the
Component class has no public congtructors. Generdly, you will create custom
Component classes, which are derived from the Canvas class, since the Canvas classis
the smplest Component with a public congtructor.

The Java system cdls a Component’ s paint method asynchronoudy whenever it
determines a Component object must be re-drawn on the display surface. Thiscdl is
performed by a Thread created and controlled by the Java system. The Java system
manages the Graphics object passed to paint directly because graphica device contexts
are alimited resource in most graphica operating systems. Y ou must not cal paint
directly. To force arepainting of a Component object, use the Component’s repaint
method. Usng this method, you can schedule arepainting of the Component within a
gpecific time period, and you can aso redtrict the repainting to a subset of the the

Component’ s full bounding rectangle. There are four overloaded versons of the repaint
method:

repaint();

repaint(IMIlisecs);

repaint(x, y, wdth, height);
repaint(IMIlisecs, x, y, width, height);

The two versions, which do not specify atime limit, indruct the Java runtime system to
schedule a repainting of the Component at some time in the future. The Java system may
not schedule arepainting for ten minutes, or the repainting could happen ingtantaneoudly.
Repainting is areatively low-priority operation, so the sysem waits until thereisalull in
processing to actudly perform the repainting. Using one of the two versions of the

repaint method that take a lMillisecs parameter, you can specify a maximum number of
milliseconds the Java system can wait before forcing arepainting of your Component
object.

The repaint method ingtructs the Java runtime system to schedule an asynchronous cal to
Component.update. The update method is respongible for caling paint. The default
implementation of update erases the entire drawing surface of the Component object
using the Component’ s background Color, then selects the Component’ s foreground
Color into the Graphics object before cdling paint. Figure 2-3 illustrates how Component
rendering is accomplished through the three cooperating methods. paint, repaint, and
update. Y ou can see that the only method a custom Component needs to re-implement is
paint. Re-implementing the update method can be quite useful, especialy when

animation techniques are used. A discussion of animation techniques and the update
method isincluded in Chapter 1.

Figure 2-3 Cooperative methods paint, repaint, and update used to keep on-screen
rendering of a Component up-to-date

Delivering and Handling Events

An event, in Javalingo, is an object that describes some specific occurrencein the
system. For example, there are severd types of mouse events to describe a user’s mouse
actions. There are also several types of keyboard events to describe user keyboard
interactions. Event objects are created by the Java runtime system whenever a specific
occurrence is detected, and these Event objects are delivered to specific Components
through the Component class Event delivery and handling methods.

The Component class Event delivery methods implement a system whereby Events are
passed from a Component to its parent Container, to that object’s parent Container, and
S0 on until the event is*handled.”

The ddivery system can best beillustrated through an example. Figure 2-4 isa

screenghot of avery smple user interface in an Applet run within the JDK’s
AppletViewer. Thisinterface is comprised of the Applet object itsdlf, and a Button object
with the caption OK. Imagine the user clicks on the OK Buitton. This causes an Event
object of type ACTION_EVENT to be generated by the Java system and delivered to the
OK Button. Button objects, by default implementation, do not handle this type of Event,
and s0 the Event is further ddivered to the Button's Container—the Applet object. The
Applet object may or may not handle this Event. If not, the Event will further be

delivered to the Applet’s Container, and so on until either the Event is handled or atop-
level Container is reached.

Figure2-4 A very smple Applet interface

Ddivering an Event to a Component is done using the Component’ s postEvent method.
The Java runtime system delivers mouse, keyboard, or other Events to a specific
Component using this method.

Y ou can aso create your own custom Events (objects derived from the Event class) and
deliver them to Components usng asmilar mechanism. Instead of calling the postEvent
method directly, cal Component.ddiverEvent. The default implementation of
deliverEvent takes the Event and passesiit to postEvent. Thus, the deafult implementation
of ddiverEvent isasmple wrapper for postEvent.

The postEvent method is respongible for finding an object to handle each Event it is
passed. postEvent offers the Event to three different objects. If no object handlesthe
Event, postEvent returns benignly and the Event is forgotten. The three objects postEvent
offers each event to are (in order)

» The Component’s peer, through peer.handleEvent
» The Component itself, through thishandleEvent
» The Component’s parent Container, through parent.postEvent

The handleEvent method returns a boolean true or fase vaue, indicating whether or not
the Event was handled. This pseudo-code in Ligting 2-4 illudrates the smple agorithm
used by postEvent to find an object to handle each event passed to a particular
Component.

Listing 2-4 Pseudo-code for postEvent

bool ean met hod post Event (Event evt):

1. if peer.handl eEvent(evt) == true, return true.
2. if this.handl eEvent(evt) == true, return true.
3. if parent.postEvent(evt) == true, return true.

4. return false.
end nmet hod post Event

The default implementation of handleEvent is a giant switch satement. Each Event is
classfied according to the type of Event, and an gppropriate Component class handling
method is called. For example, the Component class method mouseDown is caled by the
default implementation of handleEvent whenever aMOUSE_DOWN Event occurs. The
summary section on the next page details dl the Component dass Event handling
methods. Custom Component implementations should override these methods to handle

specific types of Events.
Preparing Images for Display

Before an Image object can be rendered onto any drawing surface, a representation of the
Image suitable for painting on that surface must be constructed by the Java system. The
congtruction is an asynchronous process carried out by the Java system because this
process may include downloading of Image data from aremote server. (Downloading of
any kind of datais aways an asynchronous operation.) The Component class includes
methods to manage the Image construction process so that any Component object may

prepare and display Images.

The Image congtruction processis started by acdl to the Component’ s preparel mage
method. The Image object to prepare is passed as a parameter to this function. To receive
asynchronous notification of the progress of Image construction, an object must

implement aspecid interface cdled java.awt.image.l mageObserver. The
ImageObserver’ simagelUpdate method, the only method defined by the ImageObserver
interface, is caled by the Java system automaticaly as the Image object congtruction
process proceeds.

An implementation of imageUpdate is included in the Component dlass, so any
Component object may be used as an ImageObserver. The default implementation of this
method schedules an asynchronous repainting of the Component when the Image has
been prepared sufficiently to display. The code snippet in Listing 2-5 illugtrates how any
Component can prepare an Image for display.

Listing 2-5 Preparing an Image for display

cl ass MyComponent extends Conponent {
| mage _iny;

/'l set the ing variable to a reference to an | nage obj ect
/1 in the object’s constructor.

public void myPrepareMet hod() {
preparel mage(_i ng, this);
}

/'l This re-inplenentation of Conponent.imgeUpdate() detects
/'l when an | nmage has been fully prepared for rendering.
public void i mageUpdate(lmage ing, int flags, int x, int vy,
int width, int height) {
super.imageUpdate(inmg, flags, x, y, width, height);
if(flags & | nageObserver. ALLBI TS)
Systemout.println(“lmage is conpletely prepared.”);

Summary of the Component M ethods

Table 2-1 ligs al the methods of the Component class, and provides a brief description of
each. The methods are broken down by functiona grouping rather than aphabeticaly.

Table 2-1 Summary of Component methods

Group Method Description

Event Handlers action HandlesACTION_EVENT Events. Button
pushes and menu bar sdections are two types
of user interactions.

lostFocus Handles LOST_FOCUS Events. The keyboard
focus has been removed from this Component,
as when the user hits the T2Elkey in adidog.

gotFocus Handles GOT_FOCUS Events. The keyboard
focus has been moved to this Component, as
when the user hits theT2Elkey in adidog.

keyDown Handles KEY_DOWN Events. For the
Component with keyboard focus, each keypress
by the user creates such an Event.
keyUp Handles KEY _RELEASE Events. For the

Component with the keyboard focus, each time
akey isreleased such an Event is created.

mouseDown Handles MOUSE_DOWN Events. The user has
clicked the mouse button within the
Component’ s bounding rectangle.

mouseDrag HandlesMOUSE _DRAG Events. The user has

mouseEnter

mouseExit

mouseMove

Sze and Postion bounds

indde

locate

location

move

resze

Sze

minimumSze

preferredSize

moved the mouse with the mouse button held
down.

HandlesMOUSE_ENTER Events. The mouse
cursor has been moved from outside the
Component’ s bounding rectangle to within it.

HandlesMOUSE _EXIT Events. The mouse
cursor has been moved from within the
Component’ s bounding rectangle to outsideit.

HandlesMOUSE_MOVE Events. The mouse
has been moved without the mouse button
being held down.

Returns a Rectangle object whose x and y
members indicate the position of the upper-|eft
corner of the Component relative to the origin

of the parent Container’ s origin. The
Rectangle' s width and height members hold the
Component’s dimensions.

Tellswhether or not aparticular point lies

within the Component’ s bounding rectangle.

Returns a reference to the Component or
subComponent that contains the indicated
point.

Returns a Point object whose X and y members
indicate the position of the Component’ s upper-
left corner relative to the parent Container’s
origin.

Moves the upper-left corner of the Component
to the indicated point relative to the parent
Container’ s origin.

Changes the dimensions of the Comporent
object’s bounding rectangle.

Returns a Dimenson object whose width and
height membersindicate the Size of the

Component’ s bounding rectangle.

Changes the Component’ s position and
dimensonsinasnglecdl. Themoveand
resize methods are actually wrappers around
this method.

Ovaerride this method to specify the smallest
Sze aparent Container should dedicate to this
Component.

Override this method to specify the preferred

Visud State

Graphics State

isvdid

invdidate
vdidate
isvVishle
show
hide
isShowing
isEnabled

enable
dissble
getForeground

setForeground

getBackground

setBackground
getFont
setFont
getColorMode
getGraphics

getFontMetrics

Size aparent container should dedicate to this
Component.

Indicates whether or not the Component has
been marked as valid.

Marks the Component as invaid.

If the Component isinvaid, cdls layout before
resetting the valid flag to valid.

Indicates whether or not the Component is
currently marked asvisble.

Makes the Component visible.
Makes the Component invisible.

Returns true only if the Component isvishble
and owns some rectangle of the desktop.

Indicates whether or not the Component is
enabled.

Enables the Component.
Disables the Component.

Gets the Color object for the Component’s
foreground color. The Graphics passed to paint
uses this color as its current foreground color.
Uses parent’ s foreground if Component’ s color
has not been set using setForeground.

Sets the current drawing color for the Graphics
passed to paint.

Getsthe color used to erase the Component in
update. Returns parent’ s background color if
Component’ s background has not been set
using satBackground.

Sets the color used by update to erase the
Component.

Returns the Font used to render text in paint.
Parent’ s Font is returned if font has not been set
by setFont.

Sets the Font used to display text in paint.

Returns the color model used by the desktop to
display the Component.

Returns a Graphics object attached to this
Component’ s or+screen rectangle.

Returns a FontMetrics detalling the
Component’s Font (what is returned from

getFont) as rendered to the Graphics display
surface.

Component

Purpose
Abstracts dl window components. Functiondities common to dl such
components are implemented in the Component class.

Syntax
public abstract class Component implements ImageObserver;

Description
An abgiract windowing component. All Components have a bounding rectangle of
on-screen space in which to render themsalves. Java has severa predefined
Component classes, such as a TextField, a Checkbox, or a Frame. The Component
class implements methods for Event handling and management of an on-screen
bounding rectangle. Figure 2-5 is an inheritance diagram for the Component class.

Figure 2-5 Inheritance diagram of the Component class

PackageName
java.awt

Imports
java.io.PrintStream,java.awt.peer.ComponentPeer,
java.awt.image.lmageObserver, java.awt.image.lmageProducer,
java.awt.image.ColorModel

Condtructors
None.

Parameters
None.

action

ClassName

Component
Purpose

Event handler for ACTION_EVENT Events.
Syntax

public boolean action(Event evt, Object arg);
Parameters
Event evt

The ACTION_EVENT Evert object.

Object arg
Argument attached to the Event object evt. Thisisidentica to the arg member of
evt.

Description
Cdled by the default implementation of handleEvent whenever an
ACTION_EVENT is sent to the Component object. Action events include
selection of amenu item and pressing a button. Override the default
implementation of this method to make your Component react to action events.

Imports
None.

Returns
Returnstrue if the action event is handled by this Component object. A return
vaue of fase causes the Event to be automatically sent to the parent Container of
this Component. The default implementation Smply returnsfase.

See Also
The handleEvent method of the Component class

Example
Thefollowing example dternatively disables and enables a Go button whenever
the Example button is pressed. The action method' s arg in this case is the String

title of the button that was pressed.
public class MyContainer extends Panel {
Button buttonGo = new Button(“Go");
public MyContainer() {
add(buttonCo) ;
add(new Button(“Exanple”));
}

action(Event evt, Object arg) {
if(!(arg instanceof String))
return false;

if(((String)arg).equal s(“Exanple”))
i f(buttonGo.isEnabled())
but t onGo. di sabl e();
el se
but t onGo. enabl e() ;

}
bounds

ClassName
Component
Purpose
Gets the bounding rectangle for this Component.
Syntax
public Rectangle bounds();
Parameters
None.

Description
This method gets a Rectangle object whose x and y members are set to the
coordinates of the upper-left corner of the Component, relative to the origin of the
parent Container. The width and height members of the Rectangle are set to the
dimensions of the Component.
Imports
None.
Returns
A Rectangle object describing the bounding rectangle of this Component object is
returned. The vaues expressed are relative to the origin of the parent Container
object. The x and y members describe the upper-Ieft corner of the Component.
See Also
The java.awt.Rectangle class
Example
The following example calculates and writes out the exact coordinates of the

lower-right corner of the Component rectangle.
public class MyConponent extends Component {

public void outputLower Ri ght Coords() {
Rectangl e r = bounds();
Systemout.printin(new Point(r.x + r.wdth,
r.y + r.height));
return;

}
checkl mage

ClassName
Component
Purpose
To check the tatus of congtruction of an Image.
Syntax
public int checklmage(lmage img, ImageObserver observer); public int
checklmage(Image img, int width, int height, ImageObserver observer);
Parameters
Image img
The Image object whose tatus is to be checked.
int width
The scaled size of the image representation being checked.
int height
I mageObserver observer
An ImageObserver object currently being notified of the progress of congtruction
of the Image object.
Description

Checks the gtatus of the congtruction of an Image object. The second overloaded
version of this method checks the construction of a scaled representation of the
Image object.

Imports
None.

Returns
A logica ORing of the ImageObserver flags indicating what information about
the Image is available. This can include one or more of the following
ImageObserver vaues. WIDTH, HEIGHT, PROPERTIES, SOMEBITS,
FRAMEBITS, ALLBITS, ERROR.

See Also
The ImageObsearver interface

Example
This example prevents the Component from painting its suface until the Image
congtruction flag ALLBITS has been passad to the ImageObserver watching the
image construction process.

public MyConmponent extends Canvas {

| mge _inyg;

/'l Constructor takes an |Imge paraneter and begins
/1 construction of it.
publi ¢ MyConponent (I mage inmg) {
_img = ing;
preparel mage(_ing, this); // using this Conponent
/1 as the I mgeQObserver.

}

/1 paint does nothing until inage has been
/1 fully constructed.
public void paint(Gaphics g) {
if(0 == (I mageCbserver. ALLBI TS &
checkl mage(_ing, this)))
return;

/1 Do sonething with the inmage

createl mage

ClassName
Component

Purpose
Creates an inrmemory Image with a specified width and height, or from the output
of an ImageProducer object.

Syntax
public Image createlmage(int X, int y); public Image createl mage(lmageProducer
producer);

Parameters

int x
The width and height of the resultant Image object.

inty

I mageProducer producer
The ImageProducer object which will provide the data that defines the resultant
Image.

Description
Creates an Image object of the specified width and height. This Imageis suitable
for drawing on for double-buffered screen updating. (See Chapter 1's discussion
of double-buffered updating.) The resultant Image will have a compatible
ColorModd to the digplay device associated with this Component object. The
second overloaded version of this method creates the Image using data from the
ImageProducer.

Imports
java.awt.image.lmageProducer

Returns
An Image object. The Image has not been constructed yet. Use
Component.preparel mage() to begin construction of a screen representation of the
Image.

See Also
The ImageProducer class

Example
This example creates an in-memory Image, draws on it, and then renders the

entirein-memory Image to the Component’s display surface.

public void paint(Gaphics g) {

| mage i ngTenp = createl mage(si ze().w dth,

si ze(). height);
Graphics gTenp = i ngTenp. get Graphi cs();
for(int ii=0; ii<10 ; ii++)
gTenp. drawLi ne(0, 0, size().width / ii,
si ze(). height);
g. drawl mage(i ngTenmp, 0, 0, this); // Use this Conponent
/1 as the ImageCbserver.

}
ddiver Event

ClassName
Component
Purpose
Cadled within your Java code to ddiver an Event to any Component object. The
Java system uses a different mechanism to deliver user-generated Events.
Syntax
public void deliverEvent(Event evt);
Parameters
Event evt
The Event object to deliver to this Component.

Description
Delivers an Event object to this Component. The default implementation smply
cdls postEvent. To send a custom Event to a Component object, use the
Component’ s deliverEvent method. This ensures the Event will automaticaly be
routed to the Component’s Container if the Component does not handle the Event.
The Java system uses a different mechanism to deliver user-generated Eventsto a
Component. That mechanism involves calling the Component’ s postEvent
method directly using a specid cdlback Thread, without usng ddiverEvent.
Imports
java.awt.Event
Returns
None.
See Also
The Event class
Example
This example delivers a cusom Event object to a Component. The Component

has been given a custom handleEvent to handle the custom Event type.
public class MyEvent extends Event {
public static final MY_EVENT_ID = 5000; // any val ue
publi c MyEvent (Conponent target, Object arg) {
super(target, MY_EVENT_ID, arg);
}

}

public class MyClass {
Conponent _c;

public MyCl ass(Conponent c) {
_C = c;
}

public deliverEvent (Cbject arg) {
c.deliverEvent (new MyEvent(c, arg));
}

}
disable

ClassName
Component
Purpose
Disables a Component, which prevents ddivery of user-interaction Eventsto the
Component.
Syntax
public void disabl();
Parameters
None.
Imports
None.
Description

Disables the component. The Component’s peer is dso disabled as aresult of
calling this method. Predefined Components, such as Buttons or Labdls, take on a
grayed outlook when they are disabled. All Components, either predefined or
custom ones, no longer receive user-interaction events once they are disabled.
Returns
None.
Example
See the example for the action method of the Component class.

enable

ClassName
Component

Purpose
Enables or disables the Component.

Syntax
public void enable(); public void enable(boolean fEnabled);

Parameters

boolean fEnabled
If true, the Component is enabled. If false, the Component is disabled.

Imports
None.

Description
Enables the Component. The Component’s peer is aso enabled as aresult of
cdling this method. The second overloaded version will enable or dissble the
Component according to the boolean value passed. A disabled Component no
longer receives user-generated Events, such as mouse or keyboard Events.
Predefined Components, such as Buttons or Labels, take on agrayed out look to
denote to the user that they are disabled. Enabled Components receive al user-
generated Events.

Returns
None.

Example
See the example for the action method of the Component class.

getBackground

ClassName
Component
Purpose
Gets this Component’s current background color.
Syntax
public Color getBackground()
Parameters
None.
Imports

java.awt.Color
Description
Gets the background Color object that is automaticaly applied to Graphics
objects passed to the paint method.
See Also
The Color class; the getForeground, setForeground, and setBackground methods
of the Component class
Example
This example code snippet demondirates the default implementation of the update
method of the Component class. The only reference to a Component’s
background color within the Java APl is within update, which usesthe
background color to erase the Component’s entire display surface.
public void update(G aphics g) {
g. set Col or (get Background());
g.fillRect (0, 0, size().width, size().height);
g. set Col or (get Foreground());
pai nt (9g);

getColorModed

ClassName
Component

Purpose
Gets the ColorMode for the display surface attached to this Component object.

Syntax
public ColorModd getColorModel();

Imports
java.awt.ColorModel

Description
Gets the ColorModd for the display surface attached to this Component object. A
ColorModd provides methods for converting pixe vaues to red, green, blue, and
apha color component vaues. In Java 1.0, this method returns an
IndexedColorMode, from which you can get the current paette for the system’s
desktop.

Returns
A ColorModd that encapsulates methods for converting pixe vauesto red,
green,blue, and dpha color components when displayed on the Component’s
display surface.

See Also
The ColorModd class

Example
This example digplays the number of bits/pixd for the Component’s display
surface.

public MyAppl et extends Applet {
Button buttonEx = new Button(“Example”);

public MyApplet() {}

public void init() {
add(butt onEx) ;

}

public void start() {
System out . printl n(buttonEx. get Col or Model (). get Pi xel Si ze());
}

}
getFont

ClassName
Component

Purpose
Gets the Font object associated with this Component.

Syntax
public Font getFont();

Imports
java.awt.Font

Description
Gets the Font associated with this Component. Y ou associate a Font with a
Component using setFont. Note that the Font returned by getFont may till have
to be sdlected by the Component’ s Graphics object using Graphics.setFont. For
the predefined Component classes in the java.awt package, such as Button and
Lig, itisnot necessary for the Graphics object to select the Font. But for custom
Components, you will have to add aline like this to your paint method to ensure
the Component’ s Font is selected into the Graphics object:

public void paint(Gaphics g) {

g. set Font (get Font ());

}
Returns
The Font object currently associated with this Component. If a Font has not been
associated with this Component, using setFont will get the parent Container’s
Font.
See Also
The Font class; the setFont method of the Component class
Example
This example method bolds a Component’ s Font when called.
publ i c voi d makeFont Bol d(Component c¢) {
Font f = c.getFont();
c. set Font (new Font (f. get Name(),
f.getStyle() | Font.BOLD,
f.getSize()));
}

getFontMetrics

ClassName
Component
Purpose
Gets the FontMetrics for a specified Font asiit is rendered on the Component’s
display surface.
Syntax
public FontMetrics getFontMetrics(Font f);
Parameters
Font f
The Font for which to creste the FontMetrics.
Imports
java.awt.Font, java.awt.FontMetrics
Description
Gets the FontMetrics for the passed Font. The FontMetrics are for the display
surface associated with this Component. Y ou can use the return value from

getFont as the Font parameter to this method, like so
Font Metrics fm = getFont Metrics(getFont());

See Also
The Font class and the FontMetrics class
Example
This example measures the width in pixels of a given string on the Component’s

display surface using the Comporent’ s Font.
public class MyConponent extends Canvas {
public int neasureString(String str) {
return get Font Metrics(getFont()).stringWdth(str);
}

}
getForeground

ClassName
Component

Purpose
Gets the Color used for foreground painting on the Component’s display surface
in the paint method.

Syntax
public Color getForeground();

Parameters
None.

Imports
java.awt.Color

Description
Gets the foreground Color for this Component. The Foreground color is
automatically associated with Graphics objects passed to the paint method by the
default implementation of update. See the example of the getBackground method
to see how this association happens.

Returns

A Color object representing the current color of the Graphics object passed to
paint.

See Also
The Color class; the setForeground method of the Component class

Example
This example sets the foreground and background colors of an in-memory Image
object’s Graphics to be the same as the component’ s foreground and background

colors.
public class MyConponent extends Canvas {

publi c Graphi cs makel nageHaveConpati bl eCol ors(1 mage i nmg) {
Graphics g = ing.getGaphics();
g. set Col or (get Background());
g.fill Rect (0, 0O, size().w dth, size().height);
g. set Col or (get Foreground());
return g;

}
getGraphics

ClassName
Component

Purpose
Gets a Graphics object whose display surface is the rectangle of the on-screen
desktop controlled by this Component.

Syntax
public Graphics getGraphicy);

Parameters
None.

Imports
java.awt.Graphics

Description
Returns a Graphics object for this Component. If the Component has not been
added to a Container using Container.add, this method will return null. The
foreground Color, background Color, and Font have been sdlected by the
Graphics object.

Returns
A Graphics object attached to the on-screen rectangle controlled by this
Component.

See Also
The Graphics class

Example
See the example for the getForeground method of the Component class.

getParent

ClassName
Component
Purpose
Gets the parent Container of this Component.
Syntax
public Container getParent();
Parameters
None.
Imports
java.awt.Container
Description
Gets the Container for this Component object. If the Component is a top-leve
Frame window, or the Component has not been added to a Container using
Container.add, then this method will return null.
Returns
A reference to the Container object which controls this Component. If the
Component does not have a parent Container, null will be returned.
See Also
The add method of the Container class
Example
This example places the Component in the lower-right corner of the parent

Container’ s bounding rectangle.
public class MyConmponent extends Conmponent {

public void placeParentsLowerRi ght() {
Cont ai ner parent = getParent();
Di mensi on di mParent = parent.size();
Di mensi on di nThis = size();
nmove(rectParent.wi dth - di mThis.w dth,
rect Parent. hei ght - dinfhis. height);

}
getPeer

ClassName
Component

Purpose
Gets the ComponentPeer associated with this Component object. The
ComponentPeer is the proxy through which cals to the native windowing system
are made.

Syntax
public ComponentPeer getPeer();

Parameters
None.
Imports
java.awt.peer.ComponentPeer
Description
Gets the Peer object associated with this Component. If this Component has no
Peer, null will be returned.
Returns
A Reference to the ComponentPeer attached to this Component. If no

ComponentPeer exigts, aswould be the case if the Component has not been added

to a Container using Container.add, then null will be returned.

See Also
The ComponentPeer class

Example
This example implements avirtual Component, which is a Component that does
not have a peer. Virtual Components are useful because they inherit dl the
Component bounding rectangle and Event handling methods. Virtua Components
can be used to manage overlapping rectangles of on-screen space, especially
because sbling virtual Components will not “clip” each other on the desktop.

public class Virtual Conponent extends Canvas {

/1 Overriding addNotify ensures no Conponent Peer
/1 will ever be created for this object.
public void addNotify() {
return;
}

}
getToolkit

ClassName
Component
Purpose
Gets the Toolkit object, which is the proxy for the native windowing system itsdlf.
Syntax
public Toolkit getToolkit()
Imports
java.awt.Toolkit
Description
Getsthe Toolkit object for this Java sesson. The Toolkit is the proxy for the
native windowing system on the local computer. Through the Toolkit you can
create ComponentPeers and retrieve various windowing system parameters such
asthelig of available Fonts.
Returns
A reference to the Toolkit associated with this Component.

See Also
The Toolkit class
Example
The Toolkit can be used to download images or audio clips directly. This example
uses a Component’s Toolkit to download an Image from within a non-Component
object.
public class MyCl ass {
Frame _frane = new Franme(“Sanple”);

| mge _inyg;

public MyClass() {
_frame. show() ;

Tool kit tk = _frame.getTool kit();
_ing = tk.getlmage(
new URL(“http://ww. co.com | ogo.gif”));

}
gotFocus

ClassName
Component

Purpose
Event handler method for GOT_FOCUS Events.

Syntax
public boolean gotFocus(Event evt, Object arg);

Parameters

Event evt
The GOT_FOCUS Event sent to this Component.

Object arg
The argument to the GOT_FOCUS Event. This parameter isidenticd to thearg
member of evt.

Imports

java.awt.Event

Description
This notification method is caled by the default implementation of handleEvent
when a GOT_FOCUS Event is sent to this Component, indicating that this
Component has the keyboard focus. The default implementation of the Event
handling method Smply returns false. Override the default implementation to
alow your Component to react when the Component receives the keyboard focus.

Returns
Have your default implementation return true, indicating the GOT_FOCUS Event
has been handled. If fseis returned, then the Event will be posted to the this
Component’ s parent Container.

Example
This example reports to System.out when the Component receives or loses

keyboard focus.
public class MyConponent extends Canvas ({

publ i ¢ bool ean got Focus(Event evt, Object arg) {
Systemout.printin(arg + “ got keyboard focus.”);
return true

}

publ i c bool ean | ost Focus(Event evt, Object arg) {
Systemout.printin(arg + “ |ost keyboard focus.”);
return true;

}
handleEvent

ClassName
Component
Purpose
Cadled to dlow the Component a chance to handle user-generated or other Events.
Syntax
public boolean handleEvent(Event evt);
Parameters
Event evt
The Event to be handled by this Component.
Imports
java.awt.Event
Description
Thismethod acts as acentra clearing house for dl events sent to this Component,
or unhandled events sent to subcomponents of this object. The default
implementation is alarge switch() statement which calls more specific methods,
such as keyDown(), mouseMove(), gotFocus(), etc. The return vaue indicates
whether the Event has been handled or should be sent to the parent Container.
Returns
A return value of true indicates the Event has been handled. Falseindicatesit has
not, and the Event will be sent to the parent Container.
See Also
All of the Event handle methods of the Component class; the Event class
Example
In this example, it is known that the defined dass of Components never handles
any Events. The default implementation of handleEvent will ill run through its
long switch statement and attempt to find a handler for the Event. Thisdlassis
optimized to sop the Java system from performing that unnecessary handleEvent

code.
public class MyNoHandl er Comrponent extends Conponent {

publ i ¢ bool ean handl eEvent (Event evt) {
return false;
}

}
hide

ClassName
Component
Purpose
Makes the Component invisible or “hidden.”
Syntax
public void hide();
Parameters
None.
Imports
None.
Description
Hides the Component. Hidden components are not drawn, nor do they take up
space on the display surface.
Returns
None.
See Also
The show method of the Component class
Example
This example Panel uses aLabd to display a countdown. When the countdown
reaches 0, the Labd is hidden. Note that this example does not hat its background

Thread in its stop() method implementation for purposes of readablility.
public class MyCount DownAppl et extends Applet inplenents
Runnabl e {
Label _|abel = new Label ();
int _nCount = 10;

publ i c MyCount DownAppl et () {}

public void start() {
add(_I abel);
show() ;
Thread t = new Thread(this);
t.start();

}

public void run() {
whi l e(_nCount >= 0) {
try {
Thread. current Thread() . sl eep(1000);
} catch (Exception e) {}
_nCount - -;
_l abel . set Text (new String(“”+_nCount));

}
_l abel . hide();

}
imageUpdate

ClassName
Component

Purpose
Thisisthe only method of the ImageObserver interface. The default
implementation repaints the entire Component whenever any progressis madein
the congtruction of an image.

Syntax
public boolean imageUpdate(Image img, int flags, int x, int 'y, int width, int
height);

Parameters

Image img
The Image object to check. If progress on a screen representation of this Image
has been made, then the Component will be repainted asynchronoudy.

int flags
The ImageObserver flagsindicating the progress of construction of ascreen
representation of the Image object. These ImageObserver flags are ORed together.

int x
Indicates the rectangle of the Image for which the flags parameter isvalid.

inty

int width

int height

Imports
None.

Description
Causes an asynchonous repainting of the Component if congtruction of the
Image' s representation has made progress. The same flags parameter asis
returned by checklmage method is passed. Because this method isimplemented in
the Component class, any Component object may act as an ImageObserver.

Returns
Returnstrue if further notification of image congtruction should continue. Flse
causes further notification to be terminated.

See Also
The imageUpdate method of the ImageObserver interface

Example
This example prevents the Component from repainting unlessthe ALLBIT flag is

passed as part of the flags parameter.
public class MyConponent extends Canvas {

publ i c bool ean i mageUpdate(lmge ing, int flags, int x,
int y, int width, int height) {
if(0 !'= (flags & I mageCbserver. ALLBITS))
return true;

repaint();
return fal se;

}
inside

ClassName
Component

Purpose
Checks to seeif aparticular point lies within this Component’ s bounding
rectangle.

Syntax
public boolean ingde(int x, inty);

Parameters

int x
The coordinates of the point to check.

inty

Imports
None.

Description
Checks whether a particular point liesingde or outside the Component’s
bounding rectangle. The point to check is pecified relative to the parent
Container’s origin (generaly its upper-1eft corner).

Returns
Trueisreturned if the point lies within this Component’ s bounding rectangle.
Otherwise falseisreturned.

Example
This example method moves the Component’ s origin to apoint if that point does

not lie within the Component’ s bounding rectangle.
public class MyConmponent extends Canvas {

public void nmoveOver(int x, int y) {
i f(inside(x, y))
return,;

move(x, VY);

}
invalidate

ClassName
Component

Purpose
Marks the Component asinvdid. Cdlsto Component.validate are ignored unless
the Component has been marked asinvalid.

Syntax
public void invaidate();

Parameters
None.

Imports
None.

Description
Sets an interna boolean variable, indicating the Component must be validated.
Use validate to re-vdidate the Component Container components. In conjunction
with a LayoutManager object, use the invaidate/validate methods to layout
subcomponents. By default implementation, Component objects do not react to
being tagged asinvdid.

Returns
None.

See Also
The Container class and the LayoutManager interface

isEnabled

ClassName
Component
Purpose
Tels whether or not the Component is enabled.
Syntax
public boolean isEnabled();
Parameters
None.
Imports
None.
Description
Checksto seeif the Component is currently enabled. When created, a Component
is enabled. The disable method is used to disable a Component.
Returns
True if the Component is currently enabled. False if it is not.
Example
The paint method of this Component draws differently if the Component is

disabled.
public class MyComponent extends Canvas {$

public void paint(Gaphics g) {
i f(isEnabled()) {
/1 Draw enabl ed version of the Component.
} else {
/1 Draw di sabl ed version of the Conponent.
}

}
iIsShowing

ClassName
Component

Purpose
Telswhether or not any part of the Component is currently showing on the
desktop.

Syntax
public boolean isShowing();

Parameters
None.

Imports
None.

Description
Checks to see whether the Component object is currently showing on the display
screen. The Component is not showing if it is currently hidden. It is not showing
if its bounding rectangle has a 0 dimengon dong ether axis. It is not showing if
the intersection of its bounding rectangle with its parent’ s bounding rectangle has
a0 dimension adong ether axis. That is, Component positioned outsde the
bounds of its parent Container’ s bounding rectangle.

Returns
Trueis returned by this method for al Components which currently have some
rectangle of screen red edtate. Falseis returned otherwise.

See Also
The hide and show methods of the Component class

Example
This Component is optimized by immediatdy returning from its paint
implementation if it is not currently showing.

public class MyConponent extends Canvas ({

public void paint(Gaphics g) {
i f(!isShow ng())
return;

/1 Draw the Component. ..

isvalid

ClassName

Component
Purpose
Tdlswhether or not this Component is currently flagged as “nvlad.
Syntax
public boolean isvdid();
Parameters
None.
Imports
None.
Description
Checks to see whether the Component object is currently valid. Each Component
has an internd invaid flag. Theinvalidate method is used to st thisflag, and the
vaidate method is used to clear the flag. The default implementation of vadidate
actualy does nothing except clear the flag. The Container class, however, uses the
invalid flag and the validate method as an indication of when it should rearrange
its child Components with the help of its LayoutManager.
Returns
Vaid Components return true from calls to this method. Invalid ones return fase.
See Also
The invdidate and vaidate methods of the Component class

isVisible

ClassName
Component
Purpose
Telswhether or not the Component is currently visble.
Syntax
public boolean isVishle();
Parameters
None.
Imports
None.
Description
Checks to see whether the Component object is currently hidden. To hidea
Component object, cal its hide method. The show method will dternatively make
the object unhidden. Components, when created, are not hidden by defaullt.
Returns
If the Component is currently hidden, falseisreturned. If it is not hidden, trueis
returned.
Example
This Component object suspends its background processing Thread whileit is
hidden. Thisis accomplished by overriding its show method and by implementing
the Runnable interface.
public class MyConponent extends Canvas inpl enents

Runnabl e {
Thread _t = new Thread(this);

publi ¢ MyConponent () {
_t.start();
}

public synchronized void quit() {
Thread tTe = t;
t = null;
notify();

public synchronized void show() {
notify();
super. show() ;

}

public synchronized void run() {
while(null = _t) {
if(lisVisible()) {
wait () ;
conti nue;

}

/1 do one iteration of background processing

}
keyDown

ClassName
Component
Purpose
Event handler for KEY _PRESS Events.
Syntax
public boolean keyDown(Event evt, int key);
Parameters
Event evt
The KEY_PRESS or KEY_ACTION Event which was sent to this Component.
int key
The key pressed. Note that the key is aso stored in the key member of evt.
Imports
java.awt.Event
Description
Thismethod is called by the the default implementation of handleEvent whenever
aKEY_PRESSor KEY_ACTION Event is sent to the Component. The passed
parameters indicate the code for the key pressed. A custom implementation
should return true if the event is handled by the Component and should not be
sent on to the Component’ s Container.

Returns
The default implementation of this method Smply returns false, indicating the
Event should be passed on to the parent Container’ s handleEvent method.

See Also
The Event class, the handleEvent method of the Component class

Example
This example Component changes its background color whenever the spacebar is
pressed. The Component is not repainted until aKEY_RELEASE Event issent to
the Component.

public class MyConponent extends Canvas {

static Color[] ac = new Col or[2];
int i = 0;

publ i ¢ MyConponent () {

ac[0] = new Color(0, 0, 0);
ac[1] = new Col or (255, 255, 255);
}
publ i ¢ bool ean keyDown(Event evt, int key) {
if(* * = (char)key) {
i ++;
i % 2;
set Background(ac[i]);
return true;
}
return false;
}
public bool ean keyUp(Event evt, int key) {
if(* * == (char)key) {
repaint();
return true;
}
return false;
}
}
keyUp
ClassName
Component
Purpose
Event handler for KEY_RELEASE Events.
Syntax
public boolean keyUp(Event evt, int key);
Parameters

Event evt

The KEY_RELEASE or KEY_ACTION_RELEASE Event which was sent to this
Component.
int key
The key pressed. Note that the key is aso stored in the key member of evt.
Imports
None.
Description
Thismethod is called by the the default implementation of handleEvent whenever
aKEY_RELEASE or KEY_ACTION_RELEASE Event is sent to the
Component. The passed parameters indicate the code for the key pressed. A
custom implementation should return true if the event is handled by the
Component and should not be sent on to the Component’ s Container.
Returns
The default implementation of this method smply returns fase, indicating the
Event should be passed on to the parent Container’ s handleEvent method.
See Also
The Event class, the handleEvent method of the Comporent class
Example
See the example for the keyDown method of the Component class.

layout

ClassName
Component
Purpose
Cdled by the default implementation of validate if the Component is currently
invaid. The default implementation of Component.layout does nothing.
Syntax
public void layout();
Parameters
None.
Imports
None.
Description
Cdled when invaid Component objects are being validated as part of vdidate.
Thismethod is primarily used to layout child Components in Container objects.
The default implementation of Component.layout does nothing. The Container
class implementation of layout relies on a LayoutManager object to handle the
laying out of child Components.
Returns
None.
See Also
The vdidate and invdidate methods of the Component class

list

ClassName
Component
Purpose
To display the interna state of the Component to a PrintStream object.
Syntax
public void list();
public void list(PrintStream out);
public void print(PrintStream out, int indent);
Parameters
PrintStream out
The stream to write atextua description of the state of this Component to.
int indent
The number of space characters (ASCII char 32) to prepend to each line of text
written to out.
Imports
java.io.PrintStream
Description
Outputs atextua description of the internd state of the Component to a
PrintStream. This can be useful for debugging purposes. The first overloaded
verson of this method writes the ligting to System.out, with an indentation of 0. A
cdl to ligt() (without parameters) is equivaent to System.out.printin(this).
See Also
The PrintStream class, the toString method of the Component class
Example
This example Container class method displays the Container’ s entire subtree of
Components by tracing its hierarchy depth-first, indicating depth by indentation
on the PrintStream. Output is written to System.out.
public class MyContainer extends Panel {

public void displayChildren(Container target) {
di spl ayChi l dren(target, 0);
}

public void displayChildren(Container target, int indent) {
Conponent[] aconps =
new Conponent[target. count Conponents()];
for(int ii=0; ii<aconps.length ; ii++) {
aconps[ii].list(Systemout, indent);
i f(aconmps[ii] instanceof Container)
di spl ayChi I dren((Conponent)
aconps[ii], indent+1);

}
locate

ClassName

Component

Purpose
Returns areference to this Component if the passed point lies within this
Component’ s bounding rectangle.

Syntax
public Component layout(int x, int y);

Parameters

int x

inty
These two parameters describe a point, relative to this Component’ s origin, to
test.

Imports
None.

Description
A hit-test method which checks to see which Component, or subcomponent,
contains the point described by the passed x and y parameters. The Container class
uses this method to determine which of its child Component’s contains a
particular point.

Returns
The Component, or subcomponent, that contains the point (x,y). If the point lies
outside the bounds of this Component, null is returned. Container.locate() re-
implements this method to test al subcomponents.

See Also
The Container class

location

ClassName
Component
Purpose
Gets the location of this Component’s origin.
Syntax
public Point location();
Parameters
None.
Imports
None.
Description
Gets the coordinates of the upper-1€eft corner of this Component. The returned
Point isrelative to the parent Container’ s origin.
Returns
The coordinates of the upper-1€eft corner of this Component.
See Also
The Point class

lostFocus

ClassName
Component

Purpose
Event handler for LOST_FOCUS Events.

Syntax
public boolean lostFocus(Event evt, Object arg);

Parameters

Event evt
The LOST_FOCUS Event sent to this Component.

Object arg
The argument to the LOST _FOCUS Event. This parameter isidenticd to thearg
member of evt.

Imports
java.awt.Event

Description
This notification method is caled by the default implementation of handleEvent
when aLOST_FOCUS Event is sent to this Component, indicating this
Component no longer has the keyboard focus.

Returns
A return vaue of true indicatesthe LOST_FOCUS Event is handled by this
Component. Returning fal se causes the event to automaticaly be sent to this
Component’ s parent Container object.

See Also
The handleEvent method of the Component class

Example
See the example for the gotFocus method of the Component class.

minimumsSize

ClassName
Component

Purpose
Allows a Component to tdll its parent Container the minimum bounding rectangle
it requires.

Syntax
public Dimengon minimumSize();

Imports
None.

Description
Returns the minimum sized rectangle of diplay surface required for this
Component to display itsdf. When the Component’s Container lays out its
subcomponents, this method is caled to establish a minimum amount of screen
real estate needed by the Component.

Returns

The returned Dimension object should indicate the minimum required width and
height needed for this Component to display itsdf. The default implementation of
Component.minimumSize() returns the minimum size required as indicated by the
Component’s peer. If no peer exigts, the current size of the Component is
returned.

See Also
The preferredSize method of the Component class, the LayoutManager interface;
the Dimenson dass

Example
This example custom Component reportsthat it requires at least a10 x 10
bounding rectangle, but would prefer a bounding rectangle large enough to
digolay aninitidizer String.

public class MyConponent extends Canvas {

String _str;

public MyConponent (String str) {
_str = str;
}

public Di mension mninunti ze() {
return new Di nension(10, 10);
}

publ i c Di mension preferredSize() {
Font Metrics fm = getFontMetrics(getFont());
return new Di nensi on(fm get Hei ght (),
fmstringWdth(_str));

}
mouseDown

ClassName
Component
Purpose
Event handler for MOUSE_DOWN Events.
Syntax
public boolean mouseDown(Event e, int X, int y);
Parameters
Event evt
The MOUSE_DOWN Event sent to this Component.
int x
inty
The onscreen coordinates where the mouse was clicked. The coordinates are
expressed relative to the origin of this Component object. These two parameters
areidenticd to the x and y membersof evt.
Imports
java.awt.Event

Description
This notification method is caled by the default implementation of handleEvent
when aMOUSE_DOWN Event is sent to this Component, indicating the user has
clicked the mouse inside this Component.
Returns
A return vaue of true indicates the MOUSE_DOWN Event is handled by this
Component. Returning false causes the event to automaticaly be sent to this
Component’ s parent Container object.
See Also
The handleEvent, mouseUp, and mouseDrag methods of the Component class
Example
This smple example custom Component prints the coordinates of the mouse

while the mouse button is down.
public class MyConponent extends Component {
bool ean _bMusel sDown = fal se
Poi nt _pt MbuseCoords = nul|;

publ i c MyConponent () {}

public void paint(Gaphics g) {
if((null == _ptMuseCoords) |
(fal se == _bMousel sDown))
return,

g.drawstring(“”+_pt MouseCoords, _ptMuseCoords. X,
_pt MouseCoords. y);

}

publ i ¢ bool ean nobuseDown(Event evt, int x, int y) {
_pt MobuseCoords = new Point(x, y);
_bMousel sDown = true;
repaint();

public bool ean mouseDrag(Event evt, int x, int y) {
_pt MobuseCoords = new Point(x, y);
_bMousel sDown = true;
repaint();

publi c bool ean nouseUp(Event evt, int x, int y) {
_bMousel sDown = fal se
repaint();

}
mouseDrag

ClassName
Component
Purpose
Event handler for MOUSE _DRAG Events.

Syntax
public boolean mouseDrag(Event evt, int X, int y);

Parameters

Event evt
The MOUSE_DRAG Event sent to this Component.

int x

inty
The coordinates where the mouse was dragged to. These parameters are identical
to the x and y members of evt.

Imports
java.awt.Event

Description
This notification method is caled by the default implementation of handleEvent
when aMOUSE_DRAG Event is sent to this Component, indicating that the
mouse has been moved while the mouse button is held down.

Returns
A return value of true indicates the MOUSE _DRAG Event is handled by this
Component. Returning fase causes the event to automaticdly be sent to this
Component’ s parent Container object.

See Also
The handleEvent, mouseDown, mouseUp, and mouseM ove methods of the
Component class; the Event class

Example
See the example for the mouseDown method of the Component class.

mouseEnter

ClassName
Component
Purpose
Event handler for MOUSE_ENTER Events.
Syntax
public boolean mouseEnter(Event evt, int X, int y);
Parameters
Event evt
The MOUSE_ENTER Event sent to this Component.
int x
inty
The argument to the GOT_FOCUS Event. This parameter isidentica to thearg
member of evt.
Imports
java.awt.Event
Description

Thisnatification method is cdled by the default implementation of handleEvent
when aMOUSE_ENTER Event is sent to this Component, indicating thet the
mouse cursor has moved onto this Component’ s display rectangle. A Component
will only receive asingle MOUSE_ENTER Event before a subsequent
MOUSE_EXIT Event issent. That is, each call to mouseEnter is matched by
exactly one subsequent call to mouseExit.

Returns
A return value of true indicates the MOUSE_ENTER Event is handled by this
Component. Returning false causes the event to automatically be sent to this
Component’ s parent Container object.

See Also
The handleEvent and mouseExit methods of the Component class; the Event class

Example
This example component uses the mouseEnter and mouseExit Event handlers to
detect when the mouse cursor is over it. When the mouse is over it, the
Component exchanges its background and foreground colors compared to when

the mouseis not over it.
public class MyConponent extends Canvas {

publ i c bool ean nouseEnter(Event evt, int x, int y) {
Col or bg = get Background();
set Background(get Foreground());
set Foreground(bg);
return true;

}

publi c bool ean nouseExit(Event evt, int x, int y) {
Col or bg = get Background();
set Background(get Foreground());
set For eground(bg);
return true

}
mouseExit

ClassName

Component
Purpose

Event handle for MOUSE_EXIT Events.
Syntax

public boolean mouseEXit(Event evt, int X, int y);
Parameters
Event evt

The MOUSE_EXIT Event sent to this Component.
int x
inty

The coordinates of the first point outside the Component’ s bounds that the mouse
is moved to after being ingde the bounds. Coordinates are relative to the upper-
left corner of the Component.

Imports
java.awt.Event

Description
This notification method is caled by the default implementation of handleEvent
when aMOUSE_EXIT Event is sent to this Component, indicating that the mouse
cursor has moved out of this Component’ s display rectangle. A Component will
only receive asingle MOUSE_ENTER event before a subsequent MOUSE_EXIT
event issent. That is, each sngle cal to mouseEnter is matched by asngle
subsequent cal to mouseExit. MOUSE_EXIT Events are dill sent to a
Component even if the user is dragging the mouse (that is, moving the mouse
while the mouse button is held down).

Returns
A return value of true indicatesthe MOUSE _EXIT Event is handled by this
Component. Returning false causes the event to automaticaly be sent to this
Component’ s parent Container object.

See Also
The Event class, the handleEvent and mouseEnter methods of the Component
class

Example
See the example for the mouseEnter method of the Component class.

The MouseMove method is described at the end of this chapter on page 135.

mouseUp

ClassName
Component
Purpose
Event handler for MOUSE_UP Events.
Syntax
public boolean mouseUp(Event evt, int X, int y);
Parameters
Event evt
The MOUSE_UP Event sent to this Component.
int x
The coordinates of the mouse cursor when the mouse button was rel eased.
inty
These parameters are identica to the x and y membersof evt.
Imports
java.awt.Event
Description

This natification method is caled by the default implementation of handleEvent
when aMOUSE_UP Event is sent to this Component, indicating the user has let
go of the mouse button.

Returns
A return vaue of true indicates the MOUSE_UP Event is handled by this
Component. Returning false causes the event to automaticaly be sent to this
Component’s parent Container object.

See Also
The Event class, the handleEvent, mouseDown, mouseMove, and mouseDrag
methods of the Component class

Example
See the example for the mouseDown method of the Component class.

move

ClassName
Component
Purpose
Moves the entire Component within its parent Container.
Syntax
public void move(int x, int y);
Parameters
int x
inty
The new coordinate of the upper-left corner of the Component object. The
coordinates are expressed relative to the upper-left corner of the parent Container.
Imports
None.
Description
Relocates the Component relative to the upper-1eft corner of the parent Container.
The dimensions of the moved Component are preserved.
Returns
None.
See Also
The location method of the Component class
Example
See the example for the insde method of the Component class.

=

nextFocus

ClassName
Component

Purpose
Moves the keyboard focus to the next Component within the same Container.
Syntax
public void nextFocus);
Parameters
None.
Imports
None.
Description
Cadling this method, moves the keyboard focus to the next Component within the
same Container that is digible to recelve keyboard focus. Caling this method for
a Component which does not currently have keyboard focusis ano-op. Use of the
Component.requestFocus method instead of nextFocusis strongly encouraged.
See the example of the requestFocus method.
Returns
None.
See Also
The requestFocus, gotFocus, and |ostFocus methods of the Component class

paint

ClassName
Component

Purpose
Cadled whenever the Java system determines the Component must repaint its
surface.

Syntax
public void paint(Graphics g);

Parameters

Graphicsg
A Graphics object which has been attached to the display surface for the
Component, and whose clipping rectangle has been set to whole or part of the
Component’ s bounding rectangle.

Imports
java.awt.Graphics

Description
This method is called whenever the Component should render itsdf on the display
surface. The Graphics object passed to this method is attached to the display
surface, and is clipped to the Component’ s bounding rectangle. Custom
Component objects should override this method. The paint method can be cdlled
by Java at any time, such aswhen your Java application is covered up by another
gpplication running a the same time. When the other gpplication isremoved from
on top of your Java gpplication, apant cal will beissued for dl visble
Components.
There are no guarantees on the interna state of the Graphics object, except that
the clipping rectangle will be sat to arectangle equd to or contained by the

Component’ s bounding rectangle. If you do not override the Component’ s default
update method, then the foreground and background colors are aso guaranteed to
be sdlected in the Graphics object. In generd, it is dways safe to sdect the
foreground Color, background Color, Font, and other specia drawing features
into the Graphics object, just to be sure that the Graphics internd dateisasit is
expected to be. Use the repaint method to force an asynchronous paint cal to be
issued for the Component.

Returns
None.

See Also
The Graphics class; the repaint method of the Component class

Example
This example Component re-implements both the paint and repaint methods. The
re-implementation of the repaint method guarantees that the foreground Color and
Font are sdlected into paint’s Graphics parameter, and the Component’ s surface
has not been erased at al. Re-implementing the update method, to not erase a
Component’s surface, is the technique usudly used to avoid flicker in graphics-
intensive goplications.

public class MyConponent extends Canvas {

public void update(Graphics g) {
g. set Col or (get Foreground());
g. set Fonr (getFont ());

pai nt (g);
}

public void paint(Gaphics g) {
/1 Draw sonmething to the Conponent’s surface...
}

}
paintAll

ClassName
Component
Purpose
Paints the Component after calling vaidate.
Syntax
public void paintAll(Graphics g);
Parameters
Graphicsg
A Graphics object, which has been attached to the display surface for the
Component, and whose clipping rectangle has been set to whole or part of the
Component’ s bounding rectangle.
Imports
java.awt.Graphics

Description
This method paints the Component after caling vaidate. Note that this method is
usualy used to force a Container to repaint itself and al its child Components.
Returns
None.
See Also
The Graphics class; the vaidate method of the Component class

postEvent

ClassName
Component

Purpose
Routes an Event to its handler method.

Syntax
public boolean postEvent(Event evt);

Parameters

Event evt
The Event object being sent to this Component.

Imports
java.awt.Event

Description
This method handles delivering an Event to either a Component’ s peer, the
Component’ s handleEvent method, or to the Component’ s parent Contai ner
postEvent method (in that order). Note that the Java system calls a Component’s
postEvent method to ddliver al Events to the Component. When delivering your
own Everts to a Component, use the deliverEvent method. The recursive design
of the postEvent method is used to pass unhandled Events up from Component to
parent Container to parent Container until some Event handler method returns
true. ddiverEvent ample cdls posEvent. postEvent will actudly dlow the peer’s
handleEvent method to have afirst shot at the Event. If the peer’ s handleEvent
returns true, indicating the Event has been handled, then the Component’s own
handleEvent implementation is never cdled. Thisis the reason that, say, Scrollbar
objects (which are directly derived from Component) cannot handle a
MOUSE_DOWN or MOUSE_UP Event. Instead, the Scrollbar’ s peer handles
these types of Events and changes them into SCROLLBAR_* Eventsto be
handled by the Scrollbar. If neither the peer’ s nor the Component’ s handleEvent
method handles the Event, the parent Container’ s postEvent method is passed the
Event.

Returns
A return vaue of true indicates the Event has been handled by ether the peer, this
Component itself, or the Component’ s parent Container.

See Also
The Event class, the ddliverEvent and handleEvent methods in the Component
class

Example

Under some circumstances, you may actudly want the Component’ s parent
Container to take the first shot at handling the Component’s Events. In this
example, postEvent is re-implemented to dlow the parent Container first shot at

al Events.
public class MyConponent extends Canvas {

publ i c bool ean post Event (Event evt) {
i f(false == getParent (). postEvent(evt))
return super.postEvent (evt);
return true

preferredSize

ClassName
Component

Purpose
Allows the Component to tell its parent Container its preferred amount of on-
screen redl estate,

Syntax
public Dimension preferredSize();

Parameters
None.

Imports
java.awt.Dimension

Description
Returns the preferred size of the rectangle of display surface for this Component
to display itself. When the Component’s Container lays out its subcomponents,
this method is called to establish a preferred amount of screen red estate for the
Component. Re-implement this method to request a particular preferred sze for
your custom Component.

Returns
The returned Dimension object should indicate the preferred width and height for
this Component to display itself. The default implementation of preferredSize
returns the preferred size as indicated by the Component’s peer. If no peer exists,
the current size of the Component is returned.

See Also
The Dimenson dass, the minimumSize method of the Component class

Example
See the example for the minimumSize method of the Component class.

prepar el mage

ClassName
Component

Purpose
Kick-gtarts the Image construction process.

Syntax
public boolean preparel mage(lmage img, ImageObserver observer); public
boolean preparel mage(lmage img, int width, int height, ImageObserver observer);

Parameters

Imageimg
The Image object to create a screen representation of .

int width

int height
The scaled Sze of the Image' s representation.

I mageObserver observer
The ImageObserver object that receives natification of the asynchronous progress
of the congtruction of the Image' s representation.

Imports
java.awt.Image, java.awt.image.l mageObser ver

Description
Starts construction of a screen representation of an Image object. The second
overloaded verson begins congtruction of a scaed verson of the Image. An
Image must be constructed before it can be displayed on a Component’s surface.
Note, that when you use Graphics.drawlmage with areference to an
unconstructed Image object, the Image s congtruction process is automaticaly
sarted for you. The preparel mage method alows you to start this process before
the Image is displayed on any surface.

Returns
Trueisreturned if the representation of the Image object is complete. Otherwise,
faseisreturned and the Image congtruction processis started.

See Also
The Image class; the ImageObserver interface; the checklmage and updatel mage
methods of the Component class

Example
See the example for the checklmage method of the Component class.

print

ClassName
Component
Purpose
To render the Component to a printer device.
Syntax
public void print(Graphics g);
Parameters

Graphicsg
A Graphics object that has been attached to a printer device, and whose clipping
rectangle has been set to whole or part of the Component’ s bounding rectangle.

Imports
java.awt.Graphics

Description
This method is called whenever the Component should render itsdf on a printer
device. The Graphics object passed to this method has been attached to a printing
device, and it is clipped to the Component’ s bounding rectangle. The default
implementation smply calls paint, usng the same Graphics object. Override this
method if your custom Component is to be displayed differently when printed
compared to on adisplay device. There are no guarantees on the interna state of
the Graphics object, except that the clipping rectangle will be set to arectangle
equal to or contained by the Component’s bounding rectangle. It isagood ideato
select the foreground Color, background Color, Font, and other special drawing
features into the Graphics object to be sure the Graphics internd dateisasitis
expected to be. Note that the print method is essentidly the same thing asthe
paint method. The print method is provided for those instances when you need to
know that your Component is being rendered to a printer.

Returns
None.

See Also
The Graphics class; the paint method of the Component class

Example
See the example for the paint method. The paint method and the print method are
essentialy the same thing.

printAll

ClassName
Component
Purpose
Prints the Component after calling vaidate.
Syntax
public void printAll(Graphics g);
Parameters
Graphicsg
A Graphics object that has been attached to a printer device, and whose clipping
rectangle has been set to whole or part of the Component’ s bounding rectangle.
Imports
java.awt.Graphics
Description
This method prints the Component after cdling vaidate. Note that this method is
usualy used to force a Container to repaint itself and dl its child Components.
Returns
None.

See Also
The Graphics class; the vaidate method of the Component class

repaint

ClassName
Component

Purpose
Reqguests an asynchronous repainting of the Component.

Syntax
public void repaint();
public void repaint(long IMillisecs);
public void repaint(int x, int y, int width, int height);
public void repaint(long IMillisecs, int x, int y, int width. int height);

Parameters

long IMillisecs
Maximum number of milliseconds to wait before the Component’ s update method
iscdled.

int x

inty

int width

int height
These four parameters define arectangle of areathat should be repainted.

Description
You cdl thismethod at any time to force an asynchronous repainting of the
Component. The Java system schedules a repainting of the Component to be
completed by a different Thread at alater time. The second and fourth overloaded
verson of this method specify amaximum amount of time for the system to wait
to schedule a repainting of the Component. The third and fourth overloaded
versons dlow you to specify a subset of the Component’ s bounding rectangle to
repaint. Unless you use one of the overloaded versions of this method, which
alows you to pecify amaximum time limit, there is no guarantee on the amount
of time before arepaint will be performed. If multiple repaint cdls are made in
quick succession, they will be combined into asingle repainting operation.
Repainting is achieved by an asynchronous cdl to update by the Java system.

See Also
The update and paint methods of the Component class

Example
See the example under the mouseDown method of the Component class.

requestFocus

ClassName
Component
Purpose
If possible, gives the input focus to this Component.

Syntax
public void requestFocus();
Parameters
None.
Imports
None.
Description
Makes arequest for the keyboard focus to be switched to this Component. This
Component will be notified by acal to gotFocus when the keyboard focus has
been switched. Note that disabled Components can not gain the keyboard focus.
Returns
None.
See Also
The nextFocus, gotFocus, and lostFocus methods of the Component class
Example
This example Container has two child Components, atext field, and a checkbox.
When the checkbox becomes checked, then the text field is enabled and keyboard
focusis given to it. When the checkbox becomes unchecked, then the text field
becomes disabled and keyboard focus is given to the checkbox.
public class FocusCont ai ner Exanpl e extends Panel {

TextField _tf = new TextField();
Checkbox _cb = new Checkbox(“Enable text field”);

publ i ¢ FocusCont ai ner Exanpl e() {
add(_ch);
add(_tf);

}

/1 An action Event is given to the parent Container
/1 when the checkbox is checked or unchecked.
action(Event evt, Object arg) {

bool ean b = ((Bool ean)arg). bool eanVal ue();

if(1b) {

_tf.disable();
_ch.request Focus();
} else {
_tf.enable();
_tf.request Focus();
}
}
}
reshape
ClassName
Component
Purpose

Changesthe origin and dimensions of the Component object in one method call.
Syntax
public void reshape(int x, int y, int width, int haght);

Parameters

int x
inty

int width
int height

These four parameters describe a new bounding rectangle for the Component. The
x and y coordinates are relative to the upper-left corner of the parent Container.

Imports

None.

Description

Retu

M odifies the bounding rectangle of the Component. The move and resize methods
are actudly wrappers around the reshape method. To detect when your (non
Frame) Component object is being resized or moved, re-implement the reshape
method to set some detection flag before caling the base implementation, as
demondirated in the example below.

rns
None.

See Also

The move and resize methods of the Component class

Example

publ

}

This example Container re-implements reshgpe o thet it can detect wheniit is
being szed below a particular width and change its LayoutManager accordingly.

ic class MyContai ner extends Panel {
static final int MN_FLOACENTER W DTH = 100; // any val

public void reshape(int x, int y, int width, int height) {
if(width < M N_FLOW W DTH)
set Layout Manager (new Fl owLayout (Fl owLayout . LEFT));
el se
set Layout Manager (new Fl owLayout (Fl owLayout . CENTER)) ;
super.reshape(x, y, w dth, height);

resize

ClassName

Component

Purpose

Changes the dimensions of this Component.

Syntax

public void resize(int width, int height); public void resze(Dimension dim);

Parameters
int width
int height

The new width and height of the Component.

Dimension dim
Thewidth and height members of this object describe the new width and height of
the Component.
Imports
java.awt.Dimension
Description
Modifies the width and height of the bounding rectangle for this Component to be
width pixesin width and height pixelsin height. Note that the resize method is
just awrapper around the reshape method.
See Also
The Dimension class, the move and reshape methods of the Component class
Example
This example Component resizes itself to dways be large enough to display a

particular gring.
public class MyConponent extends Canvas {

String _str;

public void setString(String str) ({
_str = str;
Font Metrics fm = getFontMetrics(getFont());
resize(fmstringWdth(_str), size().height);

}
setBackground

ClassName
Component
Purpose
Sets the background color used to erase the Component when it is rendered.
Syntax
public void setBackground(Color c);
Parameters
Color c
The background color to use when rendering the Component in the future.
Imports
None.
Description
Sets the background Color to use when painting or printing this Component on a
drawing surface. The update method uses a Component’s background Color to
erase the Component’ s bounding rectangle on the desktop before caling paint. If
update is re-implemented so that it does not erase the Component, then the
background Color is never used and might as well never be .
Returns
None.

See Also
The Color class; the update method of the Component class
Example
See the example under the mouseEnter method of the Component class.

setForeground

ClassName
Component
Purpose
Sets the foreground color used for rendering in the paint method.
Syntax
public void setForeground(Color ¢);
Parameters
Color c
The background color to use when rendering the Component in the future.
Imports
java.awt.Color
Description
Sets the foreground Color to use when painting or printing this Component on a
drawing surface. update modifies the foreground Color used by the passed
Graphicsto be ¢ before passing the Graphics on to paint. Therefore, Components
that override the default implementation of update must set the foreground color
explicitly in paint or update.
Returns
None.
See Also
The Color class; the getForeground, update, and paint methods in the Component
class
Example
See the example under the mouseEnter method of the Component class.

show

ClassName
Component
Purpose
Makes the Component either hidden or unhidden, according to the parameters
passed.
Syntax
public void show(); public void show(boolean fShow);
Parameters
boolean fShow
True if the Component should be unhidden. Falseif it should be hidden.
Imports
None.

Description
Shows the Component. Hidden components are not drawn, nor do they take up
gpace on the display surface. The second overloaded version dlows you to hide or
show the Component based on the vaue of fShow.

Returns
None.

See Also
The hide method of the Component class

Example

This example Component gets hidden whenever it is disabled.
public class MyConponent extends Canvas {

public void disable() {
show(f al se);

}

public void enable() {
show(true);

}
_——

size

ClassName
Component
Purpose
Gets the dimensions of this Component object.
Syntax
public Dimension sz€();
Parameters
None.
Imports
None.
Description
Gets the width and height of this Component.
Returns
A Dimension object whose width and height public member varigbles contain the
Component width and height in pixds, respectively.
See Also
The bounds method of the Component class
Example
See the examples under the methods resize, getParent, and getForeground of the
Component class.

toString

ClassName
Component
Purpose
Creates a decriptive string detailing the internd tate of the Component.
Syntax
public String toString();
Parameters
None.
Imports
None.
Description
Gets a String containing atextual description of this Component object. The
resultant String is a concatenation of the object’s class, and certain informeation
about the Component’ sinterna state such as whether or not it is enabled or
hidden.
Returns
A textud description in a String object.
See Also
The toString method of the Object class

update

ClassName
Component

Purpose
Cadled by the Java system whenever the Component should repaint itsdf.

Syntax
public void update(Graphics g);

Parameters

Graphicsg
A Graphics object attached to the Component’ s display device, with aclipping
rectangle equa to or a subset of the Component’ s bounding rectangle.

Imports
java.awt.Graphics

Description
Cdled automaticdly by the system when it istime to render the Component on a
drawing surface. Callsto repaint cause an asynchronous cal to update to be made
by a separate Thread. The default implementation of update passes the Graphics
object on to paint after erasing the entire drawing surface with the background
color and sdlecting the foreground color into the Graphics object. Many
Components, which require alot of graphical updating, override update so that the
entire drawing surface will not be erased. This prevents the Component from
gppearing to flicker with each graphicd update.

See Also
The Graphics class; the paint method of the Component class

Example

See the example for the paint method of the Component class.
validate

ClassName
Component

Purpose
To clear theinvdid flag of this Component.

Syntax
public void vaidate();

Parameters
None.

Imports
None.

Description
Forces the Component to vaidate itsalf. When created, Components are marked
as vdid. Subsequent cdlsto the invaidate method mark the Component as
invaid. Invaid Components vaidate themselves by caling the layout method
before dearing ther internd invdid flag. The default implementation of |ayout
does nothing. The invaidate/vaidate methods are used mostly by Containersto
force subcomponents to be laid out by a LayoutManager object.

Returns
None.

See Also
The invdidate and layout methods of the Component class; the layout method of
the Container class

The Component Project: A Hotspot Custom Component

The Component Project illustrates the congtruction of a smple custom Component class.
the Hotspot class. The Hotspot class is a Component that has two Images associated with
it: an Activelmage and an Inactivelmage. The behavior of a Hotspot object isto display
the Activelmage when the mouse cursor is moved on to the Hotspot. When the mouseis
not over the Hotspot, the Inactivelmage is displayed. Thisis ageneric custom

Component suitable for usein your own Java applications or applets.

This project demonstates severa key concepts of Components and custom Components:

* Rendering a custom Component by overriding the Component.paint() method.
 Event handling by implementing Hotspot.mouseEnter() and
Hotspot.mouseExit() to make the Hotspot react to user interaction. The Hotspot's
Container—the HotsportApplet in this project—can aso handle mouse click
Events originally ddivered to the Hotspot objects.

* Image preparation. The Hotspot implements the ImageObserver interface so
that it can be notified of the progress of congtruction of the on-screen
representation of the Activelmage and the Inactivel mage.

Figures 2-6 and 2-7 show the active and inactive images used for one of the Hotspot
componentsin this project.

Figure 2-6 Active image for the first Hotspot component of the Hotspot project

Figure 2-7 Inactiveimage for the second Hotspot component of the Hotspot project

Assembling the Project

1. Create afile caled Hotspot.javausing atext editor. Thisfile holdsthe
implementation of the Hotspot custom Component class. Begin by declaring the
classand its member varigbles:

i nport java.awt.*;

i mport java.awt.inage.*;

public class Hotspot extends Canvas inplenments | mageCbserver {
/1 The active and inactive images are stored in
/1 menmber variables. A reference to the Image currently
/1 being displayed is also kept as a member vari able.
| mge _ingActive;
I mge _inglnactive;
I mage _ingCurrent;
2. The Hotspot constructor is passed a reference to the active and inactive
Images. The Congtructor stores those references in member variables and begins
preparing the Images for rendering:
publ i ¢ Hotspot (I mage i nmgActive, |nmage inglnactive) {
_inmgActive = ingActive;
_inmglnactive = inglnactive;
_ingCurrent = _inglnactive;

/1l preparelmge() starts the construction of an

/1 on-screen representation of the inmage objects.

pr epar el mage(_i ngActive, this);

preparel mage(_i ngl nactive, this);

}

3. When the mouse moves over the Hotspot, the active image should be
displayed. Thisis performed by the mouseEnter event handler, which is called
automaticaly whenever aMOUSE_ENTER Event is delivered to the Component.
Smilarly, whenthe mouse is no longer over the Component, then the inactive
imageisdigplayed. Thisis performed by the mouseExit Event handler, which is
cdled whenever aMOUSE_EXIT Event is delivered to the Component.
publi c bool ean nouseEnter(Event evt, int x, int y) {

_ingCurrent = _ingActive;

repaint();
return true; // the Event has been handl ed.

}
public bool ean mouseExit(Event evt, int x, int y) {
_imgCurrent = _inglnactive;
repaint();
return true; // The eEvent has been handl ed.
}

4. To reduceflicker, prevent default implementation of update from erasing the

Component before calling paint.
public void update(G aphics g) {
pai nt (g);
}

5. Painting the Hotspot Component merely involves displaying the Image
referredto by _imgCurrent.
public void paint(Gaphics g) {
g.drawl mage(_i ngCurrent, 0, 0, this);
}
}

6. Create asecond file named HotspotApplet,javain the same directory. Thisfile
holds a sample Applet which displays two Hotspots. The following code

initializes and displays two Hotspot Components on the surface of an Applet.
i mport java. appl et. Appl et;

i mport java.awt.*;

i mport java. net. URL;

public class Hotspot Appl et extends Applet {
Hot spot _hot spot 1;
Hot spot _hot spot 2;

/1 Applet initialization is the only operation that nust
/1 be inmplemented for this Applet class. The Active and
/1 Inactive imge URLs are passed as the "Activel mageURL1",
/1 "Activel mageURL2", "Inactivel mageURL1", and
/1 "lnactivel mmgeURL2" paraneters. These four inmage URLs
/1l are used to create two Hotspot conponents, which are
/1 added as Conmponents to the Applet (which acts as the
/1 Container).
/1
/1 This applet uses a FlowLayout object, which essentially
/1 positions Conponents left-to-right in a |line across
/'l the Applet.
public void init() {

URL url Activel,;

URL url ActiveZ2;

URL urllnactivel;

URL urllnactivez;

set Layout (new Fl owLayout ());
resi ze(450, 200);
set Background(Col or. bl ack);

try {
url Activel = new URL(get Docunent Base(),

get Paranet er (" Acti vel mageURL1"));
url Active2 = new URL(get Docunent Base(),
get Paranet er (" Acti vel mageURL2"));
url I nactivel = new URL(get Docunent Base(),
get Paraneter ("I nactivel mgeURL1"));
url Il nactive2 = new URL(get Docunent Base(),
get Paraneter ("I nactivel nrageURL2"));
} catch(Exception e) {
Systemout.printin("Inage URLs are missing or " +
"mal fornmed.");
return,

}

/'l Create the Inmage objects fromthese URLs.
| mage i ngActivel = getlmge(url Activel);
| mage i ngActive2 = getlmge(url Active2);
| mage i ngl nactivel getl mage(urll nactivel);
| mage i ngl nactive2 getl mage(url | nactive2);

/'l Create the two Hotspot objects and add them
/1 as Conponents of this Applet Container. Resize
/1 the hotspots to the size the inmages
/'l are expected to be.
_hotspot1l = new Hot spot (i ngActivel
i mgl nactivel);
_hot spot2 = new Hot spot (i ngActiveZ2,
i mgl nactive2);

add("1", _hotspotl);
add("2", _hotspot2);

_hotspot 1. resize(204, 140);
_hot spot 2. resi ze(204, 140);

return;

}

/1 Re-inplenentation of the nouseDown() event handling
/1 method allows us to react to the user clicking on
/1 one of the Hotspot Conponents.
public bool ean mbuseDown(Event evt, int x, int y) {
if(evt.target == _hotspotl) {
System out. println(
"The first hotspot was clicked!'");
return true;

}
if(evt.target == _hotspot2) {
System out . printl n(
"The second hotspot was clicked!");
return true;
}

return false; // Event was not handl ed.

7. Create afile named Hotspot.html. Thisisan HTML file with an embedded

HotspotApplet init. Copy the following text to your Hotspot.html file:
<HTM_>

<HEAD>

<TIl TLE>Hot spot Appl et Sanpl e Project</TI TLE>

</ HEAD>

<HTM.>
<HEAD>
<TI TLE>Hot spot Appl et Sanpl e Project</TITLE>
</ HEAD>

<BODY>

<APPLET CODE="Hot spot Appl et. cl ass" W DTH=450 HEI GHT=200>
<PARAM NAME="Acti vel mageURL1" VALUE="activel.gif">
<PARAM NAME="Acti vel mageURL2" VALUE="active2.gif">
<PARAM NAME="1nnacti vel mageURL1" VALUE="inactivel.gif">
<PARAM NAME="1| nacti vel mageURL2" VALUE="i nactive2.gif">
</ APPLET>

</ BODY>

</ HTML>

8. Compile HotspotApplet,java using the JDK’sjavac compiler. From the
directory where your .JAVA and .HTML files are located, run this command:

> javac Hot spot Appl et. | ava

9. Createfour .GIF filesto act as your Active and Inactive images. The images
displayed above can be used. They arelocated on the Java API SuperBible CD
under the directory \FOO\BLAH\WHATEVER. Copy these four filesto the same
directory your .JAVA and .HTML files are in. Make sure the names of these four
filesare “activel.gif’, “active2.gif”, “inactivel.gif” and “inactive2.gif”,

respectively.

10. Load the HotspotApplet into the JDK’s AppletViewer. From the same

directory where your project files are, type this command:
> appl et vi ewer Hot spot. htm

How It Works

The Hotspot class maintains an internd reference to two Image objects. The
Hotspot._imgActive member varidble is areference to an Image to display when the
Mouse cursor is over the Hotspot component. The Hotspot._imglnactive member variable
is areference to an Image to display when the mouse cursor is not over the Hotspot. The
Hotspot. imgCurrent member variable is areference to the Image to display: ether the
active or the inactive Image.

The Hotspot congtructor requires references to the active and inactive Image as
parameters. Part of object construction includes kick-starting construction of on-screen
representation of both these Images using Component.preparel mage(). Always, before an
Image can be drawn on adisplay device, the Image must be prepared by the Java system
for rendering on the display device. The Hotspot object uses its inherited implementation

of the ImageObsarver interface, which isimplemented by the Component class. The
Component class implementation of this interface causes the Componert to transparently
schedule afull repainting of the Hotspot component once the Image has been prepared.

Thevdueof _imgCurrent changes whenever the mouse cursor either enters or exitsthe
bounding rectangle of the Hotspot. Overriding implementations of the mouseEnter and
mouseExit Event handling methods are used to detect the position of the mouse cursor.
Through the Event ddivery methods, the Java system calls a Component’ s mouseEnter()
method exactly once, when the mouse is moved from outside the Hotspot' s bounding
rectangle to within it. When the mouse cursor is moved from insde to outside the
Hotspot' s bounding rectangle, the mouseExit method is dso cdled exactly once. Each
Hotspot implementation of these methods performs three important tasks:

* Modifiesthevaueof _imgCurrent to indicate ether the active or inactive
Image.

» Schedules arepainting of the Hotspot using the parameterless repaint() method.
 Returnstrue from the Event handling method, indicating that the Event has
been handled and can be discarded.

Hotspot.paint() is implemented to paint the Hotspot' s display surface with the Image
indicated by Hotspot._imgCurrent. Before this can be done, the Hotspot must make sure
the Image has been fully prepared for display on the device. checklmage() will return a
logicad ORing of the ImageObserver flagsindicating which data for the Image has been
successfully prepared for rendering. Hotspot checks for the ALLBITS flag, which
indicates the Image has been fully prepared. Oncethisflag is detected, the Hotspot draws
the Image.

Figure 2-8 is a screenshot of the the HotspotApplet running within the JDK’s
AppletViewer. Note that the mouse cursor is over the first of the two Hotspot
Components, so the first Hotspot is displaying its Active image, while the second Hotspot
isdigplaying its Inactive image.

Figure 2-8 Screenshot of the HotspotApplet running within the JDK’s AppletViewer
mouseM ove

ClassName

Component
Purpose

The Event handler for MOUSE_MOVE Events.
Syntax

public boolean mouseMove(Event evt, int X, int y);
Parameters

Event evt
The MOUSE_MOVE Event object that was passed to this Component’s
handleEvent method.

int x

inty
The x and y coordinates, relaive to the Component’ s origin, where the mouse
cursor was moved to.

Description
The mouseMove method is caled by the default implementation of the
handleEvent method of the Component class whenever aMOUSE_MOVE Event
is passed to that method. By handling MOUSE _MOVE Eventsin the mouseMove
method, your Component can detect where the mouse cursor is currently
positioned within the Component. The firs MOUSE_MOVE Event is passed to
your Component only after aMOUSE_ENTER Event (MOUSE_ENTER Events
can be handled by the mouseEnter Event handler). The MOUSE_EXIT Event,
handled by the mouseExit Component method, indicates that the mouse cursor
has | eft your Component’ s bounding rectangle on the desktop, and that you will
no longer receive MOUSE_MOVE Events. If the mouse is being moved with the
mouse button held down, then your Component will receive MOUSE_DRAG
Events, handled by the mouseDrag Event handler method.

Returns
Aswith al Event handlers, your implementation of this method should return true
if the Event is completely handled by your code. A return vaue of false will cause
the Event to be passed on to your Component’s Container through the Event
passing mechanism described earlier in this chapter.

See Also
See the mouseDrag, mouseEnter, and mouseExit methods of the Component
class.

Example
This example demongrates smple handling of MOUSE_ MOUSE Eventsusing a
mouseM ove method implementation. The method just writes the mouse position

to System.out.
public class MyConponent extends Canvas ({

publ i ¢ bool ean nobuseMove(Event evt, int x, int y) {
System out. print(“Muse nove detected.”);
Systemout.println(“ Current nouse position is: (“+
X+ ey),

Part |1
Windows And Text Handlers

Chapter 3
Toolkit, Window, Container, And Events

One of the challenges of designing Javawas to make a programming system that was
compatible across different operating systems. Making a system that is dso compatible
across the various windowing platforms complicates this problem quite a bit. One of
Java's greatest strengths is the architecture of its windowing classes, which successfully
achieve the goa of cross-platform compatibility between windowing systems.

Java has been ported into severa windowed operating systems. Microsoft Windows 95
and Window NT, Solaris with X-Windows/Moatif, and Macintosh System 7. While these
sysems are dl based on similar concepts of how a windowing system should look and
behave, each has different underlying architecture and implementation details. Java cuts
through the confuson among the various systems, providing a consistent presentation for
al of them.

No matter which windowing system a Java gpplication is actualy running on, the system

is accessed through the same generic set of Java classes. These classes have been
abstracted so that they will work on any of the supported windowing systems. This
abdtraction layer, which Sits between Java applications and the windowed operating
system, is caled the Abstract Windows Toolkit, or AWT for short. Figure 3-1 shows how
the AWT classes present a consistent set of APl methods to Java applications and applets
regardless of what operating system is actudly running the application.

Figure 3-1 The Abstract Windows Toolkit represents the windowed operating system to
Java gpplications

The AWT isdescribed in detall in this chapter. The window hierarchy, upon which is
based both Event natification routing and on-screen positioning of Containers and
Components, is detailed. This chapter dso covers how Events are ddivered to
Components and Containers by the Toolkit, as well as how on+screen repainting
operations are scheduled and carried out. The other services provided by the Toolkit are
also discussed.

The project for this chapter, FontLab, is an example of a Java application that utilizes the
system-wide services of the Toolkit to cata ogue the Fonts available on a particular
system. FontL ab aso demonstrates how Component z-ordering, or overlaying of shling
Components on top of one ancother, isdone in Java.

A Window in Java

No matter what operating system you are using, the basic unit of awindowed user
interface is, of course, the window. What is a generic window? Some basic attributes are
obvious. First, awindow occupies arectangular area of the desktop surface. Second, a
window’ s rectangle can be moved and resized to change its position and appearance on
the desktop. Third, awindow can be embedded within a parent window. In fact, al top-
level windows can be said to be children of the desktop, which isjust another large
window. In Java, these three attributes have been abstracted to the Component class,
which is discussed in Chapter 2.

Windows as Pseudo-I/O Devices

An gpplication’ swindow can be thought of as the device the application uses to gather
input from the user, just like any other 1/0 device. One of the most important and basic
sarvices awindowed operating system providesis away to gather information about a
user'sactions. That is, if the user clicks the mouse on awindow, it isthe job of the
windowed operating system to provide that input to the window’ s application. Only after
the application has received a report of the user’ s actions can it react. Figure 3-2 shows
how, among other I/O devices, an gpplication’swindow is used to gather user
interactions.

Figure 3-2 An gpplication’s window used to gather user interactions

In Java, user interactions are caled events. An Event is an object that contains
information about a Single action. One of the most important tasks of the Java AWT isto
ddiver Eventsto your Java gpplication or gpplet windows.

The Component class has one public method to receive Events. postEvent. Again,
Chapter 2 is dedicated to disussing the Component class in detail, so the particulars of the
postEvent method are discussed there. In thet chapter is a description of what happens to
the Events after they have been ddivered to a Component object. The question is, How
do Events get ddivered to Components in the first place?

It isthe job of the AWT to trandate user interactions within the windowed operating
system into deliverable Events within Java. To accomplish this, the AWT uses a proxy
architecture. Each Component object in a Java application is mirrored by an object in the
windowed operating system. This object is a native item in the windowed operating
system, whether that be awindow in MS Windows, or awidget in the X-Windows/Motif
operating system. Within AWT, a ComponentPeer object acts as the go- between between
the Java Component object and the native operating system object. When a user
interaction is posted to the native operating system object, the AWT and the
ComponentPeer trandate that user action into an Event. That Event is then handed to the
Component object through its postEvent method.

More specificdly, the AWT manages a Thread dedicated to delivering Events to
Components. Because of their source (the user) Events are dways asynchronousin

nature. Figure 3-3 is a screenshot of the System.out output of avery smple Java
goplication, which intentionaly throws an exception when it receives an Event. This
gpplication has awindow that throws an ArraylndexOutOfBounds Exception in its
postEvent implementation. The output displayed in Figure 3-3 is a stack-trace of the
uncaught Exception. Note that the name of the Thread in which the Exception was
thrown is AWT-Calback-Win32. Thisillugtrates the name of the AWT Thread
responsible for ddivering Events to windows. In this case, the underlying windowed
operating system is Windows NT. Here is the code for the smple application, called
Spike, which was used to generate the Exception.

Figure 3-3 Stack-trace of the Spike program
i nport java.awt.*;
public class Spike {

public static void main(String[] astrArgs) {
Spi keFrame s = new Spi keFrame(*“ Spi ke”);

s.show();
}

cl ass Spi keFrame extends Frane {

public Spi keFranme(String strTitle) {
super(strTitle);
}

publ i c bool ean post Event (Event evt) {
/1l Throw Array indexQut Of Bounds Exception
/'l by dereferencing a non-existent Conponent.
return get Conpoent (0). post Event (evt);

Events

An Event object is designed to encapsulate any type of user interaction. Mouse events
such as mouse movements and clicks, keyboard events like keypresses or keyreleases,
and other interactions are each encodable in a single Event object.

An Event object exposes its member variables rather than forcing you to access the
variable through member methods. Though the object- oriented programming rule-of-
thumb is that member variables shouldn’t be available for other objects to modify directly
(i.e.,, without at least usng member methods to modify the values), Event objects are

smple enough to forgo this kind of gtrict access control. In addition, it cuts down on code
gzeto say myEvent.id rather than myEvent.getI D().

Theid member variable indicates which type of Event has occurred. Here are the possible

vauesfor Event.id which are specific to Window objects, that is, the vaues that indicate
events created by Java.

Event Type Description

WINDOW_DESTROY Thewindow has received acommand to destroy itself. Only
Window class objects will recaeive thistype of Event. Cdl
Window.dispos() to properly destroy the Window.

WINDOW_EXPOSE The window has become exposed.
WINDOW_ICONIFY The window has become iconified.
WINDOW_DEICONIFY Theiconic window has become de-iconified.
WINDOW_MOVED The window has been moved (and possibly resized).

Thereis nothing stopping an gpplication from creating its own custom Event types ad
passing them to Component windows. The Component class description in Chapter 2
describes the keyboard and mouse Events which may be sent to a Component object. In
Chapters 4 and 5 the Event IDs reserved for Scrollbar and List objects are discussed in
detail.

Window Repainting in AWT

As suggested earlier, awindow can be thought of as an Input/Output device. AWT's
architecture creates an efficient system for ddivering Events to windows. Events are the
Input end of awindow. A window is aso an output device. The output is what the
window digplays on the surface of its rectangle.

All of the windowing operating systems handle painting windowsin asmilar manner.
The windowing system determines when awindow must repaint itself based on window
management. For example, if two windows are overlgpping and the window on top is
removed, then the windowing system flags that the remaining window must be repainted
as soon as possible. (Actudly, just the part of the remaining window which was
uncovered is flagged for repainting.)

The repaint operation is an asynchronous operation for a couple of reasons. Firgt, the
system usualy determines awindow must be repainted as a side effect of some operation
the system istrying to perform. In this case, the repainting operation must be scheduled
for sometime in the future. Second, repainting can be atime-intensive procedure. The
gystem attempts to store as many redundant repainting operations for the same window as

possible. When the system thinks there is enough idle time to repaint the window, then it
will explicitly ask the window to repaint itsdlf.

Inthe AWT, awindow is requested to repaint its surface via Component.update).
Chapter 2 explained what happens within the Component class after the system calls
update(), but what causes update() to be called in the first place? A smilar calback
mechanism to the Event ddivery procedure described earlier is used. When the
underlying windowing System issues a repaint command to the native window object
associated with a Java Component, the AWT trandates this to a cal to the Component’s
update() method.

Figure 3-4 shows the Spike2 application. Like the previous Spike application, Spike2
throws an ArraylndexOutOrBoundsException in the update() method of itsmain

window. Figure 3-4 dso includes a stack-trace at the time the exception is thrown. Notice
the same Thread, AWT-Callback-Win32, controls the repainting operation as controlled
by the Event ddivery operation in Spike. Hereis the code for the Spike2 application.

Figure 3-4 The Spike2 application
i mport java.awt.*;
public class Spike2 {

public static void main(String[] astrArgs) {
Spi ke2Franme s = new Spi ke2Franme(“ Spi ke2”);
s. show);

}
cl ass Spi ke2Frame extends Frame {

public Spi ke2Frame(String strTitle) {
super(strTitle);
}

public void update(Gaphics g) {
/1 Throw an Arrayl ndexQut Of Bounds
/'l Exception by dereferencing a non-existent
/1 Conponent .
get Conponent (0) . updat e(g) ;

}

Of course, rather than throwing Exceptions during repainting or Event handling methods,
your code should handle each cdll as quickly as possible. Stalling or suspending the
calback Thread will adversely affect your gpplication in unforeseen ways.

Components, Containers, and Top-Level Windows

The Component class defines a child window. That means that a smple Component
window must exist as a child to a parent window. The Component classiswritten so that
a Component does not have its native windowing system peer created unless the
Component has been added to a parent window. Thisis reflected in the Java API by the
fact that you can't display a smple Component, such as a Canvas or Scrollbar, on the
desktop without a parent window.

Containers

A special subclass of Component is the Container class. A Container window is atype of
Component that can be a parent to other Components, including other Containers. To add
a Component as the child of a Container, you use the Container class method add(),
shown here:

Cont ai ner cont;

// instantiate cont to be a container, such
// as a Franme or a Panel

Canvas ¢ = new Canvas();

/1 ¢ does not have a native w ndow ng system peer yet,
/1l because it does not have a parent w ndow.

cont. add(c);
/1l ¢c's peer gets created automatically as a result of
/1 the call to add.

A Container contains zero or more Components. These Components are caled siblings,
snce they have the same parent window. One important thing to remember isthat sbling
windows “clip” each other. That is, if you had two overlapping sibling windows, one of
the windows appears on top of the other.

The term dencting the relative precedence of sbling Componentsis zorder. A
Component with a higher zorder will appear on top of its overlgpping sblings. The z
order of sbling Componentsis determined by the order in which they were added to the
parent Container. The last Component added to a Container has the lowest zorder. Any
Component added before another Component will appear on top if the two overlap within
the parent Container.

Note that al Containers have a LayoutManager which arranges the child Components
within the Container. The Java APl includes severd types of LayoutManagers to arrange
child Components by different methods. For example, a HowL ayout object will arrange a
Container’ s child Components side-by-sde, Ieft-to-right, top-to-bottom. Chapter 4
discusses the various LayoutM anager classes.

Because the LayoutManager classes, included with the Java AP, ensure that sibling
Components never overlap within their parent Containers, our discussion of zordering is
academic as long as you use only those LayoutManagersin your Containers. However, in
Containers that do have overlapping child Components (as would be the case if you
implemented your own LayoutManager to cause sblingsto overlap, asisdonein the
chapter’ s project) z-ordering can be important.

Y ou can dso remove a Component from its Container. The remove method takes, asa
reference, the Component you want removed as a child for the Container. When the
Component is removed from its parent Container, the Component’ s native windowing
system peer is automaticaly destroyed. Again, a Component can not have anative peer
object unless the Component has a parent.

The following AddButton application demonstrates the use of Container.add() and
Container.remove(). The AddButton application includesa“+” and “-” push button. Press
the “+” button to create a new button Component. Pressthe “-” button to destroy the
oldest button Component. The other buttons do nothing. Figure 3-5 shows the AddButton
goplication.

Figure 3-5 The AddButton application
i nport java.awt.*;
public class AddButton {

public static void main(String[] astrArgs) {
AddBut t onFrane f = new AddButtonFrane("Add Button
Application");
f.show();
}

}

cl ass AddButtonFrane extends Frame {
Button _buttonAdd;
Button _buttonRenove;
i nt _nButtonNum = 1;

public AddButtonFranme(String strTitle) {
super(strTitle);
set Layout (new Fl owLayout ());

/1 Declare add and renove buttons. Note that even
/1 though the Button objects have been created, the
/1 Button peers in the native wi ndow ng system have
/1 not, since the Buttons have not been added to a
/1 Cont ai ner yet.

_bUt t onAdd = new Butt On(" +||) :
_buttonRenove = new Button("-");

/1 Add the "+" and "-" buttons. Once added to
/1l this Frame, the buttons' peers in the native
/1 wi ndowi ng system are created.

add(_but t onRenove) ;

add(_but t onAdd) ;

publ i c bool ean action(Event evt, Object what) {
/1 Make sure 'what' is a String.
i f(!(what instanceof String))
return false;

/1 1f the add button was pressed...
i f("+".equals((String)what)) {
/1 NOTE: addition of string and int converts int.
add(new Button(""+_nButtonNum++),
count Conponents()-1);
val i date();

}

/1 1f the renpove button was pressed...
if("-".equal s((String)what)) {
renove(get Conponent (1)) ;
val i date();

}

return false;
}

Windows

As dtated above, a Container is a specid type of Component that can be a parent to zero
or more child Components, including other Containers. A Container is till a Component,
however, and, as such, the Container must also have a parent window.

The Window classis a subclass of Container that defines atop-level window. Top-leve
windows do not have to have parent windows. The native windowing system peer for a
Window object is a pop-up window on the desktop. Therefore, when creating your user
interface in Java, al Component objects must eventaully be descended from a Window
object in the window hierarchy.

A Frameisaspecid type of Window. A Frame is a native windowing system top-leve
frame window, which has atitlebar, an optional menubar, and a resizable border. Note
that in the sample applications in this chapter, the interface is aways controlled by an
object derived from Frame. That Frame is the gpplication’s main window.

Peers and the Toolkit

How do the native windowing system objects, the peers, get created? Where do they
come from? Earlier, we said that Component objects (execpt Window and Frame objects)
do not have a peer cregted for them in the native windowing system until the Component
is added as a child of a Container. Another way of putting it is. The Component does not
have a peer crested on its behdf until it is added to a Container that has a peer.

A Component’s own addNotify method is caled to create the Component’ s peer.
Component.addNotify() is called by the parent Container. This cal can happen ether in
Container.add(), as soon as the Component is added to the Container, or in
Container.addNotify(). In the case of addNotify(), when a Container’ s peer is created, the
Container dso tellsits child Components to creete their peers.

Simple Component objects, such as a Canvas, cregte their own peersin overriden
implementations of addNotify(). The Java code for Canvas.addNotify() looks something
likethis

CanvasPeer _nmyPeer = null;

public void addNotify() {
myPeer = Tool kit. getDefaultToolkit().createCanvasPeer();

}

Toolkit isthe javaawt. Toolkit class. The Toolkit classisthe class that represents the
capabilities of the underlying windowing system to Java objects. For example, the
createCanvasPeer method used above, uses native function cals to the underlying
windowing system to create a CanvasPeer object. The CanvasPeer is a representative of a
native windowing object in Java.

Within the Toolkit class is a create method for each of the Component types in the Java
API. ThereisaToolkit.createCanvasPeer, Toolkit.createButtonPeer,
Toolkit.createScrollbarPeer, and so on, defined in the Toalkit class. The actud peer
classes are discussed in detall in Chapter 9. The point being made here is that each
Component class object uses the Toolkit to create its peer, and the creation of the peer
occurs within the overriding implementation of addNotify. The Frame class calsits own
addNotify method within Frame.show. That is, as soon as the Frame is supposed to be
shown on the screen, its peer is created.

The Toolkit

The Toolkit represents the windowing system within Java code. Mot of the Toolkit’'s
public methods are dedlicated to the creation of peer components. The native windowing
system provides additiond functiondities beyond smply creating and managing

windows. The Toolkit aso exposes some of these additiond functionditites. The Toolkit
class currently has methods to provide services in three additiona areas. desktop metrics,
available font information, and image downloading/preparation.

The sze and composition of the desktop surface can be of great importance to some
applications. Through the Toolkit's public methods, you can find out more about the
desktop. Thefollowing table lists the Toolkit’ s desktop metrics methods and provides a
description of each.

Method Description

getScreenSize Returns a Dimension object whose width and height is equa
to the width and height of the desktap, in pixds.

getScreenResolution Returns resolution of the desktop, in pixels-per-inch.

getColorMode Returns the ColorModd of the desktop. If the system uses a

256-color digplay, then this would be an IndexedColorModd,
which would give you read access to the system palette.

It is through the Toolkit that an gpplication or gpplet can enumerate the fonts available on
the system. Toolkit.getFontList() returns an array of Strings. Each dement of the array is
atypeface name for afont available on the system. To get the FontMetrics for a Font
when it is used on the desktop screen, you can use getFontMetrics, passing in the Font
that isto be measured. Note that FontMetrics are also available through
Graphics.getFontMetrics.

The image methods included in the Tooalkit, alow an gpplication to download and display
images. To create an Image object from a graphics-format file, use Toolkit.getlmage().
Two overloaded versons of this method are provided. Thefirst verson takesa URL
pointing to the network location of the graphics format file. The second version takes a
file path name and loads the image from afile on the locd file sysem.

The Image object returned from getlmage represents the graphics format file to Java
Before the Image can be copied to adisplay surface, the Image must be fully “prepared,”
or congtructed in memory. The Toolkit's preparel mage method is used to kick-gart the
Image congtruction process. preparel mage takes, as a parameter, an ImageObserver. The
ImageObserver will be notified as to the progress of the Image construction process. Any
erorsin the graphics file will aso be reported to the ImageObserver. After an Image has
been fully prepared once, it can be drawn on any display surface any number of times.
checklmage is used by objects, other than the ImageObserver, to get information on the
progress of the Image construction process.

Chapter 1 on Applets and Graphics, discusses downloading and preparing images
because image and audio data have such an important application over the Internet.

Toolkit, Window, Container, and Event Summaries

Table 3-1 ligs the classes summarized in this chapter and a short description of each.
Table 3-2lists the methods of the classes from Table 3-1 and provides a short description
of each method.

Table 3-1 Class ummaries

Class Description

Container A Container isaspecia type of Component object which can be
aparent to zero or more Componerts, including other Containers.
The add() and remove() methods are used to manage the list of
child components. countComponent() and getComponent()
provide read-access to a Container’ s list of Components.

Event User-interaction events are delivered by the AWT to Components
in Event objects.
Window A top-leve pop-up window. Does not have atitle bar or menu
bar. Thisisthe base classfor dl top-leve windows.
Toolkit Abdracts the functiondities of the native windowing sysem. The

mgority of methods are used to creste peer native window
objects or “peers’ for Java Component objects.

Table 3-2 Summary of methods
Class Method Description
Container countComponents Gets the number of child Components
for aContainer.
getComponent Gets areference to a gpecific child of a
Container.
getComponents Gets an array that enumerates dl the
child Components of a Container.
insets Gets the Insets objects that describe
the border spacing around a Container.
add Adds a Component asachild of a
Container.
remove Removes a child Component from a
Container.

removeAll Removes dl child Components from a

getLayout
Setlayout
layout

vdidate

preferredSize
minmumSze

paintComponents

ddiverBEvent

locate

Event trandate

shiftDown

controlDown

metaDown

Window toBack
toFront
dispose

getWarningString

Toolkit createButton

Container.
Gets a Container’ s LayoutManager.
Sets a Container’ s LayoutM anager.

Arranges a Container’s child
Components.

Cdled when a Container should
vdidate its 9zing and positioning, and
that of its child Components
Getsthe preferred sze of the
Container’ s bounding rectangle.

Gets the minimum Sze of the
Container’s bounding rectangle.

Performs a synchronous repainting of
each of a Container’s child
Components.

Finds an Event handler to handlea
specific Event.

Finds the child Component whose
bounding rectangle includes a specific
point.

Modifies the Event’s x and y member
variables.

Indicates whether the SHIFT button
was held down during the keyboard or
mouse Event.

Indicates whether the CTRL button
was held down during the keyboard or
mouse Event.

I ndicates whether the META button
was held down during the keyboard or
mouse Event.

Sends the Window to the bottom of the
desktop z-order.

Brings the Window to the front of the
desktop z-order.

Destroys the Window' s nétive
windowing system pesr.

Gets the warning string displayed by
Frame windows created by Applets.

Creates a ButtonPeer. The ButtonPeer

createTextFdd

createl_abd

createligt

createCheckbox

createScrollbar

creasteTextArea

createChoice

creasteFrame

createCanvas

createPand

knows how to trandate button presses
in the native windowing system to
action Events.

Creates a TextFieldPeer. The
TextFieldPeer knows how to manage a
text fidd, sdlect its contents and edit
them, etc.

Creates a LabelPeer, which can get
and st the text and dignment of a
label.

Creates a ListPeer, which knows how
to get and st the contents of alist and
work with the sdection in the native
windowing system.

Creates a CheckboxPeer, which knows
how to get and set the Sate of a native
window system checkbox contral.

Creates a ScrollbarPeer, which knows
how to get and set the min, max and
vaue of andive window sysem
scrolllbar. The peer dso trandates
scrollbar actions into Java Events for a
Scrollbar object.

Creates a TextAreaPeer, which knows
how to get and set the contents of a
multiline text areain the native
window system.

Creates a ChoicePeer, which knows
how to modify the contrents of a
native window system choice box and
which trand ates sdection messages
into Event for a Choice Component.

Creates a FramePeer, which knows
how to modify the titlebar of anative
window system frame and can
trandate native window system
window actions into Java Window
events.

Creates a CanvasPeer, which can
detect and trand ate mouse and
keyboard user interactions.

Cresates a Pand Pear, which is much

createWindow

createDiaog

createMenuBar

createMenu

createMenultem

createFleDidog

createCheckboxM enultem

Container

Purpose

like aCanvas, except that itisaso a
Container. The Panel Peer knows how
to add or remove Componentsto the

Pand in the native window system.

Creates a WindowPeer, which can
creste a Ssmple top-level window and
knows how to trandate window
messages from the native window
sysem into Eventsfor ddivery in
Java.

Cregtes a Did ogPeer, which can create
amodd didog in the native window
system.

Creates aMenuBarPeer, which knows
how to modify the contents of
menubars in the native window
system.

Creates a MenuPeger, which knows
how to add and remove menu items
from a native window system menu.

Creates a MenultemPeer, which knows
how to check and modify the state of a
Menultem in the native window
system.

Creates a FileDia ogPeer, which
knows how to create afile didog in
the native window system and modify
the contents of the variablefile
sdection fidds.

Creates a CheckboxM enultemPeer,
which knows how to creste amenu
item in the native windowing sysem
and knows how to modify its state as it
appears to be checked.

A Container is a Component which can contain other Components, including

other Containers.
Syntax

public abstract class Container extends Component

Description
A Container isa Component that can contain other Components, including other
Containers. A Container, being a Component, must be contained by another
Container in order to be displayed. The Container classis abstract. The smplest
type of redizable Container is a Pand. Figure 3-6 shows the class hierarchy of the
Container class.

PackageName
java.awt

Imports
java.io.PrintStream, java.awt.peer.Container Peer

Condructors
None.

Parameters
None.

Figure 3-6 The classhierarchy of the Container class

countComponents

ClassName
Container
Purpose
Gets the number of child Components for this Container.
Syntax
public int countComponents();
Parameters
None.
Description
Returns the number of child Componentsin this Container.
Imports
None.
Returns
The number of Components that have been added to this Container using add.
See Also
The getComponent and getComponents methods of the Container class
Example
This example Container subclass demongtrates the use of both countComponents
and getComponent to run through the list of a Container’s child Components. The
only method implemented by this class, getChildrenBounds returns a bounding

rectangle of al the child Components.
cl ass Cont ai ner Ex extends Contai ner {

publi c Rectangl e get Chil drenBounds() {
Rectacngle rectRet = null;
for(int ii=0; ii<countConponents() ; ii++) {
Conponent ¢ = get Conponent (ii);
Rectangle b = c. bounds();

if(null == rectRet)
rect Ret = new Rectangle(b.x, b.y, b.width, b.height);

rect Ret. add(b);
}

return rectRet;

}
getComponent

ClassName
Container

Purpose
Gets areference to a specific child Component of this Container.

Syntax
public Component getComponent(int index)

Parameters

index
Zero-based index of the Component to get. This must be between 0 and
(countComponents()-1).

Description
Gets areference to one of the child Components of this comtainer. An
Arrayl ndexOutOfBoundException may be thrown if the index parameter is not
vaid.

Imports
java.awt.Component

Returns
A reference to the index-th Component child of the Container will be returned.
Note that if the index parameter is less than O or greeter than
(countComponents()-1), then an ArraylndexOutOf BoundsException will be
thrown.

See Also
The Component class; the countComponents and getComponents methods of the
Container class

Example
See the example under countComponents.

getComponents

ClassName

Container

Purpose
Gets an array of referencesto al child Components of this Container.

Syntax
public Component[] getComponents();

Parameters
None.

Description
Gets an array of Component, with one element for each of the child Components
of the Container. The order of the Componentsin the array isthe order the
Components were added to this Container.

Imports
java.awt.Component

Returns
An array of Component objects. The length of this array will be the same as the
return vaue from countComponents. Each child Component will gppear in the
array. Null may be returned if the Container has no children.

See Also
The Component class; the countComponents and getComponent methods of the
Container class

Example
Thisis an dternative implementation to the getChildrenBounds function given in

the example for the countComponents method.
cl ass Cont ai ner Ex extends Contai ner {

public Rectangl e getChildrenBounds() ({
Rectacngle rectRet = null;
for(int ii=0; ii<countConponents() ; ii++) {
Conmponent ¢ = get Conponent (ii);
Rectangle b c. bounds();

if(null == rectRet)
rect Ret = new Rectangle(b.x, b.y, b.width, b.height);

rect Ret. add(b);
}

return rectRet;

}
insets

ClassName

Container
Purpose

Specifiesinsat spacing between children and the Container’ s edge.
Syntax

public Insetsinsaty);

Parameters
None.

Description
A Container can define an Insets object, which defines the border of padding
within the Container. The Insets are used by the LayoutManager in such away
that no child Components will be placed within the Insets border.

Imports
java.awt.Insets

Returns
An Insets object is returned that describes the border for a LayoutManager to
leave around the Container.

See Also
The LayoutManager class, the Insets class

Example
The default implementation of Insets Smply delegates the cdl to the Container’s
peer. If the peer does not define an Insets, then Insets of O are returned. This
implementation of insets and setlnsets dlows you to define your Container’s

Insets within Java code.
publ i ¢ Contai ner Ex extends Contai ner {
Insets _insets = new Insets(0, 0, 0, 0);

public void setlnsets(int left, int top, int right, int bottom {
_insets = new Insets(left, top, right, botton);

}

public Insets insets() {
return _insets;
}

add

ClassName
Container
Purpose
Adds a Component as a child of this Container.
Syntax
public void add(Component c);public void add(Component ¢, int index);
Parameters
Component c
The Component to add as a child of this Container.
int index
Index to store the Component in the Container’ sinternd list of Components.
Description
Adds a Component as a child of this Container. The index of the Component,
within the Container’ s list of Components, is set by the second parameter, index,

of the second overloaded versons. No matter which version you use, the child
Component has the lower z-order compared to its sblings. If the Component is
currently a child of another Container, it will automatically be removed from the
other Container before being added to this one. If the Component is a parent or
ancegtor of this Container, then an 1llegal ArgumentException will be thrown.
Imports
java.awt.Component.
Returns
None.
See Also
The Component class; the remove method of the Container class
Example

This example builds asmple toolbar of four buttons.
.1/ A Panel is a type of Container.
Panel p = new Panel ();
p. set Layout (new Fl owLayout ());

.add(new Button(“Back”));
.add(new Button(“Forward”));
.add(new Button(“Hone"));
.add(new Button(“Return”));

T T T O

remove

ClassName
Container
Purpose
Removes a Component as a child of this Container.
Syntax
public void remove(Component c);
Parameters
Component ¢
A Component which is a child of this Container.
Description
Removes a Component as a child of this Container. If the Component is not a
child of this Container, then the cal isignored. The Component is added asa
child of this Container using add.
Imports
java.awt.Component
Returns
None.
See Also
The Component class, the add method of the Container class
Example
This example removes dl child Components and then adds them back in reverse

order.
public class MyCont extends Panel {

public void ReverseChildren() {
Conmponent[] children = get Conponents();
renoveAl | ();
for(int ii=children.length ; ii>=0; ii--)
add(children(ii);

}
removeAll

ClassName
Container
Purpose
Removes dl child Components from this Container.
Syntax
public void removeAll();
Parameters
None.
Description
Removes dl the child Components from this Container. Interndly, this method is
implemented by running through the list of Components and making repested
cdlsto remove.
Imports
None.
Returns
None.
See Also
The remove method of the Container class
Example
See the example under the remove method of the Container class.

getL ayout

ClassName
Container
Purpose
Gets the LayoutM aneger for this Container.
Syntax
public LayoutManager getLayout();
Parameters
None.
Description
Gets the LayoutManager for this Container. The LayoutManager is respongble
for arranging the child Components within the Container’ s display rectangle. See

Chapter 4 for a description of the LayoutManager and its relationship with the
Container.
Returns
A reference to the Container’ s LayoutManager. Null if the Container has no
LayoutManager.
See Also
The LayoutManager interface; the setlayout method of the Container class
Example
This example uses getL ayout to display a Container’ s LayoutManager.
public class displayLayout(Container cont) {

if(null !'= cont.getlLayout())
System out . println(cont. getlLayout());

}
setlL ayout

ClassName
Container
Purpose
Setsthe LayoutManager for this Container to use.
Syntax
public void setlayout(LayoutManager Im);
Parameters
LayoutManager Im
A LayoutManager to arrange the Components of this Container.
Description
Sets the LayoutManager which will arrange the child Components of this
Container within the Container’ s bounding rectangle. See Chapter 4 for a
description of the LayoutManager and its relationship with the Container.
Imports
java.awt.LayoutManager
Returns
None.
See Also
The LayoutManager interface; the getLayout method of the Container class
Example

This example Applet sets its own LayoutManager to a BorderLayout object.
public class MyAppl et extends Applet {

public MyApplet() {
set Layout (new BorderLayout ());
}

public void init() {
add(“Center”, new Button(“Go!"));
}

layout

ClassName
Container
Purpose
Cdled to dlow the Container to arrange its child Components.
Syntax
public void layout();
Parameters
None.
Description
The default implementation of this method forces the LayoutManager to
recal culate the placement of child Components within this Container’ s rectangle
using the LayoutManager’ s layoutContainer method. The default implementation
of the vdidate method of the Component class calls Component.layout. The
Container class overrides layout with a custom implementation. See Chapter 4 for
adescription of the LayoutManager and its reationship with the Container.
Imports
None.
Returns
None.
See Also
The LayoutManager interface; the validate() method of the Component class
Example
In this example, a custom Container does not rely on a LayoutManager but

ingead arranges its child Components in an overridden layout implementation.
public class MyCont extends Panel {

public void layout () {
/1 Layout children vertically, allow ng each to be
/'l its preferred height, but only as wide as this
/'l Cont ai ner .
Conmponent[] children = get Conponents();
Di mensi on di nThis = size();
int 'y =0;
for(int ii=0; ii<children.length ; ii++) {
Di mensi on di mChild =
children[ii].preferredSize();
children[ii].reshape(0, y, dinmrhis.wdth,
di nChi | d. hei ght) ;
y+=di nChi | d. hei ght ;

validate

ClassName
Container

Purpose
Cdled when the Container should vaidate is size and positioning and thet of its
child Components.

Syntax
public void vaidate();

Parameters
None.

Description
This overridden verson of Component.validate does everything the Component
verson of this method does, plusit will vaidate dl the child Components of this
Container. A Container isinvaidated by an explicit cal to Component.invalidate.
A Container is dso invadidated whenever a Component is added to it or removed
fromit.

Imports
None.

Returns
None.

Example
See the AddButton example given exlier in this chepter.

preferredSize

ClassName
Container
Purpose
Cdculates the preferred size of this Container’ s bounding rectangle using the
Container’s LayoutManager.
Syntax
public Dimension preferredSize();
Parameter
None.
Description
This overridden implementation of Component.preferredSize caculates the
Container’s preferred size by asking the LayoutManager to caculate the preferred
dgzein acdl to LayoutManager.preferredLayoutSize. See Chapter 4 for a
description of the LayoutManager and its relationship with the Container.
Imports
None.
Returns
A Dimension object whose width and height member variables hold the preferred
gze of this Container.
See Also
The preferredSize method of the Component class; the minimumSize method of
the Container class

Example
See the example of the preferredSize method of the Component class (in Chapter
2).

minimumsSize

ClassName
Container

Purpose
Cd culates the minimum acceptable sze of this Container’ s bounding rectangle
using the Container’ s LayoutM anager.

Syntax
public Dimenson minimumSize();

Parameters
None.

Description
This overridden implementation of Component. minimumSize caculates the
Container’ s minimum size by asking the LayoutManager to caculate the
minimum sizein acdl to LayoutManager.minimumLayoutSize. See Chapter 4 for
adescription of the LayoutManager and its relationship with the Container.

Imports
None.

Returns
A Dimension object whose width and height member variables hold the preferred
Sze of this Container.

See Also
The minimumSize method of the Component class; the preferredS ze method of
the Container class

Example
See the example for the minimumSize method of the Component class (in Chapter
2).

paintComponents

ClassName
Container
Purpose
Synchronoudy paints dl children Components.
Syntax
public void paintComponents(Graphics g)
Parameters
Graphicsg
The Graphics, associated with the digplay surface, to paint the Components on.
Description
Forces an immediate (synchronous) repainting of al the child Components. A
synchronous repainting of each of the child Components is achieved by cresting

multiple clipped versons of the passed Graphics object (usng Graphics.create),
and passing the clipped versons to paint for each of the child Components to
render itsdlf.
Imports
java.awt.Graphics.
Returns
None.
See Also
The paint method of the Component class; the create method of the Graphics class
Example
In this example, Container’s paint method isimplemented by asmple cal to
paintComponents. This repaints the Container’s child Components using the

Graphics object passed to the Container’ s paint method.
public class MyContainer extends Panel {

public void paint(Gaphics g) {
pai nt Conponents(g);
}

ddiver Event

ClassName
Container

Purpose
Dédivers an Event to a Container or one of its child Compnents.

Syntax
public void deliverEvent(Evert evt)

Parameters

Event evt
The Event to ddliver to this Container.

Description
This overridden version of Component.deliverEvent first passes the Event to the
child Component indicated by the x and y member variables of the Event object.
If the child Component does not handle the event, or the x and y Event member
variables do not indicate a point within any of this Container’ s children, then the
Event is posted to this Container through Container.postEvent.

Imports
java.awt.Event.

Returns
None.

See Also
The deliverEvent method of the Component class

Example
In this example, mouse events are successfully delivered to “virtud” (peerless)
child Components of a Container using the Container’s ddiver Event method. The
ddiverEvent method of the Container classfirg attemptsto post the Event to an
appropriate child Component before letting the Container handle the Event.

/Il First, here's our peerless Conponent class

cl ass Peerl essCanvas extends Canvas {
publ i c Peerl essCanvas() {}

public void addNotify() {
return;

}

public bool ean nobuseDown(Event evt, int x, int y) {
/1l This code *will* be reached, because the
/1l parent Container’s deliverEvent will find
/1 the correct child Conponent.

return true;
}
}
/1 The Container class to make sure MOUSE DOWN Events are
/1 posted to the correct, peerless, child Conponent.
public class Peerl essContai ner extends Panel {
public Peerl essContainer() {
set Layout (new BorderLayout ());
add(“North”, new Peerl essCanvas());
add(“Sout h”, new Peerl essCanvas());
add(“East”, now Peerl essCanvas());
add(“West”, new Peerl essCanvas());
add(“Center”, new Peerl essCanvas());

}

/1 nouseDown Event handler calls deliverEvent

/1l to ensure nouse event is posted to correct

/1 child Conponent, even if it's peerless.

publi ¢ bool ean nobuseDown(Event evt, int x, int y) {
del i ver Event (evt);

}

}
locate

ClassName
Container
Purpose
Getsthe child located at a particular point.
Syntax
Public Component locate(int x, int y);
Parameters
intx,y
Indicates a point relative to the Container’ s point of origin.
Description

Finds the Component which occupies the point, passed in the x and y parameters,
to thismethod. The x and y parameters are expressed relative to this Container’s
origin.

Imports
java.awt.Component

Returns
The Component with lowest index in the Container’ sinternd list of Components
and which occupies a rectangle that the point falsinto, is returned.

Example
This example ligts the source code for the Container class' ddiverEvent method.
The deliverEvent method uses the locate method to find the correct child

Component to deliver an Event to.
public void deliverEvent (Event evt) {
Conmponent ¢ = | ocate(evt.x, evt.y);

if ((c!=null) & (c !'=1this)) {
evt.translate(-c.x, -c.y);
c.deliverEvent (evt);

} else {
post Event (evt);

}

}
Event

Purpose
Represents an asynchronous event which occurred in the system.

Syntax
public class Event

Description
Represents an asynchronous event which occurred in the system. For example,
user-generated events like mouse moves or keyboard actions. The Event classis
not extended by any classin the Java AP, but rather the member variables of the
Event class are sufficient for encoding any definable event. Figure 3-7 shows the
class hierarchy of the Event class.

PackageName
java.awt

Imports
java.io.*

Condructors
public Event(Object target, long when, int id, int x, int y, int key, int modifiers,
Object arg);public Event(Object target, long when, int id, int x, inty, int key, int
modifiers);public Event(Object target, int id, Object arg);

Parameters
Thefollowing table ligs al of the Event class public member variablesand a
short description of each.

Figure 3-7 Theclass hierarchy of the Event class

Member Variable

Description

Object target
long when
id

intx,y
int key

modifiers
clickCount

Object arg

Event evt

The Object to which the Event was originaly passed.
Time stamp of when the event occurred.

Identifies the type of the Event: mouse movement, keyboard
action, etc. Thefallowing table ligs dl of the different Event
types.

A point where the Event occurred. These two variables are
ususdly only vaid for mouse Events.

The key pressed if thisis akeyboard Event.

Keyboard Event modifiers, such as whether or not the [CTEL]
key was being held down, whether or not the EHFTlkey was
being held down, etc.

For multiclicks (e.g., a double-click) this member indicates
how many clicks took place.

An arbitrary argument, which is different for each type of
Event.

The next Event. Used when storing Eventsin alinked list.

Theid member variable indicates what type of Event is being represented. Many different
Event class congants have been defined to indicate Event types. The following table list
the possible values for theid fidd.

Event Type

Description

WINDOW_DESTROY

WINDOW_ICONIFY
WINDOW_DEICONIFY
WINDOW_MOVED

KEY_PRESS

This acommand for the Window object to destroy itsdlf. To
destroy a Window, use Window.disposs().

The Window has been iconified.
The iconified Window has been restored.
The Window has been moved on the desktop.

The user has pressed a key. Examine key and modifiers
members to see which key.

KEY RELEASE

MOUSE_DOWN
MOUSE_UP

MOUSE_ENTER

MOUSE_EXIT

MOUSE_DRAG

MOUSE_MOVE

SCROLL_LINE_UP

SCROLL_LINE_DOWN

SCOLL_PAGE_UP

SCROLL_PAGE_DOWN

SCROLL_ABSOLUTE

LIST_SELECT

LIST_DESELECTED

ACTION_EVENT

A pressed key has been released. Examine key and modifiers
members to see which key.

The mouse button has been clicked. Examinex and 'y
members to see where the mouse click occurred.

The mouse button has been released. Examine x and y
members to see where the mouse click occurred.

The mouse has entered the rectangle dedicated to this
Component. Examine x and y members to see where the
mouse click occurred.

The mouse has |&ft the rectangle dedicated to this Component.
Examine x and y members to see where the mouse click
occurred.

Same asaMOUSE_MOVE, but with the mouse button held
down.

The mouse has been moved. Examine x and y membersto see
where the mouse cursor was moved to.

The target member holds a reference to the Scrollbar which
the user clicked. The arg member holds the vaue of the
Scrollbar.

The target member holds a reference to the Scrollbar which
the user clicked. The arg member holds the value of the
Scrollbar.

The target member holds a reference to the Scrollbar which
the user clicked. The arg member holds the vdue of the
Scrollbar.

The target member holds a reference to the Scrollbar which
the user clicked. The arg member holds the value of the
Scrollbar.

The target member holds a reference to the Scrollbar which
the user clicked. The arg member holds the vaue of the
Scrollbar. This message is sent when the user holds down and
drags the thumb of a Scrollbar.

The target member holds a reference to the List which the
user clicked. The arg member holds the vaue of the selected
lig item.

The target member holds areference to the List which the
user clicked. The arg member holds the vaue of the selected
ligt item.

When a Button is clicked, target isthe Button, arg isthe

Button’ s text. When amenu item was selected, target isthe
selected menu item, arg is the Button’ s text.

GET_FOCUS The Component in target has just received focus.
LOST_FOCUS The Component in target has just lost focus.

The modifiers member is a bitmap representing the state of specid function keys during
keyboard and mouse Events. The following table lists the recognized va ues which may
be present in the modifiers member. These values are ORed together bitwise to form the
values of the modifiers member.

M ask Description
SHIFT_MASK St if theEHIETIkey was held down.
CTRL_MASK Sat if the mmkey was held down.
META_MASK Set if the MET2lkey was held down.
ALT_MASK S if theemkey was held down.
trandate
ClassName

Event
Purpose

Changes the x and y member varigbles of the Event by some value.
Syntax

public void trandate(int dX, int dY);
Parameters
int dX, dY

The Event’ s x member varigble is modified by adding dX to it, and the Event'sy
member variable is modified by adding dY to it.

Description
Similar to trandate, this method modifies the Event’ s x and y member variables
by adding adX and adY vaue to them. Interndly, this method is called by
Component.postEvent when the Event is passed on to the Component’ s Container
in order to reflect the point in terms of the Container’ s origin.

Imports
None.

Returns
None.

Example
This Component’ s overridden mouseDown and mouseUp Event handlers change
the location of mouse clicks and mouse releases by ten pointsinthe X and Y

directions before alowing the Events to be passed on to the Component’ s parent
Container.
public class MyConponent extends Canvas ({

publ i ¢ bool ean nobuseDown(Event evt, int x, int y) {
evt.transl ate(10, 10);
return false;

}

publi ¢ bool ean nouseUp(Event evt, int x, int y) {
evt.transl ate(10, 10);
return fal se;

}
shiftDown

ClassName
Event
Purpose
Tels whether or not the EHIETIkey was held down when the Event was created.
Syntax
public boolean shiftDown();
Parameters
None.
Description
Tdls whether or not the SHIFT_MASK flag is set in the modifiers member
varigble. Usng this member method is alittle eesier than testing the modifiers
vaiable directly. The SHIFT, CTRL, and META masks are only vaid for
keyboard and mouse Events.
Returns
Trueisreturned if the SHIFT_MASK flag is set in the modifiers member varigble.
Otherwise, fase.
See Also
The controlDown and metaDown methods of the Event class
Example
This example mouseDown Event handler sends mouse Events to subhandlers

according to the states of the SHIFT, CTRL, and META flags.
public class MyConmponent extends Canvas {

publ i ¢ bool ean nobuseDown(Event evt, int x, int y) {
i f(evt.shiftDown())
return nmouseDownShift(evt, x, Yy);
i f(evt.control Down())
return nouseDownCtrl (evt, X, y);
i f(evt.metabown())
return nouseDownMet a(evt, X, Y);

return false;

}

publ i c mouseDownShi ft(Event evt, int x, int y) {
/1 Do something with nouse clicks while SH FT is
/1 down.
return true;

}

public nouseDownCtrl (Event evt, int x, int y) {
/1 Do sonething with nouse clicks while CTRL is
/1 down.
return true;

}

publ i ¢ nouseDownMet a(Event evt, int x, int y) {
/1 Do sonething with nouse clicks while META is
/1 down.
return true;

}
controlDown

ClassName
Event
Purpose
Tellswhether or not the(ETELJkey was held down when the Event was created.
Syntax
public boolean control Down();
Parameters
None.
Description
Telswhether or not the CTRL_MASK flag is set in the modifiers member
varidble. Usng this member method is alittle eesier than testing the modifiers
variable directly. The SHIFT, CTRL, and META masks are only vaid for
keyboard and mouse Events.
Returns
Trueisreturned if the CTRL._MASK flag is et in the modifiers member varigble;
otherwise, false.
See Also
The shiftDown and metaDown methods of the Event class
Example
See the example under the shiftDown method of the Event class.

metaDown

ClassName

Event
Purpose
Tels whether or not the META key was held down when the Event was created.
Syntax
public boolean metaDown();
Parameters
None.
Description
Tdlswhether or not the META_MASK flag is set in the modifiers member
varidble. Usng this member method is alittle eeser than testing the modifiers
variable directly. The SHIFT, CTRL, and META masks are only vadid for
keyboard and mouse Events.
Returns
Trueisreturned if the META_MASK flag is set in the modifiers member
varigble; otherwise, false.
See Also
The shiftDown and controlDown methods of the Event class
Example
See the example under the shiftDown method of the Event class.

Window

Purpose
The Window classis atop-level Container class.

Syntax
public class Window extends Container

Description
The Window classis atop-level Container class. Window class objects do not
have parent Containers. Instead, Window objects can be thought of as children of
the desktop. The Frame and Diaog classes are specid types of Window classes.
Figure 3-8 shows the class hierarchy of the Window class. Do not create a
Window object directly, but instead use either the Frame class or the Didlog class
to create top-level windows. The Window class implements the methods that are
shared between the two specific classes.

PackageName
java.awt

Imports
java.awt.peer .WindowPeer

Condtructors
public Window();
public Window(Frame parent);
Thefirst constructor cregtes a top-level Frame window. The second constructor
creates a top-leve window which isachild of the passed Frame, such asa
modeless Didog.

Parameters
None.
Example
See the examples for the Frame and Didog classes.

Figure 3-8 Theclass hierarchy of the Window class
toBack

ClassName
Window
Purpose
Sends the Window to the back of the desktop z-order..
Syntax
public void toBack();
Parameters
None.
Description
Sends the Window to the back of the desktop z-order. If the Window is not
showing, this cdl isignored. The Window autometically loses keyboard focus
after this cdl ismade if the window, or any of its children, have the keyboard
focus when the cdll ismade.
Imports
None.
Returns
None.
See Also
The toFront method of the Window class
Example
In this example, a custom Event is ddivered to the MyWindow classto causeit to

be sent to the back or the front of the zorder of the top-level windows.
public class MyW ndow ext ends W ndow {
public static final CUSTOM TO BACK = -1
public static final CUSTOM TO FRONT = -2

public MyW ndow() {}

publ i ¢ bool ean handl eEvent (Event evt) {
i f (CUSTOM TO BACK == evt.id)
t oBack();
el se i f(CUSTOM TO FRONT == evt.id) {
toFront ();
el se
return super. handl eEvent (evt);

return true;

}
toFront

ClassName
Window
Purpose
Brings the Window to the front of the desktop zorder..
Syntax
public void toFront();
Parameters
None.
Description
Brings the Window to the front of the desktop zorder. If the Window is not
showing, this cdl isignored. The Window automatically gains keyboard focus
after thiscdl ismade.
Imports
None.
Returns
None.
See Also
The toBack method of the Window class
Example
See the example for the toBack method of the Window class.

dispose

ClassName
Window
Purpose
Destroys the Window object’ s native windowing System pes.
Syntax
public void dispos();
Parameters
None.
Description
Destroys the Window' s native windowing system peer object. Top-leve windows
must explicitly destroy (dispose) of their peers. Most commonly used when an
gpplication’s main window receives a WINDOW_DESTROY Event.
Imports
None.
Returns
None.
Example

This example Event handler, for an gpplication’s main Frame window, cdls

dispose when it receivesa WINDOW_DESTROY Event.
public class MyAppMi nFrame extends Frame {

publ i ¢ bool ean handl eEvent (Event evt) {
i f(Event. W NDOW DESTROY == evt.id) {
di spose();
return true;

}

return super. handl eEvent (evt);

}
getWarningString

ClassName
Window
Purpose
Gets the Applet warning string to display in Frame windows created by Applets.
Syntax
public find String getWarningString();
Parameters
None.
Description
The warning gtring is a string that displays in a Frame window created by an
Applet object. For example, the Netscape Navigator v2.0 displays astring
“Untrusted Applet Window” on every Frame window created by Applets. Note
that this method is find, so your Applet cannot override thisimplementation. The
warning gring is actudly a System property caled “awt.appletWarning”.
Imports
None.
Returns
A String object containing the warning string to display.
Example

This custom Frame cdlass uses the warning string as the Frame' s caption.
public class MyFrame extends Frane {
public MyFrame() {
super (get Warni ngString());
}

Toolkit

Purpose

The Toolkit class represents the native windowing system in Java.

Syntax
public abstract class Toolkit

Description
The Toolkit class represents the native windowing system in Java. The four
functiondities accessble through the Toolkit class are: Component peer cregtion,
Font enumeration and metrics, Screen Szing and resolution, and Image loading
and preparation. Figure 3-9 shows the class hierarchy of the Toolkit class. The
Toolkit classis an abstract class, so you cannot cregte an instance of this class.
Instead, you use the Toolkit class getDefaultToolkit method to obtain areference
to the Toolkit implementation in use on the system currently, as demondtrated in
the example for the getDefaultToolkit method listed below.

PackageName
java.awt

Imports
java.awt.peer.*, java.awt.image.lmageObserver, java.awt.image.lmageProducer,
java.awt.image.ColorModel, java.net. URL

Condtructors
None.

Parameters
None.

Figure 3-9 Theclass hierarchy of the Toolkit class
getScreenSize

ClassName
Toolkit
Purpose
Gets the dimension of the desktop in pixels.
Syntax
public Dimension getScreenSize();
Parameters
None.
Description
Gets the dimension of the desktop in pixels. Thisis very useful for applications
which would like to layout their Components based on available on-screen red
estate.
Imports
java.awt.Dimension
Returns

The return Dimension object’ swidth and height members reflect the width and
height of the desktop.

See Also
The getScreenResolution method of the Toolkit class

Example

This example method centers a Frame on the desktop.
public void centerFranmeOnDeskt op(Frane f) ({
Di nension dim = f.size();
Di mensi on di mDesktop =
Tool ki t. get Defaul t Tool kit ().getScreenSi ze();
f.move(dinDesktop.x / 2 + dimx / 2,
di mDesktop.y / 2 + dimy / 2);
}

getScreenResolution

ClassName
Toolkit

Purpose
Gets the resolution of the desktop.

Syntax
public int getScreenResol ution();

Parameters
None.

Description
Gets the resolution of the desktop in pixels per inch. The number returned is vaid
inboth the X and Y directions. Thisis useful for gpplications which need to know
physica, not logica, distances on the desktop. For example, an gpplication which
is supposed to display a 12-inch ruler would need to know how many pixels from
the upper-1€eft corner of the screenis exactly oneinch.

Imports
None.

Returns
The screen resolution in pixds-per-inch. The returned vaue is vaid in both the X
and Y directions.

See Also
The getScreenSize method of the Toolkit class

Example
This example method creates a Frame window which is exactly five incheswide

by five inchestall.
public Frame makeS5by5Franme() {
Frame f = new Frane();
i nt pixelsPerlnch =
Tool ki t. get Defaul t Tool kit (). get ScreenResol ution();
f.resize(5 * pixelsPerlnch, 5 * pixelsPerlnch);

f.show();

return f;

getColorM odel

ClassName
Toolkit
Purpose
Gets the ColorModd describing the color capabilities of the desktop.
Syntax
public ColorModd getColorModel();
Parameters
None.
Description
Returns the ColorModel object for the desktop. The ColorMode describes the
color palette or color capabilities of the desktop.
Imports
java.awt.image.ColorModel
Returns
A ColorMode object describing the color capabilities of the desktop.
See Also
The ColorModd class
Example
This example method profiles the number of colors the desktop is capable of
digolaying smultaneoudly.
public void displaySi mul Col ors() {
Col or Model cnbDesktop =
Tool ki t. get Def aul t Tool kit (). get Col or Model () ;
int nColorBits = cnDeskt op. get Pi xel Si ze();

System out . println(“Max desktop colors: 7 +
(1 << nColorBits));

}
getFontList

ClassName
Toolkit

Purpose
Ligsdl the font face names available for rendering text.

Syntax
public abstract String[] getFontList();

Parameters
None.

Description
Use thismethod to get alist of dl avallable fonts on the system. An array is
returned, each dement of which isa String containing avaid font face name. Use
Font.getFont with the font face name to create a Font object for a particular face
name.

Imports
None.

Returns
None.

Example
See the example Project for this chapter, FontL ab, which uses getFontL st to
enumerate dl font face names available on the local system.

getFontMetrics

ClassName
Toolkit

Purpose
Gets the FontMetrics for a particular Font as rendered on the desktop.

Syntax
public abstract FontMetrics getFontM etrics(Font font);

Parameters

Font font
The Font you want to gather metrics for.

Description
This method returns a FontMetrics object describing the metrics of a particular
Font when rendered on the desktop. The Component.getFontMetrics method is
actudly ashalow wrapper around this method.

Imports
java.awt.FontMetrics, java.awt.Font

Returns
A FontMetrics object describing the metrics of Font font when rendered on the
desktop.

Example
This example method returns the length, in pixds, of a String when displayed on
the desktop using a particular Font. The Font is described only by afont face
name, such as one of the e ements returned by Toolkit.getFontList.

public int getStringWdthlnFont(String str, String strFaceNanme) {

Font font = Font.get Font (strFaceNane);
Font Metrics fm=

Tool ki t. get Def aul t Tool kit ().getFont Metrics(font);
return fmstringWdth(str);

}
getDefault T oolkit

ClassName
Toolkit
Purpose
Gets the Toolkit object used by the AWT.
Syntax
public stetic synchronized Toolkit getDefaultToolkit();

Parameters
None.

Description
Gets the Toolkit object used by the java.awt.* packages. Thereisnothing
sopping you from implementing another Toolkit in addition to the default
Toolkit. For example, if you wanted to take advantage of some native windowing
system capatilities, which are not available through Java s Toolkit object, you
could implement your own and use it instead of Java s Toolkit object.

Imports
None.

Returns
The Toolkit object used within the Java API classes is returned.

Example
See the examples for the methods getFontM etrics and getScreenResol ution in the
Toolkit class.

getlmage

ClassName
Toolkit
Purpose
To load an image from a URL and prepare it for rendering on the desktop.
Syntax
public abstract Image getlmage(String filename);public abstract Image
getlmage(URL url);
Parameters
String filename
Thefull path namefor agraphica formeat file on the locd file sysem.
URL url
Points to an image file to be loaded by the Toolkit.
Description
This method dlows any code in Javarto initiate loading of an Image from a
grephica imagefile This grgphicd format file may be alocationin afile on the
locd file system, or isindicated by a URL (available or the Internet). The first
overloaded version of this method loads images from files on the locdl file
system, and the second loads images from files available over the Internet.
Imports
java.awt.Image
Returns
An Image object will be returned by this object. The reaction of this method when
the URL refers to an unsupported protocol or when the image file format is
unrecognized or is ungpecified. Generdly, it can be assumed that null will be
returned if this cgpability is not provided by the Toolkit.
See Also
The Image class
Example

The following sample Component loads and displays an image. A relative URL to
the image to be loaded is passed to the Component’ s constructor. The Component

acts as the ImageObserver for the Image construction process.
public class I mageConp extends Component {
| mage i mage;

public I mageConmp(URL url | mage) {
i mge = Tool kit.getDefaultTool kit().getlmge(urllmge);

public void paint(Gaphics g) {
/1 Paint image on display surface, if inmage exists
if(null !'=inmage)
g.drawl mage(image, 0, 0, this);
}

}
prepar el mage

ClassName
Toolkit

Purpose
Kick-garts the Image construction process for an Image to be displayed with a
specified width and height.

Syntax
public boolean preparel mage(Image img, int width, int height, ImageObserver
observer);

Parameters

Imageimg
The Image object to create a screen representation of .

int width

int height
The scaed Sze of the Image' s representation.

I mageObserver observer
The ImageObserver object to receive natification of the asynchronous progress of
the congtruction of the Image' s representation.

Description
Starts congtruction of a screen representation of an Image object. An Image must
be constructed before it can be displayed on a Component’ s surface. Note that
when you use Graphics.drawlmage with areference to an unconstructed Image
object, the Image' s congtruction process is automaticaly started for you. The
preparel mage method alows you to start this process before the Image is
displayed on any surface.

Imports
java.awt.Image, java.awt.image.l mageObser ver

Returns
Trueisreturned if the representation of the Image object is complete. Otherwise,
faseisreturned and the Image congtruction processis started.

See Also

The Image class; the ImageObsarver interface; the checklmage method of the
Toolkit class

Example
See the example for the checklmage method of the Toolkit class.

checklmage

ClassName
Toolkit

Purpose
To check the status of congtruction of an Image.

Syntax
public int checklmage(lmage img, int width, int height, ImageObserver observer);

Parameters

Imageimg
The Image object whose statusis to be checked.

int width

int height
The scded size of the image representation being checked.

I mageObserver observer
An ImageObserver object currently being notified of the progress of congtruction
of the Image object.

Description
Checks the status of the construction of an Image object. The ImageObserver is
continuoudy notified about the progress of the image congtruction process
through its updatel mage method. checklmage alows nort ImageObserver objects
to poll for the progress of this process.

Imports
None.

Returns
A logicd ORing of the ImageObsarver flags indicating what information about
the Image is available. This can include one or more of the following
ImageObserver vdues. WIDTH, HEIGHT, PROPERTIES, SOMEBITS,
FRAMEBITS, ALLBITS, ERROR.

See Also
The ImageObserver interface

Example
This example prevents the Component from painting its surface until the Image
congtruction flag ALLBITS has been passed to the ImageObserver watching the
image congtruction process.

publi c MyConponent extends Canvas {

| mage _iny;

/1 Constructor takes an |nage paranmeter and begins
/1 construction of it.
public MyComponent (I mage ing) {

_ing = ing;

Tool ki t. get Def aul t Tool kit ().

preparel mage(_i ng, 100, 100, this);
/1 uses the conmp as the I nmageCbserver.

}

/'l paint does nothing until image has been
/'l fully constructed.
public void paint(Gaphics g) {
if(0 == (I mageCbserver. ALLBI TS &
checkl mage(_i ng, 100, 100, this)))
return;

/1 Do sonething with the image

}
createl mage

ClassName
Toolkit
Purpose
Creates an in-memory Image from pixel data provided by an ImageProducer.
Syntax
public Image createl mage(lmageProducer producer);
Parameters
I mageProducer producer
The ImageProducer object which will provide the data defining the resultant
Image.
Description
The resultant Image will have a compatible ColorMode to the display device
associated with this Component object. This method creates the Image using pixel
data provided by the ImageProducer. (See Chapter 8, which describes image
processing methods and techniquesin Java.)
Imports
java.awt.image.lmageProducer
Returns
An Image object.
See Also
The ImageProducer class
Example
This example uses createl mage along with afictitious FakeFlter, which is
supposed to be any type of ImageFilter (See Chapter 8 for a discussion of
ImageProducers, ImageConsumers, and Imagekilters).

/1 Assume a URL has been provided for the
/1l source | mge...

| mge i mageSource =

Tool ki t. get Def aul t Tool ki t().getl mage(url Source);
Image imgFiltered =

Tool ki t. get Defaul t Tool kit().createl nage(

new Fi |l teredl nageSour ce(i ngSour ce. get Source(),
new FakeFilter())

)
The Project: FontLab

The SuperBible Project for this chapter is caled FontLab. FontLab isardatively smple
Java gpplication that illustrates the use of zordering to arrange Components within a
Container. All of the FontLab classes are defined within the same .JAVA file,
FontLab.java. The Project can be found on the CD that accompanies this book in the
directory \WHERE\THE\PROJECT\IS.

Figure 3-10 shows the FontL ab application running. One thing you may notice right away
about the FontL ab interface is that there are severd overlgpping pandsin the main
window. That's one of the lessons of FontLab: how to make pseudo-MDI (multi-
document interface) gpplications. Another lesson is zordering of child Components.

Figure 3-10 Screenshot of the FontLab project

Assembling the Project

1. Create afile named FontLabjava Thisfile will hold dl the code for this
project.

2. Thefird classto cregte is the gpplication class, which will implement our

static main() method. Also, ensure the proper packages are imported. The code for
thissepis

i mport java.awt.*;

public class FontLab {

public static void main(String[] astrArgs) {
Font LabFrame f = new Font LabFranme("Font Lab");
f.resize(700, 500);
f.show();
}
}
3. Create our gpplication’s main Frame class. This Frame contains the various

panelsto display each Font. The congtructor creates each of the display pandls and
adds them. The code for thisstep is

cl ass Font LabFrane extends Frame {
Font Di spl ay[] abDi spl ays;

public FontLabFrame(String strTitle) {
super(strTitle);

/1 Set background col or and Nul | Layout Manager
set Background(Col or.white);
set Layout (new Nul | Layout ());

/[l Get the list of available fonts.
String[]astrFonts =
Tool ki t. get Defaul t Tool kit().getFontList();

/1l Create a display for each typeface nane.

abi spl ays = new Font Di spl ay[astrFonts. | ength];
int cxlnc = 200/ astrFonts. | ength;

int cylnc = 200/ astrFonts. | ength;

for(int ii=astrFonts.length-1; ii>0 ; ii--) {

abDi splays[ii] = new FontDi splay(astrFonts[ii]);
aDi splays[ii].reshape(ii*cxlnc, ii*cylnc, 500, 300);
add(abDi spl ays[ii]);

}

}
4. Aswith dl Frame windows, the FontL abFrame class must handle all
WINDOW_DESTROY Eventsto dispose of the window. The code for the

handleEvent method of the FontLabFrame classis
publ i c bool ean handl eEvent (Event evt) {
i f(Event. W NDOW DESTROY == evt.id) {
di spose();
System exit(0);
}

return super. handl eEvent (evt);

}
5. When amouse click occurs anywhere in the gpplication, FontL abFrame should
handleit. When handling amouse dick, locate the child Component on which the
click occurred, then remove and re-add the associated FontDisplay panel soitis
brought to the proper z-order.
publi ¢ bool ean nobuseDown(Event evt, int x, int y) {

Component ¢ = (Component)evt.target;

while(!((null==c) || (c instanceof FontDisplay)))

c = c.getParent();

if(null '=1¢) {
renmove(c);
add(c);
val i date();
return true;

}

return fal se;

}
6. A FontDisplay pand displays sample text using a particular Font. The Font is

given to the FontDisplay object’s constructor when it is created. A toolbar isaso
provided so the user may change the sample text and the Sizeit is displayed at.
Creation of the toolbar and initidization of the FontDigplay’s member occursin

the congtructor. Hereisthe code:
cl ass Font Di spl ay extends Panel {

Insets _insets = new Insets(5, 5, 5, 5);

String _strFont Nane;

TextField _textString = new TextFiel d("Sampl e", 15);
TextField _textSize = new TextField("10", 2);

public FontDi splay(String strFontNanme) ({
_strFont Name = str Font Nane;

/1 Set background col or and BorderLayout.
set Background(Col or.gray);
set Layout (new BorderLayout ());

/1 Create font.
set Font (new Font (_str Font Nanme, Font.PLAIN, 10));

/1l Create title bar

Panel panel Title = new Panel ();

panel Titl e. set Layout (new Fl owLayout ());
Label label Title = new Label (_strFont Nare) ;
panel Titl e. add(l abel Title);

panel Titl e. set Font (get Font ());

add("North", panelTitle);

/1l Create font selection bar at the bottom

Panel panel Choose = new Panel ();

panel Choose. set Layout (new Fl owLayout (Fl owLayout . LEFT, 5,
5));

Label 1abel String = new Label ("String:");

Label 1abel Size = new Label ("Height:");

Button buttonUpdate = new Button("Update");

panel Choose. add(| abel Stri ng);

panel Choose. add(_textString);

panel Choose. add(| abel Si ze) ;

panel Choose. add(_t ext Si ze) ;

panel Choose. add(butt onUpdat e) ;

panel Choose. set Font (get Font ());

add(" Sout h", panel Choose);

}
}
7. Add an inset around the FontDisplay so child Components aren’t butted up
againg the FontDisplay’ s borders. Here is the code:

/1 Return insets of 5 in all directions
public Insets insets() {

return _insets;
}

8. The paint method of the FontDisplay class smply draws the sample text using
the indicated Font. The sample text is centered within the FontDisplay object.
Hereisthe code:
public void paint(Gaphics g) {

Rectangl e r = bounds();

r.mve(0, 0);

g.drawRect (r.x, r.y, r.width-1, r.height-1);

/1 Draw the string centered.
String strText = _textString.getText();
Font Metrics fm = g.getFontMetrics();

g.drawString(strText, r.width/2 -
fmstringWdth(strText)/2,
r. hei ght/2);
}

9. When the user hits the Update button on the FontDisplay, the FontDisplay
receives an ACTION_EVENT, handled by the action method. Our
implementation reads in the new sample text and Font size, and updates the
FontDisplay’ s member variables accordingly. Here is the code:
/1 When the Update button is hit, change to new font
/1 size and repaint.
public bool ean action(Event evt, Object what) {
/1 Make sure 'what' is a string.
i f(!(what instanceof String))
return false;

/1 1f it isn't the Update button, ignore
i f(!"Update".equal s((String)what))
return fal se;

/!l Get the new font size and create a new font.

String strSize = _textSize.getText();
int nSize;
try {

nSi ze = I nteger.parselnt(strSize);

} catch (Exception e) {
return fal se;
}

set Font (new Font (_str Font Nanme, Font.PLAIN, nSize));
return true;
}
10. Findly, implement the NullLayout class, which is a LayoutManager that
essentialy does nothing. This dlows us to place the FontLabFrame s child
Components (FontDisplay objects) in overlapping positions. Chapter 6 discusses
LayoutManagers. Here isthe code:
/1 The Null Layout is a no-op |ayout manager. It just |eaves
/1 all Components in the target al one wherever they have
/1 been placed through Conponent.reshape(), nove() or
/'l resize() calls.
class Nul | Layout inplenents Layout Manager {
public void addLayout Conponent (String nane,
Component c¢) {}
public void renovelLayout Conponent (
Conmponent c¢) {}
publ i ¢ Di nmension preferredLayout Si ze(Contai ner target) {
return new Di nension(0, 0)

publ i ¢ Di nmension nini nunLayout Si ze(Cont ai ner target) {
return new Di nension(0, 0)
}

public void | ayout Cont ai ner (Contai ner target) {}

How It Works

The FontLab Classes

Within FontLab, there are four predefined classes. Tabele 3-3 ligts the four classesand a

description of each.

Table 3-3 Ligting the classes of the FontLab project application

Class

Description

FontLab

FontLabFrame

FontDisplay

NullLayout

The gpplication class, which defines the static main() method.
The only task of the main() method is to creste and resize the
FontL.ab main window. The FontLab main window is of the
FontLabFrame class. The FontLab classis derived from nothing.

Thereisonly asingle ingance of the FontLabFrame classin each
ingtance of the FontLab gpplication. Thisinstance isthe main
frame window of the Application. The frame window is
responsible for creating and placing the FontDisplay panels, one
for each of the typefaces available on the systlem. The
FontLabFrame must also end the gpplication by disposing of
itself when it receivesa WINDOW_DESTROY Event.
FontLabFrame is derived from the Frame class.

Thereisasngleingance of FontDisplay for each of the
typefaces available on the sysem. FontDisplay is derived from
Pandl. Looking a Figure 3-10, the FontDisplay objects are the
four overlapping cards in the middle of the main window. The

task of asngle FontDisplay object isto display aline of text,
specified by the user, in a particular font with aparticular Sze;
the szeisdso pecified by the user.

The NullLayout is a LayoutManager which basicaly doesn't do
anything. It alows the child Components of the Container to just

st wherever their own move() and reshape() methods have placed

them. In FontLab, which has severd overlapping FontDisplay
panels within the main window, the main window uses a
NullLayout ingtance to (not) manage its child Components.

During Program Initialization

When FontL ab starts up, the FontLab.main() method is run. The main() method only has

threelines of code:

Font LabFrame f = new Font LabFranme("Font Lab");
f.resize(700, 500);

f.show();

That is, it creates the main window, resizesit to a predefined size, shows the main frame,
and quits.

Mogt of the initidization work is done within the FontL abFrame s congtructor. That
congtructor hastwo tasks: Firs, it getsthelist of available fonts from the Toolkit, usng
Toolkit.getFontList. Second, it creates a FontDisplay object for each of the available
fonts, Szesit, placesit, and adds it as a Component of the main frame window. Here's
the code from the FontL abFrame constructor that performs those steps.

/1 Get the list of available fonts.
String[] astrFonts = Tool kit.getDefaul t Tool kit().getFontList();

/1l Create a display for each typeface nane.

abDi spl ays = new FontDi spl ay[astrFonts. | ength];
int cxlnc = 200/ astrFonts. | ength;

int cylnc = 200/ astrFonts. | ength;

for(int ii=astrFonts.length-1; ii>0; ii--) {

abi spl ays[ii] = new FontDi splay(astrFonts[ii]);
abDi splays[ii].reshape(ii*cxlnc, ii*cylnc, 500, 300);
add(abi spl ays[ii]);

}

The sizing of the FontLabFrame and the various FontDisplay pandsis hard-coded to
keep the code complexity to aminimum. What's not shown above is that the

FontL abFrame sets its LayoutManager to a NullLayout object, but that also occurs within
the FontL abFrame constructor.

The last step in theinitidization process is the FontDisplay constructor, which is used to
create each of the FontDisplay pands. Asyou can seein Figure 3-10, the FontDisplay
pand is made up of three parts. Thetitle at the top of the pand, the sampletext in the
center of the pand, and atoolbar dlowing the user to write in sample text and atext Sze
in the lower pand. The FontDisplay constructor crestes these three e ements before

quiting.

Each FontDisplay pand is supposed to represent one of the available fonts for the system.
The FontDisplay constructor takes the typeface name it is supposed to represent asthe
only argument. The FontDisplay stores this typeface name in amember varidble, and sets
its font to a 10-point Font based on this typeface name:

public FontDi splay(String strFontName) {
_strFont Name = str Font Nane;

/] Create font.

set Font (new Font (_str Font Name, Font.PLAIN, 10));

Next, the FontDisplay congtructor creates its titlebar and toolbar. The focus of this
chapter is not on user-interface creation, so we will resst going into detail about that
here.

Changing Z-Order

FontLab was designed with overlgpping windows to demondirate zordering. When
FontLab gtarts, dl of the FontDisplay panels are added to the main frame window in

quick succession. If you noticed in the code snippet taken from the FontL abFrame
constructor, the congtructor actudly adds the panels to the frame in the order they areto
gppear initidly, top to bottom. That is, the pand which should end up on the top of the z
order is added firgt, then the second, and so on. Remember that the component added last
is a the bottom of the zordering, so when adding severd Components at onceto a
Container, you'll want to add the itemsin a top-to-bottom order.

FontL ab was written so0 that a user-click on a pand sends the panel to the bottom of the
order. The code which changes the z-ordering isin FontLabFrame.mouseDown. In
mouseDown, the frame determines which paned the mouse was clicked in, if any. That
pand is removed from the frame and re-added. This sends the pand to the bottom of the
z-order.

Note that while you might at other times use Container.locate to determine which child
Component aparticular point wasin, that would not work for FontLab. Remember that
Container.locate does not work when you have overlapping child Components.
FontLabFrame.mouseDown() determines which pand the mouse click occurred in by
examining the target member of the MOUSE_DOWN Event. The target Component will
be one of three types. FontDisplay panel, child Component of a FontDisplay pand, or the
FontL abFrame itsdlf.

FontL abFrame determines which pane to change the zorder for by examining the
ancestors of the Event.target member. The first onethat is a FontDisplay is the pand the
mouse click occurred in. If the code gets to the top of the window hierarchy, then the
mouse click was not in a FontDisplay pand, and the mouse click can be ignored. Here's
the code:

Conmponent ¢ = (Conponent)evt.target;
while(!((null==c) || (c instanceof FontDi splay)))
c = c.getParent();

if(null '=1¢) {
remove(c);
add(c);
val i date();
return true;

Chapter 4
Windowing Components And L ayout Classes

Building agraphica user interface for an gpplication is an interesting and chdlenging
task. Every graphica user interface requires components that perform specidized tasks,
such as buttons that invoke actions and data entry areas for usersto type in information.
Components also need to be logically grouped. Java s Abstract Windowing Toolkit
(AWT) provides arich set of ready-to-use user interface components that gpplication
devel opers can incorporate into their programs.

This chapter describes the gpplication programming interface of some of the ready-made
GUI components that the Java toolkit provides. It also introduces the concepts involved
in laying out components on the screen using Java s layout managers. It explains how to
use the Java layout managers and how to implement custom layout managers.
Throughout, detailed explanations of the methods are supplemented with examples that
will asss you in building an atractive GUI. The project, at the end of this chapter, lays
out some of the components described in this chapter using layout managers and
demondtrates the capabilities of each of Java s layout managers.

Windowing Components

Asadeveoper of GUIs, you will use Java's GUI components alot. Some of them, such
as Button, Canvas, Frame, Pandl, Label, and Scrollbar are common user-interface
components that nearly dl GUI toolkits provide. Some classes, such as Dimension and
Insets, are helper classes that embody abstractions that help make programming in a
graphica environment easy. Figure 4-1 shows several components of a GUI.

Figure4-1 Components of agraphical user interface
L ayouts

All the GUI componentsin the Java AWT are implemented with subclasses of the
Component class. Asyou may recal from Chapter 3, the Container is a specid type of
component that can contain other components. How does one arrange the Components
within acontainer? Thisis where the layout manager playsarole. A layout manager isa
Java object that knows how to position and Size or resize components within a container
that appears on the screen. Java provides a number of layout managers, each of which
lays out components differently. Every container has a default layout manager that you

can easly replace with another one. Y ou can aso specify absolute positions (for
components) instead of using alayout manager.

Layout managers must implement the methods of the LayoutManager interface. Since dl
layout managers implement the same interface, if you know how to use one layout
manager, then switching to a different oneis easy. Applications do not invoke the
methods of the LayoutManager interface directly. The Container methods add, remove,
removeAll, layout, preferredSize, and minimumSize result in calls to the corresponding
methods of the layout manager associated with that Container object. The layout
managers that Java s AWT provides are FlowLayout, GridLayout, BorderLayout,
CardLayout, and GridBagLayout. Figure 4-2 shows two examples of what you can do
with these layout managers.

Figure4-2 Examples of BorderLayout and GridBagL ayout
Summary of Windowing Component and L ayout Classes

Table 4-1 summarizes Java s Windowing Component classes. Java' s layout interfaces
and classes are summarized in Table 4-2.

Table 4-1 Windowing class descriptions

Class Description
Button A class that implements a button, that can be pressed to invoke a
user-defined action/sequence of actions.
Canvas This class implements a generic canvas that drawing operations
can be performed on, using the specified graphics device for the
target device.
Dimenson The Dimension class encgpsulates the height and width
measurement of a component.
Frame A classthat represents a top-level window, which can function as
acontainer for other components.
Insets A dassthat specifies an inset from within arectangular area.
Labd This classimplements a graphica component, that displaysa
sgngle line of noneditable text.
Panel A dassthat implements a generic container in which other

components can be laid out.
Scrollbar A class that represents a scrollbar.

Table 4-2 Layout class and interface descriptions

ClasdInterface Description

LayoutManager This defines an interface that dl layout managers must implement
in order to be used for laying out Components.
FlowLayout Thisisavery smple layout manager that lays out componentsin
rows, and is the default layout manager for al Panels.
GridLayout This dass implements alayout manager thet lays out

Components in agrid with a specified number of rows and
columns and resizing the Components so thet they are dl of equa
gze
BorderLayout Thisisthe default layout manager for dl Windows and

configures the layout of the container, using areas named North,
South, East, West, and Center.

CardLayout A layout manager for a Container that arranges its Components
into cards and stacks the cards, so that only one card isvisible at
any time.
GridBagCondraints This class specifies the condraints for laying out components
using the GridBagLayout manager.
GridBagLayout A very flexible layout manager that |ays out components,

digning them verticaly and horizontaly. A set of condraints
specifies how each Component islaid out within its display area.

Button

Purpose
This class represents an on-screen button.

Syntax
public class Button extends Component

Description
This classimplements a button that can be pressed to invoke a user-defined action
or sequence of actions. Methods of the Component class can be used with Button
objects. Refer to the Event class, described in Chapter 3, to find out more about
handling button related events. Figure 4- 3 shows the inheritance hierarchy for the
Button class.

PackageName

java.awt
Imports

import java.awt.Button;
Condructors

public Button()

public Button(String label)
Parameters
label

Thetext string to display on the button
Example

The following sample code shows how to construct Button objects.
i mport java.awt.*;

public class TestButton extends Frame {
TestButton() {

super ("Testing Button constructors"); /1l application title
/1 Construct buttons
Button bl new Button();
Button b2 new Button("Test");
Button b3 new Button("Long button | abel");
/1 Add the buttons to the frane w ndow
add("North", bl);
add("Center", b2);
add(" Sout h", b3);
resi ze(150, 100);
show() ;

}

public static void main(String args[]) {
TestButton t = new TestButton();
}

Figure4-3 Inheritance hierarchy for the Button class
addNotify()

ClassName
Button
Purpose
This method creates a peer object for this Button object.
Syntax
public synchronized void addNotify()
Parameters

None.

Description
This method creates a peer for this Button. The peer dlows the programmer to
change the look of the button without affecting its functiondity. The addNotify
method is the earliest stage, in the cregtion of a component, that platform specific
resources (such as color, fonts, and fontmetrics) may be determined. Classes that
override this method must first cal super.addNotify() before doing any other
processing in this method.

Imports
import java.awt.Button;

Returns
None.

See Also
The ButtonPeer interface

Example
Refer to the example listed in the addNotify method of the Canvas classin this
chapter and aso to the section on ButtonPeer interfacesin Chapter 9.

getL abel ()

ClassName
Button
Purpose
To retrieve the text string displayed on the button.
Syntax
public String getlabel ()
Parameters
None.
Description
This method retrieves the text labd displayed on the button.
Imports
import java.awt.Button;
Returns
The return type of thismethod is String. This return value contains the text string
displayed on the Button object.
See Also
The setlabel method
Example

The following example demongtrates the use of this method in an application.
i mport java.awt.*;

public class TestButton extends Frame {
TestButton() {
super (" Testing Button.getlLabel ()"); // Application title
Button b = new Button("Howdy!"); /1 Construct button
add(" Center", b); /1 Add the button to the
frame wi ndow

/1l print the |abel of the button on the standard out put

devi ce
term nal)
Systemout.printin("Button |abel: " + b.getLabel());
resi ze(150, 100);
show() ;
}

public static void main(String args[]) {
TestButton t = new TestButton();
}

}
paramString()

ClassName
Button

Purpose
To represent the parameters of this Button as a String object.

Syntax
protected String paramString()

Parameters
None.

Description
This method represents the various parameters associated with the Button as a
String and returns the string. Classes that extend the Button class can override this
method to add additional parameter information to the String representation. This
protected method cannot be invoked from an gpplication, but isinvoked by the
toString method of the Component class.

Imports
import java.awt.Button;

Returns
The return type of this method is String. This return vaue contains the text |abel
of the Button object, in addition to the parameter values of the base class,
Component.

See Also
The toString and paramString methods of the Component class.

Example

The following example demongtrates the use of this method in an application.
i mport java.awt.*;

public class TestButton extends Frame {
TestButton() {

super ("Testing Button.parantString()"); /1 Application title
Button b = new Button("Howdy!"); /1 Construct button
add(" Center", b); /1 Add the button to the frame w ndow
/1l print the paraneters associated with this Button
Systemout.printin("Button label: " + b.toString());

resi ze(150, 100);

show() ;

public static void main(String args[]) {
TestButton t = new TestButton();
}

}
setL abel(String)

ClassName
Button
Purpose
To st the labe on the button to the specified String.
Syntax
public void setLabd (String labd)
Parameters
label
The text string for the Button labd.
Description
This method changes the text label, that is digplayed on button, to the specified
gring.
Imports
import java.awt.Button;
Returns
None.
See Also
The getLabel method
Example
Thefollowing code illudrates the use of this method in setting the label of a

button.
i mport java.awt.*;

public class TestButton extends Frame {
TestButton() {
super (" Testing Button.setlLabel ()"); [/ Application title

Button b = new Button(); /1 Construct a button with no
| abel
b. set Label ("Quit"); /'l specify the |abel text
add("Center", b); /1 Add the button to the franme
wi ndow
resi ze(150, 100);
show() ;
}

public static void main(String args[]) {
TestButton t = new TestButton();
}

Canvas

Purpose
A generic canvas type on which graphics operations such as drawing can be
performed.
Syntax
public class Canvas extends Component
Description
This class implements a generic canvas type, on which drawing operations can be
performed using the specified graphics device. Classes that extend the Canvas
class mugt override the minimumSize method, as the default Sze of a Canvasis
zero. Figure 4-4 shows the inheritance hierarchy for the Canvas class.
PackageName
java.awt
Imports
import java.awt.Canvas,
Condtructors
public Canvas()
Parameters
None.
Example

The following sample code shows how to construct Canvas objects.
i mport java.awt.*;

public class TestCanvas extends Frame {
Test Canvas() {

super (" Canvas test"); /'l Application title
Canvas ¢ = new Canvas(); /1 Construct a canvas object
add(" Center", c); /!l add the canvas to the Frane
wi ndow
resi ze(150, 200);
show() ;
}

public static void main(String args[]) {
Test Canvas t = new Test Canvas();
}

Figure 4-4 Inheritance hierarchy for the Canvas class

addNotify()

ClassName
Canvas

Purpose
To create a peer object for this Canvas object.

Syntax
public synchronized void addNotify()

Parameters
None.

Description
This method crestes a peer for this Canvas object that enables you to change the
gppearance of the canvas without changing the functiondity of the Canvas object.
The addNotify method is the earliest stage in the crestion of a component where
platform specific resources (such as color, fonts, and fontmetrics) may be
determined. Classes that override this method must first cal super.addNotify()
before doing any other processing in this method.

Imports
import java.awt.Canvas,

Returns
None.

See Also
The interface CanvasPeer

Example
The following code illudrates the use of this method. The ColorCanvas class
initidizes the font type and the text color in the addNotify method and uses these
vaues while painting the Canvas.

i nport java.awt.*;
cl ass Col or Canvas extends Canvas {

Font canvasFont _; /1 The font to use on this canvas
Col or textCol or_; /1 The color to use for text on this
canvas

public Di mension mninunti ze() {
return new Di nensi on(150, 150);

}
public void addNotify() {
super. addNotify(); /1 always call super's addNotify first
t ext Col or _ = new Col or (250, 0, 0); /1 Red: 250 Green:0 Blue:0
canvasFont _ = new Font("courier", Font.BOLD, 16);
}
public void paint(Gaphics g) {
g.setCol or (text Col or_); /1l set the text color
g. set Font (canvasFont) ; /1l set the font

g.drawsStri ng(" Custom Canvas", 5, 25); // wite a string

}

public class TestCanvas extends Frame {
Test Canvas() {
super (" Anot her Canvas demp"); /1l Application title
Col or Canvas ¢ = new Col or Canvas(); /1 Construct the col or

canvas obj ect

add("Center", c); /1 add the canvas to the
Fr ame
wi ndow
resi ze(150, 200);
show() ;
}

public static void main(String args[]) {
Test Canvas t = new Test Canvas();
}

}
paint(Graphics)

ClassName
Canvas
Purpose
To paint the Canvas object.
Syntax
public void paint(Graphics g)
Parameters
g
The graphics context object.
Description
This method is invoked to paint the canvas object. Classes that extend the Canvas
class can customize the gppearance of the canvas by overriding this method.
Imports
import java.awt.Canvas,
Returns
None.
See Also
The Component and Graphics classes
Example
This sample source code implements a custom canvas type that has horizontal
lines, just like aruled sheet of paper.

i mport java.awt.*;

public class TestCanvas extends Frame {
Test Canvas() {
super ("Canvas test"); /1l Application title
add("Center", new Rul edCanvas()); // create and add the custom
canvas to the frame
resi ze(150, 200);
show() ;
}

public static void main(String args[]) {
Test Canvas t = new Test Canvas();
}

/1 This class inplenents a ruled canvas type
cl ass Rul edCanvas extends Canvas {
public void paint(Gaphics g) {
Rectangl e r = bounds();

g. set Col or (Col or. bl ack); /'l set the line color to
bl ack
/1 draw ruled |lines across the width of the canvas
for (int i =1; i <=r.height/10; i++) {
g.drawLi ne(0, i * 10, r.width, i * 10);
}
}
}
Dimension
Purpose
A class that represents a height and a width measurement.
Syntax
public class Dimension extends Object
Description

The Dimension class encapsulates the height and width measurement of a
component. The width and height variables of a Dimension object are public and,
hence, can be accessed directly. Figure 4-5 shows the inheritance hierarchy for the
Dimenson dass
PackageName
java.awt
Imports
import import java.awt.Dimension;
Condructors
public Dimension()
public Dimensgon(Dimengon d)
public Dimengon(int width, int height)
Parameters
d
The source Dimension object from which to copy.
width
The width measurement of the dimension.
height
The height measurement of the dimension.
Example

This codeillugtrates the different ways of congtructing Dimension objects.
i rport j ava. awt . Di mensi on

public class Di nensionTest {
public static void main(String args[]) {
/1 Di mension constructors
Di mensi on d1 = new Di nensi on(); /1 void constructor
Di mensi on d2 = new Di nensi on(100, 200); // width and hei ght
speci fied

Di mensi on d3 = new Di nensi on(d2); /1l construct a copy of d2
Di nensi on d4 = new Di nension();
d4.wi dth = 25; /1 set the width and
hei ght
d4. hei ght = d3. hei ght + 100; /1l individually
}
}

Figure 4-5 Inheritance hierarchy for the Dimension class
toString()

ClassName
Dimengion
Purpose
To represent the parameter values of the Dimengon object as a String.
Syntax
public String toString()
Parameters
None.
Description
This method returns, as a string, the values of the width and height measurements
of this Dimension object prefixed by its classname (java.avt.Dimension).
Imports
import java.awt.Dimension;
Returns
None.
See Also
The toString method of the Object class

Example
i mport java.awt . Di mensi on;

public class DinensionTest {
public static void main(String args[]) {
/1 Di mension constructor specifying width and hei ght
Di mensi on d = new Di nensi on(100, 200);
Systemout.printin("d.toString() =" + d.toString());

When this example is compiled and executed, the following string is printed on

the screen.
d.toString() = java.aw . Di nensi on[w dt h=100, hei ght =200]

Frame

Purpose

A class that represents atop-level window that can function as a container for
other components.

Syntax
public class Frame extends Window implements MenuContainer

Description
This dass implements awindow with atitle bar and border that can contain a
menu bar, aswell as other AWT Components. Frames and Panels are commonly
used as the top-level window GUIs. Mogt of the functiondity for thisclassis
implemented in the Window, Container, and Component classes. Refer to those
classes in Chapter 2 and Chapter 3 to get a complete picture of what you can do
with Frame objects. The default layout manager for Frame window objectsis
BorderLayout. Figure 4-6 shows the inheritance hierarchy for the Frame class,

PackageName
java.awt

Imports
import java.awt.Frame;

Condructors
public Frame()
public Frame(String title)

Parameters

title
The gring to display in the title bar of the Frame window.

Example

This example demongrates Frame congtruction.
i mport java.awt.*;

public class FrameTest {
public static void main(String args[]) {
/1l Construct a Frame and put atitle on it
Frame f = new Franme("Frane w ndows");
/1 Component nethods such as setBackground() can invoked be on

Fr ame
f. set Backgr ound(Col or. bl ue) ;
f.resize(200, 200);
f.show();

Figure4-6 Inheritance hierarchy for the Frame class

addNotify()

ClassName

Frame

Purpose
Creates a peer object for this Frame object.

Syntax
public synchronized void addNotify()

Parameters
None.

Description
This method creates a peer for this Frame object that enables you to change the
gppearance of the frame window without changing its functiondity. The
addNotify method is the earliest stage, in the creation of a component, that
platform specific resources (such as color, fonts, and fontmetrics) may be
determined. Classes that override this method must first call super.addNotify()
before doing any other processing in this method.

Imports
import java.awt.Frame;

Returns
None.

See Also
The FramePeer interface

Example
Refer to the example listed in the addNotify method of the Canvas classin this
chapter and aso to the section on FramePeer interfacesin Chapter 9.

dispose()

ClassName
Frame
Purpose
To rdease dl the resources that are being used by this Frame object.
Syntax
public synchronized void dispos()
Parameters
None.
Description
This method is caled to release the resources of a Frame object that is no longer
required.
Imports
import java.awt.Frame;
Returns
None.
See Also
The Window class
Example
Refer to the corresponding method in the Window class description in Chapter 3.

getCursor Type()

ClassName
Frame
Purpose
To get the integer constant that represents the cursor type associated with this
Frame object.
Syntax
public int getCursorType()
Parameters
None.
Description
This method gets the integer type, associated with the cursor for this Frame. A list
of cursor typesis given in the description of the setCursor method for this class.
Imports
import java.awt.Frame
Returns
The cursor type, associated with this Frame window, is returned as an integer
vaue and will be one of the vaues detailed in the list of cursor types.
Example

This example prints the integer vaue of the default cursor image.
i mport java.awt.*;

public class FrameTest {
public static void main(String args[]) {

Frame f = new Frane("Testing Frane.get CursorType"); /1

application
title

System out . println("Frane. get CursorType() =" +
f.get CursorType());

f.resize(200, 200);

f.show();
}
}

getl conlmage()

ClassName
Frame
Purpose
To get the image of the icon of this Frame object.
Syntax
public Image getlconlmage()
Parameters
None.
Description

This method gets the image that is digplayed when the Frame is iconized.
Imports
import java.awt.Frame;
Returns
This method returns an Image object that represents the icon image used for this
Frame object. Refer to the section on Image objects in Chapter 8 for more
information.
See Also
The Image class
Example

The following example demondrates the use of this method in an gpplication.
i mport java.awt.*;

public class FranmeTest {
public static void main(String args[]) {

Frame f = new Frane("Testing Frane.getlconlmge()"); [/

application
title

/'l create an |Image object and assign it to the Frame as the
Frame's

/1 icon inmage

f.resize(200, 200);
f.show();
}

/1 this nethod is invoked to nodify the icon being displayed for this
i mage
protected void nodifylcon(Frame f) {
I mage i m = f.gelconl mage(); /1 get the i mge object
/1 modify the icon inmage

getM enuBar ()

ClassName
Frame
Purpose
To get the menu bar object associated with this Frame object.
Syntax
public MenuBar getMenuBar()
Parameters
None.
Description
This method gets the MenuBar object that represents the menu bar associated with
this Frame.
Imports
import java.awt.Frame;

Returns
The menu bar information, associated with this Frame window, isreturned asa
MenuBar object. Refer to the section on MenuBar objects in Chapter 6 for more
information.

See Also
The MenuBar class

Example

The portion of code given here uses this method.
i mport java.awt.*;

public class FranmeTest {
public static void main(String args[]) {
Frame f = new Frane("Testing Frane.getMenuBar()"); [//
application
title
/1l create a MenuBar object an attach it to the Frame

f.resize(200, 200);

f.show();

}

/1 this nmethod is invoked to nodify the nmenu

protected void nodifylcon(Frame f) {
MenuBar mb = f.get MenuBar () ; /1l get the MenuBar object
/! add/delete menu itenms fromthe MenuBar

getTitle()

ClassName
Frame
Purpose
To get the text string on thettitle bar of the frame.
Syntax
public String getTitle()
Parameters
None.
Description
This method gets the text labdl displayed in thetitle bar of the Frame window.
Imports
import java.awt.Frame
Returns
This method returns a String object that contains the title of the Frame window as
atext gring.
Example

Thisexample prints the title of the Frame window on the standard output device.
i nport java.awt.*;

public class FrameTest {
public static void main(String args[]) {
Frame f = new Franme("Drawi ng Tool ");
/1l extract and print the title of the Frame w ndow
Systemout.println("The title on this frame is :" +
f.getTitle());
f.resize(200, 200);

f.show();
}

isResizable()

ClassName
Frame
Purpose
I ndlicates whether this Frame window object is resizable or not.
Syntax
public boolean isResizable()
Parameters
None.
Description
This method is used to test whether or not the dimensions of this Frame object can
be changed.
Imports
import java.awt.Frame;
Returns
If the Frame object isreszable, then the return value is true; otherwise this
method returnsfalse.
Example
Thefollowing codeillugtrates the use of this function in determining whether a
Frame object is resizable or not.
i mport java.awt.*;
public class FrameTest ({

/1 method that toggles the state of the resizable property of the
speci fied Frame w ndow
public toggl eFrame(Frame f) {
if (f.setResizable()); /1l is the Frame resizable ?
f.set Resi zabl e(true); /1 make the Franme resizable
el se
f.set Resi zabl e(false); // disable resizable property

paramString()

ClassName
Frame
Purpose
To return the parameter vaues associated with this Frame object
Syntax
protected String paramString()
Parameters
None.
Description
The parameter values for this Frame object are returned as a String. This protected
method cannot be invoked directly. The toString method of the Component
superclass invokes this method.
Imports
import java.awt.Frame
Returns
A String containing the parameter vaues for this Frame object.
See Also
The toString and paramString methods of the Component class
Example
The following example prints the parameter information for a Frame window
object.
i mport java.awt.*;

public class FrameTest {
public static void main(String args[]) {
Frame f = new Frane("Testing Frane.paranString()"); //
application
title

Systemout.printin("f.toString() =" + f.toString());
f.resize(200, 200);
f.show();

}

When this example is compiled and executed, the following string is printed on the
screen.

f.toString() = java.aw.Frane[0, 0, 0x0, i nval i d, hi dden,
| ayout =j ava. awt . Bor der Layout , resi zabl e, titl e=Testi ng
Frame. paransString()]

remove(M enuComponent)

ClassName
Frame
Purpose
To remove the specified menu bar object from the Frame window.

Syntax
public synchronized void remove(MenuComponent m)

Parameters
m
The MenuComponent object to be removed from this Frame.
Description
This method removes the specified menu bar from this Frame window.
Imports
import java.awt.Frame
Returns
None.
See Also
The MenuComponent and MenuBar classes
Example

This function removes the menu bar from the specified Frame window.
i mport java.awt.*;

cl ass FraneTest {
/! construct the frame wi ndow and attach a nenu bar to it

/1 method that renoves a given Frame's nenubar
public renoveMenu(Frane f) {
MenuBar nmb = f.getMenuBar(); // get the MenuBar object
f.renove(nb); /1 remove the menu bar fromthe
Fr ame
wi ndow

}
setCur sor (int)

ClassName
Frame
Purpose
To st the cursor to display when the pointer is within this Frame window.
Syntax
public void setCursor(int cursorType)
Parameters
cursorType
An integer condant that indicates the type of cursor to display within this Frame
window. The cursor types defined in thisclass are

CROSSHAIR_CURSOR Cursor imageisacrosshar

DEFAULT _CURSOR Default cursor image(arrow cursor)

E RESZE CURSOR Cursor image when the window is being resized to
the right

HAND_ CURSOR Theimage for the cursor isasmdl hand

MOVE_CURSOR The cursor image when the window is being moved

N _RESZE CURSOR Cursor imaoie when the window is beina resized

upwards

NE_RESZE CURSOR Cursor image when the window is being resized by
dragging its north-east corner

NW _RESZE CURSOR Cursor image when the window is being resized by
dragging its north-west corner

S RESZE CURSOR Cursor image when the window is being resized
downwards

SE RESZE CURSOR Cursor image when the window is being resized by
dragging its south-east corner

SW_RESZE CURSOR Cursor image when the window is being resized by
dragging its south-west corner

TEXT_CURSOR Cursor image when the cursor isin an editable text
window
W _RESZE CURSOR Cursor image when the window is being resized to
the left
WAIT_CURSOR Hourglass cursor image
Description

This method specifies the cursor image to display when the pointer iswithin this
Frame window. The cursor can be any one of the types listed in the Parameters
section of this method.

Imports
import java.awt.Frame

Returns
None.

Example
This code causes the cursor image to change to an image of a hand when the

mouse pointer isingde the Frame window,.
i mport java.awt.*;

public class FrameTest ({
public static void main(String args[]) {

Frame f = new Frame("Hand Cursor"); /'l application title

f. set Cursor (Frame. HAND_CURSOR) ; /1l set the cursor inmge
f.resize(200, 200);

f.show();

}
setl conl mage(l mage)

ClassName
Frame

Purpose
To set the image of the icon of this Frame object.
Syntax

public void setlconlmage(lmage image)
Parameters
image
The image to be used for the icon.
Description
This method specifies the image to use when the Frame isiconized. Some
platforms do not support icons for windows.
Imports
import java.awt.Frame;
Returns
None.
See Also
The Image class
Example

The following example demondirates the use of this method in an gpplication.
i nport java.awt.*;

public class FranmeTest {
public static void main(String args[]) {
Frame f = new Frane("Testing Frane.setlconlmge()");
/1l application title
/1l create an | nmage object
Image im=

/'l assign it to the Frame as the Frane's icon inmage
f.setlconl mage(im;
f.resize(200, 200);

f.show();

setResizable(boolean)

ClassName
Frame
Purpose
To enable/disable the resizable feature on this Frame object.
Syntax
public void setResizable(boolean resizable)
Parameters
resizable
A boolean vaue that represents whether or not the Frame window isresizable. If
st to true, the Frame object isresizable; if set to false, the Frame window is not
resizable.
Description
This method is used to set whether the Frame window is resizable or not.
Imports

import java.awt.Frame;
Returns
None.
Example
The following function toggles the reszable flag of the specified Frame object.

i nport java.awt.*;

public class FranmeTest {

/1 method that toggles the state of the resizable property of the
speci fied Frame wi ndow
public toggl eFrame(Franme f) {
if (f.isResizable())
f.set Resi zabl e(true); /1 make the Frane resizable
el se
f.set Resi zabl e(false); [// disable resizable property

}
setTitle(String)

ClassName
Frame
Purpose
Sets the text string on the title bar of the frame.
Syntax
public void stTitle(String titl€)
Parameters
title
Thetext gring to digplay in thetitle bar of this Frame.
Description
This method setsthe text labd displayed in the title bar of the Frame window to
the specified gtring.
Imports
import java.awt.Frame;
Returns
None.
Example

This method is used in the following example to st the title of a Frame window.
i mport java.awt.*;

public class FraneTest {
public static void main(String args[]) {
Frame f = new Frane(); /1 a Frame with no title
/1 set the title of the Frame w ndow
f.setTitle("Countries and Capitals");
f.resize(200, 200);

f.show();

I nsets

Purpose

Specifies an inset from within arectangular area
Syntax

public class Insat extends Object implements Cloneable
Description

This class represents the top, left, bottom, and right insets. This classis used to
cdculate the actud areathat may be used indde arectangular region, after
subtracting the inset on each sde of the region. This classis used by layout
managers to lay out components. Figure 4-7 shows the inheritance hierarchy for

the Insets class.
PackageName

java.awt
Imports

import java.awt.| nsets;
Condructors

public Insat(int top, int left, int bottom, int right)
Parameters
top

The distance set in from the top of the Container.
left

The distance st in from the Ieft of the Container.
bottom

The distance set in from the bottom of the Container.
right

The digtance st in from theright of the Container.
Example

This code shows how to construct an Insets object.
i mport java.awt.lnsets;

public class InsetsTest {
public static void main(String args[]) {
/'l lInsets constructor

Insets i = new Insets(5, 10, 5, 10); /'l top, left,

right inset

Figure4-7 Inheritance hierarchy for the Insets class

clong()

ClassName

bottom

Insets
Purpose
To create aduplicate of this Insets object
Syntax
public Object clone()
Parameters
None.
Description
Crestes a new instance of an Insets object and makes an exact duplicate of this
Insets object.
Imports
import java.awt.Insets;
Returns
The return value is an Object that is a clone of this Insets object. You must cast
this return vaue as an Insets object in order to useit as one.
See Also
The clone method of the Object class; the Cloneable interface

Example
i mport java.awt.lnsets;

public class InsetsTest {
public static void main(String args[]) {
/1l Insets constructor
Insets il = new Insets(5, 10, 5, 10);
Insets i2 = (Insets)il.clone();
Systemout.println("il.toString()
Systemout.println("i2.toString()

"+ i1.toString());
"+ i2.toString());

}
toString()

ClassName
Insets
Purpose
To dore the Insets object’ s parameter vauesin a String.
Syntax
public String toString()
Parameters
None.
Description
The vaues of the top, I€eft, bottom, and right insets are returned as a String object.
Imports
import java.awt.I nsets;
Returns
The return vaue is a String that contains the values of the parameters for the
Insets object. The values are prefixed by a short textua description of the property
they denote.

See Also
The Object class
Example

Thismethod isimplemented in the following example.
i mport java.awt.lnsets;

public class InsetsTest {
public static void main(String args[]) {
/1l Insets constructor

Insets i = new Insets(5, 10, 5, 10); // top, left, bottom
right
i nset
Systemout.printin("i.toString() =" + i.toString());
}
}

When this example is compiled and executed, the following string is printed on the
screen

i.toString() = java.awt.Insets[top=5,1eft=10, bottom=5, ri ght=10]
L abel
Purpose
A classthat represents asingle line text labd.
Syntax
public class Labe extends Component
Description

This class implements a graphical object that displays a sngle line of non-editable
text. The dignment of the text can be specified. By default, 1abd text is centered
within the labdl. The methods of the Component class can be gpplied to this class.
Figure 4-8 shows the inheritance hierarchy for the Label class.
PackageName
java.awt
Imports
import java.awt.Label;
Condructors
public Label()
public Labe (String |abel)
public Labe (String label, int alignment)
Parameters
label
Thetext string to display in the labd.
alignment
The dignment mode for the text string’ s pogition in the labdl.
Example

The following example demondirates the congtruction of Label objects.
i mport java.awt.*;

public class Label Test extends Frane {
Label Test () {

super (" Testing Label constructors"); /1l application title

Label | = new Label ("First |abel");
add("North", 1);
add(" Center", new Label ("Second | abel"));
add(" Sout h", new Label ("Ri ght aligned |abel", Label.RIGHT));
resi ze(150, 100);
show() ;
}

public static void main(String args[]) {
Label Test t = new Label Test ();
}

Figure 4-8 Inheritance hierarchy for the Labdl class
addNotify()

ClassName
Labd

Purpose
To create a peer object for this Label object.

Syntax
public synchronized void addNotify()

Parameters
None.

Description
This method creates a peer for this Labe object, which you can use to change the
gppearance of the labe without changing its functiondity. The addNotify method
isthe earliest sage in the creetion of a component where platform specific
resources (such as color, fonts, and fontmetrics) may be determined. Classes that
override this method must first call super.addNotify() before doing any other
processing in this method.

Imports
import java.awt.Label;

Returns
None.

See Also
The Label Peer interface; the Component class

Example
Refer to the example listed in the addNotify method of the Canvas classin this
chapter, and also to the section on Label Peer interfaces in Chapter 9.

getAlignment()

ClassName
Labd
Purpose
To get the dignment mode of the text string displayed on the labd.

Syntax
public int getAlignment()
Parameters
None.
Description
This method gets the current dignment of the text displayed on the label. The
mode can be one of Label .RIGHT, Label .CENTER, or Label .LEFT.
Imports
import java.awt.Label;
Returns
This method returns an integer that specifies the dignment of the labdl.
Example

The following example uses this method to determine alabd’ s dignment.
i mport java.awt.*;

public class Label Test extends Frane {
Label Test () {

super (" Testing Label.getAlignment()"); /1 application title
Label | = new Label ("Plain |abel", Label.LEFT);

add("Center", 1);

int align =1.getAlignnment();

switch (align) {
case Label . LEFT:
Systemout.println("Label text is left aligned");
br eak;

case Label . CENTER
Systemout.println("Label text is centered");
br eak;

case Label . RI GHT:
Systemout.println("Label text is right aligned");
br eak;

}

resi ze(150, 100);

show() ;
}

public static void main(String args[]) {

Label Test t = new Label Test ();

}
getText()

ClassName
Labd
Purpose
To get the text string of this Label object.
Syntax
public String getText()
Parameters
None.
Description
This method gets the text string displayed on the labd.
Imports
import java.awt.Label;
Returns
This method returns a String object that contains the text string displayed on the
Labd.
See Also
The setText method
Example

The following example demondirates the use of this method in an gpplication.
i mport java.awt.*;

public class Label Test extends Franme {
Label Test ()

super ("Testing Label .getText()"); // application title
Label | = new Label ("Tenperature:"); /1l construct a | abe
System out.println(l.getText()); /1 extract and print

the | abel's text
add(" Center", 1);
resi ze(150, 100);
show() ;
}

public static void main(String args[]) {
Label Test t = new Label Test ();
}

}
paramString()

ClassName

Labd
Purpose

To return the parameter string associated with this Label object.
Syntax

protected String paramString()

Parameters
None.

Description
This method returns the parameter values associated with the labdl (such asx, y
coordinates, label text, and so on) as a String object. This protected method
cannot be invoked from an application, but isinvoked by the toString method of
the Component class.

Imports
import java.awt.Label;

Returns
The return vaue is a String that contains the values of the parameters for the
Label object. The vaues are prefixed by a short textual description of the property
they denote.

See Also
The toString and paramString methods of the Component class

Example

This example prints the parameter values of alabdl.
i mport java.awt.*;

public class Label Test extends Frane {
Label Test () {

super (" Testing Label.parantString()"); /1l application title
Label | = new Label ("Play", Label.LEFT); [/ create a |abe
Systemout.printin(l.toString()); /1 print paraneter

i nformation
add("Center", 1);
resi ze(150, 100);
show() ;
}

public static void main(String args[]) {
Label Test t = new Label Test ();
}

setAlignment(int)

ClassName
Labd
Purpose
To st the dignment of the text string on the labdl.
Syntax
public void sstAlignment(int dignment)
Parameters
alignment
The dignment mode to use for pogitoining the text on the labd.

Description
This method sets the alignment mode to use for positioning the text on the labdl.
If aninvaid vaue is passed as an dignment mode, then an
[llegd ArgumentException is thrown.
Imports
import java.awt.Label;
Returns
None.
See Also
The getAlignment method of the Illegd ArgumentException class
Example

In the following example this method is used to set the dignment mode of alabd.
i mport java.awt.*;

public class Label Test extends Franme {
Label Test () {

super ("Testing Label.setAlignment()"); /1l application title
/1l create a label, the default alignment is Label.CENTER
Label | = new Label ("Record");

| . set Ali gnnent (Label . Rl GHT) ; /1l force it to be

I eft aligned
add(" Center™", 1);
resi ze(150, 100);
show() ;
}

public static void main(String args[]) {
Label Test t = new Label Test ();
}

}
setText(String)

ClassName
Labd
Purpose
To change the text string displayed on the [abel.
Syntax
public void setText(String labdl)
Parameters
label
Thetext for thelabd.
Description
This method sets the text string displayed on the label.
Imports
import java.awt.Label;
Returns
None.
See Also
The getText method

Example
This method is used in the following sample code.

i mport java.awt.*;

public class Label Test extends Franme {
Label Test () {

super (" Testing Label.setText()"); /1l application title
Label | = new Label (); /1l construct an enpty | abe
| .set Text (" Month nanme:"); /1 now, put some text in it

add("Center", |);
resi ze(150, 100);

show() ;
}

public static void main(String args[]) {
Label Test t = new Label Test ();
}

}
Panel

Purpose
A dlass that implements a generic container in which other components can be
laid out.

Syntax
public class Pand extends Container

Description
Panels are commonly used as windows in which to arrange other components
(such as Buttons, Labdls, etc.). The FlowLayout layout manager is the default
layout manager used for al Panels. Panels do not have atitle bar and, unlike
Frame windows, they cannot be used as top-level windows. The methods of the
Container and Component classes can be invoked on Panels. Refer to the
examples in Chapter 2 and Chapter 3 for more information. Figure 4-9 showsthe
inheritance hierarchy for the Panel class.

PackageName
java.awt

Imports
import java.awt.Panel;

Condtructors
public Panel()

Parameters
None.

Example
In this example, buttons are added to a Pandl window within a Frame window.

i mport java.awt.*;

public class Panel Test {
public static void main(String args[]) {
Frame f = new Franme("Panel Test"); [/ application
top-1evel w ndow

Panel p = new Panel ();

p.
p.

T T T

Franme

—h

set Backgr ound(Col or. yel | ow) ;

add(new Label ("Label s"));

.add(new Label ("in"));
.add(new Label ("a"));

. add(new Label ("Panel "));
.add(" South", p);

.resize(200, 200);

f.show();

Figure4-9 Inheritance hierarchy for the Pandl class

addNotify()

ClassName
Panel

Purpose

To create a peer for this Panel object.

Syntax

public synchronized void addNotify()

Parameters

None.

Description

11

11

/1

create a Pane

add conponents to
t he pane

add the Panel to the

This method creates a peer for this Pand object that you can use to change the
appearance of the pand window without changing its functiondity. The
addNotify method is the earliest stage in the crestion of a component & which
platform specific resources (such as color, fonts, and fontmetrics) may be
determined. Classes that override this method must first call super.addNotify()

before doing any other processing in this method.

Imports

import java.awt.Panel;

Returns

None.

See Also

The Pand Peer interface

Example

Refer to the example listed in the addNotify method of the Canvas classin this
chapter and also to the section on Panel Peer interfaces in Chapter 9.

Scrollbar

Purpose

A classthat represents a scrollbar.

Syntax

public class Scrollbar extends Component

Description

This classimplements a scrollbar object. Applications use scrollbars to scrall the
data or image displayed on the screen. The scrollbar thumb position indicates the
position of the visble portion of the image or datawithin alarger image or data
buffer. Scrollbars are associated with aviewing area, and by dragging the thumb
of the scrollbar, auser can change the image or data displayed in the viewing
area. Figure 4- 10 shows the inheritance hierarchy for the Scrollbar class.

PackageName

java.awt

Imports

import java.awt.Scrollbar;

Congructors

public Scrollbar()
public Scrollbar(int orientation)
public Scrallbar(int orientation, int vaue, int visble, int minimum, int maximum)

Parameters
orientation

The orientation of the scrollbar.

value

The current value of the scrollbar’ s thumb position.

visible

The gze of the visble region of the area that is being scrolled using the scrollbar.

minimum

The minimum vaue of the scrollbar.

maximum

The maximum vaue of the scrollbar.

Example

This sample code shows how to construct Scrollbar objects.

i mport java.awt.*;

public class TestScroll extends Frame {

11

TestScrol I (String title) {

super(title); /1 application title

resi ze(200, 300);

Rectangl e r = bounds(); /'l determ ne di nensions of
this Frame wi ndow

Scrol | bar shl = new Scroll bar(); /1 default orientation

is vertical

add("East", sbl); /1l attach it to the right of

the frame

Scrol | bar sh2 = new Scrol | bar (Scrol | bar. HORI ZONTAL) ;

/1 add(" Sout h", sb2);
Scrol I bar sb3 = new Scrol |l bar(Scroll bar. HORI ZONTAL, O,

0, r.width);
add(" Sout h, sb3); /1 attach this scrollbar to
the bottom
show() ;

}

public static void main(String args[]) {
TestScroll ts = new TestScroll ("Testing scrollbars");
}

Figure4-10 Inheritance hierarchy for the Scrollbar class

addNotify()

ClassName
ScrollBar
Purpose
Creates a peer object for this Scrollbar object.
Syntax
public synchronized void addNotify()
Parameters
None.
Description
Using this method one can change the appearance of the scrollbar without
changing its functiondity. The addNotify method is the earliest gagein the

creation of acomponent at which platform specific resources such as color, fonts
and fontmetrics may be determined. Classes that override this method must first

call super.addNotify() before doing any other processing in this method.
Imports
import java.awt.Scrollbar;
Returns
None.
See Also
The ScrollbarPeer class
Example

Refer to the example listed in the addNotify method of the Canvas classin this

chapter and also to the section on ScrollbarPeer interfaces in Chapter 9.

getL inel ncrement()

ClassName
Scrollbar
Purpose
To get the ep size, st for decrements/increments when the line up/down arrow
buttons of the scrollbar are invoked.
Syntax
public int getLinel ncrement()
Parameters
None.
Description
This method returns an integer that represents the step sze that will increment
line.
Imports
import java.awt.Scrollbar;
Returns
This method returns an integer that represents the line increment step size.
Example

The following example demongtrates the use of this method in an application.
i mport java.awt.*;

public class TestScroll extends Frame {
TestScrol I (String title) {
super(title); /1l application title
resi ze(200, 300);
Rectangle r = bounds(); // determ ne dinensions of this
Frame w ndow
Scrol | bar sb3 = new Scrol |l bar(Scroll bar. HORI ZONTAL, 0, 10,

0, r.width);
add(" Sout h", sb3) /1 attach this scrollbar to the bottom
Systemout.println("sb3. getLinelncrenent =" + sb3.

getLi nel ncrenment());
show() ;

}
public static void main(String args[]) {
Test Scroll ts = new TestScroll ("Testing
Scrol | bar. getLinelncrenent()");

}
getM aximum()

ClassName
Scrollbar
Purpose
To determine the vaue of the maximum position of the scrollbar thumb
Syntax
public int getMaximum()
Parameters
None.
Description

This method gets the vaue for the maximum pogtion of the thumb for this
Scrollbar object.

Imports
import java.awt.Scrollbar;

Returns
This method returns an integer value that represents the maximum position of the
Scrollbar object.

Example

The following example demondrates the use of this method in an gpplication.
i mport java.awt.*;

public class TestScroll extends Frame {
TestScrol I (String title) {

super(title); /1l application title
resi ze(200, 300);
Rectangl e r = bounds(); /1 determ ne di nensions of

this Frame w ndow
Scrol I bar sb3 = new Scrol | bar(Scroll bar. HORI ZONTAL, 0, 10,

0, r.width);
add(" Sout h", sb3); /1 attach this scrollbar to
the bottom
Systemout.println("sb3. get©Maxi mum=" +
sb3. get Maxi mum()) ;
show() ;

}
public static void main(String args[]) {
TestScroll ts = new TestScroll ("Testing
Scrol | bar. get Maxi mum() ") ;

getMinimum()

ClassName
Scrollbar
Purpose
To determine the minimum pogition of the scrollbar thumb.
Syntax
public int getMinimum()
Parameters
None.
Description
This method gets the va ue for the minimum pogtion of the thumb for this
Scrollbar object.
Imports
import java.awt.Scrollbar;
Returns

This method returns an integer that represents the minimum pogition of the
Scrollbar object.

Example

The following example demongtrates the use of this method in an application.

i mport java.awt.*;

public class TestScroll extends Frame {

TestScrol I (String title) {

super(title); /1 application title
resi ze(200, 300);
Rectangl e r = bounds(); /1l determ ne dinmensions of this

Frame w ndow
Scrol | bar sb3 = new Scrol |l bar(Scroll bar. HORI ZONTAL, 0, 10,

0, r.width);
add(" Sout h", sb3); /1 attach this scrollbar to the
bott om
Systemout.println("sb3.getMnnimum=" +
sb3. getM ni mum());
show() ;
}

}

public static void main(String args[]) {
TestScroll ts = new TestScroll ("Testing
Scrol | bar. getM ni mum()");

getPagel ncrement()

ClassName

Scrollbar

Purpose

Getsthe step Sze, set for decrements/increments when the page up/down actions
of the scrollbar are invoked.

Syntax

public int getPagel ncrement()

Parameters

None.

Description

This method returns an integer that represents the page increment step size.

Imports

import java.awt.Scrollbar;

Returns

This method returns an integer that represents the page increment step size.

Example

The following example demongtrates the use of this method in an application.

i mport java.awt.*;

public class TestScroll extends Frame {

TestScrol I (String title) {
super(title); /1 application title
resi ze(200, 300);

Rectangle r = bounds(); // determ ne dinmensions of this
Frame w ndow
Scrol I bar sb3 = new Scrol | bar(Scroll bar.HORI ZONTAL, 0, 10,
0, r.width);
add(" Sout h", sb3); /'l attach this scrollbar to the bottom
System out . println("sb3. get Pagel ncrenment = " +
sb3. get Pagel ncrenent ());

show() ;
}

public static void main(String args[]) {
TestScroll ts = new TestScroll ("Testing
Scrol | bar. get Pagel ncrenment ()");

}
getOrientation()

ClassName
Scrollbar
Purpose
To determine the orientation of the scrollbar.
Syntax
public int getOrientation()
Parameters
None.
Description
Thismethod gets the vaue for the orientation of this Scrollbar object.
Imports
import java.awt.Scrollbar;
Returns
This method returns an integer that represents the orientation of this ScrollBar
object. The value returned is either Scrollbar. HORIZONTAL or
Scrollbar.VERTICAL.
Example

The following example demongtrates the use of this method in an application.
i mport java.awt.*;

public class TestScroll extends Frame {
TestScrol I (String title) {

super(title); /1 application title

resi ze(200, 300);

Scrol | bar sbhl = new Scrollbar(); /1 default orientation
is vertical

add("East", sbl); /1l attach it to the

right of the frame
if (sbl.getOrientation() == Scroll bar.VERTI CAL)
Systemout.println("Vertical scrollbar");
el se
Systemout.println("Horizontal scrollbar");

show() ;
}

public static void main(String args[]) {

TestScroll ts = new TestScroll ("Testing scrollbars");

}
getValue()

ClassName
Scrollbar
Purpose
Determines the vaue of the current position of the scrollbar thumb
Syntax
public int getVaug()
Parameters
None.
Description
This method gets the vaue for the current position of the thumb for this Scrollbar
object.
Imports
import java.awt.Scrollbar;
Returns
This method returns an integer that represents the current position of the Scrollbar
object.
Example

The following example demondrates the use of this method in an gpplication.
i mport java.awt.*;

public class TestScroll extends Frame {
TestScrol I (String title) {

super(title); /1l application title
resi ze(200, 300);
Rectangl e r = bounds(); /1 determ ne di nensions of

this Frame w ndow
Scrol | bar sb3 = new Scrol |l bar(Scroll bar. HORI ZONTAL, 0, 10,

0, r.width);
add(" Sout h", sb3); /1l attach this scrollbar to
t he bottom
Systemout.println("sb3.getValue = " + sb3.getValue());
show() ;

}
public static void main(String args[]) {

TestScroll ts = new TestScroll ("Testing getVal ue");
}

getVisible()

ClassName
Scrollbar

Purpose
To determine the size of the visble portion of the scrollbar.
Syntax
public int getVisble()
Parameters
None.
Description
This method gets the vaue for the visible portion of this Scrollbar object.
Imports
import java.awt.Scrollbar;
Returns
This method returns an integer that represents the visible portion of this Scrollbar
object.
Example

The following example demondirates the use of this method in an gpplication.
i nport java.awt.*;

public class TestScroll extends Frame {
TestScrol I (String title) {

super(title); /1l application title
resi ze(200, 300);
Rectangl e r = bounds(); /1 determ ne dinmensions of this

Frame w ndow
Scrol I bar sb3 = new Scrol | bar(Scroll bar. HORI ZONTAL, 0, 10,

0, r.width);
add(" Sout h", sb3); /1 attach this scrollbar to the
bott om
Systemout.printin("sbh3.getVisible =" +
sb3. getVisible());
show() ;
}

public static void main(String args[]) {
Test Scroll ts = new TestScroll ("Testing
Scrol |l bar.getVisible()");

}
paramString()

ClassName
Scrollbar
Purpose
To return the parameter string associated with this Scrollbar object
Syntax
protected String paramString()
Parameters
None.
Description
This method returns the parameter values associated with a Scrollbar object. The
values are prefixed by short descriptive tags. This protected method cannot be

invoked from an gpplication, but isinvoked by the toString method of the
Component class.

Imports
import java.awt.Scrollbar;

Returns
The return vaue is a String that contains the values of the parameters for the
Scrollbar object. The vaues are prefixed by a short textua description of the
property they denote.

See Also
The toString and paramString methods of the Component class

Example

The following example demondirates the use of this method in an gpplication.
i mport java.awt.*;

public class TestScroll extends Frame {
TestScrol I (String title) {

super(title); /1l application title
resi ze(200, 300);
Rectangl e r = bounds(); /1 determ ne di nensions of

this Frame w ndow
Scrol I bar sb3 = new Scrol | bar(Scroll bar. HORI ZONTAL, 0, 10,

0, r.width);
add(" Sout h", sb3); /|l attach this scrollbar to
t he bottom
Systemout.printin("sbh3.toString =" + sb3.toString());
show() ;

}

public static void main(String args[]) {
TestScroll ts = new TestScroll ("Testing
Scrol I bar.toString()");

}
setL inel ncrement(int)

ClassName
Scrollbar

Purpose
Sets the step size for decrements/increments when the line up/down arrow buttons
of the scrollbar are invoked.

Syntax
public void setLinelncrement(int I)

Parameters

I
Thelineincrement size

Description
This method specifies the amount that the areais to be scrolled when the user
invokes the line up/down arrow buttons of the scrollbar. The position of the
scrollbar thumb within the scrollbar is aso updated proportiona to the vaue
specified in this method.

Imports

import java.awt.Scrollbar;
Returns

None.
Example

Thefallowing example demondirates the use of this method in an application.
i mport java.awt.*;

public class TestScroll extends Frame {
TestScroll (String title) {
super(title); /1l application title
resi ze(200, 300);
Rectangle r = bounds(); // determ ne dinmensions of this
Frame w ndow
Scrol | bar sb3 = new Scrol | bar(Scroll bar. HORI ZONTAL, 0, 10,
0, r.width);
add(" Sout h", sb3); /1 attach this scrollbar to the bottom
sb3. set Li nel ncrenment (5) ;
show() ;
}
public static void main(String args[]) {
TestScroll ts = new TestScroll ("Testing
Scrol | bar. setLinelncrenent()");

}
setPagel ncrement(int)

ClassName
Scrollbar
Purpose
Sets the step size for decrements/increments when the page up/down actions of
the scrollbar are invoked.
Syntax
public void setPagel ncrement(int 1)
Parameters
I
The page increment size.
Description
This method specifies the amount that the areais to be scrolled when the user
invokes the page up/down actions. The position of the scrollbar thumb within the
scrollbar is aso updated proportiond to the value specified in this method
Imports
import java.awt.Scrollbar;
Returns
None.
Example

The following example demongtrates the use of this method in an application.
i mport java.awt.*;

public class TestScroll extends Frame {
TestScrol I (String title) {

super(title); /1 application title
resi ze(200, 300);
Rectangl e r = bounds(); /1l determ ne dinmensions of this

Frame w ndow
Scrol | bar sb3 = new Scrol |l bar(Scroll bar. HORI ZONTAL, 0, 10,

0, r.width);
add(" Sout h", sb3); /1l attach this scrollbar to the
bott om
sb3. set Pagel ncrenent (25); // override the existing val ue
show() ;
}

public static void main(String args[]) {
TestScroll ts = new TestScroll ("Testing
Scrol | bar. set Pagel ncrenment ()");

setValue(int)

ClassName
Scrollbar
Purpose
Sets the vaue of the current position of this Scrollbar to the specified vaue.
Syntax
public void setVaue(int vaue)
Parameters
value
The new vaue for the current position of the Scrollbar. If thisvaueislessthan
the minimum vaue of the scrollbar, then it becomes the new minimum vaue of
the scrollbar. Smilarly, if this vaue is more than the maximum vaue of the
scrollbar, then it becomes the new maximum vaue of the scrollbar.
Description
This method sets the vaue for the current position of the thumb for this Scrollbar
object.
Imports
import java.awt.Scrollbar;
Returns
None.
Example

The following example demongtrates the use of this method in an application.
public class TestScroll extends Frame {
TestScrol I (String title) {

super(title) /1l application title
resi ze(200, 300);
Rect angel r = bounds(); // determnine dinmensions of this

Frame w ndow
Scrol | bar sb3 = new Scrol |l bar(Scroll bar. HORI ZONTAL, 0, 10,

0, r.width);

add(" Sout h", sb3); /1 attach this scrollbar to the
bott om
sb3. set Val ue(100); /1l set the thumb in the mddle
of the scroll bar
show() ;
}

public static void main(String args[]) {
TestScroll ts = new TestScroll ("Testing
Scrol | bar.setValue()");

}
setValues(int, int, int, int)

ClassName
Scrollbar
Purpose
Sets various parameters associated with this ScrollBar object.
Syntax
public void sstVaues(int vaue, int visble, int minimum, int maximum)
Parameters
value
The position of the scrollbar thumb in the current window.
visible
The sze of the vishle region of the area being scrolled using the scrollbar.
minimum
The minimum vaue of the scrollbar.
maximum
The maximum vaue of the scrollbar.
Description
This method provides a convenient way to set the various parameters of this
Scrollbar object.
Imports
import java.awt.Scrollbar;
Returns
None.
Example

The following example demongtrates the use of this method in an application.
public class TestScroll extends Frame {
TestScrol I (String title) {

super(title); /1l application title
resi ze(200, 300);
Rect angel r = bounds(); /1l determ ne dinensions of this

Frame w ndow
Scrol I bar sb3 = new Scrol |l bar(Scroll bar. HORI ZONTAL) ;

add(" Sout h", sb3); /1 attach this scrollbar to the
bott om

sb3. set Val ues(0, 25, 0, r.wdth); /1 value, visible, mn,

show() ;

max

public static void main(String args[]) {
TestScroll ts = new TestScroll ("Testing
Scrol | bar.setValue()");

}
L ayoutM anager

Purpose
An interface for classes that need to lay out Components in Containers.
Syntax
public interface LayoutManager extends Object
Description
Thisinterface is used to implement the mechanisms required of classes that know
how to lay out Containers. All the layout managers supplied with the Java AWT
implement this interface,
PackageName
java.awt
Imports
import java.awt.LayoutManager;
Condtructors
None.
Parameters
None.
Example
See the examples for FlowLayout and GridL ayoui.

addL ayoutComponent(String, Component)

Interface
LayoutM anager
Purpose
To add the specified component to the layout, associating the component with the
specified name.
Syntax
public abstract void addL ayoutComponent(String name, Component comp)
Parameters
name
Name of the area where the component should be added.
comp
Component object to be added.
Description
This method should be defined in any class that implements the LayoutM anager
interface.
Imports
import java.awt.LayoutManager;
Returns

None.
See Also

The Container class
Example

The following example demondrates the implementation of this method.
i nport java.awt.*

public class MyLayout inplenments Layout Manager {
/* I nplement constructors for this class */

public void addLayout Conponent (String nane, Conponent conp) {
/* Code to add the conponent to a specific named area
of the layout goes here */

}

/* Inplenent all the other nethods of the Layout Manager
interface */

}
layoutContainer (Container)

Interface
LayoutM anager
Purpose
To lay out the specified container.
Syntax
public abstract void layoutContainer(Container parent)
Parameters
parent
The Container object to be laid out.
Description
This method causes the specified container to be laid out. It should be defined in
any classthat implements the LayoutManager interface.
Imports
import java.awt.LayoutManager;
Returns
None.
See Also
The Container class
Example
The following sample code for a custom layout manager shows the

implementation of this function.
i mport java.awt.*

public class MyLayout inplenments Layout Manager {
/* I nplement constructors for this class */

public void | ayout Cont ai ner (Cont ai ner parent){
/* Cal cul ate every conponent's size and position and |ay
out the conmponents in the nmanner desired */

}

/* Inplement all the other nethods of the Layout Manager
interface */

minimumL ayoutSize(Container)

Interface
LayoutM anager
Purpose
To cdculate the minimum Size required to lay out the container, taking into
account the componentsin the specified container.
Syntax
public aogtract Dimension minimumLayoutSize(Container parent)
Parameters
parent
The Container that holds the components that need to be laid out.
Description
This method should be defined in any class that implements the LayoutManager
interface.
Imports
import java.awt.LayoutManager;
Returns
The return type of this method is Dimengon. This return value contains the
minimum height and width required to layout the container in the specified pand.
See Also
The Container class
Example

Hereis an extract from a class that implements the LayoutM anager interface.
i mport java.awt.*

public class MyLayout inplements Layout Manager {
/* 1mpl enment constructors for this class */

publ i ¢ Di nmension m ni nunLayout Si ze(Cont ai ner parent) {
Di mensi on di m = new Di mensi on(0, 0);

/* Code to calculate the mininmumw dth and hei ght */

return dim

}

/* Inplement all the other nethods of the Layout Manager
interface */

}

preferredL ayoutSize(Container)

I nterface
LayoutManager
Purpose
To caculae the preferred dimensions required to lay out the container, taking into
account the components in the specified container.
Syntax
public abstract Dimension preferredL ayoutSize(Container parent)
Parameters
parent
The Container that holds the components that need to be laid out.
Description
This method should be defined in any class that implements the LayoutM anager
interface.
Imports
import java.awt.LayoutManager;
Returns
The return type of this method is Dimengion. This return value contains the
preferred height and width required to lay out the container in the specified pand.
See Also
The Container Class
Example

The following example demondrates the implementation of this method.
i nport java.awt.*

public class MyLayout inplenments Layout Manager {
/* I nplement constructors for this class */

publ i ¢ Di nmension preferredLayout Si ze(Cont ai ner parent) {
Di mensi on di m = new Di mensi on(0, 0);

/* Code to calculate the ideal w dth and height */
return dim

}
/* Inplenent all the other nethods of the Layout Manager

interface */

}
removel ayoutComponent(Component)

Interface
LayoutM anager
Purpose
To remove the pecified component from the layout.
Syntax
public abstract void removelayoutComponent(Component comp)
Parameters
comp
The Component to be removed from the layout.
Description

This method should be defined in any class that implements the LayoutM aneger
interface.
Imports
import java.awt.LayoutManager;
Returns
None.
See Also
The Container class
Example
The following sample code demondrates the implementation of this method ina

class that implements a custom layout manager.
i mport java.awt.*

public class MyLayout inplenments Layout Manager {
/* I nplement constructors for this class */

public void renmoveLayout Conmponent (Conponent conp) {
/* Code to renove the specified conponent goes here */

}

/* Inplenment all the other nethods of the Layout Manager
interface */

}
FlowL ayout

Purpose
A smple layout manager thet lays out components in rows (from Ieft to right).
Syntax
public class HowL ayout extends Object implements LayoutM anager
Description
This dass implements the LayoutManager interface and is used to lay out
components in rows. The components are laid out from |eft to right and centered
within their row. Thisis the default layout manager for al Pandls Figure 4-11
shows the inheritance hierarchy for the FHlowL ayout class.
PackageName
java.awt
Imports
import java.awt.flowlayout;
Congtructorts
public FowLayout()
public HowLayout(int align)
public HowLayout(int align, int hgap, int vgap)
Parameters
align
The dignment to use for laying out components (can be LEFT,CENTER, or
RIGHT).

hgap

The horizonta gap to leave between components.
vgap
The vertical gap to leave between components.
Example
This sample code shows how to construct FlowLayout objects using the different

FlowLayout congtructors.
/* Default FlowLayout constructor */
Fl owLayout f1 = new Fl owLayout ();

/* Fl owLayout object that aligns conmponents to the left */
Fl owLayout f2 = new Fl owLayout (Fl owLayout . LEFT);

/* Fl owLayout object that aligns conponents to the left, with a
hori zontal gap of 30 units between conponents and a vertical gap
of 0 units */

Fl owLayout f3 = new Fl owLayout (Fl owLayout . LEFT, 30, 0);

Figure4-11 Inheritance hierarchy for the FHowLayout class

addL ayoutComponent(String, Component)

ClassName
FlowLayout
Purpose
To add the specified component to the area in the layout associated with the
Specified name.
Syntax
public void addL ayoutComponent(String name, Component comp)
Parameters
name
Name of the component to be added.
comp
Component object to be added.
Description
The FlowLayout class does not divide the layout area into subareas, and hence
does not need to implement any functiondity for this method. In order to conform
to the LayoutManager interface, this method is an empty stub in the HowL ayout
implementation.
Imports
import java.awt.FlowLayout;
Returns
None.

See Also
The Container class, the LayoutManager interface
Example

This code invokes the Container’ s add method, which in turn invokes this method.
/* Create a Container for the conponents */
Panel p = new Panel ();
/* set the | ayout manager for this panel */
p. set Layout (new Fl owLayout ());

/* add the conmponents to be laid out */
/* This results in the conponent being added to the |ayout manager */
p.add("North", new Button("This")); /1 the named areas carry
signi ficance only for the
p. add("West", new Button("denobnstration")); // BorderLayout |ayout
manager, other |ayout
p.add("Center", new Button("is")); /1 managers ignore
this paraneter
p.add("East", new Button("really"));
p. add(" Sout h", new Button("cool !"));

layoutContainer (Container)

ClassName
HowLayout

Purpose
To lay out the specified container in rows, aigning the components within each
row.

Syntax
public void layoutContainer(Container parent)

Parameters

parent
Container object to be laid out.

Description
The components are laid out from Ieft to right and aigned within arow. The
default alignment is CENTER, but a different dignment (either LEFT or RIGHT)
can be specified while congtructing the FlowLayout object. The horizonta gap
between componentsin arow and the vertica gap between rows can adso be
specified in the HowL ayout constructor. Applications do not directly invoke this
method. The layout method of the Container classresultsin acal to this method.
The layout method of the Container dlass isinvoked when the Container needs to
be displayed on the screen.

Imports
import java.awt.FlowLayout;

Returns
None.

See Also
The LayoutManager interface; the Container class

Example
In the following example, a Frame window is created and displayed.

i mport java.awt.*;
i mport java. appl et. Appl et ;

public class Layout Deno extends Applet {
/* Main method to start running the applet */
public static void main(String args[]) {
Frame f = new Frane("Layout Denobnstration");
f.set Layout (new Fl owLayout ());
Button b = new Button("Testbutton");
f.add("Center", b);
f.resize(500, 200);
/* this causes the | ayout manager associated with
this Container to lay out the Container and its
Conponents on the screen */

f.show();
}

minimumL ayoutSize(Container)

ClassName
FlowLayout
Purpose
To cdculate the minimum size required to lay out the container, taking into
account the componentsin the specified container.
Syntax
public Dimenson minimumLayoutSize(Container parent)
Parameters
parent
Container containing components that need to be laid out.
Description
This method cal culates and returns the minimum dimensions required by the
HowLayout manager to lay out the components.
Imports
import java.awt.FlowLayout;
Returns
The return type of this method is Dimengon. This return vaue contains the
minimum height and width required to lay out the container in the specified pand.
See Also
The Container class, the LayoutManager interface
Example
The following sample code is an example of this method in an application.
/* Create a Container for the conponents */
Panel p = new Panel ();

/* set the | ayout manager for this panel */
p. set Layout (new Fl owLayout ());

/* add the conmponents to the Container */

/* This results in the conponent being added to the | ayout manager */

p.add("North", new Button("This"));
p.add("Center", new Button("is"));

p. add(" Sout h", new Button("cool !"));

/* Get the m nimum di nensions of the Container */

/[* This results in a call to the mninuniayout Size() nethod of the
| ayout nmanager */

Di mension d = p. m ni munSi ze() ;

preferredL ayoutSize(Container)

ClassName
FlowLayout

Purpose
To cdculate the preferred dimensions for this layout, taking into account the
components in the pecified container.

Syntax
public Dimension preferredL ayoutSize(Container target)

Parameters

target
Container that needs to be laid out.

Description
This method computes the ideal width and height required by this layout. The
vaues returned have no effect unless the program specificaly enforces these
dimensons.

Imports
import java.awt.FlowLayout;

Returns
The return type of this method is Dimension. This return vaue contains the idedl
height and width required to lay out the container in the specified pand.

See Also
The Container class; the LayoutManager interface

Example
The following sample code demongtrates the use of this method.

/* Create a Container for the components */

Panel p = new Panel ();

/* set the | ayout nmanager for this panel */
p. set Layout (new Fl owLayout ());

/* add the conmponents to the Container */
p.add("North", new Button("This"));

p. add(" Center", new Button("is"));

p. add(" Sout h", new Button("cool !"));

/* Get the ideal dinensions of the Container */

/* This results in a call to the preferredLayoutSize()
met hod of the |ayout nanager */

Di mension d = p.preferredSi ze();

removel ayoutComponent(Component)

ClassName
FowLayout
Purpose
To remove the specified component from the layout.
Syntax
public void removelayoutComponent(Component comp)
Parameters
comp
Component to be removed from the layout.
Description
This method is a dummy stub in the FHowL ayout class, as this layout manager
doesn't need to maintain associations between components and areas on the
display. Applications do not directly invoke this method. The remove method of
the Container classresultsin acal to this method.
Imports
import java.awt.FlowLayout;
Returns
None.
See Also
The Container class; the LayoutManager interface
Example

The sample code adds buttons to a Panel and then removes one of the buttons.
/* Create a Container for the conponents */
Panel p = new Panel ();
/* set the | ayout manager for this panel */
p. set Layout (new Fl owLayout ());

/* add the conponents to be laid out */
/* This results in the conponent being added to the | ayout manager */

Button bl = new Button("Good");

Button b2 = new Button("Bad");

Button b3 = new Button("Day");

/* add the buttons to the container */
p. add(bl);

p. add(b2);

p. add(b3);

/* remove a specific button fromthe container */

/* The Container’s renove() method invokes the |ayout
manager’ s renmoveConponent () nethod */

p.remove(b2);

toString()

ClassName
HowLayout
Purpose
To represent the FHowL ayout object’ s values as a String.
Syntax
public String toString()
Parameters

None.
Description
The vaues of the horizontal gap variable, the vertica gap variable, and the
adignment mode variable for thislayout are returned as a String object.
Imports
import java.awt.FlowLayout;
Returns
The return value is a String thet contains the values of the properties for the
FlowLayout object. The values are prefixed by a short textua description of the
property they denote.
See Also
The toString method of the Object class
Example

Thismethod is implemented in the following function.
voi d printLayoutl nfo(Layout Manager |ayout) {
/* print the paraneter values of the specified |ayout
manager */
Systemout.println("layout.toString(): " +
| ayout.toString());

}
GridLayout

Purpose
A layout manager that cresates a grid with the specified number of rows and
columns and lays out components on the grid.
Syntax
public class GridLayout extends Object implements LayoutM anager
Description
This class implements the LayoutM anager interface and is used to lay out
componentsin grids. It makes dl the components of equd size and lays them out
on the grid. Figure 4-12 shows the inheritance hierarchy for the GridLayout class.
PackageName
java.awt
Imports
import java.awt.GridLayout;
Condructors
public GridLayout(int rows, int cols)
public GridLayout(int rows, int cols, int hgap, int vgap)
Parameters
rows
The number of rowsin the grid.
cols
The number of columnsin the grid.
hgap
The horizonta gap to leave between components.

vgap

The vertica gap to leave between components.
Example

Here is sample source code thet illustrates GridLayout construction.
/* GridLayout constructor to lay out components in a single row
wi th any nunber of colums */
GridLayout g1 = new GidLayout(1, 0);

/* GridLayout constructor specifying a grid of 3 rows and 2 colums */
GridLayout g2 = new GidLayout(3, 2);

/* GridLayout object that |lays out conmponents in a grid consisting
of 3 rows and 2 colums. The horizontal gap between colums is
20 units and the vertical gap between rows is 10 units */
GridLayout g3 = new GridLayout (3, 2, 20, 10);

Figure4-12 Inheritance hierarchy for the GridLayout class

addL ayoutComponent(String, Component)

ClassName
GridLayout
Purpose
To add the specified component to the layout, associating the component with the
specified name.
Syntax
public void addL ayoutComponent(String name, Component comp)
Parameters
name
Name of the component to be added.
comp
Component object to be added.
Description
The GridLayout class does not divide the layout areainto subareas, and hence
does not need to implement any functiondity for this method. In order to conform
to the LayoutManager interface, this method is an empty stub in the GridLayout
implementation.
Imports
import java.awt.GridLayout;
Returns
None.
See Also
The Container class, the LayoutManager interface
Example

Refer to the example given under the corresponding function in the FlowL ayout
class.

layoutContainer (Container)

ClassName
GridLayout

Purpose
To lay out the specified container in rows, aligning the components within each
row.

Syntax
public void layoutContainer(Container parent)

Parameters

parent
Container object to be laid out.

Description
This method lays out the components in the container, in agrid. Applications do
not directly invoke this method. The layout method of the Container class results
inacdl to thismethod.

Imports
import java.awt.GridLayout;

Returns
None.

See Also
The LayoutManager interface; the Container class

Example
Refer to the example given under the corresponding function in the FlowL ayout
class.

minimumL ayoutSize(Container)

ClassName
GridLayout
Purpose
To cdculate the minimum size required to lay out the container, taking into
account the components in the specified container.
Syntax
public Dimengon minimumL ayoutSize(Container parent)
Parameters
parent
Container that needs to be laid out.
Description
This method cal culates and returns the minimum dimensions required by the
GridLayout manager to lay out the components contained within the specified

container. The minimum dimensons are caculated according to the following
formulee
Minimum width = (Left + Right inssts of parent) + (number of columns™* width
of widest component in parent) + ((number of columns -1)* inter-column gap)
Minimum height = (Top + Bottom insets of parent) + (number of rows* height of
tallest component in parent) + ((number of rows - 1)*inter-row gap)
Imports
import java.awt.GridLayout;
Returns
The return type of this method is Dimension. This return vaue contains the
minimum height and width required to lay out the container in the specified pand.
See Also
The Container class; the LayoutManager interface
Example
Refer to the example given under the corresponding function in the HowL ayout
class.

preferredL ayoutSize(Container)

ClassName
GridLayout

Purpose
To cdculate the preferred dimensions for this layout, taking into account the
components in the specified container.

Syntax
public Dimension preferredLayoutSize(Container target)

Parameters

target
Container that needs to be laid out.

Description
This method computes the ided width and height required by this layout. The
vaues returned have no effect unless the program specificaly enforces these
dimensons.

Imports
import java.awt.GridLayout;

Returns
This method returns a Dimension object. This return vaue containsthe ided
height and width required to lay out the container in the specified pand.

See Also
The container class; the LayoutManager interface

Example
Refer to the example given under the corresponding function in the HowL ayout
class.

removel ayoutComponent(Component)

ClassName
GridLayout
Purpose
To remove the specified component from the layout.
Syntax
public void removel_ayoutComponent(Component comp)
Parameters
comp
Component to be removed from the layout.
Description
This method is adummy stub in the GridLayout dlass, as this layout manager
doesn't need to maintain associations between components and areas on the
display.
Imports
import java.awt.GridLayout;
Returns
None.
See Also
The Container class, the LayoutManager interface
Example
Refer to the example given under the corresponding function in the FlowL ayout
class.

toString()

ClassName
GridLayout
Purpose
To represent the values of the GridLayout object as a String.
Syntax
public String toString()
Parameters
None.
Description
This method returns a String representation of this object’s values, namdly, the
horizontal gap, the vertical gap, the number of rows, and the number of columns.
Each vadue is prefixed with a short descriptive tag.
Imports
import java.awt.GridLayout;
Returns
This method returns a String containing the vaues of the GridLayout object, with
each vaue prefixed by a descriptive tag.
See Also
The toString method of the Object class
Example

Refer to the example given under the corresponding function in the FlowL ayout
class.

Border Layout

Purpose
A layout manager that divides arectangular areainto five named areas and lays
out components in each of these named aress.

Syntax
public class BorderLayout extends Object implements LayoutM anager

Description
This layout manager divides the area of the Container into five named aress.
North, South, East, West, and Center. A container that uses this layout manager
must add a component to a named area. The preferred dimensions of the
components, added to the North, South, East, and West areas, are honored and the
component added to the Center area occupies dl the remaining space. Thisisthe
default layout manager for al Window objects (such as Frame windows and
Didog windows). Figure 4-13 shows the inheritance hierarchy for the
BorderLayout class.

PackageName
java.awt

Imports
import java.awt.BorderLayout;

Condtructors
public BorderL ayouit()
public BorderLayout(int hgap, int

Parameters

hgap
The horizonta gap to leave between the named aress.

vgap
The vertical gap to leave between the named arees.

Example

Here is sample source code that illustrates BorderL ayout construction.
/* default BorderLayout constructor */
Bor der Layout bl = new BorderLayout();

/1 horizontal gap between nanmed areas is 20 units and the vertica
gap is 10 units */
Bor der Layout b2 = new BorderLayout (20, 10);

Figure 4-13 Inheritance hierarchy for the BorderLayout class

addL ayoutComponent(String, Component)

ClassName
BorderLayout
Purpose
To add the component to the named area of the container.
Syntax
public void addL ayoutComponent(String name, Component comp)
Parameters
name
Name of the areawithin the container to add the component to.
comp
Component object to be added.
Description
The BorderLayout layout manager divides the Container into five areas and
hence, the parameter name can be one of North, South, East, West, or Center. The
gpecified component is associated with the areaand is added to that portion of the
Container.
Imports
import java.awt.BorderLayout;
Returns
None.
See Also
The Container class, the LayoutManager interface
Example
Refer to the example given under the corresponding function in the HowL ayout
class.

layoutContainer (Container)

ClassName
BorderLayout

Purpose
To lay out the specified container by laying out the componentsin the areas where
they have been added.

Syntax
public void layoutContainer(Container parent)

Parameters

parent
Container object to be laid out.

Description
This method lays out the componentsin the container, in the named areas where
they were added. Applications do not directly invoke this method. The layout
method of the Container classresultsin acal to this method.

Imports
import java.awt.BorderLayout;

Returns
None.
See Also
The LayoutManager interface; the class Container
Example
Refer to the example given under the corresponding function in the FlowL ayout
class.

minimumL ayoutSize(Container)

ClassName
BorderLayout

Purpose
To cdculate the minimum size required to lay out the container, taking into
account the componentsin the specified container.

Syntax
public Dimendgon minimumLayoutSize(Container parent)

Parameters

parent
Container that needs to be laid out.

Description
This method cal culates and returns the minimum dimensions required by the
BorderLayout manager to lay out the components contained within the specified
container.

Imports
import java.awt.BorderLayout;

Returns
This method returns a Dimension object. This return value contains the minimum
height and width required to lay out the container in the specified pand.

See Also
The Container class, the LayoutManager interface

Example
Refer to the example given under the corresponding function in the FlowL ayout
class.

preferredL ayoutSize(Container)

ClassName
BorderLayout
Purpose
To cdculate the preferred dimensions for this layout, taking into account the
components in the specified container.
Syntax
public Dimension preferredLayoutSize(Container target)
Parameters
target

The Container that needs to be laid ouit.

Description
This method computes the ideal width and height required by this layout. The
vaues returned have no effect unless the program specificaly enforces these
dimensons.

Imports
import java.awt.BorderLayout;

Returns
This method reutrns a Dimension object. This return value contains the idedl
height and width required to lay out the container in the specified pand.

See Also
The Container class, the LayoutManager interface

Example
Refer to the example given under the corresponding function in the HowL ayout
class.

removel ayoutComponent(Component)

ClassName
BorderLayout
Purpose
To remove the pecified component from the layoui.
Syntax
public void removel ayoutComponent(Component comp)
Parameters
comp
Component to be removed from the layout.
Description
This method disassociates the component being removed from the named areato
which it was added.
Imports
import java.awt.BorderLayout;
Returns
None.
See Also
The Container class; the LayoutManager interface
Example
Refer to the example given under the corresponding function in the FlowL ayout
class.

toString()

ClassName
BorderLayout
Purpose
To represent the vaues of the BorderLayout object as a String.

Syntax
public String toString()

Parameters
None.

Description
This method returns a String representation of this BorderLayout object’s values,
namely the horizontal gap and the vertical gap between the named aress, that the
BorderLayout organizes its components in. Each vaue is prefixed with a short
descriptive tag.

Imports
import java.awt.BorderLayout;

Returns
This method returns a String containing the values of the BorderLayout object,
each vaue prefixed by a descriptive teg.

See Also
The toString method of the Object class

Example
Refer to the example given under the corresponding function in the FlowL ayout
class.

CardLayout

Purpose
A powerful layout manager that a container can use to lay out its components as a
gack of cards, only one card being visible a any point of time,
Syntax
public class CardLayout extends Object implements LayoutM anager
Description
This layout manager dlows the Container to use the same real estate on the screen
to present different views of different components. These views are arranged in a
fashion smilar to that of adeck of cards and the individua views can be flipped
back and forth on the view stack. Figure 4- 14 shows the inheritance hierarchy for
the CardLayout class.
PackageName
java.awt
Imports
import java.awt.CardLayout;
Condtructors
public CardLayouit()
public CardLayout(int hgap, int vgap)
Parameters
hgap
The horizontal gap to leave between components on each card.
vgap
The vertica gap to leave between components on each card.
Example

Here is sample source code that illustrates CardLayout construction. The chapter

project demondirates the use of this layout manager in a more complete manner.
CardLayout cl1 = new CardLayout(); /1 default constructor

/1 horizontal gap between naned areas is 20 units and the vertica
gap is 10 units */
CardLayout b2 = new CardLayout (20, 10);

Figure4-14 Inheritance hierarchy for the CardLayout class

addL ayoutComponent(String, Component)

ClassName
CardLayout
Purpose
To add the specified component to the layout, associating the component with the
specified name.
Syntax
public void addL ayoutComponent(String name, Component comp)
Parameters
name
Name of the component to be added.
comp
Component object to be added.
Description
The CardLayout class maintains the stack of cardsto display. This stack is
updated as components are added to the card stack. The parameter name can be
any user-specified gtring. This parameter nameis used by the show method to
bring the named card into view.
Imports
import java.awt.CardLayout;
Returns
None.
See Also
The Container class, the LayoutManager interface; the show method of the
CardLayout class
Example
The chapter project uses a CardLayout to display different views. Refer to it for
more details.

first(Container)

ClassName
CardLayout
Purpose
To make thefirgt card in the card tack visible.
Syntax
public void first(Container parent)
Parameters
parent
The parent Container object that this CardLayout object is the layout manager for.
Description
Thefirg card in the card stack is brought into view and dl the Components on
this card are displayed.
Imports
import java.awt.CardLayout;
Returns
None.
Example
This method is used in the project at the end of this chapter.

last(Container)

ClassName
CardLayout
Purpose
To makethe last card in the card stack visible,
Syntax
public void last(Container parent)
Parameters
parent
The parent Container object that this CardLayout object is the layout manager for.
Description
The card a the bottom of the card stack is brought into view.
Imports
import java.awt.CardLayout;
Returns
None.
Example
The project at the end of this chapter uses this method.

layoutContainer (Container)

ClassName
CardLayout

Purpose
To lay out the specified container in rows, aligning the components within each
row.

Syntax
public void layoutContainer(Container parent)
Parameters
parent
Container object to be laid out.
Description
This method lays out the componentsin the container, in the named areas where
they were added. Applications do not directly invoke this method. The layout
method of the Container classresultsin acdl to this method.
Imports
import java.awt.CardLayout;
Returns
None.
See Also
The LayoutManager interface; the Container class
Example
Refer to the example given under the corresponding function in the HowL ayout
class and to the chapter project.

minimumL ayoutSize(Container)

ClassName
CardLayout
Purpose
To cdculate the minimum size required to lay out the container, taking into
account the componentsin the specified container.
Syntax
public Dimengon minimumL ayoutSize(Container parent)
Parameters
parent
Container that needsto belaid ou;
Description
This method caculates and returns the minimum dimensions required by the
CardLayout manager to lay out the components contained within the specified
container.
Imports
import java.awt.CardLayout;
Returns
The return type of this method is Dimension. Thisreturn vaue contains the
minimum height and width required to lay out the container in the Specified pand.
See Also
The Container class; the LayoutManager interface
Example
Refer to the example given under the corresponding function in the FlowL ayout
class and to the chapter project.

next(Container)

ClassName
CardLayout
Purpose
To make the next card in the card stack visible. If the current card is the bottom:
most card in the stack then the first card is made visible,
Syntax
public void next(Container parent)
Parameters
parent
The parent Container object that this CardLayout object isthe lay out manager
for.
Description
The card currently in view is hidden and the card just below it is displayed.
Imports
import java.awt.CardLayout;
Returns
None.
Example
The project at the end of this chapter uses this method.

preferredL ayoutSize(Container)

ClassName
CardLayout

Purpose
To cdculate the preferred dimensions for this layout, taking into account the
components in the specified container.

Syntax
public Dimension preferredLayoutSize(Container target)

Parameters

target
Container that needs to be laid out.

Description
This method computes the ided width and height required by this layout. The
vaues returned have no effect unless the program specificaly enforces these
dimensons.

Imports
import java.awt.CardLayout;

Returns
The return type of this method is Dimension. This return vaue contains the ided
height and width required to lay out the container in the specified pand.

See Also
The Container class; the LayoutManager interface

Example

Refer to the example given under the corresponding function in the FlowL ayout
class.

previous(Container)

ClassName
CardLayout
Purpose
To make the previous card in the card stack visible. The previous card to the top-
most card in the stack is deemed to be the card at the bottom of the stack.
Syntax
public void previous(Container parent)
Parameters
parent
The parent Container object that this CardLayout object is the layout manager for
Description
The card currently in view is hidden and the card just aboveit is displayed.
Imports
import java.awt.CardLayout;
Returns
None.
Example
The project a the end of this chapter uses this method.

removel ayoutComponent(Component)

ClassName
CardLayout
Purpose
To remove the specified component from the layout.
Syntax
public void removel_ayoutComponent(Component comp)
Parameters
comp
Component to be removed from the layout.
Description
This method disassociates the component being removed from the named areato
which it was added.
Imports
import java.awt.CardLayourt;
Returns
None.
See Also
The Container class, the LayoutManager interface

Example
Refer to the example given under the corresponding functionin the FlowL ayout
class.

show(Container, String)

ClassName
CardLayout
Purpose
To make the specified card visble.
Syntax
public void show(Container parent, String name)
Parameters
parent
The parent Container object that this CardLayout object is the layout manager for.
name
Name of the card in the stack.
Description
The name parameter is specified when adding cards to the stack. Thisnameis
used to bring the specified card into view.
Imports
import java.awt.CardLayout;
Returns
None.
Example
The project at the end of this chapter uses this method.

toString()

ClassName
CardLayout
Purpose
To represent the parameter values of the CardLayout object asa String.
Syntax
public String toString()
Parameters
None.
Description
This method returns a String representation of this CardLayout object’s vaues,
namdly, the horizontal and vertical gap to leave between components. Each vdue
is prefixed with a short descriptive tag.
Imports
import java.awt.CardLayout;
Returns
This method returns a String containing the values of the CardLayout object, each
vaue prefixed by a descriptive tag.

See Also
The toString method of the Object class

Example
Refer to the example given under the corresponding function in the FowL ayout
class and to the chapter project.

GridBagL ayout

Purpose
A very sophigticated layout manager that can lay out individual components using
different condraints, in amanner such that components can be of different szes
and can be digned verticdly and horizontaly.

Syntax
public class GridBagL ayout extends Object implements LayoutM anager

Description
Thisisthe most powerful of dl the layout managers that the Abstract Windowing
Toolkit provides. Consequently, it is aso the most complex layout manager. This
layout manager can lay out components on agrid of cdls, with each component
occupying one or more cdlsin the grid. The group of cells occupied by a
component is known asits digplay area. A GridBagCongtraints object is
associated with each component and these congtraints ingtruct the layout manager
to lay out the component in a particular manner. Refer to the GridBagCondtraints
classin this chapter for more information on customizing the gppearance of a
Container usng a GridBagL ayout layout manager. Figure 4-15 shows the
inheritance hierarchy for the GridBagLayout class.

PackageName
java.awt

Imports
import java.awt.GridBagLayout;

Condructors
public GridBagL ayout()

Parameters
None.

Example
Refer to the chapter project for a detailed example of a GridBagLayout layout

manager

Figure4-15 Inheritance hierarchy for the GridBagL ayout class

addL ayoutComponent(String, Component)

ClassName

GridBaglLayout
Purpose
To add the specified component to the layoui.
Syntax
public void addL ayoutComponent(String name, Component comp)
Parameters
name
Name of the component to be added.
comp
Component object to be added.
Description
The GridBagLayout uses a GridBagConstraints object to lay out a component and
does not associate a name with a component. Inorder to conform to the
LayoutManager interface, this method exigts but is an empty stub.
Imports
import java.awt.GridBagLayout;
Returns
None.
See Also
The Container class; the LayoutManager interface
Example
Refer to the chapter project to see how components are added to a GridBagL ayout
and how a GridBagCongraints object ingtructs this layout manager how to lay out
the particular component.

AdjustFor Gravity(GridBagConstraints, Rectangle)

ClassName
GridBagLayout
Purpose
To modify the position and dimensions of the component depending on the
specified congraints.
Syntax
protected void AdjustForGravity(GridBagConstraints ¢, Rectangler)
Parameters
c
GridBagCongraints object specifying the congraints.
r
Rectangle specifying the coordinates and dimensions of a component.
Description
The coordinates of the rectangle r and the height and width dimensions are st
according to the condraints, specified in the GridBagCongtraints object c. The
GridBagCongtraints object specifies the geometry congraint, aswell asany
padding that isto be added to the size of the component.
Imports
import java.awt.GridBagLayout;

Returns
None.

Example
This method is a protected method in the GridBaglLayout class and is used
interndly by the GridBagLayout implementation.

ArrangeGrid(Container)

ClassName
GridBagLayout
Purpose
To lay out the componentsin the container.
Syntax
protected void ArrangeGrid(Container parent)
Parameters
parent
Container to be laid out.
Description
This protected method implements the layout policy of this layout manager and
causes the components in the specified container to be laid out according to the
congraints associated with each component.
Imports
import java.awt.GridBagLayout;
Returns
None.
Example
Thismethod is a protected method in the GridBagL ayout classand is used
interndly by the GridBagLayout implementation.

DumpConstraints(GridBagConstraints)

ClassName
GridBagLayout
Purpose
To print the values of the specified GridBagConstraints object.
Syntax
protected void DumpCongtraintgGridBagCongtraints c)
Parameters
c
GridBagCongtraints object whose va ues are to be printed on the screen.
Description
Thismethod is useful for debugging the implementation of the GridBagL ayout
layout manager. It Smply prints the vaues of the variables of the specified
GridBagCongtraints object.

Imports
import java.awt.GridBagLayoult;
Returns
None.
Example
This method is a protected method in the GridBagLayout class and is only used
for debugging purposes by the GridBagLayout implementation.

DumpL ayoutlInfo(GridBagL ayoutl nfo)

ClassName
GridBagLayout
Purpose
To print debugging information contained in the layout parameters of the
specified GridBagL ayoutlnfo object.
Syntax
protected void DumpL ayoutlnfo(GridBagL ayoutinfo i)
Parameters
[
GridBagLayoutinfo object whose values are to be printed on the screen.
Description
The GridBagLayoutinfo classis used interndly by the GridBagLayout class and it
contains information about the layout (such as the number of cels horizontaly
and verticdly in the layout, the largest minimum width in each row, and other
parameters). This method smply prints these parameter vaues.
Imports
import java.awt.GridBagLayout;
Returns
None.
Example
This method is a protected method in the GridBagLayout class and is only used
for debugging purposes by the GridBagL ayout implementation.

getConstraints(Component)

ClassName

GridBagLayout
Purpose

To get the GridBagCongtraints object associated with the specified component.
Syntax

public GridBagCongraints getConstraints(Component comp)
Parameters
comp

Component object whose GridBagConstraints should be retrieved.
Description

This method returns a copy of the GridBagConstraints object associated with the
Specified component.
Imports
import java.awt.GridBagLayout;
Returns
The return vaue of this method is a GridBagCondiraints object.
See Also
The GridBagCongtraints class
Example
Please refer to the documentation on the GridBagCongraints class in this chapter.

getL ayoutDimensions()

ClassName
GridBagLayout

Purpose
To get the largest minimum width measurements of the components in each row
and the largest minimum height measurements of the componentsin each column

Syntax
publicint [] [] getLayoutDimensons()

Parameters
None.

Description
This method returns the largest minimum width and height messurements of
components in each row and column of the layout.

Imports
import java.awt.GridBagLayout;

Returns
This method returns atwo-dimensond aray of integers, where the widths are
gpecified in the first row of integers and the heights are specified in the second
row.

Example
Please refer to chapter project for an example.

GetL ayoutlnfo(Container, int)

ClassName
GridBagLayout
Purpose
To determine the GridBagL ayoutlnfo parameters for the componentsin the
specified container.
Syntax
protected GridBagL ayoutinfo GetLayoutlnfo(Container parent, int sizeflag)
Parameters
parent

Container object to be laid out.

sizeflag
Specifies whether to use each components' preferredSize method or
minimumSize method, to determine the size of each component, while laying out
the container.

Description
The GridBagLayoutinfo classis used interndly by the GridBagLayout class and it
contains information about the layout (such as the number of cdls horizontaly
and verticdly in the layout, the largest minimum width in each row, and other
parameters). This method determines these parameter values.

Imports
import java.awt.GridBagLayoult;

Returns
This method returrns a GridBagL ayoutlnfo object containing the parameters for
the current layout configuration.

Example
This method is a protected method in the GridBagLayout class and is only used
interndly by the GridBagLayout implementation.

getL ayoutOrigin()

ClassName
GridBaglLayout
Purpose
To get the coordinates of the starting point of this layout.
Syntax
public Point getLayoutOrigin()
Parameters
None.
Description
This method returns the x and y coordinates of the origin of the layot.
Imports
import java.awt.GridBagLayout;
Returns
This method returns a Point object that specifies the origin of the layot.
Example
Please refer to chapter project for an example.

getL ayoutWeights()

ClassName

GridBaglLayout
Purpose

To get the weights dong each row and column.
Syntax

public double [] [] getLayoutWeights()

Parameters
None.

Description
This method returns the weights aong each row and column of the layout.
Weights are used to specify how to distribute space among the components of a
row or column. Weights play an important role in the reszing behavior of a
component. If the component is weighted in the direction of the x axis
(GridBagCongraintsweightx), then the component will expand horizontaly, and
the component will expand verticdly if it isweighted in the direction of they axis
(GridBagCongraintsweighty).

Imports
import java.awt.GridBagLayoult;

Returns
This method returns atwo-dimensiond array of double precison floating point
numbers that specifies the weights of the componentsin each row and column.

See Also
The weight and weighty variables of the GridBagCondtraints class

Example
Please refer to chapter project for an example.

GetMinSize(Container, GridBagL ayoutl nfo)

ClassName
GridBagLayout
Purpose
To determine the minimum dimensions for the layout.
Syntax
protected Dimension GetMinSize(Container parent, GridBagL ayoutInfo i)
Parameters
parent
Container object to be laid out.
i
GridBagL ayoutlnfo object containing the parameters of the overal layout
configuration.
Description
Thismethod is used to ca culate the minimum width and height measurements
required of the layout. The minimum dimensions are calculated according to the
following formulaes
Minimum width = (Left + Right inssts of parent) + (sum of largest minimum
widthsin each column)
Minimum height = (Top + Bottom insats of parent) + (sum of largest minimum
heights in each row)
Imports
import java.awt.GridBagLayout;

Returns
This method returns a Dimengion object containing the minimum dimensions of
the layout.

See Also
The minimumLayoutSize method of this class

Example
This method is a protected method in the GridBagLayout class and is only used
interndly by the GridBagLayout implementation.

layoutContainer (Container)

ClassName
GridBaglLayout
Purpose
To lay out the specified container according to the congtraints for each
component.
Syntax
public void layoutContainer(Container parent)
Parameters
parent
Container object to be laid out.
Description
This method lays out the componentsin the container, usng the
GridBagCongraints object associated with each component as a guiddine for
laying out the components. Applications do not directly invoke this method. The
layout method of the Container class resultsin acal to this method.
Imports
import java.awt.GridBagLayout;
Returns
None.
See Also
The LayoutManager interface; the Container class
Example
Please refer to chapter project for an example.

location(int, int)

ClassName
GridBagLayout
Purpose
To get the coordinates of the top left corner of the component where the specified
point x, y lies.
Syntax
public Point location(int x, int y)
Parameters
X

The x coordinate of the point.
y
They coordinate of the point.
Description
This method returns the location of the component containing the specified point.
Imports
import java.awt.GridBagLayout;
Returns
This method returns the coordinates of the component that contains the point
specified by thegiven x and y values.
Example
Please refer to chapter project for an example

lookupConstraints(Component)

ClassName
GridBagLayout
Purpose
To get the GridBagCongtraints object associated with the specified component.
Syntax
protected GridBagConstraints |ookupConstraints(Component comp)
Parameters
comp
Component object whose GridBagCongtraints should be retrieved.
Description
This method retrieves the GridBagConstraints object associated with the specified
component. The object returned by this method is the actual congtraints object
used by the GridBagL ayout layout manager, and hence, care should be taken if
oneis modifying the parameters of this GridBagCongtraints object.
Imports
import java.awt.GridBagLayoult;
Returns
This method returns a GridBagCongtraints object containing the congtraints used
for laying out the specified component.
See Also
The GridBagCongtraints class
Example
This method is a protected method in the GridBagLayout class and is only used
interndly by the GridBagLayout implementation.

minimumL ayoutSize(Container)
ClassName

GridBagLayout
Purpose

To cdculate the minimum size required to lay out the container, taking into
account the componentsin the specified container.
Syntax
public Dimengon minimumLayoutSize(Container parent)
Parameters
parent
Container that needs to be laid out.
Description
This method cal culates and returns the minimum dimensions required by the
GridBagLayout manager to lay out the components contained within the specified
container.
Imports
import java.awt.GridBagLayout;
Returns
The return type of this method is Dimension. Thisreturn vaue contains the
minimum height and width required to lay out the container in the specified pand.
See Also
The Container class, the LayoutManager interface
Example
This method can be invoked on a GridBagL ayout object, Smilar to the manner in
which it isinvoked on the corresponding function in the HowlL ayout class,

preferredlL ayoutSize(Container)

ClassName
GridBagLayout

Purpose
To cdculate the preferred dimensions for this layout, taking into account the
componentsin the specified container.

Syntax
public Dimension preferredL ayoutSize(Container target)

Parameters

target
Container that needs to be laid out.

Description
This method computes the idea width and height required by this layout. The
vaues returned have no effect unless the program specifically enforces these
dimensons.

Imports
import java.awt.GridBagLayout;

Returns
The return type of this method is Dimension. This return vaue contains the idegl
height and width required to lay out the container in the specified pand.

See Also
The Container class, the LayoutManager interface

Example

This method can be invoked on a GridBaglLayout object, smilar to the manner in
which it isinvoked on the corresponding function in the FlowL ayout class.

removel ayoutComponent(Component)

ClassName
GridBagLayout
Purpose
To remove the specified component from the layoui.
Syntax
public void removelayoutComponent(Component comp)
Parameters
comp
Component to be removed from the layout.
Description
This method is a dummy stub in the GridBagLayout class, as this layout manager
doesn’'t need to maintain associations between components and areas on the
display.
Imports
import java.awt.GridBagLayout;
Returns
None.
See Also
The Container class; the LayoutManager interface
Example
This method can be invoked on a GridBagL ayout object, Smilar to the manner in
which it isinvoked on the corresponding function in the HowL ayout class.

setConstraints(Component, GridBagConstraints)

ClassName

GridBagLayout
Purpose

To apply the GridBagCongtraints to the specified component.
Syntax

public void setConstraints(Component comp, GridBagConstraints congtraints)
Parameters
comp

Component object that the congtraints are to be applied to.
constraints

Condtraints for the component.
Description

This method applies the congraints specified in the constraints parameter to the
gpecified component. These congtraints are used to determine the position and
dimengions of the component.
Imports
import java.awt.GridBagLayout;
Returns
None.
See Also
The GridBagCongtraints class
Example
Please refer to the chapter project.

toString()

ClassName
GridBagLayout
Purpose
To represent the vaues of the GridBagL ayout object as a String.
Syntax
public String toString()
Parameters
None.
Description
As the parameters associated with each component may be many in number, this
method just prints the classname of this object (java.awt.GridBaglL ayout)
Imports
import java.awt.GridBagLayout;
Returns
This method returns a String containing the name of the GridBagL ayout object.
See Also
The toString method of the Object class
Example
This method can be invoked on a GridBagLayout object Smilar to the manner in
which it isinvoked on the corresponding function in the FlowL ayout class.

GridBagConstraints

Purpose
To specify the congraints for laying out a component using the GridBagL ayout
class.
Syntax
public class GridBagCondtraints extends Object implements Clonesgble
Description
The public variables of this class are used to specify the congraints for laying out
a component within a container that uses a GridBagL ayout object as its layout
manager. Every component within the container is associated with an instance of

this class. The GridBagCongtraints va ues specify how the component islaid out
within the container. Figure 4-16 shows the inheritance hierarchy for the
GridBagCondraints class.
PackageName
java.awt
Imports
import java.awt.GridBagConstraints;
Condtructors
public GridBagCongtraints()
Parameters
None.
Variables
The following are the public variables that can be accessed and modified directly
from within an goplication.
public int anchor
The vadue of this varigble specifies where in the display area the GridBagL ayout
class will anchor this component if its display areais larger than the component.
The point in the display area where the component can be anchored can be
specified usng one of the following vaues
GridBagCongraintsNORTH
GridBagCongtraints. SOUTH
GridBagCongtrantsEAST
GridBagCongrants WEST
GridBagCongtraintsNORTHEAST
GridBagCongtraintsNORTHWEST
GridBagCongraints SOUTHEAST
GridBagCongtraints SOUTHWEST
GridBagCongtraints.CENTER
The default vaue is GridBagCongraints. CENTER.
public Insetsinsets
The top, bottom, left, and right padding to leave between the component and the
edge of itsdisplay area.
public int ipadx
The number of pixesto pad on the left and right Sides of the component. Twice
this value is added when calculaing the minimum size for this component.
public int ipady
The number of pixels to pad on the top and bottom sides of the component. Twice
this vaue is added when caculating the minimum sze for this component.
publicint gridx
Row number of the cdll that occupies the upper-1eft corner of the component’s
digplay area. Setting this vaue to GridBagCongrantsRELATIVE ingructs the
GridBagLayout classto lay out this component to the right of the previoudy
added component.
publicint gridy

Column number of the cdll at the upper-left corner of the display area. Setting this
vaue to GridBagCongraintsRELATIVE indructs the GridBagLayout classto lay
out this component just below the previoudy added component.

publicint gridwidth
Width of the component’s display area expressed as a number of cdlsin arow.
Setting this value to GridBagCongrantsREMAINDER ingructs the
GridBagLayout class that this component isthe last inits row. Setting this vaue
to GridBagCongtrantsRELATIVE ingructs the GridBagL ayout class that this
component is next to the last in its row. The default value for thisvariableis 1.

publicint gridheight
Height of the component’ s display area expressed as anumber of cdlsina
column. Setting this value to GridBagConstraints REMAINDER ingtructs the
GridBagLayout class that this component isthe last in its column. Setting this
vaueto GridBagCongrants RELATIVE ingructs the GridBagL ayout class that
this component is next to the lagt in its column. The default vaue for this variable
isl.

public double weightx
Specifies whether or not the component’ s width should increase if it needs to be
resized. A value must be specified for at least one component in arow. The
default vaue for this variable is 0.

public doubleweighty
Specifies whether or not the component’s height should incresseif it needsto be
resized. A vaue must be specified for at least one component in acolumn. The
default vaue for this variable is 0.

Example
Refer to the section project for adetailed example that uses this class.

Figure4-16 Inheritance hierarchy for the GridBagCondraints class

clong()

ClassName
GridBagCongraints
Purpose
To create aduplicate of this GridBagConstraints object
Syntax
public Object clone()
Parameters
None.
Description
A new ingtance of a GridBagConstraints object is created and an exact duplicate
of this GridBagCongraintsis made.

Imports
import java.awt.GridBagConstraints,

Returns
The return value is an Object that is a clone of this GridBagCongtraints object.
Thisreturn value must be cast as a GridBagConstraints object in order to useit as
one.

See Also
The clone method of the Object class; the Cloneable interface

Example

The following sample code demondrates the implementation of this method.
i mport java.awt. G i dBagConstraints;

public class GBCTest {
public static void main(String args[]) {
/'l GridBagConstraints constructor
GridBagConstraints gl = new Gi dBagConstrai nts();
gl.gridx = b5;
gl.gridy = 4;
GridBagConstraints g2 = (Gi dBagConstraints)gl.clone();
Systemout.println("gl.gridx "+ gl.gridx);
System out. println("g2.gridx "+ g2.gridx);

}
The Layout Demonstration

By now you are familiar with the layout manager interface and the API of Java s reedy-
made layout managers. In the following project we will build an application that
demondtrates the functionality of each of the layout managers discussed in this chapter.
The project will help you visudize the effect that each of the layout managers:
HowLayout, GridLayout, BorderLayout, CardLayout, and GridBagL ayout have on the
appearance of the Container. Figure 4-17 shows a screenshot of this project.

Figure4-17 The Layout Demongtration project

In this project, we present asmple user interface that dlows people to see the impact of
each particular layout manager by selecting from alist of choices. The gppearance and
position of the components on the screen change with the sdection of anew layout. In
this project, a set of buttons is created and these buttons are placed within a Pand using
different layout techniques. The smple user interface lets you flip through different

layout views. This project dso demongrates customizing alayout by specifying
parameters (such as the dignment mode, the horizontal gap between components, and so
on).

Assembling the Project

1. Create and edit afile named LayoutDemo,java and use thisfile to enter the

code for this project. Firgt, ensure that the necessary Java modules are imported.
import java.awt.*;
i mport java. appl et. Appl et;
2. Now create a pand containing buttons. The SlidePand class doesthis. The
buttons on this pand will be laid out using different layout managers. By passng
adifferent layout manager as the argument to the methods of the SidePanel class,
we can cregte different layouts of the buttons created by the SlidePand class. This
is accomplished by associating alayout manager with this Pandl. The buttons are
added to different areas of the panel. The significance of these areas depends on
the layout manager being used to lay out the buttons on the pand. A Labe
component & the bottom of the pand displays the parameters of the layout
manager used to lay out the components on the pand.
class SlidePanel extends Panel {
Panel newSlide(Layout Manager |ayout) {

Panel parent = new Panel ();

par ent . set Layout (new Bor der Layout ());

[l print the | ayout nmanager paraneters in a Label
conponent

String s = new String("Layout parameters: ");

s += layout.toString();

parent . add(" Sout h", new Label (s)); // attach the |abel at

t he bottom

Panel p = new Panel ();
. set Layout (Il ayout);
.add("North", new Button("This"));
.add("West", new Button("denonstration"));
.add("Center", new Button("is"));
.add("East", new Button("really"));
.add(" Sout h", new Button("cool !"));
parent.add("Center", p);
return parent;

T T TTTT

}
3. The GridBagLayout is a complex layout manager that requires congraintsto
be associated with each component. Add this method to the SidePand class. It
arranges the buttons on the SidePand using the GridBagLayouit class. The actud
assignment of condraints to buttons and adding them to the layout isimplemented
asthree protected methods. makeFirstRow, makeSecondRow, and
makeThirdRow. A Label component at the bottom of the panel displaysthe
parameters of the layout manager used to lay out the components on the panel.
/1 use the GidBaglLayout class to |ayout buttons
Panel gri dBagSlide() ({

Panel parent = new Panel ();

parent. set Layout (new BorderLayout());

Panel p = new Panel ();

Gri dBagLayout gbl = new Gri dBaglLayout();

String s = new String("Layout parameters: ");

s += gbl.toString();

parent.add(" Sout h", new Label (s)); // attach the |abel at

t he bottom
p. set Layout (gbl);
Gri dBagConstrai nts gbc = new GidBagConstraints();

makeFi r st Row(gbc, gbl, p); /1 assign constraints
to buttons

makeSecondRow gbc, gbl, p); /1l row by row
makeThi r dRow(gbc, gbl, p); /1 add the entire
pane
to the parent
parent.add("Center", p);
return parent;
}

4. Assgn condraints such that three buttons are laid out on the first row.
Assgning avaue to weightx of the GridBagCondraints object ensures thet the
buttons will expand horizontaly and occupy space dong the row, if the window is
resized.
protected voi d nakeFirst Row(G i dBagConstrai nts gc,
Gri dBagLayout gl, Panel pan) {

/1 create 2 buttons of width 1 cell each on the sane row

gc.gridx = Gri dBagConstrai nts. RELATI VE;

gc.fill = GidBagConstraints. BOTH;

gc. wei ghtx = 1.0;

Button bl = new Button("Buttons");

gl . set Constrai nts(bl, gc);

pan. add(bl);

Button b2 = new Button("in a");

gl . set Constrai nts(b2, gc);

pan. add(b2);

/1 let this button be the last in this row

gc.gridwi dth = Gri dBagConstrai nts. REMAI NDER

Button b3 = new Button("row');

gl . set Constrai nts(b3, gc);

pan. add(b3);

}

5. Create and lay out a button such that it occupies dl the remaining spacein a

row. In addition, add a second button that occupies two rows.
protected void nakeSecondRow(Gri dBagConstrai nts gc,
G i dBagLayout gl, Panel pan) {
/!l create a button on the next row
gc.gridwi dth = GidBagConstrai nts. RELATI VE;
gc. gridhei ght = 1;
gc. wei ghtx = 0.0;
gc. wei ghty = 0.0;
Button b4 = new Button("PressMe");
gl . set Constrai nts(b4, gc);
pan. add(b4);

/'l create a large button that will expand hei ghtw se if
resized

gc.gridwi dth = Gri dBagConstrai nts. REMAI NDER

gc. gridhei ght = 2;

gc. wei ght x 0

gc. wei ghty 1

Button b5 = new Button("Large Button");

gl . set Constrai nts(b5, gc);

pan. add(b5) ;

. 0;
. 0;

}
6. On thethird row, set the congtraints so that a button occupies the entire row.

protected void nakeThi rdRow(Gri dBagConstraints gc,
Gri dBagLayout gl, Panel pan) {

/1 let this button take up the entire row
gc.gridwi dth = Gri dBagConstrai nts. REMAI NDER
gc. gridheight = 1;
gc. wei ghtx = 0.0;
gc. weighty = 0.0;
Button b6 = new Button("Long Button");
gl . set Constrai nts(b6, gc);
pan. add(b6) ;

}

7. The main display needsto be able to display multiple views of the Pand of

buttons, each view implementing a particular layout. The CardLayout layout
manager isided for this task. Each view can be acard in the card layout. To
display alayout, the card containing the view has to be made visble. In the
congtructor for the SidePand class, create new Panels of buttons and associate

each with a different layout manager. The SlidePanel classis now complete.
Sl i dePanel () {
set Layout (new CardLayout ());
/1l add each slide as a new card and give each slide a
nane
add(" Fl owLayout 1", newSl i de(new Fl owLayout ()));
add(" Fl owLayout 2", newSl i de(new Fl owLayout
(Fl owLayout . LEFT)));
add(" Fl owLayout 3",
newSl i de(new Fl owLayout (Fl owLayout . LEFT, 30, 0)));
add(" Gri dLayout 1", newSlide(new GidLayout (1, 0)));
add(" Gri dLayout 2", newSlide(new GidLayout (3, 2)));
add("Gi dLayout 3", newSlide(new GridLayout (3, 2, 20,
10)));
add(" Border Layout 1", newSl i de(new BorderLayout()));
add(" Bor der Layout 2", newSl i de(new BorderLayout (10, 20)));
add(" Gi dBagLayout”, gridBagSlide());
}
} - - -
8. Now create the LayoutDemo class. For this classto run as an applet, it will
have to extend the java.applet. Applet class. It maintains a reference to the card
stack of pands and shuffles this card stack to display the various layout views.
The display areathat will contain the card stack of pandlsis positioned above the
choice control with which you can change the layout being used to place the
buttons on the screen. Using the Center and South areas of a BorderLayout
accomplishesthisin asnap. A Pand isused to nestly arrange the choice
component and the layout description label. A Choice component, with the names
of dl the different layouts that can be viewed, is added to the Panel. Thiscodeis
implemented in the init method of the LayoutDemo class. The following sample
code is an example of what it takes to implement this portion of the project.
public class LayoutDenp extends Applet {
Sl i dePanel vi ewSt ack; /1l stack of panels
public void init() {
set Layout (new BorderLayout());
viewStack = new SlidePanel (); // stack of layout views

Label | = new Label ("Usi ng CardLayout to view other
| ayouts...");

add("North", I);

add("Center", viewStack);

Panel p = new Panel ();

p. set Layout (new Fl owLayout (Fl owLayout . LEFT));

add(" Sout h", p);

Choi ce ¢ = new Choice(); // add the various |ayout
options

.addi tem(" Fl owLayout 1"); /1l that can be viewed

.addl tem(" Fl owLayout 2");

.addl tem(" Fl owLayout 3");

.addltem("GidLayout1");

.addltem(" G idLayout 2");

.addltem("Gi dLayout 3");

.addl tem(" Bor der Layout 1") ;

.addl tem(" Bor der Layout 2") ;

.addltem("Gri dBagLayout ") ;

.add(c); /1 add the Choice conponent
to the Panel

T OOO0O0O000O0

/1 create and add buttons for the user to flip through
t he
cards
.add(new Button("First card"));
.add(new Button("Last card"));
.add(new Button("Next card"));
.add(new Button("Previous card"));

T T T T

}

All that remains to be implemented is a smple interface for the gpplet. Using this
interface you can view the different layouts.

9. Thefallowing event handler determines which of the controls was activated by
the user and displays the corresponding card. The event handler brings the card,

corresponding to the selected choice, to the top of the view stack.
publ i c bool ean action(Event evt, Object arg) {
if (evt.target instanceof Choice) { // display the choice
sel ected
((CardLayout) vi ewSt ack. get Layout ()) .
show(vi ewSt ack, (String)arg);
} else if ("First card".equals(arg)) { // display the first
card
((CardLayout) vi ewSt ack. get Layout ()).
first(viewStack);
} else if ("Last card".equals(arg)) { // display the | ast
card
((CardLayout) vi ewSt ack. get Layout ()) .
| ast (vi ewSt ack) ;
} else if ("Next card".equals(arg)) { // display the next
card
((CardLayout) vi ewSt ack. get Layout ()).
next (vi ewSt ack) ;
} else if ("Previous card".equals(arg)) { // display the
previous card
((CardLayout)vi ewSt ack. get Layout ()).
previ ous(vi ewSt ack) ;

return true;
}
10. And now thefina step of cregting amain function, required to launch the
goplication if it were executed as a Sand-alone Java application. It creates atop-
level Frame window and emulates the behavior of an applet, by invoking the init
methods of the LayoutDemo class.
public static void main(String args[]) {

Frame f = new Frane("Layout Denobnstration");

Layout Demp | d = new Layout Deno() ;

ld.init();

Id.start();

f.add("Center", |d);
f.resize(450, 300);
f.show();

}

And we are done!
11. Savethe LayoutDemo.javafile and compile the project by executing the
following command:

javac Layout Denp. j ava

12. Now run the program by executing the following command:
j ava Layout Denp

How It Works

The Layout Demondration project used different layout managers to lay out the same set
of buttons on the screen. The CardLayout layout manager was used to present the
different layout views, one a atime, to the user. Pandls and Frames were used as
containers for components (such as Buttons and Labels). Choice components and buttons
that initiated actions enabled the user to flip through the various views in the CardLayout.
The ready-made |layout managersthat are in the Java AWT are sufficient for most
gpplications. Choose the layout manager or windowing component most suited to your
requirements. By nesting panels within panels, you can use different layout managers for
different parts of your user interface.

Have fun in creating user interfaces for Java applicationd
setM enuBar (M enuBar)

ClassName

Frame
Purpose

Sets the menu bar for this Frame to the specified MenuBar object
Syntax

public synchronized void setMenuBar(MenuBar mb)
Parameters
mb

The MenuBar object that represents the menu bar for this Frame
Description

This method specifies the menu bar to use on this Frame window.
Imports

import java.awt.Frame;
Returns

None.
See Also

The Image Class
Example

Refer to the examples in the MenuBar section of Chapter 6.

Chapter 5
Handling Text, Dialogs, And Lists

An gpplication might need input not only at the beginning of execution but at various
gages of arun. The input may not be from aknown lig of inputs or eveniif it is, the
number of items might be large. It may be necessary to update the user about the state of
the gpplication at various stages and to obtain his approva before performing the
successive sages. This chapter introduces the properties and use of text handling
components, dialog boxes that “conversg’ with users, and scrolling lists of items that
offer alarge number of choices. We will cover the classes TextComponent, TextAres,
TextFidd, Didog, FileDidog and List and describe their methods in detall. The
gpplication developed at the end of this chapter is a basic framework for an API
Reference Interface Application. Using thisinterface, users can specify a class name and
obtain information about any number of methods in the pecified class. They can view
the details of any method and optiondly can save them in afile

Handling Text

Depending on an application’s charaterigtics, text input from the user can beasngle
character, sngleword, sngle line, or multiple lines of text. Handling such varying input
typesisimportant for a smooth-running gpplication. In Java, the TextComponent,
TextArea, and TextFied classesin the AWT package provide the necessary interface
components for text handling. TextArea and TextFelds are subclasses of the
TextComponent class. A TextField accepts a single line of text. Consder an gpplication
that handles e-mail. Y ou know that e-mall addresses are not multiline text; you can use
instances of TextFeld for the To, Cc, and Subject fields, but for the body of your e-mall
message you need amulltiline editor.

The editing capabilities of TextFeld and TextArea are the same. Y ou can disdlow
editing in both. Y ou can point to any location in the areaand enter the input. Ina
TextHdd, you have asingle line of boxed text vishble to you. The number of columnsin

the text field is gpplication specific, but you can type as many charaters as you want and
the text will move to the left accommodating more input. To view the text, you have to
move the cursor to the desired location. A TextArea provides two scrollbars (vertical and
horizonta) for viewing different parts of the TextArea and editing with ease. Figure 5-1
shows an example To TextFed. The second text field, Cc, contains the sender’s name as
adefault string which saves the time required to typein an e-mail id.

Figure5-1 A sngle-line TextFed component

Thetext area, dlowing multiple lines to be edited, is crested using the TextAreaclassin
the AWT package. Figure 5-2 illudtrates the text area provided to edit the body of an e-
mail message. It includes scrollbars that alow you to go back and forth in editing. If a
certain text field or text area should be protected from editing, you can disableit. Also, in
Stuations where you don’t want the characters you type to appear on the screen, such as
entering a password, TextField can set echo characters that appear on the screen for each
character you enter. Figure 5-3 shows an example in which the user entry is masked by
echo characters.

Figure5-2 A multiline TextArea component

Figure5-3 Echo charactersin aTextFed
Dialogsin Java

A primary window is the root window from which al the other windows used by an
application are generated. In the case of Java GUIs, it isaFrame object for an gpplication
and aWindow for an applet. Applications use diaog windows to conduct context-
specific didog with the user. When adidog window is closed, its parent is not affected.
But the input given through the didlog window is available to the parent even after the
dialog window is closed. In Java, two dasses implement didog windows. Diadlog and
FleDidog. The class Didog implements a pop-up window to interact with the user. You
can design it as a smple prompt window, a message window, or an input window and so
on. Depending on the input characterigtic, you can specify the Didog window to be
moda or non-moda. A moda Diaog box prevents any action on other windows of the
gpplication until the user responds to the Didlog box with some input. If you specify a
Diaog box to be non-modd, the user can work on other windows without entering any
input for the didog window. Figure 5-4 shows a Didog window instance created using
the JDK. The Dialog box provides two buttons: OK and Cancel. Sdlecting ether of them
decides the next step of the application.

Figure5-4 A sampledidog box in Java

FileDiaog is a Java dass that implements a pop-up window offering a selection of files
to the user. Thistype of window can be created in either LOAD or SAVE mode. If in
LOAD mode, the FileDidog window is crested and an Open button is provided. In
SAVE mode, a Save button gppears in the file sdlection window. But you (asa
programmer) are responsible for handling the loading and saving of files. Y ou can get the
name of the selected file from the FleDidog window. For example, someone might want
to include a particular fileinto an e-mail. Figure 5-5 shows the use of aFileDidog
component where directory “chp7” is opened and it contains three subdirectories. By
successvely sdecting the folders you end up with the directory in which the desired file
resdes. On sdecting thefile and by clicking the Open button, the file is selected using
the given FleDiaog component.

Figure 5-5 Usng aFileDidog component for loading afile
Lists

Neither menus, checkboxes, nor pull-down menus are adequate when you need an
interface to handle alarge number of available options. A scralling list of sdectable items
makes an efficient way to save window space and present alot of itemsfor sdection. In
Java, the class Ligt encapsulates the required behavior of scrolling lists. You can set a
List object to dlow only one sdection or multiple sdlections. In the case of asngle-
seection Ligt, sdecting an item automatically desdlects any other item adready selected in
thelig. Inamultiple-sdection Ligt, the user can sdlect any number of items from the
Ligt. Figure 5-6 shows aligt that dlows multiple selections. The List class provides
methods that support selecting items and manipulating the items selected.

Figure5-6 A List component with multiple selections enabled

Text, Dialog, and List Class Summaries

Table 5-1 summarizes the classes necessary for developing user interfacesin Javausing
text, didogs, and ligs.

Table 5-1 Class description for text, diaog, and list components

Class Name Description
TextComponent A component that alows the editing of text. Forms the super
classfor TextAreaand TextFed.
TextArea Provides an areain which to display severd lines of text. The
text can be ether read-only or edited.
TextFdd A angle-line editor and a subclass of TextComponent.
Didog A window that takes input from the user.
HleDidog A modd Diaog window displaying afile sdection didog.
Lig A component that provides a scrolling ligt of text items from

which the user can select one or many items.

TextComponent

Purpose
A component that alows the editing of text. Forms the super classfor TextArea
and TextFdd.

Syntax
public class TextComponent extends Component

Description
TextComponent is used to implement the window components involved in text
editing. It formsthe super class of dl text related components.Hence, TextArea
and TextField are subclasses of this class. Methods of the TextComponent class
dlow sdlection of text, manipulating the sdlected text, and specifying a text
component as either editable or read-only. This class has no public congtructors.
Figure 5-7 illugtrates the inheritance relationship of the TextComponent class.

PackageName
java.awt

Imports
import java.awt. TextComponent;

Condtructors
None.

Parameters
None.

Example

The textDemo class, implemented in the following example (Listing 5-1), uses the
textPane classto illudirate the usage of methods in the classes TextComponent,
TextArea, and TextFed. This gpplication uses dl the methods in these classes.
The user can type his name, which is echoed as asterisk and then pressthe
ChangeText button and see the effect. Pressing CloneTextAreawill make anew
image of TextArea Figure 5-8 shows the resultant window.

Figure5-7 Classdiagram of TextComponent class

Figure 5-8 The textDemo application in action

Listing 5-1 textDemo.java: Program demondirating the usage of methodsin
TextComponent, TextArea, and TextFidd

i nport java.awt.*;
i mport java.io.*;

/**
Fi |l ename: textDenp.java
cl asses: textDeno
t ext Panel
Pur pose: denonstrating the usage of nethods in the cl asses:
Text Conponent, TextArea and TextField
*/

public class textDenp extends Frame {

Text Panel txt_p;
// to denobnstrate textarea, textfield classes

Menubar nbar;
public textDeno() {

/1 panel containing text conponents
txt _p = new Text Panel ();

/1 menu to exit fromthe application
nmbar = new MenuBar ()
Menu quit = new Menu(“Quit”);
qui t.add(new Menultem(“Stop”));
nbar. add(quit);
set MenuBar (nbar) ;
/1l add the panel to the North
add(“North", txt_p);

pack();
show() ;

}
publ i c bool ean action(Event evt, Cbject arg) {

/1 quit menu handl er

if (evt.target instanceof Menultem {
System exit(0);
return true;

}

return fal se;

public static void main(String args[]) {

textDenp txt_win = new textDenmo();
txt_win.setTitle("“Text Demn”);
t Xt _wi n. pack();
txt_win.show);
}

} // end of class textDenp

cl ass Text Panel extends Panel {
TextFiel d name_f; /1 text field to get
/1l panel that contains text field and area
Panel txt_p;
/'l text area to display manipul ated string
Text Area txt_edit;

nanme

public TextPanel () {
txt _p = new Panel ();
set Layout (new Border Layout());

name_f = new TextFi el d(“Your Name", 15);
if (!'name_f.echoCharlsSet()) ({
name_f . set EchoCharacter (' *');
Systemout.print(“ The echo char is ");
System out. println(nanme_f.get EchoChar());

Panel bot_p = new Panel ();

Button nane_b = new Button("“ChangeText”);

bot _p. add(name_f);

bot _p. add(name_b);

Button alt_txt = new Button(“C oneTextArea”);
bot _p.add(alt_txt);

txt_edit = new Text Area(6, 25);

/16 rows, 25 colums
txt_edit.setText(“Enter Text Here”);
txt_p.add(txt_edit);

add(“North", txt_p);

add(“Sout h", bot_p);

show() ;

}
Text Area newAr ea,; /1l new text area for "cloning"
publ i ¢ bool ean action(Event evt, Object arg) {

if (evt.target instanceof Button) {
/1 if the ChangeText button is pressed do:

if ("ChangeText".equals(arg))({
String n_str = name_f.get Text ();
if (n_str.equal s(“Your Name”))

n_str ="";

txt_edit.selectAll();
int start =txt_edit.getSel ectionStart();
int end = txt_edit.getSel ectionEnd();

String sel _t = txt_edit.getSel ectedText();
Systemout.printin(“ selected text is " + sel_t);
txt_edit.replaceText(“Hello! ",0,sel _t.length());
txt_edit.appendText (“ How are you?");
txt_edit.insertText(n_str, 7);

/1 deronstrating the usage of follow ng nethods
Systemout.printin(“ Name field has " +
name_f . get Col uims() + "colums ”);
Systemout.println(* Mn size of
nane field is " +
name_f.m ni nunSi ze().width + “ * +
name_f. m ni muntSi ze() . hei ght);
Systemout.printin(“ Preferred size of
nane field is " +
nane_f.preferredSize().width + “ 7 +
name_f . preferredSi ze(). hei ght);
Systemout.println(* Mn size of nane
field with 10 rows is " +
name_f. m ni munSi ze(10).width);
Systemout.printin(“ Preferred size of
nane field with 10 rows is " +
name_f.preferredSi ze(10).width + “ "+
name_f. preferredSi ze(10). hei ght);

/1 if "CloneTextArea"” button is pressed

if (“CloneText Area".equal s(arg)) {
Systemout.println(“CloneText Area sel ected”);
int t_rows, t_cols;

t_rows = txt_edit.get Rows();

t_cols = txt_edit.getColums();
String t_txt = txt_edit.getText();

newArea = new

Text Area(t _txt.getText(),t_rows,t_cols);

newAr ea. set Edi t abl e(f al se);

if (!newArea.isEditable())

Systemout.println(* the New are is NOT editable”);
Panel p = new Panel ();
p. add(newAr ea) ;

txt_p.add(“Center", p);
Systemout.printin(“ Mn size of text areais " +
txt_edit.mnimunSi ze().width +
+ txt_edit. mninuntize(). height);
Systemout.printin(* Preferred size of text area
is " + txt_edit.preferredSize().width + * " +
txt_edit.preferredSi ze(). hei ght);
Systemout.printin(* Mn size of newtext area is "+
newAr ea. m ni munsSi ze(10, 25).width + “ " +
newAr ea. m ni munsSi ze(10, 25) . hei ght) ;
Systemout.printin(“ Preferred size of newtext area
is " + newArea.preferredSi ze(10, 25).width +
+ newAr ea. preferredSi ze(10, 25) . hei ght);

Cbj ect fr = evt.target;
//obtain the parent frane if you dont have handl e
/1l this illustrates a way to obtain frame handl e

while (fr!=null && !(fr instanceof Frane))
fr = ((Conmponent)fr).getParent();

((Frane)fr). pack();

((Frame)fr).show();

return true;

}

} // end of textPanel class

getSelectedText()

ClassName
TextComponent
Purpose
To get the text selected in the target TextComponent object.
Syntax
public String getSelectedText()
Parameters
None.
Description
Users can salect text between desired locations or dl of the text in atext
component. This method obtains the text selected by the user for further

manipulation according to the application’s characteridtics. It returns null if
nothing is selected in the text component.
Imports
import java.awt. TextComponent;
Returns
The sdlected text contained in the TextComponent; the return type is String.
See Also
The TextArea class, the TextFed class; the setText() method of the
TextComponent class
Example
Refer to Liging 5-1. In textPand class, this method is used to obtain the text in
the text area as avaue for the varidble sel_t in the action method.

getSelectionEnd()

ClassName
TextComponent

Purpose
To obtain the end index of the sdlected text.

Syntax
public int getSdectionEnd()

Parameters
None.

Description
Users can salect text between desired locations or dl of the text in atext
component. This method obtains the end index of the sdlected text contained in
the target TextComponent object.

Imports
import java.awt. TextComponent;

Returns
Returns the index position of the last character in the sdlected text; return typeis
int.

See Also
The TextArea and TextFied classes; the setText() and getSelectedText() methods
of the TextComponent class

Example
Refer to Listing 5-1. After sdlecting text in the text area using getSelectedText,
this method is used in the textPane class under the action() method to obtain the
end index of selected text.

getSelectionStart()

ClassName
TextComponent
Purpose
To obtain the start index of the sdlected text.

Syntax
public int getSelectionStart()
Parameters
None.
Description
User can select text between desired locations or al of the text in atext
component. This method obtains the start index of the selected text contained in
the target TextComponent object.
Imports
import java.awt. TextComponent;
Returns
Theindex postion of the first character in the selected text. Return typeisint.
See Also
The setText and getSdlectedText methods of the TextComponent class; the
TextAreaand TextFed classes
Example
Refer to Liging 5-1. After selecting the text in the text areausing
getSelectedText, this method is used to obtain the Sart index of the selected text
in the action method of the textPand class

getText()

ClassName
TextComponent
Purpose
To obtain the text contained in the target TextComponent object.
Syntax
public String getText()
Parameters
None.
Description
TextComponent contains text and it can be edited if alowed. This method obtains
the text contained in the text component. It is equivaent to sdlecting dl the text
and then getting that selected text.
Imports
import java.awt. TextComponent;
Returns
The text contained in the TextComponent is returned and the return type is String.
See Also
The setText method in theTextComponent class; the TextArea and TextFeld
classes
Example
Refer to Liging 5-1. The name string entered in the text field is found by using
this method to include the name (varigble name f) in the string to be written into
the text areain the action() method in the textPanel class.

isEditable()

ClassName
TextComponent

Purpose
To obtain the boolean va ue indicating whether the target TextComponent is
editable or not.

Syntax
public boolean isEditable()

Parameters
None.

Description
Users can edit the text contained in atext component if the component is set to be
editable using the setEditable method in the TextComponent class. This method
finds out whether the text component is editable. It returnstrue if the text is
editeble; faseif it isnot editable.

Imports
import java.awt. TextComponent;

Returns
The boolean vaue indicating whether the text component is editable.

See Also
The setEditable method of theTextComponent class, theTextArea and TextFed
classes

Example
Refer to Liging 5-1. In the action method in class TextPand, when
CloneTextArea button is pressed, newAreais created and is set to disdlow
editing. This method is used to confirm its mode.

paramString()

ClassName
TextComponent
Purpose
To obtain the parameter String of the target TextComponent object.
Syntax
protected String paramString()
Parameters
None.
Description
Returns the String representation of the target TextComponent object, which
contains the text. This method is protected and hence, can be used only by the
classes within the java.awtpackage.
Imports
import java.awt. TextComponent;
Returns
The parameter string of type String.

See Also
The TextComponent and Component classes
Example
The following code uses paramString by subclassing the TextComponent.

package java.aw;
i mport java.awt . Text Conponent;

cl ass nmyText extends Text Component {
String nyStringForm

public nyText() {
super (*");

}

public String getnyStringForm) {
return super.paranttring();
}

public static void main(String[] args) {
myText txt = new nyText();
txt.getmyStringForm));

}
removeNotify()

ClassName
TextComponent

Purpose
To remove the peer of thistext component.

Syntax
public void removeNatify()

Parameters
None.

Description
A text component peer is used to change the appearance of your text component,
without changing its functiondity. This method removes the peer of the target
component.

Imports
import java.awt. TextComponent;

Returns
None.

See Also
The addNotify method of subclasses of TextComponent, namely TextAreaand
TextFidd; the TextComponentPeer class

Example
Refer to the details and information in the Chapter 9 describing Peers and
manipulating peer interfaces.

select(int, int)

ClassName
TextComponent
Purpose
Sdlects the text between the specified positions in the TextComponent.
Syntax
public void sdlect(int start, int end)
Parameters
start
Index indicating the starting pogition of the selected text.
end
Index indicating the end position of the selected text.
Description
The textComponent contains atext. The user can sdlect a part of the text or the
entire text. This method selects the text contents between the two specified Sart
and end posgitions. If the value of dart is greater than end, then no text is selected.
Imports
import java.awt. TextComponent;
Returns
None.
See Also
The TextAreaand TextField classes
Example
Refer to Listing 5-1. This method is used in the action method of class textPand
to obtain the check gtring after selecting the text or after getting the start and end
position if the whole text is selected.

sdectAll()

ClassName
TextComponent
Purpose
Sdectsdl of the text contained in the TextComponent.
Syntax
public void sdectAll()
Parameters
None.
Description
TextComponent contains text. User can select any part of the text or the full text.
This method selects dl of the text contained in the text component.
Imports
import java.awt. TextComponent;
Returns

None.

See Also
The TextArea and TextFeld classes

Example
Refer to Listing 5-1. In the action method in the textPand class; al the text in the
text areais sdlected and the string is stored in sal_t. Thisstring is used to change
the contents of the text area.

setEditable(boolean)

ClassName
TextComponent
Purpose
The boolean vaue, indicating whether the target TextComponent should or
should not be editable, is set.
Syntax
public void setEditable(boolean ok ToEdit)
Parameters
okToEdit
The text component is editeble if thisistrue; not editableif thisisfase.
Description
The user can edit the text contained in a text component if the component is set to
be editable using this setEditable method in class TextComponent. To set the
TextComponent to be editable, the boolean parameter should be true. To setit to
be noneditable, the parameter should be fase.
Imports
import java.awt. TextComponent;
Returns
None.
See Also
The isEditable method of the TextComponent class; the TextArea and TextFed
classes
Example
Refer to Ligting 5-1, the newAreg; the new text areaformed is set to noneditable
mode using this method. This occurs in the action method of the textPand class.

setText(String)

ClassName
TextComponent
Purpose
Sets the specified text to be the contents of the target TextComponent object.
Syntax
public void setText(String new_text)
Parameters
new_text

The text of type String which isto be the new text content of the TextComponent.
Description
TextComponent contains text which can be edited if permitted. This method sets
the specified text to be the text content of the TextComponent. If the component
did not contain any text prior to this method call, then the specified text is set to
be the text. If it did contain text earlier, this method replaces the previous text
with this new one.
Imports
import java.awt. TextComponent;
Returns
None.
See Also
The getText method of the TextComponent class; the TextArea and TextFed
classes
Example
Refer to Ligting 5-1. In the constructor of textPand class, this method is used to
st the dring in the text fidld to “ Enter text here’.

TextArea

Purpose
Provides an areain which to display severd lines of text. The text can either be
read-only or read and edit.

Syntax
public class TextArea extends TextComponent

Description
The TextArea class provides an areain which to display severd lines of text or
dlow editing of that text. So it can be considered to be a multiline editor, if
editing is alowed. Wordwrap is set to true and both horizontal and vertical
scrollbars are vighble. If editing text is dlowed, then any postion in the text area
can be reached using the mouse or the arrow keys. This dlows users to move
through the text as they would in afull-blown editor. TextAreais a subclass of the
TextComponent class. Methods of TextComponent class that alow sdection and
manipulation of text can be performed in an editable text area. The setEditable
method of TextComponent can be used to alow editing a TextComponent object.
Figure 5-9 illugtrates the inheritance relationship of the TextArea dlass.

PackageName
java.awt

Imports
import java.awt. TextArea;

Condtructors
public TextArex()
public TextArea(int t_rows, intt_cols)
public TextArea(String text)
public TextArea(String text, int t_rows, int t_cols)

Parameters

t rows
The number of rows specified in the TextArea
t cols
The number of columns specified in the TextArea
text
The text which forms the initia text contents of this TextArea.
Example
Refer to Liging 5-1. In the textPand class, an instance of this class (TextAreq) is
amember of the class. It is constructed with 6 rows and 25 columns.

Figure5-9 Classdiagram of the TextAreaclass
addNotify()

ClassName
TextArea
Purpose
This method creates a peer of the target TextArea object.
Syntax
public synchronized void addNotify/()
Parameters
None.
Description
Creates an instance of the TextAreaPeer as a peer for the target TextArea object.
Using the peer, you can change the gppearance of the TextArea without
modifying its functiondity. This method is required if you are writing your own
AWT.
Imports
import java.awt. TextAres,;
Returns
None.
See Also
The TextAreaPeer class
Example
Refer to Chapter 9, which describes the peers and interface for details.

appendText(String)

ClassName
TextArea
Purpose
Append the specified text to the text content of the target TextArea object.

Syntax
public void appendText(String add_text)
Parameters
add text
The specified text of type String to be gppended to the TextArea
Description
This method appends the specified string to the text contained in the target
TextArea object.
Imports
import java.awt. TextArea,;
Returns
None.
See Also
The insertText method of the TextArea class; the TextAreaand TextFed classes
Example
Refer to Liging 5-1. Thetext “How are you?’ is gppended to the text areain the
action method of the textPand class.

getColumns()

ClassName
TextArea
Purpose
To obtain the number of columnsin the TextArea
Syntax
public int getColumns()
Parameters
None.
Description
This method returns the number of columnsin the target TextArea object. Thisis
the number of columns of the TextArea during its ingtantiation.
Imports
import java.awt. TextArea;
Returns
The number of columns of TextArea object; return typeisint.
Example
Refer to Liging 5-1. In the action method of the textPanel class, the number of
columns of the text areais used to creste anew text area as a clone.

getRows()

ClassName

TextArea
Purpose

To obtain the number of rowsin the TextArea
Syntax

public int getRows()
Parameters
None.
Description
This method returns the number of rows in the target TextArea object. Thisisthe
number of rowsin the TextArea during its instantiation.
Imports
import java.awt. TextArea,;
Returns
The number of rows of TextArea object; return typeisint.
Example
Refer to Ligting 5-1. In the action method of the class textPand class, the number
of rows of thetext areathat is used to create a new text areaasaclone.

insertText(String, int)

ClassName
TextArea
Purpose
I nserts the specified text at the specified index in the TextArea.
Syntax
public void insertText(String ins_text, int index)
Parameters
ins_text
The text to be inserted a specified index of the TextArea.
index
Theindex location in the exigting text of TextAreawhere the new text isto be
inserted.
Description
This method inserts the specified string at the specified index of the text contained
in the target TextArea object. The vaue of the index should be less than the
length of the dready avallable text in the TextArea. If the index vaue exceeds the
length of the existing text, Javawill issue a StringlndexOutof BoundsException.
Imports
import java.awt. TextAres,;
Returns
None.
See Also
The agppendText method of the TextArea class
Example
Refer to Listing 5-1. In the action method of the textPand class, name
gring n_dr isinserted in the text area using this method.

minimumsSize(int, int), minimumSize()

ClassName

TextArea
Purpose
To obtain the minimum sze dimension of the TextAreaiif no parameter is
specified. If parameters are specified, this method obtains the minimum
Dimensions for the specified number of rows and columns.
Syntax
public Dimensgon minimumSize(int rows, int cols)
public Dimenson minimumSze()
Parameters
rows
The specified number of rows for which minimum sizeisto be found.
cols
The specified number of columns for which the minimum szeisto be found.
Description
The height and width of window Dimengons are different from the number of
rows and columns of the TextArea. If rows and columns are not specified, the
rows and columns of the target TextArea object are taken as the values. The
number of rows and columns indicate the number of characters accommodated
within the space, whereas the Dimension indicates the window dimensions. For
example, this method would be helpful in resizing awindow or aframe
containing a TextArea or in determining where to add the text areain the window.
Imports
import java.awt. TextArea,;
Returns
The minimum Dimengons for a TextAreawith the number of rows and columns,
Return type is Dimenson.
See Also
The preferredSize of the TextArea class, the Dimension class
Example
Refer to Ligting 5-1. This method is used to print out the minimum width and
height required when the CloneTextArea button is selected. This occursin the
action method of the textPand class.

paramString()

ClassName
TextArea
Purpose
To obtain the parameter String of the target TextArea object.
Syntax
protected String paramString()
Parameters
None.
Description
This method obtains the String representation of the target TextArea object
containing the parameters, rows, columns and text contained in it. This method is

protected and hence can be used only by classes within the java.awt package. This
method overrides the paramString method of class TextComponent.
Imports
import java.awt. TextArea;
Returns
The parameter string of type String.
See Also
The paramString method of the TextComponent class; the TextArea class
Example
The following code uses paramString by subclassing the TextArea.

package java.aw ;
i mport java.awt. Text Area;

cl ass nmyText extends TextArea {
String nmyStringForm

public nyText() {
super (“");

}

public String paranttring() {
return super.paranttring();
}

public static void main(String[] args) {
myText txt = new nyText();
txt.getmyStringForm));

preferredSize(int, int), preferredSize()

ClassName
TextArea
Purpose
To obtain the preferred dimension of the TextArea if no parameter is specified. If
parameters are specified, this method returns the preferred dimension for the
gpecified rows and columns.
Syntax
public Dimension preferredSize(int rows, int cols)
public Dimension preferredSize()
Parameters
rows
The specified number of rows for which the preferred Szeis to be found.
cols
The specified number of columns for which the preferred size isto be found.
Description

The height and width of window dimensions are different from the number of
rows and columns of the TextArea. If the rows and columns are not specified, the
rows and columns of the target TextArea object are taken as the values. The
number of rows and columns indicate the number of characters accommodated
within the space, wheress the Dimengon indicates the window dimensions. For
example, this method would be helpful in resizing awindow or frame containing
aTextArea, or in determining where to position the textAreain the window. It
returns the preferred size Dimensions for the text area.

Imports
import java.awt. TextArea,;

Returns
The preferred Dimengons for a TextAreawith the number of rows and columns,
Return type is Dimension.

See Also
The minimumSize method in the TextArea dass, the Dimenson dass

Example
Refer to Ligting 5-1. This method is used to print out the preferred width and
height required when the CloneTextAreabutton is selected. This occursin the
action method in the textPand class.

replaceT ext(String, int, int)

ClassName
TextArea

Purpose
The specified text replaces the exigting text between the specified positions in the
TextArea

Syntax
plic void replaceText(String new_text, int Sart, int end)

Parameters

new_text
The specified text to replace the exigting text between specified positions.

start
The beginning index location in the exigting text of TextAreawhere the
replacement text isto beinserted in place of the existing text.

end
The ending index location in the existing text of TextArea gpecifying the last
point at which the existing text isto be replaced by the new_text.

Description
This method replaces the text between the specified locations, sart and end, with
the specified text, new_text. The length of the new_text need not be the same as
that of the text being replaced; however, the values of the indexes should be less
than the length of the dready avallable text in the TextArea. If the index vaue
exceeds the length of the existing text, an StringlndexOutof BoundsException is
issued at runtime.

Imports

import java.awt. TextArea;
Returns
None.
See Also
The insartText method in the TextArea class
Example
Refer to Ligting 5-1. In the action method of the textPanel class, replaceText
method is used to change the “Enter Text Here” dring to “Helo! ”

TextField

Purpose
A singleline editor and a subclass of TextComponent.

Syntax
public class TextFeld extends TextComponent

Description
The TextFdd provides asingle line for editing purposes and an interface for the
user to enter text. It subclasses the TextComponent class with the default set to
editable mode. It can be set to noneditable mode but, in most cases there would be
no reason for you to do so. When (EETURH]is pressed in the TextFidld, an event
ACTION_EVENT is posted. Appropriate event handling routines (e.g., the
methods action() or handleEvent()) should be overridden to handle the events
generated. Methods of TextComponent class dlowing sdection and manipulation
of the sdlected text can be performed on an editable text fidld. Figure 5-10
illugtrates the inheritance relationship of the TextFed class.

PackageName
java.awt

Imports
import java.awt. TextField;

Condructors
public TextFHed()
public TextFdd(int t_cols)
public TextFHed(String text)
public TextFed(String text, int t_cols)

Parameters

t cols
The number of columns specified in the TextFdd.

text
Thetext which formsthe initia text contents of this TextFed.

Example
An ingance of the TextFed classis a member in the textPand classin Liging 5
1. The member object is name f, sgnifying name fied.

Figure5-10 Classdiagram of the TextField class

addNotify()

ClassName
TextFidd
Purpose
This method creates a peer of the target TextFed object.
Syntax
public synchronized void addNotify()
Parameters
None.
Description
An ingtance of the TextFieldPeer is created as a peer for the target TextFied
object. Using the peer, you can change the gppearance of the TextArea without
modifying its functiondity. Required if you are writing your own AWT.
Imports
import java.awt. TextField;
Returns
None.
See Also
The TextFeldPeer class
Example
Refer to Chapter 9 describing the peers and interface for details.

echoChar | sSet()

ClassName
TextFdd

Purpose
The boolean vaue indicating whether a character is set for echoing in the target
TextField object.

Syntax
public boolean echoCharl sSet()

Parameters
None.

Description
Inan object of type TextField, you can set an echo character associated with the
field. Whenever you type in a character, only the echo character is displayed in
the field and not the origind characters you typed in. Thisis useful when you
don’'t want anyone to see the characters you are entering (for example, in the case
of apassword or socia security number). This method returns the boolean value

of trueif an echo character is set in the target TextField object; otherwise, it
returnsfase.

Imports
import java.awt. TextField;

Returns
Boolean vaue of trueif echo character is set; fase otherwise.

See Also
The setEchoCharacter method of the TextFeld class

Example
Refer to Ligting 5-1. In the constructor of the textPanel class, echo character of **’
iss, if itisnot set earlier. Thismethod is used to determine whether the echo
character is aready set.

getColumns()

ClassName
TextFdd
Purpose
To obtain the number of columnsin the TextFdd.
Syntax
public int getColumns()
Parameters
None.
Description
This method returns the number of columnsin the target TextFidd object. Thisis
the number of columns st for the TextFed during itsingtantiation.
Imports
import java.awt. TextField;
Returns
The number of columns of TextFed object; return typeisint.
Example
Refer to Ligting 5-1. Thismethod is used to print the number of columnsin the
text fidd, name f, in the action method in the textPand cdlass.

getEchoChar ()

ClassName
TextFHed
Purpose
To obtain the character used for echoing in the target TextField object.
Syntax
public char getEchoChar()
Parameters
None.

Description
In an object of type TextField, you can set an echo character associated with the
field. Whenever you type in a character, only the echo character isdisplayed in
the field and not the origind characters you typed in. Thisis useful when you
don’t want anybody nearby to see the characters you are entering (for example, in
the case of password or socia security number). This method returns the character
that has been st for echoing in the target TextFeld object, if it is set. If the echo
character isnot set, it returns anull character.

Imports
import java.awt. TextField;

Returns
The character st for echoing in the TextFied. Return typeis char.

See Also
The echoCharl sSet and setEchoCharacter methods of the TextField class

Example
Refer to Ligting 5-1. In the constructor of class textPanel, echo character of *’ is
&, if it isnot set earlier. This method is used to print the echo character to the
standard output.

minimumSize(int), minimumsSize()

ClassName
TextFdd

Purpose
Returns the minimum sze dimengon of the TextFHed if no parameter is
specified. If aparameter is gpecified, then the minimum size dimension for the
specified number of columnsis returned.

Syntax
public Dimenson minimumSize(int cols) public Dimenson minimumSize()

Parameters

cols
The specified number of columns of the TextHed for which the minimum sizeis
to be found.

Description
The width of the window dimengion is different from the number of columnsin
the TextFdd. The number of columns for which the minimum sizeisto be found
can be specified. If it is not specified, the number of columns of the target
TextFdd object is taken as the value. The number of columns indicates the
number of characters that can be accommodated within the space whereas the
Dimension indicates the window dimensions. For example, this method is hel pful
to resze awindow or aframe containing a TextFHeld or to determine wherein the
window to add the text field.

Imports
import java.awt. TextField;

Returns

The minimum Dimengons for a TextFed with the number of columns. Return
typeis Dimenson.

See Also
The preferredSize method of the TextFidd class, the Dimension class

Example
Refer to Ligting 5-1. This method is used to print out the minimum width and
height required when the ChangeText button is selected. This occursin the action
method in the textPand class.

paramString()

ClassName
TextFdd
Purpose
To obtain the parameter String of the target TextFeld object.
Syntax
protected String paramString()
Parameters
None.
Description
This method returns the String representation of the target TextFeld object
containing the parameters column and text contained in it. Because it is protected,
this method can be used only by the classes within the java.awt package. This
method overrides the paramString method in the TextComponent class.
Imports
import java.awt. TextField;
Returns
The parameter giring of type String.
See Also
The TextFed class, the paramString method of the TextComponent class
Example
Use of thismethod is Smilar to the example given for the paramString method in
the TextAreaclass.

preferredSize(int), preferredSize()

ClassName
TextFdd

Purpose
Returns a preferred sze dimension for the TextFeld if no parameter is specified.
If parameters are specified, then the preferred size dimensions for the specified
columnsis returned.

Syntax
public Dimengion preferredSize(int cols)
public Dimension preferredSize()

Parameters

cols
The specified number of columns for which the preferred Sze is desired to be
found.

Description
The width of window Dimengons s different from the number of columnsin the
TextFed. The number of columns for which the preferred szeisto be found can
be specified. If it is not specified, the number of columnsin the target TextFdd
object is taken as the vaue. The number of columns indicates the number of
characters that can be accommodated within the space, whereas the Dimension
indicates the window dimensions. For example, this method is helpful to resize a
window or aframe containing a TextFied or to determine where in the window to
add the text field. It returns the preferred sze Dimengions for the text field.

Imports
import java.awt. TextField;

Returns
The preferred Dimensions for a TextFed with the number of rows and columns.
The return type is Dimenson.

See Also
The minimumSze method of the TextFidd dass, the Dimenson dass

Example
Refer to Liging 5-1. Thismethod is used to print out the preferred width and
height required when the ChangeText button is selected. This occursin the action
method in the textPane class.

setEchoChar acter (char)

ClassName
TextFdd
Purpose
Sets the specified character as the echo character for the target TextField object.
Syntax
public void setEchoCharacter(char echo _c)
Parameters
echo ¢
The character to be echoed to the screen to represent any input to the text field.
Description
In an object of type TextField, you can set an echo character associated with the
fidd. Whenever you type in a character, only the echo character isdisplayed in
the field and not the origind characters you typed in. Thisis useful when you
don’t want anyone to see the characters you are entering (for example, in the case
of apassword or socia security number). This method sets the specific character
for echoing in the target TextFed object. After invocation of this method, acal
to echoCharlsSet returns true.
Imports

import java.awt. TextField;
Returns
None.
See Also
The echoCharlsSet and getEchoChar methods of the TextField class
Example
Refer to Liging 5-1. In the congtructor of the textPane class, this method is used
to set an echo character of **’, if it has not been set earlier.

Dialog

Purpose
Creates awindow that takes input from the user.

Syntax
public class Didog extends Window

Description
The Didog provides a pop-up window which takes input from the user. It must be
bound to a Frame on congruction. The default layout for a Didlog window is
BorderLayout. The didog window can be made modal, i.e., users are prevented
from performing anything on other windows until they closethe didog. A didog
can a'so be non-modal. Y ou can provide the option of resizing the window if
needed. It can have atitle and/or a border associated with it. Dialog subclasses the
Window dlass. It helpsin establishing communication between the user and the
application. Figure 5-11 illudrates the inheritance relationship of the Dialog class.

PackageName
java.awt

Imports
import java.awt.Dialog;

Condructors
public Didog(Frame parent, boolean moda)
public Didog(Frame parent, String title, boolean moda)

Parameters

parent
The parent frame to which the dialog is bound.

title
Thetitle of the Didog window.

modal
Boolean vaue indicating whether you want the Diadog to be modd or not.

Example
The didogDemo class implemented in the following example, Ligting 5-2
illusirates the use of Didog and FileDiaog classes and their member methods.
The SaveDiaog class subclasses the Didog class and is used to indicate that the
Save function is not implemented. Figure 5-12 shows the resultant didlogDemo
window.

Figure5-11 Classdiagram of the Dialog class

Figure5-12 The didogDemo window

Listing 5-2 didogDemo.java: Progam demondtrating the use of methods in Dialog and
FileDiaog classes

i mport java.awt.*;
i mport java.io.*;

/**
file name: dial ogDeno.java
cl asses: dial ogDenp
JavaFi | enanmeFil ter
Qui t Di al og
Purpose: Illustration of classes Dialog and Fil eDial og
*/

public class dial ogDeno extends Frame {

MenuBar mbar ;
Menu f_nenu; // to denobstrate dialog and file dialog

public dial ogDemo() {

f _menu = new Menu(“File");
f _menu. add("“ Open”);
f _menu. add("“ Save”) ;
f _menu.add(“Quit”);

nbar = new MenuBar ()
nbar . add(f _nenu);

set MenuBar (nbar) ;
pack();

show() ;
}

public bool ean action(Event evt, Object arg) {

if (evt.target instanceof Menultem {

if (“Open".equals(arg)) {
Systemout.printin(“ File Open called ");

/1 usage of FileDialog
FileDialog fd = new FileDialog(this, "File Wndow’);
fd.setFilenameFilter(new JavaFilter());
/'l set the default directory to C. in w ndows
95

String dir = new String(“C.");
/1 in case of Solaris set it to /opt
/1l String dir = new String(“/opt”);

fd.setDirectory(dir);
fd.setFile(“java’);
fd.show();
Systemout.printin(“ fileis " + fd.getFile());
Systemout.printin(“ Dir is " + fd.getDirectory());
FilenameFilter f_f = fd.getFilenameFilter();
Systemout.print(“ nmode is ");
if (fd.getMdde()== FileDi al og. LOAD)
Systemout.println(* LOAD ”);
else if (fd.getMde() == Fil eDi al og. SAVE)
Systemout.println(“ SAVE ");
}

if (“Save".equals(arg)) {
/1 usage of dialog
SaveDi al og dial = new SaveDi al og(this, "save not
i mpl enented”);
di al . pack();
Systemout.printin(“ Title of the dialog is “ + dia
.getTitle());
di al . resi ze(200, 100);
if (dial.isResizable())
Systemout.printin(“ Default is resizable”);
di al . set Resi zabl e(fal se);
di al . show();

}
if (“Quit".equals(arg)) {

System exit(0);
return true;

}
}

return true;

}

public static void main(String args[]) {
di al ogDeno di al = new di al ogDeno();
dial.setTitl e("Dial ogs Denp”);

di al . pack();
di al . show();

}
/1 SaveDi al og subcl asses Di al og cl ass
cl ass SaveDi al og extends Dial og {

String str;
publi ¢ SaveDi al og(Frane parent, String s){

super (parent, fal se);
str = s;
set Backgr ound(Col or. gray);

set Layout (new Border Layout());
setTitl e(“Save Dial og”);
Panel p = new Panel ();
p. add(new Button(“OK"));
add(“ Sout h", p);
Systemout.print(“ I am?”);
if (!'this.ishodal())
Systemout.printin(*“ NOT ");
Systemout.println(“ nodal”);

}

publ i c bool ean action(Event evt, CObject arg) {

if (“OK".equals(arg)) {
di spose();
return true;

}

return false;

}

public void paint (G aphics g){
g. set Col or (Col or.white);
g.drawsString(str, 50, 20);

}

/1 class inplementing the FilenaneFilter interface
class JavaFilter inplenments FilenameFilter {

String suffix;

public JavaFilter() {

suffix = ".java";

Systemout.println(“ JavaFilter created ");

}

publ i c bool ean accept(File dir, String name) {

String file = dir.getName();

if ((file.substring(file.length() - 5,
file.length())).equal s(suffix)){

Systemout.println(* suffix equals java ");
return true;

} else {
Systemout.printin(“ suffix not .java");
return false;

addNotify()

ClassName
Didog
Purpose
This method creates a peer of the target Dialog object.
Syntax
public synchronized void addNotify()
Parameters
None.
Description
An ingtance of the DialogPeer is created as a peer for the target Dialog object.
Using the peer you can change the appearance of the Didog window without
modifying its functiondity. Required if you are writing your own AWT.
Imports
import java.awt.Dial og;
Returns
None.
See Also
The DialogPeer class
Example
Refer to Chapter 9 describing the peers and interface for details.

getTitle()

ClassName
Didog
Purpose
Obtains the title of the Dialog window, if it has dready been set.
Syntax
public String getTitle()
Parameters
None.
Description
A Didog window can be identified by itstitle. Thistitle appears a the top frame
border of the didog window. A Didog can dso be congtructed without any title.
This method returns the title of the target Didog object if it has been set.
Imports
import java.awt.Dial og;
Returns
Thetitle of the Didlog window, if st earlier. The return typeis String.
See Also
The st Title method of the Dialog class
Example
Refer to Liging 5-2. Thetitle of the SaveDidog object is printed to the screen
using this method.

iIsModal()

ClassName
Didog

Purpose
The boolean vaue indicating whether or not the target Dialog window ismodd is
returned.

Syntax
public boolean isModal()

Parameters
None.

Description
A Didog window can be modd. Thisis specified in its congtructor. If adiaog
window is modd, the user is prevented from performing any action on the parent
frame when the Dialog window pops up. The user can work on the parent frame
only after the didlog window is closed. Thisis helpful to convey occurrence of
fatd errorsin the gpplication or when input is necessary from the user to perform
the next sep in the gpplication. This method returnstrueif the Dialog window is
modd; fase if the window is not modd.

Imports
import java.awt.Dial og;

Returns
Boolean vadue of trueisreturned if the target Didog object is modd; vaue of
falseisreturned if the target Dialog object is non-modal.

See Also
Congructors of the Dialog class

Example
Refer to Liding 5-2. This method is used to print whether or not the SaveDidog is
modal.

isResizable()

ClassName
Didog

Purpose
Returns the boolean va ue indicating whether the target Dialog window is
reszable.

Syntax
public boolean isResizabl&()

Parameters
None.

Description
A Diadog window can be made resizable by the user. Using the setResizable
method of the Didog class, a Didog object is made resizable or nonresizable. The
default isresizable. This method returns true if the target Didlog object is
resizable; false otherwise.

Imports
import java.awt.Dial og;

Returns
Boolean vaue of trueisreturned if the target Diadlog object isresizable; fase if
the target Dialog object is not resizable.

See Also
The setResizable method of the Dialog class

Example
Refer to the example program in Listing 5-2. The SaveDidog object is verified as
being resizegble by default using this method.

paramString()

ClassName
Didog

Purpose
Obtains the parameter String of the target Diaog object.

Syntax
protected String paramString()

Parameters
None.

Description
Returns the String representation of the target Dialog object containing the
parameters Frame, title, and vaue indicating whether it is moda. This method is
protected and hence, can be used only by classes within the java.awt package.
This method overrides the paramString method of the Container class.

Imports
import java.awt.Dial og;

Returns
The parameter string of type String.

See Also
The paramString method of the Container class; the Didog class

Example
Use this method similar to the example given for the paramString method of the
TextAreaclass.

setResizable(boolean)

ClassName
Didog
Purpose
Allows the boolean vaue indicating whether the target Didog window is
resizable to be sat.
Syntax
public void setRes zable(boolean ok2resize)
Parameters
ok2resize

The boolean vaue indicating whether you want the Didlog window to be
resizable. True indicates that the Didlog window should be reszable. Flse
indicates that the Didog window shoud not be resizable.

Description
A Didog window can be made resizable or prevented from being resized by the
user by using this method. The default isresizable. The boolean value indicating
whether or not a Didlog window is resizable can be found using the isResizable
method in the Didog class.

Imports
import java.awt.Dial og;

Returns
None.

See Also
The isRes zable method of the Didog class

Example
Refer to the examplein Ligting 5-2. In the action method in the dialogDemo class,
the SaveDidog is st to be nonresizable using this method.

setTitle(String)

ClassName
Didog
Purpose
Thetitle of the Didlog window is st to the specified siring vaue using this
method.
Syntax
public void sstTitle(String title)
Parameters
title
A gring vadue which you want to be set asthetitle of the target Didog object.
Description
A Didog window can be identified by itstitle. Thistitle gppears a the top frame
border of the dialog window. A Didog can be constructed without any title also.
Thismethod can be used to et atitle, if one has been set during construction, or
to rename a Dialog window. The getTitle method in the Didlog classis used to
obtain thetitle if it has been sat.
Imports
import java.awt.Dial og;
Returns
None.
See Also
The getTitle method of the Didog class
Example
Refer to the example program in Ligting 5-2. Thetitle of the SaveDidog is set to
“Save Didog” using this method in the congtructor of the class SaveDiaog.

FileDialog

Purpose
A moda Didog window displaying afile sdection didog.

Syntax
public dass FileDiaog extends Didog

Description
The FileDidog provides a pop-up window which helps the user sdect afile.
FileDialog window isamoda window; hence, the user cannot perform any action
on other windows until this FileDialog window is closed. The window is disposed
of oncethe user sdlects afile or cancesthe sdlection. A FileDiadog window hasto
be bound to aframe parent. The frame parent is found if this FileDialog object is
declared a member of a subclass of Frame. Alternatively, you can look back in the
tree hierarchy until you find a parent of type Frame. A FileDidog can be
congtructed in either LOAD or SAVE mode. This characteristic can be specified
during condruction. The public variable members of this class, LOAD and
SAVE, are used to set the mode. After the user closes the FileDidog window by
sdecting afile, the sdection is available within the object ingance and can be
obtained by using the getFile method of class FileDiaog. Figure 5-13 illustrates
the inheritance relationship of class FileDiaog.

PackageName
java.awt

Imports
import java.awt.FileDial og;

Condtructors
public FileDiaog(Frame parent, String title)
public FileDiaog(Frame parent, String title, int mode)

Parameters

parent
The parent frame to which the FileDidog is bound.

title
Thetitle of the FleDidog window.

mode
Boolean vaue indicating whether the FileDidog should bein SAVE or LOAD
mode.

Variables
public find gatic int LOAD—used to set the FileDidog to load mode asthe
selected file isto be loaded.
public find gatic int SAVE—used to set the FileDiaog to save mode as the
sdected fileisto be saved.

Example
The didogDemo dassin Ligting 5-2 uses the FileDidog class to pop up afile
didog window for sdlecting afile usng this class. This happens when Openiis
sdected from the File menu in the Ul generated by the ligting.

Figure5-13 Classdiagram of the FileDialog class
addNotify()

ClassName
FleDidog
Purpose
This method creates a peer of the target FileDiaog object.
Syntax
public synchronized void addNotify()
Parameters
None.
Description
An ingtance of the FileDialogPeer is created as a peer for the target FileDiadog
object. Using the peer, you can change the gppearance of the FileDia og window
without modifying its functiondity. This method is required if you are writing
your own AWT. It overrides the addNotify method in the Dialog class.
Imports
import java.awt.FileDial og;
Returns
None.
See Also
The FleDialogPeer clas
Example
Refer to Chapter 9 describing the peers and interface for detalls.

getDirectory()

ClassName
FleDidog

Purpose
Obtains the directory of the FileDiaog.

Syntax
public String getDirectory()

Parameters
None.

Description
This method gets the directory of the file dialog window. A FileDiadog hasa
directory, afile, and afilenamefilter associated with it. The default directory is
the directory where you execute the program. Y ou can change the initia directory
of the FleDiaog by using the setDirectory method.

Imports

import java.awt.FileDial og;

Returns
The directory of the FileDiaog window is returned. Return type is String.

See Also
The setDirectory method of the FileDidog class

Example
Refer to the example program in Liding 5-2. The directory sdlected is printed to
the screen after the user closesthe file didog window that pops up when Openis
sected in the File menu.

getFile()

ClassName
FleDidog

Purpose
Obtains the name of the selected file using the FileDidog.

Syntax
public String getFle()

Parameters
None.

Description
This method gets the selected file name using the file didog window. A
FleDidog has adirectory, afile, and afilenamefilter associated with it. By
selecting a series of the components from the file dialog window, auser findly
sdects afile or cancels the selection operation. After the window is closed, this
method can be used to obtain the name of the selected file. The String returned by
this method denotes the file name. If the user has canceled the selection, this
method returns anull String.

Imports
import java.awt.FileDial og;

Returns
The name of the file sdlected by the user using the FileDi