

Table of Contents
Index
Full Description
Reviews
Examples
Reader reviews
Errata

Java Management Extensions

J. Steven Perry
Publisher: O'Reill y
First Edition June 2002
ISBN: 0-596-00245-9, 312 pages

Java Management Extensions is a practical, hands-on guide to using the
JMX APIs, Sun Microsystem's new Java-based tool for managing enterprise
applications. This one-of-a kind book is a complete treatment of the JMX
architecture (both the instrumentation level and the agent level), and it's
loaded with real-world examples for implementing Management
Extensions. It also contains useful information at the higher level about
JMX (the "big picture") to help technical managers and architects who are
evaluating various application management approaches and are considering
JMX.

 1

http://www.oreilly.com/catalog/javamngext/desc.html
http://www.oreilly.com/catalog/javamngext/reviews.html
http://examples.oreilly.com/javamngext
http://www.oreilly.com/cgi-bin/reviews?bookident=javamngext
http://www.oreilly.com/catalog/javamngext/errata/
http://www.oreilly.com/catalog/javamngext/

Table of Content
Table of Content ... 2
Preface... 4

Audience ... 4
Organization.. 5
Conventions Used in This Book ... 6
Comments and Questions ... 6
Source Code Availability.. 7
Acknowledgments... 7

Chapter 1. Java Management Extensions Concepts ... 8
1.1 Introducing JMX... 8
1.2 JMX Architecture.. 9
1.3 The Sample Producer/Consumer Application .. 29

Chapter 2. Standard MBeans .. 41
2.1 What Is a Management Interface? .. 41
2.2 How Do Standard MBeans Work? ... 43
2.3 Downloading and Installing the JMX Reference Implementation 69

Chapter 3. Dynamic MBeans.. 70
3.1 Why Use Dynamic MBeans?.. 70
3.2 How Do Dynamic MBeans Work? ... 70
3.3 Dynamic MBean Inheritance Patterns .. 105

Chapter 4. Model MBeans .. 117
4.1 Why Use Model MBeans? .. 117
4.2 How Do Model MBeans Work? ... 118
4.3 Instrumenting Resources as Model MBeans... 145

Chapter 5. Open MBeans.. 150
5.1 Open MBean Types .. 150
5.2 Open MBean Metadata Classes .. 167

Chapter 6. The MBean Server .. 187
6.1 What Is the MBean Server? .. 187
6.2 Obtaining a Reference to the MBean Server .. 188
6.3 The MBeanServer Interface.. 193
6.4 Controlling MBean Registration... 215
6.5 MBeanServerDelegate .. 216

Chapter 7. JMX Notifications ... 220
7.1 The JMX Notification Model.. 220
7.2 JMX Notification Classes and Interfaces.. 223

Chapter 8. Dynamic Loading.. 236
8.1 Overview... 236
8.2 How Does Dynamic Loading Work?.. 242

Chapter 9. The Monitoring Services... 249
9.1 The MonitorNotification Class ... 253
9.2 Counter Monitors .. 256
9.3 Gauge Monitors .. 259

 2

9.4 String Monitors ... 261
9.5 Other Issues... 263

Chapter 10. The Timer Service... 264
10.1 The Timer Class.. 265
10.2 Using the Timer Service ... 272

Chapter 11. The Relation Service ... 278
11.1 Introduction... 278
11.2 The Basic Relation Service Classes.. 279
11.3 Using the Relation Service.. 287
11.4 Using the Relation Service Support Classes... 290
11.5 Modifying a Role .. 295

Colophon... 299

 3

Preface

As technology evolves, it enables us to write applications that are increasingly distributed
and complex. Today's network technologies allow us to process units of work on
physically separate machines scattered throughout the world. As the scale and complexity
of today's newest applications increases, so too does the challenge of managing them.
After all, it is not really beneficial to distribute an application across many different
machines if the answer to a question as simple as "Is the application still running?"
cannot easily be determined.

This book is about Java Management Extensions, or JMX, which is the Java standard for
management of application resources. An application resource can be any piece of
hardware or software that you wish to monitor and control, such as a printer, router,
database connection, or queue. At the heart of JMX is the concept of a managed bean, or
MBean, which is a resource that has been instrumented via JMX. The MBean gets its
name from the fact that it resembles a JavaBean, in that its state is entirely maintained
through the use of get and set methods for its attributes. A notification model similar to
the Java notification model is also available for MBeans that need to emit notifications.

JMX provides an architecture, a set of design patterns, and a set of application
programming interfaces (APIs) that allow you to instrument your application and system
resources so that they can be managed. JMX was designed to be able to integrate with
existing management technologies, such as the Simple Network Management Protocol
(SNMP) and Web-Based Enterprise Management (WBEM). This book covers every facet
of JMX as it is currently specified, from instrumentation to writing agents to using the
JMX agent services. Some parts of JMX are still unspecified (most notably the JMX
distributed services), so it can't cover everything; however, it is my intention that this
book be the most complete reference on JMX that is available today.

Here is a summary of what this book covers:

• JMX instrumentation: standard, dynamic, model, and open MBeans
• JMX notifications: how to broadcast, filter, and listen for them
• The MBean server: a registry of MBeans and a communication broker between

management applications and registered MBeans
• JMX agent services: dynamic loading, monitoring, timer, and relation services,

available through the JMX agent

Audience

This is primarily a how-to book, intended for software developers who face the challenge
of building management capability through JMX technology into their Java applications
and want to know exactly how to go about it. However, this book can also provide
software development managers with the necessary information about JMX to make
decisions regarding whether or not to implement this technology in their development

 4

projects. (I assume that you are already convinced of the need to build management
capabilities into your application.)

Chapter 1 looks at JMX at a high level. The JMX architecture is given the most treatment
here, as it is the core of JMX. The following chapters are very meaty and are intended for
developers who want to know how to use all of the aspects of JMX that are currently
specified.

Organization

Chapter 1 contains an overview of JMX that introduces fundamental concepts and
provides an overview of the JMX architecture. It also introduces the sample application
we'll use throughout the book, which demonstrates each MBean instrumentation
approach. We'll see how to build and run the application and how to use a web browser to
monitor what's going on inside it.

Chapter 2 covers how to create and use standard MBeans and discusses the inheritance
patterns that they must follow. In this chapter, we will take a look at the fundamentals of
a management interface and how to define one.

Chapter 3 looks at how dynamic MBeans work and the inheritance patterns you can use
when creating them. It also shows how to describe a dynamic MBean using the metadata
classes provided by the JMX specification.

Chapter 4 discusses how model MBeans work and how they differ from any other MBean
type. It also shows how to describe model MBeans using the metadata classes specific to
model MBeans.

Chapter 5 looks at how to describe fundamental and complex data types using the open
MBean data types provided and the metadata classes specific to open MBeans.

Chapter 6 covers the MBean server from top to bottom. The MBean server's API, its
implementation, and details of how to use the MBean server to interact indirectly with
MBeans are given thorough discussion.

Chapter 7 looks at the JMX notification model and the various interfaces and classes that
are provided by the JMX Reference Implementation (RI). It also discusses how to write a
notification listener, broadcaster, and filter.

Chapter 8 covers dynamic loading and how to use the M-Let service to load MBeans
from anywhere on the network.

Chapter 9 deals with the monitoring services, which include counter, gauge, and string
monitors.

 5

Chapter 10 discusses the timer service, an agent service that can be used to create a
scheduler or simply to send repeated notifications at a specific interval.

Chapter 11 covers the relation service and how to use it to enforce application policies
regarding relationships between MBeans.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

Used for file and directory names, functions, methods, parameters, and URLs.
Also used for emphasis and for the first use of technical terms.

Constant width

Used for code listings and for resources, attributes, interfaces, classes, and targets
where they appear in the text.

Constant width bold

Used for emphasis in code listings.

Constant width italic

Used for replaceable parameter names in command syntax.

This icon indicates a tip, suggestion, or general note.

This icon indicates a warning or caution.

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

 6

There is a web page for this book, which lists errata, examples, or any additional
information. You can access this page at:

http://www.oreilly.com/catalog/javamngext/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O'Reilly
Network, see the O'Reilly web site at:

http://www.oreilly.com

Source Code Availability

Most of the examples in the book are keyed to a sample application instrumented with
JMX calls. The source code for this application is available at the book's web site
(http://www.oreilly.com/catalog/javamngext/), along with a README file explaining
how to build and run it.

Acknowledgments

First and foremost, I would like to thank my wife Heather, daughter Madison, and son
Foster for their incredible support during the months I spent writing this book. Many late
nights and long weekends writing made for a pretty tired (and grumpy, no doubt)
husband and daddy. Thanks Heather, Maddie, and Foster, for putting up with me! Many
thanks go to Robert Denn and Mike Loukides at O'Reilly for their great editorial support.
Thanks to others at O'Reilly for all the support and help: Rob Romano, Julie Flanagan,
and Kyle Hart. I would also like to thank Eamonn McManus at Sun Microsystems for his
very thorough technical review of this book and the wonderful feedback. Thanks also to
Joel Feraud at Sun for providing an advance look at open MBeans. Finally, thanks to
Christophe Ebro at Sun for help in answering questions and putting me in touch with
other extremely helpful people at Sun, such as Joel Feraud and Philippe LaLande. Thanks
a million, Chris!

 7

http://www.oreilly.com/catalog/javamngext/
mailto:bookquestions@oreilly.com
http://www.oreilly.com/
http://www.oreilly.com/catalog/javamngext/

Chapter 1. Java Management Extensions Concepts

The growth of large-scale distributed applications in the past decade has been impressive.
Mission-critical business applications have evolved from a sequence of programs running
on a single computer to business components running on different machines scattered
throughout a network. Managing one application running on a single computer is fairly
straightforward; you can monitor the health of the application through the use of a single
log file, or operator console, and tools provided by the operating system. The difficulty of
managing today's distributed systems has increased along with the complexity of those
systems. When considering a management solution for today's enterprise applications,
some questions arise:

• Which management solution is best for the application?
• What standards should a management solution follow?
• How much effort is required to enable the components of the application to be

managed?

Java Management Extensions (JMX), the result of the Java Community Process (JCP)
Java Specification Request (JSR) 3, was designed to deal with all of these questions.
JMX was designed to address the management needs of applications written for the Java
platform and to be compatible with existing management standards, such as the Simple
Network Management Protocol (SNMP), which is the standard for management of
enterprise networks. It was also designed so that instrumentation of resources to put them
under the control of a management application is as easy as possible.

1.1 Introducing JMX

A resource is any entity in the system that needs to be monitored and/or controlled by a
management application; resources that can be monitored and controlled are called
manageable. A management application is a piece of software that can be used to
monitor and control manageable resources (typically remotely). Managing a system of
manageable resources is what we call system management. The JMX architecture enables
Java applications (or systems) to become manageable.

Three fundamental questions must be addressed by any complete management solution:

• How do I make my resources manageable?
• Once my resources are manageable, how do I make them available (visible) for

management?
• Once my resources are visible for management, how do management applications

access them?

The JMX architecture is composed of three levels, each of which answers one of these
questions.

 8

1.2 JMX Architecture

In this section, we will take a look at the three levels of the JMX architecture. The level
closest to the application is called the instrumentation level. This level consists of four
approaches for instrumenting application and system resources to be manageable (i.e.,
making them managed beans, or MBeans), as well as a model for sending and receiving
notifications. JMX notifications are analogous to SNMP traps.

The middle level of the JMX architecture is called the agent level. This level contains a
registry for handling manageable resources (the MBean server) as well as several agent
services, which themselves are MBeans and thus are manageable. The combination of an
instance of the MBean server, its registered MBeans, and any agent services in use within
a single Java Virtual Machine (JVM) is typically referred to as a JMX agent.

The third level of the JMX architecture is called the distributed services level. This level
contains the middleware that connects JMX agents to applications that manage them
(management applications). This middleware is broken into two categories: protocol
adaptors and connectors. Through a protocol adaptor, an application such as a web
browser can connect to one or more JMX agents and manage the MBeans that are
registered within it (for example, via HTTP). As long as the management application can
understand the objects contained in the protocol stream, it can manage the MBeans they
represent; thus, protocol adaptors do not need to be written in Java. A connector follows
the familiar proxy pattern and is made up of a client and server pair. The server half of
the connector pair is normally collocated with the JMX agent it represents (although this
is not required), while the client half runs in the JVM of the management application.
Issues such as security and Java serialization are understood by both the client and server
components of the connector.

The JMX architecture is depicted graphically in Figure 1-1.

Figure 1-1. The JMX architecture (note: protocol adaptors and connectors are not currently
standardized)

1.2.1 The Instrumentation Level

 9

This section covers the JMX instrumentation level and includes all MBean types, with
examples. This is the level that should be of most concern to developers, because this
level prepares resources to be manageable. Figure 1-1 shows the two areas of concern for
the instrumentation level of the JMX architecture:

• Application resources, such as a connection, a pool of connections, a printer
connected to the network, or even the application itself

• The instrumentation strategy that is used to instrument application resources

An application resource that is to be manageable through JMX must provide information
about five of its features:

• Attributes, which contain the state of the resource
• Constructors, which are used by management applications and other JMX agents

to create instances of the resource
• Operations, which may be invoked by a management application or other JMX

agent to cause the resource to perform some action
• Parameters to constructors and operations
• Notifications, which are emitted by the resource and sent via the JMX notification

infrastructure to any interested agents

The combination of these five pieces of information—or metadata—about a resource's
features is known as its management interface. It is through this interface alone that a
management application or other JMX agent may interact with a resource.

There are four instrumentation approaches defined by JMX that we can use to describe
the management interface of a resource: standard, dynamic, model, and open. Before we
discuss these approaches, let's get a good working definition of an MBean, which is how
we will refer to a managed resource from this point forward.

1.2.1.1 What is an MBean?

An MBean is an application or system resource that has been instrumented to be
manageable through JMX. Instrumenting a resource involves writing some code. This
code must follow four rules. First, the state of the resource must be completely described
through getters and setters.[1] It is this requirement that earns the instrumented resource the
"bean" moniker (from the same rule for maintaining the state of a JavaBean). Second, the
resource must be instrumented (i.e., coded) according to one of the JMX MBean types
(standard, dynamic, model, or open). Following this requirement earns the resource bean
the "M" (for manageable) part of the MBean name. Third, the MBean must provide at
least one public constructor. Finally, an MBean must be concrete (i.e., not declared
abstract).

[1] This is not strictly true for the dynamic, model, and open MBean types. However, I highly recommend strict
adherence to this pattern.

Suppose we have a resource called GenericResource that has the following attributes:

 10

http://safari.oreilly.com/

Version

The version of the GenericResource

ProcessingTime

The number of milliseconds of processing time that have been consumed by this
instance of GenericResource

NumberOfExceptions

The total number of exceptions that have been thrown by this instance of
GenericResource in the course of its processing

The most straightforward implementation of the state of GenericResource would look
like Example 1-1.

Example 1-1. Attributes of a candidate resource

public class GenericResource {
// class details. . .

 // Version (read-only)
 private String _version = "1.0.1";
 public String getVersion() {
 return _version;
 }
 // ProcessingTime (read-only)
 private long _processingTime;
 public long getProcessingTime() {
 return _processingTime;
 }
 // NumberOfExceptions (read-write)
 private short _numberOfExceptions;
 public short getNumberOfExceptions() {
 return _numberOfExceptions;
 }
 public void setNumberOfExceptions(short value) {
 _numberOfExceptions = value;
 }
// other class details. . .
}

This simple example demonstrates the fundamentals of instrumenting the attributes of a
resource according to the JavaBeans state pattern. Each attribute is backed by a private
member variable, so that the part of the resource's state represented by that attribute
cannot be accessed directly. All attributes in this example are readable and have
corresponding getters. Only the NumberOfExceptions attribute is writable, and it
provides a setter for that purpose.

1.2.1.2 Standard MBeans

 11

Standard MBeans are the simplest type of MBean to code from scratch. All you need to
do is define the MBean interface as a Java interface and implement that interface on the
resource MBean. If we were to instrument GenericResource (from Example 1-1) as a
standard MBean, we would define a Java interface that looks like this:

public interface GenericResourceMBean {
 // Version (read-only)
 public String getVersion();

 // ProcessingTime (read-only)
 public long getProcessingTime();

 // NumberOfExceptions (read-write)
 public short getNumberOfExceptions();
 public void setNumberOfExceptions(short value);
}

We would then implement the interface on the GenericResource class:

public class GenericResource implements GenericResourceMBean {
// etc. (from Example 1-1)
}

The name assigned to this interface is very important: it must be the name of the class
that implements it, followed by MBean. In other words, for any resource class XYZ that is
to be instrumented as a standard MBean, a Java interface called XYZMBean must be
defined, and it must be implemented by XYZ. Note that the MBean suffix is case-sensitive:
Mbean is incorrect, as is mBean or mbean.

That is all the instrumentation code that must be written to make GenericResource
capable of being managed! Of course, this example is more simplistic than most
resources we will deal with in the real world, most of which will include one or more
management operations. Suppose we want to add a method, reset(), to reset the state of
the ProcessingTime and NumberOfExceptions attributes. We would add this method to
the MBean interface, as shown in the following code.

public interface GenericResourceMBean {
 // Version (read-only)
 public String getVersion();

 // ProcessingTime (read-only)
 public long getProcessingTime();

 // NumberOfExceptions (read-write)
 public short getNumberOfExceptions();
 public void setNumberOfExceptions(short value);

 // reset() operation
 public void reset();

}

 12

Then we would implement the method on the GenericResource class, as shown in
Example 1-2.

Example 1-2. The GenericResource managed bean

public class GenericResource {
//class details. . .
 // Version (read-only)
 private String _version = "1.0.1";
 public String getVersion() {
 return _version;
 }
 // ProcessingTime (read-only)
 private long _processingTime;
 public long getProcessingTime() {
 return _processingTime;
 }
 // NumberOfExceptions (read-write)
 private short _numberOfExceptions;
 public short getNumberOfExceptions() {
 return _numberOfExceptions;
 }
 public void setNumberOfExceptions(short value) {
 _numberOfExceptions = value;
 }

 public void reset() {
 _processingTime = 0;
 setNumberOfExceptions(0);
 }
// other class details. . .
}

The metadata required of every MBean is created automatically by the JMX
infrastructure for standard MBeans. Before an MBean can be managed, it must be
registered with a JMX agent (as described in the later section, Section 1.2.2.1). When a
standard MBean is registered, it is inspected, and metadata placeholder classes are
created and maintained by the JMX agent on behalf of the MBean. The Java reflection
API is used to discover the constructor(s) on the MBean class, as well as other features.
The attribute and operation metadata comes from the MBean interface and is verified by
the JMX agent.

We will look at creating standard MBeans in detail in Chapter 2.

Consider instrumenting a resource as a standard MBean if:

• The management interface of the resource is fairly static (i.e.,
it won't change much over time).

• You want to quickly instrument the resource to be
manageable.

 13

1.2.1.3 Dynamic MBeans

In the case of standard MBeans, the JMX agent creates the metadata that describes the
features of a resource. In contrast, the developer himself must provide the metadata that
describes a resource as a dynamic MBean. With the increased difficulty comes a gain in
flexibility, however, because the instrumentation developer controls the creation of the
metadata.

Dynamic MBeans implement a JMX interface called DynamicMBean that contains
methods that allow the JMX agent to discover the management interface of the resource
at runtime. The DyamicMBean interface is defined in Example 1-3.

Example 1-3. The DynamicMBean interface

package javax.management;

public interface DynamicMBean {

 public Object getAttribute(String attribute)
 throws AttributeNotFoundException, MBeanException,
ReflectionException;

 public void setAttribute(Attribute attribute)
 throws AttributeNotFoundException, InvalidAttributeValueException,
 MBeanException, ReflectionException;

 public AttributeList getAttributes(String[] attributes);

 public AttributeList setAttributes(AttributeList attributes);

 public Object invoke(String actionName, Object params[], String
signature[])
 throws MBeanException, ReflectionException;

 public MBeanInfo getMBeanInfo();

}

There are six types of dynamic MBean metadata (one for each type of feature), shown in
Figure 1-2 in Unified Modeling Language (UML) notation.

Figure 1-2. UML diagram showing the relationships between the dynamic MBean metadata
classes

 14

To describe the management interface of a resource as a dynamic MBean, we create five
fundamental pieces of metadata that correspond to its five fundamental features:
constructors, attributes, parameters, operations, and notifications. As we can see from
Figure 1-2, these five pieces of metadata are described through instances of
MBeanConstructorInfo, MBeanAttributeInfo, MBeanParameterInfo,
MBeanOperationInfo, and MBeanNotificationInfo, respectively. The parameters that
are passed to a constructor or operation must also be described through the JMX metadata
class MBeanParameterInfo. Once all the metadata for an MBean has been described
through these classes, it is contained in a single metadata class—MBeanInfo—that
describes the MBean interface in its entirety. The JMX agent uses the getMBeanInfo()
method of the DynamicMBean interface to obtain this MBeanInfo object in order to
discover the management interface of a dynamic MBean.

Once the management interface has been discovered, the JMX agent uses the other
methods of DynamicMBean to retrieve and set attribute values and invoke operations on
the MBean.

We will look at how to instrument a resource as a dynamic MBean in detail in Chapter 3.

Consider instrumenting a resource as a dynamic MBean if:

• You want to make a resource manageable but cannot change
the source code of the resource itself (e.g., if it's third-party
software). Wrapping the resource class in a DynamicMBean
implementation is ideal in this case.

• The management interface of the resource changes over time
as the resource evolves as part of an application.

The management interface potentially changes each time the
resource is instantiated.

1.2.1.4 Model MBeans

 15

The features of a resource that is instrumented as a model MBean are described through
the use of metadata classes that are specific to model MBeans. In addition, every model
MBean must implement the ModelMBean interface, which is defined in Example 1-4.

Example 1-4. The ModelMBean interface

public interface ModelMBean
 extends DynamicMBean,
 PersistentMBean,
 ModelMBeanNotificationBroadcaster {

public void setModelMBeanInfo(ModelMBeanInfo inModelMBeanInfo)
 throws MBeanException, RuntimeOperationsException;

public void setManagedResource(Object mr, String mr_type)
 throws MBeanException,
 RuntimeOperationsException,
 InstanceNotFoundException,
 InvalidTargetObjectTypeException;
}

Notice that the ModelMBean interface extends the DynamicMBean interface, which means
that a model MBean is a dynamic MBean. However, every JMX implementation is
required to ship an off-the-shelf implementation of ModelMBean called
RequiredModelMBean. This presents the developer with a key benefit: because a model
MBean implementation already exists, the work of writing one is already done. While the
instrumentation developer must still create the necessary metadata classes (which we will
discuss shortly), she does not have to implement the ModelMBean interface, which
significantly reduces development time.

Model MBeans introduce the concept of a descriptor, which is an additional set of
metadata—specific to model MBeans—that allows the instrumentation developer to
provide a much richer description of any MBean feature. Certain predefined descriptor
values provide support for functionality such as the following:

• Automatic attribute change notifications
• Persistence of the MBean's state at a specified interval
• Logging of MBean state changes
• Caching of an MBean feature (such as an attribute value or the return value of an

operation) to improve performance for static (or relatively static) MBean features

Model MBean metadata extends dynamic MBean metadata, in that each model MBean
metadata class extends its dynamic MBean counterpart. This relationship is shown in
Figure 1-3.

Figure 1-3. Model MBean metadata classes

 16

ModelMBeanInfo is an exception, as it is an interface (implemented by a support class
called ModelMBeanInfoSupport) that extends MBeanInfo. There is also no special model
MBean metadata class to describe parameters, because there is no difference between a
parameter to a dynamic MBean constructor or operation and a parameter to a model
MBean constructor or operation.

The relationships between the model MBean metadata classes are shown in Figure 1-4.

Figure 1-4. UML diagram showing the relationships between the model MBean metadata
classes

We will discuss how to instrument resources as model MBeans in detail in Chapter 4.

Consider instrumenting a resource as a model MBean if:

• The benefits of instrumenting as a dynamic MBean are
required, but a significant per-MBean development time
investment is undesirable.

A richer set of information about one or more of the features of the
MBean (such as its attributes or operations) than can be described
using dynamic MBeans is required.

1.2.1.5 Open MBeans

 17

Using the standard, dynamic, or model MBean instrumentation approaches allows us to
describe MBean features (i.e., attributes, constructors, parameters, operations, and
notifications) that are one of the following types:

• A fundamental Java type, such as boolean, char, long, or float (through its
corresponding JDK wrapper—Boolean, Char, Long, or Float, respectively)

• A string, as java.lang.String
• An array of fundamental types or strings

However, sometimes MBean attributes are more complex. Open MBeans were designed
in an effort to make MBeans accessible to the widest possible range of management
applications. Strictly speaking, you can use complex types on the management interface
of standard, dynamic, and model MBeans. However, for a management application to
correctly interpret the state of those types, the classes (i.e., the Java bytecode)
representing those types must be available to the management application. The result is a
coupling between the management application and the resources it manages,
compromising the maintainability of the underlying managed resources. Open MBeans
eliminate the need for management applications to understand the classes describing the
complex types, deferring this intelligence instead to a predefined set of open MBean
classes that can universally describe those types.

Every open MBean type is a concrete subclass of an abstract open MBean class called
OpenType, and only subclasses of OpenType are allowed to describe features of open
MBeans. Three new types are defined that allow the instrumentation developer to
describe MBean features of arbitrary complexity:

ArrayType

Describes an n-dimensional array of any open MBean type

CompositeType

Describes an arbitrarily complex structure of open MBean types

TabularType

Describes a tabular structure (analogous to a database table) of any number of
rows, where the same CompositeType describes each row in the table

At some point, the state of an MBean (or any object, for that matter) must be resolved
down to fundamental types, strings, or arrays. However, open MBeans provide us with a
mechanism to describe complex links between types so that those links can be resolved
indirectly. For example, if we want to instrument a class A as an MBean, and A in turn
contains an instance of a class B, which contains an instance of a class C, we need some
way to describe the links in the inheritance graph between A, B, and C. It is for precisely
this sort of arbitrary complexity that open MBeans were designed.

 18

Open MBeans differ from dynamic and model MBeans in that there is no special
interface specifically for open MBeans that an open MBean must implement. Instead,
open MBeans must implement the DynamicMBean interface; what makes them "open" is
their use of special open MBean metadata classes to describe their features and their use
of the OpenType subclasses we discussed earlier. For every open MBean feature (with the
exception of notifications), JMX defines an interface/support class pair that is used to
describe the feature. For example, to describe an open MBean attribute, we use the
OpenMBeanAttributeInfo interface, which is implemented by a support class called
OpenMBeanAttributeInfoSupport. Each support class, in turn, extends its dynamic
MBean counterpart. For example, OpenMBeanAttributeInfoSupport extends
MBeanAttributeInfo. These relationships are shown for all open MBean metadata
classes in Figure 1-5.

Figure 1-5. UML diagram showing the inheritance relationships between the open MBean
metadata interfaces, their support classes, and the dynamic MBean metadata classes

The OpenMBeanInfoSupport class contains the metadata for the MBean's features
(which follows the pattern for dynamic and model MBeans). The relationships between
the open MBean metadata classes are shown in Figure 1-6.

Figure 1-6. UML diagram showing the relationships between the open MBean metadata
classes

 19

We will cover open MBeans in detail in Chapter 5.

Consider instrumenting a resource as an open MBean if:

• The benefits of dynamic instrumentation are required.
• One or more MBean features cannot be completely described

using one of the Java fundamental types, an array, or
java.lang.String (in other words, if the feature is a
complex data structure).

1.2.1.6 JMX notifications

The JMX agent is designed so that management applications, or other components of the
system, actively collect information about (i.e., query) the resources that are being
managed by that agent. This works well when this information is refreshed at reasonable
intervals and the application resources are stable. However, there are times when an
immediate notification of a resource fault needs to be communicated to an interested
party (such as a management application) outside the JMX agent. It is for this reason that
the JMX notification model was designed. A JMX notification is similar to an SNMP trap
and can be used to send critical, warning, or simply system or application information
when certain events occur in the system.

At the core of the notification model are two principal participants:

• A notification broadcaster, which emits notifications
• A notification listener, which registers its interest in receiving certain notifications

through the JMX agent infrastructure and receives those notifications when they
are broadcast

A notification broadcaster is an object that implements the NotificationBroadcaster
interface. Through this interface, a notification listener can register or remove its interest
in receiving notifications and can query the notification broadcaster about what
notifications it emits.

 20

A notification listener is an object that implements the NotificationListener interface,
which has a single method, handleNotification(), that it uses to process all the
notifications it receives.

To receive notifications, a notification listener must register its interest in receiving the
notifications emitted by the broadcaster through the broadcaster's implementation of
NotificationBroadcaster. When the notification listener does so, it passes references
to itself, an optional notification filter object, and an optional handback object. The
notification filter is an object that implements the NotificationFilter interface, and it
is used by the broadcaster to determine which notifications it will send to the listener.
Only those notification types that have been enabled in the filter will be sent to the
listener. The handback object is opaque to the broadcaster and has meaning only to the
listener, which uses the handback object in its processing of the notification.

If no notification filter object is passed to the notification broadcaster, the listener is in
effect telling the broadcaster that it wants to receive every notification the broadcaster
emits. However, if the notification listener wants to receive only a subset of the
notifications emitted by the broadcaster, it creates a notification filter object and adds the
notification types in which it is interested through the NotificationFilter interface.

The relationships between the various components of the JMX notification model are
shown in Figure 1-7.

Figure 1-7. UML diagram showing the relationships between the entities that participate in
the JMX notification model

A listener can receive notifications from multiple broadcasters, which in turn can send
notifications to multiple listeners. In fact, a single listener may register itself multiple
times with the same broadcaster, providing a different handback and/or notification filter
object each time. This allows the listener a great deal of flexibility in how to process
specific notifications. When the broadcaster emits a notification, an instance of
Notification is sent, along with the handback object supplied by the listener. The
notification supplied by the broadcaster must include a userData object. The
specification does not say what this object must look like, which leaves the broadcaster

 21

free to implement it as necessary. However, the listener must be aware of this object (and
what it looks like) in order to be able to determine whether to ignore it or to process it.

Notifications are a fairly advanced topic. We will take a detailed look at how to create,
send, filter, and receive notifications in Chapter 7.

Consider using notifications if:

• It is necessary to alert interested parties about the inner
workings of a resource in real time.

• The details of the inner workings of a resource are not of
special significance (other than their business value, of
course) until a particular set of circumstances occurs.

1.2.2 The Agent Level

The agent level of the JMX architecture is made up of the MBean server and the JMX
agent services. The MBean server has two purposes: it serves as a registry of MBeans and
as a communications broker between MBeans and management applications (and other
JMX agents). The JMX agent services provide additional functionality that is mandated
by the JMX specification, such as scheduling and dynamic loading.

In this section, we will look at the MBean server and then at each of the required JMX
agent services.

1.2.2.1 The MBean server

The MBean server is at the heart of the JMX agent. The MBean server acts as a registry
for MBeans, and the JMX agent accesses this registry through the MBeanServer interface.
To decouple the interaction between the agent and the MBean instance, JMX introduces
the concept of an object name, which is implemented by a JMX class called ObjectName.
Before an MBean is registered, an object name that uniquely identifies the MBean within
the MBean server's internal registry must be created for the MBean (this can be done by
the agent who registers the MBean or by the MBean itself). If the object name is unique
within the MBean server's registry, a new entry containing the object name and a
reference to the MBean is created for that MBean. If the object name used to register the
MBean is not unique, the registration attempt will fail because another MBean has
already been registered using that object name.

Once an MBean is registered, the object name assigned to the MBean is used as the
means of indirect communication between the agent and the MBean. The MBean server
acts as a broker for the request through its implementation of the MBeanServer interface.
If the agent wants to query an MBean for its attribute values, it invokes the appropriate
method on the MBeanServer interface and passes the object name of the MBean whose
values are to be retrieved. The MBean server uses the object name as a lookup into its

 22

registry, retrieves the reference to the MBean object, and makes the invocation. The
results of the invocation on the MBean object are then returned to the agent. At no time
does the agent have a direct reference to the MBean.

A factory class, MBeanServerFactory, is provided to obtain a reference to the MBean
server. The use of a factory decouples the MBeanServer interface from its
implementation. MBeanServerFactory provides two static methods that allow us to
create an MBean server:

createMBeanServer()

Creates an instance of the MBean server, holds that reference internally to the
MBeanServerFactory, and returns the reference to the caller. The
MBeanServerFactory internal reference to the MBean server that was created
prevents it from being subject to garbage collection.

newMBeanServer()

Creates an instance of the MBean server and returns that reference to the caller.
No internal reference is maintained inside the MBeanServerFactory. When there
are no more live references to the MBean server, it is eligible for garbage
collection.

We will take a detailed look at the MBean server and how to create and use it in Chapter
6.

1.2.2.2 The M-Let service

The M-Let (short for management applet) service is a JMX agent service that allows you
to load MBeans from anywhere on the network, including a local machine. The M-Let
service is itself an MBean and can be managed as such. Information about MBeans to be
loaded is contained in a text file called an M-Let file. This file has an XML-like syntax,
but the syntax does not constitute well-formed XML. Using special tags called M-Let
tags, we can encode enough information in the M-Let file that the M-Let service can
locate, download the bytecode for, and instantiate MBeans.

Here's how the M-Let service works. First, we instantiate the M-Let service's MBean
class and register it with the MBean server. Next, through a method call, we provide the
M-Let service with the URL to the M-Let file, which retrieves the M-Let file and reads
its contents. The M-Let service then instantiates all of the MBeans specified in the M-Let
file.

We can also use the M-Let service, in conjunction with the MBean server, to load
MBeans without the use of an M-Let file. We simply add the file's URL to the M-Let
service's list of URLs that it will search when attempting to load MBeans, then call a
method on the MBean server and pass the M-Let service's object name (which we created

 23

when we registered the M-Let service MBean with the MBean server) as the MBean class
loader.

We will take a detailed look at how to use the M-Let service in Chapter 9.

Consider using the M-Let service if:

• You need to be able to load MBeans into the MBean server
from anywhere on the network.

• You need or desire the configuration of your application's
resources to be centralized.

• You need a class loader for MBeans that is itself an MBean.

1.2.2.3 Monitoring services

A monitor observes the attribute value of an MBean, called the observed object, at
specific intervals, called the granularity period. From this observation the monitor
calculates a value called the derived gauge, which is either the value of the attribute or
the difference in the value of the attribute (for numerical attributes only, of course)
between the most recent two observations. When the derived gauge satisfies a certain
condition —which varies depending on the type of monitor in use—a notification of a
type that is specific to that monitor is sent to all registered notification listeners. The
monitoring service can also send error notifications if a problem arises.

The JMX specification mandates that three types of monitors be provided with every
compliant implementation:

Counter monitors

Observe a continually increasing, nonnegative, integer MBean attribute (of type
byte, short, int, long, or the corresponding JDK wrapper class) and send a
notification when the derived gauge exceeds a certain value, known as the
threshold

Consider using a Counter monitor to monitor an attribute:

• Whose type is a continually increasing, nonnegative integer
• To send a notification when the attribute's value exceeds a

certain threshold

When a notification must be sent each time an attribute's value is
increased by some fixed amount

Gauge monitors

 24

Observe an arbitrarily changing numeric value (of type short, int, long, float,
double, or the corresponding JDK wrapper type) and send a notification when the
derived gauge exceeds an upper limit (known as the high threshold) or drops
below a lower limit (known as the low threshold)

Consider using a gauge monitor to monitor an attribute:

• Whose type is numeric
• Whose value can increase or decrease at any time
• Whose value is constrained between a lower threshold and an

upper threshold
• To send a notification if the attribute's value exceeds the

upper threshold or drops below the lower threshold

String monitors

Observe a string attribute of an MBean and send a notification when the derived
gauge either matches or differs from a predefined string value

Consider using a string monitor to monitor an attribute:

• Whose type is a string
• To send a notification if the current value of the attribute

matches a predefined string or differs from a predefined
string

We will discuss the monitoring services in Chapter 9.

1.2.2.4 The timer service

The timer service is a special-purpose notification broadcaster designed to send
notifications at specific time intervals, starting at a particular date and time. Like the
other agent services, the timer service is required for all compliant JMX implementations.
The timer service is itself an MBean, so it can be managed (although it does not have to
be registered with the MBean server to be used). There are two primary uses of the timer
service:

• To send a single notification to all listeners interested in that notification type
• To send multiple notifications that repeat at specific intervals for a set number of

times, or indefinitely

The timer service is capable of sending any number of different notifications at different
intervals. Each notification that is to be sent by the timer service is given a notification

 25

type, defined by the agent that instructs the timer service to send that notification. In
other words, the timer service does not send a predefined set of notification types. Instead,
the agent tells the timer service what notification types to send and provides other
information that specifies when to start sending the notification, how many times the
notification is to repeat, and the amount of time that is to elapse between each notification
(for repeating notifications only).

We will discuss the timer service in Chapter 10.

Consider using the timer service if:

• Your application requires a scheduler that can also be
managed (the timer service is itself an MBean).

You need a manageable facility to send out notifications at regular
intervals, either a fixed or infinite number of times.

1.2.2.5 The relation service

The relation service provides a facility to associate MBeans with each other and must be
implemented by every compliant JMX implementation. You use the metadata classes
provided by the relation service to describe n-ary relationships between registered
MBeans as dictated by your application policies. You then use the relation service to
maintain the consistency of those relationships so that those application policies are
followed. The relation service formalizes the rules for describing and maintaining
relationships between MBeans, resulting in two major benefits:

• The relationship between MBeans is formalized into a well-defined type that can
be checked by the relation service in a way similar to how Java types are checked.

• The number of MBeans that may participate in one role of a relationship (i.e., its
cardinality) can be enforced by the relation service.

To use the relation service effectively, you need to understand a few key concepts:

Roles

A role describes the MBean objects that perform a particular role.

Role information

Role information provides metadata about a role, such as the role name and the
minimum and maximum number of MBeans that are allowed to perform that role.

Relation types

 26

Relation type information is also metadata, but it describes the relationship
between one or more role information objects. The RelationType interface
provides information about the relation type, such as the name of the relation type
and the various roles that make up that type.

Relations

A relation is an instance of a relation type. It is critical to the correct functioning
of the relation service that all relation types remain consistent. In other words, the
metadata describing the relationship between MBeans (i.e., the relation type)
provides the constraints on the relation that allow the relation service to be used to
ensure that the relation remains consistent at all times. Once a relation has been
instantiated, it must remain consistent, or the relation service will throw an
exception.

We will discuss the relation service in Chapter 11.

Consider using the relation service if:

• There is a clearly defined policy regarding the relationship
between the MBeans in your system.

• You require a facility to enforce application policies about
the relationship between MBeans.

1.2.3 The Distributed Services Level

In this section, we will take a look at the distributed services level of the JMX
architecture, which is unspecified at the time of this writing. However, significant work
has already been done to create the standard. Specifically, the RMI connector client and
server will be standardized soon as part of JSR 160. This will provide a standard for all
subsequent connectors to follow. The protocol adaptor side will remain unspecified for a
while, although significant work has been done in this area as well. The main reason to
standardize on the RMI connector is to leverage existing work in the JDK regarding
issues such as security, connection pools, and security.

In this section, we will briefly look at connectors and adaptors. Then we will see what is
coming soon with the distributed services level of JMX architecture regarding JSR 160.

1.2.3.1 Protocol adaptors and connectors

As mentioned earlier, there is a clear difference between a connector and an adaptor. A
connector consists of two parts: a client proxy and a server stub. Connectors are intended
to do the following:

 27

• Hide the specific details regarding the network location of the resources in an
application under management (i.e., provide location transparency).

• Present a consistent view (via an interface) of an MBean server that is located in a
different process space than the local MBean server.

Shielding the proxy client from the details of how to send and receive messages to the
server stub (and vice versa) makes it unnecessary for any particular instance of the
MBean server to know its location on the network, which means that this can be left as a
configuration detail.

An adaptor is different from a connector in that there is no client component. The adaptor
runs at the server location and renders the MBean server state in a form that is
appropriate for, and can be recognized by, the client. An example of this is the
HtmlAdaptorServer that ships as part of the JMX RI (note that it is not officially part of
the RI, as the distributed services level has yet to be fully specified). It is unlikely that
any adaptors will be mandated by the JMX specification in the near future. However,
given the momentum that the adoption of JMX is enjoying, several adaptor
implementations should soon be available.

We will not cover the specifics of the RMI connector or of any particular adaptor here, as
those details are unspecified at the moment. However, you'll find several contributions to
investigate in the contrib package of the JMX RI.

1.2.3.2 JSR 160

The next release of JMX—which is set to coincide with Release 1.4 of the Java 2
Enterprise Edition (J2EE) platform (at the time of this writing, early 2003)—will provide
standards for the distributed services level of the JMX architecture. The main
standardization you can expect from JMX 1.5 is the RMI connector, which provides a
mechanism for handling remote agents.

Some of the information in this section is subject to change, because
JSR 160 is not final.

The RMI connector is based on the concept of a remote MBean server, which is
fundamental to the model used by JMX connectors as part of the distributed services
architecture. This concept is illustrated in Figure 1-8.

Figure 1-8. The remote MBean server concept

 28

There are two components to a connector: the client and the server. Between the two
connector components is the connection itself. In JMX 1.5, the only specified connection
will be RMI. However, the remote MBean server concept can apply to other protocols,
such as HTTP and SOAP. The connector server listens for incoming connections from
connector clients. When a connector client attempts to establish a connection, the
connector server handles the details of creating the connection. After the connection has
been established, all of the MBeans registered in the remote MBean server can be
accessed; that is, their attributes can be retrieved and set (depending on the read/write
status of each particular attribute, of course) and their operations can be invoked.

This also holds true for notifications sent from MBeans in the remote agent. Notifications
emitted by remote broadcasters will be sent through the RMI connection to their intended
listeners. The details of how the notification is sent over the connection are unknown to
both the broadcaster and the listener.

1.3 The Sample Producer/Consumer Application

In the remainder of this chapter, we will build and run a sample application that
demonstrates each MBean instrumentation approach. The sections that follow look at the
design of the application, where to obtain the source code, how to actually build and run
the application, and how to monitor the application via a web browser.

1.3.1 Design

In this section, we will take a look at how the sample application is designed, so that you
can better understand what is going on when you see it run. First, we will look at the
pattern that is fundamental to the application's design. Then we will see how the pattern
is implemented and what classes constitute the source code for the application.

The design pattern used in the application is a monitor. A monitor is a construct that
coordinates activity between multiple threads in the system. In this pattern, the monitor
coordinates activities between two categories of threads: producer threads and consumer
threads. As you might imagine, a producer thread provides something that the consumer

 29

uses. That "something" is generically defined as a unit of work. This can be physically
realized as anything relevant to a problem that is solved by this pattern.

For example, the unit of work might be an email message that is sent to the email system
(the monitor) by the producer (an email client) and removed by the consumer (some
agent on the incoming email server side). The producer might perform additional
processing on the message before sending it to the email system, such as checking the
spelling. By the same token, the consumer may perform additional processing of the
message after removing it from the queue, such as applying an anti-virus check. For this
reason, we will refer to the pattern as "value-added producer/consumer." This pattern is
shown in UML notation in Figure 1-9.

Figure 1-9. UML diagram showing the "value-added producer/consumer" pattern

As you can see in Figure 1-9, the producer and consumer are separated (decoupled) by
the monitor. This pattern is best applied to systems that are inherently asynchronous in
nature, where the producer and consumer are decoupled by varying degrees. This
decoupling can be a separation of location as well as of synchronicity.

The implementation of the value-added producer/consumer pattern is shown in Figure 1-
10. The classes in the diagram are implemented as Java classes. The stereotypes shown in
the diagram are named according to the pattern shown in Figure 1-9.

Figure 1-10. UML diagram showing the implementation of the pattern in the form of the
application

 30

Basic is the base class for all of the classes that make up the implementation (with the
exception of WorkUnit, which represents the unit of work that is exchanged between
Supplier and Consumer). Controller is a class that acts as the JMX agent and is
responsible for creating the producer and consumer threads that run inside the application.
Queue is a thread-safe queue that acts as the monitor. Producer threads place items in the
queue in a thread-safe way, and consumer threads remove them. Worker is the base class
for Supplier and Consumer, because much of their behavior is common.

In the sample application, the following resources can be managed:

• Controller
• Queue
• Supplier
• Consumer

I encourage you to look at the source code to see exactly what attributes and operations
are on each of the management interfaces for these resources.

1.3.2 Source Code

The source code for the application is standalone with respect to each type of
instrumentation approach. There are three versions of the application, each in its own
package. The name of the package corresponds to the instrumentation approach. For
example, with the exception of common classes such as GenericException, the
application source code for standard MBeans is entirely contained in the standard
package; thus, if you install the source code to c:\jmxbook, the path to the application
source code for standard MBeans will be c:\jmxbook\sample\standard. All of the source
code shares the contents of the exception package. Other than that, however, the
application can be built and run independently of the other packages.

For each type of MBean, there is a Windows batch file and a Unix (Korn shell) script that
builds and runs the code for that instrumentation strategy. The name of the script or batch
file matches the instrumentation strategy: for example, the build script for dynamic
MBeans is called dynamic.sh, and the batch file for building the source code for the
version of the application instrumented as dynamic MBeans is called dynamic.bat. The

 31

major differences between the application versions are in the source code. The console
output and the management view will show very little difference (other than output from
the Ant build script) between the versions of the application.

1.3.3 Building and Running the Application

Before you can build and run the sample application (see Section P.5 in the Preface for
details on how to obtain the application's source code), you must download the JMX RI
and Jakarta Ant. For this book, I used JMX RI 1.0.1 and Ant 1.4. You can obtain the
JMX RI at http://java.sun.com/products/JavaManagement/ and Jakarta Ant at
http://jakarta.apache.org/ant/index.html.

The name of the build file Ant uses to build the application for all of the instrumentation
strategies is build.xml. The build scripts are designed to work with very little
modification on your part. However, you may have to modify either the build script or
the Ant build file, depending on where you installed the JDK, the JMX RI, and Ant itself.
Example 1-5 shows an excerpt from build.xml.

Example 1-5. Selected portions of the Ant build file for the application, build.xml

.

.

.
<project name="jmxbook" default="standard" basedir=".">

<!-- Set global properties -->
<property name="source_root" value="c:\jmxbook\sample"/>
<property name="jmx_home" value="c:\jmx1.0.1"/>

<path id="project.general.class.path">
 <pathelement path="${jmx_home}\jmx\lib\jmxri.jar"/>
 <pathelement path="${jmx_home}\jmx\lib\jmxtools.jar"/>
 <pathelement path="."/>
</path>

<!-- Build the init target -->
<target name="init">
 <!-- create the time stamp -->
 <tstamp>
 <format property="build.start.time" pattern="MM/dd/yyyy hh:mm:ss
aa"/>
 </tstamp>
 <echo message="Build started at ${build.start.time}..."/>
</target>

<!-- Build the exception target -->
<target name="build-exception" depends="init">
 <javac>
 <classpath refid="project.general.class.path"/>
 <src path="${source_root}"/>
 <include name="exception*"/>
 </javac>

 32

http://java.sun.com/products/JavaManagement
http://jakarta.apache.org/ant/index.html

</target>

<!-- Build the "standard" target -->
<target name="build-standard" depends="build-exception">
 <javac>
 <classpath refid="project.general.class.path"/>
 <src path="${source_root}"/>
 <include name="standard*"/>
 </javac>
</target>

<!-- Build the "dynamic" target -->
<target name="build-dynamic" depends="build-exception">
 <javac>
 <classpath refid="project.general.class.path"/>
 <src path="${source_root}"/>
 <include name="dynamic*"/>
 </javac>
</target>

<!-- Build the "model" target -->
<target name="build-model" depends="build-exception">
 <javac>
 <classpath refid="project.general.class.path"/>
 <src path="${source_root}"/>
 <include name="model*"/>
 </javac>
</target>
.
.
.
</project>

As you can see, the Ant build file is an XML document. This is what sets Ant apart from
other build utilities, such as make. Each component to be built using Ant is called a target.
A target may have one or more dependent targets that must be built first, each of which
may be dependent on other targets, and so on. Ant resolves these dependencies for you. A
target is specified in an Ant build file as an XML tag called target and has the following
format:

<target name="mytarget" depends="d1,d2">

in which case mytarget depends on targets d1 and d2, or:

<target name="mytarget">

if mytarget has no dependent targets. Let's look at the build-standard target from
Example 1-5:

<!-- Build the "standard" target -->
<target name="build-standard" depends="build-exception">
 <javac>
 <classpath refid="project.general.class.path"/>

 33

 <src path="${source_root}"/>
 <include name="standard*"/>
 </javac>
</target>

You can see that the build-standard target depends on the build-exception target.
Ant knows that there may be other dependencies, so it looks at build-exception:

<!-- Build the exception target -->
<target name="build-exception" depends="init">
 <javac>
 <classpath refid="project.general.class.path"/>
 <src path="${source_root}"/>
 <include name="exception*"/>
 </javac>
</target>

and notices that build-exception depends on init. Ant then looks at init:

<target name="init">
 <!-- create the time stamp -->
 <tstamp>
 <format property="build.start.time" pattern="MM/dd/yyyy hh:mm:ss
aa"/>
 </tstamp>
 <echo message="Build started at ${build.start.time}..."/>
</target>

Ant sees that init has no dependencies, so it begins the build. init is built first,
followed by build-exception and finally build-standard. Notice the javac tag
within build-standard and build-exception. This is known as an Ant task. A task is
a Java class that executes within the JVM in which Ant is running (unless you tell Ant to
fork a new process when executing the task). The javac task is the java compiler. The
classpath, src, and include tags nested within the javac task tell the Java compiler
what the CLASSPATH is, the root location of the .java files, and the packages (directories)
to compile, respectively.

The application classes for each chapter in this book are built and run using either a batch
file or a shell script. If you are running the application on Windows (as I did to produce
the screen shots for this chapter), use the batch file (i.e., the .bat file). If you are running
the application on Unix, use the shell script (i.e., the .sh file). Throughout the rest of this
chapter, the examples will be Windows-based. There are two reasons for this. First,
because of the popularity of Windows, it is likely that most developers will be running
this operating system. Second, the differences in the behavior of the application when it is
run on Windows versus Unix are negligible.

To build and run the application, type in the name of the batch file you want to run, based
on the type of MBean instrumentation strategy you want to see in action. You will notice
that there is no detectable difference between what you see when you run the build/run
batch file and what you see in your browser (discussed in the next section), regardless of

 34

the instrumentation strategy. Suppose we want to run the standard MBean batch file,
which will build and run the application as standard MBeans. Example 1-6 shows the
batch file that builds the application.

Example 1-6. standard.bat, the batch file that builds the application as standard MBeans

@set TARGET_NAME=build-standard
@set JAVA_HOME=c:\jdk1.3.1
@set ANT_VERSION=1.4
@set ANT_HOME=c:\ant%ANT_VERSION%

@echo Starting Build ...

call %ANT_HOME%\bin\ant %TARGET_NAME%

if NOT "%ERRORLEVEL%"=="0" goto DONE

%JAVA_HOME%\bin\java sample.standard.Controller 100 150

:DONE

This batch file is very simple. Aside from setting a few environment variables, it does
only two things: it builds the application by calling Ant, and, if that succeeds, it starts the
application. Figure 1-11 shows the output of running the batch file. Recall our earlier
discussion of how Ant resolves target dependencies; you'll see that the targets are built in
the order described there.

Figure 1-11. Running the build/run batch file for standard MBeans

All of the batch files (standard.bat, dynamic.bat, and model.bat) operate as described
below, but I've used standard.bat here for the purposes of illustration.

In each version of the application, Controller contains the main() method that starts the
producer and consumer threads and is itself an MBean that can be managed and
monitored. There are two command-line arguments to Controller's main() method: the
work factor for the producer thread and the work factor for the consumer thread. Notice
that in standard.bat values of 100 and 150, respectively, are specified for these arguments.

 35

I set these values for a reason: it is unlikely that you will find an application of the value-
added producer/consumer pattern where the producer and consumer perform an equal
amount of work. These command-line parameters to Controller allow you to simulate
this asymmetry. When Controller is started, one producer thread and one consumer
thread are created. However, Controller has a management method that allows you to
start additional threads to balance out the workload (we will see how to do this later).

Figure 1-10 illustrates the relationship between the various classes in the application,
where there is a single Queue object into which Supplier threads place WorkUnit objects
and from which Consumer threads remove them. For a single unit of work, here is the
flow of control:

1. The Supplier performs an amount of work N—where N is specified on the
command line to Controller—and places a single WorkUnit object into the
Queue.

2. The Consumer removes a single WorkUnit object from the Queue and performs an
amount of work M—again, where M is specified on the command line to
Controller.

These steps are repeated for each work unit.

The work that is performed by Supplier and Consumer threads is to
calculate prime numbers. The amount of work specified on the
command line to Controller is the number of prime numbers to
calculate for each WorkUnit. The Supplier calculates N primes,
then places a WorkUnit object into the Queue. The Consumer
removes a WorkUnit object from the Queue and then calculates M
primes.

This section looked at how to run the sample application and briefly discussed what it is
doing internally to simulate the production and consumption of units of work. I strongly
encourage you to examine the source code for yourself to see the various attributes and
operations available on the management interfaces of each resource in the application.

In the next section, we will look at how to use a web browser to monitor and manage the
sample application's MBeans.

1.3.4 Monitoring and Managing the Application

Once the application is running, you can point your web browser to port 8090 (the
default—you can change this, but if you do so, remember to point your browser to the
new port number). Figure 1-12 shows the result of pointing my web browser (which
happens to be Internet Explorer) to port 8090 after running standard.bat.

Figure 1-12. The management view of the application in Internet Explorer

 36

Remember the work factors that we specified on the command line to Controller for the
producer and consumer threads? Because they are different (100 and 150, respectively),
and the producer thread does less work than the consumer thread for each work unit, I
expect the Queue to always be full once the application reaches a steady state.

If I click on the Queue MBean in my browser, I see the screen shown in Figure 1-13.
There are several interesting things about Figure 1-13. First, the AddWaitTime attribute is
much larger than the RemoveWaitTime attribute. After processing 72 units of work
(according to the NumberOfItemsProcessed attribute), the Supplier thread has waited a
total of 3,421 milliseconds to add items to the Queue because it was full, whereas the
Consumer thread has not had to wait at all to remove items (although, depending on
which thread actually starts first, you may see a small amount of Consumer wait time).
This is pretty much what we would expect, as the Supplier thread does only two-thirds
the work of the Consumer thread.

Figure 1-13. The management view of the Queue object

 37

Suppose we want to start another Consumer thread to pick up some of the slack of the
other Consumer thread and balance things out a bit. For the moment, let's ignore the fact
that we can control the amount of work each type of Worker thread can perform. In a
real-world application, we would not have that luxury. As I mentioned earlier in this
chapter, Controller acts as the JMX agent for the application, but it is also itself a
managed resource (i.e., an MBean). If we look at the management interface of
Controller, we'll see that there is a management operation to start new Worker threads,
called createWorker(). Figure 1-14 shows the management view of the Controller
MBean and its createWorker() operation.

Figure 1-14. The management view of Controller showing the createWorker() operation

 38

There are two parameters to createWorker(): the first is a string that contains the worker
type, and the second is the work factor that worker is to have (i.e., the number of primes
calculated per unit of work). The valid values for the worker type are "Supplier" and
"Consumer". We want to create a new Consumer thread with the same work factor as the
currently running Consumer thread, so we set these parameters to Consumer and 150,
respectively. Once we have entered the parameters for the management operation into the
text boxes, as shown in Figure 1-14, we click the createWorker button to invoke the
management operation. If the operation succeeds, we will see a screen that looks like
Figure 1-15.

Figure 1-15. The screen we see once createWorker() has successfully been invoked

We would now expect that activity in the Queue has balanced out somewhat, and we
would expect to start seeing the Supplier wait, as we now have two Consumer threads at

 39

work. Figure 1-16 shows the management view of the Queue after we start the second
Consumer thread.

Figure 1-16. The management view of the Queue after starting a second Consumer thread

Notice that after processing 1,013 units of work (as we see from the
NumberOfItemsProcessed attribute), the Consumer threads have waited nearly 7 times
as long as the Supplier thread. Through the use of management operations, we can give
an operator at a management console the ability to tune our application at runtime.

 40

Chapter 2. Standard MBeans

By far the most straightforward type of MBean to create, standard MBeans are a logical
starting place for our voyage into the world of JMX. In this chapter, we will begin by
defining a management interface, then we will look at the design patterns we must use
when building standard MBeans. Next, we will discuss some of the issues involved when
using inheritance among standard MBean classes. Then we will look at some common
pitfalls of using standard MBeans that might leave you scratching your head, wondering
why your MBeans aren't working as expected. Finally, we will discuss some advanced
topics and things to consider when creating standard MBeans. This chapter includes
several examples from the sample application that is used throughout this book. When
you have completed this chapter, you should be able to create standard MBeans and
understand the issues involved in doing so.

2.1 What Is a Management Interface?

The idea of a management interface revolves around the notion of an application resource,
which is any abstraction within an application that provides value. A resource can be, for
example, a business component of the application, an infrastructure component such as a
cache or queue, or even the application itself. With respect to JMX (and more broadly,
system management), only those resources that must be managed are significant. Each
resource that is to be managed must provide a management interface, which consists of
the attributes and operations it exposes so that it can be monitored and controlled by a
management application.

For example, suppose a resource we wish to manage in our application is a queue. A
queue is generally used to temporarily store a logical unit of work provided by a supplier
until that unit of work is removed from the queue by a consumer for further processing.
This is typically done asynchronously, via a multithreaded design, so the queue must also
be thread-safe. Let's suppose there is a single supplier thread in the application and a
single consumer thread, and that the queue is thread-safe, so that the supplier will wait to
add an item to the queue if it is full (and conversely, the consumer will wait on the queue
to remove an item if the queue is empty). In monitoring the queue, we want to know two
things:

• How long has the supplier waited (i.e., the accumulated wait time) to add an item
to the queue because the queue is full?

• How long has the consumer waited to remove an item from the queue because the
queue is empty?

Because these two pieces of information are important to us for monitoring the
application, it makes sense that we expose them as two attributes on the management
interface of the queue. Of course, the queue must be written so that this information is
captured, so that it can be exposed in the first place! But that is very straightforward to do
and will be handled by our application's Queue class.

 41

I won't spend a lot of time explaining all of the attributes and
operations exposed on the management interface of the queue,
because the goal of this chapter is to illustrate the mechanics and
theory of standard MBeans, not how to design queues.

One other thing to consider is whether the values of these attributes are in milliseconds
(the clock tick count, on most systems). If so, and if our application is long-running, we
should probably use a long as the data type for these attributes to allow them to contain
very large values.

Now that we have decided to expose these two attributes, we must decide whether to
make them read-only, write-only, or read/write when we expose them on the management
interface. It doesn't make much sense for these attributes to be write-only (because then
we could only set them and not look at their values at any particular point in time), so we
rule that option out right away. Making these attributes readable makes sense, but should
we allow the management application to set their values? We could allow the
management application to reset both of these values to zero by exposing an operation to
handle this action, thus preventing a user of the management application from setting
these values to something unreasonable.

The management interface for our queue now has the following:

• A read-only attribute whose value is the total accumulated time spent by the
supplier waiting to add a unit of work to the queue because the queue is full

• A read-only attribute whose value is the total accumulated time spent by the
consumer waiting to remove a unit of work from the queue because the queue is
empty

• An operation that resets both attributes to zero

We may also want to be able to manage the size of the queue. To allow this, we can
define an attribute on the queue and expose that attribute on the management interface as
a read/write attribute. This allows us to view the current size of the queue and to modify
that value to tweak the queue for maximum performance at runtime. In addition, we
might be interested in the total number of work units processed by the queue, so that we
can get an idea of the throughput of the application with respect to any particular instance
of our queue. As long as it makes sense and fits in with the design of the queue, the sky's
the limit on what we can expose on our queue's management interface. Table 2-1
summarizes the attributes we will expose on our Queue resource.

Table 2-1. Attributes exposed for management on the Queue class
Name Data type Read/write

Add Wait Time long Read-only
Remove Wait Time long Read-only
Queue Size int Read/write
Number of Items Processed long Read-only

 42

Queue Full boolean Read-only
Queue Empty boolean Read-only
Suspended boolean Read-only
Number of Suppliers int Read-only
Number of Consumers int Read-only

These attributes will be discussed in detail in the next section, where we will actually
implement the queue's management interface as a standard MBean.

Next, let's consider the operations to expose on the management interface of the Queue
class. We touched briefly on the reset operation earlier in this chapter. Other operations
we may want to include offer the management application the ability to suspend and
resume activity in the queue. This allows the management application to halt processing
so that, for example, an operator can look at a "snapshot" of what is happening inside the
queue. It may also be helpful for the operator to be able to turn on and off tracing. Table
2-2 summarizes the operations on our queue's management interface.

Table 2-2. Operations exposed for management on the Queue class
Name Purpose

Reset Resets the state of the queue
Suspend Suspends activity in the queue; all suppliers and consumers sleep until Resume is called
Resume Signals to sleeping suppliers and consumers that activity may continue
Enable Tracing Turns on any tracing done by the queue
Disable Tracing Turns off tracing

Now that we have defined the management interface for our Queue class, it's time to see
how to instrument our class as a standard MBean using the design patterns in the JMX
specification.

2.2 How Do Standard MBeans Work?

In this section, we will learn how to instrument a Java class as a standard MBean. We
will first look at how to describe the management interface according to the JMX design
patterns for standard MBeans. Then we will look at how to implement the MBean
interface on the Queue class touched on earlier in this chapter. Many examples will be
provided. It is here that we will examine all of the classes that make up the application,
showing inheritance patterns and other cool standard MBean miscellany. We will also
look at the Controller class's main() routine, which is what drives the application, and
we will discuss how to register MBeans with the MBean server, how to register and use
the HTML Adaptor server, and how to build and run the example.

2.2.1 Describing the Management Interface

JMX provides us with a set of patterns to follow when instrumenting our application
resources as standard MBeans. If we follow these patterns exactly as they are set out in

 43

the specification, our standard MBeans are said to be compliant. If we don't correctly
follow the patterns, the MBean server (part of the reference implementation; we'll discuss
the MBean server later in this chapter) will declare our MBean as noncompliant by
throwing a javax.management.NotCompliantMBeanException at the agent that
attempts to register the MBean. However, it is possible for us to correctly follow the
patterns but still not expose the correct management interface on our standard MBean.
We will also look at that case in this section.

There are three patterns you must follow when instrumenting your resources as standard
MBeans:

• The management interface of the resource must have the same name as the
resource's Java class, followed by "MBean"; it must be defined as a Java interface;
and it must be implemented by the resource to be managed using the implements
keyword.

• The implementing class must contain at least one public constructor.
• Getters and setters for attributes on the management interface must follow strict

naming conventions.

Each of these patterns is discussed in detail in this section.

2.2.1.1 Pattern #1: Defining, naming, and implementing the MBean interface

The management interface must be defined using the Java interface keyword, it must
have public visibility, and it must be strictly named. Earlier in this chapter, we looked at
the thought process we might go through to define a management interface for a queue.
Suppose the name of this class is Queue. Its standard MBean management interface must
be defined as:

public interface QueueMBean {
// management interface goes here. . .
}

The Queue class, in turn, must implement the QueueMBean interface using the Java
implements keyword:

public class Queue implements QueueMBean {
// implementation of QueueMBean
// and other stuff here. . .
}

The name of the MBean interface is case-sensitive. For example, QueueMbean is not the
same as QueueMBean. Of course, the compiler will help you if you "fat-finger" the
spelling of the interface in either the interface definition or the implementation. However,
if you use the same misspelling in both, the compiler will chug merrily along and produce
perfectly runnable bytecode. Only when you attempt to register your MBean will you
receive a NotCompliantMBeanException exception!

 44

The management interface is contained in its own .java file and must have the same name
as its corresponding interface. Thus, every standard MBean requires at least two source
code files: one for the interface and one for the class that implements the interface.

Another example from the application we use throughout this book is the Worker class.
Its management interface is defined as:

public interface WorkerMBean {
// . . .
}

The Worker class, in turn, implements this interface as:

public class Worker implements WorkerMBean {
// . . .
}

The JMX specification states that the class that implements the
MBean interface must be declared public and be a concrete (i.e.,
not abstract) class. However, using the JMX 1.0 RI, I was able to
instantiate, register, and manage an MBean with only package-level
visibility. This is most likely an oversight in the RI. You should not
count on being able to do this in future versions of the RI, or in other
JMX implementations, because this behavior is not supported by the
specification.

2.2.1.2 Pattern #2: Provide at least one public constructor

The class that implements the MBean interface must have at least one constructor
declared with public visibility. This class may have any number of public constructors,
but it must have at least one. If you do not provide a constructor, the compiler will
generate a no-argument constructor with public visibility. This will work fine for your
MBeans, but I recommend that you explicitly declare a no-argument constructor for these
cases, as your code will follow the rule and be more readable as well. Continuing with the
code snippets from earlier, then, our Queue class would look like:

public class Queue implements QueueMBean {
 public Queue() {
 // do something here. . .
 }
 // other class methods and management interface
 // implementation. . .
}

However, the Queue class might not have a no-argument constructor at all:

public class Queue implements QueueMBean {
 // no no-arg constructor provided, that's okay. . .
 public Queue(int queueSize) {

 45

 // do something custom here. . .
 }
 // other class methods and management interface
 // implementation. . .
}

and still be a compliant MBean, because it provides a public constructor.

2.2.1.3 Pattern #3: Attributes and how to name their getters and setters

When defining an attribute on the management interface, you must follow strict naming
standards. If the attribute is readable, it must be declared on the interface (and
subsequently implemented) as getAttributeName(), where AttributeName is the name of
the attribute you want to expose, and take no parameters. This method is called a getter.
Table 2-1 showed some of the attributes we plan to expose on the Queue class. As an
example, we would define the Add Wait Time attribute on the management interface as:

public interface QueueMBean {
 public long getAddWaitTime();
 // . . .
}

Notice the use of "camel case" in the naming of our attribute. If an
attribute's name consists of multiple words, the words are placed
together and the first letter of each word is capitalized. This is a
fairly common practice and will be used throughout this book.

For boolean values, preceding the attribute name with "is" is a common idiom and one
that is acceptable according to the JMX standard MBean design patterns. From Table 2-1,
notice that we have a boolean attribute called Suspended. We would define this attribute
on the management interface as:

public interface QueueMBean {
 public long getAddWaitTime();
 // . . .
 public boolean isSuspended();
 // . . .
}

If an attribute is writable, the naming pattern is similar to that for readable attributes, only
the word "get" is replaced with "set," and the attribute takes a single parameter whose
type is that of the attribute to be set. This method is called a setter. For example, Table 2-
1 shows a readable and writable attribute called QueueSize. We would define this
attribute on the management interface as:

public interface QueueMBean {
 public long getAddWaitTime();
 // . . .
 public boolean isSuspended();

 46

http://safari.oreilly.com/framude.asp?bookname=javamngext&snode=16
http://safari.oreilly.com/framude.asp?bookname=javamngext&snode=16
http://safari.oreilly.com/framude.asp?bookname=javamngext&snode=16

 // . . .
 public int getQueueSize();
 public void setQueueSize(int value);
 // . . .
}

There are two rules about setters:

• The setter can take only a single parameter. If you unintentionally provide a
second parameter to what you thought you were coding as a setter, the MBean
server will expose your "setter" as an operation.

• The parameter types must be the same for read/write attributes, or your
management interface will not be what you expect. In fact, if you have a
read/write attribute where the getter returns a different data type than the setter
takes as a parameter, the setter controls. For example, suppose that I mistakenly
coded the setter for QueueSize to take a short data type. My management
interface would then look like:

• public interface QueueMBean {
• public long getAddWaitTime();
• // . . .
• public boolean isSuspended();
• // . . .
• public int getQueueSize();
• public void setQueueSize(short value);
• // . . .

}

Strangely enough, what I have actually exposed is a single write-only attribute
called QueueSize, of type short! Clearly, that is not what I intended. Of course,
remember that with standard MBeans, the Java compiler can catch some of these
mistakes for you. Let's say that I made this particular mistake on the interface
definition, but on the implementing class I used the proper int type on my setter.
The compiler would tell me that I should declare the implementing class
abstract, because it doesn't define the setter that takes the short! That is one
advantage of standard MBeans over other MBean types—the compiler can help
you find mistakes before they turn into nasty bugs.

Using the information from Tables 2-1 and 2-2, the management interface is shown in
Example 2-1.

Example 2-1. The QueueMBean interface

public interface QueueMBean {
 // attributes
 public long getAddWaitTime();
 public long getRemoveWaitTime();
 public int getQueueSize();
 public void setQueueSize(int value);
 public long getNumberOfItemsProcessed();

 47

 public boolean isQueueFull();
 public boolean isQueueEmpty();
 public boolean isSuspended();
 public int getNumberOfSuppliers();
 public int getNumberOfConsumers();
 // operations
 public void reset();
 public void suspend();
 public void resume();
 public void enableTracing();
 public void disableTracing();
}

2.2.1.4 A word about introspection

Introspection literally means to "look inside" and is performed by the MBean server to
ensure compliance on the part of your MBeans when they are registered. Because it is
possible to write Java code that cleanly compiles and executes but does not follow the
standard MBean design patterns we discussed earlier, the MBean server looks inside your
MBean to make sure you followed the patterns correctly.

When your MBean is registered by the agent, the MBean server uses Java's reflection
API to crawl around inside the MBean and make sure that the three design patterns we
discussed earlier were followed. If they were, your MBean is compliant and its
registration proceeds. If not, the MBean server throws an exception at the agent.

Introspection takes place only when your MBean is registered by the agent. Depending
on the code paths your application takes when instantiating your MBean classes, the
notification (via an exception) that one of your MBeans is not compliant will appear only
when the MBean is registered.

2.2.2 Standard MBean Inheritance Patterns

As you are probably aware, inheritance in Java is achieved through the use of the
extends keyword. When it comes to exposing a management interface, the MBean
server's introspection enforces certain rules. There are some fundamental differences
between Java inheritance and management interface inheritance. This section will spell
out those differences.

With respect to inheritance, certain patterns are enforced by the MBean server at
introspection time. If you are to successfully expose the intended management interface
on your MBeans, it is important that you understand these patterns. While an MBean may
inherit the public (and protected) attributes and operations of its parent class, it will not
necessarily inherit its management interface.

There are five basic patterns of MBean inheritance. We will discuss each of them in this
section. We will also introduce and explain the application MBean interfaces in this
section, starting with the top of the inheritance hierarchy, BasicMBean. We will use UML
diagrams to reduce ambiguity.

 48

BasicMBean is the management interface that all MBeans in the inheritance graph will
expose and in this section we will see exactly how to go about doing that. Along the way,
I'll point out some areas to watch out for and offer some tips for avoiding potential
mistakes. Example 2-2 shows the source listing for BasicMBean.

Example 2-2. The BasicMBean interface

package sample.standard;

public interface BasicMBean {
 // attributes
 public boolean isTraceOn();
 public boolean isDebugOn();
 public int getNumberOfResets();
 // operations
 public void enableTracing();
 public void disableTracing();
 public void enableDebugging();
 public void disableDebugging();
 public void reset();
}

2.2.2.1 Pattern #1: Basic inheritance

In the basic inheritance pattern, a class implements an MBean interface. This pattern is
shown in UML notation in Figure 2-1.

Figure 2-1. UML notation for pattern #1

In source code, this pattern is implemented using the implements keyword:

public class Basic implements BasicMBean {
// implementation of BasicMBean and other stuff. . .
}

Use of the implements keyword was explained in the previous section.

2.2.2.2 Pattern #2: Simple inheritance

With simple inheritance, one class extends another class that implements an MBean
interface. This relationship is shown in Figure 2-2.

 49

Figure 2-2. UML notation for pattern #2

In source code, this pattern is implemented using the extends keyword:

public class Worker extends Basic {
// implementation of Worker here. . .
}

In this pattern, the management interface exposed by Worker is BasicMBean. To a
management application, Worker will appear to be a BasicMBean, complete with all of its
attributes and operations. In other words, the management interface of Worker is the
same as that of Basic.

2.2.2.3 Pattern #3: Simple inheritance with child class implementing an MBean interface

Of course, Worker could implement its own MBean interface and still extend Basic. The
WorkerMBean interface is shown in Example 2-3.

Example 2-3. WorkerMBean management interface definition

package sample.standard;

public interface WorkerMBean {
 // attributes
 public String getWorkerName();
 public void setWorkerName(String name);
 public int getWorkFactor();
 public long getNumberOfUnitsProcessed();
 public float getAverageUnitProcessingTime();
 public boolean isSuspended();
 // operations
 public void stop();
 public void suspend();
 public void resume();
}

According to this pattern, Worker would continue to extend Basic but would now
explicitly expose its own MBean interface:

 50

public class Worker extends Basic implements WorkerMBean {
// implementation of WorkerMBean. . .
}

This pattern is shown in UML notation in Figure 2-3.

Figure 2-3. UML notation for pattern #3

After looking at pattern #3, you may think that the management interface exposed by
Worker is the union of BasicMBean and WorkerMBean. However, this is not the case.
When this pattern is used, the introspection performed by the MBean server proceeds up
the MBean interface inheritance graph, not the implementing inheritance graph. In
Example 2-3, we see that WorkerMBean stands alone at the top of the inheritance graph.
Regardless of the fact that Worker extends Basic (which implements BasicMBean), the
management interface exposed proceeds no further than WorkerMBean. Thus, when this
pattern is used, the management interface exposed by Worker is that shown in Example
2-3. However, should a reference to Worker be obtained, methods and attribute getters
and setters inherited from Basic can be invoked (Java inheritance still works!). These
inherited methods and attributes are not available to a management application, though,
because they are not on the management interface.

Note also that any time a class implements an MBean interface that is at the top of an
MBean hierarchy, the management interface exposed by that class is that MBean
interface, regardless of any attributes and methods available to that class through Java
inheritance. For example, suppose I have a child class of Worker called Supplier and
Supplier implements SupplierMBean, which extends nothing:

public interface SupplierMBean {
// management interface here. . .
}
.
.
public class Supplier extends Worker implements SupplierMBean {
}

Again, you might think that the management interface exposed by Supplier is the union
of BasicMBean, WorkerMBean, and SupplierMBean. However, this is not the case. Recall
that in the earlier example where Worker extended Basic but implemented WorkerMBean,
the management interface exposed was WorkerMBean. Similarly, in this case, the
management interface exposed by Supplier is SupplierMBean. Java inheritance still

 51

works, and a reference to Supplier will give the holder of that reference access all the
way up the inheritance graph, but a management application will have access only to
those methods on the management interface exposed by Supplier.

2.2.2.4 Pattern #4: Simple inheritance with MBean inheritance

If WorkerMBean were to extend BasicMBean, pattern #3 would become pattern #4, and no
further work would be required on the part of Worker to implement any methods from
BasicMBean. This relationship is shown in Figure 2-4.

Figure 2-4. UML notation for pattern #4

The MBean interface shown in Example 2-3 would simply need to be defined as:

public interface WorkerMBean extends BasicMBean {
// . . .
}

in order to implement this pattern. No code changes to Worker are required. Now,
however, the management interface exposed by Worker is the union of BasicMBean and
WorkerMBean.

Suppose that the Supplier class from pattern #3 has an MBean interface that extends
WorkerMBean:

public interface SupplierMBean extends WorkerMBean {
// . . .
}

This relationship is shown in UML notation in Figure 2-5.

Figure 2-5. UML notation for a more complicated derivative of pattern #4

 52

When the MBean server performs introspection, it will expose as the management
interface all of the MBean interfaces until the top of the MBean inheritance graph is
reached. This means that the management interface exposed by Supplier is the union of
BasicMBean, WorkerMBean, and SupplierMBean.

The key to using this pattern is to remember that the MBean server uses MBean
inheritance in addition to Java inheritance to determine the management interface. In
other words, if you want your MBean interface to expose the management interface, you
simply need to use the extends keyword when defining your MBean interface. Then
your MBean interface will take advantage of Java inheritance as well.

2.2.2.5 Pattern #5: Compiler-enforced management interface inheritance

Suppose that, in pattern #4, Worker implements WorkerMBean but does not extend Basic.
What then? Figure 2-6 shows this pattern in UML notation.

Figure 2-6. UML notation for pattern #5

Clearly, the compiler will not allow Worker to inherit an interface without implementing
it. In pattern #4, because Worker extended Basic, BasicMBean came along for free
through Java inheritance. But if Worker does not extend Basic, it is forced to implement
BasicMBean, because WorkerMBean extends BasicMBean.

This may sound like an oversight at first, but it really isn't. This pattern allows you to
customize the implementation of management interfaces while keeping the definitions of
those interfaces semantically consistent. Carrying the Worker example further, suppose

 53

that you want the WorkerMBean management interface to be semantically identical to the
union of WorkerMBean and BasicMBean. Logically, WorkerMBean should extend
BasicMBean. However, suppose that you want to vary the implementation of BasicMBean
provided by Basic. Using this pattern allows you to do this. And if you forget to
implement anything from BasicMBean, the compiler will tell you!

2.2.3 Common Mistakes Not Caught by Introspection

The MBean server will catch and report most mistakes that you make in applying the
standard MBean design patterns. However, there are mistakes you can make when
applying the patterns that result in an MBean that is technically compliant but does not
function as you intended. In this section, we will look at some of the most common
mistakes you can make when instrumenting your application resources as standard
MBeans that are not caught and reported by the MBean server. These mistakes are not
caught by the Java compiler, either; your MBean simply will not work correctly. This
section should aid you in troubleshooting the problem.

2.2.3.1 Mistake #1: MBean interface not given public visibility

This mistake is not caught by the compiler or reported by the MBean server. Suppose we
mistakenly left off the public keyword from the interface definition for BasicMBean,
using:

interface BasicMBean {
// . . .
}

instead of:

public interface BasicMBean {
// . . .
}

The Basic class implements BasicMBean as usual, and is registered by the agent:

public class Basic implements BasicMBean {
// . . .
}

To the MBean server, this MBean is compliant and is registered with no exceptions
thrown. However, when the MBean server is asked to return the state of the MBean
through its management interface, none of the attributes or operations can be accessed or
invoked, respectively. A javax.management.ReflectionException is thrown by the
MBean server at that time.

2.2.3.2 Mistake #2: Wrong return value type

 54

The return value type of a getter must be never be void. Suppose we have a getter that is
defined as:

public interface QueueMBean {
// . . .
 public void getQueueSize();
 public void setQueueSize(int value);
// . . .
}

In this example, the intended getter method is not considered by the MBean server to be a
getter at all and instead is exposed as an operation on the management interface. A proper
getter must return the type of its attribute.

The return value of a setter, however, must be void. This mistake is not caught by the
compiler or reported by the MBean server, and it produces some pretty strange results.
Example 2-1 showed the management interface for the Queue class. Notice the read/write
attribute QueueSize:

public interface QueueMBean {
// . . .
 public int getQueueSize();
 public void setQueueSize(int);
// . . .
}

Suppose we provided a return value for setQueueSize():

public interface QueueMBean {
// . . .
 public int getQueueSize();
 public int setQueueSize(int value);
// . . .
}

When the MBean server performs its introspection, it sees the getQueueSize() method,
indicating a readable attribute called QueueSize. It also notices a setQueueSize() method
that takes the correct number of parameters for a setter but also provides a return value.
Because a setter cannot return a value, the MBean server interprets the method as a
management interface operation instead of as an attribute setter. Thus, in our example, a
read-only attribute called QueueSize and an operation called setQueueSize() that takes an
int parameter and returns an int would be exposed. (Note that the choice of int as the
return value in this example was purely arbitrary. This mistake would happen if we had
used any other type as well.)

If the management interface for your MBean does not show up as you expected, check
the return values of all of the setter methods on your MBean interface. Any setter
methods that return a value of any type other than void will be exposed as operations

 55

called setSomething(), where Something is the name of the attribute. Remember, a proper
setter must return void!

What if the return value type of the getter is different from the parameter type of the
setter? This is probably the least common mistake, as it is usually the result of mistyping
the declaration of either the getter or the setter. Because the declaration must be typed
twice (unless you copy the declaration from the interface and paste it into the
implementing class), this mistake is not likely to occur often. However, because it has
baffling results, I wanted to mention it here. Suppose you mistakenly define the
management interface as:

public interface QueueMBean {
// . . .
 public int getQueueSize();
 public void setQueueSize(long value);
// . . .
}

Do you see the problem? Notice that the parameter type to the setter is a long. This
interface definition for the QueueSize attribute certainly follows the rules: the getter
takes no parameters and returns a value, while the setter returns void and takes only one
parameter.

So what do you suppose is exposed as the management interface? In the JMX 1.0 RI, the
management interface exposed is a write-only attribute of type long. That's it—there is
no getter. Because of the conflicting types, the MBean server has to choose what is
exposed, and the setter wins. Exactly what is exposed in the JMX you use depends on
how the MBean server's introspection is implemented. However, the point is the same:
make sure the parameter type of the setter and the return type of the getter match!

2.2.3.3 Mistake #3: Wrong number of parameters

Suppose we define a getter that takes an argument on the management interface:

public interface QueueMBean {
// . . .
 public int getQueueSize(int value);
 public void setQueueSize(int value);
// . . .
}

When the MBean server performs its introspection, it will detect that getQueueSize()
takes a parameter and will expose it as a management operation instead of as the getter
for the QueueSize attribute. A proper getter must take zero arguments.

A setter must take only one argument, and that argument must be of the type of the
attribute it is to set. Suppose that the management interface is defined as:

public interface QueueMBean {

 56

// . . .
 public int getQueueSize();
 public void setQueueSize(int value, char someOtherValue);
// . . .
}

When the MBean server performs its introspection, it exposes a read-only attribute called
QueueSize and an operation called setQueueSize() that takes an int and a char
parameter and returns void.

If the management interface for your MBean does not appear as you expected, check the
number of arguments to all of the setter methods on the MBean interface. Remember, a
proper setter must take only one parameter!

2.2.4 Implementing the MBean Interface

In this section, we will see how to implement MBean interfaces and will take a look at
the application that is used throughout this book. Implementing the MBean interface is
actually very straightforward, as we'll see.

The classes we will use in this chapter and their relationships to one another are shown in
UML notation in Figure 2-7.

Figure 2-7. UML notation for the application classes used in this chapter

As we saw in design pattern #1, we must implement the MBean interface on the
appropriately named class using the implements keyword. For the sake of review, let's
take a quick look at how to do this. Example 2-2 showed the BasicMBean management
interface definition. The syntax to implement this interface on the Basic class is:

public class Basic implements BasicMBean {
// . . .
}

 57

Notice that this interface has only getters (i.e., all attributes are read-only). Because the
implementation of the getters will be hidden behind the MBean interface, we are free to
implement them however we choose, as long as the implicit contract provided by the
interface is obeyed. However, the most common way to implement a getter is to declare a
private instance variable on the class and simply return the value of that member variable
when the getter is invoked:

public class Basic implements BasicMBean {
// . . .
 private boolean _traceOn;
 private int _numberOfResets;

 public boolean isT
 return _traceOn;

raceOn() {

 }
// . . .
 public int getNumberOfResets() {
 return _numberOfResets;
 }
// . . .
}

Implementing an operation is equally straightforward:

public class Basic implements BasicMBean {
// . . .
 public enableTracing() {
 _traceOn = true;
 }
// . . .
}

When implementing the operation, we simply write code that makes the operation do
something. Notice that the enableTracing() operation shown above resembles a setter.
Why didn't we simply provide a setter for the TraceOn attribute? Notice that
enableTracing() acts as a setter—it sets the value of the attribute—but with one important
difference: it only sets the attribute to true. A setter can set the value to any value
(within language limits, of course) that is acceptable for the data type of the attribute.

The full source listing of the Basic class is shown in Example 2-4.

Example 2-4. Full source listing for Basic class

package sample.standard;

public abstract class Basic implements BasicMBean {
 // backing stores
 private boolean _traceOn;
 private boolean _debugOn;
 private int _numberOfResets;
 // not on management interface
 public void setNumberOfResets(int value) {

 58

 _numberOfResets = value;
 }
 // attributes on management interface
 public boolean isTraceOn() {
 return _traceOn;
 }
 public boolean isDebugOn() {
 return _debugOn;
 }
 public int getNumberOfResets() {
 return _numberOfResets;
 }
 // operations on management interface
 public void enableTracing() {
 _traceOn = true;
 }
 public void disableTracing() {
 _traceOn = false;
 }
 public void enableDebugging() {
 _debugOn = true;
 }
 public void disableDebugging() {
 _debugOn = false;
 }
 public abstract void reset();
}

Each child class of Basic must provide its own implementation of reset(). For this reason,
there is a public setter (this setter also could have been protected or friendly) for the
NumberOfResets attribute. Notice, however, that setNumberOfResets() is not included on
the BasicMBean interface and hence is not part of the management interface of the
MBean.

While simply returning the value of a member variable of the same type as the attribute
for which the getter is provided is the most common way of writing a getter, it is not the
only way. For example, without changing the interface, we might implement
NumberOfResets as:

public class Basic implements BasicMBean {
// . . .
 private Integer _numberOfResets = new Integer(0);
// . . .
 public void setNumberOfResets(int value) {
 _numberOfResets = new Integer(value);
 }
// . . .
 public int getNumberOfResets() {
 return _numberOfResets.intValue();
 }
// . . .
}

 59

Notice that in this code snippet, the backing store for the NumberOfResets attribute is a
java.lang.Integer object. When getNumberOfResets() is called, we simply return
intValue() on the Integer object. Again, the MBean interface serves as the contract
between the MBean server, a management application, and your MBean. As long as your
MBean implementation obeys the MBean interface, you are free to implement the
interface however you choose.

A getter doesn't have to be that simple, however. For example, a getter can also be a
calculated quantity. Consider the declaration of the WorkerMBean interface in Example 2-
3. Notice the read-only attribute AverageUnitProcessingTime, which is of type float:

public class Worker extends Basic implements WorkerMBean {
// . . .
 private long _totalProcessingTime;
 private long _numberOfUnitsProcessed;
 public getNumberOfUnitsProcessed() {
 return _numberOfUnitsProcessed;
 }
 public float getAverageUnitProcessingTime() {
 return (_numberOfUnitsProcessed > 0)
 ? (float)_totalProcessingTime / (float)_numberOfUnitsProcessed
 : 0.0f;
 }
 // . . .
}

In designing the sample code, I decided to calculate the elapsed system time required to
process a work unit and accumulate it in a private instance variable of type long called
_totalProcessingTime. Then, when getAverageUnitProcessingTime() is called, the
average is calculated by dividing _totalProcessingTime by the number of units
processed so far (taking care not to divide by zero if no units have been processed).

Implementing a setter is equally straightforward. Consider the WorkerName attribute on
WorkerMBean (see Example 2-3):

public class Worker extends Basic implements WorkerMBean {
// . . .
 private String _workerName;
 public String getWorkerName() {
 return _workerName;
 }
 public void setWorkerName(String value) {
 _workerName = value;
 }
// . . .
}

Consider the needs of your application before implementing your setters. Depending on
how robust I want to make the implementation, the implementation of setWorkerName()
shown above may be sufficient. However, I might want to set the value only if the new
value is not a null reference, in which case I would make the following modification:

 60

public class Worker extends Basic implements WorkerMBean {
// . . .
 private String _workerName;
 public String getWorkerName() {
 return _workerName;
 }
 public void setWorkerName(String value) {
 if (value != null)
 _workerName = value;
 }
// . . .
}

An example of a more complicated setter is setQueueSize(), for the Queue class. This
setter allows a management application to dynamically alter the size of the queue, so, as
you can imagine, it is not as straightforward as simply setting an attribute value. Here is
the code for setQueueSize():

public class Queue extends Basic implements QueueMBean {
// . . .
 public synchronized void setQueueSize(int value) {
 if (!_suspended) {
 if (value > _backingStore.length) {
 Object[] newStore = new Object[value];
 System.arraycopy(_backingStore, 0, newStore, 0,
_backingStore.length);
 }
 }
 notifyAll();
 }
// . . .
}

This code allows the queue to grow but not to shrink. Essentially, what this setter does is
this: if activity in the queue is not currently suspended, and if the new queue size is
greater than the current size, a new Object array is allocated and copied, then any threads
in the wait state are signaled to become runnable. It's not too complicated, but it's
certainly not as simple as just setting an instance variable's value.

2.2.5 Throwing Exceptions from Your MBeans

There will be times when you need to throw an exception from your MBeans—for
example, when a setter needs to report that a bad value has been passed. Suppose that the
setter for the QueueSize attribute on the Queue class needs to report when an attempt is
made to shrink the queue (remember, the queue is allowed only to grow). If I want to
throw such an exception, I have to change the declaration on the MBean interface:

public interface QueueMBean extends BasicMBean {
// . . .
 public setQueueSize(int value) throws Exception;
// . . .
}

 61

as well as the implementing class:

// . . .
import sample.exception.*;
// . . .
public class Queue extends Basic implements QueueMBean {
// . . .
 public synchronized setQueueSize(int value) throws Exception {
 if (!_suspended) {
 if (value > _backingStore.length) {
 Object[] newStore = new Object[value];
 System.arraycopy(_backingStore, 0, newStore, 0,
_backingStore.length);
 }
 else {
 throw new GenericException("Queue.setQueueSize(): ERROR: " +
 "Queue size may not be set less than the current size of " +
 this.getQueueSize() + ". The value of " + value + " is
invalid.");
 }
 }
 notifyAll();
 }
}

If we attempt to set the value of the queue to be less than its current size (i.e., to shrink
the queue), an exception containing a message describing the mistake will be thrown to
the management application.

It is perfectly fine to use a user-defined exception. In this example, I used one called
GenericException, located in the sample.exception package:

package sample.exception;

public class GenericException extends Exception {
 public GenericException(String message) {
 super(message);
 }
}

2.2.6 The Driver Program: Controller.main()

As its name implies, Controller is the class that contains the main() method that drives
the application and controls the activities that occur within it. This class has a number of
interesting features. Recall that there are three levels to the JMX architecture:
instrumentation, agent, and distributed services. So far, we have been concerned with
only the instrumentation level. However, instrumentation by itself isn't very interesting.
Controller is part of the agent level, and it performs a few duties that allow the other
standard MBeans (e.g., Queue and Worker) to be plugged into the MBean server. In this
section, we will discuss some of the duties of this agent program that are unrelated to
standard MBeans per se but that are important for understanding JMX.

 62

2.2.6.1 The ObjectName class

The ObjectName class is provided by the RI and is crucial to the MBean registration
process. Every MBean must be represented by an ObjectName in the MBean server and
no two MBeans may be represented by the same ObjectName. Each ObjectName contains
a string made up of two components: the domain name and the key property list. The
combination of domain name and key property list must be unique for any given MBean
and has the format:

domain-name:key1=value1[,key2=value2,...,keyN=valueN]

where domain-name is the domain name, followed by a colon (no spaces), followed by at
least one key property. Think of a domain name as JMX's namespace mechanism. A key
property is just a name/value pair, where each property name must be unique. For
example, the object name used by the Queue instance into which the Supplier places its
work units is:

DefaultDomain:name=Queue

Notice the domain name. Every compliant JMX implementation must provide a default
domain name. For the JMX 1.0 RI, that name is DefaultDomain, but you can't depend on
this to be the case all of the time. The MBean server provides a method called
getDefaultDomain() that returns the name of the default domain.

As a convenience, the JMX 1.0 RI allows you to pass an empty
string for the domain name if you want to use the default domain.
However, the domain name you pass may never be null, or a
MalformedObjectNameException will be thrown.

There is only one restriction on domain names: you cannot use JMImplementation as the
domain name for your MBeans. This domain name is reserved for the implementation
(hence the name) and contains a single metadata MBean that provides information about
the implementation, such as its name, version, and vendor.

To create an ObjectName instance, use one of the three constructors provided. The
simplest constructor to use takes a single String parameter that contains the full object
name string, as described above:

// . . .
try {
 String myObjName = "UserDomain:Name=Worker,Role=Supplier";
 ObjectName = new ObjectName(myObjName);
} catch (MalformedObjectNameException e) {
// . . .
}

 63

In this example, you can also leave off the domain name preceding the colon if you want
to use the default domain:

// . . .
try {
 String myObjName = ":Name=Worker,Role=Supplier";
 ObjectName = new ObjectName(myObjName);
} catch (MalformedObjectNameException e) {
// . . .
}

The second constructor is provided as a convenience when you want to provide only one
key property. It takes three String arguments: the domain name, the key property name,
and the key property value.

// . . .
try {
 // String objName = "UserDomain:Name=Controller";
 ObjectName = new ObjectName("UserDomain", "Name", "Controller");
} catch (MalformedObjectNameException e) {
// . . .
}

The third constructor is used when you want to use the contents of a Hashtable to set the
key property list. It takes two arguments: the domain name and a Hashtable reference
containing the name/value pairs that make up the key property list.

// . . .
try {
 Hashtable table = new Hashtable();
 table.put("Name", "Worker");
 table.put("Role", "Supplier");
 ObjectName = new ObjectName("UserDomain", table);
} catch (MalformedObjectNameException e) {
// . . .
}

Once the ObjectName instance for your MBean has been created successfully, you can
use that ObjectName to register the MBean.

2.2.6.2 Registering the MBean with the MBean server

Without an ObjectName instance, an MBean cannot be registered with the MBean server.
In fact, the ObjectName is critical to doing anything meaningful with the MBean server.
In the previous section, we saw how to create an ObjectName instance using one of the
three constructors provided by ObjectName. In this section, we will see how to use that
ObjectName to register an MBean.

The first step in using the MBean server is to obtain a reference to it. Every compliant
JMX implementation must provide an MBeanServerFactory class that contains several

 64

methods that allow you to gain access to the MBean server (these will be discussed in
more detail in Chapter 6). The easiest method to use is createMBeanServer(), which takes
no arguments and returns a reference to a newly created MBean server:

// . . .
MBeanServer server = MBeanServerFactory.createMBeanServer();
// now do something with the MBean server
// . . .

Now that we have a reference to the MBean server, we can register our MBean. The
following example shows how to create an ObjectName, obtain a reference to the MBean
server, and register the Controller MBean:

// . . .
try {
 MBeanServer server = MBeanServerFactory.createMBeanServer();
 ObjectName objName = new ObjectName("UserDomain:Name=Controller");
 Controller controller = new Controller();
 server.registerMBean(controller, objName);
} catch (MalformedObjectNameException e) {
// . . .
}
// . . .

There are several ways to register an MBean. In the previous example, the MBean object
was created explicitly using the new keyword, and then a reference to that object was
passed to the registerMBean() method of the MBean server. However, those two steps
could have been combined into one, allowing the MBean server to create the MBean
object:

// . . .
try {
 MBeanServer server = MBeanServerFactory.createMBeanServer();
 ObjectName objName = new ObjectName("UserDomain:Name=Controller");
 server.createMBean("sample.standard.Controller", objName);
} catch (MalformedObjectNameException e) {
// . . .
}
// . . .

The MBean server also provides an overloaded version of createMBean() that allows you
to specify constructor parameters for your MBean. The various ways to create and
register MBeans will be covered in more detail in Chapter 6.

Once the MBean is registered with the MBean server, it is available for management. The
mechanisms used by a management application to plug into and manage an MBean
server are part of the distributed services level of the JMX architecture and are not fully
specified in the JMX 1.0 RI. However, provided with the RI is a class called
HTMLAdaptorServer, which is used throughout this book and is described in the next
section.

 65

2.2.7 The HTMLAdaptorServer Class

The HTMLAdaptorServer class is located in the com.sun.jdmk.comm package, which is
distributed as part of the RI in jmxtools.jar. This handy class allows us to manage an
MBean server through a web browser. HTMLAdaptorServer ("Adaptor" for short) is itself
an MBean, and as such it must have an ObjectName and be registered with the MBean
server. This class is essentially an HTTP server that listens on a specified port and
generates HTML forms that are sent to the web browser. It is through these forms that
you can manage and monitor your MBeans.

To use the HTMLAdaptorServer class, you must create an ObjectName for it and register
it with the MBean server, as you would any other MBean:

// . . .
 MBeanServer server = MBeanServerFactory.createMBeanServer();
 int portNumber = 8090;
 HtmlAdaptorServer html = new HtmlAdaptorServer(portNumber);
 ObjectName html_name = null;
 try {
 html_name = new ObjectName("Adaptor:name=html,port=" + portNumber);
 server.registerMBean(html, html_name);
 } catch (Exception e) {
 System.out.println("Error creating the HTML adaptor. . .");
 e.printStackTrace();
 return;
 }
 html.start();
// . . .

In this example, the Adaptor will be listening for HTTP requests on port 8090 of the
machine on which it is running. A new instance of the HTMLAdaptorServer class is
created, passing the specified port number to its constructor. Then an ObjectName is
created for the Adaptor, and it is registered with the MBean server. Finally, the Adaptor
is started. HTMLAdaptorServer implements the Runnable interface (actually, its parent
class, CommunitorServer, does), so it runs on its own thread. Once the thread is started
(by calling the start() method), the Adaptor is running and awaiting HTTP requests.

Now that the Adaptor is running, all you need to do is point your browser to the machine
that contains the JVM in which the MBean server is running. Assuming that the browser
and the MBean server are running on the same machine, simply point your browser to
http://localhost:8090. Figure 2-8 shows a screen shot of the form that will be displayed.

Figure 2-8. The Adaptor in action

 66

The important elements are:

"Filter by object name:"

This text box contains a pattern for which MBeans to show under "List of
registered MBeans by domain:". The pattern starts with the domain name,
followed by a colon, followed by the key property list of the MBeans to show. By
default, this is "*:*", which means to show all domains and all MBeans.

"List of registered MBeans by domain:"

This is a bulleted list of domains that match the filter (see above) and the MBeans
within that domain that also match the pattern.

Notice that there are two domains, Adaptor and JMIplementation. In Figure 2-8, we see
that when the ObjectName was created for the Adaptor MBean, "Adaptor" was provided
as the domain name. The key property list consists of "name=html,port=8090". If you
click on this MBean (the key property list contains a link), you can view the attributes
and operations exposed on the Adaptor MBean. The attributes are shown in Figure 2-9,
and the operations are shown in Figure 2-10.

Figure 2-9. Attributes exposed for management on the HTMLAdaptorServer; scroll down to
view the operations

 67

Figure 2-10. Operations exposed for management on the HTMLAdaptorServer

We will use the HTMLAdaptorServer class throughout this book for managing all of the
MBeans in the application.

 68

2.3 Downloading and Installing the JMX Reference Implementation

Before you can build and run the application, you must first obtain the JMX RI. The
easiest way to do this is to download it from Sun Microsystems at
http://java.sun.com/products/JavaManagement/. Select either the source code or binary
RI under "JMX Deliverables" and follow the instructions.

Once you've downloaded the RI, you should unzip the downloaded file directly into your
c:\ drive for Windows or your home directory for Unix.

 69

http://java.sun.com/products/JavaManagement/

Chapter 3. Dynamic MBeans

Standard MBeans are well suited for management interfaces that are relatively static.
However, if a management interface must be defined for an existing resource, is likely to
evolve over time, or for some other reason needs to be exposed at runtime, JMX provides
an interface that allows you to do just that. In this chapter, we will start by looking at the
reasons for instrumenting application code as dynamic MBeans. Then we will look at the
metadata classes that are used to define the management interface of a dynamic MBean.
Next, we will explore ways to implement the DynamicMBean interface and show how the
MBeanInfo metadata class is critical in making dynamic MBeans work. At the end of the
chapter, we will examine the management interface inheritance patterns that are used
with dynamic MBeans.

This chapter assumes that you either are already familiar with
standard MBeans or have read Chapter 2.

3.1 Why Use Dynamic MBeans?

The main reason to use dynamic MBeans is to more easily instrument existing code that
is written in a manner that conflicts with the standard MBean design patterns we
discussed in Chapter 2. The dynamic MBean interface is determined not through
introspection, but rather through a method call on the dynamic MBean itself. This method,
called getMBeanInfo(), returns information about the management interface and is
defined on the DynamicMBean interface; it is the portal through which a management
application views what has been exposed on the management interface of a resource that
has been instrumented as a dynamic MBean.

Another reason to use dynamic MBeans is so that you can provide descriptions of the
MBean features that are visible to the management application. An MBean feature is an
attribute, constructor, operation, parameter, or notification of an MBean. The feature
description is a brief explanation of what a particular feature means when viewed from a
management application. The feature's name usually indicates what it means, but this isn't
always the case. Feature descriptions are not available to standard MBeans.

Because the dynamic MBean interface is exposed at runtime, rather than at compile time
(as a standard MBean is), the management interface is exposed through metadata classes.
If the management interface is likely to change over time, dynamic MBeans offer a more
flexible way to instrument a resource. The management interface is not statically bound
to a dynamic MBean, as it is for a standard MBean. Rather, the management interface is
exposed dynamically. As such, it is conceivable that a dynamic MBean could—without
code changes—expose a different interface from one instance to the next by reading
which attributes and operations to expose from a configuration file.

3.2 How Do Dynamic MBeans Work?

 70

Like standard MBeans, dynamic MBeans must be created and registered with the MBean
server. When the MBean server is asked to register a dynamic MBean, however, no
introspection is performed. Recall that it is the strict application of the standard MBean
design patterns (discussed in Chapter 2)—enforced through introspection—that tells the
MBean server what management interface is exposed on an MBean. So, how does a
dynamic MBean expose its management interface?

Instead of using a Java interface with the name "MBean" on it, dynamic MBeans use
metadata classes to expose their management interfaces. They make that metadata
available through an interface called DynamicMBean, which must be implemented by all
dynamic MBeans. This interface is shown in Example 3-1.

Example 3-1. The DynamicMBean interface

package javax.management;

public interface DynamicMBean {

 public Object getAttribute(String attribute)
 throws AttributeNotFoundException, MBeanException,
ReflectionException;

 public void setAttribute(Attribute attribute)
 throws AttributeNotFoundException, InvalidAttributeValueException,
 MBeanException, ReflectionException;

 public AttributeList getAttributes(String[] attributes);

 public AttributeList setAttributes(AttributeList attributes);

 public Object invoke(String actionName, Object params[], String
signature[])
 throws MBeanException, ReflectionException;

 public MBeanInfo getMBeanInfo();

}

Essentially, the DynamicMBean interface provides a way for a management interface to do
four things:

• Dynamically discover the management interface exposed by the MBean
(getMBeanInfo()).

• Retrieve the value of one or more attributes on the management interface
(getAttribute() and getAttributes(), respectively).

• Set the value of one or more attributes on the management interface (setAttribute()
and setAttributes(), respectively).

• Invoke an operation on the management interface (invoke()).

Instances of the appropriate metadata classes are created by the MBean (usually in the
constructor) and added to the MBeanInfo instance that is returned by getMBeanInfo().

 71

Similarly, the management application, after invoking getMBeanInfo(), uses the metadata
classes to discover that interface. In the next section, we will take a look at how a
dynamic MBean uses the metadata classes to expose its management interface.

3.2.1 Describing the Management Interface

Dynamic MBeans tell the MBean server that they are dynamic MBeans by exposing the
DynamicMBean interface, but it is the use of the dynamic MBean metadata classes that
ties it all together. In this section, we will look at these classes and how a dynamic
MBean uses them to describe and expose its management interface to the world.

There are six significant metadata classes:

MBeanInfo

The top-level container of metadata; each MBean requires only one instance of
this class to completely describe its management interface.

MBeanAttributeInfo

Each instance of this class provides information about a single attribute.

MBeanParameterInfo

Each instance of this class provides information about a single parameter.

MBeanConstructorInfo

Each instance of this class provides information about a single constructor and
may contain one or more MBeanParamaterInfo instances.

MBeanOperationInfo

Each instance of this class provides information about a single operation and may
contain one or more MBeanParameterInfo instances.

MBeanNotificationInfo

Each instance of this class contains information about a group of notifications
emitted by this MBean.

Each of these classes (except MBeanInfo) is a subclass of MBeanFeatureInfo. Figure 3-1
shows a UML diagram that describes the multiplicity (or cardinality) between MBeanInfo
and the other metadata classes.

 72

Figure 3-1. UML diagram showing the multiplicity between MBeanInfo and the other
metadata classes

As you can see from Figure 3-1, there is a whole lot of aggregation going on! The
aggregation mechanism used by all of the container classes is an array. Each of these
classes is discussed in detail below.

3.2.1.1 MBeanAttributeInfo

This metadata class is used to describe a single attribute that is exposed on an MBean. To
describe a single MBean attribute, six essential properties must be set:

name

The name of the attribute as it appears on the management interface

type

The string representation of the Class object that corresponds to the attribute's
data type

description

The description of the attribute as it should appear to a management application

isReadable

A boolean property that indicates whether or not the attribute's value can be
retrieved and viewed by a management application

isWritable

A boolean property that indicates whether or not the attribute's value can be set
by a management application

isIs

 73

A boolean property that indicates whether or not the attribute is a boolean and if
its getter begins with is instead of get

An MBean creates an instance of this class for each attribute that it wants to expose,
using one of two constructors of MBeanAttributeInfo to set its essential properties. The
first constructor is defined as:

public class MBeanAttributeInfo extends MBeanFeatureInfo implements
 java.io.Serializable, Cloneable {
// . . .
 public MBeanAttributeInfo(String name,
 String type,
 String description,
 boolean isReadable,
 boolean isWritable,
 boolean isIs) {
 // . . .
 }
// . . .
}

The name parameter is the name of the attribute as it is exposed on the management
interface and is a String. The name must match exactly what is expected by the methods
on the DynamicMBean interface implementation to retrieve and set the attribute's value.

The type parameter is the fully qualified name of the class that is the type of the
attribute's value. If type is an Integer, for example, this parameter will have the value
"java.lang.Integer". If type is one of the Java fundamental types (e.g., byte, char,
long), you may use either the literal string for that fundamental type or the name attribute
of the TYPE member variable of the corresponding fundamental type java.lang wrapper
class. The following example shows how to use this constructor for the QueueSize
attribute of Queue (whose type is int) by using the literal string explicitly for type int:

// . . .
 public Queue(int queueSize) {
 super();
 MBeanAttributeInfo att = new MBeanAttributeInfo(
 "QueueSize", // name
 "int", // type
 "Size of the Queue.", // description
 true, // isReadable
 true, // isWritable
 false // isIs
);
 // . . .
 }
// . . .

Here is an example that shows how to use the JDK wrapper class for the fundamental
type int to create an MBeanAttributeInfo object for the same QueueSize attribute of
Queue:

 74

// . . .
 public Queue(int queueSize) {
 super();
 MBeanAttributeInfo att = new MBeanAttributeInfo(
 "QueueSize", // name
 Integer.TYPE.getName(), // type

 "Size of the Queue.", // description
 true, // isReadable
 true, // isWritable
 false // isIs
);
 // . . .
 }
// . . .

For each fundamental type, a JDK wrapper class has been provided as part of the
java.lang package. Each wrapper class has a public static member variable called
TYPE, which is a java.lang.Class object that has been initialized with a literal string
that serves as the string representation of the fundamental type. Table 3-1 shows the
corresponding type parameter values for each fundamental type, along with their JDK 1.3
string representations.

Table 3-1. type parameter values for attributes whose values are of a fundamental type
Attribute type type parameter value JDK 1.3 literal value

boolean Boolean.TYPE.getName() "boolean"
byte Byte.TYPE.getName() "byte"
char Character.TYPE.getName() "char"
short Short.TYPE.getName() "short"
int Integer.TYPE.getName() "int"
long Long.TYPE.getName() "long"
float Float.TYPE.getName() "float"
double Double.TYPE.getName() "double"
void Void.TYPE.getName() "void"

Notice in Table 3-1 that I don't use a String literal as the type of fundamental types.
Rather, I use the appropriate TYPE member variable of the fundamental type wrapper
class. Each fundamental type has a JDK wrapper class and a corresponding class-level
member variable called TYPE that is a Class object whose name (accessed by the
getName() method of Class) is a String containing the name of the fundamental type's
Class. The literal values in Table 3-1 are not likely to change, but using the TYPE
variable of the appropriate fundamental type's wrapper class insulates you from changes
to this literal in future JDK versions.

 75

Using TYPE for Fundamental Types

You may have noticed in Table 3-1 that I used a rather strange-looking member
variable of each of the JDK wrapper classes for the fundamental types, called
TYPE. This member variable is a Class object that represents the fundamental
type.

There are times when using JMX or Java's reflection API that you will need to
know when to use the Class object that represents a fundamental type and when
to use the string representation of that Class object.

For example, when you use the reflection API to build the signature of a
method, you create a Class array and then populate the array with Class
objects that correspond to the types of the parameters that constitute the
signature. Let's say you're building a Class array to represent the signature of an
operation that takes an int parameter, followed by a long:

// . . .
Class[] sign = new Class[2];
sign[0] = Integer.TYPE;
sign[1] = Long.TYPE;
// . . .

In this case, you want the Class object from the JDK fundamental type wrapper,
so you just use its TYPE member variable.

However, in JMX you often need to express the type of an object as a string.
This may seem confusing at first, but all JMX needs to know is the string
representation (i.e., name) of the Class object for that type. For example,
suppose that you need the string representation of the Class objects in the
previous example:

// . . .
String sign0asString = Integer.TYPE.getName();
String sign1asString = Long.TYPE.getName();
// . . .

In fact, this is the case for all fundamental types. Hopefully, Table 3-1 makes a
little more sense now.

If the attribute type is an array, the type string has a different format: left bracket, capital
L (i.e., "[L"), followed by the fully qualified name of the attribute class, followed by a
semicolon. For example, if the class is an array of String objects, the type string of the
array is "[Ljava.lang.String;".

 76

For an array of fundamental types, the format is different still. For example, if the
attribute type is an array of char, the type string would be "[C". Notice that there is no L
and no semicolon at the end of the type string. Also note that the class name is not "char,"
as it would be if the type were simply a char. The class names for arrays of all
fundamental types follow this pattern, where a single uppercase character follows the left
bracket. Table 3-2 lists the literal strings that you must pass for each type of array.

Table 3-2. Class name strings for arrays of fundamental types
Attribute type Class name literal string

boolean[] "[Z"
byte[] "[B"
char[] "[C"
short[] "[S"
int[] "[I"
long[] "[J"
float[] "[F"
double[] "[D"

Creating the MBeanAttributeInfo for a one-dimensional character array (char[]) that
uses this constructor looks like this:

// . . .
 MBeanAttributeInfo att = new MBeanAttributeInfo(
 "StringArray", // name
 "[C", // type
 "2D String array.", // description
 true, // isReadable
 true, // isWritable
 false // isIs
);
// . . .

Creating the MBeanAttributeInfo for a one-dimensional double-precision floating point
array (double[]) that uses this constructor looks like this:

// . . .
 MBeanAttributeInfo att = new MBeanAttributeInfo(
 "DoubleArray", // name
 "[D", // type
 "2D String array.", // description
 true, // isReadable
 true, // isWritable
 false // isIs
);
// . . .

What about multi-dimensional arrays? Simply add another left bracket to the beginning
of the literal string representing the array.

 77

A two-dimensional String array (String[][]) looks like this:

// . . .
 MBeanAttributeInfo att = new MBeanAttributeInfo(
 "TwoDStringArray", // name
 "[[Ljava.lang.String;", // type
 "2D String array.", // description
 true, // isReadable
 true, // isWritable
 false // isIs
);
// . . .

A three-dimensional long integer array (long[][][]) looks like this:

// . . .
 MBeanAttributeInfo att = new MBeanAttributeInfo(
 "ThreeDLongArray", // name
 "[[[J", // type

 "2D String array.", // description
 true, // isReadable
 true, // isWritable
 false // isIs
);
// . . .

The final authority on the syntax of array definitions is the Javadoc
for java.lang.Class. You should consult the documentation if you
run into any problems.

For attributes with user-defined types, the type parameter is the fully qualified class name.
For example, suppose that we have an attribute called ConsumerQueue from the
application's Controller class. This attribute's type is Queue. The code to create an
MBeanAttributeInfo object for this attribute is:

// . . .
 MBeanAttributeInfo att = new MBeanAttributeInfo(
 "ConsumerQueue", // name
 "sample.dynamic.Queue", // type

 "2D String array.", // description
 true, // isReadable
 true, // isWritable
 false // isIs
);
// . . .

When using the HTMLAdaptorServer that ships with the JMX 1.0 RI
(in jmxtools.jar), user-defined types are not supported for attributes.
This may change without notice, however, because jmxtools.jar is
not technically part of the RI.

 78

The description parameter is simply a human-readable description of the attribute and can
be anything you want. However, if you are going to use the HTMLAdaptorServer from
the JMX 1.0 RI, please note that you cannot use single or double quotes in the description.
This seems to mess up the Adaptor, and you will not be able to retrieve the description
from your browser.

The isReadable parameter indicates whether or not the attribute's value can be retrieved
through the management interface. Set this parameter to true if the value can be read
through the management interface, and false otherwise.

The isWritable parameter indicates whether or not the attribute's value can be set through
the management interface. Pass true if it can be, and false otherwise.

If the attribute is a boolean value and its getter starts with "is", pass isIs as true.
Otherwise, pass false.

There is a second constructor to MBeanAttributeInfo that you may find helpful:

public class MBeanAttributeInfo extends MBeanFeatureInfo implements
 java.io.Serializable, Cloneable {
// . . .
 public MBeanAttributeInfo(String name,
 String description,
 java.lang.reflect.Method getter,
 java.lang.reflect.Method setter)
 throws IntrospectionException {
 // . . .
 }
// . . .
}

This constructor is provided as a convenience if you prefer to use the Java reflection API
to obtain references to the Method objects for the getter and setter and then pass those
references to the constructor. The constructor then figures out whether the attribute is
readable, writable, and/or boolean, and what its type is. Consequently, you don't have to
worry about memorizing the information in Tables 3-1 and 3-2.

Suppose that for a particular MBean, we are creating the metadata classes to represent the
attributes inside the constructor of the MBean. It is simple, then, to get a reference to the
Method objects for the getter and setter:

// . . .
 public Queue(int queueSize) {
 super();
 Class[] setterSignature = new Class[1];
 setterSignature[0] = Integer.TYPE;

 try {
 Method getter = this.getClass().getMethod("getQueueSize", null);

 79

 Method setter = this.getClass().getMethod("setQueueSize",
setterSignature);
 MBeanAttributeInfo att = new MBeanAttributeInfo(
 "QueueSize",
 "Size of the Queue.",
 getter,
 setter
);
 } catch (NoSuchFieldException e) {
 // oops, shouldn't really get this unless we mistyped the name
 e.printStackTrace();
 } catch (SecurityException e) {
 // you don't have access to the method. . .
 e.printStackTrace();
 } catch (IntrospectionException e) {
 // something has gone horribly wrong. . .
 e.printStackTrace();
 }
 // . . .
 }
// . . .

If the attribute is read-only, pass null as the setter parameter. Conversely, if the attribute
is write-only, pass null as the getter parameter. This approach works well if the
attribute's name is likely to be more static than its type. If the name never changes, the
code above will not need to change, because the MBeanAttributeInfo constructor uses
Java's reflection API to determine the attribute's type.

3.2.1.2 MBeanParameterInfo

Three essential properties of a parameter to an MBean constructor or operation must be
set in order to describe that parameter:

name

The name of the parameter as it appears to a management application

type

The string representation of the Class object that corresponds to the parameter's
data type

description

The description of the parameter as it should appear to a management application

Each parameter to a constructor or operation must be described using the
MBeanParameterInfo class. Each instance of this class serves to completely describe a
single parameter to a single constructor or operation. Like MBeanAttributeInfo objects,

 80

the way to create instances of MBeanParameterInfo is to use its custom constructors. In
fact, there is only one constructor for MBeanParameterInfo:

public class MBeanParameterInfo extends MBeanFeatureInfo
 implements java.io.Serializable, Cloneable {
// . . .
 public MBeanParameterInfo(String name,
 String type,
 String description) {
 // . . .
 }
// . . .
}

The name parameter is the name of the parameter as it appears to the management
application. It is good style for this name to match the name in the source code, but the RI
doesn't seem to care what you use for this parameter, including an empty string ("") or a
null reference. Note, however, that if you pass a null reference for this parameter, a
NullPointerException will be thrown by the HTMLAdaptorServer when you try to
access any MBean that uses this MBeanParameterInfo instance. The MBean server, on
the other hand, will happily register the MBean without any glitches. This behavior
indicates that Version 1.0 of the HTMLAdaptorServer doesn't much care for a null
reference for the name parameter.

The type parameter for MBeanParameterInfo is exactly the same as the type parameter
for MBeanAttributeInfo. All of the information about the type parameter in the
previous section applies here as well.

The description parameter is simply a human-readable description of the attribute and can
be anything you want. However, if you are going to use the HTMLAdaptorServer from
the JMX 1.0 RI, note that you cannot use single or double quotes in the description. This
seems to mess up the Adaptor, and you will not be able to retrieve the description from
your browser.

It's time for an example from the application. The Controller class has a management
operation called createNewWorker() that is used to start another worker thread. In order
to do this, however, the worker's role (a String) and the work factor (the amount of work
the worker is to perform for each work unit) must be specified. An instance of
MBeanParameterInfo will be created for each of these parameters:

// . . .
MBeanParameterInfo param1 = new MBeanParameterInfo(
 "role", // name
 "java.lang.String", // type
 "The role this new worker thread will take on." // description
);

MBeanParameterInfo param2 = new MBeanParameterInfo(
 "workFactor",
 Integer.TYPE.getName(),

 81

 "The weighted work factor for this new worker thread."
);
// . . .

As I stated earlier, you are not required to supply a name parameter to the constructor of
MBeanParameterInfo. In fact, you don't have to supply a description either. Thus, you
don't have to create different instances of MBeanParameterInfo for parameters that can
be described in exactly the same way. In other words, if parameters have at a minimum
the same type, they can share the same instance of MBeanParameterInfo. Be careful
when doing this, however, because parameters can have the same type but mean different
things to a management application. Also, it may confuse the person trying to manage
your MBeans if he is relying on either the name or description of an operation or
constructor's parameters to meaningfully manage the resources within your application.

3.2.1.3 MBeanConstructorInfo

Three essential properties must be set in order to describe an MBean constructor:

name

The name of the constructor as it appears to a management application

description

The description of the constructor as it should appear to a management
application

signature

An array of MBeanParameterInfo objects that describe the constructor's signature

The MBeanConstructorInfo metadata class is used to describe an MBean's public
constructors. One instance of this class completely describes a single constructor. In other
words, if an MBean has three public constructors, three instances of this class are
required to completely describe the MBean's constructors. Like the other metadata
classes, MBeanConstructorInfo provides two custom constructors that are used to set
various properties of this object. The first constructor is defined as:

public class MBeanConstructorInfo extends MBeanFeatureInfo
 implements java.io.Serializable, Cloneable {
// . . .
 public MBeanConstructorInfo(String description,
 java.lang.reflect.Constructor constructor)
{
 }
// . . .
}

 82

This constructor uses Java's reflection API to figure out what the constructor's parameters
are and creates MBeanParameterInfo objects for them accordingly. However, when you
use this method, you will not be able to specify a name for the constructor or a
description for the constructor's parameters.

This constructor is very easy to use if you want to expose all of the constructors for an
MBean. For example, the following code will expose all of the public constructors of the
class of which this is an instance:

// . . .
 Constructor[] constructors = this.getClass().getConstructors();
 MBeanConstructorInfo[] constructorInfo = new
 MBeanConstructorInfo[constructors.length];
 for (int aa = 0; aa < constructors.length; aa++)
 constructorInfo[aa] = new MBeanConstructorInfo(

{

 "Constructs a Basic MBean.", // description
 constructors[aa] // java.lang.reflect.Constructor
);
 }
// . . .

The getConstructors() method of the Class object associated with this returns an array
of java.lang.reflect.Constructor objects. The size of the array is a value equal to
the number of public constructors the class contains, and this value is used to create an
equally sized array of MBeanConstructor objects. Then each Constructor object is
used to create a corresponding MBeanConstructor instance.

Alternately, you can expose a specific constructor by creating an
MBeanConstructorInfo object for it. Example 3-2 shows how to do this.

Example 3-2. Exposing a specific constructor

public class Queue extends Basic implements DynamicMBean {
// . . .
 public Queue(int QueueSize) {
 // . . .
 Class[] signature = {Integer.TYPE};
 Constructor constructor = null;
 MBeanConstructorInfo[] constructorInfo = new
MBeanConstructorInfo[1];
 try {
 constructor = this.getClass().getConstructor(signature);
 constructorInfo[0] = new MBeanConstructorInfo(
 "Queue custom constructor", // description
 constructor // java.lang.reflect.Constructor
);
 } catch (Exception e) {
 e.printStackTrace();
 return;
 }
 // . . .
 }

 83

// . . .
}

In this example, we explicitly exposed a single constructor whose signature consists of a
single int parameter. The getConstructor() method of Class takes a Class array that
contains the Class objects that match the signature of the constructor we want to retrieve.
If the constructor is not found, a NoSuchMethodException is thrown. If the constructor is
found, it's a simple matter of creating a new MBeanConstructorInfo object, passing the
Constructor object we retrieved earlier.

Suppose that we have another constructor that takes an Integer parameter, instead of a
fundamental int. How do we get a Class object for an Integer? There is a static
method of Class called forName() that takes a String (actually, there are two versions
of this method, but we'll use the simpler of the two), which is the fully qualified name of
the class for which we want a Class object. This method does throw an exception if the
class can't be found, so we have to surround our code with try/catch blocks. Using this
scenario, Example 3-2 becomes:

public class Queue extends Basic implements DynamicMBean {
// . . .
 public Queue(int QueueSize) {
 // . . .
 Class[] signature = new Class[1];
 Constructor constructor = null;
 MBeanConstructorInfo[] constructorInfo = new
MBeanConstructorInfo[1];
 try {
 signature[0] = Class.forName("java.lang.Integer");
 constructor = this.getClass().getConstructor(signature);
 constructorInfo[0] = new MBeanConstructorInfo(
 "Queue custom constructor", // description
 constructor // java.lang.reflect.Constructor
);
 } catch (Exception e) {
 e.printStackTrace();
 return;
 }
 // . . .
 }
// . . .
}

The second constructor of MBeanConstructorInfo requires a little more effort on our
part, but it allows us to provide a name and description for each parameter of the
constructor we expose. This can be helpful to the operator of a management application,
as this information will be exposed if this constructor is used. The constructor is defined
as:

public class MBeanConstructorInfo extends MBeanFeatureInfo
 implements java.io.Serializable, Cloneable {
// . . .

 84

 public MBeanConstructorInfo(String name,
 String description,
 MBeanParameterInfo[] signature) {
 }
// . . .
}

The extra work required on our part is that we must create an array of
MBeanParameterInfo objects that correspond to the signature of the constructor. This is
really not a big deal, though; we saw how to create MBeanParameterInfo objects in the
previous section. Suppose that we want to expose the constructor from Example 3-2,
which takes a single int parameter. In that case, we create a single
MBeanParameterInfo object and pass it to the constructor of MBeanConstructorInfo:

public class Queue extends Basic implements DynamicMBean {
// . . .
 public Queue(int QueueSize) {
 // . . .
 MBeanConstructorInfo[] constructorInfo = new
MBeanConstructorInfo[1];
 MBeanParameterInfo[] parms = new M
 parms[0] = new MBeanParameterInfo(

BeanParameterInfo[1];

 "queueSize",
 Integer.TYPE.getName(),
 "Max number of items the Queue may contain at any time."
);
 constructorInfo[0] = new MBeanConstructorInfo(
 "Queue",
 "Queue custom constructor",
 parms
);
 // . . .
 }
// . . .
}

Notice how we explicitly create an instance of MBeanParameterInfo to describe the int
parameter to our constructor. This object is then placed into an array consisting of a
single MBeanParameterInfo element, which is passed to the second constructor of
MBeanConstructorInfo.

If you are exposing the default constructor, you have two options. The first option is to
simply pass null as the third parameter:

// . . .
 MBeanConstructorInfo[] constructorInfo = new MBeanConstructorInfo[1];
 constructorInfo[0] = new MBeanConstructorInfo(
 "Queue",
 "Default Constructor",
 null
);
// . . .

 85

A second, arguably more readable, way to expose the default constructor is to pass an
empty array of MBeanParameterInfo objects:

// . . .
 MBeanConstructorInfo[] constructorInfo = new MBeanConstructorInfo[1];
 constructorInfo[0] = new MBeanConstructorInfo(
 "Queue",
 "Default Constructor",
 new MBeanParameterInfo[0]
);
// . . .

3.2.1.4 MBeanOperationInfo

Five essential properties of an MBean operation must be set when describing the
operation:

name

The name of the constructor as it appears to a management application

description

The description of the constructor as it should appear to a management
application

signature

An array of MBeanParameterInfo objects that describe the constructor's signature

type

The data type of the value returned by the operation

impact

An indicator of the type of impact to the state of the MBean following an
invocation of the operation

MBeanOperationInfo is used to describe the operations that are exposed on an MBean's
management interface. One instance of this class is required to completely describe a
single operation. In other words, if an MBean exposes four operations on its management
interface, four instances of this class are required in order to describe the operations on
the management interface of the MBean. Like the other metadata classes,
MBeanOperationInfo uses its constructors to set its five essential properties. The first
constructor is defined as:

public class MBeanOperationInfo extends MBeanFeatureInfo

 86

 implements java.io.Serializable, Cloneable {
// . . .
 public MBeanOperationInfo(String description,
java.lang.reflect.Method method) {
 // . . .
 }
// . . .
}

This constructor uses Java's reflection API to figure out what the constructor's parameters
(and their types) are and creates MBeanParameterInfo objects for them accordingly. In
addition, the return type of the operation is discovered through reflection. The impact
property (see above) cannot be discovered, however, because there is no way to
determine the impact of invoking the MBean operation through the reflection API; the
impact of invoking the operation on the MBean's state is unknown, so this constructor
sets impact to MBeanParameterInfo.UNKNOWN.

When you use this method, you will not be able to specify a name or
a description for the constructor's parameters.

You must obtain a reference to the java.lang.reflect.Method object for the operation
you wish to expose:

public class Controller extends Basic implements DynamicMBean {
// . . .
 public Controller() {
 // . . .
 MBeanOperationInfo[] operationInfo = new MBeanOperationInfo[1];
 Method operation = null;
 Class[] parms = new Class[2];
 try {
 parms[0] = Class.forName("java.lang.String");
 parms[1] = Integer.TYPE;
 operation = this.getClass().getMethod("createWorker",parms);
 operationInfo[0] = new MBeanOperationInfo(
 "createWorker",
 operation
);
 } catch (Exception e) {
 e.printStackTrace();
 return;
 }
 // . . .
 }
// . . .
 // operation to be exposed on the management interface
 public void createWorker(String workerType, int workFactor) {
 // . . .
 }
}

 87

In this example, we are exposing an operation called createWorker() that takes two
parameters: a String and an int. To expose an operation using the reflection-based
constructor of MBeanParameterInfo, we must accomplish the following:

• Obtain Class objects that represent the proper Class objects for the types of
signatures the MBean operation has. In this example, the first parameter is a
String and the second is an int. We can obtain a String Class object by using
the static forName() method of Class. For the fundamental type int, we simply
use the TYPE member, which is a Class object that represents an int:

• // . . .
• public Controller() {
• // . . .
• Method operation = null;
• Class[] parms = new Class[2];
• try {
• parms[0] = Class.forName("java.lang.String");
• parms[1] = Integer.TYPE;
• operation =

this.getClass().getMethod("createWorker",parms);
• // . . .
• // . . .
• }

// . . .

• Obtain a reference to the Method object that corresponds to the operation we want
to expose. To do this, we must use the Class object of the MBean object itself.
Once we obtain the Class object, we can use its getMethod() method to retrieve
the MBean operation's Method object. Because getMethod() may throw an
exception if the method is not found, we must use try/catch blocks:

• // . . .
• public Controller() {
• // . . .
• try {
• parms[0] = Class.forName("java.lang.String");
• parms[1] = Integer.TYPE;
• operation =

this.getClass().getMethod("createWorker",parms);
• operationInfo[0] = new MBeanOperationInfo(
• "createWorker",
• operation
•);
• } catch (Exception e) {
• e.printStackTrace();
• return;
• }
• // . . .

 }

 88

• Create the MBeanOperationInfo object:
• // . . .
• public Controller() {
• // . . .
• try {
• parms[0] = Class.forName("java.lang.String");
• parms[1] = Integer.TYPE;
• operation =

this.getClass().getMethod("createWorker",parms);
• operationInfo[0] = new MBeanOperationInfo(
• "createWorker",
• operation
•);
• } catch (Exception e) {
• e.printStackTrace();
• return;
• }
• // . . .
• }

// . . .

The second constructor of MBeanOperationInfo allows you to explicitly specify all of
the essential properties of an MBean operation and is defined as:

public class MBeanOperationInfo extends MBeanFeatureInfo
 implements java.io.Serializable, Cloneable {
// . . .
 public MBeanOperationInfo(String name,
 String description,
 MBeanParameterInfo[] signature,
 String type,
 int impact) {
 // . . .
 }
// . . .
}

This constructor is arguably easier to use than its reflection-based counterpart, because
it's so easy to create MBeanParameterInfo objects:

public class Controller extends Basic implements DynamicMBean {
// . . .
 public Controller() {
 // . . .
 MBeanOperationInfo[] operationInfo = new MBeanOperationInfo[1];
 MBeanParameterInfo[] parms = new MBeanParameterInfo[2];
 parms[0] = new MBeanParameterInfo(
 "role",
 "java.lang.String",
 "The role this new worker thread will take on."
);
 parms[1] = new MBeanParameterInfo(

 89

 "workFactor",
 Integer.TYPE.getName(),
 "The work factor for this new worker thread."
);
 operationInfo[0] = new MBeanOperationInfo(
 "createWorker",
 "Creates a new worker thread.",
 parms,
 Void.TYPE.getName(),
 MBeanOperationInfo.ACTION
);
 // . . .
 }
// . . .
 // operation to be exposed on the management interface
 public void createWorker(String workerType, int workFactor) {
 // . . .
 }
}

In this example, we create an instance of MBeanParameterInfo for each of the
parameters to the operation we want to expose and place the instances into an array. We
then pass this array to the second constructor of MBeanOperationInfo.

Notice the impact property, which is the fifth parameter to the constructor (we used
MBeanOperationInfo.ACTION). Four values for impact are defined on MBeanOperation:

INFO

The state of the MBean will remain unchanged as a result of invoking this
operation, because the operation will only return information.

ACTION

The state of the MBean will be changed in some way as a result of invoking this
operation. This could be as simple as an internal value changing (i.e., something
not on the management interface as an attribute) or as complex as the externally
visible state of the MBean changing.

ACTION_INFO

This operation will return some information about the MBean, and the state of the
MBean will change as a result of invoking this operation. This is a combination of
INFO and ACTION.

UNKNOWN

This value indicates that the impact of invoking the method is not known. When
you use the reflection-based constructor of MBeanOperationInfo, this is the
value to which impact is set.

 90

3.2.1.5 MBeanNotificationInfo

There are three essential properties of an MBean notification:

name

The name of the notification as it appears to a management application

description

The description of the notification as it should appear to a management
application

notifsType (notification types)

The types of notifications that will be emitted by this MBean

MBeanNotificationInfo is the metadata class used by an MBean to indicate to the
MBean server what notification types the MBean emits (we will discuss the JMX
notification model in greater detail in Chapter 6). One instance of this class is necessary
to completely describe a single group of notifications, but what exactly is a "group of
notifications?" A group of notifications is made up of one or more notifications of the
same general type. It is up to you to define what notifications belong together, depending
upon the different types of notifications that are emitted by the application resource the
MBean represents.

Like the other metadata classes, the essential properties for MBeanNotificationInfo are
set by calling its single constructor, which is defined as:

public class MBeanNotificationInfo extends MBeanFeatureInfo
 implements Cloneable, java.io.Serializable {
// . . .
 public MBeanNotificationInfo(String[] notifsType,
 String name,
 String description) {
 // . . .
 }
// . . .
}

We are already familiar with the name and description parameters, but what about
notifsType? This constructor parameter is a String array that contains a group of
notifications that the MBean will emit. A notification is a String of the form:

vendor[.application][.component][.eventGroup].event

where vendor is the name of your company, application is the name of the application
(optional), component is the name of the component (usually the name of the MBean,

 91

also optional), eventGroup is the name of the group to which the event belongs
(optional), and event is the name of the event notification. The minimal notification
String should contain vendor and event, but I encourage you to be as detailed as
possible when naming the notifications your MBeans will emit.

For example, suppose we define a group of notifications for the Queue class from the
sample application. This group of notifications will be for potential stall conditions,
where for some reason the queue appears to be "asleep." Say we define one notification
for the condition when the queue is continuously full for more than a preset amount of
time. This may indicate that the application has stalled, perhaps by a consumer thread
crashing. Then let's define another notification for the condition when the queue is
continuously empty for longer than a preset period of time. This may indicate that a
supplier thread has crashed. These notifications will be defined as
"sample.Queue.stalled.Full" and "sample.Queue.stalled.Empty".

In this case, sample is the vendor, and we have omitted the optional application from
the notification names. Both of these notifications indicate a potential stall condition in
the queue. Now let's create an instance of MBeanNotificationInfo:

public class Queue extends Basic implements DynamicMBean {
// . . .
 public static final String NOTIF_STALLED_FULL =
"sample.Queue.stalled.full";
 public static final String NOTIF_STALLED_EMPTY =
"sample.Queue.stalled.empty";
// . . .
 public Queue(int QueueSize) {
 // . . .
 String[] notificationTypes = new String[2];
 notificationTypes[0] = NOTIF_STALLED_FULL;
 notificationTypes[1] = NOTIF_STALLED_EMPTY;

 MBeanNotificationInfo[] notificationInfo = new
MBeanNotificationInfo[1];

 notificationInfo[0] = new MBeanNotificationInfo(
 notificationTypes,
 "StalledQueueNotifications",
 "Potential stall notifications emitted by the Queue."
);
 // . . .
 }
// . . .
}

We declared the notification Strings as constants on the class because these literal
strings will be needed by the part of the Queue that actually emits the notifications and
can be referenced everywhere by their variable names. As you can see from this example,
creating an MBeanNotificationInfo object for a group of notifications is quite
straightforward.

 92

The convention I suggest here regarding the use of a single instance of
MBeanNotificationInfo to group similar notifications is purely my own. It's not
mentioned in the JMX specification; it just seems to me to be a good idea. Strictly
speaking, you don't have to use this idiom. For example, we could have created an
instance of MBeanNotificationInfo for each notification the MBean will emit:

public class Queue extends Basic implements DynamicMBean {
// . . .
 public static final String NOTIF_STALLED_FULL =
"sample.Queue.stalled.full";
 public static final String NOTIF_STALLED_EMPTY =
"sample.Queue.stalled.empty";
// . . .
 public Queue(int QueueSize) {
 // . . .
 String[] notificationTypes = new String[1];
 notificationTypes[0] = NOTIF_STALLED_FULL;

 MBeanNotificationInfo[] notificationInfo = new
MBeanNotificationInfo[2];

 notificationInfo[0] = new MBeanNotificationInfo(
 notificationTypes,
 "StalledFullQueueNotification",
 "Potential stall notifications emitted when the Queue is full."
);

 notificationTypes = new String[1];
 notificationTypes[0] = NOTIF_STALLED_EMPTY;
notificationInfo[1] = new MBeanNotificationInfo(
 notificationTypes,
 "StalledEmptyQueueNotification",
 "Potential stall notifications emitted when the Queue is empty."
);
 // . . .
 }
// . . .
}

This is a perfectly reasonable approach to use for a small number of notifications.
However, if your MBean emits a lot of notifications, you may want to consider grouping
them and taking the approach shown earlier.

3.2.1.6 MBeanInfo

There are six essential properties of an MBean:

className

The name of the MBean class

description

 93

A description of the MBean

attributes

Metadata about the attributes the MBean exposes

constructors

Metadata about the MBean's constructors

operations

Metadata about the MBean's exposed operations

notifications

Metadata about the notifications emitted by the MBean

A single instance of MBeanInfo is sufficient to completely describe the management
interface for an MBean, because the getters provided by MBeanInfo allow a management
application to drill down into, and retrieve, all of the metadata for an MBean. Think of
this class as the "magic cookie" that the distributed services level of the JMX architecture
uses to expose a dynamic MBean's management interface to a management application.

When getMBeanInfo() is invoked on a dynamic MBean, information in the form of
metadata is returned to the caller. The metadata is contained in an instance of a class
called MBeanInfo, which is at the top of the dynamic MBean metadata hierarchy. It is
through this metadata that the interface is both exposed by the MBean and discovered by
the management application. This class should be created last, because all of the
attributes, parameters, constructors, operations, and notifications must be completely
described before an instance of MBeanInfo can be created.

Like all of the other metadata classes, the MBeanInfo constructor provides a way to set
the essential properties. This means, of course, that you must create the metadata class
instances first so that they are available at the time you create the MBeanInfo instance.
Once instances of the appropriate MBeanAttributeInfo, MBeanConstructorInfo,
MBeanOperationInfo, and MBeanNotificationInfo have been created, they can be
added to MBeanInfo.

The constructor of the MBeanInfo class looks like this:

public class MBeanInfo implements Cloneable, java.io.Serializable {
// . . .
 public MBeanInfo(String className,
 String description,
 MBeanAttributeInfo[] attributes,
 MBeanConstructorInfo[] constructors,

 94

 MBeanOperationInfo[] operations,
 MBeanNotificationInfo[] notifications) {
 // . . .
 }
// . . .
}

Now it's time for the metadata classes describing the attributes, constructors, operations,
and notifications to be added to MBeanInfo. The way to do this is through MBeanInfo's
constructor. You may have noticed in the earlier examples that we created an array of the
metadata objects and then added the objects to the array. Once we create the array of
metadata objects, we can simply pass the arrays to the MBeanInfo constructor.

Example 3-3 shows how to create the MBeanInfo class, using the other metadata classes.
This example ties together all of the previous discussion about metadata classes.

Example 3-3. Creating an instance of MBeanInfo

public class Queue extends Basic implements DynamicMBean {
// . . .
 private MBeanInfo _MBeanInfo;
// . . .
 public static final String NOTIF_STALLED_FULL =
"sample.Queue.stalled.full";
 public static final String NOTIF_STALLED_EMPTY =
"sample.Queue.stalled.empty";
// . . .
 public Queue(int queueSize) {
 // . . .
 // Attributes
 attributeInfo[0] = new MBeanAttributeInfo(
 "QueueSize", Integer.TYPE.getName(),
 "Maximum number of items the queue may contain at one time.",
 true, true, false);
 attributeInfo[1] = new MBeanAttributeInfo(
 "NumberOfConsumers", Integer.TYPE.getName(),
 "The number of consumers pulling from this Queue.",
 true, false, false);
 attributeInfo[2] = new MBeanAttributeInfo(
 "NumberOfSuppliers", Integer.TYPE.getName(),
 "The number of suppliers supplying to this Queue.",
 true, false, false);
 attributeInfo[3] = new MBeanAttributeInfo(
 "QueueFull", Boolean.TYPE.getName(),
 "Indicates whether or not the Queue is full.",
 true, false, true);
 attributeInfo[4] = new MBeanAttributeInfo(
 "QueueEmpty", Boolean.TYPE.getName(),
 "Indicates whether or not the Queue is empty.",
 true, false, true);
 attributeInfo[5] = new MBeanAttributeInfo(
 "Suspended", Boolean.TYPE.getName(),
 "Indicates whether or not the Queue is currently suspended.",
 true, false, true);

 95

 attributeInfo[6] = new MBeanAttributeInfo(
 "EndOfInput", Boolean.TYPE.getName(),
 "Indicates if end-of-input has been signalled by all suppliers.",
 true, false, true);
 attributeInfo[7] = new MBeanAttributeInfo(
 "NumberOfItemsProcessed", Long.TYPE.getName(),
 "The number of items that have been removed from the Queue.",
 true, false, false);
 attributeInfo[8] = new MBeanAttributeInfo(
 "AddWaitTime", Long.TYPE.getName(),
 "No. Milliseconds spent waiting to add because Queue was full.",
 true, false, false);
 attributeInfo[9] = new MBeanAttributeInfo(
 "RemoveWaitTime", Long.TYPE.getName(),
 "No. milliseconds spent waiting to remove because Queue was
empty.",
 true, false, false);
 // Constructors
 Class[] signature = {Integer.TYPE};
 Constructor constructor = null;
 MBeanConstructorInfo[] constructorInfo = new
MBeanConstructorInfo[1];
 try {
 constructor = this.getClass().getConstructor(signature);
 constructorInfo[0] = new MBeanConstructorInfo(
 "Custom constructor", constructor);
 } catch (Exception e) {
 e.printStackTrace();
 }
 // Operations
 MBeanOperationInfo[] operationInfo = new MBeanOperationInfo[3];
 MBeanParameterInfo[] parms = new MBeanParameterInfo[0];
 operationInfo[0] = new MBeanOperationInfo(
 "suspend", "Suspends processing of the Queue.",
 parms, Void.TYPE.getName(), MBeanOperationInfo.ACTION);
 operationInfo[1] = new MBeanOperationInfo(
 "resume", "Resumes processing of the Queue.",
 parms, Void.TYPE.getName(), MBeanOperationInfo.ACTION);
 operationInfo[2] = new MBeanOperationInfo(
 "reset", "Resets the state of this MBean.",
 parms, Void.TYPE.getName(), MBeanOperationInfo.ACTION);
 // Notifications
 MBeanNotificationInfo[] notificationInfo = new
MBeanNotificationInfo[1];
 String[] notificationTypes = new String[2];
 notificationTypes[0] = NOTIF_STALLED_FULL;
 notificationTypes[1] = NOTIF_STALLED_EMPTY;
 notificationInfo[0] = new MBeanNotificationInfo(
 notificationTypes,
 "StalledQueueNotifications",
 "Potential stall notifications emitted by the Queue."
);
 // MBeanInfo
 _MBeanInfo = new MBeanInfo(
 "Queue",
 "Queue MBean",
 attributeInfo,

 96

 constructorInfo,
 operationInfo,
 notificationInfo
);
 }
// . . .
}

In this example, 10 attributes, 1 constructor, 3 operations, and 2 notifications describe the
Queue as a managed resource. Notice the private variable _MBeanInfo, which is used to
hold an instance of the MBeanInfo object that contains the metadata for the Queue MBean.
This variable is returned by the getMBeanInfo() method(part of the DynamicMBean
interface) that is invoked by a management application to discover the management
interface of an MBean.

In this section, we looked at how to create all of the metadata classes necessary to fully
describe the management interface of a dynamic MBean. In the next section, we will take
a closer look at how the information in the MBeanInfo object must match up to the logic
in the implementation of the DynamicMBean interface.

3.2.2 Implementing the DynamicMBean Interface

Example 3-1 showed the definition of the DynamicMBean interface. In this section, we
will first look at some other support classes from the javax.management package that
are important to properly implementing dynamic MBeans. Then we will look at how to
write code to implement the methods on the dynamic MBean interface.

3.2.2.1 Attribute

This class is used to encapsulate a single attribute value. There are two important
properties of this class, name and value, which represent the attribute's name and value,
respectively. The following code shows the significant features of this class:

package javax.management;
// . . .
public class Attribute implements Serializable {
// . . .
 public Attribute(String name, Object value) {
 // . . .
 }
// . . .
 public String getName() {
 // . . .
 }
 public Object getValue() {
 // . . .
 }
// . . .
}

 97

There are three significant features to this class:

Constructor

When creating the class, pass in the name of the attribute and an object reference
for the attribute's value. If the attribute's type is one of the Java fundamental types,
wrap that fundamental type in the appropriate JDK wrapper class (e.g., if the type
is a char, wrap it in an Character object).

Getter for the attribute name

Returns the attribute's name.

Getter for the attribute's value

Returns the attribute's value.

3.2.2.2 AttributeList

Instances of this class are used to hold a List of Attribute instances. The following
code shows the significant features of AttributeList:

package javax.management;
import java.util.ArrayList;
// . . .
public class AttributeList extends ArrayList {
 public AttributeList() {
 }
// . . .
}

AttributeList inherits from ArrayList, which means that all of the methods you are
used to using for an ArrayList—such as get(), set(), and iterator()—are available on
AttributeList (see the JDK Javadoc for more information).

To create an instance of AttributeList, use:

AttributeList attributeList = new AttributeList();

To set the initial capacity of the internal ArrayList to 10, use:

AttributeList attributeList = new AttributeList(10);

To add an Attribute to the AttributeList, use:

Attribute attribute = new Attribute("QueueSize", new Integer(10));
AttributeList attributeList = new AttributeList();
attributeList.add(attribute);

 98

AttributeList is an ArrayList, so there are two ways of getting at the contents of any
AttributeList instance. The first way is to use a java.util.Iterator object:

// assume attributeList is an instance of AttributeList
Iterator iter = attributeList.iterator();
while (iter.hasNext()) {
 Attribute attribute = (Attribute)iter.next();
 // do something with attribute. . .
}

The second way is to access the contents using an index. The code snippet below shows
how to walk through the contents of the AttributeList from beginning to end. However,
you can also access any member of the AttributeList directly by specifying its index
(as long as you don't specify an invalid index, in which case an
IndexOutOfBoundsException will be thrown).

// assume attributeList is an instance of AttributeList
for (int idx = 0; idx < attributeList.size(); idx++) {
 Attribute attribute = (Attribute)attributeList.get(idx);
 // do something with attribute. . .
}

Now, let's take the example of the Queue class from the sample application. We have
already looked at Queue's management interface and how we created the necessary
metadata classes to expose it. Here we will look at how we implement DynamicMBean on
the Queue class so that the management interface functionally corresponds to how it is
exposed.

The getMBeanInfo() method of the DynamicMBean interface is what ties the metadata to
the implementation of the DynamicMBean interface. This is a very simple method that
simply returns an MBeanInfo instance that contains the definition of the management
interface of the MBean. A management application uses getMBeanInfo() to discover what
the management interface looks like. But then what? Well, now that the management
interface is known, the management application uses the DynamicMBean interface to set
and get attribute values and invoke methods on the MBean.

Let's take a closer look at the methods of the DynamicMBean interface and how to
implement them.

3.2.2.3 getAttribute()

This method is used to retrieve a single attribute value and is defined as:

public Object getAttribute(String attribute)
 throws AttributeNotFoundException,
 MBeanException,
 ReflectionException {
// . . .
}

 99

Recall from Section 3.2.1 that every attribute must have a corresponding
MBeanAttributeInfo instance to describe it. One of the required parameters to both of
the constructors of MBeanAttributeInfo is name, which is the name of the attribute.
This name is passed to getAttribute() as a String. If this parameter does not match one of
the attribute names from the metadata, you must throw an
AttributeNotFoundException. The following example shows one such implementation.
When looking at this example, you may want to refer back to Example 3-3, which shows
the metadata created for the attributes of the Queue class, so you can see how the attribute
names there must match up with the code in getAttribute().

public class Queue extends Basic implements DynamicMBean {
// . . .
 public Object getAttribute(String attributeName)
 throws AttributeNotFoundException,
 MBeanException,
 ReflectionException {
 Object ret = null;

 if (attributeName.equals("QueueSize")) {
 ret = new Integer(getQueueSize());
 }
 else if (attributeName.equals("NumberOfSuppliers")) {
 ret = new Integer(getNumberOfSuppliers());
 }
 else if (attributeName.equals("NumberOfConsumers")) {
 ret = new Integer(getNumberOfConsumers());
 }
 else if (attributeName.equals("QueueFull")) {
 ret = new Boolean(isQueueFull());
 }
 else if (attributeName.equals("QueueEmpty")) {
 ret = new Boolean(isQueueEmpty());
 }
 else if (attributeName.equals("Suspended")) {
 ret = new Boolean(isSuspended());
 }
 else if (attributeName.equals("EndOfInput")) {
 ret = new Boolean(isEndOfInput());
 }
 else if (attributeName.equals("NumberOfItemsProcessed")) {
 ret = new Long(getNumberOfItemsProcessed());
 }
 else if (attributeName.equals("AddWaitTime")) {
 ret = new Long(getAddWaitTime());
 }
 else if (attributeName.equals("RemoveWaitTime")) {
 ret = new Long(getRemoveWaitTime());
 }
 else throw new AttributeNotFoundException(
 "Queue.getAttribute(): ERROR: " +
 "Cannot find " + attributeName + " attribute.");
 }
 return ret;
 }

 100

// . . .
}

The code itself is very simple: it's just a large if/else if/else construct in which we
attempt to match the attribute name that is passed as a parameter. If the attribute name
matches, we simply call the appropriate getter, wrap any fundamental types in their
appropriate JDK wrappers, and return the value to the caller. If the attribute value cannot
be found, we throw an AttributeNotFoundException with some information about the
requested attribute.

What if your management interface has no attributes? In that case, the body of this
method should throw an AttributeNotFoundException, because there are no attributes.
For example, if Queue has no attributes, this method will look like this:

public Object getAttribute(String attribute)
 throws AttributeNotFoundException,
 MBeanException,
 ReflectionException {
 throw AttributeNotFoundException("Attribute\'" + attribute +
 "\' not found.");
}

3.2.2.4 setAttribute()

This method is used to set a single attribute value and is defined as:

public void setAttribute(Attribute attribute)
 throws AttributeNotFoundException,
 InvalidAttributeValueException,
 MBeanException,
 ReflectionException {
// . . .
}

What is passed to this class is an Attribute instance, a JMX class that wraps an
attribute's name and value as a pair. Attribute has two getters: one for the name and one
for the value. The name must match one of the attribute names that has been exposed on
the management interface of your MBean, or an AttributeNotFoundException will be
thrown.

public class Queue extends Basic implements DynamicMBean {
// . . .
 public void setAttribute(Attribute attribute)
 throws AttributeNotFoundException,
 InvalidAttributeValueException,
 MBeanException,
 ReflectionException {
 String name = attribute.getName();
 Object value = attribute.getValue();
 if (name.equals("QueueSize")) {
 if (value instanceof Integer)

 101

 setQueueSize(((Integer)value).intValue());
 else {
 throw new InvalidAttributeValueException(
 "QueueSize must be an Integer."
);
 }
 }
 else throw new AttributeNotFoundException(
 "Queue.setAttribute(): ERROR: " +
 "Cannot find attribute \'" + name + "\'.");
 }
 }
// . . .
}

Queue has only one writable attribute, QueueSize, so that's the only one we have to
handle. But notice that we were careful to make sure the object passed inside the
Attribute instance is of the correct type—if it isn't, we throw an
InvalidAttributeValueException . This is standard practice when setting attribute
values inside setAttribute() and prevents all sorts of nasty runtime exceptions from the
JVM. Because it is possible that an ill-mannered management application may ignore the
information in the metadata and pass an attribute value of the wrong type, we should
always be careful and code for this contingency.

3.2.2.5 getAttributes()

This method is used to retrieve the values of a group of attributes and is defined as:

public AttributeList getAttributes(String[] attributeNames) {
 // . . .
}

The attributeNames parameter is a String array that contains the names of the attributes
whose values are to be retrieved. It is very straightforward to implement this method by
delegating to the getAttribute() method for each attribute in the array:

public class Queue extends Basic implements DynamicMBean {
// . . .
 public AttributeList getAttributes(String[] attributeNames) {

 AttributeList resultList = new AttributeList();
 for (int aa = 0; aa < attributeNames.length; aa++){
 try {
 Object value = getAttribute(attributeNames[aa]);
 resultList.add(new Attribute(attributeNames[aa], value));
 } catch (Exception e) {
 // handle the exception. . .
 }
 }
 return(resultList);
 }
// . . .
}

 102

After delegating to getAttribute(), a new Attribute object is instantiated and initialized
with the name of the attribute and its value. This is the AttributeList object that will be
returned to the caller.

3.2.2.6 setAttributes()

This method is used to set the values of a group of attributes and is defined as:

public AttributeList setAttributes(AttributeList attributes) {
 // . . .
}

The attributes parameter is an AttributeList object. As we discussed earlier, the
AttributeList object contains a List of Attribute objects, each of which corresponds
to an attribute to be set. The following example shows how to access each Attribute
object from the AttributeList and set its value by delegating to setAttribute():

public class Queue extends Basic implements DynamicMBean {
// . . .
 public AttributeList setAttributes(AttributeList attributes) {
 AttributeList attributeList = new AttributeList();
 for (int aa = 0; aa < attributes.size(); aa++) {
 try {
 Attribute attribute = (Attribute)attributes.get(aa);
 setAttribute(attribute);
 String name = attribute.getName();
 Object value = getAttribute(name);
 attributeList.add(new Attribute(name, value);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 return attributeList;
 }
// . . .
}

Notice the emphasized lines. We retrieve the Attribute object from the AttributeList
and delegate the actual setting of the value to setAttribute(). The JMX specification states
that the attributes whose values were successfully set should be returned in an
AttributeList. It is conceivable that this list could differ from the AttributeList that
was passed into setAttributes(), so we must handle any exceptions thrown from
setAttribute() gracefully and continue to process the remaining Attribute objects.

Because the attribute that has been set may not be readable, we delegate the retrieval of
its new value to getAttribute(). If the attribute is not readable, getAttribute() throws an
exception that prevents the returned AttributeList object from containing the
Attribute object representing that attribute. If the attribute is readable, getAttribute()
simply returns the value and everything proceeds.

 103

3.2.2.7 invoke()

This method is used to invoke an operation on an MBean's management interface and is
defined as:

public Object invoke(String operationName,
 Object params[],
 String signature[])
 throws MBeanException,
 ReflectionException {
 // . . .
}

operationName is the name of the management operation to invoke and must match
exactly one of the operations for which there is a corresponding MBeanOperationInfo
instance. params is an array of objects that contains the actual parameter values that must
be passed to the operation. signature is an array of Class objects that represents the
signature of the operation.

We first check to see if the operationName parameter matches one of the operations
exposed on the MBean's management interface. If no match is found, a
ReflectionException should be thrown. Otherwise, this method should check to make
sure the signature matches the expected signature of the operation. If it does not, a
ReflectionException should be thrown. Next, the params array should be checked to
be sure that the objects passed are actually of the correct type. If they are not, a
ReflectionException should be thrown. If they are of the correct type, the invocation
should be made and the parameters passed. The following example shows how to
implement this algorithm for invoke():

public class Queue extends Basic implements DynamicMBean {
// . . .
 public Object invoke(String operationName,
 Object params[],
 String signature[])
 throws MBeanException,
 ReflectionException {
 Object ret = null;
 if (operationName.equals("reset")) {
 reset();
 }
 else if (operationName.equals("suspend")) {
 suspend();
 }
 else if (operationName.equals("resume")) {
 resume();
 }
 else {
 throw new ReflectionException(
 new NoSuchMethodException(operationName),
 "Cannot find the operation \'" +
 operationName + " in " + dClassName);
 }

 104

 }
// . . .
}

The logic inside this method is relatively simple. We just look at the operationName
parameter, and if it matches one of the operations for which we created an
MBeanOperationInfo instance, we invoke the appropriate method. Otherwise, we throw
a NoSuchMethodException wrapped inside a ReflectionException.

3.3 Dynamic MBean Inheritance Patterns

In this section, we will look at how the introspection process performed by the MBean
server causes the inheritance patterns available to dynamic MBeans to differ from those
available to standard MBeans.

Suppose that our application has the inheritance graph shown in Figure 3-2.

Figure 3-2. UML diagram showing a possible inheritance scenario for the sample
application

In this scenario, each class (with the exception of Supplier and Consumer) explicitly
implements the DynamicMBean interface. Based on the information in the figure, what
would you expect the management interface of, say, Controller to be? If you said that it
would be the union of the management interface of Basic and Controller, you would
be mistaken. You may recall from the previous chapter that using inheritance pattern #4
would allow a child class to augment its management interface with that of its parent
class. However, no such inheritance patterns are available for dynamic MBeans.

What do you suppose the management interface of Supplier is? In fact, it may be a
better question to ask whether Supplier is an MBean at all. The answer is yes, Supplier
is indeed an MBean (in fact, a dynamic MBean), because it may inherit the dynamic
MBean interface from its parent class. How is this possible? When Supplier is

 105

registered with the MBean server, the MBean server performs its introspection and looks
to see whether Supplier exposes a management interface. Because it does not, the
MBean server next looks to its parent class, Worker. The MBean server notices that
Worker does implement an MBean interface, declares Supplier to be an MBean, and
delegates all MBean functionality to Worker (where the management interface is actually
implemented).

Let's look at another example. Suppose that we have the inheritance scenario shown in
Figure 3-3, again using the classes from the application.

Figure 3-3. Another possible inheritance scenario, shown in UML notation

Notice that Worker does not implement DynamicMBean. What impact do you suppose that
has on the management interface exposed by Supplier and Consumer? If you said that
Supplier and Consumer are dynamic MBeans whose management interface looks
exactly like that of Basic, you are correct. Let's look again at the introspection that is
performed by the MBean server, using Supplier as an example. Supplier does not
implement an MBean interface, so the MBean server moves up the inheritance graph to
Worker and notices that it does not implement an MBean interface either. The MBean
server continues up the inheritance graph to Worker's parent class, Basic, and notices
that it implements the DynamicMBean interface, so it declares Supplier a dynamic
MBean and delegates all MBean functionality to Basic. The MBean server will continue
walking the inheritance graph during its introspection process either until an MBean
interface is found or until the top of the inheritance tree is reached without finding an
MBean interface (at which point a NotCompliantMBeanException is thrown).

A class cannot implement both DynamicMBean and a standard
MBean interface. Suppose that Queue had been declared as:

public class Queue extends Basic
 implements QueueMBean, DynamicMBean {

 106

// . . .
}

When the MBean server performs introspection, it will detect that
Queue is attempting to implement both a standard and a dynamic
MBean interface and will throw a NotCompliantMBeanException.

As I mentioned earlier, unlike standard MBeans, whose management interfaces can be
composed from the MBean interfaces they explicitly implement as well as any MBean
interfaces implemented by their parent class (and their parent's parent class, and so on),
dynamic MBeans' interfaces do not aggregate. Rather, the management interface exposed
by a dynamic MBean is that of the nearest implementation of DynamicMBean as the
inheritance graph is traversed during introspection. If the MBean server detects an
implementation of DynamicMBean, inheritance traversal stops. In other words, while a
standard MBean can use the inheritance patterns discussed in Chapter 2 to create an
aggregate of the management interface of its parent class, a dynamic MBean cannot.

However, all is not lost. There are two approaches that we can take to achieve the
aggregation we desire, while at the same time writing perfectly compliant dynamic
MBeans: explicit superclass exposure and superclass delegation.

Explicit superclass exposure means that we will write code inside the child class's
implementation of DynamicMBean to explicitly expose attributes and operations from the
parent class's management interface. These attributes are explicitly mentioned by name in
the code. This approach offers us more control over what is exposed on the child class's
management interface and allows us to selectively expose only those attributes and
operations from the parent class that we deem necessary on the child class's management
interface. However, this means that we are essentially writing code in the child class that
has already been written in the parent class, which results in duplicate code and a larger
code base.

Superclass delegation means that we will write code in the child class to delegate the
attribute set()/get() and operation invoke() calls to the parent class through the super
keyword, should the attribute or operation not be found on the child class. This approach
results in a cleaner implementation, because we don't have to know what the management
interface of the superclass looks like; we only need to know that it has one. The drawback
of this approach is that it forces us into a wholesale exposure of the parent class's
management interface on the child class.

Let's look at these two approaches one at a time, starting with explicit superclass
exposure.

3.3.1 Explicit Superclass Exposure

Remember how each attribute and operation is assigned a name? Explicit superclass
exposure just means that we are going to include else if blocks in the getAttribute(),

 107

setAttribute(), and invoke() methods that explicitly mention the names of the attributes (in
the case of getAttribute() and setAttribute()) and operations (in the case of invoke()).
These three methods will then call the appropriate getter, setter, or method, respectively.
Let's look at an example from the application.

Queue inherits from Basic, and Basic implements the DynamicMBean interface for its
attributes (TraceOn, DebugOn, and NumberOfResets) and its operations (enableTracing,
disableTracing, enableDebugging, and disableDebugging). Recall from Example 3-3
how we created all of the metadata classes for Queue's management interface in Queue's
constructor. If we are going to augment Queue's management interface with attributes and
operations from Basic's management interface, we must expose those attributes and
operations on the MBeanInfo instance that is returned from Queue's getMBeanInfo()
method. Thus, we must create the metadata classes for these attributes and operations in
Queue's constructor. Example 3-4 shows how to do this, showing enough of Example 3-3
to provide you some context.

Example 3-4. Creating metadata classes to expose attributes and operations from Queue's
parent class, Basic, through explicit superclass exposure

public class Queue extends Basic implements DynamicMBean {
// . . .
 private MBeanInfo _MBeanInfo;
 // . . .
 public Queue(int queueSize) {
 // . . .
 // Attributes
 int numberOfParentAttributes = 2;
 MBeanAttributeInfo[] attributeInfo =
 new MBeanAttributeInfo[numberOfParentAttributes + 10];
 attributeInfo[0] = new MBeanAttributeInfo(
 "QueueSize", Integer.TYPE.getName(),
 "Maximum number of items the queue may contain at one time.",
 true, true, false);
 // . . .
 attributeInfo[9] = new MBeanAttributeInfo(
 "RemoveWaitTime", Long.TYPE.getName(),
 "No. milliseconds spent waiting to remove because Queue was
empty.",
 true, false, false);
 attributeInfo[10] = new MBeanAttributeInfo(
 "NumberOfResets", Integer.TYPE.getName(),
 "The number of times reset() has been called.",
 true, false, false);
 attributeInfo[11] = new MBeanAttributeInfo(
 "TraceOn", Boolean.TYPE.getName(),
 "Indicates whether or not tracing is on.",
 true, false, true);
 // . . .
 // Constructors
 // . . .
 // Operations
 int numberOfParentOperations = 2;
 MBeanOperationInfo[] operationInfo =

 108

 new MBeanOperationInfo[numberOfParentOperations+3];
 MBeanParameterInfo[] parms = new MBeanParameterInfo[0];
 operationInfo[0] = new MBeanOperationInfo(
 "suspend", "Suspends processing of the Queue.",
 parms, Void.TYPE.getName(), MBeanOperationInfo.ACTION);
 operationInfo[1] = new MBeanOperationInfo(
 "resume", "Resumes processing of the Queue.",
 parms, Void.TYPE.getName(), MBeanOperationInfo.ACTION);
 operationInfo[2] = new MBeanOperationInfo(
 "reset", "Resets the state of this MBean.",
 parms, Void.TYPE.getName(), MBeanOperati
 operationInfo[3] = new MBeanOperationInfo(

onInfo.ACTION);

 "enableTracing", "Enables tracing.",
 parms, Void.TYPE.getName(), MBeanOperationInfo.ACTION);
 operationInfo[4] = new MBeanOperationInfo(
 "disableTracing", "Disables tracing.",
 parms, Void.TYPE.getName(), MBeanOperationInfo.ACTION);
 // . . .
 // Notifications
 // no notifications for this MBean, also no parent notifications
 MBeanNotificationInfo[] notificationInfo = new
MBeanNotificationInfo[0];
 // . . .
 // MBeanInfo
 _MBeanInfo = new MBeanInfo(
 "Queue",
 "Queue MBean",
 attributeInfo,
 constructorInfo,
 operationInfo,
 notificationInfo
);
 }
// . . .
}

As you can see from Example 3-4, creating the necessary metadata classes requires only
knowledge of the attributes and operations and extra code. Notice that we didn't create
metadata for the DebugOn attribute or the enableDebugging and disableDebugging
operations. This is just to show you that when you select explicit superclass exposure as
the management interface inheritance approach for your dynamic MBeans, you can pick
and choose which attributes and operations to expose from the parent class.

We must also make modifications to Queue's implementation of DynamicMBean, as
discussed in the next section.

3.3.1.1 getAttribute()

Implementing this method is a simple matter of adding the same number of else if
blocks as the number of attributes we're exposing from the parent class:

public class Queue extends Basic implements DynamicMBean {
// . . .

 109

 public Object getAttribute(String attributeName)
 throws AttributeNotFoundException,
 MBeanException,
 ReflectionException {
 Object ret = null;

 if (attributeName.equals("QueueSize")) {
 ret = new Integer(getQueueSize());
 }
 // . . .
 else if (attributeName.equals("RemoveWaitTime")) {
 ret = new Long(getRemoveWaitTime());
 }
 else if (attributeName.equals("NumberOfResets")) {
 ret = new Integer(getNumberOfResets());
 }
 else if (attributeName.equals("TraceOn")) {
 ret = new Boolean(isTraceOn());
 }
 else throw new AttributeNotFoundException(
 "Queue.getAttribute(): ERROR: " +
 "Cannot find " + attributeName + " attribute.");
 }
 return ret;
 }
// . . .
}

We exposed two attributes from the parent class, so we write two else if blocks for
those attributes and delegate to the appropriate method. We know we can call this method
because of Java inheritance.

3.3.1.2 setAttribute()

There are no writable attributes on Basic, but if there were, the logic would be similar to
that of getAttribute(). Suppose, for the purposes of example, that TraceOn is a writable
attribute. In that case, the implementation of setAttribute() would look like this:

public class Queue extends Basic implements DynamicMBean {
// . . .
 public void setAttribute(Attribute attribute)
 throws AttributeNotFoundException,
 InvalidAttributeValueException,
 MBeanException,
 ReflectionException {
 String name = attribute.getName();
 Object value = attribute.getValue();
 // See if attribute is on parent class
 if (name.equals("QueueSize")) {
 setQueueSize(((Integer)value).intValue());
 }
 else if (name.equals("TraceOn")) {
 setTraceOn(((Boolean)value).booleanValue());
 }

 110

 else throw new AttributeNotFoundException(
 "Queue.getAttribute(): ERROR: " +
 "Cannot find " + attributeName + " attribute.");
 }
// . . .
}

If the name of the attribute to set is "TraceOn," we simply invoke the setter for the
attribute.

3.3.1.3 invoke()

You are probably starting to see a pattern here. When you use explicit superclass
exposure as the management interface inheritance mechanism for your MBeans, you
simply include extra else if blocks for the attributes and, in this case, the operations that
are to be exposed.

The following example shows how to use this approach to modify invoke() to expose
Basic's management interface methods:

public class Queue extends Basic implements DynamicMBean {
// . . .
 public Object invoke(String operationName,
 Object params[],
 String signature[])
 throws MBeanException,
 ReflectionException {
 Object ret = Void.TYPE;
 ret = Void.TYPE;
 if (operationName.equals("suspend")) {
 suspend();
 }
 else if (operationName.equals("resume")) {
 resume();
 }
 else if (operationName.equals("enableTracing")) {
 enableTracing();
 }
 else if (operationName.equals("disableTracing")) {
 disableTracing();
 }
 else {
 throw new ReflectionException(
 new NoSuchMethodException(operationName),
 "Queue.invoke(): ERROR: " +
 "Cannot find the operation " + operationName + "!");
 }
 return ret;
 }
// . . .
}

 111

One drawback of using explicit superclass exposure is that the child class must have
explicit knowledge of the parent class's management interface. Also, this approach is
more susceptible to errors when code changes to the parent class are necessary. However,
you must weigh these risks against the benefits of being able to selectively expose
attributes and operations from the parent class's management interface on the child class
and base your decision of whether or not to use this approach on that information.

3.3.2 Superclass Delegation

This is the more generic of the two approaches to dynamic MBean management interface
inheritance. With superclass delegation, when figuring out which attribute to get/set or
operation to invoke, the child class first looks at its own management interface and then,
if the attribute or operation is not found, delegates to its parent class (which may delegate
to its parent class, and so on). This requires changes to how the metadata is created for
the child class. Let's look at an example from the application.

Queue inherits from Basic, and Basic implements the DynamicMBean interface for its
attributes (TraceOn, DebugOn, and NumberOfResets) and its operations (enableTracing,
disableTracing, enableDebugging, and disableDebugging). Recall from Example 3-4
how we created all of the metadata classes for Queue's management interface in Queue's
constructor. If we are going to augment Queue's management interface with attributes and
operations from Basic's management interface, we must expose those attributes and
operations on the MBeanInfo instance that is returned from Queue's getMBeanInfo()
method. Thus, we must create the metadata classes for these attributes and operations in
Queue's constructor. Example 3-5 shows how to do this, showing enough of Example 3-4
to provide you some context.

Example 3-5. Creating metadata classes to expose attributes and operations from Queue's
parent class, Basic, through superclass delegation

public class Queue extends Basic implements DynamicMBean {
// . . .
 private MBeanInfo _MBeanInfo;
 // . . .
 public Queue(int queueSize) {
 MBeanInfo parentInfo = super.getMBeanInfo();
 // . . .
 // Attributes
 MBeanAttributeInfo[] parentAttributes = parentInfo.getAttributes();
 int numberOfParentAttributes = parentAttributes.length;
 MBeanAttributeInfo[] attributeInfo =
 new MBeanAttributeInfo[numberOfParentAttributes + 10];

System.arraycopy(parentAttributes,0,attributeInfo,0,numberOfParentAttri
butes);
 attributeInfo[numParentAtts+0] = new MBeanAttributeInfo(
 "QueueSize", Integer.TYPE.getName(),
 "Maximum number of items the queue may contain at one time.",
 true, true, false);
 attributeInfo[numParentAtts+1] = new MBeanAttributeInfo(

 112

 "NumberOfConsumers", Integer.TYPE.getName(),
 "The number of consumers pulling from this Queue.",
 true, false, false);
 // . . .
 // Constructors
 // . . .
 // Operations
 MBeanOperationInfo[] parentOperations = parentInfo.getOperations();
 int numberOfParentOperations = parentOperations.length;
 MBeanOperationInfo[] operationInfo =
 new MBeanOperationInfo[numberOfParentOperations+2];

System.arraycopy(parentOperations,0,operationInfo,0,numberOfParentOpera
tions);
 MBeanParameterInfo[] parms = new MBeanParameterInfo[0];
 operationInfo[numParentOps+0] = new MBeanOperationInfo(
 "suspend", "Suspends processing of the Queue.",
 parms, Void.TYPE.getName(), MBeanOperationInfo.ACTION);
 operationInfo[numParentOps+1] = new MBeanOperationInfo(
 "resume", "Resumes processing of the Queue.",
 parms, Void.TYPE.getName(), MBeanOperationInfo.ACTION);
 // . . .
 // Notifications
 MBeanNotificationInfo[] parentNotifications =
parentInfo.getNotifications();
 int numberOfParentNotifications = parentNotifications.length;
 // no notifications for this MBean, use pa
 MBeanNotificationInfo[] notificationInfo =

rent notifications

 new MBeanNotificationInfo[numberOfParentNotifications+0];
 System.arraycopy(parentNotifications,0, ationInfo,0, notific
 numberOfParentNotifications);
 // . . .
 // MBeanInfo
 _MBeanInfo = new MBeanInfo(
 "Queue",
 "Queue MBean",
 attributeInfo,
 constructorInfo,
 operationInfo,
 notificationInfo
);
 }
// . . .
}

The highlighted lines in Example 3-5 are the lines that must be added to create the
necessary metadata classes. Actually, we're only making a copy of the reference to the
metadata classes that were created by the parent class. We could instead have chosen to
clone() the instances, but this approach seemed a reasonable one for the purpose at hand.
Once we get the MBeanInfo instance that contains the metadata for the parent class, it is a
simple matter of making sure the attribute, operation, and notification arrays are large
enough to accommodate the attributes, operations, and notifications for both the Queue
class and its parent class. That's it; it's pretty straightforward.

 113

We must also make modifications to Queue's implementation of DynamicMBean, as
discussed in the next section.

3.3.2.1 getAttribute()

This method must have the same signature as its parent method, so we first check to see if
the requested attribute is available on the child class and then, if it is not, delegate to the
parent class's getAttribute() method:

public class Queue extends Basic implements DynamicMBean {
// . . .
 public Object getAttribute(String attributeName)
 throws AttributeNotFoundException,
 MBeanException,
 ReflectionException {
 Object ret = null;
 if (attributeName.equals("QueueSize")) {
 ret = new Integer(getQueueSize());
 }
 // . . .
 else {
 ret = super.getAttribute(attributeName);
 }
 return ret;
 }
// . . .
}

I omitted some of the lines of code in this example, for the sake of brevity. (If you
compare this example to the corresponding example from the explicit superclass
exposure pattern, you can see how I simplified the code.) If the requested attribute is not
available on the parent class, we can simply let the AttributeNotFoundException
propagate out. The message generated will be from the parent class, but we can always
surround the superclass delegation with a try/catch block and augment or modify any
exception thrown by the superclass.

3.3.2.2 setAttribute()

There are no writable attributes on either Queue or Basic, but superclass delegation is a
generic approach, so the child class makes no assumptions about access to the attributes
on the parent class. The following example shows how to implement setAttribute() using
this approach:

public class Queue extends Basic implements DynamicMBean {
// . . .
 public void setAttribute(Attribute attribute)
 throws AttributeNotFoundException,
 InvalidAttributeValueException,
 MBeanException,
 ReflectionException {
 String name = attribute.getName();

 114

 Object value = attribute.getValue();
 if (name.equals("QueueSize")) {
 setQueueSize(((Integer)value).intValue());
 }
 super.setAttribute(attribute);
 }
// . . .
}

This example doesn't contain the contrived writable TraceOn attribute of Basic, but
notice how much simpler the code is compared to the corresponding explicit superclass
exposure example from earlier in this chapter. If the attribute is not found on the child
class, we simply delegate to the parent class. If an AttributeNotFoundException is
thrown, we simply let it propagate out of this method.

3.3.2.3 invoke()

Superclass delegation works the same way for this method as well. First we check to see
if the method is exposed on the child class interface. If it is not, we delegate to the
superclass:

public class Queue extends Basic implements DynamicMBean {
// . . .
 public Object invoke(String operationName,
 Object params[],
 String signature[])
 throws MBeanException,
 ReflectionException {
 Object ret = Void.TYPE;
 ret = Void.TYPE;
 if (operationName.equals("suspend")) {
 suspend();
 }
 else if (operationName.equals("resume")) {
 resume();
 }
 else {
 super.invoke(operationName, params, signature);
 }
 return ret;
 }
// . . .
}

Again, the code is greatly simplified because we delegate to the superclass if the method
to invoke is not recognized.

One drawback of this approach is that you cannot selectively perform management
interface inheritance; superclass delegation is generic and exposes the entire management
interface of the parent class. However, this also means that changes to the parent class's
management interface will not ripple through the child class, as is the case with explicit
superclass exposure.

 115

3.3.3 Mixing It Up

You may be wondering at this point why you can't simply selectively expose the desired
attributes from the parent management interface and generically delegate in the
DynamicMBean implementation. There is no reason that you cannot take this approach; it's
entirely up to you.

 116

Chapter 4. Model MBeans

Model MBeans are the most powerful type of MBean. Instrumenting your application
resources as model MBeans provides you with the most features and flexibility of any of
the MBean types that are fully specified by the current JMX specification. Furthermore,
this power comes without a commensurate level of complexity! In this chapter, we will
examine the features provided by model MBeans and why you might choose this
instrumentation strategy over the others we have discussed so far. Then we will look at
how model MBeans work, including a detailed look at the Descriptor class and the
metadata classes that are used by resources instrumented as model MBeans. We will also
take a look at RequiredModelMBean, a model MBean class that is required to be present
in every JMX implementation. Finally, we will develop a working example that uses the
same design as the examples of the previous chapters, so you can compare and contrast
model MBeans with standard and dynamic MBeans.

An entire book could be devoted to model MBeans, as they are by far the most complex
type of MBean. The objective of this chapter is simply to familiarize you sufficiently
with the major issues involved in instrumenting your resources as model MBeans that
you can do so.

This chapter assumes that you have read the previous chapter, or are
familiar with dynamic MBeans. You should be familiar with the
DynamicMBean interface and how to use metadata classes to describe
an MBean's management interface.

In this chapter, we will refer to MBean features, or simply features. A feature is a
constituent of the management interface: an attribute, operation, constructor, parameter,
or notification.

4.1 Why Use Model MBeans?

Model MBeans are dynamic MBeans and so use metadata to describe the features of the
MBean. However, there is one significant difference: model MBeans offer the
instrumentation developer a metadata class called Descriptor, which is a collection of
name/value pairs in which the name is a String and the value is an Object. This allows
for a much richer set of metadata to be exchanged with the agent level, other MBeans,
and management applications. Model MBeans offer some significant benefits over other
JMX instrumentation strategies, as described in this section.

First, instrumenting your application resources as model MBeans allows you to more
quickly perform the instrumentation. You can instrument a resource as a model MBean in
just a few lines of code. When a resource's attributes are accessed or changed, or when an
operation is invoked, the mechanism used by model MBeans is a callback. In other words,
when the metadata for an MBean feature (such as an attribute or operation) is created, a
reference to the instance of the resource is stored with the metadata, along with the name

 117

of the attribute getter/setter or operation. When a management application manages the
MBean, it simply uses this information to call back into the resource.

A second benefit of model MBeans is the feature set that comes along with them. Model
MBeans have a rich set of features, including support for:

• Automatic attribute-change notifications
• Persistence of the MBean's state at predefined intervals
• Logging of certain significant events in state changes of the MBean
• Accessing MBean state from a cache to improve performance for attributes whose

values have a relatively long freshness

A third benefit of model MBeans is that the resource you are instrumenting does not
require any code changes. This is a significant advantage when instrumenting existing
application or third-party resources that provide a well-defined API. Unlike standard or
dynamic MBeans, the resource itself does not have to implement anything to be a
perfectly compliant JMX resource. All that is required is that somewhere in the code
execution stream there must be code that creates the necessary Descriptor and other
metadata classes to instrument the resource. A logical place for this code is in the
resource itself, but JMX does not require this.

So how can model MBeans offer so much ease of use, flexibility, and power without a
corresponding boost in complexity over standard and dynamic MBeans? We will discuss
that and much more in the next section.

4.2 How Do Model MBeans Work?

Like all other MBean types, model MBeans must be created and registered with the
MBean server, and, as with dynamic MBeans, the management interface of your resource
is exposed through metadata classes. The similarities end there.

Every compliant JMX implementation must ship a class called RequiredModelMBean.
This class is instantiated and registered with the MBean server, and it implements several
interfaces (including DynamicMBean) that make the life of the instrumentation developer
easier. But what is it that makes a model MBean tick? What makes a model MBean work
and live up to its reputation (which we discussed in the previous section)? The rest of this
section is devoted to answering those questions.

4.2.1 Model MBean Descriptors

The key difference between instrumenting a resource as a model MBean versus as a
dynamic MBean is the Descriptor interface. A class implementing this interface
describes certain properties of the MBean to the agent level of the JMX architecture,
other MBeans, and management applications. Each descriptor contains one or more fields,
which have corresponding Object values. Think of a field as a property of the MBean
that gives some other party in the system (usually a management application) a little

 118

"nugget" of information about the MBean or one of its features (such as an attribute or
operation). Of course, in order to exploit the full power of a descriptor, the management
application must know about model MBeans. If the management application knows
nothing of model MBeans, it simply treats the MBean as it would any other.
Unfortunately, it is then unable to exploit the additional metadata contained in the
descriptor. Example 4-1 shows the Descriptor interface.

Example 4-1. The Descriptor interface

public interface Descriptor extends java.io.Serializable {

 public Object getFieldValue(String fieldName)
 throws RuntimeOperationsException;

 public void setField(String fieldName, Object fieldValue)
 throws RuntimeOperationsException;

 public String[] getFields();

 public String[] getFieldNames();

 public Object[] getFieldValues(String[] fieldNames);

 public void removeField(String fieldName);

 public void setFields(String[] fieldNames, Object[] fieldValues)
 throws RuntimeOperationsException;

 public Object clone() throws RuntimeOperationsException;

 public boolean isValid() throws RuntimeOperationsException;
}

As you can see from Example 4-1, the Descriptor interface revolves around the idea of
a field. A field is a name/value pair in which the name is a String that contains the name
of the field and the value is an Object that is the value of the field.

Fields have two uses. First, field values are used internally by the JMX implementation—
for example, to determine when to retrieve the value of an attribute from the internal
cache or when to invoke the getter for that attribute. The second use of Descriptor fields
is to provide more information to the agent level or a management application about an
MBean or one of its features. This information can then be exploited by any agent or
management application that is aware of model MBeans. We will discuss these two types
of fields separately, starting with those fields that are used by the JMX implementation
(which, for the purposes of this discussion, is the JMX RI). Among the fields used by the
JMX RI are several that are required, which will be pointed out when they are presented.
None of the fields used by the agent level or management applications are required for
JMX compliance, but some of those fields have constraints on the possible values they
may have. These will also be pointed out when they are presented.

The fields used by the JMX RI are:

 119

• class
• currencyTimeLimit
• default
• descriptorType (required)
• export
• getMethod
• log
• logFile
• name (required)
• persistPeriod
• persistPolicy
• role
• setMethod
• severity
• value
• visibility

All of these fields are predefined by the JMX specification and are considered to be
reserved. They are discussed in detail in the sections that follow.

4.2.1.1 class

This field is not required and applies only to operations. The value of this field is the
string representation of the Class object of the managed resource. For example, if an
instance of the application class Queue is instrumented as a model MBean, the value of
this field would be "sample.model.Queue". If the object is an Integer, the string
representation of its Class object would be "java.lang.Integer". Remember, the
string representation of a Class object is always fully qualified.

Example: "class=java.lang.Integer"

4.2.1.2 currencyTimeLimit

This field is not required and applies to attributes and operations. The value of this field
is a String containing the number of seconds that the value field of an attribute or the
lastReturnedValue field of an operation is valid. Each time an attribute's getter is
called, the value field is updated with the latest value for the attribute, and the
lastUpdatedTimeStamp field is set to the current system time.

Once the number of seconds specified by currencyTimeLimit plus the value of
lastUpdatedTimeStamp exceeds the current system time, the attribute's value is
considered stale. At any time before that, however, when the attribute's value is requested,
the value field is simply returned to the caller.

By the same token, when an operation is invoked, the lastReturnedValue field is
updated and lastReturnedTimeStamp is set to the current system time. Once the number
of seconds specified by currentTimeLimit plus the value of lastReturnedTimeStamp

 120

exceeds the current system time, the lastReturnedValue is considered stale and the
operation is invoked.

This is how caching is performed in the JMX RI. It minimizes the impact of the
management infrastructure on application performance for attributes and operations
whose values and returned values, respectively, do not necessarily need to be accessed in
real time.

If the value of this field is 0, the getter for the attribute is always called. If the value of
this field is -1, the attribute's value is never considered to be stale.

Example: "currencyTimeLimit=5"

4.2.1.3 default

This field is not required and applies only to attributes. The value of this field is a
reference to an object of the same type as the attribute. For example, suppose that the
attribute's type is Float. The value of default would then be a Float object that
contains the default value.

This value is returned only if no getMethod field is defined. If a getMethod is defined,
this field is ignored by the RI. This field can be set only by using the setField() method of
the Descriptor object.

4.2.1.4 descriptorType

This field is required and applies to the MBean, attributes, operations (including
constructors), and notifications. The value of this field is a String that contains one of
the following fixed values:

MBean

The descriptor is for an MBean.

attribute

The descriptor is for an attribute.

operation

The descriptor is for an operation or constructor, or for the getter or setter for an
attribute.

notification

The descriptor is for a notification.

 121

Any other value will result in an exception being thrown when you attempt to register the
model MBean with the MBean server.

Example: "descriptorType=attribute"

4.2.1.5 export

The meaning of this field is somewhat vague, as it relates to the export policy of an
MBean in a distributed environment (and the distributed services level of the JMX
architecture has yet to be specified). The value of the field is the fully qualified class
name of an object that is capable of making the MBean locatable—that is, an object that
allows the MBean to be found in a distributed environment. If the MBean is not locatable,
or if this behavior is not supported, the value of this field should be set to F.

Example: "export=F"

4.2.1.6 getMethod

This field is not required and applies only to attributes. Although it is not required, if you
want to be able to access the value of an attribute, this field is a must. If this field is not
provided, the MBean server tries to use the default field value or the value field value
to provide a value. The value of getMethod is a String that contains the name of the
method on the managed resource that acts as the getter for the attribute.

Example: "getMethod=isQueueFull"

4.2.1.7 log

This field is not required and applies only to notifications in the current RI. The value of
this field is a Boolean object that contains true if notifications are to be logged or false
if they are not. If you want to set this field value to a Boolean object, you must use the
setField() method of the Descriptor object. The value of this field may also be T for
true or F for false.

Example: "log=T"

4.2.1.8 logFile

This field is not required and applies only to notifications in the current RI. However, this
field is required if log is set to true. If log is true but the logFile field either is not set
or is set to an invalid value, no logging will be performed. The value of this field is a
String that contains the full path to the log file to which notifications will be logged. If
the value of logFile is not fully qualified, the log file will be written to the current
directory.

Example: "logFile=/usr/home/steve/jmxlog"

 122

4.2.1.9 name

This field is required and applies to the MBean, attributes, operations (including
constructors) and notifications. The value of this field is a String that must match
exactly what is passed as the name parameter to the appropriate metadata constructor. For
example, suppose we have an attribute called WorkFactor. When we create the
ModelMBeanAttributeInfo object, we must pass WorkFactor as the name parameter
(which happens to be the first parameter) to the constructor.

Example: "name=WorkFactor"

The JMX specification states that this field's value is case-sensitive.
However, in the JMX 1.0 RI, this does not appear to be the case.
When instrumenting your resources, be careful to ensure that you
match the case between this field and the name parameter of the
metadata object. In future releases of the RI, case-sensitivity may be
in place, causing your instrumentation to break.

4.2.1.10 persistPeriod

This field is not required and applies to the MBean and attributes. The value of this field
is a String containing the number of seconds that should elapse before the attribute
value is written to persistent storage. The value of this field may also be a reference to an
Integer object. If you want to set this field value to an Object reference, you must use
the setField() method of the Descriptor object. This field is valid only if
persistPolicy is set to OnTimer or NoMoreOftenThan; otherwise, it is ignored.

Example: "persistPeriod=10"

4.2.1.11 persistPolicy

This field is not required and applies to the MBean and attributes. The value of this field
is a String that contains one of the following values:

Never

The attribute is never written to persistent storage.

OnTimer

The attribute value is persisted whenever the number of seconds specified by the
persistPeriod field expires.

OnUpdate

The attribute value is persisted whenever the attribute's value changes.

 123

NoMoreOftenThan

The attribute value is persisted only when the minimum number of seconds that
should expire, as specified by the persistPeriod field, have elapsed.

Example: "persistPolicy=OnTimer"

4.2.1.12 role

This field is not required and applies only to operations. The following values for this
field are currently recognized by the JMX RI:

operation

Used for operations only

constructor

Used for constructors only

getter

Used if the operation to be invoked is the getter for an attribute

setter

Used if the operation to be invoked is the setter for an attribute

Example: "role=getter"

4.2.1.13 setMethod

This field is not required and applies only to attributes. Although it is not required, if you
want to be able to modify the value of an attribute, this field is a must. The value of
setMethod is a String that contains the name of the method on the managed resource
that acts as the setter for the attribute.

Example: "setMethod=setQueueSize"

4.2.1.14 severity

This field is not required and applies only to notifications. The JMX specification defines
seven numeric String values, ranging from 0 to 6, as shown in Table 4-1.

Table 4-1. Predefined severity values and meanings
Value Meaning

 124

0 Unknown or indeterminate
1 Nonrecoverable
2 Critical or failure
3 Major or severe
4 Minor, marginal, or error
5 Warning
6 Normal or informative

You may create your own values for severity, but consider those summarized in Table
4-1 to be reserved. This helps to ensure compatibility between vendors.

Example: "severity=3"

4.2.1.15 value

This field is not required and applies only to attributes. This field acts as a cache for the
current value of the attribute. Each time an attribute's value is accessed or changed, this
field is updated to reflect the current value. This field can be used in conjunction with
currencyTimeLimit to minimize the impact of instrumentation on application
performance, by acting as a cache for get requests of the attribute's current value. When
currencyTimeLimit expires, the next get request for the attribute invokes the attribute's
getter and the value is updated. If you want to set this field value to an Object reference,
you must use the setField() method of the Descriptor object.

Example: "value=SomeStringValue"

4.2.1.16 visibility

This field is not required and provides a built-in abstraction mechanism for MBeans.
There are four predefined values, ranging from 1 to 4. At the least abstract level, 1, the
MBean is nearly always visible to any management application. At the greatest
abstraction level, 4, the MBean is the least visible. The concrete meanings of "nearly
always visible" and "least visible" are not clear in the specification. The meaning of this
field will certainly require some sort of agreement between instrumentation developers
and management application developers and will most likely be firmed up in a future
version (or maintenance release) of the specification.

Example: "visibility=1"

4.2.1.17 Other fields

Three additional fields are predefined by the JMX specification and are considered to be
reserved: presentationString, iterable, and messageID.

The interpretation of the values of each of these fields is covered fairly well (if somewhat
necessarily vaguely) in the JMX specification, and we won't discuss them further here.

 125

Why not? Remember, one of the strengths of descriptors (and hence of model MBeans) is
that they provide a richer set of metadata than is available for dynamic MBeans. The
JMX specification provides general guidelines for interpreting predefined field values,
but it does not constrain the model MBean instrumentation developer or the management
application in terms of exactly how they are to interpret these values.

This openness of field values leads us into our next topic of discussion: user-defined field
values. Are they allowed? Absolutely. The JMX specification does not prohibit the model
MBean instrumentation developer, the agent level developer, or the management
application developer from agreeing on a specific set of field values, as long as they do
not conflict with the reserved field names we have already discussed.

So, how do you create a descriptor? As we have already seen, the Descriptor interface
defines the contract between the instrumentation level and any other level of the JMX
architecture. The JMX implementation must ship with at least one concrete class that
implements the Descriptor interface. In the RI, this class is called DescriptorSupport.
(It is a common pattern in the RI for interfaces to be implemented by classes named by
adding "Support" to the name of the interface.) DescriptorSupport provides several
constructors, but we will only look at a few of the more interesting ones here. Note that in
the following discussion we'll use the terms descriptor, Descriptor, and
DescriptorSupport synonymously (descriptor is a generic term for the Descriptor
interface or a class such as DescriptorSupport that implements it, respectively).

The easiest way to create a descriptor is to use the default constructor:

// . . .
 Descriptor desc = new DescriptorSupport();
// . . .

What then? The next step is to set the fields that make up the descriptor, using the
setField() method:

// . . .
import javax.management.Descriptor;
import javax.management.modelmbean.DescriptorSupport;
// . . .
 Descriptor desc = new DescriptorSupport();
 desc.setField("name", "WorkFactor");
 desc.setField("descriptorType", "attribute");
 desc.setField("getMethod", "getWorkFactor");
// . . .

DescriptorSupport also provides three constructors that let you do all of this at once.
One lets you pass an XML-like String object that contains the field names and values.
Its signature is:

public DescriptorSupport(String inStr)
 throws MBeanException,
 RuntimeOperationsException,

 126

 XMLParseException {
// . . .
}

This XML-like String must be of the format:

<descriptor>
 <field name=fieldname1 value=fieldvalue1></field>
 <field name=fieldname2 value=fieldvalue2></field>
 . . .
 <field name=fieldnameN value=fieldvalueN></field>
</descriptor>

where fieldname1 is the name of the first field, fieldvalue1 is its corresponding value,
and so on. Let's use the WorkFactor attribute described earlier to demonstrate how to use
the DescriptorSupport constructor:

// . . .
import javax.management.Descriptor;
import javax.management.modelmbean.DescriptorSupport;
// . . .
 String xmlString =
 "<descriptor>" +
 "<field name=name value=WorkFactor></field>" +
 "<field name=descriptorType value=attribute></field>" +
 "<field name=getMethod value=getWorkFactor></field>" +
 "</descriptor>";
 Descriptor desc = new DescriptorSupport(xmlString);
// . . .

If you think this XML String is not well formed, you are correct;
notice that what appear to be XML attributes in the field tag are not
surrounded by single or double quotes. I am not certain if this is
intentional—if it's simply an oversight, it will certainly be fixed in a
future version of the JMX RI. Regardless, this is how the JMX RI
behaves, so it deserves mention.

If you need to set a number of fields whose values are String objects, you can create a
String array and pass it to another DescriptorSupport constructor. This constructor's
signature is:

public DescriptorSupport(String[] fields) {
// . . .
}

The String objects in the array are of the format name=value, where name is the name
of the field and value is its String value. Using the WorkFactor example again, here's
how to create a descriptor with this constructor:

// . . .

 127

import javax.management.Descriptor;
import javax.management.modelmbean.DescriptorSupport;
// . . .
 String[] fields = new String[] {
 "name=WorkFactor",
 "descriptorType=attribute",
 "getMethod=getWorkFactor"
 };
 Descriptor desc = new DescriptorSupport(fields);
// . . .

This constructor parses through the String objects in the array and sets each field
accordingly.

The third and final constructor we'll look at in this section takes two arguments: a String
array containing the names of the fields and an Object array containing references to the
objects that represent the field values. The signature for this constructor is:

public DescriptorSupport(String[] fieldNames, Object[] fieldValues)
 throws RuntimeOperationsException {
// . . .
}

Note that the number of items in the String array must match the number of items in the
Object array, or none of the fields will be set for the descriptor you are trying to create.
Let's again use the WorkFactor attribute from earlier to demonstrate how to use this
constructor:

// . . .
import javax.management.Descriptor;
import javax.management.modelmbean.DescriptorSupport;
// . . .
 String[] fieldNames = new String[] {
 "name", "descriptorType", "getMethod"
 };
 Object[] fieldValues = new Object[] {
 "WorkFactor", "attribute", "getWorkFactor"
 };
 Descriptor desc = new DescriptorSupport(fieldNames, fieldValues);
// . . .

We used an attribute here to demonstrate how to create descriptor objects, but the
principles are exactly the same for an MBean, operation (including a constructor), or
notification. The only differences are the allowable field names.

A final note about the DescriptorSupport constructors: all of these constructors are
valid ways to create DescriptorSupport objects, and none is preferable over another.
However, the following two constructors will be used most often throughout the rest of
this book:

1. Default constructor, setField() approach

 128

2. String array parameter constructor

Every attempt will be made to give these two constructors equal treatment in the
examples that follow. However, bear in mind that you are free to use any of the
constructors (that is, after all, why they are there) as your needs dictate.

By now you should be familiar with the DescriptorSupport constructors available to
you to create descriptors for your MBeans, attributes, operations, and notifications. While
descriptors provide metadata to other levels of the JMX architecture, as well as to
management applications, we must still provide the MBean server with metadata classes
that satisfy the DynamicMBean behavior of our model MBeans. In the next section, we
will look at how to create the metadata classes that are required to describe the
management interface to the MBean server.

4.2.2 Describing the Management Interface

As with dynamic MBeans, every feature of a model MBean, including the MBean itself,
must have a corresponding metadata class. Furthermore, for model MBeans, each
metadata class must contain a descriptor. In this section, we will examine the metadata
classes that are used to describe the management interface of your managed resource.
You may notice a similarity between the layout of this section and the corresponding
section in Chapter 3. Recall that a model MBean implements the DynamicMBean interface,
so it should be no surprise that model MBean metadata classes resemble their dynamic
MBean counterparts. In fact, as we will see, each of the model MBean metadata classes
(with the exception of ModelMBeanInfo, which is an interface) extends the corresponding
dynamic MBean metadata class.

There are five metadata classes of interest:

ModelMBeanAttributeInfo

Each instance of this class describes one attribute of the MBean's management
interface.

ModelMBeanContructorInfo

Each instance of this class describes one of the MBean's public constructors and
may contain one or more MBeanParameterInfo instances (MBeanParameterInfo
was discussed in detail in the previous chapter).

ModelMBeanOperationInfo

Each instance of this class describes one of the operations on the MBean's
management interface and may contain one or more MBeanParameterInfo
instances.

 129

ModelMBeanNotificationInfo

Each instance of this class describes one group of notifications emitted by the
MBean.

ModelMBeanInfoSupport

The top-level container of metadata. This class implements the ModelMBeanInfo
interface, which is how the agent level and management applications access the
metadata for a model MBean. Each MBean requires only one instance of this
class to completely describe its management interface.

As mentioned earlier, each of these metadata classes (with the exception of
ModelMBeanInfo) extends its dynamic MBean counterpart. These relationships are
shown in Figure 4-1 in UML notation.

Figure 4-1. UML diagram showing inheritance of model MBean metadata classes from
dynamic MBean metadata classes

As shown in Figure 4-2, the relationships between model MBean metadata classes are
similar to those between dynamic MBean metadata classes.

Figure 4-2. UML diagram showing the relationships between ModelMBeanInfoSupport and
the other model MBean metadata classes

 130

As with dynamic MBeans, the aggregation mechanism used in MBeanInfoSupport for
each MBean feature is an array. As we saw in Figure 4-1, all of the model MBean
metadata classes extend their dynamic MBean counterparts and are able to take
advantage of the basic structure contained in them. We will discuss each of the model
MBean classes below. MBeanParameterInfo is discussed at length in the previous
chapter, so we will not cover it here.

Recall from our discussion of the DescriptorSupport class and the Descriptor
interface that it does not matter whether the descriptor fields are created in a String
array and passed to the DescriptorSupport constructor or created with the setField()
method of Descriptor. Both approaches will be used in the examples throughout the rest
of this chapter to demonstrate that they are equally valid.

4.2.2.1 ModelMBeanAttributeInfo

All but one of the essential properties that must be set for a model MBean attribute are
the same as those that must be set for a dynamic MBean attribute, so they will not be
discussed here. The lone exception is the descriptor that must be set for a model MBean
attribute. Recall from the previous chapter that there are two constructors that are used to
set the essential properties for an MBeanAttributeInfo instance. One of these
constructors uses the Java reflection API, and the other explicitly sets all of the essential
properties. These same properties (in addition to the descriptor) exist on
ModelMBeanAttributeInfo, which inherits from MBeanAttributeInfo. Four
constructors are available to you on ModelMBeanAttributeInfo, as shown in Example
4-2.

Example 4-2. The significant constructors of ModelMBeanAttributeInfo

// . . .
public class ModelMBeanAttributeInfo extends MBeanAttributeInfo
 implements DescriptorAccess, Cloneable {
 // . . .
 public ModelMBeanAttributeInfo(String name,
 String description,
 Method getter,
 Method setter)
 throws javax.management.IntrospectionException {
 // . . .
 }
 public ModelMBeanAttributeInfo(String name,
 String description,
 Method getter,
 Method setter,
 Descriptor descriptor)
 throws javax.management.IntrospectionException {
 // . . .
 }
 public ModelMBeanAttributeInfo(String name,
 String type,
 String description,
 boolean isReadable,

 131

 boolean isWritable,
 boolean isIs) {
 // . . .
 }
 public ModelMBeanAttributeInfo(String name,
 String type,
 String description,
 boolean isReadable,
 boolean isWritable,
 boolean isIs,
 Descriptor descriptor) {
 // . . .
 }
 // . . .
}

Notice the emphasized lines in Example 4-2. The second and fourth constructors are each
passed a reference to a Descriptor object. The first and second constructors are
otherwise identical, as are the third and fourth. As mentioned earlier, every model MBean
attribute contains a Descriptor object that provides a richer set of metadata than that of
the metadata class.

In the first and third constructors in Example 4-2, a default descriptor is created by
ModelMBeanAttributeInfo. The default descriptor contains the following predefined
fields:

• descriptorType
• displayName
• iterable
• name

Each of these fields (with the exception of iterable) was discussed in a previous section.
For two of these fields, the values are literal strings: the value for descriptorType is
"attribute", and the value for iterable is "F". The values for both displayName and
name are set to the name parameter that was passed to the constructor. Consider the
following example, which results in a descriptor whose name and displayName fields are
set to "WorkFactor":

// . . .
 ModelMBeanAttributeInfo[] attributeInfo = new
ModelMBeanAttributeInfo[1];
 attributeInfo[0] = new ModelMBeanAttributeInfo(
 "WorkFactor",
 "java.lang.Integer",
 "Amount of work performed per work unit.",
 true,
 false,
 false
);
// . . .

 132

This example uses the third constructor from Example 4-2 (use of the first constructor
requires more code). For more information on the use of the reflection API for this
constructor, see Section 3.2.1.1 in the previous chapter.

Notice the second parameter to the MBeanAttributeInfo constructor in this example.
Even though the attribute type for WorkFactor is the fundamental type int, we pass
"java.lang.Integer" to the ModelMBeanAttributeInfo constructor. There appears to
be an oversight in the JMX 1.0 RI: when the getter for an attribute whose return value is a
fundamental type is invoked, the return value is wrapped in its corresponding JDK
wrapper class. Thus, even though the getter for WorkFactor returns an int, the reflection
API (which is what the JMX RI uses under the hood to perform the invocation) wraps the
return value in a java.lang.Integer. However, the RI does not take this into account,
and upon returning from the getter, the RI checks to see if the return value matches what
was expected.

Say we create the metadata using the proper value (notice parameter #2):

// . . .
 attributeInfo[0] =
 new ModelMBeanAttributeInfo(
 "WorkFactor",
 Integer.TYPE.getName(),
 "Amount of work performed per work unit.",
 true,
 false,
 false
);
// . . .

The RI looks at the return value from the getter (which has been wrapped in a
java.lang.Integer), compares it to what is in the metadata (which is the string
representation of a fundamental int), declares the return value to be bad, and throws an
exception. This is clearly not what we intended—to work around the problem, we have to
specify the JDK wrapper class name when we create the metadata class.

If you would like to create your own descriptor instead of using the default descriptor,
you can use the second and fourth constructors shown in Example 4-2. The second
constructor uses Method objects and the Java reflection API and differs from the fourth
constructor only in that regard. Use of this constructor is otherwise identical to that of the
corresponding MBeanAttributeInfo constructor, which was covered in the previous
chapter, and will not be presented here. The following example shows how to create a
ModelMBeanAttributeInfo object using the fourth constructor for the read-only
attribute WorkFactor:

// . . .
 Descriptor desc = new DescriptorSupport();
 desc.setField("name", "WorkFactor");
 desc.setField("descriptorType", "attribute");
 desc.setField("getMethod", "getWorkFactor");

 133

 ModelMBeanAttributeInfo[] attributeInfo = new
ModelMBeanAttributeInfo[1];
 attributeInfo[0] = new ModelMBeanAttributeInfo(
 "WorkFactor",
 "java.lang.Integer",
 "Amount of work performed per work unit.",
 true,
 false,
 false,
 desc
);
// . . .

Notice that we create the Descriptor object by instantiating the DescriptorSupport
class, as we discussed earlier in this chapter. We used the setField() method in this
example, but there are many ways to set the fields of the descriptor. The use of the other
DescriptorSupport constructors was discussed at length earlier in this chapter.

4.2.2.2 ModelMBeanConstructorInfo

All but one of the essential properties that must be set for a model MBean constructor are
the same as those that must be set for a dynamic MBean constructor, so they will not be
discussed here. The lone exception is the descriptor that must be set for a model MBean
constructor. Recall from the previous chapter that there are two constructors that are used
to set the essential properties for an MBeanConstructorInfo instance. One of these
constructors uses the Java reflection API, and the other explicitly sets all of the essential
properties. These same properties (in addition to the descriptor) exist on
ModelMBeanConstructorInfo, which inherits from MBeanConstructorInfo. Four
constructors are available to you on ModelMBeanConstructorInfo, as shown in
Example 4-3.

Example 4-3. The significant constructors of ModelMBeanConstructorInfo

public class ModelMBeanConstructorInfo extends MBeanConstructorInfo
 implements DescriptorAccess, Cloneable {
// . . .
 public ModelMBeanConstructorInfo(String description,
 Constructor constructorMethod) {
 // . . .
 }
 public ModelMBeanConstructorInfo(String description,
 Constructor constructorMethod,
 Descriptor descriptor) {
 // . . .
 }
 public ModelMBeanConstructorInfo(String name,
 String description,
 MBeanParameterInfo[] signature) {
 // . . .
 }
 public ModelMBeanConstructorInfo(String name,

 134

 String description,
 MBeanParameterInfo[] sig
 Descriptor descriptor) {

nature,

 // . . .
 }
// . . .
}

Notice the emphasized lines in Example 4-3. The second and fourth constructors are each
passed a reference to a Descriptor object. The first and second constructors are
otherwise identical, as are the third and fourth.

In the first and third constructors in Example 4-3, a default descriptor containing the
following predefined fields is created by ModelMBeanConstructorInfo:

• descriptorType
• displayName
• name
• role

Each of these fields was discussed in a previous section. For two of these fields, the
values are literal strings: the value for descriptorType is "operation", and the value
for role is "constructor". The values for both displayName and name are set to the
name parameter that was passed to the constructor. Consider the following example:

// . . .
 ModelMBeanConstructorInfo[] constructorInfo = new
ModelMBeanConstructorInfo[1];
 constructorInfo[0] = new ModelMBeanConstructorInfo(
 "DefaultConstructor",
 "The default constructor",
 new MBeanParameterInfo[0]
);
// . . .

This example uses the third constructor from Example 4-3. The
ModelMBeanConstructorInfo object created here results in a descriptor whose name and
displayName fields are set to "DefaultConstructor".

If you would like to create your own descriptor, you can use the second and fourth
constructors shown in Example 4-3. The second constructor uses Constructor objects
and the Java reflection API and differs from the fourth constructor only in that regard.
The following example shows how to create a ModelMBeanConstructorInfo object
using the fourth constructor for an MBean's default constructor:

// . . .
 Descriptor desc = new DescriptorSupport();
 desc.setField("name", "DefaultConstructor");
 desc.setField("descriptorType", "operation");
 desc.setField("role", "constructor");

 135

 desc.setField("displayName", "The Default Constructor");

 ModelMBeanConstructorInfo[] constructorInfo = new
ModelMBeanConstructorInfo[1];
 constructorInfo[0] = new ModelMBeanConstructorInfo(
 "DefaultConstructor",
 "The default constructor",
 new
 desc

MBeanParameterInfo[0],

);

Notice that in this example the name and displayName fields do not have the same value,
as is the case when a default descriptor is created for a ModelMBeanConstructorInfo
object. This is one advantage of creating your own descriptor.

What if you simply want to expose all of the public constructors for your MBean? This
method was covered thoroughly in the previous chapter; however, it bears repeating here,
because this is by far the simplest way to create ModelMBeanConstructorInfo objects.

In the following example, we create a descriptor and pass it explicitly to the
ModelMBeanConstructorInfo's second constructor:

// . . .
 Constructor[] constructors = this.getClass().getConstructors();
 ModelMBeanConstructorInfo[] constructorInfo = new
 ModelMBeanConstructorInfo[constructors.length];
 for (int aa = 0; aa < constructors.length;
 Descriptor desc = new DescriptorSupport(

 aa++) {

 new String[] {
 ("name=" + constructors[aa].getName()),
 "descriptorType=operation",
 "role=constructor"
 };
);
 constructorInfo[aa] = new ModelMBeanConstructorInfo(
 "Constructs a Basic MBean.", // description
 constructors[aa] // java.lang.reflect.Constructor
 desc
);
 }
// . . .

Notice that the displayName field has been omitted from this example. Recall from our
discussion of the required descriptor fields that only name and descriptorType are
required, so we are free to omit displayName.

4.2.2.3 ModelMBeanOperationInfo

All but one of the essential properties that must be set for a model MBean operation are
exactly the same as those that must be set for a dynamic MBean operation, so they will
not be discussed here. The lone exception is the descriptor that must be set for a model
MBean operation. Recall from the previous chapter that there are two constructors that

 136

are used to set the essential properties for an MBeanOperationInfo instance. One of
these constructors uses the Java reflection API, and the other explicitly sets all of the
essential properties. These same properties (in addition to the descriptor) exist on
ModelMBeanOperationInfo, which inherits from ModelMBeanOperationInfo. There are
four constructors of interest on ModelMBeanOperationInfo, as shown in Example 4-4.

Example 4-4. The significant constructors of ModelMBeanOperationInfo

public class ModelMBeanOperationInfo extends MBeanOperationInfo
 implements DescriptorAccess {
// . . .
 public ModelMBeanOperationInfo(String description,
 Method operationMethod) {
 // . . .
 }
 public ModelMBeanOperationInfo (String description,
 Method operationMethod,
 Descriptor descriptor) }
 // . . .
 }
 public ModelMBeanOperationInfo(String name,
 String description,
 MBeanParameterInfo[] signature,
 String type,
 int impact) {
 // . . .
 }
 public ModelMBeanOperationInfo(String name,
 String description,
 MBeanParameterInfo[] signature,
 String type,
 int impact,
 Descriptor descriptor) {
 // . . .
 }
// . . .
}

Notice the emphasized lines in Example 4-4. The second and fourth constructors are each
passed a reference to a Descriptor object. The first and second constructors are
otherwise identical, as are the third and fourth.

In the first and third constructors in Example 4-4, a default descriptor containing the
following predefined fields is created by ModelMBeanOperationInfo:

• descriptorType
• displayName
• name
• role

Each of these fields was discussed in a previous section. For two of these fields, the
values are literal strings: the value for descriptorType is "operation", and the value

 137

for role is "operation". The values for both displayName and name are set to the name
parameter that was passed to the constructor. Consider the following example:

// . . .
 ModelMBeanOperationInfo[] operationInfo = new
ModelMBeanOperationInfo[1];
 operationInfo[0] = new ModelMBeanOperationInfo(
 "reset",
 "Resets the state of this MBean.",
 new MBeanParameterInfo[0],
 Void.TYPE.getName(),
 MBeanOperationInfo.ACTION
);
// . . .

This example uses the third constructor from Example 4-4. The
ModelMBeanOperationInfo object created here results in a descriptor whose name and
displayName fields are set to "reset".

If you would like to create your own descriptor, you can use the second and fourth
constructors shown in Example 4-4. The second constructor uses Constructor objects
and the Java reflection API and differs from the fourth constructor only in that regard.
Use of this constructor is otherwise identical to that of the corresponding constructor of
MBeanOperationInfo—covered in the previous chapter—and will not be presented here.
The following example shows how to create a ModelMBeanOperationInfo object using
the fourth constructor:

// . . .
 Descriptor desc = new DescriptorSupport(
 new String[] {
 "name=reset",
 "descriptorType=operation",
 "role=operation",
 ("class=" + this.getClass().getName())
 }
);

 ModelMBeanOperationInfo[] operationInfo = new
ModelMBeanOperationInfo[1];
 operationInfo[0] = new ModelMBeanOperationInfo(
 "reset",
 "Resets the state of this MBean.",
 new MBeanParameterInfo[0],
 Void.TYPE.getName(),
 MBea
 desc

nOperationInfo.ACTION,

);

The only difference between the previous two examples is that we created our own
descriptor in the second. There are several advantages to creating your own descriptors,
not the least of which is improved code readability. Notice that the class field was set to

 138

this.getClass().getName(). This information is used by RequiredModelMBean when
making the actual invocation of the reset() method.

At the time of this writing, there is a bug in the JMX 1.0 RI when
allowing ModelMBeanOperationInfo to create a default descriptor
for a management operation that causes any invocation of that
operation to fail. If you create a descriptor and pass it to
ModelMBeanOperationInfo's constructor, you will avoid this
problem.

4.2.2.4 ModelMBeanNotificationInfo

All but one of the essential properties that must be set for a model MBean notification are
exactly the same as those that must be set for a dynamic MBean notification, so they will
not be discussed here. The lone exception is the descriptor that must be set for a model
MBean notification. Recall from the previous chapter that there is a single constructor
that is used to set the essential properties for an MBeanNotificationInfo instance.
These same properties (in addition to the descriptor) exist on
ModelMBeanNotificationInfo, which inherits from MBeanNotificationInfo. There
are two constructors of interest on ModelMBeanNotificationInfo, as shown in Example
4-5.

Example 4-5. The significant constructors of ModelMBeanNotificationInfo

public class ModelMBeanNotificationInfo extends MBeanNotificationInfo
 implements DescriptorAccess, Cloneable {
// . . .
 public ModelMBeanNotificationInfo(String[] notifTypes,
 String name,
 String description) {
 // . . .
 }
 public ModelMBeanNotificationInfo(String[] notifTypes,
 String name,
 String description,
 Descriptor descriptor) {
 // . . .
 }
// . . .
}

Notice the emphasized line in Example 4-5. The second constructor is passed a reference
to a Descriptor object, but the two constructors are otherwise identical.

In the first constructor, a default descriptor containing the following predefined fields is
created by ModelMBeanNotificationInfo:

• descriptorType
• displayName

 139

• name
• severity

Each of these fields was discussed in a previous section. For two of these fields, the
values are literal strings: the value for descriptorType is "notification", and the
value for severity is "5" (i.e., Warning). The values for both displayName and name
are set to the name parameter that was passed to the constructor. Consider the following
example, which uses the same notification types that we discussed in the previous chapter
(refer to Section 3.2.1.5 for more information):

// . . .
 String[] notificationTypes = new String[] {
 "sample.Queue.stalled.queueFull",
 "sample.Queue.stalled.queueEmpty"
 };
 ModelMBeanNotificationInfo[] notificationInfo = new
ModelMBeanNotificationInfo[1];
 notificationInfo[0] = new ModelMBeanNotificationInfo(
 notificationTypes,
 "StalledQueueNotifications",
 "Potential stall notifications emitted by the Queue."
);
// . . .

In this example, the first constructor of ModelMBeanNotificationInfo is called,
resulting in a default descriptor whose name and displayName fields are set to
"StalledQueueNotifications".

If you would like to create your own descriptor, use the second constructor. The only
difference between the two constructors is the addition of a Descriptor parameter.
Creating a descriptor is very straightforward, as we have already seen. The following
example shows how to use the second constructor, which allows you to pass a
Descriptor:

// . . .
 String[] notificationTypes = new String[] {
 "sample.Queue.stalled.queueFull",
 "sample.Queue.stalled.queueEmpty"
 };
 ModelMBeanNotificationInfo[] notificationInfo = new
ModelMBeanNotificationInfo[1];
 Descriptor desc = new DescriptorSupport(
 new String[] {
 "name=StalledQueueNotifications",
 "descriptorType=notification",
 "severity=3"
 };
);
 notificationInfo[0] = new ModelMBeanNotificationInfo(
 notificationTypes,
 "StalledQueueNotifications",
 "Potential stall notifications emitted by the Queue.",

 140

 desc
);
// . . .

In this example, a descriptor is created for potential stall conditions of the Queue class.
The severity field is set to "3", indicating that a stall condition is very serious and may
require immediate operator intervention. Other than the creation of the descriptor, the
previous two examples are effectively identical.

4.2.2.5 ModelMBeanInfo

All but one of the essential properties that must be set for a model MBean are the same as
those that must be set for a dynamic MBean, so they will not be discussed here. The lone
exception is the descriptor that must be set for a model MBean. Recall from the previous
chapter that there is a single constructor that is used to set the essential properties for an
MBeanInfo instance. These same properties (in addition to the descriptor) exist on
ModelMBeanInfo. The difference between MBeanInfo and ModelMBeanInfo is that
ModelMBeanInfo is an interface and cannot be instantiated.

There is a class in the RI called ModelMBeanInfoSupport that provides an
implementation of the ModelMBeanInfo interface and constructors to create it in exactly
the same fashion as the other metadata classes. These constructors are shown in Example
4-6.

Example 4-6. The significant constructors of ModelMBeanInfoSupport

public class ModelMBeanInfoSupport extends MBeanInfo
 implements ModelMBeanInfo, java.io.Serializable {
// . . .
 public ModelMBeanInfoSupport(String className,
 String description,
 ModelMBeanAttributeInfo[] attributes,
 ModelMBeanConstructorInfo[] constructors,
 ModelMBeanOperationInfo[] operations,
 ModelMBeanNotificationInfo[]
notifications) {
 // . . .
 }
 public ModelMBeanInfoSupport(String className,
 String description,
 ModelMBeanAttributeInfo[] attributes,
 ModelMBeanConstructorInfo[] constructors,
 ModelMBeanOperationInfo[] operations,
 ModelMBeanNotificationInfo[]
notifications,
 Descriptor mbeandescriptor) {
 // . . .
 }
// . . .
}

 141

In the first constructor, a default descriptor is created by ModelMBeanInfoSupport. The
default descriptor contains the predefined fields and values listed in Table 4-2.

Table 4-2. Fields and corresponding values for a model MBean default descriptor
Field Value

descriptorType "mbean"
displayName "ModelMBeanInfoSupport"
export "F"
log "F"
name "ModelMBeanInfoSupport"
visibility "1"

Like the other model MBean metadata classes, the second constructor of
ModelMBeanInfoSupport takes as its last parameter a Descriptor object. The following
example shows how to create a ModelMBeanInfoSupport object using the second
constructor. This example also shows relevant portions of the previous examples to
provide you with some context.

// . . .
 ModelMBeanAttributeInfo[] attributeInfo =
 new ModelMBeanAttributeInfo[1];
 // create attribute metadata
 ModelMBeanConstructorInfo[] constructorInfo =
 new ModelMBeanConstructorInfo[1];
 // create constructor metadata
 ModelMBeanOperationInfo[] operationInfo =
 new ModelMBeanOperationInfo[1];
 // create operation metadata
 ModelMBeanNotificationInfo[] notificationInfo =
 // create notification metadata
 ModelMBeanInfo mbeanInfo = new ModelMBeanInfoSupport(
 "ModeMBean",
 "A Model MBean",
 attributeInfo,
 constructorInfo,
 operationInfo,
 notificationInfo
);
// . . .

As you can imagine, this example would be quite lengthy if all of the code necessary to
create the ModelMBeanInfo object were shown. However, we have already discussed at
length how to create the other metadata classes (with their optional descriptors), so you
should be adequately prepared to create ModelMBeanInfo objects.

4.2.2.6 DescriptorAccess

DescriptorAccess is a simple interface that must be implemented by each of the
metadata classes so that access to the descriptor is available. The DescriptorAccess
interface is defined as:

 142

public interface DescriptorAccess
{
 public Descriptor getDescriptor();
 public void setDescriptor(Descriptor inDescriptor);
}

By implementing this interface, metadata classes provide a means to access or even
replace their existing descriptors. Recall from earlier in this chapter, when we discussed
how to create the metadata classes, that each metadata class provides a default descriptor
if none is specified when the class is instantiated. At first glance, it may appear that you
must either create your own descriptor or put up with the default descriptor. However,
through the DescriptorAccess interface, you can create a metadata object, access its
descriptor, and modify or add fields to it. Consider the following code snippet, where we
create a ModelMBeanAttributeInfo object without specifying a Descriptor on the
constructor call:

ModelMBeanAttributeInfo[] attributeInfo = new
ModelMBeanAttributeInfo[1];
attributeInfo[0
 "WorkFactor",

] = new ModelMBeanAttributeInfo(

 "java.lang.Integer",
 "Amount of work performed per work unit.",
 true,
 false,
 false
);

As you may recall, this will result in a default descriptor with certain predefined fields.
What if you want to modify or add fields to the default descriptor? Because
ModelMBeanAttributeInfo implements the DescriptorAccess interface, this is
straightforward. Suppose that after the previous code snippet executes, we want to
modify the displayName property and add a persistPolicy property. Here's what we
would do:

// . . .
ModelMBeanAttributeInfo[] attributeInfo = new
ModelMBeanAttributeInfo[1];
attributeInfo[0
 "WorkFactor",

] = new ModelMBeanAttributeInfo(

 "java.lang.Integer",
 "Amount of work performed per work unit.",
 true,
 false,
 false
);
Descriptor desc = attributeInfo[0].getDescriptor();
desc.setField("displayName", "Work Factor");
desc.setField("persistPolicy=never");
// . . .

 143

The DescriptorAccess interface gives you the option of modifying a default descriptor.
If you are happy with most of the field values that are set with a default descriptor, this
approach may save you a few lines of code per metadata object.

4.2.3 RequiredModelMBean

Every compliant JMX implementation is required to implement a model MBean called
RequiredModelMBean. The managed resource that wishes itself to be instrumented using
the RequiredModelMBean (or possibly even another model MBean, if the implementation
provides more than the one concrete model MBean) obtains a reference to the MBean
server, and then a reference to a new instance of the model MBean. Once the resource has
the model MBean reference, it uses the metadata classes to configure the management
interface it wants to expose. In this section, most of the information comes straight from
the JMX RI.

RequiredModelMBean must implement at least three interfaces in order to be compliant.
These interfaces are discussed below.

4.2.3.1 ModelMBean

This interface must be implemented by every concrete model MBean and is defined as:

public interface ModelMBean
 extends DynamicMBean,
 PersistentMBean,
 ModelMBeanNotificationBroadcaster {

public void setModelMBeanInfo(ModelMBeanInfo inModelMBeanInfo)
 throws MBeanException, RuntimeOperationsException;

public void setManagedResource(Object mr, String mr_type)
 throws MBeanException,
 RuntimeOperationsException,
 InstanceNotFoundException,
 InvalidTargetObjectTypeException;
}

The model MBean metadata and the resource to be managed are set through this interface.
Once the ModelMBeanInfo object has been created, setModelMBeanInfo() is called. This
establishes the management interface of the resource to be managed, which is set through
a call to setManagedResource(). The second argument to setManagedResource() is a
String and must be one of the following predefined values:

• ObjectReference
• Handle
• IOR
• EJBHandle
• RMIReference

 144

The only value we will use in the examples in this book is ObjectReference. We will
see later in this chapter how to use this interface.

4.2.3.2 DynamicMBean

We discussed the DynamicMBean interface at length in the previous chapter, so we won't
discuss it here. Note, however, that every compliant concrete model MBean (such as
RequiredModelMBean) must also implement DynamicMBean.

4.2.3.3 PersistentMBean

This interface provides a persistence mechanism for every model MBean and is defined
as:

public interface PersistentMBean {
 public void load() throws MBeanException,
 RuntimeOperationsException,
 InstanceNotFoundException;
 public void store() throws MBeanException,
 RuntimeOperationsException,
 InstanceNotFoundException;
}

Once a reference to a model MBean is obtained by the agent level, the state of the model
MBean may be persisted or restored from a persistent store by invoking store() or load(),
respectively.

4.3 Instrumenting Resources as Model MBeans

In this chapter, we have seen how to create Descriptor objects and the necessary
metadata classes for a model MBean, and we have looked at RequiredModelMBean and
the interfaces that it must implement. In this section, we will see how to tie all of this
information together to instrument resources as model MBeans.

The steps you must go through to instrument each of your resources as model MBeans
are:

1. Create an instance of the resource to be managed.
2. Create an instance of RequiredModelMBean.
3. Create the necessary metadata classes and optional descriptors for the features of

the management interface.
4. Create the metadata for the resource (i.e., the ModelMBeanInfo object).
5. Set the metadata of RequiredModelMBean to the metadata for the resource (from

Step 3) and the resource to be managed through the ModelMBean interface.

As in the previous chapters, we will use the sample application for all of our examples.
This will allow you to compare and contrast the other MBean types with model MBeans.

 145

In the examples presented here we will look at the application class Controller, which
acts as the JMX agent. For the example code in this chapter, the Controller class is
responsible for creating the resources to be managed, instrumenting them as model
MBeans, and registering them with the MBean server.

The first two steps are to create an instance of the managed resource (in this example, the
Queue) and to create the RequiredModelMBean instance:

// . . .
Queue queue = new Queue();
RequiredModelMBean queueModelMBean = new RequiredModelMBean();
// . . .

Next, we must create the necessary model MBean metadata classes (only some of the
attributes and operations are shown, as the examples can be quite lengthy). First we'll
create the attributes:

// There are 10 attributes . . .
ModelMBeanAttributeInfo[] attributeInfo = new
ModelMBeanAttributeInfo[10];
attributeInfo[0] = new ModelMBeanAttributeInfo(
 "QueueSize",
 "java.lang.Integer",
 "The maximum size of the queue.",
 true,
 true,
 false,
);
DescriptorSupport desc = attributeInfo[0].getDescriptor();
desc.setField("getMethod", "getQueueSize");
desc.setField("setMethod", "setQueueSize");
desc = new DescriptorSupport(
 new String[] {
 "name=NumberOfItemsProcessed",
 "descriptorType=attribute",
 "getMethod=getNumberOfItemsProcessed",
 }
);
attributeInfo[1] = new ModelMBeanAttributeInfo(
 "NumberOfItemsProcessed",
 "java.lang.Long",
 "The number of work units processed.",
 true,
 false,
 false,
);
// . . . other attributes . . .
desc = new DescriptorSupport(
 new String[] {
 "name=NumberOfConsumers",
 "descriptorType=attribute",
 "getMethod=getNumberOfConsumers",
 }
);

 146

attributeInfo[9] = new ModelMBeanAttributeInfo(
 "NumberOfConsumers",
 "java.lang.Integer",
 "No. of consumer threads currently feeding the queue.",
 true,
 false,
 false,
);

Then we'll create the metadata for the operations:

// . . .
ModelMBeanOperationInfo[] operationInfo = new
ModelMBeanOperationInfo[13];
desc = new DescriptorSupport(
 new String[] {
 "name=suspend",
 "descriptorType=operation",
 "role=operation",
 }
);
operationInfo[0] = new ModelMBeanOperationInfo(
 "suspend",
 "Suspends activity in the queue.",
 new MBeanParameterInfo[0],
 Void.TYPE.getName(),
 MBeanOperationInfo.ACTION,
);
desc = new DescriptorSupport(
 new String[] {
 "name=resume",
 "descriptorType=operation",
 }
);
operationInfo[1] = new ModelMBeanOperationInfo(
 "resume",
 "Resumes activity in the queue.",
 new MBeanParameterInfo[0],
 Void.TYPE.getName(),
 MBeanOperationInfo.ACTION,
 desc
);
// . . .

One difference between model MBeans and other MBean types is that operation metadata
must be created for attribute getters and setters. This is probably an oversight of the JMX
RI, but one that you must deal with if you wish to use it. For each getter and setter, you
must create a ModelMBeanOperationInfo instance, such that a writable attribute has two
ModelMBeanOperationInfo instances (one for the getter and one for the setter). A read-
only attribute will have only one (for the getter). The following example shows how to
create the ModelMBeanOperationInfo objects for the getters and setters for the attributes
for Queue. Note that only QueueSize has a setter.

// . . .

 147

desc = new DescriptorSupport(
 new String[] {
 "name=getQueueSize",
 "descriptorType=operation",
 "role=getter"
 }
);
operationInfo[2] = new ModelMBeanOperationInfo(
 "getQueueSize",
 "Getter for QueueSize",
 new MBeanParameterInfo[0],
 Integer.TYPE.getName(),
 MBeanOperationInfo.INFO,
 desc
);
desc = new DescriptorSupport(
 new String[] {
 "name=setQueueSize",
 "descriptorType=operation",
 "role=setter"
 }
);
MBeanParameterInfo[] parms = new MBeanParameterInfo[1];
parms[0] = new MBeanParameterInfo(
 "value",
 "java.lang.Integer",
 "value"
);
operationInfo[3] = new ModelMBeanOperationInfo(
 "setQueueSize",
 "Setter for QueueSize",
 parms,
 Void.TYPE.getName(),
 MBeanOperationInfo.ACTION,
 desc
);
// . . . other getters. ..
desc = new DescriptorSupport(
 new String[] {
 "name=getNumberOfSuppliers",
 "descriptorType=operation",
 "role=getter"
 }
);
// . . .other getters/setters. . .
operationInfo[12] = new ModelMBeanOperationInfo(
 "getNumberOfSuppliers",
 "Getter for NumberOfSuppliers",
 new MBeanParameterInfo[0],
 Integer.TYPE.getName(),
 MBeanOperationInfo.INFO,
 desc
);

Because no explicit constructors are required and there are no notifications, the
ModelMBeanInfo object can be created:

 148

// . . .
 ModelMBeanInfo mbeanInfo = new ModelMBeanInfoSupport(
 queue.getClass().getName(),
 "Queue Model MBean",
 attributeInfo,
 null,
 operationInfo,
 null
);
 queueModelMBean.setModelMBeanInfo(mbeanInfo);
 queueModelMBean.setManagedResource(queue, "ObjectReference");
 MBeanServer mbeanServer = MBeanServerFactory.createMBeanServer();
 mbeanServer.registerMBean(queueModelMBean, objName);
// . . .

Notice the emphasized line in this example. The managed resource isn't the instance of
RequiredModelMBean (whose instance variable is queueModelMBean), but the instance of
the Queue (whose instance variable is queue). When we were creating standard and
dynamic MBeans, the managed resource and the MBean were physically the same object.
Although they are logically still one entity, with model MBeans the managed resource
and the MBean (i.e., the instance of RequiredModelMBean) are not physically the same
object.

In creating the metadata for the model MBean itself, we have allowed the
ModelMBeanInfoSupport constructor to create a default descriptor. If you would like to
create a descriptor for the ModelMBeanInfo object that represents your MBean, there
should be sufficient information in this chapter to help you do that.

Notice that we can pass null as parameter values for the constructors and notification
metadata (we can also pass null for attribute or operation metadata if there are no
attributes or operations, respectively). In previous sections (and the previous chapter), we
covered at length how to create constructor and notification metadata. If you need to
create these metadata classes, simply pass them as the appropriate parameters to the
ModelMBeanInfoSupport constructor.

 149

Chapter 5. Open MBeans

So far, we have looked at three ways to instrument resources to be manageable. Now we
will look at a way to instrument resources so that they are the most open to management
applications. In this chapter, we will discuss how to instrument resources whose attributes
are more complex than the fundamental types and whose operations take complex
parameters. The key to this more open means of instrumentation lies in the set of data
types defined by the JMX specification called open MBeans. By using open MBeans, we
can instrument application resources of any type and make them available to any agent or
management application that does not have access to the bytecode for either the resource,
attribute, or operation parameter. The agent or management application can even be a
non-Java program!

We will first look at the various open MBean types. Those types include the fundamental
types, such as int, long, and char, as well as new types, such as structural and tabular
data. All of the open MBean types are classes that derive from a single open MBean type,
OpenType.

Next, we will examine the various open MBean metadata classes that allow us to
instrument our resources as open MBeans. At the time of this writing, open MBeans are
newly finalized (they were not part of the JMX 1.0 specification), so some of the
information in this chapter may be subject to change.

5.1 Open MBean Types

The open MBean types are at the heart of what makes open MBeans "open." The JMX RI
defines a base class, OpenType, from which all open MBean types are derived. This
ensures consistency among all of the subsequent types. In this section, we will look at the
basic types, most of which are fundamental and correspond to their JDK wrapper types.
We will first look at OpenType, then we will take a look at SimpleType, an RI class that
provides static methods to obtain references to the various fundamental open types. Then
we will look briefly at the basic types that allow us to describe complex data.

This section also describes how to represent complex data using the JMX classes
CompositeData and TabularData and discusses their type definition classes
(CompositeType and TabularType, respectively). Finally, we will look at the JMX
support classes that implement these complex type enablers.

5.1.1 Basic Types

All of the open MBean types are one of the basic types. There are two categories of basic
types: those types that are fundamental and those that may be used to describe arbitrarily
complex types. In this section, we will look at all of the open MBean basic types. We will
start with the base class for all open MBean types, OpenType. Then we will look at
SimpleType, a subclass of OpenType, which is used to obtain instances of the
fundamental open MBean types. Finally, we will take a quick look at the open MBean

 150

types that are used to represent complex data, saving the bulk of the discussion for the
next section, Section 5.1.2.

5.1.1.1 OpenType

This class is the base class for all open MBean types. OpenType is abstract, so it cannot
be instantiated. However, the essential characteristics for all open MBean types are
defined in the protected constructor for OpenType, to which subclasses must delegate:

Class name

The fully qualified name of the Java class that the OpenType instance represents
(e.g., java.lang.Integer is the class name for integer data types).

Type name

The name that has been assigned to the data type represented by this OpenType
instance. Must be unique across all other open MBean types.

Description

A human-readable description (suitable for display on a management console, for
example) of the type represented by this OpenType instance.

These three attributes are read-only and are common to all open MBean types. The values
for these attributes may not be null, all spaces, or an empty string, or the OpenType
constructor will throw an IllegalArgumentException.

In addition to these attributes, OpenType provides a few helper methods that agent and
management application developers may find useful when interrogating open MBeans:

isArray()

Returns true if the open type represented by this instance of OpenType is an
instance of ArrayType (see below)

isValue()

Returns true if the class name of the specified Object argument is the same as
this instance of OpenType

5.1.1.2 SimpleType

This class is a subclass of OpenType (as are all valid open MBean types) that is used to
represent the following open MBean types:

 151

• java.lang.Void
• java.lang.Boolean
• java.lang.Character
• java.lang.Byte
• java.lang.Short
• java.lang.Integer
• java.lang.Long
• java.lang.Float
• java.lang.Double
• java.lang.String
• java.math.BigDecimal
• java.math.BigInteger
• javax.management.ObjectName

The constructor for SimpleType is explicitly declared with private visibility, so it
cannot be instantiated. Publicly declared static fields are provided to obtain an instance of
an open type corresponding to each of the above types. For example, to obtain an
instance of a SimpleType object that represents the open type for java.lang.Long, use:

OpenType openType = SimpleType.LONG;

Notice that the field name is the unqualified name of the corresponding Java class in
capital letters. Thus, the open type for java.lang.Integer is obtained through
SimpleType.INTEGER, and so on.

5.1.1.3 Other basic types

There are three other basic types that are currently part of the JMX specification:

ArrayType

Describes n-dimensional arrays of open types.

CompositeType

Describes structural (i.e., inherently nonuniform) data of arbitrary complexity. A
CompositeData object is logically an "instance" of CompositeType.

TabularType

Describes tables of CompositeData objects. The same CompositeType object
describes every row of the table, so the table is homogeneous. A TabularData
object is logically an "instance" of TabularType.

All of these classes are subclasses of OpenType. If one of the attributes on an open
MBean is an array type, it can be completely described by an ArrayType instance and

 152

understood by a management application. CompositeType and TabularType are used to
describe complex data. We will look at these types in detail in the next section.

5.1.2 Complex Data

As implemented in the JMX RI, the basic data types for representing complex data are
implemented by a type class, an interface, and a support class. We saw the support-class
idiom when we looked at model MBeans. In this section, we will see how the
type/interface/support-class idiom works for open MBeans for the two basic open MBean
types, CompositeType and TabularType. While the JMX specification addresses
CompositeData and TabularData (which are interfaces) and their underlying support
classes, it makes sense to talk first about the classes provided by the RI that describe
them.

5.1.2.1 CompositeType

CompositeType is a concrete class provided by the JMX RI that allows us to describe
complex data that is composed of other basic open MBean types (including other
complex types). There is no limit to the complexity of a complex type in open MBeans.
With CompositeType, we are able to describe attributes, parameters, and return value
types that are objects of arbitrary complexity. You can think of a CompositeType as
providing metadata about a complex type, similar to the way the source code for a
struct in C/C++ describes a complex data structure.

CompositeType includes the following parameters:

typeName

The name assigned to the new complex type. Continuing with the C/C++ analogy,
this is similar to the name of the struct.

description

A human-readable text description of the type described by this CompositeType,
suitable for display on a management console.

itemNames

A String array of names for the members of the CompositeType. This is similar
to the variable names of a C/C++ struct. When dealing with a CompositeData
object, the item names are referred to as the keys for accessing the corresponding
values in the CompositeData object.

itemDescriptions

 153

A String array of human-readable descriptions that correspond to the itemNames
array.

itemTypes

An array of OpenType objects that describe the basic type of each item that
comprises the data structure described by this CompositeType object.

Note that the indexes of the itemNames, itemDescriptions, and
itemTypes arrays must match each other exactly.

The CompositeType class provides a constructor that allows us to set the values of the
above attributes; its constructor is defined as:

public CompositeType(String typeName,
 String description,
 String[] itemNames,
 String[] itemDescriptions,
 OpenType[] itemTypes)
 throws OpenDataException {
 // . . .
}

When creating a CompositeData object, we must first create a CompositeType object to
describe it. Let's look at a simple example that deviates somewhat from the sample
application. Suppose we have to represent a simple (and not very object-oriented) data
structure that looks like the following:

public class Building {
 public String name;
 public short numberOfFloors;
 public int height;
 public boolean undergroundParking;
 public short numberOfElevators;
 public long officeSpace;
}

We might then create a CompositeType object to represent all possible instances of
Building, as shown in Example 5-1.

Example 5-1. Describing a complex data type using CompositeType

try {
 // first describe the attribute names
 String[] itemNames = {
 "Name",
 "NumberOfFloors",
 "Height",
 "UndergroundParking",

 154

 "NumberOfElevators",
 "OfficeSpace"
 };
 // next describe the attribute descriptions
 String[] itemDescriptions = {
 "Name of the building",
 "The number of floors (stories) the building has",
 "The height of the building in feet",
 "Whether or not the building has underground parking",
 "The total number of elevators in the building",
 "The amount of office space in square feet"
 };
 // next describe the data type of each item
 OpenType[] itemTypes = {
 SimpleType.STRING,
 SimpleType.SHORT,
 SimpleType.INTEGER,
 SimpleType.BOOLEAN,
 SimpleType.SHORT,
 SimpleType.LONG
 };
 CompositeType buildingType = new CompositeType(
 "BuildingCompositeType",
 "CompositeType that represents a Building.",
 itemNames,
 itemDescriptions,
 itemTypes
);
} catch (OpenDataException e) {
 // . . .
}

What we have done, in essence, is to create an entirely new data type. Because we used
the open MBean class CompositeType to do it, the new type can be instrumented in an
application and be managed by a JMX-compliant management application.

5.1.2.2 CompositeData

The CompositeData interface describes how to access the contents of a complex object.
This interface is defined as:

public interface CompositeData {
 public CompositeType getCompositeType();
 public Object get(String key);
 public Object[] getAll(String[] keys);
 public boolean containsKey(String key);
 public boolean containsValue(Object value);
 public Collection values();
 public boolean equals(Object obj);
 public int hashCode();
 public String toString();
}

 155

Whereas CompositeType describes one or more instances of CompositeData, the
CompositeData class itself contains values. Two methods are provided to access the
values inside a CompositeData object:

get()

Retrieves the object (i.e., the value) of a complex data structure that has the
specified key

getAll()

Retrieves an array of objects of a complex data structure that have the specified
keys

Recall from our discussion of CompositeType that each member of a complex
structure—at a particular index—described by a CompositeType object is assigned a
name, located in the item names attribute at that index. That name is the key for retrieval.
In Example 5-1, we saw how to create a CompositeType object for a complex data type
called Building. Suppose that we need to manipulate an instance of a CompositeData
object that is based on BuildingCompositeType (the name given to the new type in
Example 5-1) and that this instance is passed to some method we have created. If we
needed to access the Name attribute, we would use the get() method:

public void someMethod(CompositeData buildingData) {
 String buildingName = (String)buildingData.get("Name");
 // . . .
}

By the same token, we could retrieve several attributes at once by using the getAll()
method:

public void someMethod(CompositeData buildingData) {
 String[] attributeNames = {
 "Name",
 "Height",
 "OfficeSpace"
 };
 Object[] attributeValues = buildingData.getAll(attributeNames);
 String name = (String)attributeValues[0];
 int height = ((Integer)attributeValues[1]).intValue();
 long officeSpace = ((Long)attributeValues[2]).longValue();
 // . . .
}

The order of the values in the array is the same as the order in which the keys were
specified. Notice that we must unwrap any fundamental types (after casting them out of
the Object array) to get the Java primitive.

 156

The get() and getAll() methods will probably be the ones you use most often to
manipulate CompositeData objects. However, the following methods may also come in
handy:

getCompositeType()

Retrieves the CompositeType object that describes this CompositeData instance.
This might be useful, for example, when you need to display descriptions of the
item names.

containsKey()

Returns a boolean indicating whether or not the specified key value is one of the
item names of the CompositeType. For example, the following code from our
Building example would return true:

public void someMethod(CompositeData buildingData) {
 if (buildingData.containsKey("Height"))
 doSomething();
}

and the doSomething() method would be invoked. This code would return false:

public void someMethod(CompositeData buildingData) {
 if (buildingData.containsKey("Width"))
 doSomething();
}

and doSomething() would not be executed, because Width is not a valid key.

containsValue()

Returns true if any value in the CompositeData object contains the specified
value.

values()

Returns an object that implements the Collection interface and contains all of
the values in the CompositeData object. The values are in the same order as their
corresponding keys (i.e., in alphabetical, ascending key order).

equals()

Tests the equality of this instance of a CompositeData object with another. For
this method to return true, the two CompositeData objects must be of the same
CompositeType, and all of their item values must be equal. If the specified object

 157

does not implement the CompositeData interface, or is a null reference, this
method returns false.

hashCode()

Returns a hashcode for this CompositeData object.

toString()

Returns a string representation of this CompositeData object. The format of the
representation depends on the implementation.

5.1.2.3 CompositeDataSupport

This class implements the CompositeData interface. If we need to create a
CompositeData object, we use one of this class's constructors:

public CompositeDataSupport(CompositeType compositeType,
 String[] itemNames, Object[] itemValues)
 throws OpenDataException {
 // . . .
}
public CompositeDataSupport(CompositeType compositeType, Map items)
 throws OpenDataException {
 // . . .
}

The first constructor takes a CompositeType object, a String array of item names, and
an Object array of item values in the exact order of the item names. Each of the item
names in itemNames must be the same as one of the item names in the CompositeType
object, but the order does not have to be the same.

The RI checks the parameters to make sure that all of the following are true:

• compositeType is not null.
• itemNames and itemValues are not empty arrays or null, none of their elements

are empty strings or null, and itemNames and itemValues are of the same length.
• itemNames and itemValues are both of the size specified in compositeType (as its

itemNames attribute).
• Each of the elements in itemNames is one of the elements in the itemNames

attribute of compositeType and is of the correct type for that item name.

If the first two conditions are not true, an IllegalArgumentException will be thrown. If
either of the last two is not true, an OpenDataException will be thrown. Using our
Building example, suppose we wanted to create an instance of CompositeDataSupport
using the attribute values listed in Table 5-1.

Table 5-1. Attribute values for new CompositeDataSupport instance

 158

Attribute name Attribute value
Name "Fictitious Life Building"
NumberOfFloors 3
Height 45
UndergroundParking false
NumberOfElevators 1
OfficeSpace 10000

Using these values, we can create an instance of CompositeDataSupport (as shown in
Example 5-2), using the buildingType CompositeType created in Example 5-1.

Example 5-2. Creating a CompositeData object using CompositeDataSupport

public CompositeData createCompositeDataObject() {
 try {
 String[] itemNames = {
 "Name",
 "NumberOfFloors",
 "Height",
 "UndergroundParking",
 "NumberOfElevators",
 "OfficeSpace"
 };
 Object[] itemValues = {
 "Building A",
 new Short(3),
 new Integer(45),
 new Boolean(false),
 new Short(1),
 new Long(10000)
 };
 CompositeData buildingData = new CompositeDataSupport(
 buildingType, // See Example 5-1
 itemNames,
 itemValues
);
 return buildingData;
 } catch (Exception e) {
 // . . .
 }
}

We can also create a CompositeData object through CompositeDataSupport's second
constructor, passing a Map object that contains the name/value pairs:

public CompositeData createCompositeDataObject() {
 try {
 Map items = new HashMap();
 items.put("Name", "Building A");
 items.put("NumberOfFloors", new Short(3));
 items.put("Height", new Integer(45));
 items.put("UndergroundParking", new Boolean(false));

 159

 items.put("NumberOfElevators", new Short(1));
 items.put("OfficeSpace", new Long(10000));
 CompositeData buildingData = new CompositeDataSupport(
 buildingType, // see Example 5-1
 items
);
 return buildingData;
 } catch (Exception e) {
 // . . .
 }
}

5.1.2.4 TabularType

This open MBean type class represents tabular data, which consists of rows of
CompositeType elements. As we've seen, while a CompositeType data structure can
have an arbitrarily complex structure, each CompositeData object that follows the
structure is only a single object. However, with TabularType, we can further compose
CompositeData objects into a table view, from which rows can be added or deleted. Each
row of the TabularData object that adheres to its corresponding TabularType object
must be of the same CompositeType, so that the rows are homogeneous. Beyond that,
there is no limit to the complexity of the structure of a TabularType object.

You can think of the elements (items) of the CompositeData objects that make up the
rows in a TabularData object as columns in a database table. As with a database table,
you can define a set of keys, each of which is composed of one or more of the items in
the CompositeData object that makes up each row. You can then use these keys to access
(i.e., update, add, or remove) rows of the table.

TabularType is a concrete class provided with the JMX RI. It provides a constructor
with which to create instances, defined as:

public TabularType(String typeName, String description,
 CompositeType rowType, String[] indexNames)
 throws OpenDataException {
// . . .
}

The typeName parameter allows us to give a name to the new TabularType object.
description lets us provide a human-readable description of the type. Each row of a
TabularData object described by the TabularType we are creating must be of the same
CompositeType, given by the rowType parameter. Finally, the indexNames parameter is
an array of Strings that specify the item names from the CompositeType; this array
forms the key that lets us access the elements of a TabularData object described by the
TabularType we are creating.

Suppose we want to create a new TabularType object that describes a table of Building
objects (from our earlier example). Example 5-3 shows how we would do this.

 160

Example 5-3. Creating a TabularType object

try {
 TabularType buildingTableType = new TabularType(
 "BuildingTabularType",
 "Tabular view of BuildingCompositeTypes",
 buildingType,
 new String[] {
 "Name",
 "Height"
 }
);
} catch (Exception e) {
 // . . .
}

In this example, we create a new TabularType object where each row is of type
BuildingCompositeType (see Example 5-1) and is keyed by the Name and Height items
of BuildingCompsiteType.

5.1.2.5 TabularData

This is an interface that describes how to access data structured in tabular format. It must
be implemented by a concrete class (most likely TabularDataSupport, which we will
discuss later). TabularData provides a convenient way to manipulate objects that are in
tabular format. In discussing TabularData in this section, we will assume that an
instance of the concrete class that implements this interface has been created elsewhere.
In the next section, we will see how to create TabularData objects by using
TabularDataSupport. The TabularData interface is defined as:

public interface TabularData {
 public TabularType getTabularType();
 public Object[] calculateIndex(CompositeData value);
 public String toString();
 // Map interface
 public void clear();
 public boolean containsKey(Object[] key);
 public boolean containsValue(CompositeData value);
 public boolean equals(Object obj);
 public CompositeData get(Object[] key);
 public int hashCode();
 public boolean isEmpty();
 public Set keySet();
 public void put(CompositeData value);
 public void putAll(CompositeData[] values);
 public CompositeData remove(Object[] key);
 public int size();
 public Collection values();
}

As we can see from the methods on the interface, TabularData is structured much like a
Map object. With the exception of entrySet(), TabularData implements methods with the

 161

same names as those on the JDK Map interface. However, the Map behavior required of
TabularData necessitates different parameters from those of the corresponding Map
interface method. For example, the containsKey() method of the Map interface takes a
single Object parameter, whereas the TabularData version takes an Object array. For
that reason, we will take a look at all of these methods in this section. In addition to the
Map-like methods of TabularData, there are several other methods on this interface, and
we'll look at each one. If you've worked much with Java's Map implementations (HashMap,
TreeMap, etc.), much of this section will look very familiar.

We will use the following example to demonstrate how these methods work. In Example
5-3, we created a TabularType object to describe a table of BuildingCompositeType
objects (see Example 5-1). This TabularType object has as its key the
BuildingCompositeType items Name and Height. Recall that the elements (columns) of
the underlying CompositeType that makes up each row have the following format (in the
specified order):

1. Name
2. NumberOfFloors
3. Height
4. UndergroundParking
5. NumberOfElevators
6. OfficeSpace

Table 5-2 summarizes the rows in our hypothetical example.

Table 5-2. Rows of tabular data for our example
Name NumberOfFloors Height UndergroundParking NumberOfElevators OfficeSpace

Building A 3 45 false 1 10000
Building B 7 90 false 3 70000
Building C 42 478 true 5 335000

getTabularType() returns the TabularType object that describes this TabularData object.
In our example, this method returns the BuildingCompositeType object created in
Example 5-3.

calculateIndex() takes a CompositeData object and returns an array of Objects that
contains the data items of the CompositeData object that correspond to the key of the
TabularType on which this TabularData object is based. In our example, this method
would return array containing the Name (at element 0) and Height (at element 1) values
for the CompositeData object parameter. In Example 5-2, we created a CompositeData
object that looks like the first row in Table 5-1.

public void someMethod(TabularData buildingData) {
 try {
 CompositeData cd = createCompositeDataObject(); //from Example 5-2
 Object[] index = buildingData.calculateIndex(cd);

 162

 // . . .
 } catch (Exception e) {
 // . . .
 }
}

The index array returned by this method contains two elements: at index 0 is a String
containing "Building A", and at index 1 is an Integer containing the value 3. This
method is handy if the caller is aware of the structure of the CompositeType of which
each row is constituted but wants to retrieve key values of a particular row without
necessarily having to know what the key structure looks like. If the CompositeData
parameter is null, an IllegalArgumentException is thrown. If the CompositeData
parameter does not conform to this TabularData object's CompositeType structure, an
InvalidOpenTypeException is thrown.

toString() returns a string representation of this TabularData object. The format of the
representation is implementation-dependent.

Now let's look at each of the Map-like methods of TabularData.

clear() removes all rows from this TabularData object.

containsKey() takes an Object array that contains values that correspond to the key type
of the CompositeData object and returns true if there is a row containing that key.
Using our example, suppose we pass an Object array that contains "Building A" (at
element 0) and 3 (at element 1):

public someMethod(TabularData buildingData) {
 try {
 Object[] key = {
 "Building A",
 new Short(3)
 };
 if (buildingData.containsKey(key))
 doSomething(); // gets executed
 key = new Object[2];
 key[0] = "No Such Building";
 key[1] = new Short(3);
 if (buildingData.containsKey(key))
 doSomethingElse(); // does NOT get executed
 } catch (Exception e) {
 // . . .
 }
}

As we can see from Table 5-2, the first call to containsKey() in this example will return
true, because the key specified corresponds to a row that exists in the TabularData
object. The second call will return false, because no row contains a name of "No Such
Building." In addition, if the key does not conform to the structure of the key specified
when the TabularType object was created, this method returns false. It does not throw

 163

an exception. This method is useful when the caller needs to know whether a particular
row exists in the table but doesn't necessarily have to retrieve and process that row.

containsValue() functions in exactly the same manner as containsKey(), except it takes a
CompositeData object as a parameter. If all fields of the row specified by the
CompositeData object passed as a parameter match the contents of one row of this
TabularData object exactly, this method returns true. If not, or if the CompositeData
object has a different structure than the rows of this TabularData object, this method
returns false. It does not throw an exception.

equals() takes an Object parameter and returns true if the specified Object is a
TabularData object and each row is a match for at least one other row in this
TabularData object. If the specified Object parameter is null, is not a TabularType
object, or has at least one row that is different from this TabularData object, this method
returns false. It does not throw an exception.

get() takes an Object array that contains a key to this TabularData object and returns
the corresponding CompositeData object for the row that matches the specified key. If
the specified key is null, a NullPointerException is thrown. If the specified key does
not conform to this TabularData object's TabularType definition, an
InvalidKeyException is thrown.

hashcode() returns the hashcode for this TabularData object.

isEmpty() returns a boolean indicating whether or not this TabularData object contains
any rows. If it contains at least one CompositeData object (i.e., a row), this method
returns true. Otherwise, it returns false.

keySet() returns a Set that contains all of the keys in the underlying Map-like
implementation. The returned Set can then be iterated over by calling the iterator()
method of the Set. Each item in the Set is a List object that contains the objects that
constitute the key, which in the current implementation are Strings.

public void someMethod(TabularData buildingData) {
 try {
 Set set = buildingData.keySet();
 Iterator iter = set.iterator();
 while (iter.hasNext()) {
 List key = (List)iter.next();
 String name = (String)key.get(0);
 int height = ((Integer)key.get(1)).intValue();
 // now do something with these values. . .
 }
 } catch (Exception e) {
 // . . .
 }
}

 164

Because a List is used to maintain the keys internally, the order of the items follows
exactly the order in which the keys were specified when the TabularType object was
created for this TabularData object.

put() takes a CompositeData object and stores it in its internal Map-like implementation.
No key needs to be specified (as is the case with the put() method of the Map interface, for
example), because the key is calculated based on the index names specified in the
TabularType object that describes this TabularData object. However, TabularData
does not allow duplicate keys. In our example, the index names are the Name and Height
fields of the BuildingCompositeType object. If the CompositeData object we want to
store in this TabularType object looks like the second row from Table 5-2, the key is
calculated to be "Building B" and 90. Consider the following example:

public void addCompositeDataObject(TabularData buildingData)
 try {
 String[] itemNames = {
 "Name",
 "NumberOfFloors",
 "Height",
 "UndergroundParking",
 "NumberOfElevators",
 "OfficeSpace"
 };
 Object[] itemValues = {
 "Building B",
 new Short(7),
 new Integer(90),
 new Boolean(false),
 new Short(3),
 new Long(70000)
 };
 CompositeData building = new CompositeDataSupport(
 buildingType, // See Example 5-1
 itemNames,
 itemValues
);
 buildingData.put(building);
 } catch (Exception e) {
 // . . .
 }

The emphasized line shows the method call to add a CompositeData object. As in the
previous examples, we have assumed that the TabularData object with which we're
working has already been created (we haven't seen how to do this yet—if you suspect that
we use TabularDataSupport to create the object, you're correct; we'll look at this in the
next section). The following code shows how to retrieve the row we added in the
previous example:

public void addCompositeDataObject(TabularData buildingData)
 try {
 // see above example. . .
 buildingData.put(building);

 165

 // now retrieve the row just added:
 Object[] key = {
 "Building B",
 new Integer(90)
 };
 CompositeData newRow = buildingData.get(key);
 // . . .
 } catch (Exception e) {
 // . . .
 }
}

If the CompositeData object reference passed to this method is null, a
NullPointerException is thrown. If the CompositeData object doesn't conform to the
CompositeType object that dictates the row structure of this TabularData object, an
InvalidOpenTypeException is thrown. As we mentioned earlier, the key for the
CompositeData row to be added is calculated internally, based on the contents of the
CompositeData object and the key structure specified when the TabularType object for
this TabularData object was created. If the key already exists in the TabularData object,
a KeyAlreadyExistsException will be thrown. The key for each row must be unique.

putAll() functions in exactly the same manner as put(), except that putAll() allows us to
store more than one CompositeData object in a single method call. putAll() takes an
array of CompositeData objects and stores them all inside the internal Map-like
implementation. When an attempt is made to put each CompositeData element into the
array that is passed to this method, that putAll() attempt is subject to the same conditions
as a put() attempt. This means that the same exceptions can be thrown.

remove() takes an Object array containing the key of a CompositeData row to be
removed. If the key does not exist, this method returns null; otherwise, it returns a
reference to the CompositeData object that was removed. If the Object array reference
is null, a NullPointerException will be thrown. If the reference is to an object that
does not conform to the CompositeType that specifies the structure of rows in this
TabularData object, an InvalidKeyException will be thrown.

size() returns the number of CompositeData elements, or rows, that are contained within
this TabularData object.

values() returns a Collection that contains all of the CompositeData elements that are
contained in the underlying Map-like implementation. The returned Collection can then
be used to iterate through the CompositeData objects.

5.1.2.6 TabularDataSupport

This class implements the TabularData interface. If we need to create a TabularData
object, we use one of this class's two constructors:

public TabularDataSupport(TabularType tabularType) {

 166

 // . . .
}
public TabularDataSupport(TabularType tabularType,
 int initialCapacity,
 float loadFactor) {
 // . . .
}

The first parameter to both constructors is a TabularType object that describes the key
structure for the TabularData object to be created, as well as the structure of the
CompositeData elements that make up each row in this TabularData object. As we've
already seen, the underlying implementation TabularData is a Map (in fact, it's a
HashMap). The initialCapacity and loadFactor parameters of the second constructor
allow us to set the initial size of the Map and the load factor, which must be a floating-
point number between zero and one in other words, it's a percentage). Once the number
of entries in the Map exceeds this percentage, the capacity of the Map is increased.

Both constructors verify the validity of the tabularType parameter. If it is null, an
IllegalArgumentException is thrown. When using the second constructor, an
IllegalArgumentException is also thrown if the initialCapacity or the loadFactor is
less than zero.

Unlike CompositeDataSupport, for which we must specify the constituents when we
create an instance, TabularDataSupport can be created empty. Once we create an
instance of TabularDataSupport, we can use the put() or putAll() method to add
CompositeData rows.

5.2 Open MBean Metadata Classes

Now that we've seen how open MBean types work and how they are defined, let's take a
look at creating the metadata classes that describe resources that are instrumented as open
MBeans. We will start by seeing how to describe parameters, attributes, constructors,
operations, notifications, and finally OpenMBeanInfo. Each of these is described by an
interface and implemented by a support class. This is similar to model MBeans—the
focus of the previous chapter—and the open MBean types we looked at earlier in this
chapter.

As with the open MBean type classes, when we talk about an object that implements the
interface (e.g., an OpenMBeanParameterInfo object) we have presupposed the creation
of the object using a support class. This is because we generally work with a particular
open MBean metadata type through its interface and use the corresponding support class
only to create instances of those objects.

A common theme for all of the OpenMBean*Info objects (where * is Parameter,
Attribute, etc.) is that the support classes provided extend their
javax.management.MBean*Info counterparts—for example,

 167

OpenMBeanParameterInfoSupport extends MBeanParameterInfo. The relationships
between the open MBean classes are shown in Figure 5-1.

Figure 5-1. Relationships between the open MBean metadata classes

As we saw with dynamic MBeans in Figure 3-1, a single instance of
OpenMBeanInfoSupport completely describes an MBean. The relationship between
OpenMBeanInfoSupport and the other open MBean interfaces is shown in Figure 5-2.

Figure 5-2. Relationships between OpenMBeanInfoSupport and the other open MBean
metadata interfaces

In the rest of this section we will look at each of the open MBean metadata interfaces and
classes, starting with OpenMBeanParameterInfo.

5.2.1 OpenMBeanParameterInfo

This interface deals with open MBean parameter information. There are several read-only
attributes of an open MBean parameter:

Description

 168

A human-readable description of the parameter described by this
OpenMBeanParameterInfo object.

Name

The name of the parameter; usually the variable name assigned to the parameter
in the signature of the method, of which this parameter is a constituent.

OpenType

The OpenType subclass that is this parameter's type.

DefaultValue

A default value for the parameter represented by this OpenMBeanParamaterInfo
object, to be used if one is not provided for the parameter. This attribute is null if
it has not been set.

LegalValues

A Set of values that specifies the only values the parameter represented by this
OpenMBeanParameterInfo object may have. This attribute is null if it has not
been set. If this attribute has been set, MinValue and MaxValue will be null, as
this attribute is mutually exclusive with the use of minimum and maximum values.

MinValue

The minimum value that a parameter represented by this
OpenMBeanParameterInfo object may have. This attribute is an object that
implements the Comparable interface, such as String, Short, Integer, Long, or
Float. This attribute is null if it has not been set. MinValue and LegalValues
are mutually exclusive.

MaxValue

The maximum value that a parameter represented by this
OpenMBeanParameterInfo object may have. This attribute is an object that
implements the Comparable interface. This attribute is null if it has not been set.
MaxValue and LegalValues are mutually exclusive.

In addition to these read-only attributes, the OpenMBeanParameterInfo interface
provides some other utility methods, which we will look at in this section.
OpenMBeanParameterInfo is defined as:

public interface OpenMBeanParameterInfo {
 public String getDescription();

 169

 public String getName();
 public OpenType getOpenType();
 public Object getDefaultValue();
 public Set getLegalValues();
 public Comparable getMinValue();
 public Comparable getMaxValue();
 public boolean hasDefaultValue();
 public boolean hasLegalValues();
 public boolean hasMinValue();
 public boolean hasMaxValue();
 public boolean equals(Object obj);
 public int hashCode();
 public String toString();
}

This interface provides four methods that allow us to determine whether the
DefaultValue, LegalValues, MinValue, and MaxValue attributes have been set. Each of
these methods begins with "has" followed by the name of the attribute and returns a
boolean indicating whether that attribute has been set. For example, hasDefaultValue()
returns true if the parameter has a default value.

equals() is used to test for equality between this OpenMBeanParameterInfo object and
another that also implements this interface. A field-by-field comparison is made, and if
all fields contain the same values, this method returns true. Otherwise, it returns false.

hashCode() returns the hashcode for this OpenMBeanParameterInfo object.

toString() returns a string representation of this OpenMBeanParameterInfo object. The
physical representation produced by calling this method depends on the underlying
implementation of the OpenMBeanParameterInfo interface.

5.2.2 OpenMBeanParameterInfoSupport

This is the support class for OpenMBeanParameterInfo and subsequently implements
that interface. This class is provided so that instrumentation developers (i.e., the
developers who are instrumenting their code as open MBeans) can create
OpenMBeanParameterInfo objects to describe parameters. This class is declared as:

public class OpenMBeanParameterInfoSuport
 extends MBeanParameterInfo
 implements OpenMBeanParameterInfo, java.io.Serializable {
// . . .
}

As mentioned in the introduction to this section, all of the open MBean support classes
extend their MBean*Info counterparts. As we can see,
OpenMBeanParameterInfoSupport extends MBeanParameterInfo.
OpenMBeanParameterInfoSupport provides four constructors that we can use to create
an OpenMBeanParameterInfo object:

 170

public OpenMBeanParameterInfoSupport(String name,
 String description,
 OpenType openType) {
 // . . .
}

public OpenMBeanParameterInfoSupport(String name,
 String description,
 OpenType openType,
 Object defaultValue)
 throws OpenDataException {
 // . . .
}

public OpenMBeanParameterInfoSupport(String name,
 String description,
 OpenType openType,
 Object defaultValue,
 Object[] legalValues)
 throws OpenDataException {
 // . . .
}

public OpenMBeanParameterInfoSupport(String name,
 String description,
 OpenType openType,
 Object defaultValue,
 Comparable minValue,
 Comparable maxValue)
 throws OpenDataException {
 // . . .
}

The minimum amount of information we must supply to fully describe an open MBean
parameter is:

• Name
• Description
• OpenType

Each of the constructors for OpenMBeanParameterInfoSupport takes these three
arguments. The first constructor takes only these arguments and creates an
OpenMBeanParameterInfoSupport instance (or, as we've been referring to it, an
OpenMBeanParameterInfo object) in which the DefaultValue, LegalValues, MinValue,
and MaxValue attributes are all set to null.

The second constructor allows us to set the DefaultValue attribute, which must be of the
same OpenType subclass as the openType parameter, or an OpenDataException will be
thrown. If the OpenType of the OpenMBeanParameterInfo object we are creating is
TabularType or ArrayType, this constructor will throw an exception, because this class
does not support the concept of a default value for those types. For SimpleType, it is
sufficient that the OpenType of openType and defaultValue be the same Java class (e.g.,

 171

both may be java.lang.Integer). However, for CompositeType, their contents (i.e.,
their item names and corresponding OpenTypes) must also be equal, or an
OpenDataException will be thrown. Using this constructor sets the LegalValues,
MinValue, and MaxValue attributes to null. Passing null as the defaultValue parameter
does not cause an exception to be thrown, because null is a valid value for the
DefaultValue attribute.

The third constructor allows us to set the DefaultValue attribute (subject to the same
checks we discussed in the previous paragraph) and the LegalValues attribute. null is
an acceptable value for both attributes. The legalValues parameter that allows us to set
the LegalValues attribute is an Object array that contains the values that constrain the
values of the parameters that are specified by the OpenMBeanParameterInfo object we
are creating. If the OpenType of the OpenMBeanParameterInfo object we are creating is
TabularType or ArrayType, this constructor will throw an exception, because this class
does not support the concept of legal values for those types. If we are using a default
value, it must be included in the array of legal values, or an OpenDataException will be
thrown.

The fourth constructor allows us to set the DefaultValue attribute and the MinValue and
MaxValue attributes. null is an acceptable value for all three attributes. Also, we can set
either MinValue or MaxValue without the other, allowing us to specify a minimum value
(by setting MinValue) but no maximum, for example. Whatever minimum and/or
maximum values we use, the classes used to define the types must implement the
appropriate Comparable interface, as listed here:

• java.lang.Byte
• java.lang.Character
• java.lang.Short
• java.lang.Integer
• java.lang.Long
• java.lang.Float
• java.lang.Double
• java.lang.String
• java.math.BigInteger
• java.math.BigDecimal

This constructor performs checks on the values of defaultValue, minValue, and maxValue,
such that all of the following must be true, or an OpenDataException will be thrown:

• The OpenType of the minValue and/or maxValue parameters must be the same as
that of the openType parameter.

• minValue must be less than maxValue, if both minValue and maxValue are
specified.

• If specified, defaultValue must be greater than or equal to minValue (if minValue
is specified) and less than or equal to maxValue (if maxValue is specified).

 172

Once we have created an instance of OpenMBeanParameterInfoSupport, we can pass it
around through its interface, OpenMBeanParameterInfo, as we saw in the previous
section.

Let's look at a couple of examples of how to use this class. The Controller class (from
the sample application) has a method on it called createWorker() that has the following
declaration:

public void createWorker(String role, int workFactor) {
// . . .
}

There are two parameters to this method: a String and an int. We will see later in this
chapter how to create open MBean metadata for an operation such as createWorker(), but
for now we will focus on describing its parameters (which we must do before describing
the operation anyway).

OpenMBeanParameterInfo[] params = new OpenMBeanParameterInfo[2];
params[0] = new OpenMBeanParameterInfoSupport(
 "role",
 "The type of worker to create.",
 SimpleType.STRING
);
params[1] = new OpenMBeanParameterInfoSupport(
 "workFactor",
 "The weighted work factor for this new worker thread.",
 SimpleType.INTEGER
);
// . . .

This is the simplest example of creating open MBean parameter metadata, where we
create OpenMBeanParameterInfo objects using the first constructor of
OpenMBeanParameterInfoSupport. The DefaultValue, LegalValues, MinValue, and
MaxValue attributes are all set to null in this case. Now suppose we want to define a set
of legal values for the role parameter and a range of values for the workFactor parameter,
along with a default value for each parameter:

OpenMBeanParameterInfo[] params = new OpenMBeanParameterInfo[2];
params[0] = new OpenMBeanParameterInfoSupport(
 "role",
 "The type of worker to create.",
 SimpleType.STRING,
 "Supplier", // default role
 new Object[] { // legal values
 "Supplier",
 "Consumer"
 }
);
params[1] = new OpenMBeanParameterInfoSupport(
 "workFactor",
 "The weighted work factor for this new worker thread.",
 SimpleType.INTEGER,

 173

 new Integer(100), // default work factor
 new Integer(50), // minimum work factor
 new Integer(200) // maximum work factor
);
// . . .

The default value for the role parameter is "Supplier", and two valid values are defined:
"Supplier" and "Consumer". Notice that the default value is one of the legal values.
Had this not been the case, the constructor for OpenMBeanParameterInfoSupport would
have thrown an OpenDataException. If no default value had been defined (i.e., if the
parameter value passed was null), this check would not have been made, as we are not
required to provide a default parameter value.

The default value for workFactor is 100, and the work factor specified may be in the
range of 50 to 200, inclusive. Notice that the default value lies in this range—had this not
been the case (e.g., if the default value was specified to be 49), the
OpenMBeanParameterInfoSupport constructor would have thrown an
OpenDataException. If no default value had been defined (i.e., if the parameter value
passed was null), this check would not have been made, as we are not required to
provide a default parameter value.

5.2.3 OpenMBeanAttributeInfo

This interface describes an attribute of an open MBean and is defined as:

public interface OpenMBeanAttributeInfo extends OpenMBeanParameterInfo
{
 public boolean isReadable();
 public boolean isWritable();
 public boolean isIs();
 public boolean equals(Object obj);
 public int hashCode();
 public String toString();
}

Notice that OpenMBeanAttributeInfo is a subclass of OpenMBeanParameterInfo, so all
of the methods of OpenMBeanParameterInfo must be implemented on
OpenMBeanAttributeInfoSupport. There are three fundamental boolean properties[1] of
an OpenMBeanAttribute:

[1] I've chosen to call them properties instead of attributes to avoid any confusion while we discuss open MBean
attributes.

isReadable

Indicates whether or not the value of the attribute described by this
OpenMBeanAttributeInfo can be accessed

isWritable

 174

http://safari.oreilly.com/

Indicates whether or not the value of the attribute described by this
OpenMBeanAttributeInfo can be modified

isIs

Indicates whether or not the value of the attribute described by this
OpenMBeanAttributeInfo is a boolean attribute whose getter starts with is
instead of get

There are three other methods that we will describe briefly, as they function exactly the
same as they do for OpenMBeanParameterInfo.

equals() takes a parameter to an Object reference and returns true if the reference is to
an object that implements OpenMBeanAttributeInfo and if the Name, OpenType, access
properties (isReadable, isWritable, and isIs), DefaultValue, MinimumValue,
MaximumValue, and LegalValues values are the same. Otherwise, this method returns
false.

hashCode() returns the hashcode for this OpenMBeanAttributeInfo object.

toString() returns a string representation of this OpenMBeanAttributeInfo object. The
physical representation is dependent upon the underlying implementation.

5.2.4 OpenMBeanAttributeInfoSupport

This is the support class for OpenMBeanAttributeInfo and subsequently implements
that interface. This class is provided so that instrumentation developers can create
OpenMBeanAttributeInfo objects to describe attributes. It is declared as:

public class OpenMBeanAttributeInfoSupport extends MBeanAttributeInfo
 implements OpenMBeanAttributeInfo, java.io.Serializable {
// . . .
}

As we mentioned in the introduction to this section, all of the open MBean support
classes extend their MBean*Info counterparts. Thus, OpenMBeanAttributeInfoSupport
extends MBeanAttributeInfo. OpenMBeanAttributeInfoSupport provides four
constructors that we can use to create an OpenMBeanAttributeInfo object:

public OpenMBeanAttributeInfoSupport(String name,
 String description,
 OpenType openType,
 boolean isReadable,
 boolean isWritable,
 boolean isIs) {
// . . .
}

 175

public OpenMBeanAttributeInfoSupport(String name,
 String description,
 OpenType openType,
 boolean isReadable,
 boolean isWritable,
 boolean isIs,
 Object defaultValue)
 throws OpenDataException {
// . . .
}

public OpenMBeanAttributeInfoSupport(String name,
 String description,
 OpenType openType,
 boolean isReadable,
 boolean isWritable,
 boolean isIs,
 Object defaultValue,
 Object[] legalValues)
 throws OpenDataException {
// . . .
}

public OpenMBeanAttributeInfoSupport(String name,
 String description,
 OpenType openType,
 boolean isReadable,
 boolean isWritable,
 boolean isIs,
 Object defaultValue,
 Comparable minValue,
 Comparable maxValue)
 throws OpenDataException {
// . . .
}

The minimum amount of information we must supply to fully describe an open MBean
attribute is:

• Name
• Description
• OpenType
• isReadable
• isWritable
• isIs

Each of the constructors of OpenMBeanAttributeInfoSupport takes these six arguments.
The first constructor takes only these arguments and creates an
OpenMBeanAttributeInfoSupport instance (or, as we've been referring to it, an
OpenMBeanAttributeInfo object) in which the DefaultValue, LegalValues, MinValue,
and MaxValue properties are set to null.

 176

The second constructor allows us to set the DefaultValue attribute, which must be of the
same OpenType subclass as the openType parameter, or an OpenDataException will be
thrown. If the OpenType of the OpenMBeanAttributeInfo object we are creating is
TabularType or ArrayType, this constructor will throw an OpenDataException,
because this class does not support the concept of a default value for those types. For
SimpleType, it is sufficient that the OpenType of openType and defaultValue be the same
Java class (e.g., both may be java.lang.Integer). However, for CompositeType, their
contents (i.e., their item names and corresponding OpenTypes) must also be equal, or an
OpenDataException will be thrown. Using this constructor sets the LegalValues,
MinValue, and MaxValue attributes to null. Passing null as the defaultValue parameter
does not cause an exception to be thrown, because null is a valid value for the
DefaultValue attribute.

The third constructor allows us to set the DefaultValue attribute (subject to the same
checks we discussed in the previous paragraph) and the LegalValues attribute. null is
an acceptable value for both parameters. The legalValues parameter that allows us to set
the LegalValues attribute is an Object array that contains the values that constrain the
values of the parameters that are specified by the OpenMBeanAttributeInfo object we
are creating. If the OpenType of the OpenMBeanAttributeInfo object we are creating is
TabularType or ArrayType, this constructor will throw an exception, because this
support class does not support the concept of legal values for those types. If we are using
a default value, it must be included in the array of legal values, or an
OpenDataException will be thrown.

The fourth constructor allows us to set the DefaultValue attribute and the MinValue and
MaxValue attributes. null is an acceptable value for all three parameters. Also, we can
set either MinValue or MaxValue without the other, allowing us to specify a minimum
value (by setting MinValue) but no maximum, for example. Whatever minimum and/or
maximum values we use, they must implement the appropriate Comparable interface.

Let's look at a couple of examples of how to use this class. The Queue class (from the
sample application) has several attributes, and we will look at how to create open MBean
metadata to describe two of them: QueueSize and NumberOfItemsProcessed.

OpenMBeanAttributeInfo[] attributes = new OpenMBeanAttributeInfo[2];
attributes[0] = new OpenMBeanAttributeInfoSupport(
 "QueueSize",
 "Number of items the Queue can hold.",
 SimpleType.INTEGER,
 true,
 true,
 false
);
attributes[1] = new OpenMBeanAttributeInfoSupport(
 "NumberOfItemsProcessed",
 "The number of items processed.",
 SimpleType.LONG,
 true,

 177

 false,
 false
);
// . . .

This is the simplest example of creating open MBean parameter metadata, where we
create OpenMBeanAttributeInfo objects using the first constructor of
OpenMBeanAttributeInfoSupport. The DefaultValue, LegalValues, MinValue, and
MaxValue attributes are all set to null in this case. Now suppose we want to specify a
range of permissible values for QueueSize:

OpenMBeanAttributeInfo[] attributes = new OpenMBeanAttributeInfo[2];
attributes[0] = new OpenMBeanAttributeInfoSupport(
 "QueueSize",
 "Number of items the Queue can hold.",
 SimpleType.INTEGER,
 true,
 true,
 false,
 null, // no defaul
 new Integer(3), // min value

t value

 new Integer(12) // max value
);
// . . .

In this example, there is no default value, and the QueueSize attribute may take on any
value from 3 to 12. Now suppose that there are particular values that we don't want
QueueSize to take on—say, 4, 7, and 10. In that case, we would use a set of legal values
to indicate this:

OpenMBeanAttributeInfo[] attributes = new OpenMBeanAttributeInfo[2];
attributes[0] = new OpenMBeanAttributeInfoSupport(
 "QueueSize",
 "Number of items the Queue can hold.",
 SimpleType.INTEGER,
 true,
 true,
 false,
 null, // no default value
 new Object[] {
 new Integer[3],
 new Integer[5],
 new Integer[6],
 new Integer[8],
 new Integer[9],
 new Integer[11],
 new Integer[12],
 }
);
// . . .

5.2.5 OpenMBeanConstructorInfo

 178

This interface is used to deal with open MBean constructor information and is defined as:

public interface OpenMBeanConstructorInfo {
 public String getDescription();
 public String getName();
 public MBeanParameterInfo[] getSignature();
 public boolean equals(Object obj);
 public int hashCode();
 public String toString();
}

There are a few read-only attributes of an open MBean constructor:

Name

The name of the constructor. This name should match the name of the class on
which the constructor is defined.

Description

A human-readable description of the constructor.

Signature

An array of MBeanParameterInfo objects that provide information about the
arguments to the constructor this OpenMBeanConstructorInfo object describes.

There are three other methods that we will describe briefly, as they function exactly the
same as they do for OpenMBeanParameterInfo and OpenMBeanAttributeInfo.

equals() is used to test for equality between this OpenMBeanConstructorInfo object and
another that also implements this interface. A field-by-field comparison is made, and if
all fields contain the same values, this method returns true. Otherwise, it returns false.

hashCode() returns the hashcode for this OpenMBeanConstructorInfo object.

toString() returns a string representation of this OpenMBeanConstructorInfo object. The
physical representation produced by calling this method depends on the underlying
implementation of the OpenMBeanConstructorInfo interface.

5.2.6 OpenMBeanConstructorInfoSupport

This is the support class for OpenMBeanConstructorInfo and subsequently implements
that interface. This class is provided so that instrumentation developers can create
OpenMBeanConstructorInfo objects to describe attributes. It is declared as:

public class OpenMBeanConstructorInfoSupport extends
MBeanConstructorInfo

 179

 implements OpenMBeanConstructorInfo, java.io.Serializable {
// . . .
}

As we have already seen, all of the open MBean support classes extend their MBean*Info
counterparts, and OpenMBeanConstructorInfoSupport is no exception. A single
constructor is provided and is defined as:

public OpenMBeanConstructorInfoSupport(String name,
 String description,
 OpenMBeanParameterInfo[]
signature) {
// . . .
}

Let's look at an example of how to use this constructor. The Queue class (from the sample
application) defines two constructors, declared as:

public Queue() {
 // . . .
}
public Queue(int queueSize) {
 // . . .
}

The first constructor is an explicitly declared default constructor, and the second takes an
int that allows us to set the initial queue capacity:

OpenMBeanConstructorInfo[] constructors = new
OpenMBeanConstructorInfo[2];
constructors[0] = new OpenMBeanConstructorInfoSupport(
 "Queue",
 "Default Constructor",
 null
);
constructors[1] = new OpenMBeanConstructorInfoSupport(
 "Queue",
 "Alternate Constructor",
 new OpenMBeanParameterInfo[] {
 new OpenMBeanParameterInfoSupport(
 "queueSize",
 "Initial capacity of the Queue.",
 SimpleType.INTEGER
)
 }
);
// . . .

To describe the first constructor, we create a new OpenMBeanConstructorInfo object
and pass null to the constructor of OpenMBeanConstructorInfoSupport to indicate that
there are no parameters. To describe the second constructor, we must create an
OpenMBeanParameterInfo object for each parameter to the constructor. There is only

 180

one parameter, so we create an anonymous OpenMBeanParameterInfo array that
contains one element: an instance of OpenMBeanParameterInfoSupport.

5.2.7 OpenMBeanOperationInfo

This interface is used to deal with open MBean operation information and is defined as:

public interface OpenMBeanOperationInfo {
 public String getName();
 public String getDescription();
 public MBeanParameterInfo[] getSignature();
 public int getImpact();
 public String getReturnType();
 public OpenType getReturnOpenType();
 public boolean equals(Object obj);
 public int hashCode();
 public String toString();
}

There are several read-only attributes of an open MBean operation:

Name

The name of the operation. This name should match the name of the operation as
it is handled by the DynamicMBean implementation of invoke().

Description

A human-readable description of the operation.

Signature

An array of MBeanParameterInfo objects that provides information about the
arguments to the operation.

Impact

The impact on the state of the open MBean by invoking this method. The impact
may only be read-only (i.e., no effect on the MBean's state), write-only, or read-
write, as designated by the constants INFO, ACTION, and INFO_ACTION,
respectively. These constants are defined on the class
javax.management.MBeanOperationInfo.

ReturnType

The string representation of the fully qualified class name of the return type. For
example, java.lang.Integer.

 181

ReturnOpenType

The OpenType of the return type. For example, SimpleType.INTEGER.

There are three other methods that we will describe briefly, as they function exactly the
same as they do for OpenMBeanParameterInfo, OpenMBeanAttributeInfo, and
OpenMBeanConstructorInfo.

equals() is used to test for equality between this OpenMBeanOperationInfo object and
another that also implements this interface. A field-by-field comparison is made, and if
all fields contain the same values, this method returns true. Otherwise, it returns false.

hashCode() returns the hashcode for this OpenMBeanOperationInfo object.

toString() returns a string representation of this OpenMBeanOperationInfo object. The
physical representation produced by calling this method depends on the underlying
implementation of the OpenMBeanOperationInfo interface.

5.2.8 OpenMBeanOperationInfoSupport

This is the support class for OpenMBeanOperationInfo and subsequently implements
that interface. This class is provided so that instrumentation developers can create
OpenMBeanOperationInfo objects to describe operations. It is declared as:

public class OpenMBeanOperationInfoSupport extends MBeanOperationInfo
 implements OpenMBeanOperationInfo, java.io.Serializable {
// . . .
}

As we mentioned in the introduction to this section, all of the open MBean support
classes extend their MBean*Info counterparts. As we can see,
OpenMBeanOperationInfoSupport extends MBeanOperationInfo.
OpenMBeanOperationInfoSupport provides a single constructor that we can use to
create an OpenMBeanOperationInfo object:

public OpenMBeanOperationInfoSupport(String name,
 String description,
 OpenMBeanParameterInfo[] signature,
 OpenType returnOpenType,
 int impact) {
 // . . .
}

Let's look at an example of how to use this constructor, continuing with the
createWorker() example from the OpenMBeanParameterInfoSupport section:

// Create parameter metadata
OpenMBeanParameterInfo[] params = new OpenMBeanParameterInfo[2];

 182

params[0] = new OpenMBeanParameterInfoSupport(
 "role",
 "The type of worker to create.",
 SimpleType.STRING
);
params[1] = new OpenMBeanParameterInfoSupport(
 "workFactor",
 "The weighted work factor for this new worker thread.",
 SimpleType.INTEGER
);
// Create operation metadata
OpenMBeanOperationInfo[] operations = new OpenMBeanOperationInfo[1];
operations[0] = new OpenMBeanOperationInfoSupport(
 "createWorker",
 "Creates a new worker thread.",
 params,
 SimpleType.VOID,
 MBeanOperationInfo.ACTION
);

In this example, we used the simplest way possible to describe the parameters. However,
we are free to give the parameters a default value and either a set of legal values or a
valid-value range.

5.2.9 MBeanNotificationInfo

Notifications sent from an open MBean convey the same information as notifications sent
from any other MBean type, so no open MBean-specific class is provided for this
purpose. However, notifications sent by open MBeans still must be described using the
JMX metadata class MBeanNotificationInfo, which is found in the javax.management
package (see for more information). Chapter 3

5.2.10 OpenMBeanInfo

This interface describes an open MBean and is defined as:

public interface OpenMBeanInfo {
 public String getClassName();
 public String getDescription();
 public MBeanAttributeInfo[] getAttributes();
 public MBeanOperationInfo[] getOperations();
 public MBeanConstructorInfo[] getConstructors();
 public MBeanNotificationInfo[] getNotifications();
 public boolean equals(Object obj);
 public int hashCode();
 public String toString();
}

There are several read-only attributes of an open MBean:

ClassName

 183

The string representation of the fully qualified Java class name of the resource
described by this open MBean

Description

A human-readable description of this open MBean

Attributes

An array of MBeanAttributeInfo objects that describe the attributes of this open
MBean

Operations

An array of MBeanOperationInfo objects that describe the operations of this
open MBean

Constructors

An array of MBeanConstructorInfo objects that describe the constructors of this
open MBean

Notifications

An array of MBeanNotification object that describe the notifications emitted by
this open MBean

There are three other methods that we will describe briefly, as they function exactly the
same as they do for OpenMBeanParameterInfo, OpenMBeanAttributeInfo, and
OpenMBeanConstructorInfo.

equals() is used to test for equality between this OpenMBeanInfo object and another that
also implements this interface. A field-by-field comparison is made, and if all fields
contain the same values, this method returns true. Otherwise, it returns false.

hashCode() returns the hashcode for this OpenMBeanInfo object.

toString() returns a string representation of this OpenMBeanInfo object. The physical
representation produced by calling this method depends on the underlying
implementation of the OpenMBeanInfo interface.

5.2.11 OpenMBeanInfoSupport

This is the support class for OpenMBeanInfo and subsequently implements that interface.
This class is provided so that instrumentation developers can create OpenMBeanInfo
objects to describe operations. It is declared as:

 184

public class OpenMBeanInfoSupport extends MBeanInfo
 implements OpenMBeanInfo, java.io.Serializable {
// . . .
}

As we mentioned in the introduction to this section, all of the open MBean support
classes extend their MBean*Info counterparts. As we can see, OpenMBeanInfoSupport
extends MBeanInfo. OpenMBeanInfoSupport provides a single constructor that we can
use to create an OpenMBeanInfo object:

public OpenMBeanInfoSupport(String className,
 String description,
 OpenMBeanAttributeInfo[] openAttributes,
 OpenMBeanConstructorInfo[] openConstructors,
 OpenMBeanOperationInfo[] openOperations,
 MBeanNotificationInfo[] notifications) {
 // . . .
}

Let's look at an example of how to use this class to describe an MBean that is an instance
of the Queue class. Creating the metadata that describes the MBean itself involves pulling
together the previous sections into the following steps:

1. Create metadata (i.e., OpenMBeanAttributeInfo objects) for all attributes to be
exposed on the management interface, and place them into an array that will be
passed to the constructor of OpenMBeanInfoSupport. If this MBean has no
attributes, this parameter should be null.

2. Create metadata (i.e., OpenMBeanConstructorInfo objects) for all constructors
that a management application will need to access to create instances of this
MBean, and place them into an array that will be passed to the constructor of
OpenMBeanInfoSupport. Make sure to fully describe any parameters using
OpenMBeanParameterInfo objects. If this MBean has no constructors to be
exposed to a management application, this parameter should be null.

3. Create metadata (i.e., OpenMBeanOperationInfo objects) for all operations that
will be exposed on the management interface of the MBean, and place them into
an array that will be passed to the constructor of OpenMBeanInfoSupport. Make
sure to fully describe any parameters using OpenMBeanParameterInfo objects. If
this MBean has no operations, this parameter should be null.

4. Create metadata (i.e., MBeanNotificationInfo objects) for all notifications
emitted by this MBean, and place them into an array that will be passed to the
constructor of OpenMBeanInfoSupport. If this MBean has no notifications, this
parameter should be null.

5. Invoke the constructor of OpenMBeanInfoSupport, passing the fully qualified
name of the Java class that this MBean describes, a description of this MBean,
and references to the arrays created and populated in Steps 1-4.

 185

Suppose the name of the MBean class is sample.openmbean.Queue. In that case, we
would follow the steps outlined above (see the previous sections for how to do this) and
then create the OpenMBeanInfo object that describes the MBean:

OpenMBeanInfo queueMBean = new OpenMBeanInfo(
 "sample.openmbean.Queue",
 "Queue class instrumented as an open MBean.",
 attributes, // OpenMBeanAttributeInfo[]
 constructors, // OpenMBeanConstructorInfo[]
 operations, // OpenMBeanOperationInfo[]
 notifications // MBeanNotificationInfo[]
);

 186

Chapter 6. The MBean Server

So far, we have talked only about the instrumentation level of the JMX architecture. In
this chapter, we will take a close look at the core of the JMX architecture, the agent level.
This chapter is for those developers who want a deeper understanding of the JMX agent
level, are responsible for developing protocol adaptors and connectors, or need to interact
with a local MBeanServer instance.

First, we will take a quick look at the MBean server's role in the JMX agent level, how it
is implemented in the RI, how to get a reference to it, and what you can do with that
reference once you have it. Next, we will take a closer look at the MBeanServerFactory
class and its various methods for obtaining references to the MBean server. Then we will
look at the MBeanServer interface, which is how MBeans, JMX agents, and management
applications interact with the MBean server. In this section, we will also explore how to
register and unregister MBeans, how to use the MBean server to interact with an MBean
through its ObjectName, how to register interest in notifications, and how to query the
MBean server to return a subset of registered MBeans. This section will be followed by a
discussion of the MBeanRegistration interface, which gives the instrumentation
developer a means of control over an MBean's ObjectName, as well as exit points for
additional processing before and after the MBean is registered and deregistered. The
chapter will conclude with a look at MBeanServerDelegate, a class required by all JMX-
compliant implementations to provide metadata about that particular JMX
implementation.

6.1 What Is the MBean Server?

The MBean server is at the heart of the agent level of the JMX architecture. The primary
function of the MBean server is to act as a registry for MBeans. It is through the MBean
server that MBeans, other parts of the JMX agent, and management applications gain
access to the MBeans that are registered with the MBean server. Every MBean must be
registered with the MBean server in order to be managed. This is achieved by first
obtaining a reference to the MBean server (we'll see how to do that later in this chapter)
and then invoking the appropriate method of the MBeanServer interface. We will discuss
the MBeanServer interface in more detail later in this chapter.

A secondary function of the MBean server is to act as an intermediary to allow other
JMX agents, management applications, and MBeans to monitor and manage MBeans
without having a reference to the MBean object. As long as the object name of the
MBean is known and the MBean is registered, an MBean can be indirectly manipulated
through the MBean server in which the MBean is registered.

In the RI provided with the final release of the JMX 1.0 specification, the MBeanServer
interface is fully implemented in a class called MBeanServerImpl, located in the
com.sun.management.jmx package. If you are using the RI and are curious about the

 187

internals of the MBean server implementation, I encourage you to look at the source code
for this class.

As mentioned earlier, before an MBean can be registered with the MBean server, a
reference to the MBean server must be obtained. This is achieved through
MBeanServerFactory, a class located in the javax.management package that must be
shipped with every compliant JMX implementation. This class contains static methods
that allow you to create an instance of an MBean server and find an instance of an
MBean server that has already been created. Each of the methods of the
MBeanServerFactory class will be discussed later in this chapter.

The MBean server implementation class (MBeanServerImpl, in the
JMX 1.0 RI) should never be instantiated directly! You should
always use the static methods of MBeanServerFactory to obtain a
reference to an MBean server. In addition, once you obtain a
reference to an MBean server, you should never cast it to an
MBeanServerImpl, even though this would work when using the RI.
You should always work with the MBean server through the
MBeanServer interface.

We will look at the MBeanServer interface in more detail later in this chapter. Once you
have a reference to an MBean server, you can:

• Register and deregister MBeans.
• Register interest in MBean and MBean server notifications.
• Manipulate MBeans by getting and setting their attribute values and invoking

their management operations.
• Query the MBean server to return subsets of the MBeans that are registered

within it.

We will look at each of these actions in detail in the sections that follow.

Unless otherwise noted, we will assume that we are going to work
with only a single MBean server within any given JVM.

6.2 Obtaining a Reference to the MBean Server

The under-the-hood implementation of the MBean server in the RI is
com.sun.management.jmx.MBeanServerImpl, but this class should never be
instantiated directly. Instead, the RI provides a factory class called MBeanServerFactory
that contains various static methods that allow you to obtain a reference to the MBean
server. In this section, we will describe each of those static methods and give examples of
how to use them. Example 6-1 is an abbreviated version of the MBeanServerFactory
class.

 188

Example 6-1. The static methods of MBeanServerFactory

package javax.management;
// . . .
public class MBeanServerFactory {
// . . .
 public static MBeanServer createMBeanServer () {
 // . . .
 }

 public static MBeanServer createMBeanServer (String domain) {
 // . . .
 }

 public static MBeanServer newMBeanServer () {
 // . . .
 }

 public static MBeanServer newMBeanServer (String domain) {
 // . . .
 }

 public synchronized static ArrayList findMBeanServer (String AgentId)
{
 // . . .
 }

 public static void releaseMBeanServer (MBeanServer mbeanServer) {
 // . . .
 }

// . . .
}

There are six static methods on MBeanServerFactory, as shown in Example 6-1. These
methods allow you to create an instance, find one or more instances, and release a
reference to an instance of an MBean server.

6.2.1 Creating the MBean Server

If no MBean server instance exists (we'll discuss how to find that out later), there are four
static methods that allow you to create one. The first two, overloads of
createMBeanServer(), allow you to create an instance of the MBean server with the
default domain name and a specific domain name, respectively. When you create an
instance of the MBean server, MBeanServerFactory maintains a reference to the MBean
server that was just created, ensuring that it will not be garbage-collected. The second
two methods, overloads of newMBeanServer(), do the same thing, but
MBeanServerFactory does not maintain a reference to the newly created MBean
server—it is up to the caller to maintain the reference.

If you want to create an instance of the MBean server and have MBeanServerFactory
maintain an internal reference to it, you have two choices. The first option is to call the

 189

version of createMBeanServer() with no parameters, which will create an MBean server
instance, store its reference inside the factory, and return an MBeanServer reference to
you:

MBeanServer mbeanServer = MBeanServerFactory.createMBeanServer();

Recall from Chapter 2 that every MBean has a unique ObjectName instance associated
with it. Even though the MBean server itself is not technically a managed resource, it
must still have a domain name associated with it. In the code above, the resulting MBean
server would be created with the default domain name, which in the JMX 1.0 RI is
"DefaultDomain". Figure 6-1 shows the management view of the MBean server when
we use the no-argument version of createMBeanServer().

Figure 6-1. The management view of the MBean server when the no-argument version of
createMBeanServer() is used

If, however, we want to provide the MBean server with a domain name other than
"DefaultDomain", we can pass a String argument containing that name:

String differentDomain = "TheTwilightZone";
MBeanServer mbeanServer =
MBeanServerFactory.createMBeanServer(differentDomain);

The domain name of the resulting MBean server is now "TheTwilightZone". Figure 6-2
shows the management view of this MBean server. As you can see, the domain name of
the MBean server is indeed what we passed to createMBeanServer(). But notice

 190

something interesting about Figure 6-2. When the Queue instance is created in the
Controller, the default domain is used. However, the domain name of the Queue
MBean is now "TheTwilightZone"! Passing a domain name to createMBeanServer()
not only sets the domain name of the resulting MBean server; it also sets the default
domain name for all MBeans registered within it.

Figure 6-2. The management view of the MBean server when a domain name is supplied to
createMBeanServer()

The internal references to MBean servers created using the createMBeanServer()
methods are stored within MBeanServerFactory. When a call to this static method is
made, the MBean server is instantiated and a reference to it is added to this internal store.

However, if this is not the behavior you desire (e.g., if you don't want third-party
components running within the same JVM as your MBeans to be able to find your
MBean server), you can invoke one of the two static methods called newMBeanServer()
to avoid MBeanServerFactory's default behavior of keeping an internal reference to the
newly created MBean server. The syntax is identical to that of createMBeanServer() in
both cases, and the resulting domain name follows the same rules as those for
createMBeanServer(). To create an MBean server with the domain name
"DefaultDomain", simply use the no-argument version of newMBeanServer():

MBeanServer mbeanServer = MBeanServerFactory.newMBeanServer();

The resulting management view looks the same as the one shown in Figure 6-1. To create
an MBean server with the domain name "TheTwilightZone", simply use the other
version of newMBeanServer():

 191

String differentDomain = "TheTwilightZone";
MBeanServer mbeanServer =
MBeanServerFactory.newMBeanServer(differentDomain);

The management view will look the same as the one shown in Figure 6-2.

Any reference to the MBean server obtained via newMBeanServer()
will be garbage-collected when the reference goes out of scope. You
should hold the reference in an instance variable of a class that has a
lifetime at least as long as that of the resulting MBean server.

6.2.2 Finding the MBean Server

To locate an existing MBean server, use MBeanServerFactory's static findMBeanServer()
method. Example 6-1 shows this method to be defined as:

public synchronized static ArrayList findMBeanServer (String AgentId) {
 // . . .
}

This method takes a String argument that is the "agent ID" for the MBean server you're
trying to find. This terminology is rather vague, and I suspect that the designers of the
specification intended there to be some latitude in how this parameter is used from
implementation to implementation. According to the JMX 1.0 RI source code, the agent
ID is the name of the local host machine where the JVM is running that contains the
MBean server, followed by an underscore character, followed by the system time in
milliseconds when the MBean server was instantiated.

For example, suppose the name of the local host is "STEVE" and the system time when
the MBean server was instantiated was 1002565476994 milliseconds. The agent ID in
this case would be "STEVE_ 1002565476994". Clearly, it would be very difficult (at best)
to ask for a specific agent ID using the RI. However, if you pass null as the argument to
findMBeanServer(), a list of all the MBean servers in the JVM is returned. You can then
iterate through the list to find the MBean server that matches the domain in which you are
interested. For example, suppose we want to find the MBean server for the
"TheTwilightZone" domain from earlier in this chapter. We would call the
findMBeanServer() static method of MBeanServerFactory and then iterate through the
list (we could also index through the list, because the return value is a cloned version of
the ArrayList that MBeanServerFactory keeps internally) until we find the MBean
server for the "TheTwilightZone" domain:

String agentId = null;
ArrayList mbeanServers = MBeanServerFactory.findMBeanServer(agentId);
Iterator iter = mbeanServers.iterator();
MBeanServer mbeanServer = null;
while (iter.hasNext()) {
 mbeanServer = (MBeanServer)iter.next();
 if (mbeanServer.getDefaultDomain().equals("TheTwilightZone")) {

 192

 // found it!
 break;
 }
 else
 mbeanServer = null;
}
if (mbeanServer == null) {
 mbeanServer = MBeanServerFactory.createMBeanServer("TheTwilightZone");
}

If we had already created an instance of the MBean server with the domain name
"TheTwilightZone" but used the static method newMBeanServer() to do it, this code
would not find it. Recall that when we use newMBeanServer() to create an instance of the
MBean server, MBeanServerFactory does not keep an internal reference to it. Because
findMBeanServer() returns the ArrayList that serves as the internal reference backing
store, we will never find references to MBean servers created with newMBeanServer().
However, the JMX RI doesn't seem to care how many instances of an MBean server are
created with the same domain name, so the code above will still find the instance we
created with createMBeanServer(). A word to the wise: if you anticipate ever needing to
programmatically locate an MBean server by its domain name, make sure you create it
using createMBeanServer(), so that MBeanServerFactory will hold a reference to it.

6.2.3 Releasing a Reference to the MBeanServer

Say that you need to remove the internal reference stored in MBeanServerFactory to an
MBean server instance you created by calling createMBeanServer(). You can do so by
calling releaseMBeanServer(), which from Example 6-1 is defined as:

public static void releaseMBeanServer(MBeanServer mbeanServer) {
 // . . .
}

Note that calling this static method does not remove the MBean server from the JVM; it
simply removes it from the internal store of MBean servers maintained by
MBeanServerFactory. You may call this method only with an MBeanServer reference
obtained by a call to createMBeanServer(). The syntax is very straightforward:

MBeanServer mbeanServer = MBeanServerFactory.createMBeanServer();
//
// Do something with the reference
//
// Later on. . .
//
MBeanServerFactory.releaseMBeanServer(mbeanServer);

Once the call to releaseMBeanServer() is made, subsequent calls to findMBeanServer()
will fail to locate a reference to the MBeanServer just released.

6.3 The MBeanServer Interface

 193

In this section, we will take a close look at the MBeanServer interface, which is used to
communicate with the MBeanServer implementation. First we will present the interface
in its entirety, then we will proceed to dissect the interface method by method, providing
examples along the way. We will also take another look at the ObjectName class, which
is critical in manipulating MBeans indirectly through the MBeanServer interface (the
preferred means of doing so). We have already covered what you can do through a
reference to the MBeanServer interface. Let's now look more closely at this important
interface. Example 6-2 shows the MBeanServer interface.

Example 6-2. The MBeanServer interface

package javax.management;

public interface MBeanServer {

 public Object instantiate(String className)
 throws ReflectionException, MBeanException;

 public Object instantiate(String className, ObjectName loaderName)
 throws ReflectionException, MBeanException,
InstanceNotFoundException;

 public Object instantiate(String className, Object params[], String
signature[])
 throws ReflectionException, MBeanException;

 public Object instantiate(String className, ObjectName loaderName,
 Object params[], String signature[])
 throws ReflectionException, MBeanException,
InstanceNotFoundException;

 public ObjectInstance registerMBean(Object object, ObjectName name)
 throws InstanceAlreadyExistsException, MBeanRegistrationException,
 NotCompliantMBeanException;

 public ObjectInstance createMBean(String className, ObjectName name)
 throws ReflectionException, InstanceAlreadyExistsException,
 MBeanRegistrationException, MBeanException,
NotCompliantMBeanException;

 public ObjectInstance createMBean(String className, ObjectName name,
 ObjectName loaderName)
 throws ReflectionException, InstanceAlreadyExistsException,
 MBeanRegistrationException, MBeanException,
 NotCompliantMBeanException, InstanceNotFoundException;

 public ObjectInstance createMBean(String className, ObjectName name,
 Object params[], String signature[])
 throws ReflectionException, InstanceAlreadyExistsException,
 MBeanRegistrationException, MBeanException,
NotCompliantMBeanException;

 public ObjectInstance createMBean(String className, ObjectName name,

 194

 ObjectName loaderName, Object
params[],
 String signature[])
 throws ReflectionException, InstanceAlreadyExistsException,
 MBeanRegistrationException, MBeanException,
 NotCompliantMBeanException, InstanceNotFoundException;

 public void unregisterMBean(ObjectName name)
 throws InstanceNotFoundException, MBeanRegistrationException;

 public Object getAttribute(ObjectName name, String attribute)
 throws MBeanException, AttributeNotFoundException,
 InstanceNotFoundException, ReflectionException;

 public AttributeList getAttributes(ObjectName name, String[]
attributes)
 throws InstanceNotFoundException, ReflectionException;

 public void setAttribute(ObjectName name, Attribute attribute)
 throws InstanceNotFoundException, AttributeNotFoundException,
 InvalidAttributeValueException, MBeanException,
ReflectionException;

 public AttributeList setAttributes(ObjectName name, AttributeList
attributes)
 throws InstanceNotFoundException, ReflectionException;

 public Object invoke(ObjectName name, String operationName,
 Object params[], String signature[])
 throws InstanceNotFoundException, MBeanException,
ReflectionException;

 public MBeanInfo getMBeanInfo(ObjectName name)
 throws InstanceNotFoundException, IntrospectionException,
ReflectionException;

 public void addNotificationListener(ObjectName name,
NotificationListener listener,
 NotificationFilter filter, Object
handback)
 throws InstanceNotFoundException;

 public void addNotificationListener(ObjectName name, ObjectName
listener,
 NotificationFilter filter, Object
handback)
 throws InstanceNotFoundException;

 public void removeNotificationListener(ObjectName name,
NotificationListener listener)
 throws InstanceNotFoundException, ListenerNotFoundException;

 public void removeNotificationListener(ObjectName name, ObjectName
listener)
 throws InstanceNotFoundException, ListenerNotFoundException;

 public Set queryMBeans(ObjectName name, QueryExp query);

 195

 public Set queryNames(ObjectName name, QueryExp query);

 public ObjectInstance getObjectInstance(ObjectName name)
 throws InstanceNotFoundException;

 public boolean isRegistered(ObjectName name);

 public Integer getMBeanCount();

 public boolean isInstanceOf(ObjectName name, String className)
 throws InstanceNotFoundException;

 public String getDefaultDomain();

 public ObjectInputStream deserialize(ObjectName name, byte[] data)
 throws InstanceNotFoundException, OperationsException;

 public ObjectInputStream deserialize(String className, byte[] data)
 throws OperationsException, ReflectionException;

 public ObjectInputStream deserialize(String className, ObjectName
loaderName,
 byte[] data)
 throws InstanceNotFoundException, OperationsException,
ReflectionException;
}

As you can see from Example 6-2, the MBeanServer interface contains quite a few
methods! These methods can be grouped into five distinct categories, related to the
function each method performs:

Instantiation and registration

Those methods related to instantiation of MBeans, registration of MBeans, or
both

Indirect MBean manipulation

Those methods related to manipulating MBeans through the MBean server, rather
than through direct references to the MBeans themselves

Notification

Those methods related to MBean notifications

Query

Those methods related to retrieving subsets of registered MBeans by querying the
MBean server

 196

Utility

Those methods that provide helpful functionality not directly related to any
particular previous category

In this section, we will look at each method on the MBeanServer interface by category.
We will start with instantiation and registration, as that category of methods is likely to
be the most widely used. The other categories will follow, in the order in which they are
enumerated above.

6.3.1 Instantiation and Registration

If you are interested only in instrumenting your application resources as MBeans, you
will be concerned with only those methods of MBeanServer that allow you to instantiate
and register MBeans. Two of these methods, createMBean() and instantiate(), are
overloaded, with four overloads apiece. Two other methods, registerMBean() and
unregisterMBean(), round out the instantiation and registration methods. These methods
can be broken down into four categories:

• Instantiating an MBean
• Registering an instantiated MBean
• Combining the instantiation and registration of an MBean
• Removing a registered MBean from the MBean server

6.3.1.1 Instantiating an MBean

The four overloads of instantiate() are defined as:

public Object instantiate(String className)
 throws ReflectionException, MBeanException;

public Object instantiate(String className, Object params[], String
signature[])
 throws ReflectionException, MBeanException;

public Object instantiate(String className, ObjectName loaderName)
 throws ReflectionException, MBeanException, InstanceNotFoundException;

public Object instantiate(String className, ObjectName loaderName,
 Object params[], String signature[])
 throws ReflectionException, MBeanException, InstanceNotFoundException;

Each of these methods is used to create a new instance of an MBean's class, as the
method name suggests. Upon creation, a reference to the newly created MBean is
returned to the caller in the form of an Object reference. The caller is then responsible
for registering the MBean with the MBean server.

 197

In all cases, the String className parameter is the fully qualified class name of the
MBean's class. For example, if the MBean class Queue to be loaded is found in the
sample.mbeanserver package, the MBean would be instantiated as:

MBeanServer mbeanServer = MBeanServerFactory.createM
String qmbeanClassName = "sample.mbeanserver.Queue";

BeanServer();

try {
 Object qmbean = mbeanServer.instantiate(qmbeanClassName);
} catch (ReflectionException e) {
 // . . .
} catch (MBeanException e) {
// . . .
}

In this case, the no-argument constructor of Queue will be called when the object is
constructed. Likewise, we can use the second version of instantiate() to have an alternate
constructor invoked when an instance of Queue is created. The alternate constructor for
Queue is an int that allows you to specify the depth of the queue. The signature of the
instantiate() method we invoke is:

public Object instantiate(String className, Object params[], String
signature[])
 throws ReflectionException, MBeanException;

The first parameter is the fully qualified name of the Queue class, as mentioned earlier.
The second parameter is an array of Object instances that contain the actual parameter
values. Any primitive types must be wrapped in the appropriate JDK wrapper class. For
our example, we must wrap the int parameter with a java.lang.Integer instance. For
object types, simply pass an instance of the object that contains the parameter value. The
third parameter to instantiate() is a String array that contains the fully qualified class
names of the constructor's signature.

The alternate constructor for Queue is defined as:

public Queue(int queueSize) {
 // . . .
}

Suppose we want to use instantiate() to invoke this constructor when an instance of
Queue is instantiated and set the queueSize parameter to 5:

MBeanServer mbeanServer = MBeanServerFactory.createMBeanServer();
Object[] params = new Object[] {
 new Integer(5);
};
String[] signature = new String[] {
 Integer.TYPE.getName()
};
String queueClassName = "sample.mbeanserver.Queue";
try {

 198

 Object queue = mbeanServer.instantiate(queueClassName, params,
signature);
 // . . .
} catch (ReflectionException e) {
 // . . .
} catch (MBeanException e) {
 // . . .
}

First we construct an array of Object instances (in this case, the array will contain only
one instance), wrapping the primitive int with an instance of the JDK wrapper class
Integer. Then we create an array of Strings (again, only one) containing the string
representation of the Class object that corresponds to the parameter passed in the Object
array. Because the parameter type is an int, we must obtain the string representation of
an int. Integer.TYPE is the Class object for the primitive type int, and a call to
getName() gives us the string representation we need. Chapter 3 contains a thorough
discussion of the use of TYPE for obtaining the Class object for primitive types.

If Queue's class loader can locate and successfully load Queue, an Object reference to the
newly created Queue class is returned. If the class loader cannot locate Queue, the
MBeanServer implementation will use its list of class loaders to load the class. However,
there are two overloaded versions of instantiate() that have the same signature as the two
versions we just discussed, with the exception of an additional parameter that allows us to
specify an ObjectName of the class loader to use when instantiating the MBean.

There is a catch, though: the class loader to be used must be an MBean and must be
registered with the MBean server prior to invoking these two versions of instantiate(). It
is beyond the scope of this book to show how to write a ClassLoader, and other than the
additional parameter passed to them, the last two overloads of instantiate() work exactly
the same way as their previous two counterparts. Be aware, though, that the ClassLoader
you provide with these two overloads must be an MBean as well as an extended version
of ClassLoader.

In each of the overloaded versions of instantiate(), it is possible for something to go
wrong. Notice the exceptions that are potentially thrown from each method. The most
common exception you're likely to see is a ReflectionException, which indicates that
the intended constructor could not be found. For the first and third versions of
instantiate(), it means that the no-argument constructor either was not defined on the
class (but an alternate constructor was) or does not have public visibility. For the second
and fourth versions, a ReflectionException means that the constructor with the
specified signature either does not exist on the class or does not have public visibility.

6.3.1.2 Registering an MBean

Once instantiate() has been called, an Object reference to the newly created MBean is
returned to the caller. It is then up to the caller to register the MBean with the MBean
server (although the caller is under no obligation to do so). MBeanServer provides a

 199

method that allows you to register the MBean once it has been instantiated. This method,
called registerMBean(), is defined as:

public ObjectInstance registerMBean(Object object, ObjectName name)
 throws InstanceAlreadyExistsException, MBeanRegistrationException,
 NotCompliantMBeanException;

The first parameter, object, is an Object reference to an instance of the MBean to be
registered. The second parameter, name, is an ObjectName instance that contains the
unique object name of the MBean. An MBean's object name is a String that contains the
domain and the key property list and is of the form:

"domain:property1=value1,property2=value2,. . .,propertyN=valueN"

Think of the domain as the namespace mechanism for JMX. The key property list for an
MBean is a comma-separated list of name/value pairs that uniquely identify an MBean
within a particular domain. Refer to Chapter 2 for a more thorough discussion of the
ObjectName class and its role in MBean registration.

From this point on, an MBean's object name is the unique string
identifying the MBean, and ObjectName is a class, an instance of
which is used to contain the object name. For example:

ObjectName name1 = new ObjectName("d1:p1=v1");
ObjectName name2 = new ObjectName("d1:p1=v1");

name1 and name2 are unique ObjectNames, but they contain the
same object name.

If the object name is not unique, the MBean server throws an
InstanceAlreadyExistsException. If the MBean is not compliant with the JMX
design patterns, a NotCompliantMBeanException is thrown. If any other problems crop
up during the registration process, an MBeanRegistrationException is thrown. Using
the Queue example from earlier in this section, we could create an instance of Queue
using instantiate(), then take the returned Object reference and call registerMBean():

MBeanServer mbeanServer = MBeanServerFactory.createMBeanServer();
String qmbeanClassName = "sample.mbeanserver.Queue";
Object qmbean = null;
try {
 Object qmbean = mbeanServer.instantiate(qmbeanClassName);
} catch (ReflectionException e) {
 // . . .
} catch (MBeanException e) {
 // . . .
}
// Create an ObjectName for the MBean. . .

 200

String domain = mbeanServer.getDefaultDomain();
String keyPropsList = "name=Queue";
ObjectName objName = new ObjectName(domainName + ":" + keyPropsList);
try {
 mbeanServer.registerMBean(qmbean, objName);
} catch (InstanceAlreadyExistsException e) {
 // . . .
} catch (NotCompliantMBeanException e) {
 // . . .
} catch (MBeanRegistrationException e) {
 // . . .
}

What is returned from the call to registerMBean() is an ObjectInstance, which
encapsulates an MBean's class name and its ObjectName instance (although the resulting
ObjectName may actually be different if the MBean implements the MBeanRegistration
interface and provides a different ObjectName in the preRegistration() method). In the
above code snippet, we simply ignored the return value, as we didn't need it for anything.

Instead of using instantiate() to register the Queue MBean, we could simply have used
the new keyword to create an instance and then called registerMBean():

MBeanServer mbeanServer = MBeanServerFactory.createMBeanServer();
String qmbeanClassName = "sample
QueueMBean qmbean = new Queue();

.mbeanserver.Queue";

// Create an ObjectName for the MBean. . .
String domain = mbeanServer.getDefaultDomain();
String keyPropsList = "name=Queue";
ObjectName objName = new ObjectName(domainName + ":" + keyPropsList);
try {
 mbeanServer.registerMBean(qmbean, objName);
} catch (InstanceAlreadyExistsException e) {
 // . . .
} catch (NotCompliantMBeanException e) {
 // . . .
} catch (MBeanRegistrationException e) {
 // . . .
}

This is a perfectly acceptable approach to creating and registering an MBean, and one
that I often use myself. There is no requirement that you instantiate your MBeans by
calling instantiate(); this method is simply provided as a convenience.

6.3.1.3 Combining the instantiation and registration of an MBean

The MBeanServer interface provides us with a method that can combine the instantiation
and registration of an MBean. This method is called createMBean(). createMBean()
works in exactly the same way as instantiate(), but it allows you to specify an
ObjectName so that the details of registering your MBean are handled behind the scenes.
Just as with instantiate(), there are four overloads of createMBean(), defined as:

 201

public ObjectInstance createMBean(String className, ObjectName name)
 throws ReflectionException, InstanceAlreadyExistsException,
 MBeanRegistrationException, MBeanException,
NotCompliantMBeanException;

public ObjectInstance createMBean(String className, ObjectName name,
 ObjectName loaderName)
 throws ReflectionException, InstanceAlreadyExistsException,
 MBeanRegistrationException, MBeanException,
 NotCompliantMBeanException, InstanceNotFoundException;

public ObjectInstance createMBean(String className, ObjectName name,
 Object params[], String signature[])
 throws ReflectionException, InstanceAlreadyExistsException,
 MBeanRegistrationException, MBeanException,
NotCompliantMBeanException;

public ObjectInstance createMBean(String className, ObjectName name,
 ObjectName loaderName, Object
params[],
 String signature[])
 throws ReflectionException, InstanceAlreadyExistsException,
 MBeanRegistrationException, MBeanException,
 NotCompliantMBeanException, InstanceNotFoundException;

As you can see from the method signatures of the overloaded versions of createMBean(),
the possible exceptions that may be thrown are a combination of those of the
corresponding instantiate() and registerMBean() methods. Using the Queue MBean
example from earlier, we can combine the instantiation and registration processes with
one call to createMBean():

MBeanServer mbeanServer = MBeanServerFactory.createMBeanServer();
String qmbeanClassName = "sample.mbeanserver.Queue";
String domain = mbeanServer.getDefaultDomain();
String keyPropsList = "name=Queue";
ObjectName objName = new ObjectName(domainName + ":" + keyPropsList);
ObjectInstance objInst = null;
try {
 objInst = mbeanServer.createMBean(qmbeanClassName, objName);
} catch (ReflectionException e) {
 // . . .
} catch (InstanceAlreadyExistsException e) {
 // . . .
} catch (MBeanRegistrationException e) {
 // . . .
} catch (MBeanException e) {
 // . . .
} catch (NotCompliantMBeanException e) {
 // . . .
}

There is a subtle—yet important—difference between using createMBean() and the other
approaches we've discussed for creating and registering MBeans: when you use
createMBean() to instantiate and register an MBean, you will not receive a reference to

 202

the MBean object itself. This means that you will not be able to directly manipulate the
MBean, as you do not have a reference to it. Notice what is returned from createMBean():
a reference to the MBean's ObjectInstance (as we've already mentioned, every
registered MBean has a corresponding ObjectInstance associated with it). This is an
indirect reference to the MBean that you can use to manipulate the MBean indirectly. In
the next section, we will look at how to indirectly manipulate MBeans using the MBean
server and both an ObjectInstance and an ObjectName reference to the MBean.

6.3.1.4 Removing a registered MBean from the MBean server

The MBeanServer interface also provides a means to remove MBeans from the MBean
server's registry. This has no effect on the object itself—if there are any valid references
to it, it remains alive and well inside the JVM. However, once removed from the MBean
server's internal registry, the MBean is no longer accessible through the MBean server to
other MBeans, JMX agents, or management applications. The method to remove an
MBean from the MBean server is called unregisterMBean() and is defined as:

public void unregisterMBean(ObjectName name)
 throws InstanceNotFoundException, MBeanRegistrationException;

All that is required to unregister an MBean is its object name, wrapped in an ObjectName
instance. If the object name string contained within the ObjectName is not found in the
MBean server's registry, an InstanceNotFoundException is thrown. If any other error
occurs, the MBean server throws an MBeanRegistrationException.

Here is an example, using the Queue MBean from earlier:

MBeanServer mbeanServer = MBeanServerFactory.createMBeanServer();
String qmbeanClassName = "sample.mbeanserver.Queue";
String domain = mbeanServer.getDefaultDomain();
String keyPropsList = "name=Queue";
ObjectName objName = new ObjectName(domainName + ":" + keyPropsList);
// register the MBean. . .
// later on . . .
try {
 mbeanServer.unregisterMBean(objName);
} catch (InstanceNotFoundException e) {
 // . . .
} catch (MBeanRegistrationException e) {
 // . . .
}

If the call to unregister() is successful, the MBean specified by the object name string
contained within the ObjectName reference passed to unregister() is removed from the
MBean server's registry and is no longer accessible to other MBeans, JMX agents, or
management applications. However, as mentioned earlier, any direct references to the
MBean object will still be valid. Calling unregister() does not guarantee that an MBean
will be eligible for garbage collection.

 203

6.3.2 Indirect MBean Manipulation

The MBean server provides several methods that allow for interaction with a registered
MBean through its object name. Recall that when an MBean is registered, a unique object
name—a string containing the MBean's domain and key property list—is always
provided by passing an instance of ObjectName that contains the object name.
Subsequently, through an ObjectName instance that contains the object name of the
MBean, any MBean can be manipulated through these methods on the MBean server.
The MBean server looks up the MBean by its object name and, if it finds it, manipulates
the MBean directly on behalf of the caller, receives the results, and returns the results to
the caller. This is what is meant by indirect MBean manipulation—because the caller
does not have a reference to the MBean object itself, it uses the MBean's unique object
name to manipulate the MBean and uses the MBean server to broker the interaction.

By "manipulating" or "interacting with" an MBean, we mean using the management
interface of an MBean to:

• Retrieve a management attribute value.
• Set a management attribute value.
• Invoke a management operation.

Through indirect MBean manipulation, only the management interface is available. For
example, suppose I have a management interface defined on MyClassMBean:

public interface MyClassMBean {
 public String getStringAttribute();
 public void reset();
}

that's implemented on a class MyClass (following the standard MBean design patterns):

public class MyClass {
 // management interface. . .
 public String getStringAttribute() {
 return _stringAttribute;
 }
 public void reset() {
 setStringAttribute("");
 }
 // other class-related stuff. . .
 private String _stringAttribute;
 public void setStringAttribute(String value) {
 _stringAttribute = value;
 }
}

Notice the public setter setStringAttribute(). If we create an instance of MyClass, we are
free to invoke this method because we have a reference to it:

MyClass myClass = new MyClass();

 204

myClass.setAttribute("I am Roger the Shrubber.");

However, this method is not available through the management interface of
MyClassMBean. The following code will not compile:

MyClassMBean myClass = new MyClass();
myClass.setAttribute("I\'m a lumberjack and I\'m okay.");

It is the same with indirect MBean manipulation. Only the management interface of the
MBean can be manipulated. The MBean server provides the following methods for
indirectly manipulating MBeans:

public Object getAttribute(ObjectName name, String attribute)
 throws MBeanException, AttributeNotFoundException,
 InstanceNotFoundException, ReflectionException;

public AttributeList getAttributes(ObjectName name, String[] attributes)
 throws InstanceNotFoundException, ReflectionException;

public void setAttribute(ObjectName name, Attribute attribute)
 throws InstanceNotFoundException, AttributeNotFoundException,
 InvalidAttributeValueException, MBeanException,
ReflectionException;

public AttributeList setAttributes(ObjectName name, AttributeList
attributes)
 throws InstanceNotFoundException, ReflectionException;

public Object invoke(ObjectName name, String operationName,
 Object params[], String signature[])
 throws InstanceNotFoundException, MBeanException, ReflectionException;

public MBeanInfo getMBeanInfo(ObjectName name)
 throws InstanceNotFoundException, IntrospectionException,
ReflectionException;

If these methods look familiar, it is because they have the same names as (and perform
the same functions as) the corresponding methods on the DynamicMBean interface. In fact,
even the parameters are the same, with the exception that the first parameter to each
method above is an ObjectName to identify the MBean with which to interact. See
Chapter 3 if you are not familiar with what these methods do and for a thorough
discussion of the Attribute, AttributeList, and MBeanInfo classes.

The only difference between the signatures of these methods and their DynamicMBean
counterparts is the possible exceptions that can be thrown and, as mentioned earlier, the
addition of a parameter allowing you to specify the MBean's object name. For example,
the getAttribute() method of MBeanServer throws an additional exception called
InstanceNotFoundException that the getAttribute() method of DynamicMBean does not,
in the event that the specified object name is not registered in the MBean server.

6.3.3 Notification

 205

Through the MBean server, you can register an interest in receiving notifications from
any registered MBean that is a notification broadcaster. Notification broadcasters must
implement the NotificationBroadcaster interface. Similarly, you can unregister
interest in receiving these notifications through the MBean server.

There are four methods on the MBeanServer interface that deal with notifications. They
are defined as:

public void addNotificationListener(ObjectName name,
NotificationListener listener,
 NotificationFilter filter, Object
handback)
 throws InstanceNotFoundException;

public void addNotificationListener(ObjectName name, ObjectName
listener,
 NotificationFilter filter, Object
handback)
 throws InstanceNotFoundException;

public void removeNotificationListener(ObjectName name,
 NotificationListener listener)
 throws InstanceNotFoundException, ListenerNotFoundException;

public void removeNotificationListener(ObjectName name, ObjectName
listener)
 throws InstanceNotFoundException, ListenerNotFoundException;

To register interest in receiving a notification, use addNotificationListener(). To
unregister interest in receiving a notification, use removeNotificationListener(). There are
two versions of each of these methods. The difference between the respective versions is
that you can specify either an Object reference to a notification listener (a class that
implements the NotificationListener interface) or the object name of the notification
listener (in which case the notification listener must also be a registered MBean). We will
look more closely at notification broadcasters and listeners in the next chapter.

The name parameter is the ObjectName of the notification broadcaster. The listener
parameter is either a reference to the notification listener or, if the notification listener is
an MBean, the ObjectName of the notification listener. Note that if you use the version of
addNotificationListener() or removeNotificationListener() that takes an ObjectName as
the listener parameter, the specified notification listener MBean must be registered prior
to invoking the method. If it isn't, the MBean server will throw an
InstanceNotFoundException (in the case of addNotificationListener()) or a
ListenerNotFoundException (in the case of removeNotificationListener()). The filter
parameter allows you to specify a notification filter, which allows you to enable only
certain notifications and send only those notifications to the listener (pass null if no
filtering is desired). The handback parameter is a reference to an opaque object to be
passed unchanged by the broadcaster to the listener when the broadcaster sends a
notification. Because the object is opaque, it should never be modified by the broadcaster

 206

(pass null if no handback is required). Notification filters and handback objects are
covered in detail in the next chapter, so we'll skip that discussion for now—it is not
important that you understand the details of notification filters and handback objects right
now in order to be able to use these methods of the MBean server. In all of the example
code in this chapter, we will pass null for both of these parameters.

Suppose that we want to register interest in receiving notifications from the Queue class,
which emits two notifications to alert to potential stall conditions (this is covered in some
detail in Chapter 3). The first notification is to alert to the possibility that the queue is
stalled because it has been full for longer than the threshold value (set programmatically)
and nothing has been removed. This could occur, for example, if all of the consumer
threads have crashed, because nothing would be removed from the queue. The second
notification is to alert the opposite condition: the queue has been empty for longer than
the threshold value and nothing has been added. This could occur, for example, if all of
the supplier threads have crashed and no other WorkUnits have been added since the last
time the queue was signaled as empty. Also, suppose that we want the Controller to
receive the notifications emitted by the Queue. Here is the relevant code:

Controller controller = new Controller();
MBeanServer mbeanServer = MBeanServerFactory.createMBeanServer();
String defaultDomain = mbeanServer.getDefaultDomain();
ObjectName queueObjName = new ObjectName(defaultDomain + ":name=Queue");
ObjectName controllerObjName = new ObjectName(defaultDomain +
":name=Controller");
try {
 mbeanServer.createMBean(queueObjName);
 mbeanServer.registerMBean(controllerObjName);
 mbeanServer.addNotificationListener(queueObjName, controller, null,
null);
 // . . .
} catch (/*all the appropriate exceptions*/) {
 // . . .
}

We could also pass the ObjectName for the Controller instead of its Object reference,
because the Controller is also an MBean. The highlighted line above would then be:

mbeanServer.addNotificationListener(queueObjName, controllerObjName,
null, null);

Now any time a potential stall condition occurs in the Queue, a notification will be
broadcast by Queue and sent to Controller. It is then up to Controller to handle the
notification and take the appropriate action. We will discuss some strategies for
implementing notification listeners in the next chapter. For now, be aware that you can
use the MBean server to register interest in receiving notifications with a broadcaster for
which you do not have an Object reference. This sort of indirect interaction is what
makes the MBean server so powerful. When the distributed services level of the JMX

 207

architecture gets completely specified, expect this to play a significant role in enabling
distributed notifications across the network.

6.3.4 Query

The MBean server allows you to send it queries that return a subset of the MBeans that
reside in its registry. In this section, we will look at how to build and submit queries to
the MBean server and what methods are provided to allow you to submit these queries.
This section will probably be most useful to those developers who are writing connectors
and protocol adaptors, although it does show how to programmatically ask an MBean
server for a subset of its registered MBeans, based on parameters to the methods provided
by the MBean server.

There are two methods for this purpose, defined as:

public Set queryMBeans(ObjectName name, QueryExp query);
public Set queryNames(ObjectName name, QueryExp query);

The parameters to these methods define two sets of criteria: the name parameter defines
the scope of the query, which in turn defines the subset of registered MBeans to which
the second parameter, query, will be applied. The ObjectName instance passed as name is
a pattern that somewhat resembles a regular expression. However, only two regular-
expression metacharacters are recognized:

• Asterisk (*), which matches zero or more characters
• Question mark (?), which matches a single character

These metacharacters are used in building the ObjectName that defines the subset of
MBeans to which the query parameter is applied. The simplest example is to apply the
query parameter to all registered MBeans. The ObjectName instance that is passed would
be:

ObjectName name = new ObjectName("*:*");

In this example, we have created an ObjectName pattern that matches all registered
MBeans. If we then pass null as the query parameter, the subset of MBeans returned is
all of the MBeans registered within the MBean server:

MBeanServer mbeanServer = /*obtain through some means. . .*/
ObjectName scope = new ObjectName("*:*");
QueryExp query = null;
Set results = mbeanServer.queryMBeans(name, query);
// Now look through all registered MBeans. . .

We could narrow the scope of the query to only domains whose names begin with "My":

MBeanServer mbeanServer = /*obtain through some means. . .*/
ObjectName scope = new ObjectName("My*:*");

 208

QueryExp query = null;
Set results = mbeanServer.queryMBeans(name, query);

or a single domain called "MyDomain":

MBeanServer mbeanServer = /*obtain through some means. . .*/
ObjectName scope = new ObjectName("MyDomain:*");
QueryExp query = null;
Set results = mbeanServer.queryMBeans(name, query);

Similarly, we can look at all domains and narrow the scope of the query to only those
MBeans that have a key property called name that has a value of Queue:

MBeanServer mbeanServer = /*obtain through some means. . .*/
ObjectName scope = new ObjectName("*:name=Queue,*");
QueryExp query = null;
Set results = mbeanServer.queryMBeans(name, query);
// Now look through all registered MBeans. . .

If no MBeans are found in the scope of the query, an empty Set
object is returned. You can test to see if the Set is empty by calling
the isEmpty() method, which will return true if there are no
ObjectInstance objects in the Set, or by calling size() to get a
count of the number of ObjectInstance objects in the Set. If the
number of MBean ObjectInstance objects is zero, no MBeans
were found within the scope of the query.

Once you select the scope, you can apply a query to the selected set of MBeans. Only
those MBeans in the scope of the query are considered when applying the query logic.
For example, if the scope of the query is set to:

ObjectName scope = new ObjectName(":*");

only those MBeans registered within the default domain will be considered when the
subsequent query is applied.

A query is constructed using static methods of the Query class to create instances of
QueryExp instances, which represent one or more query expressions. This query is then
applied to the entire scope of the query, which is specified by the ObjectName pattern we
discussed earlier. For example, to query all MBeans within the designated scope for those
MBeans whose numberOfResets attributes is zero, use:

QueryExp = Query.eq(
 Query.attr("numberOfResets"), // attribute name
 Query.value(0) // attribute value
);

The resulting QueryExp instance is now ready to be passed to the queryMBeans() method:

 209

MBeanServer mbeanServer = /*obtain through some means. . .*/
ObjectName scope = new ObjectName("*:*");
QueryExp = Query.eq(
 Query.attr("numberOfResets"), // attribute name
 Query.value(0) // attribute value
);
Set results = mbeanServer.queryMBeans(name, query);

In this example, the scope of the query is all registered MBeans whose numberOfResets
attributes have a value of zero.

The Query class provides methods that allow you to build SQL-like QueryExp instances
for querying MBeans that are within the scope of the query. Chapter 7 of the JMX 1.0
specification provides an excellent discussion of how to use this facility of the MBean
server.

The queryMBeans() query returns a Set object that contains a collection of
ObjectInstance objects that represent the MBeans that satisfied the query. To view the
contents of the Set object, create an Iterator and then look at the resulting
ObjectInstance objects one at a time:

MBeanServer mbeanServer = /*obtain through some means. . .*/
ObjectName scope = new ObjectName("*:*");
QueryExp = Query.match(
 Query.attr("numberOfResets"), // attribute name
 Query.value(0) // attribute value
);
Set results = mbeanServer.queryMBeans(name, query);
Iterator iter = results.iterator();
while (iter.hasNext()) {
 ObjectInstance obj = (ObjectInstance)iter.next();
 // etc. . . .
}

Once you have an MBean's ObjectInstance, you can call the getObjectName() method
to return an ObjectName instance that corresponds to the object name of the MBean. A
more direct alternative is provided by the MBean server, which allows you to perform the
same queries but have the MBean server return a Set of ObjectName instances instead.
The mechanics of the query are exactly the same:

MBeanServer mbeanServer = /*obtain through some means. . .*/
ObjectName scope = new ObjectName("*:*");
QueryExp = Query.match(
 Query.attr("numberOfResets"), // attribute name
 Query.value(0) // attribute value
);
Set results = mbeanServer.queryNames(name, query);
Iterator iter = results.iterator();
while (iter.hasNext()) {
 ObjectName objName = (ObjectName)iter.next();
 // etc. . . .
}

 210

This query will return a Set object that contains the object names of all the MBeans that
matched the query. If you need to use the object name of an MBean found in the query to
invoke a method or retrieve or set an attribute of the MBean, this is the method you will
probably want to use, as it provides you with more direct access to the ObjectName
instance corresponding to the MBean.

6.3.5 Utility

The MBeanServer interface provides eight methods that allow you to access information
about the MBeans that are registered. Three of these methods help you to deserialize the
state of an MBean from a byte array.

These helper methods are defined as follows:

public ObjectInstance getObjectInstance(ObjectName name)
 throws InstanceNotFoundException;

public boolean isRegistered(ObjectName name);

public Integer getMBeanCount();

public String getDefaultDomain();

public boolean isInstanceOf(ObjectName name, String className)
 throws InstanceNotFoundException;

public ObjectInputStream deserialize(ObjectName name, byte[] data)
 throws InstanceNotFoundException, OperationsException;

public ObjectInputStream deserialize(String className, byte[] data)
 throws OperationsException, ReflectionException;

public ObjectInputStream deserialize(String className, ObjectName
loaderName,
 byte[] data)
 throws InstanceNotFoundException, OperationsException,
ReflectionException;

These methods allow you to:

• Retrieve an ObjectInstance object that corresponds to an ObjectName, provided
the MBean identified by the ObjectName has been registered.

• Determine whether or not a particular MBean is registered.
• Obtain the number of MBeans across all domains that have been registered.
• Obtain a String containing the name of the default domain.
• Determine whether or not a particular MBean is an instance of a particular class.
• Create and return an ObjectInputStream object from which primitive types and

objects can be read. This method has three versions that provide a number of
ways to specify the ClassLoader to be used.

 211

Let's look at each of these methods. First, there is getObjectInstance(), which takes the
ObjectName of an MBean and returns the corresponding ObjectInstance for that
MBean:

MBeanServer mbeanServer = /* obtain through some means . . . */
ObjectName objName = new ObjectName(mbeanServer.getDefaultDomain() +
 ":name=Queue");
try {
 ObjectInstance objInst = mbeanServer.getObjectInstance(objName);
} catch (InstanceNotFoundException e) {
 // . . .
}

If the object name is not found (i.e., the MBean is not registered), an
InstanceNotFoundException is thrown. In the example above, we are asking the
MBean server for the ObjectInstance of the Queue MBean. This method can be useful
if, for example, you need to obtain the class name of the MBean registered under the
object name you provide to this method.

If you simply need to know whether a particular MBean has been registered, use the
isRegistered() method, which takes an ObjectName that identifies the MBean.
isRegistered() returns true if the MBean is registered and false if it is not:

MBeanServer mbeanServer = /* obtain through some means . . . */
ObjectName objName = new ObjectName(mbeanServer.getDefaultDomain() +
":name=Queue");
boolean yesOrNo = mbeanServer.isRegistered(objName);
String isOrNot = (yesOrNo) ? " is" : " is not ";
System.out.println("The MBean " + objName + isOrNot + "registered.");

The getMBeanCount() method tells you the total number of MBeans that have been
registered across all domains. In other words, if two MBeans have been registered on the
default domain and three MBeans have been registered under a different domain, this
method will return the number 5.

MBeanServer mbeanServer = /* obtain through some means . . . */
Integer numberOfMBeans = mbeanServer.getMBeanCount();
System.out.println("There are " + numberOfMBeans + " registered
MBeans.");

We have already used the getDefaultDomain() method in previous examples to get a
String that contains the name of the default domain. Recall from earlier in this chapter
that we can set the name of the default domain to whatever we want when we create the
MBean server (see Figure 6-2).

MBeanServer mbeanServer = MBeanServerFactory.createMBeanServer();
String defaultDomain = mbeanServer.getDefaultDomain();
System.out.println("The default domain is \'" + defaultDomain + "\'.");

 212

The isInstanceOf() method allows us to determine whether an MBean is an instance of a
particular class with a single method call:

MBeanServer mbeanServer = /* obtain through some means. . . */
String className = "sample.mbeanserver.Queue";
ObjectName objName = new ObjectName(mbeanServer.getDefaultDomain() +
":name=Queue");
boolean yesOrNo = mbeanServer.isInstanceOf(objName, className);
String isOrNot = (yesOrNo) ? " is " : " is not ";
System.out.println("MBean " + objName + isOrNot + "an instance of " +
"class " +
 className + ".");

Finally, the MBean server provides three versions of the deserialize() method that help
deserialize objects in a byte array by setting up and returning ObjectInputStream. The
ObjectInputStream object returned from deserialize() is then used to read primitive
types and objects by calling the appropriate methods of ObjectInputStream or one of its
parent classes. This class is somewhat misleadingly named—the input stream is not
actually deserialized; rather, an ObjectInputStream object is returned to the caller, who
is then responsible for processing the input stream through the available methods of
ObjectInputStream.

Each version of deserialize() provides you with a different way to specify the
ClassLoader that ObjectInputStream will use to locate and fetch the Java bytecode—
i.e., .class files—and create the corresponding Class objects for the objects in the input
stream when ObjectInputStream's readObject() method is called. These methods are
provided to developers of protocol adaptors and connectors to aid, for example, in
deserializing objects whose bytecode files do not reside on the same physical machine as
the MBean server.

The first version of deserialize() allows you to use a registered MBean as the
ClassLoader for classes read from the input stream when readObject() is called:

public ObjectInputStream deserialize(ObjectName name, byte[] data)
 throws InstanceNotFoundException, OperationsException;

The MBean specified by the name parameter must also extend the abstract class
ClassLoader and override any methods that provide different functionality than that
provided by ClassLoader. This method will search the MBean server's MBean registry
for the MBean specified by name. If the MBean does not exist in the registry, an
InstanceNotFoundException is thrown. If the data parameter is null or is zero bytes in
length, an OperationsException is thrown.

If all goes well, an ObjectInputStream object is created using the byte array specified
by data and returned to the caller. The caller is responsible for retrieving objects (or
primitive types) from the ObjectInputStream by calling the appropriate methods of
ObjectInputStream. Each time an object is read from the stream via a call to
readObject() on the returned ObjectInputStream object, the MBean class loader

 213

specified by name is used to create the corresponding Class object of the object in the
stream.

Through JMX instrumentation, the MBean class loader can expose a management
interface that allows a management application to keep track of information such as the
number of classes loaded, the number of input streams processed, and the number of
serialization errors.

The second version of deserialize() allows you to specify the class whose class loader is
to be used when loading classes for objects in the input stream:

public ObjectInputStream deserialize(String className, byte[] data)
 throws OperationsException, ReflectionException;

The className parameter must be a fully qualified string representation of the class
whose class loader is to be used by the ObjectInputStream object. If this parameter is
null, an OperationsException is thrown. Each time readObject() is called on the
returned ObjectInputStream object, this class loader is used to load the class in the
stream. If the data parameter is null or is zero bytes in length, an
OperationsException is thrown.

If the class specified by className cannot be located, the MBean server will attempt to
use one of the loaders in the default repository of class loaders, which is found in the
com.sun.management.jmx package in the DefaultLoaderRepository class. If no
suitable loader can be found, a ReflectionException is thrown.

If all goes well, an ObjectInputStream object is created, using the byte array specified
by data, and returned to the caller. The caller is then responsible for retrieving objects (or
primitive types) from the ObjectInputStream by calling the appropriate methods of
ObjectInputStream. Each time an object is read from the stream via a call to
readObject() on the returned ObjectInputStream object, the class loader of the class
specified by className is used to retrieve the bytecode for, and create an instance of, the
class of the object in the stream.

If you need to provide a class loader that must be manageable, you should instrument that
class loader as an MBean and use the first version of deserialize().

The third version of deserialize() allows you to use a registered MBean to load the
specified class, whose class loader is then to be used to load classes from the input stream:

public ObjectInputStream deserialize(String className, ObjectName
loaderName,
 byte[] data)
 throws InstanceNotFoundException, OperationsException,
ReflectionException;

 214

This version of deserialize() functions similarly to the second version, in that the
className parameter is the fully qualified string representation of a class whose class
loader is to be used to load classes for the objects in the input stream. However, the class
specified by className is loaded by an MBean, which is specified by the loaderName
parameter.

This method is provided as a convenience to developers who must provide their own
class loader, when it is not necessary to manage the class loader itself. However, there
may be times when it is necessary to manage the class loader that loads className, even
though the MBean specified by loaderName is not the class loader that ultimately loads
the class of the object in the input stream.

6.4 Controlling MBean Registration

There are times when it is necessary to perform certain activities before and after an
MBean is registered and deregistered. Implementing the MBeanRegistration interface
provides an MBean with four opportunities (i.e., callbacks) to perform additional
processing. The MBeanRegistration interface is defined as:

public interface MBeanRegistration {

 public ObjectName preRegister(MBeanServer server, ObjectName name)
 throws java.lang.Exception;

 public void postRegister(Boolean registrationDone);

 public void preDeregister()
 throws java.lang.Exception;

 public void postDeregister();
}

Another advantage of implementing this interface is that the MBean itself can generate its
own object name in preRegister(), which is invoked prior to registering the MBean. The
first opportunity an MBean has to perform any additional processing is in preRegister(),
which takes two parameters. The first parameter, server, is a reference to the MBean
server in which the MBean will be registered, allowing an MBean to maintain a reference
to its MBean server. The second parameter, name, is the object name of the MBean. The
specification does not mention anything about the behavior of this method, other than that
it is invoked prior to an MBean being registered. However, looking through the RI, it is
clear that the designers of JMX intended that if the name parameter is null, the MBean
will generate its own object name. Otherwise, name is returned unchanged.

Once the MBean has been registered, postRegister() is invoked with a boolean parameter,
registrationDone, that indicates whether the registration was successful. If a problem
occurred during registration, registrationDone will be false. Note that if an exception is
thrown during the preRegister() callback, this method is never invoked.

 215

If the agent that registered the MBean explicitly calls unregister() to deregister the
MBean, the preDeregister() callback is invoked just prior to the MBean's deregistration.
This gives the MBean the opportunity to perform any necessary cleanup, such as
releasing the reference to its MBean server. This callback method can very loosely be
thought of as a destructor in C++, with the important difference that there is no guarantee
that the MBean object is going away; it simply is not going to be manageable upon its
deregistration.

Finally, following successful deregistration of the MBean, postDeregister() is called. If
the preDeregister() callback threw an exception, this callback method is not invoked.

An implementation of this method on an MBean may look like this:

// . . .
 private MBeanServer _mbeanServer;
// . . .
 public ObjectName preRegister(MBeanServer server, ObjectName name)
 throws java.lang.Exception {
 _mbeanServer = server;
 if (name == null) {
 name = new ObjectName(server.getDefaultDomain() + ":" +
 "name=Queue,objNameType=self");
 }
 return name;
 }

 public void postRegister(Boolean registrationDone) {
 if (!registrationDone)
 _mbeanServer = null;
 }

 public void preDeregister() throws java.lang.Exception {
 _mbeanServer = null;
 }

 public void postDeregister() {
 // do nothing. . .
 }
// . . .

In this example, preRegister() returns the object name passed to it (indicating that the
agent registering the MBean has already generated an object name for the MBean) or, if it
is passed null, creates an object name—I've made up a property called objNameType and
set it to a value of self, indicating to a management application, or perhaps another JMX
agent, that the MBean generated its own object name. The postRegister() callback
method releases its reference to the MBean server if the registration fails. preDeregister()
unconditionally releases its MBean server reference, and postDeregister() does nothing at
all.

6.5 MBeanServerDelegate

 216

The MBean server does not directly expose a management interface, leaving
manipulation of the MBeans contained in its registry to those developers who write
agents, connectors, and protocol adaptors. However, information about the MBean server
and some notifications can be made available to a management application through its
delegate, MBeanServerDelegate. This class implements the
MBeanServerDelegateMBean interface, so it is an MBean and thus is manageable. It is
through this management interface that management applications can discover
information about the MBean server. The string representation of the object name of the
delegate MBean is "JMImplementation:type=MBeanServerDelegate".

In addition, the MBean server emits two notifications through the MBeanServerDelegate.
In this section, we will look at the information about the MBean server that is exposed
through the MBeanServerDelegate, as well as the notifications emitted by it on behalf of
the MBean server.

The MBean server provides the following read-only String attributes through its
delegate MBean:

The unique identifier of this MBean server within the JVM. The format of this
String is not dictated by the specification and is left to the implementer.

The name of the specification on which this MBean server implementation is
based—must be "Java Management Extensions".

The version of the JMX specification on which this MBean server implementation
is based—for the current release of the specification, must be "1.0 Final
Release".

The name of the vendor of the specification on which this MBean server is
based—must be "Sun Microsystems".

The implementation name of the MBean server. The vendor who implements the
MBean server is free to choose the format of this attribute.

6.5.1 MBean Server Information

MBeanServerId

SpecificationName

SpecificationVersion

SpecificationVendor

ImplementationName

 217

ImplementationVersion

6.5.2 MBean Server Notifications

jmx.mbean.created

jmx.mbean.deleted

The version of the implementation of the MBean server. The vendor who
implements the MBean server controls the value of this attribute.

The following example shows how to use the MBean server to obtain the values of these
attributes programmatically:

MBeanServer mbeanServer = MBeanServerFactory.createMBeanServer();
ObjectName delegateObjName =
 new ObjectName("JMImplementation:type=MBeanServerDelegate");
try {
 String serverId = mbeanServer.getAttribute(delegateObjName,
"MBeanServerId");
 String specName = mbeanServer.getAttribute(delegateObjName,
"SpecificationName");
 String specVer = mbeanServer.getAttribute(delegateObjName,
"SpecificationVersion");
 // etc. . . .
} catch (Exception e) {
 // handle. . .
}

Two notifications are emitted by the MBean server through its delegate:

This notification is emitted when an MBean is registered. The object name of the
MBean whose registration triggered the notification is included in the
Notification object sent to the notification listener.

This notification is emitted when an MBean is unregistered. The object name of
the MBean whose deregistration triggered the notification is included in the
Notification object sent to the notification listener.

In the JMX 1.0 RI, these notifications are actually implemented as
JMX.mbean.registered and JMX.mbean.unregistered, for
registration and deregistration, respectively. This is in conflict with
the specification and will probably be corrected in a future release of
the JMX RI.

To register interest in receiving these notifications, a notification listener must be added
to the list of listeners. The following example shows how to do this:

 218

MBeanServer mbeanServer = MBeanServer.createMBeanServer();
ObjectName delegateObjName =
 new ObjectName("JMImplementation:type=MBeanServerDelegate");
NotificationListener listener = /* obtain somehow */
mbeanServer.addNotificationListener(delegateObjName, listener, null,
null);

When registration and deregistration notifications are emitted by the delegate, the listener
will receive them. In the next chapter, we will cover the JMX notification model and how
to write both notification listeners and broadcasters.

 219

Chapter 7. JMX Notifications

The JMX specification provides a very rich, generic notification mechanism. In this
chapter, we will look at the JMX notification model, which serves as the foundation for
notifications. Then we will look at what a notification is and examples of different
notification types. We will then take a detailed look at the different classes and interfaces
that JMX provides to underpin the JMX notification model, including:

This class represents the contents of a single notification and is sent by the
broadcaster to the listener (or receiver) of the notification.

This interface, when implemented, gives the notification listener a way to tell the
JMX notification infrastructure that it is interested in only a subset of the potential
notifications sent by the broadcaster. The JMX RI provides a class called
NotificationFilterSupport that can be used as an off-the-shelf notification
filter.

This interface must be implemented by all notification broadcasters. In addition,
the RI provides an implementation of this interface called
NotificationBroadcasterSupport that can be used as an off-the-shelf
notification broadcaster.

This interface must be implemented by all receivers of JMX notifications.

A notification in the context of JMX is a unit of information sent by a broadcaster
through the JMX infrastructure to a listener, which interprets and processes the
notification. A notification contains, at a minimum, the notification type (a unique string
that identifies the notification), an Object reference to the notification broadcaster, and a
sequence number (an integer value that uniquely identifies a particular occurrence of a
specific notification type). Other optional information that can be sent in a notification
includes a time stamp, a human-readable text message, and a reference to an object that
permits additional processing of the notification to occur. Of course, the type (and
meaning) of this object must be agreed upon by the listener and the implementation of the
broadcaster.

Notification

NotificationFilter

NotificationBroadcaster

NotificationListener

7.1 The JMX Notification Model

 220

A notification broadcaster implements a special JMX interface called
NotificationBroadcaster that allows any number of notification listeners to register
an interest in receiving any or all of the notifications emitted by the broadcaster.
Messages are sent to the listener through the JMX infrastructure using a callback
mechanism. A notification listener implements a JMX interface called
NotificationListener that allows the JMX infrastructure to deliver a notification on a
callback method of the NotificationListener interface. The listener may, at its
discretion, choose to receive only a subset of the possible notifications emitted by the
broadcaster by providing a notification filter. A notification filter must implement a JMX
interface called NotificationFilter.

JMX notification filtering is performed before of notifications are broadcast, so it is the
broadcaster's responsibility to determine (by using the filter) whether a notification is to
be sent to a listener. When the broadcaster is about to emit a particular type of
notification to a listener, it checks the filter to see whether the notification is one the
listener wants to receive. If the filter tells the broadcaster that the listener is interested in
that notification, the broadcaster sends the notification to the listener. Otherwise, the
broadcaster does not send the notification, saving the listener the trouble of receiving and
ignoring notifications in which it is not interested. If no filter is present, the broadcaster
sends all notifications to the listener.

In addition to a notification filter, a listener may optionally pass a reference to an object
called a handback, an object that will be handed back to the listener when notifications
are sent to that listener. This object is opaque (i.e., its contents are unknown) to the
broadcaster, which simply stores the object away until a notification is broadcast to the
listener, at which time the object is passed unchanged to the listener. The JMX
specification does not constrain what this object must be, only implying that it is used to
provide contextual information that the listener creates upon registering its interest in
receiving a notification, then exploits upon receiving the notification. Notification listener
developers can thus implement the handback object as their needs dictate. We will look at
some examples of handback objects later in this chapter.

The relationships between the various components of the JMX notification model are
shown in Figure 7-1.

Figure 7-1. UML diagram showing the relationships between the various components of
the JMX notification model

 221

When a listener wants to receive notifications, it invokes a method called
addNotificationListener() on the broadcaster, passing it a reference to itself, a reference to
the filter it wants to use, and a handback object reference (both the filter and handback
references may be null). The same listener can register its interest in receiving MBean
notifications from a particular broadcaster more than once, passing a different handback
object to addNotificationListener() each time. The notification broadcaster keeps a table
of listener/filter/handback object triplets to ensure that it passes the correct handback
object upon broadcasting each notification to the listener. The listener may also pass a
different filter for each handback object, allowing even more flexibility in providing
contextual information when processing notifications. As Figure 7-1 also shows, each

Chapter 3

Notification object may only be associated with one broadcaster (the source) and one
user-defined object (userData).

The key to processing notifications lies in the notification type. As we discussed in
, a notification type is a string that may be of the form:

vendor[.application][.component][.eventGroup].event

where vendor is the name of your company, application is the name of the application
(optional), component is the name of the component (usually the name of the MBean,
also optional), eventGroup is the name of the group to which the event belongs
(optional), and event is the name of the event notification. For example, the notification
"acme.OrderEntry.billing.responseTime.slow" is defined by the company acme
for the Order Entry system's billing component for a group of events related to response
time to indicate that response time is slow. How this notification is handled is up to the
listener. Notice, however, that only vendor and event are required, so we could have
simply defined the event as "acme.responseTimeSlow".

While the above pattern is recommended by the JMX specification,
this convention for defining notifications is not enforced in the RI.
However, it is a good idea to follow this convention to ensure as
much consistency as possible between applications from various
vendors.

 222

Why is the notification type so important? The notification type serves as the "handle" for
the notification and is used in processing it. In addition, the listener is capable of
processing several different notification types, and it uses the notification type as a first
step in cracking into a notification to process it further.

Now that we've been introduced to the players and their respective roles in the JMX
notification model, let's take a closer look at the classes provided by the JMX RI that
make it all happen.

In this section, we will look at the classes that compliant implementations of JMX must
supply. We will also look at examples of how to use each of these classes to create, filter,
broadcast, and receive JMX notifications.

This class contains the information conveyed by a JMX notification and has the
following fields:

• A notification type—a string that uniquely identifies the type of the notification
• A reference to the ObjectName of the source of the notification
• A sequence number—an integer that conveys information between the

broadcaster and the listener regarding the occurrence of a notification
• A time stamp (optional) produced by the broadcaster to convey the date and time

at which the notification was created
• A message (optional)—a string containing text that provides additional

explanation about the notification
• User-defined data (optional)—an Object reference to an object that is used to

convey richer information between broadcaster and listener than is possible
through any of the other fields

Instances of this class are normally created by the notification broadcaster, which uses the
following four constructors to do so:

public Notification(String type, Object source, long sequenceNumber) {
 // . . .
}

public Notification(String type, Object source, long sequenceNumber,
 String message) {
 // . . .
}

public Notification(String type, Object source, long sequenceNumber,
 long timeStamp) {
 // . . .
}

7.2 JMX Notification Classes and Interfaces

7.2.1 Notification

 223

 224

altered. Once a listener receives a notification, it uses these getters to crack into the
notification:

public Notification(String type, Object source, long sequenceNumber,
 long timeStamp, String message) {
 // . . .
}

The parameters type, source, and sequenceNumber are the same across all of the
constructors. The following code example shows how to use the first constructor of
Notification:

String type = "sample.Queue.stalled.queueFull";
Object source = this;
long seq = _seq++; // increment member variable
Notification notif = new Notification(type, source, seq);

In this example, the sequence number is kept in a member variable. This is a reasonable
approach and is common throughout the RI. We can also provide a message that gives
additional information about the notification:

String type = "sample.Queue.stalled.queueFull";
Object source = this;
long seq = _seq++; // increment member variable
String message = "Queue is potentially stalled while full."
Notification notif = new Notification(type, source, seq, message);

or a time stamp, using the system clock:

String type = "sample.Queue.stalled.queueFull";
Object source = this;
long seq = _seq++; // increment member variable
long timeStamp = System.currentTimeMillis();
Notification notif = new Notification(type, source, seq, timeStamp);

Finally, we can provide all of the above information:

String type = "sample.Queue.stalled.queueFull";
Object source = this;
long seq = _seq++; // increment member variable
String message = "Queue is potentially stalled while full."
long timeStamp = System.currentTimeMillis();
Notification notif = new Notification(type, source, seq, timeStamp,
message);

The Notification class also provides getters and setters for these fields. In fact, for each
of the fields (with the exception of type) that we've already looked at, both a getter and a
setter are provided. The only way to set the notification type is through the constructor,
when the Notification object is created. The setters are probably provided for
symmetry, as there is really no good reason for, say, a listener to modify the contents of a
notification after receiving it. Note that type is read-only, which is a good indication that
once the Notification object is created, the notification type it represents may not be

public void handleNotification(Notification notification, Object
handback) {
 String type = notification.getType();
 Object source = notification.getSource();
 long seq = notification.getSequenceNumber();
 String message = notification.getMessage();
 Object userData = notification.getUserData();
 // Now handle the notification. . .
}

We will look at more examples of a listener handling a notification later in this chapter.
For now, just keep in mind that it is through the getters provided by Notification that a
listener accesses the contents of a notification.

You may have noticed that no constructor is provided to set the user-defined data.
However, a setter is provided that allows this object to be set once an instance has been
created. In the example above, we got a reference to the user-defined data object through
its getter. However, this reference will be null if the broadcaster didn't use the
setUserData() method to set this object when creating the notification. What is this user-
defined object? The answer is, "it depends." Depending on what additional information
must be shared between the broadcaster and the listener, this object can be any object!
For example, suppose the broadcaster supplies a time stamp in the form of a Date object
(an expensive way to do this) instead of explicitly setting the timeStamp field:

String type = "sample.Queue.stalled.queueFull";
Object source = this;
long seq = _seq++; // increment member variable
Notification notif = new Notification(type, source, seq);
Object timeStamp = new Date();
notif.setUserData(timeStamp);

The listener must be aware of this, or a ClassCastException will be thrown when the
listener tries to access the object:

public void handleNotification(Notification notification, Object
handback) {
 String type = notification.getType();
 Object source = notification.getSource();
 long seq = notification.getSequenceNumber();
 String message = notification.getMessage();
 Date userData = (Date)notification.getUserData();
 // Now handle the notification. . .
}

This is a very simple interface that must be implemented by any class that wants to be a
JMX notification filter. The listener provides a notification filter to filter out notifications,
such that the broadcaster sends the listener only those notifications the listener has
expressed interest in receiving (through the filter). The NotificationFilter interface
looks like this:

7.2.2 NotificationFilter

 225

public interface NotificationFilter extends java.io.Serializable {
 public boolean isNotificationEnabled(Notification notification);
}

The interface is simple, but when a class implements this interface, there are two things it
must do:

1. Store a list of notification types that are enabled by the listener (i.e., those in
which the listener is interested).

2. Implement the isNotificationEnabled() method to allow a notification broadcaster
to determine whether or not to send the notification to the listener associated with
the filter.

There are several algorithms that you can use when implementing this interface.
Fortunately, the RI has provided an off-the-shelf implementation of
NotificationFilter called NotificationFilterSupport. In this class, the listener
calls the NotificationFilterSupport method enableType(), passing a String
argument that is the notification type in which the listener is interested. The listener
repeats the call to enableType() for each notification type it wants to receive. Each time
the enableType() method is called, the NotificationFilterSupport object adds the
notification type to the collection of types in which the listener is interested.

The notification listener usually creates the NotificationFilter object that is used to
filter its notifications. The following example shows how the listener may do this:

NotificationFilterSupport filter = new NotificationFilterSupport();
filter.enableType("sample.Queue.stalled.QueueFull");
filter.enableType("sample.Queue.stalled.QueueEmpty");

The notification listener would then use the NotificationFilter object as a parameter
to the addNotificationListener() method. In this example, the only notifications that the
listener would receive are the two that are listed. Regardless of which other types of
notifications it can emit, the notification broadcaster with which the listener registered its
interest will send only these two notifications to the listener. Because of the processing
the broadcaster applies using the notification filter, the source code for the listener has to
deal with only those notifications that pass the filter.

The specification is silent with regard to how the notification filter
keeps track of the notification types it allows, so you are free to
implement this interface as you choose (as long as you keep track of
every notification in which the listener is interested).

When isNotificationEnabled() is invoked, the broadcaster expects to find out whether or
not the specified notification type is one in which the listener is interested. If it is, this
method will return true, which tells the broadcaster to emit the notification.

 226

7.2.3 The Handback Object

The handback object is created by the notification listener and passed to the broadcaster
through the addNotificationListener() method. As mentioned earlier, this object provides
the listener with contextual information that it can exploit when processing certain
notification types. This allows the listener to process the same notification type (or group
of notification types) in different ways. Just to reiterate, the notification listener can pass
null if no handback object is required. The handback object is used by the notification
listener to specialize its processing, but because it is an Object reference, the
implementation is entirely up to the listener, as was presumably the intent of the
designers of the JMX specification. So what does the handback object look like?

Suppose that the listener wants to handle a particular notification by sending an email. It
might make sense, then, to use a Properties object to contain the specifics of the
email—such as the recipient, the subject, and the message—so that the listener's
handleNotification() method can remain generic. In this case, the listener would create
the Properties object, set the appropriate properties, and then invoke the
addNotificationListener() method on the broadcaster, passing the handback object as a
parameter:

Properties props = new Properties();
props.setProperty("response", "email");
props.setProperty("smtpHost", "mail.mycompany.com");
props.setProperty("recipient", "me@mycompany.com");
props.setProperty("subject", "Queue stalled notification");
props.setProperty("message", "The queue is stalled. ");
// etc. . . .
NotificationBroadcaster broadcaster = /* obtain somehow */
broadcaster.addNotificationListener(this, null, props);

We don't use any filtering in this example, so the listener will receive all notifications
emitted by the broadcaster. When its handleNotification() method is invoked, the listener
can take the Properties object and then continue its processing:

public void handleNotification(Notification notification, Object
handback) {
 // . . .
 try {
 Properties props = (Properties)handback;
 String response = (String)props.get("response");
 if (response.equals("email")) {
 // send an email, using the properties set in the handback
object. . .
 } else if (response.equals("consoleMessage")) {
 } else {
 System.out.println("handleNotification: ERROR: " +
 "Unexpected response type \'" + response + "\'.");
 }
 } catch (Exception e) {
 // handle possible exceptions. . .
 }

 227

}

This handleNotification() method is quite generic. Notice that it doesn't rely on any
information to figure out how to process the notification other than the handback object it
created earlier. The details of sending an email were omitted from this example for the
sake of brevity. However, the sample code for this chapter includes an implementation
that uses the JavaMail API for this purpose.

The significant advantage of using a handback object to provide a context for handling a
notification is that the information contained in the handback object can come from
practically anywhere. For example, the Properties handback object in the previous
example was created by the listener itself, but it could have come from a configuration
facility, which would allow the properties inside it to be changed outside of the
application. This has significant advantages, in that the way notifications are handled can
be altered without changing the source code. Another example of a handback object is an
XML document that originates from a database (or from a configuration facility); the
handler could parse this document to figure out how to handle the notification.

As you can see, using a handback object to provide a context for handling notifications
significantly opens up your application to dynamic configuration and allows you to have
as simple or complex a scheme for handling notifications as your application needs
dictate.

As we have already discussed, a notification broadcaster is a class that implements the
NotificationBroadcaster interface. It is the job of a notification broadcaster to:

• Add notification listeners to an internal table of listener/filter/handback object
triplets.

• Perform up-front filter processing prior to sending notifications.
• Create Notification objects and send these notifications to the appropriate

listeners (based on the contents of the triplet table).
• Remove listeners from its internal table of listener/filter/handback object triplets

as necessary.

The NotificationBroadcaster interface is defined as:

public interface NotificationBroadcaster {

 public void addNotificationListener(NotificationListener listener,
 NotificationFilter filter,
 Object handback)
 throws java.lang.IllegalArgumentException;

 public void removeNotificationListener(NotificationListener listener)
 throws ListenerNotFoundException;

7.2.4 NotificationBroadcaster

 228

 public MBeanNotificationInfo[] getNotificationInfo();

}

In this section, we will look at each of the methods of this interface in detail, including
examples of how those methods might be implemented. Where appropriate, we will
discuss how these methods are implemented by the JMX RI and how to avoid some of
the pitfalls you may encounter when using the RI.

Before a notification broadcaster can send a notification to a listener, the listener must
express an interest in receiving one or more of the possible notifications the broadcaster
can emit. The listener does this by calling the broadcaster's addNotificationListener()
method. As you can see from the above example, this method takes a reference to the
listener, a reference to a notification filter, and a reference to a handback object. As we've
mentioned, the filter and handback references may be passed as null if the listener is not
interested in filtering or in receiving additional context information, respectively.

The JMX specification is clear that the notification broadcaster must maintain a table of
listener/filter/handback triplets, so that the same listener can register itself with multiple
handback objects. A simple implementation of this method is shown in Example 7-1.

Example 7-1. A simple implementation of addNotificationListener()

public class GenericBroadcaster implements NotificationBroadcaster {
// . . .
 private ArrayList _listeners = new ArrayList();
 private Hashtable _notifications = new Hashtable();
// . . .
 public void addNotificationListener(NotificationListener listener,
 NotificationFilter filter,
 Object handback) {
 _listeners.add(new ListenerFilterHandbackTriplet(listener,
 filter,
 handback))
 }
 private class ListenerFilterHandbackTriplet {
 // . . .
 private NotificationListener _listener;
 private NotificationFilter _filter;
 private Object _handback;
 // . . .
 ListenerFilterHandbackTriplet(NotificationListener listener,
 NotificationFilter filter,
 Object handback) {
 _listener = listener;
 _filter = filter;
 _handback = handback;
 }
 }
} // simple implementation of addNotification()

 229

Example 7-1 is a very simple yet completely compliant implementation of this method. A
private class called ListenerFilterHandbackTriplet is used to represent the triplets
that are registered with the broadcaster. Each time the addNotificationListener() method
is invoked, a new instance of this class is created and added to the private ArrayList
called _listeners.

The JMX specification provides a method called removeNotificationListener() for
removing listener/filter/handback triplets from the notification broadcaster's
table.According to the specification, this method should have two types of behavior: if a
handback object is supplied, only the triplet that corresponds to the listener/handback
combination is removed; if no handback object is supplied, all listener/handback
combinations are removed, effectively removing the listener from the broadcaster's
internal table altogether. The removeNotificationListener() method looks like this:

public class GenericBroadcaster implements NotificationBroadcaster {
// . . .
 public void removeNotificationListener(NotificationListener listener)
{
 removeNotificationListener(listener, null);
 }
// . . .
}

Looking at the signature of the removeNotificationListener() method that was delivered
with the JMX specification, you may be asking yourself how to pass in the handback
object. This was apparently an oversight on the part of the JMX expert group (and the
Java community during the review process), and it will most likely be fixed in an
upcoming release (either they'll make the specification match the RI, or, hopefully, vice
versa). The bottom line is that there is currently an asymmetry between
addNotificationListener() and removeNotificationListener(): the former allows you to add
the same listener with multiple handback objects, while the latter will only allow you to
remove them all. While throughout this book I have stuck with the RI's implementation,
in this section I will deviate and implement the removeNotificationListener() method as
the specification dictates, for the sake of completeness. The above implementation of
removeNotificationListener() simply delegates to an overloaded version of this method
that I added to make the code function according to the specification.

public class GenericBroadcaster implements NotificationBroadcaster {
// . . .
 public void removeNotificationListener(NotificationListener listener,
 Object handback) {
 if (listener != null) {
 Iterator iter = _listeners.iterator();
 while (iter.hasNext()) {
 ListenerFilterHandbackTriplet triplet =
 (ListenerFilterHandbackTriplet)iter.next();
 if (listener == triplet.getListener() &&
 (handback == null || handback == triplet.getHandback())) {
 iter.remove();
 }

 230

 }
 }
 }
// . . .
}

If the handback is passed in as null, all triplets are removed. Otherwise, only the triplets
that contain the specified handback object are removed.

The final method on the NotificationBroadcaster interface is getNotificationInfo(),
which returns an array of MBeanNotificationInfo objects. Recall from Chapter 3 that
MBeanNotificationInfo is the metadata class used to describe the various notifications
that can be emitted by an MBean.

In the JMX 1.0 RI, this method, as it is implemented in
NotificationBroadcasterSupport, returns an empty array of
MBeanNotificationInfo objects. It's really up to the notification
broadcaster implementer to implement this functionality, and we'll
look at some ways to do that in this section.

The getNotificationInfo() method looks like this:

public class GenericBroadcaster implements NotificationBroadcaster {
// . . .
 private Hashtable _notifications = new Hashtable();
// . . .
 public MBeanNotificationInfo[] getNotificationInfo() {
 MBeanNotificationInfo[] notifications = new
MBeanNotificationInfo[1];
 String[] notificationTypes = new String[_notifications.size()];
 Iterator iter = _notifications.keySet().iterator();
 int aa = 0;
 while (iter.hasNext()) {
 notificationTypes[aa] = (String)iter.next();
 aa++;
 }
 notifications[0] = new MBeanNotificationInfo(
 notificationTypes, "NotificationTypes",
 "Types of notifications emitted by this broadcaster."
);
 return notifications;
 }
// . . .
}

The notification types that are emitted by this broadcaster are stored in the Hashtable
that is a member variable of the GenericBroadcaster class called _notifications.
The hash table key is the notification type, a String. The object stored along with the
key is an Integer object that contains the number of times the notification has been
emitted. That way, if we want to make this class a managed resource, we can put an

 231

operation on the management interface that allows a management application to monitor
how many times each notification type has been broadcast. However, a clean
implementation of this method is no small task, because the broadcaster may not actually
know up front what notifications it may send. The only way for a broadcaster to know for
sure what notification types it emits is after the fact—we will look at how to exploit this
knowledge later in this chapter.

We've seen one possible implementation of the NotificationBroadcaster interface,
but how does a broadcaster actually send a notification? The mechanism to do this is
dependent upon how the broadcaster implements this interface. In the
NotificationBroadcasterSupport class of the RI, a method called sendNotification()
is used to perform this function. I like this approach, because it gives broadcasters that
extend the NotificationBroadcasterSupport class of the RI a built-in means of
sending the notifications. However, the focus of this section is really on how to
implement the NotificationBroadcaster interface ourselves. So how will our
broadcaster actually send the notifications that it broadcasts? For the sake of consistency
with the RI, let's stick with the sendNotification() idiom.

Recall that a broadcaster must send all notifications to all interested listeners, passing the
appropriate handback objects (and filtering out unwanted notifications as necessary).
Using the simple implementation from Example 7-1, sendNotification() looks like this:

public class GenericBroadcaster implements NotificationBroadcaster {
// . . .
 private Hashtable _notifications = new Hashtable();
// . . .
 public void sendNotification(Notification notification) {
 if (notification != null) {
 String notifType = notification.getType();
 if (_notifications.containsKey(notifType)) {
 Integer count = (Integer)_notifications.get(notifType);
 _notifications.put(notifType, new Integer(count.intValue()+1));
 }
 else {
 _notifications.put(notifType, new Integer(1));
 }
 // Now send the notification to all interested listeners
 for (int aa = 0; aa < _listeners.size(); aa++) {
 ListenerFilterHandbackTriplet triplet =
 (ListenerFilterHandbackTriplet)_listeners.get(aa);
 NotificationListener listener = triplet.getListener();
 NotificationFilter filter = triplet.getFilter();
 Object handback = triplet.getHandback();
 if (filter == null ||
filter.isNotificationEnabled(notification)) {
 listener.handleNotification(notification, handback);
 }
 }
 }
 }
// . . .
}

 232

If the specified notification type contained within the notification parameter has already
been sent, this method increments the emission count and places it back into the
_notifications hash table. If the notification type has not been broadcast, a new entry
in the hash table is created. This is how the getNotificationInfo() method gets the
information to perform its processing. Because it broadcasts notifications via the
sendNotification() method, the broadcaster itself is unaware of what notifications are sent
until they are actually sent.

Next, the list of listeners is processed from beginning to end. Each
listener/filter/handback triplet in the list is sent the specified notification, unless the
isNotificationEnabled() method of the filter in the triplet returns false, indicating that
the specified notification is not one in which that listener is interested.

As we have already discussed, a notification listener is a class that implements the
NotificationListener interface, which is defined as:

public interface NotificationListener extends java.util.EventListener {
 public void handleNotification(Notification notification, Object
handback);
}

As you can see, this interface is relatively simple—it contains a single method,
handleNotification(). As you might expect from its name, it is the job of this method to
handle any notifications that are sent to it.

Notification listeners are responsible for the following:

• Creating and populating objects that implement the NotificationFilter, if the
listener desires filtering of the notifications that it will be sent

• Registering (with one or more notification broadcasters) interest in receiving
notifications

• Handling any notifications sent to it

One convenient place for a notification listener to perform the first two tasks is in its
constructor. To add itself to the broadcaster's list of listeners, the listener must have a
reference to the broadcaster. In the examples that follow, we will assume that the listener
creates the NotificationBroadcaster. Of course, the listener does not necessarily have
to do anything other than implement the NotificationListener interface. In this case,
an agent is responsible for creating the listener (or obtaining a reference to it somehow),
in addition to performing the first two tasks listed above. My intention is not to show all
of the permutations of who creates what and where, but rather to show how to register
interest in receiving notifications, create notification filters, and handle notifications. For
that reason, in the following examples, the listener itself will handle all of the
responsibilities listed above.

7.2.5 NotificationListener

 233

To register interest in receiving notifications, the listener must obtain a reference to the
broadcaster and invoke its addNotificationListener() method. The listener will also pass a
reference to itself, an optional filter, and an optional handback object. We covered both
the filter and the handback object earlier in this chapter. The following example pulls
together what we have already discussed:

public class MyListener implements NotificationListener {
// . . .
 private NotificationBroadcaster _broadcaster;
// . . .
 public MyListener() {
 _broadcaster = new GenericBroadcaster();
 NotificationFilterSupport filter = new NotificationFilterSupport();
 filter.enableType("sample.Queue.stalled.QueueFull");
 filter.enableType("sample.Queue.stalled.QueueEmpty");
 Properties props = new Properties();
 props.setProperty("response", "email");
 props.setProperty("smtpHost", "mail.mycompany.com");
 props.setProperty("recipient", "me@mycompany.com");
 props.setProperty("subject", "Queue stalled notification");
 props.setProperty("message", "The queue is stalled. ");
 // etc. . . .
 _broadcaster.addNotificationListener(this, filter, props);
 }
// . . .
}

All that remains is for the listener to implement the NotificationListener interface:

public class MyListener implements NotificationListener {
// . . .
 public void handleNotification(Notification notification, Object
handback) {
 // . . .
 try {
 Properties props = (Properties)handback;
 String response = (String)props.get("response");
 if (response.equals("email")) {
 // send an email, using the properties set in the handback
object. . .
 } else if (response.equals("consoleMessage")) {
 // display a console message
 } else {
 System.out.println("handleNotification: ERROR: " +
 "Unexpected response type \'" + response + "\'.");
 }
 } catch (Exception e) {
 // handle possible exceptions. . .
 }
 }
// . . .
}

 234

The listener does not have to rely on a handback object to figure out how to handle the
notification. Instead, the listener can crack into the notification by using its notification
type string directly, ignoring the handback object:

public class MyListener implements NotificationListener {
// . . .
 public void handleNotification(Notification notification, Object
handback) {
 // . . .
 try {
 String notifType = notification.getType();
 if (notifType.equals("sample.Queue.stalled.queueFull")) {
 // queue is full and stalled, handle it
 } else if (notifType.equals("sample.Queue.stalled.queueEmpty")) {
 // queue is empty and stalled, handle it
 } else {
 System.out.println("handleNotification: ERROR: " +
 "Unexpected response type \'" + response + "\'.");
 }
 } catch (Exception e) {
 // handle possible exceptions. . .
 }
 }
// . . .
}

 235

Chapter 8. Dynamic Loading

In this chapter, we will discuss a facility provided by JMX that allows MBeans to be
loaded into an agent dynamically. This facility, called the M-Let (short for management
applet) service, is the first agent-level service we have discussed so far. There are two
major sections in this chapter. The first section is an overview of the M-Let service,
including the various facets of it that make it work. The second section deals with the
details of the M-Let service and provides examples of code that executes in the JMX
agent that uses the M-Let service.

In this section, we will look at the M-Let service, whose purpose is to provide an agent
with a means to load MBeans from a Universal Resource Locator (URL). There are two
ways that an agent can use the M-Let service to accomplish this. First, the agent can
specify an M-Let file to the M-Let service, which uses the contents of this file to load the
MBeans. The M-Let file is an XML-like text file that contains various tags that describe
the MBeans to be loaded. The second method of loading MBeans is to use the M-Let
service itself to load the MBeans without the use of an M-Let file. The M-Let service
extends URLClassLoader from the java.net package and is thus capable of fetching
bytecode from any valid URL into the JVM in which the agent is running.

In the RI, the M-Let service is implemented in a class called MLet, which implements an
interface called MLetMBean (so it is instrumented as a standard MBean). The MLetMBean
interface allows agents (and management applications) to manipulate the M-Let service
to load MBeans and to manage the M-Let service itself. The MLetMBean interface is
defined as:

public interface MLetMBean {
 public Set getMBeansFromURL(String url) throws
ServiceNotFoundException;
 public Set getMBeansFromURL(URL url) throws ServiceNotFoundException;
 public void addURL(URL url);
 public void addURL(String url) throws ServiceNotFoundException;
 public URL[] getURLs();
 public URL getResource(String name);
 public InputStream getResourceAsStream(String name);
 public Enumeration getResources(String name) throws IOException;
 public String getLibraryDirectory();
 public void setLibraryDirectory(String libdir);
}

In this section, we will discuss only those methods that are part of the MLetMBean
interface. Primary emphasis will be placed on those methods that are mentioned in the
specification, with secondary emphasis placed on the others.

8.1 Overview

8.1.1 The M-Let Service

 236

There are two methods of primary concern when using the M-Let service:
getMBeansFromURL() and addURL(). The getMBeansFromURL() method has two
versions: the first takes a String that contains the URL of the text file that describes the
MBeans to load, and the second takes a URL object that contains the URL of the M-Let
file. The addURL() method is used to add a URL to the list of URLs that are to be
searched when loading MBeans while using the M-Let service as the class loader. These
two methods are the ones you will use when writing agents that use dynamic loading as a
part of your MBean deployment strategy.

The other methods on the MLetMBean interface provide functionality that you would
expect to see in a class loader. For example, the getURLs() method returns an array of the
URL objects that are searched when loading classes and resources, and the
getResourceAsStream() method takes a String containing the name of a resource and
returns an InputStream object so the resource can be read.

The M-Let service must be created and registered with the MBean server before you can
use it. The examples that follow assume that a reference to the MBean server has been
obtained (we saw how to do this in earlier chapters) and that the M-Let service is created
by simply using the Java new keyword on the RI class MLet. The MLet class implements
the MBeanRegistration interface, so it is capable of creating its own object name. In the
examples that follow, we will allow it to do so.

The M-Let file is a text file that looks like XML but is not required to be well-formed
XML. Each of the components of the M-Let file is called a tag (even though the "tag"
may resemble an XML attribute; remember, it's not well-formed XML) The JMX
specification defines several tags that are used in the M-Let file, which we will look at in
this section. The format of the M-Let file is:

<MLET
 CODE="className" | OBJECT="serializedObjectFileName"
 ARCHIVE="classOrJarFileName"
 [CODEBASE="relativePathToArchive"]
 [NAME="mbeanObjectName"]
 [VERSION="version"]
>
[<ARG TYPE="type" VALUE="value">]
</MLET>
.
.
.

There is one MLET tag for each MBean to be loaded. For example, if there were five
MBeans to load, there would be five MLET tags in the M-Let file. Each MBean specified
in the M-Let file is required to provide either the full string representation of its class
name (by using the CODE tag) or the name of a file that contains the MBean's serialized
state (by using the OBJECT tag). The CODE and OBJECT tags are mutually exclusive (i.e.,

8.1.2 The M-Let File

 237

for any given MBean, one or the other may be specified, but not both). In addition, the
name of the JAR file in which the bytecode is archived must be specified. The other tags
are not required. Let's look at each of these tags in detail.

As we mentioned, each MBean to be loaded by the M-Let service must have its own
MLET tag in the M-Let file. It's as simple as that.

The value of this tag is designated by className in the example above and must be the
string representation of the MBean's class name. For example, suppose the MBean's class
name is sample.mlet_loadable.Queue. The CODE tag would then look like:

CODE="sample.mlet_loadable.Queue"

If we had simply specified "Queue" as the CODE value, the M-Let service would not be
able to locate the bytecode for our MBean class. As you might expect, the M-Let service
must be able to locate this class relative to one of the URLs that it is using as its search
path. We will see how to set this URL later.

The value of this tag is designated by serializedObjectFileName in the example above
and is the name of the file that contains the MBean's serialized state. Suppose that we
serialized the state of the Queue class in a file named Queue.ser. We would then instruct
the M-Let service to load the MBean from that file:

OBJECT="Queue.ser"

Of course, the M-Let service must be able to locate this file relative to one of the URLs
that it is using as its search path.

The value of this tag is designated by classOrJarFileName in the example above and is
the names of one or more JAR files, one of which contains the .class file for the MBean.
Suppose the JAR that contains the Queue class is called mlet_loadable.jar. In this case,
the ARCHIVE tag would look like:

ARCHIVE="mlet_loadable.jar"

Multiple JAR files are separated by commas:

ARCHIVE="mlet_loadable.jar,another.jar,yetanother.jar"

8.1.2.1 MLET

8.1.2.2 CODE

8.1.2.3 OBJECT

8.1.2.4 ARCHIVE

 238

The M-Let service will search the URLs that constitute its search path for all of the JAR
files that are specified by the ARCHIVE tag. At least one of the JAR files must contain the
bytecode for the MBean.

The value of this tag is designated by relativePathToArchive in the example above
and is the relative path to the JAR file specified by the ARCHIVE tag. But relative to what?
The M-Let service uses the URL of the M-Let file as the default URL (minus the M-Let
filename, of course) to the JAR file specified by ARCHIVE. If no CODEBASE tag is specified,
the default URL is used as the code base from which to load the bytecode for the MBean.
This is useful when the JAR file is located in the same directory as the M-Let file.

Suppose that the URL to the M-Let file is http://myserver/mbeans/mbeans.txt. The
default URL in this case is http://myserver/mbeans. Now suppose that we specify the
value of the ARCHIVE tag to be mlet_loadable.jar, located at http://myserver/mbeans/jars,
and we do not provide a CODEBASE tag. The M-Let service will use the default as the base
URL for locating mlet_loadable.jar. It will try to load
http://myserver/mbeans/mlet_loadable.jar, but it will not be able to find it.

However, if we specify a CODEBASE value relative to the default URL:

CODEBASE="jars"

the M-Let service will add the CODEBASE value to the default URL, resulting in
http://myserver/mbeans/jars/mlet_loadable.jar, and the JAR file will be located. Because
the CODEBASE value is added to the default URL, specifying:

CODEBASE="."

and omitting the CODEBASE tag altogether have the same effect. As you might expect, you
can use "." and ".." to represent the current directory and parent directory, respectively.
Suppose that instead of mlet_loadble.jar being subordinate to the M-Let file, the two files
are located in peer directories, with mlet_loadable.jar being located at
http://myserver/jars. In this case, the CODEBASE tag would have to be specified as:

CODEBASE="../jars"

The value of this tag is designated by mbeanObjectName in the example above and is the
string representation of the object name for the MBean. Suppose the object name string
for the Queue class is ":name=Queue,loadedFrom=MLET", where the domain is the
default domain. The NAME tag could then be specified as:

NAME=":name=Queue,loadedFrom=MLET"

8.1.2.5 CODEBASE (optional)

8.1.2.6 NAME (optional)

 239

When the Queue MBean is loaded by the M-Let service, it will be given this object name.
If the object name already exists, the MBean will not be loaded and an exception will be
returned to the agent that is using the M-Let service.

If this tag is omitted, the M-Let service assumes that the MBean implements the
MBeanRegistration interface and will provide its own object name.

The value of this tag is designated by version in the example above and represents the
version of the JAR file specified by ARCHIVE and/or the MBean to be loaded. The
primary purpose of this tag is to support versioning and caching in the implementation.
The format of this tag is one or more nonnegative integers separated by a dot (.):

VERSION="1.0.1"

Note that the JMX 1.0 RI does not support this tag. Support for the VERSION tag will most
likely be present in a future release of the JMX RI.

This tag represents an argument that is to be passed to the constructor of the MBean when
it is loaded and instantiated. The tags that accompany this tag are TYPE and VALUE, which
represent the argument's data type and its value, respectively. Only fundamental types
(boolean, byte, char, short, int, long, float, and double), java.lang fundamental
wrapper types (Boolean, Byte, Char, Short, Int, Long, Float, Double, and String) are
supported, as they may all have a string representation (unlike complex user-defined
types). The ARG tag must follow the closing > of the MLET tag.

Using the Queue class, which has an alternate constructor that takes a single int to set the
queue depth, we can specify a single ARG tag to set the queue depth to seven items:

<ARG TYPE="int" VALUE="7">

Multiple arguments to the MBean constructor may be specified. The order of the
arguments in the M-Let file must correspond to the order of the arguments to the
constructor. Suppose that a constructor takes a String, a float, and an Integer, in that
order. The ARG tags must also be supplied in that order:

<ARG TYPE="java.lang.String" VALUE="Hello, world">
<ARG TYPE="float" VALUE="3.14159">
<ARG TYPE="java.lang.Integer" VALUE="104">

Notice that the JDK wrapper classes String and Integer must be fully qualified. If we
had written the ARG tags as:

<ARG TYPE="String" VALUE="Hello, world">

8.1.2.7 VERSION (optional)

8.1.2.8 ARG

 240

<ARG TYPE="float" VALUE="3.14159">
<ARG TYPE="Integer" VALUE="104">

the MBean would not be loaded, because the M-Let service cannot fetch the bytecode for
the String and Integer parameters. However, fundamental types simply require the
name of the type, as that is the name of the Class object that represents fundamental type
inside the JVM.

Now that we're familiar with the tags that can be used in the M-Let file, let's look at a
simple example. Suppose that we want to load the sample.mlet_loadable.Queue
MBean from mlet_loadable.jar, giving it the name ":name=Queue,loadedFrom=MLET"
and passing an int argument value of 8 to its constructor:

<MLET
 CODE="sample.mlet_loadable.Queue"
 ARCHIVE="mlet_loadable.jar"
 NAME=":name=Queue,loadedFrom=MLET"
>
<ARG TYPE="int" VALUE="8">
</MLET>

We will see later exactly how to use the M-Let file, the URL describing its location, and
the getMBeansFromURL() method of the MLetMBean interface to load the MBeans.

What about comments in the M-Let file? The specification does not mention them, so it's
not a good idea to expect support for comments to be in every implementation of JMX.
However, in the JMX 1.0 RI, the parser that reads the M-Let file allows for any text to be
placed in the file as long as it is outside of a "< . . . >" construct. In other words, no text
other than the tags we have discussed is allowed anywhere inside the <MLET . . . > tag,
the </MLET> closing tag, or the <ARG . . . > tag. You can place whatever text you like
outside of those tags. For example:

This text will be ignored by the parser
<MLET
 Oops, text cannot go here!
 CODE="sample.mlet_loadable.Queue"
 ARCHIVE="mlet_loadable.jar"
 NAME=":name=Queue,loadedFrom=MLET"
> This text is ignored
This text is ignored
<ARG TYPE="int" VALUE="8">
</MLET>

The line of text following the MLET opening tag will cause the parser to report an error
with the M-Let file. All of the other text will be ignored by the parser.

8.1.2.9 Bringing it all together

8.1.3 Loading MBeans Without an M-Let File

 241

As mentioned earlier, the MLet class, which is the RI's implementation of the M-Let
service, is a class loader capable of fetching bytecode from a URL and creating a Class
object for an MBean. We have already looked at how the M-Let service uses its class
loader functionality in conjunction with an M-Let file to load MBeans. In this section, we
will see how to use the M-Let service to load MBeans without the use of an M-Let file.

The MLetMBean interface—implemented by the MLet class—provides a method that
allows an agent to add one or more URLs that the M-Let service will search when
loading MBeans. This method, addURL(), works in conjunction with the MBean server
methods instantiate() and createMBean() to load MBeans from a URL. instantiate() and
createMBean() each have two versions that take as a parameter the object name of the
loader to be used when fetching the bytecode for the MBean to be loaded. Once the URL
of the JAR file containing the MBean(s) to be loaded has been added to the M-Let
service's search list of URLs, either instantiate() or createMBean() can be called to load
the MBean. We will see how to do this later in this chapter.

If the MBean to be loaded exists in the same code base (i.e., one or more JAR files,
specified by a URL) as any other MBean that has been loaded using an M-Let file, you
do not need to specify the URL. In other words, the M-Let service remembers any URL
from which it has previously loaded a class. This functionality is typical of all class
loaders. We will look at an example of this later in this chapter.

In this section, we will take a detailed look at the mechanics of the M-Let service. We
will first look at an example of how to use an M-Let file to load an MBean from a JAR
file. Then we will see how to use the M-Let service as the class loader for MBeans
without the use of an M-Let file. For the sake of clarity and brevity, the examples in this
section show agent-side code and do not contain complete exception-handling constructs.

We have discussed the tags used in the M-Let file, as well as the getMBeansFromURL()
method of the M-Let service, which is used to load the MBeans specified in the M-Let
file. Now let's look at a couple of code examples.

The getMBeansFromURL() method allows you to specify the URL of an M-Let text file
that contains the information necessary for the M-Let service to load your MBeans. There
are two versions of this method. The first version takes a String that contains the
complete URL to the M-Let text file. (We will deal only with URLs that are of the file
and http varieties here, although many other protocols are conceivably supported.) Once
an MBean is loaded using getMBeansFromURL(), it is then registered with the same
MBean server with which the M-Let service is registered.

8.2 How Does Dynamic Loading Work?

8.2.1 getMBeansFromURL()

 242

Suppose the M-Let text file is called MBeans.txt and resides in the c:\jmxbook directory
on the local Windows-based filesystem. The URL to the M-Let text file would then be
file:/c:\jmxbook. Furthermore, suppose the contents of this file look like:

<MLET
 CODE="sample.mlet_loadable.Queue"
 ARCHIVE="mlet_loadable.jar"
 NAME=":name=Queue,loadedFrom=MLET"
>
<ARG TYPE="int" VALUE="10">
</MLET>

You may recognize this example M-Let file from earlier in this chapter. Using this M-Let
file to specify the Queue MBean as the MBean to be loaded, the call to
getMBeansFromURL() would look like this:

MBeanServer mbs = /* obtain somehow */
MLetMBean mletService = new MLet();
mbs.registerMBean(mletService, null);
String url = "file:/c:\jmxbook\MBeans.txt";
try {
 Set loadedMBeans = mletService.getMBeansFromURL(url);
} catch (ServiceNotFoundException e) {
 // . . .
}

First, we obtain a reference to the MBean server and create the M-Let service by
instantiating the RI class MLet (notice that we use the M-Let service through its
management interface). We then register the M-Let service with the MBean server,
passing null as the second parameter to registerMBean(). Passing null as the object
name for the M-Let service indicates that we are relying on the M-Let service to provide
its own object name. As mentioned earlier, the M-Let service in the RI implements the
MBeanRegistration interface, so it can do this. Next, we build the URL string and pass
it to getMBeansFromURL(), whose return value is a java.util.Set object that contains
a set of objects. For each MBean specified in the M-Let text file that was successfully
loaded and registered, an ObjectInstance object will be present in the Set. For each
MBean specified in the M-Let text file that was not successfully loaded and/or registered,
a Throwable object (i.e., an Error or Exception) will be present in the Set. If the call to
getMBeansFromURL() itself does not succeed, either there was a problem with the M-Let
file, or the URL string could not be converted to a well-formed URL object. A
ServiceNotFoundException will be thrown in either case—you should interrogate its
contents to discover the exact cause of the failure.

If all goes well with the invocation of getMBeansFromURL(), we then walk through the
returned Set by using its iterator() method to return a java.util.Iterator object.
When walking through the Set, you should be prepared to encounter throwables as well
as ObjectInstance objects:

 243

MBeanServer mbs = /* obtain somehow */

 244

 Object o = iter.next();
 if (o instanceof ObjectInstance) {

MLetMBean mletService = new MLet();
mbs.registerMBean(mletService, null);
String url = "file:/c:\jmxbook\MBeans.txt";
try {
 Set loadedMBeans = mletService.getMBeansFromURL(url);
 Iterator iter = loadedMBeans.iterator();
 while (iter.hasNext()) {
 Object o = iter.next();
 if (o instanceof ObjectInstance) {
 ObjectInstance oi = (ObjectInstance)o;
 System.out.prinln("MBean loaded: " + oi.getObjectName());
 // etc. . . .
 } else {
 ((Throwable)o).printStackTrace();
 // etc. . . .
 }
 }
} catch (ServiceNotFoundException e) {
 // . . .
}

The second version of getMBeansFromURL() takes a java.net.URL object, instead of a
string representation of a URL. The URL class provides several constructors for creating a
URL. The easiest constructor to use simply takes a String that contains the URL. Using
this constructor, our example looks like:

MBeanServer mbs = /* obtain somehow */
MLetMBean mletService = new MLet();
mbs.registerMBean(mletService, null);
try {
 URL url = new URL("file:/c:\jmxbook\MBeans.txt");
 Set loadedMBeans = mletService.getMBeansFromURL(url);
} catch (ServiceNotFoundException e) {
 // . . .
}

Now suppose that we want to load MBeans that are on a remote machine, using the
HyperText Transfer Protocol (HTTP). This requires that there be an HTTP server
(usually a web server) listening on a certain port (usually port 80) on the remote machine.
Suppose that the name of the machine is myserver, it is running a web server listening on
port 80, the MBeans are located in a directory called jmxbook, and the M-Let file is called
MBeans.txt:

MBeanServer mbs = /* obtain somehow */
MLetMBean mletService = new MLet();
mbs.registerMBean(mletService, null);
try {
 URL url = new URL("http://myserver/jmxbook/MBeans.txt");
 Set loadedMBeans = mletService.getMBeansFromURL(url);
 Iterator iter = loadedMBeans.iterator();
 while (iter.hasNext()) {

 245

MLetMBean mletService = new MLet();
ObjectInstance mletOI = mbs.registerMBean(mletService, null);

 ObjectInstance oi = (ObjectInstance)o;
 System.out.prinln("MBean loaded: " + oi.getObjectName());
 // etc. . . .
 } else {
 ((Throwable)o).printStackTrace();
 // etc. . . .
 }
 }
} catch (ServiceNotFoundException e) {
 // . . .
}

Notice that the code to look through the Set returned from getMBeansFromURL() is the
same regardless of what protocol we use.

In this example, the default port (80) is assumed. However, we can also specify the port
on which the HTTP server is listening when we create the URL:

MBeanServer mbs = /* obtain somehow */
MLetMBean mletService = new MLet();
mbs.registerMBean(mletService, null);
try {
 URL url = new URL("http://myserver:8090/jmxbook/MBeans.txt");
 Set loadedMBeans = mletService.getMBeansFromURL(url);
 // same as above. . .
} catch (ServiceNotFoundException e) {
 // . . .
}

In this case, the M-Let service will attempt to load the MBeans by connecting to port
8090.

Once the M-Let service has loaded one or more MBeans from a given code base (i.e., a
JAR file), we can use the M-Let service's class loader functionality to load other MBeans
from the same code base without using the M-Let file. As an example, let's look at the
MBeans.txt M-Let file:

<MLET
 CODE="sample.mlet_loadable.Queue"
 ARCHIVE="mlet_loadable.jar"
 NAME=":name=Queue,loadedFrom=MLET"
>
<ARG TYPE="int" VALUE="10">
</MLET>

Suppose that the JAR file mlet_loadable.jar contains the bytecode for both the Queue and
Supplier classes. We will use the M-Let file to load the Queue class and then load the
Supplier class without specifying an M-Let file:

MBeanServer mbs = /* obtain somehow */

 246

 System.out.prinln("MBean loaded: " + oi.getObjectName());
 // etc. . . .

try {
 URL url = new URL("http://myserver/jmxbook/MBeans.txt");
 Set loadedMBeans = mletService.getMBeansFromURL(url);
 Iterator iter = loadedMBeans.iterator();
 while (iter.hasNext()) {
 Object o = iter.next();
 if (o instanceof ObjectInstance) {
 ObjectInstance oi = (ObjectInstance)o;
 System.out.prinln("MBean loaded: " + oi.getObjectName());
 // etc. . . .
 } else {
 ((Throwable)o).printStackTrace();
 // etc. . . .
 }
 }
 ObjectName mletObjName = mletOI.getObjectName();
 mbs.createMBean("sample.mlet_loadable.Supplier", null, mletObjName);
} catch (ServiceNotFoundException e) {
 // . . .
}

Recall that if no CODEBASE tag is specified in the M-Let file, the URL the M-Let service
uses to load the JAR file is the default URL (which is the same as that of the M-Let file,
minus the name of the M-Let file itself). In this example, no CODEBASE tag is specified in
the M-Let file, so the code base from which the M-Let service loads the Queue class is
http://myserver/jmxbook/mlet_loadable.jar. Notice that we must capture the return value
of the registerMBean() call when we register the M-Let service MBean, so we have a
way to get the MBean's object name. We let the M-Let service provide its own object
name, and this is our one opportunity to easily record that information. We use the M-Let
service to load the Queue MBean, then we load and register the Supplier MBean by
invoking the version of the MBean server method createMBean() that takes the object
name of the MBean that will act as the class loader. In this case, that loader is the M-Let
service. Notice that we specified null as the objectName parameter for the Supplier
MBean. This is because Supplier implements MBeanRegistration and creates its own
object name, just as the M-Let service did.

We can also use the instantiate() method of the MBean server to load and create an
instance of the Supplier class:

MBeanServer mbs = /* obtain somehow */
MLetMBean mletService = new MLet();
ObjectInstance mletOI = mbs.registerMBean(mletService, null);
try {
 URL url = new URL("http://myserver/jmxbook/MBeans.txt");
 Set loadedMBeans = mletService.getMBeansFromURL(url);
 Iterator iter = loadedMBeans.iterator();
 while (iter.hasNext()) {
 Object o = iter.next();
 if (o instanceof ObjectInstance) {
 ObjectInstance oi = (ObjectInstance)o;

 247

MLetMBean mletService = new MLet();
ObjectInstance mletOI = mbs.registerMBean(mletService, null);

 } else {
 ((Throwable)o).printStackTrace();
 // etc. . . .
 }
 }
 ObjectName mletObjName = mletOI.getObjectName();
 Object supplier = mbs.instantiate("sample.mlet_loadable.Supplier",
 mletObjName);
 mbs.registerMBean(supplier, null);
} catch (ServiceNotFoundException e) {
 // . . .
}

Recall that instantiate() does not register the MBean, but rather returns an Object
reference to it. This return value is used to register the MBean. As in the previous
example, we specified null as the Supplier MBean object name, letting it provide its
own object name.

If we need to provide constructor arguments to an MBean, we use the version of
instantiate() or createMBean() that allows us to specify these arguments in addition to the
MBean class loader. For example, if we load the Queue MBean without specifying an M-
Let file (assuming that the M-Let service has already loaded one or more MBeans from
the code base containing the bytecode for Queue):

MBeanServer mbs = /* obtain somehow */
MLetMBean mletService = new MLet();
ObjectInstance mletOI = mbs.registerMBean(mletService, null);
// . . .
try {
 Object[] params = new Object[] { new Integer(5) };
 String[] signature = new String[] { Integer.TYPE.getName() };
 ObjectName mletObjName = mletOI.getObjectName();
 Object queue = mbs.instantiate("sample.mlet_loadable.Queue",
 mletObjName,
 params, signature);
 ObjectName queueObjName = new ObjectName(":name=Queue");
 mbs.registerMBean(queue, queueObjName);
} catch (ServiceNotFoundException e) {
 // . . .
}

After registering the M-Let service MBean, we add the URL to the JAR file that contains
the Queue class, just to make sure that the code base is available to the M-Let service.
Then we construct the arrays necessary to represent the constructor argument values that
will be passed to Queue's constructor. Then we call instantiate() as before and register the
Queue MBean, passing the desired object name (Queue does not implement
MBeanRegistration). We could also have used createMBean() to accomplish this with
nearly identical agent code:

MBeanServer mbs = /* obtain somehow */

// . . .
try {
 Object[] params = new Object[] { new Integer(5) };
 String[] signature = new String[] { Integer.TYPE.getName() };
 ObjectName queueObjName = new ObjectName(":name=Queue");
 ObjectName mletObjName = mletOI.getObjectName();
 mbs.createMBean("sample.mlet_loadable.Queue", queueObjName,
 mletObjName,
 params, signature);
} catch (ServiceNotFoundException e) {
 // . . .
}

What if we want to use the M-Let service to load MBeans from a code base from which
we have not yet loaded any MBeans? In this case, we must add the URL of the code base
to the M-Let service's search list of URLs by using the addURL() method. Once we have
added the URL, we can call createMBean() or instantiate() to load the MBean.

For example, suppose that we want to load the Queue and Supplier MBeans without the
use of an M-Let file:

MBeanServer mbs = /* obtain somehow */
MLetMBean mletService = new MLet();
ObjectInstance mletOI = mbs.registerMBean(mletService, null);
try {
 mletService.addURL("http://myserver/jmxbook/mlet_loadable.jar");
 ObjectName mletObjName = mletOI.getObjectName();
 Object queue = mbs.instantiate("sample.mlet_loadble.Queue",
mletObjName);
 mbs.registerMBean(queue, ":name=Queue");
 mbs.createMBean("sample.mlet_loadable.Supplier", null, mletObjName);
} catch (ServiceNotFoundException e) {
 // . . .
}

First, we must add the URL to the code base containing the bytecode for the Queue and
Supplier classes. Suppose that these classes reside in the same JAR file,
mlet_loadable.jar. It is then a simple matter of calling instantiate() and/or createMBean()
to load the MBeans. In the example above we used both, for the purposes of illustration.

 248

Chapter 9. The Monitoring Services

In Chapter 8, we looked at the JMX notificati

Counter monitors

Gauge monitors

String monitors

Figure 9-1

on model and how to write and use
notification broadcasters and listeners. In this chapter, we will look at a few off-the-shelf
implementations of notification broadcasters provided by JMX, called the monitoring
services, or monitors. A monitor observes the attribute value of an MBean, called the
observed object, at specific intervals, called the granularity period. From this observation,
the monitor calculates a value called the derived gauge, which is either the value of the
attribute or the difference between the values of the attribute at the two most recent
observations (for numerical attributes only, of course). When the derived gauge satisfies a
certain condition—which varies depending on the type of monitor in use—a notification
of a type that is specific to that monitor is sent to all registered notification listeners. The
monitoring service can also send error notifications if a problem occurs.

The JMX specification's monitoring services provide three types of monitors:

Observe a continually increasing, nonnegative integer MBean attribute (of type
byte, short, int, long, or the corresponding JDK wrapper class) and send a
notification when the derived gauge exceeds a certain value, known as the
threshold

Observe an arbitrarily changing numeric value (of type int, long, float, double,
or the corresponding JDK wrapper type) and send a notification when the derived
gauge exceeds an upper limit (known as the high threshold) or drops below a
lower limit (known as the low threshold)

Observe a String attribute of an MBean and send a notification when the derived
gauge either matches (i.e., becomes equal to) or differs from (i.e., stops being
equal to) a predefined string value

These three monitors are required for a JMX implementation to be compliant with the
specification.

The JMX specification defines several classes that make up the monitoring services, as
shown in .

Figure 9-1. UML diagram showing the classes that make up the monitoring services

 249

Each of the monitors is an MBean that can be managed. The base class Monitor contains
functionality common to all of the monitoring services and exposes a management
interface, MonitorMBean, which is defined as:

public interface MonitorMBean {
 public void start();
 public void stop();
 public ObjectName getObservedObject();
 public void setObservedObject(ObjectName object);
 public String getObservedAttribute();
 public void setObservedAttribute(String attribute);
 public long getGranularityPeriod();
 public void setGranularityPeriod(long period)
 throws java.lang.IllegalArgumentException;
 public boolean isActive();
}

Each monitor runs in its own thread of execution, so that it can monitor an MBean
attribute regardless of what the MBean (or any other thread in the JVM) is doing. The
start() method is used to start the monitor thread, and stop() is used to stop the thread.
Once the monitor has been started, it is considered active, such that a subsequent call to
isActive() will return true. If the monitor has been stopped or has not yet been started,
isActive() will return false.

All monitor MBeans have three attributes in common:

The object name of the MBean that is to be monitored

The name of the attribute that is to be observed on the MBean designated by
ObservedObject

ObservedObject

ObservedAttribute

 250

GranularityPeriod

Figure 9-1

The period of time that the monitor thread sleeps before calculating a new derived
gauge

For each of these attributes, there is a getter and a setter. We will look at these methods in
more detail—along with how they are implemented in the various monitoring service
classes—later in this chapter.

The counter monitor is implemented in a class called CounterMonitor, which in turn
implements an MBean interface called CounterMonitorMBean. As you can see from

, all of the o

Threshold

Offset

Modulus

ther monitor subclasses expose their own management interfaces
as well. Let's first look at CounterMonitorMBean, which is defined as:

public interface CounterMonitorMBean extends MonitorMBean {
 public Number getDerivedGauge();
 public long getDerivedGaugeTimeStamp();
 public Number getThreshold();
 public void setThreshold(Number value)
 throws java.lang.IllegalArgumentException;
 public Number getOffset();
 public void setOffset(Number value)
 throws java.lang.IllegalArgumentException;
 public Number getModulus();
 public void setModulus(Number value)
 throws java.lang.IllegalArgumentException;
 public boolean getNotify();
 public void setNotify(boolean value);
 public boolean getDifferenceMode();
 public void setDifferenceMode(boolean value);
}

This interface consists entirely of attributes. Two of these attributes—DerivedGauge and
DerivedGaugeTimeStamp, which are the derived gauge and the time stamp when the
gauge was derived, respectively—are read-only. The other attributes are readable and
writable:

The counter monitor's threshold value. Default value: 0.

A value added to the threshold each time the derived gauge exceeds the threshold.
This attribute makes it possible for the notification sent when the derived gauge
exceeds the threshold to be emitted more than once. Default value: 0.

 251

For counters whose values wrap back to zero, this attribute is the value at which
the counter is reset to zero. Default value: 0.

A boolean attribute whose value determines whether or not a notification is sent
to all registered listeners when the threshold value is exceeded. Default value:
false.

A boolean attribute whose value indicates whether the counter's derived gauge is
the attribute value or the difference between the current and previous values of the
attribute, for false and true, respectively. Default value: false.

Next, let's look at the GaugeMonitorMBean interface, which is implemented by
GaugeMonitor. GaugeMonitorMBean is defined as:

public interface GaugeMonitorMBean extends MonitorMBean {
 public Number getDerivedGauge();
 public long getDerivedGaugeTimeStamp();
 public Number getHighThreshold();
 public Number getLowThreshold();
 public void setThresholds(Number highValue, Number lowValue)
 throws java.lang.IllegalArgumentException;
 public boolean getNotifyHigh();
 public void setNotifyHigh(boolean value);
 public boolean getNotifyLow();
 public void setNotifyLow(boolean value);
 public boolean getDifferenceMode();
 public void setDifferenceMode(boolean value);
}

The management interfaces of the gauge monitor and counter monitor services share
three attributes: DerivedGauge (which is read-only), DerivedGaugeTimeStamp (also
read-only), and DifferenceMode (which is readable and writable). DifferenceMode
serves the same purpose for gauge monitor floating-point values as it does for counter
monitor integers.

The gauge monitor has two attributes called HighThreshold and LowThreshold that
represent the gauge monitor's high and low threshold values, respectively. Each attribute
has a getter, but the designers of JMX decided to have one operation on the management
interface—setThresholds()—that serves to set both attribute values at once. This is an
odd choice, in that a setter takes only a single parameter, but it is completely functional.

Because there are two threshold values (high and low), there are two notifications that
can be sent to indicate that those threshold values have been crossed. As a result, there
are two notify methods that can be used: NotifyHigh and NotifyLow, which are used to
turn on and off the high and low threshold notifications, respectively.

Notify

DifferenceMode

 252

Finally, let's look at StringMonitorMBean, the management interface of StringMonitor.
StringMonitorMBean is defined as:

public interface StringMonitorMBean extends MonitorMBean {
 public String getDerivedGauge();
 public long getDerivedGaugeTimeStamp();
 public String getStringToCompare();
 public void setStringToCompare(String value)
 throws java.lang.IllegalArgumentException;
 public boolean getNotifyMatch();
 public void setNotifyMatch(boolean value);
 public boolean getNotifyDiffer();
 public void setNotifyDiffer(boolean value);
}

In the case of the string monitor, the DerivedGauge attribute is the attribute value of the
MBean when the monitor thread checks its value. The DerivedGaugeTimeStamp has the
same purpose as the other two monitors we have already discussed. The
StringToCompare value is analogous to the threshold value of the counter monitor, in
that it serves as the reference value the derived gauge differs from or matches. When the
derived gauge differs from StringToCompare, a notification is sent to all listeners,
provided the NotifyDiffer attribute is set to true. By the same token, if the derived
gauge matches the StringToCompare attribute, a notification is sent to all listeners,
provided the NotifyMatch attribute is set to true.

MonitorNotification is a subclass of the Notification class that contains attributes
specific to monitors. When a monitor sends a notification to a listener, the notification
parameter passed to the handleNotification() method in the listener is actually a
MonitorNotification instance. MonitorNotification contains the following
attributes (with types in parentheses) that the listener can exploit when it receives a
notification:

The object name of the MBean that is being observed

The MBean attribute that is being observed

The derived gauge that resulted in the notification being sent

9.1 The MonitorNotification Class

ObservedObject (ObjectName)

ObservedAttribute (String)

DerivedGauge (Number or String , depending on the monitor type)

Trigger (Number or String , depending on the monitor type)

 253

The MBean attribute value used to calculate the derived gauge at the time the
notification was sent

One other piece of information provided by the MonitorNotification is the notification
type, which tells the listener exactly what type of notification it has received. The JMX
specification defines several notification types that are specific to the monitoring services.
All of these notifications are namespaced with jmx.monitor, to distinguish them from
the other notification types defined by the JMX specification. In the remainder of this
section, we will look at the notification types that are emitted by the monitoring services.

Several notification types are defined to represent the various error conditions that occur
when setting the attribute values of the different monitor types. Each of these notification
types is namespaced by jmx.monitor.error.

The notification types are:

Sent when the MBean to be observed is not registered in the MBean server.
Always make sure before attempting to set the ObservedObject attribute of a
monitor that the MBean is registered. When this notification is sent, the listener
may interrogate the notification to identify the MBean object on which the
attribute was to be monitored.

Sent when an attribute of an MBean that was specified to be observed does not
exist. Make sure that the specified attribute exists on the MBean to be monitored.
When this notification is sent, the listener may interrogate the notification to see
which MBean and which attribute are in error. The pertinent information
contained in the notification includes the ObservedObject and
ObservedAttribute attributes.

Sent when the MBean attribute's type does not match that of the type of monitor
in use. For example, if the monitor is a gauge monitor and the attribute is an
integer type, this error will be sent to the listener. Likewise, if the monitor is a
string monitor and the attribute type is long, this error will be sent to notify the
listener that there is a mismatch. The pertinent information contained in the
notification includes the ObservedObject and ObservedAttribute attributes.

9.1.1 Error Conditions

jmx.monitor.error.mbean

jmx.monitor.error.attribute

jmx.monitor.error.type

jmx.monitor.error.runtime

 254

Sent as a catch-all when an error has occurred that does not fit into the other
categories. If there is a problem, say, obtaining the attribute value of an MBean
attribute, this exception will be thrown. The pertinent information contained in the
notification depends on the monitor type and the specific error.

Sent when the threshold value is not of the same type as the derived gauge. This
error notification depends on the type of monitor in use:

• If the threshold, offset, or modulus is not the same type as that of the
attribute monitored by a counter monitor, this error notification will be
sent.

• If either the low or high threshold value is not of the same type as that of
the attribute monitored by a gauge monitor, this error notification will be
sent.

In addition to the error notification types a counter monitor must handle, there is one
other notification that deserves special mention:

Sent when the derived gauge has exceeded the value of the Threshold attribute.
In essence, this means either that the attribute value of the MBean that is being
monitored has exceeded the preset value of the monitor or that the derived gauge
has exceeded the value of the monitor type plus the offset value. When this
notification is sent, it means that the derived gauge calculated by the monitor has
exceeded the current attribute value and must be handled accordingly.

In addition to the error notification types a gauge monitor must handle, there are two
more notifications that deserve special mention:

Sent whenever the derived gauge exceeds the value of the HighThreshold
attribute

Sent whenever the derived gauge drops below the value of the LowThreshold
attribute

jmx.monitor.error.threshold

9.1.2 Counter Monitor Notification Types

jmx.monitor.counter.threshold

9.1.3 Gauge Monitor Notification Types

jmx.monitor.gauge.high

jmx.monitor.gauge.low

 255

Once a gauge monitor notification is triggered, small oscillations around either threshold
will not produce additional notifications, due to a hysteresis mechanism that is used to
prevent this.

In addition to the error notification types a string monitor must handle, there are two
other notifications that deserve special mention:

Sent when the derived gauge first matches (i.e., becomes equal to) the
StringToCompare attribute

Sent when the derived gauge first differs from (i.e., stops being equal to) the
StringToCompare attribute

As mentioned in the first part of this chapter, a counter monitor is used to observe an
MBean attribute that is:

• Greater than or equal to zero
• Continually increasing (i.e., never decreasing)
• One of the Java integer types (byte, short, int, or long) or one of the

corresponding JDK wrapper classes (Byte, Short, Int, or Long)

In this section, we will look at the agent code that shows how to use a counter monitor.
When using a counter monitor, the first thing to do is to create a new instance of the
CounterMonitor class:

CounterMonitor monitor = new CounterMonitor();

After that, the following attributes of the monitor must be set:

• ObservedObject
• ObservedAttribute
• Notify (must be set to true if a notification is to be sent)
• Threshold
• GranularityPeriod
• Offset (optional)
• DifferenceMode (optional)
• Modulus (optional)

9.1.4 String Monitor Notification Types

jmx.monitor.string.matches

jmx.monitor.string.differs

9.2 Counter Monitors

 256

 257

}

We discussed some of these attributes earlier in this chapter. If the Offset attribute is set,
each time the derived gauge exceeds the threshold value, the current value of the MBean
attribute is incremented by the value of Offset until the MBean attribute value is greater
than the derived gauge (to prevent multiple notifications should the derived gauge spike
well beyond the current MBean attribute value). When the counter monitor determines
that a notification should be sent to all interested listeners, a single notification is sent,
regardless of how many multiples of the threshold value the derived gauge is calculated
to be.

In other words, if the previous attribute value is 1, the current MBean attribute value is 12,
the Threshold value is 2, and the Offset value is 4, the JMX infrastructure will send a
notification (because the threshold value has been exceeded) and will increment the
threshold value until it is greater than the current attribute value. The new threshold will
be 14. The previous threshold value will be incremented by 4 (the Offset) as many times
as necessary to ensure that is it greater than the current MBean attribute value. So, in this
example, the threshold value will be incremented from 2 to 6 to 10 to 14, when it is
finally greater than the current derived gauge.

The following example shows how to create an instance of the counter monitor and set its
properties.

ObjectName queueObjName = new ObjectName(":name=Queue");
CounterMonitor monitor = new CounterMonitor();
monitor.setObservedObject(queueObjName);
monitor.setObservedAttribute("NumberOfItemsProcessed");
monitor.setNotify(true);
monitor.setThreshold(new Long(500));
monitor.setGranularityPeriod(5000);

There are a couple of things to note about this example. First, the threshold type must be
the same type as the attribute type (or at least the same type as its JDK wrapper), the
granularity period must be in milliseconds, and the type must be long. Also, the Notify
attribute must be set to true if notifications are to be sent. In the JMX 1.0 RI, the default
value for this attribute is false.

Once we have created the counter monitor, we must register it with the MBean server, or
a jmx.monitor.error.runtime notification will be sent:

ObjectName queueObjName = new ObjectName(":name=Queue");
CounterMonitor monitor = new CounterMonitor();
monitor.setObservedObject(queueObjName);
// . . .
try {
 MBeanServer server = MBeanServerFactory.createMBeanServer();
 ObjectName objName = new ObjectName("Monitor:type=Counter");
 server.registerMBean(monitor, objName);
} catch (Exception e) {
 // . . .

Finally, we must start the counter monitor's thread of execution. This is done by calling
the start() method:

ObjectName queueObjName = new ObjectName(":name=Queue");
CounterMonitor monitor = new CounterMonitor();
monitor.setObservedObject(queueObjName);
// . . .
try {
 MBeanServer server = MBeanServerFactory.createMBeanServer();
 ObjectName objName = new ObjectName("Monitor:type=Counter");
 server.registerMBean(monitor, objName);
 monitor.start();
} catch (Exception e) {
 // . . .
}

Now that we have a running counter monitor, we need a NotificationListener
implementation to handle the notifications sent by the counter monitor. As we discussed
earlier in this chapter, there is a single notification type that must be handled by the
listener (in addition to the standard error types):
jmx.notification.monitor.threshold.

Example 9-1 shows a ty

Example 9-1. Typical listener implementation

pical implementation of the listener's handleNotification()
method.

public class Listener implements NotificationListener {
// . . .
 public Listener(NotificationBroadcaster monitor) {
 // . . .
 }
 public Listener (MBeanServer server, ObjectName monitor) {
 // . . .
 }
// . . .
 public void handleNotification(Notification notification, Object obj)
{
 String type = notification.getType();
 if (notification instanceof MonitorNotification) {
 MonitorNotification notif = (MonitorNotification)notification;
 String att = notif.getObservedAttribute();
 ObjectName obsObj = notif.getObservedObject();
 if (type.equals("jmx.monitor.counter.threshold")) {
 Object derivedGauge = notif.getDerivedGauge();
 Object trigger = notif.getTrigger();
 trace("THRESHOLD EXCEEDED: Attribute: " + att +
 ", Object: " + obsObj + ", Derived Gauge: " +
 derivedGauge + ", Trigger: " + trigger);
 } else if (type.equals("jmx.monitor.error.attribute")) {
 trace("ATTRIBUTE ERROR (" + att + "): " + notif.getMessage());
 } else if (type.equals("jmx.monitor.error.type")) {

 258

 trace("ATTRIBUTE TYPE ERROR (" + att + "): " +
notif.getMessage());
 } else if (type.equals("jmx.monitor.error.mbean")) {
 trace("OBJECT ERROR (" + obsObj + "): " + notif.getMessage());
 } else if (type.equals("jmx.monitor.error.runtime")) {
 trace("RUNTIME ERROR (" + obsObj + "): " + notif.getMessage());
 } else if (type.equals("jmx.monitor.error.threshold")) {
 trace("THRESHOLD ERROR (" + obsObj + "): " +
notif.getMessage());
 }
 }
 }
 private void trace (String message) {
 System.out.println(message);
 }

In this example, we simply write the notification to System.out. When the notification is
received, we make sure that it is a MonitorNotification, then proceed to exploit the
information contained within it. We also want to report any errors that occur. Much of the
error-handling code in this example will be repeated as we discuss the other monitor
types.

Before the notification listener can receive notifications, it must be added to the list of
listeners to which the monitor will send its notifications. In this example, the notification
listener adds itself to the list in its constructor:

// . . .
 public Listener(NotificationBroadcaster monitor) {
 NotificationFilter filter = null;
 Object handback = null;
 monitor.addNotificationListener(this, filter, handback);
 }
// . . .

Recall that the Monitor base class is a subclass of NotificationBroadcasterSupport
and that CounterMonitor is a subclass of Monitor, so if the listener has a reference to
the monitor, we can use the addNotificationListener() method to add the listener to the
list. If the listener does not have a reference to the monitor object, it can use the MBean
server to register itself with the monitor, using only the monitor's object name. To do this,
we would use the alternate constructor on the Listener class:

// . . .
 public Listener(MBeanServer server, ObjectName monitor) {
 NotificationFilter filter = null;
 Object handback = null;
 server.addNotificationListener(monitor, this, null, null);
 }
// . . .

9.3 Gauge Monitors

 259

As we mentioned in the beginning of this chapter, a gauge monitor is used to monitor an
MBean attribute that is:

• Arbitrarily changing in any direction (i.e., up or down)
• One of the Java floating-point types (float or double) or one of the

corresponding JDK wrapper classes (Float or Double)

In this section, we will look at the agent code that shows how to use a gauge monitor.
When using a gauge monitor, the first thing to do is to create a new instance of the
GaugeMonitor class:

GaugeMonitor monitor = new GaugeMonitor();

After that, the following attributes of the gauge monitor must be set:

• ObservedObject
• ObservedAttribute
• NotifyHigh (must be set to true if a notification is to be sent when the derived

gauge exceeds the high threshold)
• NotifyLow (must be set to true if a notification is to be sent when the derived

gauge drops below the low threshold)
• HighThreshold
• LowThreshold
• GranularityPeriod

We discussed these attributes earlier in this chapter. Recall that a notification is sent
when the derived gauge exceeds the value of HighThreshold (if NotifyHigh has been
explicitly set to true) or when the derived gauge drops below the value of LowThreshold
(if NotifyLow is set to true). The following example shows how to create an instance of
the gauge monitor, set its properties, register the gauge monitor MBean with the MBean
server, and start the monitor's thread of execution:

ObjectName queueObjName = new ObjectName(":name=Queue");
GaugeMonitor monitor = new GaugeMonitor();
monitor.setObservedObject(queueObjName);
monitor.setObservedAttribute("AverageUnitProcessingTime");
monitor.setNotifyHigh(true);
monitor.setNotifyLow(true);
monitor.setThresholds(new Float(500), new Float(500));
monitor.setGranularityPeriod(5000);
try {
 MBeanServer server = MBeanServerFactory.createMBeanServer();
 ObjectName objName = new ObjectName("Monitor:type=Gauge");
 server.registerMBean(monitor, objName);
 monitor.start();
} catch (Exception e) {
 // . . .
}

 260

As with the counter monitor, we need a listener for the gauge monitor. The following
example shows a typical listener implementation. The error-handling code from Example
9-1 is not repeated in this exam

9.4 String Monitors

ple, as it is exactly the same.

public class Listener implements NotificationListener {
// . . .
 public Listener(NotificationBroadcaster monitor) {
 // . . .
 }
 public Listener (MBeanServer server, ObjectName monitor) {
 // . . .
 }
// . . .
 public void handleNotification(Notification notification, Object obj)
{
 String type = notification.getType();
 if (notification instanceof MonitorNotification) {
 MonitorNotification notif = (MonitorNotification)notification;
 String att = notif.getObservedAttribute();
 ObjectName obsObj = notif.getObservedObject();
 if (type.equals("jmx.monitor.gauge.high")) {
 Object derivedGauge = notif.getDerivedGauge();
 Object trigger = notif.getTrigger();
 trace("HIGH THRESHOLD EXCEEDED: Attribute: " + att +
 ", Object: " + obsObj + ", Derived Gauge: " +
 derivedGauge + ", Trigger: " + trigger);
 else if (type.equals("jmx.monitor.gauge.low")) {
 Object derivedGauge = notif.getDerivedGauge();
 Object trigger = notif.getTrigger();
 trace("LOW THRESHOLD EXCEEDED: Attribute: " + att +
 ", Object: " + obsObj + ", Derived Gauge: " +
 derivedGauge + ", Trigger: " + trigger);
 }
 // error handling code here. . .
 }
 }
 private void trace (String message) {
 System.out.println(message);
 }

In this example, we handle the two threshold notifications that are specific to gauge
monitors and write the relevant information contained in the notifications to System.out.
Just as with a counter monitor, the listener must register its interest in receiving
notifications from the monitor. This is done in the same way regardless of the monitor
type.

As we mentioned in the beginning of this chapter, a string monitor is used to monitor an
MBean attribute that:

• Matches a predefined value

 261

 262

different notification will be sent.

• Differs from a predefined value
• Is of type String

In this section, we will look at the agent code that shows how to use a string monitor.
When using a string monitor, the first thing to do is to create a new instance of the
StringMonitor class:

StringMonitor monitor = new StringMonitor();

After that, the following attributes of the string monitor must be set:

• ObservedObject
• ObservedAttribute
• StringToCompare
• NotifyMatch (must be set to true if a notification is to be sent when the derived

gauge matches StringToCompare)
• NotifyDiffer (must be set to true if a notification is to be sent when the derived

gauge differs from StringToCompare)
• GranularityPeriod

We discussed most of these attributes earlier in this chapter. When the derived gauge
differs from StringToCompare and NotifyDiffer is set to true, a difference
notification is sent. By the same token, if StringToCompare matches the derived gauge
and NotifyMatch is set to true, a match notification is sent. The following example
shows how to use both of these notifications in conjunction to monitor a String attribute:

try {
 StringMonitor monitor = new StringMonitor();
 monitor.setObservedObject(new
ObjectName("UserDomain:name=Controller"));
 monitor.setObservedAttribute("OperatorName");
 monitor.setNotifyMatch(true);
 monitor.setNotifyDiffer(true);
 monitor.setStringToCompare("Unassigned");
 monitor.setGranularityPeriod(5000);
 MBeanServer server = MBeanServerFactory.createMBeanServer();
 ObjectName objName = new ObjectName("Monitor:type=String");
 server.registerMBean(monitor, objName);
 monitor.start();
} catch (Exception e) {
 // . . .
}

In this example, the Controller class has an attribute called OperatorName that
designates the name of the operator watching the management console. When an instance
of Controller is created, this attribute is initialized to "Unassigned", and match
notifications are sent every five seconds (note the GranularityPeriod attribute).
However, as soon as the operator changes the value of the OperatorName attribute, a

9.5 Other Issues

The JMX monitoring services can be very useful in providing you with an off-the-shelf
implementation of a notification broadcaster that is geared for watching attribute values.
However, this convenience comes at a price.

First, a monitor can be used to watch only a single attribute of a single MBean. If you
would like to monitor multiple resources in your application, you must create a monitor
of the appropriate type for every attribute of every MBean you want to monitor.

Second, a monitor must watch the attribute value of an MBean in its own thread of
execution, so that, regardless of what the application is doing, the monitor can "spy" on
the attribute value and report the results accordingly. Thus, for every monitor, a new
thread in the JVM running your application must be created.

Finally, in the JMX 1.0 RI, each time the granularity period elapses and the monitor
thread checks the MBean attribute, that thread is replaced with an entirely new thread!
This is an odd implementation and can be fairly resource-intensive, depending on which
operating system your application runs and how efficiently thread creation and
scheduling occurs.

 263

Chapter 10. The Timer Service

The timer service is a special-purpose notification broadcaster designed to send
notifications at specific time intervals, starting at a particular date and time. Like the
other agent services we have looked at, the timer service is required for all compliant
JMX implementations. In addition, the timer service is an MBean, so it can be managed
(although it does not have to be registered with the MBean server to be used). There are
two primary uses of the timer service:

• To send a single notification to all listeners interested in that notification type
• To send multiple notifications that repeat at specific intervals for a set number of

times, or indefinitely

The timer service is capable of sending any number of notifications at different intervals.
Each notification that is to be sent by the timer service is given a notification type,
defined by the agent that instructs the timer service to send that notification. In other
words, unlike the monitoring services, the timer service does not send a predefined set of
notification types. Instead, the agent tells the timer service what notification types to send,
as well as when to start sending the notification, how many times the notification is to
repeat, and the amount of time that is to elapse between each notification (for repeating
notifications only, of course).

The timer service is implemented through the use of three classes:

The class that contains the implementation of the timer service

The management interface of the timer service

A subclass of Notification that defines an additional field to specialize the
notifications sent by the timer service

Timer

TimerMBean

TimerNotification

Figure 10-1 shows the relationship between

Figure 10-1. UML diagram showing the relationships between the timer service classes

these classes in UML notation.

 264

In this chapter, we will look at the classes in Figure 10-1 in detail, starting with the

Scheduler

Repeated notifications

10.1 The Timer Class

Example 10-1.

Example 10-1. The TimerMBean interface

public interface TimerMBean {
 public Integer addNotification(String type, String message, Object
userData, Date date)
 throws java.lang.IllegalArgumentException;
 public Integer addNotification(String type, String message, Object
userData,
 Date date, long period)
 throws java.lang.IllegalArgumentException;

Timer
class. At the end of the chapter, we will look at two applications of the timer service:

A simple scheduler that kicks off the sample application after a certain date

The logging facility of the sample application, which queues the messages to be
written to the log and writes them to disk each time it receives a notification

The Timer class is a part of the RI and contains the implementation of the timer service.
Like the monitoring service classes, the Timer class uses a separate thread of execution to
perform its functions. This thread is responsible for checking the list of registered
listeners, sending them notifications, and managing the parameters controlling the
emission of any notifications sent. The management interface of the timer service is
contained in TimerMBean and contains all of the methods necessary for manipulating the
timer service.

Unless otherwise specified, whenever we talk about certain
restrictions or behavior of the timer service, we are referring to a
single instance of the Timer class.

The TimerMBean interface is shown in

 265

 public Integer addNotification(String type, String message, Object
userData,
 Date date, long period, long
nbOccurences)
 throws java.lang.IllegalArgumentException;
 public boolean getSendPastNotifications();
 public void setSendPastNotifications(boolean value);
 public void removeNotification(Integer id)
 throws InstanceNotFoundException;
 public void removeNotifications(String type)
 throws InstanceNotFoundException;
 public void removeAllNotifications();
 public void start();
 public void stop();
 public int getNbNotifications();
 public Vector getAllNotificationIDs();
 public Vector getNotificationIDs(String type);
 public String getNotificationType(Integer id);
 public String getNotificationMessage(Integer id);
 public Object getNotificationUserData(Integer id);
 public Date getDate(Integer id);
 public Long getPeriod(Integer id);
 public Long getNbOccurences(Integer id);
 public boolean isActive();
 public boolean isEmpty();
}

The first method we will look at is addNotification(), which is used by the agent to tell
the timer service about a new notification it is to send. As you can see from Example 10-
1, there are three ways to

type

message

userData

date

 do this (i.e., there are three versions of addNotification()), each
of which has the following parameters in common:

A user-defined String that serves as the notification type and is sent along with
the notification to interested listeners. Multiple notifications with the same type
may be added.

A String message that is sent along with the notification to interested listeners.

An Object that is sent along with the notification to interested listeners.

A Date object that contains the date and time at which the first notification is to
be sent.

 266

These parameters are the only ones that the first version of addNotification() takes. A
notification added using the first version of addNotification() will be sent only once:

try {
 Timer timer = new Timer();
 timer.addNotification("sample.timer.flushlog", null, null, new
Date());
 timer.addNotificationListener(/* listener here */, null, null);
 timer.start();
} catch (IllegalArgumentException e) {
 // . . .
}

Once the notification has been sent, it is removed from the list of notifications that are
sent by the timer service.

The second version of addNotification() takes an additional parameter, period, which is
used to specify the amount of time that should elapse (in milliseconds) between
notifications. If zero (0) is passed as this parameter, the notification will be sent only
once (this has the same effect as using the first version of this method). Otherwise, the
notification will repeat indefinitely at the interval specified by period:

try {
 Timer timer = new Timer();
 // repeat the notification every 5 seconds. . .
 timer.addNotification("sample.timer.flushlog", null, null, new Date(),
5000);
 timer.addNotificationListener(/* listener here */, null, null);
 timer.start();
} catch (IllegalArgumentException e) {
 // . . .
}

The third version of this method takes the period parameter as well as a parameter called
nbOccurences (sic), which is the number of times the notification is to repeat at the
interval specified by period. If the nbOccurences parameter is 0, the notifications will
repeat indefinitely (as long as the period parameter is not 0), which has the same effect as
using the second version of addNotification().

try {
 Timer timer = new Timer();
 // repeat the notification 10 times, 5 seconds apart
 timer.addNotification("sample.timer.flushlog", null, null, new Date(),
5000, 10);
 timer.addNotificationListener(/* listener here */, null, null);
 timer.start();
} catch (IllegalArgumentException e) {
 // . . .
}

 267

Once the notification has been sent nbOccurences times, the notification is removed from
the list of notifications sent by the timer service.

If the date parameter is null, or if either of the period or nbOccurences parameters are
less than zero, an IllegalArgumentException will be thrown.

If the date parameter represents a date that is earlier than the current date, the timer
service will increment date by period until the next notification date is later than the
current date. If nbOccurences is specified, each time period is added to the notification
date, 1 will be subtracted from nbOccurences. For example, suppose that date is 10,351
milliseconds earlier than the current date, period is 5000 and nbOccurences is 100. The
timer service will add 5,000 to date as many times as it takes for the next notification date
to be later than the current date (subject to the value of nbOccurences, of course). In this
example, the timer service must do so three times, at which point the next notification
date will be 4,649 milliseconds later than the current date. Likewise, nbOccurences is
decremented three times, such that, after updating the notification date, 97 notifications
remain.

Depending on the values of date, period, and nbOccurences, the notification may never
be added at all. The following scenarios will result in an IllegalArgumentException
(in each of these scenarios, the specified date parameter is earlier than the current date):

• period is zero, meaning that the notification should be sent only once. However,
the notification date is earlier than the current date, so the period argument of zero
is not allowed.

• period is greater than zero, meaning that the notification will repeat, but date is so
much earlier than the current date that, after adding period to date nbOccurences
times, the next notification date is still earlier than the current date.

If either of these scenarios occurs, the notification is never added to the list of
notifications to be sent. The notification is added only after the notification date has
successfully been updated to a date later than the current date. Once it has successfully
been added, though, it is possible for the timer service to send any past notifications in
order for the date represented by date to catch up to the current date. This may result in a
flurry of notifications being sent. However, if this is the desired behavior, you can use the
setSendPastNotifications() method (passing true as the boolean argument) to enable this
behavior. This feature of the timer service is somewhat analogous to a store-and-forward
feature, guaranteeing that notifications that should have been sent (in the case of, say, a
system restart) will be sent.

The send past notifications feature applies to every notification
added to the timer service instance prior to calling the timer's start()
method. Past notifications will not be sent for any notifications
added after start() is called, regardless of the notification start date. It
is not possible to selectively send past notifications (i.e., for some

 268

notifications and not for others) for a particular instance of the timer
service. If this sort of selective behavior is required, you must create
more than once instance of the Timer object. Notifications that
require this behavior will then use the Timer object that has this
feature enabled.

Notice that the return value of addNotification() is an Integer object. Each notification
that is added is assigned a unique ID that can be used as a token to obtain information
about the notification. There are several methods that require this ID as a parameter, so
make sure to save the ID when you add a notification.

try {
 Timer timer = new Timer();
 // repeat the notification 10 times, 5 seconds apart
 Integer ID = timer.addNotification("sample.timer.flushlog", null,
null,
 new Date(), 5000, 10);
 timer.addNotificationListener(/* listener here */, null, null);
 timer.start();
} catch (IllegalArgumentException e) {
 // . . .
}

Notifications that will be sent a limited number of times (e.g., when
you are using the first version of addNotification(), or using the third
version and specifying nbOccurences to be greater than zero) are
removed from the list of notifications sent by the timer service once
that limit has been reached. Once a notification has been

The timer service provides three methods that allow for removal of one or more
notifications. The first, removeNotification(), removes a single notification, based on the
ID that corresponds to that specific notification:

try {
 Timer timer = new Timer();
 // repeat the notification 10 times, 5 seconds apart
 Integer ID = timer.addNotification("sample.timer.flushlog", null,
null,
 new Date(), 5000, 10);
 timer.addNotificationListener(/* listener here */, null, null);
 timer.start();
 // later . . .
 timer.removeNotification(ID);
} catch (IllegalArgumentException e) {
 // . . .
} catch (InstanceNotFoundException e) {
 // . . .
}

 269

 270

} catch (IllegalArgumentException e) {
 // . . .

Of course, to use this version of removeNotification(), we must store the return value
from addNotification() somewhere so that we can pass it as a parameter. In addition, we
must anticipate an InstanceNotFoundException being thrown if the ID passed in does
not match any notifications in the timer service's list. The most likely cause of this is that
the notification has expired and been removed from the list.

The second version of removeNotification() takes a String that contains the notification
type, so that all notifications of that type may be removed from the timer service's list of
notifications. Recall that the timer service supports adding the same notification type
multiple times. For example, we could add the notification type
sample.timer.flushlog more than once, and pass a different user-defined object each
time. This allows us to handle the same notification type in different ways.

try {
 Timer timer = new Timer();
 // repeat the notification 10 times, 5 seconds apart
 timer.addNotification("sample.timer.flushlog", null, null, new Date(),
5000, 10);
 timer.addNotificationListener(/* listener here */, null, null);
 timer.start();
 // later . . .
 timer.removeNotification("sample.timer.flushlog");
} catch (IllegalArgumentException e) {
 // . . .
} catch (InstanceNotFoundException e) {
 // . . .
}

When using this method to do a wholesale removal of a particular notification type, you
don't need the IDs that were generated by the timer service when the individual
notifications were added; the notification type is sufficient. If the notification type string
specified does not match any of the notification types in the timer service's list of
notifications, an InstanceNotFoundException will be thrown.

The final way to remove notifications from the timer service is to use
removeAllNotifications(), which, as its name implies, removes every notification in the
timer service. Following a call to this method, the timer service will not send any further
notifications, because they have all been removed! This method is very simple to use and
throws no exceptions:

try {
 Timer timer = new Timer();
 // repeat the notification 10 times, 5 seconds apart
 timer.addNotification("sample.timer.flushlog", null, null, new Date(),
5000, 10);
 timer.addNotificationListener(/* listener here */, null, null);
 timer.start();
 // later . . .
 timer.removeAllNotifications();

 271

TimerNotification class that is sent. TimerNotification is a subclass of

}

There are a number of utility methods provided by the timer service that allow you to get
information about its current state, as well as information about a particular notification
or group of notifications. If no notifications have been added, or the
removeAllNotifications() method has been called, the isEmpty() method will return true.
Calling this method allows agents to determine whether or not the timer service's list of
notifications is empty.

The second utility method, getSendPastNotifications(), returns a boolean value
indicating whether or not the timer service will send out past notifications when the date
specified for the notification to begin is earlier than the current date. If this method
returns true, the send past notifications feature is enabled.

If you need to know how many notifications are in the timer service's list of notifications,
use the getNbNotifications() method. This method returns the number of unique
notifications that will be sent, not the number of different notification types that have
been added. For example, if we add the notification type sample.timer.flushlog three
times (and no other notifications), getNbNotifications() will return 3.

If you need all of the notification IDs for a particular notification type that are contained
in the timer service's list of notifications, use getNotificationIDs(). This method takes the
notification type string and returns a java.util.Vector object. Inside the Vector object
are the IDs (which are Integer objects) that were generated by the timer service for that
notification type. This method is a convenient way to obtain the IDs of a particular
notification type if the individual IDs were not stored somewhere following the
respective calls to addNotification().

The timer service also provides a method to obtain all of the notification IDs for all active
notifications. This method, getAllNotificationIDs(), returns a Vector that contains the
IDs for all of the notifications in the list.

If we have the ID for a particular notification, we can get detailed information about that
notification. There are five pieces of information that can be provided about a notification
(recall our discussion of the addNotification() method) and five methods that provide that
information:

• getNotificationMessage(), which returns the notification message
• getUserData(), which returns the user-defined object
• getDate(), which returns the date the notifications are to begin
• getPeriod(), which returns the period of time between notifications
• getNbOccurences(), which returnsthe number of times the notification is to be

sent

Whenever the timer service sends a notification to a listener, it is an instance of the

Notification and adds an additional read-only attribute, NotificationID. Other than
this attribute, a TimerNotification should be processed just like any other notification.
TimerNotification has a single constructor, whose job is to set the NotificationID
attribute and delegate the rest to Notification.

In this section, we will look at two examples of possible applications of the timer service.
We will look at enough of the source code in this chapter to discuss the fundamental
concepts, but you will get the most benefit from this chapter by having the full source
listings available. In the first example, we will use the timer service as a scheduler to start
the sample application via a timer notification that is emitted once. The second example
shows how to use the timer service to handle repeated timer notifications to write log
messages to disk.

As we've seen, the minimal steps to use the timer service are:

1. Create the timer service by instantiating the Timer class.
2. Add a notification, which includes at a minimum the notification type (which is

up to you to define) and the date the notification is to start.
3. Add a notification listener to the timer service.
4. Start the timer.

Step 2 is repeated for each notification type that is to be sent by the timer service. Step 3
is repeated for as many notification listeners as are needed in the system. In the sample
application code for this chapter, there are two notification types:

The notification type string that indicates the controller is to be started

The notification type string that indicates that any queued messages are to be
written (i.e., committed) to the log

There are also two notification listeners:

The class that is responsible for creating the timer service and adding the above
notifications

10.2 Using the Timer Service

sample.timer.startController

sample.timer.flushlog

sample.timer.Scheduler

sample.utility.MessageLogQueue

 272

The class that is used to queue log messages, listen for sample.timer.flushlog
notifications, and write them to the disk-based log file

The Scheduler class acts as the JMX agent for our example. Example 10-2 shows a

Example 10-2. Partial source listing of the Scheduler class

partial source listing for this class.

package sample.timer;
import sample.utility.*;
// . . .
public class Scheduler {
 public static void main(String[] args) {
 try {
 Properties props = new Properties();
 FileInputStream propFile = new
FileInputStream("scheduler.properties");
 props.load(propFile);
 String controllerStartWaitTime =
(String)props.get("controller.startWaitTime");
 long startTime = System.currentTimeMillis() +
 (new Long(controllerStartWaitTime)).longValue();
 Date startDate = new Date(startTime);
 Timer timer = new Timer();
 // Add notification that starts the controller. . .
 timer.addNotification("sample.timer.controllerStart",
 null,
 props,
 startDate);
 Listener listener = new Listener();
 timer.addNotificationListener(listener, null, null);
 // add notification that flushes the log. . .
 String logFlushWaitTime =
(String)props.get("logger.flushWaitTime");
 timer.addNotification("sample.timer.flushlog",
 "Time to flush the log to disk.",
 null,
 new Date(),
 (new Long(logFlushWaitTime)).longValue());
 timer.addNotificationListener(MessageLogQueue.instance(),
 null,
 null);
 timer.start();
 ObjectName objName = new ObjectName("Timer:type=generic");
 MBeanServer mbs = MBeanServerFactory.createMBeanServer();
 mbs.registerMBean(timer, objName);
 } catch (Exception e) {
 }
 }
}

The main() method of Scheduler contains the agent code for our example and reads the
following properties from the file scheduler.properties:

 273

Controller start wait time

Log queue flush wait time

Consumer work factor

Supplier work factor

Example 10-3

The number of milliseconds to delay before starting the controller, used to
calculate the start date for sending the sample.timer.startController
notification

The number of milliseconds to wait before sending the sample.timer.flushlog
notifications, which results in the listener writing any queued log messages to disk

The number of prime numbers calculated by the consumer thread for each item it
removes from the queue

The number of prime numbers calculated by the supplier thread for each item it
adds to the queue

 shows the contents of this file.

Example 10-3. The scheduler.properties file

controller.startWaitTime=60000
logger.flushWaitTime=10000
controller.supplier.workFactor=150
controller.consumer.workFactor=100

Using the property values in this file, the controller will start in approximately one
minute and the queued log messages will be written to disk every 10 seconds.

Once the start wait time for the controller is read from the properties file, that wait time is
added to the current system time to calculate the date (in milliseconds) when the
notification to start the controller will be sent. Next, the timer service is created and the
controller start notification is added. Notice that the Properties object we created earlier
is passed as the userData parameter to the addNotification() call. This allows the listener
access to the properties from scheduler.properties. Next, we create an instance of the
Listener class, which will receive the notification to start the controller. We tell the
timer service to send this notification to Listener by calling the timer's
addNotificationListener() method.

The second notification to be added is the one to flush any queued log messages to the
log file on disk. Notice that we do not use a userData object in this case, and we indicate
this by passing null on the addNotification() call. We indicate to the timer service that
the notifications are to begin immediately by creating a new Date object, using Date's

 274

default constructor. Finally, we indicate to the timer service that this notification is to be
sent repeatedly, at an interval indicated by the value of the logger.flushWaitTime
property. The MessageLogQueue class acts as a queue of log messages, which are not
committed to the log file until it receives a notification to do so. It is implemented as a
singleton[1] s

[1] S

10.2.1 Handling the Controller Start Notification

o that it can be shared by all other objects in the system. It is the
MessageLogQueue that will act as the listener for this notification, and we obtain a
reference to the singleton by calling its instance() method.

ee Gamma, et al. Design Patterns. Reading, MA: Addison Wesley, 1994.

Once the notifications and listeners have been added, the timer service is started by
calling its start() method. The timer service is an MBean, so we create an object name for
it and register it with the MBean server. This allows the timer service to be monitored
and controlled.

When the controller start notification is sent, the Listener class handles the notification:

package sample.timer;

import javax.management.*;

public class Listener implements NotificationListener {
 public void handleNotification(Notification notification, Object obj)
{
 String type = notification.getType();
 if (notification instanceof TimerNotification) {
 TimerNotification notif = (TimerNotification)notification;
 if (type.equals("sample.timer.controllerStart")) {
 Properties props = (Properties)notif.getUserData();
 final String cwf =
 (String)props.getProperty("controller.consumer.workFactor");
 final String swf =
 (String)props.getProperty("controller.supplier.workFactor");
 Thread t = new Thread(new Runnable() {
 public void run() {
 Controller.main(new String[] {cwf, swf});
 }
 });
 t.start();
 }
 }
 }
}

The code for the Listener class is relatively simple, as it has to implement only the
handleNotification() method of NotificationListener. Recall that when the timer
service sends a notification, an instance of the TimerNotification class is emitted to all
interested listeners. This is the only type of notification in which Listener is interested.
If the notification is not of the right type (sample.timer.controllerStart), it is

 275

ignored. If the notification type string is of the correct type, the getUserData() method of
the Notification class (TimerNotification's parent class) is invoked to retrieve the
Properties object we stored there when the controller start notification was added to the
timer service. The Controller is started on a separate thread of execution, because
Controller.main() does not terminate until all other threads in Controller (e.g.,
consumer and supplier threads) are finished. If we don't start the Controller on its own
thread from handleNotification(), it may hang the timer service's notification thread if we
run the code on single-processor systems, and other notifications may not be sent by the
timer service until Controller.main() is finished executing!

When the notification to flush queued messages to disk is sent by the timer service, the
MessageLogQueue class handles it:

package sample.utility;

import javax.management.*;
public class MessageLogQueue extends MessageLog
 implements NotificationListener {
 // singleton stuff. . .
 private static MessageLogQueue _instance = null;
 public static MessageLogQueue instance() {
 if (_instance == null)
 _instance = new MessageLogQueue();
 return _instance;
 }

 private ArrayList _store = new ArrayList(10);
 public synchronized void write(String message) {
 _store.add(message);
 }
 public synchronized void write(Throwable t) {
 _store.add(t);
 }

 public synchronized void handleNotification(Notification notification,
 Object obj) {
 if (notification instanceof TimerNotification) {
 String type = notification.getType();
 if (type.equals("sample.timer.flushlog")) {
 if (_store.size() > 0) {
 Iterator iter = _store.iterator();
 while (iter.hasNext()) {
 Object message = iter.next();
 if (message instanceof String)
 super.write((String)message);
 else if (message instanceof Throwable)
 super.write((Throwable)message);
 }
 _store.clear();
 }
 }

10.2.2 Handling the Message Queue Flush Notification

 276

 }
 }
}

The emphasized lines in this code point out some of the features of the MessageLogQueue
class. First, the class is implemented using the singleton pattern, so that there is only one
instance of the class for the process (i.e., the JVM)—this allows all classes in the JVM to
write their log messages to the log file in an asynchronous fashion. The backing store for
the "queue" inside MessageLogQueue is an ArrayList, and access to the contents of the
list must be synchronized.

As we saw earlier, if the Notification object that is sent is not a TimerNotification,
it is simply ignored. This goes for the notification type as well, which must be
sample.timer.flushlog. Any messages in the backing store for the queue are written
out one at a time using an Iterator. Because both String and Throwable message
types are allowed, the Java keyword instanceof is used to determine the type of the
current entry in the list, so that it can be appropriately cast when delegating to the
superclass's write() method. Once the contents of the queue have been written to the log
file, the backing store for the queue is emptied and is ready for the next batch of
messages.

 277

Chapter 11. The Relation Service

The relation service provides a facility to associate MBeans with each other. You use the
metadata classes provided by the relation service to describe and then establish n-ary
relationships between registered MBeans, as dictated by your application policies. You
then use the relation service to maintain the consistency of those relationships so that
those application policies are followed. The relation service must be implemented by
every compliant JMX implementation.

In this chapter, we will examine the JMX relation service and see how to write code to
use it. We will begin with an overview of the concepts employed by the relation service,
such as roles and relations, then we will look at the relation service classes that
implement these concepts. Next, we will see how to write code to use the relation service
classes to describe relationships between MBeans used in the sample application. This
chapter concludes with a look at the support classes provided by the relation service, their
purpose, and how to use them.

The code we will develop in this chapter to describe relations, roles, etc. runs within an
agent. Thus, I will use the terms "we" and "you" synonymously with "the agent."

To use the relation service effectively, you need to understand a few key concepts:

A named category of functionality that is performed by an MBean. For example,
in the sample application, there are two subclasses of Worker whose names
correspond to the roles they perform: Consumer and Supplier. A role describes
the MBean objects that perform that role and is implemented by the Role class.

Metadata about a role, such as the role name and the minimum and maximum
number of MBeans that are allowed to perform that role. Role information is
implemented by the RoleInfo class.

Metadata that describes the relationships between RoleInfo objects. The
RelationType interface provides information about the relation type, such as the
name of the relation type and the various roles that make up that type. The
relation service provides a method, createRelationType(), that allows the agent to
easily create relation type objects that the relation service will maintain internally.
Relation types created by the relation service and maintained internally are called
internal relation types. Compliant JMX implementations of the relation service

11.1 Introduction

Role

Role information

Relation type

 278

also provide a class called RelationTypeSupport that the agent can subclass (or
use as-is) that handles relation types in a generic fashion. These relation types are
called external relation types and are added to the relation service through its
addRelationType() method.

An instance of a relation type. It is critical to the correct functioning of the
relation service that all relation types remain consistent. In other words, the
metadata describing the relationship between MBeans (i.e., the relation type)
provides the constraints on the relation that allow the relation service to be used to
ensure that the relation remains consistent at all times. Once a relation has been
instantiated, it must remain consistent, or the relation service will throw an
exception.

Each of these concepts is implemented in the JMX RI as a class in the
javax.management.relation package.

The Relation interface provides information about the relation, such as the name of the
relation (the ID, as it is called in the specification), and access to the Role and RoleInfo
objects that make up the relation. As with relation types, there are two ways to create a
relation. The first way is to call the createRelation() method of the relation service, which
will create an internal relation (i.e., one that is maintained internally by the relation
service). The second way to create a relation is to use (or subclass) the RelationSupport
class, instantiate it, and add it to the relation service by calling the addRelation() method.
This type of relation is referred to as an external relation.

It is the responsibility of the agent developer to create the necessary relation classes to
describe the roles, relation types, and relations that are to be maintained by the relation
service. We will discuss how to do this later in this chapter.

The relation service classes, which were briefly mentioned in the previous section, are the
basic classes needed to describe relationships between MBeans. In this section, we will
take a closer look at these classes. The material here will serve as a reference for the next
section, in which we will see how to write code to use the relation service. Examples will
be provided in this section to point out some of the features of the various classes. In this
section, we assume that the relation service has been created and has been given the
variable name relationService. In the next section,

Relation

11.2 The Basic Relation Service Classes

Section 11.3, we will look at m

11.2.1 RoleInfo

ore
detailed examples.

The RoleInfo class is used to describe the role that one or more MBeans (of the same
Java class) perform. RoleInfo contains the following read-only attributes:

 279

Name

RefMBeanClassName

Readable

Writable

MinimumDegree

MaximumDegree

Description

The name of the role. Must be unique for any given RelationType object.

The Java class name of the MBean(s) that will act in the role described by this
RoleInfo object.

Indicates whether or not information about the role can be accessed.

Indicates whether or not information about the role can be modified.

The lower bound on the multiplicity (size) of the number of MBeans that may
perform the role. Must be less than or equal to the maximum degree.

The upper bound on the multiplicity (size) of the number of MBeans that may
perform the role. Must be greater than or equal to the minimum degree.

A human-readable description of the role.

These attributes are set using one of the three constructors provided by RoleInfo:

public RoleInfo(String theName, String theRefMBeanClassName)
 throws IllegalArgumentException, ClassNotFoundException,
NotCompliantException {
 // . . .
}
public RoleInfo(String theName, String theRefMBeanClassName,
 boolean theIsReadable, boolean theIsWritable)
 throws IllegalArgumentException, ClassNotFoundException,
NotCompliantException {
 // . . .
}
public RoleInfo(String theName, String theRefMBeanClassName,
 boolean theIsReadable, boolean theIsWritable,
 int theMinDegree, int theMaxDegree, String
theDescription)
 throws IllegalArgumentException, InvalidRoleInfoException,

 280

 ClassNotFoundException, NotCompliantException {
 // . . .
}

The first constructor shows the minimum amount of information that the agent must
provide about a role: the name of the role and the class names of the MBean instances
that act in that role. When you use this constructor, the other values are set to default
values. The current default values in the RI are listed in Table 11-1; how

Table 11-1. Default values for RoleInfo attributes

11.2.2 RelationType

ever, these
default values might change in future releases of the JMX specification, so check the
Javadoc before using them.

Attribute Default value
Readable true
Writable true
MinimumDegree 1
MaximumDegree 1
Description null

The second constructor allows the agent to set the Readable and Writable attributes of
the role. MinimumDegree and MaximumDegree are set to their default values.

The third constructor allows the agent to set all of the attributes of RoleInfo.

The RelationType interface is used to describe a relationship between one or more roles
in an n-ary association. In this section, we will assume that we are going to use the
relation service to create the RelationType object (most likely an instance of
RelationSupport) on behalf of the agent, resulting in an internal relation type. To
describe a relation type to the relation service, the relation service needs to know two
things:

1. What is the name of the association represented by the relation type?
2. What RoleInfo objects are involved in the association?

The name of the association (i.e., the relation type) is a String that must be unique for all
relation types that the relation service knows about (otherwise, an exception will be
thrown). The agent must also create and pass an array of RoleInfo objects that represent
the roles played by MBean instances, which may or may not have been instantiated at this
point. The RelationType interface is defined as:

package javax.management.relation;

public interface RelationType extends Serializable {
 public String getRelationTypeName();
 public List getRoleInfo();

 281

 public RoleInfo getRoleInfo(String theRoleInfoName)
 throws IllegalArgumentException, RoleInfoNotFoundException;
}

Through the RelationType interface, we can get access to the name of the relation type,
a java.util.List object containing all of the RoleInfo objects that have been defined
for this relation type, and a single RoleInfo object that corresponds to a specific role
name. As we mentioned earlier, when discussing RoleInfo, the name given to a
RoleInfo object must be unique within any instance of RelationType.

A role is named collection of one or more MBean object names that corresponds to a
RoleInfo object. The MBeans do not have to be registered, or even instantiated, to be
added to a role. When creating a Role object, we must know the name of the RoleInfo
object that describes the role the collection of MBeans will perform—otherwise, the
relation service will not correctly map the Role object with its corresponding RoleInfo
metadata object and will throw an exception when we attempt to create a relation. By the
same token, the MBeans whose object names are part of the role must be instantiated and
registered with the MBean server before we attempt to create a relation using the Role
object that contains them.

A Role object is created using its lone constructor:

public Role(java.lang.String theRoleName, java.util.List theRoleValue)
 throws java.lang.IllegalArgumentException {
 // . . .
}

The first argument is the name of the role. It must match the name of a RoleInfo object
that has been used to create a relation type. The second argument is a List of MBean
object names (i.e., ObjectName objects) that correspond to the MBean objects that will
perform the role. If either of the theRoleName or the theRoleValue parameters are null,
an IllegalArgumentException will be thrown.

The RoleList class extends java.util.ArrayList and is a list of Role objects. A
RoleList object is used primarily to create a relation through the createRelation()
method of the relation service. The RoleList class is defined as:

public class RoleList extends ArrayList {
 public RoleList() {
 // . . .
 }
 public RoleList(int theInitialCapacity) {
 // . . .
 }

11.2.3 Role

11.2.4 RoleList

 282

 public RoleList(List theList) throws IllegalArgumentException {
 // . . .
 }
 public void add(Role theRole) throws IllegalArgumentException {
 // . . .
 }
 public void add(int theIndex, Role theRole)
 throws IllegalArgumentException, IndexOutOfBoundsException {
 // . . .
 }
 public void set(int theIndex, Role theRole)
 throws IllegalArgumentException, IndexOutOfBoundsException {
 // . . .
 }
 public boolean addAll(RoleList theRoleList)
 throws IndexOutOfBoundsException {
 // . . .
 }
 public boolean addAll(int theIndex, RoleList theRoleList)
 throws IllegalArgumentException, IndexOutOfBoundsException {
 // . . .
 }
 public Object clone() {
 // . . .
 }
}

A few convenience methods are provided on RoleList that make using it more type-safe
with respect to the relation service. For example, one version of the add() method takes a
role parameter, instead of the object parameter for the corresponding version of add()
found in ArrayList.

This class is at the heart of the relation service. The methods on this class allow agents to
create and remove relation types and relations, find relationships between MBeans, and
retrieve specific information about the relations that are maintained by the relation
service. The relation service implementation class, RelationService, is too large to
show a complete listing here. The methods that we will use most often are:

Adds an external relation to the relation service

Adds an external relation type to the relation service

Creates an internal relation

11.2.5 RelationService

addRelation()

addRelationType()

createRelation()

 283

createRelationType()

getRole()

removeRelation()

removeRelationType()

setRole()

Creates an internal relation type

Retrieves the list of MBean object names for a specific role name within a
specific internal relation

Removes a specific internal relation from the relation service

Removes a specific internal relation type from the relation service

Sets a writable role for a specific internal relation

You probably noticed that most of the methods on the RelationService class deal with
internal relations. As we mentioned earlier, for external relations the relation service
provides a class called RelationSupport, which we will discuss later in this chapter.
The above list of RelationService methods is not exhaustive—in the interests of space,
I have omitted the less frequently used methods from this discussion. All of the methods
are described in the Javadoc delivered with the JMX RI. The RelationService class
provides a single constructor:

public RelationService(boolean theImmediatePurgeFlg) {
 // . . .
}

The boolean argument to this constructor indicates whether or not the relation service
should search for and remove invalid relations from its internal implementation
immediately after an MBean that is referenced in a relation is unregistered. If the value of
this parameter is true, as soon as any referenced MBean is unregistered, the relation
service will check to see if the unregistration of the MBean causes any relations to
become invalid. Any invalid relations will then be removed from the relation service. If
the value of this parameter is false, the agent must invoke the relation service's
purgeRelations() method in order for this check to be made and any necessary processing
to be performed.

For all internal relations, it is the job of the relation service to ensure the consistency of
relations.

 284

The RelationService class implements an MBean interface, which allows it to be
controlled by a management application. Before the relation service can be used, the
RelationService instance created by the agent must be registered with the MBean
server.

This class is provided by the relation service as a convenience to agent developers so that
relation types can be created that are external to the relation service. Typically, we would
subclass the RelationTypeSupport class, provide our own constructor, and override any
methods we deem necessary. For each internal relation type defined using the
createRelationType() method of the relation service implementation, an instance of this
class is created and maintained by the relation service. However, internal relation types
are not directly accessible once they are created. Creating external relation types gives us
more flexibility in terms of how to create and maintain relation types. The
RelationTypeSupport class implements the RelationType interface and adds a
protected method called addRoleInfo(), which allows subclasses to add a RoleInfo
object to the relation type. There are two constructors for RelationTypeSupport:

public RelationTypeSupport(String theRelTypeName, RoleInfo[]
theRoleInfoArray)
 throws IllegalArgumentException, InvalidRelationTypeException {
 // . . .
}
protected RelationTypeSupport(String theRelTypeName) {
 // . . .
}

The RelationTypeSupport class does not have to be subclassed, and it provides a public
constructor that allows us to specify the relation type name and an array of RoleInfo
objects. We can use this constructor to create a relation type that is external to the relation
service, without having to subclass RelationTypeSupport.

Should we choose to subclass RelationTypeSupport, however, there is a protected
constructor that allows us to specify the name of the relation type. This constructor may
be called only from a subclass. Typically we will subclass RelationTypeSupport, and in
our subclass's constructor we will do two things:

1. Delegate the relation type name to the protected constructor of
RelationTypeSupport.

2. Create the necessary RoleInfo objects and add them to the parent class one at a
time, via its protected addRoleInfo() method.

Subclasses are also free to override the implementation of the RelationType interface
provided by RelationTypeSupport as necessary.

11.2.6 RelationTypeSupport

11.2.7 RelationSupport

 285

Like RelationTypeSupport, this class is provided by the relation service as a
convenience to agent developers so that relations can be created that are external to the
relation service. As with the RelationTypeSupport class, we subclass the
RelationSupport class, provide our own constructor, and override any methods we
deem necessary. For each internal relation defined using the createRelation() method of
the relation service implementation, an instance of this class is created and maintained by
the relation service. However, internal relations are not directly accessible once they are
created. Creating external relations gives us more flexibility in terms of how to create and
maintain the consistency of relations. The RelationSupport class implements an MBean
interface—RelationSupportMBean—that allows external relations to be controlled by a
management application. This gives external relations an advantage over internal
relations when it is necessary to monitor or control MBean relationships through a
management application.

RelationSupport provides two constructors, defined as:

public RelationSupport(String theRelId, ObjectName theRelServiceName,
 String theRelTypeName, RoleList theRoleList)
 throws InvalidRoleValueException, IllegalArgumentException {
 // . . .
}
public RelationSupport(String theRelId, ObjectName theRelServiceName,
 MBeanServer theRelServiceMBeanServer,
 String theRelTypeName, RoleList theRoleList)
 throws InvalidRoleValueException, IllegalArgumentException {
 // . . .
}

In creating a RelationSupport instance, we must provide (at minimum) the following
parameters:

A String that contains the name of the relation.

The object name of the relation service.

The name of the relation type that defines the relationship between the MBeans
performing the roles that make up this relation. The relation type can be either
external or internal.

A List of the Role objects that make up this relation.

theRelId

theRelServiceName

theRelTypeName

theRoleList

 286

As we mentioned earlier, the RelationService instance created by the agent must be
registered with the MBean server in order to be used. As we can see from the second
parameter to both RelationSupport constructors, the object name that is assigned by the
agent to the relation service is required in order to create an internal relation. In fact, not
only must the object name of the relation service be provided, but the RelationService
object must have been instantiated and registered with the MBean server prior to creating
an external relation. This is because of certain consistency checks that the relation service
makes about the external relation that is created—it cannot make these checks unless the
relation service is running (and registered). In addition, the RelationSupport object
maintains a reference to the MBean server with which it is registered and uses this
reference to indirectly invoke methods on the relation service MBean.

The second constructor is provided only as a convenience to those agents that have not
registered the external relation MBean with the MBean server, but will do so before the
relation is actually referenced. The third parameter is a reference to the MBean server
with which the external relation will be registered. This constructor must be used with
care. Under normal circumstances, the external relation is immediately registered with
the MBean server when it is created. The RelationSupport class implements the
MBeanRegistration interface, so it has access to a reference to the MBean server in
which it is registered (this reference is passed to the preRegister() method). Because the
specification does not dictate when the initial consistency checks are made, it is safer to
immediately register any external relations with the MBean server once they are
instantiated.

In the previous section, we looked at each of the relation service classes that are
necessary to create internal and external relations. In this section, we will look at source
code examples for creating internal relations, as these are the easiest type to create. All of
the source code examples in this section are taken from the relation package of the
sample application that we have used throughout this book.

Before we can create a relation, we have to create the MBean server and an instance of
the relation service MBean, and then register the relation service MBean with the MBean
server:

try {
 MBeanServer server = MBeanServerFactory.createMBeanServer();
 boolean purgeImmediate = true;
 RelationService rs = new RelationService(purgeImmediate);
 ObjectName rsObjName = new ObjectName("AgentServices:name=Relation");
 server.registerMBean(rs, rsObjName);
 // . . .
} catch (Exception e) {
 // . . .
}

Next, we describe the roles in the relation using one or more RoleInfo objects:

11.3 Using the Relation Service

 287

try {
 // . . .
 server.registerMBean(rs, rsObjName);
 RoleInfo[] roleInfo = new RoleInfo[2];
 roleInfo[0] = new RoleInfo(
 "Consumer", // role name
 "sample.standard.Consumer", // class name
 true, // role can be read
 true, // role can be modified
 1, // must be at least one
 2, // no more than two
 "Consumer Role Information" // description
);
 roleInfo[1] = new RoleInfo(
 "Supplier", // role name
 "sample.standard.Supplier", // class name
 true, // role can be read
 true, // role can be modified
 1, // must be at least one
 1, // no more than one
 "Supplier Role Information" // description
);
} catch (Exception e) {
 // . . .
}

In this case, the relation consists of two roles, Consumer and Supplier, performed by
two MBean classes, also called Consumer and Supplier (in the sample application, we
reuse the MBean classes from the standard package). There must be at least one and no
more than two Consumer MBeans in the relation. Only one Supplier MBean is allowed
in the relation. Once the roles have been described using RoleInfo objects, we are ready
to describe the relationship between these two roles by creating an internal relation type:

try {
 // . . .
 roleInfo[1] = new RoleInfo(
 "Supplier", // role name
 "sample.standard.Supplier", // class name
 true, // role can be read
 true, // role can be modified
 1, // must be at least one
 1, // no more than one
 "Supplier Role Information" // description
);
 rs.createRelationType(
 "ConsumerSupplierRelationType_Internal",
 roleInfo
);
 // . . .
} catch (Exception e) {
 // . . .
}

 288

Once the relation type has been created, we instantiate the role by creating a Role object
for each group of MBeans to participate in the relation:

try {
 // . . .
 rs.createRelationType(
 "ConsumerSupplierRelationType_Internal",
 roleInfo
);
 // Create and register a Consumer MBean
 ObjectName consumerObjName = createWorker("Consumer", 100);
 ArrayList consumerList = new ArrayList();
 consumerList.add(consumerObjName);
 Role consumerRole = new Role("Consumer", consumerList);
 // Create and register a Supplier MBean
 ObjectName supplierObjName = createWorker("Supplier", 100);
 ArrayList supplierList = new ArrayList();
 supplierList.add(supplierObjName);
 Role supplierRole = new Role("Supplier", supplierList);
 RoleList roles = new RoleList();
 roles.add(consumerRole);
 roles.add(supplierRole);
 // . . .
} catch (Exception e) {
 // . . .
}

In this example, we use the createWorker() method to create and register with the MBean
server an instance of each worker type. Once the Role objects are created, we create a
RoleList object to contain the Role objects. The final step is to use the relation service
to create an internal relation:

try {
 // . . .
 RoleList roles = new RoleList();
 roles.add(consumerRole);
 roles.add(supplierRole);
 rs.createRelation(
 "ConsumerSupplierRelation_Internal",
 "ConsumerSupplierRelationType_Internal",
 roles
);
} catch (Exception e) {
 // . . .
}

Example 11-1 shows a com

Example 11-1. Creating an internal relation

plete source listing of how to create the internal
Consumer/Supplier relation we've been examining.

try {
 MBeanServer server = MBeanServerFactory.createMBeanServer();

 289

 boolean purgeImmediate = true;
 RelationService rs = new RelationService(purgeImmediate);
 ObjectName rsObjName = new ObjectName("AgentServices:name=Relation");
 server.registerMBean(rs, rsObjName);
 RoleInfo[] roleInfo = new RoleInfo[2];
 roleInfo[0] = new RoleInfo(
 "Consumer", // role name
 "sample.standard.Consumer", // class name
 true, // role can be read
 true, // role can be modified
 1, // must be at least one
 2, // no more than two
 "Consumer Role Information" // description
);
 roleInfo[1] = new RoleInfo(
 "Supplier", // role name
 "sample.standard.Supplier", // class name
 true, // role can be read
 true, // role can be modified
 1, // must be at least one
 1, // no more than one
 "Supplier Role Information" // description
);
 rs.createRelationType(
 "ConsumerSupplierRelationType_Internal",
 roleInfo
);
 // Create and register a Consumer MBean
 ObjectName consumerObjName = createWorker("Consumer", 100);
 ArrayList consumerList = new ArrayList();
 consumerList.add(consumerObjName);
 Role consumerRole = new Role("Consumer", consumerList);
 // Create and register a Supplier MBean
 ObjectName supplierObjName = createWorker("Supplier", 100);
 ArrayList supplierList = new ArrayList();
 supplierList.add(supplierObjName);
 Role supplierRole = new Role("Supplier", supplierList);
 RoleList roles = new RoleList();
 roles.add(consumerRole);
 roles.add(supplierRole);
 rs.createRelation(
 "ConsumerSupplierRelation_Internal",
 "ConsumerSupplierRelationType_Internal",
 roles
);
} catch (Exception e) {
 // . . .
}

In the previous section, we worked through a complete example of how to create an
internal relation using an internal relation type. In this section, we will look at the same
example, only we will see how to create the relation as an external relation using an
external relation type. As we mentioned, the relation service provides a number of

11.4 Using the Relation Service Support Classes

 290

 291

RelationTypeSupport

support classes that can be used for this purpose. At the risk of being a bit redundant, we
will repeat the flow of the previous section as closely as possible so you can compare the
internal and external relations and relation types.

Before we can create a relation, we have to create the MBean server and an instance of
the relation service MBean, and then register the relation MBean with the MBean server:

try {
 MBeanServer server = MBeanServerFactory.createMBeanServer();
 boolean purgeImmediate = true;
 RelationService rs = new RelationService(purgeImmediate);
 ObjectName rsObjName = new ObjectName("AgentServices:name=Relation");
 server.registerMBean(rs, rsObjName);
 // . . .
} catch (Exception e) {
 // . . .
}

As we saw with an internal relation type, we next describe the roles in the relation using
one or more RoleInfo objects. However, to create an external relation type, we subclass
the RelationTypeSupport class and add code to the subclass constructor to create the
RoleInfo objects:

public class ConsumerSupplierRelationType extends RelationTypeSupport {
 public ConsumerSupplierRelationType () {
 super("ConsumerSupplierRelationType_External");
 try {
 addRoleInfo(new RoleInfo("Consumer",
 "sample.standard.Consumer",
 true,
 false,
 1,
 2,
 "Consumer Role Information"));
 addRoleInfo(new RoleInfo("Supplier",
 "sample.standard.Supplier",
 true,
 false,
 1,
 1,
 "Supplier Role Information"));
 } catch (Exception e) {
 throw new RuntimeException(e.getMessage());
 }
 }
}

The emphasized lines point out some of the things we have to do in preparation for
creating an external relation type. First, we subclass RelationTypeSupport with a class
called ConsumerSupplierRelationType. In the subclass constructor, we delegate to one
of the constructors of , passing the name of the relation type.

 292

 1, // no more than two
 "Supplier Role Information" // description

Then we call the addRoleInfo() method, passing in a new RoleInfo instance for each of
the roles in the relation type.

This time, instead of using the relation service to create the relation type, we will do it
explicitly by instantiating the ConsumerSupplierRelationType class. Once we
instantiate the class representing the external relation type, we add the relation type to the
relation service via the addRelationType() method:

try {
 MBeanServer server = MBeanServerFactory.createMBeanServer();
 boolean purgeImmediate = true;
 RelationService rs = new RelationService(purgeImmediate);
 ObjectName rsObjName = new ObjectName("AgentServices:name=Relation");
 server.registerMBean(rs, rsObjName);
 ConsumerSupplierRelationType rt = new ConsumerSupplierRelationType();
 rs.addRelationType(rt);
 // . . .
} catch (Exception e) {
 // . . .
}

Before we continue, I should point out that you can use RelationTypeSupport on its
own (i.e., without subclassing it). You may have noticed in the example above that we
don't do much with the relation type subclass, other than delegate to the parent.
Subclassing RelationTypeSupport is a way to encapsulate role information inside a
class, and it offers us a way to separate concerns in the design of our agents. However, if
this separation of concerns is not strictly necessary, we can still create an external relation
type without using a subclass:

try {
 MBeanServer server = MBeanServerFactory.createMBeanServer();
 boolean purgeImmediate = true;
 RelationService rs = new RelationService(purgeImmediate);
 ObjectName rsObjName = new ObjectName("AgentServices:name=Relation");
 server.registerMBean(rs, rsObjName);
 RoleInfo[] roleInfo = new RoleInfo[2];
 roleInfo[0] = new RoleInfo(
 Consumer.ROLE, // role name
 "sample.standard.Consumer", // class name
 true, // role can be read
 true, // role can be modified
 1, // must be at least one
 2, // no more than two
 "Consumer Role Information" // description
);
 roleInfo[1] = new RoleInfo(
 Supplier.ROLE, // role name
 "sample.standard.Supplier", // class name
 true, // role can be read
 true, // role can be modified
 1, // must be at least one

 293

 // MBean interface

);
 RelationTypeSupport rt = new RelationTypeSupport(
 "ConsumerSupplierRelationType_External",
 roleInfo
);
 rs.addRelationType(rt);
 // . . .
} catch (Exception e) {
 // . . .
}

Once we create an array of the necessary RoleInfo objects, we pass the array to the
second constructor of RelationTypeSupport. Then we simply call the addRelationType()
method of the relation service to add the standalone external relation type.

Once the relation type has been created, we instantiate the role by creating a Role object
for each group of MBeans to participate in the relation:

try {
 // . . .
 rs.addRelationType(rts);
 // Create and register a Consumer MBean
 ObjectName consumerObjName = createWorker("Consumer", 100);
 ArrayList consumerList = new ArrayList();
 consumerList.add(consumerObjName);
 Role consumerRole = new Role("Consumer", consumerList);
 // Create and register a Supplier MBean
 ObjectName supplierObjName = createWorker("Supplier", 100);
 ArrayList supplierList = new ArrayList();
 supplierList.add(supplierObjName);
 Role supplierRole = new Role("Supplier", supplierList);
 RoleList roles = new RoleList();
 roles.add(consumerRole);
 roles.add(supplierRole);
 // . . .
} catch (Exception e) {
 // . . .
}

Regardless of whether the relation type is internal or external, we must still create Role
objects. The final steps in creating the external relation are to instantiate and use the class
representing the external relation:

public class ConsumerSupplierRelation extends RelationSupport
 implements ConsumerSupplierRelationMBean {

 public static final String NAME = "ConsumerSupplierRelation_External";
 public static final String OBJECT_NAME = "UserDomain:name=" + NAME;

 private String _relationTypeName;
 private String _relationServiceObjName;
 private List _roleList;

 294

 rs.addRelation(relationObjName);
} catch (Exception e) {

 public String getRelationTypeName () {
 return _relationTypeName;
 }
 public String getRelationServiceObjName () {
 return _relationServiceObjName;
 }
 public List retrieveRoleList () {
 return _roleList;
 }
 public String getRelationId () {
 return NAME;
 }
 public ConsumerSupplierRelation (ObjectName relationServiceObjName,
 String relationTypeName,
 RoleList roleList)
 throws Exception {
 super(NAME, relationServiceObjName, relationTypeName, roleList);
 _relationTypeName = relationTypeName;
 _relationServiceObjName = relationServiceObjName.toString();
 _roleList = new ArrayList(roleList.size());
 _roleList.addAll(roleList);
 }
}

The external relation we are going to create is ConsumerSupplierRelation, which is a
subclass of RelationSupport. One immediately noticeable difference between an
external relation type and an external relation is that an external relation is an MBean.
Notice the MBean interface implemented by ConsumerSupplerRelation:

public interface ConsumerSupplierRelationMBean
 extends RelationSupportMBean {
 String getRelationTypeName ();
 String getRelationServiceObjName ();
 List retrieveRoleList ();
}

Once our external relation class has been instantiated, it must be registered with the
MBean server and added to the relation service:

try {
 // . . .
 Role supplierRole = new Role("Supplier", supplierList);
 RoleList roles = new RoleList();
 roles.add(consumerRole);
 roles.add(supplierRole);
 ConsumerSupplierRelation relation = new ConsumerSupplierRelation(
 rsObjName,
 rt.getRelationTypeName(),
 roles);
 ObjectName relationObjName = new
 ObjectName("ConsumerSupplierRelation_External");
 server.registerMBean(relation, relationObjName);

 // . . .
}

When we create an external relation by subclassing RelationSupport, it is very
important to remember that the MBean interface of the subclass must extend
RelationSupportMBean. Otherwise, when we attempt to add the relation, the relation
service will throw an exception.

Example 11-2 shows a com

Example 11-2. Creating an external relation

11.5 Modifying a Role

plete source listing of how to create the external
Consumer/Supplier relation we've been studying.

try {
 MBeanServer server = MBeanServerFactory.createMBeanServer();
 boolean purgeImmediate = true;
 RelationService rs = new RelationService(purgeImmediate);
 ObjectName rsObjName = new ObjectName("AgentServices:name=Relation");
 server.registerMBean(rs, rsObjName);
 ConsumerSupplierRelationType rt = new ConsumerSupplierRelationType();
 rs.addRelationType(rt);
 // Create and register a Consumer MBean
 ObjectName consumerObjName = createWorker("Consumer", 100);
 ArrayList consumerList = new ArrayList();
 consumerList.add(consumerObjName);
 Role consumerRole = new Role("Consumer", consumerList);
 // Create and register a Supplier MBean
 ObjectName supplierObjName = createWorker("Supplier", 100);
 ArrayList supplierList = new ArrayList();
 supplierList.add(supplierObjName);
 Role supplierRole = new Role("Supplier", supplierList);
 RoleList roles = new RoleList();
 roles.add(consumerRole);
 roles.add(supplierRole);
 ConsumerSupplierRelation relation = new ConsumerSupplierRelation(
 rsObjName,
 rt.getRelationTypeName(),
 roles);
 ObjectName relationObjName = new
 ObjectName("ConsumerSupplierRelation_External");
 server.registerMBean(relation, relationObjName);
 rs.addRelation(relationObjName);
} catch (Exception e) {
 // . . .
}

Suppose that we want to add another Consumer MBean thread into the system. The
Controller class provides a method, createWorker(), that allows us to do so through a
management application. We specify the worker's role name and its work factor, and
createWorker() creates the appropriate worker MBean and starts its thread of execution.

 295

However, in order for the relation service to perform a consistency check on the
relationship between the Consumer and Supplier MBeans, we must modify the
Consumer role. Moreover, we must do so through the methods provided to us by the
relation service.

Simply creating an MBean of a class type that has been specified to
be part of a role in a relation has no effect on the relation service. In
other words, if we instantiate a new Consumer worker but fail to
modify the appropriate Role object, the relation service will be
unaware of the new MBean and will not perform any consistency
checks on the relation!

In the agent code that creates new worker MBeans and registers them with the MBean
server, we must also modify the appropriate Role object within the Consumer/Supplier
relation that we created. If creating the new worker MBean makes the role no longer be
consistent, the relation service will throw an exception. We must be prepared to catch the
exception and take any necessary steps to remove the newly created MBean from the
system. Let's look at an example.

Suppose we create a new Consumer MBean, using a browser and the HTML Adaptor
server (discussed in Chapter 6), as shown in Figure 11-1.

Figure 11-1. Invoking the createWorker() method to create a new Consumer thread with a
work factor of 100

 296

When we click the createWorker button, the createWorker() method of the Controller
(which is the JMX agent for the sample application) is invoked. To ensure that creating
the new Consumer worker thread does not violate the consistency of the relation between
Consumer and Supplier, createWorker() must also modify the Consumer Role object so
that the relation service will do a consistency check. Example 11-3 shows the code for

Example 11-3. Source code for createWorker()

createWorker(), which demonstrates how to modify the Role object and catch any
exceptions that result from an inconsistent relation.

public void createWorker (String role, int workFactor) {
 int index = getNumberOfWorkers(role);
 ObjectName objName = createNewWorker(role, workFactor, index + 1);
 try {
 // _relationService is a reference to the relation service MBean
 List theRoleMBeans =
 _relationService.getRole("ConsumerSupplierRelation_Internal",
role);
 List theNewRoleMBeans = new ArrayList();
 theNewRoleMBeans.addAll(theRoleMBeans);
 theNewRoleMBeans.add(objName);
 _relationService.setRole(CONSUMERSUPPLIER_RELATION_NAME,
 new Role(role, theNewRoleMBeans));
 } catch (Exception e) {
 trace("Controller.createWorker(): ERROR: " + e.getMessage());
 trace(e);
 trace("Controller.createWorker(): the MBean \'" + objName +
 "\' will be unregistered and its stop() method invoked.");
 try {
 // _server is a reference to the MBean server
 _server.invoke(objName, "stop", new Object[0], new String[0]);
 _server.unregisterMBean(objName);
 } catch (Exception e2) {
 trace("Controller.createWorker(): ERROR: " + e2.getMessage());
 trace(e2);
 }
 throw new RuntimeException(e.getMessage());
 }
}

The first thing this method does is to delegate the creation and registration of the worker
MBean. Once the MBean has been created and registered with the MBean server, it is
added to the list of MBeans acting in that role. The first step in accomplishing this is to
call the relation service method getRole(). A copy of the list is made, and the newly
created MBean is added to the new list. This new list is used to create a new Role object,
which is then used to modify the role within the relation service, via the relation service
method setRole(). We could have simply added the new MBean to the list retrieved from
the call to getRole(), as this would indeed have added the MBean to the role. However,
no consistency check would have been made. It is only through the call to setRole() that
the relation service will perform the necessary consistency check on the role.

 297

Recall from earlier in this chapter that we created the Consumer RoleInfo object with a
maximum degree of 2, which means that we can have two Consumer MBeans acting in
that role within the Consumer/Supplier relation. As Figure 11-3 shows, the call to

Figure 11-2. Successful invocation of the createWorker() method

Figure
11-3.

Figure 11-3. When we attempt to add a third Consumer MBean to the relation, the relation
service throws an exception

Example 11-3 invokes the stop()
method of the third Consumer MBean and removes it from the MBean server by calling
unregisterMBean().

createWorker() succeeds.

However, if we invoke this method again, resulting in a third Consumer MBean, an
InvalidRoleValueException will be thrown by the relation service, as shown in

The string representation of the exception looks like this:

javax.management.relation.InvalidRoleValueException: Consumer has a
number of MBean
references greater than the expected maximum degree.

Upon receiving the exception, the code shown in

 298

 299

This book was converted to FrameMaker 5.5.6 with a format conversion tool created by

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to
technical topics, breathing personality and life into potentially dry subjects.

The animal on the cover of Java Management Extensions is an octopus, an eight-armed
cephalopod mollusk of the order Octopoda. Octopi are found worldwide in tropical and
warm temperate waters. There are many species of octopus, ranging from the massive
Giant Pacific octopus, which scientists believe can reach up to 30 feet in length, to the
miniscule Californian octopus, which grows to be only one inch long. The common
octopus is about 2-3 feet long. The octopus's brain is the most complex of the
invertebrates', with long- and short-term memories, providing it with the ability to solve
problems by trial-and-error methods -- a trick that comes in handy when evading or
robbing fishermen's traps. Octopi are completely deaf but they have complex eyes, with
vision approximately as acute as a human's. The hundreds of suckers that line each of
their tentacles are very sensitive and allow octopi to hold onto almost anything. If an
octopus loses a tentacle, it soon grows another in its place.

Octopi feed primarily on crustaceans and mollusks, often luring their prey by wiggling
the tip of a tentacle like a worm. Once it catches its victim, the octopus bites it, injecting
it with a poisonous venom and digestive enzyme. It then sucks out the flesh and discards
the shell (an easy way to identify an octopus's den is by the pile of shells outside its
entrance). One of the octopus's defense mechanisms is the release of a purple-black ink
cloud as a smokescreen or decoy. Octopi can also change color for camouflage (as well
as to reflect mood change) and dart away quickly by jetting water through their siphons.
These abilities keep the octopus from being an easy target for predators, even though they
have no hard exterior shell. This lack of solid body matter also allows octopi to squeeze
into very small spaces.

The male octopus usually dies soon after mating; the female, who usually foregoes eating
for several weeks while caring for the large number of eggs she lays, often dies of
starvation soon after they hatch. Only a few young out of what may be more than 200,000
eggs survive to adulthood. The lifespan of an octopus is short, ranging from 6 months to
3 years, depending on species and water temperature.

Rachel Wheeler was the production editor and copyeditor for Java Management
Extensions. Sarah Sherman was the proofreader, Linley Dolby provided quality control,
and Phil Dangler provided production assistance. Tom Dinse wrote the index.

Hanna Dyer designed the cover of this book, based on a series design by Edie Freedman.
The cover image is a 19th-century engraving from Old Fashioned Animals. Emma Colby
produced the cover layout with QuarkXPress 4.1 using Adobe's ITC Garamond font.

Melanie Wang designed the interior layout, based on a series design by David Futato.

 300

Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML
technologies. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont's TheSans Mono Condensed. The illustrations
that appear in the book were produced by Robert Romano and Jessamyn Read using
Macromedia FreeHand 9 and Adobe Photoshop 6. The tip and warning icons were drawn
by Christopher Bing. This colophon was written by Rachel Wheeler.

	Table of Content
	Preface
	Audience
	Organization
	Conventions Used in This Book
	Comments and Questions
	Source Code Availability
	Acknowledgments

	Chapter 1. Java Management Extensions Concepts
	1.1 Introducing JMX
	1.2 JMX Architecture
	
	Figure 1-1. The JMX architecture (note: protocol adaptors and connectors are not currently standardized)

	1.2.1 The Instrumentation Level
	1.2.1.1 What is an MBean?
	Example 1-1. Attributes of a candidate resource
	1.2.1.2 Standard MBeans
	Example 1-2. The GenericResource managed bean
	1.2.1.3 Dynamic MBeans
	Example 1-3. The DynamicMBean interface
	Figure 1-2. UML diagram showing the relationships between the dynamic MBean metadata classes
	1.2.1.4 Model MBeans
	Example 1-4. The ModelMBean interface
	Figure 1-3. Model MBean metadata classes
	Figure 1-4. UML diagram showing the relationships between the model MBean metadata classes
	1.2.1.5 Open MBeans
	Figure 1-5. UML diagram showing the inheritance relationships between the open MBean metadata interfaces, their support classes, and the dynamic MBean metadata classes
	Figure 1-6. UML diagram showing the relationships between the open MBean metadata classes
	1.2.1.6 JMX notifications
	Figure 1-7. UML diagram showing the relationships between the entities that participate in the JMX notification model

	1.2.2 The Agent Level
	1.2.2.1 The MBean server
	1.2.2.2 The M-Let service
	1.2.2.3 Monitoring services
	1.2.2.4 The timer service
	1.2.2.5 The relation service

	1.2.3 The Distributed Services Level
	1.2.3.1 Protocol adaptors and connectors
	1.2.3.2 JSR 160
	Figure 1-8. The remote MBean server concept

	1.3 The Sample Producer/Consumer Application
	1.3.1 Design
	Figure 1-9. UML diagram showing the "value-added producer/consumer" pattern
	Figure 1-10. UML diagram showing the implementation of the pattern in the form of the application

	1.3.2 Source Code
	1.3.3 Building and Running the Application
	Example 1-5. Selected portions of the Ant build file for the application, build.xml
	Example 1-6. standard.bat, the batch file that builds the application as standard MBeans
	Figure 1-11. Running the build/run batch file for standard MBeans

	1.3.4 Monitoring and Managing the Application
	Figure 1-12. The management view of the application in Internet Explorer
	Figure 1-13. The management view of the Queue object
	Figure 1-14. The management view of Controller showing the createWorker() operation
	Figure 1-15. The screen we see once createWorker() has successfully been invoked
	Figure 1-16. The management view of the Queue after starting a second Consumer thread

	Chapter 2. Standard MBeans
	2.1 What Is a Management Interface?
	
	Table?2-1. Attributes exposed for management on the Queue class
	Table?2-2. Operations exposed for management on the Queue class

	2.2 How Do Standard MBeans Work?
	2.2.1 Describing the Management Interface
	2.2.1.1 Pattern #1: Defining, naming, and implementing the MBean interface
	2.2.1.2 Pattern #2: Provide at least one public constructor
	2.2.1.3 Pattern #3: Attributes and how to name their getters and setters
	Example 2-1. The QueueMBean interface
	2.2.1.4 A word about introspection

	2.2.2 Standard MBean Inheritance Patterns
	Example 2-2. The BasicMBean interface
	2.2.2.1 Pattern #1: Basic inheritance
	Figure 2-1. UML notation for pattern #1
	2.2.2.2 Pattern #2: Simple inheritance
	Figure 2-2. UML notation for pattern #2
	2.2.2.3 Pattern #3: Simple inheritance with child class implementing an MBean interface
	Example 2-3. WorkerMBean management interface definition
	Figure 2-3. UML notation for pattern #3
	2.2.2.4 Pattern #4: Simple inheritance with MBean inheritance
	Figure 2-4. UML notation for pattern #4
	Figure 2-5. UML notation for a more complicated derivative of pattern #4
	2.2.2.5 Pattern #5: Compiler-enforced management interface inheritance
	Figure 2-6. UML notation for pattern #5

	2.2.3 Common Mistakes Not Caught by Introspection
	2.2.3.1 Mistake #1: MBean interface not given public visibility
	2.2.3.2 Mistake #2: Wrong return value type
	2.2.3.3 Mistake #3: Wrong number of parameters

	2.2.4 Implementing the MBean Interface
	Figure 2-7. UML notation for the application classes used in this chapter
	Example 2-4. Full source listing for Basic class

	2.2.5 Throwing Exceptions from Your MBeans
	2.2.6 The Driver Program: Controller.main()
	2.2.6.1 The ObjectName class
	2.2.6.2 Registering the MBean with the MBean server

	2.2.7 The HTMLAdaptorServer Class
	Figure 2-8. The Adaptor in action
	Figure 2-9. Attributes exposed for management on the HTMLAdaptorServer; scroll down to view the operations
	Figure 2-10. Operations exposed for management on the HTMLAdaptorServer

	2.3 Downloading and Installing the JMX Reference Implementation

	Chapter 3. Dynamic MBeans
	3.1 Why Use Dynamic MBeans?
	3.2 How Do Dynamic MBeans Work?
	
	Example 3-1. The DynamicMBean interface

	3.2.1 Describing the Management Interface
	Figure 3-1. UML diagram showing the multiplicity between MBeanInfo and the other metadata classes
	3.2.1.1 MBeanAttributeInfo
	Table?3-1. type parameter values for attributes whose values are of a fundamental type

	Using TYPE for Fundamental Types
	
	
	Table?3-2. Class name strings for arrays of fundamental types
	3.2.1.2 MBeanParameterInfo
	3.2.1.3 MBeanConstructorInfo
	Example 3-2. Exposing a specific constructor
	3.2.1.4 MBeanOperationInfo
	3.2.1.5 MBeanNotificationInfo
	3.2.1.6 MBeanInfo
	Example 3-3. Creating an instance of MBeanInfo

	3.2.2 Implementing the DynamicMBean Interface
	3.2.2.1 Attribute
	3.2.2.2 AttributeList
	3.2.2.3 getAttribute()
	3.2.2.4 setAttribute()
	3.2.2.5 getAttributes()
	3.2.2.6 setAttributes()
	3.2.2.7 invoke()

	3.3 Dynamic MBean Inheritance Patterns
	
	Figure 3-2. UML diagram showing a possible inheritance scenario for the sample application
	Figure 3-3. Another possible inheritance scenario, shown in UML notation

	3.3.1 Explicit Superclass Exposure
	Example 3-4. Creating metadata classes to expose attributes and operations from Queue's parent class, Basic, through explicit superclass exposure
	3.3.1.1 getAttribute()
	3.3.1.2 setAttribute()
	3.3.1.3 invoke()

	3.3.2 Superclass Delegation
	Example 3-5. Creating metadata classes to expose attributes and operations from Queue's parent class, Basic, through superclass delegation
	3.3.2.1 getAttribute()
	3.3.2.2 setAttribute()
	3.3.2.3 invoke()

	3.3.3 Mixing It Up

	Chapter 4. Model MBeans
	4.1 Why Use Model MBeans?
	4.2 How Do Model MBeans Work?
	4.2.1 Model MBean Descriptors
	Example 4-1. The Descriptor interface
	4.2.1.1 class
	4.2.1.2 currencyTimeLimit
	4.2.1.3 default
	4.2.1.4 descriptorType
	4.2.1.5 export
	4.2.1.6 getMethod
	4.2.1.7 log
	4.2.1.8 logFile
	4.2.1.9 name
	4.2.1.10 persistPeriod
	4.2.1.11 persistPolicy
	4.2.1.12 role
	4.2.1.13 setMethod
	4.2.1.14 severity
	Table?4-1. Predefined severity values and meanings
	4.2.1.15 value
	4.2.1.16 visibility
	4.2.1.17 Other fields

	4.2.2 Describing the Management Interface
	Figure 4-1. UML diagram showing inheritance of model MBean metadata classes from dynamic MBean metadata classes
	Figure 4-2. UML diagram showing the relationships between ModelMBeanInfoSupport and the other model MBean metadata classes
	4.2.2.1 ModelMBeanAttributeInfo
	Example 4-2. The significant constructors of ModelMBeanAttributeInfo
	4.2.2.2 ModelMBeanConstructorInfo
	Example 4-3. The significant constructors of ModelMBeanConstructorInfo
	4.2.2.3 ModelMBeanOperationInfo
	Example 4-4. The significant constructors of ModelMBeanOperationInfo
	4.2.2.4 ModelMBeanNotificationInfo
	Example 4-5. The significant constructors of ModelMBeanNotificationInfo
	4.2.2.5 ModelMBeanInfo
	Example 4-6. The significant constructors of ModelMBeanInfoSupport
	Table?4-2. Fields and corresponding values for a model MBean default descriptor
	4.2.2.6 DescriptorAccess

	4.2.3 RequiredModelMBean
	4.2.3.1 ModelMBean
	4.2.3.2 DynamicMBean
	4.2.3.3 PersistentMBean

	4.3 Instrumenting Resources as Model MBeans

	Chapter 5. Open MBeans
	5.1 Open MBean Types
	5.1.1 Basic Types
	5.1.1.1 OpenType
	5.1.1.2 SimpleType
	5.1.1.3 Other basic types

	5.1.2 Complex Data
	5.1.2.1 CompositeType
	Example 5-1. Describing a complex data type using CompositeType
	5.1.2.2 CompositeData
	5.1.2.3 CompositeDataSupport
	Table?5-1. Attribute values for new CompositeDataSupport instance
	Example 5-2. Creating a CompositeData object using CompositeDataSupport
	5.1.2.4 TabularType
	Example 5-3. Creating a TabularType object
	5.1.2.5 TabularData
	Table?5-2. Rows of tabular data for our example
	5.1.2.6 TabularDataSupport

	5.2 Open MBean Metadata Classes
	
	Figure 5-1. Relationships between the open MBean metadata classes
	Figure 5-2. Relationships between OpenMBeanInfoSupport and the other open MBean metadata interfaces

	5.2.1 OpenMBeanParameterInfo
	5.2.2 OpenMBeanParameterInfoSupport
	5.2.3 OpenMBeanAttributeInfo
	5.2.4 OpenMBeanAttributeInfoSupport
	5.2.5 OpenMBeanConstructorInfo
	5.2.6 OpenMBeanConstructorInfoSupport
	5.2.7 OpenMBeanOperationInfo
	5.2.8 OpenMBeanOperationInfoSupport
	5.2.9 MBeanNotificationInfo
	5.2.10 OpenMBeanInfo
	5.2.11 OpenMBeanInfoSupport

	Chapter 6. The MBean Server
	6.1 What Is the MBean Server?
	6.2 Obtaining a Reference to the MBean Server
	
	Example 6-1. The static methods of MBeanServerFactory

	6.2.1 Creating the MBean Server
	Figure 6-1. The management view of the MBean server when the no-argument version of createMBeanServer() is used
	Figure 6-2. The management view of the MBean server when a domain name is supplied to createMBeanServer()

	6.2.2 Finding the MBean Server
	6.2.3 Releasing a Reference to the MBeanServer

	6.3 The MBeanServer Interface
	
	Example 6-2. The MBeanServer interface

	6.3.1 Instantiation and Registration
	6.3.1.1 Instantiating an MBean
	6.3.1.2 Registering an MBean
	6.3.1.3 Combining the instantiation and registration of an MBean
	6.3.1.4 Removing a registered MBean from the MBean server

	6.3.2 Indirect MBean Manipulation
	6.3.3 Notification
	6.3.4 Query
	6.3.5 Utility

	6.4 Controlling MBean Registration
	6.5 MBeanServerDelegate
	6.5.1 MBean Server Information
	6.5.2 MBean Server Notifications

	Chapter 7. JMX Notifications
	7.1 The JMX Notification Model
	
	Figure 7-1. UML diagram showing the relationships between the various components of the JMX notification model

	7.2 JMX Notification Classes and Interfaces
	7.2.1 Notification
	7.2.2 NotificationFilter
	7.2.3 The Handback Object
	7.2.4 NotificationBroadcaster
	Example 7-1. A simple implementation of addNotificationListener()

	7.2.5 NotificationListener

	Chapter 8. Dynamic Loading
	8.1 Overview
	8.1.1 The M-Let Service
	8.1.2 The M-Let File
	8.1.2.1 MLET
	8.1.2.2 CODE
	8.1.2.3 OBJECT
	8.1.2.4 ARCHIVE
	8.1.2.5 CODEBASE (optional)
	8.1.2.6 NAME (optional)
	8.1.2.7 VERSION (optional)
	8.1.2.8 ARG
	8.1.2.9 Bringing it all together

	8.1.3 Loading MBeans Without an M-Let File

	8.2 How Does Dynamic Loading Work?
	8.2.1 getMBeansFromURL()

	Chapter 9. The Monitoring Services
	
	
	Figure 9-1. UML diagram showing the classes that make up the monitoring services

	9.1 The MonitorNotification Class
	9.1.1 Error Conditions
	9.1.2 Counter Monitor Notification Types
	9.1.3 Gauge Monitor Notification Types
	9.1.4 String Monitor Notification Types

	9.2 Counter Monitors
	
	Example 9-1. Typical listener implementation

	9.3 Gauge Monitors
	9.4 String Monitors
	9.5 Other Issues

	Chapter 10. The Timer Service
	
	
	Figure 10-1. UML diagram showing the relationships between the timer service classes

	10.1 The Timer Class
	
	Example 10-1. The TimerMBean interface

	10.2 Using the Timer Service
	
	Example 10-2. Partial source listing of the Scheduler class
	Example 10-3. The scheduler.properties file

	10.2.1 Handling the Controller Start Notification
	10.2.2 Handling the Message Queue Flush Notification

	Chapter 11. The Relation Service
	11.1 Introduction
	11.2 The Basic Relation Service Classes
	11.2.1 RoleInfo
	Table?11-1. Default values for RoleInfo attributes

	11.2.2 RelationType
	11.2.3 Role
	11.2.4 RoleList
	11.2.5 RelationService
	11.2.6 RelationTypeSupport
	11.2.7 RelationSupport

	11.3 Using the Relation Service
	
	Example 11-1. Creating an internal relation

	11.4 Using the Relation Service Support Classes
	
	Example 11-2. Creating an external relation

	11.5 Modifying a Role
	
	Figure 11-1. Invoking the createWorker() method to create a new Consumer thread with a work factor of 100
	Example 11-3. Source code for createWorker()
	Figure 11-2. Successful invocation of the createWorker() method
	Figure 11-3. When we attempt to add a third Consumer MBean to the relation, the relation service throws an exception

	Colophon

