
WH_Java2.book Page i Monday, March 4, 2002 9:59 AM
Java 2 Micro Edition

WH_Java2.book Page ii Monday, March 4, 2002 9:59 AM

WH_Java2.book Page iii Monday, March 4, 2002 9:59 AM
Java 2
Micro Edition

Java in Small Things

JAMES WHITE

DAVID HEMPHILL

M A N N I N G

Greenwich
(74° w. long.)

WH_Java2.book Page iv Monday, March 4, 2002 9:59 AM
For online information and ordering of this and other Manning books,
go to www.manning.com. The publisher offers discounts on this book
when ordered in quantity. For more information, please contact:

Special Sales Department
Manning Publications Co.
209 Bruce Park Avenue Fax: (203) 661-9018
Greenwich, CT 06830 email: orders@manning.com

©2002 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.

Manning Publications Co. Copyeditor: Lois Patterson
209 Bruce Park Avenue Typesetter: Martine Maguire-Weltecke
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-930110-33-2
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – VHG – 06 05 04 03 02

WH_Java2.book Page v Monday, March 4, 2002 9:59 AM
To my wife, Kelly
J.W.

To my wife, Amy Votava and my daughter, Olivia Hemphill
D.H.

WH_Java2.book Page vi Monday, March 4, 2002 9:59 AM

WH_Java2.book Page vii Monday, March 4, 2002 9:59 AM
contents
preface xv

acknowledgments xviii

about this book xx

about the cover illustration xxiii

Part 1 Developing with J2ME 1

1 Introduction 3
1.1 So what is J2ME anyway? 3

Where is J2ME being applied? 4

1.2 What is a small device? 5
The vast consumer space 5
Consumer electronic and embedded devices 6

1.3 J2ME’s role in wireless and mobile applications 7
Is J2ME mobile? 7 ✦ Is J2ME wireless? 8
Wireless vs. mobile 9

1.4 The Java 2 edition trilogy 9
J2SE 10 ✦ J2EE 10
J2ME 11 ✦ Why we need J2ME 11

1.5 The case for Java 12
Is Java right for small devices? 12 ✦ Java’s beneficial features 13

1.6 Origins of J2ME 15
Java’s origins 15 ✦ The return of Java in small devices 16

1.7 The J2ME community 16
J2ME’s guiding light, the Java Community Process 16

1.8 J2ME products and alternatives 17

1.9 Summary 18
vii

WH_Java2.book Page viii Monday, March 4, 2002 9:59 AM
2 J2ME architecture 19
2.1 Goals of the J2ME architecture 19

Support for multiple devices 20
Support for device-specific functionality 20
Maintaining a common architecture 21

2.2 Accommodating opposing needs 21
Configurations and profiles 22 ✦ A high-level view of J2ME 23

2.3 Configurations: a closer look 24
Connected Limited Device Configuration (CLDC) 25
The Kilobyte Virtual Machine (KVM) 27
Connected Device Configuration (CDC) 28
C-Virtual Machine (CVM) 29

2.4 Profiles: a closer look 29
Two types of profiles 30 ✦ Profiles are modular 30
J2ME profiles extend J2ME configurations 31

2.5 Choosing a J2ME profile 31
Mobile Information Device Profile (MIDP) 32
PDA Profile (PDAP) 32 ✦ Foundation Profile 32
Personal Profile 32 ✦ RMI Profile 33 ✦ Personal Basis Profile 33
Multimedia Profile 33 ✦ Gaming Profile 34
Wireless Telephony Communications API (WTCA) 34 ✦ KJava 34

2.6 Write once, run anywhere issues 35
Varied device needs 35 ✦ J2ME architecture increases WORA 36

2.7 Runtime environment 36

2.8 Designing J2ME applications 36

2.9 Summary 38

3 Developing a J2ME application 39
3.1 Investment quote application requirements 40

The investment quote application customer 40
Requirements analysis 41

3.2 Designing the investment quote application 42
Application control 42 ✦ User interface design 43
Persistent storage 45 ✦ Networking and input/output 46

3.3 Developing J2ME applications 48
Obtaining the development environment 48
Creating the applications 49 ✦ Runtime environment 49

3.4 Investment quote application tour guide 50

3.5 Summary 51
viii CONTENTS

WH_Java2.book Page ix Monday, March 4, 2002 9:59 AM
Part 2 Developing for cellular phones and pagers 53

4 A simple MIDP application 55
4.1 Questions about the MIDP development environment 56

Can I do this without an actual device? 56
What device do I start with? 56
Do I have to use the command line tools? 56
The example: what are we going to do? 56

4.2 Developing MIDP applications 56
Getting started 57 ✦ What is a MIDlet? 58
Compiling the application 60 ✦ Preverifying the application 61
Running the application 61 ✦ Troubleshooting 62
JARing MIDlets 63 ✦ Developing MIDlet suites 64
Running MIDlet suites from a web server 67
Installing MIDlet suites locally 67

4.3 Summary 68

5 MIDP user interface 69
5.1 MIDP application control 70

5.2 The investment quote application control in MIDP 71

5.3 Two types of MIDP user interface and event handling 75
High-level API 76 ✦ Low-level API 76

5.4 The MIDP user interface API 77
MIDP display control 77 ✦ MIDP high-level user interface API 78
MIDP low-level user interface API 87
The investment quote application’s user interface in MIDP 91

5.5 Handling user interactions in MIDP 105
High-level event handling 107 ✦ Low-level event handling 110
Handling the events of the Investment Quote Application 114

5.6 MIDlets on other devices 130

5.7 Summary 133

6 MIDP data storage 134
6.1 JDBC parallel 135

6.2 Storage structure 136
Record store 136 ✦ Records in the record store 137

6.3 RMS API 138
Record store construction and access 138 ✦ Record store exceptions 141
Record store listener 142 ✦ Comparing records 144
Filtering records 145 ✦ Enumerating through records 146
CONTENTS ix

WH_Java2.book Page x Monday, March 4, 2002 9:59 AM
6.4 Persistent storage in the investment quote application 149
Defining the stock/mutual fund record 149
Storing quotes 150 ✦ Retrieving quotes 156

6.5 Summary 166

7 Connecting to the Internet 167
7.1 Micro edition package connectivity 168

Using the Connector class to open a channel 168

7.2 Similar but smaller I/O package 169
Streams 170 ✦ Readers/Writers 170

7.3 Implementing the Internet investment quote service 171
Getting a quote service connection 172
Extracting the price quote from the HTML 177
The MIDlet’s handling of quote data 180

7.4 Summary 186

Part 3 Developing for PDAs 187

8 J2ME on a PDA, a KJava introduction 189
8.1 PDA profile alternatives 190

Java PDA development environments 190
What is KJava? 191 ✦ What is MIDP for Palm OS? 192

8.2 HiSmallWorld in KJava 192
Getting Started 192 ✦ What is a Spotlet? 193
Compiling HiSmallWorld 194 ✦ Preverifying KJava applications 197
Creating the Palm OS application 198 ✦ Running the application 202

8.3 Deploying to the actual device 211

8.4 HiSmallWorld revisited using MIDP for Palm OS 213
MIDP application code 214 ✦ Converting the JAR file to PRC 215
Deploying the MIDP for Palm OS applications 216

8.5 Summary 217

9 KJava user interface 218
9.1 KJava application control 219

9.2 The investment quote application control in KJava 220

9.3 KJava user interface 225
Drawing to the display with the graphics object 225 ✦ Components 231
Custom components 239 ✦ KJava collection classes 239
x CONTENTS

WH_Java2.book Page xi Monday, March 4, 2002 9:59 AM
9.4 The investment quote application’s user interface in KJava 240
Creating and displaying components 240 ✦ Drawing with graphics 244

9.5 Handling user interactions in KJava 248
Spotlet event-processing methods 248 ✦ Handling beaming events 250

9.6 Handling the events of the investment quote application in KJava 250
Handling key entry events 250 ✦ Handling pen taps 252
Handling pen movement 255

9.7 Summary 261

10 KJava data storage 262
10.1 Palm OS databases 263

Different types of Palm OS databases 263
Palm OS record database 263

10.2 KJava database API 265
Opening and creating databases 265 ✦ Accessing the database 267

10.3 Implementing the investment quote persistent storage in KJava 268
The stock/mutual fund record 268
Storing investment quotes 269 ✦ Retrieving records 273

10.4 Revisiting the connection to the Internet 275

10.5 Accessing Palm OS application databases 285

10.6 Summary 287

Part 4 Developing for the enterprise:
beyond the specifications 289

11 Real-world design 291
11.1 Dealing with stakeholders 292

Get them familiar with the devices early 292 ✦ Set expectations 293
Gathering requirements 293 ✦ State of the organization 293

11.2 A development scenario 294
Analysis 295 ✦ Options 296

11.3 Guidelines for building J2ME applications 298
The user interface 298 ✦ The network 304
Data exchange formats 306 ✦ Data synchronization 312
Data storage 317 ✦ Memory 319
Portability between profiles 320
Security 322 ✦ Internationalization 323
CONTENTS xi

WH_Java2.book Page xii Monday, March 4, 2002 9:59 AM
11.4 Architectural tools and techniques 325
Questionnaire: assessing if mobile and wireless is a good fit 325
Mobile application models 326 ✦ Architect’s checklist 329

11.5 Summary 331

12 Integrating the server 332
12.1 Examining server integration 333

Avoid monolithic applications 333

12.2 What technology to connect to? 334

12.3 Servlet example 334

12.4 XML 347
Using XML 348 ✦ Open standards of XML 350
Consequences of XML in J2ME 351 ✦ Small-footprint parsers 351

12.5 XML using JSPs example 353
How JavaServer Pages work 353 ✦ Creating the JSPHelper 355
Creating the JSP 357 ✦ Creating the J2ME Client 358

12.6 Summary 364

13 The network connection 365
13.1 About the Generic Connection Framework 366

Where the Generic Connection Framework lives 367
Working with the Connector class 368 ✦ The Connector is a factory 370
How the Connector finds the correct class 370

13.2 Using the Generic Connection Framework 372

13.3 HTTP-based connections 372
Establishing a connection 372 ✦ Using the connection 373
Compiling and running the application 376

13.4 Socket-based connections 377
Writing to sockets 378 ✦ Reading from sockets 380
When to use sockets 381 ✦ Client-server socket example 381

13.5 Datagram-based connections 394
Datagram example 397

13.6 Summary 406

14 J2ME runtime environment 407
14.1 The Java runtime environment 408

Lifecycle of the Java Virtual Machine 408
Java Virtual Machine responsibilities 411

14.2 The J2ME runtime environment 415
xii CONTENTS

WH_Java2.book Page xiii Monday, March 4, 2002 9:59 AM
14.3 CLDC-compliant virtual machines (the KVM) 415
KVM lifecycle 416 ✦ Preverification 416
In-device verification 417 ✦ Security 417
Unsupported Java features 419 ✦ Multithreading 421
Garbage collection 421 ✦ Internationalization 422
Application management (JAM) 422 ✦ Java Code Compact (JCC) 423
Deployed classes 424 ✦ Debug support 424

14.4 CDC-compliant virtual machines (the CVM) 425
Garbage collection and the CVM 426
Memory references in the CVM 426

14.5 Summary 427

15 Related technologies 428
15.1 J2ME implementations 429

esmertec’s Jbed 429
Motorola’s Embedded Reference Implementation (MERI) 430

15.2 The other Sun specifications 430
PersonalJava 430 ✦ EmbeddedJava 434

15.3 Non-J2ME alternatives 435
ChaiVM by Hewlett-Packard 435 ✦ IBM’s VisualAge Micro Edition 435
Waba by Wabasoft 438

15.4 Related Java technologies 438
Java Card 438 ✦ Java Native Interface 439
Jini 441 ✦ JavaPhone and Java TV APIs 442

15.5 Non-Java alternatives 442
WAP/WML 443 ✦ Other languages 443

15.6 Data storage and synchronization 444
Data storage 444 ✦ A data synchronization standard, SyncML 445
XML 446

15.7 J2ME supplementary technology 448
GUI, kAWT 448 ✦ Web browsing, Kbrowser 449
Encryption, Bouncy Castle 449

15.8 Summary 449

A J2ME development tools 451

B J2ME resources 453
CONTENTS xiii

WH_Java2.book Page xiv Monday, March 4, 2002 9:59 AM
C Java and J2ME history 456
C.1 Oak and the Green Project 456

C.2 Java and the Internet 457

C.3 Evolution of Java 458
Java 1.02 459 ✦ Java 1.1 459
Java 2 459 ✦ SDK 1.3 460
Java 3 coming soon? 460 ✦ Java today 460

C.4 Origins of J2ME 460
Micro-Java rebirth 461 ✦ Early access versions of J2ME 461
J2ME’s continuing evolution 462 ✦ J2ME today 463

D J2ME Wireless Toolkit 464
D.1 Downloading the Wireless Toolkit 464

D.2 Installing the J2ME Wireless Toolkit 465

D.3 Hello World project revisited 466
Starting the toolkit 466 ✦ Creating a project 467
Editing the project settings 469 ✦ Entering the Java code 470
Building a project 470 ✦ Running a project 470
Palm OS Emulator 471 ✦ Operating from the command line 472

D.4 Summary 472

index 473
xiv CONTENTS

WH_Java2.book Page xv Monday, March 4, 2002 9:59 AM
Sony Watchman
Color TV (2001)

Courtesy of Sony Electronics, Inc.

preface

Fifteen to twenty years ago, anyone familiar with the computer industry did not
question the impact personal computers would have on our society. The only ques-
tion was how quickly could PCs be made available at a reasonable price in order to
begin this new age. Today, with personal computers in three of every four United
States households and with the ubiquity of the Internet associated with all those PCs,
the Information Age has arrived. Nearly everyone is connecting to and using infor-
mation resources in ways exceeding the wildest dreams of early PC visionaries.

Our personal computers are on the same path of technical
progression. They are getting smaller while at the same
time doing more for us. This should not surprise us since
small computers and microchips are already assisting and
controlling more of our daily lives. Our cars, home appli-
ances, and entertainment systems probably already have
mini-computers that help their associated products give
you better service. Now, personal digital assistants (PDA),
such as those from Palm Inc. or Compaq, allow you to

download your electronic calendar, address book and other personal information from
your PC and take them with you when you are away. Is a Palm a
personal computer? Many PDAs have more memory storage and
processing power than PC’s of a few years ago.

Simultaneously, our communications devices have been get-
ting more powerful. When is the last time you used a rotary-dial
telephone? More likely, you have been using a cellular digital tele-
phone. This little device can not only place your call from virtually
anywhere, but it can also help you remember whom you have to
call and provide their home or office telephone numbers. In fact,
you have probably programmed it so that you no longer have to
know the telephone numbers any more. You simply tell your little
phone to ring the person with whom you want to have a con-
versation. The cell phone contains an electronic address book
and other personal information just like your PC.

RCA 8TS30 (1943)
Courtesy of

www.harryposter.com
xv

WH_Java2.book Page xvi Monday, March 4, 2002 9:59 AM
If you are fortunate enough to have a two-way pager, you
may have it set up to receive and send your email messages among
its other duties. In many ways, the numerous communication
and information devices such as cell phones and two-way pag-
ers are taking over for your PC when you are away from it.

So, if you have not been paying attention
lately, you may want to take a closer look at the
electronic devices around you. Your PC, digital
assistants, and communication devices are
starting to look and behave more and more

alike, at least in terms of the conveniences they provide. Again, the
natural progression is for technology to do more with less. What is
interesting is that the technologies are migrating toward each
other. Computers are shrinking and doing more communicating,
while other information and communication devices are grow-
ing more powerful and providing more personal computer-
related services. How soon before everyday appliances like our
automobiles, televisions, microwaves, and other appliances start
to become a highly connected and powerful network of comput-
ing devices that help us live our lives?

The merging of technologies

While the make and type of these systems are still quite diverse, we want the same
conveniences and capabilities that these information devices provide us anywhere and
at anytime. Providing these capabilities and conveniences is at the heart of any com-
puter system, no matter how large or small the software. This is making the software
engineer’s job most difficult. How does one provide many of the same capabilities
like email, calendaring, address tracking and scheduling across a very diverse, and
seemingly growing, set of products? These software capabilities are just the start.

Western Electric’s
202 Desk Phone (circa 1927)

Courtesy of Play Things of Past, Cleveland OH

Motorola’s StarTAC
(circa 2000)

Courtesy of
Motorola, Inc.
xvi PREFACE

WH_Java2.book Page xvii Monday, March 4, 2002 9:59 AM
How soon until we have invoicing and
billing capability on our cellular tele-
phones? How soon will our refrigerator
be able to tell our PDAs that we are out
of milk (the inventory is low) and we get
a restocking reminder on the way home
from work? Is there a write once, run any-
where software solution that allows the
software engineer to simply and easily
provide many of the same capabilities to
this diverse set of devices? We contend
that there is a solution, or at least the
makings of a solution, in Java and in
particular the Java 2 Micro Edition.

If you thought the diversity in the
number and type of computer systems
was challenging, imagine trying to write
software that operates in the “infor-
mation appliance” arena that includes

pagers, cellular phones, PDA’s, television set-top boxes, point-of-sale terminals, and
other consumer electronics. There are over a dozen cell phone manufactures alone.
Each has different characteristics and interfaces.

As we will explore, the Java programming language has generally fulfilled the wish
of software engineers looking for a means to write a single application that runs over
all types of computer systems. Writing a single code base application that works on
an Apple PC, Intel-based PC, Sun Microsystems Workstation, IBM mainframe, etc.
is now possible. As you might imagine, the portability of a Java application across an
even deeper and more diverse set of information appliances has attracted many to the
possibility of running a once-written application on multiple types of systems.

What’s more, there are an estimated 100 million cellular telephone users in the
United States, with an estimated 530 million cellular telephone users worldwide by
2002. That compares to an estimated 50 million households with personal computers
today. The exchange of information and ideas across this number of platforms is truly
staggering. Imagine having some of the application capabilities of the Internet and our
personal computers on a platform the size of a small cell phone. Imagine further that
this transfer of capabilities is relatively seamless!1

Of course, the challenge is to compact enough of Java’s essentials into a very small
package. This is the world of the Java 2 Micro Edition (J2ME). While it is still in its
infancy, the convergence of the many technologies and resources surrounding these
devices makes the advancement of J2ME as likely as it is necessary.

1 http://www.census.gov/population/www/socdemo/computer.html

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

100

90

80

70

60

50

40

30

20

10

0

Year

O
w

n
e

rs
 i

n
 m

il
li

o
n

s

of cell phone
subscribers

of households
with computers

Census Bureau statistics and FCC estimates on

number of household PCs and cellular phone

subscribers in the United States.1
PREFACE xvii

WH_Java2.book Page xviii Monday, March 4, 2002 9:59 AM
acknowledgments

Books do not write themselves, and, as we have come to understand all that is
involved in putting one on the shelf, we now know that it takes much more than just
the authors.

We would like to extend a special thank you to our publisher, Marjan Bace, and to the
staff at Manning Publications who have contributed to this effort, as well as to the many
people who took time out of their schedules to provide peer reviews, suggestions, and
assistance. The reviewers included Carl Baldys, Mike Chan, Perry Dillard, Jon Eaves,
Boran Gogetap, Lee Miles, Peter Mortier, Bryan Nehl and Tim Panton. Your work has
not gone unnoticed and the final result is a reflection of this combined effort. Thank you.

JAMES WHITE

A lot of energy and time goes into writing a book, and a great number of people have
influence on its outcome. Some are directly responsible for its delivery. To this end, I
would like to first and foremost thank my co-author David Hemphill. His dedication
and loyalty go beyond this single endeavor. He is a quiet yet steady friend that I have
come to rely on for guidance on the roughest of days, not to mention, he’s pretty
darned smart. Thank you David. I would also like to thank the folks who spent hours
reviewing the manuscripts in various stages and forms. In particular, I would like to
thank Jan Emter and Carl Baldys for their evaluations and assistance. It’s not a fun
job, but they did it very well. We also owe a special thanks to the folks at esmertec
who supported us with the use of their product and the reviews of the material on
their product. A big thanks to Jon Eaves for his meticulous technical review. Finally, I
would like to thank the editors and staff at Manning (Lianna Wlasiuk and Lois
Patterson in particular) for allowing this dream to become a reality.

There are a number of other people who are indirectly responsible for this book’s
delivery. These are the people who have and will continue to shape my life on a daily
basis, sometimes without knowing how much they do so. First, I would like to thank
my parents, Ann and Jim White. Both teachers by profession, they have raised the
eternal student. They have given me three gifts: life, enjoyment and satisfaction in
hard work, and the unquenchable thirst to learn more. Thank you Mom and Dad.
Second, I would like to thank my family, good friends, co-workers and colleagues who
xviii

WH_Java2.book Page xix Monday, March 4, 2002 9:59 AM
supported me in the efforts of this book, and in all else as well. In particular, I would
like to thank Mike (my brother), Angie and Laura (sisters), Jim St. Aubin, Mike Car-
son, Phil and Kelly Davis, Todd Lauinger, and Larry Marchman. I would also like to
thank Scott King. Forever the optimist, Scott would never let me say die, on this project
or in any professional endeavor. Thank you Scott for your friendship and belief in me.

Last, but by all the laws that govern everything that is good and just, not least, I
owe my deepest appreciation and devotion to my wife Kelly. I have never met a person
so giving and caring in all my life. To say that she has carried me through this book,
my career and adult life would be a vast understatement. Without her, this book and
everything I do would hold no meaning. Thank you and I love you Kelly.

DAVID HEMPHILL

When starting out on this project to co-author a book, I was concerned about the
amount of time it would take and what life would be like during the months of writ-
ing the book. Well, as to how much time it takes, the answer is a rather simple one:
all of it. As to what life is like, let’s just say that if I did not have such a loving, sup-
porting, caring and understanding family, this could have been painful. That said, I
owe my deepest appreciation and gratitude to my wife, Amy Votava. Amy, thank you
so much for all of your love and support during this last year. You mean a great deal
to me and this last year has shown me the power and strength of our partnership.
I truly appreciate how you have stood by me and helped me to see this dream to the
end. Thank you. I love you.

I would also like to thank my daughter, Olivia, who, at age two, was unable to assist
with editing and reviewing the book, but provided me with an ample supply of hugs
and kisses as well as necessary distractions such as make-believe tea breaks with fresh
“yellow” pie, spontaneous dancing and daily readings of The Lorax and other non-
technical literature.

A list of acknowledgments would not be complete without a word or two directed
toward the guy who started all of this in the first place. This would be my co-author,
friend, business partner and fellow software engineer Jim White. This project has been
as enjoyable as it has been challenging and I am glad for the opportunity to have
undertaken it with someone I have come to trust and respect more than just about
anyone I have worked with. Jim, thank you for all of your hard work and dedication
to this project.

I would also like to extend a special thank you to my parents Karen Stewart and
Gary Hemphill. Dad, throughout the writing of this book I often heard your voice in
my head saying, “Go the last mile and see it through.” and Mom, thank you for driv-
ing up to Minnesota to help me find more time to write and to allow Amy and me
to get reacquainted from time to time.

In addition, I owe thanks to the rest of my family: my sister, Julia Helbach, my
stepparents John Stewart and Carol Hemphill and my in-laws James and Kathryn
Votava. You have all provided me with love and inspiration during this last year, Amy
and Olivia directly and indirectly many times over.
xix

WH_Java2.book Page xx Monday, March 4, 2002 9:59 AM
about this book

Java 2 Micro Edition was written with the developer in mind. It is meant to be a guide
that will serve as an introduction to J2ME technology, as well as a reference to more
complex issues surrounding mobile/wireless computing. Our intent is to provide a
practical overview of the J2ME programming environment by guiding the reader
through detailed programming examples and tutorials. A basic understanding of Java
programming is all that is required, in addition to a need for or interest in developing
applications for mobile and wireless devices.

INTENDED AUDIENCE

This book is intended, largely, for software engineers interested in writing Java appli-
cations. It turns out that if you know Java, you know enough to start writing applica-
tions for consumer electronics and embedded devices with a little help.

ASSUMPTIONS

Throughout this book, applications will be developed in the Microsoft Windows
environment. This will not affect the outcome of the product. However, if you
choose to develop on another J2ME development platform, such as Solaris, Macin-
tosh, or Linux, you will have to translate all applicable development instructions.

Readers of this text should have a fundamental knowledge of Java. The basic Java
syntax is the same for J2ME as it is for other Java environments, including the familiar
Java 2 Standard Edition (J2SE). However, the API for many Java classes, even those
as basic as String, is diminished relative to the J2SE API. For those familiar with J2SE,
we will explain our use of certain types and methods in code examples where a more
common J2SE type or method would ordinarily be utilized.

We will also use the Unified Modeling Language (UML) to depict some of the
application design. If you are not an object-oriented analyst, you should not be con-
cerned. Our diagrams are pretty simple and merely help provide a picture of some of
the structure in the application and how they relate to the classes and interfaces J2ME
provides.
xx

WH_Java2.book Page xxi Monday, March 4, 2002 9:59 AM
ORGANIZATION

The book has fifteen chapters organized into four parts, followed by four appendices.
We begin the book with an introduction to J2ME tools and technologies and then
guide the reader through the development of a tutorial application.

PART 1 Developing with J2ME

The first part of this book focuses on introducing the Java 2 Micro Edition.
Chapter 1 describes how J2ME fits into the larger picture of the Java 2 platform.

The case for why J2ME is necessary and useful is discussed as well as the origins from
which J2ME has sprung. Chapter 2 describes how J2ME is put together. This provides
a context for how J2ME might be used to develop applications for consumer electron-
ics and Internet appliances. This chapter provides a comprehensive, yet high-level tour
of J2ME. Finally, before delving into the particulars of developing J2ME applications,
chapter 3 offers a quick introduction to development environments, covering the par-
ticulars of how to obtain various J2ME development tools and technologies, as well
as describing the example application that will be used throughout the book.

PART 2 Developing for cellular phones and pagers

In chapters 4 through 7, we explore the CLDC and MIDP APIs in a tutorial applica-
tion that was initially described in chapter 3. The tutorial application allows a customer
to use a cell phone or two-way pager to obtain and view stock or mutual fund quotes.
The tutorial allows us to see the major aspects of a J2ME application, namely the user
interface, event handling, data storage, input/output, and network connectivity.

PART 3 Developing for PDAs

In chapters 8 through 10, we explore using KJava with the CLDC API. KJava was
originally created as a test and demonstration API by Sun for demonstrating the
CLDC and KVM on Palm OS devices. Lacking a profile for PDA devices, compa-
nies, such as esmertec, have provided commercial implementations with their IDEs
for developing Palm OS applications using KJava. Part 3 explores PDA development
using the now familiar stock quote application. As in part 2, the tutorial application
allows us to examine the major aspects of building a Palm OS application using
KJava. This part of the book covers PDA features such as user interface, event han-
dling, data storage, input/output, and network connectivity.

PART 4 Developing for the enterprise: beyond the specifications

In chapters 11 through 15, we explore the more complex issues of putting together
mobile and wireless applications. Chapter 11 leads off by examining the characteristics
of a mobile and wireless architecture, focusing on using mobile and wireless devices
in conjunction with enterprise technologies. The following chapters explore mobile
and wireless computing for the enterprise, paying special attention to integrating the
ability to communicate with servlets, JSPs and XML data sources. A more thorough
xxi

WH_Java2.book Page xxii Monday, March 4, 2002 9:59 AM
examination of the network communication protocols is provided along with an in-
depth look at the J2ME virtual machines and how they differ from the J2SE virtual
machine. Finally, we spend some time reviewing related technologies, such as com-
mercial, third-party J2ME solutions as well as non-J2ME solutions.

Appendices

In the back of the book, four appendices offer an overview of J2ME tools, resources,
history, and the J2ME Wireless Toolkit provided by Sun Microsystems.

SOURCE CODE

Source code for all the programming examples in this book, including the exam-
ples in the tutorials, is available for download from the publisher’s web site,
www.manning.com/white.

Code conventions

Courier typeface is used to denote code, as well as methods, objects, variable names,
and class names. Code annotations accompany many segments of code. Certain annota-
tions are marked with chronologically ordered bullets, such as . These annotations
have further explanations that follow the code. Code line continuations are indented.

AUTHOR ONLINE

Purchase of Java 2 Micro Edition includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the authors and from other users. To access the forum
and subscribe to it, point your web browser to www.manning.com/white. This page
provides information on how to get on the forum once you are registered, what kind
of help is available, and the rules of conduct on the forum.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the authors can take place.
It is not a commitment to any specific amount of participation on the part of the
authors, whose contribution to the AO remains voluntary (and unpaid). We suggest
you try asking the authors some challenging questions lest their interest stray!

The Author Online forum and the archives of previous discussions will be acces-
sible from the publisher’s web site as long as the book is in print.

q

xxii ABOUT THIS BOOK

WH_Java2.book Page xxiii Monday, March 4, 2002 9:59 AM
about the cover illustration

The figure on the cover of Java 2 Micro Edition is a "Muger Arabe Azanaghi,” an
Azanaghi Arab Woman from a region in the northernmost section of present-day
Mauritania. The illustration is taken from a Spanish compendium of regional dress
customs first published in Madrid in 1799. The book’s title page states:

Coleccion general de los Trages que usan actualmente todas las Nacionas del Mundo
desubierto, dibujados y grabados con la mayor exactitud por R.M.V.A.R. Obra muy
util y en special para los que tienen la del viajero universal

Which we translate, as literally as possible, thus:

General collection of costumes currently used in the nations of the known world,
designed and printed with great exactitude by R.M.V.A.R. This work is very useful
especially for those who hold themselves to be universal travelers

Although nothing is known of the designers, engravers, and workers who colored this
illustration by hand, the “exactitude” of their execution is evident in this drawing.
The Azanaghi Arab Woman is of course just one of many figures in this colorful col-
lection. Their diversity speaks vividly of the uniqueness and individuality of the
world’s towns and regions just 200 years ago. This was a time when the dress codes of
two regions separated by a few dozen miles identified people uniquely as belonging to
one or the other. The collection brings to life a sense of isolation and distance of that
period—and of every other historic period except our own hyperkinetic present.

Dress codes have changed since then and the diversity by region, so rich at the time,
has faded away. It is now often hard to tell the inhabitant of one continent from
another. Perhaps, trying to view it optimistically, we have traded a cultural and visual
diversity for a more varied personal life. Or a more varied and interesting intellectual
and technical life.

We at Manning celebrate the inventiveness, the initiative and the fun of the com-
puter business with book covers based on the rich diversity of regional life of two cen-
turies ago‚ brought back to life by the pictures from this collection.
xxiii

WH_Java2.book Page xxiv Monday, March 4, 2002 9:59 AM

1

WH_Java2.book Page 1 Monday, March 4, 2002 9:59 AM
P A R T
Developing with J2ME

The first part of this book focuses on introducing the Java 2 Micro Edition.
Chapter 1 describes how J2ME fits into the larger picture of the Java 2 platform. The
case for why J2ME is necessary and useful is discussed as well as the origins from
which J2ME has sprung. The second chapter describes how J2ME is put together.
This provides a context for how J2ME might be used to develop applications for con-
sumer electronics and Internet appliances. Chapter 2 also provides a comprehensive,
yet high-level tour of J2ME. Finally, before delving into the particulars of developing
J2ME applications, chapter 3 provides a quick introduction to the development envi-
ronments, covering the particulars of how to obtain various J2ME development tools
and technologies as well as describing the example application that will be used
throughout the book.

WH_Java2.book Page 2 Monday, March 4, 2002 9:59 AM

WH_Java2.book Page 3 Monday, March 4, 2002 9:59 AM
C H A P T E R 1

Introduction

1.1 So what is J2ME anyway? 3
1.2 What is a small device? 5
1.3 J2ME’s role in wireless and

mobile applications 7
1.4 The Java 2 edition trilogy 9

1.5 The case for Java 12
1.6 Origins of J2ME 15
1.7 The J2ME community 16
1.8 J2ME products and alternatives 17
1.9 Summary 18
If you are involved in the development of software systems, and in particular software
written in the Java programming language, yet do not know much about J2ME, you
probably have many questions. What is J2ME and where did it come from? How
does it relate to the Java I know and have come to enjoy? On what kinds of small
things does Java run? Why is Java on small devices important? Where is J2ME going?
We attempt to answer these questions and more in this introductory chapter.

1.1 SO WHAT IS J2ME ANYWAY?

Java 2 Micro Edition or J2ME is a development and runtime environment designed
to put Java software on consumer electronics and embedded devices. As with many
things in life, one size does not always fit all. Likewise, a single serving size of Java that
fits and runs on every thing from a mainframe to a cellular telephone is impractical.

Java has become one of the most popular programming languages of our time. This
is due, in no small part, to Java’s ability to run on virtually any platform. J2ME is
about making the Java programming language available on an even larger and more
diverse set of platforms. In particular, J2ME brings Java to the world of personal infor-
mation, communication, and computing devices. Usually, these devices are smaller
and less powerful than traditional computing devices. As such, J2ME technology is an
effort to condense and reduce standard Java into as small a footprint as possible.
3

WH_Java2.book Page 4 Monday, March 4, 2002 9:59 AM
The development of J2ME was initiated by Sun Microsystems, but is now sup-
ported by some of the biggest consumer electronics and embedded device manufac-
turers in the world. In particular, many of the world’s mobile and wireless technology
vendors are either exploring or actively participating in J2ME technology, or they are
working on competing products. Those that support J2ME do so under a community
process developed by Sun to standardize and guide the future direction of all aspects
of the Java Platform. This process is called the Java Community Process (JCP) and it
is an important part of the advancement of Java and J2ME, as will be discussed later
in this chapter.

While Java runs on everything from mainframes to laptops, it was not until rela-
tively recently that Sun began to re-entertain the idea of putting Java back into small
devices. We say re-entertain because Java was initially developed to assist Sun devel-
opers in assembling a network of digitally controlled consumer devices (TV, VCR,
video disc players, and so forth).

Java’s rebirth, through J2ME, as a programming language and software platform
for small things is significant in that the sheer number of these devices will far exceed
the number of computer systems in the near future. As a young or reborn technology,
J2ME is still evolving and the base of support for J2ME is still growing. However,
J2ME and other Java-based competing solutions offer a great deal of hope to the soft-
ware engineering community that is faced with the need to support an overwhelming
number of platforms in the future.

1.1.1 Where is J2ME being applied?

J2ME is a technology that has found its way into many consumer electronic and em-
bedded devices, some of which you use on a daily basis. It is a young technology that is
working its way into even more items that we will use daily. In fact, J2ME is a technol-
ogy with which we will likely come in contact more often than standard Java or other
programming language software. This is because J2ME software applications are des-
tined for very personal devices on which we humans have become dependent. How
soon will this occur? A number of cellular telephones already contain J2ME technology.

J2ME software applications will likely control or provide some type of service on
our cellular telephones, pagers, personal digital assistants (PDAs), televisions, VCRs,
wristwatches, home appliances, electronic entertainment systems, and so forth. J2ME
applications will help us make telephone calls and order products. They will help us
communicate with friends and neighbors. They will help us find our favorite television
show or remind us to feed the dog, and it may be a J2ME game that you play when
it comes time to relax. Of course, J2ME applications will also help business too. J2ME
applications are helping to extend corporate enterprise systems (both data and appli-
cations) to wireless and mobile computing devices. Inventory and customer manage-
ment, order entry and tracking, and sales force automation may soon be driven by
J2ME applications literally running from devices in the palms of employees’ hands.
4 CHAPTER 1 INTRODUCTION

WH_Java2.book Page 5 Monday, March 4, 2002 9:59 AM
1.2 WHAT IS A SMALL DEVICE?

Up to this point, we have tried to refer generically to the platform running a J2ME or
other competing Java application as a “device.” In fact, we refer to these devices even
more generically in the subtitle of this book as “small things.” In a few instances, we have
used the phrases: information device, consumer electronics, embedded device or our
favorite, small device. It is important that we define the vast array of “small devices”
and make you aware of which devices in this array J2ME targets. As will be discussed
in chapter 2, it is important to know where J2ME is applied since such target devices
often define the various pieces and structure of the J2ME architecture.

1.2.1 The vast consumer space

Exactly what is a device? Sun claims that J2ME is meant to address “the vast consumer
space which covers the range of extremely tiny commodities, such as smart cards or a
pager, all the way up to the set-top box, an appliance almost as powerful as a computer.”1

Let’s define some of these terms: A smart card is a credit card-sized plastic device with an
integrated circuit built inside. A set-top box is a consumer electronic device that produces
output to a conventional television while also connected to a communications channel
to allow the user or, more appropriately, television viewer, to interact in some way.

1 http://java.sun.com/j2me/

TV set-top boxes

Automobile
entertainment

systems

Automobile
navigational
systems

Internet TV

Internet screen phones

Point-of-sale
systems

Communicators

Cellular
phones

Smart cards

Personal
organizers

Pagers

Figure 1.1 The picture above provides a glimpse of some of the devices encompassing the

vast consumer electronics and embedded device space. While Java, through J2ME, may not be

available on all of these platforms today, it offers the hope of providing a single programming

language to support this vast array of devices in the future. As a programming language

designed to run on any platform, Java has been used for developing software on all of these

devices and J2ME technology has been applied to a predominance of these devices. However,

as we will discuss, J2ME’s applicability at the fringes of this vast space can be confusing based

on additional Java technologies and specifications such as Java Card and EmbeddedJava.
WHAT IS A SMALL DEVICE? 5

WH_Java2.book Page 6 Monday, March 4, 2002 9:59 AM
The “vast consumer space” is filled with devices that include:

• pagers
• cellular telephones
• personal digital assistants or organizers
• point of sale systems
• pocket communicators
• Internet screen telephones
• automobile navigation and entertainment systems
• Internet television sets

Figure 1.1 shows many of these devices.

1.2.2 Consumer electronic and embedded devices

While Sun and others associated with the development of J2ME applications still
hold to the statement that J2ME is “targeted at consumer electronics and embedded
devices,”2 questions arise as to whether this includes the entire consumer electronics
and embedded device space. Sun’s own web sites offer conflicting information. For
example, many of Sun’s web pages on J2ME indicate that J2ME technology includes
smart card technology, while Java Card web pages claim that Java Card technology is
a complementary technology to J2ME.3

Generally, J2ME addresses devices with minimal memory, communications band-
width, power, and user interface capabilities. Therefore, J2ME is usually considered
to address Java programming needs in devices that are larger than smart cards but
smaller than personal computers. A term often used for these sorts of devices is infor-
mation appliance. Information appliances provide less computing power than a personal
computer and are considered to have a special function. In many cases, these devices
are more personal in nature, that is, they are owned and operated by a single individual.
Furthermore, unlike a laptop, these computing devices are almost always carried with
their owner, in a pocket, purse or coat pocket, also making them more personalized.

As a separate technology, Java for smart cards (Java Card technology) has its own
specification. For devices with more memory, power, and capabilities, there is, of
course, the Java 2 Standard Edition (J2SE) specification that dictates Java as it is used
in personal computers.

We disagree with including “embedded” devices in the group of devices supported
by J2ME. While the issue is minor and the distinction will be discussed later in a
review of other technologies with respect to J2ME (chapter 15), the whole space of
embedded devices is also covered by a separate Sun specification and technology called
EmbeddedJava. Therefore, for the purposes of this book, the term “device” will refer

2 http://java.sun.com/products/cldc/faqs.html
3 http://java.sun.com/products/javacard/datasheet.html
6 CHAPTER 1 INTRODUCTION

WH_Java2.book Page 7 Monday, March 4, 2002 9:59 AM
to the array of electronic devices and information appliances that range from just
below the personal computer down to, but not including, the smart card.

You can, and will undoubtedly, find individuals who disagree with this demarca-
tion. However, we find it to be the general consensus and will stick to this definition
of a device throughout the remainder of the book.

1.3 J2ME’S ROLE IN WIRELESS AND MOBILE APPLICATIONS

J2ME is often referred to as Java for wireless and mobile devices. While J2ME tech-
nology is used in many wireless and mobile devices, J2ME is not used exclusively in
these environments. We do not want to diminish J2ME’s role and importance in
mobile and wireless applications. However, it is important to realize that J2ME is
about more than mobile and wireless applications.

1.3.1 Is J2ME mobile?

Mobile devices are defined as those computing devices that are small enough to be
easily carried and used while in transport. They provide users with a portion of com-
puting capabilities and information that is available from fixed information systems
at home or their place of business. In general, most mobile devices allow themselves
to be synchronized with the fixed systems for software and data updates.

As an example, an office may have a customer management application that can
provide sales force personnel with information on customers. A mobile device would
likely allow a sales person to download a limited amount of customer data for a limited
number of customers to use while on the road. Updates to any data on the mobile
device would need to be reconciled with the office’s customer management system on
the sales person’s return.

Given this kind of definition, the term mobile is subject to change. In fact, there was
a time when we may have called a twenty-pound laptop mobile. Certainly, many, but
not all, of the devices that J2ME targets can be considered mobile. PDAs, cell phones,
and so forth can certainly be considered mobile platforms when they are provided with

CDC

“Information
 appliances”Smart

Card
Desktop
PC

J2ME Devices

CLDC

Figure 1.2 Devices that are specifically supported by J2ME fall between the Smart Card and

the desktop or laptop computer. These devices, often referred to collectively as information

appliances, include, but are not limited to cell phones, pagers, PDAs, set-top boxes, and Internet

phones. CLDC and CDC are specifications that define J2ME at opposite ends of the device

spectrum. More information on these specifications is provided in chapter 2.
J2ME’S ROLE IN WIRELESS AND MOBILE APPLICATIONS 7

WH_Java2.book Page 8 Monday, March 4, 2002 9:59 AM
software and data. However, set-top boxes, for example, are not meant to be mobile
devices. While these devices can run J2ME programs, they are not mobile.

Furthermore, many other Java technologies, J2SE and Java Card included, are run-
ning in mobile systems. So while J2ME is an important Java technology for mobile
platforms, it is not the Java technology for mobile platforms. And Java is not the only
solution. There are several technologies that provide mobile applications and data for
mobile devices. In fact, many organizations provide tools for downloading a slice of
corporate data to a personal device for use while not at the office. These are mobile
solutions.

The term “mobile” simply defines the capability or state of the device. So is J2ME
mobile? Because mobile devices are usually smaller and more resource constrained,
J2ME is a viable development solution for these constrained devices. Therefore, J2ME
can and often does play an important role in mobile devices, but the term mobile does
not categorize all J2ME applications.

1.3.2 Is J2ME wireless?

A wireless device is simply a device capable of communicating or networking without
wires or cable. Many J2ME devices are wireless. Cellular telephones, pagers, and pocket
communicators are just some of the wireless communications devices that can use
J2ME technology. The list of such devices is ever expanding. Many of today’s laptops
and PDAs provide wireless communication adapters to allow these devices to work in
a wireless fashion.

Wireless devices are intended to behave as if they were directly connected to the
network with a wire. From a user’s perspective, it should appear that any data or appli-
cation is local to that device or directly connected to the device providing the data or
application. For example, a sales person could use a cell phone to look up information
on a customer from a customer management system back at the office. To the sales
person, it might appear that the data and/or application obtaining and displaying the
information is local to the phone when in reality, the data has merely been wirelessly
transmitted to the sales person’s device.

However, there are several devices that J2ME targets that are not wireless. Again,
set-top boxes, Internet screen telephones and televisions are usually wired. In fact, as
we will see in future discussions, a large portion of J2ME is set aside for systems that
are expected to have a reliable, rich, and high fidelity network connection, which today
usually means having connectivity through a wire or cable. The J2ME technology sup-
ports many wireless devices, but it is not the Java technology for wireless computing.
In fact, other technologies such as the Wireless Access Protocol and the Wireless
Markup Language are meant to provide wireless capabilities to devices without nec-
essarily providing mobile applications (chapter 15).

Wireless defines the type of communications used by the device. J2ME, therefore,
can be and often is an important part of a wireless solution. But while Java and J2ME
may be used in wireless devices and applications, not all J2ME applications are wireless.
8 CHAPTER 1 INTRODUCTION

WH_Java2.book Page 9 Monday, March 4, 2002 9:59 AM
1.3.3 Wireless vs. mobile

The terms wireless and mobile are often used congruently. Erroneously, these adjec-
tives are automatically applied to J2ME applications. Because J2ME devices are often
small and can hold a certain amount of data and applications, which are easily trans-
ported, J2ME can be and often is used in mobile systems. Likewise, because J2ME is
often used in applications that communicate information back and forth across a
wireless network, J2ME can be and often is used in wireless systems. Again, however,
this does not mean that J2ME applications are all wireless and mobile.

A PDA device holding a small amount of customer data and an application to view
and update the customer data is mobile, but not necessarily wireless. If the user is required
to connect the device up to a network or other device with some sort of cord in order
to get new data or download updated data, then it remains a mobile but wired device.

Alternatively, a cell phone could be equipped with a small browser that allows the
device to pull down special or mini-web pages. This device is now considered wireless,
but it is not mobile. In order to be mobile, the device must provide some value, in the
form of data or application function, when not connected to other systems.

Much of the confusion between wireless and mobile exists because many J2ME
applications are designed to work in both a mobile and wireless fashion. Say, for example,
the customer information application built for a PDA device is also equipped with a
means to call up and ask for new or updated customers that can then be transmitted
to the device wirelessly and stored on the device for later retrieval. Now the PDA
device is both mobile and wireless.

In this book, we examine J2ME technology that can help make mobile and wireless
applications.

1.4 THE JAVA 2 EDITION TRILOGY

Like all development environments and programming languages, Java has evolved.
Many features and capabilities have been added to Java since its initial release. It has
also been improved in terms of its performance, efficiencies and reliability. Thus, the
“2” in Java 2 refers to its current major version. Sun Microsystems, the creator and
manager of Java, has grouped the Java 2 version into three editions:

• Standard Edition (J2SE)
• Enterprise Edition (J2EE)
• Micro Edition (J2ME)

 Each edition addresses the Java needs of a particular set of applications. J2ME is the
third and latest of three editions of the Java 2 version.

One of the most common exclamations on the part of new Java developers is:
“Wow, look at all those packages and classes.” One of Java’s selling points is the fact
that it ships “out of the box” with a rich set of tools, classes, and application program-
ming interfaces (APIs) that provide many common, foundational application compo-
THE JAVA 2 EDITION TRILOGY 9

WH_Java2.book Page 10 Monday, March 4, 2002 9:59 AM
nents. In theory, these classes and APIs provide the basic frameworks that allow
applications to be developed faster. There are over 5,000 classes in the standard down-
load of the Software Development Kit (SDK). Database connectivity, various input/
output mechanisms, exception/error handling, and user interface classes are just a few of
the many basic functions that come with your standard Java development environments.

As the Java development environment has grown and expanded to fulfill numerous
application needs, the number of available Java packages and classes has expanded.
Most notably, Java support has spread to include networking, interoperability, and
distributed components and processing.

Because the needs of the Java community have broadened, and the sheer number
of APIs has grown, Sun established three editions of the Java platform to better address
the needs of each general community of application developers. This split in editions
occurred at the time Sun released Java 2. The editions do not really provide any addi-
tional Java functionality. Instead they are a repackaging of Java technology into logical
groupings based on typical developmental use.

There have been claims that another reason for the split in editions is that Sun has
used this mechanism for generating revenue. The argument goes that the development
environment or JDK (now SDK) and Java Runtime Environment (JRE) have always
been free products. The other editions of Java, which fall under different license agree-
ments, allow Sun to recoup some of the revenue lost on the base, no-cost products.

Whatever the real reason for the separation, Java developers must now be aware of
the three editions of the Java platform and how they can be applied to their particular
development problems. Fundamentally, the three editions are still very similar. The
language syntax and base architecture of each edition is generally the same. However,
as their names suggest, each edition now offers developers unique features applicable
to the size of devices for which the edition was built.

1.4.1 J2SE

The Java 2, Standard Edition (J2SE) is the basic Java environment. Its implementa-
tions provide the core Java classes and APIs that allow for the development and run-
time of standard client and server applications, including applications that run in a
web browser.

1.4.2 J2EE

The Java 2 Enterprise Edition (J2EE) is a grouping of several Java APIs and non-Java
technologies. It is generally used for creating multi-tiered and potentially distributed
applications. J2EE technologies can serve as the guts as well as the glue that bring
today’s large multi-tiered, heterogeneous applications together. J2EE is often
described as middleware or server side technologies, but this is a bit limiting. In fact,
J2EE includes technologies that are or can be used in all layers of information sys-
tems. Take JDBC for example. It may be used to access data from a client Java applet,
a middle tier Java servlet or a backend Enterprise JavaBean. Remember that J2EE
includes some technologies that are not controlled by Sun and are not necessarily
10 CHAPTER 1 INTRODUCTION

WH_Java2.book Page 11 Monday, March 4, 2002 9:59 AM
directly connected to Java, such as XML and CORBA. J2EE is another Java technol-
ogy that can fill dozens of books. Please see other publications, such as Distributed
Programming with Java by Qusay H. Mahmoud, Server-Based Java Programming by
Ted Neword and Java Servlets by Example by Alan Williamson, Manning Publica-
tions, for information on these and other related J2EE technologies.

1.4.3 J2ME

Sun introduced Java 2, Micro Edition (J2ME) in June 1999 at the annual JavaOne
convention. J2ME is designed to address the Java needs of the consumer electronics
and embedded devices community. Initially, J2ME was built for devices with limited
power, network connectivity (often wireless), and graphical user interface capabilities.
Today, as we shall see, J2ME technology has expanded to cover a somewhat wider array
of devices from pagers up to, but not necessarily including, the personal computer.

1.4.4 Why we need J2ME

Since Java was initially intended for consumer electronic devices, a natural question
may be why another edition? Why not just use the standard Java for small devices?
Beyond the issues of needing to separate the multitude of APIs into three distinct
editions for better organization and, possibly, Sun’s need to recapture revenue, there is
another, more compelling, reason for introducing another Java edition: the devices
for which J2ME is targeted have specialized needs.

These devices have different software requirements than larger application software
environments. In general, the software must have a small footprint. In some cases, the
total memory allotted to the device for the Java application, Java classes, and virtual
machine is measured in hundreds of kilobytes. That’s small!

Furthermore, software applications destined for these consumer electronics and
embedded devices usually have unique deployment mechanisms. For example, PDA
devices often have what is known as a device “cradle” that is attached to a desktop
computer for downloading applications and data.

Finally, these devices have user interface, networking and other needs that cannot
be addressed with an all-encompassing (i.e. sizeable footprint) Java API. Java’s Swing
package for user interface development could certainly be enlarged to include com-
ponents for building graphical user interfaces for small screens such as those found on
cellular telephones. But could that package then fit in the memory of a cell phone?

J2ME addresses the fact that a one-size-fits-all Java environment does not really
make sense for all devices. The same principles of platform independence, language
syntax, security, and reliability are adhered to in all editions of Java, including J2ME.
However, the separate edition addresses the specific needs inherent in the range of
small devices that the J2ME edition covers.

It is worth noting, however, that Sun considers upward scalability from J2ME to
another edition of Java (namely the J2SE or J2EE) an important feature of J2ME.
Should your application ever grow beyond the confines of a small device, the transi-
THE JAVA 2 EDITION TRILOGY 11

WH_Java2.book Page 12 Monday, March 4, 2002 9:59 AM
tion up to a larger, more powerful Java environment may be possible depending on
your application’s architecture.

1.5 THE CASE FOR JAVA

Before we get too deeply into the benefits of J2ME, perhaps we should step back and
ask an even more fundamental question: specifically, why is the Java programming
language important to software developers for consumer electronics and embedded
devices? If you have already worked with Java, this discussion probably won’t cover
any new ground. However, if you are new to Java, it’s worthwhile to review some of
the reasons why Java is a popular programming language and why it is a solid con-
tender in the small device arena.

1.5.1 Is Java right for small devices?

As has already been mentioned, Java was first designed and built as a common plat-
form to support software development for a set of networked consumer electronic
devices. Given Java’s initial reason for being, it would seem only natural and appropri-
ate that it return to its roots to be used in a heterogeneous collection of small infor-
mation devices.

The key term here is heterogeneous! If you are targeting a particular information
device, you may find that another programming language or development environ-
ment meets your needs just as well if not better than Java. For example, many of
today’s PDA manufacturers supply programming development kits that produce
applications for their systems. These kits often take advantage of features for the spe-
cific platform and typically perform better on the target device than programs devel-
oped with more generic programming languages such as Java. Furthermore, Java may
not have as small a footprint in comparison to many proprietary development envi-
ronments or other programming languages. As has been discussed, Java has a rich set
of classes and APIs that come with the base environments. A device manufacturer does
not have to offer such a rich environment. Because many of these programming envi-
ronments and languages produce executable code such as C, unused features are elim-
inated at compile time. In contrast, Java’s runtime environment must be ready to
interpret any and all supported instructions.

So where is your application going to live? Will it run on a variety of small infor-
mation devices such as pagers, PDAs, cellular phones, and maybe even a set-top-box?
If so, you want portability. You are going to want to write the application as few times
as possible. Programs written in manufacturers’ proprietary development environ-
ments or other programming languages will almost certainly not port to such a wide
range of devices.

Choosing your programming language is a relatively straightforward issue. Do you
want to write an application once and run it on a variety of platforms? If so, Java’s
Write Once, Run Anywhere (WORA) platform independence mantra should cer-
tainly make it a candidate programming language for you to consider.
12 CHAPTER 1 INTRODUCTION

WH_Java2.book Page 13 Monday, March 4, 2002 9:59 AM
Are there other reasons for using Java in small things? Well, in some cases, Java may
be the only way to deploy an application to a device. For example, some cell phone
manufacturers support only Java.

When considering what programming language to use for applications that run on
small devices, you may also want to consider what programming languages you already
use on the larger devices and systems. If you already have Java applications running
on your servers and desktop systems, putting Java in small devices eliminates the use
of another language in your development environment. Furthermore, it may also lead
to some code reuse opportunities.

1.5.2 Java’s beneficial features

Java has a lot to offer. Beyond Java’s platform independence, it has a number of fea-
tures that make it an attractive programming language. These features make Java a likely
candidate for software applications regardless of the size or shape of the target platform.

Secure

Security was a concern to the designers and developers of Java from the beginning.
Even in the development of a programming language initially intended for consumer
electronic devices, the developers knew that these devices were going to be networked
and therefore vulnerable to malicious attacks from other systems on the network. As
Java came to be the programming language of the Web, and because security was
built into Java from the beginning, it is well suited to address the security issues asso-
ciated with the Internet.

Reliable

Java’s reliability stems from not having to manage some of the lower-level resources
such as memory and pointers. Developers are then able to manage information as an
object or set of objects, in a manner more akin to how it is done in the real world.
Low-level resources like pointers tend to be the often forgotten, memory-busting pro-
gramming items that cause memory leaks and inadvertent memory access in software
applications. Java places the burden of managing references to memory on a garbage
collection system where these memory references will be more methodically main-
tained than in languages such as C++ where the burden is on the programmer.

Object-oriented

Java is considered a true object-oriented language. Why is being an object-oriented
language important? For starters, object-oriented applications are considered easier to
build and maintain. This is because object-oriented programming structures actively
encourage developers to organize applications into easy-to-understand, manageable
pieces. Large complicated applications are then tackled by assembling many smaller
and more digestible pieces. These pieces or, more appropriately objects, contain both
THE CASE FOR JAVA 13

WH_Java2.book Page 14 Monday, March 4, 2002 9:59 AM
behavior and data. Keeping the data and the behavior in an object helps insure that
only the code responsible for the data can change the data.

Finally, objects, as representations of things in the real world, tend to allow more
people to take part and understand the inner workings of the application. In other
words, objects tend to be self-documenting in nature. A businessperson may not
understand what a two-page function or procedure does, but he or she may have a
pretty good idea of what a Savings_Account object does.

Free

Everyone likes free stuff. Programmers and managers of programmers are no excep-
tion. The basic Java development and runtime environments are free. A reference imple-
mentation of the J2ME and set of development tools are available from Sun’s Java
web site (www.java.sun.com).

This is not to say that all Java development and runtime environments are free. Sun
maintains control of Java. They offer the basic reference implementations, develop-
ment tools, class API, and runtime environment for free. However, should you require
features outside of the basic environment, you may find yourself outside of the free
license agreements. Furthermore, integrated development environments (IDE), server
systems, test tools, and a myriad of other tools and products that a development team
may want to have in order to make themselves more productive and provide a better
quality product are usually not free. The important point, though, is that learning the
language, and developing your first application in Java costs little or nothing.

Simple

Java is simple. This statement always troubles us a bit and bears a little explaining.
Java is simple in that if you are familiar with almost any other object-oriented pro-
gramming language, Java’s syntax will seem relatively straightforward and easy to
learn. Java’s syntax is closely aligned with C++ and includes many of the beneficial
features found in other programming languages. The off-hand comment by many
experienced programmers is that Java is C++ done right. For example, Java is statically
typed. This allows the compiler to catch many coding errors. Also, memory and gar-
bage collection are handled by the Java virtual machine. This capability is usually
music to the ears of anyone who has spent many a late night trying to find a memory
leak in a C++ or C program. These features of course come at a price, which includes
the cost of running the application inside of a virtual machine.

What is not so simple about Java are the nuances of object-oriented development,
the multitude of pre-built Java classes that are available with even the most basic of
Java environments, understanding the features and aspects of Java that make it per-
form well or poorly, and many other aspects of Java that make mastering it more of
a lengthy project. So, take the claims of simplicity with a grain of salt and base them
on your own personal background and experience.
14 CHAPTER 1 INTRODUCTION

WH_Java2.book Page 15 Monday, March 4, 2002 9:59 AM
Other useful features

There are many features that make Java an ideal programming language. Some of the
reasons may or may not apply to your given application needs. Multi-threading,
exception/error handling, dynamic binding, and performance are just some of the
additional reasons why Java is a good programming environment.

Many of the positive features associated with Java originate from the language’s
beginnings. Throughout its history, Java has expanded to more platforms and envi-
ronments. Ironically, as has already been alluded to, Java started as a programming
language for consumer electronic devices.

1.6 ORIGINS OF J2ME

There was a time when “Java” was known as a nickname for the favorite morning drink.
For anyone else familiar with or engaged in software development, it’s hard to image
that the term “Java” has another meaning that is not inexorably tied to today’s most
popular programming language. Java has become one of the most popular solutions
in the holster of “silver bullets” that many of today’s software developers use in creat-
ing Internet, e-commerce, enterprise-wide and mission critical applications. How did
Java come into being? You might find it interesting that Java did not start out as the
programming language to control the Internet. Java had humble beginnings that
started with small things, namely consumer electronics. In the last few years, Java has
had a rebirth of sorts to address the software needs of a burgeoning set of personal
computing devices coming to the world marketplace.

1.6.1 Java’s origins

Java was born in the early 1990’s. It was initially called Oak and it was developed for a
project that was attempting to develop a set of networked consumer electronic devices
that could be programmed from a handheld device similar to a personal digital assistant.
At the time, no single programming language was available to address the software
needs of the various digitally controlled consumer devices such as televisions, video
recorders and disc players, etc. Thus Java had humble beginnings as a means to network
and program home entertainment equipment. In a way, early J2ME was the start of the
whole Java effort.

Oak, renamed Java after it was discovered that another programming language was
already called Oak, saw new life and an expanded role in software development as the
Internet began to emerge in the mid-1990s. The requirement, born of the Internet
age, for reliable and secure software applications that could be written once for an
undetermined number of potential computer systems fit perfectly with Java’s original
design for consumer electronic devices. With a foothold in its use for the Internet and
the World Wide Web and a renewed reason for being, Java expanded to serve in almost
every nook and cranny of current software development. Its versatility, many features,
and, of course, platform independence have made Java a major component of modern
software technology.
ORIGINS OF J2ME 15

WH_Java2.book Page 16 Monday, March 4, 2002 9:59 AM
1.6.2 The return of Java in small devices

Throughout Java’s history, Sun and other organizations have used Java in many sizes
and shapes of computing devices. However, special attention and focus for using Java
on small and often personal computing devices was not organized (and guided by
specification) until the late 1990s. As more powerful computing and communication
devices have recently been packed into smaller and more personal computing devices,
a renewed interest has been placed in Java for these systems. In June of 1999, at the
1999 JavaOne conference, Sun introduced the three platform editions of Java: the J2SE,
J2EE, and J2ME. As part of its unveiling of J2ME, Sun also introduced the first
J2ME virtual machine, namely a preview version of the KVM or K Virtual Machine.
The official return of Java in small devices was complete.

For a more detailed look at Java’s history and evolution and J2ME’s place in this
history, we encourage the interested reader to visit appendix C.

1.7 THE J2ME COMMUNITY

It should come as little surprise that some of the biggest supporters of J2ME technol-
ogy are the manufacturers of small devices like cell phones, pagers, and PDAs such as
Motorola, Ericsson, Nokia, Research In Motion, Palm, Siemens, and others. Sup-
porters also include members of the home, office and automobile electronics manu-
facturers such as Fujitsu, Hitachi, Matsushita (Panasonic), Mitsubishi, Samsung,
Sharp, and SONY. Traditional software vendors like Oracle are also participating.

Many of these organizations have directly participated in one or more of the var-
ious JCP expert groups that developed or revised the numerous J2ME specifications.
Others have endorsed and supported J2ME specifications by adopting J2ME technol-
ogy in many of their product offerings.

J2ME is not the only game in town. Companies such as IBM and Hewlett-Packard
have developed their own Java environments for smaller and embedded devices. While
these companies may be developing competing Java products, it is clear that all of these
organizations see the benefit of bringing Java to the consumer electronic and embed-
ded device platform.

1.7.1 J2ME’s guiding light, the Java Community Process

Supporters of J2ME participate in the improvement and advancement of specifications
through the Java Community Process. We briefly mentioned the Java Community Pro-
cess (JCP) earlier in this chapter. It is a formal process established by Sun Microsystems
to develop and revise Java technology specifications in cooperation with the Java user com-
munity. Each specification developed in the JCP must go through a well-defined process.

The process starts with a request from the Java community at large to develop a
new specification or revise an existing specification. The request can then be accepted
or rejected by Sun’s Process Management Office.

If accepted, the Process Management Office forms an expert group to work on the
specification. This group develops a participant’s draft specification. The expert group
16 CHAPTER 1 INTRODUCTION

WH_Java2.book Page 17 Monday, March 4, 2002 9:59 AM
reviews and refines their draft for a period of time and then promotes the draft to that
of public draft. The public draft is then opened to the Java community at large for
public review and comment. On sufficient review and updates to the public draft, the
Process Management Office will promote the draft to that of final release of a speci-
fication, post the release, and disband the expert group. At this time, a specification
enters maintenance. Various portions of J2ME stand in all phases of this process. As
you become more involved in J2ME or Java development, following (or maybe even
participating in) the JCP becomes a professional routine.

1.8 J2ME PRODUCTS AND ALTERNATIVES

While Sun has led many of the developments in Java, it does not have a lock on the
technology. This is perhaps most evident in the world of small consumer electronics
and embedded devices where other organizations have made products available before
J2ME was released.

J2ME is not an implementation but rather a specification (or more precisely a series
of specifications). Sun has implementations of some of the specifications, but so do other
organizations. Why offer another implementation of J2ME? Well, Sun has not always
been the best implementer of the specifications that they have fostered and led. For
example, it is generally considered throughout the Java community that IBM provides
a much faster and superior Java compiler called Jikes. Likewise, other organizations are
building Java virtual machines and APIs that satisfy the J2ME specifications but which
have smaller footprints and better performance than the SUN implementations.

There are other Java competitors to J2ME that run in the same general environ-
ment, but do not comply with J2ME specifications. Discounting Sun’s early efforts
with Java on consumer electronics, J2ME is a very young technology. It also addresses
a very difficult problem. Namely, this problem is how to write software in a single pro-
gramming language for devices as diverse as a pager and a television set-top box. Other
organizations have decided to focus on providing Java to a less diverse set of target
devices. Still other organizations have taken an approach that allows developers to use
the Java programming language without removing concerns over target device pecu-
liarities. In other words, they are placing more responsibility on the programmer to
insure applications are truly platform-independent.

Of course, another alternative to J2ME is not using Java at all, but instead using
another programming language such as C/C++ or using a device manufacturers pro-
vided in a software development kit. We have already discussed the issues associated
with using and not using Java. In general, Java provides the degree of platform inde-
pendence that is important to software producers for a wide range of devices. Platform
independence may not, however, be important to single-device developers, in which
case using another programming language may not only be a valid choice but may be
preferred. In chapter 15, we examine technologies that compete with J2ME, and tech-
nologies that play a supporting and ancillary role to J2ME.
J2ME PRODUCTS AND ALTERNATIVES 17

WH_Java2.book Page 18 Monday, March 4, 2002 9:59 AM
1.9 SUMMARY

In this chapter, we introduced and defined J2ME. As J2ME is also a part of Sun
Microsystems’s entire Java 2 platform, Sun has positioned J2ME with relation to the
other Java 2 editions, namely J2SE and J2EE. We also looked at why another edition
of Java is necessary and what Java has to offer to developers of software for consumer
electronics and embedded devices. Through an examination of Java and J2ME’s his-
tory, we saw that Java has really come home again to the small device as Java was ini-
tially intended to help bridge common software needs in the consumer electronics
market. The JCP has played an instrumental role in organizing the Java community
in efforts to improve and advance not only J2ME, but all of the various Java technol-
ogies and APIs. In order to help specify where J2ME is actually used, we provided our
definition of the “small device” which roughly ranges noninclusively between the
smart card and a laptop computer. Finally, we closed this chapter with some discus-
sion on J2ME’s relationship to terms such as wireless and mobile as well as to J2ME
products.

Many of the topics mentioned in this chapter will be addressed in more detail
throughout this book. In the next chapter, we look at the organization and structure,
commonly termed the architecture, of J2ME.
18 CHAPTER 1 INTRODUCTION

WH_Java2.book Page 19 Monday, March 4, 2002 9:59 AM
C H A P T E R 2

J2ME architecture

2.1 Goals of the J2ME architecture 19
2.2 Accommodating opposing needs 21
2.3 Configurations: a closer look 24
2.4 Profiles: a closer look 29
2.5 Choosing a J2ME profile 31

2.6 Write once, run anywhere issues 35
2.7 Runtime environment 36
2.8 Designing J2ME applications 36
2.9 Summary 38
In this chapter you will be introduced to the fundamental pieces that make up J2ME.
These include configurations, profiles, and virtual machines. However, before delving
into these pieces of the architecture, let us first discuss the goals of the J2ME architecture.

2.1 GOALS OF THE J2ME ARCHITECTURE

J2ME has a much different set of goals when compared to J2SE and J2EE, resulting
in a much different architecture. The following is a summary of key goals driving the
J2ME architecture:

• Provide support to a variety of devices with different capabilities. These devices
often vary in the areas of user interface, data storage, network connectivity and
bandwidth, memory budgets, power consumption, security, and deployment
requirements.

• Provide an architecture that can be optimized for small spaces and have a
smaller footprint.

• Focus on devices that can be highly personalized, often used by a single person.
19

WH_Java2.book Page 20 Monday, March 4, 2002 9:59 AM
• Provide network connectivity across a varied range of networking capabilities
and services. Network connectivity is often vital to devices in the J2ME space
and their capabilities range from low bandwidth, wireless, and intermittent con-
nections to high-fidelity, high-bandwidth connections.

• Provide an optimized means for delivering applications and data over a network
connection. Often the network is the preferred method of delivering J2ME
applications to devices. Applications must have the ability to be installed on the
device or loaded directly into memory and discarded after execution.

• Maximize cross-platform capabilities of the Java language while taking advan-
tage of each device’s unique capabilities and constraints.

• Maximize flexibility and provide a means to support a rapidly changing market-
place and adapt to existing and unforeseen applications.

• Provide a means for third-party developers to write and deploy applications to J2ME-
supported devices independent of the Original Equipment Manufacturer (OEM).

• Provide a means to scale applications across devices with different capabilities,
features, and processing abilities.

In the sections that follow we take a closer look at a few of these goals.

2.1.1 Support for multiple devices

Support for multiple devices is a goal that has greatly influenced the J2ME architec-
ture. In the J2ME space devices range from cell phones, that may have as little as
160kB of memory and are powered by batteries, all the way up to TV set-top boxes
that are nearly as powerful as a desktop computer and plug into the wall. Unlike the
J2SE and J2EE architectures, which are designed with desktop and server computers
in mind, the J2ME architecture must be flexible and malleable enough to accommo-
date the constraints and unique features of smaller consumer electronics devices while
not imposing unnecessary restrictions on more powerful devices and Internet appliances.

A key goal that comes with supporting multiple device types is allowing for port-
ability between devices. To this end, J2ME identifies core Java features that need to be
available on all platforms. These features include classes from java.lang, java.util
and java.io. However, it is important to note that in some cases J2ME supports
only a subset of the classes and methods of these packages as core functionality found
on all J2ME platforms.

2.1.2 Support for device-specific functionality

Flexibility is another goal that significantly influences the J2ME architecture. Con-
sumer electronic devices and Internet appliances often cater to specific uses rather
than serve as a general-purpose computational machine. For example, a cell phone
serves a different purpose than, say a Java-enabled exercise bicycle. An onboard car
navigation system may need to use global satellite positioning technology to perform
its tasks whereas a Java-enabled TV set-top box would make little use of such capabil-
20 CHAPTER 2 J2ME ARCHITECTURE

WH_Java2.book Page 21 Monday, March 4, 2002 9:59 AM
ities. In addition to performing more specific roles, the devices themselves tend to be
very personalized. A cell phone is likely to be used by only one person. PDAs tend to
store information specific to the person who owns the device. A TV is typically used
by a family or small group of people for specific activities.

The modularity of the J2ME architecture is a good example of how J2ME accom-
modates flexibility. Unlike J2SE that provides a rich feature set as a single group,
J2ME provides a means for partitioning these capabilities into independent units of
functionality. Let us examine the use of RMI (Remote Method Invocation) as an
example. A cellular phone may be significantly more limited in terms of memory, pro-
cessing power, and so forth than a communicator class PDA such as an iPaq. Due to
the cellular phone limitations, it may not be practical or feasible to use RMI within
an application. Furthermore, to reduce the footprint of the J2ME libraries, it is not
desirable to require that RMI features be present in the cellular phone’s installation of
J2ME. However, since a more powerful device would be able to handle the demands
of RMI, should an application choose to use such features, there needs to be a way to
accommodate this situation as well. For reasons such as this, J2ME has partitioned
Java functionality into various groups to allow different devices to require and support
different features of Java as they apply to each device. This helps optimize Java for spe-
cific devices without restricting capabilities.

2.1.3 Maintaining a common architecture

So you may be asking, why maintain a common architecture? Would it not be easier
to build a different Java edition to cater to each of these goals?

The answer to this question brings us back to portability and flexibility. A common
architecture across different devices provides a foundation that allows applications to
be more easily ported, if not directly deployable, across devices. Supporting multiple,
device-specific architectures would make porting applications between even the most
similar devices difficult and expensive to support.

A single, flexible architecture is more cost-effective to maintain than multiple, special
purpose architectures that cater to one or a few devices. A common architecture takes
advantage of the similarities between devices and allows reuse across applications. In
the case where different devices require different capabilities to be supported, the com-
mon architecture can be extended or configured to cater to the specific functionality.

In addition to being portable and maintainable, J2ME needs to be extendible.
As new devices come onto the market, J2ME needs to be able to quickly adapt and
support these devices.

2.2 ACCOMMODATING OPPOSING NEEDS

One of the key problems that the J2ME architecture attempts to solve is how to sup-
port a wide range of devices with different constraints, capabilities, features, and
intended uses without introducing limitations on any specific device.
ACCOMMODATING OPPOSING NEEDS 21

WH_Java2.book Page 22 Monday, March 4, 2002 9:59 AM
One solution might be to create a large, monolithic architecture that includes
everything any application would ever need on any given device. However, such an
architecture would be too large in terms of memory footprint for some of the smaller
devices J2ME is intended to support, such as a two-way pager or a cell phone.

Another solution might be to identify a common denominator of functionality
that applies to all devices in the J2ME space. The problem with this approach is that
powerful devices then become as limited as the smallest devices. Furthermore, the
unique features of devices cannot be adequately supported. In fact, this approach begs
the question: does a least common denominator exist between devices such as a Java-
enabled dishwasher and a cell phone or between a PDA and an Internet TV set-top
box? To a large extent, this is why the J2ME architecture has come to be; it defines a
common approach that addresses how to support many devices without limiting their
feature sets.

2.2.1 Configurations and profiles

J2ME introduces two architectural concepts: configurations and profiles. Configura-
tions make up the set of low-level APIs that define the runtime characteristics of a
particular J2ME environment. Specifically, configurations are responsible for defin-
ing the following:

• Core Java classes

• Java programming language features

• Virtual machine features

Profiles address the more device-specific and use-specific APIs such as the widgets for
the user interface, the data storage mechanisms and other more device-specific fea-
tures such as the use of IR (infra-red) ports for beaming information between PDAs
or accessing telephony features of a cell phone.

Configurations and profiles provide a separation of concern in the J2ME architec-
ture between the need for portability and the need for supporting a wide range of
devices and capabilities. Configurations serve to increase portability across many dif-
ferent devices while profiles cater to the features of a specific device or a group of sim-
ilar devices. For example, configurations include core Java features such as String,
System, Thread, and Object, as well as means for dealing with I/O streams and net-
work connectivity. Profiles cater to device characteristics such as user interface widgets,
event handling, and data storage. Profiles also provide a means to package specific sets
of functionality such as multimedia capabilities or video game features.

An important characteristic of configurations is that they share a nested relation-
ship. This means that configurations can be small or large but they all must fit within
the largest J2ME configuration. Their relationship must always be a superset-subset
relationship. This concept is illustrated in figure 2.1
22 CHAPTER 2 J2ME ARCHITECTURE

WH_Java2.book Page 23 Monday, March 4, 2002 9:59 AM
The nested relationship of configurations allows for greater portability. Portability is
maximized when moving from the more constrained environments to the larger,
more feature-rich environments. For example, if an application was developed for a
cellular phone using Configuration 1, it may be desirable to make that application
available to devices running Configuration 2 as well.

Device manufacturers must adhere to the configuration specification when imple-
menting or porting J2ME virtual machines and configurations to their platform to be
J2ME-compliant. This compliance allows for portability across different manufac-
turer devices as well as between types of devices. This is an example of the Write Once,
Run Anywhere (WORA) capabilities of the J2ME architecture. For example, a J2ME
cell phone application can be deployed to any J2ME-compliant cell phone with little
or no modification. Attempting this with proprietary C libraries or even proprietary
Java APIs would mean porting the application to each manufacturer’s cell phone since
each cell phone is likely to have a different, often proprietary, operating system. Put
simply, the WORA capabilities of J2ME begin with the Java programming language
and are realized through the J2ME architecture. We’ll take a closer look at WORA in
section 2.8.

2.2.2 A high-level view of J2ME

A complete J2ME environment is composed of one configuration and one or more
profiles. Since these two architectural concepts can be mixed around and rearranged
given a particular need, the J2ME architecture becomes malleable enough to support
the diverse needs of the J2ME space.

J2ME employs different versions of the Java Virtual Machine based on the needs
of a particular situation. The configuration specifications define the characteristics of
the J2ME virtual machines. In most cases, this involves removing features of the Java
Virtual Machine in order to accommodate the needs of a configuration. The removal
of features generally has to do with reducing the size of the virtual machine, or with
performance and security issues on a particular class of devices.

The virtual machine is the component that sits logically above the host operating
system. The configuration and profile APIs access the host operating system APIs
through the virtual machine. In a nutshell, these are the components that make up the
J2ME architecture. Figure 2.2 illustrates how they fit together.

Configuration 1

Configuration 2

Figure 2.1

Configurations adhere to a nested

relationship. This means that all

configurations in the J2ME

architecture conform to a superset-

subset arrangement. This increases

portability when moving from a more

constrained configuration to a more

feature-rich configuration.
ACCOMMODATING OPPOSING NEEDS 23

WH_Java2.book Page 24 Monday, March 4, 2002 9:59 AM
2.3 CONFIGURATIONS: A CLOSER LOOK

Configurations are specifications within the J2ME architecture that are defined by an
expert group using the Java Community Process (JCP). Configuration specifications
are created in cooperation with many industry participants.

At present, J2ME defines two configurations:

• Connected Limited Device Configuration (CLDC)

• Connected Device Configuration (CDC)

The CLDC addresses the needs of devices with strict limitations as far as memory,
processing power, power consumption, and network connectivity. The CDC addresses
the needs of more powerful devices. Figure 2.3 illustrates the relationship between the
CDC and the CLDC.

Configurations define the contract between a profile and the Java Virtual Machine.
Recall that profiles provide device- and use-specific APIs. As we mentioned, both the
CDC and the CLDC configurations have their own virtual machines. The CDC uses
the C-Virtual Machine (CVM) and the CLDC uses what is referred to as the Kilo-
byte Virtual Machine (KVM). The implementation of a J2ME virtual machine must
adhere to the specifications defined by the configuration. In the case of the KVM,
functionality is explicitly removed in order to accommodate the strict memory
requirements of the CLDC. Table 2.1 illustrates the relationship between configura-
tions and virtual machines, and provides examples of candidate devices.

Configuration

Java Virtual Machine

Host Operating System

Profile 2 Profile nProfile 1 Figure 2.2

The building blocks of J2ME. The J2ME

environment consists of a virtual machine, a

configuration and one or more profiles. The

virtual machine defines the contract between

the configuration and the native operating

system. Profiles define the contract between

an application and the J2ME environment.

CLDCCDCJ2SE

J2ME

Portability

Figure 2.3

Due to the nested relationship

between configurations, portability

can be greatly enhanced when

moving from a more constrained

environment to a more feature-rich

environment. However, it is

important to remember that J2ME

defines some APIs that are not

present in J2SE.
24 CHAPTER 2 J2ME ARCHITECTURE

WH_Java2.book Page 25 Monday, March 4, 2002 9:59 AM
The next few sections discuss the details of the configurations and their associated
virtual machines.

2.3.1 Connected Limited Device Configuration (CLDC)

The primary goal of this configuration is to provide a minimum footprint with a low-
est common denominator of functionality available to resource-constrained devices.
The CLDC specification can be found at java.sun.com/products/cldc.

A resource-constrained device in this case has the following characteristics:

• 160kB to 512kB of total memory available for the Java environment.

• Either a 16-bit or 32-bit processor.

• Low power consumption. Often these devices are battery-powered.

• Supports some type of connectivity to a network. Most likely this is an intermit-
tent, low-bandwidth connection of about 9600 bps and often wireless.

The CLDC is based on J2SE but omits some functionality. The CLDC was created
by starting with a clean slate and adding only what is necessary based on the follow-
ing criteria:

• Is the functionality appropriate for these types of devices?

• Does the functionality require a large amount of binary code space or consume
a lot of resources such as memory and CPU cycles?

• Can developers easily recreate the functionality if necessary? This applies to
alternate method signatures as well as whole classes.

• Do these devices generally support the functionality?

• Are there security risks regarding the functionality on a constrained device?

To meet the small footprint requirements, the CLDC removes a number of features
that are available in the J2SE environment. The following is a concise listing of fea-
tures that have been removed from or modified for the CLDC environment.

• Java Native Interface (JNI)

• User-defined class loaders

• Reflection

Table 2.1 Configurations, Virtual Machines and some example devices

Configuration Virtual Machine Example devices

CDC CVM Pocket PCs
Communicator class devices
TV set-top boxes

CLDC KVM Cellular phones
PDAs
Two-way pagers
CONFIGURATIONS: A CLOSER LOOK 25

WH_Java2.book Page 26 Monday, March 4, 2002 9:59 AM
• Thread groups and daemon threads

• Finalization

• Weak references

• Floating point data types (float and double)

• Some security features and APIs

• Class file verification (modified for efficiency)

• Some error handling limitations (not all exceptions are included)

Reductions in favor of memory and processing power

All of the preceding features fall into this category to some degree since removing
them reduces the overall size of the API. However, some of these features have been
removed explicitly due to a memory or processing power expense. Floating point data
types are such an example. The expert group that defined the CLDC determined
floating point arithmetic was too expensive in terms of code size and processing
power to implement on the CLDC. This determination is also partly drawn from the
fact that many CLDC devices do not support floating point operations to begin with.
In these situations, floating point support would need to be implemented entirely
within the virtual machine since there are no guarantees that a native API would be
available to handle floating point operations.

Class file verification is another example of how the CLDC has been altered from
the J2SE environment to more effectively support limited devices. The processing
power required to perform class file verification entirely on the device would be sub-
stantial. Supporting this feature in the way J2SE does would substantially increase the
size of the virtual machine as well. As a result, class file verification takes place in two
steps when using the CLDC. The first step is called preverification. This takes place
off of the device, on the server or on the developer’s workstation before deployment.
The second step takes place on the device. Since preverification was performed prior to
the class being loaded onto the device, the on-device verification can be much simpler
and lightweight. CLDC class file verification is discussed in more detail in a moment.

Reductions due to security issues

A number of the reductions in the CLDC specification come from the fact that the
CLDC does not define the full Java security model. In the absence of a full security
model, some features of the J2SE environment become a potential security risk. Secu-
rity issues are mainly behind the removal of JNI, user-defined class loaders and reflec-
tion. However, these features do potentially consume their share of memory and
processing power as well.

For example, without a full security model, a user-defined class loader could alter how
the classpath is traversed. In doing so, an application could theoretically replace pieces of
the core Java libraries and gain access to the device in a way that could harm the device.
26 CHAPTER 2 J2ME ARCHITECTURE

WH_Java2.book Page 27 Monday, March 4, 2002 9:59 AM
Reductions of convenience classes and methods

The size of the CLDC is further reduced by eliminating classes that developers, if
needed, could recreate. ThreadGroup is one such example since it is essentially a col-
lection of Threads. Developers could create a crude version of ThreadGroup using
a Vector, for example.

Methods were removed in cases where multiple method signatures were introduced
for convenience. For example, in J2SE, the String class defines the methods
equals(String) and equalsIgnoreCase(String). This functionality can be
accomplished by executing either the toLowerCase() or toUpperCase() method
(which are both present in the CLDC) on each string before performing
equals(String).

Furthermore, there are some classes and methods that do not apply to the CLDC.
The java.io.File class is an example. The CLDC environment does not directly
support the concept of a file system. This is because many of the devices that the
CLDC targets do not have a file system. Instead, the CLDC relies on the storage facil-
ity of the device itself. These storage facilities are highly device-specific and are left for
the profiles to define. Often devices in the CLDC space have nothing more than sim-
ple byte arrays for persistent storage.

Other reductions

Features such as finalization and weak references have been removed from the CLDC
primarily because these features are not fully utilized or necessary.

Finalization is intended to be used to clean up resources used by a particular object
upon garbage collection. In practice, however, relying on finalization to clean up after
objects is unreliable and can become dangerous. Finalization is linked to garbage col-
lection. An object’s finalize() method runs just prior to the object being freed
from memory. Garbage collection is non-deterministic. We never know when or if it is
going to run. Even when garbage collection is explicitly requested using System.gc(),
the garbage collector does not immediately run. The call to System.gc() simply
requests garbage collection as soon as possible. This may never occur if other threads
take priority. As a result, a resource such as a database connection or an I/O stream
will be tied up as the object that used the resource awaits garbage collection. Further-
more, by default in the J2SE environment, finalization does not occur during the vir-
tual machine shutdown process. Thus, object finalization may never occur for an
object. Since this feature is unreliable and should be avoided in the J2SE environment
it did not make sense to include it in the CLDC environment.

2.3.2 The Kilobyte Virtual Machine (KVM)

The KVM adheres to the Java Virtual Machine Specification (Lindholm and Yellin) as
much as possible. However, the capabilities of the KVM are defined by and large by the
CLDC specification. The KVM differs from the Java Virtual Machine Specification
only when the CLDC requires or allows this to happen for optimization or API support
CONFIGURATIONS: A CLOSER LOOK 27

WH_Java2.book Page 28 Monday, March 4, 2002 9:59 AM
reasons. For example, often float and double are not supported by devices in the CLDC
space. As a result, the creators of the CLDC decided that these data types were too expen-
sive to implement on devices that, for the most part, do not support them. As a result,
float and double are not supported by the CLDC and are not recognized by the KVM.

The KVM requires a small footprint on the device, between 40kB and 80kB
depending on compile options and the target platform. This allows the KVM to run
on devices with as little as 128kB of total memory. The KVM was developed from the
ground up in C and is designed to be as complete and fast as possible, running at 30%
to 80% the speed of the standard JVM, without a JIT (just-in-time compiler).

NOTE The KVM reference implementation that is provided with the CLDC is
just one implementation of a CLDC-compliant virtual machine. Equip-
ment manufacturers have the option to port the KVM to their devices or
to build their own virtual machine that supports the CLDC specification.

Class file verification

The standard Java virtual machines perform a process at runtime called class file veri-
fication. This process occurs before loading any class into memory in order to ensure
both that the class is a valid Java class file and that it is considered

 to be “well-behaved,” in that it does not attempt to access memory outside of its
defined namespace, does not replace any of the core java.* and javax.* packages,
and so forth. Class file verification plays an important role in the Java security model.

In terms of CLDC devices, class file verification tends to be a rather resource-inten-
sive operation and uses a significant amount of processing power, memory, and binary
code space. As a result, the KVM defines class file verification differently than the stan-
dard Java Virtual Machines.

In order to reduce the KVM footprint, much of the class file verification process
takes place outside the KVM and off of the device. Before the class is deployed to a
device the class is modified by a preverify utility. The preverify utility mod-
ifies the class file generated by the javac compiler, adding byte codes that identify
the class as a valid, verified class file. At runtime the KVM checks for these flags. If
the flags are not present or do not contain the correct information, the class loading
process is aborted, which results in an exception being thrown.

2.3.3 Connected Device Configuration (CDC)

The CDC is the second of the two configurations currently defined within J2ME,
and it addresses devices and network appliances with more resources than CLDC
devices. The CDC runs on a C-Virtual Machine (CVM) that is fully compliant with
the Java Virtual Machine Specification. The CDC profile targets devices with as little
as 512kB of memory; however, it is designed for platforms with about 2 MB of avail-
able memory. Typically, the devices in this category have substantial processing
power, they often can be plugged into the wall, and they support rich networking
capabilities such as high-bandwidth connections and high-fidelity Web content.
28 CHAPTER 2 J2ME ARCHITECTURE

WH_Java2.book Page 29 Monday, March 4, 2002 9:59 AM
2.3.4 C-Virtual Machine (CVM)

Although the CVM adheres to the Java Virtual Machine Specification (Lindholm
and Yellin) completely, its implementation is different than J2SE virtual machines in
that it is optimized for devices and network appliances. The garbage collection algo-
rithms are completely separate from the virtual machine allowing different garbage
collector algorithms to be plugged into the CVM. The reference implementation
employs a generational garbage collector that uses shorter garbage collection periods
that do not tie up the virtual machine for long periods of time. Garbage collection
runs for shorter periods of time more frequently. The garbage collector is more exact,
knowing about all pointers at the time of garbage collecting so there is no need to
consume extra processing cycles with conservative scans of the heap.

To increase portability between platforms, the reference implementation defines
multithreading completely inside of the virtual machine. Threads that are imple-
mented inside of the virtual machine are called “green threads.” Using green threads
allows the VM to be more portable since there are no multithreading operating system
dependencies. However, the option to employ native threads is possible if a manufac-
turer or vender chooses to implement this on their target platform.

Class file verification takes place on the device, just as in the J2SE environment.
There is no preverification step when using the CDC.

2.4 PROFILES: A CLOSER LOOK

Profiles provide APIs that focus on a single device, such as a PDA, or a group of related
devices such as cell phones and pagers. The devices supported by a particular profile
tend to have much in common in terms of how the device is used, what the user
interface capabilities are, how or if the device connects to a network, how the device
stores data, and so forth. Profiles are vertical in nature and are designed to meet the
needs of a particular industry or market segment. Profiles address the most specific
behavior available in the J2ME architecture.

What is a profile, really? Is a profile a conceptual definition defined by a specifi-
cation or is it software? This is a subtle but important point. Profiles are created by
many participants through Sun’s Java Community Process (JCP). The output of the
JCP in this case is not software so much as it is the specification. Although the JCP
expert group often provides reference implementations of the specifications, it is up
to the equipment manufacturer to provide a device-specific implementation of the
profile that adheres to the specification on the device. The device manufacturer can
choose to port the reference implementation provided by Sun or it can create its own
implementation that adheres to the specification.

Just as a configuration defines the contract between the profile and the VM, a pro-
file is what defines the contract between the device and your application. For a device
manufacturer to support a profile, all APIs and features specified by the profile must
be supported completely.
PROFILES: A CLOSER LOOK 29

WH_Java2.book Page 30 Monday, March 4, 2002 9:59 AM
NOTE Profile specifications, as well as configuration specifications, may have op-
tional requirements. In these cases, vendors have the option to include or
exclude parts of a profile. To ensure maximum portability for a profile it is
important to understand what features are mandatory and what features are
optional. In general, there are relatively few, if any, optional features in
most profile specifications.

Often, profiles are thought to complete a toolkit for development since it is the profile
specifications that name the family of devices. Profiles also name a configuration that
they base themselves on which indicates the runtime environment characteristics.

Defining profiles helps to ensure compatibility between all devices that support the
particular profile. For example, writing a J2ME application using a particular profile
means the application should run, without modification, on any device supporting
that profile.

2.4.1 Two types of profiles

Typically, profiles provide the user interface, input methods, and persistence mecha-
nisms for a given vertical group of devices. These types of profiles are thought to define
a complete development environment for a specific set of devices and therefore can be
considered device profiles. The profiles discussed so far fall into this category since
they support specific device capabilities.

However, profiles can be created to fulfill more specific services or capabilities.
Examples of these types of profiles might include a Remote Method Invocation (RMI)
profile or a multimedia profile. This type profile could also encapsulate services for a
particular market segment, such as uniform bank transactions. These profiles can be
thought of as feature-oriented profiles. The advantage to encapsulating specific ser-
vices and capabilities as profiles is that doing so allows these features to be easily reused
across devices. It also provides modularity and flexibility by allowing device manufac-
turers to choose which features are necessary or most important.

2.4.2 Profiles are modular

A device may support more than one profile depending on the needs and capabilities
of the device and what the manufacturer chooses to support. Profiles bring modular-
ity into the J2ME architecture, addressing specific needs and functionality. For exam-
ple, consider three devices: a cell phone, a PDA, and a set-top box. Assume they all
support the ability to make credit card purchases over the Internet. Most likely the
device-specific APIs would be addressed by three different profiles due to the user
interface needs and other device-specific features. However, all three devices could
support the same secure credit card transaction profile. Due to the specific nature of
profiles and their modularity we can expect to see a large number of profiles created
for specific needs as we move into the future.

So how can profiles be modular and support all the necessary device-specific APIs
without becoming monolithic or introducing redundancies across the class libraries of
30 CHAPTER 2 J2ME ARCHITECTURE

WH_Java2.book Page 31 Monday, March 4, 2002 9:59 AM
different profiles? Quite simply, a single profile or set of profiles does not make a com-
plete J2ME environment. Profiles simply address specific features. Underneath the pro-
files, providing the core Java support, are configurations and the Java Virtual Machine.

2.4.3 J2ME profiles extend J2ME configurations

A configuration is identified in the specification of a profile as this impacts the range
of capabilities or devices that the profile intends to support. Once a profile specifica-
tion names a configuration, the profile implementation must stay within the bounds
of the configuration. In the case of figure 2.4, a profile built on top of Configuration 1
cannot use any APIs or functionality defined outside the Configuration 1 circle.

However, due to the nested architecture of configurations, profiles that run on Con-
figuration 1 will also run on Configuration 2 (provided there is a device that supports
these profile-configuration combinations). In this sense, configurations are upwardly
compatible. Downward compatibility requires more architectural thought and tech-
nique on the part of the application designer.

2.5 CHOOSING A J2ME PROFILE

Choosing the correct profile or set of profiles is one of the more important decisions
that is made when creating applications using J2ME. This is because, conceptually,
the profile is the part of the J2ME architecture that is closest to the devices them-
selves. Once you have an understanding of the devices that need to be supported, you
can choose a profile or set of profiles. Choosing a profile depends on what the target
devices support and what you need to do.

There are an increasing number of profiles in development. The Mobile Informa-
tion Device Profile (MIDP) is one of the better known, since it is the first J2ME pro-
file to have been released through the Java Community Process. In addition to the
official J2ME profiles, there is one API that deserves some attention. The API is
known as KJava and was developed by Sun Microsystems to test and demonstrate the
CLDC. Table 2.2 summarizes the compete set of J2ME profiles, both existing and
under development.

Configuration 1

Configuration 2

Figure 2.4

The nested relationship of configu-

rations allow for increased compat-

ibility within the J2ME architecture.

Since configurations are nested,

applications can be moved from

a more limited environment, such

as Configuration 1, to the more

feature-rich environment of Con-

figuration 2 without needing to

alter, change or lose functionality.
CHOOSING A J2ME PROFILE 31

WH_Java2.book Page 32 Monday, March 4, 2002 9:59 AM
2.5.1 Mobile Information Device Profile (MIDP)

This is the first official profile released by Sun and it targets cellular phones and two-
way pagers. This profile has also been implemented to run on the Palm operating sys-
tem (Palm OS), making it available on devices supporting the Palm operating system.
Devices that implement this profile tend to be very personalized. Often the user of the
device is the only user. These devices also tend to have very constrained resources such
as a small screen for user interface display, limited data entry capability such as a “one-
handed” keypad, and limited data storage capabilities usually implemented as byte arrays.

The next version of MIDP (referred to as MIDP Next Generation) will address fea-
tures such as security and using HTTPS (Hypertext Transfer Protocol over Secure
Socket Layer), formal inclusion of over the air provisioning (OTA), push architecture,
enhanced user interface capabilities, a small and efficient XML parser, and a sound API.

Part 2 of this book discusses MIDP in great detail and provides examples for build-
ing J2ME application using MIDP.

2.5.2 PDA Profile (PDAP)

This profile specifically addresses the capabilities and needs of personal digital assis-
tants, particularly in the areas of data storage and user interface capabilities such as
PDA-style GUI widgets and touch screen event handling.

2.5.3 Foundation Profile

The Foundation Profile serves as a base for additional CDC profiles that provide
graphical user interface, data storage, distributed Java networking, and so forth. In
addition to its duties as a base profile, the Foundation profile provides rich network
support for high-bandwidth, high-fidelity connectivity devices. This profile is in-
tended to be used with other profiles to provide a rich application environment for
devices smaller than personal computers.

2.5.4 Personal Profile

The Personal Profile is the new home for many of the PersonalJava APIs. The Personal-
Java API, which targets pocket PCs, is being rearchitected so that it fits into the

Table 2.2 Profiles currently defined for J2ME

Profile Configuration/VM
Virtual
Machine

Target Device Examples

MIDP CLDC KVM Cellular phones and two-way pagers

PDAP CLDC KVM PDAs

Foundation CDC CVM Primarily a foundation for Personal Profile

Personal CDC CVM Pocket PCs, tablets, communicator class devices

RMI CDC CVM Any

Personal Basis CDC CVM Any

Multimedia CDC/CLDC CVM/KVM Any

Gaming CDC/CLDC CVM/KVM Any

Telephony (WTCA) CDC/CLDC CVM/KVM Cellular phones
32 CHAPTER 2 J2ME ARCHITECTURE

WH_Java2.book Page 33 Monday, March 4, 2002 9:59 AM
design of the J2ME architecture. PersonalJava will be divided into the CDC, the
Foundation Profile and the Personal Profile. Extensions of the Personal Profile
include JavaPhone and JavaTV APIs.

2.5.5 RMI Profile

The RMI Profile provides distributed support to applications in the CDC space. This
profile provides the infrastructure to marshal objects as the parameters and return val-
ues of remote method calls. Dynamic class loading is utilized to make the marshalled
objects available to a particular JVM during a remote call. The wire protocol JRMP
(Java Remote Method Protocol) is required to be supported. Implementations of the
RMI profile are required to support full RMI semantics as defined by the J2SE 1.3
specification with the following exceptions:

• RMI through firewalls

• RMI multiplexing protocol

• Activation-inactivation model

• Support for the JDK 1.1 stub/skeleton protocol

• Stub-skeleton compiler

The following packages are not part of the RMI Profile specification:

• java.rmi.server.disableHttp

• java.rmi.activation.port

• java.rmi.loader.packagePrefix

• java.rmi.registry.packagePrefix

• java.rmi.server.packagePrefix

The specific exceptions listed cannot be added to a conforming implementation of
the RMI Profile.

2.5.6 Personal Basis Profile

This profile will provide a basic level of graphic capabilities to devices running the
CDC and Foundation Profile. This profile is intended to provide basic graphical user
interface capabilities in environments where the high-fidelity, feature-rich Personal
Profile is not fully utilized or necessary. This profile forms the basis for the Personal
Profile graphical capabilities.

2.5.7 Multimedia Profile

This profile targets the CLDC and CDC configurations to provide basic multimedia
support for sound and other media. Many of the ideas from the Java Media Framework
are included, but this profile is not compatible with the JMF. This API will provide
the means for controlling time-based media such as sound and video along with sam-
pling, streaming and synthetic audio capabilities. The profile is being designed for
CHOOSING A J2ME PROFILE 33

WH_Java2.book Page 34 Monday, March 4, 2002 9:59 AM
scalability, providing a set of basic services for more limited devices with a set of optional
features for more powerful devices.

The multimedia profile is designed as an optional profile to be used in conjunction
with other J2ME profiles.

2.5.8 Gaming Profile

This profile will provide gaming support for J2ME devices. The areas of focus
include 3D modeling and rendering, 3D physics modeling, 3D character animation,
2D rendering and video buffering, game marshalling and networked communication,
streaming media, sound, game controller support, and hardware access. The CDC is
the target environment for this profile; however, efforts are being made to provide
this profile across a wide range of devices. This profile is intended to be available to the
J2SE environments as well.

This is an optional profile designed for use with other J2ME profiles.

2.5.9 Wireless Telephony Communications API (WTCA)

This specification will provide J2ME applications with a reusable set of components
supporting short message service (SMS), Unstructured Supplementary Service Data
(USSD), and Cell Broadcast Service (CBS). The SMS support will include APIs for
sending and receiving text messages, a method for sending and receiving data, the
ability to push applications to devices and an application trigger. USSD will be used
for exchanging data and CBS will allow applications to receive cell broadcast data.

This is an optional profile designed for use with other J2ME profiles.

2.5.10 KJava

The KJava API is not an official profile. It is a set of APIs originally provided by Sun
as a way of testing the CLDC on the Palm OS. However, some third-party develop-
ment tools have implemented commercial versions of KJava (such as esmertec’s Jbed).

The PDA Profile is the official profile
designed to address PDA device needs.
The J2ME architecture, as currently
planned, is illustrated by figure 2.5.

Figure 2.5

This figure illustrates all of the

items currently making up J2ME.

The shaded items indicate

components that are currently

available. The unshaded items

are under development.J2ME

CLDC CDC

Gaming Profile

Multimedia Profile

Wireless Telephony

Personal Basis Profile

RMI Profile

Personal Profile
MIDP Next Generation

PDA Profile

Foundation Profile

KVM CVM

Mobile Information
Device Profile (MIDP)
34 CHAPTER 2 J2ME ARCHITECTURE

WH_Java2.book Page 35 Monday, March 4, 2002 9:59 AM
2.6 WRITE ONCE, RUN ANYWHERE ISSUES

At this point you may be wondering why so much attention is being paid to portabil-
ity and compatibility issues when the Java mantra is write once, run anywhere. Why
should there be any compatibility issues? WORA is not automatic when implement-
ing Java applications on devices. Largely, this is why J2ME came into existence. The
J2ME architecture leverages the Java programming language to enhance portability
across a wide range of devices with different capabilities and needs.

It is important to note that the Java language itself is not modified, only the Virtual
Machine characteristics as described by the CDC and CLDC configurations. The
compatibility issues mainly come into play when different device capabilities must be
dealt with. Different device capabilities are handled through different profiles in
J2ME. As a result, devices that support different profiles may incur compatibility
problems. However, WORA problems encountered within the same profile running
on different devices are an issue of how a particular profile has been implemented on
the devices.

2.6.1 Varied device needs

Since device needs vary across device categories it becomes unrealistic to support all
features on all devices. This is especially the case on smaller devices that have limita-
tions on memory, processing capabilities, power consumption, network connectivity,
and data storage. Manufacturers and developers of cellular phones, for example, are
often forced to make difficult decisions on what is essential for developing applica-
tions on these devices. Supporting all J2ME features on all devices would require a
large amount of memory, processing power that would automatically eliminate many
devices from the J2ME picture. Providing the ability to cater to different devices
based on device features and constraints requires the Java platform to be rearranged
and altered so as to be appropriate and practical for a wide range of devices.

For example, some devices, like PDAs, have touch screen interfaces while other
devices, such as two-way pagers, do not. Two-way pagers, on the other hand, often
support a full alphanumeric keypad whereas cellular phones have a “one-handed” key-
pad. Internet screen phones plug into the wall and do not have to be as concerned
about power consumption as a pocket PC. Internet TV set-top boxes support high-
bandwidth, high-fidelity network connections while wireless devices have more band-
width limitations. The degree to which WORA can be achieved is largely due to the
profile-specific capabilities you choose to support in your application.

These differences in capabilities can prevent an application from porting smoothly
across different types of devices where the same profiles are not supported. Therefore,
some thought and design is required if an application must run on two different pro-
files, such as MIDP and PDAP.
WRITE ONCE, RUN ANYWHERE ISSUES 35

WH_Java2.book Page 36 Monday, March 4, 2002 9:59 AM
2.6.2 J2ME architecture increases WORA

The J2ME architecture does not break WORA carelessly. Rather, it is designed to bal-
ance compatibility issues between devices and the special needs of each type device. For
this reason, it is important to understand the J2ME architecture when creating applica-
tions for J2ME devices. Understanding how profiles and configurations relate increases
your chances of creating applications that are compatible across many different devices.

2.7 RUNTIME ENVIRONMENT

So far, we’ve focused on some fairly basic, yet crucial, J2ME concepts. In chapter 14,
we’ll discuss the J2ME runtime environment in detail, but to round out this intro-
ductory discussion, we’ll briefly introduce it here.

There are two basic ways to run J2ME applications on devices. One way is to run
them transiently over the network. In this mode of operation the application is loaded
into memory by downloading it over the network. Once the application finishes run-
ning, the application is discarded. Running applications in this manner requires a net-
work connection. Applications can also be installed onto the device. In this case, an
application is available to run with or without a network connection.

Regardless of the method used to run J2ME applications, some device-specific
management is involved on the part of the J2ME implementation running on the
actual device. The part of the J2ME environment responsible for managing applica-
tions on the device is called the Java Application Manager (JAM). Implementation of
the JAM is something that is implemented by the device manufacturer. The JAM itself
manages activities such as downloading, installing, inspecting, launching, and unin-
stalling Java applications on the device.

Most devices in the J2ME space will be shipped with the Java environment already
on the device. This is good in that the users of the device, and ultimately the appli-
cation, will not have to deal with loading the Java Runtime Environment. However,
this also means there may only be one JRE available on the device. Since different
manufacturers will inevitably release versions of their products at different times with
different JREs, the code may need to be compatible across a number of different J2ME
runtime versions depending on how the device handles this situation.

Chapter 14 discusses concepts such as class file verification, class loading, virtual
machine lifecycles and responsibilities, threading, and garbage collecting.

2.8 DESIGNING J2ME APPLICATIONS

As with any system architecture, there are tradeoffs to consider. This is the art of
architecture. Creating an architecture that includes J2ME is no exception. Most
likely, there will be a large number of devices involved, possibly different devices types
and manufacturers, varying network capabilities, and data storage capabilities. Here
are some things to consider when creating J2ME applications. Techniques for
addressing some of these issues are discussed in part 4.
36 CHAPTER 2 J2ME ARCHITECTURE

WH_Java2.book Page 37 Monday, March 4, 2002 9:59 AM
The design of J2ME applications should include an understanding of the devices
you intend to support. This understanding allows the appropriate profiles to be
included in the design and implementation of applications. Additionally, you should
have some understanding of the unique capabilities and constraints of each device.
This is a good idea even if only one profile is supported. You must remember that a
single cell phone application could be used on many different manufacturer’s phones.
If you plan to support devices with a mixture of capabilities, such as cell phones, pag-
ers, and PDAs, you may want to provide capabilities specific to each device. For exam-
ple, some pagers have a full keypad where cell phones have a 10-digit keypad. PDAs
usually have wider screens than cell phones and pagers. Some PDAs are even powerful
enough to run a small-footprint relational database.

Another important consideration is how portability factors into your application
requirements, and your organization. As discussed previously, the “write once, run
anywhere” promise does not come automatically with J2ME. Is this a necessary
requirement for your application? Is it practical?

You will also want to consider how the applications will be delivered to the device
and what kind of network capabilities they will need to operate. Different devices may
require different network connectivity infrastructures. For example, does your wireless
service provider allow the device to connect to the Internet or will you be stuck on
their server? How much does it cost per minute to be connected? How much data
must be transferred over the network connection? Is this too much for a 19.6 kbps or
9600 bps connection? Will the application run transiently or will it be installed on the
device? Will there be a combination of installed and transient applications?

The tradeoff between how much data can be downloaded and how much data can
be stored is often a key architectural decision. Some devices must download a fair
amount of their “operational” data simply because they do not have the space to store
the data locally. Some devices may not even have the ability to store data. Of course,
requiring data downloads to operate an application means the device must have a con-
nection. On the other side of the coin, applications that store data locally on the device
may have to deal with data synchronization issues between the device and the server.

You will also want to address usability issues with certain devices. For example,
what happens when someone is using your stock application on a cell phone and he
or she suddenly gets a phone call? Can the user easily suspend the application? Is this
automatically done by the device?
DESIGNING J2ME APPLICATIONS 37

WH_Java2.book Page 38 Monday, March 4, 2002 9:59 AM
2.9 SUMMARY

The J2ME architecture defines configurations to address the horizontal needs of the
J2ME space. The J2ME Virtual Machines are tightly coupled to the configurations
that define them. Profiles fill in the gaps left by configurations and implement spe-
cific capabilities for a family of devices. Profiles tend to address vertical aspects of the
J2ME space, such as specific device capabilities and limitations, or they encapsulate a
set of APIs that address a specific market or technology need. For compatibility between
devices, manufacturers must implement the entire profile specification. This allows
applications that conform to the profile to run on any device that implements the
profile. Finally, it is important to understand that a device may support one or more
profiles on a single configuration.

With a solid understanding of how J2ME is put together and what options exist
for developing applications, you are ready to try out some of this. The next few chap-
ters cover creating and deploying J2ME applications.
38 CHAPTER 2 J2ME ARCHITECTURE

WH_Java2.book Page 39 Monday, March 4, 2002 9:59 AM
C H A P T E R 3

Developing a
J2ME application

3.1 Investment quote application requirements 40
3.2 Designing the investment quote application 42
3.3 Developing J2ME applications 48
3.4 Investment quote application tour guide 50
3.5 Summary 51
Throughout the chapters in the next two parts, we investigate the major aspects of
J2ME programming through a tutorial application. Why a tutorial application? We
find that most people learn by doing. That is why each API introduced in these parts
is reinforced with a piece of a working application to demonstrate what the API has
to offer. In particular, we will explore the J2ME application user interface, event han-
dling, data storage, networking, and input/output.

As was discussed in the last chapter on architecture, J2ME has several configurations
and profiles to address the particular needs of different horizontal and vertical platform
and market segments. In other words, J2ME comes in several flavors depending on
your platform and application needs. In an attempt to give you a real flavor sampling
of J2ME, we examine each of the major application aspects in a couple of devices. We
hope that this will not only allow you to learn the J2ME APIs but also provide you with
some basis of comparing and contrasting the different features and methods of handling
needs across the various environments that make up J2ME. This will not be an exhaus-
tive look at the APIs in any of these areas. Our goal is to cover the basics so that you
have the foundational knowledge from which to build your own applications.
39

WH_Java2.book Page 40 Monday, March 4, 2002 9:59 AM
The tutorial application will be put together over several chapters. As is good soft-
ware development practice, we examine the major tiers of the system and build each
section so that it is somewhat independent or insulated from the other tiers. We start
by developing the application control, and then add the user interface, event handling,
data persistences and networking service until the application is complete.

Before getting started, we need to provide a word of warning about the design of
the application and code in these next few chapters. To improve instruction, the tuto-
rial focuses on certain aspects and features of J2ME in each chapter. At the end of each
chapter, we will have a running application. Since the code in these applications is
written with the intention of explaining the APIs, there are cases where good design
has been compromised in favor of brevity and/or illustration. In chapter 11, Real-
world design, we look at some design and implementation issues and examine how to
build better applications.

In this short chapter, we describe the tutorial application and establish some formal
requirements. In short, we ask, “What exactly must our application do?” We also do some
design work so that we have at least a minimal set of blueprints as we go forward to
implement the application in the various APIs for the different platforms. Specifically, we:

• Establish the customer for the tutorial application.

• Define the tutorial application requirements.

• Design the major components of the application based on the requirements.

• Examine the major components and discuss how they may be implemented.

3.1 INVESTMENT QUOTE APPLICATION REQUIREMENTS

Every project should have a requirement that it is trying to fulfill. Generally, the better
the requirements, the more focused the goal and ultimately the end product developed.

In the case of this tutorial, the application is something of a by-product to the real
requirement. Our real goal is to learn some of the J2ME API. Through this tutorial
application, we hope to give you (the future J2ME guru) examples of Java in small
things and a realistic glimpse at some of the issues and choices associated with devel-
oping software for the consumer electronic and embedded device. Although the
requesting company and its customers may be fictional, many of the requirements and
needs are generic enough to apply to any such application.

3.1.1 The investment quote application customer

In this tutorial, we work for a fictitious dot-com online financial planning adviser and
commodities broker. This organization has a Web site that has enjoyed considerable
success, but they want to expand their client list. The mobile and wireless user base is
growing at an incredible rate and they have targeted this audience for new customers.

In the tutorial application, we are going to develop a J2ME investment price service
that runs on customers’ small and personal devices. This application allows customers
40 CHAPTER 3 DEVELOPING A J2ME APPLICATION

WH_Java2.book Page 41 Monday, March 4, 2002 9:59 AM
to get the latest quoted price for their favorite stocks or mutual funds by providing the
stock or mutual fund ticker symbol.

3.1.2 Requirements analysis

After meeting with several business and marketing representatives from the company,
a short list of requirements has been developed. The prototype application must com-
ply with the general requirements of our tutorial application. The application must:

• be easy to use. Users will only be required to enter a stock or mutual fund sym-
bol for a United States investment and get back a price in United States dollars.

• store the investment symbol, price for the investments viewed. The latest price
obtained for one of these commodities can be retrieved out of storage at any
time. In order to show how the investment is “trending,” a maximum of two
prices will be stored for each investment. A current and historical price will
allow the system to depict how the price for the investment is changing.

• run on the most ubiquitous small devices of today, which consists of a two-way
pager, cellular telephone, and personal digital assistant.

• require the users to be “connected” with their device at the time of retrieving
new price quotes.

• store the last quotes retrieved. The user is not required to be “connected” when
looking up already stored quotes. The system will allow the user to store up to
two prices per symbol.

After analyzing the requirements, it is determined that the prototype will consist of
two uses or, more appropriately, use cases. The first use case, ObtainQuote, will pro-
vide the user with the ability to obtain a quote and store the quote price and date on
the device. A second use case, RetrieveQuote, will allow the customer to pull up the
previously retrieved price quotes for any given investment symbol stored in the
device. A use case diagram of the system and its “uses” cases is depicted in figure 3.1.

Figure 3.1 The Investment Quote system is determined to have four use cases. The customer

will request to either obtain new investment quotes or retrieve historical quotes. Secondary use

cases help in saving or retrieving data from the database. The ObtainQuote use case will also

require interaction with an outside QuoteService system.

Small Device

Owning

Customer

ObtainQuote

EasyTrack

RetrieveQuote
ExtractQuote

QuoteService

SaveQuote
INVESTMENT QUOTE APPLICATION REQUIREMENTS 41

WH_Java2.book Page 42 Monday, March 4, 2002 9:59 AM
The ObtainQuote use case will connect to and make use of an outside or third-party
quote service to get investment price information. In this system, the third-party
quote service is referred to as the QuoteService.

Hidden to the user, the ObtainQuote use case will need to save quote information.
The SavePrice use case will be responsible for connecting to the small device’s persis-
tent mechanism and storing the investment quote data. Similarly, RetrieveQuote will
utilize the same persistent storage service to get back data via the RetrievePrice use case.

3.2 DESIGNING THE INVESTMENT QUOTE APPLICATION

In the development of the tutorial application, we examine the implementation of
several major components of the system. In particular, we will look at the user inter-
face and event handling, persistent data storage, and networking or input/output
means. We design the application around these major components. However, this
design will be implemented a couple of times throughout the next two parts of the
book. In particular, we will examine the same application implemented under both
the MIDP profile and KJava API on top of the CLDC configuration.

3.2.1 Application control

We have already determined that there are probably two main uses of the system.
One use is to have the customer provide a symbol and have the system obtain a new
investment quote while another use is to have a customer provide a symbol and have
the system retrieve a historical or already retrieved investment quote from a database
that is on the device. To complement the use cases of the system, we decide to set up
two general applications.

WHY TWO APPS? Smaller applications There are several reasons why you may wish to break
apart the required functionality into many smaller applications. Remem-
ber, a J2ME application usually runs in a constrained device. A single large
application may not be able to run inside of the memory-constrained
space of a cell phone or other device. Breaking apart an application allows
the required functionally to be delivered within the constraints of a de-
vice. In many ways, there is a new application paradigm when working
with many of the J2ME devices. The input mechanisms, key pad or stylus
input devices do not easily support navigating through a larger multiple-
window application, especially when the user’s attention is often diverted
while using one of these devices (how often have you used a cellular phone
while driving?). When developing J2ME applications, consider smaller
applications with fewer interactions to get the job done. Finally, there is
the issue of deployment. Smaller applications have always been easier to
deploy. Since many of the J2ME devices are mobile and wireless, replac-
ing an application with limited connectivity is easier when the applica-
tions are smaller.
42 CHAPTER 3 DEVELOPING A J2ME APPLICATION

WH_Java2.book Page 43 Monday, March 4, 2002 9:59 AM
One application will provide the ObtainQuote functionality while a second applica-
tion will handle the RetrieveQuote functionality. Each application requires an appli-
cation control object. An application control object is an instance of a class that forms
the contract between the device, and in particular the device’s application manage-
ment software, and the application. The application control object also manages the
general action or workflow, such as calling on the appropriate classes or API to display
the user interface or make a network connection within the application.

Depending on the J2ME configuration/profile, different classes and method APIs
provide application control. For example, an instance of a single type of class handles
application control in the MID profile. The CDC is closer to J2SE, using either an
applet or any class with a main method used as the application entry point and central
class orchestrating actions of other classes (providing general application control).

3.2.2 User interface design

The tutorial applications are going to have three general “displays.” Whether obtain-
ing a new quote or retrieving an existing quote out of the database, the application
must have a way to prompt the customer for an investment type and symbol. The
customer enters the symbol for the investment and selects mutual fund or a stock. We
expect the first display to look something akin to the sketch in figure 3.2.

Except for its size, this display does not look that much different from what one
would expect to see in a J2SE application. In fact, while the paradigm of text entry
fields and radio buttons seems familiar, the actual look and feel of the user interface
elements may be quite different when actually implemented for the platform. The
profile and/or configuration will help define a common API, but the device con-
straints (such as screen size, lack of a keyboard, etc.) may require some interesting
interface adaptations in order to fulfill the API.

As with any application, we also expect the application to help prevent users from
making a mistake. For example, a mutual fund symbol always ends with ‘X’. There-

Figure 3.2

The Investment Price Request prototype display

anticipates the customer providing an investment

symbol and indicates whether the investment is a

mutual fund or stock. This type screen can be used

to request a new investment quote or to retrieve

an existing quote from the database on a device.
DESIGNING THE INVESTMENT QUOTE APPLICATION 43

WH_Java2.book Page 44 Monday, March 4, 2002 9:59 AM
fore, the application must check data entry and provide the necessary feedback when
a mistake is made.

Once the application obtains the quote from the database or quote service, the
investment price is displayed to the customer. The application shows the price on a
display that looks something like the sketch in figure 3.3.

Finally, when a previous price for an investment has been obtained, in order to give
the user some visual context on which direction the investment price is heading since
last checking on the price, the application will provide a third and final display to
visually depict the historic and current prices in a graph. This part of the application
forces us to examine the drawing capabilities provided by the various APIs. The proto-
type sketch for this display is provided in figure 3.4.

Depending on the size of the screen and the graphical capabilities of the device, these
displays may be shown on one or multiple screens. User interfaces are defined in pro-
files built on the J2ME configuration. As will be seen in the various tutorial applica-
tion implementations, the APIs and set of visual components can be vastly different
for each type of platform. The user interface API must adapt to the underlying abili-
ties of the platform.

Figure 3.3

Results from a successful request to get a new

price quote or to retrieve the price data from the

database after providing a valid investment

symbol should result in the price data for the

investment being displayed in text form.

Figure 3.4

If the customer requests price data to be

retrieved from the database and the database

has at least two prices for the investment

stored in the database, then a graphical

comparison chart should be depicted, as shown

in this Investment Price Comparison prototype.
44 CHAPTER 3 DEVELOPING A J2ME APPLICATION

WH_Java2.book Page 45 Monday, March 4, 2002 9:59 AM
While not shown on the mock displays, there must be a way for the user to interact
with the system and navigate from display to display. Usually, this is done with a series
of buttons or similar user interface widgets. Navigating and reacting to user input are
the jobs of the event-handling mechanism. Event handling is often associated with the
user interface since the user interacting with the graphical user interface (GUI) triggers
most events. However, again depending on the configuration and profile, different
mechanisms and APIs are provided for catching and reacting to events In each tuto-
rial section, we examine event handling in combination with the user interface in the
various implementations.

3.2.3 Persistent storage

Persistent storage means the capability to store data beyond the life of the running
application. In other words, persistent storage is a fancy term for a database. In the
tutorial application, we expect investment price data to survive the application’s start
and stop as well as turning the device on and off. Therefore, it is investment data, includ-
ing both current and historical price information, which must be stored in the database.

On Wall Street, each stock or mutual fund is given an investment symbol. For
example, the Janus Growth and Income Fund has a symbol of JAGIX. The tutorial
application will use a symbol such as JAGIX as its handle or index to data in the data-
base. A set of price quotes for funds and stocks might look like table 3.2.

In this example, we have current prices for the Janus mutual fund as well as 3M and
IBM stock. However, we only have a historical or previous price for 3M. We can sur-
mise from this data that the customer has only checked on the JAGIX and IBM price
once but has checked the price of 3M at least twice.

We hesitate in using the term “row” in describing the price quote data that is saved
in the database. The term row implies that there is some type of tabular or relational
database in effect. Even though we have depicted the data this way in the example
above, this may be misleading. In reality, many of the implementations do not use any
type of relational database structure to make data persistent on the device. Database
engines can be expensive in terms of system resources. So in many cases, a simple data
structure such as a byte array is used to store data on the device’s storage medium.

In the tutorial system, we already have plans for one application to get new price
data and put that data into storage (ObtainQuote) and another application to retrieve

Table 3.1 An example of price data stored in the database is represented in the table below.

For two investments, Janus Growth and Income Fund (JAGIX) and IBM, only a current price is stored.

For 3M (MMM), both a current price and an historical price have been stored in the database.

Symbol Current Price Previous or Historical Price

JAGIX 33.66

MMM 117.02 116.05

IBM 111.21
DESIGNING THE INVESTMENT QUOTE APPLICATION 45

WH_Java2.book Page 46 Monday, March 4, 2002 9:59 AM
and display the data (RetrieveQuote), as shown in figure 3.5. This means that the
applications will have to share the database. While this may not seem to be much of
a hurdle in the design (after all J2SE and J2EE applications share databases all the
time), we will see that applications and the database can be more tightly coupled in
J2ME. In other words, sharing databases can require certain stipulations of J2ME
applications and the deployment of the same.

Figure 3.5 Both the ObtainQuote and RetrieveQuote applications of the tutorial will share the

same “database.” One application (ObtainQuote) will use the database to store investment

price data it obtains from a QuoteService. The other application (RetrieveQuote) will use the

database to retrieve historical price information for display to the customer.

3.2.4 Networking and input/output

One of the more device-dependent aspects of writing software for resource-constrained
devices is in trafficking and communicating information. Indeed, even the availabil-
ity of certain familiar input/output paradigms such as a file may not exist in the realm
of certain J2ME devices. The developers of the J2ME specifications have recognized
this as a potential obstacle to developing highly portable applications across a diverse
set of platforms. We have dedicated an entire chapter (chapter 13) to understanding
how J2ME configurations and profiles attempt to isolate J2ME applications from
device networking and I/O implementation details.

In order to shield the rest of the application from having to deal with any possible
network or I/O implementation differences, we design the price quote acquiring ser-
vice as a stand-alone component answering stock and mutual fund price information
when asked. We establish a contract for the quote service, but its implementation
details are subject to change based on the changes of the available networking and/or
I/O API that is determined by the underlying device.

As we will see, the component fulfilling the quote service need is really just a facade
to a financial investment quote service available over the Internet. (Figure 3.6) The
application does not get all the stock and mutual fund quotes being published from
the trading floor. Instead, the quote service inquires on the current price (or as near
to current price as can be obtained through an on-line service) for a stock or mutual
fund price via standard networking protocols. Throughout the book we often refer to
this external service as the secondary actor depicted in the previous use case diagram
(figure 3.1) called the QuoteService.

In the tutorial, the quote service component will connect via the hypertext transfer
protocol (HTTP) to this external service. In the real world, our dot-com employer
probably provides this external service. As a financial institution, it probably has the
price data and merely provides us with a data portal which we can network into in

J2ME Persistent Storage

(Price Quote Data)

J2ME Application I

(ObtainQuote)
J2ME Application II

(RetrieveQuote)
46 CHAPTER 3 DEVELOPING A J2ME APPLICATION

WH_Java2.book Page 47 Monday, March 4, 2002 9:59 AM
order to get needed price information. However, since our company does not really
exist, the application will request price quotes from one of the many popular online
stock and mutual fund information web sites. The task is the same; just the location
of the data would change in a real world situation. Obviously, for the application to
receive price information, it must be able to get connected, in this case to the Web.
We will see how J2ME addresses this issue.

Figure 3.6 The QuoteService acts as a façade to the “real” Internet quote providing service. Using

HTTP and talking through the Internet, the QuoteService will query a real world investment web

site for investment quotes and return the resulting prices back to the ObtainQuote application.

If the fictitious dot-com online financial planning firm that we work for supplied the
data, we may have the luxury of getting the price data back in a format we specifically
require. The Extensible Markup Language (XML) is popular for this type data
exchange and we will look at this possibility in chapter 12. Depending on who else
uses the information available through the portal, we may not have this luxury. Fur-
thermore, an unfortunate consequence of dealing with data from a public web site on
the World Wide Web is that when we ask for information and we get the data required,
we also get a lot of other information we do not need. The world of the Web operates
largely in terms of HTML formatted data. We can request a price quote from a third
party, but what comes back is an HTML page containing the stock or mutual fund
price, historical price information, organization information, and all the banner ads
the Web site can sell.

So, the QuoteService will have to locate the actual data amid the mass of HTML
tags, investment information and advertising that is returned from any request to get
price data. (Figure 3.7) A subcomponent of the QuoteService will parse through
HTML provided by the on-line service and extract the price quote.

Tutorial Application

QuoteService
On-line

Price Service

World

Wide

Web

HTTP

ObtainQuote

On-line

Price Service

a URL

Parser

(extracts the
price from
the HTML)

an HTML page

containing the

price data

getPrice (a Symbol)
QuoteService

a Price

Figure 3.7

Price data returned by the

on-line service must be

extracted from the HTML

before being used by the

application. In a real

world application, the

server should supply the

client device with only the

data it requires, which in

this case is the investment

price information.
DESIGNING THE INVESTMENT QUOTE APPLICATION 47

WH_Java2.book Page 48 Monday, March 4, 2002 9:59 AM
In this way, the QuoteService also acts as a filter for the real price information that
the application needs and isolates the rest of the application from having to worry
about non-price related information. This can be especially important if the on-line
price service ever changes the content of its data.

3.3 DEVELOPING J2ME APPLICATIONS

So how do we go about building this application we have just documented? As we are
about to explore developing J2ME applications, through the remainder of this book
we shall see that, in many respects, developing a J2ME application does not differ all
that much from developing a J2SE application. The biggest difference associated with
developing applications in J2ME is in having to consider the target device(s). While
Java is write once and run anywhere, even in J2ME, the available Java API can differ
on various target platforms. As we discussed in chapter 2, configurations provide
generic Java functionality across a wide range of devices, whereas profiles provide tar-
get-specific functionality. Thus, unlike other Java environments, we cannot teach you
a single J2ME API and then teach you how to deploy your Java application to many
platforms. Instead, with J2ME, one must learn and apply the available API for a
given targeted platform. In the next parts of this book we look at developing J2ME
applications in two different environments targeted for at least two different devices.
In each part, we will demonstrate how to get your development environment set up,
how to write the application, and how to run and deploy your application.

3.3.1 Obtaining the development environment

Before the first line of code is written, you will need the Java environment required
to develop an application for your targeted platform(s). Along with the J2SE JDK
(version 1.3 or higher), what other items you will need depends on two things:

• The targeted devices

• The tools you want to use to develop your application

The targeted devices will dictate which configuration, profiles and other APIs you
will need in order to create your application. The target device also dictates which
emulation environment is needed.

Today’s market place also offers several products to assist you in developing your
applications. If you are the type that codes with a text editor and the required JDK
and class APIs, you are ready to start developing after downloading the necessary APIs
and emulators. However, as with J2SE application development, there are several Inte-
grated Development Environments (IDEs) and tools available today to help lighten
your load when developing J2ME applications. In some cases, these environments are
offered for free as part of the reference implementation.

As we explore each of our environments, we provide you with information on what
is required to establish your development environment. Additional information on
available IDEs and tools is provided in the appendix of this text.
48 CHAPTER 3 DEVELOPING A J2ME APPLICATION

WH_Java2.book Page 49 Monday, March 4, 2002 9:59 AM
3.3.2 Creating the applications

Writing J2ME applications is similar to how most Java applications are written. The
main differences tend to be found in deployment since that is when the actual devices
come into the picture. In general, the pattern for creating J2ME applications that we
will use throughout this book goes something like the steps listed here:

• Write the code

• Compile the application targeting specific profiles

• Run the preverifier utility to add the necessary preverification flags to the class
files. This step may be optional depending on the J2ME environment and ven-
dor implementation of the specifications.

• Package the application. This takes on various forms. For a PDA running
Palm OS this may mean creating a PRC file. For a cell phone this may mean
creating a JAR file.

• Deploy to a Web server or install on the device

3.3.3 Runtime environment

As we shall see in the development of applications throughout the next two parts,
there are two basic ways J2ME applications are run on devices. One way is to run
them transiently over the network. In this mode of operation the application is
loaded into memory by downloading it over the network. Once the application fin-
ishes running it is discarded. Running applications in this manner requires a network
connection. Alternately, if the device allows, applications can be physically installed
onto the device. In this case, the application is available to run with or without a net-
work connection.

In order for J2ME applications to be used on a device some device-specific man-
agement is involved. The part of the J2ME runtime environment that does this is
called the Java Application Manager (JAM). Implementation of the JAM is something
that is done by the device manufacturer. The JAM itself is responsible for activities
such as downloading, installing, inspecting, launching and uninstalling Java applica-
tions on the device.

Another important peculiarity of the J2ME runtime environment is the absence of
a programmer-definable classpath. In J2ME, there is only one class path and it is hid-
den from the developer. Given the many struggles Java developers have with classpath,
this may come as a relief. Of course, there are some hidden issues that come with the
absence of a definable classpath. Note that this means there can be only a single set
of libraries on a device. When your application starts, the context (-classpath) for load-
ing classes cannot be defined to cater specifically to your application nor can you
manipulate the order in which classes are loaded.

Most devices in the J2ME space will be shipped with the Java environment already on
the device. This is good in that the users of the device, and ultimately your application,
DEVELOPING J2ME APPLICATIONS 49

WH_Java2.book Page 50 Monday, March 4, 2002 9:59 AM
will not have to deal with loading the Java Runtime Environment. However, this also
means there may only be one JRE available on the device. Since different manufac-
turers will inevitably release versions of their products at different times with different
JREs, your code may need to be compatible across a number of different J2ME runt-
ime versions.

3.4 INVESTMENT QUOTE APPLICATION TOUR GUIDE

In the next two parts of the book (Parts 2 and 3), the tutorial application explained in
this section will be implemented. Actually, the application will be implemented
twice. Why twice? Again, the targeted platforms dictate the use of various APIs and
development environments. In Part 2, we implement the application in the all-J2ME
MIDP and CLDC APIs. This development effort will produce an application that
runs on a cellular telephone, pager and at least one type of PDA. In the subsequent
part, Part 3, we revisit the same application and use the KJava API and CLDC to
implement the application for use on Palm OS PDA devices. If you are interested in
one type of development over the other, skip the part that least interests you, as these
have been written as independent sections of the book.

Throughout both parts we take these same steps toward implementation.

1 Through the small and now almost mandatory step in any programming intro-
duction of HelloWorld we examine the basics of the J2ME environment and
API in order to ramp up before building the application.

2 We then examine the application control for each type application. How is the
application started and run?

3 Before developing the graphical user interface, we stop to look at the general
API for building the user interfaces and then we develop the user interface for
the tutorial application.

4 As with almost any user interface, the application must handle the events gener-
ated by the user’s interactions with the interface in order for the application to
do anything. We look at the means by which each environment handles events
and triggers response inside the tutorial applications.

5 Each small device provides a means to store data on the device. We inspect the
API for data storage and implement a solution to store investment prices on
each device using the API.

6 Finally, we will look at what it takes to network these small devices wirelessly
using a J2ME networking framework called the Generic Connection Frame-
work. In the process, we will need to deal with information input/output mech-
anisms available in the environments. We will discover that the networking and
input/output service is the same across all environments, so we will not need to
reinvent this service for both tutorial implementations. Instead, we will reuse
the quote service developed for the MIDP application in the KJava application.
50 CHAPTER 3 DEVELOPING A J2ME APPLICATION

WH_Java2.book Page 51 Monday, March 4, 2002 9:59 AM
After completing each of the tasks described previously there is a working tutorial
application. Therefore, if you would like to skip ahead and look at a particular section
of interest, each chapter uses the work from the previous chapter, but it can be
worked on and examined as an independent entity without difficulty. The steps of
the tutorial application’s development are covered in the chapters as outlined in table 3.3.

3.5 SUMMARY

In this chapter, we examined our hypothetical customer and defined the requirements
for our tutorial application. Based on the requirements, we established a general sys-
tem design outlining the major components of the system. With the major features of
the application laid out, we are ready to implement our application. As we will see,
each API may require certain changes in implementation based on the capabilities of
the underlying platform. These will be specifically evident in the user interface and
database arenas, as intended by the J2ME configuration/profile architecture. In the
end, however, we will have at least two different devices with the same applications
outlined in this chapter.

Table 3.2 The next two sections of this book are organized

around teaching and demonstrating the MIDP and KJava APIs.

Part 2 – Developing for cellular phones and pagers

Chapter 4 — A simple MIDP application

Chapter 5 — MIDP user interface

Chapter 6 — MIDP data storage

Chapter 7 — Connecting to the Internet

Part 3 – Developing for PDAs

Chapter 8 — J2ME on a PDA, a KJava introduction

Chapter 9 — KJava user interface

Chapter 10 — KJava data storage

* Note — the networking service is also reused and connected
in the KJava version of the application in chapter 10.
SUMMARY 51

WH_Java2.book Page 52 Monday, March 4, 2002 9:59 AM

2

WH_Java2.book Page 53 Monday, March 4, 2002 9:59 AM
P A R T
Developing for cellular
phones and pagers

In this part, we explore the CLDC and MIDP APIs in some detail. As you may
recall from chapter 2, the CLDC and MIDP are guided by J2ME specifications. We
will demonstrate the APIs in a tutorial application which was initially described in
chapter 3. The tutorial application allows a customer to use a cell phone or two-way
pager to get and see stock or mutual fund quotes. This tutorial application will allow
us to see the major aspects of a J2ME application, namely user interface, event han-
dling, data storage, input/output and network connectivity.

WH_Java2.book Page 54 Monday, March 4, 2002 9:59 AM

WH_Java2.book Page 55 Monday, March 4, 2002 9:59 AM
C H A P T E R 4

A simple MIDP
application

4.1 Questions about the MIDP development environment 56
4.2 Developing MIDP applications 56
4.3 Summary 68
This chapter introduces you to the entire process of creating a J2ME application
using the Mobile Information Device Profile (MIDP). In order to illustrate this
example a simple application will be used. In doing this, we introduce a number of
J2ME terms and concepts, and provide a cursory introduction to the J2ME API. It’s
always a good idea to become familiar with some of the terminology and the para-
digm of a new software environment before trying to tackle a big project. This will set
the stage for upcoming chapters where each concept will be covered in more detail
and we look at using J2ME to build our tutorial application. For now, the goal is to
get an application up and running quickly and to introduce you to the MIDP devel-
opment environment.

All of the examples are described using the Windows operating system. We do not
address the particular syntax of other operating system commands, but the general
concepts hold. If you are not running Windows, you will need to translate the com-
mands appropriately.
55

WH_Java2.book Page 56 Monday, March 4, 2002 9:59 AM
4.1 QUESTIONS ABOUT THE MIDP DEVELOPMENT
ENVIRONMENT

When starting out in any new application development environment, most people
usually have a number of general questions about the environment and tools for
doing the job. Let’s see if we can head off a few of these before we get started.

4.1.1 Can I do this without an actual device?

Absolutely! Many emulators are freely available and allow you to run and test J2ME
applications right on your desktop. We will discuss how to obtain and use each type
of emulator when the time is right. But first we will concentrate on the code.

4.1.2 What device do I start with?

The Mobile Information Device Profile has been designed mainly with cellular
phones and pagers in mind. However, MIDP can run on other types of devices, such
as PDAs. Sun currently has an implementation of MIDP that runs on Palm OS
devices. However, the current MIDP user interface capabilities are rather limiting on
a PDA. For this example, a cellular phone will be chosen as the primary target device
for the application. Since we are developing to the MIDP, rather than a specific
device, the application will run on any MIDP-compliant device. So at this point, all
we need to be concerned about is that the desired target devices support MIDP.

4.1.3 Do I have to use the command line tools?

No, there are a number of Integrated Development Environments (IDEs) available
that take care of the dirty work for you. Sun’s Wireless Toolkit is a good example.
However, this chapter is intended to give you a detailed, behind-the-scenes example
of what goes into creating a J2ME application. Therefore we will use the command
line tools provided by Sun’s reference implementations. We hope this will give you a
better understanding of the technology.

4.1.4 The example: what are we going to do?

This chapter uses a variation of the ubiquitous Hello World application. The applica-
tion is rather simple in functionality; it just displays a string of text to the screen.
However, the intent of this chapter is to quickly cover the lifecycle of developing a
complete application and deploying it to a device. More sophisticated applications
will be built in later chapters.

4.2 DEVELOPING MIDP APPLICATIONS

As mentioned previously, this example will work for both a cellular phone and a
pager. How does this dual functionality affect the way we write or build the applica-
tion? As we will see, it does not affect how we create the application at all. The only
difference comes at the end when we deploy the application and need to deal with the
specific device itself.
56 CHAPTER 4 A SIMPLE MIDP APPLICATION

WH_Java2.book Page 57 Monday, March 4, 2002 9:59 AM
Given the range of devices J2ME is designed to support, cellular phones and pagers
rank at the low end, being two of the most limited devices in the J2ME spectrum.
These limitations are especially noticeable in the areas of the user interface and avail-
able memory. Cellular phones, for example, typically have a one-handed keyboard.
Entering letters becomes tedious quickly since the user is forced to cycle through three
or more alphabetic characters represented on each key. Furthermore, cellular phones
may have as little as 40 KB of memory available for your application once the virtual
machine and runtime libraries are loaded.

As discussed in chapter 2, in order to deal with these limitations, both cellular
phone and pager applications require a configuration and profile combination that
addresses these limitations. This is where the Connected Limited Device Configura-
tion (CLDC) and Mobile Information Device Profile (MIDP) come into the picture.
The CLDC is designed for devices with limited characteristics. Since configurations
address the horizontal needs of a wide variety of devices, an additional architectural
piece is needed to support the more device-specific capabilities, most notably user
interface and data storage. This is how profiles, or in this case MIDP, fits in.

Another piece that we will need is the virtual machine that supports the CLDC.
This is the K virtual machine (KVM), which is also discussed in chapter 2. This is a
specially designed reference implementation virtual machine that has a much smaller
footprint than the standard Java virtual machine. Because of the small footprint, Java
can run on memory-constrained devices such as a cellular phone.

4.2.1 Getting started

First we need to get our hands on the MIDP development environment. We will use
Sun’s reference implementation that is available in a single download from the follow-
ing URL: http://java.sun.com/products/midp.

As of this writing, the current publicly available version of the MIDP
from Sun’s web site listed above is version 1.0.3. However, depending on
when you purchase this text and go to Sun’s site, the version of MIDP
may have changed. With the 1.0.3 release and using the default installa-
tion directories, MIDP installs in a directory called midp1.0.3fcs. This
will obviously vary depending on your downloaded version. For this reason,
we refer generically to the MIDP directory throughout this text as midp-fcs.

Download and unpack the distribution into the directory from which you want to
work. Note that the distribution unpacks into a top-level directory named similar to
midp-fcs. For convenience, set up the following system environment variables. These
variables are used in this example for convenience and have no effect on the MIDP
environment.

MIDP=\midp-fcs
MIDPClasses=\midp-fcs\classes
MIDPTools=\midp-fcs\bin

DISTRIBUTION
NOTE
DEVELOPING MIDP APPLICATIONS 57

WH_Java2.book Page 58 Monday, March 4, 2002 9:59 AM
With the development environment in place, we are ready to begin developing our
first J2ME application. Using MIDP, applications are created by extending the
javax.microedition.midlet.MIDlet class. This class acts as the interface be-
tween the application management software on the device and MIDP applications. It is
important to understand that each J2ME profile may define different starting points
(classes and methods) for an application. For MIDP the starting point is a MIDlet.

4.2.2 What is a MIDlet?

A MIDlet is an abstract class that is subclassed to form the basis of the application. By
subclassing the MIDlet class, we define an interface between our application and the
application management software on the device. A MIDlet is the heart of a MIDP
application and allows the device to start, pause and destroy the application.

The MIDlet class resides in the package javax.microedition.midlet. The
code to declare a MIDlet looks something like this:
import javax.microedition.midlet.MIDlet;

public class HiSmallWorld extends MIDlet {
}

For this example, we need to add a constructor that creates a TextBox (a GUI wid-
get that allows us to display a message) and a member variable to hold the TextBox
instance since we will need to reference it from a couple of places.
import javax.microedition.midlet.MIDlet;

import javax.microedition.lcdui.*;

public class HiSmallWorld extends MIDlet {
 private TextBox textbox;
 public HiSmallWorld() {
 textbox = new TextBox("", "Hi Small World!", 20, 0);
 }
}

Since MIDlet is an abstract class, our HiSmallWorld class needs to implement a
few methods before it will compile. There are three methods that require attention:
startApp(), pauseApp() and destroyApp(boolean unconditional).

When a device receives a message to start a MIDlet, the MIDlet is instantiated and
the application management service on the device calls startApp(). At this point,
our application takes over and does any initialization that may be required. In our
example, we make the textbox the active element. Do not worry about the use of the
Display class for now, as this will be covered in a subsequent chapter.

WARNING The startApp() method can be called a number of times during the life-
cycle of a MIDlet. Therefore, it should not be used to perform initialization.
For example, a MIDlet can be placed in a paused state as a result of a call to
the pauseApp() method. In order to restart, and release it from the paused
state, the startApp() method is invoked. If you have to do some initial-
ization on the MIDlet, it needs to be carried out in conjunction with the
constructor, not the startApp() method.
58 CHAPTER 4 A SIMPLE MIDP APPLICATION

04_MIDP application.fm Page 59 Monday, March 4, 2002 10:08 AM
DEVELOPING MIDP APPLICATIONS 59

public void startApp() {
 Display.getDisplay(this).setCurrent(textbox);
}

The pauseApp() method is called by the device when the user, or the device, needs
to suspend our application’s activity to perform some other task. When the device in-
vokes this method, our application is responsible for placing itself into a paused state.

Since we are only displaying a message to the screen, and there is nothing to do to
pause the application, we will implement this as an empty method.

public void pauseApp() {
}

At the point, if the user chooses to close the application, or for some reason the sys-
tem requests that the application be closed, the method destroyApp(boolean
unconditional) is called. This method is invoked to allow our application to
clean up any resources that it may be using, such as a network or database connec-
tion. This method takes a single, boolean parameter. This parameter indicates how
much say our application has in being destroyed. If the parameter is true, our applica-
tion will have no choice but to clean up its resources and prepare for being destroyed.
If the parameter is false, the application can throw a MIDletStateChange-
Exception exception to prevent the destroy method from taking place and to
continue running. Again, this exception can only be thrown if the parameter is false.
Since there are no resources that need to be cleaned up in this application destroyApp
(boolean unconditional) is also implemented as an empty method.

public void destroyApp(boolean unconditional) {

}

The full source code for our first J2ME application is shown in Listing 4.1.

import javax.microedition.midlet.MIDlet;
import javax.microedition.lcdui.*;

public class HiSmallWorld extends MIDlet {

 private TextBox textbox;
 public HiSmallWorld() {
 textbox = new TextBox("", "Hi Small World!", 20, 0);
 }

 public void startApp() {
 Display.getDisplay(this).setCurrent(textbox);
 }

 public void pauseApp() {
 }

 public void destroyApp(boolean unconditional) {
 }
}

Listing 4.1 HiSmallWorld.java

WH_Java2.book Page 60 Monday, March 4, 2002 9:59 AM
This is all the code required to get our application up and running. The next step is
to compile the application.

Sun Microsystems provides an IDE for developing MIDP applications.
Called the Wireless Toolkit, it is available from Sun’s web site at:
http://java.sun.com/products/j2mewtoolkit/.We do not use the toolkit
throughout our examples and tutorial application for two reasons:

1 We want you to understand what is actually occurring behind the
scenes when writing J2ME applications. The compiling, preverifying,
jarring and deployment are important parts of the J2ME development
process and should be understood.

2 IDEs change or may have bugs. You may switch development tools or
you may find an IDE that has a problem or bug. An IDE can do part
or most of the work for you when it comes to developing applications,
but it is important to understand the work being accomplished by the
IDE just in case the IDE has difficulties or you change IDEs.

In appendix D, we demonstrate the use of the Wireless Toolkit for the
Hello World example. If you download the Wireless Toolkit from Sun,
you should still be able to use the application code in the rest of this text.
However, be aware that compiling, preverifying, jarring, and deploying of
the applications will require different steps and use a different emulator
executable.

4.2.3 Compiling the application

This is done using the standard javac compiler command. However, since we are
compiling an application for the J2ME environment (rather than J2SE) the
–bootclasspath option must be used. This option takes advantage of Java’s cross-
compilation capability. The cross-compilation feature is new in the Java 2 platform
and allows the Java compiler to target the class files for an environment other than
standard Java. Our target environment is J2ME and by using the –bootclasspath
option we can instruct the compiler to use the J2ME libraries. Without this we could
accidentally use classes or method signatures not supported by J2ME (such as Dou-
ble) and as a result, these errors would not be caught until runtime.

Use the following command line to compile the application:

>javac -g:none -bootclasspath %MIDPClasses% HiSmallWorld.java

The –g:none option is used to prevent debug information from being included in
the class files. This is an optional flag, but it helps reduce the size of the class files. The
%MIDPClasses% variable is the environment variable we set up earlier. This vari-
able points to the J2ME classes and it is passed as the –bootclasspath parameter.

WIRELESS
TOOLKIT
60 CHAPTER 4 A SIMPLE MIDP APPLICATION

WH_Java2.book Page 61 Monday, March 4, 2002 9:59 AM
4.2.4 Preverifying the application

For security reasons, the standard Java Runtime Environment verifies each class file
before loading it into memory. This is done to ensure that the class file is valid and
does not attempt to access memory outside of its boundaries or access disk. Since J2ME
must cater to devices that are more limited than a desktop computer, some of the
J2ME virtual machines handle class file verification somewhat differently than the
standard Java VMs, namely, verification does not entirely take place on the device.
Instead, as part of the deployment process, each class file must be preverified using a
preverify utility provided in the J2ME development environment. This utility
verifies each class file and modifies it to include special flags indicating their validity.
At runtime, the J2ME virtual machine checks these flags. If the flags are present and
indicate a valid class file, the VM assumes the class is OK to run. Without these flags
the VM will throw an exception or abort the class loading process.

Preverification is performed using the preverify.exe utility found under the
bin directory. Run the following command to preverify the application:

>%MIDPTools%\preverify -classpath %MIDPClasses%;. HiSmallWorld

It is important to note that this utility creates new class files. By default, this com-
mand places the output class files in a directory called \output off of the current
directory. To change the output directory, use the –d option as with other Java utili-
ties. The following version of the command places the class files in a directory named
“preverified” nested below the current directory:

>%MIDPTools%\preverify -classpath %MIDPClasses%;.
 –d .\preverified HiSmallWorld

For each of these commands we specify a classpath of only the J2ME classes, and
our own classes we have created, to ensure that the class files generated are suitable for
the J2ME target environment.

If the preverify utility is having trouble loading your class file, which is
reported by the message “Error loading class HiSmallWorld”, make sure classpath
is set properly to find the file HiSmallWorld.class that was created by javac.

4.2.5 Running the application

With the classes compiled and preverified, our application is finally ready to run.
This is where we need an emulator. If you downloaded the MIDP reference imple-
mentation, you already have an emulator and are ready to go. The emulator is an exe-
cutable named midp and is located in the midp-fcs\bin directory. We will run
our application by typing the following command:

>%MIDPTools%\midp -classpath %MIDPClasses%;.\output HiSmallWorld

This command runs the midp executable, passing the MIDP classes and our applica-
tion’s classes on the –classpath parameter. Note that we must direct the midp
DEVELOPING MIDP APPLICATIONS 61

WH_Java2.book Page 62 Monday, March 4, 2002 9:59 AM
utility to look in the .\output directory (relative to the cur-
rent directory) for the preverified version of our classes. If we
had just specified the current directory (“.”), midp would find
the original classes generated by javac. Since these classes do
not contain the proper preverification flags, the J2ME runtime
environment would not be able to load the classes and a run-
time exception would abort the class loading process.
If the application runs successfully, your emulator will look
like figure 4.1.

After closing the emulator, the output from the console should look similar to the
following text.

E:\work\HiWorld>\midp-fcs\bin\midp -classpath \midp-fcs\classes;.\output
HiSmallWorld

Execution completed successfully
8205 bytecodes executed
7 thread switches
204 classes loaded (149 bytes)
220 objects allocated (9572 bytes)
0 garbage collections
0 bytes collected
0 objects deferred in GC
0 (maximum) objects deferred at any one time
0 rescans of heap because of deferral overflow
0 pointer validations requiring heap scans
Current memory usage 9572 bytes
Heap size 300000 bytes

4.2.6 Troubleshooting

If there are problems running the application here are some debugging tips:

• Make sure the application compiled successfully when you ran javac and make
sure the preverify utility ran successfully without errors.

• If an error such as “The name specified is not recognized as an internal or external
command, operable program or batch file.” occurs, this means Windows was unable
to find the midp executable. Adjust the command path to point to midp.exe.

Figure 4.1

The HiSmallWorld MIDlet written above is

depicted here running in the MIDP emulator.

While the MIDP specification dictates common

Java functionality across the spectrum of

devices, in this case cellular telephones, each

device may have a slightly different display.

Thus, emulators often provide various “skins” to

test applications running in various displays.
62 CHAPTER 4 A SIMPLE MIDP APPLICATION

WH_Java2.book Page 63 Monday, March 4, 2002 9:59 AM
• The most notorious runtime problem in the Java environment is getting the
classpath set properly so that the correct versions of classes are loaded, and
loaded in the proper order. The following two problems are related to classpath:

• If an error such as “One or more MIDlet class(es) not found: null” was re-
ported, the midp emulator was not able to find your classes. Make sure
classpath is specified correctly and make certain your class files are where
you think they are. Remember, the classpath must specify both the J2ME
class libraries (\midp-fcs\classes) and your application’s classes.

• If an error such as “ALERT: Error verifying class HiSmallWorld” was reported,
the midp executable was unable to load the class. Most likely the emulator
found the unverified version of HiSmallWorld.class instead of the
preverified version, so make sure classpath includes the preverified ver-
sion of the class. Be certain the unverified version is not included on
classpath or its path is specified after the preverified path. Try deleting
the unverified version of the class file to see if you get a different error or the
correct, preverified version is found.

4.2.7 JARing MIDlets

The previous example shows the midp emulator directly accessing the class file.
However, in most cases MIDP applications should be deployed as JAR files. This is
done for several reasons. First of all, depending on the network protocol and the cli-
ent-server software involved, JAR files can be more efficient when downloading mul-
tiple applications over protocols such as HTTP since the entire JAR is downloaded
with a single connection (rather than a connection for each class file). Furthermore,
MIDlets can be deployed as part of a MIDlet suite. The details of creating a MIDlet
suite will be covered in a moment, but first we modify the example to use a JAR file for
deployment.

Using the existing class files, we can run the following jar command to create a
JAR file:

>jar cf hi.jar -C .\output HiSmallWorld.class

The “cf” parameters tell the jar utility to create a new JAR file named “hi.jar”.
The –C option is used to change to a specified directory and include a specified file.
In this case, the –C option is used to switch to the \output directory to pick up the
HiSmallWorld.class file without having the \output directory appear in the
JAR file as an attribute of the class. (Without using the –C option the runtime envi-
ronment would think our MIDlet resided in a package named output.)

Now let’s run midp using our newly created JAR file. In order to do this, make a
minor adjustment to the classpath setting to include the JAR file that now con-
tains the class file.

>%MIDPTools%\midp -classpath %MIDPClasses%;.\hi.jar HiSmallWorld
DEVELOPING MIDP APPLICATIONS 63

WH_Java2.book Page 64 Monday, March 4, 2002 9:59 AM
This should not change the MIDlet. The only difference is that we are now running
the application from a JAR file. If the emulator cannot find the class, then either the
JAR file is not valid or there may be something wrong with the classpath.

4.2.8 Developing MIDlet suites

Multiple MIDlets can be grouped and deployed as a unit using a MIDlet suite. A
MIDlet suite is composed of a JAR file containing all the MIDlets and supporting
classes and an application descriptor file. The application descriptor file is a text file
containing information about the MIDlet suite, such as the names of the MIDlets,
the location of the JAR file, vendor information, etc. Application descriptor files have
the extension “jad” and provide the device, and in some cases a server environment,
with information about the MIDlet suite so it can be run over a network or installed
physically on the device.

Deploying MIDlets as part of a suite has some advantages over deploying the
MIDlets individually. The most significant advantage is that MIDlets in a suite can
share resources such as data stored on the device. For example, within an MIDP imple-
mentation, records are stored in a device-dependent area that is not directly accessible
by the Java APIs. This data storage area is controlled at the MIDlet level. Within a
MIDlet suite however, all MIDlets can share record stores and create multiple,
uniquely named, record stores. In addition to the ability to share resources, MIDlet
suites are deployed using JAR files. As mentioned previously this can allow the client
to be more efficient when downloading the application.

To better understand dealing with MIDlet suites, we are going to need more than
one MIDlet. For simplicity, make a copy of HiSmallWorld, giving it the incredibly
innovative name of HiSmallWorld2 and change the output string to read “Hi Small
World2”. Once this is done, compile and preverify the new HiSmallWorld2 class.

>javac -g:none -bootclasspath %MIDPClasses% HiSmallWorld2.java

>%MIDPTools%\preverify -classpath %MIDPClasses%;. HiSmallWorld2

NOTE Display limitations It is worth pointing out that, on the MIDP cellular
phone emulators, a 15-character String (give or take a few characters) is
about the longest String that can be displayed without wrapping. Since
the Connected Limited Device Configuration (which is the configuration
for MIDP) addresses limited device implementations, care should be taken
to understand the different limitations of the target devices for which you
are writing applications. Different devices have different display limitations
even though they all may support MIDP. Pagers, and other cellular phones,
for example, may have a wider and narrower screen.

Now we are ready to create our MIDlet suite. There is no real significance to this suite
in terms of functionality. The goal is to walk through how MIDlet suites are created.
64 CHAPTER 4 A SIMPLE MIDP APPLICATION

WH_Java2.book Page 65 Monday, March 4, 2002 9:59 AM
The MIDlet suite descriptor file

The first step is to create a descriptor file for the MIDlet suite. A descriptor file is a
text file with a jad extension. The attribute names are case-sensitive. A list of the
attribute names and their purposes is provided in table 4.1. The Java Application
Manager (JAM) on the device uses the descriptor to manage the application lifecycle.
The JAM is responsible or participates in activities such as downloading, installing,
inspecting, executing and uninstalling applications.

For our example we define a JAD (Java Application Descriptor) file with the follow-
ing properties. We do not specify an icon for any of our MIDlets at this point. Create
this file in the current directory. If you have been following the examples, this is the
same directory where the Java source files you are working with are located.

MIDlet-Name: SmallWorldsuite
MIDlet-Version: 1.0.0
MIDlet-Vendor: Catapult Technologies, Inc.
MIDlet-Description: Sample suite of Small World MIDlets
MIDlet-Info-URL: http://www.ctimn.com/
MIDlet-Jar-URL: http://localhost/hi.jar
MIDlet-Jar-Size: 3000
MicroEdition-Profile: MIDP-1.0

Table 4.1 The Java Application Descriptor is used by the JAM to manage a MIDlet suite’s appli-

cations on the device. As this table shows, it contains a wealth of information about the suite.

Attribute Name Description

MIDlet-Name Name of the MIDlet suite.

MIDlet-Version Version of the MIDlet suite. The format must follow the convention
Major.Minor.Micro (X.X[.X]) where the micro version is optional (defaults
to zero if omitted). Each version number is allowed two digits (0-99).
If this tag is missing, the version is assumed to be 0.0.0. Any nonzero
version is considered a newer version than 0.0.0.

MIDlet-Vendor Vendor that supplies this MIDlet suite.

MIDlet-Description Text description of the MIDlet suite. (Optional)

MIDlet-Info-URL Location where more information can be found about the suite. (Optional)

MIDlet-Jar-Size Size of the JAR file specified by this descriptor.

MIDlet-Jar-URL The URL indicating from where the JAR can be loaded.

MIDlet-Data-Size The minimum number of bytes of persistent data required by the MIDlet
suite. The default is zero. (Optional)

MIDlet-Icon The name of a portable network graphic file (PNG) within the JAR file
representing the MIDlet suite. (Optional)

Micro Edition-Profile Profiles used by the application.

Micro Edition-Configuration Configuration used by the application.

MIDlet-1 The first MIDlet in the list of available MIDlets (if this is a MIDlet suite).
For each MIDlet specified, the following syntax is observed:
Description, icon name, MIDlet class name.

The description appears in the menu when the list of MIDlets is displayed.

MIDlet-n Nth MIDlet in the suite
DEVELOPING MIDP APPLICATIONS 65

WH_Java2.book Page 66 Monday, March 4, 2002 9:59 AM
MicroEdition-Configuration: CLDC-1.0
MIDlet-1: Hello1, , HiSmallWorld
MIDlet-2: Hello2, , HiSmallWorld2

JARing the MIDlet suite

The JAR file for a MIDlet suite must contain a manifest. A manifest provides the
runtime environment information about how the JAR file is configured, any security
information and what the JAR contains. The J2ME runtime environment compares the
manifest to the application descriptor as a precaution before loading a MIDlet suite.

The values of MIDlet-Name, MIDlet-Version and MIDlet-Vendor must
be the same in both the manifest and the descriptor file. If these values do not match,
the MIDlet suite is considered invalid. Developers may define descriptor attributes not
beginning with MIDlet- to provide property information to the application.

To create a manifest, simply provide the JAD file as input to the jar command.
Modify the jar command used previously to create the JAR for our MIDlet suite.

>jar -cfm hi.jar HiMIDletsuite.jad -C ./output HiSmallWorld.class -C

./output HiSmallWorld2.class

The jar command now contains an “m” option instructing the JAR utility to create
a manifest using HiMIDletsuite.jad. Note that the -C option must be repeated
for each class specified in the jar operation. If a wildcard is used (e.g., *.class)
the -C option is applied only to the first class file and is ignored for the remaining
class files. In this scenario, unverified classes can accidentally be added to the JAR file,
causing problems at runtime.

Now we are ready to run our MIDlet suite. Use the –descriptor option with
the midp emulator to run the suite directly.

%MIDP%\bin\midp -classpath %MIDPClasses%;.\hi.jar -descriptor HiMIDletsuite.jad

The first screen that appears is a list of our MIDlets that make up the MIDlet suite.
This list is composed of the MIDlet description specified for each MIDlet in the JAD
file. At this point, we do not have an Exit button defined that allows the user to exit
the application gracefully. This requires a user interface component and the use of
event handling that is beyond the scope of this exercise. Both user interface compo-
nents and event handling are covered in the next chapter. For now, we have to live
with running one MIDlet at a time and exiting the emulator. Figure 4.2 shows the
Hello2 MIDlet running.

So now we have managed to build and run MIDlets and MIDlet suites. How are
MIDlets intended to be used in the real world? So far we have been running MIDlets
directly from the computer on which we develop them, using the midp emulator.
However, running MIDlets on an actual device is slightly different. First of all, the
application must somehow get onto the device. There are basically two ways that
MIDlets can find their way onto a device. They can be installed physically to the
device or they can be temporarily loaded into memory over a network connection.
66 CHAPTER 4 A SIMPLE MIDP APPLICATION

WH_Java2.book Page 67 Monday, March 4, 2002 9:59 AM
Fortunately, the midp emulator supports the ability to run MIDlets in both of these
ways in addition to running them directly, as we have done so far. To begin, we dis-
cuss simulating MIDlet deployment using the midp emulator. This allows us to
explore these deployment techniques and get our environment set up correctly. Once
these concepts are familiar to us, we will deal with the actual devices.

Accessing MIDlets over the Internet is a very likely scenario so we will begin by
accessing our MIDlet suite using a Web server. In this scenario the application is
dynamically downloaded to the device each time we run the emulator.

4.2.9 Running MIDlet suites from a web server

In order to access a MIDlet using a Web server, you need a Web server that the midp
emulator can access. This example uses the Apache web server, which is available at the
following URL: http://httpd.apache.org

Once the Web server is installed, the MIME type configuration needs to be modified
to handle the jad extension. MIME stands for Multipurpose Internet Mail Extension
and allows the Web server to know what types of content the client supports.

For Apache, adding the following line to the mime.types file specifies the JAD
MIME type.

text/vnd.sun.j2me.app-descriptor jad

Deploying a MIDlet suite to a web environment is simply a matter of placing the
JAR and JAD files in an area visible to the Web server. For Apache, this is the
htdocs directory. Copy the files hi.jar and HiMIDletSuite.jad into this
directory and start the web server. Make sure the Web server starts without errors.
Then invoke midp.exe using the –transient option.

>%MIDP%\bin\midp -transient http://localhost/HiMIDletSuite.jad

There should not be any differences in the application itself. The only difference is
that we are now accessing the application over http.

4.2.10 Installing MIDlet suites locally

The midp emulator supports the ability to emulate installing a MIDlet suite from a
location, either a file or URL, so we can run it locally on the “device.” The following
command simulates installing a MIDlet suite locally on a device via a Web server.

Figure 4.2 HiSmallWorld2 joins HiSmallWorld as

part of the HiMIDletsuite running in the MIDP

emulator. As the picture on the left shows, when

a MIDlet suite is deployed to a device, the device

knows to provide an application kick-off screen that

allows the user to select MIDlets for execution.
DEVELOPING MIDP APPLICATIONS 67

WH_Java2.book Page 68 Monday, March 4, 2002 9:59 AM
This command assumes the Web server is up and running and the application has
been deployed to an area visible to the Web server. (See the previous example to
understand how to set this up.)

>%MIDP%\bin\midp -install http://localhost/HiMIDletSuite.jad

Before we run the installed suite, let us make sure our application is installed. This
can be done using the –list option:

>%MIDP%\bin\midp –list

The output should be something like the following:

E:_book\work\HiWorld>_book\midp-fcs\bin\midp -list

JamMode = LIST
 SmallWorldSuite
 Hello1
 Hello2

Once a MIDlet suite is installed, the Web server is no longer necessary. The applica-
tion can run as if physically installed on the device using the –run option:

>%MIDP%\bin\midp -run SmallWorldSuite

Note that the –run option requires the name of the suite specified in the JAD file,
not the name of the JAD file.

To remove an installed MIDlet suite use the –remove option followed by the
name of the suite to remove:

>%MIDP%\bin\midp -remove SmallWorldSuite

To obtain profile and configuration information for an installed suite, use the
–version option followed by the name of the suite:

>%MIDP%\bin\midp -version SmallWorldSuite

4.3 SUMMARY

In this chapter, we have looked at setting up a J2ME development environment, spe-
cifically a MIDP environment. We also examined a little of the CLDC and MIDP
API while developing the simplest of applications. With the development environment
in place and a fundamental understanding of how J2ME applications are built and
deployed using MIDP, you are ready to get into some of the more powerful capabili-
ties of this J2ME environment.
68 CHAPTER 4 A SIMPLE MIDP APPLICATION

WH_Java2.book Page 69 Monday, March 4, 2002 9:59 AM
C H A P T E R 5

MIDP user interface

5.1 MIDP application control 70
5.2 The investment quote application control in MIDP 71
5.3 Two types of MIDP user interface and event handling 75
5.4 The MIDP user interface API 77
5.5 Handling user interactions in MIDP 105
5.6 MIDlets on other devices 130
5.7 Summary 133

We start our exploration of the J2ME API with a look at the Mobile Information

Device Profile on the Connected Limited Device Configuration. The CLDC was
designed for very resource-constrained devices (those with less than 512 KB of mem-
ory). On top of that, the MIDP was designed for devices on the lowest end of this
low-range configuration. Specifically, the MIDP was designed primarily for cellular
telephones and pagers. These devices have restrictive memory, screen real estate and
input devices, which are just some of the qualities that make building applications at
this end of the spectrum more challenging.

In this chapter, we look primarily at the graphical user interface of the MIDP.
Because most of the events that must be handled are generated from the interactions
with the user interface, we also examine MIDP’s event handling. Although touched
on in the Hello World example of chapter 4, the MIDP’s application control is unique
and requires additional explanation. Therefore, we also take a more in-depth look at
the MIDP’s MIDlet class. As is the case in all the tutorial chapters, we will bring to
life the API reviewed in this chapter by implementing the appropriate piece of the
tutorial application with what was learned in the chapter.
69

WH_Java2.book Page 70 Monday, March 4, 2002 9:59 AM
In summary, we will:

• revisit the MIDP Application Control

• assess the general state and constraints of UI development for MIDP devices

• examine the MIDP graphical user interface high-level and low-level APIs

• look at general event handling in MIDP

• examine the high-level and low-level event models and event handling API in
the MIDP

• implement the tutorial application control and user interface in the MIDP by:

• developing the tutorial application control using MIDP MIDlets

• implementing the tutorial application’s user interface displays using the
MIDP high-level and low-level APIs

• developing the tutorial application’s MIDP event handling mechanism

5.1 MIDP APPLICATION CONTROL

Before we examine the user interface API in MIDP, we will take a closer look at appli-
cation control and infrastructure. As we discussed in chapter 4, application control is
provided by extending the javax.microedition.midlet.MIDlet class. There-
fore, the application controllers on cell phone and pager applications will extend the
MIDP abstract javax.microedition.midlet.MIDlet class. As we also saw in
the last chapter, MIDlets must implement three abstract, protected methods specified
by MIDlet. Namely, our applications will have to override destroyApp(boolean
unconditional), startApp() and pauseApp(). MIDlets can exist in one of three
states: Active, Paused and Destroyed. These abstract methods allow the application to
conduct work in the transition between the states (figure 5.1).

When a MIDlet is started with a call to startApp(), the MIDlet enters the Active
state. In an Active state, a MIDlet can utilize any resources it has available. In the
Paused state, a MIDlet must release all resources and become inactive. A MIDlet
enters the paused state through a call to the pauseApp() method. A MIDlet appli-
cation can go back and forth between the Active and Paused state. From either the
Active or Paused state, the MIDlet can enter the Destroyed state by invoking the
destroyApp(boolean unconditional) method. Once in the Destroyed state,

Active

Paused Destroyed

Figure 5.1

MIDlets exist in one of three states as depicted

in this state diagram. When started, the MIDlet

is in the Active state. Once active, the MIDlet

can be destroyed or paused. From the paused

state, the application can be reactivated.
70 CHAPTER 5 MIDP USER INTERFACE

WH_Java2.book Page 71 Monday, March 4, 2002 9:59 AM
a MIDlet cannot return to either the Active or Paused state. All resources must be
released and persistent data must be saved. Any failure to enter a desired state is met
with a MIDletStateChangeException. This exception is only valid during a call
to destroyApp(boolean unconditional) when the unconditional flag is set
to false. Otherwise, the MIDlet will still enter the Destroyed state no matter what is
returned from a destroyApp(true) call.

5.2 THE INVESTMENT QUOTE
APPLICATION CONTROL IN MIDP

As a first step in implementing the tutorial application in the MIDP, two application
control classes are created. The ObtainQuoteMIDlet will handle the ObtainQuote
features from our use case requirements while the RetrieveQuoteMIDlet will
manage the other identified use, namely RetrieveQuote. The structure for the con-
trollers looks like the class diagram depicted in figure 5.2.

Given the required three MIDlet abstract methods, the general construct to implement
ObtainQuoteMIDlet starts off looking something like the code in listing 5.1.

import javax.microedition.midlet.*;

public class ObtainQuoteMIDlet extends MIDlet{

 public ObtainQuoteMIDlet () {
 }

 protected void startApp() {
 }

 protected void pauseApp() {
 }

 protected void destroyApp(boolean unconditional) {
 }
}

Listing 5.1 ObtainQuoteMIDlet.java

#startApp()

#pauseApp()

javax.microedition.midlet.MIDlet

RetrieveQuoteMIDletObtainQuoteMIDlet

#destroyApp(in unconditional : bool)

Figure 5.2

ObtainQuoteMIDlet and

RetrieveQuoteMIDlet serve as

application controllers for the

Investment Quote system.

Both classes extend MIDlet as

depicted in this class diagram.

The required
MIDlet methods

q

THE INVESTMENT QUOTE APPLICATION CONTROL 71

WH_Java2.book Page 72 Monday, March 4, 2002 9:59 AM
Along with the required methods, we have also provided the MIDlet with a single
constructor method. At this time, these methods do nothing. We will fill in the
details as we need them. Likewise, the code to implement RetrieveQuoteMIDlet
begins with that in listing 5.2.

import javax.microedition.midlet.*;

public class RetrieveQuoteMIDlet extends MIDlet{

 public RetrieveQuoteMIDlet () {
 }

 protected void startApp() {
 }

 protected void pauseApp() {
 }

 protected void destroyApp(boolean unconditional) {
 }
}

We will want to JAR the two MIDlets and create a MIDlet suite called
QuoteMIDletSuite. To do this, we need a Java Application Descriptor (JAD) file. For
our tutorial application we define a JAD file as shown in listing 5.3. We will not spec-
ify an icon for any of our MIDlets at this point. Create this JAD file in the directory
containing the MIDlet Java files.

MIDlet-Name: QuoteMIDletSuite
MIDlet-Version: 1.0
MIDlet-Vendor: Catapult Technologies, Inc.
MIDlet-Description: Obtain and Retrieve Quote Tutorial MIDlets
MIDlet-Info-URL: http://www.ctimn.com/
MIDlet-Jar-URL: http://localhost/quote.jar
MIDlet-Jar-Size: 3000
MicroEdition-Profile: MIDP-1.0
MicroEdition-Configuration: CLDC-1.0
MIDlet-1: ObtainQuote, , ObtainQuoteMIDlet
MIDlet-2: RetrieveQuote, , RetrieveQuoteMIDlet

WHY A MIDLET SUITE? Nothing in the requirements of the tutorial application necessitates
the creation of a MIDlet suite here. However, the need for a suite will
become more evident in the next chapter when we look at persistent
storage for the application. Given the fact that the two applications
are related to each other and are likely to share common classes at
some point in the future, having a suite is a good idea.

Listing 5.2 RetrieveQuoteMIDlet.java

Listing 5.3 QuoteMIDletSuite.jad

Again, the
required MIDlet
methods

q

72 CHAPTER 5 MIDP USER INTERFACE

WH_Java2.book Page 73 Monday, March 4, 2002 9:59 AM
To compile, preverify, JAR, and run our MIDlets, invoke the commands listed below.
As we did in chapter 4, we assume that environment variables have been conveniently
set up to help in the compile, preverify and execute commands. The MIDP environ-
ment variable should be set to the location of your MIDP directory (\midp-fcs in our
case), the MIDPClasses environment variable should be set to the location of your
MIDP classes (\midp-fcs\classes in our case), and finally, the MIDPTools variable
should be set to the location of the MIDP tool set (\midp-fcs\bin on our system).

Compile
>javac -g:none -bootclasspath %MIDPClasses% ObtainQuoteMIDlet.java
>javac -g:none -bootclasspath %MIDPClasses% RetrieveQuoteMIDlet.java

Preverify
>%MIDPTools%\preverify -classpath %MIDPClasses%;. ObtainQuoteMIDlet
>%MIDPTools%\preverify -classpath %MIDPClasses%;. RetrieveQuoteMIDlet

JAR
>jar -cfm quote.jar QuoteMIDletSuite.jad -C .

/output ObtainQuoteMIDlet.class -C ./output RetrieveQuoteMIDlet.class

Run
>%MIDPTools%\midp -classpath %MIDPClasses%;.\quote.jar -descriptor
QuoteMIDletSuite.jad

Congratulations! If you were successful in implementing the first phase of the tuto-
rial application in MIDP, then the results of executing this last line should look some-
thing like the picture in figure 5.3.

Pressing either selection in the MIDlet suite choice list will activate that MIDlet.
However, since neither MIDlet currently performs any action, nothing will occur and
the customer must exit the system (the emulator) to leave the application. We now
have the basic structure for the MIDP applications, and while the applications are not
very exciting yet, we will begin to hang functionality off of this basic structure. We
will start with a simple means to interact with the user.

Figure 5.3

Even though the two MIDlets of the Investment Quote

system do little at this point, the MIDlet selection

menu provides the ObtainQuote and RetrieveQuote

after successfully writing, compiling, preverifying and

deploying the MIDlets. The names displayed in the

selection menu are obtained from the JAD file.
THE INVESTMENT QUOTE APPLICATION CONTROL 73

WH_Java2.book Page 74 Monday, March 4, 2002 9:59 AM
Each device must also provide some means of navigating the different
menu choices and text displayed on a screen. In the default phone emula-
tor, menu navigation, character entry, and other user interface widgets that
are displayed on the screen are accessed using the arrow keys. In the exam-
ple provided, only the up and down arrow keys are needed to navigate be-
tween the MIDlet application choices. (figure 5.5)

The power button on a cell phone will end execution of an application. In
the emulator, pressing the simulated power button will also cause the em-
ulator to close. (figure 5.6)

OPERATING
A KEYPAD

If you have been programming desktops and servers for years but never pro-
grammed a device that does not have a keyboard, you may be surprised to
find out that operating the input mechanism associated with a cell phone
is unique. In the previous example, you may have executed the run com-
mand without knowing how to select any menu option or operate the em-
ulator on the screen.

Operating a keypad on a device such as a cellular telephone can vary
from device to device. However, each device has at least one button on the
keypad associated with “selection.” Pushing this button on the keypad is
analogous to hitting the Enter key on a desktop computer with a keyboard.
On the default emulator provided with the J2ME reference implementa-
tions, the Select button is the button at the center of the directional buttons
(see figure 5.4). Again, while the Select button must exist, its implementa-
tion is device-specific.

Figure 5.4

The keypad select button on the MIDP

emulator and several cell phones is

located at the center of the arrow keys.

Select

Figure 5.5

The up and down arrow keys on the

keypad allow the users to navigate

through menu choices such as the

menu choice for choosing which

MIDlet to run in a suite.

Navigate

Figure 5.6

You can also exit an application by

pushing the power off button.

Power
74 CHAPTER 5 MIDP USER INTERFACE

WH_Java2.book Page 75 Monday, March 4, 2002 9:59 AM
”Typing” with the keypad in a text entry field can be a cumbersome activity.
The keys of a keypad each represent up to four characters. For example, the
number ‘9’ key on the keypad also represents the characters ‘W’, ‘X’, ‘Y’ and
‘Z’. In user interface widgets where text entry is required, in order to type a
‘W’, hit the ‘9’ key once. To generate an ‘X’, the ‘9’ key must be pressed
twice. However, do not take too long when pushing the keys on the keypad
to get the desired character. Pausing between pushes of the key indicates that
you wish to enter a second ‘W’, not an ‘X’. To get the integer character as-
sociated with each key in the keypad, you must press the key once for each
associated character and then press the key once again to get the integer. For
example, to type the character ‘9’, one must press the number ‘9’ key five
times without pause. On the emulator, the ‘0’ key provides the ‘Space’. This is,
however, a non-standard implementation across various cellular phone keypads.

In the emulator, the ‘#’ and ‘*’ keys also provide some additional func-
tionality. Again, functionality on these keys does not represent standard
practice across all devices. Each vendor is provided some latitude in the
mapping of functionality to the keypad keys. On the emulator, the ‘#’ key
can be used as a backspace key when editing text. The ‘*’ key provides a
kind of shift key. It toggles the rest of the keys between the upper case char-
acter set, lower case character set and numbers (allowing a user to be able to
circumnavigate the problem of having to hit the ‘9’ key five times to get a ‘9’).

Some keys on the device can be programmed to represent certain actions
on the part of the user. These are known as soft buttons. These will be dis-
cussed in the event handling portion of this chapter.

Take some time to play with the emulator and the target device and dis-
cover the mappings and functionality they offer. Unlike the now fairly stan-
dard keyboards that come with desktop computers, not all emulators and
devices have the same keypad or the same keypad functionality.

5.3 TWO TYPES OF MIDP USER INTERFACE AND EVENT HANDLING

Developing user interfaces for J2ME devices can be quite challenging. A J2ME device
is not even required to have a user interface and the size, shape and interactive capa-
bilities of the device’s interface can vary quite a bit. The unique display characteristics
for devices are a large part of what J2ME profiles address. Recall that J2ME profiles
provide focused support for devices and thus, specifically address user interface
characteristics.

Developing user interfaces for small devices such as cell phones, pagers, PDAs, and
so forth presents much more of a challenge. These devices have an even more restric-
tive user interface. The display capabilities of these devices may be restricted to a screen
that is only an inch or two wide. Often, these devices are utilized with one hand and
without the full attention of the user. Therefore, even simple pointing devices may not
be available for user input.
TWO TYPES OF MIDP USER INTERFACE AND EVENT HANDLING 75

WH_Java2.book Page 76 Monday, March 4, 2002 9:59 AM
Those familiar with J2SE are probably well acquainted with the Abstract Window-
ing Toolkit (AWT) and Java Foundation Classes (JFC). These packages provide the
rich graphical user interface API for larger Java systems. However, the features of the
AWT were considered to be too much for many of the J2ME resource-constrained
environments, including the MIDP. Specifically, the AWT’s event model is too big
and expensive in its memory usage for constrained devices. Secondly, the screen size
of a MIDP device is too small to support multiple and possibly overlapping windows,
which the AWT provides. Finally, the AWT assumes a pointer (mouse or pen) input
device that the MIDP is not required to have. For this reason, the MIDP has its own
unique GUI API.

The MID Profile assumes only a 96×54 pixel, one-bit depth display and input
from either a keypad or a touch screen. While the MIDP specification allows for user
input via a one or two-handed keyboard or touch screen, most of the devices in the
MIDP space operate with a simple keypad.

There are actually two types of GUI APIs provided for in the MIDP. A high-level
API is intended for business applications and provides abstraction from low-level
graphics management and placement of graphical elements. The high-level API allows
the application to be highly portable from one MIDP device to the other, but at the
cost of giving up fine-grained control of the application’s look and feel.

5.3.1 High-level API

The high-level API provides a series of widgets or predefined graphical elements that
can be added to and used on a display. With the high-level GUI API, the device, and
not the application, handles the layout, scrolling, navigation, and visual characteris-
tics such as color, shape, font and painting of the elements on the display. Along with
the high-level GUI API, the MIDP has a high-level input event model, which will be
covered later in this chapter.

5.3.2 Low-level API

Alternatively, in the low-level GUI API, the application has much more control over
the display. This API was developed for applications such as games where the precise
control and placement of graphical elements is required. In the low-level GUI API, a
series of drawing methods allow the applications to create the display, shape by shape,
if necessary, and paint it to the screen. This API also has a corresponding low-level
event handling mechanism that will also be covered later in this chapter.

Applications that use the non-abstracted low-level API may not be portable to
another platform since the application may be allowed to access system resources that
may not be available on all devices. For example, an application could be written to
draw in a pixel range that is outside of the display size of another device. To keep an
application portable, the low-level API provides convenience methods for checking on
the availability of non-portable resources. For instance, the application should check
on the available display size before drawing to unavailable pixel ranges.
76 CHAPTER 5 MIDP USER INTERFACE

WH_Java2.book Page 77 Monday, March 4, 2002 9:59 AM
In the tutorial application, we take advantage of the high-level API to capture the
customer’s investment request information and display the results. However, in order
to display the comparison chart depicting the price change in a bar graph, we utilize
the low-level API.

5.4 THE MIDP USER INTERFACE API

The MIDP GUI API, from user interface widgets to event handling mechanisms, is
wholly contained in the javax.microedition.lcdui package. Again, the user
interface is broken out into two API levels: high and low. We will first explore the
high-level API that provides a set of predefined user interface elements used in build-
ing more business-oriented applications. Afterwards, we will examine the low-level
API that provides the application developer with a great deal of freedom to draw
shapes on the screen but at a cost of more acutely managing the display.

5.4.1 MIDP display control

Before the display of any widgets or shapes, we need access to the device screen. In
MIDP, the device display is accessed through a manager called the Display object.

The Display object

You may recall the use of the Display object in the startApp() method of our
simple HelloWorld MIDlet in chapter 4.

Display.getDisplay(this).setCurrent(textbox);

In the MIDP, the Display object represents the manager of the device’s screen or
display. We see later that it also manages the system input devices. There is only one
Display object for every MIDlet. The Display object provides methods to draw
and display graphical user interface elements on the screen (if the device has a screen),
regardless of whether the high-level or low-level GUI API is used. The Display instance
also provides methods to get properties from the display device such as whether the
device supports color and what object is currently displayed on the device.

We obtain the instance of Display by calling the static getDisplay(MIDlet)
method on the Display class. A valid Display instance can be obtained any time
after the beginning of the startApp() method and until the destroyApp(bool-
ean unconditional) call returns.

Displayable objects

We now have the capability through the Display manager instance to put some-
thing on the cell phone or pager’s screen, yet we have nothing to display. We want to
start adding graphical elements to the display. However, we cannot add graphical ele-
ments, whether high or low-level graphical elements, directly to the display. Instead,
all user interface objects that are to be shown on a device screen must be contained
inside of a Displayable object. Displayable is an abstract class from which all
THE MIDP USER INTERFACE API 77

WH_Java2.book Page 78 Monday, March 4, 2002 9:59 AM
of the UI display classes derive (see figure 5.7). Screen, and its many subclasses, are
the display classes for high-level GUIs. Alternatively, Canvas is used as the Dis-
playable class for all low-level GUIs.

NOTE Screen versus screen The MIDP specification refers to the central abstrac-
tion of the MIDP UI as a “screen” (with a lowercase ‘s’). The abstract class
of Displayable represents the implementation of this “screen” abstrac-
tion. We find this naming convention to be rather confusing since there is
a Displayable subclass “Screen” (with an uppercase ‘S’). In order to
avoid confusion, we do not refer to the abstract idea of a MIDP display as
a screen, but be aware of this terminology when reading MIDP documen-
tation. Instead, we choose to use the class Displayable or the more ge-
neric “display” term to refer the abstract idea of an MIDP device screen.

Only one Displayable object can be shown at a time. The Displayable object
that is shown is called the current Displayable. The Display object allows for
getting and setting the current Displayable object with two complementary
methods: getCurrent() and setCurrent(Displayable nextDisplayable).

Why have an abstract class encapsulating all display objects? The Displayable
object helps to isolate MIDP applications from having to deal with component layout,
screen scrolling, widget focus, and so forth. For those familiar with either AWT or
Swing in J2SE, the Displayable object does the job of the Layout Manager and
then some. Given the diversity among MIDP devices, an application would be over-
whelmed in trying to handle these tasks for all devices. The single, simple display also
helps to keep the GUI easy to use and learn.

5.4.2 MIDP high-level user interface API

Screen is the superclass for all high-level GUI Displayable objects. The Screen
provides subclasses with an optional title that can be displayed at the top of the dis-
play area. The high-level MIDP GUI has two kinds of Screen subclasses that can be
used to display graphical elements. The first type completely encapsulates the user
interface components and has a predefined structure for displaying information to
the user. Most Screen components do not allow the application to add or remove
other user interface components. List, TextBox, and Alert are subclasses of
Screen that fall under this type.

Displayable

Screen

Form

Canvas

List TextBoxAlert

Figure 5.7

This UML class diagram shows the

hierarchical relationship among the

available Displayable classes in

MIDP. Screen and its descendents

are used to develop high-level user

interfaces. whereas Canvas is used

to create low-level user interfaces.
78 CHAPTER 5 MIDP USER INTERFACE

WH_Java2.book Page 79 Monday, March 4, 2002 9:59 AM
The second kind of Screen allows for the applications to add and remove other
graphical elements from the display. This second type is handled by the Form subclass
of Screen. Constrained only by the limits of the display size and memory, a Form allows
developers to create arbitrary displays of specific graphical user elements called items.
Thus, forms do not completely encapsulate their elements as other Screen subclasses.

Form

A form can be thought of as a data entry page. It contains an arbitrary mixture of images,
text fields, data fields, choice selections, and other common graphical user interface
widgets called items. Items are graphical elements that subclass from Item. Item
classes include: ImageItem, StringItem, TextField, DateField, Choice-
Group, and Gauge (see the “Items” section on page 80).

As with all high-level Displayable objects, the system handles layout, traversal
or focus, and scrolling. Scrolling may occur if all the graphical components do not fit on
the display. Depending on the implementation for a given device, some components
may either pop up into a new display screen or expand only when the user edits the item.

Changes made to a form while it is displayed take effect immediately without the
need for refresh action on the part of the application. However, it is recommended
that applications change the contents of a Displayable object only while it is not
visible. In other words, changes should be made to the Displayable object while
it is not considered the current displayable object by the Display object. Depending
on the device, changing the contents of a Displayable object when it is visible can
result in poor performance. Also, the way in which the device may handle the refresh
of the display may cause the user to get confused while interacting with the device.

The following MIDlet code in listing 5.4 creates and displays a simple Form object
without any items. Using the Display object for the MIDlet, the form is also made
the current Displayable for the MIDlet.

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

public class FormDemo extends MIDlet{

 Display d;
 Form aForm;

 public FormDemo () {
 aForm = new Form("Demo Form");
 }

 protected void startApp() {
 d = Display.getDisplay(this);
 d.setCurrent(aForm);
 }

Listing 5.4 FormDemo MIDlet

“Creates Form object with title
“Demo Form” and no items

q

Using the Display object for
the MIDlet, sets the current
displayable to the new Form

w

THE MIDP USER INTERFACE API 79

WH_Java2.book Page 80 Monday, March 4, 2002 9:59 AM
 protected void pauseApp() {
 }

 protected void destroyApp(boolean unconditional) {
 }
}

Items

Item is the superclass for the interactive graphical elements that can be added to a
Form object. Methods are provided on the form to add, append, delete, insert, or set
items. An item can only be placed on one Screen object. Attempts to place the same
Item object on the same or another Screen object will cause an IllegalState-
Exception to be thrown.

Table 5.1 Items serve as the principal means for users of an MIDP application to enter data.
This list outlines the item subclasses and how and when to use the item in a high-level GUI.

Item Subclass Description

ChoiceGroup A ChoiceGroup object is a group of selectable choices or elements similar to the
List discussed later in this section. The ChoiceGroup must implement the Choice
interface (see Choice interface in the description that follows). The group can
require a single choice or multiple choices. While the system is responsible for
graphically displaying an instance of ChoiceGroup, the device is required to
provide some visual differences in the way single versus multiple select choices
are displayed. A single choice group is usually depicted as a set of radio buttons,
whereas a multiple choice group is depicted as a set of check boxes.

DateField A DateField instance provides the means to get and display calendar date and
time information in a Form object.

Gauge A Gauge object is a slide bar graph depicting a range of possible small integer
values and a current value. A gauge may be interactive (allowing the user to modify
the current value) or non-interactive (prohibiting the user from setting the current
value). The system may change the appearance of a Gauge instance based on
whether it is interactive or non-interactive. A non-interactive gauge will likely be
used for progress indicators whereas interactive gauges can be used for visual
data entry.

ImageItem An ImageItem is an Item instance wrapper for images (see page 89).
Each ImageItem object contains a reference to an immutable Image object.
The ImageItem provides layout control over the Image when added to a Form.
If the Image instance’s size is larger than can be displayed, alternative text can
be specified and displayed in the image’s place.

StringItem A display-only item that shows textual information to the user.

TextField A TextField is a text editor for Form objects. Like TextBox (see page 83), the
amount of text and the type of text (for example, only numeric text or text in the
format of a telephone number) that can be entered into a text field by a user can
be specified by the application. The device determines the number of characters
displayed and their arrangement into rows and columns.
80 CHAPTER 5 MIDP USER INTERFACE

05_MIDP interface.fm Page 81 Monday, March 4, 2002 10:11 AM
Item instances have a text string label field that is displayed near the element when
displayed on the Screen. The system will usually display the label on the same hori-
zontal row or just above the item, and will attempt to keep the item and label visible
at the same time during any necessary scrolling of the Screen object.

Again, depending on the implementation for a given device, some items may force
a system-generated popup into a new display or expand the current display when the
user interacts with the component. In these cases, the label should be displayed with
the popup or expanded view in order to allow the user to continually identify the
graphical element. Table 5.1 is a list of the subclasses of Item and their usage.

Each item in Listing 5.5 is created and added to the form inside of the FormDemo
constructor. The following code extends the simple form example a little farther by
creating a single instance of each of these items:

Display d;

Form aForm;
ChoiceGroup aChoiceGroup;
DateField aDateField;
Gauge aGauge;
StringItem aStringItem;
TextField aTextField;
ImageItem anImageItem;
Image anImage;

public FormDemo () {
 aForm = new Form("Demo Form");
 String choices[] = {"This", "That"};
 aStringItem = new StringItem(null,"Demo Items");
 aChoiceGroup = new ChoiceGroup("Choose",Choice.EXCLUSIVE,choices,null);
 aDateField = new DateField(null,DateField.TIME);
 aGauge = new Gauge("Score",true,10,1);
 aTextField = new TextField("Comments","Your comments here",20,0);
 try {
 anImage = Image.createImage("/star.png");
 } catch (java.io.IOException ioE) {
 System.out.println("Problem reading image");
 }
 anImageItem = new ImageItem("Demo Image",
 anImage,ImageItem.LAYOUT_CENTER,"No image");
 aForm.append(aStringItem);
 aForm.append(aChoiceGroup);
 aForm.append(aDateField);
 aForm.append(aGauge);
 aForm.append(aTextField);
 aForm.append(anImageItem);
}

Listing 5.5 FormDemo Constructor

Add the items
to the form

w

Creating single
instances of

various Items

q

q

THE MIDP USER INTERFACE API 81

WH_Java2.book Page 82 Monday, March 4, 2002 9:59 AM
Because the display size of the MIDP device, in this case our MIDP cell phone emu-
lator, is so small, the form automatically provides a scroll mechanism to allow the user
to be able to see all the items on the form. When the MIDlet executes and displays
the form, it should look something like the picture in figure 5.8.
Notice that the time in the DateField instance does not actually display a time.
Instead, when selected, another display is shown on the device to allow the user to
enter the time. In this case, when used with the emulator, interaction with the date
field in time input mode (versus date input or both date and time input mode) causes
the display to switch to the display shown in figure 5.9.

As was mentioned previously, when interacting with the various items in a display, the
system may force the user into system-generated displays such as this one in order to
allow the user to interact with the component. The additional items of the form are
displayed by scrolling down. (figure 5.10)

StringItem
ChoiceGroup

DateField

Figure 5.8

Example StringItem, ChoiceGroup and

DateField items displayed as part of the

FormDemo MIDlet. The StringItem is static,

non-editable text. The <time> label serves

as a marker for bringing up the DateField

display (see figure 5.9) for time entry.

Figure 5.9

Upon entering the DateField component

when in time input mode, this nice

display tool allows users to easily enter a

time in hours and minutes. Alternate

displays are used for entering dates or

both date and time.

Gauge

Figure 5.10

Gauge, TextField and ImageItem displayed

as part of the FormDemo MIDlet. Selecting

the TextField for editing the text in the field

will likely cause the field to expand into a

full screen text editor that must be

dismissed to return to the MIDlet Form.
82 CHAPTER 5 MIDP USER INTERFACE

WH_Java2.book Page 83 Monday, March 4, 2002 9:59 AM
List

As its name implies, a list displays a set of choices to the user and allows the user to
select from the choices. The choices are called elements. An element consists of a text
string and, optionally, an image. The List and ChoiceGroup (see Items above)
must implement the Choice interface (see Choice Interface in the description that
follows). A list allows the user to traverse or scroll through the elements before finally
making a selection. A list can allow for multiple or single (called exclusive) selection
of elements.

How an element is selected is device-dependent. Soft-buttons are application pro-
grammable buttons on the device and, in some cases, these may be used to register
selection. However, selection functionality is usually not done by soft-button and is
instead accomplished by a key that is not programmably labeled. For example, in the
emulator, the selection button is the non-programmable key at the center of the nav-
igation keys. (figure 5.11)

While we will not explicitly build a list in our tutorial application, the device applica-
tion manager will build one for us to allow our customers to choose which application
to run. Once we have deployed our MIDlets to the device, the device will show us a
choice to run either the ObtainQuote or RetrieveQuote applications (see figure 5.3
earlier in the chapter).

TextBox

A TextBox object provides a means for the user to enter and edit text. Along with
the text field item (see page 80), the amount of text that can be entered and the type
of text entered by a user (for example only numeric text or text in the format of a tele-
phone number) can be set and constrained by the application.

The device determines the number of text rows and columns displayed for a text
box at any one time. Furthermore, the device must also provide a means to scroll when
the amount of text to be displayed is larger than the number of characters that can be
displayed at any one time.

In chapter 4, The HiSmallWorld MIDlet utilized TextBox for its Screen object.

textbox = new TextBox("", "Hi Small World!", 20, 0);

In the example, the text box was given an empty string title (the first parameter) and
initial contents of “Hi Small World!”. The third parameter specified the maximum
number of characters that can be contained in the text box. The final parameter

Figure 5.11

On the emulator, the List selection key is

at the center of the navigational buttons.

However, the location of this non-

programmable key is device-dependent.

Emulator
selection key
THE MIDP USER INTERFACE API 83

WH_Java2.book Page 84 Monday, March 4, 2002 9:59 AM
allows for input constraints on TextBox objects. An application can use constraints
to restrict user inputs in a text box or text field (see TextField item under Items
above). For example, a constraint can be set up to allow only numbers to be entered.
In our example, no constraints on the text box were set. In other words, this text box
allows for any characters to be entered by the user. Other text box constraints could
include allowing only an email address, an integer value, a phone number, or a URL.
Additionally, a constraint is available to hide the true characters typed by showing a
mask character such as ‘*’ instead of the actual character. This is important when
entering specific data or passwords.

Alert

Alert is a kind of message Screen that shows text and images to the user. It is used
to inform users of errors or exceptional conditions. An alert’s single image is set with
a call to setImage(Image img) (see the “Images” section in 5.4.3), while an alert’s
text is set with a call to setString(String str). Like a Form, changes made to
an alert while it is displayed take effect immediately without the need for refresh
action on the part of the application. Again, as a Displayable object, changes to
the Alert object should only be made while it is not visible to avoid potential per-
formance or user confusion issues.

By default, an alert is displayed for a period of time that is determined by the
device, or can be set in milliseconds by the application. In fact, the application can set
the display time to be indefinite with a call to the setTimeout(Alert.FOREVER)
method. In this case, the alert becomes a modal Displayable object meaning that
the user must dismiss it before something else is displayed. The system must provide
a feature that allows the user to dismiss the alert. An Alert instance may also become
modal if the application provides too much text and/or images to be displayed forcing
the display to provide automatic scrolling.

An instance of the AlertType class is usually associated with the alert to indicate
the nature of the alert and provide more information to the user of the device. This
is done by calling an alert’s setType(AlertType type) method with the appro-
priate AlertType. When the device has the capability of playing sound, the Alert-
Type object can be used to provide audible information. The predefined types of
alerts are listed in table 5.2.

Table 5.2 Alert Types, listed in this table, help provide visual and sometime audible context to

alerts presented to the user.

Alert Type Description

ALARM Alerts the user about some event based on a prearranged condition.

CONFIRMATION Prompts the user to confirm a user action.

ERROR Indicates an erroneous operation has occurred.

INFO Provides non-threatening information to the user.

WARNING Warns the user of potentially harmful or dangerous operations.
84 CHAPTER 5 MIDP USER INTERFACE

WH_Java2.book Page 85 Monday, March 4, 2002 9:59 AM
Demonstrating the use of an alert type, the following code snippet creates a modal
INFO Alert object:

Alert testAlert = new Alert("News Flash", "Man bites dog.", null,
 AlertType.INFO);
testAlert.setTimeout(Alert.FOREVER);

In order to display this, the display manager is used to set the current display to the
alert. Unlike forms and lists, however, the next Displayable object must be specified
so that when the alert is dismissed, the display manager knows what to display next.
Therefore, the setCurrent(Alert alert, Displayable nextDisplayable)
method is used with the display manager object as opposed to the setCurrent(Dis-
playable nextDisplayable) method used with other Displayable objects.
The Alert object created in the preceding code should look like the picture in
figure 5.12. When executed inside the emulator, it is likely that you will also hear a
sound based on the alert type used.

The “Done” text shown on the alert is the label associated with a key on the keypad,
which allows the user to dismiss this alert display. Recall that the alert was created as a
modal display with the setTimeout(Alert.FOREVER) method call. When the
user presses the key associated with the Done label, the display manager shows the
next displayable.

Ticker

Along with the title string associated with each Screen object, a Ticker object can
be associated with Screen subclass objects. A Ticker instance mimics a ticker tape.
In a ticker tape, a text string repeatedly runs in an animated fashion across the display.
The speed and direction of the Ticker are set by the system, and the application
cannot start or stop the ticker. The system may pause the scrolling to reduce power
consumption when the user has not interacted with the system for some time. A single
simple constructor method is provided to create a Ticker object. A Screen method,
setTicker(Ticker ticker), allows the Ticker instance to be associated with
the Screen instance. After being associated with a Screen object, the ticker dis-
plays with the Screen object when displayed. For example, the following code
builds a Ticker object and associates it to the form built previously in this section.

Figure 5.12

An alert works as a kind of message box

in MIDP. Alerts can be used to provide

warnings, information, error messages, etc.
THE MIDP USER INTERFACE API 85

WH_Java2.book Page 86 Monday, March 4, 2002 9:59 AM
Ticker aTicker = new Ticker ("Buy U.S. Government Savings Bonds today!");

aForm.setTicker(aTicker);

Figure 5.13 depicts the results of the display manager setting the current displayable
to aForm.

Unlike other display items, multiple Screen objects may share a Ticker in-
stance. Each Screen object can use the setTicker(Ticker ticker) method to
set its display ticker. In order to promote an illusion that the Ticker instance is really
part of the display instead of each Screen, the Ticker is supposed to be displayed
in the same position and continue scrolling its last displayed characters when moving
between screens that share it.

Choice interface

An interface has been provided as part of the MIDP’s high-level user interface API for
components that provide selection from a set of predefined choices. This includes the
List (Screen subclass) and ChoiceGroup (Item subclass) classes.

A text string, and, optionally, an image represent a Choice. The image will be dis-
played next to the text string unless it exceeds the size limits allowed by the device. In
this case, the image will be ignored. A choice’s text string will wrap onto multiple lines
if its length is too wide for the display.

There are three different choice types supported by the Choice interface. An
EXCLUSIVE choice represents a selection of elements where only one element can be
selected. A MULTIPLE choice represents a selection of elements where more than one
element can be selected. Finally, an IMPLICIT choice is a selection of the element that has
focus when a Command object is initiated. We will explore commands later in this chapter.

Screen layout

Screen layout is handled by the device and is not something the application controls.
Nevertheless, there is a layout policy by which the device does abide: items that are
appended or inserted to a form or an Alert are placed on the same line as the previous
item unless the item does not fit on the line. In this case, a new line is started with the
new item. A new line will also be started with a new item if the previous item was a
string ending with a newline character or a layout directive (such as those available
to items of the ImageItem class), which indicates a non-default layout is desired.

Figure 5.13

Like the ticker tape machines of old Wall Street,

a Ticker instance displays a message atop the

MIDP emulator. A ticker can be shared by many

Screen instances thus providing the illusion

that the ticker is part of the device display

as opposed to the application.

Ticker
86 CHAPTER 5 MIDP USER INTERFACE

WH_Java2.book Page 87 Monday, March 4, 2002 9:59 AM
5.4.3 MIDP low-level user interface API

While there are fewer classes and instances to deal with in MIDP’s low-level graphical
user interface API, the developer must deal with many low-level details such as pixel
coordinate systems, fonts, geometric shapes for drawing and screen refresh.

Canvas

Unlike the high-level API, there is only one Displayable subclass to use when cre-
ating low-level graphical user interfaces. It is the Canvas class. However, the Can-
vas class is abstract and requires applications to subclass it in order to use it. Two-
dimensional geometric shapes and/or text are displayed on a Canvas object through
a drawing mechanism called a Graphics object. An instance of a Canvas subclass
is passed a Graphics object through the device’s call to the paint(Graphics g)
method of a canvas. Each Canvas subclass must implement this abstracted method,
and only during the duration of the paint(Graphics g) method can applications
draw low-level graphics to the display. However, the application never invokes the
paint(Graphics g) method directly. This job is left up to the device.

Repainting of the display is done automatically for all Screen objects in the high-
level API. Instances of the Canvas subclasses, however, are responsible for their own
repainting. An application requests the display to be repainted by calling the Canvas’
repaint() method, which eventually calls on the paint(Graphics g) method
provided by the Canvas superclass. Repainting of a canvas is an asynchronous event,
so several calls to the repaint() method can be made before the actual paint
(Graphics g) takes place. This allows the display to be optimally refreshed, which
is very important for applications such as games. Repaint requests can be forced by
calling the serviceRepaints() method. For further optimization, the application
can request to repaint only a portion of the display using the repaint (int x, int
y, int width, int height) method, which targets a specific region of the display
to be repainted.

Graphics

An instance of the Graphics object does all of the drawing for MIDP’s low-level
GUI API. It provides several draw methods to display characters or strings, images,
lines rectangles, rounded-corner rectangles, and arcs. Rectangles, rounded-corner
rectangles and arcs can be either filled or unfilled. The Graphics object does not
have to be created. Rather, a new instance of a Graphics object is created and
passed to a Canvas object through the Canvas object’s paint (Graphics g)
method. This allows graphics to be displayed directly the next time the Canvas
object’s paint(Graphics g) method is invoked by the system. Alternatively, a
Graphics object can be obtained from an off-screen buffered image by making a
call to getGraphics() on the preferred Image instance. This allows draw com-
mands to be issued to the off-screen image for later display.
THE MIDP USER INTERFACE API 87

WH_Java2.book Page 88 Monday, March 4, 2002 9:59 AM
All drawing operations do a pixel replacement. In other words, any drawing oper-
ation specified in the Graphics object that sets a pixel value replaces the previous
value. There is no capability for combining or blending pixel values as is provided in
more sophisticated drawing systems.

The Graphics object does support 24-bit color. The red, green and blue color
components are each allotted 8 bits. However, not all devices support 24-bit color. In
these cases, the system will attempt to map available colors as close as possible to the
colors requested by the application. The Display class provides methods for obtain-
ing device capabilities, such as the support for color, which can be used by the appli-
cation to provide better looking displays that are not washed out by automatic color
mapping. This also helps the application to remain portable and not dependent on the
features of a specific device.

All geometric drawing methods in the Graphics object make use of a coordinate
system. The default coordinate system assumes that the upper left-hand corner of the
device’s display is the coordinate (0, 0). The coordinate system actually represents the
location between each pixel. For example, the following coordinates bound the first pixel
in the upper left-hand side of the display: (0,0), (1,0), (0,1), (1,1). Each increment of
the X and Y coordinates represents moving one pixel in the display. The X coordinate
moves in a positive direction to the right and the Y coordinate moves in a positive
direction downward or toward the bottom of the display. Applications are allowed to
assume that pixels are square. In other words, the horizontal and vertical distances in
the coordinate system represent equal distances. Drawing operations performed by the
Graphics object are done with a one-pixel wide pen that fills the pixel immediately
below and to the right of the specified coordinate and includes both endpoints.

Text drawing makes use of an “anchor point” to minimize the computation
required when placing text on the display. When drawing a string or character, the
application must specify both an (x, y) anchor point coordinate and a horizontal and
vertical constant for positioning the string on the display. A horizontal constant
(LEFT, HCENTER, RIGHT) is combined with a vertical constant (TOP, BASELINE,
BOTTOM) in a logical OR operation. This provides the direction from the (x, y) anchor
that the string is drawn. For example, a method call of drawString(“Hi there”,
15, 20, TOP|LEFT) has the effect of drawing a “Hi there” string below and to the
right of the (15,20) coordinate, as shown in figure 5.14.

The horizontal and vertical values are static constants provided by the Graphics class.
Both a horizontal and vertical constant must be supplied or unpredictable conse-
quences (such as application failure) can result.

Figure 5.14

Text must be anchored to the display via a combination

of horizontal (LEFT, HCENTER, RIGHT) and vertical

constants (TOP, BASELINE, BOTTOM). In this example,

the “Hi there” text is anchored in the MIDP’s graphical

coordinate system by a TOP and LEFT anchor point.
88 CHAPTER 5 MIDP USER INTERFACE

05_MIDP interface.fm Page 89 Monday, March 4, 2002 10:13 AM
As discussed earlier in this section, recall that the Canvas class is abstract and so
must be subclassed in order to develop a low-level graphical user interface displayable.
A simple example of a Canvas class is shown in listing 5.6.

import javax.microedition.lcdui.*;

class CanvasDemo extends Canvas {

 protected void paint(Graphics g){
 g.drawString("Canvas Demo",1,1,Graphics.TOP|Graphics.LEFT);
 g.fillRect (20,30,30,20);
 g.drawLine(50,50,75,50);
 g.drawLine(75,50,75,75);
 g.drawLine(75,75,50,75);
 g.drawLine(50,75,50,50);
 }
}

In the preceding code, paint() method should never be called directly by the applica-
tion. Instead, the system calls on paint(Graphics g) to render the display as needed.
In this method, a string is drawn at coordinate position 1,1, and a filled rectangle is
drawn starting a coordinate position 20,30 with a width of 30 and height of 20. Finally,
a second rectangle is drawn, but this rectangle is created by drawing four separate lines.

Notice that the only method that must be implemented is the paint(Graphics g)
method. Inside of the paint method, specific draw commands are issued to display
strings and shapes. However, the device will control when this method gets called.
Inside of the MIDlet, as shown below, all that is required in an application is to create
the Canvas object and set it to the current Displayable object, much as we did
for the Form object in the high-level user interface. The results of running the MIDlet
in listing 5.7 with the code in listing 5.6 appear in figure 5.15.

Images

An Image instance holds graphical image data. This data exists in off-screen memory
and is independent of any display device. An Image object can only be painted on
the display when explicitly instructed by the application. An application instructs an
image to display in one of two fashions. In the high-level API, the application can
add an image directly to an alert, choice, form, or image item. Alternatively, in the
low-level API, an Image object can be displayed to a canvas using the draw-
Image(Image img, int x, int y, int anchor) method on a Graphics object.
In the low-level API, images can also be created in off-screen memory using a
Graphics object. A Graphics object is created and then the application paints to
the Image where it can later be displayed (see the previous Graphics section).

There are two types of images. The type image is dependent on how it was created.
Immutable images are usually created by loading image data from a resource such as a file.
.

Listing 5.6 CanvasDemo

Drawing a filled rectanglew

Drawing a rectangle
using four lines

e

Displaying a string
at position 1,1

q

THE MIDP USER INTERFACE API 89

05_MIDP interface.fm Page 90 Monday, March 4, 2002 10:13 AM
import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

public class CanvasMidlet extends MIDlet{

 Display d;
 Canvas c;

 protected void startApp() {
 d = Display.getDisplay(this);
 c = new CanvasDemo();
 d.setCurrent(c);
 }

 protected void pauseApp() {
 }

 protected void destroyApp(boolean unconditional) {
 }
}

As the name implies, these types of images cannot be changed. Only immutable
images can be used with the high-level API. That is, only immutable Image objects
can be placed within an Alert, Choice, Form or ImageItem object. Because the
high-level graphical display’s refresh is determined by the system, having only immu-
table images associated with these components allows the system to update the dis-
play without notifying the application. Mutable Image objects are created in off-
screen memory and are generally used in low-level GUI applications.

There are several static createImage() methods on the Image class that can
create immutable images from mutable images and vice-versa.

Fonts

A Font is used in the low-level API to set the font of any text that is drawn to the
screen. The application does not have control of the font when using the high-level API.
Unlike in larger systems, fonts cannot be created by the application. The application

Listing 5.7 CanvasMidlet using CanvasDemo from above

Setting the current
Displayable to the
Canvas object

w

Creating an instance
of the Canvas object

q

Figure 5.15

The CanvasDemo class and CanvasMIDlet

produce this image when successfully

deployed and run on a device or emulator.

The size of the device’s screen may cause

clipping of the shapes drawn if they extend

beyond the dimensions of the screen.
90 CHAPTER 5 MIDP USER INTERFACE

WH_Java2.book Page 91 Monday, March 4, 2002 9:59 AM
can only query for a font based on a set of predefined attributes. Fonts have attributes
dealing with style, face and size with symbolic static constants provided to represent
the choices for each attribute. Table 5.3 lists examples of attribute constants from
which the application can choose.

Some attribute constants such as STYLE_BOLD and STYLE_ITALIC can be com-
bined and used on the same string. Other attribute constants like SIZE_SMALL and
SIZE_LARGE are contradictory and thus cannot be used simultaneously. By default,
the font for any string is STYLE_PLAIN, SIZE_MEDIUM, and FACE_SYSTEM.

The system will attempt to provide a font that matches the requested attributes,
but this is not guaranteed. The system may only have a small subset of fonts that an
application can use. A Font instance is obtained through a call to the static get-
Font(int face, int style, int size) method on the Font class. A Graph-
ics object then uses the Font object to set the current font for all subsequent
drawings of strings or individual characters. The setFont(Font font) method is
used on a Graphics instance to set the current font.

5.4.4 The investment quote application’s user interface in MIDP

Given an understanding of both the high-level and low-level graphical user interface,
we can now develop the user interface for the tutorial application. Earlier in this
chapter, we developed the application control for the tutorial application by imple-
menting two MIDlets. The next step in our development effort is to implement the
user interface for our application.

Using the Display class

The Display class, along with the other user interface classes that we use, resides in
the javax.microedition.lcdui package. Therefore, MIDlets with a user inter-
face must include this package in the import statement at the top of the .java files.

import javax.microedition.lcdui.*;

Because we are going to utilize the Display object often in the tutorial application,
we set up a local variable to hold onto the instance throughout our application’s life-
cycle. Thus, in both the ObtainQuoteMIDlet and RetrieveQuoteMIDlet, we
add the following variable declaration.

private Display displayMngr = null;

Table 5.3 These static fields, defined in the Font class, are used to specify the font when
drawing text to the screen in an MIDP application.

STYLE FACE SIZE

STYLE_BOLD FACE_MONOSPACED SIZE_LARGE

STYLE_ITALIC FACE_PROPORTIONAL SIZE_SMALL

STYLE_UNDERLINED FACE_SYSTEM SIZE_MEDIUM

STYLE_PLAIN
THE MIDP USER INTERFACE API 91

WH_Java2.book Page 92 Monday, March 4, 2002 9:59 AM
Since our application will be straightforward, we immediately get the Display
instance and put its reference into the displayMngr variable from inside of the
startApp() method.

protected void startApp() {
 displayMngr = Display.getDisplay(this);
}

Data entry using forms

Given an understanding of forms and their associated items, we are ready to build the
investment price request display (see figure 3.2 in section 3.2.2). In this display, the
customer is requested to enter an investment symbol and investment type in order for
the system to obtain investment price information. To begin, we create a new class
called EntryForm that extends the current Form class. We did not have to create a
new subclass of Form in order to create a Form object. However, this will help us in
two ways. First of all, the new EntryForm class can be used by both our Obtain-
Quote and RetrieveQuote MIDlets to get the symbol of concern from the customer.
Secondly, this class will also help keep our MIDlet code tidy. Our new form subclass
extends Form so we must import the javax.microedition.lcdui package. The
Form class also provides two constructor methods. At least one of the constructor
methods must be overridden in the new class. This is all we need to start our new
EntryForm class.

import javax.microedition.lcdui.*;

public class EntryForm extends Form {

 public EntryForm(String title) {
 super(title);
 }
}

Next we want to add some items to the new Form object to make it look similar to
our design sketch (again, see figure 3.2 in section 3.2.2). In particular, we want to add
a text field to allow the customer to enter the investment symbol and we want to add
a choice group to allow the user to indicate what type investment has been specified
by the symbol. Two variables are defined for the class to retain references on the two
items we create.

private TextField symbolField = null;

private ChoiceGroup investmentChoice = null;

In order to allow the application that uses this form to get access to the items, two
getter methods are provided to return these items.
92 CHAPTER 5 MIDP USER INTERFACE

WH_Java2.book Page 93 Monday, March 4, 2002 9:59 AM
public TextField getSymbolField() {
 return symbolField;
}

public ChoiceGroup getInvestmentChoice() {
 return investmentChoice;
}

On construction of the form, the various items must also be created and added to the
new Form object. Therefore, inside of the EntryForm class constructor, we create
each of the items, set the appropriate reference variable to the item and add the item
to the form.

public EntryForm(String title) {
 super(title);
 symbolField = new TextField("Investment Symbol", "", 5, TextField.ANY);
 String choices[] = {"Stock", "Fund"};
 investmentChoice = new ChoiceGroup("Type", Choice.EXCLUSIVE, choices, null);
 append(symbolField);
 append(investmentChoice);
}

Using the TextField constructor, TextField(String label, String text,
int maxSize, int constraints), we create a TextField object to capture the
investment symbol. The field has a label but no initial text contents. We have limited
the maximum number of characters that the customer can enter to 5 (this should be
sufficient for common stock and mutual fund exchanges), but we do not put any input
constraints on the entry. Similarly, we create a new ChoiceGroup object to allow
the customer to specify the type investment to be researched. It can be either a stock
or mutual fund. There are two ChoiceGroup constructors from which to choose. We
use the ChoiceGroup(String label, int choiceType, String[] string-
Elements, Image[] imageElements) constructor. The ChoiceGroup is given
a label and choice strings. We do not assign any icons for the choices at this time. The
choice type is set to EXCLUSIVE indicating that exactly one selection can be selected
at any given time. Exactly one choice must be selected, but since we just created the
choice group, no item has been physically selected. In other words, there is no default
selection. In this case, the choice of which element is selected is left to the device. A
condition where the choice group may not have a selected item could also occur if an
element is added to an empty list or if the selected choice is deleted. Whenever the se-
lected item cannot be determined, the system is left to select an element. In order to
avoid having the system make an arbitrary selection on any choice, use setSelected-
Index(int elementNum, boolean selected). Finally, the text field and choice
group items are appended to the instance of EntryForm and automatically display
when their associated form is displayed.

In its own EntryForm.java file, the code for the new Form class should appear sim-
ilar to listing 5.8.
THE MIDP USER INTERFACE API 93

WH_Java2.book Page 94 Monday, March 4, 2002 9:59 AM
import javax.microedition.lcdui.*;

public class EntryForm extends Form {

 private TextField symbolField = null;
 private ChoiceGroup investmentChoice = null;

 public EntryForm(String title) {
 super(title);
 symbolField = new TextField("Investment Symbol",
 "", 5, TextField.ANY);
 String choices[] = {"Stock", "Fund"};
 investmentChoice = new ChoiceGroup("Type", Choice.EXCLUSIVE,
 choices, null);
 append(symbolField);
 append(investmentChoice);
 }

 public TextField getSymbolField() {
 return symbolField;
 }

 public ChoiceGroup getInvestmentChoice() {
 return investmentChoice;
 }
}

To establish an instance of the newly created EntryForm class, we first add a variable and
a method to the MIDlets. The variable keeps a reference to an instance of the form.

private EntryForm entryForm = null;

The method checks to see if an instance of the entry form has already been created. If
not, a new instance of the form will be created and its reference will be stored in the
variable. With the reference to the entry form (whether existing or newly created), the
application makes the form visible by invoking the Display class’s method set-
Current(Displayable nextDisplayable).

private void displayEntryForm () {
 if (entryForm == null) {
 entryForm = new EntryForm("ObtainQuote");
 }
 displayMngr.setCurrent(entryForm);
}

Finally, a line is added to the startApp() method of the ObtainQuoteMIDlet that
calls our displayEntryForm() method.

protected void startApp() {

 displayMngr = Display.getDisplay(this);
 displayEntryForm();
}

Listing 5.8 EntryForm

TextField for entering a symbolw

The class defining the
investment request form

q

ChoiceGroup for
selecting Stock
or Fund type

e

94 CHAPTER 5 MIDP USER INTERFACE

WH_Java2.book Page 95 Monday, March 4, 2002 9:59 AM
The results of running the ObtainQuoteMIDlet application, after successfully com-
piling, preverifying, and JARing the MIDlet suite with the following commands,
should resemble those shown in figure 5.16.

Compile

>javac -g:none -bootclasspath %MIDPClasses%;. EntryForm.java

>javac -g:none -bootclasspath %MIDPClasses%;. ObtainQuoteMIDlet.java
>javac -g:none -bootclasspath %MIDPClasses%;. RetrieveQuoteMIDlet.java

Preverify

>%MIDPTools%\preverify -classpath %MIDPClasses%;. ObtainQuoteMIDlet

>%MIDPTools%\preverify -classpath %MIDPClasses%;. RetrieveQuoteMIDlet
>%MIDPTools%\preverify -classpath %MIDPClasses%;. EntryForm

JAR

>jar -cfm quote.jar QuoteMIDletSuite.jad -C ./output ObtainQuoteMIDlet.class
-C ./output RetrieveQuoteMIDlet.class –C ./output EntryForm.class

Run

>%MIDPTools%\midp -classpath %MIDPClasses%;.\quote.jar -descriptor

QuoteMIDletSuite.jad

The JAD file (QuoteMIDletSuite.jad) for this application will look something like
the following:

MIDlet-1: ObtainQuote, , ObtainQuoteMIDlet
MIDlet-2: RetrieveQuote, , RetrieveQuoteMIDlet
MIDlet-Name: EasyTrack
MIDlet-Vendor: Catapult Technologies
MIDlet-Version: 1.0
MicroEdition-Configuration: CLDC-1.0
MicroEdition-Profile: MIDP-1.0

Notice that the entry form’s display is too large for the device. However, as is expected
in the high-level GUI API of MIDP, the customer is automatically presented with a
scroll option in order to be able to view the entire form. This gives us a good oppor-
tunity to advocate some restraint in user interface design. While the resources of the

Figure 5.16

This form fulfills the prototype screen design for capturing

the customer’s investment symbol of interest. It provides

the means to enter an investment symbol and investment

type in the Investment Quote EntryForm. The form utilizes

a TextField and ChoiceGroup object.
THE MIDP USER INTERFACE API 95

WH_Java2.book Page 96 Monday, March 4, 2002 9:59 AM
device limit the number of items that can be added to a form, it is highly recom-
mended that a form contain as small a number of items as possible. Only those items
that are important and closely related to the given interaction should be displayed on
a single form. Remember that these devices will be operated by one hand and can be
used by people while busy doing other activities. The more a user must scroll, the
more they must fully concentrate solely on the device.

When text is entered into the TextField, you will also notice that the display
changes and opens up an entire new data entry area (figure 5.17). Did we ask for this
in our user interface development? In a way, we did. Remember, the device may switch
to a system-generated display when user input or interaction takes place. In this case,
the device implemented a new display for text entry.

Messages, using alerts

In the tutorial application, we are going to use an alert for showing the price of the
investment. The price may either have been obtained from the quote service or retrieved
from the system’s data storage. To do this, we must first set up a reference variable
that keeps a reference to an Alert object.

private Alert resultsAlert = null;

Next, we create a method to display the quote via the alert whenever it is called. We
call this method displayPrice and pass in a text string providing the customer
with the investment price information found. When this method is called, it first
determines whether an Alert instance has ever been created. If not, it first creates a
new Alert object and puts its reference in the alert reference.

private void displayPrice(String quoteString) {

 if (resultsAlert == null) {
 resultsAlert = new Alert("Quote Price", null, null, AlertType.CONFIRMATION);
 resultsAlert.setTimeout(Alert.FOREVER);
 }
 resultsAlert.setString(quoteString);
 displayMngr.setCurrent(resultsAlert, entryForm);
}

Figure 5.17

For user convenience, when text fields are selected or “entered”

by the user, the device may offer a system-generated display for

easier text entry. In the emulator, entering the symbol in the text

field results in a system-generated display for capturing the

symbol as shown here.

Displaying
the alert on
the device

w

Creating an
Alert instance

q

96 CHAPTER 5 MIDP USER INTERFACE

WH_Java2.book Page 97 Monday, March 4, 2002 9:59 AM
To create the Alert object, we use the Alert(String title, String alert-
Text, Image alertImage, AlertType alertType) constructor. In creation,
we set its alert type to CONFIRMATION and provide it the title of “Quote Price.” The
marketing department of the company we work for should also be happy since we
have provided an advertising marquee ticker to be displayed with the quoted price on
the alert display (see the subsequent “Using tickers” section).

In creating our alert, we did not set either the string or image. We left the alert text
to be set later in the method with a setString(String str) method call. This
allows the price string to be displayed to an existing alert that has already been set up
and referenced via the resultsAlert variable. In this particular example, we did
not need an image to be displayed.

After ensuring that the Alert object is properly created and its string text set, we
need to have it displayed. To do this, we call on the Display manager object, whose
reference was previously stored in the displayMngr variable to set the current Dis-
playable object to the alert. Remember, a Displayable object must be shown
after an alert is dismissed. In this case, we make sure that the Displayable object
shown after the price quote alert is the investment price request entry form created ear-
lier. This allows the user to enter another symbol and get another quote. We put the ref-
erence of this Displayable object into the entryForm variable. Thus, in order to
display the Alert, we simply call on the Display manager’s setCurrent(Alert
alert, Displayable nextDisplayable) method with our resultsAlert
and entryForm variables.

Notice that we have set up our alert to be modal by setting the timeout to
Alert.FOREVER. This forces the customer to dismiss the alert before changing the
display. Again, the dismissal of an alert is dependent on the system implementation.
In the MIDP emulator, dismissal is accomplished by pressing a soft button, which has
been labeled “Done” by the system. This dismisses the Alert object and returns dis-
play to the entry form Displayable object.

Right now, we don’t have a means to launch the alert. Later in this chapter, we add
events that allow the system to do something based on the user’s actions. To test the alert
display for now, add a single line to the ObtainQuoteMIDlet’s startApp() method.

protected void startApp() {

 displayMngr = Display.getDisplay(this);
 displayEntryForm();
 displayPrice("The price of MMM is 111.19");
}

The code shown here displays the entry form and immediately calls to display the
alert. When we learn how to handle events, this last line can and will be removed.
Then the alert display will be shown after the user has requested a price for a given
investment symbol.

To recompile, preverify, re-JAR, and run the MIDlet suite issue via the following
commands:
THE MIDP USER INTERFACE API 97

WH_Java2.book Page 98 Monday, March 4, 2002 9:59 AM
Compile

>javac -g:none -bootclasspath %MIDPClasses%;. EntryForm.java

>javac -g:none -bootclasspath %MIDPClasses%;. ObtainQuoteMIDlet.java
>javac -g:none -bootclasspath %MIDPClasses%;. RetrieveQuoteMIDlet.java

or
>javac -g:none -bootclasspath %MIDPClasses%;. *.java

Preverify

>%MIDPTools%\preverify -classpath %MIDPClasses%;. ObtainQuoteMIDlet
>%MIDPTools%\preverify -classpath %MIDPClasses%;. RetrieveQuoteMIDlet
>%MIDPTools%\preverify -classpath %MIDPClasses%;. EntryForm

or
>%MIDPTools%\preverify -classpath %MIDPClasses%;. “.”

JAR

>jar -cfm quote.jar QuoteMIDletSuite.jad -C ./output ObtainQuoteMIDlet.class
-C ./output RetrieveQuoteMIDlet.class –C ./output EntryForm.class

or
>jar -cfm quote.jar QuoteMIDletSuite.jad -C ./output .

Run

>%MIDPTools%\midp -classpath %MIDPClasses%;.\quote.jar -descriptor
QuoteMIDletSuite.jad

This time, when the MIDlet suite’s ObtainQuote choice is selected, the alert should
display itself and look something like the picture in figure 5.18.

Using tickers

While we are at it, let’s add a little promotional advertising to our application. To do this,
we use a ticker. We create an advertisement Ticker instance and assign it to a reference
variable. The declaration for this object would look something like the following:

private Ticker adTicker = new Ticker("Track your investments with " +

 "Easy Track");

Figure 5.18

Alerts can be used in a variety of ways. They can be

used to display an error or warning message. In the

ObtainQuoteMIDlet, an alert is used to inform the

customer of the price for an investment of interest.
98 CHAPTER 5 MIDP USER INTERFACE

WH_Java2.book Page 99 Monday, March 4, 2002 9:59 AM
Later, we can use the reference variable and set the ticker for any Screen object. For
now, we simply set the ticker for the alert we just created. To do this, we add a line to
set the ticker of the Alert object created in the displayPrice() method:

private void displayPrice(String quoteString) {
 if (resultsAlert == null) {
 resultsAlert = new Alert("Quote Price", null, null,
 AlertType.CONFIRMATION);
 resultsAlert.setTicker(adTicker);
 resultsAlert.setTimeout(Alert.FOREVER);
 }
 resultsAlert.setString(quoteString);
 displayMngr.setCurrent(resultsAlert, entryForm);
}

Now if we rerun the same compile, preverify, JAR, and execution steps, the alert not
only displays the price quote, but also the advertisement inside of the ticker at the top
of the display, as shown in figure 5.19.

Drawing, using Canvas

We are now ready to develop the third and final user interface display in the MIDP
version of the tutorial application. Given an investment, like a stock or mutual fund,
we want to provide the customers with a picture of how the investment is doing on
the market. Remember, users of MIDP devices may not be able to give their full
attention to the device. Therefore, we want to give them a picture of how the stock
has done recently. Per the requirements, the application tracks the last two prices
(current and historical) for each investment requested by the user. If a quote for an
investment has been retrieved before, we want to provide a bar graph depicting the
current and previous prices in relationship to each other (see figure 3.4 in chapter 3).
To do this, we draw geometric shapes directly to the screen. This is done using the
low-level graphical user interface API.

The only Displayable class available to encapsulate graphical elements in the
low-level API is Canvas. Unlike the Displayable class counterparts (Form, Alert,
List, or TextBox) in the high-level API, the Canvas class is abstract requiring the
developer to create his or her own concrete Canvas subclass. We name our Canvas
subclass ChartCanvas and put it in its own ChartCanvas.java file. The Canvas class
has one abstract method, paint(Graphics), which requires implementation.

Setting the ticker
on the results alert

q

Figure 5.19

The addition of a ticker can spice up any

application. Here, a ticker located at the top of

the display is used with the ObtainQuoteMIDlet

to display advertisements to the customers.
THE MIDP USER INTERFACE API 99

WH_Java2.book Page 100 Monday, March 4, 2002 9:59 AM
Therefore, our ChartCanvas class begins with:

import javax.microedition.lcdui.*;

class ChartCanvas extends Canvas {

 protected void paint(Graphics g){
 }
}

Notice that the low-level UI API also comes from the javax.microedi-
tion.lcdui package and therefore we must also import this package. Next, we want
to draw the bar graphs and investment information to the ChartCanvas. Inside of
the paint(Graphics g) method, we paint shapes and strings to the display. Draw
operations on the Graphics object allow for displaying text, images, lines, rectangles,
and arcs. However, it is important to note that drawing to the display using the Graph-
ics object can only occur during the duration of the canvas paint() method.

WARNING A sometimes frustrating aspect of using the Graphics and Canvas object
is forgetting that the drawing using a Graphics object can only occur during
the paint(Graphics g) method of an instance of a Canvas subclass. Neither
the compiler nor the runtime environment informs you when you attempt to
draw outside of this method. Instead, you are left wondering why perfectly com-
piled and running code is not displaying all of your draw commands.

The draw commands issued to the Graphics object are straightforward and require
use of the pixel coordinate system to specify the location and size of many of the
shapes drawn on the display. Drawing strings to the display requires sending the text
to be displayed, the x and y pixel anchor point position, and a Graphics static inte-
ger value to indicate the positioning of the text around the anchor point to the
drawString(String str, int x, int y, int anchor) method. In the exam-
ple, all of our text is anchored from the top, left-hand point of the text string. A cor-
responding drawChar(char character, int x, int y, int anchor) method is
available for drawing single characters to the screen if desired.

g.drawString(symbol + " Performance",1,1,Graphics.TOP|Graphics.LEFT);

g.drawString("current vs. historic ", 1, 12, Graphics.TOP|Graphics.LEFT);
g.drawString("$" + currentPrice, 1, 24, Graphics.TOP|Graphics.LEFT);
g.drawString("$" + historicPrice, 1, 36, Graphics.TOP|Graphics.LEFT);

In the tutorial application, we display the title of the display that includes the invest-
ment symbol obtained through a variable symbol that will be set before we start
drawing. We also display the current and historical prices. The graphical bars depict-
ing the price for an investment are displayed by drawing filled rectangles on the
screen. A starting (x, y) pixel coordinate and width and height of the rectangle are
required to draw a rectangle. Separate Graphics object methods exist for drawing
filled versus unfilled rectangles as well as rounded-corner versus nonrounded-corner
rectangles. Before drawing our bar chart, the tutorial application will need some
information in order to draw the rectangles.
100 CHAPTER 5 MIDP USER INTERFACE

WH_Java2.book Page 101 Monday, March 4, 2002 9:59 AM
private final static int MAX_BAR_SIZE = 65;
private final static int START_X_POSITION = 30;
private final static int START_Y_CURRENT = 27;
private final static int START_Y_HISTORIC = 39;
private final static int BAR_HEIGHT = 10;
private int currentPrice;
private int historicPrice;

In the tutorial, the prices will be displayed as horizontal bars drawn starting from the
left of the display to a position on the right that is dependent on the price of the
investment. The START_X_POSITION is the unchanging x pixel position coordinate
for each rectangle or bar in the graph. Correspondingly, the START_Y_CURRENT and
START_Y_HISTORIC values provide the static starting y pixel locations for our two
rectangles depicting the current and historical price bars. The BAR_WIDTH variable
provides the static height of all bars. The actual investment prices will be sent to the
ChartCanvas object and stored in the two integer variables labeled current-
Price and historicPrice. Notice that the prices are integers. In reality, invest-
ment prices are floating-point numbers such as $110.55. The floating point type is
not supported in the CLDC. However, given the size of most MIDP device displays
(not more than 96 pixels in width), it is unlikely that the cents could accurately be
displayed in the bar graph. Therefore, in this part of the tutorial application, the
comparison chart will show current and historical prices to the nearest whole dollar.

To display the current price depicted as a rectangle or bar over the historical price
depicted by a second rectangle or bar, two separate fillRect (int x, int y, int
width, int height) method calls are made.

int[] prices = {currentPrice, historicPrice};
int[] lengths = determineLengths(prices);
g.fillRect (START_X_POSITION, START_Y_CURRENT, lengths[0], BAR_HEIGHT);
g.fillRect (START_X_POSITION, START_Y_HISTORIC, lengths[1], BAR_HEIGHT);

The determineLengths(int[] prices) method is developed, as we show sub-
sequently, to determine the length of the rectangle bars depicting the price of each in-
vestment. This method returns an integer array containing two widths. The first
element in the array will contain the width of the rectangle depicting the current
price and the second element in the array will contain the width of the rectangle de-
picting the historical price. Static variables declared above provide the remaining rect-
angle dimensions.

To give the bar graph some dimension in order to assist the customer in comparing
the prices, we add three “tick” lines to our display that are drawn at even positions
across the screen. Lines are drawn by simply providing the starting and ending (x, y)
coordinates of the line.

g.drawLine(30,26,30,50);

g.drawLine(50,26,50,50);
g.drawLine(70,26,70,50);
g.drawLine(90,26,90,50);
THE MIDP USER INTERFACE API 101

WH_Java2.book Page 102 Monday, March 4, 2002 9:59 AM
The only thing left to implement the simple graphical display of the investment
prices is a method for kicking of the low-level API display and a method for deter-
mining the length of each price bar. The method to kick off the display, called dis-
playChart is passed the investment symbol and two investment prices (current and
historic).

public void displayChart(String sym, int amtCur, int amtHist) {
 symbol = sym;
 currentPrice = amtCur;
 historicPrice = amtHist;
 serviceRepaints();
}

There are many ways to depict the price of an investment. The determine-
Lengths(int[] prices) method as coded in listing 5.9 is provided as an exam-
ple. In this listing, the length of a bar is determined by finding the higher of the two
prices and using a ratio of the two to find a proportional length for each price that
accurately depicts the difference in price and will fit on the maximum display. Other
length calculating formulas could easily replace this method.

private int[] determineLengths (int[] prices) {

 int ratio, higherPrice, lowerPrice;
 boolean currentHigher;

 if (prices[0] < prices[1]) {
 higherPrice = prices[1];
 lowerPrice = prices[0];
 currentHigher=false;
 } else {
 higherPrice = prices[0];
 lowerPrice = prices[1];
 currentHigher=true;
 }

 ratio = higherPrice/MAX_BAR_SIZE + 1;
 while (ratio > 1) {
 higherPrice = higherPrice/ratio;
 lowerPrice = lowerPrice/ratio;
 ratio = higherPrice/MAX_BAR_SIZE + 1;
 }
 if (currentHigher) {
 int[] ends = {higherPrice, lowerPrice};
 return ends;
 } else {
 int [] ends = {lowerPrice, higherPrice};
 return ends;
 }
}

Listing 5.9 The ChartCanvas’ determineLengths method

Force a call to repaint the canvasq

Determine the
highest price

q

Calculate the bar length
based on the highest price

w

102 CHAPTER 5 MIDP USER INTERFACE

05_MIDP interface.fm Page 103 Monday, March 4, 2002 10:16 AM
All the pieces of the ChartCanvas class are assembled in one file in listing 5.10.

import javax.microedition.lcdui.*;

import java.util.*;

class ChartCanvas extends Canvas {

 static final int MAX_BAR_SIZE = 65;
 static final int START_X_POSITION = 30;
 static final int START_Y_CURRENT = 27;
 static final int START_Y_HISTORIC = 39;
 static final int BAR_HEIGHT = 10;

 private int currentPrice;
 private int historicPrice;
 private String symbol = null;

 public ChartCanvas() {
 }

 protected void paint(Graphics g){
 int currentColor = g.getColor();
 g.setColor(255,255,255);
 g.fillRect(0,0,getWidth(),getHeight());
 g.setColor(currentColor);
 g.drawString(symbol + " Performance",1,1, Graphics.TOP|Graphics.LEFT);
 g.drawString("current vs. historic ", 1, 12, Graphics.TOP|Graphics.LEFT);
 g.drawString("$" + currentPrice, 1, 24, Graphics.TOP|Graphics.LEFT);
 g.drawString("$" + historicPrice, 1, 36, Graphics.TOP|Graphics.LEFT);
 int[] prices = {currentPrice, historicPrice};
 int[] lengths = determineLengths(prices);
 g.fillRect (START_X_POSITION, START_Y_CURRENT, lengths[0], BAR_HEIGHT);
 g.fillRect (START_X_POSITION, START_Y_HISTORIC, lengths[1], BAR_HEIGHT);
 g.drawLine(30,26,30,50);
 g.drawLine(50,26,50,50);
 g.drawLine(70,26,70,50);
 g.drawLine(90,26,90,50);
 }

 public void displayChart(String sym, int amtCur, int amtHist) {
 symbol = sym;
 currentPrice = amtCur;
 historicPrice = amtHist;
 serviceRepaints();
 }
 private int[] determineLengths (int[] prices) {
 int ratio, higherPrice, lowerPrice;
 boolean currentHigher;

 if (prices[0] < prices[1]) {
 higherPrice = prices[1];
 lowerPrice = prices[0];
 currentHigher=false;
 } else {

Listing 5.10 ChartCanvas

Static constants to
create bars of graph

q

Draw graph grid
or “tick” lines

r

Display title,
current price next

to price bars
w

Draw bars
depicting prices

e

Method to determine
length of price bar

y

Force canvas to paintt
THE MIDP USER INTERFACE API 103

WH_Java2.book Page 104 Monday, March 4, 2002 9:59 AM
 higherPrice = prices[0];
 lowerPrice = prices[1];
 currentHigher=true;
 }

 ratio = higherPrice/MAX_BAR_SIZE + 1;
 while (ratio > 1) {
 higherPrice = higherPrice/ratio;
 lowerPrice = lowerPrice/ratio;
 ratio = higherPrice/MAX_BAR_SIZE + 1;
 }

 if (currentHigher) {
 int[] ends = {higherPrice, lowerPrice};
 return ends;
 } else {
 int [] ends = {lowerPrice, higherPrice};
 return ends;
 }
 }
}

As a test, we used the ObtainQuoteMIDlet to kick of the high-level API displays.
Here, we take advantage of the RetrieveQuoteMIDlet to initiate and test the low-
level API display. Just as in the ObtainQuoteMIDlet, a variable is added to the
RetrieveQuoteMIDlet in order to keep a reference to an instance of the ChartCan-
vas that is created.
private ChartCanvas chartCanvas = null;

Next, a method is added to the MIDlet to create a new ChartCanvas object when
it has not yet been instantiated, or use the existing object when it has already been
created. This method will also kick off the test of the canvas display by setting the
current display to the new Canvas object and then calling the displayChart
(String symbol, int current, int historic) method that was created earlier.

private void displayChartCanvas() {

 if (chartCanvas == null) {
 chartCanvas = new ChartCanvas();
 }
 displayMngr.setCurrent(chartCanvas);
 chartCanvas.displayChart("MMM",75,110);
}

Finally, the startApp() method to the RetrieveQuoteMIDlet is modified to call on
the display manager with a call to the displayChartCanvas() method.

protected void startApp() {
 displayMngr = Display.getDisplay(this);
 displayChartCanvas();
}

After successfully compiling, preverifying, JARing and running of the application,
the low-level API display should reflect that depicted in figure 5.20.

Method to determine
length of price bar

y

104 CHAPTER 5 MIDP USER INTERFACE

WH_Java2.book Page 105 Monday, March 4, 2002 9:59 AM
Compile

>javac -g:none -bootclasspath %MIDPClasses%;. EntryForm.java

>javac -g:none -bootclasspath %MIDPClasses%;. ChartCanvas.java
>javac -g:none -bootclasspath %MIDPClasses%;. ObtainQuoteMIDlet.java
>javac -g:none -bootclasspath %MIDPClasses%;. RetrieveQuoteMIDlet.java

or
>javac -g:none -bootclasspath %MIDPClasses%;. *.java

Preverify

>%MIDPTools%\preverify -classpath %MIDPClasses%;. ObtainQuoteMIDlet

>%MIDPTools%\preverify -classpath %MIDPClasses%;. RetrieveQuoteMIDlet
>%MIDPTools%\preverify -classpath %MIDPClasses%;. EntryForm
>%MIDPTools%\preverify -classpath %MIDPClasses%;. ChartCanvas

or
>%MIDPTools%\preverify -classpath %MIDPClasses%;. “.”

JAR

>jar -cfm quote.jar QuoteMIDletSuite.jad -C ./output ObtainQuoteMIDlet.class
-C ./output RetrieveQuoteMIDlet.class –C ./output EntryForm.class –C ./out-
put ChartCanvas.class

or
>jar -cfm quote.jar QuoteMIDletSuite.jad -C ./output .

Run

>%MIDPTools%\midp -classpath %MIDPClasses%;.\quote.jar -descriptor

QuoteMIDletSuite.jad

5.5 HANDLING USER INTERACTIONS IN MIDP

When a user interacts with an application, we expect the application to respond and
take appropriate action. A user interaction, such as the push of a button, selection from
a list of choices, or entry of data into a field, is known as an event. An event is a notice
generated at runtime each time the user interacts with the device. In response, an appli-
cation is constructed to wait or “listen” for the events and take action depending on the
particular event. For example, entry of data in a field may require the application to

Figure 5.20

Investment prices depicted as bars in a bar graph are made

possible with the low-level API and canvas. Each bar in the

graph is just a filled rectangle drawn to the canvas. Unlike

the StringItem used in the high-level API, even the text for

the title and prices must be drawn to the canvas.
HANDLING USER INTERACTIONS IN MIDP 105

WH_Java2.book Page 106 Monday, March 4, 2002 9:59 AM
listen for text entry and then validate the data entered. An application is constructed to
listen for events by implementing a listener interface and realizing methods known as
callbacks. Callback methods are special methods that are not usually invoked by the
application code directly, but are invoked by the system for a specified event. In the
case of the MIDP user interface, a device automatically invokes callback methods each
time the user has triggered a particular event for which an application listens.

As part of the tutorial application in this chapter, we developed a user interface
without reacting to any user interactions other than the selection and starting of the
application. In fact, the user interface did not even let the users exit the application
gracefully. Users had to turn the device off in order to leave the application. This is
probably not the type of functionality customers enjoy. In this section, we correct this
problem and provide a more graceful means to exit the application as well as handle
other customer interactions with the application.

Under the MID profile there are two means of event handling. Corresponding to
the MIDP’s high-level and low-level user interface, there is both a high-level and low-
level event API. The high-level events and event handling mechanisms are more
abstract and are meant to address the general needs of more traditional business appli-
cations. Low-level events and event handling, on the other hand, are provided to cap-
ture and handle primitive events from specific keys being pressed and released or from
a pointer being pressed or dragged (provided the device has a pointer). As with the
high-level and low-level UI APIs, the high-level events are considered more portable
to different devices running the MID profile. Alternately, the low-level event API
allows for capturing and handling of very specific events, which makes activity in gam-
ing applications possible, but these events may be more specific to a particular device
and thus less portable.

Using the term “low-level” in describing the MIDP’s alternate event handling
mechanism is also a little misleading. In fact, the MIDP UI is relatively abstract in that
it does not allow applications to have access to very low-level user interactions such as
traversing a form from item to item or form scrolling.

event
triggered

register
for event

Device

callback
on event

Application

Figure 5.21

Each time the user pushes a button or key

on the keypad of the device, the potential

exists for an event to be triggered inside

of the application. The user’s push of a

button causes an application method,

termed a callback, to be invoked based

on an earlier application registration of

the event to that method.
106 CHAPTER 5 MIDP USER INTERFACE

WH_Java2.book Page 107 Monday, March 4, 2002 9:59 AM
The user interface events handled via callbacks are serialized, which means that han-
dling of events never occurs in parallel. A user interface callback is invoked as soon as
an earlier callback returns. Timer events are not user interface events and so their call-
back methods do not adhere to the same serialized rule. A Timer object, in MIDP, is
a means for scheduling tasks for future execution in a background thread. Timer call-
back methods can run concurrently with UI event callbacks.

5.5.1 High-level event handling

In the high-level API, events come from two types of user interactions. A user can ini-
tiate a high-level event by changing the value or internal state of an item within a
Form instance or a user can initiate a Command. Commands are a kind of user inter-
face selector and event launcher construct rolled into one object. Correspondingly,
handling high-level events requires two types of listeners. There are listeners for com-
mand events and listeners for item state change events.

ItemStateListener

The user initiates an item state change event when he performs any of the following
actions on an Item object contained in a form:

• adjusts the value of an interactive Gauge

• enters or modifies the value of a TextField

• enters a new date or time in a DateField

• changes (sets or unsets) the selected values in a ChoiceGroup

A Gauge item can be created in a noninteractive mode. In this case the
Gauge item serves as a progress bar or indicator and any change to the value
is made by the application through a call to the setValue(int value)
method. Calls by the application to setValue(int setValue) should
not then trigger an item state change.

To capture and handle item state events, an object in the application must implement
the ItemStateListener interface and it must notify the form that it is listening
for item state events. The ItemStateListener interface comes from the javax.
microedition.lcdui package and it has only one method that must be imple-
mented by implementing classes. The itemStateChanged(Item item) method
is the callback method invoked by the device when the state of an item has changed.

A form is notified that a listener’s itemStateChanged(Item item) method
should be invoked on item state changes by calling on the form’s setItemState-
Listener(ItemStateListener iListener) method with the listener object.
This act of tying a specific ItemStateListener implementer object to a specific
Form object is called registration. An ItemStateListener is registered for events
coming from a form. A Form object can have only one ItemStateListener
and subsequent calls to the setItemStateListener(ItemStateListener
iListener) method will cause the previous listener to be replaced.

GAUGE
STATE

CHANGE
HANDLING USER INTERACTIONS IN MIDP 107

WH_Java2.book Page 108 Monday, March 4, 2002 9:59 AM
Per the MIDP specification,1 it has been left up to the device implementation to
determine exactly what constitutes a change and when the change occurs in the value
of an item. For example, a text field could be considered changed after the entry or
modification of a character in the field. The specification only requires that the Item-
StateListener implementer be called before it is called for a change on another
Item, and before a command is delivered to the Form object’s CommandListener
(see the CommandListener section on page 109). If a device provides for the con-
cept of input focus, the specification suggests that the ItemStateListener
itemStateChanged(Item item) method be called no later than when an affected
item that has been changed loses focus. It further suggests that the listener should only
be invoked if an item’s value has actually been changed.

Commands

In the previous examples both in this chapter and chapter 4, the user interface was
built lacking a critical component. Namely, there was no way for the customer to ini-
tiate any action, not even the action to leave the application. In most desktop applica-
tions, basic actions are provided through the push of a “button” or selection of an
option from a menu. In MIDP, the equivalent user interface object is called a Command.

Due to the diversity of MIDP devices, a command may be implemented as a soft
button, menu selection, or other appropriate mechanism that activates a single action. Re-
member, a J2ME, MIDP device is not even required to have a user interface. Therefore,
a command could be implemented as a voice tag in a non-graphical speech interface.

The Command class, like all user interface classes, is defined in the javax.micro-
edition.lcdui package. A command encapsulates the meaning or purpose of a user’s
action; however it does not handle the actual action. That is, a Command object encapsu-
lates the semantic information of an action but not its behavior. Another event listener,
a CommandListener, which is described later in this chapter, provides the behavior.

A Command object is displayed or more precisely “presented” in the user interface
based on the information contained within the object, the device presenting the Com-
mand, as well as the number of commands being displayed. For example, a device may
choose to display a string next to a device button on the device screen.

Alternatively, if the number of commands to be displayed exceeds the number of phys-
ical buttons a device has, then the device may display the commands in a menu. Again, the
implementation and presentation of commands is left up to the device implementer.

A command has three parts: a label, type, and priority. A command’s label is the
string used by the device to represent the command in the user interface. The device
may override the label of a command with a device-assigned label if the command’s
type is other than SCREEN. This allows devices to specify a consistent and appropriate
label for common functions. Each Command object also has a priority value that the

1 Mobile Information Device Profile Specification, Version 1.0, Final Candidate for Shipment, September 15,
2000, Sun Microsystems, Inc.
108 CHAPTER 5 MIDP USER INTERFACE

WH_Java2.book Page 109 Monday, March 4, 2002 9:59 AM
application uses to determine the importance of one command relative to another
command on the same user interface. Priority values must be integers and a lower
number indicates greater importance. A command type specifies the intent of a com-
mand. There are several statically available types already defined for Command objects.
These include BACK, CANCEL, HELP, OK, SCREEN, and STOP types.

A device’s implementation will utilize type and priority to help determine the pre-
sentation of commands on the user interface. The implementation will first use type in
determining the placement of a command and then it will place similar commands in
order of priority. This allows, for example, a device to establish a standard placement
of operations such as “help” on the appropriate soft-button. Usually, higher priority
commands are placed so that they can be directly initiated by the push of a soft button
while lower priority commands are arranged in a menu. It is legal to have several com-
mands on the same screen with the same type and priority. In this case, the device will
choose how commands are displayed and adjust the type and/or priority accordingly.

The Command class provides a single constructor, Command(String label,
int commandType, int priority), for creating a Command object. The developer
must supply the label, type and priority at the time of creation. The Command object
has get methods to retrieve the label, type and priority information, but has no meth-
ods to set these values after the object has been created.

Like other user interface objects, Command objects cannot be displayed on a screen
by themselves. They must be added to an encapsulating Displayable object. Unlike
other graphical elements, Commands can be added to any Displayable object,
which includes both Screen and Canvas objects. The Displayable methods
addCommand(Command cmd) and removeCommand(Command cmd) allow for
adding and removing commands from these display objects.

We indicated that commands are a kind of user interface selector or button and
event-launcher construct rolled into one object. Each command triggers a command
event. Like item state changes, these events must be captured and acted on by another
object. This is done through another high-level event listener.

CommandListener

To capture and handle command events, an object in the application must implement
the CommandListener interface and it must notify the Displayable object that it
is listening for command events. Customarily, a nested or an inner class is created in an

Figure 5.22

Commands, such as Get and Exit here, can be

associated with keys (buttons) on the device. The

type and priority of a command determine how and

where the command is presented to the user.
HANDLING USER INTERACTIONS IN MIDP 109

WH_Java2.book Page 110 Monday, March 4, 2002 9:59 AM
application to implement the listener. The CommandListener interface comes from
the javax.microedition.lcdui package and, like the other high-level event
ItemStateListener interface, it has only one method, commandAction(Command
c, Displayable d) that must be implemented by the implementing listener class.

How does the commandAction() method get called? Like with the ItemState-
Listener, a CommandListener must first register with the Displayable object
(either Screen or Canvas) holding the Command object whose event is of interest. A
command listener is registered by utilizing the setCommandListener(Com-
mandListener cmdlist) method on the Displayable object. A Displayable
object can have only one command listener at any one time. Therefore, subsequent calls
to the setCommandListener(CommandListener cmdlist) method on the same
Displayable object can cause any previous listener to be replaced. After registering, the
commandAction(Command c, Displayable d) method will be triggered by the
device each time a command event is initiated by the user on the Displayable object.

The two parameters provided the commandAction(Command c, Display-
able d) callback specify the Command object selected by the user, and the possessing
or owning Displayable object. This allows the commandAction(Command c,
Displayable d) method to handle many command events from various Screen
and Canvas objects. However, typically, a nested class or inner class inside of a canvas
or screen is set up to receive the high-level events for that single Displayable object.

It is important to note again that event handling callbacks are serialized. The device
does not create threads for event delivery. If a listener’s event handling method does
not return or takes a long time to return, the entire system may be blocked. Therefore,
the listener methods should return as quickly as possible.

5.5.2 Low-level event handling

The high-level event API is meant to abstract as much of the event and event han-
dling detail away from the application as possible. However, if your application uses
an object instantiated from a subclass of Canvas (recall that the Canvas class is
abstract in nature) to draw low-level graphical elements, you may want or need to
handle low-level events. Game applications are the proverbial example of where low-
level graphics are likely used to provide more precise and fine-grained drawings. Like-
wise, the low-level event API is used in gaming applications to provide the user with
more game control through handling of specific game action, key and pointer events.

The Canvas class, which is abstract and must be extended by the implementing
application, provides methods to handle the low-level events. The Canvas class also
provides a number of convenience methods to help developers discover the device’s
event capabilities and event-to-keyboard mappings.

Key codes and low-level API Events

In the low-level event API, key pressed or released events that emanate from the appli-
cation are reported with respect to a key code. Key codes are static variables assigned
110 CHAPTER 5 MIDP USER INTERFACE

05_MIDP interface.fm Page 111 Monday, March 4, 2002 10:20 AM
to constant integer values that represent the concrete keys of the device. A key code is
assigned to every key that reports events to an MIDP application. The key code value
is unique to each device key unless two keys are synonyms for each other. The key
code values are equal to the Unicode encoding of the keypad character they represent.
In the Canvas class, the following key codes are defined:

The MIDP low-level event API requires that standard key codes be assigned to the
ITU-T keypad. This keypad includes the ‘0’ through ‘9’ keys as well as the ‘*’ and ‘#’
keys that are on cellular telephones. Device implementers are allowed to assign addi-
tional key codes to additional device keys, but these are considered non-standard key
code mappings. Applications that utilize non-standard key codes are considered not
portable to other devices.

A method on the Canvas object, getKeyName(int keyCode) will provide the key
string or name for any key code passed as the parameter. This string should resemble the
text physically printed on the key on the device. If the key code given to the getKeyName
(int keyCode) method is not valid an IllegalArgumentException is thrown.

Game actions

Game actions are static final variables assigned to constant integer values that repre-
sent arrow key and gaming action key events. In order to keep an application porta-
ble, an application that uses arrow key or gaming related events should use game
actions over key codes since the key codes associated with the event representing an
arrow key or game action key press may be nonstandard. The Canvas class defines
the following game actions:

Key codes can be mapped to at most one game action, but game actions may be asso-
ciated to more than one key code. For example, all of the key codes associated with keys
usually found on the left side of a key pad (KEY_NUM1, KEY_NUM4, KEY_NUM7)
could be mapped to the LEFT game action, but no other game actions could then be

• KEY_NUM0 • KEY_NUM6

• KEY_NUM1 • KEY_NUM7

• KEY_NUM2 • KEY_NUM8

• KEY_NUM3 • KEY_NUM9

• KEY_NUM4 • KEY_STAR

• KEY_NUM5 • KEY_POUND

• UP • GAME A

• DOWN • GAME B

• LEFT • GAME C

• RIGHT • GAME D

• FIRE
HANDLING USER INTERACTIONS IN MIDP 111

WH_Java2.book Page 112 Monday, March 4, 2002 9:59 AM
mapped to these key codes. The getKeyCode(int gameAction) and getGame-
Action(int keyCode) methods on the Canvas class offer translation between
key codes and game actions.

Devices differ greatly on how game actions are mapped to the physical keys. Some
devices have navigational arrow keys. In these devices, it is apt for the LEFT, RIGHT,
UP, and DOWN game actions to be mapped to these physical keys.
In other devices where navigational arrow keys do not exist, the ‘2’, ‘4’, ‘6’ and ‘8’ keys
on the key pad may be used for LEFT, RIGHT, UP, and DOWN game actions. (Figure 5.24)

Key codes could be used to determine if a key event came from a navigational arrow
key. However, this would require checking for a non-standard key code on the part of
the application. In order to keep an application portable across devices, key events
should be translated to a game action with the getGameAction(int keyCode)
method. In this way, whether the key assigned to the game action has a standard key
code (as with the 2 key) or nonstandard key code (as with the up arrow key), the
application is portable to either type of device.

Event delivery methods

Key codes and game actions represent the events in the low-level API, but how are
these events handled? In the high-level API, a listener object is created to handle events
generated from the high-level user interface objects (either items or commands). The
listener’s callback method is called whenever the event is triggered. In the low-level
API, there are no listener objects. Instead, the event callback methods are contained
within the Canvas object. The device calls the following canvas methods when a
low-level event occurs:

keyPressed(int keyCode)
keyReleased(int keyCode)
keyRepeated(int keyCode)

DOWN

RIGHTLEFT

UP

Figure 5.23

Game actions are typically assigned

to the directional or navigational

(arrow) keys, if these are available.

DOWN

RIGHTLEFT

UP

Figure 5.24

If the key pad does not have arrow keys,

number keys must be used instead.
112 CHAPTER 5 MIDP USER INTERFACE

WH_Java2.book Page 113 Monday, March 4, 2002 9:59 AM
pointerPressed(int x, int y)
pointerDragged(int x, int y)
pointerReleased(int x, int y)

The Canvas class is abstract and so it requires the application to subclass it in order
to use these methods. The default implementation for the callback methods or event
delivery methods, as they are called in the MIDP API documentation, is empty. This
means that the application, by default, takes no action when the low-level key events
fire and these methods are called. The application must override these methods in the
implementation subclass of Canvas in order for the application to handle the low-
level events.

You probably noticed the pointer methods at the bottom of the event handling
methods above. A pointing device or input mechanism is considered optional for
MIDP devices. Some devices do not support a pointer input device. In this case, the
pointer methods will never be called. The Canvas class does have two methods,
hasPointerEvents() and hasPointerMotionEvents(), for checking whether
a pointer is available. Likewise, not all devices allow for repeated key presses. A has-
RepeatEvents() method is available to check for this option’s availability on the device.

The Canvas class also has other event delivery methods that are not associated
with the key or pointer related events. These include:

showNotify()

hideNotify()
paint(Graphics g)

The showNotify() method is called prior to a canvas actually being displayed.
Alternately, the hideNotify() method is called after a canvas has been removed
from display. The key and pointer event handling, paint and command callback
methods can only be called if the Canvas object is actually being displayed.

Like the high-level event callback methods, the event delivery methods are also
called serially. Therefore, the device will never call any two event delivery methods in
parallel. An event delivery method is invoked only after an earlier event delivery
method returns.

Commands with the Canvas

A Canvas object is also a Displayable object and so can have Command objects
attached to it. Therefore, a Canvas object can participate in high-level and low-level
event handling. Commands are particularly useful for navigating to and from the dif-
ferent displays. However, the Canvas object was meant to provide an encapsulating
drawing object for low-level user interfaces such as those required in games and geo-
graphical display systems. Some devices may not provide high-level command events
when the Canvas and low-level user interface graphical elements are displayed. In
this case, the device may provide a means to switch in and out of the command mode
with the use of a hot key on the device. The Canvas object’s showNotify() and
hideNotify() methods are called during these transitions.
HANDLING USER INTERACTIONS IN MIDP 113

WH_Java2.book Page 114 Monday, March 4, 2002 9:59 AM
5.5.3 Handling the events of the Investment Quote Application

In the first part of this chapter, we were able to draw some very nice user interfaces
with both high-level and low-level user interface APIs. The problem with these inter-
faces, as already indicated, is that there is no way for the user to indicate what he
wants done on any display. Once the user has entered the symbol for the investment,
he cannot tell the system to retrieve the quote. Once he has seen the prices for an
investment, he cannot tell the system to stop and leave the application. In this por-
tion of the tutorial, we will add Commands to the user interface and allow the appli-
cation to react to user interactions causing events triggered by commands as well as
other items shown on the display.

Using ItemStateListener

In the tutorial application, the customer is requested to enter the symbol for an
investment for which they would like price information. Except for unusual circum-
stances, common stocks are given three, four or five letter symbols. Thus, the text
field in our entry form was given a maximum size of 5 characters. Mutual funds are
also up to five letters in length, but a mutual fund symbol ends in the letter X. To
help insure that the customers have entered an appropriate string of characters when
requesting a price quote for a mutual fund, the tutorial application is retrofitted to
check the customer’s input on the entry form’s symbolField when the “Fund”
choice is selected from the form’s choice group. This is accomplished by outfitting the
MIDlets with an ItemStateListener to listen for item state changes to the
choice group item called investmentChoice (see chapter 3 for a review of the tuto-
rial application user interface). A single method is added to our MIDlet that estab-
lishes the ItemStateListener and registers it with the EntryForm.

private void initListener () {
 ItemStateListener itemListener = new ItemStateListener () {
 public void itemStateChanged (Item item) {
 if ((item == entryForm.getInvestmentChoice()) &&
 (entryForm.getInvestmentChoice().getSelectedIndex() == 1) &&
 !(entryForm.getSymbolField().getString().
 toUpperCase().endsWith("X"))) {
 Alert symbolAlert = new Alert("Check Symbol",
 "Mutual Funds end in 'X'",null, AlertType.WARNING);
 symbolAlert.setTimeout(Alert.FOREVER);
 displayMngr.setCurrent(symbolAlert, entryForm);
 }
 }
 };
entryForm.setItemStateListener(itemListener);
}

Listing 5.11 Adding ItemStateListeners to the MIDlets

q

e

w

114 CHAPTER 5 MIDP USER INTERFACE

WH_Java2.book Page 115 Monday, March 4, 2002 9:59 AM
ItemState Listener defined by inner class

Use an alert to indicate to the user a discrepancy with the symbol and the investment type

Assign or register listener with the entry form

In this example, an anonymous inner class is used to implement the ItemState-
Listener. If the customer makes any change in state to any item on the entry form,
the listener checks to see if the item changed is the investmentChoice item. If it
is, the listener also makes certain that the choice selected was the “Fund” choice (the
“Fund” choice has an index of 1 in the list of choices) and that the symbol entered does
not end in ‘X’. When these conditions have been met, the customer is prompted with
a warning alert displayed over the entry form indicating the symbol for a mutual fund
may not be correct since it should end in ‘X’. All that is left to do is to initialize the
listener when the entry form is created inside of the displayEntryForm() method.

private void displayEntryForm () {
 if (entryForm == null) {
 entryForm = new EntryForm("ObtainQuote");
 }
 initListener();
 displayMngr.setCurrent(entryForm);
}

After compiling, preverifying, and JARing the MIDlet suite in the usual manner, the
application should look like the display captured in figure 5.25.

Compile

>javac -g:none -bootclasspath %MIDPClasses%;. EntryForm.java
>javac -g:none -bootclasspath %MIDPClasses%;. ChartCanvas.java
>javac -g:none -bootclasspath %MIDPClasses%;. ObtainQuoteMIDlet.java
>javac -g:none -bootclasspath %MIDPClasses%;. RetrieveQuoteMIDlet.java

or
>javac -g:none -bootclasspath %MIDPClasses%;. *.java

Preverify

>%MIDPTools%\preverify -classpath %MIDPClasses%;. ObtainQuoteMIDlet

>%MIDPTools%\preverify -classpath %MIDPClasses%;. RetrieveQuoteMIDlet
>%MIDPTools%\preverify -classpath %MIDPClasses%;. EntryForm
>%MIDPTools%\preverify -classpath %MIDPClasses%;. ChartCanvas
>%MIDPTools%\preverify -classpath %MIDPClasses%;. ObtainQuoteMIDlet$1

or
>%MIDPTools%\preverify -classpath %MIDPClasses%;. “.”

JAR

>jar -cfm quote.jar QuoteMIDletSuite.jad -C ./output ObtainQuoteMIDlet.class

-C ./output RetrieveQuoteMIDlet.class –C ./output EntryForm.class
–C ./output ChartCanvas.class -C ./output ObtainQuoteMIDlet$1.class

q

w

e

HANDLING USER INTERACTIONS IN MIDP 115

WH_Java2.book Page 116 Monday, March 4, 2002 9:59 AM
or
>jar -cfm quote.jar QuoteMIDletSuite.jad -C ./output .

Run

>%MIDPTools%\midp -classpath %MIDPClasses%;.\quote.jar -descriptor

QuoteMIDletSuite.jad

If the symbol entered in the symbolField does not end in an “X”, then the item state
listener triggers an alert whenever the InvestmentChoice experiences a state change.

Using Commands and CommandListeners

There are several places in the tutorial application that require use of a Command,
not the least of which is the tutorial application’s MIDlets, which require a means to
exit the application gracefully—that is, without turning off the device. Secondly, each
MIDlet in the tutorial application requires the customer to enter a symbol. Presumably
the customer indicates when the symbol has been entered with some action and the
ObtainQuoteMIDlet then requests the price from the quote service. Similarly, the
RetrieveQuoteMIDlet, when provided a symbol, attempts to retrieve the historical
price from the persistent storage on the device. The problem is, the MIDlets cur-
rently have no way for the customer to indicate when the symbol has been entered.
Instead, the MIDlets are simulating the customer’s entry of a symbol in the first form
and simply calling on the subsequent Displayable object to show the new or
retrieved price. Commands provide the perfect solution for allowing the user to signal
when a symbol has been entered and for the MIDlet to take over and complete some
action. Let’s fix the MIDlets to provide real customer interaction and behavior more
appropriately to those actions.

First, we modify the EntryForm and ChartCanvas Displayable classes to
contain exit commands. This will allow these displays, and in some cases the entire
application, to be exited gracefully. In both Displayable objects, a private variable
is added to contain the exit command.
private Command exitCommand;= null;

Figure 5.25

Mutual fund symbols end in ‘X’. If the invest-

ment type signified by the last character in the

symbol does not match the type selected in the

ChoiceGroup, then the customer needs to be

warned. Appropriately, our application uses an

Alert, as shown here, to indicate text entry

errors as triggered via an ItemStateChange.
116 CHAPTER 5 MIDP USER INTERFACE

WH_Java2.book Page 117 Monday, March 4, 2002 9:59 AM
Next, two lines are added to the constructor of each of the Displayable objects to
create the exit command object and add it to the display.

exitCommand = new Command("Exit", Command.EXIT, 1);
addCommand(exitCommand);

The exit command has been given an “Exit” label. More importantly, it has been
given the EXIT type and a high priority value of 1. This serves to give the command
a prominent place in the display. In the cell phone emulator, the high priority of the
exit command serves to get it assigned to upper-left soft button. Finally, in order for
the MIDlet applications to have access to the exit Command objects, a getter method
is added to both the EntryForm and ChartCanvas objects.

public Command getExitCommand() {
 return exitCommand;
}

Now, when either the EntryForm or ChartCanvas are displayed, the new exit
commands are displayed. Based on the command type and priority, and depending
on how the device presents commands, the Displayable objects should look simi-
lar to the emulator depiction in figure 5.26.

An exit Command on the chart canvas is all that is needed to allow the customer to
leave the price graph when he or she is done viewing it. On the entry form, however,
we need a mechanism to allow the customer to signify when the investment symbol
has been entered. To provide for this user interaction, an additional “Get” Command
is added to the entry form. Similar to the exit commands, a private variable is added
to contain the get Command.

private Command getCommand = null;

Lines are added to the EntryForm class constructor to create and add the new com-
mand to the Form object.

getCommand = new Command("Get", Command.SCREEN, 2);
addCommand(getCommand);

Figure 5.26

In earlier demonstrations, the only way to

exit the application was to push the power

button. Now, Exit Commands on the

EntryForm and ChartCanvas allow the

customer to gracefully leave the application.

Exit commands
HANDLING USER INTERACTIONS IN MIDP 117

WH_Java2.book Page 118 Monday, March 4, 2002 9:59 AM
The second command is given a lower priority and SCREEN type that results in a pre-
sumably less predominant spot on the user interface than the exit command was given.
Additionally a getter method is provided for public access to the get Command object.

public Command getGetCommand() {
 return getCommand;
}

Now the entry form should have two commands when displayed.

This work puts commands on the displays, but it does not allow the application to
handle the events generated when the customer initiates other actions. To handle
other events, other listeners must be established and registered with the appropriate
Displayable object.

What actions should occur when the customer triggers the various events associ-
ated with each command? Earlier in this chapter, we simply put together the various
user interfaces but did not provide customer triggered navigation. Now that we have
the ability to allow the user to trigger actions through commands, we will want to
reconfigure our user interface displays. Figure 5.28 depicts what navigation we expect
to occur when the user presses the various commands.

Both the ObtainQuote and RetrieveQuote MIDlets can make use of the Entry-
Form class to get the investment symbol from the user. In the case of the ObtainQuote
MIDlet, we expect the application to use the symbol to obtain a new quote from the
quote service and display the results in the results alert we developed earlier. In the case
of the RetrieveQuote MIDlet, the symbol will be used to obtain the last prices from
persistent storage to be displayed graphically in the ChartCanvas display. The exit
command on the entry form used by either the ObtainQuote or RetrieveQuote
MIDlets, should close down the MIDlet gracefully, allowing the customer to return
to the application menu. The exit command on the chart canvas returns application
control back to the EntryForm object of the RetrieveQuote MIDlet. This allows the
customer to retrieve other historical quotes.

Figure 5.27 Additional commands, such as Get

in the tutorial application, can be assigned to

other keys depending on priority and type.

Exit and Get commands
118 CHAPTER 5 MIDP USER INTERFACE

WH_Java2.book Page 119 Monday, March 4, 2002 9:59 AM
To handle the event launched by the exit and get commands on either MIDlet’s
EntryForm object, we take advantage of the initListener() method set up ear-
lier for handling changes to the choice group item. Inside of the initListener()
method, another anonymous inner class is used to implement the CommandLis-
tener and handle the exit and get command events. The code for both listeners is
shown in listing 5.12.

private void initListener () {
 ItemStateListener itemListener = new ItemStateListener () {
 public void itemStateChanged (Item item) {
 if ((item == entryForm.getInvestmentChoice()) &&
 (entryForm.getInvestmentChoice().getSelectedIndex() == 1) &&
 !(entryForm.getSymbolField().getString().
 toUpperCase().endsWith("X"))) {
 Alert symbolAlert = new Alert("Check Symbol",
 "Mutual Funds end in 'X'",null, AlertType.WARNING);
 symbolAlert.setTimeout(Alert.FOREVER);
 displayMngr.setCurrent(symbolAlert, entryForm);
 }
 }
 };

Listing 5.12 The complete initListener method for the ObtainQuoteMIDlet

resultsAlert
showing

quote price

Exit Get

ObtainQuote

EntryForm
Midlet

DoneGraceful exit
of the Midlet

ChartCanvas
graphically
depicting

historical prices

Exit Get

RetrieveQuote

EntryForm
Midlet

ExitGraceful exit
of the Midlet

Figure 5.28

This diagram shows how the

various commands and event

handling of those commands on the

ObtainQuote and RetrieveQuote

MIDlets invoke displays.

q

HANDLING USER INTERACTIONS IN MIDP 119

WH_Java2.book Page 120 Monday, March 4, 2002 9:59 AM
 CommandListener commandListener = new CommandListener() {
 public void commandAction(Command c, Displayable d) {
 if (c == entryForm.getExitCommand()) {
 destroyApp(true);
 } else if (c == entryForm.getGetCommand()) {
 if ((entryForm.getInvestmentChoice().getSelectedIndex() == 1) &&
 !(entryForm.getSymbolField().getString().
 toUpperCase().endsWith("X"))){
 Alert symbolAlert = new Alert("Check Symbol",
 "Mutual Funds end in 'X'", null, AlertType.WARNING);
 symbolAlert.setTimeout(Alert.FOREVER);
 displayMngr.setCurrent(symbolAlert, entryForm);
 } else {
 if (entryForm.getSymbolField().getString().length() > 0) {
 String sym = entryForm.getSymbolField().getString();
 displayPrice("The price of " + sym + " is $111.19");
 }
 }
 }
 }
 };

 entryForm.setItemStateListener(itemListener);
 entryForm.setCommandListener(commandListener);
}

The anonymous inner class defining the item state listener

An anonymous inner class defining the command listener

“Exit” command event, destroy the MIDlet

“Get” command event, display the price

Assign or register the listeners with the form

In this code, two anonymous inner classes are used. The first inner class defines the pre-
viously mentioned item state listener and how the MIDlet will react to item events.
The second anonymous inner class defines the command listener and how the MIDlet
will react to command events. The new command listener must react to two com-
mands. On an Exit command, the listener requests to destroy the MIDlet. On a Get com-
mand, the listener either displays the price for the investment or launches an alert if
there is a type or symbol discrepancy. Along with defining the listeners, the init-
Listener() method also registers the item and command listeners with the EntryForm.

Both MIDlets handle the exit command in the same way, namely, they call on the
destroyApp(true) method in the MIDlet to force the MIDlet into the destroyed
state. Both MIDlets also handle the get command events, but each handles the event
a little differently. The ObtainQuote MIDlet calls on the alert to display the new price
for the investment symbol provided by the customer. As shown in listing 5.13, the
RetrieveQuote MIDlet, on the other hand, calls to display the canvas to show the his-
torical price information for the investment symbol provided by the customer.

w

r

e

t

q

w

e

r

t

120 CHAPTER 5 MIDP USER INTERFACE

WH_Java2.book Page 121 Monday, March 4, 2002 9:59 AM
private void initListener () {
 ItemStateListener itemListener = new ItemStateListener () {
 public void itemStateChanged (Item item) {
 if ((item == entryForm.getInvestmentChoice()) &&
 (entryForm.getInvestmentChoice().getSelectedIndex() == 1) &&
 !(entryForm.getSymbolField().getString().
 toUpperCase().endsWith("X"))) {
 Alert symbolAlert = new Alert("Check Symbol",
 "Mutual Funds end in 'X'",null, AlertType.WARNING);
 symbolAlert.setTimeout(Alert.FOREVER);
 displayMngr.setCurrent(symbolAlert, entryForm);
 }
 }
 };
 CommandListener commandListener = new CommandListener() {
 public void commandAction(Command c, Displayable d) {
 if (c == entryForm.getExitCommand()) {
 destroyApp(true);
 } else if (c == entryForm.getGetCommand()) { {
 if ((entryForm.getInvestmentChoice().getSelectedIndex() == 1) &&
 !(entryForm.getSymbolField().getString().
 toUpperCase().endsWith("X"))){ {
 Alert symbolAlert = new Alert("Check Symbol",
 "Mutual Funds end in 'X'", null, AlertType.WARNING); {
 symbolAlert.setTimeout(Alert.FOREVER);
 displayMngr.setCurrent(symbolAlert, entryForm);
 } else
 if (entryForm.getSymbolField().getString().length() > 0)
 displayChartCanvas();
 }
 }
 };
 entryForm.setItemStateListener(itemListener);
 entryForm.setCommandListener(commandListener);
}

On a “Get” command event, display the chart canvas depicting the current and his-
torical prices or alert on error

Notice that the listeners (listings 5.12 and 5.13) are all registered with the Entry-
Form object at the end of the method. These are important lines in the code that
should not be forgotten. Without registration, the events would fire and code would be
ready to handle the responses, but no part of the application would actually catch and
handle the events.

The RetrieveQuote MIDlet must also be set up as a listener for the exit command
event on the ChartCanvas class. For this, a second CommandListener class is cre-
ated. Like the listener for the exit and get commands originating from the entry form,
this listener is established through an anonymous inner class in an initialization
method within the RetrieveQuote MIDlet.

Listing 5.13 The initListener method for the RetrieveQuoteMIDlet

q

q

q

q

HANDLING USER INTERACTIONS IN MIDP 121

WH_Java2.book Page 122 Monday, March 4, 2002 9:59 AM
private void initCanvasListener() {
 CommandListener commandListener = new CommandListener() {
 public void commandAction(Command c, Displayable d) {
 if (c == chartCanvas.getExitCommand())
 displayMngr.setCurrent(entryForm);
 }
 };
 chartCanvas.setCommandListener(commandListener);
}

Notice, again, that the listener is registered with the canvas object at the end of the
method. When the exit command on the canvas is triggered, this commandAction()
method in this listener calls on the display manager to set the current Displayable
back to the EntryForm object. The displayChartCanvas() method in the
RetrieveQuote MIDlet must be modified to call this initialization method when a
ChartCanvas object is displayed.

private void displayChartCanvas() {

 if (chartCanvas == null) {
 chartCanvas = new ChartCanvas();
 }
 initCanvasListener();
 displayMngr.setCurrent(chartCanvas);
 String currentSymbol = entryForm.getSymbolField().getString();
 chartCanvas.displayChart(currentSymbol,75,110);
}

The user interface and event handling on our MIDlets are now complete.
Listings 5.14–5.17 show the four completed .java files. The code over the last few
pages replaces or augments much of the code from previous listings. Some example
code that was introduced earlier to explore features has been replaced with code that
gets us closer to our completed application. Check your code against the following
listings, especially if you have difficulties in compiling, preverifying or running your
applications.

import javax.microedition.lcdui.*;

public class EntryForm extends Form {

 private TextField symbolField = null;
 private Command exitCommand = null;
 private Command getCommand = null;
 private ChoiceGroup investmentChoice = null;

 public EntryForm(String title) {
 super(title);
 symbolField = new TextField("Investment Symbol", "", 6, TextField.ANY);
 String choices[] = {"Stock", "Fund"};
 investmentChoice = new ChoiceGroup("Type", Choice.EXCLUSIVE,
 choices, null);

Listing 5.14 EntryForm.java

Reference variable
declaration for the exit
and get commands

q

122 CHAPTER 5 MIDP USER INTERFACE

WH_Java2.book Page 123 Monday, March 4, 2002 9:59 AM
 exitCommand = new Command("Exit", Command.EXIT, 1);
 getCommand = new Command("Get", Command.SCREEN, 2);
 append(symbolField);
 append(investmentChoice);
 addCommand(exitCommand);
 addCommand(getCommand);
 }

 public TextField getSymbolField() {
 return symbolField;
 }

 public ChoiceGroup getInvestmentChoice() {
 return investmentChoice;
 }

 public Command getExitCommand() {
 return exitCommand;
 }

 public Command getGetCommand() {
 return getCommand;
 }
}

import javax.microedition.lcdui.*;
import java.util.*;

class ChartCanvas extends Canvas {

 static final int MAX_BAR_SIZE = 65;
 static final int START_X_POSITION = 30;
 static final int START_Y_CURRENT = 27;
 static final int START_Y_HISTORIC = 39;
 static final int BAR_HEIGHT = 10;

 private int currentPrice;
 private int historicPrice;
 private String symbol = null;
 private Command exitCommand;

 public void displayChart(String sym, int amtCur, int amtHist) {
 symbol = sym;
 currentPrice = amtCur;
 historicPrice = amtHist;
 serviceRepaints();
 }

 public ChartCanvas() {
 exitCommand = new Command("Exit", Command.EXIT, 1);
 addCommand(exitCommand);
 }

Listing 5.15 ChartCanvas.java

Provide getter methods
to access commands for
use by the MIDlets

r

Creating the
exit and get
commands,
giving the exit
command
highest
priority

w

Add commands to forme

Reference variable
declaration for the
exit commandq

Create exit
command

w
Add commands
to Canvas

e

HANDLING USER INTERACTIONS IN MIDP 123

WH_Java2.book Page 124 Monday, March 4, 2002 9:59 AM
 public Command getExitCommand() {
 return exitCommand;
 }

 protected void paint(Graphics g){
 int currentColor = g.getColor();
 g.setColor(255,255,255);
 g.fillRect(0,0,getWidth(),getHeight());
 g.setColor(currentColor);
 g.drawString(symbol + " Performance",1,1,Graphics.TOP|Graphics.LEFT);
 g.drawString("current vs. historic ", 1, 12, Graphics.TOP|Graphics.LEFT);
 g.drawString("$" + currentPrice, 1, 24, Graphics.TOP|Graphics.LEFT);
 g.drawString("$" + historicPrice, 1, 36, Graphics.TOP|Graphics.LEFT);

 int[] prices = {currentPrice, historicPrice};
 int[] lengths = determineLengths(prices);
 g.fillRect (START_X_POSITION, START_Y_CURRENT, lengths[0], BAR_HEIGHT);
 g.fillRect (START_X_POSITION, START_Y_HISTORIC, lengths[1], BAR_HEIGHT);

 g.drawLine(30,26,30,50);
 g.drawLine(50,26,50,50);
 g.drawLine(70,26,70,50);
 g.drawLine(90,26,90,50);
 }

 private int[] determineLengths (int[] prices) {

 int ratio, higherPrice, lowerPrice;
 boolean currentHigher;

 if (prices[0] < prices[1]) {
 higherPrice = prices[1];
 lowerPrice = prices[0];
 currentHigher=false;
 } else {
 higherPrice = prices[0];
 lowerPrice = prices[1];
 currentHigher=true;
 }

 ratio = higherPrice/MAX_BAR_SIZE + 1;
 while (ratio > 1) {
 higherPrice = higherPrice/ratio;
 lowerPrice = lowerPrice/ratio;
 ratio = higherPrice/MAX_BAR_SIZE + 1;
 }

 if (currentHigher) {
 int[] ends = {higherPrice, lowerPrice};
 return ends;
 } else {
 int [] ends = {lowerPrice, higherPrice};
 return ends;
 }
 }
}

Provide getter methods
to access commands for
use by the MIDlets

r

124 CHAPTER 5 MIDP USER INTERFACE

WH_Java2.book Page 125 Monday, March 4, 2002 9:59 AM
import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

public class ObtainQuoteMIDlet extends MIDlet {

 private Display displayMngr = null;
 private EntryForm entryForm = null;
 private Alert resultsAlert = null;
 private Ticker adTicker =
 new Ticker("Track your investments with Investment Tracker");

 public ObtainQuoteMIDlet () {
 }

 private void initListener () {
 ItemStateListener itemListener = new ItemStateListener () {
 public void itemStateChanged (Item item) {
 if ((item == entryForm.getInvestmentChoice()) &&
 (entryForm.getInvestmentChoice().getSelectedIndex() == 1) &&
 !(entryForm.getSymbolField().getString().
 toUpperCase().endsWith("X"))) {
 Alert symbolAlert = new Alert("Check Symbol",
 "Mutual Funds end in 'X'", null, AlertType.WARNING);
 symbolAlert.setTimeout(Alert.FOREVER);
 displayMngr.setCurrent(symbolAlert, entryForm);
 }
 }
 };
 CommandListener commandListener = new CommandListener() {
 public void commandAction(Command c, Displayable d) {
 if (c == entryForm.getExitCommand()) {
 destroyApp(true);
 } else if (c == entryForm.getGetCommand()) {
 if ((entryForm.getInvestmentChoice().getSelectedIndex() == 1) &&
 !(entryForm.getSymbolField().getString().
 toUpperCase().endsWith("X"))){
 Alert symbolAlert = new Alert("Check Symbol",
 "Mutual Funds end in 'X'", null, AlertType.WARNING);
 symbolAlert.setTimeout(Alert.FOREVER);
 displayMngr.setCurrent(symbolAlert, entryForm);
 } else {
 if (entryForm.getSymbolField().getString().length() > 0) {
 String sym = entryForm.getSymbolField().getString();
 displayPrice("The price of " + sym + " is $111.19");
 }
 }
 }
 }
 };
 entryForm.setItemStateListener(itemListener);
 entryForm.setCommandListener(commandListener);
 }

Listing 5.16 ObtainQuoteMIDlet.java

Registering the event
listener with the Form

w

Inner class used to listen
and react to command event

q

HANDLING USER INTERACTIONS IN MIDP 125

WH_Java2.book Page 126 Monday, March 4, 2002 9:59 AM
 private void displayEntryForm () {
 if (entryForm == null) {
 entryForm = new EntryForm("ObtainQuote");
 }
 initListener();
 displayMngr.setCurrent(entryForm);
 }

 private void displayPrice(String quoteString) {
 if (resultsAlert == null) {
 resultsAlert = new Alert("Quote Price", null, null,
 AlertType.CONFIRMATION);
 resultsAlert.setTicker(adTicker);
 resultsAlert.setTimeout(Alert.FOREVER);
 }
 resultsAlert.setString(quoteString);
 displayMngr.setCurrent(resultsAlert, entryForm);
 }

 protected void startApp() {
 displayMngr = Display.getDisplay(this);
 displayEntryForm();
 }

 protected void pauseApp() {
 }

 protected void destroyApp(boolean unconditional) {
 notifyDestroyed();
 }

 public void commandAction(Command c, Displayable s) {
 }
}

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

public class RetrieveQuoteMIDlet extends MIDlet {

 private Display displayMngr = null;
 private EntryForm entryForm = null;
 private ChartCanvas chartCanvas = null;

 public RetrieveQuoteMIDlet () {
 }

 private void initListener () {
 ItemStateListener itemListener = new ItemStateListener () {
 public void itemStateChanged (Item item) {
 if ((item == entryForm.getInvestmentChoice()) &&

Listing 5.17 RetrieveQuoteMIDlet.java
126 CHAPTER 5 MIDP USER INTERFACE

WH_Java2.book Page 127 Monday, March 4, 2002 9:59 AM
 (entryForm.getInvestmentChoice().getSelectedIndex() == 1) &&
 !(entryForm.getSymbolField().getString().
 toUpperCase().endsWith("X"))) {
 Alert symbolAlert = new Alert("Check Symbol",
 "Mutual Funds end in 'X'", null, AlertType.WARNING);
 symbolAlert.setTimeout(Alert.FOREVER);
 displayMngr.setCurrent(symbolAlert, entryForm);
 }
 }
 };
 CommandListener commandListener = new CommandListener() {
 public void commandAction(Command c, Displayable d) {
 if (c == entryForm.getExitCommand()) {
 destroyApp(true);
 } else if (c == entryForm.getGetCommand()) {
 if ((entryForm.getInvestmentChoice().getSelectedIndex() == 1) &&
 !(entryForm.getSymbolField().getString().
 toUpperCase().endsWith("X"))){
 Alert symbolAlert = new Alert("Check Symbol",
 "Mutual Funds end in 'X'", null, AlertType.WARNING);
 symbolAlert.setTimeout(Alert.FOREVER);
 displayMngr.setCurrent(symbolAlert, entryForm);
 } else
 if (entryForm.getSymbolField().getString().length() > 0) |
 displayChartCanvas();
 }
 }
 };

 entryForm.setItemStateListener(itemListener);
 entryForm.setCommandListener(commandListener);
 }

 private void initCanvasListener() {
 CommandListener commandListener = new CommandListener() {
 public void commandAction(Command c, Displayable d) {
 if (c == chartCanvas.getExitCommand())
 displayMngr.setCurrent(entryForm);
 }
 };
 chartCanvas.setCommandListener(commandListener);
 }

 private void displayEntryForm () {
 if (entryForm == null) {
 entryForm = new EntryForm("RetrieveQuote");
 }
 initListener();
 displayMngr.setCurrent(entryForm);
 }

 private void displayChartCanvas() {
 if (chartCanvas == null) {
 chartCanvas = new ChartCanvas();
 }
 initCanvasListener();
 displayMngr.setCurrent(chartCanvas);

q

q

w

q

r

e

HANDLING USER INTERACTIONS IN MIDP 127

WH_Java2.book Page 128 Monday, March 4, 2002 9:59 AM
 String currentSymbol = entryForm.getSymbolField().getString();
 chartCanvas.displayChart(currentSymbol,75,110);
 }

 protected void startApp() {
 displayMngr = Display.getDisplay(this);
 displayEntryForm();
 }

 protected void pauseApp() {
 }

 protected void destroyApp(boolean unconditional) {
 notifyDestroyed();
 }
}

Anonymous event listener inner class used to listen and react to command events
coming from the EntryForm

Registering the event listener with the Form

Anonymous event listener inner class used to listen and react to command events
coming from the ChartCanvas

Registering the event listener with the Canvas

After compiling, preverifying, and JARing these files of the MIDlet suite with the fol-
lowing commands, the tutorial application should look and behave as the pictures
depicted in the series of displays in figure 5.29.

Compile

>javac -g:none -bootclasspath %MIDPClasses%;. EntryForm.java
>javac -g:none -bootclasspath %MIDPClasses%;. ChartCanvas.java
>javac -g:none -bootclasspath %MIDPClasses%;. ObtainQuoteMIDlet.java
>javac -g:none -bootclasspath %MIDPClasses%;. RetrieveQuoteMIDlet.java

or
>javac -g:none -bootclasspath %MIDPClasses%;. *.java

Preverify

>%MIDPTools%\preverify -classpath %MIDPClasses%;. ObtainQuoteMIDlet

>%MIDPTools%\preverify -classpath %MIDPClasses%;. RetrieveQuoteMIDlet
>%MIDPTools%\preverify -classpath %MIDPClasses%;. EntryForm
>%MIDPTools%\preverify -classpath %MIDPClasses%;. ChartCanvas
>%MIDPTools%\preverify -classpath %MIDPClasses%;. ObtainQuoteMIDlet$1
>%MIDPTools%\preverify -classpath %MIDPClasses%;. ObtainQuoteMIDlet$2
>%MIDPTools%\preverify -classpath %MIDPClasses%;. RetrieveQuoteMIDlet$1
>%MIDPTools%\preverify -classpath %MIDPClasses%;. RetrieveQuoteMIDlet$2
>%MIDPTools%\preverify -classpath %MIDPClasses%;. RetrieveQuoteMIDlet$3

or
>%MIDPTools%\preverify -classpath %MIDPClasses%;. “.”

q

w
e

r

128 CHAPTER 5 MIDP USER INTERFACE

WH_Java2.book Page 129 Monday, March 4, 2002 9:59 AM
JAR

>jar -cfm quote.jar QuoteMIDletSuite.jad -C ./output ObtainQuoteMIDlet.class -C
./output RetrieveQuoteMIDlet.class –C ./output EntryForm.class –C
./output ChartCanvas.class -C ./output ObtainQuoteMIDlet$1.class -C
./output ObtainQuoteMIDlet$2.class -C ./output RetrieveQuoteMIDlet$1.class -C
./output RetrieveQuoteMIDlet$2.class -C ./output RetrieveQuoteMIDlet$3.class

or
>jar -cfm quote.jar QuoteMIDletSuite.jad -C ./output .

Run

>%MIDPTools%\midp -classpath %MIDPClasses%;.\quote.jar -descriptor

QuoteMIDletSuite.jad

A question might arise as to why we do not have to add a Command object (and asso-
ciated listeners) to the alert displays in the tutorial application. In fact, when an
Alert object is displayed in a FOREVER mode, the Alert objects have built com-
mands (usually labeled “Done”), which are displayed on the alert. When the default
command is triggered, the resulting action is to return control of the application to
the next Displayable setup when the setCurrent(Alert alert, Display-
able nextDisplayable) method was invoked to show the alert.

Figure 5.29 Having completed the implementation of event handling in the MIDlets, the

many faces of the ObtainQuoteMIDlet are shown above. The customer enters a symbol

in the TextField of the EntryForm and the investment price is displayed in an alert.

Figure 5.30 Similar in appearance to the ObtainQuoteMIDlet, the implementation of the

RetrieveQuoteMIDlet is shown in the set of screen shots above. The same EntryForm is

used in the RetrieveQuoteMIDlet to get the investment symbol, but the current and

historical price data is displayed on a canvas.
HANDLING USER INTERACTIONS IN MIDP 129

WH_Java2.book Page 130 Monday, March 4, 2002 9:59 AM
Using the low-level event API

Since our tutorial application is not a game or similar application requiring a lot of
user key pad interaction, we will demonstrate how the low-level event handling works
with the ChartCanvas object through simple output stream print lines
(System.out.println). This will not add any real customer functionality to our
application, but it should give you a feel for how the low-level event handling is
accomplished. All we need to do to see low-level key events in action is to add a single
method to the ChartCanvas class.

protected void keyReleased(int keyCode) {
 System.out.println("Key released is ->:" + getKeyName(keyCode));
 if (keyCode == KEY_NUM1) {
 System.out.println("#1 Key released.");
 }
}

This method simply sends a message indicating what key has been released to the sys-
tem’s output stream. It checks for when the ‘1’ key has been released and prints a spe-
cial message to the same stream. Notice that no code is required to register anything
with the Canvas object. In fact, these are callback methods that come with the Can-
vas class. The preceding code overrides the default and empty implementation call-
back methods in the Canvas class. When the Canvas object is displayed and keys
are pressed while it is displayed, the output in the designated system output stream
should look like the following:

Key released is ->:4
Key released is ->:5
Key released is ->:6
Key released is ->:3
Key released is ->:2
Key released is ->:1
#1 Key released.
Key released is ->:7
Key released is ->:8
Key released is ->:9

While our application does not really require that we react specially to these keys
when the chart is displayed in the canvas, they most certainly could be used to pro-
vide a more dynamic display. For example, certain actions such as zoom in and zoom
out, or requesting to see the next stored quote in the database could all be assigned to
different keys on the key pad. Then the application would simply have to provide the
appropriate event handling if one of these keys gets pressed.

5.6 MIDLETS ON OTHER DEVICES

So our MIDP application works on a cell phone. But what happened to our require-
ment that said it must also work on a two-way pager? In our design of the applications,
we said that our MIDlets should work on the cell phone, two-way pager, and some
130 CHAPTER 5 MIDP USER INTERFACE

WH_Java2.book Page 131 Monday, March 4, 2002 9:59 AM
PDAs. How much work is left to get this application working for a pager? The answer is
zero! By using MIDP, we have simultaneously developed an application that will also
run on any MIDP-compliant two-way pager or other device. Because of the device’s lat-
itude in MIDP implementation, the user interface may look and behave a little differ-
ently. Otherwise, the MIDlets should operate identically as they do in our cell phone.

After successfully deploying our MIDlets to the two-way pager, we should see
results that look similar to the pictures running in our pager emulator in figure 5.31.

“Great!” you say, but what about the PDA? There is a profile, namely the PDA Profile,
dedicated to providing user interface and persistent storage to PDAs much in the way
MIDP has brought this functionality to the cell phones and pagers. This profile is not
yet available. In chapters 8-10, we look at the KJava API for delivering Java applications
in the CLDC and special API built for the Palm OS. However, Sun has also taken the
MIDP and extended it for use in certain PDA devices. Currently, there is an implemen-
tation available for devices running the Palm OS. This extension is called MIDP for
Palm OS and it is available from Sun at: http://java.sun.com/products/midp4palm.

This implementation includes a J2ME virtual machine for the Palm OS device in
a single Palm PRC files, namely MIDP.prc. The PRC file can be loaded to the device
with a synchronization program (see chapter 8). With the PRC VM loaded on the
device running Palm OS, the device is ready to run MIDP applications.

In the release of MIDP for Palm devices, Sun has provided a desktop tool to con-
vert a MIDlet .jar file associated with the MIDP development into a PRC file that runs
on a Palm device. The tool is called the PRC Converter Tool and it is a Java applica-
tion. A batch file, converter.bat, has been provided to start the converter tool with
Java. The tool should look similar to the picture in figure 5.31. The Converter Tool
.jar file and converter.bat are installed in a \Converter directory off of the directory
where the MIDP for Palm OS download was installed.

Figure 5.31

The same ObtainQuoteMIDlet

as seen on a pager emulator.

Because the screen is of

different dimensions, the

layout of the various high-level

user interface elements may

be a little different. However

these elements still behave as

they did on the cell phone.
MIDLETS ON OTHER DEVICES 131

WH_Java2.book Page 132 Monday, March 4, 2002 9:59 AM
The tool makes use of the current MIDlet JAD file. To convert a MIDlet suite into
a Palm OS PRC, simply open the QuoteMIDletSuite.jad file and request that the tool
convert the application (see figure 5.32).

The tool should indicate if there was success or a problem during the conversion. The
MIDlet suite PRC must also be loaded onto the device with a synchronization pro-
gram. You will learn more about where to get an emulator and how to deploy PRCs
to a Palm OS device in chapters 8 and 9. When the MIDlet suite PRC is moved to
the device, an icon representing the application should appear on the device as
depicted in figure 5.33. The JavaHQ is the virtual machine PRC.

When the QuoteMIDlet icon is selected (or tapped as is the term used when selecting
a user interface item with the device pointer), the familiar ObtainQuote and
RetrieveQuote options are presented, albeit in a different format. While the arrange-
ment and presentation of the displays and items may look a little different, all the
pieces and functionality from the original MIDlets are there, right down to the adver-
tising ticker in our alert.

Figure 5.32

Running converter.bat starts Sun’s MIDP for the

Palm OS Converter Tool. This tool allows a

MIDlet suite to be converted to a PRC file which

can be executed on a Palm OS device.

Figure 5.33

In order to generate a

Palm OS PRC file, the

QuoteMIDletSuite’s jad file

must be found and chosen

in this screen. This JAD

chooser is displayed when

you request to open a file

from the PRC Converter

Tool as shown.
132 CHAPTER 5 MIDP USER INTERFACE

WH_Java2.book Page 133 Monday, March 4, 2002 9:59 AM
As we see, the goal of write once, run anywhere applies to these devices. However, as
we look at other APIs, we are not as lucky when moving across profiles.

Figure 5.35 Running the ObtainQuote MIDlet in the Palm OS looks similar to running the

MIDlet on the phone emulator. After selecting the QuoteMID… icon as seen in figure 5.34, a

selection list allows the customer to select which MIDlet in the suite to run. The other two

screens depict the EntryForm for entering the investment symbol and type and the Alert for

displaying the investment price.

5.7 SUMMARY

In this chapter, we examined MIDP’s graphical user interface and event handling
mechanisms. We also looked deeper at MIDP’s application control object, namely
the MIDlet. We found the UI and event handling mechanisms are divided into high-
level and low-level APIs. The high-level API is more portable and is provided for tra-
ditional business applications. The low-level API provides more control over the
interface and reaction to events, but is less portable. The low-level API was designed
for games and similar graphically intensive applications. Finally, through some simple
examples and the tutorial application, we demonstrated many of the common user
interface elements.

Figure 5.34

The MIDP Investment Quote MIDlet suite

is represented by the QuoteMID… icon

displayed on the Palm after completing

conversion and deploying. The JavaHQ

icon displayed in this screen is the virtual

machine PRC on the Palm OS device.
SUMMARY 133

WH_Java2.book Page 134 Monday, March 4, 2002 9:59 AM
C H A P T E R 6

MIDP data storage

6.1 JDBC parallel 135
6.2 Storage structure 136
6.3 RMS API 138
6.4 Persistent storage in the investment quote application 149
6.5 Summary 166
There was a time when a large mainframe platform was required to accommodate a
database. However, all the data in the world bottled up on a mainframe cannot help a
mobile and/or disconnected user out in the field on business. The need for transport-
able data at remote locations has encouraged the development of smaller and more
mobile database systems. Today, relatively extensive databases can be found on a lap-
top. If for no other reason, these databases exist to transport a subset of a much larger
database.

J2ME platforms, and the MID profile in particular, are the next step in a natural
progression to even smaller and more mobile devices. It is fitting, therefore, that these
devices also be outfitted with some type of persistent data storage. The databases that
now fit on a laptop can be fairly sophisticated. These databases even rival the relational
database management systems (RDBMS) of thirty or even twenty years ago. While the
current physical limits of the MIDP platform make employing a full RDBMS diffi-
cult, the MIDP API has at least provided for some limited data storage in very mobile
devices. Now, literally, small subsets of a database can be put into the pockets of their users.
134

WH_Java2.book Page 135 Monday, March 4, 2002 9:59 AM
In this chapter, we look at the persistent data storage mechanism in MIDP, which
is called the Record Management System (RMS). In particular, we examine:

• the implementation of the RMS

• features of an RMS

• the API for accessing and storing data

Lastly, in this chapter, we retrofit our tutorial application to allow quotes received by
the system to be stored in a local RMS for later use. Storing this quote data is impor-
tant because the data can be retrieved later to provide the customer with a historical
or trend perspective to any new quote received.

6.1 JDBC PARALLEL

In applications written with the other Java editions, namely J2SE and J2EE, third
party vendors usually provide the data storage mechanisms. In these editions, a Java
API is provided to allow common access and processing of data across various vendor
provided databases. Typically the API provides access to an RDBMS. This API is
called JDBC. In many ways, the MIDP RMS API provides the standard means to
access and process data on MIDP devices such as JDBC does in other Java edition
applications. (figure 6.1)

Whereas the JDBC API provides a common access means to various vendors’ data-
bases, the MIDP RMS API provides a common access protocol to the platform imple-
menter’s simple byte array storage mechanisms.

A RDMBS

MIDP
Application

Java
Application

IBM

A Record
StoreMIDP

RMS API

JDBC API

Figure 6.1

As JDBC allows Java

applications to access

data from data systems

such as an RDBMS, the

MIDP RMS API allows

access to MIDP device

record stores.
JDBC PARALLEL 135

WH_Java2.book Page 136 Monday, March 4, 2002 9:59 AM
6.2 STORAGE STRUCTURE

The wonderful thing about Java APIs is that the API establishes the contract to which
both sides, the user and the provider, abide without telling either side how to imple-
ment their part of the application. Like JDBC, the MIDP RMS API provides an
instruction set, in this case for cellular telephone and pager applications to store data,
albeit for small amounts of data. At the same time, RMS allows the cell phone and
pager manufacturers some freedom on how and where to store this data. Because the
platform implementer is instrumentally involved in providing the persistent data
mechanism, there is no database driver or other third party software required to allow
applications to access data. Furthermore, given the simplicity of these databases and
the lack of query languages, heavy-duty concurrency provisions, result set handling,
and so forth, present in higher-end database systems, RMS requires only one main
class, RecordStore, to store or retrieve data on an MIDP platform.

6.2.1 Record store

At the heart of the Record Management System is a record store. A record store is a
collection of records, and a record is an array of bytes. The platform implementer,
and thus RMS implementer, determines the location of a record store on a device.
However, no matter where a record store is physically located on the device, it is not
directly accessible to a MIDlet. MIDP applications access the RMS only through the
provided API as depicted in figure 6.2.

It is also the platform provider’s job to make sure the record store survives “normal”
operations of the device. This includes operations such as shutdowns, reboots and
battery changes.

Record stores are associated with a MIDlet suite. That is, the data in a record store
may be shared and utilized by any number of MIDlets in a suite. In fact, when two
different MIDlets request access to the same record store, each is given an object ref-
erence to the same record store on the system. When the MIDlet suite is removed from
the device, all record stores associated with the suite must also be removed from the
device. Each record store must have a unique name as it pertains to the MIDlet suite.

A Record
Store

A MIDlet

RMS
API

Figure 6.2

A MIDlet cannot gain direct access to a

device’s record store. It must use the

MIDP RMS API in order to access or

modify data in the record store.
136 CHAPTER 6 MIDP DATA STORAGE

WH_Java2.book Page 137 Monday, March 4, 2002 9:59 AM
Record store names can be up to 32 characters (Unicode characters) long and are case-
sensitive. Record stores that are not part of the same MIDlet suite may have the same
name. If a MIDlet is not part of a suite, in essence it is a virtual suite containing that
single MIDlet. In this case, the MIDlet owns the record store. When the MIDlet is
removed from the platform, so too should the record store be removed.

Each time the record store is modified, the platform stamps the database with a
date and time stamp in the form of a long integer. Specifically, the record store is
stamped with a long integer returned from a call to System.currentTime-
Millis(). This method call returns the number of milliseconds since January 1,
1970 at 12:00 a.m. The platform is also required to stamp the record store with a ver-
sion number each time the database is modified. The version number gets incre-
mented with each modification. The RMS implementer determines the initial version
number, but it must be greater than 0. Both the date/time and version stamps assist
the platform in synchronizing the database, as discussed subsequently, but they can
also be accessed and used by the application.

As with most implementation aspects of the RMS, the platform implementer must
provide atomic, synchronous, and serialized access to the record store, guaranteeing no
corruption of the database even across multiple accesses. The MIDP applications are
not provided a means to lock individual records or the entire record store through the
RMS API. And while the platform implementer ensures the integrity of the data, an
MIDP application that uses multiple threads must take special care when updating the
record store to avoid overwriting data provided by a previous thread. For example, if
two threads, A and B, are processing data and both attempt to update record X, the record
store implementation guarantees that both A and B safely be allowed to update X
without data corruption or system failure. In fact, calls to the record store are serialized
to avoid simultaneous access. In this example, A is allowed to update record X and
then B is allowed to update record X. However, the MIDP application has the respon-
sibility to prevent or resolve issues surrounding the fact that thread B has overwritten
thread A’s update. With no locking of the record or record store, undesired conse-
quences can result. In this example, thread A may behave incorrectly if it continues
to operate on the assumption that data in the record store is data it updated. An MIDP
application updating a record store with multiple threads can and should make use of
the record store timestamp and version number to check on previous updates.

6.2.2 Records in the record store

Again, a record is a simple byte array. Each record within the record store has a
unique integer identifier called a recordId. The first record created in a record store
has a recordId of 1. The recordId is incremented for each record added to the record
store. Using the analogy of a spreadsheet to represent a record store, a byte is repre-
sented by a cell and each byte array can be thought of as a series of cells within the
record store that is identified by the recordId, as shown in figure 6.3.
STORAGE STRUCTURE 137

WH_Java2.book Page 138 Monday, March 4, 2002 9:59 AM
Figure 6.3 The record store, as shown here, comprises a number of indexed byte arrays.

The index or the “recordId” of the first byte array is 1. Within the resource limits of the device,

each record store can have any number of arrays and each array can have any number of bytes.

It is tempting to view the recordId as a kind of index to the various byte arrays in the
record store. However, recordIds are not reused when a record is deleted from the
record store. Therefore, it is neither safe nor appropriate to view the recordId as an
actual index.

The recordId is used to access or get a handle on a particular record within the record
store. However, as we will examine in section 6.3, the recordId is not the only way to
get a handle on records. We can develop an enumerator that provides a means to bidi-
rectionally access records within the record store without using the recordId directly.

6.3 RMS API

Given an understanding of the record store and its general structure, we can now
explore the API that controls the record store. Most importantly, we can explore the
API that allows MIDlet applications to store and retrieve data on the devices.

The javax.microedition.rms package contains the entire API for the MIDP
Record Management System. Because a record is just a byte array, there is only one
concrete class in the entire package, namely, RecordStore is the class that imple-
ments the RMS record store.

6.3.1 Record store construction and access

The API for the RecordStore is very straightforward. It contains a single static
method for creating a record store and instance methods for adding, removing and
updating records in the store. Other than methods for destroying the record store and
obtaining ancillary information out of the record store, such as the number of records
contained within the record store, there is not a lot to the API.

Record store lifecycle

A record store is created or opened with the same method, namely the open-
RecordStore(String recordStoreName, boolean createIfNecessary)
static RecordStore method attempts to open an existing record store in the MIDlet

Record ID

1 byte 0 byte 1 byte 2 … byte n

2 byte 0 byte 1 byte 2 … byte n

3 byte 0 byte 1 byte 2 … byte n

.

.

.

n byte 0 byte 1 byte 2 … byte n
138 CHAPTER 6 MIDP DATA STORAGE

WH_Java2.book Page 139 Monday, March 4, 2002 9:59 AM
suite associated with the running MIDlet. The system creates a new record store if a
store by the same name is determined not to already exist in the suite and if the cre-
ateIfNecessary boolean is set to true. So, for example, to open an existing record
store named “Customers” and to create the new database if it does not exist, the fol-
lowing lines of code would be executed.

 try {
 RecordStore anRMS = RecordStore.openRecordStore("Customers" , true);
 } catch (RecordStoreFullException fullStore) {
 //handle a full record store problem
 } catch (RecordStoreNotFoundException notFoundException) {
 //handle store not found which should not happen with the
 //createIfNecessary tag set to true
 } catch (RecordStoreException recordStoreException) {
 //handling record store problems
 }

The method closeRecordStore() is used to close an instance of the record store.
Interestingly, the record store does not actually close until the close method is called
as many times as the open method was called. The number of MIDlet calls to open
and close the record store is tracked over an entire suite and the number of closes
must match the number of opens before the record store is really closed. Again, the
reason for this is that the record store is shared by MIDlets within a suite. Before the
record store is considered closed, it must be closed with regard to every single MIDlet
application that has access to it. When finally closed, all listeners to the record store
are removed. We discuss record store listeners below. Figure 6.4 depicts the various
states of the record store’s life and how they are achieved.

openRecordStore("name", true)
Record
Store

created

Record
Store

opened

Record
Store
closed

closeRecordStore()

openRecordStore("name", false)

d
e

le
te

R
e

c
o

rd
S

to
re

("
n

a
m

e
"
)

The createIfNecessary flag could
be true with the same results

The number of close calls must equal
the number of open calls in order for
the record store to close.

Automatically
opened after
created

Figure 6.4

The lifecycle of a record

store begins with its creation

using the openRecordStore
(String,Boolean) method.

It is automatically opened after

creation. Once created, it can be

opened and closed any number of

times. In order to close the record

store, however, an equal number

of closeRecordStore() to

openRecordStore() methods

must be called. Finally, when

no longer needed, the life of a

record store ends with a call

to deleteRecordStore().
RMS API 139

WH_Java2.book Page 140 Monday, March 4, 2002 9:59 AM
A list of the available record stores can be obtained for a MIDlet suite. From inside a
MIDlet application, a static method call to listRecordStores() returns an array of
Strings. This array contains a list of record store names for the suite to which the MIDlet
is associated. If the MIDlet suite has no record stores, the method returns null.

A static method on the RecordStore class also allows a record store to be
destroyed. The deleteRecordStore(String recordStoreName) method deletes
the record store of the given name for the suite, provided the record store exists and
it is not currently open by any MIDlet within the suite. These last two conditions, if
false, cause a RecordStoreException to be thrown by the delete method.

Record access

A record store instance must be opened before record operations can be performed on
it. Otherwise, a RecordStoreNotOpen exception gets thrown when trying to
access a closed record store. To retrieve an existing record, or byte array, from the
database one needs a recordId. With a recordId and the getRecord(int recordId)
method, the byte array stored under the provided id is returned. For example, to get
the record at recordId 2, the following method would be called on the open record
store referenced by anRMS.

 byte[] b = anRMS.getRecord(2);

In the event that a record does not exist with the provided recordId, then an
InvalidRecordIDException exception is thrown. An alternate getRecord
method allows a record to be read directly into an existing byte array at an offset spec-
ified. The getRecord(int recordId, byte[] buffer, int offset) method
reads the contents of the record at the specified recordId into the byte array passed
in as the buffer at the offset specified. Additionally, this method can throw one
more type of exception, namely the ArrayIndexOutOfBoundsException, if the
byte array pulled from the record is larger than the buffer can accept.

A record store has several methods for inserting, removing, and updating individual
records within the store. Each of these methods requires the recordId of the record
being managed. To add a record to a record store instance, the method addRecord
(byte [] data, int offset, int numBytes) is used. The byte array passed as the
first parameter is the data to be inserted in the record store. An offset index and num-
ber of bytes count can be used to insert just part of the byte array. For example, exe-
cuting the following lines of code results in storing the string “a test” in a new record
in the referenced record store.

 String test = "This is a test";

 byte[] b = test.getBytes();
 anRMS.addRecord(b, 8, 6);

On successful completion, the addRecord(byte [] data, int offset, int
numBytes) method returns the recordId of the newly inserted record.
140 CHAPTER 6 MIDP DATA STORAGE

WH_Java2.book Page 141 Monday, March 4, 2002 9:59 AM
Deleting a record from the record store is done by calling on deleteRecord
(int id) with the recordId of the to-be-removed record. Again, the removed record’s
identifier is retired and not reused with subsequent inserts into the record store.

Updating is accomplished through the setRecord(int id, byte [] data,
int offset, int numBytes) method. Updating a record in a record store
amounts to replacing the entire byte array stored at the particular recordId. Therefore,
the same arguments used in insert are used. The offset index and number of bytes can
be used on the new byte array to replace the existing record with all or part of the new
byte array.

There are several convenient methods for pulling additional information from the
record store. Table 6.1 lists them.

Again, the API used to create and remove record stores or to manipulate the data
inside of a record store is straightforward. As we shall see, there is also a set of helper
classes to help locate and compare data in this very simple database as well as means
to react to changes in the record store.

6.3.2 Record store exceptions

Use of the RecordStore class and manipulation of the data in a record store can
result in certain exceptions. The general exception thrown for any unknown problem
that occurs when dealing with the RecordStore class or instance of the same is
RecordStoreException.

More specific subclasses that are descendents of RecordStoreException are
listed in table 6.2 along with a description of the circumstances on when they are
thrown.

All of these exceptions are checked exceptions requiring the developer to either
catch and handle the exception or rethrow the exception to calling methods.

Table 6.1 Convenience methods on a record store instance provide ancillary information

about the record store such as its name, size, capacity, next recordId, version, etc. These methods

can be especially useful when performing maintenance on the stores.

Method Purpose

getLastModified() Returns the last time the record store was modified.

getName() Returns the name of the record store instance.

getNextRecordId() Returns the integer value of the next record identifier used for the next
add record operation.

getNumRecords() Returns the number of records in the record store instance.

getRecordSize(int recordId) Returns the size, in bytes, of the record specified by the recordID.

getSize() Returns the size of the record store, in bytes.

getSizeAvailable() Returns the maximum number of bytes the record store is allowed to grow.

getVersion() Returns the last version stamp for the record store.
RMS API 141

WH_Java2.book Page 142 Monday, March 4, 2002 9:59 AM
6.3.3 Record store listener

Remember, a record store can be accessed by any MIDlet within the same suite. In
order to allow applications to coordinate and react to changes in record store data, a
set of record store event handling interfaces have been provided. Any object can be set
up as a listener for modifications made to any record store in a MIDlet suite (see fig-
ure 6.5). The object only has to implement the RecordListener interface and be
registered with a record store instance as a listener for modification events.

To establish the object as a valid listener for modifications taking place on a record
store, it must first be registered with the record store. Two methods are provided for
registering and unregistering a listener.

• addRecordListener(RecordListener listener)

• removeRecordListener(RecordListener listener)

Registering a listener with a record store has no effect on the store and when a record
store is closed, all listeners are removed.

Table 6.2 These are the exceptions defined in the javax.microedition.rms package that can be

encountered when dealing with a record store. All descend from the generic RecordStore-
Exception.

Exception Description

InvalidRecordIDException Thrown any time a referenced recordId does not exist.

RecordStoreFullException Encountered only when attempting to insert a new or update
an existing record when the store is already at capacity. This
exception can also be thrown when trying to open an already
full record store.

RecordStoreNotFoundException Occurs when trying to open or remove a record store that
does not exist.

RecordStoreNotOpenException Thrown anytime information is sought from a record store
instance without its being open. This can also be thrown if an
attempt is made to close a non-open record store instance.

a Record
Store

a MIDlet

a RecordListener

add, update,
delete method calls...

...trigger corresponding calls
to the listener

a MIDlet

MIDlet suite

Figure 6.5

An object, set up as a record

listener to a record store, is

notified of any record addition,

modification or deletion made

from any MIDlet in the suite.
142 CHAPTER 6 MIDP DATA STORAGE

WH_Java2.book Page 143 Monday, March 4, 2002 9:59 AM
The RecordListener interface requires that the event handling object have three
methods, namely:

• recordAdded (RecordStore recordStore, int recordId),

• recordChanged (RecordStore recordStore, int recordId) and

• recordDeleted (RecordStore recordStore, int recordId).

Each callback method is called with the specific record store that was modified and
the recordId of the record that was changed, added or removed. These methods are
called after a new record is inserted into the record store (recordAdd), an existing
record is modified (recordChanged), or a record is removed from the store
(recordDeleted).

A simple example listener that merely reports when records in a record store have
been added, changed or removed is shown in listing 6.1.

import javax.microedition.rms.*;

public class TestListener implements RecordListener {

 public void recordAdded(RecordStore rs, int id) {
 try {
 System.out.println(rs.getName() + " added record " + id);
 } catch (RecordStoreNotOpenException e) {
 //exception handling procedures
 }
 }

 public void recordChanged(RecordStore rs, int id) {
 try {
 System.out.println(rs.getName() + " changed record " + id);
 } catch (RecordStoreNotOpenException e) {
 //exception handling procedures
 }
 }

 public void recordDeleted(RecordStore rs, int id) {
 try {
 System.out.println(rs.getName() + " removed record " + id);
 } catch (RecordStoreNotOpenException e) {
 //exception handling procedures
 }
 }
}

In order to register this listener with an instance of record store, programming code
like the following would be required.

 RecordStore anRMS = RecordStore.openRecordStore("TestRMS" , true);
 anRMS.addRecordListener(new TestListener());

Listing 6.1 Example RecordListener

Triggered when a MIDlet adds
a record to the record store

q

Triggered when a MIDlet removes
a record from the record store

e

Triggered when a MIDlet changes
a record in the record store

w

RMS API 143

WH_Java2.book Page 144 Monday, March 4, 2002 9:59 AM
The first line opens the record store named TestRMS. Given the true boolean passed
as createIfNecessary parameter to the method, the record store is created and then
opened if it does not already exist. The second line registers an instance of TestLis-
tener, (code provided in Listing 6.1), to react to any record changes from any
MIDlet within the MIDlet suite.

Given the simplistic nature of RMS record stores, record listeners allow MIDlets
to more easily implement data validation mechanisms, trigger warnings such as out of
space messages, and other data related activities that are usually automatically handled
by more sophisticated databases.

6.3.4 Comparing records

In J2SE, the Comparable interface provides a means to define a comparison opera-
tor that allows any two like objects to be evaluated or compared. The result of a com-
parison operation results in finding one object is equal to, greater than or less than
the other object. This interface allows developers to establish order on objects even
when the order is less than obvious. So, for example, ordering customer numbers
could be by last name or social security number.

While the Comparable interface is not available in J2ME, inside the Record
Management System an equivalent interface has been provided to allow records of a
record store to be compared. The RecordComparator interface allows any object
to be established as a comparing facility for any two RMS records given to it. Actually,
a RecordComparator implementer compares two byte arrays. Because it has been
built generically to accept and compare two byte arrays, it could be set up for use out-
side of comparing record store records. In general, however, a record comparator is
useful for sorting or sequencing the record store records for enumeration purposes.

The RecordComparator interface requires the implementation of a single com-
pare(byte[] rec1, byte[] rec2) method that examines the two passed-in
records and evaluates to either 0, 1 or –1. The value 0 indicates that the records are
equivalent or equal in terms of search or sort order. 1 indicates that the first record
follows the second record in search or sort order. Finally, a compare() return value
of –1 indicates that the first supplied record precedes the second in search or sort
order. Table 6.3 lists the static fields that have been established on the interface to pro-
vide meaningful names to the compare results.

For example, suppose records added to a record store contained simple strings and a
record comparator implementation looked like the following code.

Table 6.3 These static fields have been provided to name integer return values for comparison

operation. When used, these fields make code using the comparator easier to read and understand.

Static Field Assigned Value

RecordComparator.EQUIVALENT 0

RecordComparator.FOLLOWS 1

RecordComparator.PRECEDES –1
144 CHAPTER 6 MIDP DATA STORAGE

WH_Java2.book Page 145 Monday, March 4, 2002 9:59 AM
import javax.microedition.rms.*;

public class TestComparator implements RecordComparator {

 public int compare(byte[] rec1, byte[] rec2) {
 String r1 = new String(rec1);
 String r2 = new String(rec2);
 if (r1.compareTo(r2) > 0)
 return (RecordComparator.FOLLOWS);
 else if (r1.compareTo(r2) < 0)
 return (RecordComparator.PRECEDES);
 else return (RecordComparator.EQUIVALENT);
 }
}

Extract simple Strings from records

Use the standard String compareTo operator

In that case, executing the lines below in an MIDP application should produce results
that read: “Comparator found —> -1” since the comparator would be comparing the
String “a test” to “is”. Indeed “a test” does precede “is” in a string comparison.

anRMS = RecordStore.openRecordStore("TestRMS" , true);

String test = "This is a test";
byte[] b = test.getBytes();

anRMS.addRecord(b, 8, 6);
anRMS.addRecord(b, 5, 2);
RecordComparator rc = new TestComparator();
byte[] r1 = anRMS.getRecord(1);
byte[] r2 = anRMS.getRecord(2);
System.out.println("Comparator found --> " + rc.compare(r1,r2));

Open/create the record store and store string records

Create an instance of the record comparator

Get the records from the record store

Use the comparator to compare the two records retrieved

While the comparator may be useful by itself in comparing records in a record store,
it becomes an even more powerful tool when combined with a record filter and
record enumeration as described in the next section. Objects that implement these
three RMS interfaces can be utilized on a record store to intelligently access and work
on specific data in a record store.

6.3.5 Filtering records

In a similar fashion to the RecordComparator, the RMS API provides a record fil-
tering interface that allows any object to serve as a strainer for records in a record
store. The RecordFilter interface requires its implementing object to implement

q
w

q

w

q

e

w

r

q

w

e

r

RMS API 145

WH_Java2.book Page 146 Monday, March 4, 2002 9:59 AM
a single method. This method, matches(byte[] candidate), checks the passed
byte array to determine if its data meets the filtering criteria. This method returns a
simple boolean indicating whether the passed-in record meets the filter criteria. A
record filter could, for instance, be set up to determine if a record in a record store
begins with the letter ‘A’ (either small or capital). The code for such a filter would
resemble the following:
import javax.microedition.rms.*;

public class TestFilter implements RecordFilter {

 public boolean matches(byte[] rec) {
 String r = new String(rec);
 return ((r.charAt(0) == 'a') || (r.charAt(0) == 'A'));
 }
}

The filter could then be used, as shown below, to determine if a record does match
the criteria. Using this filter, as below, would produce the system output “The first
record starts with ‘A’.”
anRMS = RecordStore.openRecordStore("TestRMS" , true);
String test = "A test";
byte[] b = test.getBytes();
anRMS.addRecord(b, 0, b.length);
RecordFilter rf = new TestFilter();
if (rf.matches(anRMS.getRecord(1)))
 System.out.println("The first record starts with 'A'");
else
 System.out.println("The first record does not start with 'A'");

Open/create the record store

Store a record containing a string

Create an instance of the record filter above

Use the filter to get all matching records

6.3.6 Enumerating through records

Both record filtering and comparing are two features of RMS that assist in intelligently
enumerating through record store records. Enumerations are used throughout Java to
cycle through all sorts of data structure objects, such as vectors, in order to perform a set
of operations on each element in the structure. An enumeration prepares a sequence of
the data elements and provides a series of access methods to retrieve elements from the
sequence. Likewise, MIDP’s RMS has provided a RecordEnumeration interface that
allows for enumerating through the records in a record store. Even better, a record com-
parator and/or record filter can be used in conjunction with the record enumeration to
loop through the various records in some sort order and act on only certain filtered records.

A record enumeration can be obtained for any record store instance by calling the
enumerateRecords(RecordFilter filter, RecordComparator comparator,

q
w

e
r

q

w

e

r

146 CHAPTER 6 MIDP DATA STORAGE

WH_Java2.book Page 147 Monday, March 4, 2002 9:59 AM
boolean keepUpdated) method on the instance. The filter supplied, if not null,
determines what subset of records to include in the enumeration. The filter or com-
parator could be null.

• If the record filter is null, all records in the record store are included in the enu-
meration.

• If the record comparator is not null, the records in the enumeration are sorted
per the comparator.

• If the comparator is null, the records in the enumeration are not sorted and
records included in the enumeration are traversed in an undetermined way.
The recordId does not serve as any kind of default order.

The last parameter to the record store’s enumeratRecords() method is a boolean
indicating whether to keep the enumeration up to date with regard to changes being
made to the record store. In other words, the enumeration’s sequence of records can
be automatically synchronized with underlying changes being made to the record
store from other threads on the device. Consider possible performance penalties when
setting this parameter to true. Alternatively, a record listener could be used to re-
establish the enumeration when a change in the record store is discovered. Both of
these options have the potential of creating a performance problem since every modi-
fication would cause the enumeration index to be rebuilt. If the keepUpdated
parameter is not set to true, then the enumeration may reference records that are no
longer valid. This can occur, for example, when another thread deletes a record on the
underlying database that happens to also be a record in an enumeration’s sequence.
Furthermore, inserts or changes to the data in the underlying records may cause the
sort order to be inaccurate with regard to the new data. These risks must be weighed
against the possible performance effects when looking at means to keep the enumera-
tion accurate with regard to underlying database changes.

A record enumeration comes with a set of access methods that get records (i.e. byte
arrays) or recordIds from the enumeration. An enumeration has a kind of cursor or
pointer that references a particular record or element in the sequence. Unlike other
Java enumeration APIs that are usually forward only, the RMS RecordEnumera-
tion is bi-directional, meaning elements can be obtained in either direction from the
current record. A call to the nextRecord() method returns the next element or record
in the sequence from wherever the element pointer is located. Likewise, a call to the
previousRecord() method gets the previous byte array in the sequence. Where a
MIDlet is only interested in getting the recordId instead of the actual record or byte array,
nextRecordId() and previousRecordId() methods are also available. Two
methods, hasNextElement() and hasPreviousElement(), both return a boolean
indicating whether there are next records in either a forward or backward direction in
the sequence. A call to numRecords() returns the total number of records in the
enumeration’s sequence set.
RMS API 147

WH_Java2.book Page 148 Monday, March 4, 2002 9:59 AM
Again, the enumeration may be set to keep updated with the updated contents of
the record store. The rebuild() method allows for the enumeration to be rebuilt
or constructed based on the new record store contents. Alternately, the reset()
method resets the enumeration to the state right after its initial creation. Finally, an
enumeration uses a fair number of resources to accomplish its job. The MIDlet appli-
cation is required to trigger the destroy() method when finished with any record
enumeration in order to release the resources it uses.

To demonstrate the use of RecordEnumeration, we make use of the Record-
Comparator and RecordFilter from our previous examples. Listing 6.2 shows
code that populates a small record store with several names. Then it calls on a
RecordEnumeration instance to iterate through the records and display the list of
names beginning with the letter ‘A’ in alphabetical order.

anRMS = RecordStore.openRecordStore("TestRMS" , true);
byte[] george = "George".getBytes();
byte[] bob = "Bob".getBytes();
byte[] andy = "Andy".getBytes();
byte[] harry = "Harry".getBytes();
byte[] adam = "Adam".getBytes();
byte[] amos = "Amos".getBytes();
byte[] fred = "Fred".getBytes();
anRMS.addRecord(george, 0, george.length);
anRMS.addRecord(bob, 0, bob.length);
anRMS.addRecord(andy, 0, andy.length);
anRMS.addRecord(harry, 0, harry.length);
anRMS.addRecord(adam, 0, adam.length);
anRMS.addRecord(amos, 0, amos.length);
anRMS.addRecord(fred, 0, fred.length);
RecordComparator rc = new TestComparator();
RecordFilter rf = new TestFilter();
RecordEnumeration rEnum = anRMS.enumerateRecords(rf,rc,false);
while (rEnum.hasNextElement()) {
 byte[] nextRec = rEnum.nextRecord();
 String nextName = new String(nextRec);
 System.out.println(nextName);
}
rEnum.destroy();

Open/create the record store

Create several records containing first names

Using the comparator from above

Using the filter from above

Use comparator and filter to create an enumeration to find select records

Close the enumeration to free resources

Listing 6.2 Finding specific records using RMS interfaces

q

e
r

y

t

w

q

w

e

r

t

y

148 CHAPTER 6 MIDP DATA STORAGE

WH_Java2.book Page 149 Monday, March 4, 2002 9:59 AM
After running this code as part of a MIDlet application, the system output should
produce the following results:

Adam
Amos
Andy

As seen through this last example, the RecordComparator, RecordFilter and Record-
Enumeration RMS interfaces combined to provide a powerful mechanism to reach
inside a record store, filter, sort and extract specific data for use in an MIDP applica-
tion. While this type of search, sorting and extracting could be done without the use
of these interfaces, these interfaces help reduce the time and effort it takes to do this
common work and they provide a consistent pattern which helps in later mainte-
nance of the code.

6.4 PERSISTENT STORAGE IN THE
INVESTMENT QUOTE APPLICATION

With an understanding of the MIDP Record Management System, we can apply that
knowledge to the tutorial application. In the previous chapter, we created the basic
MIDP application structure (the MIDlet), the user interface and event handling
mechanisms for a stock and mutual fund quote system. Remember, the purpose of
this system was to get current stock and mutual fund prices and store them for later
retrieval. Up to this point, no data has actually been stored or retrieved by the appli-
cation. Instead, we stubbed out the user interface to respond as if data were being
retrieved when, in reality, it was just phony data remanufactured for each user inter-
face request.

In the design of the application, recall that ObtainQuote and RetrieveQuote use cases
made use of two other use cases, namely SavePrice and RetrievePrice. These use cases
stored and fetched investment price information in and out of the persistent mecha-
nism. We create the code that implements these use cases in sections 6.4.2 and 6.4.3.

6.4.1 Defining the stock/mutual fund record

In this section, we retrofit our application to actually store and retrieve investment
quote data in a record store. As was learned in this chapter, a record is nothing more
than a byte array. In this tutorial, a record consists of a converted string containing
the stock or mutual fund symbol along with the current and historical price.

As mentioned previously, the CLDC on which MIDP relies, does not support
floating-point numbers. Therefore the use of Java’s double or float base types cannot
be used to represent dollar/cent prices of most stock and mutual fund quotes. Instead,
we use two integers to represent one price. For example, if the stock price was $120.55,
then the price must be stored as two integers, 120 and 55. One integer represents the
dollars associated with the price, while the second represents the cents of the price.
PERSISTENT STORAGE IN THE INVESTMENT QUOTE APPLICATION 149

WH_Java2.book Page 150 Monday, March 4, 2002 9:59 AM
Remember that the application must be able to store a current and a historical price
for each stock or mutual fund. Therefore, along with a symbol to identify the stock
or mutual fund, two sets of dollar and cent integer values must be stored.

In order to store all this data in a single string, a marker or delimiter is needed to
indicate where one value stops and the next data value begins. For this tutorial, we
choose the semicolon as a data delimiter.

So, the string representing a current price of $120.55 and a historical price of
$113.45 for 3M (a Fortune 500 manufacturing company based in St. Paul, Minnesota
with a symbol of MMM) would look like the following:

Figure 6.6 Each investment price quote (both current and historical) can be represented by a single

string. In this example, the current price and historical per share of 3M are $120.55 and $113.45.

In the case where only one price has been obtained for the stock or mutual fund, the
last two trailing integers are omitted. So, using our previous example, when the first
price of $113.45 was obtained for 3M, the original record string would have been
represented as:

MMM;113;45

The string record that contains the stock or mutual fund price quotes and investment
symbol needs to be converted to a byte array before being stored as a record in the
record store. Recall that the record store contains byte array records. This can easily
be accomplished using the method getBytes() on any string object.

6.4.2 Storing quotes

The ObtainQuoteMIDlet controls all aspects of getting and storing stock or mutual
fund quotes. Since this class will now be using RMS, it must import the RMS package.
Therefore, the RMS import statement must be included at the top of this class file.

import javax.microedition.rms.*;

In the previous chapter, a command listener was created in the initListener()
method in ObtainQuoteMIDlet to wait for the user to push the “Get” command.
When the user triggers this command, the command listener would determine what
command button was pushed and then trigger the right system response. From the
previous chapter, when the “Get” command was pressed, the command listener first
checked to insure that symbol was valid. In other words, it checked to see that some
symbol was entered and that if the symbol entered was for a mutual fund symbol, the

3M Stock Symbol

MMM;120;55;113;45

Data delimiter — the semi-colon

Current price $120.55

Historic price $113.45
150 CHAPTER 6 MIDP DATA STORAGE

WH_Java2.book Page 151 Monday, March 4, 2002 9:59 AM
PERSISTENT STORAGE IN THE INVESTMENT QUOTE APPLICATION 151

symbol was checked to insure that it ended in ‘X’. Otherwise, the listener simply
called to display a fake price for the given investment symbol. The old command lis-
tener from the previous chapter is provided in listing 6.3.

CommandListener commandListener = new CommandListener() {
 public void commandAction(Command c, Displayable d) {
 if (c == entryForm.getExitCommand())
 destroyApp(true);
 else if (c == entryForm.getGetCommand()) {
 if ((entryForm.getInvestmentChoice().getSelectedIndex() == 1) &&
 !(entryForm.getSymbolField().getString().
 toUpperCase().endsWith("X"))){
 Alert symbolAlert = new Alert("Check Symbol",
 "Mutual Funds end in 'X'", null, AlertType.WARNING);
 symbolAlert.setTimeout(Alert.FOREVER);
 displayMngr.setCurrent(symbolAlert, entryForm);
 } else
 if (entryForm.getSymbolField().getString().length() > 0)
 displayPrice("The price of " +
 entryForm.getSymbolField().getString() + " is $111.19");
 }
 }
};

In fact, the same fake price of $111.19 was always returned for each symbol. The
price was not really retrieved from an investment or quote service and the data was
never stored in a database for later retrieval. In the next chapter, we will see how the
real price can be obtained from an investment service using standard communica-
tions protocols and a connection framework. However, given the RMS, now we can
at least store and retrieve price quotes in a record store. To improve upon the idea of a
quote service and in order to demonstrate that new data is really being added to the
record store, we will also improve on the fake quote service to at least provide a ran-
dom price to the MIDlet as opposed to the same fake price.

Retrofitting the command listener

Since the command listener responds to the customer’s push of the “Get” command,
the listener must be updated to allow it to capture quote data and send the data off to
be stored in the record store. Thus, to store quotes for any symbol, we replace the last
part of the ObtainQuoteMIDlet’s command listener as depicted in listing 6.4.

Now, when a proper investment symbol is entered, the MIDlet calls on a quote ser-
vice class to obtain a price. This service is implemented in temporary form in the code
shown here. In the next chapter, we rebuild the service to capture real investment
information. Provided the string passed to this service is a valid investment symbol,
it returns an integer array containing two integers. The first int represents the current
dollars for the stock or mutual fund and the second int represents the current cents
xxxx

Listing 6.3 ObtainQuoteMIDlet’s Old Get Command Listener

From previous work, the price
found was always $111.19

q

WH_Java2.book Page 152 Monday, March 4, 2002 9:59 AM
CommandListener commandListener = new CommandListener() {
 public void commandAction(Command c, Displayable d) {
 if (c == entryForm.getExitCommand()) {
 destroyApp(true);
 } else if (c == entryForm.getGetCommand()) {
 if ((entryForm.getInvestmentChoice().getSelectedIndex() == 1) &&
 !(entryForm.getSymbolField().getString().
 toUpperCase().endsWith("X"))){
 Alert symbolAlert = new Alert("Check Symbol",
 "Mutual Funds end in 'X'", null, AlertType.WARNING);
 symbolAlert.setTimeout(Alert.FOREVER);
 displayMngr.setCurrent(symbolAlert, entryForm);
 } else if (entryForm.getSymbolField().getString().length() > 0) {
 String sym = entryForm.getSymbolField().getString();
 int type = entryForm.getInvestmentChoice().getSelectedIndex();
 int[] price = QuoteService.getPrice(sym, type);
 storePrice(sym, price);
 displayPrice("The price of " + sym + " is $" + price[0] +
 "." + price[1]);
 }
 }
 }
};

The command listener replacement

A call to store the price obtained in a record store

Now display the symbol and prices obtained via the quote service

for the same investment. Thus, if 3M has a price of $115.45 a share, the array returned
from QuoteService.getPrice(“MMM”, 0) would be {115, 45}.

Given that our MIDlets still have no connection to the outside world, the quote
service must still return a fake price. However, to provide data that starts to look a little
more like that which would actually be received by a quote service, the CLDC’s Ran-
dom class is used in a new QuoteService class to help generate two integer values
between 0 and 99.

import java.util.Random;

public class QuoteService {

 public static int[] getPrice(String symbol, int type) {
 Random generator = new Random();
 Random generator = new Random();
 int dollars = Math.abs(generator.nextInt()) %100;
 int cents = Math.abs(generator.nextInt()) %100;
 int[] priceParts = {dollars, cents};
 return priceParts;
 }
}

Listing 6.4 ObtainQuoteMIDlet’s New Get Command Listener

q

w

e

q

w

e

Import the Random
class from the CLDC

q

Randomly generate
two numbers
between 0 and 99

w

Return the new dollar/cent
price for the investment

e

152 CHAPTER 6 MIDP DATA STORAGE

WH_Java2.book Page 153 Monday, March 4, 2002 9:59 AM
Now the MIDlet and its command listener are properly outfitted to shuffle data
between a temporary quote service and the display. Next we look at implementing
the means to store quotes obtained from the service for later retrieval.

Creating and saving investment price data

While the QuoteService returns the dollars and cents price, in the integer array, the
MIDlet calling on the QuoteService still needs to store the price and associated
symbol in a record store. This is accomplished in an ObtainQuoteMIDlet method
called storePrice(sym, price) as shown in listing 6.5.

private void storePrice(String symbol, int[] price) {
 String newRecord = symbol + ";" + price[0] + ";" + price[1];
 byte[] byteRec;

 try {
 RecordStore anRMS = RecordStore.openRecordStore("Quotes" , true);
 RecordFilter rf = new QuoteFilter(symbol);
 RecordEnumeration rEnum = anRMS.enumerateRecords(rf,null,false);
 if (rEnum.hasNextElement()) {
 int recId = rEnum.nextRecordId();
 newRecord += ';' + getLastPrice(anRMS.getRecord(recId));
 byteRec = newRecord.getBytes();
 anRMS.setRecord(recId,byteRec,0,byteRec.length);
 } else {
 byteRec = newRecord.getBytes();
 anRMS.addRecord(byteRec,0,byteRec.length);
 }
 rEnum.destroy();
 anRMS.closeRecordStore();
 } catch (RecordStoreFullException fullStore) {
 //handle a full record store problem
 } catch (RecordStoreNotFoundException notFoundException) {
 //handle store not found which should not happen with the
 //createIfNecessary tag set to true
 } catch (RecordStoreException recordStoreException) {
 //handling record store problems
 }
}

Prepare the record string

Open the record store named “Quotes”

Locate and update an existing record, or add a new record

Destroy the enumerator and close the record store

Listing 6.5 The storePrice method of ObtainQuoteMIDlet

q

r

e

w

q

w

e

r

PERSISTENT STORAGE IN THE INVESTMENT QUOTE APPLICATION 153

WH_Java2.book Page 154 Monday, March 4, 2002 9:59 AM
This method is the insert and update method for the investment quote database,
basically implementing the SavePrice use case in our tutorial application design.
Its first job is to open the RMS record store on the device named “Quotes.” Then,
using a record filter called QuoteFilter and a record enumeration, the store-
Price() method attempts to locate the record for the investment with the symbol
provided. As suggested previously, a common use of both filters and comparators is
demonstrated here as it is used in conjunction with an enumerator. If the record is
found via the enumerator, then a previous price has been obtained for the investment.
In this case, the record must be updated to have a new current price and the old price
stored in the record is made to be the investment’s historical price. To update the
investment’s record in the record store, simply create the record’s new data string and
use setRecord(int recordId, byte[] newData, int offset, int num-
Bytes) to overwrite the existing record. When updating an existing record, the last
current price becomes the new historical price, as shown in figure 6.7.

Figure 6.7 When the storePrice() method gets called, the record store is checked for an

existing price for the symbol provided. If an there is an existing price, then the existing or

current price becomes the historical price and the new price becomes the current price.

In the case where no investment record is found for the symbol provided, a new
record is added to the record store. This is accomplished using the addRecord
(byte[] data, int offset, int numBytes) method and passing this method
the symbol and price information stored in a byte array.

To assist in getting price data from the byte array record, another method is used
to convert the byte array back to a string and to extract the last price from the string.

private String getLastPrice(byte[] rec) {

 String recString = new String(rec);

 int dollarPos = recString.indexOf(';');
 int centPos = recString.indexOf(';',dollarPos+1);
 int centEnd = recString.indexOf(';',centPos + 1);

 if (centEnd > 0) //had a historical price
 return recString.substring(dollarPos+1,centEnd);
 else //no previous historical price
 return recString.substring(dollarPos+1);
}

MMM

Current price Historical price

113,45; 113,45;
120.55;

Get the position
of the last price
within the string

q

w

Return the current price
string, regardless of a
historical price

w

154 CHAPTER 6 MIDP DATA STORAGE

WH_Java2.book Page 155 Monday, March 4, 2002 9:59 AM
The getLastPrice() method is a byte array to string converter with some string
manipulation to find the appropriate dollar and cent values stored in between the
appropriate ‘;’ character delimiters.

The record filter used with the enumerator helps extract the right investment
record for any given symbol provided by the user. Only one record for each symbol
requested will ever exist in the database. As seen in the following code, the filter’s con-
structor can be used to provide filter information, such as the symbol string in our
example.

import javax.microedition.rms.*;

public class QuoteFilter implements RecordFilter {

 private String symbol;

 public QuoteFilter(String sym) {
 symbol = sym;
 }

 public boolean matches(byte[] rec) {
 String r = new String(rec);
 return (r.startsWith(symbol + ';'));
 }
}

When called upon by the enumerator, only those records matching the symbol string
will be included in the enumerator’s sequence.

As seen in figure 6.7, when compiled, preverified and executed, the Obtain-
QuoteMIDlet will look no different than it did in the previous chapters. However,
now all data being obtained for each investment is stored in the record store. In
section 6.4.3 we see how this information can be retrieved from the persistent storage
provided by the platform.

Figure 6.8 The user interface does not change after adding persistent storage to the

ObtainQuoteMIDlet. The screens to get the investment symbol and display the price are the

same. Now, however, behind the screens of this MIDlet, quote service data is stored in the

record store on the device.

Method to specify the
investment symbol

q

Match records based on the
symbol and delimiter mark

w

PERSISTENT STORAGE IN THE INVESTMENT QUOTE APPLICATION 155

06_MIDP data storage.fm Page 156 Monday, March 4, 2002 10:25 AM
6.4.3 Retrieving quotes

Having the data stored in a database does no good unless it is saved for later retrieval.
In this part of the tutorial, the stock and mutual fund quotes are retrieved to display
the current and historical prices of a given investment. Recall that in the exploration
of the MIDP user interface (in chapter 5), we even developed a means to graphically
depict the current and historical prices in a comparison bar chart using the low level
MIDP user interface API.

As with the ObtainQuoteMIDlet, the RetrieveQuoteMIDlet was written in chapter 5
to demonstrate the user interface capabilities and so the actual investment symbol and
quote were simply passed as fake parameters to the display methods. From earlier in
our tutorial, the displayChartCanvas() method of RetrieveQuoteMIDlet called
on a ChartCanvas object to display the quote chart with the same “MMM” symbol
and current and historical prices ($75 and $110) respectively.

private void displayChartCanvas() {
 if (chartCanvas == null) {
 chartCanvas = new ChartCanvas();
 }
 displayMngr .setCurrent(chartCanvas);
 chartCanvas.displayChart("MMM",75,110);
}

Based on work earlier in this chapter, the ObtainQuoteMIDlet now stores price
quotes for investment symbols and with the ability to extract information from the
record store, our application does not have to pass phony data to the display anymore.
Because ObtainQuoteMIDlet and RetrieveQuoteMIDlet are part of the same MIDlet
suite, the “Quotes” record store can be shared and utilized by both applications.

Extracting price data

Getting investment price quote data back out of the record store is even easier than
saving it. First, like in the ObtainQuoteMIDlet, the RetrieveQuoteMIDlet must
import the RMS package.

import javax.microedition.rms.*;

Then, because we do not want the chart canvas to continually receive the same two
prices ($75 and $110), but rather the stored price quotes, the initial display-
ChartCanvas() method needs some updating. The method is altered to call first
on the record store to retrieve price information for the given user-entered symbol.

private void displayChartCanvas() {

 if (chartCanvas == null) {
 chartCanvas = new ChartCanvas();
 }
 String currentSymbol = entryForm.getSymbolField().getString();
 int[] prices = retrievePrices(currentSymbol);
...

Fake $75 and $110 price
quotes for 3M

q

Call to retrieve the current
and historical prices

q

156 CHAPTER 6 MIDP DATA STORAGE

06_MIDP data storage.fm Page 157 Monday, March 4, 2002 10:25 AM
At first glance, the retrievePrices(currentSymbol) method (listing 6.6)
looks a lot like the storePrice() method from the ObtainQuoteMIDlet. In fact,
they both use the same record enumeration and record filter to locate a record. How-
ever this time, instead of updating or adding the record, the retrievePrices()
method simply extracts the current and historical dollar prices from any matching
record found. This method serves as the implementation of the RetrievePrice use case
in our tutorial application design.

private int[] retrievePrices(String symbol) {

 int[] dollars = null;

 try {
 RecordStore anRMS = RecordStore.openRecordStore("Quotes" , true);
 RecordFilter rf = new QuoteFilter(symbol);
 RecordEnumeration rEnum = anRMS.enumerateRecords(rf,null,false);
 if (rEnum.hasNextElement()) {
 byte[] rec = rEnum.nextRecord();
 dollars = parsePrices(rec);
 } else
 dollars = null;
 rEnum.destroy();
 anRMS.closeRecordStore();
 } catch (RecordStoreFullException fullStore) {
 //handle a full record store problem
 } catch (RecordStoreNotFoundException notFoundException) {
 //handle store not found which should not happen with the
 //createIfNecessary tag set to true
 } catch (RecordStoreException recordStoreException) {
 //handling record store problems
 }
 return dollars;
}

Open the “Quotes” record store

Parse out the current and historical prices from the record.

Return null signifying no prices and no record

Return array containing the prices

Extracting the dollar prices from a record is again a matter of string manipulation and
character matching. It is handled by the parsePrices(byte[] quoteRec) method
which is shown in listing 6.7.

Listing 6.6 RetrieveQuoteMIDlet’s retrievePrices method

q

w

e

r

q

w

e

r

PERSISTENT STORAGE IN THE INVESTMENT QUOTE APPLICATION 157

WH_Java2.book Page 158 Monday, March 4, 2002 9:59 AM
private int[] parsePrices(byte[] quoteRec) {
 String rec = new String(quoteRec);
 int dollar1Pos = rec.indexOf(';');
 int cent1Pos = rec.indexOf(';',dollar1Pos+1);
 int dollar2Pos = rec.indexOf(';',cent1Pos + 1);

 if (dollar2Pos > 0) { //had a historical price
 int cent2Pos = rec.indexOf(';',dollar2Pos + 1);
 int currentDollars = Integer.parseInt(rec.substring(dollar1Pos + 1,
 cent1Pos));
 int currentCents = Integer.parseInt(rec.substring(cent1Pos + 1,
 dollar2Pos));
 int historicalDollars = Integer.parseInt(rec.substring(dollar2Pos + 1,
 cent2Pos));
 int historicalCents = Integer.parseInt(rec.substring(cent2Pos + 1));
 int[] returnPrices = {currentDollars, currentCents, historicalDollars,
 historicalCents};
 return returnPrices;
 } else { //no previous historical price
 int currentDollars = Integer.parseInt(rec.substring(dollar1Pos + 1,
 cent1Pos));
 int currentCents = Integer.parseInt(rec.substring(cent1Pos + 1));
 int[] returnPrices = {currentDollars, currentCents};
 return returnPrices;
 }
}

Each record contains the symbol for the investment and up to two sets of integers for
the dollars and cents of each price quote (current and possibly historical price). The
current and historical prices are extracted from the record and returned in an integer
array. If the investment has only one price stored for it, then the array returned con-
tains two integers; the dollar and cents of the currently known price for the invest-
ment. If a historical price is also known for the investment, the integer array will have
four numbers representing the current dollars and cents price as well as the historical
dollars and cents price respectively.

Retrofitting the canvas display

The RetrieveQuoteMIDlet and its canvas display object currently only depict the
dollar value portion of the investment prices. So after the prices are retrieved, the
array is checked for two (indicating only a current investment price is available) or
four integers have been obtained from the record store. While the retrieve-
Prices() method returns dollars and cents, the size of the graphical user interface is
limited and so only the dollar parts of the price are depicted in the comparison bar
charts. Both current and historical dollar prices are required in order to display the

Listing 6.7 The parsePrices method in ObtainQuoteMIDlet

and RetrieveQuoteMIDlet
158 CHAPTER 6 MIDP DATA STORAGE

WH_Java2.book Page 159 Monday, March 4, 2002 9:59 AM
graphical bar chart showing the price changes. With only a current price and no his-
torical price available, the user is given the current price via an informational alert
window. This is also true if no record for the requested symbol exists in the record
store. The retrievePrices() method would have returned null. In this case, an
alert is used to inform the user that no data exists for the symbol provided. The
updated displayChartCanvas()method, shown in listing 6.8, performs the check
for available price information and calls to display the appropriate information to
the customer.

private void displayChartCanvas() {
 if (chartCanvas == null) {
 chartCanvas = new ChartCanvas();
 }
 String currentSymbol = entryForm.getSymbolField().getString();
 int[] prices = retrievePrices(currentSymbol);
 if (prices != null) {
 if (prices.length > 2) {
 initCanvasListener();
 displayMngr.setCurrent(chartCanvas);
 chartCanvas.displayChart(currentSymbol,prices[0],prices[2]);
 } else {
 Alert noDataAlert = new Alert("Recorded Price","Recorded price for "
 + currentSymbol + " is: $" + prices[0] + "." + prices[1] +
 ". No historical data exists.", null, AlertType.INFO);
 noDataAlert.setTimeout(Alert.FOREVER);
 displayMngr.setCurrent(noDataAlert, entryForm);
 }
 } else {
 Alert noDataAlert = new Alert("No prices", "No price data exists
 for " + currentSymbol, null, AlertType.INFO);
 noDataAlert.setTimeout(Alert.FOREVER);
 displayMngr.setCurrent(noDataAlert, entryForm);
 }
s}

If current and historical price exists, display the comparison bar charts

If current price exists, display price in an Alert

If no price information exists, use Alert to indicate no price

As with the ObtainQuoteMIDlet, most of the RetrieveQuoteMIDlet will not look
different when running. As shown in figure 6.8, after compiling, preverifying and exe-
cuting, the only change seen on the part of the user comes when there is only a current
price stored in the database. In this case, the new Information alert will provide the
user with the current, but no historical, price information. But the information dis-
played in the RetrieveQuoteMIDlet now comes directly from the record store as a re-
sult of quotes obtained by the other MIDlet in the suite, namely ObtainQuoteMIDlet.

Listing 6.8 The new displayChartCanvas of RetrieveQuoteMIDlet

q

w

e

q

w

e

PERSISTENT STORAGE IN THE INVESTMENT QUOTE APPLICATION 159

WH_Java2.book Page 160 Monday, March 4, 2002 9:59 AM
Figure 6.9 Like the ObtainQuoteMIDlet, no change is seen in the RetrieveQuoteMIDlet user

interface after adding an RMS. The screens to get the investment symbol and display the price

for saved price quotes are the same. Again, behind the screens of this MIDlet, quote service data

is retrieved from the record store on the device.

Before we depart this chapter, we want to give you a complete listing of the code for
our MIDlet applications. Listings 6.9 and 6.10 are the Java files for our MIDP appli-
cations. The EntryForm and ChartCanvas.java files from chapter 5 are unchanged so
please refer to the code listing at the end of that chapter if you need those class files.
Full source code for QuoteService.java and QuoteFilter.java were provided earlier in
this chapter.

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import javax.microedition.rms.*;

public class ObtainQuoteMIDlet extends MIDlet {
 private Display displayMngr = null;
 private EntryForm entryForm = null;
 private Alert resultsAlert = null;
 private Ticker adTicker =
 new Ticker("Track your investments with Investment Tracker");

 public ObtainQuoteMIDlet () {
 }

 private void initListener () {
 ItemStateListener itemListener = new ItemStateListener () {
 public void itemStateChanged (Item item) {
 if ((item == entryForm.getInvestmentChoice()) &&
 (entryForm.getInvestmentChoice().getSelectedIndex() == 1) &&
 !(entryForm.getSymbolField().getString().toUpperCase().
 endsWith("X"))) {
 Alert symbolAlert = new Alert("Check Symbol",
 "Mutual Funds end in 'X'", null, AlertType.WARNING);
 symbolAlert.setTimeout(Alert.FOREVER);
 displayMngr.setCurrent(symbolAlert, entryForm);
 }
 }
 };

Listing 6.9 The full ObtainQuoteMIDlet
160 CHAPTER 6 MIDP DATA STORAGE

WH_Java2.book Page 161 Monday, March 4, 2002 9:59 AM
 CommandListener commandListener = new CommandListener() {
 public void commandAction(Command c, Displayable d) {
 if (c == entryForm.getExitCommand()) {
 destroyApp(true);
 } else if (c == entryForm.getGetCommand()) {
 if ((entryForm.getInvestmentChoice().getSelectedIndex() == 1) &&
 !(entryForm.getSymbolField().getString().toUpperCase().
 endsWith("X"))){
 Alert symbolAlert = new Alert("Check Symbol",
 "Mutual Funds end in 'X'", null, AlertType.WARNING);
 symbolAlert.setTimeout(Alert.FOREVER);
 displayMngr.setCurrent(symbolAlert, entryForm);
 } else if (entryForm.getSymbolField().getString().length() > 0) {
 String sym = entryForm.getSymbolField().getString();
 int type = entryForm.getInvestmentChoice().getSelectedIndex();
 int[] price = QuoteService.getPrice(sym, type);
 storePrice(sym, price);
 displayPrice("The price of " + sym + " is $" + price[0] +
 "." + price[1]);
 }
 }
 }
 };
 entryForm.setItemStateListener(itemListener);
 entryForm.setCommandListener(commandListener);
 }

 private void displayEntryForm () {
 if (entryForm == null) {
 entryForm = new EntryForm("ObtainQuote");
 }
 initListener();
 displayMngr.setCurrent(entryForm);
 }

 private void displayPrice(String quoteString) {
 if (resultsAlert == null) {
 resultsAlert = new Alert("Quote Price", null, null,
 AlertType.CONFIRMATION);
 resultsAlert.setTicker(adTicker);
 resultsAlert.setTimeout(Alert.FOREVER);
 }
 resultsAlert.setString(quoteString);
 displayMngr.setCurrent(resultsAlert, entryForm);
 }

 private void storePrice(String symbol, int[] price) {
 String newRecord = symbol + ";" + price[0] + ";" + price[1];
 byte[] byteRec;
 try {
 RecordStore anRMS = RecordStore.openRecordStore("Quotes" , true);
 RecordFilter rf = new QuoteFilter(symbol);
 RecordEnumeration rEnum = anRMS.enumerateRecords(rf,null,false);
 if (rEnum.hasNextElement()) {
PERSISTENT STORAGE IN THE INVESTMENT QUOTE APPLICATION 161

WH_Java2.book Page 162 Monday, March 4, 2002 9:59 AM
162 CHAPTER 6 MIDP DATA STORAGE

 int recId = rEnum.nextRecordId();
 newRecord += ';' + getLastPrice(anRMS.getRecord(recId));
 byteRec = newRecord.getBytes();
 anRMS.setRecord(recId,byteRec,0,byteRec.length);
 } else {
 byteRec = newRecord.getBytes();
 anRMS.addRecord(byteRec,0,byteRec.length);
 }
 rEnum.destroy();
 anRMS.closeRecordStore();
 } catch (RecordStoreFullException fullStore) {
 //handle a full record store problem
 } catch (RecordStoreNotFoundException notFoundException) {
 //handle store not found which should not happen with the
 } catch (RecordStoreException recordStoreException) {
 //handling record store problems
 }
 }

 private int[] parsePrices(byte[] quoteRec) {
 String rec = new String(quoteRec);
 int dollar1Pos = rec.indexOf(';');
 int cent1Pos = rec.indexOf(';',dollar1Pos+1);
 int dollar2Pos = rec.indexOf(';',cent1Pos + 1);
 if (dollar2Pos > 0) { //had a historical price
 int cent2Pos = rec.indexOf(';',dollar2Pos + 1);
 int currentDollars = Integer.parseInt(rec.substring(dollar1Pos +
 1,cent1Pos));
 int currentCents = Integer.parseInt(rec.substring(cent1Pos +
 1,dollar2Pos));
 int historicalDollars = Integer.parseInt(rec.substring(dollar2Pos +
 1,cent2Pos));
 int historicalCents = Integer.parseInt(rec.substring(cent2Pos + 1));
 int[] returnPrices = {currentDollars, currentCents, historicalDollars,
 historicalCents};
 return returnPrices;
 } else { //no previous historical price
 int currentDollars = Integer.parseInt(rec.substring(dollar1Pos + 1,
 cent1Pos));
 int currentCents = Integer.parseInt(rec.substring(cent1Pos + 1));
 int[] returnPrices = {currentDollars, currentCents};
 return returnPrices;
 }
 }

 private String getLastPrice(byte[] rec) {
 String recString = new String(rec);
 int dollarPos = recString.indexOf(';');
 int centPos = recString.indexOf(';',dollarPos+1);
 int centEnd = recString.indexOf(';',centPos + 1);
 if (centEnd > 0) //had a historical price
 return recString.substring(dollarPos+1,centEnd);
 else //no previous historical price
 return recString.substring(dollarPos+1);
 }

WH_Java2.book Page 163 Monday, March 4, 2002 9:59 AM
 protected void startApp() {
 displayMngr = Display.getDisplay(this);
 displayEntryForm();
 }

 protected void pauseApp() {
 }

 protected void destroyApp(boolean unconditional) {
 notifyDestroyed();
 }

 public void commandAction(Command c, Displayable s) {
 }

}

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import javax.microedition.rms.*;

public class RetrieveQuoteMIDlet extends MIDlet {
 private Display displayMngr = null;
 private EntryForm entryForm = null;
 private ChartCanvas chartCanvas = null;

 public RetrieveQuoteMIDlet () {
 }

 private void initListener () {
 ItemStateListener itemListener = new ItemStateListener () {
 public void itemStateChanged (Item item) {
 if ((item == entryForm.getInvestmentChoice()) &&
 (entryForm.getInvestmentChoice().getSelectedIndex() == 1) &&
 !(entryForm.getSymbolField().getString().toUpperCase().
 endsWith("X"))) {
 Alert symbolAlert = new Alert("Check Symbol",
 "Mutual Funds end in 'X'", null, AlertType.WARNING);
 symbolAlert.setTimeout(Alert.FOREVER);
 displayMngr.setCurrent(symbolAlert, entryForm);
 }
 }
 };
 CommandListener commandListener = new CommandListener() {
 public void commandAction(Command c, Displayable d) {
 if (c == entryForm.getExitCommand()) {
 destroyApp(true);
 } else if (c == entryForm.getGetCommand()) {
 if ((entryForm.getInvestmentChoice().getSelectedIndex() == 1) &&
 !(entryForm.getSymbolField().getString().toUpperCase().
 endsWith("X"))){
 Alert symbolAlert = new Alert("Check Symbol",
 "Mutual Funds end in 'X'", null, AlertType.WARNING);

Listing 6.10 The full RetrieveQuoteMIDlet
PERSISTENT STORAGE IN THE INVESTMENT QUOTE APPLICATION 163

WH_Java2.book Page 164 Monday, March 4, 2002 9:59 AM
 symbolAlert.setTimeout(Alert.FOREVER);
 displayMngr.setCurrent(symbolAlert, entryForm);
 } else
 if (entryForm.getSymbolField().getString().length() > 0)
 displayChartCanvas();
 }
 }
 };
 entryForm.setItemStateListener(itemListener);
 entryForm.setCommandListener(commandListener);
 }

 private void initCanvasListener() {
 CommandListener commandListener = new CommandListener() {
 public void commandAction(Command c, Displayable d) {
 if (c == chartCanvas.getExitCommand())
 displayMngr.setCurrent(entryForm);
 }
 };
 chartCanvas.setCommandListener(commandListener);
 }

 private void displayEntryForm () {
 if (entryForm == null) {
 entryForm = new EntryForm("RetrieveQuote");
 }
 initListener();
 displayMngr.setCurrent(entryForm);
 }

 private void displayChartCanvas() {
 if (chartCanvas == null) {
 chartCanvas = new ChartCanvas();
 }
 String currentSymbol = entryForm.getSymbolField().getString();
 int[] prices = retrievePrices(currentSymbol);
 if (prices != null) {
 if (prices.length > 2) {
 initCanvasListener();
 displayMngr.setCurrent(chartCanvas);
 chartCanvas.displayChart(currentSymbol,prices[0],prices[2]);
 } else {
 Alert noDataAlert = new Alert("Recorded Price","Recorded price for " +
 currentSymbol + " is: $" + prices[0] + "." + prices[1] +
 ". No historical data exists.", null, AlertType.INFO);
 noDataAlert.setTimeout(Alert.FOREVER);
 displayMngr.setCurrent(noDataAlert, entryForm);
 }
 } else {
 Alert noDataAlert = new Alert("No prices", "No price exists data for "
 + currentSymbol, null, AlertType.INFO);
 noDataAlert.setTimeout(Alert.FOREVER);
 displayMngr.setCurrent(noDataAlert, entryForm);
 }
 }
164 CHAPTER 6 MIDP DATA STORAGE

WH_Java2.book Page 165 Monday, March 4, 2002 9:59 AM
 private int[] retrievePrices(String symbol) {
 int[] dollars = null;
 try {
 RecordStore anRMS = RecordStore.openRecordStore("Quotes" , true);
 RecordFilter rf = new QuoteFilter(symbol);
 RecordEnumeration rEnum = anRMS.enumerateRecords(rf,null,false);
 if (rEnum.hasNextElement()) {
 byte[] rec = rEnum.nextRecord();
 dollars = parsePrices(rec);
 } else
 dollars = null;
 rEnum.destroy();
 anRMS.closeRecordStore();
 } catch (RecordStoreFullException fullStore) {
 //handle a full record store problem
 } catch (RecordStoreNotFoundException notFoundException) {
 //handle store not found which should not happen with the
 //createIfNecessary
 } catch (RecordStoreException recordStoreException) {
 //handling record store problems
 }
 return dollars;
 }

 private int[] parsePrices(byte[] quoteRec) {
 String rec = new String(quoteRec);
 int dollar1Pos = rec.indexOf(';');
 int cent1Pos = rec.indexOf(';',dollar1Pos+1);
 int dollar2Pos = rec.indexOf(';',cent1Pos + 1);
 if (dollar2Pos > 0) { //had a historical price
 int cent2Pos = rec.indexOf(';',dollar2Pos + 1);
 int currentDollars = Integer.parseInt(rec.substring(dollar1Pos +
 1,cent1Pos));
 int currentCents = Integer.parseInt(rec.substring(cent1Pos +
 1,dollar2Pos));
 int historicalDollars = Integer.parseInt(rec.substring(dollar2Pos +
 1,cent2Pos));
 int historicalCents = Integer.parseInt(rec.substring(cent2Pos + 1));
 int[] returnPrices = {currentDollars, currentCents, historicalDollars,
 historicalCents};
 return returnPrices;
 } else { //no previous historical price
 int currentDollars = Integer.parseInt(rec.substring(dollar1Pos +
 1,cent1Pos));
 int currentCents = Integer.parseInt(rec.substring(cent1Pos + 1));
 int[] returnPrices = {currentDollars, currentCents};
 return returnPrices;
 }
 }

 protected void startApp() {
 displayMngr = Display.getDisplay(this);
 displayEntryForm();
 }
PERSISTENT STORAGE IN THE INVESTMENT QUOTE APPLICATION 165

WH_Java2.book Page 166 Monday, March 4, 2002 9:59 AM
 protected void pauseApp() {
 }

 protected void destroyApp(boolean unconditional) {
 notifyDestroyed();
 }
}

6.5 SUMMARY

In this chapter, we explored the MIDP Record Management System. Specifically, we
examined the MDIP RMS API and what device manufacturers are required to sup-
port. At the center of data storage on an MIDP device is the record store. A record
store can be utilized and shared by many MIDlet applications that are part of the same
MIDlet suite. Through examples and the tutorial application, we examined how to
store, update, and retrieve information in the record store.

The tutorial application is already behaving as expected. We have a user interface
that allows customers to specify investment symbols and the application can store and
retrieve price quote data for those investments. The only thing our application lacks
is connectivity to the outside world and real price quote data. We explore how to add
this connectivity in the next chapter.
166 CHAPTER 6 MIDP DATA STORAGE

WH_Java2.book Page 167 Monday, March 4, 2002 9:59 AM
C H A P T E R 7

Connecting to the Internet

7.1 Micro edition package connectivity 168
7.2 Similar but smaller I/O package 169
7.3 Implementing the Internet investment quote service 171
7.4 Summary 186

Our first tutorial application implementation is almost complete. We have a user inter
-
face that interacts with the customer to get an investment symbol and type. We also have
a means to store and retrieve data on an investment in a database on the device. What is
missing is the application’s communication with the outside world to get the investment data.

In essence, we now have a mobile application, but it is not wireless. To make our
MIDP application wireless, it is going to need to communicate with the World Wide
Web or other source of electronically available investment data for stock and fund
prices. In this tutorial, we use the hypertext transfer protocol (HTTP) to request quote
data from a popular financial Internet web site to pull back a hypertext markup lan-
guage (HTML) page containing an investment price. We then parse the page to
extract the price for storage in our MIDP RMS database.

In J2ME, connecting to the Internet, a socket, a file, or any other networked data
resource occurs via a standard framework called the Generic Connection Framework
(GCF). In chapter 13, we are going to cover the GCF in detail. The Generic Con-
nection Framework provides the foundation for all network communications within
the J2ME architecture. The Generic Connection Framework interface is defined
within the configuration layer (in this case the CLDC) yet it provides no protocol
implementations. The profiles themselves, or more specifically, the vendors supplying
the devices or profile implementations must support the necessary Generic Connec-
tion Framework interface implementations.
167

WH_Java2.book Page 168 Monday, March 4, 2002 9:59 AM
In this chapter, we will look at MIDP’s support of the GCF, and we examine its
use in connecting our tutorial application to a source of investment price information.
We will also look at the java.io package in light of J2ME and connecting to the
outside world.

7.1 MICRO EDITION PACKAGE CONNECTIVITY

The Generic Connection Framework resides in the javax.microedition.io
package and consists of one class called Connector, one exception called Connec-
tionNotFoundException, and many “Connection” interfaces, depending on the
profile’s implementation. In the case of the MIDP, there are currently nine defined
interfaces.

The Connector class is used to create instances of a connection protocol using
one of the Connector class’s static methods. The object returned from the static con-
nection methods is either a stream or an implementation supporting the generic Con-
nection interface (or one of its descendents). In chapter 13, we cover the various
connection interfaces in more detail. For the purposes of this chapter, we are con-
cerned with obtaining a simple input stream from the Internet via HTTP. To do this,
we will use the generic Connector class provided in the GCF in combination with
an InputStreamReader object available from the java.io package.

7.1.1 Using the Connector class to open a channel

The Connector class is not designed to be instantiated. It is used to create instances
of a connection through various protocols and connection types such as a socket,
HTTP, file, datagram, and so forth. All of the methods Connector defines are static
and serve this purpose. The Connector defines three variations of open() that
each return a Connection instance. The Connector class also defines methods
that return input and output streams.

The stream methods, openInputStream(String name), openOutput-
Stream(String name), openDataInputStream(String name), and open-
DataOutputStream(String name) are convenient methods for creating differ-
ent types of input and output streams at the same time the connection is established.
In most cases, applications are not concerned with the Connection instance itself,
but rather the stream that can be read from or written to. By using one of these four
methods, the application can obtain the stream directly, without needing to be con-
cerned about the connection instance. The following example illustrates how to get a
stream using the Connector class.

try {
 InputStream is = Connector.openInputStream("socket://127.0.0.1:8888");
 is.close();
} catch (IOException x) {
 //Handle Exception
}

168 CHAPTER 7 CONNECTING TO THE INTERNET

WH_Java2.book Page 169 Monday, March 4, 2002 9:59 AM
The string provided to the open stream methods is a Uniform Resource Identifier
(URI). It is composed of three parts: a scheme, an address, and a parameter list. The
general form of the name parameter is as follows:

<scheme>:<address>;<parameters>

The scheme identifies how the connection is made (socket, HTTP, file, datagram, etc.).
The address identifies what to connect to (for example, www.ctimn.com, myfile.txt,
and so forth) and the parameters identify other information that is required by the pro-
tocol to establish a connection such as a connection speed. The parameters, when needed,
are specified as name=value pairs. Some examples of URIs are listed in table 7.1. Note
that in some cases the parameter is not necessary and thus the “;” is not always present.

There is a lot more to the Connector class and the entire GCF that we will leave for
later (see chapter 13). For now, this is enough to get connected wirelessly to our
financial quote source.

7.2 SIMILAR BUT SMALLER I/O PACKAGE

The java.io package in J2ME is, for the most part, a subset of the java.io pack-
age in J2SE. In general, the java.io package has been reduced to a few input and
output stream subclasses and a single concrete reader and writer class to work with
the streams. Because of the much-reduced size of the java.io package, J2SE users
familiar with the standard package probably recognize that some methods seem out
of place and are not associated with the normal J2SE classes. This is because some of
the subclasses in the J2SE java.io hierarchy are missing.

Take the DataInputStream class, for example. In the standard java.io pack-
age, this class descends from FilteredInputStream. In J2ME, Filtered-
InputStream does not exist. Instead, DataInputStream descends directly from
the abstract InputStream. In standard java.io, the FilteredInputStream’s
close() method closes the input stream and releases any system resources associated
with the stream. With the J2SE FilteredInputStream class not available, this
method is housed in the DataInputStream class.

Table 7.1 These example strings specify how an application should connect to various infor-

mation sources. They specify various protocols, addresses, and parameter data. All are Uniform

Resource Identifier formatted.

Example URI

http://www.ctimn.com:8080

socket://localhost:8080

file:c:/myfile.txt (Windows only)

file:/myfile.txt (Unix)

datagram://127.0.0.1:8099

comm:0;baudrate=9600
SIMILAR BUT SMALLER I/O PACKAGE 169

WH_Java2.book Page 170 Monday, March 4, 2002 9:59 AM
7.2.1 Streams

InputStream and OutputStream are the abstract superclasses of all byte streams
in J2ME, just as in J2SE. J2ME has only three subclasses of streams, unlike the rich
set of input and output stream subclasses in J2SE that allow for handling stream data
in a multitude of fashions. The subclasses of InputStream and OutputStream in J2ME
are listed in table 7.2.

To demonstrate the use of streams in conjunction with the Connector class we
expand on the earlier example. This code reads characters from the opened stream
obtained with the help of the GCF Connector.
try {
 InputStream is = Connector.openInputStream("socket://127.0.0.1:8888");
 int ch;
 while ((ch = in.read()) > 0) {
 //do something with the data read
 }
 is.close();
} catch (IOException x) {
 //Handle Exception
}

The stream serves to capture the information coming from the open connection, in this
case a socket connection, so that the application can read characters from it as need be.

7.2.2 Readers/Writers

The Reader and Writer abstract super classes for reading and writing character
streams are the same as they are in J2SE. However, as with streams, the number of
concrete subclasses is severely reduced. In the case of readers and writers, there is only
one concrete subclass of each, namely InputStreamReader and OutputStream-
Writer. Instances of these classes are used in conjunction with streams and serve as
translators from bytes to characters (InputStreamReader) and from characters to
bytes (OutputStreamWriter) just as their J2SE counterparts.

We will return to look at the java.io classes again in a later chapter. For now, this
is enough to allow us to get a real QuoteService up and running.

Table 7.2 J2ME has only a limited number of stream classes, unlike the rich set of stream subclasses

available in J2SE. In J2ME, developers must use ByteArray, Data, or Print streams for input/output.

Stream Class Description

ByteArrayInput/OutputStream Contains an internal buffer that holds bytes that may be read/writ-
ten to and from the stream.

DataInput/OutputStream Provides applications with the means to read/write primitive Java
data types from an underlying input/output stream in a machine-
independent fashion.

PrintStream Extends OutputStream and provides convenience methods for
printing or displaying various objects and data values.
170 CHAPTER 7 CONNECTING TO THE INTERNET

WH_Java2.book Page 171 Monday, March 4, 2002 9:59 AM
7.3 IMPLEMENTING THE INTERNET INVESTMENT QUOTE SERVICE

In the last chapter, we implemented a fake quote service that handed out phony price
quotes from a random number generator. In this chapter, we implement the Quote-
Service described in the tutorial application design. You may recall from our tutorial
application design discussion in chapter 3, that the price quote acquiring service
should be developed as a stand-alone component. As a service, it simply answers stock
and mutual fund price information when provided the symbol and type of the invest-
ment. This allows it to be reused by several platform implementations in the future.
In particular, the service is used later when we rebuild our tutorial application for a
PDA device in KJava (chapters 8–10). A separate service also makes for good design
since this can also isolate the application from changes required in the service, and
transversely isolate the application from changes in the service.

In this tutorial example, we keep our connection and communications very simple,
opting to use simple streams to get data. In fact, through the MIDP implementation
of the GCF, we could use more specific Connection interfaces such as the Http-
Connection (discussed in chapter 13). The HttpConnection provides a conve-
nient HTTP protocol connection to MIDP applications without having to worry
about how the communication/networking details.

There are two reasons why this is not done in the tutorial. First, the HttpCon-
nection is an MIDP implementation interface of the GCF. While it is mandatory
for all MIDP vendor implementations, other profiles, or applications that do not use
a profile may not have this type of interface availability. In order to maximize the port-
ability of our QuoteService, we want to shy away from using a profile-specific imple-
mentation. Secondly, we are going to communicate with the Internet and ask for
standard web pages. The great part about the World Wide Web is that it freely pro-
vides so much information to its users. Unfortunately, this information is not always
free from the standpoint that many web pages today contain a deluge of advertise-
ments and uninteresting data. If we were to use something like the HttpConnec-
tion and pull off an entire investment web page into the device at one time, it could
overflow the device’s available memory. For example, we found a typical investment
center web page like those available from Yahoo or NASDAQ to contain as much as
35K of text. Therefore, the tutorial application must weed out the portions of the page
needed as it reads the HTML in from a stream while ignoring the extra data in the
page. In a real world implementation, quote data might be made available over a cor-
porate server and served up as convenient XML data or, at least, very streamlined price
data. Without this luxury, we want to be careful not to choke our small device with
the amount of data coming from a single web page.

WARNING The code in this portion of the chapter is meant to demonstrate how to connect
to and get information from a network resource (like the Internet) in a wireless
fashion using the GCF and MIDP/CLDC API. In a real world situation, a com-
pany building an application like the tutorial application we are about to dem-
onstrate would likely have data available on its own Internet or intranet site.
IMPLEMENTING THE INTERNET INVESTMENT QUOTE SERVICE 171

WH_Java2.book Page 172 Monday, March 4, 2002 9:59 AM
7.3.1 Getting a quote service connection

From the last chapter, recall that the QuoteService was provided by the Quote-
Service class. We retain the same class and signature in order to avoid any significant
changes to our application. However, the contents of the class will change significantly.

Preparing for a connection

To begin, the new implementation of the class uses both the GCF, located in the
javax.microedition.io package, and the J2ME, CLDC java.io package. There-
fore, both of these packages should be imported at the top of our QuoteService.java file.

import javax.microedition.io.*;

import java.io.*;

Per our tutorial application design, the all-important service that this class provides is
that of getting and returning stock and mutual fund price quotes. QuoteService
offers this service through a single public method, getPrice(String symbol-
String, int type). Because this class exists only to provide a service, creating
instances of this class is not necessary. Therefore, the getPrice() method remains a
static method returning an array of integers. When the service is successful in finding a
quote for a given investment, the array will contain two integers representing the price.
One integer is for price dollars, and the other is for the price cents. Remember, floating-
point numbers are not available in many J2ME environments such as the CLDC/MIDP.

The getPrice() must be passed two parameters. The first, the investment sym-
bol, is the symbol representing the stock or mutual fund in which the customer has
expressed interest. This parameter must be a string. Given the customer could have
mistyped the symbol or not know the exact characters used in the symbol, the string
may not be a valid symbol for a stock or mutual fund. Regardless, the service attempts
to find a price for a stock or mutual fund using this string and assuming that it is valid.
As will be seen, the getPrice() method must handle the possible condition that the
symbol is not valid and return appropriate results. The second parameter passed to the
getPrice() method is an integer representing the investment type. The value 0 (the
index of the Stock radio button in the choice group) will signify that the customer
desires a quote on a stock. Alternately, a value of 1 sent as the type parameter signifies
a search for a mutual fund is desired. In our implementation, this is an important piece
of information to the QuoteService because we may need to use a different Internet
site, or more precisely a different URI, to get stock prices versus mutual fund prices.

An implementation of the getPrice() method is provided as follows:

public static int[] getPrice(String symbolString, int type) {

 String quotePage = getQuotePage(symbolString, type);

 if (quotePage.length() > 0)
 return parseQuote(quotePage, type);
 else
 return null;
}

172 CHAPTER 7 CONNECTING TO THE INTERNET

WH_Java2.book Page 173 Monday, March 4, 2002 9:59 AM
The getQuotePage() method is covered below, but its duty is to return to get-
Price() an HTML page, or portion of an HTML page, containing the investment
price in String format. If the Internet quote service is not available or the symbol provided
by the application to the QuoteService is not a valid investment symbol for the type of in-
vestment specified, then the getQuotePage() method simply returns an empty string.
No matter what the problem, if a page containing the price is not available, the get-
Price() method and the QuoteService then returns null to the calling application.

In a more robust service, the application may want to know more about
why a price is not available. Is the service down? Is the symbol not valid?
A lot can go wrong when dealing with external agencies over a network,
wired or wireless. Feel free to augment this implementation to provide
different responses depending on the circumstances of a failure.

If a page or portion of a page containing the price quote is found, then the price must
be extracted from the page and returned to the application in the form of the int
array discussed before. This task is performed by the parseQuote(String
quotePage, int type) method.

The really interesting part of QuoteService, then, occurs in the getQuote-
Page() method. This method takes the same two symbol and investment type argu-
ments passed to getPrice(). Its job is to open an HTTP connection to the Internet,
contact a financial quote web site, pass the web site information on the desired invest-
ment, and capture the sites response.

Before we charge off and construct this page fetching method, let’s think a little
about where this method is going to be running and what it might encounter. When
successfully built and deployed, this method is going to be operating in a small J2ME
device. These devices have very limited resources to include available memory.
Today’s web sites, especially like those that provide stock and mutual fund quotes are
very “electric” and filled with a lot of information (figure 7.1).

While informative to us, the charts, additional information, advertisements, links
to other web sites, and so forth mean nothing to the application or device. This is all
clutter around the information the application is really going after on behalf of the cus-
tomer. Unfortunately, there is a lot of clutter. A typical financial quote web page may
contain nearly 35,000 characters. Of this, the application needs around six or seven
characters. If the QuoteService attempts to read in and hold all 35,000 characters
(35K), a lot of the very finite resources on the device will have just been taken up by
clutter. Therefore, the getQuotePage() method must be a little wise and memory
miserly as it talks to the Internet and pulls down data. Instead of getting the entire web
page, the getQuotePage() method finds and retains the portion of the page contain-
ing the price and drops the rest of the document avoiding potential memory problems.

IMPROVING THE
QUOTE SERVICE
IMPLEMENTING THE INTERNET INVESTMENT QUOTE SERVICE 173

WH_Java2.book Page 174 Monday, March 4, 2002 9:59 AM
Figure 7.1 Finance.Yahoo.com and Quotes.NASDAQ.com are two popular investment quote

web sites shown here. As can be seen, there is a lot of exciting material on your typical financial

quote web site, but not all of it is useful or desired by the J2ME application.

The portion of the web page that does contain the price quote is assembled and
stored in a StringBuffer. A new instance is defined at the top of the method. The
string buffer is returned at the end of the method.

StringBuffer quotePage = new StringBuffer();

Opening an HTTP connection

Next we want to open a connection to the Internet. Some web sites offer mutual
fund quotes while other sites offer stock quotes. In this example, we call on two
different URLs (both owned by the same popular organization) in order to demon-
strate how to open an HTTP connection using the GCF. However, implement your
174 CHAPTER 7 CONNECTING TO THE INTERNET

WH_Java2.book Page 175 Monday, March 4, 2002 9:59 AM
getQuotePage() method by choosing your favorite financial quote web site and
substituting its URL in the following code. In a real world situation, the company
developing the application would likely have its own web site. Furthermore, it is likely
that data from this site would be available in a format more amenable to the applica-
tion we are developing and we would not have to parse the data out of a public web
page. To open a connection, the GCF’s Connector class from the javax.micro-
edition.io package and an InputStreamReader from the java.io package
are used.

String protocol = “http://”;
String stockURL = “quotes.nasdaq.com/Quote.dll?“ +
 “page=multi&page=++&mode=stock&symbol=";
String fundURL = “www.nasdaq.com/asp/quotes_mutual.asp?” +
 “page=++&mode=fund&symbol=";
InputStream in;
if (type == 0) {
 in = Connector.openInputStream(protocol + stockURL + symbolString);
} else {
 in = Connector.openInputStream(protocol + fundURL + symbolString);
}

String protocol = "http://";
String stockURL = "quotes.nasdaq.com/Quote.dll?" +
 "page=multi&page=++&mode=stock&symbol=";
String fundURL = "www.nasdaq.com/asp/quotes_mutual.asp?" +
 "page=++&mode=fund&symbol=";
InputStreamReader in;
if (type == 0) {
 in = new InputStreamReader(Connector.openInputStream(protocol +
 stockURL + symbolString));
} else {
 in = new InputStreamReader(Connector.openInputStream(protocol +
 fundURL + symbolString));
}

Having an open connection to a web site server and an input stream on an invest-
ment quote HTML page, we can read the page and extract the price data.

Reading HTML data

The openInputStream() method call makes an InputStream available, but no
data has come across the line yet. The read() method is used to read data from the
input stream, and it returns a byte of data in the form of an int. If the end of the
stream has been reached, it will return –1. Therefore, all that is required to read the
HTML page all the way to the end is a while loop checking on the return value of the
read() call.

int ch;

while ((ch = in.read()) > 0) {
}

IMPLEMENTING THE INTERNET INVESTMENT QUOTE SERVICE 175

WH_Java2.book Page 176 Monday, March 4, 2002 9:59 AM
Inside this loop, the method must find and extract the portion of the HTML con-
taining the price. It so happens that the web sites we have chosen to get price quotes
from provide a very natural marker for indicating the price among all the data in their
web pages. The price is placed on the web page preceded by a ‘$’ character. Luckily
for us, when a valid symbol has been used to get the page, it also happens to be the
first ‘$’ character used on the page. Therefore, inside of the read loop, in this imple-
mentation of getQuotePage(), we simply read until the character ‘$’ is encoun-
tered. Depending on the price and extra information around the price, we extract
about 20 characters and return this portion of the HTML page to the getPrice()
method for parsing. Again, individual results may vary depending on choice of quote
service supplier, but an implementation of the getQuotePrice() read loop might
look something like the following code.:

while ((ch = in.read()) > 0) {
 if (((char) ch) == marker) {
 char[] end = new char[readLength];
 in.read(end,0,readLength);
 quotePage.append(new String(end));
 break;
} }

On completion of the read, the input stream must be closed. Furthermore, when
dealing with most any class and operation from the java.io or javax.micro-
edition.io packages, IOExceptions must be caught and handled. Finally, at
the end of the method, the portion of the page containing the quote is returned. Of
course, if no price is found in the page (possibly because the symbol was not valid)
then the StringBuffer used to capture the page would be empty and a null string
is returned. The complete getQuotePage() method is shown in listing 7.1.

private static String getQuotePage(String symbolString, int type) {
 char marker = '$';
 int readLength = 20;

 StringBuffer quotePage = new StringBuffer();
 try {
 String protocol = “http://”;
 String stockURL = “quotes.nasdaq.com/Quote.dll?“ +
 “page=multi&page=++&mode=stock&symbol=";
 String fundURL = “www.nasdaq.com/asp/quotes_mutual.asp?” +
 “page=++&mode=fund&symbol=";
 InputStream in;
 if (type == 0) {
 in = new InputStreamReader(Connector.openInputStream(protocol +
 stockURL + symbolString));
 } else {
 in = new InputStreamReader(Connector.openInputStream(protocol +
 fundURL + symbolString));
 }

Listing 7.1 The getQuotePage() method in QuoteService

w

q

176 CHAPTER 7 CONNECTING TO THE INTERNET

WH_Java2.book Page 177 Monday, March 4, 2002 9:59 AM
 int ch;
 while ((ch = in.read()) > 0) {
 if (((char) ch) == marker) {
 char[] end = new char[readLength];
 in.read(end,0,readLength);
 quotePage.append(new String(end));
 break;
 } }
 in.close();
 } catch (IOException ex) {
 System.out.println("Exception reading quote from HTTP Connection "
 + ex.getMessage());
 }
 return quotePage.toString();
}

Create a StringBuffer to hold part of the page

Open a stream to the appropriate Web site

Read characters until the price has been found

Don’t forget to close the input stream

Again, because there is no real need for an instance of QuoteService, the get-
QuotePage() method is declared static. It is also private since its only caller is
getPrice() from within the class.

7.3.2 Extracting the price quote from the HTML

In the section above, we opened an HTTP connection and pulled down an HTML
document. We do not know the contents of the page or even if it contains the price
quote in which we are interested. If a price quote is found in the string of the portion
of the HTML page, the actual price must be extracted from the string. The contents
of a price extracting method vary greatly depending on the content of the HTML
page used to get the quote. An implementation has been provided here in listing 7.2
as an example for completeness.

private static int[] parseQuote(String aQuotePage, int type){

 String skip;
 String dollarsEnd;
 String quoteEnd;
 String quoteDollars = null;
 String quoteCents = null;
 int[] dollarsCents = new int[2];

 if (type == 0) {
 skip = "$ ";
 dollarsEnd = ".";
 quoteEnd = "";

r

e

q

w

e

r

Listing 7.2 The parseQuote() method in QuoteService
IMPLEMENTING THE INTERNET INVESTMENT QUOTE SERVICE 177

WH_Java2.book Page 178 Monday, March 4, 2002 9:59 AM
178 CHAPTER 7 CONNECTING TO THE INTERNET

 } else {
 skip = "$";
 dollarsEnd = ".";
 quoteEnd = "";
 }

 try {
 int generalPos = aQuotePage.indexOf(skip);
 int dollarStop = aQuotePage.indexOf(dollarsEnd, generalPos);
 int quoteStop = aQuotePage.indexOf(quoteEnd, dollarStop);
 quoteDollars = aQuotePage.substring(generalPos + (skip.length()),
 dollarStop);
 dollarsCents[0] = Integer.parseInt(quoteDollars);
 quoteCents = aQuotePage.substring(dollarStop + 1, quoteStop);
 dollarsCents[1] = Integer.parseInt(quoteCents);
 return dollarsCents;
 } catch (Exception e){
 System.out.println("Error attempting to parse quote from " +
 "source page. Improper Symbol?");
 return null;
 }
}

The parseQuote() method returns the int array containing the dollars and cents
of the price parsed from the HTML or null if no price was found or could not be
extracted. An implementation of the full and complete QuoteService class is pro-
vided in listing 7.3. Modify the URLs, read loop in getQuotePage(), and parse
methods to allow your MIDlets to incorporate investment price quotes from your
favorite web site.

import javax.microedition.io.*;
import java.io.*;

public class QuoteService {

 public static int[] getPrice(String symbolString, int type) {
 String quotePage = getQuotePage(symbolString, type);

 if (quotePage.length() > 0)
 return parseQuote(quotePage, type);
 else
 return null;
 }

 private static int[] parseQuote(String aQuotePage, int type){

 String skip;
 String dollarsEnd;
 String quoteEnd;
 String quoteDollars = null;
 String quoteCents = null;
 int[] dollarsCents = new int[2];

Listing 7.3 The complete QuoteService.java

WH_Java2.book Page 179 Monday, March 4, 2002 9:59 AM
 if (type == 0) {
 skip = "$ ";
 dollarsEnd = ".";
 quoteEnd = "";
 } else {
 skip = "$";
 dollarsEnd = ".";
 quoteEnd = "";
 }

 try {
 int generalPos = aQuotePage.indexOf(skip);
 int dollarStop = aQuotePage.indexOf(dollarsEnd, generalPos);
 int quoteStop = aQuotePage.indexOf(quoteEnd, dollarStop);
 quoteDollars = aQuotePage.substring(generalPos + (skip.length()),
 dollarStop);
 dollarsCents[0] = Integer.parseInt(quoteDollars);
 quoteCents = aQuotePage.substring(dollarStop + 1, quoteStop);
 dollarsCents[1] = Integer.parseInt(quoteCents);
 return dollarsCents;
 } catch (Exception e){
 System.out.println("Error attempting to parse quote from " +
 "source page. Improper Symbol?");
 return null;
 }
 }

 private static String getQuotePage(String symbolString, int type) {
 char marker = '$';
 int readLength = 20;

 StringBuffer quotePage = new StringBuffer();
 try {
 String protocol = “http://”;
 String stockURL = “quotes.nasdaq.com/Quote.dll?“ +
 “page=multi&page=++&mode=stock&symbol=";
 String fundURL = “www.nasdaq.com/asp/quotes_mutual.asp?” +
 “page=++&mode=fund&symbol=";
 InputStream in;
 if (type == 0) {
 in = Connector.openInputStream(protocol + stockURL +
 symbolString);
 } else {
 in = Connector.openInputStream(protocol + fundURL +
 symbolString);
 }
 int ch;
 while ((ch = in.read()) > 0) {

 if (((char) ch) == marker) {
 int cnt = 0;
 while (cnt < readLength) {
 ch = in.read();
 quotePage.append((char)ch);
IMPLEMENTING THE INTERNET INVESTMENT QUOTE SERVICE 179

WH_Java2.book Page 180 Monday, March 4, 2002 9:59 AM
 cnt++;
 }
 break;
 }
 }
 in.close();
 } catch (IOException ex) {
 System.out.println("Exception reading quote from HTTP Connection " +
 ex.getMessage());
 }
 return quotePage.toString();
 }
}

The QuoteService now provides real investment price data via an integer array, back
to the calling application. In our case, this application is our ObtainQuoteMIDlet.

7.3.3 The MIDlet’s handling of quote data

No additional work should be needed to hook the QuoteService into the tutorial
application since the QuoteService API did not change with this new implementa-
tion. Namely, the ObtainQuoteMIDlet’s CommandListener continues to call on
getPrice(symbolString, type). However, since the service may not find a price
and would return null in this instance, a little error handling and an appropriate mes-
sage to the customer are in order. Listing 7.4 shows the new CommandListener.

CommandListener commandListener = new CommandListener() {
 public void commandAction(Command c, Displayable d) {
 if (c == entryForm.getExitCommand()) {
 destroyApp(true);
 } else if (c == entryForm.getGetCommand()) {
 if ((entryForm.getInvestmentChoice().getSelectedIndex() == 1)
 && !(entryForm.getSymbolField().getString()
 .toUpperCase().endsWith("X"))){
 Alert symbolAlert = new Alert("Check Symbol",
 "Mutual Funds end in 'X'", null, AlertType.WARNING);
 symbolAlert.setTimeout(Alert.FOREVER);
 displayMngr.setCurrent(symbolAlert, entryForm);
 } else if (entryForm.getSymbolField().getString().length() > 0) {
 String sym = entryForm.getSymbolField().getString();
 int type = entryForm.getInvestmentChoice().getSelectedIndex();
 int[] price = QuoteService.getPrice(sym, type);
 if (price != null) {
 storePrice(sym, price);
 displayPrice("The price of " + sym + " is $" + price[0] + "."
 + price[1]);

Listing 7.4 Modified ObtainQuoteMIDlet’s CommandListener

q

180 CHAPTER 7 CONNECTING TO THE INTERNET

WH_Java2.book Page 181 Monday, March 4, 2002 9:59 AM
 } else {
 Alert symbolAlert = new Alert("Check Symbol/Type",
 "No quote found.", null, AlertType.WARNING);
 symbolAlert.setTimeout(Alert.FOREVER);
 displayMngr.setCurrent(symbolAlert, entryForm);
 }
 }
 }
 }
};

New error check added

Alert added if no data is available

From a user interface perspective, the ObtainQuoteMIDlet will not appear any
differently than it did after the last chapter, with a single exception. When the cus-
tomer now enters characters in the symbol entry field that do not represent a valid
stock or mutual fund, an Alert will display suggesting the customer should check the
symbol and type.

The first implementation of the tutorial application in MIDP is complete! Having
developed a complete mobile and wireless Java application running in the cellular
telephone or pager, the boss is probably happy, but there is still work left to do. In the
next section, we port this same application to a personal digital assistant.

The complete ObtainQuoteMIDlet.java and QuoteService.java files are provided
in Listings 7.5 and 7.6. The RetrieveQuoteMIDlet and QuoteFilter did not change.
The Java code for these classes can be found in chapter 6. Also, the code in Entry-
Form.java and CanvasChart.java did not change and the complete listing for these files
can be found in chapter 5.

w

q

w

Figure 7.2

What happens if the customer makes a

mistake in entering the investment symbol,

or enters a symbol that does not exist?

The MIDlet requesting the QuoteService to

provide a price quote for the investment will

get back an HTML page containing some sort

of error but no price data. Therefore a new

Alert display, shown above, is added to the

MIDlet to inform the customer of the error

when attempting to gain the price of an

invalid or non-existent investment symbol.
IMPLEMENTING THE INTERNET INVESTMENT QUOTE SERVICE 181

WH_Java2.book Page 182 Monday, March 4, 2002 9:59 AM
import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import javax.microedition.rms.*;

public class ObtainQuoteMIDlet extends MIDlet {
 private Display displayMngr = null;
 private EntryForm entryForm = null;
 private Alert resultsAlert = null;
 private Ticker adTicker =
 new Ticker("Track your investments with Investment Tracker");

 public ObtainQuoteMIDlet () {
 }

 private void initListener () {
 ItemStateListener itemListener = new ItemStateListener () {
 public void itemStateChanged (Item item) {
 if ((item == entryForm.getInvestmentChoice()) &&
 (entryForm.getInvestmentChoice().getSelectedIndex() == 1) &&
 !(entryForm.getSymbolField().getString().toUpperCase().
 endsWith("X"))) {
 Alert symbolAlert = new Alert("Check Symbol",
 "Mutual Funds end in 'X'", null, AlertType.WARNING);
 symbolAlert.setTimeout(Alert.FOREVER);
 displayMngr.setCurrent(symbolAlert, entryForm);
 }
 }
 };
 CommandListener commandListener = new CommandListener() {
 public void commandAction(Command c, Displayable d) {
 if (c == entryForm.getExitCommand()) {
 destroyApp(true);
 } else if (c == entryForm.getGetCommand()) {
 if ((entryForm.getInvestmentChoice().getSelectedIndex() == 1) &&
 !(entryForm.getSymbolField().getString().toUpperCase().
 endsWith("X"))){
 Alert symbolAlert = new Alert("Check Symbol",
 "Mutual Funds end in 'X'", null, AlertType.WARNING);
 symbolAlert.setTimeout(Alert.FOREVER);
 displayMngr.setCurrent(symbolAlert, entryForm);
 } else if (entryForm.getSymbolField().getString().length() > 0) {
 String sym = entryForm.getSymbolField().getString();
 int type = entryForm.getInvestmentChoice().getSelectedIndex();
 int[] price = QuoteService.getPrice(sym, type);
 if (price != null) {
 storePrice(sym, price);
 displayPrice("The price of " + sym + " is $" + price[0] +
 "." + price[1]);
 } else {
 Alert symbolAlert = new Alert("Check Symbol/Type",
 "No quote found.", null, AlertType.WARNING);
 symbolAlert.setTimeout(Alert.FOREVER);

Listing 7.5 ObtainQuoteMIDlet.java
182 CHAPTER 7 CONNECTING TO THE INTERNET

WH_Java2.book Page 183 Monday, March 4, 2002 9:59 AM
 displayMngr.setCurrent(symbolAlert, entryForm);
 }
 }
 }
 }
 };
 entryForm.setItemStateListener(itemListener);
 entryForm.setCommandListener(commandListener);
 }

 private void displayEntryForm () {
 if (entryForm == null) {
 entryForm = new EntryForm("ObtainQuote");
 }
 initListener();
 displayMngr.setCurrent(entryForm);
 }

 private void displayPrice(String quoteString) {
 if (resultsAlert == null) {
 resultsAlert = new Alert("Quote Price", null, null,
 AlertType.CONFIRMATION);
 resultsAlert.setTicker(adTicker);
 resultsAlert.setTimeout(Alert.FOREVER);
 }
 resultsAlert.setString(quoteString);
 displayMngr.setCurrent(resultsAlert, entryForm);
 }

 private void storePrice(String symbol, int[] price) {
 String newRecord = symbol + ";" + price[0] + ";" + price[1];
 byte[] byteRec;
 try {
 RecordStore anRMS = RecordStore.openRecordStore("Quotes" , true);
 RecordFilter rf = new QuoteFilter(symbol);
 RecordEnumeration rEnum = anRMS.enumerateRecords(rf,null,false);
 if (rEnum.hasNextElement()) {
 int recId = rEnum.nextRecordId();
 newRecord += ';' + getLastPrice(anRMS.getRecord(recId));
 byteRec = newRecord.getBytes();
 anRMS.setRecord(recId,byteRec,0,byteRec.length);
 } else {
 byteRec = newRecord.getBytes();
 anRMS.addRecord(byteRec,0,byteRec.length);
 }
 rEnum.destroy();
 anRMS.closeRecordStore();
 } catch (RecordStoreFullException fullStore) {
 //handle a full record store problem
 } catch (RecordStoreNotFoundException notFoundException) {
 //handle store not found which should not happen with the
 } catch (RecordStoreException recordStoreException) {
 //handling record store problems
IMPLEMENTING THE INTERNET INVESTMENT QUOTE SERVICE 183

WH_Java2.book Page 184 Monday, March 4, 2002 9:59 AM
 }
 }

 private int[] parsePrices(byte[] quoteRec) {
 String rec = new String(quoteRec);
 int dollar1Pos = rec.indexOf(';');
 int cent1Pos = rec.indexOf(';',dollar1Pos+1);
 int dollar2Pos = rec.indexOf(';',cent1Pos + 1);
 if (dollar2Pos > 0) { //had a historical price
 int cent2Pos = rec.indexOf(';',dollar2Pos + 1);
 int currentDollars = Integer.parseInt(rec.substring(dollar1Pos +
 1,cent1Pos));
 int currentCents = Integer.parseInt(rec.substring(cent1Pos +
 1,dollar2Pos));
 int historicalDollars = Integer.parseInt(rec.substring(dollar2Pos +
 1,cent2Pos));
 int historicalCents = Integer.parseInt(rec.substring(cent2Pos + 1));
 int[] returnPrices = {currentDollars, currentCents, historicalDollars,
 historicalCents};
 return returnPrices;
 } else { //no previous historical price
 int currentDollars = Integer.parseInt(rec.substring(dollar1Pos + 1,
 cent1Pos));
 int currentCents = Integer.parseInt(rec.substring(cent1Pos + 1));
 int[] returnPrices = {currentDollars, currentCents};
 return returnPrices;
 }
 }
 private String getLastPrice(byte[] rec) {
 String recString = new String(rec);
 int dollarPos = recString.indexOf(';');
 int centPos = recString.indexOf(';',dollarPos+1);
 int centEnd = recString.indexOf(';',centPos + 1);
 if (centEnd > 0) //had a historical price
 return recString.substring(dollarPos+1,centEnd);
 else //no previous historical price
 return recString.substring(dollarPos+1);
 }

 protected void startApp() {
 displayMngr = Display.getDisplay(this);
 displayEntryForm();
 }

 protected void pauseApp() {
 }

 protected void destroyApp(boolean unconditional) {
 notifyDestroyed();
 }

 public void commandAction(Command c, Displayable s) {
 }
}

184 CHAPTER 7 CONNECTING TO THE INTERNET

WH_Java2.book Page 185 Monday, March 4, 2002 9:59 AM
import javax.microedition.io.*;
import java.io.*;

public class QuoteService {
 public static int[] getPrice(String symbolString, int type) {
 String quotePage = getQuotePage(symbolString, type);
 if (quotePage.length() > 0)
 return parseQuote(quotePage, type);
 else
 return null;
 }

 private static int[] parseQuote(String aQuotePage, int type){
 String skip;
 String dollarsEnd;
 String quoteEnd;
 String quoteDollars = null;
 String quoteCents = null;
 int[] dollarsCents = new int[2];

 if (type == 0) {
 skip = "$ ";
 dollarsEnd = ".";
 quoteEnd = "";
 } else {
 skip = "$";
 dollarsEnd = ".";
 quoteEnd = "";
 }
 try {
 int generalPos = aQuotePage.indexOf(skip);
 int dollarStop = aQuotePage.indexOf(dollarsEnd, generalPos);
 int quoteStop = aQuotePage.indexOf(quoteEnd, dollarStop);
 quoteDollars = aQuotePage.substring(generalPos + (skip.length()),
 dollarStop);
 dollarsCents[0] = Integer.parseInt(quoteDollars);
 quoteCents = aQuotePage.substring(dollarStop + 1, quoteStop);
 dollarsCents[1] = Integer.parseInt(quoteCents);
 return dollarsCents;
 } catch (Exception e){
 System.out.println("Error attempting to parse quote from " +
 "source page. Improper Symbol?");
 return null;
 }
 }

 private static String getQuotePage(String symbolString, int type) {
 char marker = '$';
 int readLength = 20;
 StringBuffer quotePage = new StringBuffer();
 try {
 String protocol = "http://";

Listing 7.6 QuoteService.java
IMPLEMENTING THE INTERNET INVESTMENT QUOTE SERVICE 185

WH_Java2.book Page 186 Monday, March 4, 2002 9:59 AM
 String stockURL = "quotes.nasdaq.com/Quote.dll?" +
 "page=multi&page=++&mode=stock&symbol=";
 String fundURL = "www.nasdaq.com/asp/quotes_mutual.asp?" +
 "page=++&mode=fund&symbol=";
 InputStreamReader in;
 if (type == 0) {
 in = new InputStreamReader(Connector.openInputStream(protocol +
 stockURL + symbolString));
 } else {
 in = new InputStreamReader(Connector.openInputStream(protocol +
 fundURL + symbolString));
 }
 int ch;
 while ((ch = in.read()) > 0) {
 if (((char) ch) == marker) {
 char[] end = new char[readLength];
 in.read(end,0,readLength);
 quotePage.append(new String(end));
 break;
 }
 }
 in.close();
 } catch (IOException ex) {
 System.out.println("Exception reading quote from HTTP Connection " +
 ex.getMessage());
 }
 return quotePage.toString();
 }
}

7.4 SUMMARY

In this chapter, we have taken a short glance at the Generic Connection Framework
and networking with the javax.microedition.io API. More details on GCF
and networking are forthcoming in chapter 13. We also examine the greatly reduced
but still recognizable version of java.io in J2ME. Together, we used the tools avail-
able in these two J2ME packages to connect our MIDP application to the Internet,
completing our MIDP tutorial application.
186 CHAPTER 7 CONNECTING TO THE INTERNET

3

WH_Java2.book Page 187 Monday, March 4, 2002 9:59 AM
P A R T
Developing for PDAs

In this part, we explore the CLDC API in use with the KJava API. KJava is a test
and demonstration API initially developed by Sun for demonstrating the CLDC and
KVM on Palm OS devices. Lacking a profile for PDA devices, companies such as
esmertec have provided IDEs for developing Palm OS applications with this API.
Having implemented the tutorial application once in the CLDC and MIDP APIs,
this part will allow us to reimplement the tutorial application in KJava so that we can
deploy the application to a Palm OS PDA device. Again, the tutorial application will
allow us to see the major aspects of a building a KJava application; namely user inter-
face, event handling, data storage, input/output and network connectivity.

WH_Java2.book Page 188 Monday, March 4, 2002 9:59 AM

WH_Java2.book Page 189 Monday, March 4, 2002 9:59 AM
C H A P T E R 8

J2ME on a PDA,
a KJava introduction

8.1 PDA profile alternatives 190
8.2 HiSmallWorld in KJava 192
8.3 Deploying to the actual device 211
8.4 HiSmallWorld revisited using MIDP for Palm OS 213
8.5 Summary 217
J2ME was first demonstrated at JavaOne in 1999. At that time, the most ubiquitous
personal digital assistant (PDA) platform was the Palm device. It seemed logical to
show the power and future of Java on all sizes and shapes of platforms by targeting
this small but very popular platform. To demonstrate the lightweight virtual machine,
already called the KVM, at that conference Sun developed a minimal set of Java pack-
ages along with a set of classes that provided user interface and database classes for the
Palm. This last set of classes was bundled into a package named com.sun.kjava. Thus,
it came to be known as the KJava API.

In this chapter, we focus on how to build and deploy a simple J2ME application for
Palm OS devices using KJava. In addition, Sun has provided a way to allow MIDP appli-
cations to run on Palm OS devices as well. Thus we also show you how an MIDP appli-
cation can be moved to the Palm OS PDA using something known as MIDP for Palm OS.
189

WH_Java2.book Page 190 Monday, March 4, 2002 9:59 AM
8.1 PDA PROFILE ALTERNATIVES

If a set of classes that provide user interface, persistent storage and other features for a
specific device or set of devices sounds familiar to you, then you have been paying
attention in earlier chapters. It should sound like the start of a profile! In fact, in
1999, the idea of Java throughout the enterprise, from server to small device, was
being sold and was starting to explode. The concept of three Java editions was just
getting started. Likewise, J2ME was still evolving. The idea of profiles and configura-
tions was not formalized until after the 1999 conference.

Sun and others involved in J2ME evolution recognized that the programming
needs across the wide spectrum of devices were going to be enormous and diverse.
Each device, or set of devices, was going to require some of its own APIs. From this
realization sprang profiles (as well as configurations to address more general needs).

Today, while a request for the specification for a PDA profile exists (as discussed
in chapter 2), the actual specification, let alone an implementation, is still forthcoming
from within the JCP. Without a valid J2ME profile to address the development of Java
applications on PDAs, you will need to find an alternative development environment.
KJava is one of the alternatives. One of the benefits of the KJava alternative is that it
allows the developer to use a J2ME configuration, namely the CLDC, as the basis for the
application.

8.1.1 Java PDA development environments

As the Romans said, “natura adhorret vacuum”—nature abhors a vacuum, and so luck-
ily there are options. Palm and other PDA providers have always provided non-Java
development kits and tools for building applications, but there are Java PDA develop-
ment environments as well. In fact, some third-party vendors are attempting to live
and abide by the CLDC configuration already in place and hope to implement the
PDA profile after it is specified. So what are the alternatives in building Java applica-
tions for PDA devices today? Current Java PDA development environments include:

• KJava Some vendors provide a supported version of the KJava API for use with
their implementation of CLDC and the KVM.

• Proprietary solutions Still other vendors are providing non-J2ME Java develop-
ment environments. IBM, for example, provides the Visual Age Micro Edition
and its J9 virtual machine that runs on a host of PDA processors.

• PersonalJava A whole host of companies provide Java virtual machines and
Java for slightly larger PDAs like Compaq’s iPaq. These fall under the realm of
PersonalJava discussed in chapter 2 (we present some of the PersonalJava envi-
ronments in chapter 15).

• MIDP for Palm OS Finally, Sun has also produced a reference implementation
of the MID Profile for use with the Palm device. This profile provides a mini-
mal user interface and database interface to Palm OS systems.
190 CHAPTER 8 J2ME ON A PDA, A KJAVA INTRODUCTION

WH_Java2.book Page 191 Monday, March 4, 2002 9:59 AM
In this chapter, we explore the KJava API used in combination with the CLDC pro-
vided by a third party IDE vendor. We will also take another brief look at MIDP for
Palm OS, as this is the only Sun-supported and fully J2ME implementation for PDA
devices (and specifically only Palm OS PDA devices) available as of this writing.

8.1.2 What is KJava?

KJava is a package containing classes and interfaces that provide four functions:

1 Application Control

2 Graphical User Interface

3 Persistent Storage, specifically an interface to the Palm OS Data Manager

4 Additional collections.

It was initially distributed with the CLDC reference implementation available from
Sun. The “K” in KJava corresponds to the “K” in Sun’s KVM and unofficially stands
for “kilobyte.” Today, Sun considers KJava an add-on package and provides it only for
backward compatibility. In fact, getting a copy of this package can be tricky. Sun no
longer supplies it with part of the CLDC download as of release 1.0.2. Instead, some
vendors provide an implementation of KJava API through their IDE products. In
looking at the KJava, we show you one such IDE.

Like profiles, the KJava classes and interface do not stand alone. They must be used
on top of a configuration and virtual machine. The KJava API was designed to extend
the generic functionality provided via the CLDC for applications living in a KVM that
run on Palm OS devices (most notably Palm, Handspring, and SONY handheld
devices). Because it was used as a proof-of-concept API for CLDC and the KVM run-
ning exclusively on a Palm OS device, it is also called the “CLDC Palm Overlay.”

Some of the API is completely transportable to other Java environments. The addi-
tional collections are simply wrappered arrays, for example. Other classes, such as the
database and user interface classes in the KJava API provide Palm OS specific func-
tionality.

Palm OS

K Virtual Machine

CLDC

KJava API

J2ME

Figure 8.1

The KJava environment adds user

interface and database classes to the

CLDC environment for the Palm OS.
PDA PROFILE ALTERNATIVES 191

WH_Java2.book Page 192 Monday, March 4, 2002 9:59 AM
8.1.3 What is MIDP for Palm OS?

While the Palm device has lost some market share to other PDA devices, it is still the
leading PDA on the market. Without a PDA specification in sight, and with only the
KJava “demonstration only” API, Sun had a bit of a support problem. So, in the
spring of 2001, they produced a reference implementation of the MID Profile for use
on Palm OS devices. “But...,” you may be thinking, “...the MIDP was for cellular
phones and pagers!?” Yes, and for the time, it can also be used with at least one type of
PDA device, namely a PDA running the Palm OS.

The API for the MIDP for Palm OS is the same as the MIDP for cell phones and
pagers (the focus of Part 2 of this book). Therefore, MIDP for Palm OS is a runtime
environment for MIDP on Palm OS devices. Essentially, MIDP for Palm OS has two
items in addition to the standard reference implementation:

• a custom virtual machine for use on the Palm OS

• a tool to convert a MIDlet Suite into an application that can run on the MIDP
Palm OS virtual machine.

We will explore MIDP for Palm OS at the end of this chapter.

8.2 HISMALLWORLD IN KJAVA

As we did with the MIDP development environment, we explore the KJava environ-
ment with a simple application to look at the development tools as well as an intro-
duction to the basic API. We do this by revisiting the ubiquitous “Hello World” in
KJava and CLDC.

8.2.1 Getting Started

To develop applications in the CLDC and KJava classes, an implementation of the
CLDC and KVM for the Palm device is needed. The reference implementation of the
CLDC is available from Sun at the following URL: http://java.sun.com/products/cldc.
As mentioned previously, KJava and the required Palm deployment tools formerly
came with the CLDC provided by Sun. However, this environment is no longer
available directly from Sun. Copies exist throughout the J2ME community, but
obtaining one requires some research and cooperation from your fellow developers.
For this exercise we will use an implementation provided by a third party. Jbed Micro
Edition CLDC is produced by esmertec (no typo here, the company’s name starts
with a lowercase “e”) in Switzerland and provides one of the fastest virtual machines
for resource constrained devices on the market today. Information and downloads on
Jbed are available at: http://www.esmertec.com

The Jbed environment provides the CLDC, KJava API and the complete means
to develop applications that can be deployed to the Palm OS devices. This will also
provide the opportunity to demonstrate one of the various micro Java IDEs available
on the market today (see figure 8.2).
192 CHAPTER 8 J2ME ON A PDA, A KJAVA INTRODUCTION

WH_Java2.book Page 193 Monday, March 4, 2002 9:59 AM
Figure 8.2 Jbed, by esmertec Inc., provides an integrated development environment (IDE) for

CLDC and KJava application development. Jbed has been integrated into use with the Palm OS

Emulator (POSE) to test applications before deploying them to a Palm OS device.

8.2.2 What is a Spotlet?

The base or central component of a KJava application is a Spotlet. Spotlet is the
KJava class that provides application control and handles application events through
a set of callback methods. While an application can be made up of several Spotlets,
only one Spotlet can have “focus” at any one time. In other words, at any given
instance in the K virtual machine, only one Spotlet can receive events that trigger its
callback methods (see figure 8.3). This Spotlet is said to have the current focus. There
will be more on this in the next chapter.

In order to create a simple KJava application, extend the Spotlet class and pro-
vide a static main method that serves as the application’s startup method when

Spotlet A

Spotlet C

Spotlet B

Focus
Spotlet

Figure 8.3

A Spotlet is a KJava application.

Only one Spotlet can have

“focus” at any given time. When

Spotlet has focus, as Spotlet B

does in this picture, it is the only

Spotlet getting and handling

events from the Palm OS device.
HISMALLWORLD IN KJAVA 193

08_KJava introduction.fm Page 194 Monday, March 4, 2002 10:30 AM
invoked by the virtual machine. Therefore, the simplest of all KJava applications
might resemble the following program.

import com.sun.kjava.*;
public class VerySimpleApp extends Spotlet {
 public static void main(String[] args) {
 System.out.println("Hello very small world");
 }
}

To do something a little more exciting with the Spotlet, we need access to what is
known as the graphics context. In KJava, and the corresponding KVM there is a sin-
gle global Graphics context object. This object manages the display of all items on
the screen, including text, geometric shapes, and user interface widgets. To get the
Graphics context object, call the getGraphics() method on the KJava Graph-
ics class. This is a static method and will always return the single global instance of the
Graphics object. To draw anything to the display, use the various draw methods
provided on the Graphics object. Actually, all the graphics methods are static
methods on Graphics so we could draw to the display by just calling the draw
methods on the Graphics class directly. So, to spice up our HiSmallWorld applica-
tion a little bit, we call on the Graphics object to draw some text on the display.

import com.sun.kjava.*;

public class HiSmallWorld extends Spotlet {

 private Graphics g = Graphics.getGraphics();

 public static void main(String[] args) {
 HiSmallWorld app = new HiSmallWorld();
 }

 public HiSmallWorld() {
 g.clearScreen();
 g.drawString("Hi Small World!", 45, 80);
 }
}

This is all the code we need for our first Spotlet. The next step is to compile the application.

8.2.3 Compiling HiSmallWorld

Compiling the HiSmallWorld application requires having access to the appropriate
classes. Specifically, compiling requires both the CLDC and the KJava classes to be
accessible to the Java development environment. If you have access to the KJava
classes, then you can use the command line to compile the HiSmallWorld applica-
tion. If KJava is part of your IDE, then you will need to compile through that IDE.

Listing 8.1 HiSmallWorld.java
194 CHAPTER 8 J2ME ON A PDA, A KJAVA INTRODUCTION

WH_Java2.book Page 195 Monday, March 4, 2002 9:59 AM
Command line

Compiling the KJava application can be done with the standard javac compiler
that comes with the J2SE environment. When using javac, remember to include
the right base J2ME classes appropriate for J2ME development and to not use the
base J2SE classes. As with MIDP development, this can be done by using the appro-
priate -bootclasspath option with javac to inform the compiler where J2ME
classes can be found. The command line entry to compile the HiSmallWorld applica-
tion would look like the following:

>javac -g:none -d . -bootclasspath %CLDCClasses% *.java

In this command line, it is assumed that the CLDCClasses environment variable
has been set up to point to the CLDC and KJava classes and that the command is
executed from inside the directory containing the HiSmallWorld.java file.

Via IDE

Alternatively, most IDEs provide the means to compile the application. With an
IDE, compiling is usually menu or button-triggered. However, depending on the
IDE, some assistance is also required to indicate where the various classes and possibly
the standard Java SDK (and compiler in particular) can be found. In Jbed, for exam-
ple, a project is defined and the various classpath and bootclasspath property options
must be established in the project’s file. First, in order to quickly and simply create a
project in Jbed and to edit its associated properties, a Projects menu with project
action options is provided from the main menu bar of the IDE window (see figure 8.4).

To create the HiSmallWorld project, copy an existing Jbed example project and
then edit the properties file to suit the new projects needs. Jbed comes with a set
of example projects. We recommend copying the Palm Hello World project. This is
accomplished by selecting the Copy Project option from the Projects menu of Jbed.

Figure 8.4

Applications are organized by Project in Jbed. In this

picture the HiSmallWorld project is currently active.

Set up a new HiSmallWorld project in Jbed by

copying an existing project such as Palm Hello

World. Select the Palm Hello World project in the

Projects menu and then select Copy Project from

the same Projects menu.
HISMALLWORLD IN KJAVA 195

WH_Java2.book Page 196 Monday, March 4, 2002 9:59 AM
Select Palm Hello World from the project list and then select the Copy Project menu
option. An editor should appear that allows you to create and modify the new project.
In the Name field on the editor, enter the name of the new project to HiSmallWorld.
Figure 8.5 depicts the project file in the editor with its various settings for the HiS-
mallWorld application.

We will discuss the project file editor in more detail later and in the next chapter. For
now, there are just a few changes that we need to make. In the LINKER section of the
editor are a number of properties as well as classes that are used to create the applica-
tion. At the bottom of the list should be the HiSmallWorld class as depicted in
figure 8.5.

Notice the area for making CLASSPATH and TOOLS settings. The Jbed IDE makes
use of the installed Java SDK and J2ME CLDC on the development machine. The com-
piler is associated with the IDE through the TOOLS option. The local CLDC is referred
to in the CLASSPATH option. Make sure settings in these parts of the properties file
point appropriately to the J2ME CLDC and Java paths in your environment. After
adjusting the settings, press the OK button to close the properties file editor.

With a project established, we can now enter the HiSmallWorld code as described
above into a .java file through the Jbed’s IDE file editor. Inside of Jbed, select the File
menu and the New menu option, or press Ctrl+N (see figure 8.6).

Figure 8.5

After creating the HiSmallWorld

project, add the application

classes to the Linker section and

update the various paths in Jbed

Project editor, as depicted in this

picture. In particular, make sure

the required classes and source

code directories are listed in the

CLASSPATH and SOURCEPATH

sections.
196 CHAPTER 8 J2ME ON A PDA, A KJAVA INTRODUCTION

WH_Java2.book Page 197 Monday, March 4, 2002 9:59 AM
In the new file editor provided (probably labeled untitled1 if it is your first newly
opened file), type in the HiSmallWorld code shown previously. Save the code in a file
named HiSmallWorld.java. Save the code by selecting the Save or Save As... options
in the File menu. By default installation, Jbed locates the code in the \Java\Palm direc-
tory within Jbed’s directory structure. However, source code can be located anywhere
by adding the project folder to the SOURCEPATH section of the Jbed project file.

After establishing the project with the appropriate settings and creating the Hi-
SmallWorld.java file in the editor, compiling a .java file in Jbed is as easy as selecting
the Compile option from the IDE’s Java menu (see figure 8.7) with the target source
code file open.

This triggers the IDE to kick off javac with the appropriate parameters. With the
right properties settings, the compile is able to accomplish the same task as when
called upon directly by the developer via the command line, namely to create the byte
code .class files. Instead, results of the compile operation will be displayed in the
Log file.

8.2.4 Preverifying KJava applications

As with compiling, preverifying your KJava application will depend on the development
environment. In fact, preverification may not be a required step in the development
process with some IDEs and virtual machine environments.

Figure 8.6

As a full IDE, Jbed provides a

means to create and edit Java

files. Use Jbed’s File menu to

create and save a new Java file.

Figure 8.7

Once you have entered your Java

code in the file editor, you can use

Jbed’s built-in Java compiler.

Jbed’s Java file compiler can be

found under the Java option in

the menu bar.
HISMALLWORLD IN KJAVA 197

WH_Java2.book Page 198 Monday, March 4, 2002 9:59 AM
Preverify utility

As was discussed in development of MIDP applications, verification of class files is a
standard part of the Java runtime environment. Again, verification is too much of a
task for the limited resources of the target devices, namely a Palm OS or similar PDA
device. Therefore, verification takes place both on and off the device. The part of the
verification that occurs off the device is called preverification.

If you find or have a copy of an early CLDC release (prior to 1.0.2) that includes
the KJava API along with the KVM virtual machine for the Palm OS, all class files are
required to be preverified before they can be packaged and used by the virtual machine
on the Palm device. Not unlike the preverifying that was demonstrated with the
MIDP applications, this was accomplished with a preverify utility. The preverify util-
ity verifies each class file and modifies it to include special flags indicating their valid-
ity. At runtime, the J2ME virtual machine checks these flags. If the flags were present
and indicate a valid class file, the KVM assumes the class is OK to run. Without these
flags the VM throws an exception and aborts the class loading process.

No preverification required

As we will see in the next section, the application and virtual machine functionality
may be in one or multiple application files. In some cases, the vendor assumes that
application file(s) need no verification. For example, Jbed assumes the source is con-
sidered trusted and no verification is done.

Thus, while preverification is a step provided for in many J2ME development envi-
ronments, some vendors do not make this a required step in application development.

8.2.5 Creating the Palm OS application

Java class files, as byte code files, are not deployed as they exist to be used by the
KVM on a Palm OS system. Instead, to run an application on the Palm OS, the class
files must be converted to a file form the Palm OS can utilize.

What’s a PRC (Palm Resource File)?

With the compiled application classes, we must perform one more step before our
code is ready to deliver to the Palm OS device. Applications for Palm OS devices
must be specially formatted. Any application for a Palm OS device is packed into
something known as a Palm resource file. To get a Java application and the Java vir-
tual machine (remember, the virtual machine is an application too) into this required
form, they must be converted and loaded into a file that has a .PRC file extension.
Depending on the virtual machine implementation, parts of an application may also
reside in a Palm database file. Palm database files have a .PDB file extension. Along
with general application data, PDB files may contain certain classes that can be
loaded by the virtual machine.

There are two general means to converting the application and virtual machine
into PRC and PDB files. The first involves having a virtual machine in PRC format
198 CHAPTER 8 J2ME ON A PDA, A KJAVA INTRODUCTION

WH_Java2.book Page 199 Monday, March 4, 2002 9:59 AM
and then converting our application into PRC and/or PDB files to be used by the vir-
tual machine. The other is to compile the virtual machine functionality and the appli-
cation to native machine code in a single PRC.

Single PRC approach

Java programmers have become accustomed to writing applications that become byte
codes, which then get deployed and run on a virtual machine. The benefits of this
technology, that is to be able to write an application once and then run it anywhere,
have become the anthem of the industry. However, this strategy does not produce the
best performing application nor does it make the job of deployment easy given the
number of files that must be loaded on the device. This last item can be especially
important when the target platform is mobile and with only limited connectivity.

Jbed provides the means to deploy an application in a couple of different fashions.
Along with the more traditional deployment of a virtual machine in one (or more)
PRCs and classes loaded via other PDB or PRC files, they also provide the means to
create a single PRC that contains both the virtual machine and the application’s byte
codes. In Jbed, the process of building the PRC file is called linking. Linking to a single
file makes for a very convenient delivery mechanism, as only one PRC file is created
and thus only one PRC file needs to be deployed onto the device.

Generating the PRC file

To generate, or more appropriately “link,” the application class files and virtual
machine functionality into a PRC file, Jbed provides a menu driven utility that again
uses the project properties file to do its job. From the IDE, the developer simply
requests the tool to generate the PRC by selecting the appropriate project and then
selecting to Link the project from the IDE’s Java menu (see figure 8.8). Barring any
errors in the link process, the IDE notifies the developer via the IDE Log that the
PRC was successfully written to disk along with the size of the new PRC.

Multiple PRC approach

When all is said and done, we have produced a HiSmallWorld PRC file ready for
deployment to the Palm OS device that is approximately 32K in size. To contrast this

Figure 8.8

Java class files and the virtual machine

functionality are combined into a PRC

file using Jbed’s Linker. To link the class

files and virtual machine functionality

into a Jbed application, select Link from

the Jbed menu options.
HISMALLWORLD IN KJAVA 199

WH_Java2.book Page 200 Monday, March 4, 2002 9:59 AM
approach, we develop a similar application using MIDP for Palm OS a little later in
this chapter. In that example, creating the MIDP-over-Palm OS version of the
HiSmallWorld application produces a single 4K PRC file containing just the applica-
tion class files. Remember, however, class files need a virtual machine. The accompa-
nying virtual machine, MIDP.PRC, required to run this version of the HiSmallWorld
application is a whopping 586K. By linking the virtual machine and the application,
only the bytes codes required are linked into the PRC. This has the effect of reducing
the entire footprint of the application on the Palm device to over 1/10th of the multi-
ple PRC application + virtual machine.

Of course, with a single PRC, if a future bug fix or enhancement is isolated to a
single class file, we cannot send out a minute PRC file containing the new class and
leave the virtual machine unchanged. In this case, we must replace the entire PRC.
Furthermore, if we have more than one Java application running on the same device,
we need to replicate some parts of the virtual machine functionality in each PRC.

Application icon and name

Each application (PRC to be exact) that is deployed and run on a Palm OS device has
an associated set of icons and application name. These are displayed on the PDA
device screen and serve as the activating elements much like an icon is used to start an
application on a Windows desktop system. In most cases, the icons and name associ-
ated with the Java application PRC are associated to the PRC at the time the applica-
tion is converted to a PRC file.

There can be two icons associated with each application. Small and large icons rep-
resent the application when displayed in different application views that the Palm OS
provides. The user of the device can either see the applications in a list view or in an
iconic view. In an iconic view, the large icon and a short application name are displayed
to represent each application. In a list view, the small icon and the full application
name are displayed. For example, using Jbed’s default icons, the HiSmallWorld appli-
cation available on a Palm OS device would look similar to the pictures in figure 8.9.

Figure 8.9

Applications, such as the HiSmall-

World, can be displayed in either an

application list or as a set of icons in

the Palm OS. An application list is

displayed on the device on the left.

Applications listed by Icon are

displayed on the device on the right.
200 CHAPTER 8 J2ME ON A PDA, A KJAVA INTRODUCTION

WH_Java2.book Page 201 Monday, March 4, 2002 9:59 AM
Jbed provides a means to set both the displayed name and large icon. In order to set
the icon of the application, first create an icon using your favorite drawing tool. The
icon must be in Windows bitmap form and should not exceed 22×22 pixels in size.
Icons up to 32×32 pixels will work, but the name of the application will display over
the top of the bottom portion of the icon. Additionally, the icons are restricted to a
one-bit color depth. In other words, the icons have only two colors: black and white.
In some development environments, the developer can also provide the small icon. In
these cases, the small icon must not exceed 9 pixels high and 15 pixels wide.

After creating a bitmap to be used as the large icon for an application, place the
bitmap in the appropriate icon directory. For Jbed version 1.3, the icon is to be placed
in either the Jbed home directory or Palm subdirectory within Jbed’s home directory.
Name the bitmap file the same as the anticipated PRC file but with a .bmp file exten-
sion. Now, when the application is linked, Jbed adds the bitmap to the PRC and asso-
ciates the new bitmap with the application for display on the Palm device.

The name of the application can also be set through Jbed. As can be seen from fig-
ure 8.9, the name of our application, HiSmallWorld, is a bit too big for display in the
icon list. The operating system truncates the name for display purposes and lists it as
“HiSmallWo...”. Therefore, to have an application that displays better in this listing,
we shorten the displayed name of our HiSmallWorld application to “HiWorld.” We
set the name of the application by providing a setting in the LINKER section of the
project properties file. Next to the output tag in the LINKER section, put the desired
name of the application, in this case “HiWorld,” as shown in figure 8.10.

Figure 8.10

The default name of an application is the

name of the Spotlet class. To change

the name of the application as it is

displayed on the device, change the

“output” name in the project properties

editor as shown above. The new name

of the HiSmallWorld Spotlet is HiWorld.
HISMALLWORLD IN KJAVA 201

WH_Java2.book Page 202 Monday, March 4, 2002 9:59 AM
Now when the application is linked, the new name and new large icon display (see
figure 8.11) when the application is finally deployed to the device. If you get the error
“wrong format in HiWorld.bmp” displayed in the Jbed Log when linking the applica-
tion, check your bitmap image and make sure that it is no larger than 32×32 bits and
that it has only 1 bit of color depth (i.e. black and white).

8.2.6 Running the application

Whew! So we have a Java application in the form of a PRC file ready to load onto our
Palm OS device. Not so fast. Just as with the MIDP application developed in
chapter 4, it is probably a good idea to test the application on an emulator first before
we accidentally toast any device with our application. After successfully running the
new application on the Palm Emulator, then it is safe to try to run the application on
the actual device.

Palm Emulator

The Palm OS Emulator, known as the POSE, is available from Palm’s Developer Site
at the following address: http://www.palmos.com/dev.

The emulator and associated files come in ZIP file format. Simply unzip the con-
tents of this file into a directory on your system. However, the emulator alone is not
enough to test the application. The POSE emulates the Palm device hardware, but it
requires something known as a ROM image to emulate the entire device environment.
The ROM (“read only memory”) image contains the Palm OS. A ROM image can
be obtained either by downloading it from Palm’s web site, or extracting it from a
Palm OS device.

Figure 8.11

The same HiSmallWorld application

shown earlier is displayed here with

new application name and icon.
202 CHAPTER 8 J2ME ON A PDA, A KJAVA INTRODUCTION

WH_Java2.book Page 203 Monday, March 4, 2002 9:59 AM
ROM from the Palm web site

Obtaining a ROM image from Palm requires joining Palm’s Alliance Program. To join
this program, go to the Palm’s Resource Pavilion at: http://www.palmos.com/alliance/
resources.

Getting established as a member of the Alliance Program usually takes about a day.
Once a member of this program, and if you are a developer located in the United
States, you can obtain a ROM image directly from the Palm web site. Developers from
outside the US are required to sign and return a license agreement before they are
allowed to download ROM images.

The site has ROM images for the different types of devices and device features,
such as color screens, as well as images that support debugging. Furthermore, there are
ROM images for each of the various major and minor Palm OS releases. When down-
loading a ROM from the Palm site, be sure to obtain the ROM image for your target
platform. Jbed supports Palm OS version 3.3 or greater operating on the Dragonball
EZ and VZ processors. Palm V, Vx, and IIIx devices usually have this “EZ” processor.

After downloading the ROM image, save it in the POSE directory for the sake of
convenience. When you launch the emulator for the first time, you are presented with
several choice buttons (see figure 8.12). To start the emulator with the downloaded
ROM image, select New to signify that you want to start a new emulator session.

When starting a new emulator session, you are asked to pick the ROM image, device,
skin, and RAM size for the device you are emulating as displayed in figure 8.13. Pick
your recently downloaded ROM image and set the settings appropriate for your tar-
get device, and the emulator should display.

If the emulator does not start or if an error message is displayed, check the new ses-
sion settings to make sure that the settings are compatible with the actual device.

Figure 8.12

When starting the Palm OS Emulator (POSE)

on the development system for the first

time, this window is displayed. The POSE

remembers the ROM file, device type, skin,

and RAM size of the last session. However,

on the first invocation of the POSE, without

a prior session, the user is left to press New

and select the new session information.

Figure 8.13

On a new session, the ROM file and target

device settings must be selected. Select the

ROM file, device, skin and RAM size for the

targeted device.
HISMALLWORLD IN KJAVA 203

WH_Java2.book Page 204 Monday, March 4, 2002 9:59 AM
ROM from your Palm

As an alternate approach (and recommended approach from esmertec) to downloading
an image from Palm, if you have the target Palm OS device, you can extract its ROM
image to your development computer. When you downloaded the POSE, a ROM trans-
fer application came in the zip file. If you go into the directory where the POSE zip
file contents were extracted, you will find a ROM Transfer.prc file. When run on the
Palm OS device, this application allows the device to deliver the device’s ROM image
while it is cradled and connected to a computer. “Cradled” is the term used with many
PDA devices to indicate when the device is physically connected to another computer
usually by a cup or “cradlelike” looking attachment.

First, to transfer the “ROM Transfer.prc” to the Palm OS device, launch the Palm
Desktop Software’s Install tool that came with the device. Pick the correct user of the
device and then push the Add... button on the tool (see figure 8.14).

From the file selection window that opens like that displayed in figure 8.15, browse
to the directory containing the transfer PRC file, select the file and then press the
Open button.

Figure 8.14

The Palm Desktop Software Install

Tool is used to select files, both

applications and data, to add or

remove from the Palm OS device.

The applications and data listed in the

center section of the Install Tool are

transferred to the device on the next

HotSync operation. Use this tool to

move or “deploy” PRC files to the Palm

OS device.

Figure 8.15

This window is displayed when the

Add... button is pressed on the Palm

OS Desktop Install Tool (figure 8.14).

Move the ROM Transfer.prc located in

the POSE directory to the device by

selecting the ROM Transfer.prc file

and pressing the Open button.
204 CHAPTER 8 J2ME ON A PDA, A KJAVA INTRODUCTION

WH_Java2.book Page 205 Monday, March 4, 2002 9:59 AM
This act prepares the PRC file for delivery to the Palm OS device the next time the
HotSync operation is performed (see figure 8.16). Exit the Install tool.

To HotSync the device and install the transfer application to the device, place the
device in the cradle and push the HotSync button. The HotSync button is the only
button on the cradle for Palm devices. When the hot sync has finished and the PRC
file has transferred successfully to the Palm OS device, run the ROM Transfer appli-
cation on the device, with the device still cradled. On your computer, run the Emula-
tor.exe and pick the Download option as depicted on figure 8.17 in order to receive
the ROM.

A window appears providing instructions on how to transfer the ROM from the Palm
OS device that is cradled. Make sure the emulator is listening to the appropriate
COM port (the COM port to which the cradle for the device is attached) in the
Transfer ROM window that is provided and then press the Begin button (see
figure 8.18).

Figure 8.16

The ROM Transfer.prc is shown

here ready to be installed to the

device via the Install Tool.

Figure 8.17

After successfully deploying the ROM

Transfer PRC to the Palm OS, run the

application on the device with the

device still cradled. This will cause the

window above to be displayed on the

desktop. Select Download on this

window to receive the ROM image

from the Palm OS device.
HISMALLWORLD IN KJAVA 205

WH_Java2.book Page 206 Monday, March 4, 2002 9:59 AM
On the actual Palm OS device, after selecting the ROM Transfer icon, push the Begin
Transfer button to begin the process of transferring the ROM image to your com-
puter (see figure 8.19). It takes about five minutes to transfer the file.

When the transfer is complete, save your ROM image under the POSE directory.
Now the emulator environment is set up and we are ready to deploy the HiSmall-
World application to the emulator for testing.

Figure 8.18

The Palm OS device has a

cradle that is attached to a

particular desktop COM port.

Make sure the appropriate

COM port and speed are set in

this window before attempt-

ing to transfer the device’s

ROM during execution of the

ROM Transfer.prc application.

Figure 8.19

When the desktop has been set up appropriately

to receive the ROM image from the device via the

cradle, push the Begin Transfer button, as seen in

this picture, to send the ROM image of the device

to the emulator on the computer.
206 CHAPTER 8 J2ME ON A PDA, A KJAVA INTRODUCTION

WH_Java2.book Page 207 Monday, March 4, 2002 9:59 AM
Deploying and running HiSmallWorld on the POSE

Assuming the emulator already has a working ROM, deploying a PRC file to the
emulator is very easy. First of all, you need to configure the emulator to work with
PRC files generated by Jbed. The default emulator configuration settings cause the
emulator to generate many warning messages when running Jbed PRCs. To disable
these warning messages, find the Palm OS Emulator.ini file on your desktop. The file
is most likely located in the Windows directory for Windows 98/2000 systems or in
the Winnt director for WindowsNT systems. Open the Palm OS Emulator.ini in any
text editor and change the following parameters to the values listed:

ReportHardwareRegisterAccess=0
ReportLowMemoryAccess=0
ReportStackAlmostOverflow=0
ReportStackOverflow=0

The details of configuring the emulator for Jbed files are available in the documenta-
tion from esmertec. You can also visit their web site at www.esmertec.com/pose for
more information. After saving the configuration file with the modifications made,
start the emulator and right click on the POSE screen. This displays a menu to
appear over the emulator as depicted in figure 8.20.

POSE ISSUE According to esmertec, an unresolved issue with Palm OS Emulator
versions 3.2 and 3.3 does not allow Jbed-produced PRC files to run on it.
Version 3.0a7 of the POSE will run these files without incident. As an
alternative to running the old version of the emulator, esmertec provides a
modified POSE on their web site at www.esmertec.com/POSE.

Figure 8.20

Right-click anywhere on

the emulator application

to get the emulator’s

menu. This menu provides

the options to load appli-

cations and databases

among other options.
HISMALLWORLD IN KJAVA 207

WH_Java2.book Page 208 Monday, March 4, 2002 9:59 AM
Select the Install Application/Database menu option and pick the Other... option from
the pursuing menu. Then simply pick the PRC file created by the development tool. In
this case, browse to and select the HiWorld.prc file generated by Jbed and press the
Open button as depicted in figure 8.25 to load the application to the Palm OS emulator.

Palm device’s applications are organized into a series of “Categories.” A cate-
gory is analogous to a folder in a Windows system. The categories for any giv-
en Palm OS device are listed in the dropdown list located in the upper right-
hand corner of the display (see figure 8.21). Tapping on this list displays all
the categories.

When a category is selected, just the applications associated with that category have
their icon and application name displayed on the screen. This serves as a convenient
way to organize applications. There is also an “All” category that includes all the
applications on the device.

To add a category to the set of categories on the device, select the Edit Categories...
option at the bottom of the categories list. Categories can be added, renamed, or
removed from this screen.

PALM OS
CATEGORIES

Figure 8.21

A Palm device’s applications are organized into a

series of categories. The list of categories on a Palm

OS device or emulator can be found by tapping on

the arrow icon and current category name in the

upper right-hand corner of the display. As seen in

this picture, tapping on the icon/category name

produces the Palm OS Categories List.

Figure 8.22

Selecting the “Edit Categories...” option in the

Categories List displays the Category Editor shown

here. This display allows the user to add or remove

a category or to rename an existing category.
208 CHAPTER 8 J2ME ON A PDA, A KJAVA INTRODUCTION

WH_Java2.book Page 209 Monday, March 4, 2002 9:59 AM
By default, when an application is first loaded onto the emulator or the actual device,
it is associated with the “Unfiled” category. It can be assigned to a Palm OS or user
defined category. An application that is not assigned a category will only display
under the “Unfiled” and “All” category. To move the HiSmallWorld application to a
different category, push the Menu button on the device and select the Category...
menu option (see figure 8.23).

From the Category screen that follows, the HiSmallWorld application (recall we
changed the display name of the application to HiWorld which is what displays in the
application listing) can be associated with a new category by finding the application
and selecting its associated category from the dropdown list provided (figure 8.24).

Figure 8.23

Push the Menu button, labeled in this picture, to activate

the Application Menu in the Palm OS. This menu offers

options to get information about an application or

database, delete an application or database as well as an

option to view/modify the applications assigned to any

category through the Category editor. The Category...

option opens the Category editor as seen in figure 8.24.

Menu button

Figure 8.24

The category of any application, like HiSmallWorld,

can be changed in the Category editor. Each

application or database loaded on the device (or

emulator) is displayed in a scrollable list. Next to

each application is a dropdown list of categories.

To change the category of an application, simply

select another category from the dropdown list.
HISMALLWORLD IN KJAVA 209

WH_Java2.book Page 210 Monday, March 4, 2002 9:59 AM
Now whenever the category assigned to the application is selected from the Palm OS
category list, the HiSmallWorld application icon is included in the display.

With the application successfully loaded to the emulator, find the HiWorld icon on
the Palm desktop and tap on it. If the application has been compiled, converted
(linked), and loaded correctly, the emulator’s screen should look like the image shown
in figure 8.26:

In our Jbed example application, the virtual machine functionality and application
are all in one PRC file. Don’t forget to also load the virtual machine PRC(s) or other
class files in a case where the application, auxiliary classes or virtual machine are
located in multiple PRCs.

Figure 8.25

After selecting the Install

Application/Database option from

the emulator menu (right-click on

the emulator screen to display this

menu), the Open dialog box shown

here is displayed. In the Open dialog

box, browse to the correct directory

and select the PRC application to

load onto the emulator.

Figure 8.26

The HiSmallWorld application running on the emulator

after successfully compiling, linking and deploying the

HiSmallWorld.prc file to the emulator and tapping on

the HiSmallWorld application icon.
210 CHAPTER 8 J2ME ON A PDA, A KJAVA INTRODUCTION

WH_Java2.book Page 211 Monday, March 4, 2002 9:59 AM
Troubleshooting

If you have difficulty in getting your application running, here are a few items to check:

• If using Jbed or other IDE, make certain that the application compiled and
linked successfully. Errors will be displayed in the Log window.

• If not using an IDE, make sure the application compiled successfully when you
ran javac and certify that the preverify utility ran successfully without errors.

• The most notorious runtime problem in the Java environment is getting the
classpath set properly so that the correct versions of classes are loaded, and
loaded in the proper order. If you are using Jbed and classes cannot be found
when compiling your application, check the CLASSPATH and CLASSPATH-
OPTIONS setting in the Jbed Project properties editor.

• When using Jbed, if you attempt to link the application and get the following
error: “no ‘void main (String[])’ present in com.jbed.runtime.Collector,” check
to ensure your application’s classes are listed in the LINKER section of the
project properties and that the class containing the main method (in this case
HiSmallWorld Spotlet) is listed at the bottom of that list of classes.

• If you are able to successfully compile and deploy your application, but get a
Palm OS Emulator error like “‘Setup’ (unknown version) has just written
directly to low memory” when running the application in the Emulator, check
the Palm OS Emulator settings in the Palm OS Emulator.ini file as specified in
this section. This error will not manifest itself in the actual device, as the error
results from certain emulator-only execution settings.

8.3 DEPLOYING TO THE ACTUAL DEVICE

With the application successfully tested on the POSE, we can deploy it to an actual
Palm OS device with the relative assurance that it runs correctly and without adverse
affects to the device. Deploying a Java application to the device is not unlike deploy-
ing any application to the device.

First, locate the Install Tool that came with the Palm Desktop Software. Start this
application and select the user whose device is to receive the new HiSmallWorld appli-
cation. Alternatively, you can start the Palm Desktop application and then press the
Install button (see figure 8.27) located on the main window. This has the same effect
as starting the Install Tool. Again, don’t forget to select the appropriate user. If the
Palm Desktop has never been used, you will have to set up a user or hot sync your Palm
device with the desktop before proceeding to the next steps. See your Palm OS manual
for guidelines on these operations.

Push the Add... button on the Install Tool and pick the application PRCs to load
onto the Palm OS device. In this case, locate the HiSmallWorld application
(HiWorld.prc) that should be located in the Jbed root directory. Remember to load all
the application PRCs as well as the virtual machine PRCs depending on the structure
DEPLOYING TO THE ACTUAL DEVICE 211

WH_Java2.book Page 212 Monday, March 4, 2002 9:59 AM
and organization of the application. Also check that the VM functionality and appli-
cation have been linked together. Press the Done button when finished adding the
appropriate files (see figure 8.28).

Figure 8.27 The Palm Desktop, along with the Install Tool, help coordinate and synchronize appli-

cations and data between the device and the desktop.

Figure 8.28

The Install tool allows users to

designate files to load onto the Palm

OS devices during the next sync

operation. To load a Java application

created by Jbed onto the device,

push the Add... button and select

the PRC file to be installed.
212 CHAPTER 8 J2ME ON A PDA, A KJAVA INTRODUCTION

WH_Java2.book Page 213 Monday, March 4, 2002 9:59 AM
On the next HotSync operation, those PRCs, PDBs and other associated files will be
loaded onto the device. HotSync is the operation of physically moving files from the
desktop to the device and vice versa (the Palm OS device can be set up to be backed
up with each HotSync operation). A HotSync occurs when the device is cradled and
the HotSync button is pushed on the device cradle.

To run the application once deployed, simply tap on the HiWorld icon on the
device. The results should be the same as when the application ran on the emulator.
The application can also be placed in a category, as describe earlier, for more conve-
nient locating on the device.

8.4 HISMALLWORLD REVISITED USING MIDP FOR PALM OS
As indicated earlier in this chapter, there are several options for developing Java appli-
cations for PDAs, and specifically Palm OS devices. Many of these solutions are not
guided by J2ME specifications. Even KJava, which was born out of a need to demon-
strate and test J2ME applications, is not a profile and is not guided by any part of the
J2ME specification set.

Today, there is only one all-J2ME environment for developing and deploying a
J2ME application for Palm OS PDA devices. This entails using the MIDP for
Palm OS development environment. The MIDP Palm OS J2ME environment is the
standard MIDP environment with the addition of an extra conversion tool and
another implementation of the KVM that runs of the Palm OS device.

Is an all-J2ME application better than one that is not guided by the J2ME specifi-
cations? The advantage of having a set of specifications is in the isolation the specifica-
tion gives to the developer. The developer of a J2ME application should be able to port
his or her application to a variety of specification implementations without the need to
rewrite the application. Remember, however, that MIDP was created for cell phones
and pagers. The user interface of these types of devices is far more restrictive than the
user interface on a device such as Palm OS device. Therefore, while guided by a spec-
ification, the MIDP for Palm OS may offer a rather limited GUI in comparison to
other non-J2ME environments. The specification allows for potential implementation by
several vendors. Thus, you, the developer, need to weigh portability against functionality.

To obtain the reference implementation of MIDP for Palm OS runtime environ-
ment, go to Sun’s MIDP for the Palm OS web page at: http://java.sun.com/products
/midp4palm.

The download provided from this site will not include either the base MIDP or
CLDC environments required to build MIDP for Palm OS applications. These must
be installed and available per instructions already covered in this and previous chap-
ters. Download and unpack the MIDP for Palm OS files into a directory of your
choice. Note that the distribution unpacks into a top-level directory named
midp4palm1.0. It should be noted that esmertec, and a number of other tool and vir-
tual machine providers also support MIDP and provide tools to build MIDP for
Palm OS applications.
HISMALLWORLD REVISITED USING MIDP FOR PALM OS 213

08_KJava introduction.fm Page 214 Monday, March 4, 2002 10:30 AM
8.4.1 MIDP application code

In chapter 4, you were introduced to the MIDP through the HiSmallWorld Midlet.
We are going to reuse the same MIDlet code here to demonstrate MIDP for Palm OS.
Recall also, that for convenience, the following variables were set up to more easily
compile and preverify the application.

MIDP=\midp-fcs

MIDPClasses=\midp-fcs\classes
MIDPTools=\midp-fcs\bin

Listing 8.2 once again lists the code for the MIDlet from chapter 4.

import javax.microedition.midlet.MIDlet;
import javax.microedition.lcdui.*;

public class HiSmallWorld extends MIDlet {

 private TextBox textbox;
 public HiSmallWorld() {

 textbox = new TextBox("", “Hi Small World!", 20, 0);
 }

 public void startApp() {

 Display.getDisplay(this).setCurrent(textbox);
 }

 public void pauseApp() {
 }

 public void destroyApp(boolean unconditional) {
 }
}

As a refresher, to compile, preverify and JAR the application, run the following
commands:

Compile

>javac -g:none -bootclasspath %MIDPClasses% HiSmallWorld.java

Preverify

>%MIDPTools%\preverify -classpath %MIDPClasses%;. HiSmallWorld

JAR

>jar cf hi.jar -C .\output HiSmallWorld.class

Listing 8.2 HiSmallWorld MIDlet
214 CHAPTER 8 J2ME ON A PDA, A KJAVA INTRODUCTION

WH_Java2.book Page 215 Monday, March 4, 2002 9:59 AM
We will also need the descriptor (JAD) file similar to the file created in chapter 3.
The contents of the HiSmallWorld.jad file should resemble the following:

MIDlet-Name: HiSmallWorldSuite
MIDlet-Version: 1.0.0
MIDlet-Vendor: Catapult Technologies, Inc.
MIDlet-Description: Sample Suite of Small World MIDlets
MIDlet-Info-URL: http://www.ctimn.com/
MIDlet-Jar-URL: hi.jar
MIDlet-Jar-Size: 3000
MicroEdition-Profile: MIDP-1.0
MicroEdition-Configuration: CLDC-1.0
MIDlet-1: Hello, , HiSmallWorld

Notice that in MIDP for Palm OS, we are required to preverify once again. Up to this
point, not one line of code or development action differs from the development of
the initial MIDP HiSmallWorld application developed in chapter 4.

8.4.2 Converting the JAR file to PRC

Recall in the development of the KJava HiSmallWorld application that it was neces-
sary to convert the various byte code class files and the virtual machine into a form
that could be used by the Palm OS device. The same step must occur here to convert
the MIDP class or jar file into a PRC file that can be used by the device. The virtual
machine would also need to be converted, but Sun, in its reference implementation,
has already taken care of this step for us. The downloaded and unpacked files con-
tained a MIDP.prc file. This is the virtual machine used by the Palm OS device to run
the applications we develop. We will see how this and our MIDP for Palm OS
HiSmallWorld application gets loaded to the device in a bit.

In order to convert the HiSmallWorld jar file into something the device can use,
the MIDP for Palm OS reference implementation provides a converter tool. The con-
verter tool is itself a Java application and requires the use of the Java Runtime Envi-
ronment on your desktop to run. An environment variable, JAVA_PATH, is also
required to be set in order for the converter tool to run. Set this appropriately to the
Java SDK in your environment.

With the Java path set, the converter tool can now be
run. You will find the converter tool, converter.bat, in the
/Converter subdirectory off the /midp4palm1.0 direc-
tory. When you execute converter.bat, the converter
tool user interface should display as shown in figure 8.29.

Figure 8.29

The MIDP for Palm OS PRC Converter tool allows

MIDP JAD/JAR files to be converted to Palm OS PRC

files. Running converter.bat starts Sun’s MIDP for the

Palm OS Converter Tool. Use the File menu to locate

and open a MIDlet Suite JAD file for conversion.
HISMALLWORLD REVISITED USING MIDP FOR PALM OS 215

WH_Java2.book Page 216 Monday, March 4, 2002 9:59 AM
From the File menu, select the Convert menu option and then select the JAD file
describing the HiSmallWorld Midlet Suite, HiSmallWorld.jad. If everything is suc-
cessful, results of the conversion should look similar to those pictured in figure 8.30.
Then, the HiSmallWorld.prc is ready for deployment to the emulator and the
Palm OS device.

8.4.3 Deploying the MIDP for Palm OS applications

Deploying the Midlet in HiSmallWorld.prc to either the POSE or the actual device is
accomplished in the same manner as deploying any PRC file to the emulator or
device. However, it is important to remember that the MIDP for the Palm OS PRC
file will not run without the corresponding virtual machine. Therefore, remember to
load both the application PRC as well as the MIDP.prc file if it is not already on the
device. Because the MIDP virtual machine is a shared virtual machine, only the one
VM (MIDP.prc) is required on each device to run any MIDP for Palm OS application.
The MIDP.prc file can be found in the /PRCfiles subdirectory off the /midp4palm1.0
directory.

When successfully deployed, the MIDP virtual machine and HiSmallWorld
MIDlet suite should look similar to the picture in figure 8.31. The MIDP for Palm OS
virtual machine shows up under the name JavaHQ on the Palm OS device.

And does the application look and behave the same way as the HiSmallWorld Midlet
on the cell phone or pager in chapter 4? As can be seen from figure 8.32, the behavior
is the same, while the display is slightly different based on the implementation of
TextBox for Palm devices. Consider too that the MIDP was initially designed for cell

Figure 8.30

Results of attempting to convert

a MIDP JAR/JAD file to a PRC file

are displayed in the text area of

the Convert Tool window.

Figure 8.31

Unlike the Jbed applications, MIDP for Palm

OS applications requires an underlying

virtual machine. The virtual machine is in a

PRC file and can be loaded independently of

the MIDlet Suite PRCs. In this picture, the

HiSmallWorld MIDlet Suite and MIDP for

Palm OS VM are depicted on the device.
216 CHAPTER 8 J2ME ON A PDA, A KJAVA INTRODUCTION

WH_Java2.book Page 217 Monday, March 4, 2002 9:59 AM
phones and pagers. This then is considered one of the shortcomings of the MIDP,
that its capabilities are limited to the lowest common denominator, which in terms of
display, are cell phones and pagers.

Figure 8.32 Running the HiSmallWorld MIDlet on the Palm OS device results in similar

behavior as seen in the HiSmallWorld Spotlet developed with Jbed earlier. However,

the user interface does have a little different look (see figure 8.26 for comparison).

8.5 SUMMARY

In this chapter, we explored some of the options available to Java and J2ME develop-
ers targeting PDA devices. Specifically, we have looked at two means to develop and
deploy J2ME applications for the most popular PDA devices, those running Palm
OS. KJava is a user interface and database API designed initially by Sun as a means to
demonstrate and test the first CLDC and KVM implementations. The KJava API is
not a J2ME Profile, but some vendors provide a supported implementation of this
API for developing applications targeted for the Palm OS device. KJava offers a rich
set of user interface and database capabilities to the CLDC for applications destined
for Palm OS devices. In the next few chapters, we will explore the details of KJava in
more detail. Specifically, we will examine KJava’s user interface and the KJava Data-
base class which wrappers the Palm OS database.

An alternate approach must be sought if one is looking for an all J2ME environ-
ment. Therefore, we felt it important to at least introduce you to the MIDP for Palm
OS. MIDP for Palm OS is a fully supported J2ME environment, although somewhat
limited, for developing and deploying J2ME applications to the Palm OS. While both
of these environments might suffice for application development in the short term, the
J2ME community awaits a fully supported and rich environment, namely the PDA
Profile, for developing PDA applications.
SUMMARY 217

WH_Java2.book Page 218 Monday, March 4, 2002 9:59 AM
C H A P T E R 9

KJava user interface

9.1 KJava application control 219
9.2 The investment quote application control in KJava 220
9.3 KJava user interface 225
9.4 The investment quote application’s user interface in KJava 240
9.5 Handling user interactions in KJava 248
9.6 Handling the events of the investment quote application in KJava 250
9.7 Summary 261
In the last chapter we introduced the KJava API. Because there is not yet a PDA Pro-
file to be used with PDA devices, J2ME developers today are left with the choice of
using MIDP for Palm OS or the KJava API. In this chapter, the KJava user interface
and event handling mechanisms are covered in more depth. While not a valid J2ME
profile, this API does at least extend the J2ME’s CLDC and offers a basic set of user
interface components and graphical drawing tools that allow for custom widgets to be
developed if required. One thing to consider is that both KJava and MIDP for Palm
OS only address one type of PDA device, those handhelds running the Palm OS.

If you are already familiar with Java’s Swing classes for developing stylish user inter-
faces in J2SE, you will probably not complain that KJava or any J2ME user interface
API is too thorough an API. As you will see, KJava offers a very basic set of user inter-
face components and a simple event handling mechanism. Nonetheless, it does offer
a means to develop fairly sophisticated applications for the Palm OS device in Java.
In particular, we hope to demonstrate some of its capabilities as we look to re-imple-
ment the tutorial application in KJava, starting with the user interface and event han-
dling in this chapter.
218

WH_Java2.book Page 219 Monday, March 4, 2002 9:59 AM
So, in this chapter we will

• revisit Spotlet application control

• explore the user interface widget set

• look at Spotlet event handling

• implement the tutorial application control and user interface in KJava by:

• developing the tutorial application control using KJava Spotlets.

• implementing the tutorial application’s user interface displays using the
Graphics object and KJava widget set

• developing the tutorial application’s KJava event handling mechanism.

As we did in chapter 8, we use Jbed to develop the KJava applications demonstrated
in this chapter.

9.1 KJAVA APPLICATION CONTROL

A Spotlet serves as the central, controlling object in a KJava application. Its main pur-
pose is to listen to events and provide relevant event processing methods. In most
applications, the Spotlet class is extended and this extending class usually houses the
static main method that serves as the entry or startup point for a KJava application.

An application, however, can have multiple Spotlets, but only one Spotlet can have
control to listen and react to events via event-handling methods at any given time.
When a Spotlet is actively responding to events, it is said to have “focus.” Focus is
obtained and released by a Spotlet through the methods register(int eventOp-
tions) and unregister(). When a Spotlet is to gain focus, the register(int
eventOptions) method is called. The eventOptions parameter can be one of two
Spotlet static int values: NO_EVENT_OPTIONS or WANT_SYSTEM_KEYS. WANT_-
SYSTEM_KEYS signifies that the Spotlet should be notified and intends to handle sys-
tem key selections. System keys on a Palm OS device include the four hard buttons
at the bottom of the device which trigger the Calendar, Address Book, To Do List and
Memo applications, as well as the Home, Menu, Calculator and Find soft keys around
the Graffiti area of the device (see figure 9.1). System keys also include the device’s
power button as well as the HotSync button (which is located on the device’s cradle).
When registered with NO_EVENT_KEYS, the application only captures and reacts to
page up and down keys as well as Graffiti input.

Figure 9.1

The Soft and Hard Keys on a Palm OS device

allow for a user to quickly launch a Palm OS

application such as the Calculator or Address

Book. A Spotlet can be set up to be notified

when one of these system keys is pushed.

Soft keys

Hard keys
KJAVA APPLICATION CONTROL 219

WH_Java2.book Page 220 Monday, March 4, 2002 9:59 AM
Because only one Spotlet is allowed to have focus at any one time, this method has
the consequence of unregistering any Spotlet that currently has focus. Unregistering
can be done explicitly with a call to unregister().

A Spotlet has one non-event-related method, the getFlashID() method. This
method, when called on an instance of a Spotlet, returns the Flash ID of the device.
The Flash ID is the serial number of the device followed by a hyphen followed by the
serial number checksum.

9.2 THE INVESTMENT QUOTE APPLICATION CONTROL IN KJAVA

As with the MIDP application, we will implement the investment quote application
in KJava and the CLDC with two major application control elements in the form of
Spotlets. Fulfilling the needs of the ObtainQuote use case from our tutorial design
will be ObtainQuoteSpotlet. In general, this Spotlet controls the getting of invest-
ment price information from an outside source and storing it persistently in a Palm
database. The other Spotlet, RetrieveQuoteSpotlet, guides a user through the process
of retrieving and displaying historical prices.

Unlike MIDlets, Spotlets have no lifecycle methods or other abstract methods that
must be overridden. However, since these Spotlets serve as the entry point for our
applications on the device, they both require a static main method. We cover the user
interface and event handling mechanisms of Spotlets a little later, so for now, in order
to establish application control, our two applications are very simple.

Before we write the code, we need to set up our two Jbed projects, each of which
will contain one of the two Spotlets. Just as was done in chapter 8, copy an existing
project and edit the project’s property file for the new project. To do this, select the
Copy Project option in the Projects menu of Jbed. When installed, Jbed comes with
some example projects and programs. You may want to take one of these existing sim-
ple projects, such as esmertec’s Palm Hello World project to use as the template for
your project. Select Palm Hello World from the project list and then select the Copy
Project menu option (figure 9.2).

Figure 9.2

In this chapter, we create two new

applications; namely KJava Spotlet

applications. To create a new project

in Jbed, select an existing project,

such as Palm Hello World from the

Projects menu and then execute Copy

Project in the same Projects menu.
220 CHAPTER 9 KJAVA USER INTERFACE

WH_Java2.book Page 221 Monday, March 4, 2002 9:59 AM
On copying the project, the New Project editor displays as in figure 9.3.
Put the name of the project in the Name entry field at the top of the window. In

the example shown in figure 9.4, the project is named ObtainQuote. Edit the LINKER,
CLASSPATH, SOURCEPATH, TOOLS, COMPILEROPTIONS and LINKS options as
required based on your installation and setup of Jbed, CLDC, and your application.
However, we found it minimally necessary to do the following:

• add the classes of your project to the list of classes in LINKER section.

• modify the CLASSPATH section to find your J2ME CLDC API classes.

• modify the DOCUPATH section to refer to the JDK and J2ME docs as required.
This is an optional step depending on your need for the help documents.

• modify the TOOLS section to point to the location of the binaries for the tools
on your system. In particular, Jbed needs access to the JDK bin directory.

The last class in the LINKER class list must contain a main()method. As both the
ObtainQuote and RetrieveQuote examples have only one class at this time, they nec-
essarily must be at the bottom of this list. Your project should look something like the
project depicted in figure 9.4 before you press the OK or Apply button and save the
new project.

Use the copy process again to create the second project RetrieveQuote. At the bot-
tom of the LINKER options, instead of putting the ObtainQuoteSpotlet, put
the RetrieveQuoteSpotlet.

Figure 9.3

After copying a project file, update

the project name and LINKER options

to include the project’s classes. This

is accomplished in the New Project

editor shown here.
THE INVESTMENT QUOTE APPLICATION CONTROL IN KJAVA 221

WH_Java2.book Page 222 Monday, March 4, 2002 9:59 AM
With the projects created, we can now write the code that creates our two Spotlets. In
the ObtainQuote project, open a new file. Inside of Jbed, select the File menu and
then the New menu option. If you prefer to use short-cut key combinations, press
Ctrl+N. (figure 9.5)

Figure 9.4

The ObtainQuote Project should

look similar to the project

depicted here. The paths in the

CLASSPATH, SOURCEPATH,

TOOLS, and DOCUPATH areas

may be different based on the

location of files used by the

application.

Figure 9.5

To open a new Java file in Jbed,

utilize the File menu. Opening a

New (Ctrl+N) file will open a new

file editor in the Jbed IDE.
222 CHAPTER 9 KJAVA USER INTERFACE

WH_Java2.book Page 223 Monday, March 4, 2002 9:59 AM
In the new file editor provided (probably labeled untitled1 if it is your first new file
— see figure 9.6), type the following code.

import com.sun.kjava.*;

public class ObtainQuoteSpotlet extends Spotlet {

 public static void main (String args[]) {
 new ObtainQuoteSpotlet();
 }
}

Save the code in a file named ObtainQuoteSpotlet.java. Save the code by selecting the
Save or Save As… options in the File menu. By default installation, Jbed locates the
code in the \Java\Palm directory within Jbed’s directory structure. However, source code
can be located anywhere by adding the project folder to the SOURCEPATH section
of the Jbed project properties file. So for example, if we had created a package, say
com.ctimn.example for our Spotlet code, then the ObtainQuoteSpotlet.java will
be stored in the directory \Java\Palm\com\ctimn\example\ObtainQuoteSpotlet.java.

To compile the program ObtainQuoteSpotlet.java and insure the code was entered
correctly, either select the Java menu and pick the Compile option or press Ctrl+L.

Figure 9.6

Upon opening a New Java file, an

“untitled1” editing window will open in the

Jbed IDE. Enter the ObtainQuoteSpotlet

code in the editor provided.

Figure 9.7 After entering and saving the Java program in the text editor, compile the appli-

cation by selecting the Compile option from the Java menu of the IDE. Compiler errors, if you

have any in your Java files associated with the project, are displayed in Jbed’s Log window.
THE INVESTMENT QUOTE APPLICATION CONTROL IN KJAVA 223

WH_Java2.book Page 224 Monday, March 4, 2002 9:59 AM
If you have errors in your code, they will be depicted in the log window. (figure 9.7)
When you have successfully compiled, Jbed prints “ok” in the lower left-hand corner
of the IDE’s window.

At this time, there is no other code or files to our application, so we can link it.
To link the ObtainQuote project, select the Jbed menu option from the Jbed menu
bar and select the Link option (or press Ctrl+Q). When finished with either a compile
or link operation, it’s a good idea to check the Log window. If this is not displayed
in Jbed, open it by selecting the Open Log option in the Java menu. If successful in
compiling and linking the ObtainQuoteSpotlet file and project respectively, the
results in the Jbed log should look similar to those depicted in figure 9.8.

Figure 9.8 Use the Link menu option in the Jbed menu to create the PRC that can be deployed

to Palm OS devices. Results of compiling and linking activity also get displayed in the Log

window. On a successful link operation, the size of the PRC file is displayed with the indication

that the link is complete and the file was written.

After completing the development of the ObtainQuoteSpotlet, take similar actions to
create the RetrieveQuote application. To start, open the RetrieveQuote project and
open another new file. In this file, enter the RetrieveQuoteSpotlet code.

import com.sun.kjava.*;

public class RetrieveQuoteSpotlet extends Spotlet {

 public static void main (String args[]) {
 new RetrieveQuoteSpotlet();
 }
}

Save and compile the RetrieveQuoteSpotlet and then link the RetrieveQuote project
as was done for the ObtainQuote case.

Having completed the successful compiling and linking of the projects, take a peek
at the Jbed directory on your system. You should see two new .PRC files in this direc-
tory structure (depending on how you have Jbed configured, the PRC files may be
deposited elsewhere on your hard drive. See the Jbed documentation for more infor-
mation). The PRC files are the application files destined for our device.

Ordinarily, we would get ready to test, deploy and run these PRC files on the emu-
lator and subsequently on the actual application. However, with no interface or action
occurring in our Spotlets to this point, we will save this exercise for a little later.
224 CHAPTER 9 KJAVA USER INTERFACE

WH_Java2.book Page 225 Monday, March 4, 2002 9:59 AM
9.3 KJAVA USER INTERFACE

As Dickens wrote in A Tale of Two Cities, “it was the best of times, it was the worst of
times.” This line could be used to describe developing user interfaces on resource-
constrained platforms. The good news is that the API is usually small compared to
other GUI APIs and so it is easy to learn. The bad news is that developers are constantly
challenged as to how to put together an aesthetically pleasing and user-friendly appli-
cation with such a small set of user interface components.

The screen size and capabilities of many PDA platforms is very limited. The Palm
device is limited to 160 pixels in height and width. While PDAs with color screens are
showing up on the market, the predominant display is still only 1-bit color.

Those familiar with the Java Swing set or its predecessor, the Abstract Windows
Toolkit (AWT), should prepare to be disappointed and left wanting for a richer set
of GUI components when looking at J2ME application development, and KJava is no
exception. In the next sections, we explore the user interface environment and widget
set provided by KJava. It is limited and in many cases you may need to extend the GUI
to meet your application needs. In chapter 11, we explore some design ideas and issues
to think about when developing your applications. Furthermore, third party vendors
are starting to provide add-in components to augment the CLDC and other J2ME
environments. These are discussed in chapter 15. One such group, the kAWT Project,
has developed a lightweight GUI environment that runs on top of the CLDC that is
similar to the AWT called the kAWT.

9.3.1 Drawing to the display with the graphics object

While there are no explicit low-level and high-level GUI APIs in KJava as there are in
MIDP, the Graphics class can be thought of as the means to provide the low-level
drawing to the screen. The Graphics class has a host of static methods to draw geo-
graphical shapes and bitmaps to the screen, but it also has a method to play sound if
the device hosting the application is equipped with audio capability.

While the methods on the Graphics class are static, there is in fact, a single
Graphics object in the system at any one time. This single object can be obtained
with a getGraphics() method call on the Graphics class. Calls to display to the
screen can then be made either of the instance or the class in general.

Interestingly, the Graphics object controls drawing not only to the screen, but
can also draw to a virtual “off screen” area. This is a convenient feature for storing bit-
maps temporarily, especially in graphically intensive applications such as games.

All geometric drawing methods in the Graphics object make use of a coordinate
system. The coordinate system starts in the upper left-hand corner of the device’s dis-
play as the coordinate (0, 0) with x/y values increasing from left to right and top to bottom.

The first graphical user interface operation usually performed in most applications
is clearing the screen. This operation rids the display of any splash screen or leftover
application image and is performed with a call to the clearScreen() method on
the Graphics object.
KJAVA USER INTERFACE 225

WH_Java2.book Page 226 Monday, March 4, 2002 9:59 AM
Drawing

Several drawing methods are provided to put geographical shapes on the display. The
drawLine(int srcX, int srcY, int dstX, int dstY, int mode) and
drawRectangle(int left, int top, int width, int height, int mode, int
cornerDiam) methods provide the means to draw a line or rectangle based on the
given coordinate starting point. In the case of drawLine(), the method is also passed
the coordinate of the end point, whereas the drawRectangle() method is passed
the width and height (in pixels) of the rectangle. The mode in both methods refers to
one of four drawing modes provided through the Graphics class. The public static
drawing mode options are PLAIN, GRAY, ERASE or INVERT. The display modes may
manifest themselves slightly differently based on implementation as well as by what is
being displayed. For example, the code snippet below results in the image displayed in
figure 9.9. Finally, the last argument passed to drawRectangle() is the diameter.
This parameter specifies the diameter, in pixels, of the imaginary circles used to form
the rounded corners on each of the four corners of a rectangle. If rounded cor-
ners are not desired, simply pass zero into the method in the cornerDiam position.

Graphics g = Graphics.getGraphics();

g.drawString("PLAIN",75,10,Graphics.PLAIN);
g.drawRectangle(10,10,50,30,Graphics.PLAIN,0);
g.drawRectangle(0,45,160,40,Graphics.PLAIN,0);
g.drawString("ERASE",75, 50,Graphics.ERASE);
g.drawRectangle(10,50,50,30,Graphics.ERASE,0);
g.drawString("GRAY",75, 90,Graphics.GRAY);
g.drawRectangle(10,90,50,30,Graphics.GRAY,0);
g.drawString("INVERT",75, 130,Graphics.INVERT);
g.drawRectangle(10,130,50,30,Graphics.INVERT,0);

Along with methods to draw rectangles and lines, as can be seen from the code in the
last example, text can also be drawn to the screen. Two drawString() methods
allow for text strings to be displayed on the screen. Both require the string to be dis-
played along with coordinates of the top left bound of the first character in the string.
The methods differ in that the drawString(java.lang.String text, int

Figure 9.9

This display shows the various PLAIN, ERASE,

GRAY and INVERT Graphics modes for shapes

and text. The top rectangle and text are done in

PLAIN mode. The second rectangle and “Erase”

text were drawn in ERASE mode on top of a

PLAIN rectangle to provide the contrast. The

final two rectangle/text combinations are drawn

in GRAY and INVERT modes respectively.
226 CHAPTER 9 KJAVA USER INTERFACE

WH_Java2.book Page 227 Monday, March 4, 2002 9:59 AM
left, int top, int mode) method allows the developer to specify the mode
parameter, which again refers to a choice in Graphics mode (PLAIN, GRAY, ERASE
or INVERT). Both drawString() methods also return the same integer value,
which is the x coordinate of the right bound of last character drawn. This can be helpful
in determining where additional items can safely be placed on the screen display
without appearing to be drawn over the top of the text. Two graphics helper methods
are also provided to assist in displaying strings on the screen. The getHeight
(java.lang.String s) and getWidth(java.lang.String s) methods can
be used to determine the height and width, in pixels, for any given string displayed.

The graphic’s drawBorder(int left, int top, int width, int height,
int mode, int frameType) method works similar to drawRectangle(), but
the developer must specify the frame type rather than the diameter for rounding the
corners. The Graphics class provides two “out-of-the-box” frame types, namely
SIMPLE and RAISED. However, a frame type can also be constructed with a call to
the borderType() method on the Graphics object. The borderType() method
builds new borders or frames given three pieces of information:

• the corner diameter (such as that specified on a rectangle)

• the width of the border shadow

• the width of the border itself.

The maximum corner diameter for a new borderType is 38, and the width of both
the shadow and border can be no more than 3 pixels. Examples of borders drawn
using standard and custom border types are displayed in figure 9.10, and the drawing
code is shown below.

g.drawString("SIMPLE",75,10,Graphics.PLAIN);

g.drawBorder(10,10,50,30,Graphics.PLAIN, Graphics.SIMPLE);
g.drawString("RAISED",75, 50, Graphics.PLAIN);
g.drawBorder(10,50,50,30,Graphics.PLAIN, Graphics.RAISED);
g.drawString("Custom",75, 90,Graphics.GRAY);
g.drawBorder(10,90,50,30,Graphics.PLAIN,Graphics.borderType(2,3,3));

Figure 9.10

Various borders can be displayed using available or

newly constructed frame types. In the examples

provided here, the top rectangle is drawn using

drawBorder and the SIMPLE frame type, and the second

rectangle is drawn with a RAISED frame type. The final

border drawn is done with a custom border type using

a 2-pixel diameter for the rounded corners, a 3-pixel

wide border and 3 pixels for the shading on the lower

and right side
KJAVA USER INTERFACE 227

WH_Java2.book Page 228 Monday, March 4, 2002 9:59 AM
Bitmaps

Bitmaps are drawn on the screen with the help of the drawBitmap(int left,
int top, Bitmap bitmap) method sent to the Graphics object. Putting bit-
maps on the display with KJava is a little trickier than displaying images or bitmaps in
other Java environments. It requires a position or point on the screen to which to
anchor the bitmap and it requires the bitmap itself. The first parameters to this
method make up the upper left-hand coordinate or anchor point for where the bit-
map is to be placed on the screen. The bitmap parameter is an instance of a wrapper-
ing class that represents the image to be displayed.

Unlike standard Java systems, the idea of a file system from which an image file can
be grabbed and used by an application on a J2ME device may or may not exist. There-
fore, the tricky part to using images, like bitmaps, in many of the consumer electronic
and embedded devices is to first get the image into a format that can be used by the
application. In KJava, bitmap data must be in the format of an array. Specifically,
KJava provides a Bitmap class that is a byte array wrapper representing a bitmap in
the Palm OS. Each byte of a bitmap’s byte array represents 8 bits of the monochrome
bitmap image (0 bit indicating that the pixel for that bit is on, 1 bit indicating the pixel
is off). One provision stipulated on bitmaps is that the width (specified in bytes) of
the bitmap must be even, and in the case where it is not, the bitmap is padded when
displayed.

To create a Bitmap object, the width and bitmap’s byte array must be passed to
the constructor. The following code creates a small bitmap representing the states of
California and Nevada. The image is displayed on the Palm OS screen in figure 9.11.
An alternate bitmap constructor is available that allows the developer to create a Bitmap
object using an array of shorts.

Bitmap caNV = new Bitmap((short)4, new byte[] {

 // File canv.bmp; size: 32x32
 0, 0, 0, 0, 31, -1, -1, -16,
 16, 4, 0, 16, 16, 4, 0, 16,
 16, 4, 0, 16, 16, 4, 0, 16,
 16, 4, 0, 16, 24, 4, 0, 16,
 8, 4, 0, 16, 8, 4, 0, 16,
 8, 6, 0, 16, 12, 7, 0, 16,
 6, 3, -128, 16, 3, -64, -64, 16,
 3, -128, 96, 16, 1, -128, 48, 16,
 1, -128, 24, 16, 0, -64, 12, 16,
 0, -64, 6, 48, 0, -64, 1, -80,
 0, 32, 1, 96, 0, 48, 0, -32,
 0, 16, 0, 32, 0, 16, 0, 32,
 0, 30, 0, 48, 0, 15, -128, 32,
 0, 4, 96, 32, 0, 0, -48, 96,
 0, 0, -112, 96, 0, 0, 95, -32,
 0, 0, 0, 0, 0, 0, 0, 0
});
228 CHAPTER 9 KJAVA USER INTERFACE

WH_Java2.book Page 229 Monday, March 4, 2002 9:59 AM
To draw the Bitmap object on the screen, simply call on the drawBitmap() method
with the desired anchor coordinate position for the bitmap (the coordinate location
for the upper left-hand corner of the bitmap) and the bitmap, which in this case is
referenced by the caNV variable.

Graphics.drawBitmap(64,64,caNV);

Other than constructors, the only bitmap methods are to get a Bitmap object’s
width (in bytes) and number of rows. In the example provided previously, both the
width and number of rows is 32.

Region drawing

The Graphics object not only contains methods for drawing strings, shapes, bitmaps,
and so forth to the screen, but it also has methods to define regions of the screen which
can be copied or established as “no-draw zones” on the screen. In fact, there are actually
two screens that the Graphics object controls. Up to this point, we have discussed
methods for drawing “on screen.” That is, all the display has occurred on the user-visi-
ble screen. The Graphics object is also in control of a virtual screen, the “off screen”
area that is as big as the “on screen” area. Defined areas or regions of the “on screen” dis-
play can be copied to the “off screen” display for temporary storage. This allows image
information to be quickly shuffled on and off the visible display.

A region is simply defined as a rectangular area of a screen; whether virtual—i.e.
“off screen”, or real—that is, “on screen.” It can be used to copy a portion of the dis-
play from one area to another. In the case of the real display, it can be used to prevent
drawing outside of that region. To define a region of the screen for drawing (and thus
at the same time define an area prohibiting display outside of that region), use the
setDrawRegion(int left, int top, int width, int height) method. While
this method is called on the Graphics object, it has a global effect and prohibits other
controls from displaying outside of the draw region. For example, the code section
immediately following establishes a drawing region around the bitmap and exit button
from the previous example. Notice how both the bitmap and exit button have been
clipped in figure 9.12.

Figure 9.11

In KJava, bitmaps are stored in byte arrays.

This example shows the outline borders of

Nevada and California depicted in a 32x32

Bitmap image converted to a byte array

displayed on a Palm device.
KJAVA USER INTERFACE 229

WH_Java2.book Page 230 Monday, March 4, 2002 9:59 AM
exitButton = new Button("Exit",135,135);
g.setDrawRegion(72, 68, 80, 80);
g.drawBitmap(64,64,caNV);

The draw region can be removed and the entire screen used as the drawing region by
calling the resetDrawRegion() method.

Two methods are provided for copying regions of the display. The copyRegion
(int left, int top, int width, int height, int dstX, int dstY, int mode)
method copies one visible “on screen” region of the display to another “on screen”
region of the display. The left, top, width and height parameters define the
anchor coordinate, width, and height of the copied region. The dstX/dstY param-
eters define the destination anchor point on the screen where the copied region is to
be drawn. Along with copied region and destination point of the copied region, a copy
mode can be specified, which allows one to specify how the region is copied to its des-
tination point. The copy modes are defined as static integers on the Graphics class
and include OVERWRITE, AND, AND_NOT, XOR, OR, INVERT.

A region can simply overwrite whatever material was displayed previously, or log-
ical bit operations can be used to create a display made up of bits of both the new
region and existing region. Passing Graphics.AND as the mode, for example, causes
the display bits from the copy-from region to be logically AND’ed with the display
bits from the copy-to region. Alternately, the mode can be set to INVERT, in which
case the copied region overwrites the display in the destination area, but in an inverted
or reverse display fashion.

The second region copying method, copyOffScreenRegion(int left, int
top, int width, int height, int dstX, int dstY, int mode, int srcWind,
int dstWind), provides the capability to copy a region of the display to or from the
“off screen” area. The on and off screen areas are designated through two Graphics
static integers, ON_SCREEN_WINDOW and OFF_SCREEN_WINDOW. Either of these
two integers can be passed as the last argument to the copyOffScreenRegion()
method where they can designate either the origination and/or the destination of the
region of the screen to be copied. Otherwise, the copying of regions is performed as
with the copyRegion() method.

Figure 9.12

Establishing a draw region can serve to clip the

display. In this example, the same California/Nevada

bitmap and Exit button are displayed from figure 9.11,

but within a draw region. Notice that both the bitmap

and button are clipped because the draw region’s size

is smaller than the total screen area covered by the

bitmap and button items.
230 CHAPTER 9 KJAVA USER INTERFACE

WH_Java2.book Page 231 Monday, March 4, 2002 9:59 AM
9.3.2 Components

Unlike in many other Java user interface packages such as javax.Swing,
java.awt, or even in the MIDP’s javax.microedition.lcdui, there is no
common user interface descendent from which KJava user interface widgets derive.
However, many of the widgets do share similar methods. Those familiar with the
standard Java user interface APIs will also find that KJava’s user interface is pretty lim-
ited. However, with some work, some KJava widgets can be used in combination
with each other or can be wrappered by your own code to provide more interesting
and useful widgets, ultimately producing more useful interfaces.

In KJava user interface development, it is important to remember that there is no
layout manager or other sophisticated display manager. Control of the location and
display of widgets (or any item displayed to the screen such as a rectangle, line, or border
shown throughout section 9.3.1) is at the discretion of the programmer. Therefore,
if two user interface widgets are painted in too close proximity to each other, or on
top of one another, the virtual machine and underlying operating system will do its
best to display the items, which often times results in one widget overwriting the other.

The following is a list of the interactive graphical elements available in the KJava user
interface API:

• Button a labeled button that can be used to trigger action when pressed. The
label for the button can either be textual or a bitmap.

• Caret the marker, designated by a blinking bar (“|”) to indicate to the user
the current insertion point in a text entry field. Namely, in KJava, a Caret
object indicates the insertion point for text being entered in a TextField.

• CheckBox a graphical component that signifies one of two states: either checked
which is on/true, or unchecked which is off/false. A CheckBox can also be
labeled.

• RadioButton a two-state component such as the CheckBox except that a
RadioButton object is part of a group of radio buttons, of which only one of
the buttons can be in the on state at any one time. Like CheckBoxes, Radio-
Buttons can be labeled.

• RadioButtonGroup a collection of RadioButtons where exactly one
RadioButton in the group can be in the “on” state at any given time. Pushing
any RadioButton within the group has the effect of setting its state to “on” as
well as setting the states of the other buttons to “off.”

Figure 9.13

Ugly overwrites of graphical elements and com-

ponents can result without careful UI planning/

design as is demonstrated in this display where

buttons and drawn shapes overlap.
KJAVA USER INTERFACE 231

WH_Java2.book Page 232 Monday, March 4, 2002 9:59 AM
• SelectScrollTextBox this extension of the ScrollTextBox and Text-
Box allows non-editable but selectable text to be shown on the display.

• Slider a graphical user interface component that allows a user to select a
value by moving a virtual lever on the component inside of a certain interval.

• ScrollTextBox a means to display non-editable text on the screen. The
ScrollTextBox is a subclass of TextBox and it provides for a scroll bar so
that if the text to be displayed is larger than the visible text box, the user can
scroll to see the remaining text displayed within the box.

• TextBox a means to display non-editable text on the screen. A TextBox
displays without a scroll bar. When too much text is displayed in a TextBox,
the text is simply not displayed or available. In this case, it is often better to use
the ScrollTextBox.

• TextField the means for users to enter text in a single line entry field. An
instance of the Caret class must be used in conjunction with the TextField
in order to have an input marker provided while the user is inputting text into
the TextField. TextFields can also be labeled.

Most PDA devices do not come equipped with a physical keyboard or keypad
like that on cell phones. Some manufactures are starting to provide these in-
put devices as add-on products. Without a keyboard, most PDA devices are
equipped with either a virtual keyboard or a device that interprets input from
a stylus moving across a sensitive surface.

A virtual keyboard is a graphical user interface display component that al-
lows users to type out text by pushing buttons on the user interface. The com-
ponent is made to look like a real keyboard so that users are comfortable with
the paradigm. A virtual keyboard is displayed when a text entry field is en-
tered. Virtual keyboards are used in Windows CE.

Palm OS devices, however, use the alternative stylus/motion detection
type device. These devices have something known as Graffiti. Moving the Palm
device’s stylus across the pad (known as the Graffiti writing area) located on the
bottom of the device’s screen triggers characters or numbers to be generated
and sent to the corresponding application. Graffiti is used to enter text in a text
field. Certain motions of the stylus across the Graffiti area generate certain
characters. If you are unfamiliar with what Graffiti is and how to use it, we
would encourage you to see the Palm OS web site (www.palmos.com) for more
information before developing your application targeted for these devices.
(Figure 9.14)

TEXT ENTRY
ON PDAS

Figure 9.14

The Graffiti Area is located at the bottom of the Palm

OS screen. The left side of the Graffiti Area is used

for entering characters. The right side is for entering

numbers. In either case, one must be familiar with

the Graffiti shorthand in order to enter information.
232 CHAPTER 9 KJAVA USER INTERFACE

WH_Java2.book Page 233 Monday, March 4, 2002 9:59 AM
Graffiti text entry can be a little tough to use at first because one has to learn
the Graffiti shorthand for characters. If you need help when entering text and
you want to see the Graffiti shorthand, place the device stylus on the bottom
of the screen and slide it up the entire length of the Palm device screen, keep-
ing the stylus in contact with the screen during the motion. This will cause
the Graffiti help to be displayed. When done with the help, simply press the
Done button and return to your application. (figure 9.15)

The typical Palm OS device also offers virtual keyboards for entering alpha-
numeric characters. The virtual keyboards are available by touching the small
“abcde” and “12345” areas in the Graffiti area of the device. However, this fea-
ture is not yet supported in KJava.

• ValueSelector unique to KJava, the ValueSelector allows users to
specify an integer value with the use of increment and decrement buttons (see
figure 9.16). The increment and decrement buttons are labeled with “+” and
“ – ” labels respectively. A third button is also provided, labeled with a “?”,
which generates a random value between the minimum and maximum values
allowed for the selector.

In order to demonstrate how these components appear and behave within a device, a
small Spotlet example has been provided in listing 9.1. While simple in nature, this
mock employee information form demonstrates how to create and set up many of the
widgets listed previously. The results of successfully compiling and linking this appli-
cation are depicted in figure 9.17 on page 236.

Figure 9.15

Graffiti help like this is displayed when the

stylus is dragged from bottom to top on the

device screen. The help shows how to enter

the various characters and numbers by

providing an indication of where the stylus

must be started and how to drag it across

the Graffiti Area to get the desired input.

Figure 9.16

A ValueSelector allows for integer value entry.

In the figure displayed above, the Value

Selector has a label of Score and a current

value of 1. The “-“ and “+” buttons will

increment and decrement the value

respectively. The “?” button, when pushed,

sets the value to a randomly assigned value.
KJAVA USER INTERFACE 233

WH_Java2.book Page 234 Monday, March 4, 2002 9:59 AM
import com.sun.kjava.*;

public class Widgets extends Spotlet {

 Graphics g = Graphics.getGraphics();

 private Button exitButton;
 private CheckBox employedBox;
 private boolean cbState = false;
 private RadioGroup genderGroup;
 private RadioButton mButton;
 private RadioButton fButton;
 private ScrollTextBox performanceBox;
 private TextField ageField;
 private Slider salSlider;
 private ValueSelector kidsValSelect;

 public static void main (String args[]) {
 new Widgets().drawWidgets();
 }

 private void drawWidgets() {
 register(NO_EVENT_OPTIONS);
 g.clearScreen();
 g.drawString(" Simple Widgets Example ", 5, 10, g.INVERT);
 //example check box
 employedBox = new CheckBox(10, 25, "Employed");
 employedBox.paint();
 //example radio button and radio button group
 mButton = new RadioButton(10, 40, "Male");
 fButton = new RadioButton(50, 40, "Female");
 genderGroup = new RadioGroup(2);
 genderGroup.add(mButton);
 genderGroup.add(fButton);
 genderGroup.setSelected(mButton);
 mButton.paint();
 fButton.paint();
 //example scroll text box
 performanceBox = new ScrollTextBox("No record of missed work.
 Meets or exceeds on all performance reviews.", 10, 55, 140, 25);
 performanceBox.paint();
 //example text field
 ageField = new TextField("Age", 10, 85, 50, 20);
 ageField.paint();
 //example slider
 g.drawString("Salary Level: ",10,105);
 salSlider = new Slider(90, 105, 50, 1, 5, 1);
 salSlider.paint();
 //example value selector
 kidsValSelect = new ValueSelector("Kids: ", 1, 5, 1, 10, 125);
 kidsValSelect.paint();
 exitButton = new Button("Exit", 10, 140);
 exitButton.paint();

 }

Listing 9.1 Widgets.java

q

w

e

r

t

y

u

i

234 CHAPTER 9 KJAVA USER INTERFACE

WH_Java2.book Page 235 Monday, March 4, 2002 9:59 AM
 public void penDown(int x, int y){
 if (exitButton.pressed(x,y)){
 System.exit(0);
 } else if (employedBox.pressed(x,y)) {
 employedBox.handlePenDown(x,y);
 } else if (mButton.pressed(x, y)) {
 genderGroup.setSelected(mButton);
 } else if (fButton.pressed(x, y)) {
 genderGroup.setSelected(fButton);
 } else if (performanceBox.contains(x,y)) {
 performanceBox.handlePenDown(x,y);
 } else if (ageField.pressed(x,y)) {
 ageField.setFocus();
 } else if (salSlider.contains(x,y)) {
 salSlider.handlePenDown(x,y);
 } else if (kidsValSelect.pressed(x,y)) {
 }
 }

 public void keyDown(int keyCode) {
 if (ageField.hasFocus()) {
 ageField.handleKeyDown(keyCode);
 }
 }
}

Declaring the various graphical user interface elements

Creating and displaying a CheckBox

Creating and displaying a set of RadioButtons and RadioGroup

Creating and displaying a ScrollTextBox

Creating and displaying a TextField

Creating and displaying a Slider

Creating and displaying a ValueSelector

Creating and displaying a Button

Handling user interface events (covered later in this chapter)

Notice that with most graphical user interface components, the component must be
created and then “painted” to the display. A common error when creating a user
interface in KJava is to create a user interface object, but then forget to have it dis-
played with a call to the paint() method. You may also notice that KJava does not
provide any type of display or layout management. This is reflected in how a pixel
coordinate location must be provided to each component, usually through its con-
structor, before it can be displayed. Most of the components also are equipped with a
setLocation(int x, int y) method for relocating the items. Again, you the

o

q

w

e

r

t

y

u

i

o

KJAVA USER INTERFACE 235

WH_Java2.book Page 236 Monday, March 4, 2002 9:59 AM
developer, must manage the display and make sure that widgets or other graphical
drawing are not displayed on top of each other.

Most components or widgets have only a few operations. All of the components
have a method for displaying themselves. Usually this is the paint() method. This
method is important since a Spotlet does not have a means to refresh or redraw its dis-
play. Instead, the developer must explicitly call this method each time a component
needs to be seen.

Besides the paint() method, most graphical user interface components (or con-
trols) carry methods to get/set representative data values as well as a way to locate or
move the component on the display. Finally, actions and reactions to the user inter-
actions with various components on the display give rise to a set of event-handling
methods that are covered later in this chapter.

CARET CARE It is worth mentioning that Caret objects are runnable threads. That is,
the Caret class extends java.lang.Thread. When an instance of the Text-
Field is created and given focus with a call to the setFocus() method,
the method starts a caret thread to get the caret to blink. Subsequently, when
the TextField loses focus, which can be done manually with a call to
loseFocus() on the text field, the caret stops blinking. A call to kill-
Caret() actually stops and kills the associated caret thread.

In most cases, the management of TextFields and their associated Caret
instances do not require any extra work on the part of the developer. How-
ever, because of the threaded nature of carets, care should be taken when
working with the TextField components, especially with regard to get-
ting and setting focus, so as to avoid conditions where Caret instances are
not properly stopped and garbage collected. Improper use of the compo-
nent can lead to the slow yet steady leak of memory resulting in eventual
application failure. When working with an application that is going to con-
tain a lot of TextFields, it is a good idea to display the return value of
Runtime.getRuntime().getFreeMemory() method calls in your
application while testing to ensure caret instances are not being inadvert-
ently held onto when they are no longer required.

Figure 9.17

KJava offers a variety of user interface components/

widgets, many of which are shown in this display.

More sophisticated user interface components can

often be created out of combining these items into

your own new component.
236 CHAPTER 9 KJAVA USER INTERFACE

WH_Java2.book Page 237 Monday, March 4, 2002 9:59 AM
KJAVA USER INTERFACE 237

Dialogs

There is only one Spotlet with focus at any given time and this Spotlet controls the
display of components and drawing to the screen. Unlike many other user interface
systems with multiple windows on which to display graphical components, a Spotlet
has only one window, namely the full screen. There are only two minor deviations to
this display mechanism in KJava.

A Dialog component acts as a modal pop-up message box or window to display
a string of text shown in a scrolling text box. It can be used to provide error or warning
messages or to display text that may be too long to display nicely in a screen sur-
rounded by other components. The text in the display is non-editable.

There is a single constructor, Dialog(DialogOwner o, String t, String str,
String buttonText) for dialogs. The first and second string parameters passed to
the constructor are the title of the dialog and message text to be displayed. The title
string is not displayed on the screen; it is just used to label the dialog. When created,
a dialog is automatically outfitted with a single dismiss button labeled via the button-
Text string parameter used in the constructor.

A dialog box must have an owner. The owner is an object that is notified when the
Dialog object is dismissed by pressing the dismiss button. The owning object is spec-
ified during the construction of a Dialog and it must implement the DialogOwner
interface. This simple interface consists of a single dialogDismissed(String
title) method that is the method called when the Dialog is dismissed. The string
title parameter of the dialogDismissed(String title) is the title of the Dialog
that was dismissed. If an object is the owner of multiple Dialog boxes, this parameter
allows the object to discern which dialog was dismissed. The owner can then respond
appropriately and possibly uniquely to each Dialog object dismissal. Again, remem-
ber that a Spotlet has no refresh or any similar concept, so after a dialog is dismissed,
the Spotlets components will have to be redisplayed in order to show up on the screen.
This often involves invoking the paint() method on all the contained components.

Figure 9.18

A Dialog can be used to display informational

text in a scrollable area. The dismissal button

(the “OK” button) is automatically provided

and is used to close the Dialog.

WH_Java2.book Page 238 Monday, March 4, 2002 9:59 AM
In many cases, a Spotlet is made the owner of the dialog. Here is a small bit of code that
displays and reacts to an example dialog, the result of which can be seen in figure 9.18.

public class DialogExample extends Spotlet implements DialogOwner {
 ...
 public void showDialog() {
 Dialog info = new Dialog(this,"Info","This is an example Dialog.\n\n" +
 "Button: a simple button user interface object. Note that this button "+
 "causes actions to occur when it is pressed, not when it is released. " +
 "Therefore it is currently impossible for a user to cancel a button " +
 "selection once it has started! Bitmap buttons do not have a border " +
 "drawn around them. If you want your bitmap button to have a border, " +
 "include the border in the bitmap.", "OK");
 info.showDialog();
 }
 public void dialogDismissed(java.lang.String title) {
 if (title.equals("Info")) {
 //...do something
 }
 }

Similar to the Dialog window, the HelpDisplay window displays text in a
ScrollTextBox before an application begins. As its name implies, a HelpDis-
play is intended to display application user help. A HelpDisplay object does not
have an owner like the Dialog. Instead the class name of the Spotlet is passed into
the constructor, so that an instance of the Spotlet can be created and run when the
HelpDisplay is dismissed.

Scrolling

KJava also provides vertical scrolling capability. Given the device’s usually limiting
display size, this can come in handy. The VerticalScrollBar is another compo-
nent just like the components listed previously. However, a scroll bar differs in that it
must have an owner. The owner of a scroll bar is another component that implements
the ScrollOwner interface. The owner component is notified whenever the scroll
bar is used.

The constructor provided to create a VerticalScrollBar is VerticalScroll-
Bar(ScrollOwner so, int x, int y, int h, int min, int max, int initVal).
Like most other GUI components, the size and coordinate location of the Vertical-
ScrollBar are specified when the object is constructed. However, it is also necessary
to provide the owner of the scroll bar. The min, max and initVal parameters specify
the minimum, maximum, and initial values or scroll locations. A Vertical-
ScrollBar has a paint() method like other components that also causes the wid-
get to display on the screen.

The ScrollOwner interface is very simple. It has only one event-handling
method, setScrollValue(int value), which must be implemented by a com-
ponent serving as the owner of the scroll bar. This method is called in the event the
user presses or moves the scroll bar.
238 CHAPTER 9 KJAVA USER INTERFACE

WH_Java2.book Page 239 Monday, March 4, 2002 9:59 AM
9.3.3 Custom components

The KJava user interface does the job, but is not exactly the world’s most luxurious
API. If your application is left wanting for more, you can explore third party alterna-
tives, or you can also grow your own widgets and components. This usually entails
using a combination of the drawing features surrounding the Graphics class and pre-
existing components. As an example, we had the need in one of our applications for a
scrolling list of items that could be checked off. Using a set of CheckBoxes, Ver-
ticalScrollBar, and the Graphics object we were able to create the rather
sophisticated component displayed in figure 9.19.

When building your own components, consider two valuable resources: memory
and performance/application speed. User interfaces can take up a considerable
amount of precious memory. It does not matter how pretty the GUI is if it cannot fit
on the device. Furthermore, the virtual machine on many small devices may operate
at one third or less of the speed of the standard Java runtime environment. Depend-
ing on the sophistication of the homegrown component, the virtual machine may be
stressed when trying to display it. This can lead to some real performance issues when
running your application.

In some cases, a KJava component attribute or method may be protected. “Pro-
tected,” in Java, implies that the method or field is available for use by subclasses and
classes within the same package. This means that there are methods or fields that your
application may want or need, but to which it may not have direct access. In this case,
you may want to consider developing a wrapping class that subclasses the KJava com-
ponent and grants access to the desired method or field to the outside world. Care
should be taken when exposing protected material. There was a reason it was deemed
protected in the first place and you should learn why it was protected before allowing
your application free access to it.

9.3.4 KJava collection classes

There are a couple of miscellaneous collection classes unique to KJava. Although not
user interface components, these classes can be handy when developing Spotlet appli-
cations and we wanted to make sure to mention them. Care should be taken when
using these classes with code that has a high probability of being ported to another
device and Java API since they will not be available in other environments.

Figure 9.19

The richness of the user interface in a KJava

application can be enhanced by creating your own

custom components, either from scratch or by

using a combination of existing UI components.

Here, a custom KJava User Interface component

was developed using the KJava’s CheckBox,

Vertical Scroll Bar and Graphics.
KJAVA USER INTERFACE 239

WH_Java2.book Page 240 Monday, March 4, 2002 9:59 AM
IntVector

An IntVector is a simple expandable vector containing integers. Unlike standard
Java vectors (java.util.Vector) in J2SE or other Java environments, these vec-
tors contain the base type integer elements and not objects (java.lang.Object).
Unfortunately, there are no enumerators or iterators that can be obtained directly
from instances of this class, so there is no convenient means to loop through the integers
contained in an IntVector. Adding integers to the IntVector is accomplished
with the append(int i) method while getting an integer out of the vector is done
by calling on the valueAt(int index) method. The size() method provides a
count of the number of integers stored in the vector.

List

The List class is a smaller and simplified version of the java.util.Vector class.
Objects can be added to a List collection using the append(java.lang.Object
obj) or setElementAt(java.lang.Object o, int pos) methods. Objects are
extracted from a List instance using elementAt(int index). Again, the size()
method returns the number of elements in a List instance.

9.4 THE INVESTMENT QUOTE APPLICATION’S
USER INTERFACE IN KJAVA

Time now to put the KJava user interface API to use. We are going to build the user
interface of the investment tracking tutorial application using KJava and CLDC.
When developing the user interface for MIDP devices, as was seen in chapter 5, the
screen was so small that several screens had to be implemented in order to interact
with the customer and display the investment quote prices. The screen size of a Palm
OS device is huge in comparison to the 96×54 pixel limit on MIDP devices. There-
fore, we can actually have the entire user interface displayed on a single screen, as
opposed to several screens with MIDP.

As with our MIDP implementation, we will have two separate applications. One
application, the ObtainQuoteSpotlet, will obtain an investment symbol from a cus-
tomer and wirelessly seek the price of the investment represented by the symbol
entered by the customer. This price will then be stored to a database and displayed to
the customer. A second application, RetrieveQuoteSpotlet, will retrieve historical prices
for a given investment symbol from the database and graphically display the historical
prices for the investment to the customer.

9.4.1 Creating and displaying components

The first step in building our UI in KJava will be to import the required classes. All of
the KJava user interface components are located in the com.sun.kjava package. In
fact, all of the classes of KJava are located in this single package. Therefore, at the top
of the ObtainQuoteSpotlet.java file, we have the required import statement

import com.sun.kjava.*;
240 CHAPTER 9 KJAVA USER INTERFACE

WH_Java2.book Page 241 Monday, March 4, 2002 9:59 AM
Having already created the ObtainQuoteSpotlet application in section 9.3, we begin
building the user interface by first declaring the reference variables required to hold
all the necessary GUI components.

private TextField symbolField = null;
private RadioButton stockButton = null;
private RadioButton fundButton = null;
private RadioGroup investmentChoice = null;
private ScrollTextBox resultsBox = null;
private Button exitButton = null;
private Button getButton = null;

These components will serve in a fashion similar to the high-level user interface compo-
nents in the MIDP tutorial. The TextField will allow the customer to enter an
investment symbol. The stockButton and fundButton radio buttons allows the
customer to signify whether the investment of concern is a stock or mutual fund. These
radio buttons will be made part of the investmentChoice radio button group, thereby
allowing only one option to be selected at any given time. After obtaining the quote for
the investment symbol entered by the customer, the price (or other information if an
error occurred) can be displayed in the ScrollTextBox called resultsBox. Finally,
two buttons are provided on the Spotlet screen to allow the customer to signal when it
is time for the application to go “get” the price or when to leave the application.

An exit button on a Palm OS application is not entirely necessary. The
paradigm of Palm OS applications is to simply move to another applica-
tion or the application selection screens rather than actually requesting to
leave an application. Pressing the Applications soft key is an indication in
the Palm OS that it is time to leave the current app.

Inside the ObtainQuoteSpotlet constructor, the components described above are
created and initialized. Notice the use of the Graphics object to get the width of
strings to be displayed. Remember, as a J2ME developer, you are the layout manager,
so this method can come in handy when attempting to space things on the screen
appropriately. Also notice how instances of RadioButton are created and then added
to an instance of a RadioGroup.

public ObtainQuoteSpotlet() {

 String tfLabel = "Symbol";
 symbolField = new TextField(tfLabel,5,25,Graphics.getWidth(tfLabel) + 40,
 Graphics.getHeight(tfLabel));
 stockButton = new RadioButton(50,45,"Stock");
 fundButton = new RadioButton(100,45,"Fund");
 investmentChoice = new RadioGroup(2);
 investmentChoice.add(stockButton);
 investmentChoice.add(fundButton);
 investmentChoice.setSelected(stockButton);
 resultsBox = new ScrollTextBox("",8,65,137,45);
 exitButton = new Button("Exit",5,140);
 getButton = new Button("Get Quote", 105,140);
}

PALM OS
APPLICATIONS

q

r

w

e

t

THE INVESTMENT QUOTE APPLICATION’S USER INTERFACE IN KJAVA 241

WH_Java2.book Page 242 Monday, March 4, 2002 9:59 AM
Using the Graphics object to determine width of the field

Creating the radio buttons

Associating radio buttons to a group

Creating the scrolling text box

Creating the exit and get quote buttons

To kick off an instance of the ObtainQuoteSpotlet and create all of these marvel-
ous components, we need a main method. Unlike MIDP application control, the
Spotlet’s main method is what gets called and started from the virtual machine. Our
example main method, provided earlier in this chapter, creates a new instance of
ObtainQuoteSpotlet. However, if we were to use the main method as it stands,
none of our new components would be displayed. Why? We need to invoke the
paint method on the components in order for them to display. Therefore, improving
on the main method for ObtainQuoteSpotlet, we simply create an instance of
ObtainQuoteSpotlet and then call on a new private method, displayForm()
that will display the components.

public static void main (String args[]) {

 ObtainQuoteSpotlet quoteSpotlet = new ObtainQuoteSpotlet();
 quoteSpotlet.displayForm();
}

While displaying the components would provide the user interface with the means to
get a symbol from the customer and display price information, a screen without some
supplementary text and shapes would probably just confuse the customer. Therefore,
in the displayForm() method, appropriate text and other geographical shapes will
be displayed to make the application more user-friendly. We use the Graphics
object to conduct this work.

private void displayForm() {
 Graphics.clearScreen();
 Graphics.drawString("Obtain Investment Quote",5,10,Graphics.INVERT);
 Graphics.drawString("Type:",5,45, Graphics.PLAIN);
 symbolField.paint();
 stockButton.paint();
 fundButton.paint();
 resultsBox.paint();
 exitButton.paint();
 getButton.paint();
 Graphics.drawBorder(5,60, 150, 55, Graphics.PLAIN, Graphics.SIMPLE);
}

Why put all of the paint and drawing methods in a separate method like display-
Form()? As we shall see, the displayForm() method contains all the calls to dis-
play and redisplay the screen. Again, remember that Spotlets and KJava have no
refresh mechanism. Therefore, as the developer, you must provoke refreshes of the

q

w

e

r

t

Paint the components
to the screen

w

Display a border around
the results ScrollTextBox

e

Display the appli-
cation title and

radio button label

q

242 CHAPTER 9 KJAVA USER INTERFACE

WH_Java2.book Page 243 Monday, March 4, 2002 9:59 AM
screen at appropriate times. Thus, we need methods such as displayForm() that
exist outside of the Spotlet instance creation so that appropriate screen refreshes can
occur without creating a whole new instance of the application.

That is about all there is to do at this time, save a little work in preparation for
future activity with regard to our Spotlet. You may recall in the development of the
MIDlets, the application checked to insure a symbol name ended in “X” if the cus-
tomer selected the investment type of “fund.” Mutual fund symbols are up to five let-
ters in length, and a mutual fund symbol ends in the letter ‘X’. In MIDP, we produced
an Alert if the customer inappropriately provided a symbol without an ‘X’ at the end
of the name but also pushed the Fund radio button. In KJava, an instance of Dialog
will do the work of the Alert in the MIDP version of the application.

To use Dialog boxes you need an owner. The Spotlets are going to serve as the owner
for all Dialogs in the tutorial application. Therefore the ObtainQuoteSpotlet and
RetrieveQuoteSpotlet must implement the DialogOwner interface. The new
class declaration for ObtainQuoteSpotlet resembles the line below.

public class ObtainQuoteSpotlet extends Spotlet implements DialogOwner {

The Spotlet must also implement the DialogOwner’s one method, dialog-
Dismissed(). In every instance, since the Dialog is serving to describe an error or
other warning to the customer, the only thing that the Spotlet need do when a Dia-
log is dismissed is repaint the screen. Ah hah! The need for our displayForm()
method becomes a little clearer.

public void dialogDismissed(java.lang.String title) {

 this.displayForm();
}

To check the customer-entered investment symbol against the customer-selected
investment type, a simple test method is provided to examine the data obtained from
the components. In the checkSymbol() method, notice how the text value and radio
button value are obtained directly from the corresponding components. A Dialog
instance is created and shown if the mutual fund name error condition exists.

private boolean checkSymbol() {

 if ((investmentChoice.getSelected().equals(fundButton)) &&
 !(symbolField.getText().toUpperCase().endsWith("X"))){
 Graphics.playSound(Graphics.SOUND_ERROR);
 Dialog symbolAlert = new Dialog(this,"Alert",
 "Check Symbol\n\nMutual Funds end in 'X'","OK");
 symbolAlert.showDialog();
 return false;
 }
 return true;
}

This code, and the dialogDismissed() method code, is not used yet, but it will
be used once user interactions with the various GUI components are handled.
THE INVESTMENT QUOTE APPLICATION’S USER INTERFACE IN KJAVA 243

WH_Java2.book Page 244 Monday, March 4, 2002 9:59 AM
To see ObtainQuoteSpotlet’s user interface, we use Jbed to build our application.
First make sure the ObtainQuote project is in use. Go to the Projects menu bar option
and make sure the ObtainQuote project is checked. Next, open the ObtainQuote-
Spotlet.java file by selecting the File menu bar option and selecting the Open… menu
item. After finding and selecting the ObtainQuoteSpotlet.java in the Open dialog
box, add the code discussed above to the Java program in the text editor. To compile
the application, select Java from the menu bar and select the Compile item. Finally,
to link the application, select Jbed from the menu bar and select the Link item. This
will result in the creation of an ObtainQuoteSpotlet.prc that is about 95K in size.

Test out your application by loading the newly-linked PRC file into the emulator.
Success in these steps should result in an application that looks similar to the image
in figure 9.20.

You may try to operate the application and find that none of the buttons or text fields
work. Do not panic. We address handling events at the end of this chapter. Proper
event handling will bring the application to life. For now, to exit the application,
simply tap on the Applications soft key button on the emulator (to the left of the
Graffiti area).

9.4.2 Drawing with graphics

Much of the Spotlet used to retrieve already-obtained quotes and to display historical
quotes in a graph for the customer is similar to the ObtainQuoteSpotlet. The cus-
tomer is required to provide the investment quote symbol and investment type. The
only difference in this application is that the price for the investment will be retrieved
from a database rather than from a service over the wire. Since the information
required to retrieve a quote from the database is the same, we can copy and use much
of the same code developed for ObtainQuoteSpotlet. A code listing for the new
RetrieveQuoteSpotlet is provided in listing 9.2.

Figure 9.20

The user interface of the ObtainQuote Spotlet is

shown. Unlike in MIDP, the user interface of the

ObtainQuote Spotlet can all be displayed on one

screen. A request is made to get an investment

quote and the results get displayed in the

ScrollTextBox located in the middle of the display.
244 CHAPTER 9 KJAVA USER INTERFACE

WH_Java2.book Page 245 Monday, March 4, 2002 9:59 AM
import com.sun.kjava.*;

public class RetrieveQuoteSpotlet extends Spotlet implements DialogOwner{

 private TextField symbolField = null;
 private RadioButton stockButton = null;
 private RadioButton fundButton = null;
 private RadioGroup investmentChoice = null;
 private Button exitButton = null;
 private Button getButton = null;

 public RetrieveQuoteSpotlet() {
 String tfLabel = "Symbol";
 symbolField = new TextField(tfLabel,5,25,Graphics.getWidth(tfLabel)
 + 40, Graphics.getHeight(tfLabel));
 stockButton = new RadioButton(50,45,"Stock");
 fundButton = new RadioButton(100,45,"Fund");
 investmentChoice = new RadioGroup(2);
 investmentChoice.add(stockButton);
 investmentChoice.add(fundButton);
 investmentChoice.setSelected(stockButton);
 exitButton = new Button("Exit",5,140);
 getButton = new Button("Get Quote", 105,140);
 }

 public static void main (String args[]) {
 RetrieveQuoteSpotlet quoteSpotlet = new RetrieveQuoteSpotlet();
 quoteSpotlet.displayForm();
 }

 private void displayForm() {
 register(NO_EVENT_OPTIONS);
 Graphics.clearScreen();
 Graphics.drawString("Retrieve Investment Quote",5,10,
 Graphics.INVERT);
 Graphics.drawString("Type:",5,45, Graphics.PLAIN);
 symbolField.paint();
 stockButton.paint();
 fundButton.paint();
 exitButton.paint();
 getButton.paint();
 }

 private boolean checkSymbol() {
 if ((investmentChoice.getSelected().equals(fundButton)) &&
 !(symbolField.getText().toUpperCase().endsWith("X"))){
 Graphics.playSound(Graphics.SOUND_ERROR);
 Dialog symbolAlert = new Dialog(this,"Alert",
 "Check Symbol\n\ nMutual Funds end in 'X'","OK");
 symbolAlert.showDialog();
 return false;
 }
 return true;
 }

 public void dialogDismissed(java.lang.String title) {
 this.displayForm();
 }}

Listing 9.2 RetrieveQuoteSpotlet.java
THE INVESTMENT QUOTE APPLICATION’S USER INTERFACE IN KJAVA 245

WH_Java2.book Page 246 Monday, March 4, 2002 9:59 AM
Because we are not going to display a single price, but rather a graph of the prices for
the investment, the only change in the code in listing 9.2 is the removal of the Text-
Box called resultsBox. In place of this component on the screen, we want to
graphically display the prices of the current and historical quote. In the MIDP tuto-
rial application, we made use of the low-level user interface API to draw to the screen.
Although KJava does not have an explicit and distinguishable low-level user interface
API, we will make use of some of the code developed for MIDP application.

In order to draw the bar charts for the retrieved quotes, the application will need
some information about where to position the chart. This information is defined in
some static integer variables at the top of the application.
 static final int MAX_BAR_SIZE = 150;

 static final int START_X_POSITION = 5;
 static final int START_Y_CURRENT = 97;
 static final int START_Y_HISTORIC = 122;
 static final int BAR_HEIGHT = 5;

The prices will be displayed as horizontal bars drawn starting from the left of the dis-
play to a position on the right that is dependent on the price of the investment. The
START_X_POSITION is the unchanging x pixel position coordinate for each rectangle.
Correspondingly, the START_Y_CURRENT and START_Y_HISTORIC values pro-
vide the static starting y pixel locations for our two rectangles depicting the current
and historical prices. The BAR_WIDTH variable provides the static height of all bars.

In order to actually draw the price bars on the display, we borrow two methods
from the MIDP tutorial application implementation. The first, paintChart(), is
a modified version of the Canvas paint() method in the MIDP application. This
method is supplied with the investment symbol and price data. With this data, it uti-
lizes the Graphics object to draw strings, rectangles and lines to display the price
graph. (listing 9.3)

public void paintChart(String sym, int currentPrice, int historicPrice) {
 Graphics.drawRectangle(5,60,155,70,Graphics.ERASE,0);
 Graphics.drawString(sym + " Performance",5,60,Graphics.PLAIN);
 Graphics.drawString("current vs. historic",5,73,Graphics.PLAIN);
 Graphics.drawString("$" + currentPrice, 5, 85, Graphics.PLAIN);
 Graphics.drawString("$" + historicPrice, 5, 110, Graphics.PLAIN);
 int[] prices = {currentPrice, historicPrice};
 int[] lengths = determineLengths(prices);
 Graphics.drawRectangle (START_X_POSITION, START_Y_CURRENT,
 lengths[0],BAR_HEIGHT, Graphics.PLAIN, 0);
 Graphics.drawRectangle (START_X_POSITION, START_Y_HISTORIC,
 lengths[1],BAR_HEIGHT, Graphics.PLAIN, 0);

 for (int i = 30; i < MAX_BAR_SIZE; i = i + 30) {
 Graphics.drawLine (i, START_Y_CURRENT - 2, i,
 START_Y_HISTORIC + BAR_HEIGHT + 2, Graphics.PLAIN);
 }
}

Listing 9.3 The paintChart method in RetrieveQuoteSpotlet

q

w

e

r

246 CHAPTER 9 KJAVA USER INTERFACE

WH_Java2.book Page 247 Monday, March 4, 2002 9:59 AM
Clearing the region of the screen

Drawing text to display the current and historical prices

Drawing the bars representing each price

Adding “tick” marks to graph

The paintChart() method reuses the determinesLengths() method, without
change, developed in chapter 5 to help determine the pixel length of each bar in the
graph. A copy of this code is provided in listing 9.4.

private int[] determineLengths (int[] prices) {

 int ratio, higherPrice, lowerPrice;
 boolean currentHigher;

 if (prices[0] < prices[1]) {
 higherPrice = prices[1];
 lowerPrice = prices[0];
 currentHigher=false;
 } else {
 higherPrice = prices[0];
 lowerPrice = prices[1];
 currentHigher=true;
 }

 ratio = higherPrice/MAX_BAR_SIZE + 1;
 while (ratio > 1) {
 higherPrice = higherPrice/ratio;
 lowerPrice = lowerPrice/ratio;
 ratio = higherPrice/MAX_BAR_SIZE + 1;
 }

 if (currentHigher) {
 int[] ends = {higherPrice, lowerPrice};
 return ends;
 } else {
 int [] ends = {lowerPrice, higherPrice};
 return ends;
 }
}

At this time, the components and drawing methods are not hooked up to customer
actions. We will look at how to do this in KJava in the next section of this chapter.
However, to see the bar graph drawing methods do their work, simply add a call to
the paintChart() method, such as the one immediately following, to the bottom
of the displayForm() method:

paintChart("MMM",75,110);

q

w

e

r

Listing 9.4 The determineLengths method in RetrieveQuoteSpotlet
THE INVESTMENT QUOTE APPLICATION’S USER INTERFACE IN KJAVA 247

WH_Java2.book Page 248 Monday, March 4, 2002 9:59 AM
With this code entered into the RetrieveQuoteSpotlet.java file, use Jbed to compile
and link the application just as you did with the ObtainQuoteSpotlet. If you have
been following the directions throughout this chapter, do not forget that the
RetrieveQuoteSpotlet is a separate project; namely the RetrieveQuote project. Suc-
cessfully compiling, linking and deploying the application to an emulator should
result in a display that looks similar to that in figure 9.21.

Again, the application will not react to any attempted interaction. We look at KJava
event handling next.

9.5 HANDLING USER INTERACTIONS IN KJAVA

Handling events in KJava is a very simple affair. All event handling is done through
the Spotlet. As we mentioned in the beginning of this chapter, while an application
can be made up of more than one Spotlet (which is often the case), one and only one
Spotlet can have “focus” at any given time. All events are sent to the Spotlet with
focus (called the current Spotlet) via a set of methods. These event-handling methods
are similar to the type of event-handling methods provided in the original Java AWT.

In KJava, there are no listener or command objects such as in MIDP. Instead, the
Spotlet is registered for events. Each Spotlet subclass must also override the event-han-
dling methods that process the events in which it has interest.

9.5.1 Spotlet event-processing methods

A Spotlet becomes the Spotlet with focus and is registered for events with a call to the
register() method. Once registered, the Spotlet then handles and reacts to an
event by implementing one or more of the following methods:

• keyDown(int keyCode) Called to handle and process a user pressing any
of the hard or soft keys or entering a character in the Graffiti editor. When
using the emulator, this method is also triggered with standard keyboard input.
The keyCode is the ASCII value of the character entered or button pressed.

Figure 9.21

The RetrieveQuote Spotlet user interface depicts

the current and historical prices in a bar graph.

Based on screen size, the MIDlet RetrieveQuote

application required several displays to handle

the same needs.
248 CHAPTER 9 KJAVA USER INTERFACE

WH_Java2.book Page 249 Monday, March 4, 2002 9:59 AM
• penDown(int x, int y) Invoked whenever the user places the pen on the
display screen. The x and y parameters specify where the user touched the screen.

• penMove(int, int) Invoked whenever the user moves the pen across the
display screen. In this case, the x and y coordinates indicate the final or destina-
tion point in the movement.

• penUp(int x, int y) Called when the user has removed the pen from the dis-
play. The x and y coordinates specify the last position held as the pen was removed.

• unknownEvent(int event, java.io.DataInput in) The catchall pro-
cessing method for unknown events.

You may have noticed that no events are ever triggered directly on user interface com-
ponents. Components, such as the TextField and RadioButton do have event-
handling or processing methods; they simply have to be forwarded news of the event
by the Spotlet. Therefore, the Spotlet serves as the central processing facility for
events, and forwards or triggers reaction to events onto other components by calling
on their event-handling methods.

Not all components are interested in or react to all the events. For example, a
CheckBox component has no interest in whether the pen moved on it, in it or near
it. Spotlets must be programmed to trigger or call on the appropriate event-handling
method of each type component. This is made somewhat easier in that the component
event-handling methods have the same name as the Spotlet event processing method
except they are preceded by the word “handle.” Below is a list of the various user inter-
face components and their available event-handling methods.

Table 9.1 User interface component event-handling methods.

KJava User Interface Component Available Event-Handling Methods

Button None

CheckBox handlePenDown

RadioButton handlePenDown

ScrollTextBox handlePenDown
handlePenMove
handleKeyDown

SelectScrollTextBox same as ScrollTextBox through inheritance

Slider handlePenDown
handlePenMove

TextBox None

TextField handleKeyDown

ValueSelector None

VerticalScrollBar handleKeyDown
handlePenDown
handlePenMove
HANDLING USER INTERACTIONS IN KJAVA 249

WH_Java2.book Page 250 Monday, March 4, 2002 9:59 AM
Since there are no listeners, how does the Spotlet know which components to forward
an event call to? Widgets with concern for actions have methods that help the Spotlet
determine whether an action, such as a penDown action, occurred over a particular
component’s part of the display. For example, the RadioButton component has a
pressed(int x, int y) method that the Spotlet can use to determine if the user
in fact pressed inside of the RadioButton instance spot on the screen. If so, the
Spotlet can trigger the RadioButton’s handlePenDown(int x, int y) method.

9.5.2 Handling beaming events

Most Palm OS devices are equipped with infrared ports. A special processing method
on the Spotlet class is provided to allow Spotlets to receive data via this port. The
beamReceive(byte[] data) method is called on the Spotlet whenever the Spotlet
has focus and the device is receiving beamed data. Spotlets can also beam data to another
device using the infrared port by calling on the beamSend(byte[] data) method.

9.6 HANDLING THE EVENTS OF THE INVESTMENT QUOTE
APPLICATION IN KJAVA

In the first part of this chapter, we were able to display some very nice user interfaces
using the KJava user interface API. However, the displays did not allow for any user
interaction. We could not even enter text in the TextField. In this portion of the
tutorial, we add methods to override the event-handling methods in the Obtain-
QuoteSpotlet and RetrieveQuoteSpotlet classes, which allow for customer
interaction with the application.

9.6.1 Handling key entry events

In both the ObtainQuoteSpotlet and RetrieveQuoteSpotlet we have a text field for
accepting the user’s desired investment symbol. As a first step toward full interaction,

Table 9.2 User interface component event-handling helper methods.

KJava User Interface Component Event Helper methods

Button pressed(x,y)

CheckBox pressed(x,y)

RadioButton pressed(x,y)

ScrollTextBox contains(x,y)

SelectScrollTextBox contains(x,y)

Slider contains(x,y)

TextBox None

TextField pressed(x,y)
hasFocus()

ValueSelector pressed(x,y)

VerticalScrollBar contains(x,y)
250 CHAPTER 9 KJAVA USER INTERFACE

WH_Java2.book Page 251 Monday, March 4, 2002 9:59 AM
we will implement the necessary keyDown() overriding method implementations in
our Spotlets to handle Graffiti input or button presses on the device.

From table 9.1, we see that there are two components in ObtainQuoteSpotlet that
we are using that might be interested in keyDown activity, namely the text field and
scroll text box components. In the RetrieveQuoteSpotlet, only the text field is
concerned with keyDown. In the case of the text fields, it is obvious that we want to
capture the keyCode, or in other words, character being entered, and pass that to the
component for display. Why would the text box be concerned with the activities han-
dled in the keyDown event-handling method? When developing your application,
don’t forget about the buttons, both soft and hard, on the device. In the case of the
scroll text box, we will want to move the text displayed in the box if the customer
presses the directional keys at the bottom of the device.

Pushing the top key is an indication from the user that the display should be scrolled
up. Pushing the bottom key is an indication from the user that the display should be
scrolled down. We use conditionals inside of the keyDown() method to check
which area of the display and/or which key has been pressed in order to respond
appropriately.

 public void keyDown (int keyCode) {

 if ((keyCode == 11) || (keyCode == 12)){
 resultsBox.handleKeyDown(keyCode);
 } else if (symbolField.hasFocus()) {
 symbolField.handleKeyDown(keyCode);
 }
 }

In the case when the scroll-up (key code equals 11) or scroll-down (key code equals
12) key is pushed, we forward the event onto the resultsBox’s handleKey-
Down() method. Otherwise, when the symbolField TextField has focus, we
want the key input to be sent to the symbolField’s handleKeyDown() method.
In this application, we are not concerned with other hard or soft key presses, but your
application might be. Put conditions and handling in the keyDown event-handling
method if your application wants or needs to react to the Applications, Menu, Cal-
culator, or Find soft keys or to the Calendar, Address Book, To Do List and Memo
hard keys.

Scroll up

Scroll down

Figure 9.22

Buttons at the bottom of the device allow for

easier navigation through elements in a scrollable

component. However, in order to use these

buttons in combination with a Spotlet application,

the Spotlet must be programmed to handle the

keyDown event generated by these buttons.
HANDLING THE EVENTS OF THE INVESTMENT QUOTE APPLICATION IN KJAVA 251

WH_Java2.book Page 252 Monday, March 4, 2002 9:59 AM
The keyDown() method in the RetrieveQuoteSpotlet is even easier since there is
no scrolling text box. Instead, we just need to handle key entry for input of the invest-
ment symbol.

public void keyDown (int keyCode) {
 if (symbolField.hasFocus()) {
 symbolField.handleKeyDown(keyCode);
 }
}

9.6.2 Handling pen taps

Our application is looking better. Now, at least, the customer can enter the invest-
ment symbol into the text field. With PDA devices, however, most interactions with
the device do not occur with the Graffiti editor or by pushing the devices buttons.
Most interactions occur with PDA devices by using the stylus or pen instrument in
contact with the display screen. This is often referred to as “tapping” on the screen and
it is usually the preferred interaction with the device because it is quick and easy.
Handling interactions via the pen is the job of the Spotlet’s penDown(), penMove()
and penUp() methods. An example of the penDown method is provided in listing 9.5.

In our application, we have all sorts of reactions to pen actions and motion,
depending on which component is being interacted with. Two important interactions
are when the user taps or presses one of the two buttons (Exit, Get Quote) on the dis-
play. We can tell if a tap has fallen on one of these buttons by checking to see if the
x, y coordinate passed into the penDown() method is inside the button space. If a
button is tapped, the component does not have any handling methods. We, as the
developers, must determine what action is going to occur any time a Button is
pressed. In this case, if the exitButton is pressed, we simply exit the application. If
the “Get Quote” button is pressed, then things get a little more interesting.

public void penDown(int x, int y) {
 if (exitButton.pressed(x,y)){
 Graphics.playSound(Graphics.SOUND_CONFIRMATION);
 System.exit(0);
 } else if (getButton.pressed(x,y)) {
 symbolField.loseFocus();
 if ((symbolField.getText().length() > 0) && (checkSymbol())) {
 Graphics.playSound(Graphics.SOUND_STARTUP);
 String sym = symbolField.getText().toUpperCase();
 //later on, get the price from a quote service here
 int[] price = {75, 55};
 //later on, store the price in the database here
 resultsBox.setText("The price of " + sym + " is $"
 + price[0] + "." + price[1]);
 resultsBox.paint();
 }

Listing 9.5 The penDown method in ObtainQuoteSpotlet

w

w

e

q

252 CHAPTER 9 KJAVA USER INTERFACE

WH_Java2.book Page 253 Monday, March 4, 2002 9:59 AM
 } else if (symbolField.pressed(x,y)) {
 symbolField.setFocus();
 } else if (stockButton.pressed(x,y)) {
 symbolField.loseFocus();
 stockButton.handlePenDown(x,y);
 } else if (fundButton.pressed(x,y)) {
 symbolField.loseFocus();
 fundButton.handlePenDown(x,y);
 } else if (resultsBox.contains(x,y)) {
 resultsBox.handlePenDown(x,y);
 }
}

Check if a button has been pressed

Sound to indicate action confirmation

Handling a Get Quote command request

When the TextField is pressed, give it focus

Handling radio button presses

If the scroll bar is tapped, scroll the text box

When getButton has been pressed, we first check to see that the customer has pro-
vided a symbol and that the symbol is valid (checking that a symbol ending in ‘X’ is
for a mutual fund). If the symbol were valid, we would ordinarily get the price from
our quote service. Since this part of our application is not yet available, we mock up
getting the price by assigning a price ($75.55) to our investment and passing this on
to the resultsBox to be displayed. We would also store the price in a database. The
topic, obtaining a price and storing it in a database, will be discussed in chapter 10.
Notice that whenever a button is pressed we have the device provide an audible sig-
nal. The Graphics object performs this task.

The penDown() method on RetrieveQuoteSpotlet is similar. On the user’s press
of the Get Quote button in this Spotlet, however, a little more work needs to occur.
When Get Quote is pressed, the application must attempt to retrieve the existing
quote. If a historical quote exists, then the application will display the bar graph
depicting the historical and current quote. If a historical quote does not exist, then the
application simply prints the current price. Finally, the customer may have asked for
a quote for which the system does not yet have any quote. In this case, an appropriate
error message must be displayed to the screen. All of this activity is handled by the
displayChart() method (shown in listing 9.6) if the user pushes the Get Quote
button and the symbol is valid.

t

y

r

q

w

e

r

t

y

HANDLING THE EVENTS OF THE INVESTMENT QUOTE APPLICATION IN KJAVA 253

WH_Java2.book Page 254 Monday, March 4, 2002 9:59 AM
private void displayChart(String currentSymbol) {
 //later on, get prices from a database here
 int[] prices = {75,55,110,45};
 if (prices != null) {
 if (prices.length > 2) {
 paintChart(currentSymbol,prices[0],prices[2]);
 } else {
 Graphics.drawRectangle(5,60,155,70,Graphics.ERASE,0);
 Graphics.drawString("Recorded price for " + currentSymbol + "
 is: $" + prices[0] + "." + prices[1], 5, 65, Graphics.PLAIN);
 Graphics.drawString("No historical data exists.", 5, 80,
 Graphics.INVERT);
 }
 }

 else {
 Graphics.playSound(Graphics.SOUND_ERROR);
 Dialog noDataAlert = new Dialog(this,"Alert",
 "No price exists for " + currentSymbol,"OK");
 noDataAlert.showDialog();
 }
}

The same fake prices for all investments for now

With both a historical and current price, display the bar graph

With only a single current price, display the price and a message

With no prices, tell the customer that no prices exist

Again, because the application is not yet hooked up to a database or quote service, we
provide a set of phony current and historical prices for every symbol of $75.55 and
$110.45. This will be changed later so as to get the prices from a database on the device.

With the displayChart() method handling most of the details surrounding
what and how to display price quotes, the Spotlet’s penDown() method must orches-
trate calls to the appropriate handling mechanisms as shown in listing 9.7.

public void penDown(int x, int y) {
 if (exitButton.pressed(x,y)){
 Graphics.playSound(Graphics.SOUND_CONFIRMATION);
 System.exit(0);
 } else if (getButton.pressed(x,y)) {
 symbolField.loseFocus();
 if ((symbolField.getText().length() > 0) && (checkSymbol())) {
 Graphics.playSound(Graphics.SOUND_STARTUP);
 String sym = symbolField.getText().toUpperCase();
 displayChart(sym);
 }

Listing 9.6 The displayChart method in RetrieveQuoteSpotlet

q

w

e

r

q

w

e

r

Listing 9.7 The penDown method in RetrieveQuoteSpotlet
254 CHAPTER 9 KJAVA USER INTERFACE

WH_Java2.book Page 255 Monday, March 4, 2002 9:59 AM
 } else if (symbolField.pressed(x,y)) {
 symbolField.setFocus();
 } else if (stockButton.pressed(x,y)) {
 symbolField.loseFocus();
 stockButton.handlePenDown(x,y);
 } else if (fundButton.pressed(x,y)) {
 symbolField.loseFocus();
 fundButton.handlePenDown(x,y);
 }
}

In the case of our two applications, we are not concerned with the penUp events.
However, if we were, we would simply override the penUp(int x, int y) method
and react to the events as necessary.

9.6.3 Handling pen movement

We need to handle one final event that our ObtainQuoteSpotlet may see. We have
handled the customer’s desire to scroll the price quote results scroll text box by either
pushing the scroll-up or scroll-down buttons at the bottom of the device through the
keyDown() implementation. We have also handled the customer’s desire to scroll
the same scroll text box by tapping the scroll bar on the component. But what if the
user attempts to drag the position indicator of the scroll bar up or down? In order to
handle this last event, we must implement the penMove() method. Since a scroll text
box already knows how to handle this event, we need to check that any movement
with the pen occurs within the instance of the ScrollTextBox and if it does, for-
ward the event on to the component’s handling method.

public void penMove (int x, int y) {

 if (resultsBox.contains(x,y)) {
 resultsBox.handlePenMove(x,y);
 }
}

This method is absent from the RetrieveQuoteSpotlet since the Spotlet has no scroll
text box and therefore no need to react to pen movement.

Our applications’ user interfaces have been completed. The full code for our two
Spotlets is displayed in listings 9.8 and 9.9 as follows.

import com.sun.kjava.*;

public class ObtainQuoteSpotlet extends Spotlet implements DialogOwner {

 private TextField symbolField = null;
 private RadioButton stockButton = null;
 private RadioButton fundButton = null;
 private RadioGroup investmentChoice = null;
 private ScrollTextBox resultsBox = null;

Listing 9.8 The complete ObtainQuoteSpotlet.java
HANDLING THE EVENTS OF THE INVESTMENT QUOTE APPLICATION IN KJAVA 255

WH_Java2.book Page 256 Monday, March 4, 2002 9:59 AM
 private Button exitButton = null;
 private Button getButton = null;

 public ObtainQuoteSpotlet() {
 String tfLabel = "Symbol";
 symbolField = new TextField(tfLabel,5,25,Graphics.getWidth(tfLabel)
 + 40, Graphics.getHeight(tfLabel));
 stockButton = new RadioButton(50,45,"Stock");
 fundButton = new RadioButton(100,45,"Fund");
 investmentChoice = new RadioGroup(2);
 investmentChoice.add(stockButton);
 investmentChoice.add(fundButton);
 investmentChoice.setSelected(stockButton);
 resultsBox = new ScrollTextBox("",8,65,137,45);
 exitButton = new Button("Exit",5,140);
 getButton = new Button("Get Quote", 105,140);
 }

 public static void main (String args[]) {
 ObtainQuoteSpotlet quoteSpotlet = new ObtainQuoteSpotlet();
 quoteSpotlet.displayForm();
 }

 private void displayForm() {
 register(NO_EVENT_OPTIONS);
 Graphics.clearScreen();
 Graphics.drawString("Obtain Investment Quote",5,10,Graphics.INVERT);
 Graphics.drawString("Type:",5,45, Graphics.PLAIN);
 symbolField.paint();
 stockButton.paint();
 fundButton.paint();
 resultsBox.paint();
 Graphics.drawBorder(5,60, 150, 55, Graphics.PLAIN, Graphics.SIMPLE);
 exitButton.paint();
 getButton.paint();
 }

 private boolean checkSymbol() {
 if ((investmentChoice.getSelected().equals(fundButton)) &&
 !(symbolField.getText().toUpperCase().endsWith("X"))){
 Graphics.playSound(Graphics.SOUND_ERROR);
 Dialog symbolAlert = new Dialog(this,"Alert",
 "Check Symbol\n\nMutual Funds end in 'X'","OK");
 symbolAlert.showDialog();
 return false;
 }
 return true;
 }

 public void penDown(int x, int y) {
 if (exitButton.pressed(x,y)){
 Graphics.playSound(Graphics.SOUND_CONFIRMATION);
 System.exit(0);
 } else if (getButton.pressed(x,y)) {
 symbolField.loseFocus();
256 CHAPTER 9 KJAVA USER INTERFACE

WH_Java2.book Page 257 Monday, March 4, 2002 9:59 AM
 if ((symbolField.getText().length() > 0) && (checkSymbol())) {
 Graphics.playSound(Graphics.SOUND_STARTUP);
 String sym = symbolField.getText().toUpperCase();
 //later on, get the price from a quote service here
 int[] price = {75, 55};
 //later on, store the price in the database here
 resultsBox.setText("The price of " + sym + " is $" +
 price[0] + "." + price[1]);
 resultsBox.paint();
 }
 } else if (symbolField.pressed(x,y)) {
 symbolField.setFocus();
 } else if (stockButton.pressed(x,y)) {
 symbolField.loseFocus();
 stockButton.handlePenDown(x,y);
 } else if (fundButton.pressed(x,y)) {
 symbolField.loseFocus();
 fundButton.handlePenDown(x,y);
 } else if (resultsBox.contains(x,y)) {
 resultsBox.handlePenDown(x,y);
 }
 }

 public void keyDown (int keyCode) {
 if ((keyCode == 11) || (keyCode == 12)){
 resultsBox.handleKeyDown(keyCode);
 } else if (symbolField.hasFocus()) {
 symbolField.handleKeyDown(keyCode);
 }
 }

 public void penMove (int x, int y) {
 if (resultsBox.contains(x,y)) {
 resultsBox.handlePenMove(x,y);
 }
 }

 public void dialogDismissed(java.lang.String title) {
 this.displayForm();
 }
}

import com.sun.kjava.*;

public class RetrieveQuoteSpotlet extends Spotlet implements DialogOwner{

 static final int MAX_BAR_SIZE = 150;
 static final int START_X_POSITION = 5;
 static final int START_Y_CURRENT = 97;
 static final int START_Y_HISTORIC = 122;
 static final int BAR_HEIGHT = 5;

Listing 9.9 The complete RetrieveQuoteSpotlet.java
HANDLING THE EVENTS OF THE INVESTMENT QUOTE APPLICATION IN KJAVA 257

WH_Java2.book Page 258 Monday, March 4, 2002 9:59 AM
 private TextField symbolField = null;
 private RadioButton stockButton = null;
 private RadioButton fundButton = null;
 private RadioGroup investmentChoice = null;
 private Button exitButton = null;
 private Button getButton = null;

 public RetrieveQuoteSpotlet() {
 String tfLabel = "Symbol";
 symbolField = new TextField(tfLabel,5,25,Graphics.getWidth(tfLabel)
 + 40, Graphics.getHeight(tfLabel));
 stockButton = new RadioButton(50,45,"Stock");
 fundButton = new RadioButton(100,45,"Fund");
 investmentChoice = new RadioGroup(2);
 investmentChoice.add(stockButton);
 investmentChoice.add(fundButton);
 investmentChoice.setSelected(stockButton);
 exitButton = new Button("Exit",5,140);
 getButton = new Button("Get Quote", 105,140);
 }

 public static void main (String args[]) {
 RetrieveQuoteSpotlet quoteSpotlet = new RetrieveQuoteSpotlet();
 quoteSpotlet.displayForm();
 }

 private void displayForm() {
 register(NO_EVENT_OPTIONS);
 Graphics.clearScreen();
 Graphics.drawString("Retrieve Investment Quote",5,10,
 Graphics.INVERT);
 Graphics.drawString("Type:",5,45, Graphics.PLAIN);
 symbolField.paint();
 stockButton.paint();
 fundButton.paint();
 exitButton.paint();
 getButton.paint();
 }

 private boolean checkSymbol() {
 if ((investmentChoice.getSelected().equals(fundButton)) &&
 !(symbolField.getText().toUpperCase().endsWith("X"))){
 Graphics.playSound(Graphics.SOUND_ERROR);
 Dialog symbolAlert = new Dialog(this,"Alert",
 "Check Symbol\n\nMutual Funds end in 'X'","OK");
 symbolAlert.showDialog();
 return false;
 }
 return true;
 }

 private void displayChart(String currentSymbol) {
 //later on, get prices from a database here
 int[] prices = {75,55,110,45};
258 CHAPTER 9 KJAVA USER INTERFACE

WH_Java2.book Page 259 Monday, March 4, 2002 9:59 AM
 if (prices != null) {
 if (prices.length > 2) {
 paintChart(currentSymbol,prices[0],prices[2]);
 } else {
 Graphics.drawRectangle(5,60,155,70,Graphics.ERASE,0);
 Graphics.drawString("Recorded price for
 " + currentSymbol + " is: $" + prices[0] + "."
 + prices[1], 5, 65, Graphics.PLAIN);
 Graphics.drawString("No historical data exists.", 5, 80,
 Graphics.INVERT);
 }
 }
 else {
 Graphics.playSound(Graphics.SOUND_ERROR);
 Dialog noDataAlert = new Dialog(this,"Alert",
 "No price exists for " + currentSymbol,"OK");
 noDataAlert.showDialog();
 }
 }

 public void paintChart(String sym, int currentPrice, int historicPrice)
 {
 Graphics.drawRectangle(5,60,155,70,Graphics.ERASE,0);
 Graphics.drawString(sym + " Performance",5,60,Graphics.PLAIN);
 Graphics.drawString("current vs. historic",5,73,Graphics.PLAIN);
 Graphics.drawString("$" + currentPrice, 5, 85, Graphics.PLAIN);
 Graphics.drawString("$" + historicPrice, 5, 110, Graphics.PLAIN);

 int[] prices = {currentPrice, historicPrice};
 int[] lengths = determineLengths(prices);
 Graphics.drawRectangle (START_X_POSITION, START_Y_CURRENT,
 lengths[0], BAR_HEIGHT, Graphics.PLAIN, 0);
 Graphics.drawRectangle (START_X_POSITION, START_Y_HISTORIC,
 lengths[1], BAR_HEIGHT, Graphics.PLAIN, 0);

 for (int i = 30; i < MAX_BAR_SIZE; i = i + 30) {
 Graphics.drawLine (i, START_Y_CURRENT - 2, i, START_Y_HISTORIC +
 BAR_HEIGHT + 2, Graphics.PLAIN);
 }
 }

 private int[] determineLengths (int[] prices) {

 int ratio, higherPrice, lowerPrice;
 boolean currentHigher;

 if (prices[0] < prices[1]) {
 higherPrice = prices[1];
 lowerPrice = prices[0];
 currentHigher=false;
 } else {
 higherPrice = prices[0];
 lowerPrice = prices[1];
 currentHigher=true;
 }
HANDLING THE EVENTS OF THE INVESTMENT QUOTE APPLICATION IN KJAVA 259

WH_Java2.book Page 260 Monday, March 4, 2002 9:59 AM
 ratio = higherPrice/MAX_BAR_SIZE + 1;
 while (ratio > 1) {
 higherPrice = higherPrice/ratio;
 lowerPrice = lowerPrice/ratio;
 ratio = higherPrice/MAX_BAR_SIZE + 1;
 }

 if (currentHigher) {
 int[] ends = {higherPrice, lowerPrice};
 return ends;
 } else {
 int [] ends = {lowerPrice, higherPrice};
 return ends;
 }
 }

 public void penDown(int x, int y) {
 if (exitButton.pressed(x,y)){
 Graphics.playSound(Graphics.SOUND_CONFIRMATION);
 System.exit(0);
 } else if (getButton.pressed(x,y)) {
 symbolField.loseFocus();
 if ((symbolField.getText().length() > 0) && (checkSymbol())) {
 Graphics.playSound(Graphics.SOUND_STARTUP);
 String sym = symbolField.getText().toUpperCase();
 displayChart(sym);
 }
 } else if (symbolField.pressed(x,y)) {
 symbolField.setFocus();
 } else if (stockButton.pressed(x,y)) {
 symbolField.loseFocus();
 stockButton.handlePenDown(x,y);
 } else if (fundButton.pressed(x,y)) {
 symbolField.loseFocus();
 fundButton.handlePenDown(x,y);
 }
 }

 public void keyDown (int keyCode) {
 if (symbolField.hasFocus()) {
 symbolField.handleKeyDown(keyCode);
 }
 }

 public void dialogDismissed(java.lang.String title) {
 this.displayForm();
 }
}

As was done earlier in this chapter, use Jbed to compile and link the applications pro-
ducing two PRC files. These PRC files can then be deployed to the emulator and
finally to the actual devices. However, our application is not yet complete. We still
260 CHAPTER 9 KJAVA USER INTERFACE

WH_Java2.book Page 261 Monday, March 4, 2002 9:59 AM
need to hook up our applications to a persistent storage mechanism on the PDA
device for storing and retrieving the investment quote information. Furthermore, we
will utilize the QuoteService developed in the MIDP section to obtain live invest-
ment quotes wirelessly.

9.7 SUMMARY

In this chapter, we examined the KJava’s graphical user interface and event handling
mechanisms. Unlike the MIDP APIs, the KJava API has no high-level or low-level
user interface or event handling mechanisms and is often considered a fairly simplis-
tic API. Again, remember that KJava was designed and developed to be a demonstra-
tion API. Therefore, its sophistication and capabilities must be viewed in that light
when comparing it to a full J2ME profile. This chapter also provided us an opportu-
nity to see and use an IDE, Jbed by esmertec, for developing our applications. IDEs
can simplify a number of the tedious tasks associated with creating the application.
They can also offer assistance in debugging and sometimes offer deployment options.
SUMMARY 261

WH_Java2.book Page 262 Monday, March 4, 2002 9:59 AM
C H A P T E R 1 0

KJava data storage

10.1 Palm OS databases 263
10.2 KJava database API 265
10.3 Implementing the investment quote persistent storage in KJava 268
10.4 Revisiting the connection to the Internet 275
10.5 Accessing Palm OS application databases 285
10.6 Summary 287
PDA devices are getting bigger and stronger. Many of the leading database vendors have
started to recognize this fact and are now shipping mini-versions of their relational data-
bases for these devices. More information on these databases is provided in chapter 15.

Today, however, many PDA manufacturers also have their own proprietary data-
bases on the device. Palm OS devices utilize Palm database files (PDB files) for several
applications that run on the device, including the Address Book, Calendar and To Do
List applications.

In the future, access to more standard relational databases on these devices will
come via JDBC access. Access to the proprietary databases requires the development
of a new standard such as the MIDP RMS or a special Java API that serves as a wrapper
around the device’s databases.

In chapter 6, we examined the MIDP Record Management System. The RMS
established a contract for persistent data storage on small devices, in this case typically
cell phones and pagers. Under this contract the platform vendor can implement storage
of data on a device they deemed fit so long as the J2ME application could access data
via the RMS API. KJava, on the other hand, was developed as a demonstration/testing
capability for Palm OS devices. Given this beginning, it should come as no surprise that
the KJava persistent storage mechanism is aimed at one specific implementation of a
262

WH_Java2.book Page 263 Monday, March 4, 2002 9:59 AM
database, specifically Palm OS databases. The KJava Database class is a wrapper class
for Palm OS databases. In this chapter, we look at how to create and utilize Palm OS
databases through the KJava API and in particular, we examine:

• some background on the Palm database.

• the API for accessing and storing data through KJava’s Database class

Lastly, as we have done in all of the API chapters, we will add what we have learned in
this chapter to the tutorial application. In this case, we will add KJava Database access
to the tutorial application. In this particular example, we will add a Palm OS database
to our KJava applications from chapter 9 for the purposes of storing and retrieving
investment price data. Finally, we will also reuse our QuoteService built in the MIDP
implementation. As we will see, the Generic Connection Framework is available across
the various APIs in J2ME.

10.1 PALM OS DATABASES

A Palm OS database is actually a very rudimentary data storage mechanism. On the
device, a Palm OS database is a set of possibly non-contiguous memory chunks man-
aged as a single unit by a Data Manager. These chunks, or records as they are called
by Palm, are finite in size. This allows the operating system’s Data Manager to access
and update information in place on the disk as opposed to reading data from the file
into a memory buffer. Given the RAM resource constraints of the Palm OS device,
attempting to transfer large amounts of data in and out of dynamic memory would
create many difficulties and would not be optimal. Managing the databases then
becomes an exercise in allocating, deleting, and resizing the various records on the
part of the Data Managers.

10.1.1 Different types of Palm OS databases

In fact, there are two types of databases in the Palm OS device. Record databases
often contain user data and are managed by the Data Manager. Address book, calen-
dar, memo data, and the like are all stored in record databases. Records inside of a
record database are ordered, with the index of records in a record database starting
at 0. Resource databases, on the other hand, are used by applications to store user
interface elements such as images, fonts, user interface layouts, and so forth. The
memory chunks in a resource database are called resources and are managed by the
Resource Manager. There is no order assigned to resources in a resource database.
The KJava database API does not properly allow for access of resource databases.
Therefore, the rest of this chapter will concern itself with Palm OS record databases.

10.1.2 Palm OS record database

The Palm OS API for accessing and handling record databases and records is exten-
sive. The KJava API does not expose much of this API to Java developers. However, it
is helpful to understand a little bit about how Palm OS databases are structured.
PALM OS DATABASES 263

WH_Java2.book Page 264 Monday, March 4, 2002 9:59 AM
Header

Each Palm OS database has a header. The header contains some basic information
about the database and a list of all the records belonging to it. The record list is a list
of local IDs that can be converted to a memory handle by the Data Manager when
the record is requested. Other information in the header includes, but is not limited
to, the information in table 10.1.

Type and creator require a little explanation. As an example, the type of the address
book database associated with the Address Book application that comes standard with
all Palm OS systems is “DATA” and its database creator or Creator ID is “addr”.

Creator ID

Every application, database, library, or other resource file on a Palm OS device should
have a four character Creator ID identifying its author. Palm maintains a Creator ID
database and allows Palm OS developers to register their desired ID over the Internet.
The Creator ID Database search and online registration form are available at
http://dev.palmos.com/creatorid. If you are going to be developing KJava or other Palm
OS applications, it is a good idea to go to this site and register your intended Creator
ID. If you and the other Palm OS developers do this, it will prevent your application or
database from conflicting with applications and databases already on these devices.

It takes about two minutes to check and register your Creator ID. Palm, Inc.
reserves Creator IDs consisting of lowercase letters for their use. Thus a Creator ID
of “addr” immediately identifies the database as a creation of Palm. Catapult Tech-
nologies has a registered Creator ID of “CATT”. Therefore all of the examples in this
book will carry this Creator ID.

Records

Again, a record is simply a block of data on the device that is referenced by a database.
This block cannot exceed 64K and all records for a single database must reside on the
same memory card. Today, this last rule is easily enforced since current products have

Table 10.1 The header in a Palm OS database contains information about its type, name and

capacity among other properties.

Header Information Restrictions/Structure

The name of the database Limited to less than 32 characters (31 bytes plus a null terminator)
and it must be unique to all other databases

The modification number This is incremented every time a record in the database is
deleted, added or modified

Version number of the database System determined version number of the database

The database type A four character (4 byte) field identifying the purpose of the data-
base. At least one of the four characters must be uppercase.

The database creator A four character (4 byte) field identifying the creator of the database

Number of records in the database Count of the records in the database
264 CHAPTER 10 KJAVA DATA STORAGE

WH_Java2.book Page 265 Monday, March 4, 2002 9:59 AM
only one card (called card 0). However, in the future, more than one memory card
may exist in each device. Along with the header, a database contains a series of record
references. Each record reference, or record entry as it is also referred to, has three fields
stored in 8 bytes.

The local ID is used by the Data Manager to determine the location or handle to the
record from this ID. The unique ID, on the other hand, is the ID of the record with
regard to other records in the database. It must be unique to all records within a data-
base and it never changes for the life of the record, regardless of any modifications to
the record. Finally, the record attribute stores information about the condition of
each record. Bits inside of the record attribute indicate whether the record is dirty
(being updated), busy (an application currently has the record locked), secret (the
record should not be displayed before a user has provided a password), or deleted (the
record has been deleted but not yet cleared from the database).

Details about the Palm OS record databases, database header, and records are not
terribly significant to developing applications in KJava since the API does not provide
direct access to many of these details. However, understanding the database and its ele-
ments helps to explain a number of methods, parameters, and features associated with
the KJava Database wrapper class.

10.2 KJAVA DATABASE API

The KJava persistent storage API consists of one class. Specifically, the Database
class is a wrapper class to the Palm OS Data Manager, and it provides minimal sup-
port for accessing Palm OS databases.

10.2.1 Opening and creating databases

The single constructor, Database(int typeID, int creatorID, int mode),
opens a Palm OS database represented by an instance of Database. The cre-
atorID is your registered Palm Creator ID represented in two-digit hexadecimal
form. Thus, “CATT” becomes 0x43415454.

Table 10.2 Each Record in a Palm OS database has an eight-byte Record Reference.

The Record Reference contains the IDs of the record as well as attribute information such as

whether the record is dirty.

Record Field Size

The local ID of the record 4 bytes

The record attributes 1 byte

The unique ID for the record 3 bytes

Table 10.3 Creator ID CATT converted to hex.

C A T T

Hex 0x43 0x41 0x54 0x54
KJAVA DATABASE API 265

WH_Java2.book Page 266 Monday, March 4, 2002 9:59 AM
In the same way, the typeID, which represents the type or purpose of the database,
must be converted to hex. In our tutorial application, the type ID is “INVS” for “invest-
ments.” When converted to hex value the “INVS” string becomes 0x494E5653. The
mode passed in as the last constructor parameter refers to the access granted to the
database user. There are three mode options, each defined by a Database static int:
READONLY, READWRITE, WRITEONLY.

If the database specified in the constructor does not exist, however, no exception
is thrown. Instead, a Database instance is still returned, but no Palm OS database is
opened. To check if the Database object returned from the constructor is truly open,
call the isOpen() method on the returned instance. This method returns a boolean,
with a true value indicating the database does exist and was successfully opened.

If the database does not exist, it is necessary in many circumstances to create it. To
create a new Palm OS database through the Database class, use the static create
(int cardNo, java.lang.String name, int creatorID, int typeID,
boolean resDB). The first parameter in this method is the memory card location
for the database. As indicated earlier, at this time there is only one memory card for
Palm OS devices and it is labeled card 0. Therefore, until this situation changes, the
cardNo is always 0. The second parameter is the database name. The name must be
unique with regard to all databases on the Palm OS device, and is limited to 31 char-
acters. The creatorID and typeID, as per the constructor method, specify the reg-
istered Palm Creator ID and type ID represented in two-digit hexadecimal form. The
final parameter supplied to the create() method is a boolean indicating whether to
create a resource database. Again, the KJava database API does not provide a means
to address resource databases. Therefore, this value should always be set to false sig-
nifying the creation of a record database.

In many cases, the Database constructor (which opens but does not create a data-
base), the isOpen() method and the create() method are used together to ensure
that a database is opened or created before continuing the application. Consider the
common database initialization code as follows.

String dbName = "SomeDatabase";
int dbType = 0x494E5653; //'INVS'
int dbCreator = 0x43415454; //'CATT'
com.sun.kjava.Database quoteDB = new Database (dbType, dbCreator,
 Database.READWRITE);
if (!quoteDB.isOpen()) {
 Database.create(0, dbName, dbCreator, dbType, false);
 quoteDB = new Database (dbType, dbCreator, Database.READWRITE);
}

Attempt to open the investment database

If opened, use the database, otherwise create it

Notice how the constructor is used first to attempt to open the database, and then, if
the attempt is unsuccessful, the constructor is used again to open the newly created

q
w

q

w

266 CHAPTER 10 KJAVA DATA STORAGE

WH_Java2.book Page 267 Monday, March 4, 2002 9:59 AM
database. It may look strange to see the new keyword being used when attempting to
open an existing database, but remember, the Database class is simply a wrapper to
the actual Palm OS database. Therefore, the call to the constructor, in either case, is
not creating a database. It is merely attempting to open the existing or just-created
database when it was found not to exist. The create() method returns a boolean.
You may want to check this return value after sending the create() message to
ensure that the database really did get created.

To close a database after you have finished using it, use the close() method on
the database object.

WARNING The close() method on the database object will close the actual Palm OS
database; however, the isOpen() method will still return true on the
Database object reference.

10.2.2 Accessing the database

There are several methods to access a Palm OS database through the wrapper objects.
Most importantly are the methods to CRUD (create, read, update and delete)
records. Through the eyes of a Database object, a Palm OS record is simply a byte
array. Thus, a byte array (byte[]) is what is used to add, update or delete the data-
base and a byte array is returned when requesting records from the database. Given
the fact that the Palm OS database is really just a collection of memory chunks, it
should come as little surprise that KJava treats records as simple bytes of data.

All of the database-modifying record operations (add, update, delete) will return
a boolean indicating whether the particular database operation was successful. To add
a new record to the database use the addRecord(byte[] data) method. For exam-
ple, the following code stores the string “HelloDatabase” into the quoteDB database
opened earlier in this chapter.

 byte[] someData = “HelloDatabase”.getBytes();
 quoteDB.addRecord(someData);

In a similar fashion, to remove a record from the same database, call on the delete-
Record(int recordNumber) method. The index refers to the ordered sequence or
index of the record in the database. The record index numbers start at 0. Updating a
record in the database requires the use of setRecord(int recordNumber,
byte[] data).

Finally, to just read a record from the database, call the getRecord(int
recordNumber) method. Unlike the other access methods, this method returns the
byte array that is the data in the specified record in the database at the index location
specified through the method parameter. Use caution when referring to any record in
the database via its index. Notice that the methods to access the database do not throw
exceptions. In fact, if an attempt is made to access a record at an index that does not
exist, the Palm OS Data Manager crashes. The error in figure 10.1 is the result of
attempting access to a record at an index that does not exist on the emulator. The error
on a real device will require a soft reset of the device.
KJAVA DATABASE API 267

WH_Java2.book Page 268 Monday, March 4, 2002 9:59 AM
To get the actual number of records in a database, and thus know the upper bound
on the record indexes, call the getNumberOfRecords() method. It is a good idea
to use this method to check an index before attempting to access a record with an index.

10.3 IMPLEMENTING THE INVESTMENT QUOTE
PERSISTENT STORAGE IN KJAVA

The Database class is our means to store and retrieve data in Palm OS databases.
With this wrapper class, let’s update the tutorial application developed in chapter 9 to
store and retrieve investment price quotes.

In the RetrieveQuoteSpotlet, you may remember that we stubbed out calls to
retrieve data by simply returning the same current and historical prices all the time.
Now we can fix this and really store data when obtained through the ObtainQuote-
Spotlet and retrieve data when requested in the RetrieveQuoteSpotlet.

In the design of the application, recall that the ObtainQuote and RetrieveQuote
use cases made use of two other use cases, namely SavePrice and RetrievePrice. These
use cases stored and fetched investment price information in and out of the persistent
mechanism. As we did in the MIDP application, we will create the code that imple-
ments these use cases using KJava’s Database class in this chapter.

10.3.1 The stock/mutual fund record

As was learned in this chapter, a record is nothing more than a byte array. Through-
out the tutorial, an investment record consists of the stock or mutual fund symbol
along with the current and historical price, usually contained within a delimited string.

As mentioned previously, the CLDC, on which KJava relies, does not support
floating point numbers. Therefore the use of Java’s double or float base types cannot be
used to represent dollar/cent prices of most stock and mutual fund quotes. Instead, we
use two integers to represent one price. For example, if the stock price were $120.55,
then the price must be stored as two integers, 120 and 55. One integer represents the
dollars associated with the price while the second represents the cents of the price.
Remember that the application must be able to store a current and a historical price
for each stock or mutual fund. Therefore, along with a symbol to identify the stock

Figure 10.1 Attempting to access non-existent records in a Palm OS data-

base can create real problems. Attempting to access a record in the database

at an unused index location results in this error message. On a real device,

the problem is even worse and requires a soft reset of the device.
268 CHAPTER 10 KJAVA DATA STORAGE

WH_Java2.book Page 269 Monday, March 4, 2002 9:59 AM
or mutual fund, two sets of dollar and cent integer values must be stored. In order to
store all this data in a single string, a marker or delimiter is needed to indicate where
one value stops and the next data value begins. For this tutorial, we choose the semi-
colon as a data delimiter. So, the string representing a current price of $120.55 and a
historical price of $113.45 for 3M would look like the following:

MMM;120;55;113;45

In the case where only one price has been obtained for the stock or mutual fund, the
last two trailing integers are left off. So, using our previous example, when the first
price of $113.45 was obtained for 3M, the original record string would have been
represented as:

MMM;113;45

The string record that contains the stock or mutual fund price quotes and investment
symbol needs to be converted to a byte array before being stored as a record in the
record store. This can easily be accomplished using the method getBytes() on any
String object.

10.3.2 Storing investment quotes

The ObtainQuoteSpotlet controls all aspects of getting and storing stock or mutual
fund quotes. In the user interface chapter, where the quote service and database were
not available, we simply used arbitrary numbers to simulate the getting of prices.
From inside the penDown() method of ObtainQuoteSpotlet, in reaction to a Get
Quote button press, the following code was run:

if ((symbolField.getText().length() > 0) && (checkSymbol())) {

 Graphics.playSound(Graphics.SOUND_STARTUP);
 String sym = symbolField.getText().toUpperCase();
 //later on, get the price from a quote service here
 int[] price = {75, 55};
 //later on, store the price in the database here
 resultsBox.setText("The price of " + sym + " is $" + price[0] + "." +
 price[1]);
 resultsBox.paint();
}

Our goal now is to implement the storage of the price data for use by the Retrieve-
QuoteSpotlet later on.

To begin, we need an open Palm OS database. We saw earlier in this chapter how
to open, and create if necessary, a database. We start a new method called store-
Price(String symbol, int[] price). This method will fulfill the SavePrice
use case described in our tutorial application design. It is passed the investment symbol
and price of the quote for the investment of concern. From inside this method we
open the database:

Trigger the saving of
the price data here

q

IMPLEMENTING THE INVESTMENT QUOTE PERSISTENT STORAGE IN KJAVA 269

WH_Java2.book Page 270 Monday, March 4, 2002 9:59 AM
String dbName = "QuoteData";
int dbType = 0x494E5653; //'INVS'
int dbCreator = 0x43415454; //'CATT'

com.sun.kjava.Database quoteDB = new Database (dbType, dbCreator,
 Database.READWRITE);
if (!quoteDB.isOpen()) {
 Database.create(0, dbName, dbCreator, dbType, false);
 quoteDB = new Database (dbType, dbCreator, Database.READWRITE);
}

The database typeID

The database creatorID

Open or create the investment database

With the open database, we first determine if there is an existing record for the given
symbol. Unlike in the MIDP RMS, there are no convenience objects for filtering the
database or enumerating through records. In KJava, enumerating through the data-
base must be done using a loop, reading, and checking each record in the database.
Inside of a for loop that starts at 0 and potentially goes to the full number of records
in the database, we must read each record with a call to getRecord(int record-
Number) and determine if the record contains the symbol provided by the customer.

boolean found = false;
int n = quoteDB.getNumberOfRecords();
for (int i = 0; i<n; i++) {
 byte[] raw = quoteDB.getRecord(i);
 if ((new String(raw)).startsWith(symbol + ';')) {
 found = true;
 newRecord += ';' + getLastPrice(raw);
 byteRec = newRecord.getBytes();
 quoteDB.setRecord(i, byteRec);
 break;
 }
}

The data stored in a Palm OS database comes out as a byte array. Because the symbol
of the investment is stored in the front part of the data, we can simply check to see if
the data, converted to a string, begins with the investment symbol. If so, we have a
matching database record, indicating that a previous quote is stored in the database.

When updating an existing record, the last current price becomes the new histor-
ical price. (Figure 10.2)

q
w

e

q

w

e

MMM

Current price Historical price

113,45; 113,45;
120.55;

Figure 10.2

When the application retrieves a

new investment price for which an

existing price already exists in the

database, then the old price is made

the historical price and the new

price is made the current price.
270 CHAPTER 10 KJAVA DATA STORAGE

WH_Java2.book Page 271 Monday, March 4, 2002 9:59 AM
To assist in getting this data from the existing byte array record, another method is
used to convert the byte array back to a string and to extract the last price from the string.

private String getLastPrice(byte[] rec) {
 String recString = new String(rec);

 int dollarPos = recString.indexOf(';');
 int centPos = recString.indexOf(';',dollarPos+1);
 int centEnd = recString.indexOf(';',centPos + 1);

 if (centEnd > 0) //had a historical price
 return recString.substring(dollarPos+1,centEnd);
 else //no previous historical price
 return recString.substring(dollarPos+1);
}

The getLastPrice() method, developed in the MIDP tutorial application imple-
mentation, is a byte array-to-string converter with some string manipulation to find the
appropriate dollar and cent values stored in between the appropriate ‘;’ character delimiters.

In the case where no investment record is found for an investment symbol pro-
vided, a new record must be added to the database. This is accomplished using the
addRecord() method. The argument passed to the addRecord() method is the
new record data converted into a byte array.

if (!found) {

 byteRec = newRecord.getBytes();
 quoteDB.addRecord(byteRec);
}

Finally, don’t forget to close the database with a call to the close() method after
storing or updating the investment quote. All together, the new two methods added
to the ObtainQuoteSpotlet look like the code in listing 10.1.

private String getLastPrice(byte[] rec) {
 String recString = new String(rec);

 int dollarPos = recString.indexOf(';');
 int centPos = recString.indexOf(';',dollarPos+1);
 int centEnd = recString.indexOf(';',centPos + 1);

 if (centEnd > 0) //had a historical price
 return recString.substring(dollarPos+1,centEnd);
 else //no previous historical price
 return recString.substring(dollarPos+1);
}

private void storePrice(String symbol, int[] price) {
 String newRecord = symbol + ";" + price[0] + ";" + price[1];
 byte[] byteRec;
 String dbName = "QuoteData";
 int dbType = 0x494E5653; //'INVS'

Listing 10.1 The getLastPrice and storePrice methods in ObtainQuoteSpotlet

Get the position
of the last price
within the string

q

Return the current
price string,
regardless of a
historical price

w

IMPLEMENTING THE INVESTMENT QUOTE PERSISTENT STORAGE IN KJAVA 271

WH_Java2.book Page 272 Monday, March 4, 2002 9:59 AM
 int dbCreator = 0x43415454; //'CATT'

 com.sun.kjava.Database quoteDB = new Database (dbType, dbCreator,
 Database.READWRITE);
 if (!quoteDB.isOpen()) {
 Database.create(0, dbName, dbCreator, dbType, false);
 quoteDB = new Database (dbType, dbCreator, Database.READWRITE);
 }

 boolean found = false;

 int n = quoteDB.getNumberOfRecords();
 for (int i = 0; i<n; i++) {
 byte[] raw = quoteDB.getRecord(i);
 if ((new String(raw)).startsWith(symbol + ';')) {
 found = true;
 newRecord += ';' + getLastPrice(raw);
 byteRec = newRecord.getBytes();
 quoteDB.setRecord(i, byteRec);
 break;
 }
 }
 if (!found) {
 byteRec = newRecord.getBytes();
 quoteDB.addRecord(byteRec);
 }
 quoteDB.close();
}

The only other change required to have the ObtainQuoteSpotlet now work with the
Palm OS database is to have the penDown method call the storePrice() method
after the price, or in this case, the phony price, has been obtained.

if ((symbolField.getText().length() > 0) && (checkSymbol())) {

 Graphics.playSound(Graphics.SOUND_STARTUP);
 String sym = symbolField.getText().toUpperCase();
 //later on, get the price from a quote service here
 int[] price = {75, 55};
 storePrice(sym, price);
 resultsBox.setText("The price of " + sym + " is $" + price[0] + "." +
 price[1]);
 resultsBox.paint();
}

To see the KJava database wrapper in action, we go back to Jbed to rebuild our appli-
cation. First make sure the ObtainQuote project is in use. Go to the Projects menu bar
option and make sure the ObtainQuote project is checked. Next, open the Obtain-
QuoteSpotlet.java file by selecting the File menu bar option and selecting the
Open… menu item. After finding and selecting the ObtainQuoteSpotlet.java in the
Open dialog box, add the code discussed previously to the Java program in the text editor.
In particular, add the two new methods, storePrice() and getLastPrice(),

Call to store the price quote when obtained
q

272 CHAPTER 10 KJAVA DATA STORAGE

WH_Java2.book Page 273 Monday, March 4, 2002 9:59 AM
as well as the changes to the penDown() method. Then, to compile the application,
select Java from the menu bar and select the Compile item. Finally, to link the appli-
cation, select Jbed from the menu bar and select the Link item. This will result in the
creation of an ObtainQuoteSpotlet.prc that, with these additions, is up to about
118 KB in size.

10.3.3 Retrieving records

Having the data stored in a database does no good unless it is saved for later retrieval.
In this part of the tutorial, the stock and mutual funds can be retrieved to display the
current and historical prices of a given investment. Recall that in the exploration of
the KJava user interface, we even developed a means to graphically depict the current
and historical prices in a comparison bar chart using KJava’s Graphics object.

As with the ObtainQuoteSpotlet, the RetrieveQuoteSpotlet was written to dem-
onstrate the user interface capabilities and so the actual investment symbol and quote
were simply passed as fake parameters to the display methods. From earlier in our tuto-
rial, the penDown() event handling method called on the displayChart() when
the “Get Quote” button was pushed to display the quote chart. In order to test the
display, fake current and historical prices ($75 and $110) were put in an integer array
as if they were pulled from a database from inside of the displayChart() method.

//later on, get prices from a database here

int[] prices = {75,55,110,45};

It is now time to retrofit the RetrieveQuoteSpotlet to open the quote database and
retrieve stored quotes placed in the database by the ObtainQuoteSpotlet. We start by
developing a method called retrievePrices(String symbol) to get quotes from the
database based on a symbol supplied by the caller. This method, as shown in listing
10.2, will satisfy the RetrievePrice use case specified in the tutorial application design.

private int[] retrievePrices(String symbol) {

 int[] dollars = null;

 String dbName = "QuoteData";
 int dbType = 0x494E5653; //'INVS'
 int dbCreator = 0x43415454; //'CATT'
 com.sun.kjava.Database quoteDB = new Database (dbType, dbCreator,
 Database.READWRITE);
 if (!quoteDB.isOpen()) {
 Database.create(0, dbName, dbCreator, dbType, false);
 quoteDB = new Database (dbType, dbCreator, Database.READWRITE);
 }

 boolean found = false;

Listing 10.2 The retrievePrices method in RetrieveQuoteSpotlet

Open the
Palm OS database

(creating it if it
does not exist)

q

IMPLEMENTING THE INVESTMENT QUOTE PERSISTENT STORAGE IN KJAVA 273

WH_Java2.book Page 274 Monday, March 4, 2002 9:59 AM
 int n = quoteDB.getNumberOfRecords();
 for (int i = 0; i<n; i++) {
 String raw = new String(quoteDB.getRecord(i));
 if (raw.startsWith(symbol + ';')) {
 found = true;
 byte[] rec = quoteDB.getRecord(i);
 dollars = parsePrices(rec);
 break;
 }
 }
 if (!found) {
 dollars = null;
 }
 quoteDB.close();
 return dollars;
}

At first glance, the retrievePrices() method looks a lot like the storePrice()
method from the ObtainQuoteSpotlet. In fact, they both use a loop to locate a
record. However this time, instead of updating or adding the record, the retrieve-
Prices() method simply extracts the current and historical dollar prices from any
matching record found.

Extracting the dollar prices from a record is again a matter of string manipulation
and character matching. It is handled by the parsePrices(byte[] quoteRec)
method, which was also developed and used in the MIDP tutorial application. Each
record contains the symbol for the investment and up to two sets of integers for the
dollars and cents of each price quote (current and possibly historical price). The cur-
rent and historical prices are extracted from the record and returned in an integer
array. If the investment has only one price stored for it, then the array returned con-
tains two integers: the dollar and cents of the currently known price for the invest-
ment. If a historical price is also known for the investment, the integer array will have
four numbers representing the current dollars and cents price as well as the historical
dollars and cents price respectively. (Listing 10.3)

private int[] parsePrices(byte[] quoteRec) {
 String rec = new String(quoteRec);
 int dollar1Pos = rec.indexOf(';');
 int cent1Pos = rec.indexOf(';',dollar1Pos+1);
 int dollar2Pos = rec.indexOf(';',cent1Pos + 1);

 if (dollar2Pos > 0) { //had a historical price
 int cent2Pos = rec.indexOf(';',dollar2Pos + 1);
 int currentDollars = Integer.parseInt(rec.substring(dollar1Pos + 1,
 cent1Pos));
 int currentCents = Integer.parseInt(rec.substring(cent1Pos + 1,
 dollar2Pos));

Listing 10.3 The parsePrices method reused in the RetrieveQuoteSpotlet

If a record for the investment
is found, return the current
and historical prices

w

If a record for the investment is
not found, return null signifying
no prices and no record

e

274 CHAPTER 10 KJAVA DATA STORAGE

WH_Java2.book Page 275 Monday, March 4, 2002 9:59 AM
 int historicalDollars = Integer.parseInt(rec.substring(dollar2Pos + 1,
 cent2Pos));
 int historicalCents = Integer.parseInt(rec.substring(cent2Pos + 1));
 int[] returnPrices = {currentDollars, currentCents, historicalDollars,
 historicalCents};
 return returnPrices;
 } else { //no previous historical price
 int currentDollars = Integer.parseInt(rec.substring(dollar1Pos + 1,
 cent1Pos));
 int currentCents = Integer.parseInt(rec.substring(cent1Pos + 1));
 int[] returnPrices = {currentDollars, currentCents};
 return returnPrices;
 }
}

With these two methods added to the RetrieveQuoteSpotlet, the only remaining task
is to have the retrievePrices() method called when the Get Quote button is
pushed. This is accomplished inside of the Spotlet’s displayChart() method.
Now, instead of generating an int array containing phony prices, the display-
Chart() method just calls the retrievePrices() method with the symbol sup-
plied by the customer.

int[] prices = retrievePrices(currentSymbol);

With this code entered into the RetrieveQuoteSpotlet.java file, use Jbed to compile and
link the application just as you did with the ObtainQuoteSpotlet. Do not forget that
the RetrieveQuoteSpotlet is a separate Jbed project, namely the RetrieveQuote project.

10.4 REVISITING THE CONNECTION TO THE INTERNET

Our Spotlet version of the tutorial application is nearly complete. We have a user
interface and data being stored to Palm OS databases. What’s left to implement? In
the MIDP version of the tutorial application, we implemented a means, the Quote-
Service, to connect to the Internet and pull down investment prices.

Because KJava runs on top of the CLDC, and because we implemented the Quote
Service as generically as possible, we can reuse this service without modification. The
foundation of the Quote Service lies in the Generic Connection Framework and the
java.io package. While the MIDP offers some enhancements to the GCF, we choose
not to use them in order to keep the implementation of the Quote Service as portable
as possible.

Therefore, in order to get the ObtainQuoteSpotlet connected to the World Wide
Web for investment price information, we simply have to have the Spotlet call on the
already developed QuoteService. This entails replacing the following line in the
penDown() method

//later on, get the price from a quote service here

int[] price = {75, 55};
REVISITING THE CONNECTION TO THE INTERNET 275

WH_Java2.book Page 276 Monday, March 4, 2002 9:59 AM
with a call to the service. Because we are no longer using the phony price array that
always returns the same results, some routine condition handling is now in order.
The QuoteService may not return a price. This is the case if the service is not available
(maybe the quote Web site is down), or if the customer has provided an incorrect sym-
bol. Therefore, add a conditional check that the price array return is not null. If the price
is null, an appropriate message is displayed to the customer in the form of a dialog.

String sym = symbolField.getText().toUpperCase();
int type;

if (investmentChoice.getSelected().equals(fundButton))
 type = 1;
else
 type = 0;
int[] price = QuoteService.getPrice(sym,type);
if (price != null) {
 storePrice(sym, price);
 resultsBox.setText("The price of " + sym + " is $"
 + price[0] + "." + price[1]);
 resultsBox.paint();
} else {
 Graphics.playSound(Graphics.SOUND_ERROR);
 Dialog symbolAlert = new Dialog(this,"Alert",
 "Check Symbol and Type.\n\nNo quote found.","OK");
 symbolAlert.showDialog();
}

Get which investment type of radio button is selected

Get the price from the QuoteService, passing the symbol and type

If a price is found, store the price and display the price to the customer

If no price is found, display an indication that the price is not found.

In order to use the QuoteService in the tutorial application, we must add the Quote-
Service class and a few other Jbed GCF implementation items to our application.
To do this, we need to return to the ObtainQuote project in Jbed.

Start the Jbed IDE, select Projects from the Jbed menu bar and select ObtainQuote
in order to set the current project to the ObtainQuote project. Edit the project prop-
erties file by selecting the Edit Project menu option from the same Projects menu after
the project has been set. In the LINKER section of the properties displayed, add the
following classes just before the ObtainQuoteSpotlet:

com.jbed.microedition.protocol.SocketFactory
com.jbed.microedition.protocol.HttpFactory
com.jbed.net.DnsImpl
QuoteService

The QuoteService class is the service and this class file must be located in the same
place as the ObtainQuoteSpotlet. We will compile this file in a moment. The other
class files are Jbed-provided classes for implementing the GCF. (GCF was introduced in

w

q

e

r

q

w

e

r

276 CHAPTER 10 KJAVA DATA STORAGE

WH_Java2.book Page 277 Monday, March 4, 2002 9:59 AM
chapter 7 and will be discussed in more detail in chapter13). The SocketFactory
and HttpFactory classes provide a factory service built by esmertec for implementing
HTTP connectivity through the GCF Connector. DnsImpl allows the framework to
use domain name services (DNS) as an option in the connections. With DNS, the pro-
gram can reference domains by name, whereas without this class, the application would
only be able to use IP numbers, such as 204.221.213.98, when connecting.

After adding the previous entries, the LINKER section of the project should look
like that displayed in figure 10.3.

Before linking the application into a PRC file, the QuoteService class must be
compiled. If you already entered the QuoteService.java code during the MIDP imple-
mentation, simply copy the file (the QuoteService.java file) to the \Jbed\Java\Palm
directory and open the file in the Jbed IDE. If this file has not been entered, open a
new file from within Jbed and enter the QuoteService.java code as it was provided in
chapter 7. To compile the Quote Service, with the .java file open and selected in the IDE,
select the Java menu bar option and select Compile (or press Ctrl+L).

Make certain the ObtainQuoteSpotlet.java file is also compiled and then link the
entire application by selecting Jbed and then Link (or press Ctrl+Q). The KJava imple-
mentation of the tutorial application, complete with access to the same external quote
service, is now available for testing on the POSE and eventual deployment to a
Palm OS device.

Figure 10.3

Additions, highlighted here in

black, must be made to the Jbed

project properties in order to

connect ObtainQuote to the

Internet. These additions provide

the necessary classes for our

ObtainQuoteSpotlet to connect to

the Internet via the HTTP protocol.
REVISITING THE CONNECTION TO THE INTERNET 277

WH_Java2.book Page 278 Monday, March 4, 2002 9:59 AM
The complete ObtainQuoteSpotlet.java and RetrieveQuoteSpotlet.java are pro-
vided below to bring all the material in this chapter together. As mentioned before,
the QuoteService did not change and therefore the complete QuoteService.java file
from chapter 7 can be reused.

import com.sun.kjava.*;

public final class ObtainQuoteSpotlet extends Spotlet implements Dial-
ogOwner {

 private TextField symbolField = null;
 private RadioButton stockButton = null;
 private RadioButton fundButton = null;
 private RadioGroup investmentChoice = null;
 private ScrollTextBox resultsBox = null;
 private Button exitButton = null;
 private Button getButton = null;

 public ObtainQuoteSpotlet() {
 String tfLabel = "Symbol";
 symbolField = new TextField(tfLabel,5,25,Graphics.getWidth(tfLabel) +
 40, Graphics.getHeight(tfLabel));
 stockButton = new RadioButton(50,45,"Stock");
 fundButton = new RadioButton(100,45,"Fund");
 investmentChoice = new RadioGroup(2);
 investmentChoice.add(stockButton);
 investmentChoice.add(fundButton);
 investmentChoice.setSelected(stockButton);
 resultsBox = new ScrollTextBox("",8,65,137,45);
 exitButton = new Button("Exit",5,140);
 getButton = new Button("Get Quote", 105,140);
 }

 public static void main (String args[]) {
 ObtainQuoteSpotlet quoteSpotlet = new ObtainQuoteSpotlet();
 quoteSpotlet.displayForm();
 }

 private void displayForm() {
 register(NO_EVENT_OPTIONS);
 Graphics.clearScreen();
 Graphics.drawString("Obtain Investment Quote",5,10,Graphics.INVERT);
 Graphics.drawString("Type:",5,45, Graphics.PLAIN);
 symbolField.paint();
 stockButton.paint();
 fundButton.paint();
 resultsBox.paint();
 Graphics.drawBorder(5,60, 150, 55, Graphics.PLAIN, Graphics.SIMPLE);
 exitButton.paint();
 getButton.paint();
 }

Listing 10.4 Complete ObtainQuoteSpotlet.java
278 CHAPTER 10 KJAVA DATA STORAGE

WH_Java2.book Page 279 Monday, March 4, 2002 9:59 AM
 private boolean checkSymbol() {
 if ((investmentChoice.getSelected().equals(fundButton)) &&
 !(symbolField.getText().toUpperCase().endsWith("X"))){
 Graphics.playSound(Graphics.SOUND_ERROR);
 Dialog symbolAlert = new Dialog(this,"Alert",
 "Check Symbol\n\nMutual Funds end in 'X'","OK");
 symbolAlert.showDialog();
 return false;
 }
 return true;
 }

 private String getLastPrice(byte[] rec) {
 String recString = new String(rec);

 int dollarPos = recString.indexOf(';');
 int centPos = recString.indexOf(';',dollarPos+1);
 int centEnd = recString.indexOf(';',centPos + 1);

 if (centEnd > 0) //had a historical price
 return recString.substring(dollarPos+1,centEnd);
 else //no previous historical price
 return recString.substring(dollarPos+1);
 }

 private void storePrice(String symbol, int[] price) {
 String newRecord = symbol + ";" + price[0] + ";" + price[1];
 byte[] byteRec;

 String dbName = "QuoteData";
 int dbType = 0x494E5653; //'INVS'
 //'CATT' Palm-registered database creator id
 //for Catapult Technologies. Assigned hex value
 int dbCreator = 0x43415454;

 com.sun.kjava.Database quoteDB = new Database (dbType, dbCreator,
 Database.READWRITE);
 if (!quoteDB.isOpen()) {
 Database.create(0, dbName, dbCreator, dbType, false);
 quoteDB = new Database (dbType, dbCreator, Database.READWRITE);
 }

 boolean found = false;

 int n = quoteDB.getNumberOfRecords();
 for (int i = 0; i<n; i++) {
 byte[] raw = quoteDB.getRecord(i);
 if ((new String(raw)).startsWith(symbol + ';')) {
 found = true;
 newRecord += ';' + getLastPrice(raw);
 byteRec = newRecord.getBytes();
 quoteDB.setRecord(i, byteRec);
 break;
REVISITING THE CONNECTION TO THE INTERNET 279

WH_Java2.book Page 280 Monday, March 4, 2002 9:59 AM
 }
 }
 if (!found) {
 byteRec = newRecord.getBytes();
 quoteDB.addRecord(byteRec);
 }
 quoteDB.close();
 }

 public void penDown(int x, int y) {
 if (exitButton.pressed(x,y)){
 Graphics.playSound(Graphics.SOUND_CONFIRMATION);
 System.exit(0);
 } else if (getButton.pressed(x,y)) {
 symbolField.loseFocus();
 if ((symbolField.getText().length() > 0) && (checkSymbol())) {
 Graphics.playSound(Graphics.SOUND_STARTUP);
 String sym = symbolField.getText().toUpperCase();
 int type;
 if (investmentChoice.getSelected().equals(fundButton))
 type = 1;
 else
 type = 0;
 //later on, get the price from a quote service here
 int[] price = QuoteService.getPrice(sym,type);
 if (price != null) {
 storePrice(sym, price);
 resultsBox.setText("The price of " + sym + " is $" +
 price[0] + "." + price[1]);
 resultsBox.paint();
 } else {
 Graphics.playSound(Graphics.SOUND_ERROR);
 Dialog symbolAlert = new Dialog(this,"Alert",
 "Check Symbol and Type.\n\nNo quote found.","OK");
 symbolAlert.showDialog();
 }
 }
 } else if (symbolField.pressed(x,y)) {
 symbolField.setFocus();
 } else if (stockButton.pressed(x,y)) {
 symbolField.loseFocus();
 stockButton.handlePenDown(x,y);
 } else if (fundButton.pressed(x,y)) {
 symbolField.loseFocus();
 fundButton.handlePenDown(x,y);
 } else if (resultsBox.contains(x,y)) {
 resultsBox.handlePenDown(x,y);
 }
 }

 public void keyDown (int keyCode) {
 if ((keyCode == 11) || (keyCode == 12)){
 resultsBox.handleKeyDown(keyCode);
 } else if (symbolField.hasFocus()) {
280 CHAPTER 10 KJAVA DATA STORAGE

WH_Java2.book Page 281 Monday, March 4, 2002 9:59 AM
 symbolField.handleKeyDown(keyCode);
 }
 }

 public void penMove (int x, int y) {
 if (resultsBox.contains(x,y)) {
 resultsBox.handlePenMove(x,y);
 }
 }

 public void dialogDismissed(java.lang.String title) {
 this.displayForm();
 }
}

import com.sun.kjava.*;

public final class RetrieveQuoteSpotlet extends Spotlet implements DialogOwner{

 static int MAX_BAR_SIZE = 150;
 static int START_X_POSITION = 5;
 static int START_Y_CURRENT = 97;
 static int START_Y_HISTORIC = 122;
 static int BAR_HEIGHT = 5;

 private TextField symbolField = null;
 private RadioButton stockButton = null;
 private RadioButton fundButton = null;
 private RadioGroup investmentChoice = null;
 private Button exitButton = null;
 private Button getButton = null;

 public RetrieveQuoteSpotlet() {
 String tfLabel = "Symbol";
 symbolField = new TextField(tfLabel,5,25,Graphics.getWidth(tfLabel) +
 40, Graphics.getHeight(tfLabel));
 stockButton = new RadioButton(50,45,"Stock");
 fundButton = new RadioButton(100,45,"Fund");
 investmentChoice = new RadioGroup(2);
 investmentChoice.add(stockButton);
 investmentChoice.add(fundButton);
 investmentChoice.setSelected(stockButton);
 exitButton = new Button("Exit",5,140);
 getButton = new Button("Get Quote", 105,140);
 }

 public static void main (String args[]) {
 RetrieveQuoteSpotlet quoteSpotlet = new RetrieveQuoteSpotlet();
 quoteSpotlet.displayForm();
 }

Listing 10.5 Complete RetrieveQuoteSpotlet.java
REVISITING THE CONNECTION TO THE INTERNET 281

WH_Java2.book Page 282 Monday, March 4, 2002 9:59 AM
 private void displayForm() {
 register(NO_EVENT_OPTIONS);
 Graphics.clearScreen();
 Graphics.drawString("Retrieve Investment Quote",5,10,Graphics.INVERT);
 Graphics.drawString("Type:",5,45, Graphics.PLAIN);
 symbolField.paint();
 stockButton.paint();
 fundButton.paint();
 exitButton.paint();
 getButton.paint();
 }

 private boolean checkSymbol() {
 if ((investmentChoice.getSelected().equals(fundButton)) &&
 !(symbolField.getText().toUpperCase().endsWith("X"))){
 Graphics.playSound(Graphics.SOUND_ERROR);
 Dialog symbolAlert = new Dialog(this,"Alert",
 "Check Symbol\n\nMutual Funds end in 'X'","OK");
 symbolAlert.showDialog();
 return false;
 }
 return true;
 }

 private int[] parsePrices(byte[] quoteRec) {
 String rec = new String(quoteRec);
 int dollar1Pos = rec.indexOf(';');
 int cent1Pos = rec.indexOf(';',dollar1Pos+1);
 int dollar2Pos = rec.indexOf(';',cent1Pos + 1);

 System.out.println("=====> " + rec);

 if (dollar2Pos > 0) { //had a historical price
 int cent2Pos = rec.indexOf(';',dollar2Pos + 1);
 int currentDollars = Integer.parseInt(rec.substring(dollar1Pos +
 1, cent1Pos));
 int currentCents = Integer.parseInt(rec.substring(cent1Pos + 1,
 dollar2Pos));
 int historicalDollars = Integer.parseInt(rec.substring(dollar2Pos
 + 1, cent2Pos));
 int historicalCents = Integer.parseInt(rec.substring(cent2Pos
 + 1));
 int[] returnPrices = {currentDollars, currentCents,
 historicalDollars, historicalCents};
 return returnPrices;
 }
 else { //no previous historical price
 int currentDollars = Integer.parseInt(rec.substring(dollar1Pos
 + 1, cent1Pos));
 int currentCents = Integer.parseInt(rec.substring(cent1Pos + 1));
 int[] returnPrices = {currentDollars, currentCents};
 return returnPrices;
 }
 }

 private int[] retrievePrices(String symbol) {
282 CHAPTER 10 KJAVA DATA STORAGE

WH_Java2.book Page 283 Monday, March 4, 2002 9:59 AM
 int[] dollars = null;

 String dbName = "QuoteData";
 int dbType = 0x494E5653; //'INVS'
 //'CATT' Palm-registered database creator id
 //for Catapult Technologies. Assigned hex value
 int dbCreator = 0x43415454;

 com.sun.kjava.Database quoteDB = new Database (dbType, dbCreator,
 Database.READWRITE);
 if (!quoteDB.isOpen()) {
 Database.create(0, dbName, dbCreator, dbType, false);
 quoteDB = new Database (dbType, dbCreator, Database.READWRITE);
 }

 boolean found = false;

 for (int i = 0; i<quoteDB.getNumberOfRecords(); i++) {
 String raw = new String(quoteDB.getRecord(i));
 if (raw.startsWith(symbol + ';')) {
 found = true;
 byte[] rec = quoteDB.getRecord(i);
 dollars = parsePrices(rec);
 break;
 }
 }
 if (!found) {
 dollars = null;
 }
 quoteDB.close();
 return dollars;
 }

 private void displayChart(String currentSymbol) {
 int[] prices = retrievePrices(currentSymbol);
 if (prices != null) {
 if (prices.length > 2) {
 paintChart(currentSymbol,prices[0],prices[2]);
 } else {
 Graphics.drawRectangle(5,60,155,70,Graphics.ERASE,0);
 Graphics.drawString("Recorded price for " + currentSymbol +
 " is: $" + prices[0] + "." + prices[1],
 5, 65, Graphics.PLAIN);
 Graphics.drawString("No historical data exists.", 5, 80,
 Graphics.INVERT);
 }
 }
 else {
 Graphics.playSound(Graphics.SOUND_ERROR);
 Dialog noDataAlert = new Dialog(this,"Alert",
 "No price exists for " + currentSymbol,"OK");
 noDataAlert.showDialog();
 }
 }
REVISITING THE CONNECTION TO THE INTERNET 283

WH_Java2.book Page 284 Monday, March 4, 2002 9:59 AM
 public void paintChart(String sym, int currentPrice, int historicPrice) {
 Graphics.drawRectangle(5,60,155,70,Graphics.ERASE,0);
 Graphics.drawString(sym + " Performance",5,60,Graphics.PLAIN);
 Graphics.drawString("current vs. historic",5,73,Graphics.PLAIN);
 Graphics.drawString("$" + currentPrice, 5, 85, Graphics.PLAIN);
 Graphics.drawString("$" + historicPrice, 5, 110, Graphics.PLAIN);

 int[] prices = {currentPrice, historicPrice};
 int[] lengths = determineLengths(prices);
 Graphics.drawRectangle (START_X_POSITION, START_Y_CURRENT, lengths[0],
 BAR_HEIGHT, Graphics.PLAIN, 0);
 Graphics.drawRectangle (START_X_POSITION, START_Y_HISTORIC,
 lengths[1], BAR_HEIGHT, Graphics.PLAIN, 0);

 for (int i = 30; i < MAX_BAR_SIZE; i = i + 30) {
 Graphics.drawLine (i, START_Y_CURRENT - 2, i, START_Y_HISTORIC +
 BAR_HEIGHT + 2, Graphics.PLAIN);
 }
 }

 private int[] determineLengths (int[] prices) {

 int ratio, higherPrice, lowerPrice;
 boolean currentHigher;

 if (prices[0] < prices[1]) {
 higherPrice = prices[1];
 lowerPrice = prices[0];
 currentHigher=false;
 } else {
 higherPrice = prices[0];
 lowerPrice = prices[1];
 currentHigher=true;
 }

 ratio = higherPrice/MAX_BAR_SIZE + 1;
 while (ratio > 1) {
 higherPrice = higherPrice/ratio;
 lowerPrice = lowerPrice/ratio;
 ratio = higherPrice/MAX_BAR_SIZE + 1;
 }

 if (currentHigher) {
 int[] ends = {higherPrice, lowerPrice};
 return ends;
 } else {
 int [] ends = {lowerPrice, higherPrice};
 return ends;
 }
 }

 public void penDown(int x, int y) {
 if (exitButton.pressed(x,y)){
 Graphics.playSound(Graphics.SOUND_CONFIRMATION);
 System.exit(0);
284 CHAPTER 10 KJAVA DATA STORAGE

WH_Java2.book Page 285 Monday, March 4, 2002 9:59 AM
 } else if (getButton.pressed(x,y)) {
 symbolField.loseFocus();
 if ((symbolField.getText().length() > 0) && (checkSymbol())) {
 Graphics.playSound(Graphics.SOUND_STARTUP);
 String sym = symbolField.getText().toUpperCase();
 displayChart(sym);
 }
 } else if (symbolField.pressed(x,y)) {
 symbolField.setFocus();
 } else if (stockButton.pressed(x,y)) {
 symbolField.loseFocus();
 stockButton.handlePenDown(x,y);
 } else if (fundButton.pressed(x,y)) {
 symbolField.loseFocus();
 fundButton.handlePenDown(x,y);
 }
 }

 public void keyDown (int keyCode) {
 if (symbolField.hasFocus()) {
 symbolField.handleKeyDown(keyCode);
 }
 }

 public void dialogDismissed(java.lang.String title) {
 this.displayForm();
 }
}

10.5 ACCESSING PALM OS APPLICATION DATABASES

Palm OS devices have a rich set of applications that many Palm OS device users have
come to know and love. These include the Address Book, Calendar, To Do List and
Memo applications. These applications, in particular, are hardwired to the hard keys
at the bottom of the device.

A common question is often raised in J2ME circles as to whether a Java application,
or more precisely a KJava application, can access the databases of these applications.
In fact, the Database class is just a wrapper for any Palm OS database. All that is
required is to have the database type and creator IDs. While it is possible to access
these databases, care should be taken when doing so. As we have seen, the KJava Data-
base wrapper is an interface to the Palm OS databases, and you can easily destroy the
databases for these precious applications.

As a small example of how to access one of these databases, we open the Address
Book database and count the number of records it has in listing 10.4.

To create this application, open a new Jbed project. We copied the ObtainQuote
project and called our project CountAddresses. In the LINKER section of the New
Project editor, replace the ObtainQuoteSpotlet class with the new CountAddress class.
ACCESSING PALM OS APPLICATION DATABASES 285

WH_Java2.book Page 286 Monday, March 4, 2002 9:59 AM
import com.sun.kjava.*;

public class CountAddress extends Spotlet {
 Button exitButton;
 ScrollTextBox results;
 Database addressDB;
 int dbType = 0x44415441; //'addr'
 int dbCreator = 0x61646472; //'DATA'

 public static void main(String[] args) {
 new CountAddress().count();
 }

 public void count() {
 register(NO_EVENT_OPTIONS);
 exitButton = new Button("Exit",10,130);
 results = new ScrollTextBox("",5,10,150,100);
 Graphics.clearScreen();
 addressDB = new Database(dbType, dbCreator, Database.READWRITE);
 int numRec = addressDB.getNumberOfRecords();
 addressDB.close();
 results.setText("The # of recs in the Address
 Book Database is: " + numRec);
 exitButton.paint();
 results.paint();
 }
 public void penDown(int x, int y){
 if (exitButton.pressed(x,y))
 System.exit(0);
 }
}

Listing 10.6 Accessing the Palm Address Book

The type and creator IDs
are established by Palm

q

Get the number
of addresses

e

Open the
Address Book

database w

Don’t forget to
close the Address
Book database

r

Figure 10.4

To create a new Jbed project for

the CountAddress application,

apply project properties similar to

those depicted here. We copied

ours from the ObtainQuote project.
286 CHAPTER 10 KJAVA DATA STORAGE

WH_Java2.book Page 287 Monday, March 4, 2002 9:59 AM
Open a new file editor and enter the code from above. Save the file as CountAd-
dress.java. Compile this file by selecting Java from the Jbed menu bar and then select-
ing the Compile menu item. After the application compiles successfully, link the
application to produce the CompileAddresses.prc. This is done by selecting Jbed
from the menu bar and Link from the dropdown menu. When the application is
deployed to either an emulator or device, results similar to those depicted in figure 10.5
should appear.

10.6 SUMMARY

In this chapter, we explored the Palm OS database and KJava’s wrapper Database
class to allow KJava applications access to them. While certainly not as feature-rich as
the MIDP RMS, the Database class provided the basic support necessary to store,
update and retrieve information on Palm OS devices.

Without so much as a single line of code change in the QuoteService of chapter 7,
we connected the KJava version of the tutorial application to an external price quote
web site. This was accomplished through the use of the Generic Connection Frame-
work. Finally, we looked at using the KJava Database wrapper class to access other
Palm OS application databases.

Figure 10.5

If the Address Book

contains three names as

suggested on the left,

the results of running

CountAddress are shown

on the right.
SUMMARY 287

WH_Java2.book Page 288 Monday, March 4, 2002 9:59 AM

4

WH_Java2.book Page 289 Monday, March 4, 2002 9:59 AM
P A R T
Developing for the enterprise:
beyond the specifications

The next few chapters are dedicated to helping developers and architects design
J2ME applications that can be used in an enterprise setting. This part of the book
provides a more comprehensive examination of Java and other server-side technolo-
gies such as Servlets, Java ServerPages, XML, HTTP and small footprint relational
databases. Additionally, there are two chapters that provide a more in-depth examina-
tion of J2ME networking and the J2ME runtime environment. The final chapter
provides a starting point for investigating products that can assist developers in creat-
ing J2ME applications.

WH_Java2.book Page 290 Monday, March 4, 2002 9:59 AM

WH_Java2.book Page 291 Monday, March 4, 2002 9:59 AM
C H A P T E R 1 1

Real-world design

11.1 Dealing with stakeholders 292
11.2 A development scenario 294
11.3 Guidelines for building J2ME applications 298
11.4 Architectural tools and techniques 325
11.5 Summary 331
When new technology emerges into the marketplace, a fair amount of information
tends to surface about how to use the technology itself, such as how the APIs are
organized, how the pieces are put together, and so forth. However, there tends to be a
gap between information on how the technology works versus how to build applica-
tions with it.

The intent of this chapter is to provide guidance from an application architecture
perspective. The information in this chapter is based on our real-world experience in
building J2ME and Java applications for mobile devices. Although J2ME comprises
more than mobile and wireless devices, such as Internet TV set-top boxes and other fixed
devices, the focus here is on mobile and wireless devices. However, many of the lessons
can be applied to applications that use the J2ME APIs, regardless of the actual device.

To begin, we will discuss the critical issue of dealing with stakeholders. Stakehold-
ers are the reason for building software. Among other interested parties, they are the
managers, end users, and financiers of software development. To be successful with
developing mobile and wireless solutions, stakeholders must be familiar with what it
means to develop for the mobile and wireless paradigm.
291

WH_Java2.book Page 292 Monday, March 4, 2002 9:59 AM
11.1 DEALING WITH STAKEHOLDERS

The concepts involved in building J2ME applications for devices that are as con-
strained and varied as cellular phones and set-top boxes often requires a shift in think-
ing for developers. For non-technical people that are sponsoring, recommending or
providing the business vision for the development of such applications, the required
shift in thinking may not come as naturally or as quickly as desired.

Keeping with the chapter focus on mobile and wireless devices, stakeholders must
be informed and knowledgeable about the paradigm of mobile and wireless computing.
Developing mobile and wireless applications requires people to think differently about
how tasks are performed on computing devices. For nontechnical people who are used
to desktop or even mainframe, terminal-based computers, the shift to mobile and wireless
devices can be difficult. The familiar way of doing things may not make sense, be appro-
priate or even be possible on a mobile device. When dealing with stakeholders it is
essential to understand the motivation behind creating a mobile and wireless solution.

In some cases, the initial thinking for developing mobile applications may be some-
thing along the lines of:

• providing access to the enterprise on a cellular phone or PDA
• decreasing the need for a mobile worker to be in the office
• improving communication in the field
• replacing expensive laptop computers with smaller, cheaper devices

All of these visions have merit. However, the job of an architect is to balance the
needs and desires of the sponsors with what is possible and practical on the chosen
devices. Many problems developing mobile and wireless devices can be avoided by
educating the stakeholders and conducting some analysis of the underlying problems
that are to be solved. How much functionality are stakeholders willing to forego in
favor of mobility? Different devices have different limitations. But if the desired or
necessary capabilities cannot be placed into some kind of J2ME device, the next step
up is a laptop or PC.

11.1.1 Get them familiar with the devices early

During initial meetings with stakeholders it is important to level the field. Make cer-
tain each decision maker understands the nature of the device or devices that are
being discussed. A good approach is to get one of these devices in the hands of stake-
holders. Let them use the applications and features that come with the device. This
will provide an opportunity to see if the stakeholders even like the device. They can
test the data entry capabilities, such as Graffiti, virtual keyboards, alphanumeric entry
on a 10-digit keypad, and so forth. If the device supports a wireless connection, how
do they like reading their email on the smaller screen, creating messages and replying,
and the amount of time required to download messages? By putting devices in the
hands of a stakeholder they become familiar with the paradigm, which may help
292 CHAPTER 11 REAL-WORLD DESIGN

WH_Java2.book Page 293 Monday, March 4, 2002 9:59 AM
them to start thinking differently about these devices. It is also a good idea to put the
candidate devices in the hands of the end users as well. If the end users like the device,
they are positioned to get behind your project. If they hate the device, you can avoid
deploying a wonderful application onto a device that the users hate, before the orga-
nization commits to buying the devices.

When stakeholders are new to the mobile and wireless paradigm it is important to
point out language that is commonly taken for granted in discussing computer appli-
cations. For example, avoid terminology that may be inappropriate for the candidate
devices such as “We save this data into the file…” or “From this menu…” It is quite
possible that the candidate devices do not support a file system or menu system.

11.1.2 Set expectations

Mobile and wireless devices are slower than desktops. They probably always will be,
relatively speaking. Currently, wireless access to the Internet typically ranges between
a fiery 9600 bps to 19.2 kbps. Battery life of the devices is affected by the applications
and batteries will need to be recharged. Many devices require charging both the
modem and the device separately. If the device loses its charge completely you may
lose data in permanent storage. If the device is lost, how accessible or secure is the
data? Discuss issues with single-task and single-processor devices. These devices will
not be able to allow users to open and switch between multiple windows or run mul-
tiple applications concurrently.

11.1.3 Gathering requirements

Encourage stakeholders to be open to new options and different methods of dealing
with information. Also, encourage exploration into and focus on functionality that is
made possible by the mobile and wireless paradigm that cannot be implemented on a
fixed desktop computer.

As an architect, it is important to make certain that stakeholders have identified
and are focused on solving a specific problem. The problem should be clearly stated
in terms of the business, not in terms of technology. For example, allowing order entry
to be performed on a cellular phone may be a good idea, but what does it mean to the
business? Will the business actually benefit by putting this functionality onto a device?
Will the benefit justify the expense of doing the work? Above all, you need to make
sure that J2ME is not in the picture simply because it is Java, or that the organization
is going mobile just to be mobile. Without an underlying business need, it becomes
difficult, as an architect, to make appropriate design trade-off decisions.

11.1.4 State of the organization

Before embarking on a J2ME project, it is important to consider what kind of tech-
nological position an organization is in. If an organization currently does not have a
commitment to Java or if this mobile and wireless solution is to be the first Java
endeavor of the organization, the implications could be more than expected. J2ME
is not necessarily a good place to introduce Java to a team of developers due to the
DEALING WITH STAKEHOLDERS 293

WH_Java2.book Page 294 Monday, March 4, 2002 9:59 AM
variances in devices and the implementations within the J2ME architecture required
to support a wide range of devices. Also, once the J2ME solution is in the field, will
the organization be able to adequately support the implementation?

Another important consideration that is often overlooked is whether or not the
organization is ready for a mobile and wireless solution. Are there issues with the exist-
ing infrastructure that make it difficult for the J2ME applications to access the nec-
essary data? Does the organization want to implement a mobile and wireless solution
to compensate for an existing infrastructure that is insufficient? In other words, if the infra-
structure problems were fixed, would there be a need for a mobile and wireless solution?

As with any software development project, it is essential to have stakeholders involved
early in the process. It is equally important that stakeholders understand how their
organization and workflows will benefit or be impacted by mobile and wireless solu-
tions. The next section illustrates the early stages of a typical development scenario.

11.2 A DEVELOPMENT SCENARIO

Developing wireless, mobile and Internet appliance applications differ, in some cases
significantly, from more traditional desktop and enterprise application architectures.
This section illustrates an early phase of a fictional project using the following scenario:

A national landscaping company by the name of The Greener Grass Corporation
provides custom lawn and landscaping services to residential homes and commercial
businesses. Over the last two years, the Greener Grass Corporation has invested a fair
amount of time, effort and money in their Java Servlet-based inventory and order-
entry system. The system is accessible over the Internet and provides customers with
a catalog of their products and provides a way to order supplies. The basic architecture
of this system is depicted in figure 11.1.

In addition to selling landscaping supplies, the Greener Grass Corporation also sells land-
scaping services. The field workers they employ must come into the office routinely
to drop off orders and to obtain supplies. Recently, however, since the inventory and
order entry systems are online, some are opting to submit orders over the Internet
from home. In order to streamline their business, the Greener Grass Corporation
would like to provide this information to their field staff. Furthermore, they would

Inside the office

Server

Web-Browser

Web-Browser

Internet

Figure 11.1

The existing software configura-

tion that allows users to access the

enterprise server resources

through a browser. Access to the

system is available from inside the

office over the local area network

as well as outside the office over

the Internet.
294 CHAPTER 11 REAL-WORLD DESIGN

WH_Java2.book Page 295 Monday, March 4, 2002 9:59 AM
like to be able to monitor status and automate their project scheduling process as
much as possible.

After a series of meetings, the Greener Grass Corporation has arrived at the con-
clusion that what they need is to put their inventory and order entry system, along
with the scheduling enhancements, onto a cell phone. They feel cell phones are a good
choice since their staff already has cell phones and this would not introduce another
device that they would need to carry. The proposed architecture for including wireless
cell phone access to the corporate systems is shown in figure 11.2.

The next step is to hire a consultant to come in and build their system. This is where
we come into the picture.

First, we need to fully understand the context and history of what needs to be built.
From there we can determine if J2ME is a good fit or recommend other options. From
the scenario, we know that Greener Grass has an existing commitment to Java. Fur-
thermore, a version of the order entry system already exists, which serves as a basis for
our application. However, there are some interesting points to consider.

11.2.1 Analysis

We are led to believe that they want their entire inventory and order-entry systems on
a cell phone, not to mention the scheduling enhancements. We need to investigate
the feasibility of doing this. To begin, we analyze the existing system to capture some
vital metrics.

Display

For each screen, how much data does the existing system need to display? Compare
this to the limits of a cellular phone’s graphical capabilities. How many columns of
data do most lists need to be useful? How many data entry fields need to be on a

Inside the office

Server

Web-Browser

Web-Browser

Internet

Mobile and Wireless Devices

Wireless

Figure 11.2

The proposed software configuration continues

to allow users access through a browser.

However, this configuration also allows a cellular

phone to access the organization’s resources

using a wireless connection to the Internet.
A DEVELOPMENT SCENARIO 295

WH_Java2.book Page 296 Monday, March 4, 2002 9:59 AM
screen to fulfill something useful? Chances are, since this is an inventory system, that
there is a fair amount of searching and displaying of large data lists. This may not fit
onto a cell phone screen.

Navigation

How much screen navigation is the user required to do in order to complete useful
tasks on the existing system? It may be a good idea to map out the general flow of
tasks the application performs to gain a conceptual picture. How would this map into
a device with only a jog dial and two soft buttons?

Data entry

How much data is required for an order to be submitted? How easily can this be to do
on a device with a 10-digit keypad? Are there screens that require multiple selections
from lists by holding the control-key or by extensively scrolling through the list?

11.2.2 Options

From the looks of our analysis thus far, there may be a gap between what the Greener
Grass Corporation wants to do and what is feasible. Although there are other factors
to investigate, at this point it would be best to set some expectations.

To help explain the situation, the Greener Grass Corporation is presented with a
J2ME-supported cellular phone. For comparison, a PDA is also provided for their exam-
ination. This will allow the stakeholders to familiarize themselves with the devices. Addi-
tionally, providing an overview of the device’s limitations from an end-user perspective
is also a good idea. It may be useful for your stakeholders to know that the cell phone
they are considering has no file system, that there are only 10 keys with which to enter
data, and that the screen is less than one and a half square inches. Also, this would be a
good time to investigate if the existing phones they intend to use support J2ME.

Identifying a good feature set

Putting the entire enterprise application onto a cellular phone, or any J2ME device
may not be practical, therefore:

• consider starting with a smaller set of functionality to pilot the devices in the
field, and

• focus on the business problem to solve, rather than simply mobilizing the enterprise.
• remember that the key problems which the Greener Grass Corporation is look-

ing to solve are:

• allow orders to be submitted from the field

• allow access to inventory in the field

• provide scheduling information to field workers

• monitor project status in the field
296 CHAPTER 11 REAL-WORLD DESIGN

WH_Java2.book Page 297 Monday, March 4, 2002 9:59 AM
After some consideration, the Greener Grass Corporation identifies that their key
problem is supplying about five different materials to worksites in a timely fashion.
These materials range from black dirt and rock to fertilizer and lawn care products.
The company is organized into teams that focus on a particular type service. Al-
though the types of materials each team works with can vary, any one team only needs
about five types of materials at any given time. Furthermore, it is discovered that
most of the reason the Greener Grass Corporation would like to know the status of
each project is to improve the distribution of these materials.

Revised requirements

From this perspective, a new set of requirements is proposed in order to create an
application that the company can give to their field workers as a test pilot. The new
requirements are as follows:

• field workers will be able to select a type of product from a list of five to ten items.

• what products make up the list will be determined be the type of team the user
works on. For example, if the field worker is on a lawn care team, they will have
a different list than a landscaping team. Product lists are preconfigured through
a browser using their existing system.

• after the product is selected, a quantity is entered as a number.

• multiple products can be ordered at a single time.

• a summary of the order is provided before submitting.

• a confirmation that the order was received is provided after submitting the order.

• an order status report will be implemented on the existing system to help man-
age the status of the field projects.

Focusing on the problem to solve

Although this is a fictional example, it illustrates some key issues with extending the
enterprise. One of the lessons we could draw from this is that extending the enter-
prise is not really a problem; it is more of a solution. If we had gone forward and
implemented what the stakeholders were originally asking for, it may have turned out
poorly. However, by flushing out a business problem that could be solved through the
use of mobile and wireless devices, we were able to minimize risk and focus on
improving the company’s bottom line.

Remember that extending the enterprise does not necessarily mean moving the enter-
prise to, or rebuilding the enterprise on, a mobile device. Although technology is advancing
rapidly, the underlying problems and purposes for technology tend to remain relatively
constant. In general, most companies are looking to improve their business practices in
ways that lead to better accountability and more efficient and functional workflows.

At this point, we leave the Greener Grass Corporation scenario behind and discuss
general characteristics that an architect needs to address when designing and building
mobile applications.
A DEVELOPMENT SCENARIO 297

WH_Java2.book Page 298 Monday, March 4, 2002 9:59 AM
11.3 GUIDELINES FOR BUILDING J2ME APPLICATIONS

Throughout this book we have discussed the issues facing the J2ME technology space.
However, in prior chapters these issues were discussed in the context of the technology
or the devices. In this chapter we revisit these issues from an architectural point of
view, as well as introduce a few issues that come into the picture once our perspective is
expanded beyond the scope of the device itself. The following sections discuss the
architectural characteristics and constraints of building J2ME applications. Available
options and consequences are also discussed as appropriate.

11.3.1 The user interface

One of the first, and obvious, constraints in the J2ME space is the user interface.
Some of these issues surfaced in the Greener Grass Corporation scenario. A general
guideline when designing user interfaces for the J2ME device space is to measure the
“pokeability” factor. Pokeability refers to the ability for a user to tap or select informa-
tion as a means of working with the application. The goal is to provide pokeability
for 80% of the application functionality, forcing the user to another means of input,
such as keyboard or keypad text entry, in rare or optional cases. Pokeability is impor-
tant in the mobile space since most devices do not support a full alphanumeric key-
board or the means to easily enter a large amount of alphanumeric data.

User interface—display

Display sizes and screen resolutions vary. Some devices support rich color schemes;
others have grayscale support while still others have black and white or monochrome
screens. This is known as screen depth. A screen depth of 1 is usually a black and
white display. Also, if the device is used outdoors, the flat panel display may suffer
from glare and washout in full sunlight. In many cases, different devices are more
suited to particular widget sets than others.

Due to these variations, portability can be an issue. Moving a MIDP application
between a cell phone and a pager, for example, may cause undesirable effects simply due
to the screen becoming shorter and wider. Soft buttons may get mapped differently.

Adjusting for the environment, as in the case of a MIDP application, is largely han-
dled by the high-level user interface profile implementation and the virtual machine.
For example, in a MIDP application, the developer does not have to specify the loca-
tion of a text entry widget on the screen. The location is determined by the profile
implementation and virtual machine. Therefore, when an application containing a
text entry field is ported to another device, in theory no developer work is needed to
adjust for a possibly different screen size. However, if you include low-level user inter-
face features, such as drawing lines on a canvas, adjustments may be needed when the
application shows up on another MIDP device. For this reason it is a good idea to stay
within the bounds of the high-level user interface widgets as much as possible.
298 CHAPTER 11 REAL-WORLD DESIGN

WH_Java2.book Page 299 Monday, March 4, 2002 9:59 AM
User interface—navigation

Navigation techniques vary between devices. Cell phones and pagers have buttons;
PDAs have touch screens. Since display size is an issue on smaller devices, there is a
high probability for an application to require several screens to accomplish what
another device could do in a single screen. If navigation becomes too complex, users
can become lost in the application, or forget where certain options are located. A fea-
ture-rich application is not very useful if the features cannot be found. Obviously, the
goal is to keep things simple. Subsets of functionality that are device-appropriate may
be helpful in paring down the navigation tree.

Exploring navigation designs

As a design guideline, it is often useful to map out the navigation for an application. You
can do this by drawing a tree structure that represents how users navigate to all the fea-
tures on the device. Once the navigation tree is mapped, run through usage scenarios
and record the number of screens users will be required to navigate in order to accomplish
a task. This is an important metric to understand before developing a J2ME application
that may help you avoid a lot of rework later down the line. The following examples
show an initial navigation tree for a MIDP application and the subsequent redesign
after running a few scenarios. The navigation tree models the Greener Grass application.

Figure 11.3 shows the initial screen design with arrows indicating the navigation
paths. The shallowness of the tree allows all the application options to be displayed on
the main menu. Upon first glance this seems to be a decent design. The user is always
within one to two screens from any information or functionality required. However,
when we begin to run through scenarios to test the design, some problems arise.

Figure 11.3

The navigation tree initially proposed. This design allows users to quickly

access different areas of the system. The main drawback of this design is

that the user is required to remember order numbers between screens.

Product Number

C

Order Products

[Back] [Submit]

D

Order Status

[Back]

E

Order History

[Back]

F

View Product Details

[Back]

B

Product Lookup

[Back] [Details]

Order ID

A

Main Menu
1. Order Products
2. Product Lookup
3. Order History
4. Order Status
GUIDELINES FOR BUILDING J2ME APPLICATIONS 299

WH_Java2.book Page 300 Monday, March 4, 2002 9:59 AM
Test the design

To test the design, trace the navigation paths for ordering products and checking on
an order status. Notice that each screen has been assigned a letter. These letters are
used to document the path as we trace through the scenario.

Using the design in figure 11.3 to order a product, the user must do one of two
things. He must either have the product number memorized and enter it in the Order
Products screen, or he must traverse the screen sequence to find the product ID, mem-
orize the product number, navigate back to the main menu, and then go to the Order
Products screen and enter the product number. If the user knows the product number,
the navigation is trivial: A, C. If the product number must be looked up the navigation
gets more complicated: A, B, F, B, A, C. In this scenario it is assumed that the Product
Lookup screen just displays the product description as there is probably not enough
room to display both the product number and a description.

Understand the users

If the users are likely to have the product numbers memorized, this may not be a bad
design at all. In fact, if the product numbers are numeric rather than alphanumeric
this may be ideal. However, if the product numbers must be looked up a majority of
the time, the user is forced into doing two rather annoying tasks. First, he is required
to remember the product number after looking it up. Second, he must manually
enter the product number on the order screen. If there are multiple products to be
ordered, this sequence of tasks becomes rather cumbersome.

Tracing the navigation for checking the status of an order has similar problems.
The user must first look up the order ID using the Order History screen, remember
the order ID, navigate to the Order Status screen and manually key in the order ID.
In the case of Order Status, even expert users would not have the order number mem-
orized in most cases since these are dynamically assigned.

Exploring alternatives

Using what we have learned, the design is reworked into what is displayed in
figure 11.4. This design has eliminated the need, as well as the ability, for a user to
directly type a product number into the Order Products screen. This change has also
increased the depth of the hierarchy. The user is required to traverse the same number
of screens regardless if he is an expert user (a user that would have the product num-
bers memorized) and a casual user (a user that would need to look up the product
number). However, in the case where the product number must be looked up before
ordering, the navigation path has become simpler: A, B, C, D. There are now four
screens to navigate instead of six, plus the fact that the user does not need to key in
the product number also saves keystrokes.

Checking an order status has undergone similar changes. The user now navigates
to the Order History screen, chooses and orders and then views the Order Status details.
300 CHAPTER 11 REAL-WORLD DESIGN

WH_Java2.book Page 301 Monday, March 4, 2002 9:59 AM
If the majority of users fall into the casual or novice category, then we could con-
sider this design to be an improvement. If the majority of users are experts, then this
design probably has made things worse since the product number can no longer be
directly entered. Additionally, all the application options are no longer displayed on
the main menu. A user must discover or know where the Order Products screen is,
given the choices Product Lookup and Order History.

Upon further investigation, reworking the screens creates another design. This new
design is shown in figure 11.5. In this design, the Product Lookup screen has replaced
the main menu. A soft button now navigates to the Order History screen while the
product selection navigates to the View Product Details screen. This has eliminated a
step in navigating to the Order Products screen, making the path traversal only three
steps: A, C, D. The rationale for eliminating the main menu is that with only two options,
a menu was not required. The Product Lookup screen was chosen based on the assump-
tion that this screen would be more frequently used than the Order History screen.

The Order History scenario remains unchanged except that the initial navigation
is now from a soft button rather than a menu.

Examining the options

By taking a few moments to flush out the navigation of the user interface we have
potentially saved ourselves some coding rework. Which design is appropriate, how-
ever, depends on the users and uses of the system. As previously mentioned, if the
users are likely to become experts with the system, keying in a numeric product ID
could be the ideal design. If the users are not likely to become experts with the

Figure 11.4

This is a refined design of the

navigation tree. This design organizes

the system features in a much deeper

tree structure. The advantage for the

user is that information does not need

to be remembered between screens.

The drawback is that the user must

traverse a number of screens to get

the information needed.

F

Order Status

[Back]

A

Main Menu
1. Product Lookup
2. Order History

D

Order Products

[Back] [Submit]

E

Order History

[Back] [Status]

C

View Product Details

[Back] [Order]

B

Product Lookup

[Back] [Details]
GUIDELINES FOR BUILDING J2ME APPLICATIONS 301

WH_Java2.book Page 302 Monday, March 4, 2002 9:59 AM
system, the design shown in figure 11.3 is likely to be a better choice. Also, there are a
number of design variations that have not been considered that may work even better.

When designing user interfaces it is also a good idea to test the design on some of
the eventual users of the system. This can be done by mocking up screens on paper
and presenting them to the users, asking them to move through a particular scenario.
As each screen is presented, the user describes what they would do (press a button,
enter data, etc.). Upon making a choice, you present them with the next screen or
mimic the system behavior by describing what certain options do.

If the users are able to navigate to the correct locations easily, the design probably
holds. If they end up hunting around a fair amount, ask them questions to understand
their thinking such as, “What are you expecting to see when you press button ‘X’?”

One important lesson to remember is that users can be unpredictable. It is not
unusual to discover that a seemingly good user interface design does not suit the needs
of the end users. Paper prototyping helps to resolve these issues in a much more cost-
effective manner than when actually implemented. A few moments taken to validate
the user interface helps reduce risk down the line during product acceptance testing.

User interface—user input

The ability to input data on most J2ME devices is significantly constrained from the
desktop environment where a keyboard and mouse are available. In the case of cell
phones, entering a four-character stock ID can push the limits of what the user is
willing to do, considering that to enter a letter “L,” for example, involves cycling the
“5” button three times.

Use of lists

List selection is a good idea as data can be easily entered with a few key presses. How-
ever, if the user is forced to move through large scroll lists this may become tedious.
In some cases, more than one column of data needs to be displayed in order to allow the
user to correctly choose an option. Since J2ME displays can be limited this could incur
horizontal scrolling. Horizontal scrolling is something to avoid whenever possible.

Figure 11.5

Another design that further refines the

navigation tree. In this design the main

menu is replaced by the Product Lookup

screen, allowing the navigation tree to

be condensed. This design assumes that

most tasks begin by looking up a product

or going to the Order History screen.

F
Order Status

[Back]

D
Order Products
[Back] [Submit]

E
Order History

[Back] [Status]

C
View Product Details

[Back] [Order]

A
Product Lookup

[Exit] [Order History]
302 CHAPTER 11 REAL-WORLD DESIGN

WH_Java2.book Page 303 Monday, March 4, 2002 9:59 AM
Multiselecting

Multiselection from lists can be accomplished using check boxes. Keep in mind that
many devices are designed to be used “one-handed.” A cell phone, for example, is not
designed to use control keys to alter the keyboard state in order to perform tasks such
as multi-selection. Furthermore, even if this were an acceptable approach for your
application, you may find that such devices do not support the ability to detect con-
trol key states, or have control keys.

Entering text

If the device you are considering supports Graffiti, make certain that this is an accept-
able method of input for your use. Graffiti, if supported, should not be the only
means for entering data.

When text data is required on a touch screen device, such as a PDA, a “virtual key-
board” can be provided. In some case, as with Windows CE, a virtual keyboard is pro-
vided by the underlying operating system. In other cases, such as Palm OS, a virtual
keyboard must be implemented by the application. Virtual keyboards provide one of
the best ways to enter text data on a touch screen device. However, you may be forced
to give up nearly half your display in order to get the entire (US-English) alphabet dis-
played. A method for showing and hiding the virtual keyboard is a good idea, allowing
the user control when the keyboard is available. In this scenario you want to be sure
that the text entry field is also visible when the virtual keyboard is visible.

Be creative

Other types of data entry problems can be solved using a different approach from
what is typically found in desktop and enterprise software environments. Password-
protecting the application is such an example. Rather than forcing the user to enter a

Figure 11.6

The combination lock example on Palm OS.

This design allows a user to tap a sequence of

buttons (1-8) to gain access to an application.

This metaphor allows an application to be

password-protected without burdening the user

with character-based passwords. This design

takes advantage of the pen-based user interface.
GUIDELINES FOR BUILDING J2ME APPLICATIONS 303

WH_Java2.book Page 304 Monday, March 4, 2002 9:59 AM
password using alphanumeric characters, consider a “combination lock” metaphor
where the user must tap a sequence of buttons to gain access to the application. An
example of this approach is shown in figure 11.6. Each user has a different combina-
tion that is entered to gain access to the application.

11.3.2 The network

From a wireless architecture perspective, proving the network infrastructure is a cru-
cial step in building wireless applications of any sort. There are many variables that
must be in line.

The profiles you intend to use must support the protocols you need or wish to use.
Additionally, the devices must support the profiles and protocols you wish to use. In
some cases, such as MIDP 1.0, support of sockets and datagrams is optional. Only
HTTP is required in MIDP 1.0. The device must support some type of wireless con-
nectivity over a protocol such as CDPD or CDMA in the United States.

The next thing to check is the service provider options. In some cases there may
only be a single provider for a particular device. Is service coverage provided in the
areas in which the applications will be used? The wireless service must provide a net-
work connection to the network you will need to access, such as the Internet. Make
sure that the service provider’s infrastructure allows you to effect the necessary con-
nections and is not limited to the service provider’s proprietary services.

If there are multiple devices in the picture you must make certain the same service
provider can support all devices, or find a combination of service providers that fulfills

Application submits
an HTTP request

J2ME API maps
the request onto the

native software

The modem driver
communicates with the
Modem to facilitate the
HTTP connection and

protocol request

The signal goes into
the air over a standard

protocol such as CDPD,
CDMA, GSM, etc.

The Wireless ISP
receives the signal

The signal is
routed through

 the ISPís internal
network and onto

The host system
receives the request

through a Web
Server

The Web Server
invokes the necessary

processing (Servlet,
JSP, ASP, CGI)

The request is
processed and the

response is sent back
through the chain.

the Internet

Figure 11.7

The chain of responsibility in a wire-

less architecture. There are a num-

ber of pieces that all must come

together in order for a signal to be

processed through a wireless device

and onto a wireless network,

namely, the J2ME implementation

must interact with the native oper-

ating system and the modem soft-

ware to establish the wireless link.
304 CHAPTER 11 REAL-WORLD DESIGN

WH_Java2.book Page 305 Monday, March 4, 2002 9:59 AM
your needs. If supporting multiple devices means implementing to multiple J2ME
profiles, all of these variables listed in the previous paragraphs should be verified for
each profile.

Flushing out these details before designing your application minimizes risk. You
do not want to go to the trouble of developing for a particular device or set of devices
only to discover that the networking is insufficient for your needs on some of your tar-
get devices. Figure 11.7 illustrates the path a network connection must travel. At each
transition point, between devices, service providers and network interfaces, there is a
potential breaking point for the architecture. Be sure to trace through the architecture
in order to verify that the proposed solution is possible. Figure 11.8 illustrates the
components of a wireless architecture when connecting to the Internet.

Figure 11.8 The pieces of a wireless architecture. A device communicates over a

wireless network operated by a Wireless Internet Service Provider. The WISP moves

the wireless signals onto the public Internet so it can interact with the desired server.

It is important to understand the subtle distinction between network coverage and
network availability. Coverage is what the service provider indicates as areas of service
on a map. Availability has more to do with the quality of service in a particular area.
For example, two different cities may fall into the coverage map of a wireless service
provider but one city may have intermittent connectivity and more unavailable ser-
vice time than the other city.

Before getting too far into design, it is important to understand the bandwidth
metrics of the architecture. It is worthwhile running some tests to understand how
much data you can move across your connection and at what speed. Knowing this up
front may affect your design when it comes time to flush out the data communication
and synchronization pieces. Many PDAs support a 19.2 kbps connection. However,
you should not expect that rate all the time. In some cases, J2ME devices may connect
at as low a rate as 9600 bps. In these circumstances you may opt to spend some effort
on minimizing network access and dependency. In some cases, differences in connec-
tion speeds may impact your choice in using XML vs. a comma-delimited format for
transmitting data, as XML can become rather bloated in comparison.

Wireless
ISP server

Internet

Wireless
network

Device

ServerComm tower
GUIDELINES FOR BUILDING J2ME APPLICATIONS 305

WH_Java2.book Page 306 Monday, March 4, 2002 9:59 AM
11.3.3 Data exchange formats

Once you have a means for obtaining a network connection, you need to plan how
the connection will be used. Typically there are two things that move over the net-
work between a J2ME client and a server: data and commands. In most cases, each
transmission involves both, as the receiving system must be given some instruction as
to the action the sender is requesting. For example, sending a new order for supplies
will invoke different functionality than sending a request to check order status. The
distinction is made here in order to consider different design scenarios. In some cases,
the transmission will consist of mostly data, while in other cases the only data passed
may be the parameters of the command.

Whether you plan to use sockets, datagrams or HTTP, you need to devise a format
in which to send data across the network. The format of the data is something that
must be agreed upon by both the sending and receiving system in order to interpret
the data correctly and consistently.

There are many approaches to formatting data for network transmission. The four
approaches addressed here are XML, delimited, fixed position and name-value.

XML

Extensible Markup Language (XML) is a tool for creating data structures that can be
stored in a file or transmitted over a network connection using a common syntax.
The actual data structure of a particular XML document or transmission format is
not specified by the XML specification but rather is user-defined based on what the
implementation requires.

XML consists of tags, similar to HTML, that are enclosed by brackets (“<” and “>”).
Each tag may contain attributes in the form of name=value pairs in order to provide
information about a tag. The fundamental difference between XML and HTML is
that HTML defines the syntax and the meaning for each tag. The intent of an HTML
tag is to be interpreted and rendered consistently between browsers. XML simply
defines the syntax and rules of the language itself but leaves the meaning and inter-
pretation of the format up to the implementer. In other words, the interpretation and
rendering of an XML document or transmission format is the responsibility of the
XML reader or writer. XML uses tags to delimit data but imposes no meaning to the
data. The meaning and interpretation of XML is determined by the applications using
the XML format.

Since the interpretation of a specific XML format must be determined and under-
stood by the creators and users of the XML format, this format must have a definition.
This is referred to as the schema. An XML schema is a specific format that defines
some type of content. An XML schema is what allows an instance of an XML docu-
ment or transmission to be created and interpreted between systems. The schema is
the contract agreed upon by the creating and interpreting systems.
306 CHAPTER 11 REAL-WORLD DESIGN

WH_Java2.book Page 307 Monday, March 4, 2002 9:59 AM
The XML syntax itself is derived from Standard Generalized Markup Language
(SGML). SGML was adopted as an ISO standard in 1986. XML is a subset of SGML
that is intended to be as powerful as SGML but easier to use.

XML has gained a lot of popularity as well as hype in the last few years. There are
good reasons for this, since some of the work of formatting and syntax can be provided
to a system in a standardized way that allows the system to parse out the information
in which it is interested. From an industry hype perspective, creating a mobile archi-
tecture that uses XML is quite attractive. However, there are some issues to consider.
First of all, XML by itself simply allows a way for structuring data. How systems inter-
pret and manipulate the content of an XML structure depends on the underlying system.

In order to share information between systems both the producer and consumer
of the XML content must agree on a common schema. This schema can be validated
using a Document Type Definition (DTD) describing the items that make up a valid
document for your particular case. Although some standard XML schemas for various
industries are emerging it is unlikely, at this point, that simply choosing XML for data
transport is the total solution. At a minimum, you need to build or buy a component
capable of formatting data into your XML format and extracting or parsing the data
out of the documents. More than likely, you will need to devise your own schema.

If you are in a position where you need to define your own schema it may be a good
idea to reexamine why you are using XML. After all, if you are defining the schema,
the format of your XML will be proprietary. Make certain you understand what XML
is buying you.

Caveats and tradeoffs of XML

There are a number of considerations that need investigating before choosing XML
as the solution. In some cases, XML is appropriate, but not always.

If you are targeting CLDC-class devices, XML may be difficult to support. Many
of the parsers require as much as 45 kilobytes of binary code space on the device. Due
to restrictions of the device, a CLDC application may not have the luxury of binary
code space or processing power to support an XML parser, not to mention the mem-
ory required to perform parsing.

Most lightweight XML parsers support the Simple API for XML (SAX) approach
for parsing documents as opposed to the Document Object Model (DOM) approach.
In many cases, this is the only parsing approach available due to the memory advan-
tages of SAX. The main difference is that with DOM, the entire XML tree is con-
structed in memory where a SAX parser throws events to an application as the data is
parsed, allowing the application to deal with the data immediately. By delegating the
data handling immediately, a SAX parser does not need to hold onto the data being
parsed. A SAX parser simply provides a means for inspecting and dealing with the data
contained in the XML document. What happens to the data is entirely the responsi-
bility of the application or component using the SAX parser.
GUIDELINES FOR BUILDING J2ME APPLICATIONS 307

WH_Java2.book Page 308 Monday, March 4, 2002 9:59 AM
If you are targeting CDC devices, deploying an XML parser with your application
may not increase the application footprint beyond the limits of the device as CDC
devices tend to have, on average, at least 2 MB of space available. These devices tend
to have more processing power as well, which is important for running XML parses
since, in J2ME terms, parsing can become resource-intensive.

XML over networks

Regardless of whether CDC or CLDC devices are being used, the network connec-
tion rate must be considered as well. XML requires quite a bit of information beyond the
data itself, such as the tags, header information, and so forth. While this information
may be useful in some applications, it can be considered bloated when compared to a
comma-delimited format. This may impact transmission time if the formatting is complex.

XML and existing systems

There are a number of reasons for choosing XML as a data transport format. For
example, if there is an existing system that the device must communicate with that
requires an XML interface you may have little choice. Also, there are advantages to
reusing the existing XML portal. The architectural tradeoff is between reusing the
server interface vs. slimming down the transport format and requiring an XML parser
on the device.

Home-grown parsing

One thing to point out, as another option, is that using XML as a data transportation
format does not necessarily require an XML parser to construct and parse XML
streams. You may be able to get away with parsing the XML yourself, using the
String function indexOf() and grabbing what you are interested in.

Data complexity

XML also becomes attractive when complex data formats are involved, such as a for-
mat with lots of nested data. An example of this might be a customer record that con-
tains a list of orders. An undetermined number of orders will be enclosed within the
customer record. Furthermore, each order may contain nested information such as a
list of addresses, some of which are optional such as billing address, shipping address,
home office address, and so forth.

If you do not require a complex format, or a complex format can be divided into
smaller, less complex formats, you may want to reconsider the use of XML as a data trans-
port format. However, if validating the data format is critical to the application, XML
may be a good choice since XML can validate an XML document against a DTD.

Table 11.1 lists a few of the XML parsers available for J2ME devices. More infor-
mation on these APIs can be found in chapter 15.
308 CHAPTER 11 REAL-WORLD DESIGN

WH_Java2.book Page 309 Monday, March 4, 2002 9:59 AM
Example of an XML format

The following example shows the use of XML for submitting a product order. Since
most lightweight parsers are non-validating, the example is provided without a DTD.
Furthermore, for efficiency, the format uses attributes rather than elements to contain
the data. Parsers can deal with attributes more efficiently. The drawback of not using
elements is that the document cannot be validated against a DTD. Even if the J2ME
client does not validate records, there may be reasons you want to perform this step
on the server.

<OrderRecord>
 <Order id=4444>
 <Product id=1001 />
 <Quantity value=4 />
 </Order>
 <Order id=4445>
 <Product id=3003 />
 <Quantity value=2 />
 </Order>
 <Order id=4446>
 <Product id=4004 />
 <Quantity value=8 />
 </Order>
</OrderRecord>

Delimited formats

If XML is not a viable solution due to the API footprint, network bandwidth or pro-
cessing power issues, a delimited stream format may be an option. A simple delimited
markup can be devised using one or two well-chosen delimiters. By well-chosen, we
mean that you must be careful to pick a delimiter that will not interfere with the pro-
tocol over which the data is being sent. Additionally, the delimiter must be uniquely
distinguishable within the data stream. Using a comma or semi-colon as a delimiter
may not work if these characters appear in the data itself as punctuation marks.

Using delimiters allows the data format to be rather compact, since the length of
the data elements does not need to be defined in order to create or parse the streams.

Table 11.1 Small footprint XML parsers

XML Parser Description

NanoXML Non-validating parser written in Java with a minimum footprint of 6 kilobytes.
NanoXML is available at nanoxml.sourceforge.net.

TinyXML Non-validating parser written in Java with a minimum footprint of 16 kilobytes.
TinyXML is available at www.gibaradunn.srac.org/tiny/index.shtml.

Aelfred DTD-aware parser supporting event-based parsing. Aelfred is available at
www.opentext.com/microstar.

kXML Parser with optional WAP Binary encoded XML parsing capabilities (WBXML).
Binary encoding allows the XML stream to be made smaller to improve network
efficiency over sending the XML as ASCII text. kXML is available at www.kxml.org.
GUIDELINES FOR BUILDING J2ME APPLICATIONS 309

WH_Java2.book Page 310 Monday, March 4, 2002 9:59 AM
The downside to using a delimited format is that the sender and receiving systems
must both understand what data is in what positions, or a header must be sent to pro-
vide this information. If you are in control of both sender and receiver, it may be pos-
sible to reuse the code that packages the data and unpackages the data for transmission
on both the client and the server.

Without enclosing the format in the header, the format must be hard-coded into
the classes themselves. If header data is included as part of the format, you may want
to revisit using XML since this is what XML excels at providing. However, even with
a header involved, this format can still be slimmer than XML-formatted data. The fol-
lowing is an example of delimited syntax. This particular format uses semi-colons as
the primary delimiter and commas as a nested delimiter.

Header:

OrderNumber, ProductNumber, Quantity

Data Example:

4444,1001,4;4445,3003,2;4446,4004,8

In the preceding example each record contains three data elements. A semi-colon sep-
arates each record.

Name-value formats

A common method for sending data over the Internet is the use of name=value pairs.
Most browsers and web applications utilize this format. The benefit is that the format
is rather agile and can be used to send arbitrary sets of data. For example, if a data ele-
ment is empty or does not apply in some cases, it can be omitted from the stream. In
comparison, null values in delimited or XML formatted data must be represented by
a null marker or an empty value.

This is one of the simplest solutions and may not require a lot of thought. How-
ever, there are some implications if the data sets are large or the data format is complex.

If the data sets are large, the field information (the name) must be repeated for each
record. In the delimited scenario, the field information can be specified once, in the
header or in the software itself. If the transmission is sending multiple records in a
name=value format there may be quite a bit of redundant data being sent over the con-
nection unnecessarily. The following examples show data formats for name=value pair
streams. In this case, in order to identify data elements as a record, the order of ele-
ments is meaningful or the OrderNumber must be included as part of the name.
In the first example, the parser assumes that all data following an OrderNumber
belongs to that order.

OrderNumber=4444

ProductNumber=1001
Quantity=4
OrderNumber=4445
310 CHAPTER 11 REAL-WORLD DESIGN

WH_Java2.book Page 311 Monday, March 4, 2002 9:59 AM
ProductNumber=3003
Quantity=2
OrderNumber=4446
ProductNumber=4004
Quantity=8

In this next example, the order number is omitted as an entry and is combined with
the name portion of the syntax. This relieves the order dependency but introduces an
assumption that the OrderNumber is part of, and repeated for, each element name.

ProductNumber.4444=1001
Quantity.4444=4
ProductNumber.4445=3003
Quantity.4445=2
ProductNumber.4446=4004
Quantity.4446=8

Fixed-position formats

Fixed-position formats are common in many legacy mainframe computing environ-
ments. In many cases, these formats were chosen for the same reasons you may opt to
use them in a J2ME application: namely for reducing data size. Like J2ME applica-
tions, mainframe software developed years ago needed to pay much more attention to
data size characteristics for storage and resource reasons. Fixed-position formats pro-
vide a predefined amount of space for each field in the format. The parser recognizes
a subset of the data to represent an individual record or field. The benefit to using a
fixed-position format is that there are no delimiters to worry about. All that is sent is
the data, along with perhaps some header information depending on the design. The
drawbacks tend to be in the rigidity of the format. If the data stream is off by as little
as one character the entire stream can be corrupted. Furthermore, altering the data
format to include a new field can be tedious since programming changes to the pars-
ing code itself may be necessary.

Fixed-position formats rely heavily on position and the order of data elements. An
order number is expected at certain offsets. Data contained within those offsets are
assumed to belong to the preceding order number.

The size of the formatted data itself can be rather compact. However, empty and
null values must be specified in order to preserve the position of the fields. Furthermore,
there will be wasted space within fields since the field positions must specify the max-
imum field length. So, if you need to send a lot of memo type text, with fields that can
handle lots of characters, you may incur a fair amount of overhead. For comparison,
a memo field that allows up to 500 characters to be entered requires 500 character
positions in the fixed format, where in the other formats the space required is the
length of the memo text itself. The following example illustrates the order submission
data using a fixed-position format. The header could be included as part of the format
or coded into the software.
GUIDELINES FOR BUILDING J2ME APPLICATIONS 311

WH_Java2.book Page 312 Monday, March 4, 2002 9:59 AM
Header:

OrderNumber[4],ProductNumber[4],Quantity[3]

Data Example:

444410010044445300300244464004008

From this example we can see that one last drawback to using fixed-position formats
is readability. During development and to correct defects in the application, program-
mers are likely to be investigating problems using the formatted data. This format is
the most difficult to work with from a developer perspective unless the code that han-
dles these formats can be automated or generated in some fashion.

11.3.4 Data synchronization

Data synchronization is often referred to as the Achilles’ heel of mobile computing.
This is due to the fact that if a mobile device is to operate in a state that is discon-
nected from the network, the device is likely to need a local copy of data in which to
work. The key problem that arises in this situation has to do with the word “copy.”
Once you have a copy of data within the architecture, you have data synchronization
issues to deal with. Most of the stickiest data synchronization issues tend to involve
situations where data is updated on both the device as well as the server. However,
read-only data can have synchronization issues as well. How “fresh” does the data
need to be, for example? In situations where the system must rely on the user to trig-
ger the data synchronization, problems can become amplified since the amount of
data to synchronize can become rather large if the user does not perform synchroniza-
tions frequently.

There are a number of factors that an architect should weigh when considering data
synchronization issues.

First of all, is synchronization required? If a copy of data is not stored or buffered
on the device, data synchronization should not be an issue. Systems in this situation
make use of a persistent connection to the server, always dealing with the server data
directly rather than getting a copy for their own use. This situation, however, depends
upon a reliable network connection.

Second, if there are data synchronization requirements, to what extent does the
architecture need to deal with them? For example, what is the likelihood of a dirty
write occurring? A “dirty write,” in a mobile context, is when the copy of data on the
device and the copy of data on the server have both been independently modified.
When the device attempts to update the server with its data there are two sets of changes
that are in competition: the modifications made to the device data and the modifica-
tions made on the server data. To resolve these issues, the architecture should enforce
some type of policy. This policy could be as simple as “last one wins.” In other words
the last write to the database becomes the current version of the data, even if previous
changes are overwritten causing them to be lost. This is by far the most simple, as well
as the most optimistic method of dealing with these types of synchronization issues.
312 CHAPTER 11 REAL-WORLD DESIGN

WH_Java2.book Page 313 Monday, March 4, 2002 9:59 AM
However, depending on the nature of the data and the updates that are occurring, this
approach may be unacceptable to the users or the business. Figure 11.9 illustrates a
scenario that uses a non-locking scheme.
Another way of dealing with the “dirty write” issue is to implement a locking policy.
There are many variations for locking data and only a few of the most common are
discussed here.

Optimistic locking policies

Using an optimistic locking model, a timestamp could be employed to note the last
time the data on the server was updated. When the data is copied out to the device,
this timestamp would be copied as well. When the device sends modifications back to
the server, the device and server timestamps are compared. If they are equal, the

Client A
gets

Record 99

Client B
gets

Record 99

Client A
changes

Record 99

Client B
writes

Record 99

Client A
writes

Record 99

Animal
=Pig

Client B
changes

Record 99

Animal
=Dog

Animal
=Goat

Animal
=Pig

Animal
=Goat

Server

Client

Animal
=Dog

Animal
=Pig

Animal
=Dog

Animal
=Goat

Figure 11.9 This figure illustrates a scenario where no locking is used. In this case, access to

any record is always granted. Conflicts between clients are not resolved and thus the last client

to modify the record determines the state of the record. This is also known as “last one wins.”

Client A
gets

Record 99

Client B
gets

Record 99

Client A
changes

Record 99

Client B
writes

Record 99

Client A
writes

Record 99

Animal
=Pig

Client B
changes

Record 99

Animal
=Dog

Animal
=Goat

Animal
=Pig

Animal
=Goat

Server

Client

Animal
=Dog

Dirty write
not allowed

Animal
=Pig

Animal
=Dog

Animal
=Pig

Figure 11.10 This figure illustrates an optimistic locking model. In this model read access to

any record is always granted. However, when an update is to take place, the record must be

unmodified for write access to be granted. If the record has been modified since the client read

the record, the update is not allowed.
GUIDELINES FOR BUILDING J2ME APPLICATIONS 313

WH_Java2.book Page 314 Monday, March 4, 2002 9:59 AM
update is allowed to occur. If the server timestamp is later than the device timestamp,
the server data has been modified by another source and the updates from the device
are rejected. Usually, this results in sending a reply to the device indicating that the
update cannot occur. The responsibility is now thrust upon the users to resolve the
issues for themselves, often through much confusion, frustration and loss of data. An
example of this locking model is shown in figure 11.10.

Pessimistic locking policies

This situation can be avoided using a pessimistic locking model. In this model, when
the data is copied to the device, the server version is marked with a flag indicating
that the device “has” the data. The only updates that can occur at this point must
come from the device. Although this eliminates the possibility of dirty writes, it also
ties up the data for an unspecified amount of time. What makes a pessimistic locking
model unattractive in a mobile environment is that there is no guarantee that the
device will ever release the lock condition on the server. What if the device is lost? Or
the user simply neglects or forgets to perform synchronization?

Lease-locking policies

Recently, the concept of a lease has entered the field of data synchronization technol-
ogy. A lease is a contract between two elements in a computing environment. These
can be physical machines, components, software, or any combination of these things.
What is interesting about a lease is that there is a time period associated with this
agreement. The contract remains in effect between the two computing elements until
the lease expires or is renewed. The concept of a lease can be used to deal with data
synchronization in a mobile environment as well. Consider the pessimistic locking

Client A
gets

Record 99

Client B
gets

Record 99

Client A
changes

Record 99

Animal
=Pig

Client A
writes

Record 99

Animal
=Dog

Animal
=Pig

Server

Client

Animal
=Dog

Read not
allowed Animal

=Pig

Figure 11.11 This figure illustrates a pessimistic locking model. This is the most restrictive

locking model available and only allows one user to access a record at a time. If one client

reads a record, a lock is set so that no other clients can access the record until the lock is

released. This lock is incurred regardless of whether or not an update takes place.
314 CHAPTER 11 REAL-WORLD DESIGN

WH_Java2.book Page 315 Monday, March 4, 2002 9:59 AM
model just discussed. If a lease were introduced as part of the locking policy, the
device could lock the data on the server for a specified time period. During this
period of time, no reads or updates from other sources than the device holding the
lease would be allowed to occur. However, if the device does not synchronize its copy
of the data with the server during the leased time period, and the device does not
renew the lease, the lease expires. Once the lease expires the lock is released on the
server copy of the data, making it available to others. An example of a lease-locking
policy is shown in figure 11.12.

There are many variations that can be imposed on the samples provided here. For
example, a leasing model could allow read access much like an optimistic model, but
a client must obtain a lease in order to have write privileges.

Depending on how fine-grained the control is over the data, there may be other
options for synchronization. If data can be synchronized on a field-by-field basis, as
opposed to a record basis, the chance of a dirty write is reduced. This would allow a
record to be updated by multiple users as long as the same fields were not modified.
However, regardless of how fine-grained the control over data synchronization is,
there still needs to be a policy in place for reconciling dirty write situations.

Factors influencing data synchronization

Who is in control of synchronization: the software or the user? In other words, is syn-
chronization triggered by an action taken by the user (that is, a user pressing a button
or taking some action) or does the software perform synchronization automatically in
a manner unknown to the user? If the software is in control when synchronization takes

Client A
gets

Record 99

Client B
gets

Record 99

Client A
changes

Record 99

Client B
changes

Record 99

Client A
writes

Record 99

Client B
writes

Record 99

Animal
=Pig

Client B
gets

Record 99

Animal
=Dog

Animal
=Goat

Animal
=Pig

Animal
=Dog

Animal
=Goat

Server

Client

Animal
=Dog

Lease
acquired

Read not
allowed

Lease
expires

Lease
acquired

Lease
closed

Animal
=Goat

Change rejected
Lease expired

Figure 11.12 This figure shows an example of a lease-locking model. This model is similar to

a pessimistic model in that when a client acquires a lease, and reads a data record, no other

clients can obtain a lease or gain access to the data until the lease expires or is cancelled by

the client. The main advantage of a leasing model is that a lease can expire, thus freeing up

the data after a specific period of time.
GUIDELINES FOR BUILDING J2ME APPLICATIONS 315

WH_Java2.book Page 316 Monday, March 4, 2002 9:59 AM
place, data synchronization can occur in a well-defined manner. If triggering the syn-
chronization process is the responsibility of the user, the timeliness of synchronization
as well as the amount of data to be synchronized becomes an unknown. In either circum-
stance, synchronization is dependent on the ability to establish a network connection.

What about adding and deleting data? So far, we have discussed updates to existing
data. However, there are often more than data changes to consider. When adds and
deletes come into the picture there are other scenarios to consider. For example, what
happens when a new record is added and then deleted on the device before synchroni-
zation occurs? First of all, if our synchronization architecture is sophisticated enough it
can determine that nothing needs to occur for that record on the server. If the architec-
ture cannot detect this situation, the application must be capable of preserving the order
of the operations. If the record was added and then deleted, we do not want the application
to perform the delete first (which does nothing on the server, since the record does not
exist), and then perform the add, which would create a duplicate record. The other prob-
lem that comes into the picture is that a true delete on the device means that we physically
remove the data from the device. In this situation, how do we tell the server what to
delete if the record is completely missing from the device? The best solution is not to delete
anything on the device. Instead, mark the item for deletion. When synchronization
occurs, the system will be able to resolve the delete between both the client and the server.

How often can you synchronize? Ideally, synchronization takes place frequently.
By synchronizing frequently, smaller chunks of data can be synchronized, possibly
working behind the scenes and not even attracting or requiring the user’s attention.
The more time between synchronizations the more risk to data integrity. As the num-
ber of data changes grow, the gap between the server data and the device data widens.
To synchronize data between the systems after a long period of time takes more work
and processing. Figure 11.13 illustrates this principle.

Synchronization tools

There are several things that can help to deal with data synchronization issues
between a J2ME device and the server. Many third party, small-footprint databases
have synchronization either built into their products or have add-on products that aid

Server

D
at

a
in

t e
g r

it y
 ri

sk

Time between synchronization

Device

Figure 11.13

As the time between synchronizations increases,

the synchronicity gap of data on the device and

on the server increases. When synchronization

occurs, more effort is required, along with larger

transactions and longer connection times, in

order to bring the two environments back into

synchronicity. In some cases, this can impact the

business process as well as the data integrity.
316 CHAPTER 11 REAL-WORLD DESIGN

WH_Java2.book Page 317 Monday, March 4, 2002 9:59 AM
synchronization. Two of these database products are Pointbase and Cloudscape. These
products are discussed in more detail in Chapter 15.

Possibly more interesting is the emerging synchronization protocol SyncML. SyncML
is an open synchronization specification that is being developed by industry leaders
such as IBM, Lotus, Motorola, Ericsson, Palm, Nokia, Panasonic, Psion, and Starfish.
SyncML is an XML-based markup language that describes synchronization tasks
between mobile devices and their data sources. The specification will allow third-party
software vendors to create synchronization software to an open standard.

11.3.5 Data storage

Data storage between profiles and devices can vary widely. In some cases, such as
MIDP, a byte array may be all that is available. In the CDC environment, it is quite
likely that a relational database management system (RDBMS) or an object database
(ODBMS) can be installed.

Byte arrays

Byte array data storage provides fine-grained control over data storage because the
developer must write the storage operations. There are some third-party APIs avail-
able that provide some convenient and more productive interfaces for dealing with
byte array storage. However, when you are dealing with byte arrays you are most
likely dealing with a limited device in the CLDC space. Building or using an API to
deal with byte array formats may require more overhead than you can allow.

Byte arrays provide a simple means of storing data. There is no inherent format or
structure to the data storage other than that a byte array is accessed by a key, usually
an int or a String. A single byte array could be used to store a large quantity of data,
or the byte arrays can be partitioned into a finer structure where each field or element
is contained within its own array. Usually, the best option for data storage lies some-
where in between these two options.

To determine a good record size it is worth looking at not only the type and quan-
tity of data the application stores but also how the data needs to be accessed. Consider
the following scenarios.

If data is stored on the device only for the purposes of eventually submitting it to
a server application, and the only data access required is to store the data and retrieve
it during transmission, then the record size does not benefit by being broken into
smaller chunks. In fact, it would be best, perhaps, to store the data in the format in
which it is transmitted.

When an application requires the data store to be queried, the record size becomes
more important. Unlike with a relational database, in order to query a byte array the
array must be read into memory and compared to the search criteria. Depending on
how this is handled, significant resources may be required to perform the necessary
operations, such as heap memory and CPU processor cycles. Furthermore, if the data
needs to be sorted, this is something the application will need to do as well.
GUIDELINES FOR BUILDING J2ME APPLICATIONS 317

WH_Java2.book Page 318 Monday, March 4, 2002 9:59 AM
Data storage and performance

One of the most expensive operations in computing environments tends to be access-
ing the storage system. In order to limit going to the database you may choose to
cache data records in memory. In doing so, you gain faster access to the data. The
drawbacks are that it takes precious memory resources and if the application termi-
nates unexpectedly or the device is reset, the cached data can be lost. In some cases a
balance needs to be found between performance and resource utilization. On a lim-
ited device, these decisions are best made on a case-by-case basis. However, as a gen-
eral rule, static data, such as the content for dropdown lists (codes and descriptions)
can be cached without worry since the data is never updated on the device. By cach-
ing this type data, the data access can be performed once and the information can be
stored in a pre-sorted manner.

Format of the stored data

The format of the data itself is another consideration. If the data can be stored in the
format that is used to send and receive the data between the J2ME device and exter-
nal systems, some efficiencies are gained. First of all, processor time can be minimized
when transmitting data over the network since reformatting is not necessary. Like-
wise, when the device receives data it can be placed into storage immediately without
modification. This can be a tremendous advantage if your application is tight on heap
memory since each record could be read from storage and placed directly onto the
network output stream and vice versa. This minimizes the amount of data that needs
to reside in memory at any given time during the transmission.

Flat files

Some J2ME environments will provide support for accessing a file system on a device
instead of simple byte arrays. On such systems, the standard java.io classes are used to
access file data. This means that you can take advantage of storage techniques that
may be more familiar to you. However, this may mean you will need to implement the
concept of a record and provide the means to create, read, update and delete these records.

Small footprint databases

There are several databases surfacing on the market that provide relational database
support on J2ME devices. Many of these products support a full set or subset of SQL
syntax to access the data. Table 11.2 lists a few of the available products.

If your application needs to store a lot of information on the device and the appli-
cation needs to create, update, delete as well as run queries across the data, a relational
database may be worth its weight many times over, even if the application is left a little
strained for resources.

However, if you do not need to perform much data access or do not need to store
much data, a relational database may be overkill.
318 CHAPTER 11 REAL-WORLD DESIGN

WH_Java2.book Page 319 Monday, March 4, 2002 9:59 AM
Regardless of how data is stored on the device there will be a data mapping issue that
needs to be dealt with for moving data over a network connection. Unless there is a
JDBC driver that can run over your network connection, the data from the external
system needs to be mapped into the network transmission format and then mapped
from that format into the device’s internal storage format. Simply running an
RDBMS on both the J2ME client and the server (or other system) may not relieve
you of this mapping task since the network format sits in between the two databases.

Another item to consider is that some database products, such as Cloudscape and
Pointbase, offer data synchronization features and complementary products to help
keep the device data and the server data synchronized. This solves the network data
format issues automatically.

11.3.6 Memory

How memory is allocated and utilized varies between devices. In the J2ME device
space, the familiar notion of runtime memory (RAM) and disk capacity as it is under-
stood on desktop and laptop systems usually does not hold for the simple reason that
many J2ME devices do not have a hard disk. In fact, many do not support a file sys-
tem. In many cases, the runtime memory and the storage memory are simply parti-
tions of the same memory resource, such as Flash Memory. Devices running
Palm OS, for example, partition memory into two heaps, the dynamic heap, and the
storage heap. The dynamic heap is used for application runtime. The contents of this
memory partition do not survive a device reset. The storage heap is used for persistent
data storage. The contents of this memory partition will survive a device reset (exclud-
ing a hard reset which will revert the device to its original manufacturer settings).

Understanding how memory is utilized on your target devices becomes important
since your application must fit into the memory constraints of each device as well as
stay within the storage limitations of the devices. For example, if your target devices
support 8 MB of memory you cannot assume that all the memory is available to your
application. You are sharing it with other applications stored on the device as well as

Table 11.2 Small footprint databases

Database Description

Pointbase An all-Java database with a footprint of 45 kilobytes that is designed to fit into CLDC
and CDC devices, as well as run in the J2SE environment. Pointbase is available from
Pointbase, Inc. More information can be found at their website, www.pointbase.com.

Cloudscape An all-Java database that works as both a relational database and an object database.
Although this database ships with the J2EE it can be used within a more constrained
environment such as J2ME. Cloudscape is owned by IBM. More information can be
found at their website, www.cloudscape.com.

SQL
Anywhere

A small footprint database provided by Sybase. More information can be found at
their website, www.sybase.com/products/mobilewireless/anywhere.

Oracle Lite A small footprint version of Oracle. More information can be found at their website,
www.oracle.com/ip/deploy/database/8i/8ilite.
GUIDELINES FOR BUILDING J2ME APPLICATIONS 319

WH_Java2.book Page 320 Monday, March 4, 2002 9:59 AM
the data of other applications. In many cases, the amount of runtime memory is sig-
nificantly less than the total memory. On a PalmVx, which has 8 MB of memory, the
runtime heap is allocated 256 KB. If networking is enabled, this consumes an addi-
tional 32 KB of this space. The KVM requires as much as 80 KB of runtime memory.
This leaves less than 144 KB of runtime memory available for your application.

Since the memory limitations are likely to vary across a set of target devices, you
are forced to develop your application to the lowest common denominator or alter
functionality based on memory constraints.

In many cases, memory issues can be managed within an application using pro-
gramming techniques. For example, when uploading data to the device, rather than
holding the data in memory until the transmission is complete, the data could be imme-
diately written to memory. In general, this is a good programming practice to follow.
Another important issue to consider with J2ME applications is to create as little garbage
for the garbage collector as possible. There are two reasons for this. First of all, creating
a lot of garbage incurs a lot of work for the garbage collector. The garbage collector
steals processing power from the application in order to run. Second of all, J2ME gar-
bage collectors vary in their implementation and some are better than others. If the gar-
bage collector cannot effectively clean up memory you will have memory leaks robbing
you of precious runtime memory. Therefore, it is important to pay attention to how
you use memory in operations and what is happening behind the scenes in the virtual
machine. For example, if you need to dynamically build a String, you are better off
assembling the String using StringBuffer.append() than concatenating
String objects using += (e.g, s += “append to end”). This is because String is
immutable and each concatenation actually creates a new String object that combines
the two concatenated String objects. StringBuffer, on the other hand, allows its
contents to be changed, thus fewer objects are created in the string assembly process.

11.3.7 Portability between profiles

In general, there are three main areas of functionality that networked device applica-
tions need to consider: user interface, data storage, and network connectivity. Since
network connectivity is supported at the configuration layer by the generic connec-
tion framework, network connectivity is likely to be the most portable of the three.
Data storage can vary since some devices only support byte arrays while others have
file systems or can run a relational database. The user interface is quite vulnerable;
however, the architecture of J2ME is set up to reduce inconsistencies between user
interface APIs. The key issues with user interface portability have to do with managing
a consistent set of GUI widgets, a consistent method of laying out components, and a
common event model. While the types of GUI widgets may vary between J2ME pro-
files, it is likely that J2ME will maintain consistency in widgets between profiles. For
example, if two profiles support a TextField component, the method signatures and
behavior of the component can be similar, even if the implementation on the profile
needs to change. This reduces a significant amount of rewriting between profiles.
320 CHAPTER 11 REAL-WORLD DESIGN

WH_Java2.book Page 321 Monday, March 4, 2002 9:59 AM
Furthermore, because J2ME profiles participate in an overarching J2ME architecture,
the methods of GUI component layout and event handling can be implemented in a
common way. However, the actual implementation of J2ME user interfaces between
profiles, and how portable applications are between profiles, is something yet to be
discovered as J2ME profiles emerge.

From a practical point of view, however, it is worth discussing some non-J2ME
APIs and the real-world porting issues we have encountered to date. This discussion
is valuable on two levels. First of all, you may need to write an application for a device
that does not yet have J2ME support, such as a PDA. Second of all, in the future you
may want to move your application into the J2ME architecture or port it to another
device. The following information may be valuable in designing the application today
and understanding portability issues in this space.

Portability between other Java environments

Outside of J2ME, the user interface is generally the most vulnerable part of a J2ME
application with regard to portability. This is mainly due to the differences in user
interface widgets that are supported or appropriate for particular devices. Currently,
PDA applications for Windows CE devices can be developed using PersonalJava, the
KJava API can be used to develop applications for Palm OS devices and MIDP can be
used to develop applications for cellular phones, pagers, and Palm OS PDAs.

From our experience, moving a KJava application to the PersonalJava platform, the
user interface portion of the application generally requires a fair amount of rewriting,
but the remainder of the application code can remain intact. In fact, if your applica-
tion does a good job of separating business and application logic from user interface
logic, most of the business and application logic can be ported without modification.

Between the KJava and PersonalJava APIs the event model changes as well. Per-
sonalJava uses a publish-subscribe approach to event handling that allows listeners to
register with objects to receive notification when something happens. As we saw in
chapter 9, the KJava API requires that specific methods, such as penDown() and
penMove() be overridden by a Spotlet descendent class in order to respond to events.

Finally, the last major difference in the two APIs is how components are laid out.
The PersonalJava API provides Layout Managers to handle this task. The KJava API
requires components to be painted at x, y coordinates on the screen.

Because of the differences in how the user interface APIs are put together in KJava
and PersonalJava, there will be little user interface code that can survive the port. How-
ever, we also have found that rebuilding a KJava user interface in PersonalJava can go
rather quickly. Once the user interface and events are in place, the rest of the appli-
cation can usually be hooked up easily.

Moving a KJava or PersonalJava application to MIDP incurs similar work. You need
to consider the event models as well as the layout managing techniques. In MIDP, the
concept of a layout manager is built directly into the components and is rather limited,
as the devices themselves are rather constrained. The available GUI widgets vary along
GUIDELINES FOR BUILDING J2ME APPLICATIONS 321

WH_Java2.book Page 322 Monday, March 4, 2002 9:59 AM
with their behavior between these environments. When moving from a PDA environ-
ment to MIDP it is worth doing some prototyping to make sure that the MIDP appli-
cation will satisfy your requirements. MIDP is designed mainly with cellular phones and
pagers in mind. MIDP for Palm OS is simply another device implementation for
MIDP, but may prove to be too limited for your needs in a PDA environment.

Data storage portability

Data storage is another area where portability issues may arise. For example, a Win-
dows CE device supports a file system and there is no support provided for byte array
storage. Why would you need a byte array if you have a file system? As a result, mov-
ing an application from an environment that only has a byte array storage facility to
one that has a file system, and no byte array storage API requires this inconsistency to
be addressed. The solution we have used successfully, to make porting go more
quickly, is to implement the byte array storage API using the file system. If you are
moving from a byte array storage system to a file system, this works well. However,
this may not be the ideal way to store data on the device that supports a file system.
What is appropriate and how much work you want to incur during the port needs to
be decided on a case-by-case basis.

Several of the third-party database products mentioned in chapter 15 are available
on many of the popular devices. For the price of the product, these products can be
used to eliminate data storage portability issues among various platforms.

11.3.8 Security

J2ME provides basic security on the device through the virtual machine. In CLDC,
preverification provides a minimal level of security to help ensure the safety of the
device and that an application that is being loaded has not been tapered with. How-
ever, the responsibility of securing the device itself has been left to the manufacturer.
Likewise, securing the application and data is left to the developer.

J2ME currently does not support a network security mechanism such as SSL
(Socket Security Layer). In the CLDC, security is handled primarily by omitting
unsafe classes that could potentially expose security risks in the absence of a full secu-
rity model. In CDC, the Java security model is present and verification is handled in
a similar manner to how class verification is handled in the J2SE environment.

As a J2ME software developer, there are several areas of security to address. The
first is transporting data over the network. Since SSL is not readily available through
the J2ME specifications at this time, you need to do one of three things: do nothing,
encrypt the data yourself, or employ a third-party solution. One third-party solution
that has recently become popular is Bouncy Castle, an open source cryptography pack-
age available at www.bouncycastle.org. Keep in mind that encryption can reduce the
efficiency of an application. You may want to identify key pieces of information that
need to be encrypted rather than blindly encrypting all of your data. For example, how
meaningful is a patient’s medical record if there is nothing to connect a patient to some
322 CHAPTER 11 REAL-WORLD DESIGN

WH_Java2.book Page 323 Monday, March 4, 2002 9:59 AM
test results, and so forth. The point here is that encrypting the patient’s ID, name, etc.
may be sufficient under some circumstances.

Once you have achieved a satisfactory level of security over the network, you
should consider how safe the data is on the device. One consideration for protecting
data on the device is to password-protect your application. Should the device become
lost or stolen a person would need to gain access to the password in order to use the
application. If the data stored on the device is particularly sensitive, you may opt to
store the data in an encrypted format, making it difficult for someone to access the
data in a meaningful way. On some devices, where data is stored in a file system for
example, you application may not be the only means of accessing the data. On a Win-
dows CE device, data files can be accessed with a text editor on the device. Further-
more, data files can be pulled off of mobile devices onto desktop computers that have
more powerful options for viewing data and files.

If password-protecting your application sounds like something you need, you will
want to investigate ways for making password entry as painless as possible for your
users. One thing to remember is that entering alphanumeric data on a cellular phone
or PDA can be rather tedious. In the case of a PDA you may want to investigate other
ways to capture a password, such as the combination lock metaphor shown in figure 11.4.

11.3.9 Internationalization

J2ME provides basic support for some internationalization capabilities. Basic interna-
tionalization support is comprised of character encoding as well as the ability to local-
ize the application to a specific language, country and time zone.

Character encoding and localization

Character encoding is the process of converting character data to a series of bytes and
back again. This mechanism is used by java.io.Reader and java.io.Writer classes to
read and write character-based data to and from the underlying byte stream. Charac-
ter encoding provides the ability for an application to display characters specific to a
particular language or subset of standard character sets. Localization deals with for-
matting currency, dates, times, and time zone issues.

The support for internationalization differs between the CLDC and CDC envi-
ronments. The CDC provides character encoding as well as locale support where the
CLDC environment does not support the concept of a locale. Implementations of
both the CDC and CLDC must support “Latin 1” (ISO8859_1) character encoding.
However, this is the only encoding type that is required. Depending on the manufac-
turer and their market, additional encoding types may be provided. Utilizing different
types of encoding may cause your application to fail between different J2ME imple-
mentations. If a converter for the specified encoding cannot be found, an Unsup-
portedEncodingException is thrown.

The following can be used to determine the current character encoding at runtime:

String characterEncoding = System.getProperty("microedition.encoding");
GUIDELINES FOR BUILDING J2ME APPLICATIONS 323

WH_Java2.book Page 324 Monday, March 4, 2002 9:59 AM
Time zones

When dealing with mobile applications, time zones can become an issue since the
application may be used across multiple time zones as the user wanders from time
zone to time zone. This is especially problematic when times and dates are part of the
data communicated between devices and servers. For example, what happens when
the mobile device user views time-sensitive information that a server application
stored within a different time zone? Will the proper adjustments be handled? For
example, if an appointment is scheduled for 10:00 AM CST and transmitted to a
device in PST, will the appointment show up as 8:00 AM as it should?

Within both the CDC and CLDC environments, the following line of code can
be used to determine the current time zone for the system. Note, however, that how
time zone information is obtained can vary per implementation. On cellular phones,
for example, the current time zone may be updated automatically while a PDA may
only recognize the time zone specified by the user when the device is configured.
TimeZone tz = TimeZone.getDefault();

Furthermore, devices vary in which time zones are supported. To obtain a list of sup-
ported time zones use the following code:

String[] s = TimeZone.getAvailableIDs();

Calculating between time zones

The java.util.Date object from the J2SE environment automatically adjusts the
date according to the default time zone associated with the current environment. The
Date.getTime() method returns a long representation of the date. This long is
an offset, in milliseconds, from the date January 1, 1970, 00:00:00 GMT.

Dates in J2ME operate in the same manner. However, it is important to note that
some time zones may not be supported on a particular device. In some cases only
Greenwich Mean Time (GMT) and Coordinated Universal Time (UTC) are supported.
Under this circumstance, converting between GMT and local time must be performed
manually by adding or subtracting an offset, in milliseconds.

ABOUT TIME GMT and UTC are similar in that they both represent a common time in
which to base offset local time zones. GMT and UTC are different in that
UTC is based on the atomic clock where GMT is based on astronomical
observations.

If the time zones you require are supported on the devices you are deploying to, the
calculations between time zones will be handled automatically as long as dates are
passed as representations of the java.util.Date class or the long representation pro-
vided by the Date.getTime() method.

NOTE Not all devices and J2ME implementations support the same set of time
zones. Make sure that your target devices support GMT or UTC and the
necessary local time zones. Otherwise you may need to perform time zone
calculations on your own.
324 CHAPTER 11 REAL-WORLD DESIGN

WH_Java2.book Page 325 Monday, March 4, 2002 9:59 AM
Locale

Since the CDC environment supports the concept of locale, adjustments in format-
ting can be dealt with obtaining format-related classes using the locale parameter. For
example, obtaining a locale-specific Calendar instance would look something like the fol-
lowing, where “EN” represents the language “English” and “us” represents the country:

Calendar c = Calendar.getInstance(new Locale("EN", "us"));

Ironically, even though CDC supports locale, the only required locale is us-EN. This
means that different manufacturers can support different sets of locales. Your applica-
tions will need to deal with the situation where an expected locale is not supported by
a particular J2ME implementation.

When using the CLDC environment, the same formatting classes are available, but
you will need to make the necessary adjustments for localization yourself.

11.4 ARCHITECTURAL TOOLS AND TECHNIQUES

To develop mobile and wireless applications successfully and consistently, there are a
number of tools that can be employed to facilitate the process early on in the project
lifecycle. This section discusses a few of these tools and techniques. The first of these
techniques is a questionnaire designed to understand if a mobile and wireless solution
is a good fit for an organization.

11.4.1 Questionnaire: assessing if mobile and wireless is a good fit

This short quiz contains questions indicating symptoms that a mobile and wireless
solution may be a good fit for a particular situation. The set of questions is intended
to quickly gather information about an organization’s business process to discover
where mobile and wireless solutions may be of help. Keep in mind, however, the fac-
tors indicated by this quiz do not immediately validate or invalidate the need for a
mobile and wireless solution. The quiz is not intended to be scored or provide empir-
ical data; it is simply a quick gauge that can be used to promote discussion.

• Do workers deal with a lot of forms in their workflows and business processes?
• Is there a lot of faxing of data between members of the organization or different

locations?
• Are workers that collaborate or interact distributed across different locations?
• Is there a time lag between data coming from the field into a central office?
• Is there a time lag distributing current information or data from a central office

into the field?
• Are there often inconsistencies or inaccuracies with data gathered in the field?
• Would members of your workforce benefit by having a device at the point of service?
• Is there a lot of re-entering of data in workflows and business processes?
ARCHITECTURAL TOOLS AND TECHNIQUES 325

WH_Java2.book Page 326 Monday, March 4, 2002 9:59 AM
11.4.2 Mobile application models

Different types of applications have inherently different types of characteristics. It is
often helpful to categorize these characteristics in terms of a model or pattern. The
following models provide a high-level categorization for applications that can be
helpful for communicating during design and development.

One helpful tool in architecting applications for mobile and wireless devices is to
understand the model that your application falls into. This text identifies four general
models. Understanding the application model will help to determine the importance
of J2ME features such as data storage, network connectivity, and so forth.

Standalone

This model describes applications that are downloaded from a network connection or
installed via other means, such as a cradle, and do not require further communication
with other systems or network resources to operate. Many games fall into this category.
Figure 11.14 illustrates this application model.

Figure 11.14 A Standalone application model only connects to another computing environ-

ment in order to obtain applications or data. This is a one-way transaction. Under the stand-

alone model, information is never transmitted to another computing environment.

Cradle-Synchronized

This model describes applications that rely on a non-network type of interaction with
other systems for installing the application and exchanging data. Data synchronization
and exchange is often performed between the device and another system while the
device is in a cradle, connected by a physical wire or communicating over an Ir port.
Figure 11.15 illustrates this application model.

Persistent Network-Aware

This model describes applications that depend on a network connection to operate.
If a network connection is unavailable the application cannot function. A micro-
browser is an example of such an application in that the application renders data pro-
vided by the server and submits information captured by the browser to the server.
Applications of this nature can either be downloaded each time the application is
requested by the user or permanently installed. Downloading the application each

Install/
Update

Device Desktop
326 CHAPTER 11 REAL-WORLD DESIGN

WH_Java2.book Page 327 Monday, March 4, 2002 9:59 AM
time reduces the client-server compatibility issues that arise with a persistently installed
application, but does incur the overhead of obtaining the application each time.
Without a persistent network connection being available this application cannot be used.

The primary advantage of this model is that very little information would need to
be stored on the device, if any at all. Since network connectivity is persistent, appli-
cations under this model would favor reading data directly from the server and updat-
ing the server with any changes made on the device immediately. This model provides
for more real-time interaction between the client and server environments as changes
can be immediately represented on the server and data is always up to date since data
is read directly from the server rather than local storage on the device. This model
applies to any type of wireless network connection, which includes local area networks
(such as an 802.11b wireless LAN) as well as a wireless connection to the public Internet.
Figure 11.16 illustrates this application model.

Figure 11.16 A Persistent, Network-Aware application model depends on a constant wireless

connection between the device and the network. This model relies on a wireless network

connection for delivering applications and data to the device. Under this model, data is less

likely to be stored on the device, in favor of interacting directly with the server environment.

It is expected that changes made to the data on the device would be immediately reflected

on the server. If this connection is unavailable the application cannot function.

Applications
and Data

New/Modified
Data

Device Desktop

Figure 11.15 A Cradle-Synchronized application obtains applications and data from another

computing environment and sends back any data modified on the device. Under this model,

new data elements may originate from either environment (in this example, the desktop or

the device). New data elements are added to the originating environment upon synchroniza-

tion. There is no wireless exchange of applications or data under this model. The device is

mobile, but is synchronized through a cradle or a wire connection to another environment.

Server

Network

Applications
and Data

New/Modified Data

Device
ARCHITECTURAL TOOLS AND TECHNIQUES 327

WH_Java2.book Page 328 Monday, March 4, 2002 9:59 AM
Intermittent Network-Aware

This model describes applications that require network communication for exchang-
ing data and interacting with network services. However, this application has the abil-
ity to either fully or partially operate in the absence of a network connection. As with
Persistent Network-Aware applications, Intermittent Network Aware applications can
either be downloaded each time the application is requested by the user or perma-
nently installed. If the application must be downloaded upon startup each time, the
network connection must be available for this portion of the runtime. If the applica-
tion is permanently installed, no network connection is required to perform most
tasks, or the network-dependent tasks can be deferred until a connection is available.

Identifying an application model will also help communicate design strategies to
stakeholders during the early phases of the project. Defining a high-level application
model assists everyone in understanding the important characteristics of the applica-
tion and how applications and data will be loaded and synchronized. This model
applies to any type of wireless network connection, which includes local area networks
(such as an 802.11 wireless LAN) as well as a wireless connection to the public Inter-
net. Figure 11.17 illustrates this application model.

Server

Network

Applications
and Data

New/Modified
Data

Device

Figure 11.17 Using an Intermittent, Network-Aware application model relieves the dependency

of requiring a constant connection to the network while keeping the advantages of using a

wireless network for data exchange between the device and server as well as application

delivery. Since network connections are allowed to be intermittent or unreliable under this

model, enough data must be stored locally on the device for the application to be used when

there is no network connection available. When a connection is available, the network can be

utilized to synchronize data between the device and server or to update applications.
328 CHAPTER 11 REAL-WORLD DESIGN

WH_Java2.book Page 329 Monday, March 4, 2002 9:59 AM
11.4.3 Architect’s checklist

The following is an architect’s checklist that can be used as a quick reference to make
sure important issues that characterize a mobile and wireless application have been con-
sidered. Each of the following should be considered with respect to each candidate device.

Memory

Data Storage

Data Synchronization

Network

Portability

❏ total memory for each device

❏ memory models for each device (runtime vs. storage allocation)

❏ upper limited footprint for application (compiled, installed code)

❏ estimated runtime memory requirements

❏ types of storage (byte array, file system, RDBMS)

❏ upper limit for data storage on each device

❏ anticipated amount of data on the device

❏ potential for dirty writes

❏ locking mechanisms (optimistic, pessimistic, none?)

❏ conflict resolution (what happens when you have a dirty write situation?)

❏ coverage (from where will users need to connect?)

❏ availability (how good or reliable is the service?)

❏ data transmission (how much, how often?)

❏ speeds of connection

❏ data transmission format (XML, delimited, name=value, fixed position, etc.)

❏ who controls data transmission (user, device or both?)

❏ intermittent or persistent connection required?

❏ how much is required?

❏ estimated effort to support desired platforms?

❏ is J2ME available?
ARCHITECTURAL TOOLS AND TECHNIQUES 329

WH_Java2.book Page 330 Monday, March 4, 2002 9:59 AM
User Interface

Computational Power

Power Supply

Security

Internationalization

Application Model

❏ screen display area of devices

❏ data entry mechanisms of devices

❏ navigation mechanisms

❏ rank of the general navigational complexity of the application (low, medium, high)

❏ display areas that may get covered (e.g., virtual keyboard or Graffiti)

❏ calculations

❏ data manipulation

❏ encryption

❏ battery or plugged in

❏ how long does the application need to function between charges?

❏ encryption (data transmitted over the network)

❏ encryption (data on device)

❏ password protection

❏ locales

❏ encoding

❏ time zones

❏ Stand-Alone

❏ Non-Network Synchronized

❏ Persistent Network-Aware

❏ Intermittent Network-Aware
330 CHAPTER 11 REAL-WORLD DESIGN

WH_Java2.book Page 331 Monday, March 4, 2002 9:59 AM
Checklists are helpful at all phases of a project to reduce risk by ensuring critical
aspects of a project have been considered. Not every item in the checklist provided
will pertain to every project. It is the team’s responsibility to assess the applicability of
each item and the degree to which it needs to be considered. The checklist should be
expanded and modified on each project, as the team learns more about what needs to
be considered on each project. This allows the organization one method for improv-
ing how software is developed and to learn from past mistakes.

11.5 SUMMARY

Developing for the mobile and wireless paradigm requires a shift in thinking from
more traditional client-server computing environments. It is important that both
application developers as well as stakeholders understand the differences of this para-
digm. The areas of user interface, data storage, and networking tend to be where the
issues of developing mobile and wireless systems are most apparent. However, there
are many things to consider nested within these areas such as data synchronization,
security, portability, processing power and memory utilization. In this chapter we have
focused on some of these issues so they can be considered early in a project lifecycle.
Where appropriate, guidelines have been provided for handling various situations.

In many cases, solving problems in the mobile and wireless environment involves
different approaches both from a technical point of view as well as a business point of
view. Identifying the critical business tasks and workflows that apply to a mobile and
wireless solution tends to be an important aspect of a successful application. Further-
more, it is important to understand that the set of device-appropriate features is likely
to vary between devices. The most essential features must be joined with the most
appropriate and practical devices. When developing J2ME applications the stage is typ-
ically set by defining a feature set, choosing devices, and picking one or more profiles.
SUMMARY 331

WH_Java2.book Page 332 Monday, March 4, 2002 9:59 AM
C H A P T E R 1 2

Integrating the server

12.1 Examining server integration 333
12.2 What technology to connect to? 334
12.3 Servlet example 334
12.4 XML 347
12.5 XML using JSPs example 353
12.6 Summary 364
Moving the enterprise into the mobile space is an attractive venture for many organi-
zations. Providing the ability to access organizational resources on a cell phone, pager,
or PDA, for example, could enhance communication and productivity significantly.
In doing so, however, consideration of the paradigm needs to be taken into account.
For example, how much of the enterprise can practically be put on a cell phone or
other small device? What device is the best fit? Will multiple devices and device types
need to be supported? In other words, will there be cell phones from multiple manu-
facturers or a mix of devices such as cell phones and PDAs? Also, once you have a set
of devices, how will you connect and interact with the enterprise systems?

Developing J2ME applications that connect to network and enterprise resources
is the subject of this chapter. We will discuss issues with extending the enterprise into
the mobile space and provide two examples. The first example is a MIDlet that inter-
acts with a Java Servlet. The second example is a MIDlet that accesses an XML data
source implemented using a JavaServer Page.
332

WH_Java2.book Page 333 Monday, March 4, 2002 9:59 AM
12.1 EXAMINING SERVER INTEGRATION

The key to successfully extending the enterprise into the mobile space is to identify and
focus on the problem that a mobile solution solves. A statement such as, “Extending
the enterprise into the mobile space,” in and of itself, is not a goal that describes
something beneficial to the business.

By focusing on specific business objectives, rather than technology solutions, an
organization can begin to flush out the beneficial pieces that need to be included in
a mobile architecture. In many cases, the mobile portion of the architecture turns out
to be many “portlets” rather than one big mobile portal. It may be better to have sev-
eral smaller applications that have a specific focus rather than one large mobile enter-
prise application.

12.1.1 Avoid monolithic applications

From an architecture and project perspective, one of the most important decisions is
determining how the applications will be put together. For example, do you plan to
develop a single application that is capable of performing multiple tasks or would it
be better to develop a single application for each task? These are the two ends of the
spectrum. The eventual solutions probably lie somewhere between these two extremes.
However there are advantages to making each application as granular as possible and
developing a suite of applications rather than one single application.

From a usage perspective, a more focused application does not require the complex
navigation that a larger, multi-purpose application must have in order to navigate to
the starting point of a task or operation. For example, an application menu bar that
exists in many of today’s large desktop applications is not possible or very inconvenient
on many small devices. Furthermore, the smaller applications approach allows users
to install only the applications that are necessary for them to perform their work.

From a systems perspective, given that mobile devices often have limitations on
memory, processing power, storage and so forth, developing a suite of applications
allows developers to avoid these limitations more effectively. For example, if the target
device only has 150 KB of runtime memory available for your application, a single appli-
cation must fit entirely within this 150 KB restriction. However, breaking the applica-
tion into multiple applications will allow each application, running separately, 150 KB
of runtime (heap) memory. Because applications on these small devices may be upgraded
via wireless connections, smaller applications can also be more easily replaced.

From a project perspective, partitioning the functionality into multiple applica-
tions allows for smaller release cycles. Developing five smaller applications instead of
one large one allows each application to be released as it becomes available, rather than
waiting for all the functionality to become available in the larger application. Having
a new product available every three months is usually more attractive to stakeholders
than having a single, monolithic product available within 15 months. Iteratively
releasing product functionality throughout the life of the project can reduce risk since
EXAMINING SERVER INTEGRATION 333

WH_Java2.book Page 334 Monday, March 4, 2002 9:59 AM
smaller units of functionality are being released. The problems that are encountered
can be resolved in a smaller context and avoided on subsequent releases of the other
applications. Furthermore, getting functionality in the hands of users elevates the vis-
ibility of the project earlier allowing the organization to rally behind the project.

12.2 WHAT TECHNOLOGY TO CONNECT TO?

Embarking on a J2ME project to extend the enterprise involves establishing an archi-
tecture or protocol to connect the enterprise with the J2ME space. It is important to
understand that building a J2ME mobile solution does not require the enterprise to
be running Java. For example, if the enterprise communicates with a web browser
using HTTP, then whether the enterprise application is using Java Servlets, JavaServer
Pages (JSP), Active Server Pages (ASP), Common Gateway Interface (CGI) scripts or
some other means of HTTP support does not matter. This is because HTTP is appli-
cation-independent. The only thing that the client and server need to understand is
the format of the data being exchanged. They do not require any knowledge of how
each is implemented. For this reason, HTTP is an attractive communication protocol
since it abstracts the client and the server rather nicely.

HTTP is not the only protocol available in the J2ME environment; there is also
support for connectively using sockets and datagrams. Regardless of the communica-
tion mechanism used, you should verify that connection protocols are supported by
the J2ME profiles to which you are developing. In some case, certain protocols are
optional. For example MIDP 1.0 requires only HTTP, leaving sockets and datagrams
as an optional feature for profile implementers. Although many vendors support all
three protocols, you are not always guaranteed that sockets and datagrams are available
on all MIDP 1.0 compliant devices.

WARNING Connection protocols may be optional under certain profiles. Be sure to
verify whether or not the protocols you need are required or optional. For
example, MIDP 1.0 supports sockets, datagrams, and HTTP connection
protocols but only requires an implementation to support HTTP.

12.3 SERVLET EXAMPLE

HTTP is a popular protocol and common to many enterprise architectures using Java
servlets. Servlets act as a controller between the client and backend components. In
this example, we demonstrate how this middleware can be used to interface J2ME cli-
ents to backend systems.

This example uses a client MIDP application called EnterpriseClient to con-
tact a Servlet called EnterpriseServletExample. The client provides a menu
option for sending a message over HTTP using either a GET or a POST method. The
message must be formatted differently depending on the HTTP method being used.
This is necessary to allow the servlet engine to process the request properly. In the case
where the message is sent using a GET method, the message is passed on the parameter
334 CHAPTER 12 INTEGRATING THE SERVER

WH_Java2.book Page 335 Monday, March 4, 2002 9:59 AM
string. For the POST method, the message is passed as part of the HTTP stream itself.
As a general rule, when data, other than parameters, are passed from a client to a server,
a POST method is the proper HTTP method to use.

WARNING The J2ME implementation of the HttpConnection protocol supports
HTTP version 1.1. If the server software does not provide full HTTP 1.1
support you may experience flaky and inconsistent behavior.

In the example, the EnterpriseClient allows a text message to be entered. The
servlet processes the request by incrementing a counter, which is tracked using a
cookie, and echoes the submitted text back to the client.

In order to run this example you will need a servlet engine of some sort that pro-
vides full support of the HTTP 1.1 protocol. This example uses WebLogic 6.1.

WARNING Tomcat version 3.x, a widely used open source application server, does not
provide full support for HTTP 1.1. As a result, the first time the client contacts
the server the request usually succeeds but subsequent attempts to contact
the server tend to fail. Upgrading to Tomcat 4.0, or using another HTTP 1.1
compliant Servlet engine will solve this problem.

The setup and configuration of Servlet engines is beyond the scope of this text. For
more information regarding Servlets in general please refer to Java Servlets by Exam-
ple, by Alan R. Williamson (Manning Publications).

Creating the servlet

The servlet we create to handle the GET and POST requests sent by the Enter-
priseClient is rather straightforward. All we need to do is accept the data, incre-
ment a counter, and return a response. However, to fully understand everything that
is going on, our servlet prints a fair amount of information to the console regarding
each request. Specifically, the information in which we are interested is the list of
parameters sent by the client, HTTP header information and any cookie data. Also,
in order to know if our session tracking is working properly, we will keep a counter of
how many times the servlet is accessed and print this to the console as well.

The first step in creating a servlet is to declare the class by extending the Http-
Servlet class that resides in the javax.Servlet.http package. The name of our
Servlet is EnterpriseServletExample.

public class EnterpriseServletExample extends HttpServlet {
}

There are several methods available for dealing with connections to the Servlet, namely
doGet(), doPost() and service(). The service() method is the most generic
and is always called for any HTTP request. In the case of doGet(), this method is
called to handle an HTTP GET request. Likewise a doPost() is called in response to
an HTTP POST request. For our purposes the service() method will be used.
SERVLET EXAMPLE 335

WH_Java2.book Page 336 Monday, March 4, 2002 9:59 AM
The following is a list of tasks performed by the servlet. As mentioned, most of the
tasks listed simply print out information in which we are interested as the Servlet pro-
cesses the request.

• prints initial information, such as request type, etc.

• prints parameter information

• prints HTTP header information

• prints cookie information

• processes the session counter

• processes data input

• initializes the data to be sent

• processes the response

The primary function of our servlet is to capture the data sent from the client and
return a response. The data can be obtained from the HTTP stream in the same
manner regardless of the method type. The following code illustrates how to do this:

private String processDataInput(HttpServletRequest request)

 throws IOException {
 int len = request.getContentLength()+2;
 String s = "";
 System.out.println("Request Content Length = "+len);
 if (len > 0) {
 System.out.println("Reading data from request:");
 BufferedReader reader = request.getReader();
 char[] buffer = new char[len];
 int i = reader.read(buffer, 0, buffer.length);
 s = new String(buffer);
 System.out.print(" Data.............:");
 System.out.println(s);
 System.out.println(" Data Length:"+i);
 }
 return s;
}

NOTE Due to a bug in the reference implementation HttpConnection of MIDP 1.0,
the request length of an HTTP call must be increased by 2 before reading the
stream. However, this will not be necessary on other implementations.

The following code writes the response data onto the Servlet response stream:

private void processResponse(HttpServletResponse response, String data)
 throws IOException {
 System.out.println("Responding...");
 response.setContentType("text/plain");
 response.setContentLength(data.length()+2);
 PrintWriter writer = response.getWriter();
 writer.println(data);
 System.out.println("Response Sent");
}

Adjust length, MIDP
reference imple-
mentation only

q

336 CHAPTER 12 INTEGRATING THE SERVER

WH_Java2.book Page 337 Monday, March 4, 2002 9:59 AM
Beyond these two code examples, the rest of the Servlet just prints information about
the request to the console so we can understand what is happening. A full code listing
of the servlet follows in listing 12.1:

package com.ctimn;

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class EnterpriseServletExample extends HttpServlet {

 public void service (HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 System.out.println(
 "Accepting data from a J2ME client. IP="+request.getRemoteAddr());
 System.out.println("Request Method...:"+request.getMethod());
 printParameterInfo(request);
 printHeaderInfo(request);
 printCookieInfo(request);
 processCounter(request);
 String data = processDataInput(request);
 String responseString =
 "Echo \"" + data + "\" sent via " + request.getMethod();
 processResponse(response, responseString);
 }

 private void printParameterInfo(HttpServletRequest request){
 System.out.println("Parameter Info:");
 Enumeration e = request.getParameterNames();
 while (e.hasMoreElements()){
 String name = (String)e.nextElement();
 System.out.println("
 Parameter........:"+name+"="+request.getParameter(name));
 }
 }

 private void printHeaderInfo(HttpServletRequest request){
 System.out.println("Header Info:");
 Enumeration e = request.getHeaderNames();
 while (e.hasMoreElements()){
 String name = (String)e.nextElement();
 System.out.println("
 Header...........:"+name+"="+request.getHeader(name));
 }
 }

 private void printCookieInfo(HttpServletRequest request){
 System.out.println("Cookies:");
 Cookie[] cookies = request.getCookies();
 for (int ccnt=0; ccnt < cookies.length; ccnt++){
 System.out.println(
 " cookie...........:"+cookies[ccnt]);

Listing 12.1 EnterpriseServletExample.java

Print HTTP parameters q

Print HTTP header w

Print cookie
information

e

SERVLET EXAMPLE 337

WH_Java2.book Page 338 Monday, March 4, 2002 9:59 AM
 System.out.println(
 " cookie name......:"+cookies[ccnt].getName());
 System.out.println(
 " cookie value.....:"+cookies[ccnt].getValue());
 System.out.println(
 " cookie max age...:"+cookies[ccnt].getMaxAge());
 }
 }

 private void processCounter(HttpServletRequest request){
 HttpSession session = request.getSession(true);
 Integer sessionCounter = null;
 int tempCounter = 0;
 Object obj = session.getAttribute("hit_counter");
 if (obj == null){
 sessionCounter = new Integer(1);
 } else{
 sessionCounter = (Integer)obj;
 }
 tempCounter = sessionCounter.intValue();
 System.out.println("Hit Counter........:"+tempCounter);
 tempCounter++;
 sessionCounter = new Integer(tempCounter);
 session.setAttribute("hit_counter", sessionCounter);
 }

 private String processDataInput(HttpServletRequest request)
 throws IOException {
 int len = request.getContentLength()+2;
 String s = "";
 System.out.println("Request Content Length = "+len);
 if (len > 2) {
 System.out.println("Reading data from request:");
 BufferedReader reader = request.getReader();
 char[] buffer = new char[len];
 int i = reader.read(buffer, 0, buffer.length);
 s = new String(buffer);
 s = s.substring(0, s.length()-2);
 System.out.print(" Data.............:");
 System.out.println(s);
 System.out.println(" Data Length:"+i);
 }
 return s;
 }

 private void processResponse(HttpServletResponse response,
 String data)
 throws IOException {
 System.out.println("Responding...");
 response.setContentType("text/plain");
 response.setContentLength(data.length()+2);
 PrintWriter writer = response.getWriter();
 writer.println(data);
 System.out.println("Response Sent");
 }
}

Increment
the counter

r

Read the
input stream

t

Print cookie information e

Write the response y
338 CHAPTER 12 INTEGRATING THE SERVER

WH_Java2.book Page 339 Monday, March 4, 2002 9:59 AM
The parameters for compiling Servlets can vary between Servlet engines depending
on what libraries are required and where the class files need to be compiled. The fol-
lowing example is provided to get you started. However, you may need to modify it
for your particular Servlet engine. The %target% parameter is an environment vari-
able pointing to the location where the Servlet class needs to be compiled for the
Servlet engine to find it.

javac -classpath e:\j2sdkee1.2.1\lib\j2ee.jar;
 -d %target% EnterpriseServletExample.java

Once you have the Servlet compiled we are ready to test it. We can do this by calling
the Servlet from a browser. The first step is to get the Servlet engine up and running.
Once the Servlet engine is running, invoke the Servlet using the localhost or IP
address 127.0.0.1 and appending the msg parameter. When invoking the Servlet in this
way from the browser, the browser invokes a GET request by default. The following is
an example of the URL that can be used to test the GET functionality of our Servlet.

http://localhost:7001/EnterpriseServletExample?msg=Testing

Running the Servlet from a browser first allows the Servlet to be tested independent
of the J2ME client we will be creating in order to make certain it is working properly.
This way, if there are problems running the EnterpriseClient, odds are that it is
the client that is causing the problems rather than the Servlet. Note, however, that the
POST functionality is not tested at this point.

Creating the client

The MIDP client application that we create will access our EnterpriseServlet-
Example using an HTTP connection. How the connection is obtained differs
depending on whether we are doing a GET or a POST. If the request is to be of the
method type GET, parameters are included as part of the connection URL provided to
the Connection.open() method. HTTP GET parameters are specified by plac-
ing a “?” on the end of the URL string. Multiple parameters are separated using the
ampersand “&” character. Each parameter must also be supplied with a parameter
value using the “=” sign. The following example illustrates creating a connection with
two parameters: Msg1 and Msg2. Each parameter has a value associated with it. In this
case the values are Test1 and Test2 respectively.

NOTE HTTP parameters cannot contain spaces. Spaces in a URL denote the end of the
string. It is a good idea to encode URLs to mask spaces before sending a URL.

String url =
 "http://localhost:7001/EnterpriseServletExample?Msg1=Test1&Msg2=Test2”;
HttpConnection connection =
 (HttpConnection)Connector.open(url, Connector.READ_WRITE);

Once a connection has been obtained, the request method must be set. This is accom-
plished by calling the setRequestMethod() method on the HttpConnection
instance. By default, method type is GET.
SERVLET EXAMPLE 339

WH_Java2.book Page 340 Monday, March 4, 2002 9:59 AM
connection.setRequestMethod(HttpConnection.POST);

Since this example requires the Servlet to count how many times a specific client has
accessed it, the client needs a way to identify itself to the Servlet. HTTP is a
connection-less protocol, which means that each request that is sent from a client to a
server occurs on a separate connection. The connection between the client and server
does not remain open between HTTP calls. In order to maintain the concept of a
connection across multiple HTTP calls, the concept of a session is employed. A ses-
sion is a way to maintain the state of client-server interactions between HTTP calls. A
session is maintained by the server and has a unique ID. Each time the client sends a
request, this session ID is passed as a parameter. The session ID is used as a means for
the client to identify itself, as well as what session the server should use in conjunc-
tion with the request.

Servlets typically pass a session ID using one of two methods: cookies or URL
rewriting. The main difference is that cookies are maintained as part of the HTTP
header information. URL rewriting embeds information into the HTML content
itself in a way that the client can extract and resend the information. The use of cookies
tends to perform much better and is a much cleaner way of maintaining the session
ID between the client and server. URL rewriting is used in situations where cookies
are not supported or cookie functionality has been turned off.

In this example, the session ID is maintained between the MIDlet and the Servlet
engine using cookies. J2ME provides no inherent way to manage cookies, other than
allowing access to the HTTP header information, so the session ID must be managed
by the MIDlet. This session ID needs to be passed between the client and server for
each HTTP request in order to maintain the logical link between the client and server.
The HttpConnection method getHeaderField() is used to retrieve the session ID.

if (sessionId == null){

 sessionId = connection.getHeaderField("set-cookie");
}

NOTE The parameter name and value formats for cookies and session Ids will vary
across application servers. This example illustrates the conventions for the
BEA WebLogic servlet engine.

When submitting data to the server, the session ID needs to be set on the HTTP
request we are making. The following code illustrates how this is done:

connection.setRequestProperty("Cookie", sessionId);

The sessionId is the string captured from the first HTTP response we received
from the Servlet. The connection is the current HttpConnection instance.

Data is sent to the Servlet differently depending on whether we are doing a GET
or a POST. As previously discussed, if the request method is GET, the data can be
passed on the URL as a parameter or on the data stream. For POST requests data is
passed on the data stream. The following illustrates how to send data to the servlet:
340 CHAPTER 12 INTEGRATING THE SERVER

WH_Java2.book Page 341 Monday, March 4, 2002 9:59 AM
byte[] dataOut = data.getBytes();
DataOutputStream os = connection.openDataOutputStream();
try {
 os.write(dataOut);
 os.flush();
} finally {
 os.close();
}

WARNING The use of the flush() method will occasionally cause problems in HTTP 1.1.
In some cases, calling flush() causes the HTTP implementation to send data
in chunks rather than all at once. Removing the call to flush() can remedy
this problem, since closing the data stream will flush the buffer as well.

Once data is written to the HttpConnection, an InputStream is opened to wait
for the response as follows:

StringBuffer sb = new StringBuffer();
DataInputStream is = connection.openDataInputStream();
try {
 long len = connection.getLength();
 int c = 0;
 for (int ccnt=0; ccnt < len; ccnt++){
 c = is.read();
 sb.append((char)c);
 }
 String dataIn = sb.toString();
} finally {
 is.close();
}

The full EnterpriseClient code listing follows in listing 12.2:

package com.ctimn;

import java.io.*;
import javax.microedition.io.*;
import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

public class EnterpriseClient extends MIDlet implements CommandListener {
 private Form outputForm = new Form("Server Messages");
 private Form inputForm = new Form("Input Message");
 private TextField msgFld =
 new TextField("Msg", "Test", 15, TextField.ANY);
 private Command okCmd = new Command("OK", Command.OK, 1);
 private Command exitCmd = new Command("Exit", Command.EXIT, 1);
 private Command sendCmd = new Command("Send", Command.SCREEN, 1);
 private Display display;
 private String sessionId;

Listing 12.2 EnterpriseClient.java

Set up the
application

q

SERVLET EXAMPLE 341

WH_Java2.book Page 342 Monday, March 4, 2002 9:59 AM
 private boolean initialized = false;
 private int methodType = 0;
 private static final int GET = 0;
 private String url = "http://localhost:7001/EnterpriseServletExample";

 private static final String[] choices = {
 "1 GET Message",
 "2 POST Message"
 };

 private List menu = new List("Select:", List.IMPLICIT, choices, null);

 protected void startApp() throws MIDletStateChangeException {
 init();
 display = Display.getDisplay(this);
 display.setCurrent(menu);
 }

 private void init(){
 if (!initialized){
 inputForm.append(msgFld);
 menu.addCommand(okCmd);
 menu.addCommand(exitCmd);
 outputForm.addCommand(okCmd);
 outputForm.addCommand(exitCmd);
 inputForm.addCommand(sendCmd);
 menu.setCommandListener(this);
 outputForm.setCommandListener(this);
 inputForm.setCommandListener(this);
 initialized = true;
 }
 }

 protected void pauseApp() {
 }

 protected void destroyApp(boolean unconditional)
 throws MIDletStateChangeException {
 }

 public void commandAction(Command cmd, Displayable displayable) {
 if (cmd == exitCmd){
 handleExit();
 } else if ((displayable == menu) && (cmd == okCmd)) {
 handleOK(((List)displayable).getSelectedIndex());
 } else if ((displayable == inputForm) && (cmd == sendCmd)) {
 sendMsg();
 } else {
 display.setCurrent(menu);
 }
 }

Set up the application q
342 CHAPTER 12 INTEGRATING THE SERVER

WH_Java2.book Page 343 Monday, March 4, 2002 9:59 AM
 private void handleExit(){
 try {
 notifyDestroyed();
 destroyApp(true);
 } catch (MIDletStateChangeException x) {
 x.printStackTrace();
 }
 }

 private void handleOK(int idx){
 display.setCurrent(inputForm);
 methodType = idx;
 }

 private void sendMsg(){
 display.setCurrent(outputForm);
 processInit();
 if (methodType == GET){
 doGet();
 } else {
 doPost();
 }
 }

 private void doGet(){
 String data = msgFld.getString();
 try {
 String paramString = "?msg="+msgFld.getString();
 HttpConnection connection = getConnection(paramString);
 connection.setRequestMethod(HttpConnection.GET);
 connection.setRequestProperty("Content-Length",
 String.valueOf(data.length()));
 setCookie(connection);
 sendData(connection, data);
 receiveData(connection);
 processHeaderInfo(connection);
 System.out.println("Done.");
 } catch (IOException x) {
 System.out.println("Problems sending or receiving data.");
 x.printStackTrace();
 }
 }

 private void doPost(){
 String data = msgFld.getString();
 try {
 HttpConnection connection = getConnection(null);
 connection.setRequestMethod(HttpConnection.POST);
 connection.setRequestProperty("Content-Length",
 String.valueOf(data.length()));
 setCookie(connection);
 sendData(connection, data);
 receiveData(connection);
 processHeaderInfo(connection);

Handle the
button events

w

w

w

Send HTTP GET
request to server

e

Send HTTP POST
request to server

r

SERVLET EXAMPLE 343

WH_Java2.book Page 344 Monday, March 4, 2002 9:59 AM
 System.out.println("Done.");
 } catch (IOException x) {
 System.out.println("Problems sending or receiving data.");
 x.printStackTrace();
 }
 }

 private void processInit(){
 System.out.println("\n");
 System.out.println("Initiating Write-Read with Servlet.");
 StringItem item = new StringItem("Contacting Servlet", "");
 outputForm.append(item);
 }

 private HttpConnection getConnection(String paramString)
 throws IOException {
 if (paramString != null)
 url += paramString;
 HttpConnection connection =
 (HttpConnection)Connector.open(url, Connector.READ_WRITE);
 return connection;
 }

 private void setCookie(HttpConnection connection) throws IOException {
 if (sessionId != null){
 connection.setRequestProperty("Cookie", sessionId);
 System.out.println("Cookie Set...................:"+sessionId);
 }
 }

private void sendData(HttpConnection connection, String data)
 throws IOException {
 byte[] dataOut = data.getBytes();
 System.out.println("Data To Send.................:"+data);
 System.out.println("Length of Data To Send.......:"+dataOut.length);
 DataOutputStream os = connection.openDataOutputStream();
 try {
 os.write(dataOut);
 os.flush();
 System.out.println("Output Stream Flushed.");
 } finally {
 os.close();
 }
 }

 private void receiveData(HttpConnection connection)
 throws IOException {
 StringBuffer sb = new StringBuffer("");
 DataInputStream is = connection.openDataInputStream();
 try {
 System.out.println("Input Stream Opened.");
 System.out.println(
 "Data Length to Receive.......:"+connection.getLength());
 long len = connection.getLength();

Initialize message t

Send HTTP POST
request to server

r

Send data to
the server

i

Obtain an HttpConnection y

Put the session ID
onto the request

u

Receive the
response

o

344 CHAPTER 12 INTEGRATING THE SERVER

WH_Java2.book Page 345 Monday, March 4, 2002 9:59 AM
 int c = 0;
 for (int ccnt=0; ccnt < len; ccnt++){
 c = is.read();
 sb.append((char)c);
 }
 String dataIn = sb.toString();
 StringItem item = new StringItem("Msg: ", dataIn);
 outputForm.append(item);
 System.out.println("Data Received................:"+dataIn);
 } finally {
 is.close();
 }
 }

 private void processHeaderInfo(HttpConnection connection)
 throws IOException {
 if (sessionId == null){
 sessionId = connection.getHeaderField("set-cookie");
 }
 System.out.println("Get Header Info:");
 for (int ccnt=0; ; ccnt++){
 String name = connection.getHeaderFieldKey(ccnt);
 if (name == null){
 break;
 }
 System.out.println(" Key=Value..................:"+name+"="+
 connection.getHeaderField(ccnt));
 }
 }
}

The following commands can be used to compile, preverify, and JAR the application:

\jdk1.3\bin\javac -g:none

 -bootclasspath \midp-fcs\classes
 -d .\build EnterpriseClient.java

\midp-fcs\bin\preverify.exe
 -classpath \midp-fcs\classes;.\build -d .\verified .\build

jar cvf io.jar -C verified .

To run the application, make sure the web application server is started and the Servlet
has been properly deployed. Since the above commands JAR the application into a
file called io.jar, this file needs to be on classpath. Figures 12.1 and 12.2 depict
the EnterpriseClient submitting both a GET and a POST request.

e:\midp-fcs\bin\midp.exe -classpath io.jar com.ctimn.EnterpriseClient

NOTE If the EnterpriseClient application is run multiple times without quitting,
subsequent messages are appended to the screen. This requires scrolling down
through the server Messages screen to see subsequent message responses.

Receive the
response

o

Capture the
session ID

1)
SERVLET EXAMPLE 345

WH_Java2.book Page 346 Monday, March 4, 2002 9:59 AM
Figure 12.1 Running the EnterpriseClient application to perform a GET request. First the user

selects “GET Message” from the main menu. Then the user enters a message to send and

invokes the Send operation. The message is sent using an HTTP GET method and the response

from the server is displayed.

Figure 12.2 Running the EnterpriseClient application to perform a POST request. First the user

selects “POST Message” from the main menu. Then the user enters a message to send and

invokes the Send operation. The message is sent using an HTTP POST method and the response

from the server is displayed.

The text printed to the console while running the EnterpriseClient application
while doing a POST request should look something like the following:

Initiating Write-Read with Servlet.

Data To Send.................:POST Test
Length of Data To Send.......:9
Output Stream Flushed.
Input Stream Opened.
Data Length to Receive.......:32
Data Received................:Echo "POST Test" sent via POST
Get Header Info:
 Key=Value..................:content-type=text/html
 Key=Value..................:connection=Close
 Key=Value..................:set-cookie=JSESSIONID=
 O4K4wJSSFq2g722mh562pl91qL6XMhud82Sq1KwAAdII3Xbs
 fbuQ!4962291947788757973!168430088!7001!7002; path=/
 Key=Value..................:date=Tue, 21 Aug 2001 19:38:40 GMT
 Key=Value..................:content-length=32
 Key=Value..................:server=WebLogic WebLogic Server 6.1
 07/23/2001 22:31:20 #129251
Done.
346 CHAPTER 12 INTEGRATING THE SERVER

WH_Java2.book Page 347 Monday, March 4, 2002 9:59 AM
The text that prints to the server console while the EnterpriseExampleServlet
is responding to the HTTP request should look something like the following code
example. Note that the first time the client submits a request there will not be a ses-
sion ID. This is created during the first request. All subsequent requests will contain
the session ID. The example below includes the session ID since it was captured from
the second HTTP request that was submitted from the same J2ME client:

Accepting data from a J2ME client. IP=127.0.0.1
Request Method...:POST
Parameter Info:
Header Info:
Header...........:Cookie=JSESSIONID=O4K4wJSSFq2g722mh562pl91
 qL6XMhud82Sq1KwAAdII3XbsfbuQ!4962291947788757973
 !168430088!7001!7002; path=/
 Header...........:Host=localhost:7001
 Header...........:Content-Length=9
Cookies:
 cookie...........:javax.Servlet.http.Cookie@52e9a8
 cookie name......:JSESSIONID
 cookie value.....:O4K4wJSSFq2g722mh562pl91qL
 6XMhud82Sq1KwAAdII3XbsfbuQ!4962291947788757973!168430088!7001!7002
 cookie max age...:-1
Hit Counter........:2
Request Content Length = 11
Reading data from request:
 Data.............:POST Test
 Data Length:9
Responding...
Response Sent

12.4 XML

Extensible Markup Language (XML) has become rather popular in the last several
years. The appeal of XML is in its ability to standardize the way that data can be rep-
resented. This is an especially powerful concept when two or more disparate systems
need to share data.

An XML document is a self-describing data structure that adheres to the basic rules
and syntax of the XML specification defined by the W3C. For more information on
XML and related technology refer to the W3C website at www.w3c.org.

The three main parts of XML are a Schema, a Document Type Definition (DTD),
and the XML document itself. The schema describes the structure of an XML docu-
ment. This structure, and more importantly, the rules supporting the structure, can
then be defined in a DTD. The XML document itself could be considered an instance
of the schema or DTD such that the document adheres to all of the DTD rules.

A DTD is an optional component of an XML solution. However, when a DTD
is available, an XML document can automatically be validated against these rules
defined in the DTD. Since the rules are defined in the DTD, a standard set of APIs
can be, and have been, created to deal with different XML documents and DTDs
XML 347

WH_Java2.book Page 348 Monday, March 4, 2002 9:59 AM
without requiring modification. Within industries where schemas and DTDs become
standardized, the ability to move data between disparate systems can become a com-
modity.

An application deals with XML data by processing the data using an XML parser.
An XML parser extracts and disassembles the content of the XML document. How-
ever, to do something meaningful with the data supplied by the parser the application
will need to take action on the parsed XML in some manner. In other words, when
receiving XML content, the application is the interface responsible for mapping the
parsed XML content into the application environment. Conversely, when sending
XML content, the application extracts the necessary data from the environment (using
SQL, flatfiles, etc.) and creates an XML document or stream. The XML APIs can per-
form a great deal of work, but mapping the data into something meaningful to your
application often requires some effort.

The two main tasks for incorporating XML into an architecture is to identify or
create an XML schema (and associated DTD if one is to be used) and writing the soft-
ware to generate and interpret the XML content.

12.4.1 Using XML

There are two primary models that are used to handle XML data. These models are
commonly referred to as tree-based and event-based. Each model has its own set of
strengths and weaknesses. Which model is right for an application depends on the
nature of the application and the tradeoffs that best fit the situation.

At the heart of XML is a parser. An XML parser is capable of moving through XML
content and presenting the data and meta-information to an application. Each XML
model adopts a variation on how parsing takes place. A tree-based XML parser con-
structs the entire contents of an XML document or stream in memory. XML, by
nature, is hierarchical, allowing the data to be represented easily in a tree structure.
Consider the following example:

<customer id=”1">

 <demograpics>
 <firstname>David</firstname>
 <lastname>Hemphill</lastname>
 <phone>555-555-5555</phone>
 </demograpics>
 <order id=”6633”>Grass Seed</order>
 <order id=”248”>Sunflower Seeds</order>
</customer>

Using the syntax of XML tags, the data contained in the above example can be easily
represented as a collection of Java objects that are linked in a tree structure. An exam-
ple of this tree structure is shown in figure 12.3.

An event-based XML parser takes a different approach. Rather than constructing
a tree in memory to represent the XML data, an event-based parser moves through
the XML data and triggers events as different XML tags and meta-information are
348 CHAPTER 12 INTEGRATING THE SERVER

12_integrating.fm Page 349 Monday, March 4, 2002 10:38 AM
encountered. When an event is triggered, the appropriate contents are passed through
a programming API into an XML handler. The XML handler is part of the application
that is utilizing the XML data. It is the XML handler that interprets how the XML
data is used in relation to the application. A visual representation of event-based pars-
ing is shown in figure 12.4.

Figure 12.4 Event-based parsing of XML data. As each XML tag is encountered, an event is

triggered to allow the application to handle the data. The application can only “see” the XML

data in the context of each individual event.

The benefit of a tree-based parser is that the application has access to all of the data at
the same time. The drawback is that tree-based parsers can become memory intensive
since the entire XML contents must reside in memory. If your application needs to
deal with large amounts of data on a small device a tree-based solution may be unfea-
sible. An event-based parser gets around this memory problem by allowing the XML
data to be parsed without needing to hold onto the data in memory. When an event
is triggered, the necessary contents are passed to the handler. The handler then takes
appropriate action with the information passed through the API. This allows mem-
ory utilization to remain relatively constant regardless of how much XML data is
being interpreted. The drawback of event-based parsing is that the handler only has
serial access to the XML data. If an application needs to manipulate the XML data or
its structure, a tree-based model may be more suitable.

ID 1

Demographics

FirstName David

LastName Hemphill

Phone 555-555-5555

Order ID 6633

Order ID 248

Customer

Description Grass Seed

Description Sunflower Seeds

Figure 12.3

Tree representation of parsed XML.

A Customer contains Demographics,

and zero or more orders. A customer

also has a unique ID. Demographics

consist of a first name, last name, and

phone number. Each order consists of

an ID and a description.

ID=1

David Hemphill

555-555-5555 ID=6633
Grass Seed

ID=248
Sunflower Seeds

End of XMLPhone Order Order

LastNameCustomer Demographics FirstName

Start of XML
XML 349

WH_Java2.book Page 350 Monday, March 4, 2002 9:59 AM
12.4.2 Open standards of XML

The fact that XML is based on open standards is one of the most compelling argu-
ments for using XML. The Document Object Model (DOM) is the open standard
tree-based model and the Simple API for XML (SAX) is the standard for the event-
based model. Both of these specifications subscribe to the XML specification defined
by the W3C. Information on XML itself can be found at www.w3.org/XML. Infor-
mation about SAX and the Java APIs can be found at sax.sourceforge.net.

The major components of an XML document are elements, attributes, entities and
a Document Type Definition or DTD. These components are concrete in that they
are part of the syntax or physical entities that can be manipulated by an XML parser
or application. One important part of any XML solution is the XML schema. The
schema is the format that valid XML content must adhere to. The Schema is a con-
ceptual entity that defines the contract allowing instances of XML to be created and
interpreted consistently by different systems. A DTD is a way to represent an XML
schema in a way that allows an XML parser to validate XML content.

A DTD describes the structure of a well-formed XML document. This is the meta-
data that represents the schema for a particular document. To be a valid XML docu-
ment, the contents of the document must adhere to the constraints of the DTD. Most
parsers provide the ability to validate an XML document against its DTD. It is impor-
tant to note, however, that a DTD is an optional part of an XML solution. If a DTD
does not exist, the systems using the XML solution must adhere to the schema defi-
nition in order to process the XML content correctly.

An Element describes data within an XML document or stream. Each element can
contain one or more attributes. The following are examples of elements with and with-
out attributes. The first example is a simple element with begin and end tags that con-
tain data in the middle.

<FirstName>David</FirstName>

The next example shows an element with three attributes. The element in this case is
self-contained in that the element tag describes both the beginning and ending tag.
The beginning is indicated by <Customer and the end of the tag is denoted by the />.
Attributes are specified as name=value pairs. Attribute values must be enclosed in quotes.

<Customer id=”999” firstname=”David” lastname=”Hemphill” />

Entities in an XML document are used to describe references to other data either internal
or external to the XML document. References to an image or another XML document
are examples of how an external entity tag could be used. External entities are necessary
since graphical data, for example, cannot be embedded into an XML document. Therefore,
the document must refer to the resource. An entity also provides the means to describe
what the entity is, such as a JPEG, PNG, GIF, etc. so it can be properly interpreted.

The following example uses an internal entity tag to define a character entity.
This character entity can then be used through the document in element tags.

<!ENTITY ast "***">
350 CHAPTER 12 INTEGRATING THE SERVER

WH_Java2.book Page 351 Monday, March 4, 2002 9:59 AM
Using &ast is then identical to using “***” within the XML document. For example,
the following two lines are identical with the entity defined.

<separator>&ast Section 2 &ast </separator>

<separator>*** Section 2 *** </separator>

12.4.3 Consequences of XML in J2ME

There are three main issues to consider before adopting XML into your application.
The first issue is the parser footprint. There are many small-footprint parsers available
but each of these will consume between 9 and 40 KB of your binary code space. In
some cases, this overhead may cause the application to exceed the available space on
the device or impose limitations on your application.

The second issue has to do with transmitting data over a network connection. If
the connection is wireless and there are a lot of data that need to move over the con-
nection, the verbose nature of XML may impact the data transmission performance.

The third issue to consider regarding XML is whether to use a tree-based parser or
an event-based parser. Due to the memory constraints of J2ME devices, the event-
based parser seems like an appropriate choice; however, this is not always the case and
this decision must be weighed in terms of the application requirements.

Finally, another important consideration when looking at XML for the J2ME
environment has to do with DTDs. In general, small-footprint parsers ignore DTD
since supporting DTDs would increase the size of the API; thus, they do not provide
the ability to validate a document and enforce the rules of the DTD. Furthermore,
many small-footprint XML APIs support a subset of features you would normally
expect in a larger environment, such as CDATA tags (XML markup that needs to be
stored as data) and external entities. If these features are important to your application
make certain you choose an XML API that supports your needs.

12.4.4 Small-footprint parsers

There are several small-footprint parsers available. Each has different characteristics
and variations on how or if the open specifications are supported. More information
about small-footprint parsers is available in Chapter 15.

NanoXML

NanoXML supports both a tree-based parser interface and a SAX 1.0, event-based
parser interface. The tree-based interface is proprietary. NanoXML can be found at
the website nanoxml.sourceforge.net. However, this version is not J2ME compliant.
There are dependencies on J2SE classes and packages, such as java.io.File and
java.util.Locale among others. Eric Giguere has provided a source code ver-
sion of the NanoXML 1.6.4 tree-based interface that is compatible with the CLDC.
These source files have been renamed to have a lower case “k” in front of each modi-
fied class. In order to use NanoXML on the J2ME platform the NanoXML source
files must be replaced with the ported source files and recompiled. If you wish to use
XML 351

WH_Java2.book Page 352 Monday, March 4, 2002 9:59 AM
NanoXML’s SAX interface you will need to port this yourself. The dependencies are
relatively minimal.

To port NanoXML you will need the following source code elements:

• the gzipped tar file containing the source code for NanoXML 1.6.4 available at
nanoxml.sourceforge.net (version 1.6.8 works as well)

• kNanoXML source files available from www.ericgiguere.com/nanoxml

• the SAX 1.0 libraries available at sax.sourceforge.net

The required changes are as follows:

• remove the J2SE dependencies on the java.io package (e.g., FileInput-
Stream and FileNotFoundException)

• remove the dependencies on the java.net package (e.g., URL and Malformed-
URLException)

• remove the J2SE dependencies on Locale in both the SAX 1.0 interfaces as
well as SAXParser.java

• replace the appropriate NanoXML classes with the ported kNanoXML classes,
and modify references from other source files to the “k” versions of the classes

• remove demo classes (any class containing the word “Demo”) from the SAX 1.0
library

All necessary source changes can be made by commenting out code in SAXParser.
java and org.xml.sax.Parser, unless you plan or need to use the parse
(String systemId) method of the parser.

WARNING You may be tempted to create an empty class java.util.Locale to
deal with the absence of Locale in CLDC. Although this works in the
emulated environment, where the bootclasspath parameter can be set
to include this empty class, it cannot be made to work on the actual device.
Altering the core Java classes is a violation that is detected by the virtual ma-
chine since you are attempting to modify the contents java.util package.

By the time NanoXML is ported to J2ME, both tree-based and SAX interfaces, the
footprint is around 16 KB compressed (32 KB uncompressed). This includes the
SAX 1.0 APIs as well as the NanoXML classes in preverified form.

TinyXML

TinyXML supports both a tree-based parser interface and an event-based parser inter-
face, both of which are proprietary. Christian Sauer has provided a J2ME ported version
of TinyXML that can be found at www.microjava.com/_downloads/tinyXML.zip. The
main TinyXML web address is www.gibaradunn.srac.org/tiny/index.shtml. The J2ME
ported version of TinyXML has a footprint after preverification of about 8 KB com-
pressed with test classes removed (13 KB uncompressed).
352 CHAPTER 12 INTEGRATING THE SERVER

WH_Java2.book Page 353 Monday, March 4, 2002 9:59 AM
kXML

kXML is an XML API that was built with J2ME in mind from the beginning. This is
the most feature-rich of the parsers discussed here. kXML supports a version of DOM,
called kDOM. There is also optional support for WAP Binary XML (WBXML) that
encodes XML is binary form to reduce the size of the XML content, which is especially
important when transmitting XML content over a slow network connection.

kXML supports what the authors call a “Pull Parser” rather than a SAX parser. This
concept allows an application to ask for a specific XML event in the order needed,
rather than having the order imposed by the document and the parser, where the event
is passed to a handler.

kXML is available from www.kxml.org and has a footprint of 33 KB compressed
(58 KB uncompressed).

NOTE The next version of MIDP, named MIDP NG for Next Generation, is
slated to contain a lightweight XML parser.

12.5 XML USING JSPS EXAMPLE

One of the useful scenarios for utilizing XML is to provide an XML-based Internet
portal for mobile and wireless clients. To demonstrate this, the following example
uses NanoXML’s SAX API to connect to a JavaServer Page (JSP). The JSP returns an
XML data stream that is parsed by the J2ME client application. NanoXML is used in
this example since it supports the open-standard SAX interface, allowing other SAX-
compliant parsers to be used instead of NanoXML if desired.

The context for this example uses the Greener Grass Companies business domain
from Chapter 10. The application allows a customer ID to be entered. This customer
ID is sent to the server. The JSP captures the customer ID and retrieves the appro-
priate information about what the customer has ordered (or what field workers have
ordered on behalf of the customer).

To fully understand this example it is important to know something about Java-
Server Pages. A JSP allows for combining Java code with ASCII content. Many imple-
mentations currently use JSPs to generate HTML content dynamically. However,
JSPs are not restricted to HTML. As we will demonstrate, it is just as easy to use JSPs
to produce XML content.

JSPs reside on the server and require a JSP-compliant application server, such as
Tomcat or WebLogic, to run a JSP.

12.5.1 How JavaServer Pages work

At runtime, when the application server receives an HTTP request, if the file suffix is
“jsp”, the request is interpreted as a JavaServer Page request. If this is the first time the
JSP is called, the JSP must be compiled (unless the JSP was precompiled when it was
deployed). When a JSP is compiled, what occurs is that the application server trans-
lates the JSP into a Java Servlet. Once the Servlet is created, it is compiled, loaded
XML USING JSPS EXAMPLE 353

WH_Java2.book Page 354 Monday, March 4, 2002 9:59 AM
into the Java Virtual Machine and called to handle the request. As a result, the first
request that invokes a JSP can take longer than subsequent calls, since the JSP must
be compiled. Subsequent calls simply access the Servlet that was previously generated.

In order to combine Java code with the ASCII text of the JSP, JavaServer Pages use
a special set of tags for processing the JSP correctly. A quick reference regarding the
syntax of these tags along with other JSP material can be found at java.sun.com/prod-
ucts/jsp/technical.html.

There are two tags used to denote Java code. One is called a scriptlet tag and has
the following syntax:

<% code fragment %>

The other tag is called an expression and has the following syntax:

<%= expression %>

A code fragment is used to perform processing tasks within the JSP. An expression is
used to replace the tag with contents returned by the expression. Examples of both
tags are used in the example application.

Two other tags that will be needed by the example application are the <jsp:use-
Bean> and <jsp:setProperty> tags. The useBean tag allows a JavaBean to be
named within the JSP to help facilitate processing the page. This class that is named
in the useBean tag must conform to the JavaBean requirements; specifically it must
have a no-args constructor and must contain getter/setter methods to get and set
attribute values.

The setProperty tag can be used to extract parameters from the HTTP request
and automatically call the appropriate set methods on the JavaBean specified. Con-
sider the following example.

<jsp:useBean id="helper" scope="page" class="com.ctimn.JSPHelper" />

<jsp:setProperty name="helper" property="customerId" />

The useBean tag identifies a class using the fully qualified class name. In this case
we are naming the class com.ctimn.JSPHelper. This class must be on the appli-
cation server’s classpath so it can be found by the JSP at runtime. This class is
instantiated and associated with the name helper. At this point, we can refer to this
class instance using the name helper anywhere in the JSP.

The setProperty tag extracts the property “customerId” from the HTTP
request parameters and calls the method setCustomerId(String value) on the
class com.ctimn.JSPHelper, passing the value extracted from the HTTP request
as a parameter. Of course this means that the JSPHelper class must define this
method. Parameters in the HTTP request that cannot be mapped using this naming
convention are ignored.
354 CHAPTER 12 INTEGRATING THE SERVER

WH_Java2.book Page 355 Monday, March 4, 2002 9:59 AM
NOTE While it is not necessary to use JavaBeans in JSPs, it is an especially powerful fea-
ture since much of the Java code can be hidden from the JSP. As your JSP grows
in complexity, mixing all of the Java code required by the JSP with the other
ASCII markup (HTML or XML) can quickly become unmanageable. Also, if
there are different groups of developers working on a project, one focused on
HTML or XML and one focused on the Java code, the separation can work to
the advantage of the team in terms of workflow and availability of source code.

To get started with this example, you will need to have a JSP-capable application
server. This particular example uses WebLogic 6.1. For more information on Java-
Server Pages please refer to JavaServer Pages by Duane K. Fields and Mark A. Kolb
(Manning Publications).

12.5.2 Creating the JSPHelper

This example uses a JavaBean called JSPHelper to facilitate most of the dynamic,
Java-based processing. This allows us to remove most of the Java code from our JSP
and maintain a cleaner separation of presentation and business logic.

We will create the JSPHelper class first since it is referenced by the JSP. Within
this class you would normally perform the database access and other tasks. For sim-
plicity, this class loads some test data based on the value of the customer ID passed to
the setCustomerId() method. The code for the JSPHelper is shown in listing 12.3.

package com.ctimn;
import java.util.*;

public class JSPHelper {

 private int customerId;

 private String firstName;
 private String lastName;
 private String phone;
 private ArrayList items = new ArrayList();

 public void setCustomerId(String id){
 customerId = Integer.parseInt(id);
 loadCustomer();
 }

 public String getCustomerId(){
 return Integer.toString(customerId);
 }

 public String getFirstName(){
 return firstName;
 }

 public String getLastName(){
 return lastName;
 }

Listing 12.3 JSPHelper.java

Get/Set dataq
XML USING JSPS EXAMPLE 355

WH_Java2.book Page 356 Monday, March 4, 2002 9:59 AM
356 CHAPTER 12 INTEGRATING THE SERVER

 public String getPhone(){
 return phone;
 }

 public Iterator getItemsOrdered(){
 return items.iterator();
 }

 private void loadCustomer(){

 switch (customerId){
 case 1:
 firstName = "David";
 lastName = "Hemphill";
 phone = "555-555-5555";
 items.add("Grass Seed #6633");
 break;
 case 2:
 firstName = "James";
 lastName = "White";
 phone = "555-555-5555";
 items.add("Fertilizer #3345");
 items.add("Fertilizer #9976");
 items.add("Plant Food #9906");
 break;
 case 3:
 firstName = "Scott";
 lastName = "King";
 phone = "555-555-5555";
 items.add("Weed Killer #3345");
 items.add("Grass-B-Gone #998");
 break;
 case 4:
 firstName = "Amy";
 lastName = "Votava";
 items.add("Orchid Food #112");
 items.add("Grow Light #KJ44");
 phone = "555-555-5555";
 break;
 case 5:
 firstName = "Olivia";
 lastName = "Hemphill";
 phone = "555-555-5555";
 items.add("Sunflower Seeds #248");
 break;
 default:
 firstName = "Undefined";
 lastName = "Undefined";
 phone = "Undefined";
 }
 }
}

Make certain to compile this class to a location where the application server can find
it at runtime.

Obtain test dataw

Get/Set dataq

WH_Java2.book Page 357 Monday, March 4, 2002 9:59 AM
12.5.3 Creating the JSP

The next step is to create a JSP that uses the JSPHelper to return customer order
information in an XML format. The schema of the XML provides a customer first
name, last name, and phone number as demographics and 0 to n orders. The struc-
ture is as follows.

<?xml version="1.0"?>

<customer>
 <demograpics>
 <firstname></firstname>
 <lastname></lastname>
 <phone></phone>
 </demograpics>
 <order>order 1</order>
 <order>order 2</order>
 *
 *
 *
 <order>order n</order>
</customer>

The JSP code required to produce the XML for a specific customer is shown in listing 12.4:

<jsp:useBean id="helper" scope="page" class="com.ctimn.JSPHelper" />

<jsp:setProperty name="helper" property="customerId" />

<%@page import="java.util.*"%>
<?xml version="1.0"?>
<customer id="<%= helper.getCustomerId() %>">
 <demograpics>
 <firstname><%= helper.getFirstName() %></firstname>
 <lastname><%= helper.getLastName() %></lastname>
 <phone><%= helper.getPhone() %></phone>
</demograpics>
<%
 Iterator it = helper.getItemsOrdered();
 while (it.hasNext()) {
%>
 <order><%=it.next()%></order>
<%
 }
%>

</customer>

To test the JSP, you can invoke it from a browser. Note, however, that the URL will
differ depending on the application server you are using.

Listing 12.4 XMLExample.jsp

Create JSPHelper q

Set the customer ID
from the request

w

Get customer
data

e

Get order
information

r

XML USING JSPS EXAMPLE 357

WH_Java2.book Page 358 Monday, March 4, 2002 9:59 AM
Using something like the URL http://127.0.0.1:7001/XMLExample.jsp?custom-
erId=1 returns the following output to the browser. This example uses Internet
Explorer accessing the localhost IP address of 127.0.0.1.
<?xml version="1.0" ?>

-<customer id="1">
 -<demograpics>
 <firstname>David</firstname>
 <lastname>Hemphill</lastname>
 <phone>555-555-5555</phone>
 </demograpics>
 <order>Grass Seed #6633</order>
</customer>

NOTE In order for the setProperty tag to work properly, parameter names
must follow the syntax where the first letter of the parameter name begins
with a lower case letter.

12.5.4 Creating the J2ME Client

For this example, the NanoXML API illustrates the use of a SAX-based parser to
retrieve information from a J2EE, XML-based data source. NanoXML was chosen
because it conforms to the SAX 1.0 standards and allows the InputStream to be
parsed while data is coming into the device, thus using less memory. TinyXML does
not lend itself to this important characteristic. Due to the nature of the API,
TinyXML requires that the XML data be provided in the form of a String to the
XMLInputStream. This means that the entire XML content must be read into
memory, compromising the key benefit of an event-based parser that we are inter-
ested in: low memory utilization.

There are two classes that need to be written to get our XML client working. First,
we need a MIDP application. The application allows a user to enter a customer ID
using the keypad. Once the ID has been entered, another button is pressed to fetch
the data from the enterprise server over the network connection. Most of the code in
the MIDP client application involves the user interface, which has been covered in
chapter 5 of this book. The one key aspect of the client is how the XML parser comes
into play. NanoXML utilizes the SAX 1.0 factory class ParserFactory to construct
the parser. Using this mechanism allows any SAX-compliant parser to be constructed.
The parameter passed to this factory method is the fully qualified class name of the
NanoXML SAX parser.
Parser parser = ParserFactory.makeParser("nanoxml.sax.SAXParser");

Once a parser is constructed, a handler needs to be created to handle the events that
the parser throws. A handler using the SAX 1.0 API must either implement the Doc-
umentHandler interface or extend the HandlerBase class. The handler we create
is called XMLHandler. The handler must be registered with the parser before parsing
can begin. This is done using the setDocumentHandler() method.
XMLHandler handler = new XMLHandler(this);
parser.setDocumentHandler(handler);
358 CHAPTER 12 INTEGRATING THE SERVER

WH_Java2.book Page 359 Monday, March 4, 2002 9:59 AM
The next step is to obtain the XML InputStream from where the XML data is to
be parsed. The SAX 1.0 API requires this source to be represented using the Input-
Source class. An InputSource class is constructed by passing a java.io.Input-
Stream to the constructor. This means that we have to obtain the network
connection to our XML data source before we can construct the InputSource.
This is done using the Generic Connection Framework.

Although the application accesses the JavaServer Page using HTTP, it is not nec-
essary to create an HttpConnection class when all we need is the underlying
InputStream associated with the connection. Since this is the case, we use the Con-
nector’s openDataInputStream() convenience method. Since we need to pass
the customer ID as a parameter to the JSP, we still need to follow the syntax for sub-
mitting a parameter using an HTTP GET method, which is to append a “?” followed
by the parameter name=value pair. The following example assumes that “id” is a non-
null string containing the customer id.

String url = “http://localhost:7001/XMLExample.jsp?customerId="+id;
DataInputStream is = Connector.openDataInputStream(url);
InputSource source = new InputSource(is);

The InputSource object is now ready to begin reading data. Invoking the
parse() method of the parser and passing the InputSource as a parameter starts
this process. The following example accepts the InputSource object named source
as a parameter. This invokes the JSP. The parser then begins reading the Input-
Stream returned by the JSP, which in turn triggers events that are handled by the
XMLHandler instance.

parser.parse(source);

The full source listing of the XMLClient application is shown in listing 12.5:

package com.ctimn;

import java.io.*;
import javax.microedition.io.*;
import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import nanoxml.*;
import nanoxml.sax.*;
import org.xml.sax.*;
import org.xml.sax.helpers.*;

public class XMLClient extends MIDlet implements CommandListener {

 private Form outputForm = new Form("Order Information");
 private Form inputForm = new Form("Enter Customer");
 private TextField customerFld =
 new TextField("ID", "1", 15, TextField.NUMERIC);
 private Command okCmd = new Command("OK", Command.OK, 1);

Listing 12.5 XMLClient.java

Set up the
application

q

XML USING JSPS EXAMPLE 359

WH_Java2.book Page 360 Monday, March 4, 2002 9:59 AM
 private Command exitCmd = new Command("Exit", Command.EXIT, 1);
 private Command getCmd = new Command("Get", Command.OK, 1);
 private Display display;
 private boolean initialized = false;
 private static final String CONNECTION_URL =
 "http://localhost:7001/XMLExample.jsp";

 protected void startApp() throws MIDletStateChangeException {
 init();
 display = Display.getDisplay(this);
 display.setCurrent(inputForm);
 }

 private void init(){
 if (!initialized){
 inputForm.append(customerFld);
 inputForm.addCommand(getCmd);
 inputForm.addCommand(exitCmd);
 outputForm.addCommand(okCmd);
 outputForm.addCommand(exitCmd);
 inputForm.setCommandListener(this);
 outputForm.setCommandListener(this);
 initialized = true;
 }
 }

 protected void pauseApp() {
 }

 protected void destroyApp(boolean unconditional)
 throws MIDletStateChangeException {
 }

 public void commandAction(Command cmd, Displayable displayable) {
 if (cmd == exitCmd){
 handleExit();
 } else if ((displayable == outputForm) && (cmd == okCmd)) {
 display.setCurrent(inputForm);
 } else if ((displayable == inputForm) && (cmd == getCmd)) {
 getCustomer();
 } else {
 display.setCurrent(inputForm);
 }
 }

 private void handleExit(){
 try {
 notifyDestroyed();
 destroyApp(true);
 } catch (MIDletStateChangeException x) {
 x.printStackTrace();
 }
 }

Handle
button
events

w

Set up the
application

q

360 CHAPTER 12 INTEGRATING THE SERVER

WH_Java2.book Page 361 Monday, March 4, 2002 9:59 AM
 private void getCustomer(){
 removeStringItems();
 String id = customerFld.getString();
 display.setCurrent(outputForm);
 try {
 XMLHandler handler = new XMLHandler(this);
 Parser parser = ParserFactory.makeParser("nanoxml.sax.SAXParser");
 parser.setDocumentHandler(handler);
 InputSource source = getXml(id);
 parser.parse(source);
 } catch (Exception x){
 x.printStackTrace();
 }
 }

 private InputSource getXml(String id){
 InputSource source = null;
 String url = CONNECTION_URL + "?customerId="+id;
 try {
 DataInputStream is = Connector.openDataInputStream(url);

 source = new InputSource(is);
 } catch (IOException x){

 x.printStackTrace();
 }
 return source;

 }

 private void removeStringItems(){
 int count = outputForm.size();

for(int i=count-1; i >= 0; i--){
if (outputForm.get(i) instanceof StringItem){

 outputForm.delete(i);
 }
 }
 }

 public void append(String s){
 outputForm.append(s + "\n");
 }
}

Before we can compile the XMLClient, we need to implement a class to handle the
events the parser triggers. A SAX 1.0 handler implements the DocumentHandler
interface. However, since many handlers do not require all the methods the Docu-
mentHandler interface prescribes, you can opt to extend the HandlerBase class
instead. Thus, the empty methods only need to be overridden when specific func-
tionality is required by the application. This example implements the Document-
Handler interface directly to show the full interface even though only a few meth-
ods are actually needed.

Clear output form t

Obtain the XML data r

Append outputy

 Initialize XML
handler and

parse data

e

XML USING JSPS EXAMPLE 361

WH_Java2.book Page 362 Monday, March 4, 2002 9:59 AM
362 CHAPTER 12 INTEGRATING THE SERVER

For our example, we create a document handler by passing the XMLClient
instance as a parameter. We do this so that the handler can call the append() method
of the XMLClient application as data is parsed. The append() method displays the
data to the user. The key methods needed in order to parse the XML are as follows:

• startElement(), which is called when a beginning tag is encountered such
as <Customer> or <FirstName>.

• characters(), which is called to pass the contents located between element tags.

When startElement() is called, the customer ID is captured and appended to the
outputForm on the XMLClient. When characters() is called, we simply append
the data passed as a parameter to the outputForm.

Listing 12.6 shows the full source listing for XMLHandler:

package com.ctimn;

import java.util.*;
import org.xml.sax.*;

public class XMLHandler implements DocumentHandler {

 private XMLClient app;
 private String customerId;

 public XMLHandler(XMLClient client){
 app = client;
 }

 public void characters(char[] ch, int start, int length) {
 String data = new String(ch);
 System.out.println("characters: "+new String(ch));
 app.append(data);
 }

 public void endDocument() {
 System.out.println("Finished parsing document.");
 }

 public void endElement(java.lang.String name) {
 System.out.println("endElement: "+name);
 }

 public void ignorableWhitespace(char[] ch, int start, int length) {
 System.out.println("ignorableWhitespace: "+new String(ch));
 }

 public void processingInstruction
 (java.lang.String target, java.lang.String data) {
 System.out.println("processingInstruction target="+target+
 " data="+data);
 }

Listing 12.6 XMLHandler.java

Reference the
application

q

Process
XML
content

w

Note XML
events

e

WH_Java2.book Page 363 Monday, March 4, 2002 9:59 AM
 public void setDocumentLocator(Locator locator) {
 System.out.println("setDocumentLocator: "+locator);
 }

 public void startDocument() {
 System.out.println("Starting to parse document.");
 }

 public void startElement(java.lang.String name, AttributeList atts) {
 System.out.println("startElement: "+name);
 for (int i = 0; i < atts.getLength(); i++) {
 if (atts.getName(i).toLowerCase().equals("id")){
 customerId = atts.getValue(i);
 }
 System.out.println(" Attribute Name = "+atts.getName(i));
 System.out.println(" Attribute Type = "+atts.getType(i));
 System.out.println(" Attribute Value = "+atts.getValue(i));
 }
 if (name.toLowerCase().equals("customer")){
 app.append("Customer "+customerId);
 }
 }
}

To the XMLClient application you must first make sure the JSP is deployed and the
application server is running. The output from the XMLClient application is depicted
in figure 12.5.

The output to the console from XMLClient looks like the following:

setDocumentLocator: nanoxml.sax.SAXLocator@fd5e38
Starting to parse document.
startElement: customer
 Attribute Name = ID
 Attribute Type = CDATA
 Attribute Value = 1
startElement: demograpics
startElement: firstname
characters: David

Handle XML
start tag event

r

Note XML
events

e

Figure 12.5

XMLClient accessing XMLExample.jsp. On the

first screen the user enters the Customer ID

and presses the Get button. The application

makes an HTTP request to the JSP to return

information pertaining to Customer ID 1.

The data returned is displayed.
XML USING JSPS EXAMPLE 363

WH_Java2.book Page 364 Monday, March 4, 2002 9:59 AM
endElement: firstname
startElement: lastname
characters: Hemphill
endElement: lastname
startElement: phone
characters: 555-555-5555
endElement: phone
endElement: demograpics
startElement: order
characters: Grass Seed #6633
endElement: order
endElement: customer
Finished parsing document.

12.6 SUMMARY

When two or more systems use a standard protocol, such as HTTP, to communicate,
the two systems do not need to be written in a common language or need to under-
stand the intricate details of how each works. This is a major benefit and one of the
core purposes behind using open standards. A J2ME client could access an Active
Server Page (ASP) just as easily as it could access a JSP to interact with the enterprise
environment. Incorporating XML has the potential for bringing standardization to
the data itself as opposed to the communication protocol only. Simple Object Access
Protocol (SOAP) and SyncML are two examples of open, XML-based protocols of which
a J2ME application could take advantage.

In this chapter the concepts of using Java Servlets and JavaServer Pages were dem-
onstrated along with the ability to transfer information in an XML format. These tools
address important aspects of extending an enterprise environment using J2ME over a
network, namely the connection protocol and the data format. However, it is impor-
tant to remember that there are many methods for connecting two systems across a
network and the best solution is likely to vary for each implementation.
364 CHAPTER 12 INTEGRATING THE SERVER

WH_Java2.book Page 365 Monday, March 4, 2002 9:59 AM
C H A P T E R 1 3

The network connection

13.1 About the Generic Connection Framework 366
13.2 Using the Generic Connection Framework 372
13.3 HTTP-based connections 372
13.4 Socket-based connections 377
13.5 Datagram-based connections 394
13.6 Summary 406

One of the most critical aspects of J2ME is network connectivity. Although J2ME
devices can be useful when they are not connected to a network, the ability to make
a
network connection provides a means to tap into the powerful resources available on
a network. Even more significant are the emerging capabilities to establish a wireless
network connection. Many J2ME devices support this capability, which opens the
door to providing features on devices that go beyond sending and receiving email,
such as extending the enterprise into the mobile space. J2ME applications, in this
regard, become more than simple communication devices. They become another cli-
ent capable of interfacing with the enterprise systems, databases, corporate intranets
and the Internet. An insurance agent could file and adjust claims interactively while
talking to customers. Medical staff could interact with the hospital and clinical sys-
tems at the point of care. Inspectors could file reports on site. Salespeople could sub-
mit orders, check inventory, and calculate deals in the field. Schedules could be
dynamically updated and adjusted for mobile workers.
365

WH_Java2.book Page 366 Monday, March 4, 2002 9:59 AM
While mobile applications are nothing new to the technology market, J2ME provides
the ability for organizations with a commitment to Java to easily move into the
mobile space. J2ME also makes it possible to run the same application on multiple
devices, providing flexibility among vendors. In cases where applications are publicly
released, the number of devices on which the application can run becomes an impor-
tant selling point.

The network capabilities of J2ME complements other emerging technologies such
as Bluetooth, which provides wireless local area network capabilities through radio fre-
quency communication, and Jini, which provides spontaneous networking capabili-
ties. Using Jini and Bluetooth, a J2ME device could automatically register itself on a
wireless local area network as the user enters a room and unregister the user when he
leaves the room. While connected to the wireless network, the user would have access
to a number of network services such as printers, fax machines, email, network file sys-
tems, databases, enterprise systems, and other devices currently registered with the net-
work. Which services a user has available depends on who the user is, of course, and
how the user or device is presented to the network.

Since network connectivity is so vital to J2ME it is important that the architecture
be extendible to many different protocols while allowing applications to be portable
across many devices. The piece of software within the J2ME architecture that
addresses network connectivity is called the Generic Connection Framework (GCF).

13.1 ABOUT THE GENERIC CONNECTION FRAMEWORK

The Generic Connection Framework provides the foundation for all network com-
munications within the J2ME architecture. Within the configuration layer the Generic
Connection Framework interface is defined along with a number of basic interfaces.
The Generic Connection Framework provides no protocol implementations.

Table 13.1 GCF interfaces

GCF Interface Purpose

Connection The most basic type of connection in the GCF. All other connection
types extend Connection.

ContentConnection Manages a connection, such as HTTP, for passing content, such as
HTML or XML. Provides basic methods for inspecting the content
length, encoding and type of content.

Datagram Acts as a container for the data passed on a Datagram Connection.

DatagramConnection Manages a datagram connection.

InputConnection Manages an input stream-based connection.

OutputConnection Manages an output stream-based connection.

StreamConnection Manages the capabilities of a stream. Combines the methods of both
InputConnection and OutputConnection.

StreamConnectionNotifier Listens to a specific port and creates a StreamConnection as soon as
activity on the port is detected.
366 CHAPTER 13 THE NETWORK CONNECTION

13_network.fm Page 367 Monday, March 4, 2002 10:40 AM
The vendors supplying the profile must implement the necessary Generic Connec-
tion Framework interfaces.

The Generic Connection Framework resides in the javax.microedition.io
package and consists of:

• one class (Connector)

• one exception (ConnectionNotFoundException)

• eight interfaces (table 13.1)

The relationships of these interfaces are depicted in figure 13.1.

13.1.1 Where the Generic Connection Framework lives

The Generic Connection Framework is defined at the configuration layer of the J2ME
architecture. By implementing the framework at this level, the same Connector and
interfaces are available across all the profiles.

Both the CDC and the CLDC support the Generic Connection Framework. Due to
the nested arrangement of configurations, the connection interfaces are provided
throughout the J2ME architecture. This increases the compatibility across configurations.

NOTE By definition, all J2ME configurations must adhere to a nested relationship.
In other words, the CLDC fits completely inside the CDC. There are no class-
es, methods or other functionality in the CLDC that are not also in the CDC.

InputConnectionOutputConnection StreamConnectionNotifierDatagramConnection

Connection

StreamConnection

ContentConnection

Figure 13.1

Relationships of the Generic

Connection Framework interfaces.

In all cases, connections are opened

by the Connector. The Connection

class defines only a close() method

and is the basis for more sophisticated

connection types.
ABOUT THE GENERIC CONNECTION FRAMEWORK 367

WH_Java2.book Page 368 Monday, March 4, 2002 9:59 AM
13.1.2 Working with the Connector class

The Connector class is used to create instances of a connection protocol using one
of Connector’s static methods. The instance returned is an implementation sup-
porting the Connection interface or one of its descendents.

The Connector class is not designed to be instantiated. It is simply used to create
instances of a connection protocol. All of the methods Connector defines are static
and serve this purpose.

The Connector defines three variations of an open() that return a Connec-
tion instance. The Connector also defines methods that return input and output
streams. These methods will be discussed later in this chapter. For now, we will con-
centrate on the open() method.

The open() method returns an instance of type of Connection. However, the
instance returned is most likely to be a subclass of Connection that is more sophis-
ticated. It is the responsibility of the calling application to know what class to expect
and to coerce the returned instance to the correct object type as necessary. The open
method has the following signatures:

• open(String name)

• open(String name, int mode)

• open(String name, int mode, boolean timeouts)

The name is essentially a URI and is composed of three parts: a scheme, an address,
and a parameter list. The general form of the name parameter is as follows:

<scheme>:<address>;<parameters>

The scheme identifies how the connection is made (socket, http, file, datagram, etc.).
The address identifies what to connect to (www.ctimn.com, myfile.txt, etc.) and the
parameters identify other information that is required by the protocol to establish a
connection such as a connection speed. The parameters, when needed, are specified
as name=value pairs. Some examples of the name URI are shown in the following list.
Note that in some cases the parameter is not necessary and thus the “;” is not always
present:

• http://www.ctimn.com:8080

• socket://localhost:8080

• file:c:/myfile.txt (Windows only)

• file:/myfile.txt (Unix)

• datagram://127.0.0.1:8099

• comm:0;baudrate=9600

The mode parameter allows the connection to be established in various access modes,
such as read-only, read-write and write-only. These modes are defined by the Con-
nector constants READ, READ_WRITE, and WRITE.
368 CHAPTER 13 THE NETWORK CONNECTION

WH_Java2.book Page 369 Monday, March 4, 2002 9:59 AM
The timeouts parameter is a flag indicating whether or not the connection should
throw an InterruptedIOException if a timeout occurs. The application is then
responsible for handling this exception gracefully.

The Connector class is the only mechanism for creating the various types of con-
nections using the Generic Connection Framework. Specific protocol implementa-
tions are designed to be created directly.

The other methods defined by the Connector interface are:

• openInputStream()

• openOutputStream()

• openDataInputStream()

• openDataOutputStream()

These are convenient methods for creating different types of input and output
streams at the same time the Connection is created. In most cases, applications are
not concerned with the Connection instance itself, but rather the stream that can
be read from or written to. By using one of these four methods, the application can
obtain the stream directly, without needing to be concerned about the connection
instance. The following example illustrates the difference between the two ways of
obtaining streams:

try {
 OutputConnection connection =
 (OutputConnection)Connector.open("socket://127.0.0.1:8888");
 OutputStream os = connection.openOutputStream();
 os.close();
 connection.close();
} catch (IOException x) {
 //Handle the exception
}

This first way to obtain an OutputStream is rather verbose and requires us to deal
with the Connection simply for the purpose of calling the openOutput-
Stream() method. We are also forced to cast the return type to OutputConnec-
tion. If you do not need to interact with the Connection instance itself, you can
abbreviate how a stream is obtained.

try {
 OutputStream os =
 Connector.openOutputStream("socket://127.0.0.1:8888");
 os.close();
} catch (IOException x) {
 //Handle Exception
}

This second way of obtaining the OutputStream connection is much more concise
and eliminates lines of code that deal directly with the Connection instance. Fur-
thermore, there is no coercing of the return type on our part. However, there is one
ABOUT THE GENERIC CONNECTION FRAMEWORK 369

WH_Java2.book Page 370 Monday, March 4, 2002 9:59 AM
troubling aspect that comes into the picture when using openOutputStream():
Who closes the connection? In this case, the connection has already been closed by
the openOutputStream() method when the stream is returned. A connection is
established just long enough to obtain an output stream. Once the stream has been
obtained, the connection can be closed. It is important to understand that this works
for stream-based connections only. The connection must remain open for some connec-
tion types, such as Datagrams, that rely more heavily on the underlying connection.

NOTE In the case where a stream is obtained directly, using openInput-
Stream() or openOutputStream(), the connection close() is called
immediately after the stream is obtained. However, the actual connection
remains open until all the streams are closed as well. This is handled inter-
nally by the Connection, using a counter to track the number of opens
and closes performed. When open() is called, the counter is incremented.
When close() is called the counter is decremented. When the number
of closes returns to zero, the connection is actually closed. This is why invok-
ing close() on the Connection can take place without affecting the
streams and still allow the connection resources to be cleaned up properly.

13.1.3 The Connector is a factory

The concept employed by Connector for creating connection protocol instances is
often referred to as a factory. A factory is a class that has the sole purpose of creating
and possibly configuring a set of classes supporting a common interface. Factories
provide the ability to return different implementations of an interface while hiding
these details from the application code. The actual implementation returned depends
on what parameters are passed into the static method (an open method in this case) and
possibly the state of the system. The factory then deciphers the parameters and sys-
tem state and determines which class to create. The object created must implement
the interface specified by the static method’s return type (Connection, in this case).
However, the interface does not need to be directly supported. For example Data-
gramConnection subclasses Connection and is therefore a Connection as well.

Factories provide a level of indirection or decoupling that allows the implementa-
tion of the interface to vary somewhat independently of the class using the interface.
Put more simply, the class using Connector does not need to know about the actual
(concrete) class that is created. This example of loose coupling is an extremely impor-
tant aspect of the Generic Connection Framework because it provides flexibility and
extendibility.

13.1.4 How the Connector finds the correct class

When the URI (name) is passed to the Connector.open() method, the Connec-
tor parses the URI into its various parts <scheme>:<address>;<parame-
ters>. The key piece of information that the Connector is looking for at this
point is the scheme. It is the scheme, in combination with other information such
as the root package name and a platform identifier that allows the Connector to
370 CHAPTER 13 THE NETWORK CONNECTION

WH_Java2.book Page 371 Monday, March 4, 2002 9:59 AM
determine the appropriate Connection implementation to create. Once this infor-
mation is determined, a fully qualified class name is concatenated.

The root package and platform information are system properties identified by
microedition.protocolpath and microedition.platform, respectively.
The values of these properties are obtained using the System class.

String rootPackage = System.getProperty("microedition.protocolpath");

String platform = System.getProperty("microedition.platform");

By design, the Generic Connection Framework distinguishes different protocol im-
plementations by package name rather than class name. This is necessary since every
protocol implementation is written in a class named Protocol.java. Keeping the
class name the same relieves the Connector class from having to know the names of
each implemented class. The classes are differentiated by the location in which they
reside. For example, a socket protocol could be defined by the class com.sun.cldc.
io.j2me.socket.Protocol.class and an http protocol could be defined by
the class com.sun.cldc.io.j2me.http.Protocol.class. Even though the
names of the classes are identical, the full qualification (package name and class name)
of the class allows the two implementations to be distinguished from one another. In
this example, the root package is com.sun.cldc.io and the platform is “j2me”.

In the case of the CLDC reference implementation, the fully qualified class name
for a protocol is constructed as follows using the root package name + platform + pro-
tocol name + Protocol, or more specifically com.sun.cldc.io.[j2se, j2me,
palm].[socket, datagram, http].Protocol. The following example illus-
trates the process for creating a datagram protocol instance:

DatagramConnection connection =
 (DatagramConnection)Connector.open("datagram://127.0.0.1:9090");

The Connector extracts the scheme “datagram” and obtains the platform from the
System properties. In this case, we will assume the platform is j2me. The fully-qual-
ified class name is com.sun.cldc.io.j2me.datagram.Protocol. The Con-
nector then loads this class into the virtual machine and creates an instance using
statements similar to the following.

Class c = Class.forName(“com.sun.cldc.io.j2me.datagram.Protocol”);
Connection connection = (Connection)c.newInstance();

Once the Protocol instance is created the open method of the actual Protocol
class is called to configure the instance. The Protocol’s open method returns the con-
figured instance to the caller. The caller then coerces the instance to the expected con-
nection type, which is DatagramConnection in this case.

It is important to note that the protocol implementations do not reside in the
java.* or javax.* package. This is due to the fact that protocol implementations,
such as HTTP, are the responsibility of the profile implementer, not the creators of
J2ME. Furthermore, protocols must be implemented differently for specific platforms,
ABOUT THE GENERIC CONNECTION FRAMEWORK 371

WH_Java2.book Page 372 Monday, March 4, 2002 9:59 AM
such as Palm OS or a Motorola phone. In many cases native calls into the underlying
device APIs are required. Because of this device dependency of protocol implementa-
tions, the Generic Connection Framework does not provide any specific protocol
implementations.

The primary goal of the Generic Connection Framework is to generalize how con-
nectivity is handled so that it is extensible and coherent.

13.2 USING THE GENERIC CONNECTION FRAMEWORK

In the sections that follow, various protocols supported by the Generic Connection
Framework are examined using examples for each protocol. The example will demon-
strate the ability to send and receive messages over a network connection. For sim-
plicity, and ease of learning, the same implementation will be provided for HTTP,
socket and datagram connections.

The Generic Connection Framework is available in both the CDC and the CLDC
configurations. For these examples, the MIDP will be used, which uses the CLDC at
the configuration. Since the CLDC is completely nested inside the CDC, the GCF
functionality in these examples will work for both configurations.

We begin by examining HTTP. This example application will be expanded to
illustrate sockets and datagrams later on in the chapter.

13.3 HTTP-BASED CONNECTIONS

To establish HTTP GET connections, when you are not interested in HTTP-specific
information, such HTTP header information, the GCF ContentConnection
interface can be used. This example shows how a MIDlet can be used to read a page
of HTML from a website and display the title of the document in a Form.

13.3.1 Establishing a connection

The ContentConnection interface enables connections to deal with rich data
exchanges, such as HTTP. This type of connection extends the StreamConnection
interface and defines methods that allow an application to determine the type of con-
nection, the length of content and the encoding used through the following methods:

• String getEncoding()

• long getLength()

• String getType()

In most cases, ContentConnection is not used directly but serves as a base inter-
face for a protocol-specific connection types, such as an HttpConnection interface.

The following example shows how to use ContentConnection with HTTP as
the underlying protocol:

ContentConnection connection = (ContentConnection) Connector.open(
 "http://www.catapult-technologies.com/ctimain.htm", Connector.READ);
372 CHAPTER 13 THE NETWORK CONNECTION

WH_Java2.book Page 373 Monday, March 4, 2002 9:59 AM
In this example we want to read a page of HTML at a specified URL (www.catapult-
technologies.com). The connection takes place over the default HTTP port, port 80.
Since this is the default port it does not need to be specified. Since this example only
reads the page, the connection is opened in read-only mode.

Once the connection is established, we obtain the input stream:

DataInputStream is = connection.openDataInputStream();

In this particular example we could have simply obtained an input stream without
creating the connection directly, using the openDataInputStream() method of
the Connector. However, the methods stated earlier that provide content length,
content type and the encoding reside on the ContentConnection instance. There-
fore it is necessary to hang onto the connection instance beyond the creation of the
input stream.

The ContentConnection methods can be used as follows to obtain information
about the connection:

System.out.println("encoding: "+ connection.getEncoding());

System.out.println("length: "+ connection.getLength());

System.out.println("type: "+ connection.getType());

13.3.2 Using the connection

Once a connection is established it can be used to retrieve data. The following exam-
ple illustrates how to use the content connection to read a page of HTML from a net-
work connection. Since the amount of data retrieved is substantial in this case, our
application will parse out only a meaningful portion of the data returned to display
on the cell phone emulator. The entire contents of the read, however, will be dis-
played to the console so the progress can be monitored. The class we will create is
named MsgClient and will be used throughout this chapter as a basis for demon-
strating different types of connections. The full source listing for the MsgClient is
shown in listing 13.1.

package com.ctimn;

import java.io.*;
import javax.microedition.io.*;
import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

public class MsgClient extends MIDlet implements CommandListener {

 private Form outputForm;
 private Display display;
 private List menu;
 private Command okCmd = new Command("OK", Command.OK, 1);
 private Command exitCmd = new Command("Exit", Command.EXIT, 1);

Listing 13.1 MsgClient.java
HTTP-BASED CONNECTIONS 373

WH_Java2.book Page 374 Monday, March 4, 2002 9:59 AM
 private static final String[] choices = {
 "1 HTTP Example"
 };

protected void startApp() throws MIDletStateChangeException {
 display = Display.getDisplay(this);

outputForm = new Form("Server Messages");
menu = new List("Select:", List.IMPLICIT, choices, null);
menu.addCommand(okCmd);
outputForm.addCommand(okCmd);
outputForm.addCommand(exitCmd);
menu.addCommand(exitCmd);
outputForm.setCommandListener(this);
menu.setCommandListener(this);

 display.setCurrent(menu);
 }

 protected void pauseApp() {
 }

 protected void destroyApp(boolean unconditional)
 throws MIDletStateChangeException {
 }

 public void commandAction(Command cmd, Displayable displayable) {
 if (cmd == exitCmd){

handleExit();
} else if ((displayable == menu) && (cmd == okCmd)) {

handleOK(((List)displayable).getSelectedIndex());
} else {
 display.setCurrent(menu);

 }
 }

private void handleExit(){
try {

notifyDestroyed();
destroyApp(true);

} catch (MIDletStateChangeException x) {
x.printStackTrace();

}
}

private void handleOK(int idx){
display.setCurrent(outputForm);
getHttpMessage();

}

private void getHttpMessage(){
int c = 0;
String dataIn = null;
StringItem item = new StringItem("Reading from URL", "");
outputForm.append(item);

q

374 CHAPTER 13 THE NETWORK CONNECTION

WH_Java2.book Page 375 Monday, March 4, 2002 9:59 AM
try {
ContentConnection connection = (ContentConnection)

Connector.open(
 "http://www.catapult-technologies.com/ctimain.htm",
 Connector.READ);

DataInputStream is = connection.openDataInputStream();
try {

System.out.println("encoding: "+ connection.getEncoding());
System.out.println("length: "+ connection.getLength());
System.out.println("type: "+ connection.getType());
StringBuffer sb = new StringBuffer("");
for (int ccnt=0; ccnt < connection.getLength(); ccnt++){

c = is.read();
sb.append((char)c);

}
dataIn = sb.toString();

 item = new StringItem("Title: ", getTitle(dataIn));
outputForm.append(item);

} finally {
is.close();

}

} catch (IOException x) {
System.out.println("Problems sending or receiving data.");
x.printStackTrace();

}
}

private String getTitle(String data){
String titleTag = "<TITLE>";
int idx1 = data.indexOf(titleTag);
int idx2 = data.indexOf("</TITLE>");
return data.substring(idx1 + titleTag.length(), idx2);

}
}

Set up the user interface

Open a connection

Open an input stream

Display connection information

Read the input

Convert bytes to characters

Extract the title

BEST PRACTICE Note the use of the try..finally construct in the example. As a gen-
eral practice, it is a good idea to use a try..finally construct to handle
the closing of resources. This ensures that the close() operation always
takes place, whether an exception is thrown or not.

e

y

w

t

r

u

q

w

e

r

t

y

u

HTTP-BASED CONNECTIONS 375

WH_Java2.book Page 376 Monday, March 4, 2002 9:59 AM
The try should be placed immediately after the resource has been opened. Placing
the open statement within the try..finally block is likely to cause problems if
the open process throws an exception. This is because the flow of control would be
routed through the close() statement while the connection is in an unstable state,
and was probably never opened.

The steps to compile and run this example follow. Since we are only dealing with
a single class, the MsgClient, there is no need to JAR this application in order to run it.

13.3.3 Compiling and running the application

Use the following command line to compile the application:
>e:\jdk1.3\bin\javac -g:none -bootclasspath e:\midp-fcs\classes -classpath
 .\build -d .\build MsgClient.java

Use the following command to preverify the application:
>e:\midp-fcs\bin\preverify.exe
 -classpath e:\midp-fcs\classes;.;.\build .\build

Use the following command to run the application:

>e:\midp-fcs\bin\midp.exe -classpath e:\midp-fcs\classes;
 .com.ctimn.MsgClient

The first screen to appear when running the application is the menu options of the
MsgClient application. This is shown in figure 13.2.

Pressing the OK button reads the information from the URL provided. The encod-
ing, content length, and content type are displayed to the console so that we can
inspect the values. The “Title” of the HTML page is then parsed and displayed to the
screen. The MIDlet output is depicted in figure 13.3.

The output to the console is as follows:

encoding: null
length: 176
type: text/html

In this case, the encoding is not known, the length, in bytes, is 176 and the content
type is HTML.

Figure 13.2

MsgClient main menu
376 CHAPTER 13 THE NETWORK CONNECTION

WH_Java2.book Page 377 Monday, March 4, 2002 9:59 AM
13.4 SOCKET-BASED CONNECTIONS

Sockets can be used to implement communication between two systems and allow
the network connection to be treated as a stream. Once a socket is established the stream
can be read from, using an InputStream, or written to, using an OutputStream.

The Generic Connection Framework provides two interfaces for working with
streams, StreamConnectionNotifier and StreamConnection. StreamCon-
nectionNotifier is used by a server to monitor a port for clients wanting to estab-
lish a connection. StreamConnection is used to establish a socket connection.

The StreamConnection interface extends both InputConnection and Out-
putConnection, allowing both read and write capability on a single connection. In
general, the interfaces InputConnection, DataInputConnection, Output-
Connection, and DataOutputConnection are used in combination throughout
the Generic Connection Framework to build more sophisticated connection types.
Individually, they are not terribly useful since most connection protocols support both
read and write capabilities.

Before a client can request a socket connection to a listener, the listener must be
listening to a designated port. To bind a socket listener application to a port using
StreamConnectionNotifier the following syntax for the open command is used:

StreamConnectionNotifier connection = (StreamConnectionNotifier)
 Connector.open("serversocket://:4444", Connector.READ_WRITE);

The Connector knows to open a StreamConnectionNotifier by looking for
the “serversocket” scheme. The port number is specified after the “:” in the address
portion of the name. The port chosen is arbitrary so long as both the client and the
socket listener use the same port number. Also, if the specified port number is unavail-
able, or another service is already bound to the port, the connection will be refused.

Once a StreamConnectionNotifier is established, the socket listener waits
for a client to attempt a connection using the acceptAndOpen() method.

StreamConnection sc = connection.acceptAndOpen();

When a client attempts to connect to the socket listener, the acceptAndOpen()
method verifies that the connection can be established and opens a StreamCon-

Figure 13.3

Reading the HTML page

with a ContentConnection.
SOCKET-BASED CONNECTIONS 377

WH_Java2.book Page 378 Monday, March 4, 2002 9:59 AM
nection socket. Once a StreamConnection is established, the socket listener is
ready to read and write data from and to the stream. In order for the connection to be
accepted by the listener, the client attempting the connection must be attempting to
establish a socket connection. Other types of connections that the listener cannot
handle or does not understand are refused.

Clients connect to socket listeners by directly opening a StreamConnection.

StreamConnection connection = (StreamConnection)
 Connector.open("socket://127.0.0.1:4444", Connector.READ_WRITE);

To open a socket from the client side, the “socket” scheme is used and both the
host and port number must be specified in the address portion of the name. Note
that the port numbers must be exactly the same when the connection is opened for
both the client and the socket listener. If they are different you will not be able to
establish a connection. Furthermore, if the socket listener at the host address is not
listening to this port, or another type of service that cannot handle sockets is bound
to this port, the connection will be refused with an exception stating that the connec-
tion was refused. If the connection is successful, the socket is ready to write and read
data to and from the socket’s input and output streams.

Generally, the client is the first to write data to the stream, even if only to issue a
command to the listener; however, this is not a requirement of sockets. Once a con-
nection is successful, either side may initiate the conversion.

Sockets provide a very useful means of communicating between systems; however,
sockets only define the connection and the low-level data transport mechanisms, such
as TCP/IP. How the client and socket listener deal with each other must be defined
by the client and listener applications.

13.4.1 Writing to sockets

Once we have a successful connection, an output stream may be obtained from the
StreamConnection using the openOutputStream() or openDataOutput-
Stream() methods.

OutputStream os = connection.openOutputStream();
DataOutputStream os = connection.openDataOutputStream();

Once an output stream is obtained, the application can begin writing data using one
of the various methods of the OutputStream. To make life easier, an Output-
Stream can be wrapped inside of other stream classes that provide richer data sup-
port when writing to the stream. For example, an OutputStream could be passed to
a OutputStreamWriter to provide the means for dealing with character-based
stream content rather than byte-based content. The OutputStreamWriter acts as
a filter, converting the characters passed to the OutputStreamWriter methods
into a byte representation of the data and passing this on to the appropriate Output-
Stream method.
378 CHAPTER 13 THE NETWORK CONNECTION

WH_Java2.book Page 379 Monday, March 4, 2002 9:59 AM
OutputStream

OutputStream provides the basic methods necessary for writing byte data onto a
stream, flushing the stream and closing the stream. All other output stream classes
either extend or wrapper instances of OutputStream.

DataOutput

DataOutput is an interface that defines the methods for converting data from prim-
itive types, such as int, long, boolean, etc. to an array of bytes that can be written
to an output stream. This interface also provides the ability to convert Java Strings
to UTF-8 format that in turn is written as a byte array to an output stream.

DataOutputStream

DataOutputStream extends OutputStream and implements the DataOutput
interface to provide the ability to deal with byte, character and UTF encoded data in
a machine-independent manner.

ByteArrayOutputStream

A ByteArrayOutputStream extends OutputStream and provides dynamic
buffering capabilities for writing to byte streams. As data is written to the ByteAr-
rayOutputStream, the buffer grows automatically. This class supplies two useful
methods for retrieving the data as a byte array, using toByteArray(), or as a String,
using the toString() method.

Writer

Writer is an abstract class that provides support for writing to character streams as
opposed to bytes. Java uses a naming convention of “Writer” in the java.io pack-
age to denote classes that act as a bridge between byte streams and character-based
streams. The fundamental benefit of using a Writer (or its counterpart, a Reader)
is that character encoding is automatically translated between the byte representation
of the data and the character representation of the data. All other writer classes extend
Writer. Since this class is abstract it cannot be used directly by applications. Appli-
cations requiring Writer capabilities should use OutputStreamWriter.

OutputStreamWriter

OutputStreamWriter extends Writer and provides the necessary implementa-
tion for applications to write characters to an output stream. With the exception of
the write() methods, all characters written to the stream through this class are buff-
ered, requiring a call flush() in order to actually place the data on the stream.
SOCKET-BASED CONNECTIONS 379

WH_Java2.book Page 380 Monday, March 4, 2002 9:59 AM
PrintStream

PrintStream is a convenience class that extends OutputStream and provides
means for easily printing stream data. Most notably, PrintStream introduces a
println() with various signatures for printing different data types. The println()
methods automatically append a ‘\n’ (new line) character to the data printed. Further-
more, PrintStream does not throw IOExceptions but rather sets an internal flag
if errors occur. The error state is checked by a call to the checkError() method.

13.4.2 Reading from sockets

The API for reading from a socket is similar to the output APIs but performs reads
instead. Once an input stream is obtained, there are a number of classes that help
facilitate retrieving data from a stream.

InputStream

InputStream provides the basic methods necessary for reading byte data from a
stream and closing the stream. All other input stream classes either extend or wrapper
instances of InputStream.

DataInput

DataInput is an interface that defines methods for reading a stream of bytes and
converting this series of bytes to Java primitive types such as int, long, short,
char, boolean, etc. This interface also defines the ability for creating a Java
String from a UTF-8 format.

DataInputStream

DataInputStream extends InputStream and implements the DataInput
interface, providing an implementation for reading and converting java primitives
from a series of bytes on an input stream. This class also provides the ability to deal
with UTF encoded data in a machine independent manner.

ByteArrayInputStream

ByteArrayInputStream extends InputStream and provides buffering capabili-
ties while reading from a byte input stream. The number of bytes read by this class is
determined by the buffer size provided to the constructor.

Reader

Reader is an abstract base class for other readers in the API. Java uses a naming con-
vention of “Reader” in the java.io package to denote classes that act as a bridge
between byte streams and character-based streams. The fundamental benefit of using
a Reader is that character encoding is automatically translated from the byte repre-
sentation of the data to the character representation of the data during the read oper-
ations. All other reader classes extend Reader. Since this class is abstract it cannot be
380 CHAPTER 13 THE NETWORK CONNECTION

WH_Java2.book Page 381 Monday, March 4, 2002 9:59 AM
used directly by applications. Applications requiring Reader capabilities should use
InputStreamReader.

InputStreamReader

InputStreamReader extends Reader and provides an implementation for read-
ing character data from a byte stream, thus providing a layer of translation between
byte and character data. This class also provides capabilities for returning UTF-
encoded data. InputStreamReader automatically supports buffering. Each read
operation will cause one or more bytes to actually be read from the stream, regardless
of the data to be returned by the method.

13.4.3 When to use sockets

Sockets are a primitive but lightweight method of connecting two systems and
exchanging data. Due to the low overhead of sockets, this can be one of the fastest
methods of exchanging data and issuing commands between two systems. However,
the lightweight nature of sockets comes at the price of needing to define a protocol of
how the two systems communicate. In other words, sockets provide the connection,
but the format of the information exchanged is something left to the implementer. As
a result, there are few restrictions on what you can do with sockets; however, every-
thing you do will need to be determined and built.

Sockets are useful in cases where speed is more important than adhering to open
protocol standards. In other words, using sockets probably means you will be imple-
menting a proprietary data transport mechanism. (Note, however, that the protocol
HTTP can be, and often is, implemented using sockets.) If your system needs to sub-
scribe to open communications standards or you are not in control of both the client
and the server, sockets may not be a good way to implement communication capabil-
ities in your application. In these cases, something like HTTP may be more appro-
priate. There are exceptions to this case, however. Since sockets purely provide the
transportation mechanism, another data format or protocol could be used in conjunc-
tion with sockets. For example, sockets could be used in combination with XML.
This would allow an application to take advantage of sockets while using a nonpro-
prietary or publicly defined XML schema. You should be aware, however, that this still
requires coordination between client and server applications since they both need to
support the same connection types. If the systems implementing a standardized XML
data exchange expect an HTTP connection, implementing a socket solution would
not be acceptable.

13.4.4 Client-server socket example

The following example enhances the MsgClient application used earlier to include
socket communication capabilities. This example illustrates how to establish a con-
nection between a client and a socket listener (server) and send data between the two
systems. Figures 13.4 and 13.5 illustrate communication links between two systems.
SOCKET-BASED CONNECTIONS 381

WH_Java2.book Page 382 Monday, March 4, 2002 9:59 AM
Since we are dealing with J2ME, the two systems in this case are cellular phones that
send messages to each other. However, it is definitely possible to use sockets to con-
nect to a J2SE or J2EE server application.

Modifying the client

The first step in incorporating socket capabilities in the MsgClient application is to
modify the user interface so that the socket behavior that we will be writing can be
invoked. This requires two changes. First, we add a menu item to our list of menu
choices called “Socket Message”. This becomes the second option in the list.

private static final String[] choices = {

 "1 HTTP Example",
 "2 Socket Message"
};

Next we enhance the handleOK()method to be able to respond appropriately when
the “Socket Message” menu option is chosen.

private void handleOK(int idx){
 display.setCurrent(outputForm);

 switch (idx) {
 case 0:
 getHttpMessage();
 break;

Server

Network
Connection

Device

Figure 13.4

A client-server relationship that allows

data to be exchanged between the two

systems. Generally, the client (in this

example, the device) participates by

triggering the communication events

and asking the server for information.

The server simply listens for incoming

messages and responds appropriately.

Network
Connection

Device Device

Figure 13.5 A client-server relationship where both systems are mobile devices. This is the

scenario used for the socket and datagram examples so that both sending and receiving data

in a J2ME environment can be demonstrated. In this situation, one of the devices would be

designated the client and the other the server. The device acting as the server will listen

for incoming messages and respond appropriately. For example, two devices could

communicate with each other using an infrared link between the two devices.
382 CHAPTER 13 THE NETWORK CONNECTION

13_network.fm Page 383 Monday, March 4, 2002 10:41 AM
 case 1:
 socketMessage();
 break;
 }
}

The only thing left on the client side is to implement the socketMessage()
method to send and receive data. To open a socket connection, the following scheme
is used.

StreamConnection connection = (StreamConnection)
 Connector.open("socket://localhost:4444", Connector.READ_WRITE);

The input and output streams are obtained immediately, since both will be required.
Once this is done, the connection’s close() method can be called.

DataOutputStream os = connection.openDataOutputStream();

DataInputStream is = connection.openDataInputStream();
connection.close();

The complete socketMessage() method of implementation is shown in listing 13.2:

private void socketMessage(){
 StringBuffer sb = new StringBuffer("");
 String dataIn = null;
 String dataOut = null;
 int c = 0;
 try {
 StreamConnection connection = (StreamConnection)
 Connector.open("socket://localhost:4444", Connector.READ_WRITE);
 DataOutputStream os = connection.openDataOutputStream();
 DataInputStream is = connection.openDataInputStream();
 connection.close(); -
 try {
 dataOut = "Message from the client.";
 os.writeUTF(dataOut);
 os.flush();
 dataIn = is.readUTF();
 System.out.println(dataIn);
 StringItem si = new StringItem("Msg: ", "'"+dataIn+"'");
 outputForm.append(si);
 } finally {
 is.close();
 os.close();
 }
 } catch (IOException x) {
 System.out.println("Problems sending or receiving data.");
 x.printStackTrace();
 }
}

Listing 13.2 socketMessage() method

Write
data

w

Open a socket
connection

q

Close the
socket

r

Read
data

e

SOCKET-BASED CONNECTIONS 383

WH_Java2.book Page 384 Monday, March 4, 2002 9:59 AM
384 CHAPTER 13 THE NETWORK CONNECTION

Creating the socket listener

Now that we have a client that can connect to a service that is listening to a particular
port, we need to create that service. To do so, we will implement another MIDlet that
will listen to a designated port. When a client sends a message, the message is dis-
played by the MIDlet and a response is returned.

The listener MIDlet will be used in this example as well as the datagram example,
so we will create the user interface with the ability to handle both cases. To modularize
the design, the protocol-specific behavior will be encapsulated in separate classes. This
allows the listener application to easily employ many different services without becom-
ing monolithic. The listener application has the responsibilities of providing the
means to start a particular service, socket listener, or datagram listener, and displaying
the messages as they are handled by the service. The full source listing for the listener
application is provided in listing 13.3.

package com.ctimn;

import java.io.*;
import javax.microedition.io.*;
import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

public class MsgListener extends MIDlet implements CommandListener {

 private Form outputForm;
 private Display display;
 private List menu;
 private Command okCmd = new Command("OK", Command.OK, 1);
 private Command exitCmd = new Command("Exit", Command.EXIT, 1);
 private SocketListener socketListener;

 private static final String[] choices = {
 "1 Socket Listener",
 "2 Datagram Listener"
 };
 protected void startApp() throws MIDletStateChangeException {
 display = Display.getDisplay(this);
 outputForm = new Form("Messages");
 menu = new List("Select:", List.IMPLICIT, choices, null);
 outputForm.addCommand(okCmd);
 menu.addCommand(okCmd);
 outputForm.addCommand(exitCmd);
 menu.addCommand(exitCmd);
 outputForm.setCommandListener(this);
 menu.setCommandListener(this);
 display.setCurrent(menu);
 }

 protected void pauseApp() {
 }

Listing 13.3 MsgListener.java

Provide menu optionsq

WH_Java2.book Page 385 Monday, March 4, 2002 9:59 AM
 protected void destroyApp(boolean unconditional)
 throws MIDletStateChangeException {
 System.out.println("Destroy App.");
 if (socketListener != null){
 socketListener.shutdown();
 }
 }

 public void commandAction(Command cmd, Displayable activeDisplay) {
 if (cmd == exitCmd) {
 handleExit();
 } else if ((activeDisplay == menu) && (cmd == okCmd)) {
 handleOK(((List)activeDisplay).getSelectedIndex());
 return;
 }
 display.setCurrent(menu);
 }

 private void handleExit(){
 try {
 System.out.println("exit.");
 destroyApp(true);
 notifyDestroyed();
 } catch (MIDletStateChangeException x){
 x.printStackTrace();
 }
 }

 private void handleOK(int idx){
 display.setCurrent(outputForm);
 switch (idx) {
 case 0:
 socketListener();
 break;
 case 1:
 datagramListener();
 break;
 }
 }

 private void socketListener(){
 if (socketListener == null){
 socketListener = new SocketListener(outputForm);
 socketListener.start();
 }
 }

 private void datagramListener(){
 }

Handle the
menu event

w

Start the socket
listener service

e

Create a placeholder for
the datagram example

r

SOCKET-BASED CONNECTIONS 385

WH_Java2.book Page 386 Monday, March 4, 2002 9:59 AM
Creating the service class

The next step is to implement the SocketListener service class. This is where all
the socket listener behavior will be encapsulated. Listening for messages is slightly dif-
ferent than sending messages because the listener can never be sure of when or if the cli-
ent will attempt to connect. As a result, if we simply listened for the connection and the
data to be sent on the same thread that the application is running on, our application
would appear to hang until the connection was terminated. For this reason, it is best to
implement the connection listening part of the application on a separate thread. This
allows the application to continue functioning while waiting and receiving messages. By
handling messages on a separate thread, the data received by the message handler can be
displayed immediately as well, rather than having to wait until the connection finished
transmitting data. This is especially important if two devices require that the users pro-
vide input during the data exchange. If a separate thread is not used, a connection
would need to be established each time the user entered a piece of data, since the con-
nection and the data entry must share the same thread.

The SocketListener class extends Thread to provide the ability to create and
run the listener on its own thread.

public class SocketListener extends Thread

The Thread class requires that the main thread loop be implemented in a method
named run(). For our purposes, this is where the connection will be established and
the listener loop will be implemented.

To start a thread in Java using the Thread class, the start() method is called.
In our case, the SocketListener thread is started by the MsgListener applica-
tion. This is already in place as we can see by revisiting the code listing for MsgLis-
tener.java.

Since the SocketListener will be running on its own thread, we need a way to
shut down the thread when we are finished. A public shutdown() method is pro-
vided to perform this step from the MsgListener application. However, the best we
will be able to do at this point is set a boolean flag indicating that the SocketLis-
tener should shut itself down at the earliest point possible. This is because the
SocketListener class will be occupied by its task of listening for incoming mes-
sages. The best opportunity for checking the shutdown state is when the listener times
out. We then have the opportunity to check the shutdown state and either exit the
thread or restart the listener connection.

In some implementations of the J2ME virtual machines, there is only one under-
lying native thread that is actually being used on the device. This is the thread the vir-
tual machine is running on. In these situations multithreading behavior is handled
internally by the virtual machine using what are called green threads. Green threads
are explained in more detail in chapter 14. In these situations all threads will be ter-
minated automatically when the application exits without the need for invoking any
thread shutdown operations. However, it is always a good idea to have thread shut-
386 CHAPTER 13 THE NETWORK CONNECTION

WH_Java2.book Page 387 Monday, March 4, 2002 9:59 AM
down functionality in place, since each J2ME virtual machine has different character-
istics and may implement threading differently. Failing to properly terminate threads
could result in memory leaks or worse. In our example, failing to shut down a listener
would lock the port that the listener is bound to, requiring the device to be restarted
in order to release the port resource.

NOTE The KVM provided with the MIDP reference implementation implements
multithreading entirely within the virtual machine (green threads). As a re-
sult, all listener threads are terminated when the application exits. There-
fore, there is no way to actually illustrate the threads terminating on their
own since they are shut down automatically.

Unlike a socket client, the socket listener must listen to a designated port for any cli-
ents wishing to establish communications. This is implemented using a Stream-
ConnectionNotifier.

StreamConnectionNotifier connection = (StreamConnectionNotifier)

 Connector.open("serversocket://:4444", Connector.READ_WRITE);

StreamConnection socketConnection = connection.acceptAndOpen();

WARNING Sockets can be created on any port supported by the platform. However, it is
important to note that on Unix you must be signed in as the root user to cre-
ate a port below 1024. This means that your application would be required
to run as root to create a StreamConnection or StreamConnec-
tionNotifier using port 999 on Unix. Furthermore, you will be deploy-
ing applications into network environments where other services are also
using ports. If you attempt to establish a connection to a port that is already
in use an exception will be thrown and your application will be unable to
bind to the port. Although changing a port may be an easy modification to
your code, it is nice to find problems like this before your application ships.
Therefore it is advisable to do a bit of research on the platforms and environ-
ments that an application is targeting before choosing the port number.

The StreamConnectionNotifier is first created using the serversocket
scheme and designating a port. The mode in which to open socket connections is also
specified. Once we have a StreamConnectionNotifier, the acceptAndOpen()
method is called. The acceptAndOpen() method causes the server to sit idle until
a client attempts to connect to the server. There is no socket connection at this point.

When a client contacts the server, the server determines if a socket connection can
be established. This takes place within the acceptAndOpen() method. If a socket
connection can be established, acceptAndOpen() returns a SocketConnection.
Since we specified that READ_WRITE sockets should be created when we created the
StreamConnectionNotifier, the SocketConnection returned can be used
for both receiving and sending data to the client.
SOCKET-BASED CONNECTIONS 387

WH_Java2.book Page 388 Monday, March 4, 2002 9:59 AM
If the client connection cannot be established, the connection is refused. An exception
is thrown on the client side. The server, however, continues listening for other clients.

With a client-server socket connection established, the server is reading to receive
and send data. To do this, an InputStream and an OutputStream are obtained.
InputStream is = socketConnection.openInputStream();

OutputStream os = socketConnection.openOutputStream();

Reading from a stream

Data can be read from a DataInputStream as a UTF-8 encoded String using the
method readUTF(). The data read using the method, however, must be sent using
UTF-8 encoding in order to read the data successfully. This requires the client and
server to coordinate on how the data is sent. Alternately, the data can be read as an
array of bytes. Examples of both techniques are provided below. This first example
reads UTF-encoded data:

String dataIn = is.readUTF();

The following example demonstrates reading bytes from the stream. This example
assumes that the data is character data in byte form and coerces the data before
appending it to a StringBuffer:

int ch = 0;
StringBuffer sb = new StringBuffer();
while (ch != -1) {
 ch = is.read();
 if (ch == -1){
 break;
 }
 sb.append((char)ch);
}
String dataIn = sb.toString();

Writing to a stream

To write data to the output stream we will use the writeUTF() method along with
a DataOutputStream. This method encodes the data as UTF-8 before sending it
to the destination. Since the listener is expecting a UTF-8 encoded String it is neces-
sary that the client provide the data in this format. If the application on the other end
is not expecting UTF-8 encoded data, it may not be able to handle the data properly.
In this case, unexpected behavior in the stream interactions can result. If the client
cannot handle UTF-encoded data, the data can be sent as a byte array.

The following code demonstrates how to write to the DataOutputStream.
When you are finished, the output stream must be flushed. This forces bytes within
the buffer to be written to the stream, if the stream supports buffering. How data is
buffered in an output stream differs between different types of streams. In some cases,
no buffering may be applied at all. However, it is always a good practice to call
flush() when you have finished writing to a stream.
388 CHAPTER 13 THE NETWORK CONNECTION

WH_Java2.book Page 389 Monday, March 4, 2002 9:59 AM
String data = “Test Message”;
os.writeUTF(data);
os.flush();

The next example demonstrates writing a byte array to the stream. This is useful
when sending raw bytes to another system.

String data = “Test Message”;
byte[] b = data.getBytes();
os.write(b, 0, b.length);
os.flush();

Opening a client connection

Once an application is listening to a port, a client can attempt to open a connection
to the listening application using the following syntax:

StreamConnection connection = (StreamConnection)
 Connector.open("socket://127.0.0.1:4444", Connector.READ_WRITE);

Unlike the socket listener example, the client must specify a host address as well as a
port. If the open() is successful, a StreamConnection is returned. If the socket
connection cannot be established, a ConnectException is thrown indicating that
the connection was refused. A connection can be refused for a number of reasons.
Typically, this occurs when there is no application listening to the port or another
type service that does not or cannot deal with sockets is listening to the port and
refuses the connection.

With a StreamConnection open, the client is ready to send and receive data.
At this point, the code is the same as the server examples provided earlier.

Shutting down the listener thread

Since the SocketListener is implemented on its own thread, it supports the abil-
ity for an external object to shut it down. In our example, MsgListener makes the
call to shutdown() when the application exits. Since the shutdown() method is
invoked by a thread different from the one that our socket listening code is running,
all we can really do is set a flag so that the thread within the listen-respond loop can
check the status of this flag periodically during execution and take appropriate action.

There is a problem with this, however. Most likely, when shutdown() is called, the
thread that we need to shut down is busy listening for connections within the
acceptAndOpen() method. The thread will remain at this spot in the code until one
of two things happens: a socket connection is accepted or a timeout occurs. Since these
are the only two cases where the listening thread will have the opportunity to check the
status of the shutdown flag, we use these situations to our advantage. The easiest way to
trigger the shutdown process is for the listener to respond to timeout conditions. This
is done by specifying the appropriate value in the Connector’s open() method.

StreamConnectionNotifier notifier = (StreamConnectionNotifier)
 Connector.open("serversocket://:4444", Connector.READ_WRITE, true);
SOCKET-BASED CONNECTIONS 389

13_network.fm Page 390 Monday, March 4, 2002 10:45 AM
390 CHAPTER 13 THE NETWORK CONNECTION

This signature of the open method allows for setting a boolean indicating we want
to be notified when a timeout occurs. The timeout can then be detected by catching an
InterruptedIOException. When this exception occurs, after the timeout expires
the StreamConnectionNotifier connection, the SocketListener can take
appropriate action based on the value of the shutdown flag. If the flag is true, indicat-
ing we should shut down, the method exits (using a return statement). If the value is
false, the SocketListener continues listening for connections. If the Socket-
Listener is to continue listening, however, the StreamConnectionNotifier
must be reestablished. The code to perform shutdown flag monitoring is as follows:

try {
 StreamConnection connection = notifier.acceptAndOpen();
} catch (InterruptedIOException x){
 if (shutdownFlag){
 return;
 } else {
 notifier = createNotifier();
 }
}

In this example the createNotifier() method returns an instance of Stream-
ConnectionNotifier.

private StreamConnectionNotifier createNotifier()throws IOException {

 return (StreamConnectionNotifier)
 Connector.open("serversocket://:4444", Connector.READ_WRITE, true);
}

The full-source listing of SocketListener is shown in listing 13.4. To simulate
connecting over a network connection, the localhost address will be used, 127.0.0.1.

WARNING In some implementations of the Generic Connection Framework it is nec-
essary to specify the IP address rather than the domain name.

package com.ctimn;

import java.io.*;
import javax.microedition.io.*;
import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

public class SocketListener extends Thread{
 private Form outputForm;
 private boolean shutdownFlag = false;
 private StreamConnectionNotifier notifier;

 public SocketListener(Form outputForm){
 this.outputForm = outputForm;
 }

Listing 13.4 SocketListener.java

Reference to
the MsgListener
output form

q

Flag indicating if
the service has
been shut down

w

Socket
connection

e

/O

13_network.fm Page 391 Monday, March 4, 2002 10:45 AM
 private StreamConnectionNotifier createNotifier() throws IOException {
 return (StreamConnectionNotifier)
 Connector.open("serversocket://:4444",
 Connector.READ_WRITE, true);
 }

 public void run(){
 String dataIn = null;
 String dataOut = null;
 int counter = 1;
 StringItem item = new StringItem("Listening to Socket", "");
 outputForm.append(item);
 StreamConnection connection = null;
 try {
 notifier = createNotifier();
 while (true) {
 try {
 connection = notifier.acceptAndOpen();
 } catch (InterruptedIOException x){
 if (shutdownFlag){
 return;
 } else {
 notifier = createNotifier();
 }
 }
 DataInputStream is = connection.openDataInputStream();
 DataOutputStream os = connection.openDataOutputStream();
 connection.close();
 try {
 dataIn = is.readUTF();
 System.out.println(dataIn);
 item = new StringItem("Msg: ", "'"+dataIn+"'");
 outputForm.append(item);
 dataOut = "Message " + counter + " from the server.";
 counter++;
 os.writeUTF(dataOut);
 os.flush();
 } finally {
 os.close();
 is.close();
 }
 }
 } catch (IOException x) {
 System.out.println("Problems sending or receiving data.");
 x.printStackTrace();
 }
 }

 public void shutdown(){
 shutdownFlag = true;
 }
}

Create the socket
connection

r

Close the I/O streams1%

Set the shut-
down flag

1^

Read and display
the message

from the client

1@

Form and write a
response message

f

Do these steps “forever”y

Wait for a client messageu

Establish the listener
connection with
timeout exceptions

t

Check shutdown status on timeout.
Return if shutdown=true

i

Return if shutdown=false,
restart the listener connection

o

Get the I
streams

1)
Call close on the connection
obtained by acceptAndOpen()

1!

Flush the output
stream buffer

1$
SOCKET-BASED CONNECTIONS 391

WH_Java2.book Page 392 Monday, March 4, 2002 9:59 AM
Compiling and preverifying and running

The entire example, including the classes MsgClient, MsgListener, and Socket-
Listener is now ready to be compiled and preverified. In order to run the applica-
tion, since there is more than a single class involved, all the classes will need to be
packaged into a JAR file. The following batch file shown in listing 13.5 can be used
to build the application and bundle it as a single JAR file.

e:\jdk1.3\bin\javac -g:none
 -bootclasspath e:\midp-fcs\classes
 -classpath .\build
 -d .\build *.java

e:\midp-fcs\bin\preverify.exe
 -classpath e:\midp-fcs\classes;.;.\build .\build

jar cvf io.jar -C output .

The MsgClient and MsgListener applications must be run from separate com-
mand windows. The following commands are necessary for starting the MsgLis-
tener. The first command allows all protocols to be made available to our MIDlet.
Without this flag set to true, only the HTTP connections are available since this is
the only connection type that must be supported by MIDP.

>set ENABLE_CLDC_PROTOCOLS=true

>e:\midp-fcs\bin\midp -classpath e:\midp-fcs\classes;.\io.jar

com.ctimn.MsgListener

The MsgListener presents a menu listing the available options. Choosing the
“Socket Listener” option invokes the SocketListener and binds the listener to
port 4444. Figure 13.6 shows the running MsgListener application.

Use the following command to run the MsgClient:

>set ENABLE_CLDC_PROTOCOLS=true

>e:\midp-fcs\bin\midp -classpath e:\midp-fcs\classes;.\io.jar
com.ctimn.MsgClient

Listing 13.5 Build.bat

Figure 13.6

Running MsgListener for the first

time. The MsgListener creates a

StreamConnectionNotifier and waits

for activity on the specified port.
392 CHAPTER 13 THE NETWORK CONNECTION

WH_Java2.book Page 393 Monday, March 4, 2002 9:59 AM
Choosing the second option sends a message from the MsgClient to the MsgLis-
tener. The MsgListener then returns a response to the MsgClient-. This is shown in
figure 13.7.

The client initially displays a menu as well, which is shown in figure 13.7. Selecting
the second option “Socket Message” triggers the client code to send a message to the
server. The server responds with a message. The messages are displayed in the output
forms of each emulator. The output from the MsgListener is shown in figure 13.8.

Additionally, we placed some System.out.println() statements into our code to
monitor progress from the command line. These results are shown in figure 13.9.

Figure 13.9 Command line results from running MsgClient and MsgListener.

Figure 13.7

MsgClient sending and receiving

messages using sockets. The MsgClient

initiates communication by opening a

socket connection. The receiving system

acknowledges the connection, allowing

the MsgClient to pass data onto the

stream represented by the connection.

Figure 13.8

MsgListener receiving a message over a socket connection.

The MsgListener monitors a specified port for socket activity.

When the MsgClient initiates a connection, the MsgListener

establishes the other half of the connection and gets ready to

receive data. When the MsgClient transmits data, the

MsgListener responds appropriately.
SOCKET-BASED CONNECTIONS 393

WH_Java2.book Page 394 Monday, March 4, 2002 9:59 AM
13.5 DATAGRAM-BASED CONNECTIONS

Datagrams are designed for sending packets of data over a network. Datagrams work
much differently than sockets in that a hard connection is not established between
the two systems. In the case of sockets, if a client tries to connect to a system that does
not support sockets or is not listening for socket connections, an exception is thrown.
Datagrams, on the other hand, allow data to be sent over a connection regardless of
whether the listener on the other end is capable of handling datagrams or even exists.
In all cases, when sending data using Datagrams, the transmission is assumed to be
successful. Furthermore, unlike sockets, the data sent using Datagrams is considered
to be unreliable in that if a packet is lost it is not resent automatically by the protocol
implementation, and when multiple packets are sent there is no guarantee that the
packets will arrive in the same order they were sent. Datagrams do not provide sup-
port for reassembling data packets into the order in which they were sent. For these
reasons, Datagrams are termed to be an unreliable data transport mechanism.
The term unreliable in this case is not necessarily a negative term. It simply means that
the protocol does not inherently support mechanisms to guarantee that data arrives in
the order it was sent or that the data arrives at all. There is nothing stopping an appli-
cation from implementing these features itself, however.

So why use Datagrams? Speed is one primary reason. Datagrams do not incur the
overhead of ensuring that packets arrive in the correct order or that they arrive at all.
In some applications, such as audio streaming, a missing data packet may appear as
static. Raw speed is more important in this case than data integrity.

There are several datagram protocols available. The most common is User Data-
gram Protocol (UDP). This is the protocol implementation provided by the reference
implementation of the Generic Connection Framework. However, the Datagram
and DatagramConnection interfaces of the Generic Connection Framework are
designed to allow implementations of different types of datagram protocols. Other
such protocols include IP and WDP along with proprietary beaming protocols that
take advantage of the packet nature of datagrams for transmitting data.

When to use datagrams

At first glance, datagrams seem to have a lot of marks against their use, especially
since there is no reliability of data delivery, flow-control and error handling. However,
the raw speed benefits of datagrams may outweigh the data integrity issues for some
applications. Applications that stream real-time audio or video may be more con-
cerned with speed than getting every byte of data transported and in a certain order.
If data is missing there may be some static over the speaker or on the screen momen-
tarily. Although static is not a desirable feature in such applications, the alternative
would require the application to wait for all the data to arrive and to place it into the
correct receiving order based on how the packets were sent before the data could be
394 CHAPTER 13 THE NETWORK CONNECTION

WH_Java2.book Page 395 Monday, March 4, 2002 9:59 AM
officially received. This speed degradation is likely to be unacceptable in applications
that are streaming audio or video content.

Since UDP does not provide guarantees of packet delivery or packet receiving
order, the headers and metadata required are simpler than a reliable protocol such as
TCP. Therefore, datagrams are most useful when speed of delivery is crucial. In the
J2ME environment, datagrams can be useful due to their simplicity as a lighter weight
data transport alternative to TCP. For example, datagrams might be useful when
beaming data over an Ir port between two devices.

Another feature of datagrams is that the programmer controls the packet size of the
transmission. If you want to send a large amount of data in a single packet, you can
(up to 64kB). If you want to send a single byte in a packet, you can.

Handling datagram unreliability

Although UDP datagrams do not inherently provide guaranteed delivery and packet
reordering, you can implement this at the application level. For example, a client that
sends a datagram and does not receive a response for a specified period of time could
assume the packet was not received and try to resend the information or indicate an
error. Furthermore, the data encapsulated by the datagram could include tags indicat-
ing how to reassemble the data on the receiving side. For example, if the first packet
received contains the information “packet 4 of 7” the receiver would understand it
needs 7 packets in all before attempting to order the data. If less than 7 packets are
received and a certain amount of time passed without receiving another packet, the
receiver could ask the sender to resend the missing packets.

Alternatively, a client could send packets one at a time and wait for the receiver to
respond with a success code indicating that the packet was correctly received before
sending the next packet.

Of course in doing this the sender and receiver need to understand how to commu-
nicate. In other words, you need to define your own protocol. This does not mean, how-
ever, that you are duplicating the functionality of TCP and eliminating the benefits of
datagrams. Obviously, there will be some additional overhead in providing flow-control
and data delivery error handling in datagrams. However, a custom protocol has the
advantage of accommodating a specific case, rather than the more generalized case that
TCP is required to address, and this specificity can improve efficiency. If you are work-
ing in a closed system, where you have control of both the sender and the receiver, you
also have the ability to define how the sender and receiver communicate.

How datagrams work in J2ME

Datagrams have been generalized in the Generic Connection Framework so that dif-
ferent types of datagram connections can be used. As a result, the datagram API is
much different in J2ME than in J2SE.

The two classes involved with datagrams in the Generic Connection Framework
are DatagramConnection and Datagram. The DatagramConnection class is
DATAGRAM-BASED CONNECTIONS 395

WH_Java2.book Page 396 Monday, March 4, 2002 9:59 AM
used to bind the application to a port and the Datagram class is used to transport data
over this port connection. It is important to understand that datagrams do not behave
like streams. Although the datagram is ultimately sent across the network connection
in some fashion, datagrams themselves are packets of data placed onto the protocol as
a whole. The difference is that with a stream, each byte written to a stream immedi-
ately becomes part of the stream and is sent to whatever the stream is hooked up to,
assuming there is no buffering taking place. With datagrams, all of the data resides in
the datagram buffer until the datagram is placed on the DatagramConnection.
Once the datagram is placed on the connection, the connection transmits the data to
the specified target.

NOTE The J2SE DatagramSocket class is analogous to the J2ME Data-
gramConnection class and the J2SE DatagramPacket class is anal-
ogous to the J2ME Datagram class. In J2SE, you bind the application to
a socket using the DatagramSocket class and transport data over this
connection using a DatagramPacket class.

To send a datagram using the J2ME API, your application needs to supply three
things: the address to send the datagram, the port on which the receiving system is
listening, and the data. The port used by the application sending data (the client) is
always dynamically allocated.

The DatagramConnection instance is created using a slightly different name
parameter depending on whether you are a datagram client or server. To open a con-
nection as the client the target host must be specified. The following example opens
a DatagramConnection in “client mode.”

datagram://127.0.0.1:5555

To open the connection on the receiving side, only the port is specified.

datagram://:5555.

When establishing a client connection, the application is specifying the host as well as
the port on which the host is expected to be listening. The port that the client is
using on the system is hidden from the developer and is dynamically assigned.

When opening the connection on the receiving side, the receiving application
binds itself to a port. If these ports are not identical, data sent from the client will be
lost since it will not be transmitting to a port on which the service is listening. Since
datagrams do not guarantee packet delivery, the client sends the data once and is never
informed that anything is wrong.

Once a DatagramConnection is established, multiple Datagrams can be sent
over this single connection. However, a single datagram is good for one read and one
write, allowing an application to receive a message and send a response. A datagram
response is sent using the same Datagram instance used to receive data. This instance
contains the necessary host and port information required to send the response message.
396 CHAPTER 13 THE NETWORK CONNECTION

WH_Java2.book Page 397 Monday, March 4, 2002 9:59 AM
In this scenario, a new datagram is created for each incoming message. There is no
attempt to prevent a single Datagram instance from incorrectly being used multiple
times; however, unexpected results can occur since the buffer is not designed for reuse
beyond the receive-response sequence. Therefore, it is the responsibility of the applica-
tion to manage when a Datagram needs to be created and when a datagram can be reused.

In order for a receiving application to respond to a datagram, the same datagram
instance must be used for the outgoing message. Although, in theory, it would be pos-
sible to construct a new Datagram for the send operation, the Generic Connection
Framework Datagram interface does not support the ability to obtain the sender’s
port number. The port number for a DatagramConnection opened in client mode
is dynamically assigned. Thus, there is no way to properly construct a new Datagram
to reply to a client application even if we wanted to.

13.5.1 Datagram example

The following example is a simple application that uses datagrams as the means of
transmitting data between two systems.

In this example we will create the client (the datagram sender) first. To begin, a
DatagramConnection between the client to the listener must be established. This
is done using the Connector.open() method and the datagram scheme.

DatagramConnection connection = (DatagramConnection)
 Connector.open("datagram://127.0.0.1:5555", Connector.READ_WRITE);

A client connection must specify both the host address as well as the port. The con-
nection is opened in read-write mode, allowing the client and server to pass data back
and forth.

The client, in this example, is the first to send a message. To send a message over
a DatagramConnection, a datagram object is needed. Datagrams are created using
the DatagramConnection method newDatagram(). There are several signatures
of newDatagram() available. These are provided for convenience. At a minimum,
newDatagram() requires a buffer size to be specified. We will create a Datagram
with a buffer size of 100 bytes.

Datagram datagram = connection.newDatagram(100);

Once the datagram is created, the buffer must be populated with data. Datagrams
only deal with data in a byte form. Below we create a String and convert it to a byte
array. Once we have a byte array of data, this data can be placed into the datagram
using the setData() method.

byte[] data = "Message 1 from the Client".getBytes();

datagram.setData(data, 0, data.length);

In the setData(String) method, the first parameter is the byte array of data, the
second parameter is an offset, indicating where to begin sending data from when the
datagram is actually sent. The third parameter is the actual length of the data.
DATAGRAM-BASED CONNECTIONS 397

WH_Java2.book Page 398 Monday, March 4, 2002 9:59 AM
With a DatagramConnection and a Datagram containing our data, the only
thing left to do is send the data. The DatagramConnection class provides a
send(Datagram) method to trigger the data transmission. This method is called by
passing our Datagram instance as a parameter.

connection.send(datagram);

The DatagramConnection send(Datagram) method automatically flushes the
buffer and transmits the data. There are no additional steps we need to take. As long
as no exceptions were thrown, the data has been transmitted through the network.
What we cannot assume, however, is that the message was actually received. As men-
tioned, datagrams do not guarantee data transmissions. If there is no system listening
on the designated port or the system is unable to handle datagrams, the data is sent
into empty space and our client receives no indication of this situation.

However, there are ways to detect if a message was actually received. To do this,
our client must be capable of receiving a response from the system to which the mes-
sage is sent. To set up the client to receive a message, the DatagramConnection
method receive(Datagram) is used. We will also need a new Datagram instance
to hold the incoming data.

Create a new Datagram using the newDatagram() method.

Datagram datagram = connection.newDatagram(100);

Then pass this new datagram to the receive method. The receive method waits idly
for data to be sent.

connection.receive(datagram);

If there is no system listening on the host port, as currently is the case with our exam-
ple, the client will appear to hang as it waits for the response. To handle this situation
you could create the connection and specify that you wish to be notified if there is a
timeout on the connection.

DatagramConnection connection = (DatagramConnection)

 Connector.open("datagram://127.0.0.1:5555", Connector.READ_WRITE, true);

By opening the connection with the ability to be notified of timeouts, the client will
not wait indefinitely for the listener’s response. However, our application must be
ready to deal with the timeout situation as well by handling the exception thrown
when the connection times out.

Once the datagram is received, the data can be extracted from the Datagram
instance, which is accessed using the Datagram method getData() which returns
the data as a byte array. This byte array can then be converted to an appropriate data
type. The data type involved depends on what kind of data the transmitting system
actually sent. In this example, the data is assumed to be a String.

 String data = new String(datagram.getData());
398 CHAPTER 13 THE NETWORK CONNECTION

WH_Java2.book Page 399 Monday, March 4, 2002 9:59 AM
DATAGRAM-BASED CONNECTIONS 399

Enhancing the MsgClient

To incorporate the ability to send and receive datagrams from our MsgClient, the fol-
lowing changes will be needed, starting with the user interface, then adding the data-
gram option to the menu as the third option:

private static final String[] choices = {

 "1 HTTP Example",
 "2 Socket Message",
 "3 Datagram Message"
};

Next, we add the necessary lines of code to the handleOK method to trigger a data-
gram message to be sent.

private void handleOK(int idx){
 display.setCurrent(outputForm);
 switch (idx) {
 case 0:
 getHttpMessage();
 break;
 case 1:
 socketMessage();
 break;
 case 2:
 datagramMessage();
 break;
 }
}

To handle the functionality of sending and receiving datagrams, three more methods
are introduced to the MsgClient: datagramMessage(), receiveDatagram()
and sendDatagram(). The datagramMessage() method is called to handle
requests from the menu to send and receive a message. The latter two methods han-
dle the receiving and sending of specific functionality. The code for sending and
receiving datagrams is shown in listing 13.6.

private void datagramMessage() {
 String msg = null;
 try {
 DatagramConnection connection =
 (DatagramConnection)Connector.open(
 "datagram://localhost:5555", Connector.READ_WRITE);
 Datagram datagram = null;
 try {
 datagram = connection.newDatagram(100);
 sendDatagram(connection, datagram, "Message from the Client");
 datagram = connection.newDatagram(100);
 msg = receiveDatagram(connection, datagram);
 } finally {
 connection.close();
 }

Listing 13.6 Sending and receiving datagrams from the MsgClient

e

r

q

w

WH_Java2.book Page 400 Monday, March 4, 2002 9:59 AM
 } catch (IOException x) {
 x.printStackTrace();
 }
 StringItem item = new StringItem("Msg: ", msg);
 outputForm.append(item);
}

private void sendDatagram(DatagramConnection connection,
 Datagram datagram, String msg)throws IOException{
 byte[] data = msg.getBytes();
 datagram.setData(data, 0, data.length);
 connection.send(datagram);
}

private String receiveDatagram(DatagramConnection connection,
 Datagram datagram) throws IOException{
 connection.receive(datagram);
 System.out.println("Address="+datagram.getAddress());
 System.out.println("Length="+datagram.getLength());
 System.out.println("Offset="+datagram.getOffset());
 byte[] byteData = datagram.getData();
 byte b = 0;
 StringBuffer sb = new StringBuffer();
 for (int ccnt=0; ccnt < byteData.length; ccnt++){
 if (byteData[ccnt] > 0){
 sb.append((char)byteData[ccnt]);
 } else {
 break;
 }
 }
 String data = sb.toString();
 System.out.println("Data="+data);
 return data;
}

Create the Datagram connection

Create a new datagram and send a message

Create a new datagram and receive a message

Close the connection

Display the message received

Prepare a datagram and send a message

Get the message in a byte format

Load the message into the datagram

Send the datagram

Receive and display a datagram message

Receive the incoming datagram

Retrieve the contents of the datagram

t

y
u

i
o

1)

1@

1!

q

w

e

r

t

y

u

i

o

1)

1!

1@
400 CHAPTER 13 THE NETWORK CONNECTION

WH_Java2.book Page 401 Monday, March 4, 2002 9:59 AM
Datagram listener

Now that we have a client application sending datagrams to another system, we now
need to implement a DatagramListener class that can handle the message and
return a response from the MsgListener application we wrote earlier. This listener
behaves a lot like the socket listener from the previous example only it handles data-
grams and uses a different port. Listening for socket messages and datagram messages
on different ports allows the listener application to monitor for both socket and data-
gram client connections simultaneously.

The only difference between a datagram client and a datagram receiver (server) in
J2ME is how the connection is established. In the client example, we needed to specify
both the host address as well as the host port. When establishing a listening connec-
tion, only the port needs to be specified.

DatagramConnection connection = (DatagramConnection)
 Connector.open("datagram://:5555", Connector.READ_WRITE, true);

Once the connection is established, the server is ready to read information sent from
the client. Reading and writing data to a DatagramConnection on the server is
exactly the same as using datagrams on the client. First a datagram is created in which
to place the data, then the datagram’s receive() method is invoked.

Datagram datagram = connection.newDatagram(100);

connection.receive(datagram);

To send data back to the client a Datagram is created, populated with the data and
placed onto the connection using the send(Datagram) method.

Datagram datagram = connection.newDatagram(100);
byte[] data = "Message 1 from the Server".getBytes();
datagram.setData(data, 0, data.length);
connection.send(datagram);

Listing 13.7 shows the implementation of the DatagramListener class that han-
dles receiving and responding to datagram messages on behalf of the MsgListener
class we created earlier.

package com.ctimn;

import java.io.*;
import javax.microedition.io.*;
import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

public class DatagramListener extends Thread {

 private Form outputForm;
 private boolean shutdownFlag = false;

Listing 13.7 DatagramListener.java
DATAGRAM-BASED CONNECTIONS 401

n

WH_Java2.book Page 402 Monday, March 4, 2002 9:59 AM
 public DatagramListener(Form outputForm){
 this.outputForm = outputForm;
 }

 public void run(){
 Datagram datagram = null;
 String msg = null;
 StringItem item = new StringItem("Listening for Datagrams", "");
 outputForm.append(item);
 try {
 DatagramConnection connection = (DatagramConnection)
 Connector.open("datagram://:5555", Connector.READ_WRITE);
 try {
 while (true) {
 datagram = connection.newDatagram(100);
 try {
 msg = receiveDatagram(connection, datagram);
 } catch (InterruptedIOException x){
 if (shutdownFlag){
 return;
 }
 }
 item = new StringItem("Msg: ", msg);
 outputForm.append(item);
 sendDatagram(connection, datagram, "Message from the server");
 }
 } finally {
 connection.close();
 }
 } catch (IOException x) {
 System.out.println("Problems sending or receiving data.");
 x.printStackTrace();
 }
 }

 private String receiveDatagram(DatagramConnection connection,
 Datagram datagram) throws IOException{
 connection.receive(datagram);
 System.out.println("Address="+datagram.getAddress());
 System.out.println("Length="+datagram.getLength());
 System.out.println("Offset="+datagram.getOffset());
 byte[] byteData = datagram.getData();
 byte b = 0;
 StringBuffer sb = new StringBuffer();
 for (int ccnt=0; ccnt < byteData.length; ccnt++){
 if (byteData[ccnt] > 0){
 sb.append((char)byteData[ccnt]);
 } else {
 break;
 }
 }
 String data = sb.toString();
 System.out.println("Data="+data);
 return data;
 }

Create a
Datagram
connectio

q

Wait for a
 datagram

e

Run “forever”
w

Receive a
datagram

r

402 CHAPTER 13 THE NETWORK CONNECTION

WH_Java2.book Page 403 Monday, March 4, 2002 9:59 AM
 private void sendDatagram(DatagramConnection connection,
 Datagram datagram, String msg) throws IOException{
 byte[] data = msg.getBytes();
 datagram.setData(data, 0, data.length);
 connection.send(datagram);
 }

 public void shutdown(){
 shutdownFlag = true;
 }
}

In this example, the client sends a message to the DatagramListener and the
DatagramListener responds with a message of its own. When the client finishes
running, it closes the connections and the application exits. The DatagramLis-
tener, however, continues running and waits for another message.

Shutting down the listener thread

As with the SocketListener, DatagramListener is implemented on its own
thread and therefore must support the ability for an external object to shut it down.
In our example, MsgListener makes the call to shutdown() when the MsgLis-
tener application exits. Since the shutdown() method is invoked by a thread dif-
ferent from the one that our socket listening code is running, all we can really do is
set a flag so that the thread within the listen-respond loop can check the status of this
flag periodically during execution and take appropriate action.

The same problem that existed with SocketListener applies to the Data-
gramListener. At the point shutdown() is called the DatagramListener is
most likely to be waiting for an incoming message. As a result, the listening thread is
unavailable to check the status of the shutdown flag. The only events that allow the
listener to stop listening for incoming messages and inspect the shutdown status are
if a datagram connection is made or a timeout occurs. To take advantage of this sit-
uation, the listener requests to be notified of timeouts when the Datagram connec-
tion is opened. If a timeout occurs, an InterruptedIOException exception is
thrown. By catching this exception and checking the status of the shutdown flag the
DatagramListener can respond appropriately.

Enhancing the MessageListener

The next step is to enhance the MessageListener created during the socket exam-
ple to be able to listen for datagrams as well. The following lines of code are required
to create a DatagramListener instance when the datagram option is selected from
the menu. The following method was intentionally left blank on the previous exer-
cise. Now that we have a DatagramListener, we can fill in the details.

Send a
response

t

Set the
shutdown
condition

y

DATAGRAM-BASED CONNECTIONS 403

WH_Java2.book Page 404 Monday, March 4, 2002 9:59 AM
private datagramListener() {
 if (datagramListener == null) {
 datagramListener = new DatagramListener(outputForm);
 datagramListener.start();
 }
}

We will also need to add a member variable to hold onto the DatagramListener
reference. The following line of code needs to be added to the top of the Message-
Listener class.

private DatagramListener datagramListener;

Building the applications

 At this point we can compile, preverify, and run both the MsgClient and
MsgListener (which invokes DatagramListener) and send messages between
the two applications. The commands for building the examples are essentially the
same as for building the MsgClient.

Compile the DatagramListener and MsgListener classes.

>e:\jdk1.3\bin\javac -g:none -bootclasspath e:\midp-fcs\classes
 -classpath .\build -d .\build DatagramListener.java MsgListener.java

If the classes compiled successfully, preverify them using the following command.
This command preverifies all classes in the .\build directory (the directory where we
just compiled the code) and places the preverified version of the classes into an \out-
put directory off of the current directory.

>e:\midp-fcs\bin\preverify.exe -classpath

 e:\midp-fcs\classes;.;.\build .\build

Use the following to JAR the application into a file named io.jar.

jar cvf io.jar -C output .

Now we are ready to run both the client and the listener applications and send data-
grams back and forth. Remember to set the ENABLE_CLDC_PROTOCOLS environ-
ment variable before running the applications. Without this variable set, the emulator
will report that the datagram protocol is unavailable.

Since we are running two applications that need to communicate with each other,
you will need to run each application from a separate command window. Use the fol-
lowing commands to run the applications. The example to run the listener is shown first.

>set ENABLE_CLDC_PROTOCOLS=true

>e:\midp-fcs\bin\midp.exe -classpath e:\midp-fcs\classes;.\io.jar
 com.ctimn.MsgListener
404 CHAPTER 13 THE NETWORK CONNECTION

WH_Java2.book Page 405 Monday, March 4, 2002 9:59 AM
The menu displays the options for listening. Choosing the second option, “Datagram
Listener” invokes our code that binds to port 5555 and listens for an incoming data-
gram. Examples of running the datagram listening service from MsgListener are
shown in figures 13.10 and 13.11.
With the DatagramListener running from within the MsgListener applica-
tion we are ready to run the MsgClient application and send a datagram message.
Run the MsgClient from the other window using the following commands. When
the main menu appears, choose the second option, “Datagram Message”.

>set ENABLE_CLDC_PROTOCOLS=true

>e:\midp-fcs\bin\midp.exe -classpath e:\midp-fcs\classes;.\io.jar
 com.ctimn.MsgClient

Selecting the “Datagram Message” option sends a message to the listener. The listener
then displays the message and responds with a message for the client. The results of
sending and receiving messages using the MsgClient and MsgListener are shown
in figure 13.12.

Additional information is shown on the command line as messages are sent back
and forth. The output from the command windows is shown in figure 13.13.

Figure 13.10

MsgListener menu.

Figure 13.11

Listening for

a Datagram.

Figure 13.12 Running the MsgClient and MsgListener passing datagrams.

The MsgListener waits for activity on a specified port. When a datagram is sent from

the MsgClient, the MsgListener receives the datagram and responds appropriately.
DATAGRAM-BASED CONNECTIONS 405

WH_Java2.book Page 406 Monday, March 4, 2002 9:59 AM
13.6 SUMMARY

This chapter explored the Generic Connection Framework in detail. The Connector
class is the factory that allows vendor-specific implementations of each GCF connec-
tion to be instantiated at runtime. By using a factory to instantiate the actual classes,
the GCF can effectively abstract the device-dependent aspects of establishing network
connections. This architecture greatly enhances portability across applications that
make use of the network since the connection implementations are allowed to vary
but the interface remains consistent.

Examples were provided using common network connections such as HTTP,
sockets and datagrams. In the case of sockets and datagrams, multiple threads were
used to monitor a port for incoming messages in the background so that the use of
the device would not be affected.

Since J2ME provides support for HTTP connections, J2ME clients can connect to any
server environment that understands HTTP and is not restricted to interacting with Java
services. As a result, a J2ME client can be used with non-Java technologies such as ASP and CGI.

Figure 13.13 Command line results from running the MsgListener and MsgClient.
406 CHAPTER 13 THE NETWORK CONNECTION

14_J2ME runtime.fm Page 407 Monday, March 4, 2002 10:50 AM
C H A P T E R 1 4

J2ME runtime
environment

14.1 The Java runtime environment 408
14.2 The J2ME runtime environment 415
14.3 CLDC-compliant virtual machines (the KVM) 415
14.4 CDC-compliant virtual machines (the CVM) 425
14.5 Summary 427

If you have worked with Java for any amount of time you are probably familiar with
the Java Virtual Machine (JVM) and understand its responsibilities. However, if you
are new to Java, the concept of a virtual machine may also be new. A virtual machine
is essentially a computer implemented in software. The Java Virtual Machine sits

within a layer between the host operating system and the application. In Java, the pri-
mary runtime component is the Java Virtual Machine.

The JVM is the key to Java’s portability across environments since the JVM can
be ported to a number of different operating systems. The virtual machine handles the
operating-system-specific dependencies and differences rather than the application. As a
result, Java applications can be easily ported to any environment supporting a Java Vir-
tual Machine by simply copying the compiled application to the appropriate location.
407

14_J2ME runtime.fm Page 408 Monday, March 4, 2002 10:50 AM
14.1 THE JAVA RUNTIME ENVIRONMENT

In principle, the Java Virtual Machine knows little to nothing about Java the pro-
gramming language. What the JVM understands is something called Java byte codes.
Java byte codes are sets of instructions generated by the Java compiler (javac). Java
byte codes are generally stored in a file with the “.class” extension and are interpreted
at runtime by the virtual machine. The virtual machine then uses these instructions
to interact with the operating system to produce the desired effect for the application.
Figure 14.1 illustrates the basic steps involved in creating an application that the JVM
can interpret.

The Java Virtual Machine Specification defines the characteristics and responsibil-
ities to which a JVM implementation must adhere. In the case of J2ME, however,
some exceptions to the JVM Specification have been made in order to create a JVM
suitable for smaller devices, such as those supported by the CLDC. However, before we
get into the J2ME-specific runtime environments we first discuss the responsibilities of
a JVM and then show how these principles are applied within the J2ME environment.

14.1.1 Lifecycle of the Java Virtual Machine

The Java Virtual Machine runs as an application on top of the host operating system.
In this section we discuss the basic lifecycle of a JVM and the tasks it performs. The
basic activities during the lifecycle of the virtual machine are starting up, loading
classes, linking, creating new objects and shutting down.

Starting up

The JVM begins execution by loading a designated application class. This class must
define a public static void main(String[] args) method. Once the virtual
machine is running and this first class is loaded, the main method is invoked.

Figure 14.1

Process of creating a Java appli-

cation for use by a virtual ma-

chine. First the source code is

created and placed in a file with

a .java extension. Next the java

compiler is used to transform the

Java syntax into the executable

byte codes used by the virtual

machine at runtime. Byte codes

are stored in a file with a .class

extension. At runtime, the virtual

machine reads the contents of

the class file and translates the

byte code instructions appropri-

ately for the current platform.

Java File
(MyClass.java) Java language syntax from your application

The Java compiler translates the syntax of
the Java programming language into the
syntax of Java byte code instructions

The Java Virtual Machine is passed the main
application class name as a starting point and
begins executing the byte code instructions

Java byte code generated
by the Java compiler

Java Class File
(MyClass.class)

J2SE
Virtual Machine

Java Compiler
(Javac)
408 CHAPTER 14 J2ME RUNTIME ENVIRONMENT

14_J2ME runtime.fm Page 409 Monday, March 4, 2002 10:50 AM
NOTE Not all Java applications are started using a main method. In some cases,
such as with MIDlets and Applets, the application level class is instantiated
by the system through other means and an instance method is called, such
as startApp() or start() respectively. For the purposes of this chapter,
however, application startup will be discussed using the static main method.

Loading classes

Class loading is the process of finding the byte code form of a class or interface and
loading it into memory as a Java binary construct. Once a class or interface is discov-
ered, the virtual machine loads the class by performing the linking and initialization
processes. Figure 14.2 depicts the class loading process.

Figure 14.2 Class loading process used by the virtual machine at runtime. The first step is

to locate the byte code, which is typically in a .class file. The next step is to verify that the

byte code is safe to be loaded and executed from within the virtual machine. If the class is

determined to be safe, memory is allocated for the class and the byte code is loaded into the

virtual machine. Finally, additional initialization is performed before making the class accessible

within the virtual machine, such as checking symbolic references with other classes used by the

class to be loaded and initializing static blocks and variables.

Linking

Linking consists of three activities known as verification, preparation and resolution.
Verification is the process of ensuring that each class or interface loaded by the virtual
machine is a valid Java class or interface and that it will not harm the machine. The
steps taken by the verification process are to ensure that each byte code instruction
has a valid operation code, that each branch instruction branches to the start of
another instruction (as opposed to the middle of an instruction), that every method
signature is valid, and that every instruction adheres to the Java type definitions. If
the verifier detects anything invalid about the class or interface, the loading process is
aborted and an exception is thrown. In some cases classes are preloaded or cached. In
this scenario it is the responsibility of the virtual machine to throw such an exception
at a point appropriate for the executing application to handle the exception.

Preparation is the process of allocating the proper amount of memory for static
storage and data structures used internally by the JVM. It is at this point that static

Class is
verified

Symbolic
references to other

classes checked

Byte code is
loaded into the
virtual machine

Memory is
allocated for

the class

Static blocks
and member variables

initialized

Byte code
for the class

is located
THE JAVA RUNTIME ENVIRONMENT 409

14_J2ME runtime.fm Page 410 Monday, March 4, 2002 10:50 AM
variables are initialized to their standard default values. For example, an int is set to
0 and a boolean is set to false.

Resolution is the process of checking symbolic references to other classes and inter-
faces to ensure these references are correct. Depending on the VM implementation,
this may require the referenced classes and interfaces to be loaded as well. How and
when resolution occurs is entirely up to the implementer of the virtual machine. Alter-
natively, the virtual machine may choose to load these related classes only when
needed. Often during resolution the symbolic reference to a related class or interface
is replaced with a direct reference. This allows the referenced class to be processed by
the virtual machine more efficiently, especially when the reference is used repeatedly.

Initialization

Initialization is when the virtual machine initializes static blocks and member vari-
ables. The variables are initialized in the order they appear and before any constructor
or static method can be invoked. If a new instance of the class is being created the
class constructor is invoked. If the class being initialized is the main application class
(i.e., the first application class loaded by the runtime environment), the JVM invokes
the static main(String[] args) method.

Reloading classes

By default, most Java virtual machines do not support reloading classes, a process also
known as dynamic class loading. Virtual machines that support dynamic class loading
can reload classes without restarting the virtual machine. Without dynamic class
loading, a class is loaded once during the lifecycle of the virtual machine. If you com-
pile and deploy a new class, overwriting the old class, these changes are not reflected
until the JVM is restarted. If the JVM supports dynamic class loading, a class may be
reloaded into the JVM many times during the lifecycle of the virtual machine.

By implementing a custom class loader, the default class loading behavior can be
changed. For example, you may want to allow modifications to be deployed to a
machine without having to restart it. To make the virtual machine aware of the newly
deployed class files, these class files must be reloaded into the virtual machine.

By default, the primary class loader of a virtual machine does not reload classes.
However, some third-party vendors have implemented virtual machines that support
class reloading. Often this is called dynamic class loading. It is also possible to imple-
ment a custom class loader that provides this capability.

The core Java classes, java.* and javax.* packages, are always loaded by the
primary class loader. Furthermore, per the JVM specification, these core classes cannot
be reloaded during the lifecycle of a Java Virtual Machine. Altering or replacing the
core Java classes is viewed a security risk. Substituting any of the core Java classes could
compromise the security model, particularly since much of Java’s security is imple-
mented within these classes. For this reason, custom class loaders are restricted to
classes outside the java.* and javax.* packages.
410 CHAPTER 14 J2ME RUNTIME ENVIRONMENT

14_J2ME runtime.fm Page 411 Monday, March 4, 2002 10:50 AM
Shutdown

The virtual machine exits when one of the two criteria is met:

• All non-daemon threads terminate

• One of the executing threads invokes the exit() method of the Runtime or Sys-
tem classes. In this case, the security manager must grant exit privileges.

As part of the virtual machine shutdown process, finalization may be run on any
objects that have not already run their finalizers. Finalization is the process that allows
objects to clean up any resources they may be using just prior to being garbage collected.
By default, finalization does not run when the JVM is terminating; however, this can
be changed by the executing application by invoking the System.runFinalizers-
OnExit(boolean) method and passing the value true. The ability for an applica-
tion to use this method depends on the permissions granted by the security manager.

WARNING Finalization is unreliable in that it is tied to the garbage collection process.
There are no guarantees as to when the garbage collector will run or if a par-
ticular object will be collected. Even when garbage collection is explicitly
requested using System.gc(), the garbage collector does not run imme-
diately. The call to System.gc() simply requests garbage collection as
soon as possible. This may never occur if other threads take priority. As a
result, a resource such as a database connection or an I/O stream, will be
tied up as the object that used the resource awaits finalization.

14.1.2 Java Virtual Machine responsibilities

In addition to managing classes and other lifecycle-related tasks, the JVM performs
activities such as creating objects, garbage collection, security management and multi-
threading.

Creating objects

Objects are instances of a class that exist only at runtime. Classes are sometimes referred
to as a template for creating objects. This processes is illustrated by figure 14.3.

Figure 14.3 The process used by the virtual machine to create objects at runtime. For each

object, the class must first be loaded into the virtual machine and memory for the instance must

be allocated. Once memory is allocated the object is initialized and the constructor is invoked.

Object is
initialized

The class
is loaded

Memory
is allocated for

the object

Is the
class

loaded?

Byte code
for the first class

is located

Constructor
invoked

Yes

No
THE JAVA RUNTIME ENVIRONMENT 411

14_J2ME runtime.fm Page 412 Monday, March 4, 2002 10:50 AM
Objects are typically created using the new keyword or the static newInstance()
method on the Class class. When an object is created, the JVM allocates enough
memory for all the instance variables as well as all of the instance variables in all of the
superclasses from which the object inherits. Once memory is allocated, the instance
variables are initialized to their default values. If there is not enough memory avail-
able the object creation process aborts with an OutOfMemoryError.

The next step that the JVM performs on a newly created object is to run the con-
structor specified by the creation statement. Regardless of the constructor that is
invoked, a constructor for each superclass in the hierarchy must run. This can happen
explicitly by referencing another constructor from within a constructor using the key-
words this or super. However, if this or super is not specified, the default con-
structor is invoked implicitly by the JVM, thus guaranteeing that at least one con-
structor will execute within each superclass.

Methods can be invoked during object initialization, both during the initialization
of instance variables themselves and during the constructor execution. The JVM spec-
ifies no rules or limitations as to when a method can be invoked.

Garbage collection and memory management

One of the key features of the Java programming language is that the runtime envi-
ronment manages memory allocation and deallocation automatically. This greatly
eases the burden on developers from having to account for and track memory alloca-
tions in order to free memory once an object is no longer needed by the application.

In some languages, such as C, programmers are required to allocate the proper
amount of memory for an object and keep track of where this memory is so the mem-
ory block can be deallocated when the object is no longer needed. Failure to clean up
unused memory results in what are known as memory leaks. If an application has a
number of memory leaks, the application will slowly use up memory in the system.
In cases where an application runs for long periods of time, and memory leaks are
present, the system could begin to experience out-of-memory errors since there is no
way to reclaim this memory. The only way to correct this problem is to terminate the
application or, in some cases, reboot the system.

In Java, the JVM performs the memory accounting activities in a manner that is
invisible to developers. When an application requests that a Java object be created
(e.g., new MyObject()), the virtual machine allocates the proper amount of memory
required for the object as part of the construction process. Once the object is no longer
used by the application it becomes eligible for garbage collection. The JVM detects
classes that are no longer in use by periodically scanning object references in the heap.
A Java object becomes eligible for garbage collection when all other objects in the sys-
tem no longer hold a reference to it.

The garbage collector itself runs on a low priority background thread and becomes
active periodically throughout the lifecycle of the virtual machine. Garbage collection can
be explicitly requested by an application with a call to Runtime.gc() or System.gc().
412 CHAPTER 14 J2ME RUNTIME ENVIRONMENT

14_J2ME runtime.fm Page 413 Monday, March 4, 2002 10:50 AM
However, it is important to understand that making one of these calls does not imme-
diately start garbage collection. Instead, these calls request that garbage collection be
scheduled as soon as possible. When garbage collection actually runs is up to the vir-
tual machine. Thus, the time span between the request for garbage collection and
when the garbage collector actually runs can vary greatly depending on what the sys-
tem is doing.

The Java Virtual Machine Specification does not define the algorithm for garbage
collection or specify any criteria as to how garbage collection is accomplished. How
garbage collection is implemented is up to the developer implementing the JVM. In
some cases, the virtual machine does not implement garbage collection at all but rather
defines an interface to plug in a garbage collector. Different JVMs employ different
garbage collecting techniques depending on their needs. These techniques vary signif-
icantly from vendor to vendor. As a result, the precision of garbage collection varies,
as do other factors, such as the periods between garbage collection cycles and the dura-
tion of each garbage collection cycle.

Multithreading and synchronization

A key feature of the Java language is that multithreading is built into the language
itself making threads easier to deal with. Depending on the implementation of a par-
ticular JVM, and the operating system it runs on, threads are implemented in differ-
ent ways. In some cases, threading may be implemented entirely within the JVM
itself. These are referred to as “green” threads. In other cases, the virtual machine may
map threading capabilities to the underlying operating system to take advantage of
the native multithreading capabilities. By default, the standard virtual machine uses
green threads. However, native threading can be employed on specific operating sys-
tems, such as Solaris, by installing a native threads service pack.

WARNING Multithreading is one of the areas most vulnerable to application portabil-
ity. This is often due to the JVM making use of native threads on different
operating systems. This is especially true in the case of thread scheduling
and prioritization. For example, the Windows operating systems define
seven thread priorities, Solaris defines 232 and the JVM specifies nine. This
requires two of Java’s nine priorities to be mapped to the same value on
Windows while on Solaris each of Java’s nine priorities is unique. As a result,
the multithreading behavior of an application is subject to change if thread
scheduling is employed.

In the case where green threads are used it is important to understand that all multi-
threading capabilities are implemented within the virtual machine. This means that
even though your application is multithreaded, ultimately, the entire application is
running on a single native thread, which is the thread acquired by the JVM at startup.
Whether or not green threads are used is a virtual machine implementation decision.
The decision to use green threads may allow the virtual machine implementation to
THE JAVA RUNTIME ENVIRONMENT 413

14_J2ME runtime.fm Page 414 Monday, March 4, 2002 10:50 AM
be more portable, since green threads eliminate the need to map native thread sup-
port to each operating system. Also, green threads may be employed in cases where
multithreading is not supported by the native operating system.

In the cases where native threads can be used, a multiprocessing environment such
as Solaris could schedule threads across parallel processors for increased efficiency.

NOTE In general, it is considered good practice to make any class you develop
thread-safe. A well-designed object has the potential to be reused in situa-
tions not originally anticipated. Some of these situations may involve mul-
tithreading and if the object is not thread-safe it may not behave well in a
multithreaded situation.

When an application employs threading, your application needs to ensure that its
classes are thread-safe. This is done using the keyword synchronized. Synchroni-
zation can be used at the method level or on a section of code within a method. Gen-
erally, synchronization is employed to guarantee that only one thread at a time can
access and modify variables within a specific block of code. Use of the synchro-
nized keyword should be done judiciously. Each time a section of code is placed
within a synchronized block, only one thread at a time is allowed to enter this section
of code. All other threads are blocked until the synchronized code is released. Care-
lessly synchronizing your code can have a significant impact on the running applica-
tion. It may even negate the benefit of a multithreading environment or cause the
system to deadlock. As a rule of thumb, you should always know why you are specify-
ing a synchronized block of code and this block should be kept as small as possible.

NOTE If synchronized is used on a static method, the entire class is synchro-
nized, preventing its use by other threads during this timeframe. When in-
stance methods are synchronized, it is the object that blocks other threads
and the class is still accessible.

Finalization

Finalization allows objects the opportunity to release resources before being
destroyed. Resources such as device contexts, network connections and database con-
nections are examples of resources that often need to be relinquished explicitly by
Java objects since these resources are not automatically reclaimed as a result of the
object being removed from memory.

Finalization is invoked by the virtual machine on an object through a call to the
object’s finalize() method. This is known as automatic finalization to differenti-
ate explicit calls to the finalize() method made by the application. During auto-
matic finalization no assumptions can be made as to when this method will be
invoked, in what order, or by what thread. The virtual machine is only required to exe-
cute finalization prior to reusing the memory area allocated to the object.

When implementing a finalize() method, it is considered good practice to
always invoke finalization on the superclass with a call to super.finalize(). Unlike
with constructors, the finalization on superclasses is not automatically performed.
414 CHAPTER 14 J2ME RUNTIME ENVIRONMENT

14_J2ME runtime.fm Page 415 Monday, March 4, 2002 10:50 AM
Security

Networks, and more specifically the Internet, tend to be prime delivery mechanisms
for Java applications. When applications are used and delivered in a shared, network
environment, security becomes a concern.

Much of the Java runtime security model is implemented in class libraries that run
inside the JVM rather than in the JVM itself. However, the security model must be
initialized, or bootstrapped, by the JVM. This initialization prevents the java and
javax packages from being replaced at runtime or allowing the security model to be
altered by unauthorized means. As discussed previously, the JVM is responsible for
ensuring only valid class files are loaded into memory.

14.2 THE J2ME RUNTIME ENVIRONMENT

The J2ME runtime environments are specified by the J2ME configurations. Each
configuration determines the characteristics that a virtual machine must adhere to.
The specification allows, and encourages, third parties to develop JVMs that adhere
to the same characteristics but run on other platforms or provide an improved JVM
for an existing platform.

Sun provides virtual machine reference implementations for the existing configu-
rations. The CLDC reference implementation virtual machine is named the Kilobyte
Virtual Machine (KVM) and the CDC reference implementation virtual machine is
named the C-Virtual Machine or CVM.

NOTE For simplicity, the terms CLDC-Compliant Virtual Machine and KVM
are used interchangeably unless noted. Likewise, we do the same for the
terms CDC-Compliant Virtual Machine and CVM. It should be noted,
however, that the KVM and the CVM are not the virtual machines for the
J2ME but are simply reference implementations. While device manufac-
turers have the option to port these reference implementations to their de-
vices in order to support J2ME, they also have the option to create their
own virtual machines that adhere to the Java Virtual Machine Specification
and the configuration specifications.

14.3 CLDC-COMPLIANT VIRTUAL MACHINES (THE KVM)

The KVM is designed with smaller, more constrained devices in mind. The key design
features for the KVM implementation are as follows:

• small footprint. The core of the virtual machine requires between 40 kilobytes
and 80 kilobytes depending on compilation options and the target platform.

• capable of running applications in as little as 128 kilobytes of memory.

• capable of running on both 16 and 32-bit RISC/CISC processors.

• clean, well-commented source base that is highly portable.

• modular and customizable architecture.

• as complete and as fast as possible without compromising other design goals.
CLDC-COMPLIANT VIRTUAL MACHINES (THE KVM) 415

14_J2ME runtime.fm Page 416 Monday, March 4, 2002 10:50 AM
14.3.1 KVM lifecycle

The lifecycle of the KVM is similar to the standard virtual machines with a few excep-
tions. The class file verification process is the most noticeable difference. We discuss
this in a moment. Also, in some cases like with MIDP, an application is not started by
calling a static main(String[] args) method, but rather the instance method
startApp(). Under this model of application management, the device is responsible
for starting the virtual machine and then calling the application’s instance method.

Class loading

The default class loader performs all class loading in the CLDC environment. This is
the class loader provided by the virtual machine implementer. The default class loader
cannot be substituted or manipulated in any way in the CLDC environment. All
class loading takes place internally to the virtual machine and custom class loaders are
not permitted in the CLDC for security reasons. The CLDC lacks a full Java security
model as the classes java.security.* are not part of the CLDC libraries. Allow-
ing custom class loaders would pose a security risk to the CLDC environment.

Likewise, the class lookup order and classpath is internal to the virtual machine.
This means classpath cannot be defined or altered by developers in the CLDC envi-
ronment. This is done for two reasons: first of all, many devices in the CLDC space
do not have a file system that allows classpath to be meaningful. Second, allowing
developers to manipulate classpath in any way posses a security risk in that the core
java.* and javax.* classes could be substituted by altering the class lookup order.

As with the J2SE virtual machine, classes are typically loaded using the new key-
word or the newInstance() method on the Class class.

Class file verification

In some cases, CLDC virtual machines implement class file verification much differ-
ently than standard virtual machines. J2SE virtual machines require an excessive
amount of resources, in CLDC terms, in order to verify classes before they are loaded.
Specifically, the J2SE verifier has a minimum footprint of 50 KB and requires at least
30 to 100 KB of RAM at runtime. This feature alone could consume a majority of
the available resources on smaller devices. Therefore, an alternative method for per-
forming class file verification is provided for the CLDC environment. This alterna-
tive method breaks class file verification into two steps: preverification and in-device
verification. The virtual machine is responsible for performing in-device verification
that will be discussed in a moment.

14.3.2 Preverification

Preverification is typically performed off of the device, either on a developer’s work-
station, staging area, or the server used to deploy the applications. Preverification
is accomplished by running a preverify utility. This step handles most of the “heavy
lifting,” thus easing the burden of verification performed on the device at runtime.
416 CHAPTER 14 J2ME RUNTIME ENVIRONMENT

14_J2ME runtime.fm Page 417 Monday, March 4, 2002 10:50 AM
The preverify utility that ships with the CLDC reference implementation is a modi-
fied version of the J2SE class file verifier. The preverify utility modifies class files gen-
erated by the Java compiler and produces new class files.

Although the class file is modified, the modified classes are still compatible with
the J2SE virtual machines. The modifications are extensions of the standard class file
format defined by the Java Virtual Machine Specification. These modifications
increase the size of class files by about five percent.

During preverification, subroutines are inlined, which is the process of eliminating
subroutine calls by systematically embedding the code from one call into the other.
Inlining subroutines reorganizes the code to be more efficient and reduces the number
of subroutine calls or branches that need to take place at runtime. Attributes, called
“stackmaps,” are added to the class file during the preverification step. Stackmaps are
specific to the CLDC and serve as a way to catalog sets of instructions within the byte
code. Each entry in the stackmap table catalogs variables and operations that reside on
the interpreter’s stack at runtime, hence the name “stackmap.” During the creation of
stackmap data, the class’s sequence of instructions is inspected, making sure that each
branching instruction (if-then-else, switch, method call, etc.) jumps to the
start of another instruction (as opposed to the middle of an instruction) and that the
class does not attempt to access resources outside the virtual machine heap space.

The stackmaps are stored in the class file and are used during the in-device verifi-
cation step.

14.3.3 In-device verification

Due to the fact that class files arrive on the device in preverified form, the in-device
verification process is simpler than the J2SE verification process. In-device verifica-
tion needs only to perform a single-pass scan of the class, where the J2SE verifier
must iteratively scan class files to complete a full verification. This simplification
allows the verification process to use fewer resources and perform better.

During in-device verification, byte codes are scanned to make sure each instruction
is valid and has a stackmap entry. If any instruction does not have a stackmap entry,
the class is rejected and the verifier reports an error. Furthermore, each method must
end with a return instruction (unconditional jump) to ensure control does not fall
through any methods.

In addition to verifying the class byte codes, the in-device verifier must distinguish
between newly created objects and existing objects that have already had their con-
structors invoked. It becomes the verifier’s responsibility to ensure an object’s con-
structor is invoked only once.

The process for creating CLDC-based applications is shown in figure 14.4.

14.3.4 Security

In the interest of reducing the footprint of the CLDC, much of the standard security
model has been excluded from the CLDC. In fact, the CLDC contains no
java.security.* packages. The security APIs distributed with the J2SE provide
CLDC-COMPLIANT VIRTUAL MACHINES (THE KVM) 417

14_J2ME runtime.fm Page 418 Monday, March 4, 2002 10:50 AM
the ability to safely move beyond the sandbox security model. Due to the diminished
J2SE security features, the CLDC supports a sandbox security model. The sandbox secu-
rity model tends to be as restrictive as it is simplistic. In many cases, the security fea-
tures provided by the sandbox model come at the expense of reducing programming
features and options by either removing or restricting the use of certain features. Char-
acteristics of the sandbox security model under the CLDC are described as follows:

• All classes must be properly verified as valid Java classes before being loaded into
the virtual machine. Classes that do not satisfy the criteria of class file verifica-
tion must be rejected by the virtual machine.

• Any classes that depend on the security APIs or any other missing security fea-
tures are not included in the CLDC.

• Downloading, installing and managing of class libraries are handled by the
device natively. These processes, such as class loading, are not visible or modifi-
able by the Java developer.

• The set of native functions provided by the CLDC is closed. Developers can
only use APIs defined by the CLDC and the supported profiles. Native func-
tionality cannot be added or replaced beyond what the CLDC and profiles pro-
vide. More simply, the java.* and javax.* packages cannot be replaced or
modified in any way. Furthermore, the class lookup order is hidden from the
application and cannot be modified.

Figure 14.4

The process for creating a CLDC

application is similar to creating

applications for the J2SE environment

with the additional task of preverifying

the class. In the CLDC environment,

class file verification takes place in two

steps, preverification and in-device

verification. Preverification is performed

on a developer’s workstation or a server

used to distribute CLDC applications.

The result is a partially verified class file.

Once the class is installed onto the

device, additional class verification is

required as the class is loaded into the

CLDC-compliant virtual machine, but

the verification process is significantly

reduced increasing the efficiency in

which classes can be loaded while

running on the devices.

Java File
(MyClass.java)

Java language syntax
from your application

Run the J2SE compiler with the
-bootclasspath parameter to
target the CLDC environment.

The Java Virtual Machine is passed
the main application class name as a
starting point and begins executing
the byte code instructions.

Java byte code generated
by the Java compiler

Java Class File
(MyClass.class)

CLDC Java
Virtual Machine

Java Compiler
(Javac)

The CLDC preverify utility is run.
During preverification a modified
class file is created.

The preverified class file is
now ready to deploy to the
CLDC runtime environment.

Preverified Java
Class File

(MyClass.class)

Preverify
Utility
418 CHAPTER 14 J2ME RUNTIME ENVIRONMENT

14_J2ME runtime.fm Page 419 Monday, March 4, 2002 10:50 AM
The CLDC identifies two main categories of security, low-level device security and
application security.

Low-level device security is provided by class file verification. The class file verifier
is responsible for ensuring only valid classes are loaded and these classes do not attempt
to access memory outside of the Java heap space.

Application-level security is concerned with how applications are allowed to access
device services such as data storage, file systems, infrared ports, networks and periph-
erals. This level of security is necessary to ensure the safety of the device while the
application is running. The J2SE security model employs a security manager to mon-
itor access to these services. However, in the CLDC environment, the security model
is much diminished. The CLDC does not support the concept of a security manager.
As a result, the sandbox security model defines application-level security.

14.3.5 Unsupported Java features

Since the CLDC purposefully omits functionality commonly found in the standard
Java environments, all CLDC-compliant virtual machines must adhere to these restric-
tions as well. As a result, a number of features are not supported by the CLDC runtime
environment. Here are the features of the CLDC that pertain to the virtual machine:

Floating-point data types

Floating-point data types are not supported since many of the devices in the CLDC
space do not support this capability. Furthermore, the designers of the CLDC thought
floating-point support is too expensive in terms of memory and binary code space to
support this capability.

Finalization

Objects used within CLDC applications do not have the Object.finalize()
method available. The rules of finalization make garbage collection more complicated
since each object can be finalized exactly once, which requires some accounting on
the part of the garbage collector. Furthermore, in some circles of the Java community,
finalization has become something to avoid for several reasons. Finalization is not
guaranteed. You do not know when it will run, if it will run or in what order objects
will be finalized. Furthermore, by default the JVM does not run finalization during
the JVM shutdown process. This means that if your application is exiting, and causes
the JVM to exit as well, finalization is still not guaranteed to run.

Error handling reduced

The CLDC-compliant virtual machines generally support exception handling; how-
ever, the number of errors recognized by the CLDC virtual machines is limited. Java
defines an Error as a type of exception in which the system is not expected to recover.
How individual devices deal with these types of errors is highly device-specific.
CLDC-COMPLIANT VIRTUAL MACHINES (THE KVM) 419

14_J2ME runtime.fm Page 420 Monday, March 4, 2002 10:50 AM
In some cases, a device may attempt to recover from an error while another device
automatically performs a soft-reset. Furthermore, error handing, as defined by the
Java Virtual Machine Specification, is expensive to implement and support. For these
reasons only a small number of errors are recognized by CLDC virtual machines.

Java Native Interface (JNI)

Java Native Interface (JNI) is not supported in the same sense as the standard virtual
machines support JNI. In the CLDC environment, only the virtual machine imple-
ments native calls. These native calls are part of the API support provided directly by
the virtual machine. Custom JNI capabilities are not exposed to developers. There are
a couple of reasons for not supporting JNI. First of all, in order to ensure the safety of
the system, JNI relies on the Java security model. Most of the standard security model
APIs are not supported by the CLDC, thus posing a security risk. Furthermore, JNI
is considered to be resource-expensive.

User-defined class loaders

In the CLDC, the virtual machine defines one class loader that cannot be replaced,
overridden or reconfigured by developers. Having the class loading take place within
the virtual machine, and unreachable by developers, is necessary to ensure the safety
of the system in the absence of a fully Java security model. This ensures that the class
loading order cannot be tampered with and that the core java.* and javax.*
packages cannot be replaced at runtime.

Reflection

Reflection allows an application to inspect classes, objects, methods, fields and other
items residing in the virtual machines at runtime. Due to the absence of reflection,
the CLDC runtime does not support RMI, serialization, JVM debugging interface or
a JVM profiler interface.

NOTE Although reflection is not available, the ability to create classes using
Class.forName() is supported by the CLDC environment. This provides
the ability to create instances of classes that define a zero-args constructor.

Weak references

A weak reference is the ability of an application to hold a reference to an object while
still allowing the object to be a candidate for garbage collection. Weak references are
often useful in caching situations and scheduling cleanup operations. Supporting
weak references requires the garbage collector to be able to notify the application
when a weak referenced object becomes eligible for collection. As with finalization,
there is a fair amount of accounting that the virtual machine and garbage collector
need to perform in order to handle weak references.
420 CHAPTER 14 J2ME RUNTIME ENVIRONMENT

14_J2ME runtime.fm Page 421 Monday, March 4, 2002 10:50 AM
14.3.6 Multithreading

The KVM does not use multithreading capabilities of native environments. All
threading is implemented in the virtual machine using green threads. This makes
porting the KVM much easier since native threads do not need to be supported. Fur-
thermore, many of the devices in the KVM space are not multiprocessor devices.
Forcing a device to support native thread capabilities in these cases is not practical.

However, this does not mean all CLDC-compliant virtual machines use green
threads. The choice of thread implementation is entirely up to the implementer of the
virtual machine. As mentioned previously, multithreading can be a portability issue,
causing your application to behave differently on different multithreaded platforms.
This is especially true when thread scheduling is used. If your application uses multi-
threading you should test the robustness of the threading employed by the application
on all of your target devices.

The KVM employs a deterministic method of task management in its threading im-
plementation. Threads are switched after a certain number of byte codes are executed.

14.3.7 Garbage collection

As with threading, garbage collection in the KVM has been implemented entirely
within the virtual machine. However, the code for the garbage collector has been
carefully partitioned from the virtual machine code so that it can easily be replaced by
other garbage collection techniques.

Implementing garbage collection within the virtual machine makes porting the
KVM easier since there are no system dependencies to deal with. However, garbage
collection algorithms and implementations are decisions made by the virtual machine
implementer. Each implementation of CLDC-compliant virtual machines may
choose to handle garbage collection differently.

A CLDC-compliant virtual machine, as is the case with the KVM, should be opti-
mized for small heap sizes, usually on the order of tens of kilobytes.

As with any Java environment, the precision and efficiency of the garbage-collector
will vary depending on the implementation. In the case of small devices where mem-
ory is a premium, garbage collection is rather important. Unfortunately, the effective-
ness of the garbage collector cannot be guaranteed across different devices and differ-
ent virtual machines implementers. Furthermore, regardless of the efficiency of the
garbage collector, reclaiming memory comes with the price of consuming processing
cycles. Therefore, it is important to observe good programming practice and to incur
as little work as possible, or as is reasonable, for the garbage collector. Adhering to this
rule will better prepare your application for dealing with particularly bad garbage col-
lectors. Additionally, it will assist the overall efficiency of your application by not
incurring large amounts of garbage to begin with. This does not mean you should
avoid good programming practice in order to make your code more garbage-collector
friendly; however, you should be aware of how much garbage you are incurring.
CLDC-COMPLIANT VIRTUAL MACHINES (THE KVM) 421

14_J2ME runtime.fm Page 422 Monday, March 4, 2002 10:50 AM
For example, String manipulation tends to incur a fair amount of garbage. In these
cases, you should favor StringBuffer instead. Also, remember that String s =
“” is the same as String s = new String(); which is different from String s =
null, which does not create a String instance.

14.3.8 Internationalization

The CLDC provides support for Unicode characters. The InputStreamReader
and OutputStreamReader classes support translating between Unicode characters
and a sequence of bytes. Both classes support a constructor that allows the encoding
to be specified. The default encoding is described by the system property micro-
edition.encoding. The CLDC does not support any other internationalization
features. Most notably, the CLDC does not support localization. As a result, there is
no feature set that supports formatting for date, time, currency, etc. based on locale.
These features are considered outside the scope of the CLDC at this time.

14.3.9 Application management (JAM)

The Java Application Manager (JAM) manages the lifecycle of an application on a
device. The JAM is implemented natively per device, usually in C, and defines the
basic interactions between the device and a J2ME application with respect to down-
loading, installing, launching, inspecting, updating and uninstalling applications.
Since the devices within the J2ME space tend to be used for a special purpose and are
not general computing devices, many of the standard utilities and services found on
desktop computers, such as a file system, are not always available. The JAM provides
the ability to deal with the lack of these services on the devices.

In the CLDC runtime environment the JAM is optional. Often a JAM is utilized
in conjunction with some type of micro-browser on the device that allows the user to
access applications that can be downloaded and installed over the network.

The JAM has two basic techniques for dealing with applications. The first tech-
nique is to download the application and install it onto the device, allowing the user
to run the application many times before uninstalling it. Alternately, an application
may be downloaded to the device, loaded directly into memory and thrown away once
the user exits the application.

A JAM makes use of two basic components, a JAR file and a descriptor file. The
JAR file consists of a manifest and the class files and resources used by the application.
The descriptor file contains name=value pairs in a plain-text file. The name=value
pairs in table 14.1 are required for any JAM descriptor file:
Specific profiles may introduce more or different name=value pairs depending on
their needs. Additionally, developers can add additional name=value pairs to provide
customized properties to the applications on the device. These properties can be
accessed at runtime using System.getProperty(String key).
422 CHAPTER 14 J2ME RUNTIME ENVIRONMENT

14_J2ME runtime.fm Page 423 Monday, March 4, 2002 10:50 AM
The JAM descriptor is accessed over a network connection using a MIME type. This
MIME type can vary for different profile specifications. In general, a JAM MIME
type is specified as application/x-jam where the descriptor has the extension
“.jam”. Note, however, that the MIDP specifies that descriptor files have the exten-
sion “.jad” and the mime type is text/vnd.sun.j2me.app-descriptor. The
content of the descriptor also changes.

14.3.10 Java Code Compact (JCC)

The Java Code Compact is a utility that allows application classes to be statically
linked into the virtual machine. In doing this, application startup time can be signifi-
cantly reduced. The memory required by the application can also be reduced. This
technique is also known as ROMizing.

This utility is run against your applications classes to create a C file. This C pro-
gram file can then be compiled and linked with the virtual machine. The KVM sup-
ports this utility, which is located in the tools\jcc directory of the CLDC distribution.
If you are using another virtual machine, the implementers of the CLDC-compliant
virtual machine must have included support for the Java Code Compact as well.

Since the JCC generates C code, you must specify a target environment for the
completed product. Currently, the KVM only supports prelinking for the Unix,
Windows, and Palm OS.

Table 14.1 The JAM descriptor file provided by the CLDC specification

Application-Name A text description of the application. This text will be displayed on the
device screen and is limited to what the device can display.

Application-Version Specifies the version information of the application. This allows the JAM
to reconcile the version currently installed and the version on the server to
know if an application update is necessary. The format of this field follows
a major.minor[.micro] convention (e.g., 1.2.05) where the micro portion is
optional. If version information is omitted, the information is assumed to be 0.

KVM-Version This field is used to reconcile the application compatibility with the virtual
machine implementation on the device. Note that this may not be the
KVM, but rather an implementation subscribing to the same specifications.
This value can be a list of version strings delimited by commas. The items
in this value are compared to version information retrieved by the system
property microedition.configuration.
An exact match must be found between these version resource strings
before the application will be allowed to run.

Main-Class The name of the main class to run.

JAR-File-Size The size of the JAR file specified in bytes. This field must be an integer value.

JAR-File-URL Specifies the URL to the JAR file. This can be a URL relative to the
descriptor file.

Use-Once Indicates whether or not the application is retained after running the first
time. The format for this field is [yes|no].

Help-Page-URL A location of a help page associated with the application.
CLDC-COMPLIANT VIRTUAL MACHINES (THE KVM) 423

14_J2ME runtime.fm Page 424 Monday, March 4, 2002 10:50 AM
14.3.11 Deployed classes

A CLDC-compliant virtual machine must support compressed JAR files. Since net-
work bandwidth is an issue for CLDC devices, compressing classes into a JAR file
format helps reduce the size of an application by as much as 50 percent.

The CLDC specification makes a distinction between “publicly represented” and
“non-publicly represented” applications and resources. A publicly represented appli-
cation is stored on a publicly accessible server that can be accessed by open standards,
such as HTTP. When an application is represented publicly, it must be in the com-
pressed JAR format. Conversely, a non-publicly accessible application, that is, an
application that resides on a private network or closed system, is not required to be
represented in JAR format, compressed or otherwise.

The JAR files comprising an application can also contain resources used by the
application, such as graphics, icons, media files, reference data, and so forth. These
resources are accessed using the method call Class.getResourceAsStream
(String name) that returns an InputStream.

NOTE Java class files are designed to be independent units that contain all the nec-
essary elements to run without making assumptions about the availability
of class-specific resources. As a result, each class file contains its own symbol
table as well as method, field, and exception tables and some other infor-
mation. The encapsulation of these elements also makes Java class files easy
to extend at runtime. However, this flexibility comes with the cost of sup-
porting redundant information structures. If a set of class files were to be
delivered as a unit unto themselves, much of these redundancies could be
removed, making for a much smaller application size. This possibility is de-
sirable in the CLDC space due to bandwidth limitations. Additionally,
such a format could also allow applications to be executed “in-place” with-
out the need for a loading process, making for a similar application runtime
model that could improve performance. The creators of the CLDC recog-
nize this opportunity and this capability may find its way into the CLDC
on a future version.

14.3.12 Debug support

Sun Microsystems has developed a number of debugging architectures and interfaces
that are compatible with Java Virtual Machines. The Java Debug Wire Protocol
(JDWP) is an interface that allows any JVM to be plugged into development and
debugging environments. The Java Platform Debugging Architecture (JPDA) sup-
ports the infrastructure for building JVM-compatible debugging tools. Communica-
tion between the development environment and the virtual machine using the JDWP
is typically done using sockets.

Due to memory restrictions, the KVM does not fully support the Java Debug Wire
Protocol. Instead, a subset of the JDWP is supported by an interface named the KVM
Debug Wire Protocol (KDWP).
424 CHAPTER 14 J2ME RUNTIME ENVIRONMENT

14_J2ME runtime.fm Page 425 Monday, March 4, 2002 10:50 AM
By supporting the KDWP, a development environment equipped with a JPDA-
compliant debugger can interface to the KVM debug features through a proxy. This
proxy issues debug commands to the KVM and interfaces with the KVM to retrieve
debug data values. The proxy is invisible to the development environment. To the
development environment, it looks like the debugger is communicating with a fully
compliant implementation of the Java Debug Wire Protocol interface.

14.4 CDC-COMPLIANT VIRTUAL MACHINES (THE CVM)

The CVM is designed for devices that have more resources available and are not as
constrained as CLDC devices. The CDC runtime environment is a superset of the
CLDC runtime environment and provides full support for the Java Virtual Machine
Specification as well as the Java Language Specification. The C-Virtual Machine
(CVM) is the reference virtual machine implementation for the CDC environment.
This virtual machine is based on the J2SE and PersonalJava virtual machines; how-
ever, the CVM is more modular and easier to extend than the J2SE and PersonalJava
virtual machines. Since the CVM is a fully compliant virtual machine, its lifecycle is
identical to the J2SE virtual machine. Unlike the CLDC virtual machines, class file
verification is handled entirely on the device. As with the KVM, the CVM is a refer-
ence implementation virtual machine. Device manufacturers can choose to port the
CVM or build their own virtual machine from the ground up. The key design fea-
tures for the CVM are as follows:

• Designed for devices with at least 512 KB of ROM and 256 KB RAM. How-
ever, most devices in this space support at least 2 megabytes of total memory
available for the CVM and the CDC libraries.

• Full-featured virtual machine that completely supports the Java Virtual
Machine Specification and the Java Language Specification.

• Runs on 32-bit processors

• Supports network connectivity

• Based on the Personal Java Virtual Machine and the J2SE Virtual Machine;
however, the CVM is designed to be more modular and extendible.

• Targets communicator class devices such as pocket PCs, PDAs, smart phones,
small retail payment terminals and Internet appliances.
CDC-COMPLIANT VIRTUAL MACHINES (THE CVM) 425

14_J2ME runtime.fm Page 426 Monday, March 4, 2002 10:50 AM
14.4.1 Garbage collection and the CVM

The CVM does not implement garbage collection directly but rather provides an
interface so that garbage collection can be plugged into the virtual machine indepen-
dently without needing to modify the virtual machine source code. The CVM is care-
fully designed to separate the virtual machine’s operational code from the memory
management code.

The default garbage collector that ships with the CVM is designed to be as precise
as possible. The collector employs the concept of “exactness” in order to precisely under-
stand all pointer information during garbage collection passes. Exactness uses fewer
handles per object, allows for full compacting of the heap during each collection pass,
reduces the amount of “guess work” in collecting objects and allows for more garbage
collection algorithm options.

Exactness is implemented by requiring all threads to manage themselves between
two states, gc-safe and gc-unsafe. By default, threads operate in the gc-unsafe state a
majority of the time. While in this state, objects may operate on and within the heap
and perform gc-unsafe operations. However, each thread is required to periodically
place itself into a gc-safe state in order for the garbage collector to perform collection
operations. When a thread becomes gc-safe, it must make all of its pointers explicitly
known to the garbage collector.

The garbage collector can only execute if all threads are in a gc-safe state. This
requires the CVM to bring all threads in the system to a gc-safe state before allowing
the garbage collector to proceed. As each thread becomes gc-safe, the thread suspends
itself and makes all of its pointers available.

The interpreter contains what are called gc-safe points in order to allow garbage
collection to take place periodically. The gc-safe points are implemented periodically
within the interpreter instruction set. Specifically, the interpreter implements gc-safe
points when methods are invoked, on returns from method calls, memory allocation
points and class loading and constant resolution points. By implementing gc-safe points
within the interpreter, the system is guaranteed to become gc-safe within discrete peri-
ods of time.

14.4.2 Memory references in the CVM

The CVM uses a method of pointer indirection to perform pointer accounting tasks
and to ensure no pointers become invisible to the garbage collector. There are two
interfaces supported by the CVM. The direct memory interface provides direct access
to the heap. Primarily the virtual machine interpreter uses this interface. Accessing
pointers through the direct memory interface is always gc-unsafe. The second inter-
face is the indirect memory interface. This method of accessing the heap is always
gc-safe. Code running outside of the virtual machine interpreter should always use
the indirect memory interface. Class loading and the JNI are examples that would
use the indirect memory interface.
426 CHAPTER 14 J2ME RUNTIME ENVIRONMENT

14_J2ME runtime.fm Page 427 Monday, March 4, 2002 10:50 AM
14.5 SUMMARY

The two virtual machines defined within the J2ME architecture provide for the char-
acteristics defined in the configuration specifications. Each configuration has differ-
ent needs and requirements that are reflected in their virtual machines. One of the
primary concerns with battery-powered devices has to do with power consumption.
Both of the J2ME virtual machines take into account the fact that they may need to
run on a battery-powered device and must be conservative about how many CPU
cycles are consumed to handle its responsibilities. Memory is also a driving issue
behind the J2ME runtime environments. Small devices require small, efficient run-
time engines. The J2ME virtual machines are optimized to be effective in small heap
spaces. Finally, the portability factor of the reference implementations allows manu-
facturers and vendors to support J2ME quickly.
SUMMARY 427

WH_Java2.book Page 428 Monday, March 4, 2002 9:59 AM
C H A P T E R 1 5

Related technologies

15.1 J2ME implementations 429
15.2 The other Sun specifications 430
15.3 Non-J2ME alternatives 435
15.4 Related Java technologies 438

15.5 Non-Java alternatives 442
15.6 Data storage and synchronization 444
15.7 J2ME supplementary technology 448
15.8 Summary 449
J2ME technology is still in its infancy. Indeed, the hardware platforms and commu-
nication systems that support J2ME applications have just recently, within the last
five years, become commercially viable, widely accessible, and an important part of
the business world and our personal lives. We are all still learning what is possible and
how to apply the technological possibilities to problems and needs. Think about it.
How long have you owned your cellular telephone? Do you own a PDA and how
long have you had it? Moreover, there has been and will continue to be an enormous
amount of movement in the “hot” personal information and communications prod-
ucts that people have been attracted to and use. For example, sales of Palm OS sys-
tems accounted for over 85 percent of the handheld market as late as February 2001.1

But in June of 2001, Reuters reported that Palm was expected to lose that lead to
Compaq’s iPaq, at least in terms of revenue, some time during the summer of 2001.2

The race for producing good products that capture consumer attention and market
share is unlikely to abate in the near future.

Given the tumultuous nature of the consumer electronics and embedded device
industry, it should come as no surprise that many companies are also competing to

1 The Standard, “Palm Losing Grip on Market Share,” April 20, 2001.
2 Reuters, “Compaq iPaq will top Palm in market share, survey says,” June 17, 2001.
428

WH_Java2.book Page 429 Monday, March 4, 2002 9:59 AM
build better and more convenient services for these devices. Vendors and organizations
providing these solutions are scrambling to keep up with the demand. The need for
standards, such as J2ME, has never been more apparent. However, standards take time
to become established and time to gain acceptance. With the void of widely accepted
and practiced standards, consumers demand solutions. Solutions demand innovation
regardless of the state of the standards, and, as we have seen, J2ME is still evolving and
growing. Today, there are plenty of choices when contemplating the development of
an application on consumer electronic or embedded devices. Sometimes, J2ME is not
the right choice or even an available choice depending on the nature of the application.

In this chapter, we explore some of the competing, supporting, and ancillary tech-
nologies and products that are often talked about in J2ME circles. We discuss each
product in light of its relationship to J2ME.

It is impossible, in a single chapter, to cover all of the technologies and products
in the typical J2ME developer’s radar screen. First of all, it is impossible to know them
all, and second it is likely that, like the devices themselves, some of the hot develop-
ment technologies and products of today will be gone tomorrow and replaced with
products that were not known at the time this text was written. However, this chapter
provides an insight into available options and areas to explore in preparation for your
own development efforts.

15.1 J2ME IMPLEMENTATIONS

Sun has produced the reference implementation for the released J2ME specifications,
but they are not the only producers. In fact, the Sun reference implementation often
leaves developers wanting for a virtual machine with better performance and smaller
footprint. There are already several implementations of the various J2ME specifica-
tions and more surely to follow.

15.1.1 esmertec’s Jbed

In chapters 8 through 10, we took you through the world of developing applications
for Palm OS using Jbed Micro Edition CLDC, esmertec’s IDE and virtual machine
for developing applications in CLDC and KJava. esmertec claims that their virtual
machine is up to fifty times faster than other virtual machines.

esmertec also produces Jbed Profile for MID. This is an implementation of J2ME
CLDC and MIDP. esmertec is a member of the PDAP Expert Group. So it can be
expected that esmertec will have an implementation of the CLDC and PDAP when
the new PDAP specification is available. Again, more information about esmertec and
their Jbed products is available at: www.esmertec.com

By the way, we should mention that the Jbed product provides more tools and util-
ities than were shown in this text. For example, Jbed provides a means to run and
debug the application running on the emulator while still communicating with and
providing information to the Jbed IDE. This is an especially important and time-
saving feature while building J2ME applications.
J2ME IMPLEMENTATIONS 429

WH_Java2.book Page 430 Monday, March 4, 2002 9:59 AM
15.1.2 Motorola’s Embedded Reference Implementation (MERI)

Motorola serves and leads the Java Community Process Expert Group that developed
the MIDP specification. It should then come as no surprise that Motorola has devel-
oped an implementation of the CLDC and MIDP specification. Motorola claims
that their Embedded Reference Implementation (MERI) was the first Sun-certified
implementation. While already available on Motorola’s iDen Model i85 and Accompli
Model 6288, as well as the 008 cellular telephones today, MERI can be ported to
other equipment. Information on Motorola J2ME products and cell phones is avail-
able at:www.motorola.com/java

15.2 THE OTHER SUN SPECIFICATIONS

There was life on consumer electronics and embedded devices before J2ME, even at
Sun Microsystems. In the first chapter, you were told how Java started as a program-
ming language for consumer electronics. Alongside J2ME, there have been a couple
of other Java specifications and implementations prepared by Sun for putting Java on
consumer electronics and embedded devices.

15.2.1 PersonalJava

PersonalJava (not a typo, there is no space between Personal and Java), also called the
PersonalJava Application Environment (PJAE), is a Java application environment and
Java virtual machine that was developed before J2ME and was written for personal,
consumer and mobile devices, which is much the same space J2ME intends to provide
for today. In fact, marketing literature from Sun suggests that PersonalJava was devel-
oped for web phones, digital set-top boxes, personal digital assistants, and car naviga-
tional systems. Information on PersonalJava is available from Sun Microsystems at:
java.sun.com/products/personaljava

Initially released around January 1998, PersonalJava is based on JDK 1.1.8.
PersonalJava is guided by the PersonalJava API Specification, which is currently at ver-
sion 1.2a. According to Sun, it will be transitioned into the CDC and Personal Profile
in the near future.

While PersonalJava is essentially JDK 1.1.8, there have been a couple of modifi-
cations to the specification requiring that PJAE contain some of the SDK 1.2 APIs.
As of the 1.2 version of the PersonalJava specification, additional security has been
added to comply with Java 2 SDK, Standard Edition, version 1.2.2 security. PJAE also
now requires support for Java Native Interface 1.2.2. There are a few classes that are
specific to the PJAE API. For example, a set of PJAE-specific classes in com.sun.util
are provided for creating and managing timer events.

In addition to inclusion of certain SDK 1.2 APIs, there are several “optionally”
supported APIs. These are features that are not absolutely required, per the specifica-
tion, but allow the specification implementer to provide if desired. However, if the
implementer does choose to provide a given “optional” feature, then the implemen-
tation must support it completely per the standard edition JDK API.
430 CHAPTER 15 RELATED TECHNOLOGIES

WH_Java2.book Page 431 Monday, March 4, 2002 9:59 AM
As a subset of the older JDK, developers are usually most disappointed that Per-
sonalJava application graphical user interfaces are built using a slightly modified ver-
sion of the old Abstract Windowing Toolkit (AWT). Java developers familiar with the
latest version of Java, usually also lament that many of their favorite collection classes
(ArrayList, Collection, HashMap, HashSet, Iterator, List, ListIterator, Map, and Set)
are only unsupported optional classes.

While intended to have a far-reaching impact, the reference implementation of
PersonalJava is supported on only three processors today, namely, the MIPS (R4000
Compatible), StrongARM, and Hitachi’s SH3/SH4. However, with the popularity of
many Windows CE devices that use these processors (such as Compaq’s iPaq, which
uses the StrongARM processor), and with the continued delays in the release and
implementation of CDC and Personal and Foundational Profiles, PersonalJava has a
place in today’s small device Java applications. Given that Sun plans to migrate Per-
sonalJava to the CDC and Personal Profile, there is a sense among the development
community that PJAE is at least a platform that has a future, albeit a moving future,
in small device application development.

Several vendors offer PersonalJava integrated development environments to
include Borland’s JBuilder and Metrowerks’ CodeWarrior. Furthermore, and just as
importantly, there are several vendors offering implementations of the PJAE specifi-
cation. Some of the known commercially available PersonalJava implementations are
covered in alphabetical order as follows:

JV-Lite2 by ACCESS

JV-Lite2, available in three editions, implements PersonalJava, EmbeddedJava and
J2ME CLDC specification. JV-Lite runs off several real-time operating systems to
include those listed below:

• Linux

• VxWorks

• ITRON

Along with claims of having an extremely compact virtual machine, JV-Lite2 includes
Access’s own “Windows-based Abstract Virtual Environment (WAVE)” which is a
simple window manager allowing for easier porting to various platforms. Information
about JV-Lite2 can be obtained from: www.access.co.jp/english/products/jv.html

Jeode by Insignia

The Jeode platform complies with and is an implementation of both the
PersonalJava and EmbeddedJava specifications. Information on Jeode is available at:
www.insignia.com/java_enabled.htm.
THE OTHER SUN SPECIFICATIONS 431

WH_Java2.book Page 432 Monday, March 4, 2002 9:59 AM
Insignia claims that Jeode’s value comes in accelerated performance, which is due
in part to their patented compiling techniques, robust memory management due to
superior garbage collection, and the ability to configure and tune the platform for spe-
cific devices. Jeode runs on the following list of operating systems and processors:

Kada Mobile Platform by Kada Systems

Kada Systems has developed its line of products to operate under a fully upwardly
compatible set of specifications. Kada’s platform is a full JDK 1.1.8 implementation
and therefore compliant with the PersonalJava API. But the Kada API also includes
additional packages not included or optional in PersonalJava such as java.math,
and soon will offer RMI and the java.beans packages. Kada is expected to release
support for J2ME and MIDP in the near future.

Kada is currently available for Palm OS, Windows CE, and Windows platforms
and is being ported to EPOC and RIM systems in the near future. To learn more
about Kada, visit www.kadasystems.com.

PersonalJava for OS-9 by RadiSys/Microware

OS-9 is a real time operating system (RTOS) for embedded systems. In particular
OS-9 is available for a host of processors including x86, PowerPC, StrongARM,
ARM, SuperH, MIPS, and IXP1200. Therefore, as its name implies, PersonalJava for
OS-9 is a PersonalJava implementation for use on top of the OS-9 RTOS. Microware
has become a division of RadiSys Corporation. Contact RadiSys or Microware through
the following web site locations: www.radisys.com and www.microware.com/Prod-
ucts/Software/java.html.

CrEme by NSIcom

NSIcom calls CrEme an “augmented” Java virtual machine. CrEme is a PersonalJava
implementation designed specifically to run on the Microsoft Windows CE operat-
ing system. Information is available at: www.nsicom.com/products/creme.asp.

Table 15.1 Insignia’s Jeode supported operating systems and platforms.

Operating Systems Processors

Windows CE ARM

Windows NT MIPS

VxWorks x86

Linux Hitachi SuperH-3/4

ITRON Motorola PowerPC

Nucleus

BSDi Unix

PSOS
432 CHAPTER 15 RELATED TECHNOLOGIES

WH_Java2.book Page 433 Monday, March 4, 2002 9:59 AM
intent Java Technology Edition, by Tao Group

Tao Group’s intent Java virtual machine implements the PersonalJava specification.
intent JTE, according to Tao Group, is a fast and smaller footprint Java environment,
which comes from a patented translation mechanism used in place of a Just-in-Time
(JIT) compiler. More information can be obtained from their website at: tao-group.
com/2/tao/index.html.

intent is supported on the following processors and operating systems.

Personal Jworks by Wind River

Wind River is the creator of VxWorks, an embedded real-time operating system
(RTOS) used in a multitude of products such as networking equipment, medical
scanners and monitors, printers, fax machines, and so forth. Personal JWorks is a
PersonalJava implementation that works in the VxWorks RTOS. More information
about VxWorks and JWorks is available at: www.windriver.com/products

Kaffe

Kaffe is billed as the only open source and independent implementation of Personal-
Java. Along with support for various operating systems (see the list below), Kaffe is
particularly popular for use with PocketLinux. Both Kaffe and PocketLinux are devel-
oped by Transvirtual Technologies, Inc. Information and a copy of Kaffe is available
at: www.kaffe.org

Operating systems supported by Kaffe include the following:

• Windows NT/CE/…

• Linux

• Solaris

• FreeBSD

• DOS

Table 15.2 Operating systems and platforms that support intent JTE by Tao Group

Operating Systems Processors

Windows CE/PocketPC ARM

Windows NT, 95, 98, 2000 StrongARM

Epoc MIPS

Linux x86

Embedded Linux ColdFire

VxWorks Motorola M-core/Power PC

Elate Hitachi SuperH-3/4

ST40

NEC V850
THE OTHER SUN SPECIFICATIONS 433

WH_Java2.book Page 434 Monday, March 4, 2002 9:59 AM
15.2.2 EmbeddedJava

Software destined for embedded devices such as instrumentation, factory automa-
tion equipment, facsimile machines, network routers and switches, plus low-end
mobile phones, usually operates under very strict resource constraints and is created
to fulfill very specific tasks. In many cases, the software has a limited, if any, user
interface. Living inside a device, embedded software is often referred to as black-box
software, since its exposure to the outside world, after being created, is severely lim-
ited if exposed at all. Whereas third-party (not the device manufacturer or end user)
developers often create J2ME applications, EmbeddedJava applications are usually
going to be created and deployed by the original equipment manufacturers (OEM)
of the device.

The memory footprint, power consumption, and security requirements are just
some of the limiting factors associated with embedded applications. EmbeddedJava is
the Java environment established to handle the software needed for the insides of
devices. EmbeddedJava is also called the Embedded Java Application Environment or
EJAE and is based on the even older JDK 1.1.7 API minus applets (all EmbeddedJava
programs must run as applications).

Like PersonalJava, EmbeddedJava is guided by a specification; the latest released
version is EmbeddedJava 1.1. Unlike PersonalJava, however, EmbeddedJava will not
be rolled into J2ME, but it is likely that it will be further integrated with other Java
technologies like Jini, as discussed in section 15.4.3.

Because of the constraints on embedded applications, the EJAE allows for the APIs
to be completely configured for the requirements of the application. Therefore, while
EmbeddedJava is based on the JDK 1.1.7, the Java packages, classes, methods, and
fields are completely configurable, meaning that any unnecessary items can be
removed for a particular device, its real-time operating system and/or applications. To
assist in streamlining the application for a device, EJAE provides three tools that an
application is fed through before placing the application on the device. A JavaFilter
builds the list of fields and methods used by the Java platform necessary to run a Java
application. Using the list generated by the JavaFilter, the JavaCodeCompact tool
reduces the application down to its required essentials. Finally, the JavaDataCompact
tool links in additional resource and data files such as HTML, images, sound, and so
forth. The result of this process is a compact executable image that is loaded on a
device’s ROM or RAM.

Along with some of the previously mentioned vendors such as Insignia and
ACCESS that support both PersonalJava and EmbeddedJava, there are several other
vendors that provide EmbeddedJava implementations or tools for various real time
operating systems. Consult Sun’s EmbeddedJava web site (java.sun.com/products/
embeddedjava/) for more information on EmbeddedJava and those organizations
working with EmbeddedJava systems.
434 CHAPTER 15 RELATED TECHNOLOGIES

WH_Java2.book Page 435 Monday, March 4, 2002 9:59 AM
15.3 NON-J2ME ALTERNATIVES

Other vendors and organizations have been wrestling with Java on small devices out-
side of the J2ME specification. Some started before J2ME began. While J2ME hopes
to someday provide a ubiquitous specification for Java developers looking to provide
Java applications on all consumer electronics and embedded devices, this is not the
case today. There are many competing products and environments. Therefore, some
of the non-J2ME Java platforms may be the way to go if you are looking to develop
an application today.

15.3.1 ChaiVM by Hewlett-Packard

HP’s ChaiVM is an implementation of the JDK 1.1.8 API (with some class libraries
such as java.security and the java.util.jar packages supported at the JDK 2.0
level) designed to run on resource-constrained devices such as HP’s own Jornada. HP
claims that one of the biggest values offered by ChaiVM is its ChaiFreezeDry tech-
nology that loads the Java class libraries at runtime or dynamically during runtime
using up to fifty percent less RAM space than other virtual machines.

ChaiVM is available on a relatively limited number of platforms (see the following
list), but applications developed with the ChaiVM are also upwardly compatible with
PersonalJava. The source for information about ChaiVM is: www.hp.com/go/embedded

ChaiVM supports certain operating system and platform combinations. These
include:

• Windows NT/x86

• Red Hat Linux/x86

• Window CE or Pocket PC/ Hitachi SuperH-3

15.3.2 IBM’s VisualAge Micro Edition

In all fairness, IBM’s VisualAge Micro Edition (VAME) now deserves a place under
both the non-reference J2ME implementations and non-J2ME headings in this chap-
ter. However, when initially introduced, VAME was not compliant with the J2ME
specifications. While VAME contains an implementation of the CLDC and MIDP
class libraries and can be used to create CLDC and MIDP-compliant applications
today, it can still be used to create Java applications for a host of hardware and operat-
ing system platforms that are not yet supported by J2ME.

Underlying IBM’s implementation of Java for small devices is the J9 virtual
machine. The J9 virtual machine was based on the JDK 1.2.2 specification. It supports
JNI (see section 15.4.2) and can be configured with application and class files in an
executable file format for storing and execution in device ROM. J9 is available for the
platforms and operating systems listed in table 15.6.

Based on IBM’s line of VisualAge programming tools, VAME is also an IDE pro-
viding a code repository and version control, code assistance, and some testing capa-
bilities. With VAME and J9, IBM allows for two application development approaches.
NON-J2ME ALTERNATIVES 435

WH_Java2.book Page 436 Monday, March 4, 2002 9:59 AM
If a standard exists and the API is provided, such as with CLDC and MIDP, one can
develop an application under this standard and also take advantage of IBM’s virtual
machine which is faster and smaller than the reference implementation. On the other
hand, where the standards and specification are not yet available, IBM may offer the
developer a means to write a Java application for the desired target devices. For example,
IBM provides a means to write a Java application capable of running on a Palm OS
device using base classes and calls to the Palm OS directly.

Notice, in the following HelloWorld example for a Palm OS device using VAME,
the application’s use of the operating system calls (identified by OS in front of the
method calls). This example is shown running in figure 15.1.

Table 15.3 Operating systems and platforms supported by IBM’s J9.

Operating Systems Processors

AIX x86

Linux MIPS

ITRON PowerPC

OSE Hitachi SuperH-3/4

Palm OS Sparc

PocketPC ARM/StrongARM

QNX/Neutrino/RTP Motorola 68K

Solaris

Windows

Windows CE

Figure 15.1

The VAME HelloWorld application is

depicted here running on IBM’s J9 virtual

machine in a Palm OS device. VAME

allows developers to make native OS

calls at the expense of portability.
436 CHAPTER 15 RELATED TECHNOLOGIES

WH_Java2.book Page 437 Monday, March 4, 2002 9:59 AM
import com.ibm.oti.palmos.*;

public class HelloWorld implements OSConsts {

public static void main(String[] args) throws InterruptedException {

CharPtr title = new CharPtr("HelloW orld Demo");

FormType mainForm = OS.FrmNewForm(0,title,0,0,160,160,0,0,0,0);
title.dispose();
PtrPtr formPP = PtrPtr.fromValue(mainForm.getCPointer());

CharPtr text3 = new CharPtr("Howdie!");
OS.FrmNewLabel(formPP, 0, text3, 10, 40, 1);
text3.dispose();

CharPtr buttonText = new CharPtr("Exit");
ControlType buttonControl = OS.CtlNewControl(formPP, 0, buttonCtl,

 buttonText, 125, 100, 30, 15, 1, 0, ctrue);
buttonText.dispose();

mainForm.setCPointer(formPP.getPointerAt(0));
OS.FrmDrawForm(mainForm);
OS.FrmSetActiveForm(mainForm);

EventType event = new EventType();
while (true) {

Thread.yield();
OS.EvtGetEvent(event, -1);
int eType = event.getEType();
if (OS.SysHandleEvent(event) == ctrue)

continue;
OS.CtlHandleEvent(buttonControl, event);
if (eType == appStopEvent || eType == ctlSelectEvent){

break;
}

}
OS.FrmEraseForm(mainForm);
OS.FrmDeleteForm(mainForm);
OS.FrmCloseAllForms();
event.dispose();
formPP.dispose();

}
}

With this power comes the responsibility to know how to use it. You must take care
and consideration when determining whether to use native device features because it
is likely that these features will not port or port easily to the next device. However,
where the alternative is to write in a language other than Java, IBM’s VAME and J9
may be a nice alternative. More information about VAME, J9 and IBM’s efforts in
products for small devices is available at www.oti.com.

q

q

q

q

q

q

q

The OS calls are calls to
the underlying Palm OS
which VAME supports

q

NON-J2ME ALTERNATIVES 437

WH_Java2.book Page 438 Monday, March 4, 2002 9:59 AM
15.3.3 Waba by Wabasoft

Waba is not Java according to both its makers and Sun Microsystems. However, its
syntax and behavior is a subset of Java and so therefore can be learned easily by Java
developers. In fact, to develop Waba programs you can use your favorite Java develop-
ment environment and put the WabaSDK classes that are used to develop and debug
Waba applications in the classpath of the tool.

Waba is free under the GNU license agreement and has its own virtual machine,
the WabaVM, which runs on Palm OS and Windows CE devices. However, as the
WabaVM source code is available, others have ported the WabaVM to a number of
other platforms. This source code can also be used to build in native functions.

A simple HelloWorld program in Waba is listed as follows:

import waba.ui.*;

import waba.fx.*;

public class HelloWorld extends MainWindow {
 public void onPaint(Graphics g) {
 g.setColor(0,0,0);
 g.drawText("Hello World", 10,10);
 }
}

While not strictly Java, for those looking to write an application that is portable
between the two most popular operating systems of PDAs today, namely Palm OS
and Windows CE, Waba may be an alternative worth looking into. More informa-
tion is available at www.wabasoft.com.

15.4 RELATED JAVA TECHNOLOGIES

While J2ME is the set of specifications used to guide application development on
consumer and embedded application development, there are other Java technologies
that help support this type software development. These are considered “non-J2ME”
technologies in that these technologies are guided by their own specifications and not
J2ME configurations and profiles. However, it is likely that, in developing J2ME
applications, an application will utilize one of these technologies, or, as a developer,
you are likely to at least come in contact with these technologies in designing and devel-
oping your applications.

15.4.1 Java Card

Credit card-sized plastic cards are now being outfitted with a microprocessor or a mem-
ory chip. There are several types of smart card devices. Smart cards with an integrated
circuit microprocessor can actually process data stored on the card. Other integrated
circuit cards require the assistance of a reader for processing, but contain a fixed set of
processing instructions for manipulating data stored on the card. Smart cards are
finding their way into many applications, and you may actually own some smart
cards without knowing it. Several credit card companies have started using smart cards
438 CHAPTER 15 RELATED TECHNOLOGIES

WH_Java2.book Page 439 Monday, March 4, 2002 9:59 AM
in place of standard magnetic strip credit cards. Government agencies are using smart
cards in place of standard identification cards such as driver’s licenses, and mass tran-
sit systems are replacing coin or token-operated fare systems with smart card applica-
tions. Smart cards hold all the necessary functions and data on the card. Therefore,
unlike magnetic strip styled credit cards, these cards do not require access to remote
systems or data during the time of a transaction. They can also, typically, store more
information than the standard magnetic strip card.

Java Card defines the use of Java in smart card devices and applications. In some
Java technology circles, Java Card is actually considered part of J2ME. In fact, there
have been documents on Sun’s own web site that have lumped Java Card with J2ME.
However, Java Card is guided by its own specification and the current Java Card spec-
ification is version 2.1.1.

The Java Card specification defines a special kind of applet, a class that extends
javacard.framework.Applet, which is part of a Java Card framework. When a
Java Card, containing one or more applets, is inserted or somehow presented to a card
reader, called a card acceptance device (CAD), the Java Card virtual machine is run-
ning and the reader identifies an applet it wishes to communicate with. The CAD then
sends the applet a series of commands to execute. Communication between the applet
and the reader are transmitted in the form of application protocol data units (APDU).
An applet replies to each APDU by giving the CAD the result of the operation and
optionally data as a result of the operation. The Java Card specification and more
information about this technology can be found at java.sun.com/products/javacard.

15.4.2 Java Native Interface

The world and its software does not run entirely on Java. In a report by ZDNet,3 the
number of Java programmers is expected to overtake the number of C/C++ program-
mers sometime in 2002. Java’s popularity not withstanding, there are still a lot of soft-
ware applications written in other languages. Furthermore, there are times when an
application should be written in some other language. For example, the speed of the
application may dictate that the application or a part of it is written in the device’s
native assembly language.

The Java Native Interface (JNI) allows Java applications to access other code
through a standardized programming interface. There are several reasons why this may
be necessary.

• The Java class library does not provide platform-dependent features that are
required in the Java application.

• Access to an application written in another language is desired from inside a
Java application.

• A critical feature needs to be implemented in a low-level language such as the
system’s assembly language.

3 ZDNet, eWeek, “Study: Java to overtake C/C++ in 2002,” August 16, 2001.
RELATED JAVA TECHNOLOGIES 439

WH_Java2.book Page 440 Monday, March 4, 2002 9:59 AM
JNI is an interface, which is to say that JNI is actually provided through the Java lan-
guage constructs. A Java developer wanting to access a non-Java method, for example,
would create a wrapper class containing the desired external native method. The class
might look something like the following:

public class OutsideWorld {

{
static

{
//load the appropriate native library
System.loadLibrary(“OutsideWorld”);
}

public static native int someMethod(int anArg);
}

In this simple example, the native method called someMethod may be a C++
method located in the OutsideWorld Dynamically Linked Library (DLL). Native
methods are brought into the Java environment with a System.loadLibrary
method call and then used inside of the Java application as if just another Java
method. Of course, applications that use JNI must be concerned with portability.
The native method, whether it be a C++ method, assembly language application, or
operating system feature, may not be available on every platform to which the Java
application can be ported.

JNI is part of the Java 2 SDK, but it is also guided by its own specification. JNI 1.1
is the current JNI specification. As one might imagine, JNI is of great interest to the
J2ME community. The reason is that for developers of applications to a very wide
spectrum of devices, JNI can sometimes be the only way to take advantage of the plat-
form-specific features and software.

Unfortunately, J2ME does not always support JNI. The CDC does support JNI,
but the CLDC does not. JNI was thought to be too big to add to the footprint-
constrained CLDC. There were also concerns about its effect on security. However,
it is believed that Sun and others are investigating a lightweight JNI implementation
for smaller devices. As an alternative to JNI today, native code for a particular device
can be added into the CLDC’s virtual machine (usually the KVM), that is, native code
that is going to be called from the virtual machine must be linked directly into the vir-
tual machine at compile time. This is not an easy or straightforward task, and even Sun
recommends avoiding this approach in their J2ME white papers.4

You will find more information about JNI under the documents section of the cur-
rent version of the SDK on Sun’s web site. For example, JNI under version 1.3 of the
SDK would be at:java.sun.com/j2se/1.3/docs/guide/jni.

4 “Java 2 Platform Micro Edition (J2ME) Technology for Creating Mobile Devices,” Sun Microsystems,
Whitepaper, May 19, 2000.
440 CHAPTER 15 RELATED TECHNOLOGIES

WH_Java2.book Page 441 Monday, March 4, 2002 9:59 AM
15.4.3 Jini

How often have you bought new software or a new device such as a printer or scanner
for your home or office computer or network, rushed home to use it, only to spend
hours trying to get it running? Computer systems and networks are complicated
pieces of equipment. Even as so-called industry experts, it is impossible to understand
all the various operating systems, communication protocols, and layers of our com-
puter systems and ancillary hardware.

Jini technology (usually pronounced like Jeannie in “I Dream of Jeannie”), a dis-
tributed computing technology developed by Sun Microsystems, is an architecture for
having a hardware, software, or other system resource identify itself and its services on
a network or computer system in a commonly understood language. The means used
for publishing services is actually a Java object that implements a service API. Clients
find needed services by looking for the appropriate published service object. The ser-
vice object can instruct the client on how to communicate with it. All clients then
communicate with services via a “service protocol.” A service implementer, whether
it is the printer manufacturer, or a developer of a software system such as a general led-
ger application, must then build in the mechanism to translate the service API requests
into the required protocols and APIs of the actual service.

Jini is referred to as the “instant-on” connection technology. The idea is that a
device or resource should be able to be quickly introduced and made immediately
available to the community, usually a network of systems, for use. The idea is that this
should also happen without the need for the community to know the service’s loca-
tion, and the community should be able to cope with changes such as removal of the
service over time. How many times have you had to take a printer offline for general
maintenance, only to have to spend more time hooking it back into the network when
the maintenance was complete? In Sun’s own terminology, Jini “federates” computers,
devices, and other resources into a virtual single system from a client’s perspective.

So how does J2ME relate to Jini? Jini could run on top of J2ME allowing small
mobile and wireless devices to become users or providers of service on the network.
J2ME brings Java to small consumer electronics and embedded devices. Jini uses Java
objects as its means to publish and communicate with services. At its core, Jini utilizes
RMI as its communications protocol, and with the introduction of the RMI Profile,
particularly for the CDC, Jini could be used directly in conjunction with J2ME.

On a more fundamental plane, Jini technology is based on a concept known as the
surrogate architecture. The surrogate architecture is the basic architecture for a device
or resource to identify itself to or interact with other devices on a network. While RMI
and all of Jini may not be available on all platforms or for all profiles and configura-
tions in the near future, the surrogate architecture does provide the blueprints for
designing the same or similar services for these devices and resources.

More information on Jini and the surrogate architecture is available at the follow-
ing web sites: jini.org and www.sun.com/jini.
RELATED JAVA TECHNOLOGIES 441

WH_Java2.book Page 442 Monday, March 4, 2002 9:59 AM
15.4.4 JavaPhone and Java TV APIs

Both the JavaPhone and Java TV APIs are vertical extensions to PersonalJava and
EmbeddedJava. As PersonalJava is expected to migrate toward the Personal Profile, it is
anticipated that these two APIs will one day be vertical extensions of the J2ME con-
figurations and profile specifications.

The JavaPhone API has been developed to work with two new types of client tele-
phony devices: namely the wireless smart phones and the Internet screen phones.
Wireless smart phones are intended to be the personal planner and communication
device of the future. Smart phones will bring voice communications, e-mail, fax capa-
bility, two-way radio communications, paging, Internet access, PDA styled schedul-
ing, and planning and many other functions that cell phones, PDAs, pagers and
computers share today together into one device. Internet screen phones are essentially
two-way video screens and optional keyboards hooked up to the Internet to allow for
more personal and direct personal or business communications on line. The Java-
Phone API brings Java to these devices.

Digital television may be the next big thing in home entertainment. In particular,
this technology brings interactive content to our televisions. The Java TV API pro-
vides a means to write Java programs to control the televisions and set-top boxes pro-
viding this new digital entertainment. The Java API could allow digital television to
provide viewers with features including electronic programming guides (EPG), the
ability to select and view videos on demand, network games, the ability to choose from
which camera to watch a multi-camera-angle ball game, and much more.

Java, through the JavaPhone and Java TV API is attractive to the manufacturers
of telephone and digital home entertainment equipment because of its strength on
most hardware systems. Namely, Java provides platform independence, security, and
dynamic upgrade capabilities. More information on the JavaPhone and Java TV APIs
is available through Sun at: java.sun.com/products/javaphone and java.sun.com/prod-
ucts/javatv.

15.5 NON-JAVA ALTERNATIVES

If portability is not an issue, then developing applications on small devices using Java
may not necessarily be the way to go. Certainly, Java has advantages that go beyond
portability. Java is a good object-oriented language, offers security features that other
languages do not have and is widely accepted, which means it is usually easier to find
a developer to help build or maintain a Java application. But there are downsides as
well. Because Java requires a virtual machine, Java developers are sometimes waiting
for the virtual machine and API to be developed for the target platform. Throughout
this book, we have noted gaps in J2ME coverage. Because Java is run as a set of byte
codes that must be interpreted by a virtual machine at runtime, performance is almost
always a consideration. The virtual machine does not help when worrying about the
size of the application as well. While some vendors strip away the unnecessary classes,
442 CHAPTER 15 RELATED TECHNOLOGIES

WH_Java2.book Page 443 Monday, March 4, 2002 9:59 AM
fields and methods in a Java application destined for a small device, not all do and
this means the runtime environment is carrying around a lot of weight waiting for
instructions that will never come. So let’s take a brief look at some of the more popu-
lar alternatives to Java application development for consumer electronics and embed-
ded devices.

15.5.1 WAP/WML

When no processing or data storage are required on the device, you may want to con-
sider using the Wireless Application Protocol and Wireless Markup Language to
build your application. WAP is a set of specifications for developing web-like applica-
tions that run over wireless networks. WML is one part of WAP that specifies how
document pages are annotated to convey information around the wireless network.
WML is analogous to HTML in the Internet and World Wide Web arena. In fact,
WAP and WML are used to link wireless devices to the Internet by translating Inter-
net data to be displayed on the screen of a mobile/wireless device like a cell phone or
PDA device. The translator between the WAP world and the Internet is a WAP Gate-
way. Many of today’s cellular telephones and PDA devices provide “WAP browsers”
or are WAP-enabled which means they are capable of accessing the Internet (at least
the portion of the Internet that can be put in WML format).

And just like JavaScript or VBScript for the Internet, WML has its own scripting
language called WMLScript that allows for more interactive applications on these
WAP devices. For example, popular WAP/WML applications allow their users to
order books, concert tickets or CDs over their WAP-enabled cellular phones.

WAP faces many challenges and its standard has been slow to be adopted. The
small screens, key pad entry system, and slow bandwidth associated with WAP systems
make WAP an unlikely means to access much information or applications off the
Internet. Furthermore, using WAP requires the device to make a call in order to con-
nect and receive the needed information. This is an unwelcome cost on the user’s
monthly service bill. Finally, providers of services and information on the Internet
must “WAP-ize” their website if they want to be able to offer WAP devices any con-
tent. This requires maintaining multiple versions of a website which can be costly.

There are literally hundreds of web sites containing information about WAP and
WML. A good place to start is with the industry association that leads the develop-
ment of the WAP standards, the WAP Forum at: www.wapforum.org. You may also
wish to refer to Dynamic WAP Application Development by Manning Publications.

15.5.2 Other languages

Most of the software built for devices today is not built using Java. If you are the
manufacturer of a device, such as Palm, you are probably not all that concerned that
your software also runs very nicely on Windows CE devices.

C++, C, and Visual Basic are the most popular development languages for the var-
ious devices available today. Many of the IDEs already offer versions or editions of
NON-JAVA ALTERNATIVES 443

WH_Java2.book Page 444 Monday, March 4, 2002 9:59 AM
their popular tools for creating applications on the more popular devices like Palm OS
or Windows CE. Metrowerks’ CodeWarrior is available for various processors and
platform operating systems, and Microsoft provides Visual Basic and Visual C++ opti-
mized for a number of embedded environments as well as its own Windows CE oper-
ating system. For more information on developing applications for small devices in
other programming languages, you may want to start with the following two URLs:
www.microsoft.com/windows/embedded and www.palmos.com/dev.

15.6 DATA STORAGE AND SYNCHRONIZATION

As mentioned in chapter 11, one of the more difficult issues in dealing with mobile
and wireless applications is how and where to store the information, and how to keep
the information synchronized when the data is on multiple devices. A number of
databases are now being offered on small devices. Many of these are much smaller
adaptations from the larger enterprise systems with which developers are already well
acquainted. This usually makes for a less steep learning curve. Unfortunately, not all
of these databases can be accessed through the J2ME APIs.

XML has become the world’s de facto standard for describing and communicating
data in a platform-independent way. XML is slowly working its way into the realm
of small devices and their applications. XML, however, is not seen as a small, fast, or
lightweight data mechanism, even in the world of enterprise systems. This same prob-
lem is only compounded in the world of consumer electronics and embedded devices.

15.6.1 Data storage

Many of today’s popular database systems are available for small platforms. Connect-
ing to and using these databases may be difficult in Java. Java Database Connectivity
(JDBC) is the standard API for connecting to databases in more traditional Java cli-
ent or server applications. However, neither the CDC nor the CLDC contain sup-
port for JDBC. The java.sql package (the home of the classes and interfaces that
make up the JDBC API) is optionally provided in PersonalJava implementations.
Therefore, the first step in using one of these databases is to find a Java environment
that contains the java.sql package and provides for JDBC. Even where JDBC
may be available, an appropriate driver is also required by the application to use the
JDBC API. This is usually an easier problem to solve since the database vendor often
provides the driver.

A critical factor in the usefulness of a database engine is its ability to link up and
exchange data with the enterprise database system that coordinates disbursement of
data to small devices. Depending on the vendor, some of the database engines come
with a tool to help synchronize them with enterprise database systems. Others do not
provide this luxury and require the developer to determine how best to keep any data
distributed to devices synchronized. All of the databases listed here provide some form
of data synchronization with their “mother” databases.
444 CHAPTER 15 RELATED TECHNOLOGIES

WH_Java2.book Page 445 Monday, March 4, 2002 9:59 AM
Cloudscape

Cloudscape is a pure Java object-relational database that can be run on all sizes of
platforms from servers to handhelds. Implemented as a library of Java classes, Cloud-
scape has a footprint of a little more than 2 megabytes and requires JDBC to access
the database. Cloudscape was a separate business unit of Informix, another of the
large database vendors, but was recently purchased by IBM. www.cloudscape.com

Oracle Lite

Oracle9i Lite is a lightweight cousin of Oracle9i, but built from the ground up for
small, resource-constrained platforms. It is available for Palm OS, Microsoft PocketPC/
Windows 95/98/NT/2000, and Symbian EPOC platforms. Connection to Oracle9i
Lite is accomplished via JDBC and Oracle9i Lite’s ultrathin native JDBC driver.
Oracle claims that its Lite database requires as little as one MB of memory even in its
most complete configuration. www.oracle.com/ip/deploy/database/oracle9i/9ilite

Pointbase Micro

Pointbase is a pure Java database with versions that also run on various sized plat-
forms from servers down to small devices. Its Micro version advertises that it is based
on the J2ME as well as J2SE architecture. Pointbase Micro deploys in a single Jar file
and has a footprint of less than 45 KB. A subset of the JDBC API with SQL is used
to get access and update data.

As a pure Java solution, the database should port to a platform running Java, but
it has been specifically tested on Windows, Windows CE/Pocket PC, Symbian EPOC,
Palm OS, Motorola and iDen platforms. www.pointbase.com

UltraLite

Sybase’s entry in the small device database market is UltraLite, with a footprint of
about 150 KB. It is available in C and Java, and the Java port has two versions, one at
the JDK 1.2 level and another for Java 1.1 systems. Access to the database is via JDBC.
The JDBC driver and database runtime environment are packaged together in a sin-
gle jar file. UltraLite is available for EPOC, Palm OS, VxWorks, and Windows CE/
Pocket PC platforms. www.sybase.com

15.6.2 A data synchronization standard, SyncML

Some data is placed on a device as reference information for periodic lookups and
examination. The care and management of this information is relatively easy, requir-
ing the device to simply receive periodic updates on occasion. On the other hand,
data that is more regularly retrieved from an enterprise database system, updated and
then returned, requires a great deal of coordination, or more appropriately, synchro-
nization. As discussed in chapters 11 and 12, synchronizing data on mobile and wire-
less devices can be quite complicated because there is no way of knowing when, if
ever, data put on a mobile/remote device is going to be returned.
DATA STORAGE AND SYNCHRONIZATION 445

WH_Java2.book Page 446 Monday, March 4, 2002 9:59 AM
Many of the major commercial database engines today, such as those listed in the
previous section, offer a means to synchronize data between their database servers and
client databases on devices such as laptops, consumer electronics and embedded
devices. However, each vendor implements synchronization in a unique manner.
Many of the device manufactures also have proprietary applications and protocols for
updating information such as address books, calendars, and so forth.

SyncML is an open industry initiative for devising universal synchronization stan-
dards, a “synchronization protocol,” that works across all types of databases, networks
and platforms. This protocol enables mobile devices to synchronize with any net-
worked data and, likewise, any networked data to be synchronized with the mobile
device. SyncML sponsor participants include Ericsson, IBM, Lotus, Matsushita,
Motorola, Nokia, Openwave, Starfish Software and Symbian. These sponsors hope to
produce a protocol that can synchronize most any data and can:

• work in a wireless and wired fashion

• support many different transport protocols (such as HTTP, Wireless Session
Protocol, TCP/IP, OBEX, SMTP, POP3, and others) for the fundamental com-
munications of information

• enable access from many different applications on all sizes and shapes of
resource-constrained devices

• utilize existing Web and Internet technologies where possible.

This last bullet point is interesting because the initiative has taken the position that
“to the extent possible, the protocol should use XML to represent data being
exchanged during a synchronization session.”5 More information and the latest SyncML
specifications are available at: www.syncml.org

15.6.3 XML

When data must be transported between systems, whether through the Internet or
wirelessly, the universal data transport markup language has become the Extensible
Markup Language (XML). XML is to data what Java is to programming languages.
It is a platform independent language for describing and transmitting data.

While ubiquitous to data exchanged on the Web, especially in a business-to-busi-
ness (B2B) environment, XML creates some problems for the mobile device devel-
oper. First, the structure of XML data and the tools usually needed to handle and
manipulate XML data does not always avail itself to be used in resource-constrained
devices. XML, by its nature, describes the data it also represents. While extremely use-
ful to the users of the data, the extra data may not be something that the devices can
handle. Furthermore, most of the leading XML parsers, by themselves, would bust the

5 “Building an Industry-Wide Mobile Data Synchronization Protocol,” Version 1.0, SyncML Whitepaper.
446 CHAPTER 15 RELATED TECHNOLOGIES

WH_Java2.book Page 447 Monday, March 4, 2002 9:59 AM
memory budget of many of the small devices in the J2ME arena. Finally, XML parsers
are notoriously slow parts of many applications. Given the resource constraints of
many small devices, the performance issues are further exacerbated.

However, a number of third parties have developed XML or an XML-subset API
for use in resource-constrained Java environments. Below are some of the known
efforts underway to bring XML to the micro Java platform.

kXML

kXML is an open source XML API available from the Enhydra community. kXML is
a non-validating, incremental parser that has optional DOM (called kDOM) and
WBXML/WML support. In its minimal configuration, kXML is around 16 KB in
size. You can obtain a copy of kXML at: www.kxml.org

One of the many ways that XML parsers are differentiated is by whether the
parser is a validating or non-validating parser. A validating parser compares
an XML document’s definition (otherwise known as its document type def-
inition or schema) against its contents to ensure the data in the document is
actually organized according to the definition. Obviously, this requires more
work on the part of the parser, and will slow the parsing process down, but
the application has the benefit of working with documents it can more easily
accept and trust in terms of data organization and content.

A non-validating parser does not check the validity of the data against a def-
inition. All a non-validating parser will do for an application is ensure that
it is “well-formed.” This means that the parser will only check that the XML
document follows the general standards of an XML document (tags are
present, opened and closed appropriately, and so forth).

NanoXML

Another open source XML parser is NanoXML. Originally built for standard Java envi-
ronments, it is a non-validating, single-step, parser written by Marc De Scheemaecker.
NanoXML has been ported for smaller environments, like that of J2ME applications,
and comes in three flavors.

NanoXML/Java is an XML-compliant standard parser capable of both parsing and
writing XML. NanoXML/SAX is the SAX adapter for the standard NanoXML/Java
version. Finally, there is NanoXML/Lite. This last version is the version intended for
use in small devices. Whereas NanoXML/Java’s footprint stands at a small 32 KB,
Nano XML/Lite is a minuscule 5 KB.

More information and a download of NanoXML is available from nanoxml.
sourceforge.net.

VALIDATING
VS. NON-

VALIDATING
PARSERS
DATA STORAGE AND SYNCHRONIZATION 447

WH_Java2.book Page 448 Monday, March 4, 2002 9:59 AM
Another differentiating component of XML parsers on the market today
is in how they parse a document: either in a single-step or incrementally.
A single-step parser performs its work in a single process. It reads the
entire document into memory and parses it in a single operation, return-
ing a tree of objects. An incremental parser, on the other hand, parses
an XML document a piece at a time.

Single-step parsers can be advantageous if a document, held in mem-
ory, needs to be parsed several times. However, large documents can be
problematic for single-step parsers to handle, especially on memory-
constrained small devices. Incremental parsers can deal with large doc-
uments more easily but require more work to track or follow where the
parser is with a document.

TinyXML

Like NanoXML, TinyXML was initially developed for more standard Java applica-
tions by Tom Gibara. Christian Sauer has ported a special version to work in the
J2ME CLDC environment. Available under GNU public license, TinyXML has a
footprint of less than 10 KB. It is a non-validating parser and more information on it
is available at www.gibaradunn.srac.org/tiny/index.shtml.

15.7 J2ME SUPPLEMENTARY TECHNOLOGY

As J2ME, in most cases, is a minimal Java platform for which to build applications
for resource-constrained devices, there have been (and undoubtedly will continue to
be) a burgeoning market for third-party vendors to provide platform components and
facilities through J2ME. Below are some of the known products and vendors to date.

15.7.1 GUI, kAWT

One of the more lackluster elements of J2ME development is the graphical user inter-
face. This is due, in part, to the fact that most small devices have very limited screens.
Also, J2ME is required to address the lowest common denominator and the lowest
common denominator in the world of user interfaces can be quite limiting.

However, a number of groups are working to develop additional user interface
components (those that would augment J2ME UI components) or replacement user
interface components and packages for the micro Java world. This should come as little
surprise to the Java community since the same thing happened with the maturity of
the standard Java environment. In fact, several organizations, including Sitraka (formerly
KL Group, with a web site at www.sitraka.com), have carved a niche market for them-
selves in providing graphical user interface components for today’s Java applications.

The kAWT project, started by Michael Kroll and Stefan Haustein of Germany a
few years ago, set out to develop a graphical user interface API that was more portable yet
similar to Java’s AWT. Today, the kAWT runs on top of the CLDC and is available
for Palm OS and various RIM pager systems. A version is also available on the MIDP

SINGLE STEP VS.
INCREMENTAL

PARSERS
448 CHAPTER 15 RELATED TECHNOLOGIES

WH_Java2.book Page 449 Monday, March 4, 2002 9:59 AM
platforms. Several IDE’s have also been licensed to use kAWT. Jbed and VAME are
among the IDEs that now offer kAWT with versions of their tools.

The kAWT supports an event listener like that in AWT and is upwardly compat-
ible with the AWT in the J2SE. In fact a version of the kAWT is also available for
SDK 1.2 environments. Today, Michael and Stefan serve on the PDA profile expert
group. More information on kAWT is available at www.kawt.de.

15.7.2 Web browsing, Kbrowser

4thpass has developed a 100% Java browser for J2ME-enabled phones and PDAs.
They claim their “microbrowser” is the smallest such browser in the industry with a
minimal footprint of 64 KB. This browser is designed to carry out the standard
browser tasks on very resource-constrained devices and it supports the standard pro-
tocols (HTTP, WAP) in a secure manner, if desired. Kbrowser can also be used to
download Java applications, such as Midlets in a wireless fashion right to the devices.
This type technology and software has great potential in solving application distribu-
tion issues to systems that are far-reaching, mobile and not very accessible. Get more
information on Kbrowser from www.4thpass.com/kbrowser.

15.7.3 Encryption, Bouncy Castle

Data being transmitted, especially when transmitted wirelessly, is subject to intercep-
tion and misuse. Therefore, the need to secure that information is creating a demand
for cryptography and security API packages.

The Legion of Bouncy Castle has developed a Java Cryptography Extension (ver-
sion 1.2) compliant lightweight cryptography API in Java that works in all Java envi-
ronments including J2ME. The lightweight version intended for use with the J2ME
is less than 450kB (for the entire set of MIDP version classes).

More information about Bouncy Castle and their crypto API is available from
www.bouncycastle.org.

15.8 SUMMARY

J2ME is growing in popularity. However, there are many circumstances, platforms
and types of applications to which a J2ME solution cannot or should not be applied.
For these types of environments, as we have seen in this chapter, there are plenty of
Java and non-Java alternatives.

Furthermore, J2ME is, like its bigger brothers J2SE and J2EE, a platform from
which to build Java applications. It does not comprise the entire set of components
you will ever need to build your award winning applications. A growing industry of
J2ME and other micro Java environment component and tool vendors are starting to
provide some very nice capabilities that can give your application development efforts
a head start. As with other Java environments, we can expect more of these efforts as
J2ME specifications are strengthened and expanded.
SUMMARY 449

WH_Java2.book Page 450 Monday, March 4, 2002 9:59 AM

WH_Java2.book Page 451 Monday, March 4, 2002 9:59 AM
A P P E N D I X A

J2ME development tools
There are a number of integrated development environments (IDEs) and develop-
ment tools that directly support J2ME development today. In this appendix, we pro-
vide a list of the known products. Some of these tools support development in all the
Java editions (J2EE, J2SE, and J2ME). Many of the tools are produced by tool man-
ufacturers that support a whole line of development environments that include tools
for developing software for large and small devices as well as for developing software
in different programming languages. The list here focuses on products directly sup-
porting J2ME development.

We do not endorse or disparage any of the tools listed in this appendix. In fact, all
have their particular strengths and weaknesses. For that matter, as we have shown in
this text, one does not have to have a development environment or tool to develop
J2ME applications. A simple text editor and the necessary compilers, preverifiers, and
converters are all that is required to start building your J2ME applications. The pur-
pose of these products, as with all development environments and tools, is to help you
produce better products or make the process of developing software easier and faster.
451

WH_Java2.book Page 452 Monday, March 4, 2002 9:59 AM
The products listed here may or may not fulfill that mission depending on your background and
your project. As with most things in life, we recommend you try before you buy.

Product Vendor Web Site

BlackBerry Java Development Environment (JDE) Research in Motion developers.rim.net

CodeWarrior for Java Metrowerks www.metrowerks.com

Forte for Java Sun Microsystems www.sun.com/forte/ffj

Java2 Platform Micro Edition (J2ME) Wireless Toolkit Sun Microsystems java.sun.com/products/j2mewtoolkit

Jbed IDE esmertec www.esmertec.com

JBuilder and JBuilder MobileSet Borland www.borland.com

VisualAge Micro Edition IBM www.oti.com

WHITEboard SDK Zucotto Wireless www.zucotto.com/whiteboard/index.html
452 APPENDIX A J2ME DEVELOPMENT TOOLS

WH_Java2.book Page 453 Monday, March 4, 2002 9:59 AM
A P P E N D I X B

J2ME resources

Birdstep

www.birdstep.com

CDC/CVM Homepage
java.sun.com/products/cdc

CLDC/KVM Homepage
java.sun.com/products/cldc

Cloudscape
www.cloudscape.com

Enhydra
www.enhydra.org

esmertec (Jbed)
www.esmertec.com

Insignia Solutions (Jeode)
www.insignia.com

J2ME Homepage
java.sun.com/j2me

Java Community Process Specifications
jcp.org/jsr/all/index.jsp
453

WH_Java2.book Page 454 Monday, March 4, 2002 9:59 AM
Kada Systems
www.kadasystems.com

Kaffe Homepage
www.kaffe.org

kAWT
www.trantor.de/kawt/index.html

kSoap
ksoap.enhydra.org

KVM Forum
forums.java.sun.com/forum.jsp?forum=50

KVM Interest Group
archives.java.sun.com/archives/kvm-interest.html

KXML
www.kxml.org

Metrowerks (CodeWarrior)
www.metrowerks.com/desktop/java

Micro Java Network
www.microjava.com

MIDP Homepage
java.sun.com/products/midp

Motorola Developer Resources
developers.motorola.com/developers

NanoXML
nanoxml.sourceforge.net

Nokia
www.nokia.com

Oracle (OracleLite)
www.oracle.com/ip/deploy/database/oracle9i/9ilite/index.html/content.html

Palm
www.palm.com

PersonalJava Forum
forums.java.sun.com/forum.jsp?forum=56

PersonalJava Homepage
java.sun.com/products/personaljava
454 APPENDIX B J2ME RESOURCES

WH_Java2.book Page 455 Monday, March 4, 2002 9:59 AM
PointBase
www.pointbase.com

SAX Homepage
sax.sourceforge.net

Sybase (iAnywhere)
www.sybase.com/solutions/mobilewireless

TinyXML
www.gibaradunn.srac.org/tiny/index.shtml

Transvirtual (PocketLinux/Kaffe)
www.transvirtual.com

Wireless Developer (Sun)
wireless.java.sun.com

Wireless Developer Network
www.wirelessdevnet.com

WirelessDeveloper.com
www.wirelessdeveloper.com
455

WH_Java2.book Page 456 Monday, March 4, 2002 9:59 AM
A P P E N D I X C

Java and J2ME history

C.1 Oak and the Green Project 456
C.2 Java and the Internet 457
C.3 Evolution of Java 458
C.4 Origins of J2ME 460
While being familiar with Java’s history and evolution may not help you write a
J2ME application, it can certainly help you as you try to understand how J2ME was
put together or why a feature may or may not be included in the API. Knowing the
history can also help you as you read documentation or information that may be a lit-
tle outdated. Without historical background, terminology or product references will
be hard to put into perspective with the current environment. This appendix outlines
the history and development of Java and places J2ME in this context.

C.1 OAK AND THE GREEN PROJECT

Java was developed in the early to mid-1990s. Actually, Java, or more appropriately
Oak as Java was first called, was a by-product of Sun’s Green Project. The goal of the
Green Project was to develop a set of networked consumer electronic devices that
could be programmed from a device similar to a personal digital assistant. The Green
Project team (the Green team) believed digitally controlled consumer devices (TV,
VCR, video disc players, etc.) and computer technologies were starting to come
together. However, the Green team was confounded in their efforts because the
diverse set of devices they wanted to connect all used different hardware and pro-
gramming firmware. A single programming language to handle their needs was not
456

WH_Java2.book Page 457 Monday, March 4, 2002 9:59 AM
available and efforts to modify languages such as C++ to handle their requirements
proved inadequate. Therefore, one of their first tasks in developing their network of
consumer electronic devices was to develop a single operating environment that
allowed software to run on a multitude of devices. Thus, believe it or not, Java was
born, not out of a need to run as a platform-independent language on thousands of
server and client computers as it does today. Instead, it had humble beginnings as a
means to network and program home entertainment equipment. In a way, early
micro-Java was the start of the whole Java effort.

Early Java, or Oak, was loosely based on a stripped-down C++ to work and provide
the absolute necessities in the limited spaces of the chips employed by consumer
devices. Even then, its goal was to provide developers with a means to easily support
an ever-changing and evolving set of hardware.

Additionally, Oak had to satisfy two other major concerns. It had to be reliable and
secure. For a consumer electronic device to be successful, it could not rely on resetting
or rebooting as a general practice. Programming errors had to be minimized in order
to improve reliability. And because the goal was to network these consumer electronic
devices, there was a fear that these devices could intentionally or unintentionally harm
other systems on the network. Therefore security was also a prime ingredient in Oak.

By the middle of 1992, the Green team introduced a PDA-like handheld device
for controlling a home entertainment system. The device, called *7 (Star7), had an
animated and interactive touch screen pad. Although this device did not turn out to
be commercially successful, the technology developed by the Green team proved to be
extremely useful and profitable because of the arrival and expansion of another set of
technologies: the Internet and the World Wide Web.

C.2 JAVA AND THE INTERNET

The National Center for Supercomputing Applications released Mosaic in 1993.
Considered the first successful Web browser, Mosaic allowed people to use the Inter-
net in a powerful, visual way and eventually paved the way for the World Wide Web.

By 1994, the developers of Java saw the applicability of their new language in this
new medium. The requirement for reliable and secure software applications that could
be written once for an undetermined number of potential computer systems fit per-
fectly with Java’s original design for consumer electronic devices. Quickly, Java’s
applet technology was born. With appropriate Java runtime support configured for
the target platform and hidden in the Web browser on the client system, the relatively
small application called the Java applet was, and still is today, capable of being written
once and run almost anywhere.

With a foothold in its use with the Internet and World Wide Web and a renewed
reason for being, Java expanded to serve in almost every nook and cranny of current
software development. Its versatility, many features, and, of course, platform indepen-
dence have made Java a major component of modern software technology.
JAVA AND THE INTERNET 457

4

WH_Java2.book Page 458 Monday, March 4, 2002 9:59 AM
JAVA VS. JDK In discussing the evolution of Java, we need to clarify the terms “Java” and
“Java platform” and the “JDK,” now called the “SDK.”

Java and the SDK have become synonymous. However, in reality Java
“the language” should be viewed as a separate entity from Sun’s reference
implementation of the language and developer’s kit that have traditionally
shared the same version number. Java or, as Sun likes to refer to it, the Java
platform, is the abstract language and specification that surrounds the lan-
guage. The SDK is Sun’s product and an implementation of the specifica-
tion that is used by software engineers to create applications. If you prefer,
the Java platform is conceptual and the SDK is physical.

You might have noticed from the last paragraph that the SDK is “an”
implementation, not necessarily “the” implementation. In theory, if not
practice, many other organizations could provide their own implementa-
tion of the Java platform. In fact some organizations such as IBM and
Hewlett-Packard provide their own compilers and virtual machines. For more
information on the differences between Java and the SDK, see Sun’s web
site at java.sun.com/products/jdk/1.2/java2.html.

For the purposes of this book, any reference to Java and a version number
refers to both the Java specification and Sun’s SDK unless explicitly stated.

C.3 EVOLUTION OF JAVA

On May 23, 1995, Sun officially released Java. The first public release of the Java
Development Kit (JDK) was version 1.02. Amazingly, Java’s core architecture and
programming language have not changed substantially. However, Sun has released
two additional major releases and several minor releases of Java and the correspond-
ing JDK since its first public release.

Figure C.1 As this timeline depicts, Java was developed in the early 1990s, publicly introduced in

the mid 1990s, and has been reintroduced, through J2ME, to consumer electronic and embedded

devices in the late 1990s.

1990 1991 1992 1993 1994 1995 1996 1997 2000 20011998 1999

December 1990
Green Project

Formation

Summer 1992
Green Project
introduces *7

April 1993
Mosaic 1.0

release

October 30, 1994
Java’s public
introduction

January 23, 1996
Sun ships

Java 1.0 JDK

May 1996
First JavaOne

conference

February 1997
Sun ships
JDK 1.1

December 9, 1998
Sun ships

Java 2, SDK 1.2

May 8, 2000
Sun ships

Java 1.3 JDK

June 1999

J2ME KVM

introduced
58 APPENDIX C JAVA AND J2ME HISTORY

WH_Java2.book Page 459 Monday, March 4, 2002 9:59 AM
C.3.1 Java 1.02

As the first public release, Java 1.02 attempted to offer a best-of-breed programming
language, borrowing ideas and trying to avoid the mistakes of its predecessor lan-
guages. Java was intended to look a lot like C++ while also providing many of the key
features available in programming languages such as Smalltalk, Eiffel, and other
object-oriented languages.

Java 1.02 introduced a new object-oriented programming language that provided
a platform-neutral development environment that produced applications that were
considered more secure and reliable than applications produced with other program-
ming languages. As previously mentioned, its platform independence was able to shine
through in new groundbreaking features, such as the Java applet, that were important
to the development of the early Internet. Yet, like all first releases, Java 1.02 had some
notable shortcomings as well.

C.3.2 Java 1.1

In many cases, a second release of something in the software industry implies fixing
that which was discovered broken, or not quite right, by the users in the first release.
Java 1.1, including all the subsequent 1.1.x (Sun released 8 minor releases from 1.1.1
to 1.1.8) “minor” releases, did fix many shortcomings, but it also introduced many
new features. In fact, the version number associated with Java’s second major release is
a real misnomer. The 1.1 version of Java included many substantial additions.

Along with performance enhancements and API enhancements in the event model,
networking, and input/output (IO) support, the 1.1.x releases were monumental in
the new APIs they introduced. These include server-side programming, Java database
connectivity (JDBC), a new component model (JavaBeans), Reflection, and Java
Native Interface to name a few.

C.3.3 Java 2

With the introduction of Java 2, Sun made a stronger distinction between the Java
platform and the JDK. In fact, they even changed the name of the Java Development
Kit to the Software Development Kit (SDK). The Java language and specification
jumped version numbers from Java 1.1 to Java 2. The development kit and runtime
were renamed but kept the original version number progression. So what was the JDK
became the Java 2 SDK, Standard Edition version 1.2 or just plain SDK 1.2 for short.

Along with the name and packaging realignment, the new SDK 1.2 offered many
enhancements to the existing API, along with a few important new features such as a
new set of collection classes and a new set of GUI components (the GUI components
were actually introduced as an add-on package in late Java 1.1.x releases but made a
permanent part of the SDK 1.2). Of course, Java 2 also brought a split in the “edi-
tions” of Java.
EVOLUTION OF JAVA 459

WH_Java2.book Page 460 Monday, March 4, 2002 9:59 AM
C.3.4 SDK 1.3

The latest SDK release from Sun as of this writing is version 1.3. SDK 1.3 once again
has presented Java developers with a number of enhancements and improvements to
the existing APIs while introducing several features. Technologies such as the Com-
mon Object Request Broker Architecture (CORBA) and the Java Naming Directory
Interface (JNDI), which were available through extension packages in previous ver-
sions, became part of the standard SDK in version 1.3. New APIs, like the sound API,
were also added to SDK 1.3.

C.3.5 Java 3 coming soon?

So will there be a Java 3? The SDK continues to undergo refinement. SDK 1.4 is
expected to be released in 2002. What about an update in the Java specification? It
would seem logical that unless Java 2 is perfect, we can expect a new version of Java at
some point in the future. Watch your favorite Java information source for the latest
from Sun and others.

C.3.6 Java today

With the three editions and the numerous packages, it is hard to find a software
development need that is not covered or at least partially addressed by Java 2 or a Java 2
add-on module. In less than five years, Java has made its way into almost every per-
sonal computer via almost every Web browser and in less than two years it has cap-
tured an estimated 90% of the application server market. In 1998, there were an
estimated 7 million Java users. Today there are over 400 Java users groups worldwide
and countless millions using Java technology. Sometime in the year 2002, Java is
expected to surpass C++ as the predominate programming language. The term ubiq-
uity can be overused, but it just might apply to Java in the world of software engi-
neering today.

C.4 ORIGINS OF J2ME

We have already discussed the early history and beginning of Java, which in reality is
also the early beginning of J2ME. More recently, however, Sun has reintroduced
J2ME as an important technology for small devices. During this reintroduction,
some terminology and early product names were used that are generally not used or
seen in reference material today.

You may encounter old J2ME terminology in early specifications or other older
technical documents, and therefore you may want to be familiar with J2ME history
in order to know what its current name or rendition is in “modern” J2ME. Further-
more, this history gives you some indication of where the technology has been in hopes
that you may glean some indication of where J2ME technology is heading.
460 APPENDIX C JAVA AND J2ME HISTORY

WH_Java2.book Page 461 Monday, March 4, 2002 9:59 AM
C.4.1 Micro-Java rebirth

In June of 1999, at the 1999 JavaOne conference, Sun introduced the three platform
editions of Java: the J2SE, J2EE, and J2ME. Sun also introduced a preview version
of the KVM or K Virtual Machine.

The K has come to stand for Kilobyte, but its actual representation has been
clouded over the past few years. According to various news groups, rumor has it that
the K actually stood for “Kauai” (one of the Hawaiian islands that happens to produce
coffee), which was the name of the KVM development project.

The KVM was developed in cooperation with several companies, most notably
Motorola, 3COM, Bull, Fujitsu, Matsushita (Panasonic), Mitsubishi Electric, NEC,
NTT DoCoMo, and Siemens. At the conference, the KVM was demonstrated on
what was then 3COM’s Palm Pilot. Since then, 3COM has spun off Palm as a separate
entity. Palm, Inc. now controls the Palm device. To demonstrate this new virtual
machine, Sun used a class API called KJava that provides the graphical user interface
and database classes necessary to build applications for Palm OS (Palm operating sys-
tem) devices. Those lucky enough to be at the conference were offered the KVM, Java
class API and KJava classes (in a com.sun.kjava package) to put on their own personal
devices to take home and try out.

C.4.2 Early access versions of J2ME

In October of 1999, Sun provided the first release of the KVM. It was called the
KVM Early Access Version 0.1 or DR4 for Developers Release 4. Still very much in
the prototypical stage, Sun released several point releases of the KVM, Java API, and
KJava classes for development of Palm OS applications through the remainder of
1999 and into 2000.

The first configuration

Shortly after the preview release of the KVM, the J2ME community began its re-
organization of the J2ME platform. Realizing that a single virtual machine and class
API would probably not suffice for such a vast range of devices, an architecture of
configurations and profiles emerged. We discuss the various configurations and pro-
files in chapters 2–10.

The J2ME architecture was developed through a series of specifications in Sun’s
Java Community Process (JCP). And, in fact, the JCP continues to develop and refine
all of Java to include the J2ME platform today.

The first full release of a configuration was made available in May of 2000. The
Connected, Limited Device Configuration (J2ME CLDC 1.0) provided J2ME devel-
opers with the first fully-supported J2ME platform. This release was also called the
“Final Candidate for Shipment” version or FCS since it was considered the final
release of the work that started with the KVM preview version.
ORIGINS OF J2ME 461

WH_Java2.book Page 462 Monday, March 4, 2002 9:59 AM
The first configuration provided the first real J2ME reference implementation of
Java running on small devices, but it also introduced another issue. A configuration
provides the basic class API, but it alone does not provide many of the necessary classes
to produce a full application on a device like the Palm. So the first configuration lacked
the tools necessary to allow developers to develop a fully supported application for the
Palm device. What to do?

Sun decided to continue to use the KJava API on top of the first configuration. As
an unsupported and a soon to be replaced API, the KJava classes were meant to serve
as a tool for testing and demonstrating the early J2ME technology. However, it was
the only API that allowed developers to build an application.

The first profile

The first reference implementation of a profile was released, in early access form, in
July 2000. It is called the Mobile Information Device Profile (MIDP). Its FCS, ver-
sion 1.0, became available in September 2000. However, as we saw in chapter 2, the
MIDP is for the development of applications for cellular telephones and pagers. As a
result, Palm and other PDA developers were stuck with KJava and are still waiting for
a profile of their own.

C.4.3 J2ME’s continuing evolution

By the summer of 2000, a more clear and definitive picture on the evolution of J2ME
specifications and related technologies emerged from Sun and the JCP. To date, not
all of the specifications have been completed and even fewer have been implemented.
However, progress is being made and more profiles are anticipated in the very near
future. In fact, work is already underway to improve some of the current specifica-
tions and implementations. Additional Java technologies are also being woven into
the edition.

Figure C.2 This timeline depicts the various specification versions and releases during J2ME’s early

creation and evolution. Today, there are more than a half-dozen specifications associated with J2ME.

1999 2000 2001

June 1999
J2ME, KVM on

Palm at JavaOne ’99

October 1999
First J2ME release

KVM Early Access 0.1 (DR 4)

November 1999
KVM Early Access 0.2
(DR 4.1)

May 2000
First Configuration release

CLDC 1.0 w/KVM

July 2000
First Profile
MID Profile
Early Access release

September 2000
MID Profile
1.0 release
462 APPENDIX C JAVA AND J2ME HISTORY

WH_Java2.book Page 463 Monday, March 4, 2002 9:59 AM
C.4.4 J2ME today

J2ME technology, like all Java platforms, is constantly changing and improving.
The JCP allows for each edition of Java and each Java technology to expand and
improve to better meet the needs of the development community it supports.
J2ME is still growing and some might say maturing. Along with evolution of the
J2ME specifications, there are many other Java and non-Java technologies that are
impacting and impacted by J2ME. It will take some time to find out exactly how all
this technology fits together.
ORIGINS OF J2ME 463

WH_Java2.book Page 464 Monday, March 4, 2002 9:59 AM
A P P E N D I X D

J2ME Wireless Toolkit

D.1 Downloading the Wireless Toolkit 464
D.2 Installing the J2ME Wireless Toolkit 465
D.3 Hello World project revisited 466
D.4 Summary 472
The J2ME Wireless Toolkit is partial IDE and emulator all-in-one for developing
CLDC/MIDP applications. Developed by Sun Microsystems, the Wireless Toolkit is
not the reference implementation of the CLDC/MIDP, but rather is an entire devel-
opment environment providing J2ME developers with a means to create, package
and test their CLDC/MIDP applications. In this appendix, we will re-examine the
MIDP Hello World application developed in chapter 4 using the toolkit. This appendix
is meant to provide a quick overview of the toolkit. More information about the
J2ME Wireless Toolkit and its options and features is available from the Sun web site
as well as the documentation that comes with the product. Other MIDP applications cov-
ered in this text can also be developed using the toolkit given the basic steps shown here.

D.1 DOWNLOADING THE WIRELESS TOOLKIT

The J2ME Wireless Toolkit is available from Sun Microsystems web site at
java.sun.com/products/j2mewtooolkit/download.html. The current available version
of the J2ME Wireless Toolkit at this writing is 1.0.3. A copy of the toolkit is available
for Microsoft Windows 98, NT and 2000 platforms as well as Linux and Solaris operat-
ing systems. However, the toolkits available for the Linux and Solaris platforms are
not officially supported by Sun. A version for Windows XP is available but not tested
at the time of this writing. Windows 95 does not support the J2ME Wireless Toolkit.
464

WH_Java2.book Page 465 Monday, March 4, 2002 9:59 AM
 In addition to the toolkit, which we discuss in a moment, you will need the Java 2
Standard Edition SDK (version 1.3.0 or greater) that can be obtained from java.sun.com/
j2se/1.3/download-windows.html. The J2ME Wireless Toolkit requires 30 MB of
disk space and 64 MB of RAM to run.

D.2 INSTALLING THE J2ME WIRELESS TOOLKIT

For the sake of brevity, we will assume you already have the SDK installed on your
system. If not, please install the Java 2 SDK, Standard Edition, version 1.3.0 or higher
before installing the J2ME Wireless Toolkit.

What you get in the download from the Sun J2ME Wireless Toolkit web site is a
self-extracting executable called j2me_wireless_toolkit-1_0_3-win.exe. Your version
number or operating system type may vary depending on when you access the down-
load site and the operating system version you desire. Execute this file by either double
clicking on its icon in a file listing display or select the Run… option from the Start
button on your Windows operating system, then browse to the file. You should be
greeted with a screen that looks similar to the picture in figure D.1.

Figure D.1 After starting the downloaded J2ME Wireless Toolkit installation

executable obtained from Sun’s web site, the installation should start with a

screen that looks similar to this display (version 1.0.3).

The installation program will guide you through a series of prompts to assist you in the
installation process. By default, the application will install into a directory called J2mewtk.

Once the application is installed properly, along with the appropriate icons on your
desktop, you should have a set of J2ME Wireless Toolkit directories on your hard drive.
Some of directories that are placed on your hard drive and their general purpose are
listed in the following table:
INSTALLING THE J2ME WIRELESS TOOLKIT 465

WH_Java2.book Page 466 Monday, March 4, 2002 9:59 AM
D.3 HELLO WORLD PROJECT REVISITED

In chapter 4, we created a simple Hello World MIDlet to demonstrate the MIDP
technology and to get familiar with how to create MIDP applications. We will reuse
the code from chapter 4 to demonstrate how to build an MIDP application using the
J2ME Wireless Toolkit. The HiSmallWorld MIDlet from chapter 4 is listed below.

import javax.microedition.midlet.MIDlet;
import javax.microedition.lcdui.*;

public class HiSmallWorld extends MIDlet {
 private TextBox textbox;
 public HiSmallWorld() {
 textbox = new TextBox("", "Hi Small World!", 20, 0);
 }

 public void startApp() {
 Display.getDisplay(this).setCurrent(textbox);
 }

 public void pauseApp() {
 }

 public void destroyApp(boolean unconditional) {
 }

}

D.3.1 Starting the toolkit

The J2ME Wireless Toolkit provides for a host of tools to help you build your applica-
tion. The KToolBar is a graphically oriented user interface tool for accessing most of the
tools provided in the toolkit. After installing the J2ME Wireless Toolkit, the KTool-
Bar should be a program listed in the Programs of your desktop (under version 1.0.3,
you will find it under Start –> Programs –> J2ME Wireless Toolkit 1.0.3). Clicking

Table D.1 The directory structure of the J2ME Wireless Toolkit that contains the necessary files

and executables to run the toolkit as well as the applications you develop.

Directory Purpose

\apps Directory containing the demo applications provided with the toolkit as well as the
future home for applications you create

\bin Batch and .exe files of the J2ME Wireless Toolkit

\docs The J2ME Wireless Toolkit documentation directory containing the Users Guide
among other documents

\lib The CLDC and MIDP API class files which are used during the compiling and
preverifying of your applications

\wtklib Emulator device property files
466 APPENDIX D J2ME WIRELESS TOOLKIT

WH_Java2.book Page 467 Monday, March 4, 2002 9:59 AM
on KToolBar will start the application and you should see a window like that
depicted in figure D.2.

This application allows you to create and configure projects, build or package your
applications and run your applications in various emulators. Applications in this
instance, as we shall see, mean MIDlet suites.

D.3.2 Creating a project

Development in the KToolBar is accomplished via a project. A project is a collection
of MIDlets in a MIDlet suite. Before writing, packaging or testing any code, the
MIDlet code must be established as part of a project. To create a new project, push
the New Project… button on the top left hand corner of the KToolBar window. A
New Project window will display, requesting you to provide a Project Name and
MIDlet Class Name (see figure D.3).

Enter the name of your MIDlet suite in the Project Name field. In the case of our
Hello World example, we enter the name SmallWorldSuite. In the MIDlet Class
Name field enter the name of the first MIDlet you want to be part of the suite. In this
example, our first and only MIDlet will be the HiSmallWorld class. Once you enter
these names and press the Create Project button on this window, a Settings for project
“SmallWorldSuite” should display as seen in figure D.4. These are the settings or
attributes for our project, MIDlet suite and all the MIDlets in the suite. We discuss
these attributes in the next section so don’t hit either the OK or Cancel button quite yet.

Figure D.2 The KToolBar allows developers to configure, compile, preverify, package, and test

MIDP applications.

Figure D.3 A new project name and associated first MIDlet are entered in this

window that displays after pushing the New Project… button on the KToolBar.
HELLO WORLD PROJECT REVISITED 467

WH_Java2.book Page 468 Monday, March 4, 2002 9:59 AM
Once the OK button on this window is pushed, a new J2ME Wireless Toolkit project
is created. Pay particular attention to the text displayed in the main KToolBar win-
dow after a project is created. Move, but do not cancel the Settings window so that
you can see the KToolBar window. As in our example shown in figure D.5, the tool-
kit indicates the directories being used by your new project. In particular, it tells you
where to place your MIDlet application code and associated files. We will need this
information later so it is a good idea to take note of these directories now.

Figure D.5 Note the directories that the toolkit specifies for source code, resource

and library files. These will be used later on in the application development.

Figure D.4

When creating a new

project, settings for the

project, MIDlet suite and

associated MIDlets are

provided in this window.
468 APPENDIX D J2ME WIRELESS TOOLKIT

WH_Java2.book Page 469 Monday, March 4, 2002 9:59 AM
D.3.3 Editing the project settings

The Settings for project “SmallWorldSuite” window acts as an editor for the attributes
found in the MIDlet and MIDlet suite JAD and manifest files. If you push the tabs at
the top of this window, you will see the various attributes that can be set for the
MIDlet suite or individual MIDlet. For example, if you push on the MIDlets tab,
you will see a table listing the MIDlets in our SmallWorldSuite (see figure D.6).

In our particular case, we do not yet have an icon for our HiSmallWorld MIDlet. So
let’s change this to indicate that the MIDlet has no icon. Click on the only row in the
table and push the Edit button. In the window provided (see figure D.7), remove the
SmallWorldSuite.png text that is in the Icon text field and press the OK button.
Once you have entered the settings to your liking and push the OK button, the
appropriate files (JAD and manifest) are modified by KToolBar and the project is cre-
ated. After the project has been created, you can return to the project settings by
pushing the Settings button on the KToolBar.

As can be seen by the Settings window, there are several attributes in the project.
Once you have had a chance to get your first MIDlet up and running with the J2ME
Wireless Toolkit, we suggest you read the documentation on the tool and play with
these attributes.

Figure D.6

The MIDlets associated with

the project and MIDlet suite

are listed in the MIDlets tab

on the Settings window.
HELLO WORLD PROJECT REVISITED 469

WH_Java2.book Page 470 Monday, March 4, 2002 9:59 AM
D.3.4 Entering the Java code

The J2ME Wireless Toolkit does not come with a text editor. Therefore, you will
need to use your favorite editor to type in the HiSmallWorld class code from page 466
into a HiSmallWorld.java file. Once you have entered the code into a text file, the
KToolBar does tell you where to save the file. Namely, if you recall from the project’s
creation, the KToolBar informed us that Java source code for our project should be
placed in a certain directory. In our example, this directory was c:\J2MEWTK\apps\
SmallWorldSuite\src (see figure D.5).

Each project in the J2ME Wireless Toolkit has its own directory, which is usually
kept in the \apps subdirectory of the toolkit’s main directory. If you peruse to the
SmallWorldSuite directory under the \apps directory now, you will already see a direc-
tory structure that includes a \bin directory. Likewise, the \bin directory contains the
manifest and JAD files for our tutorial suite. We will not have to edit these files directly
since the KToolBar provides the Settings window which will allow us to set attributes
via the tool.

D.3.5 Building a project

With the project or MIDlet suite set up via the KToolBar and the Java code entered
and saved to the appropriate directory, we are ready to compile, preverify, and jar our
code. This part of the project is called “building” the application. In the J2ME Wire-
less Toolkit, compiling, preverifying, and jarring the application all occur with the
push of a button (provided there are no bugs in your code).

To build your MIDlet suite, push the Build button on the KToolBar. If your appli-
cation build is successful, you will see text displayed in the KToolBar panel that indi-
cates “Build complete.” If there were errors in your code, this same window will display
messages indicating problems. You will then have to go back to your text editor and
attempt to fix the code.

D.3.6 Running a project

It is easy to compile, preverify and jar your application. It is equally easy to run and
test your MIDlet suite in an emulator. In fact, with the J2ME Wireless Toolkit,
you can test your application in a number of emulators. Located just below the
New Project… button on the KToolBar is a Device drop-down box. Select this drop-
down box and pick any one of a number of device emulators as shown in figure D.8.

Figure D.7

This window allows you to

change the attributes of each

MIDlet in the MIDlet suite.
470 APPENDIX D J2ME WIRELESS TOOLKIT

WH_Java2.book Page 471 Monday, March 4, 2002 9:59 AM
Notice that even the Palm OS device is listed. We will discuss Palm OS emulation a little
later. For now, pick any one of the various cell phone emulators listed in the drop-down.

With your favorite phone emula-
tor selected from the Device list, push
the Run button on the KToolBar. If
all goes well, an emulator window run-
ning your MIDlet suite containing
the HiSmallWorld MIDlet should dis-
play as in figure D.9.

You can close the emulator at any
time, or start more emulators to sim-
ulate many HiSmallWorld MIDlets
all running at one time. This can be
advantageous when you want to test
your networking applications as dis-
cussed in chapter 7. Remember, the
HiSmallWorld MIDlet does not yet
have any event handling capabilities—
you will need to see chapter 5 for
that—so you must power off the emu-
lator to close the MIDlet application.

D.3.7 Palm OS Emulator

The J2ME Wireless Toolkit has been designed to allow for the addition of new emu-
lators in the future. In fact, the J2ME Wireless Toolkit is already prepared to interact
with the Palm OS Emulator if it is available on your system.

Figure D.9

The SmallWorldSuite’s

HiSmallWorld MIDlet

running in the

DefaultColorPhone

emulator.

Figure D.8 The default list of emulation devices offered in the J2ME Wireless Toolkit allows you

to test your MIDlet suite on any number of devices. More device emulators can be added to the J2ME

Wireless Toolkit. See the documentation on the J2ME Wireless Toolkit for how to add emulators.
HELLO WORLD PROJECT REVISITED 471

WH_Java2.book Page 472 Monday, March 4, 2002 9:59 AM
If you attempt to run the SmallWorldSuite with the Palm OS Emulator selected as
the emulation device, you will be requested by the KToolBar to provide the location
of the POSE on your system (see figure D.10). If you supply the location of the
POSE in this window, then your MIDP applications will run as though we had
developed MIDP for Palm OS applications.

D.3.8 Operating from the command line

The KToolBar provides a convenient graphical user interface to the tools offered by
the J2ME Wireless Toolkit. However, the J2ME Wireless Toolkit is really an assembly
of tools for creating and testing J2ME MIDP applications. These tools can be utilized
from the command line as opposed to the KToolBar. Instructions for running the
various tools are available in the J2ME Wireless Toolkit documentation.

D.4 SUMMARY

In this book, we have provided you with the ins and outs of MIDP application devel-
opment. There is a growing number of development tools and IDEs and various
products on the market to assist you in developing MIDlets and MIDlet suites.
Because it is free and has the capabilities to be tied to other Java development prod-
ucts such as Forte by Sun Microsystems, the J2ME Wireless Toolkit is a popular
development tool used by the J2ME community.

Figure D.10

Attempting to run a MIDlet suite

with the Palm OS as the selected

emulation device results in

the KToolBar requesting the

location of your emulator.
472 APPENDIX D J2ME WIRELESS TOOLKIT

WH_Java2IX.fm Page 473 Monday, March 4, 2002 10:53 AM
index
A
Abstract Windowing Toolkit

(AWT) 76, 431
Abstract Windows Toolkit

(AWT) 225
Active Server Pages (ASP) 334
address 368
Alert 78, 84–85, 90, 96–98, 159,

243
and Command 129
setImage 84
setString 84
setTimeout 84–85

AlertType 84
alphanumeric entry 292
anchor point 88, 228
Apache web server 67
application control

MIDP 70–71
application descriptor file 64–65, 469

(See also JAD)
applications

multiple 333
ArrayIndexOutOfBoundsException 140
ASP See Active Server Pages
AWT 78, 248, 431

(See also Abstract Windows Tookit)

B
beamReceive 250
beamSend 250
bitmaps 228–229
-bootclasspath 195
Borland JBuilder 431
Bouncy Castle 322, 449
buffer 140, 170
Button 231, 252

byte array
for persistent storage 45
Palm OS database 267–271
RMS 135, 137–138, 140–141,

144, 146, 149
tutorial application

record 150, 154
ByteArrayInput/OutputStream 170
ByteArrayInputStream 380
ByteArrayOutputStream 379

C
C 12, 443
C++ 13–14, 440, 443, 457, 459–460
C/C++ 17, 439
CAD 439
callback 106–107, 112–113, 130, 143

(See also event handling)
Canvas 87, 99, 158

and commands 109, 113
getGameAction 112
getKeyCode 112
getKeyName 111
hasPointerEvents 113
hasPointerMotionEvents 113
hideNotify 113
low-level event handling

methods 112–113
low-level events 110
paint 89, 113
repaint 87
serviceRepaints 87
showNotify 113

CanvasDemo 89
card acceptance device (CAD) 439
Caret 231, 236
CBS 34

CDATA 351
CDC 24, 28, 43, 325, 430, 440

devices 7
Personal and Foundational

Profiles 431
CDMA 304
CDPD 304
Cell Broadcast Service (CBS) 34
cellular phones

40kB memory 57
and J2ME 4, 12
and MIDP 56, 69, 130, 192
emulator 82, 117, 470

(See also midp.exe)
keypad 111
keypad operation 74
selection button 74, 83
text entry 75

CGI. See Common Gateway Interface
ChaiVM 435
character

encoding 323
localization 323

ChartCanvas 99–105, 116, 118,
121, 123–124, 156

CheckBox 231, 249
Choice 90
Choice interface 83, 86
ChoiceGroup 79–80, 83, 86, 92–93,

107
class file verification 26, 416
class loaders 25
classpath 49, 61, 63, 195–197, 211
CLDC 24–25, 307, 322

class file verification 28
data types 149
devices 7, 57, 69, 131
473

WH_Java2IX.fm Page 474 Monday, March 4, 2002 10:53 AM
CLDC (continued)
download 192
GCF 167, 171
in the tutorial application 42, 50
KJava API 191–192, 198, 429
MIDP for Palm OS 213
Palm Overlay 191
security issues 26

CLDCClasses 195
close 169
Cloudscape 445
collection classes 431
com.sun.kjava 189, 240
combination lock 304
Command 86, 107–108

and alerts 129
label 108
menu 108
priority 108, 117
type 108, 117

command mode 113
commandAction 110
CommandListener 108–109, 116,

121, 150, 152–153, 180
Common Gateway Interface

(CGI) 334
Common Object Request Broker

Architecture (CORBA) 460
Compaq iPaq 428, 431
Comparable 144
compare 144
compile 470
components setlocation method

KJava 235
configurations 22, 24
Connected Device Configuration

(CDC) 24, 28
Connected Limited Device Configu-

ration (CLDC) 24–25, 461
Connection 171, 366
connection interfaces 168
ConnectionNotFoundException 168
connections

datagrams 394
Connector 168–170, 175, 277,

367–368
connector

openInputStream 175
consumer electronics 4, 6–7, 11,

15–17, 428, 430, 435
ContentConnection 366
Coordinated Universal Time

(UTC) 324
CORBA 11, 460

Creator ID 264
CrEme 432
C-Virtual Machine (CVM) 24, 29
CVM 24, 29, 425

garbage collection 426
memory references 426

D
data

format of stored 318
performance 318
storage 318, 444
synchronization 312, 444

data exchange formats 306
Data Manager 263–265, 267
data synchronization 312

SyncML 445–446
Database 263, 265–268

addRecord 267, 271
boolean resDB 266
close 267, 271
create 266
deleteRecord 267
getNumberOfRecords 268
getRecord 267, 270
int cardNo 266
int creatorID 266
int typeID 266
isOpen 266
java.lang.String name 266
setRecord 267
small footprint 318

Datagram 168, 366
DatagramConnection 366
DataInput 380
DataInput/OutputStream 170
DataInputConnection 377
DataInputStream 169, 380
DataOutput 379
DataOutputStream 379
DateField 79–80, 82, 107
debugging 424
development scenario 294
Dialog 237, 243
dialogDismissed 237, 243
DialogOwner 237, 243

dialogDismissed 243
dirty write 312
Display 58, 77, 91, 97

getCurrent() 78
getDisplay 77
setCurrent 78, 85, 94, 129

display limitations
MIDP 76

Displayable
addCommand 109
and Alert 84–85, 129
and alert 97
and Canvas 87–90, 99
and Command 109, 116, 118
and Form 79–80
removeCommand 109

displayable objects 77–78
DNS 277
DnsImpl 277
Document Object Model

(DOM) 350
Document Type Definition

(DTD) 307, 347
doGet 335
DOM. See Document Object Model
domain name services (DNS) 277
doPost 335
drawChar 100
drawing modes

Graphics 226
drawLine 101
drawString 100, 226
DTD. See Document Type Definition

E
embedded devices 4, 6, 11, 16–17,

428, 430, 435
EmbeddedJava 6, 431, 434, 442
ENABLE_CLDC_PROTOCOLS 392
Encryption 449
entering text 303
Enterprise Edition (J2EE)

part of Java 2 edition trilogy 9
Enterprise JavaBean 10
EnterpriseClient 341
EnterpriseServletExample.java 337
EntryForm 92–96, 114, 116–118,

121–122
error handling 26
esmertec 192, 204

Jbed 429
event delivery methods 113
event handling 45, 66

database 142–144
high-level 107–110
low-level 110–113

events 105
serialized 107, 110, 113

EXCLUSIVE 93
EXCLUSIVE choice 86
exitButton 252
Extensible Markup Language

(XML) 47, 347
474 INDEX

WH_Java2IX.fm Page 475 Monday, March 4, 2002 10:53 AM
F
file system 228
FilteredInputStream 169
finalization 26–27, 414
Flash Memory 319
Flat files 318
floating point 26, 268
floating-point numbers 101,

149, 172
focus 248
Font 90

getFont 91
footprint 3, 11–13, 57, 200, 429,

434, 440
Form 79, 90

events 107
formats

fixed-position 311
name-value 310

FormDemo 81
Foundation Profile 32

G
game actions 111–112
game applications 76, 87, 110, 133
Gaming Profile 34
garbage collection 421

CVM 426
Gauge 79–80, 107
GCF 171–172, 174, 276
Generic Connection Framework 50,

167–168, 263, 366
GET 335
getBytes 150
getEncoding 372
getFlashID() 220
getGraphics 194
getLength 372
getType 372
GMT 324
Graffiti 219, 232–233, 244,

292, 303
help 233

Graphics 87, 89–90, 100, 194, 225,
242, 246

clearScreen 225
copy modes 230
copyOffScreenRegion 230
copyRegion 230
drawBitmap 228–229
drawBorder 227
drawImage 89
drawLine 226
drawRectangle 226
drawString 88

eight 227
frame types 227
getGraphics 225
getWidth 227
no-draw zones 229
on screen vs. off screen 225,

229–230
resetDrawRegion 230
setDrawRegion 229
setFont 91

graphics context 194
Green Project 456
Greener Grass Corporation 294
Greenwich Mean Time (GMT) 324

H
handlePenDown 250
Handspring 191
HelpDisplay 238
high-level API 76, 78
high-level event handling 106–107
HiSmallWorld 466
horizontal constant 88
HotSync 204–205, 213, 219
HTML 47, 167–169, 171, 173,

175–178, 306, 443
HTTP 46, 167–169, 173–174, 177,

277, 306, 334–335, 446, 449
HttpConnection 171
hypertext markup language

(HTML) 167–169
hypertext transfer protocol

(HTTP) 46, 167–169

I
IDE 14, 48, 191–192, 194, 211,

443, 464
IllegalArgumentException 111
IllegalStateException 80
Image 87, 89

createImage 90
getGraphics 87

ImageItem 79–80, 86, 90
immutable image 89
in-device verification 417
information appliance 6
Input Stream Reader

read 175
InputConnection 366, 377
InputSource 359
InputStream 170, 359, 377, 380
InputStreamReader 168, 170,

175, 381
Integrated Development Environ-

ments (IDEs) 14, 48, 56

intent Java Technology Edition 433
internationalization 323, 422
Internet 13, 46, 67, 167–168, 171,

173–174, 264, 275, 304, 443,
446, 457

screen phones 442
IntVector 240
InvalidRecordIDException 142
iPaq 190
Item 80, 107
ItemStateListener 107, 114

itemStateChanged 107
ITU-T keypad 111

J
J2EE 46

database 135
part of trilogy 16, 18

J2ME
alternatives 17, 429, 435
architectural tools 325
architecture 19, 21
configurations 22
development tools 451
devices 4–6
extend corporate enterprise

systems 4
history 456
origins 4, 15, 460
profiles 22, 31
resources 453
runtime environment 36, 415
security 322
user interface 298
Wireless Toolkit 464–472

J2SE 43
database 46, 135, 144
development environment 48, 195
I/O 169–170
part of trilogy 16, 18
user interface 76, 78

J9 190
J9 virtual machine 435–437
JAD 64, 66–67, 72, 95, 132, 216
JAM 36, 422
JAR 49, 63, 66, 72
jar 470
Java 16

alternatives 442
benefits 13–15
editions 9–12
history 456
programming language 3
servlets 334
write once and run anywhere 48
INDEX 475

WH_Java2IX.fm Page 476 Monday, March 4, 2002 10:53 AM
Java 2 465
Java 2 Micro Edition

defined 3
Java 2 Standard Edition (J2SE) 6
Java 2 Standard Edition SDK

development environment 465
Java API

benefits 136
Java Application Manager (JAM) 36,

49–50, 65, 422
Java Card 6–7, 438–439
Java Code Compact (JCC) 423
Java Community Process (JCP) 4,

24, 430, 461
Java Database Connectivity

(JDBC) 444–445
Java Debug Wire Protocol

(JDWP) 424
Java Development Kit (JDK) 10

(See also SDK)
Java editions 18, 190

database 135
Java Foundation Classes (JFC)

(See also Swing) 76
Java Media Framework 33
Java Naming Directory Interface

(JNDI) 460
Java Native Interface (JNI) 25, 439
Java platform 458
Java Platform Debugging Architecture

(JPDA) 424
Java Runtime Environment

(JRE) 10, 50, 61, 215
Java SDK 195
Java TV 442
Java Virtual Machine

Specification 27
java.io 168–170, 172, 175
javac 60, 62, 195, 197, 211
JavaHQ 132
JavaOne 11, 189, 461
JavaPhone 442
JavaServer Pages (JSP) 334
javax.microedition.io 168, 172,

175–176
javax.microedition.lcdui 77, 91, 100,

107–108, 110, 231
javax.microedition.midlet 58
javax.microedition.rms 138, 150, 156
Jbed 429

compiling 195
default icons 200
file creation 196
linking 199

log 197, 199, 202
Micro Edition 192
POSE 207
project creation 195–197
properties file 195–197, 201–202
supported platforms 203

Jbed Micro Edition CLDC 429
Jbed Profile for MID 429
JCC 423
JCP 16, 24, 190, 461
JDBC 10, 135–136, 262
JDK 10, 430, 434–435, 458
JDWP 424
Jeode 431
Jini 434, 441
JMF 33
JNDI 460
JNI 25, 435
JPDA 424
JRE 10, 36, 50
JSP 334
JV-Lite2 431

K
K virtual machine 461

introduced 16
MIDP 57

Kada Mobile Platform 432
Kaffe 433
kAWT 225, 448
Kbrowser 449
keyDown 251
Kilobyte Virtual Machine

(KVM) 24, 27
KJava 34, 131

application control 193
collection classes 239
color 225
component event handling 249
component event handling

helper 250
custom components 239
Database 263
defined 191
download 192–193
event handling 248–250
introduced 461
introduction 189
paint() method 237
screen layout 231
screen size 225
setLocation 235
user interface 225

KToolBar 466–472
KVM 24, 27, 415, 461

introduced 189
KJava 191–192, 194, 198
MIDP for Palm OS 213

kXML 353, 447

L
Layout Manager 78
List 78, 83, 86, 240
listener interface 106
listeners 107
lists 302
locale 325
locking policies

lease 314
optimistic 313
pessimistic 314

low-level API 76, 87
low-level event handling 106, 110

M
main 220–221
mask character 84
matches 146
memory 319

references in the CVM 426
MERI 430
Metrowerks CodeWarrior 431, 444
Micro Edition (J2ME) 9–12
MIDlet

Active state 70
cellular phone 130
compiling 60, 214
converting 215–216
defined 58
destroyApp(boolean

unconditional) 59, 70, 77
Destroyed state 70
HiSmallWorld 58, 214–217,

466–471
JARing 63–64, 214
javax.microedition.midlet.MIDlet

class 70
pager 130
pauseApp() 59, 70
Paused state 70
preverifying 61, 214
running 61–62
startApp() 58, 70, 77
troubleshooting 62–63
476 INDEX

WH_Java2IX.fm Page 477 Monday, March 4, 2002 10:53 AM
MIDlet suite 72, 138–140, 156,
192, 216

associated record store 136–137
converting to PRC 132
defined 64
installing 67–68
JARing 66–67
need for 72

MIDletStateChangeException 59, 71
MIDP 32, 62, 67, 462

color 88
display control 77
display limitations 64, 76
download 57
for Palm OS 131
preverify 61, 64, 73
screen layout 86
screen size 76, 101

midp 63
MIDP 1.0 334

support of datagrams 304
support of sockets 304

MIDP for Palm OS 189–190, 192,
213, 218

converter tool 215–216
MIDP.prc 215
mobile

application 167
mobile application models 326

Cradle-Synchronized 326
Persistent Network-Aware 326
Standalone 326

Mobile devices 7–9
Mobile Information Device Profile

(MIDP) 32
first profile 462

model
event-based 348
tree-based 348

Mosaic 457
Motorola’s Embedded Reference

Implementation (MERI) 430
MPLICIT choice 86
Multimedia Profile 33
multiple applications 333
MULTIPLE choice 86
Multipurpose Internet Mail

Extension 67
multiselecting 303
multithreading 413, 421

N
NanoXML 351, 447
network 304

O
Oak 15, 456
ObtainQuote 41–42, 149
ObtainQuoteMIDlet 71, 116, 180

compile 73, 95
event listeners 119
JARing 73, 95
preverify 73, 95
run 73, 95
startApp() 92, 97
storing data 150–153

ObtainQuoteSpotlet 243
application control 220–224
handling key entry

events 250–252
handling pen movement 255–261
handling pen taps 252–255
storing data 269–273
user interface 241–244

off-screen memory 89
open() 168
openDataInputStream 168, 369
openDataOutputStream 168, 369
openInputStream 168, 369
openOutputStream 168, 369
Oracle Lite 445
OutputConnection 366, 377
OutputStream 170, 377, 379
OutputStreamWriter 170, 379

P
pagers

and J2ME 4
and MIDP 56, 69, 130, 192

paint 99
Palm 16, 189
Palm database file 198
Palm Desktop Software 211

install tool 204–205, 211–213
Palm OS

application 215–216
(See also PRC)

application databases 285–287
categories 208–210, 213
Data Manager 191
databases 263–265
Emulator 471
exit 241
Jbed 203
KJava on 131
market share 428
MIDP on 56, 131
PDA 50
PRC 132

record database 263–265
resource database 263
system keys 219

Palm Resource File
multiple PRC 199
single PRC 199

Palm’s Alliance Program 203
PalmVx 320
parameter list 368
parser

small-footprint 351
XML 348

parsing 308
PDA 305, 428

cradle 11, 204–205, 213
databases 262–263
development

environments 190–192
Java development environment 12
mobile/wireless device 7–9
text entry 232
virtual keyboard 232

PDA Profile (PDAP) 32, 131, 190,
218, 429

PDB 213, 262
penDown 321
penMove 321
Personal Basis Profile 33
personal digital assistants

(PDAs) 189
and J2ME 4

Personal Jworks 433
Personal Profile 32, 442
PersonalJava 32, 190, 430–433, 442

for OS-9 432
physical buttons 108, 112
pixel coordinate systems 87–88, 225
Pointbase Micro 445
pointer 76, 106, 132
pointing device 113
portability 22

between other Java
environments 321

between profiles 320
POSE

database emulator 267
deploying applications 207
deploying to 216
parameters 207
ROM 202–207
settings 211

POST 335
PRC 213

application name 200–202
INDEX 477

WH_Java2IX.fm Page 478 Monday, March 4, 2002 10:53 AM
PRC (continued)
converter tool 131–132, 215
files 131
icons 200–202
Palm OS 49

PRC (Palm Resource File) 198–202
pressed 250
preverification 26, 416
preverify 28, 61–62, 198, 211, 470

(See also MIDP preverify)
PrintStream 170, 380
priority 118
profiles 22, 29

choosing J2ME 31
Foundation 32
Gaming 34
MIDP 32
multimedia 33
PDAP 32
Personal 32
Personal Basis 33
portability 320
RMI 33
types 30
WTCA 34

project 467–471

Q
questionnaire 325
QuoteMIDletSuite 72
QuoteMIDletSuite.jad 132
QuoteService 46–48, 170, 172–174,

177, 261, 263, 275–277

R
RadioButton 231, 241, 249
RadioButtonGroup 231
RadioGroup 241
RAM 319
RDBMS 134–135
Reader 170, 380
rebuild 148
record

defined 136, 264
enumerator 138, 155
in a record store 137–138

record access 140–141
record enumeration 145, 154–155,

157
record filter 145, 154–155, 157
Record Management System

(RMS) 135–137
record sequencing 144
record sorting 144

record store 138
addRecord 140–141, 154
addRecordListener 142
closeRecordStore 139
date 137
deleteRecord 141
deleteRecordStore 140
enumerateRecords 146
enumerating 146–149
getRecord 140
lifecycle 139
listRecordStores 140
locking 137
openRecordStore 138
record listener 147
removeRecordListener 142
setRecord 141, 154
time stamp 137
version number 137

RecordComparator 144, 148
RecordEnumeration 146

hasNextElement 147
hasPreviousElement 147
nextRecord 147
nextRecordId 147
previousRecord 147
previousRecordId 147

RecordFilter 145, 148
recordId 137–138, 143
RecordListener 142

recordAdded 143
recordChanged 143
recordDeleted 143

RecordStoreException 141
RecordStoreFullException 142
RecordStoreNotFoundException 142
RecordStoreNotOpenException 142
reflection 25
Region. (See also Graphics)
region 229–230
register 248
relational database management

systems (RDBMS) 134
reset 148
RetrievePrice 42, 149, 157, 273
RetrieveQuote 41–42, 149
RetrieveQuoteMIDlet 71, 116

compile 73
event listeners 120
JARing 73
preverify 73
retrieving data 156–160
run 73
startApp() 92

RetrieveQuoteSpotlet
application control 224
handling key entry

events 250–252
handling pen movement 255–261
handling pen taps 252–255
retrieving data 273–275
user interface 244

RMI Profile 33, 441
RMS 135–137, 167, 262, 270
ROM Transfer 205–206
ROM Transfer.prc 204
Runtime 236

S
SavePrice 42, 149, 154, 269
SAX See Simple API for XML
schema 307, 347
scheme 368
Screen 78

and Command 109
setTicker 85–86

screen size
MIDP 76

scrolling 95, 106
ScrollOwner 238
ScrollTextBox 232, 241, 255
SDK 196, 430, 440, 458–459, 465
security 415, 417

J2ME 322
SelectScrollTextBox 232
service 335
servlets 334
setCommandListener 110
setCurrent 97
setScrollValue 238
setString 97
set-top boxes 5, 8, 430
SGML 307
short message service (SMS) 34
Simple API for XML (SAX) 307, 350
Slider 232
small devices 5
Small footprint databases 318
Small footprint parsers 351
smart cards 5–6, 438
smart phones 442
SMS 34
socket 168
socket listener 384
Socket Security Layer 322
SocketFactory 277
socketMessage() 383
soft button 75, 97, 108–109, 117
478 INDEX

WH_Java2IX.fm Page 479 Monday, March 4, 2002 10:53 AM
Software Development Kit
(SDK) 10, 459

(See also JDK)
SONY 16, 191
Spotlet

compiling 194
defined 193
deploying 207, 211–213
event handling 248
focus 193–194, 219
HiSmallWorld 194–195
keyDown 248, 255
main 193, 219
penDown 249, 252–253, 269,

272–273, 275
penMove 249, 252–253, 255
penUp 249, 252–253, 255
register 219
unknownEvent 249
unregister 219

SSL. See Socket Security Layer
stakeholders 292
Standard Edition (J2SE)

part of Java 2 edition trilogy 9
Standard Generalized Markup

Language (SGML) 307
startApp() 104
stream 168, 170
StreamConnection 366, 377
StreamConnectionNotifier 366, 377
StringBuffer 174–176
StringItem 79–80, 105
Sun Microsystems 4, 9, 16, 189, 430

Wireless Toolkit 56
surrogate architecture 441
Swing 78, 218, 225
synchronization 413–414
SyncML 317

data synchronization 445–446
System

System.currentTimeMillis 137
System.gc 27
System.out.println 130

T
text entry 303
TextBox 58, 78, 83, 216, 232, 246
TextField 79–80, 84, 92–93, 96,

107, 232, 236, 241, 249–250
killCaret 236
loseFocus 236
setFocus 236

Thread
java.lang.Thread 236

ticker 85–86, 97–98
time zones 324
Timer 107
TinyXML 352, 448
tutorial

application control 42–43
command navigator 118
input/output 46–48
KJava 50
MIDP 50
networking 46–48
persistent storage 45–46
requirements 41
user interface 43–45

U
UltraLite 445
Unicode characters 137
Unicode encoding 111
Uniform Resource Identifier

(URI) 169, 172
Unstructured Supplementary Service

Data (USSD) 34
URL 67, 174, 178
user interface

display 298
navigation 299
user input 302

USSD 34
UTC 324

V
ValueSelector 233
vast consumer space 6
vertical constant 88
VerticalScrollBar 238

paint 238
virtual keyboard 292
virtual machine 11, 14, 57, 61, 442

(See also KVM, Jbed, MIDP.prc)
CDC 425
CLDC 415

Visual Age Micro Edition 190
Visual Basic 443–444
Visual C++ 444
VisualAge Micro Edition 435–437

W
Waba 438
WAP 449
WAP/WML 443
weak references 26
web browser 457
web server 67
Windows CE 323, 431–432, 438
wireless 167, 173
Wireless Access Protocol 8
Wireless Application Protocol 443
wireless architecture 305
wireless device 8–9
Wireless Markup Language 8, 443
Wireless Telephony Communications

API (WTCA) 34
WML 447
WMLScript 443
WORA 13, 35
World Wide Web 15, 47, 167, 171,

443, 457
Write Once, Run Anywhere

(WORA) 13, 35
Writer 170, 379
WTCA 34

X
XML 11, 47, 171, 306, 347, 444,

446–448
document 347
document attributes 350
document elements 350
document entities 350
example 353
open standards 350
parser 348

XML parsers 447
XMLClient 359
XMLClient.java 359
XMLHandler.java 362
INDEX 479

WH_Java2IX.fm Page 480 Monday, March 4, 2002 10:53 AM

	Java 2 Micro Edition
	preface
	contents
	acknowledgments
	about this book
	about the cover illustration

	Part 1 Developing with J2ME
	1 Introduction
	1.1 So what is J2ME anyway?
	1.1.1 Where is J2ME being applied?

	1.2 What is a small device?
	1.2.1 The vast consumer space
	1.2.2 Consumer electronic and embedded devices

	1.3 J2ME’s role in wireless and mobile applications
	1.3.1 Is J2ME mobile?
	1.3.2 Is J2ME wireless?
	1.3.3 Wireless vs. mobile

	1.4 The Java 2 edition trilogy
	1.4.1 J2SE
	1.4.2 J2EE
	1.4.3 J2ME
	1.4.4 Why we need J2ME

	1.5 The case for Java
	1.5.1 Is Java right for small devices?
	1.5.2 Java’s beneficial features

	1.6 Origins of J2ME
	1.6.1 Java’s origins
	1.6.2 The return of Java in small devices

	1.7 The J2ME community
	1.7.1 J2ME’s guiding light, the Java Community Process

	1.8 J2ME products and alternatives
	1.9 Summary

	2 J2ME architecture
	2.1 Goals of the J2ME architecture
	2.1.1 Support for multiple devices
	2.1.2 Support for device-specific functionality
	2.1.3 Maintaining a common architecture

	2.2 Accommodating opposing needs
	2.2.1 Configurations and profiles
	2.2.2 A high-level view of J2ME

	2.3 Configurations: a closer look
	2.3.1 Connected Limited Device Configuration (CLDC)
	2.3.2 The Kilobyte Virtual Machine (KVM)
	2.3.3 Connected Device Configuration (CDC)
	2.3.4 C-Virtual Machine (CVM)

	2.4 Profiles: a closer look
	2.4.1 Two types of profiles
	2.4.2 Profiles are modular
	2.4.3 J2ME profiles extend J2ME configurations

	2.5 Choosing a J2ME profile
	2.5.1 Mobile Information Device Profile (MIDP)
	2.5.2 PDA Profile (PDAP)
	2.5.3 Foundation Profile
	2.5.4 Personal Profile
	2.5.5 RMI Profile
	2.5.6 Personal Basis Profile
	2.5.7 Multimedia Profile
	2.5.8 Gaming Profile
	2.5.9 Wireless Telephony Communications API (WTCA)
	2.5.10 KJava

	2.6 Write once, run anywhere issues
	2.6.1 Varied device needs
	2.6.2 J2ME architecture increases WORA

	2.7 Runtime environment
	2.8 Designing J2ME applications
	2.9 Summary

	3 Developing a J2ME application
	3.1 Investment quote application requirements
	3.1.1 The investment quote application customer
	3.1.2 Requirements analysis

	3.2 Designing the investment quote application
	3.2.1 Application control
	3.2.2 User interface design
	3.2.3 Persistent storage
	3.2.4 Networking and input/output

	3.3 Developing J2ME applications
	3.3.1 Obtaining the development environment
	3.3.2 Creating the applications
	3.3.3 Runtime environment

	3.4 Investment quote application tour guide
	3.5 Summary

	Part 2 Developing for cellular phones and pagers
	4 A simple MIDP application
	4.1 Questions about the MIDP development environment
	4.1.1 Can I do this without an actual device?
	4.1.2 What device do I start with?
	4.1.3 Do I have to use the command line tools?
	4.1.4 The example: what are we going to do?

	4.2 Developing MIDP applications
	4.2.1 Getting started
	4.2.2 What is a MIDlet?
	4.2.3 Compiling the application
	4.2.4 Preverifying the application
	4.2.5 Running the application
	4.2.6 Troubleshooting
	4.2.7 JARing MIDlets
	4.2.8 Developing MIDlet suites
	4.2.9 Running MIDlet suites from a web server
	4.2.10 Installing MIDlet suites locally

	4.3 Summary

	5 MIDP user interface
	5.1 MIDP application control
	5.2 The investment quote application control in MIDP
	5.3 Two types of MIDP user interface and event handling
	5.3.1 High-level API
	5.3.2 Low-level API

	5.4 The MIDP user interface API
	5.4.1 MIDP display control
	5.4.2 MIDP high-level user interface API
	5.4.3 MIDP low-level user interface API
	5.4.4 The investment quote application’s user interface in MIDP

	5.5 Handling user interactions in MIDP
	5.5.1 High-level event handling
	5.5.2 Low-level event handling
	5.5.3 Handling the events of the Investment Quote Application

	5.6 MIDlets on other devices
	5.7 Summary

	6 MIDP data storage
	6.1 JDBC parallel
	6.2 Storage structure
	6.2.1 Record store
	6.2.2 Records in the record store

	6.3 RMS API
	6.3.1 Record store construction and access
	6.3.2 Record store exceptions
	6.3.3 Record store listener
	6.3.4 Comparing records
	6.3.5 Filtering records
	6.3.6 Enumerating through records

	6.4 Persistent storage in the investment quote application
	6.4.1 Defining the stock/mutual fund record
	6.4.2 Storing quotes
	6.4.3 Retrieving quotes

	6.5 Summary

	7 Connecting to the Internet
	7.1 Micro edition package connectivity
	7.1.1 Using the Connector class to open a channel

	7.2 Similar but smaller I/O package
	7.2.1 Streams
	7.2.2 Readers/Writers

	7.3 Implementing the Internet investment quote service
	7.3.1 Getting a quote service connection
	7.3.2 Extracting the price quote from the HTML
	7.3.3 The MIDlet’s handling of quote data

	7.4 Summary

	Part 3 Developing for PDAs
	8 J2ME on a PDA, a KJava introduction
	8.1 PDA profile alternatives
	8.1.1 Java PDA development environments
	8.1.2 What is KJava?
	8.1.3 What is MIDP for Palm OS?

	8.2 HiSmallWorld in KJava
	8.2.1 Getting Started
	8.2.2 What is a Spotlet?
	8.2.3 Compiling HiSmallWorld
	8.2.4 Preverifying KJava applications
	8.2.5 Creating the Palm�OS application
	8.2.6 Running the application

	8.3 Deploying to the actual device
	8.4 HiSmallWorld revisited using MIDP for Palm OS
	8.4.1 MIDP application code
	8.4.2 Converting the JAR file to PRC
	8.4.3 Deploying the MIDP for Palm OS applications

	8.5 Summary

	9 KJava user interface
	9.1 KJava application control
	9.2 The investment quote application control in KJava
	9.3 KJava user interface
	9.3.1 Drawing to the display with the graphics object
	9.3.2 Components
	9.3.3 Custom components
	9.3.4 KJava collection classes

	9.4 The investment quote application’s user interface in KJava
	9.4.1 Creating and displaying components
	9.4.2 Drawing with graphics

	9.5 Handling user interactions in KJava
	9.5.1 Spotlet event-processing methods
	9.5.2 Handling beaming events

	9.6 Handling the events of the investment quote application in KJava
	9.6.1 Handling key entry events
	9.6.2 Handling pen taps
	9.6.3 Handling pen movement

	9.7 Summary

	10 KJava data storage
	10.1 Palm OS databases
	10.1.1 Different types of Palm OS databases
	10.1.2 Palm OS record database

	10.2 KJava database API
	10.2.1 Opening and creating databases
	10.2.2 Accessing the database

	10.3 Implementing the investment quote persistent storage in KJava
	10.3.1 The stock/mutual fund record
	10.3.2 Storing investment quotes
	10.3.3 Retrieving records

	10.4 Revisiting the connection to the Internet
	10.5 Accessing Palm OS application databases
	10.6 Summary

	Part 4 Developing for the enterprise: beyond the specifications
	11 Real-world design
	11.1 Dealing with stakeholders
	11.1.1 Get them familiar with the devices early
	11.1.2 Set expectations
	11.1.3 Gathering requirements
	11.1.4 State of the organization

	11.2 A development scenario
	11.2.1 Analysis
	11.2.2 Options

	11.3 Guidelines for building J2ME applications
	11.3.1 The user interface
	11.3.2 The network
	11.3.3 Data exchange formats
	11.3.4 Data synchronization
	11.3.5 Data storage
	11.3.6 Memory
	11.3.7 Portability between profiles
	11.3.8 Security
	11.3.9 Internationalization

	11.4 Architectural tools and techniques
	11.4.1 Questionnaire: assessing if mobile and wireless is a good fit
	11.4.2 Mobile application models
	11.4.3 Architect’s checklist

	11.5 Summary

	12 Integrating the server
	12.1 Examining server integration
	12.1.1 Avoid monolithic applications

	12.2 What technology to connect to?
	12.3 Servlet example
	12.4 XML
	12.4.1 Using XML
	12.4.2 Open standards of XML
	12.4.3 Consequences of XML in J2ME
	12.4.4 Small-footprint parsers

	12.5 XML using JSPs example
	12.5.1 How JavaServer Pages work
	12.5.2 Creating the JSPHelper
	12.5.3 Creating the JSP
	12.5.4 Creating the J2ME Client

	12.6 Summary

	13 The network connection
	13.1 About the Generic Connection Framework
	13.1.1 Where the Generic Connection Framework lives
	13.1.2 Working with the Connector class
	13.1.3 The Connector is a factory
	13.1.4 How the Connector finds the correct class

	13.2 Using the Generic Connection Framework
	13.3 HTTP-based connections
	13.3.1 Establishing a connection
	13.3.2 Using the connection
	13.3.3 Compiling and running the application

	13.4 Socket-based connections
	13.4.1 Writing to sockets
	13.4.2 Reading from sockets
	13.4.3 When to use sockets
	13.4.4 Client-server socket example

	13.5 Datagram-based connections
	13.5.1 Datagram example

	13.6 Summary

	14 J2ME runtime environment
	14.1 The Java runtime environment
	14.1.1 Lifecycle of the Java Virtual Machine
	14.1.2 Java Virtual Machine responsibilities

	14.2 The J2ME runtime environment
	14.3 CLDC-compliant virtual machines (the KVM)
	14.3.1 KVM lifecycle
	14.3.2 Preverification
	14.3.3 In-device verification
	14.3.4 Security
	14.3.5 Unsupported Java features
	14.3.6 Multithreading
	14.3.7 Garbage collection
	14.3.8 Internationalization
	14.3.9 Application management (JAM)
	14.3.10 Java Code Compact (JCC)
	14.3.11 Deployed classes
	14.3.12 Debug support

	14.4 CDC-compliant virtual machines (the CVM)
	14.4.1 Garbage collection and the CVM
	14.4.2 Memory references in the CVM

	14.5 Summary

	15 Related technologies
	15.1 J2ME implementations
	15.1.1 esmertec’s Jbed
	15.1.2 Motorola’s Embedded Reference Implementation (MERI)

	15.2 The other Sun specifications
	15.2.1 PersonalJava
	15.2.2 EmbeddedJava

	15.3 Non-J2ME alternatives
	15.3.1 ChaiVM by Hewlett-Packard
	15.3.2 IBM’s VisualAge Micro Edition
	15.3.3 Waba by Wabasoft

	15.4 Related Java technologies
	15.4.1 Java Card
	15.4.2 Java Native Interface
	15.4.3 Jini
	15.4.4 JavaPhone and Java TV APIs

	15.5 Non-Java alternatives
	15.5.1 WAP/WML
	15.5.2 Other languages

	15.6 Data storage and synchronization
	15.6.1 Data storage
	15.6.2 A data synchronization standard, SyncML
	15.6.3 XML

	15.7 J2ME supplementary technology
	15.7.1 GUI, kAWT
	15.7.2 Web browsing, Kbrowser
	15.7.3 Encryption, Bouncy Castle

	15.8 Summary

	A J2ME development tools
	B J2ME resources
	C Java and J2ME history
	C.1 Oak and the Green Project
	C.2 Java and the Internet
	C.3 Evolution of Java
	C.3.1 Java 1.02
	C.3.2 Java 1.1
	C.3.3 Java 2
	C.3.4 SDK 1.3
	C.3.5 Java 3 coming soon?
	C.3.6 Java today

	C.4 Origins of J2ME
	C.4.1 Micro-Java rebirth
	C.4.2 Early access versions of J2ME
	C.4.3 J2ME’s continuing evolution
	C.4.4 J2ME today

	D J2ME Wireless Toolkit
	D.1 Downloading the Wireless Toolkit
	D.2 Installing the J2ME Wireless Toolkit
	D.3 Hello World project revisited
	D.3.1 Starting the toolkit
	D.3.2 Creating a project
	D.3.3 Editing the project settings
	D.3.4 Entering the Java code
	D.3.5 Building a project
	D.3.6 Running a project
	D.3.7 Palm OS Emulator
	D.3.8 Operating from the command line

	D.4 Summary

	index

