“
S

The
Complete
Reference

Javal

Fitth Edition

Contains comprehensive Covers new features, Includes details on applets,

coverage of the Java including assertions, NI0, servlets, Swing, JavaBeans,

language and libranes regular expressions, and the AWT, and collections
much more

Java“ 2:
The Complete Reference,

Fifth Edition

About the Author

Herbert Schildt is the world’s leading
programming author. He is an authority on the
C, C++, Java, and C# languages, and is a master
Windows programmer. His programming books
have sold more that 3 million copies worldwide
and have been translated into all major foreign
languages. He is the author of numerous
bestsellers, including Java 2: The Complete
Reference, Java 2: A Beginner’s Guide, Java 2
Programmers Reference, C++: The Complete
Reference, C: The Complete Reference, and C#:
The Complete Reference. Schildt holds a master's
degree in computer science from the University
of Illinois. He can be reached at his consulting
office at (217) 586-4683.

Java 2

The Complete Reference,
Fifth Edition

Herbert Schildt

McGraw-Hill /Osborne

New York Chicago San Francisco
Lisbon London Madrid Mexico City
Milan New Delhi San Juan

Seoul Singapore Sydney Toronto

McGraw-Hill/Oshorne 7

L Diirenion of The MeCorowe JI Congomies

Copyright © 2002 by The McGraw-HIIl Companies, Inc. All rights reserved. Manufactured in the United States of
America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be
reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior
written permission of the publisher.

0-07-222858-X

The material in this eBook also appears in the print version of this title: 0-07-222420-7

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occur-
rence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark
owner, with no intention of infringement of the trademark. Where such designations appear in this book, they
have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for
use in corporate training programs. For more information, please contact George Hoare, Special Sales, at
george_hoare @mcgraw-hill.com or (212) 904-4069.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”’) and its licensors reserve all
rights in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act
of 1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble, reverse
engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish
or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for your
own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work
may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS”. McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES
OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE
OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED
THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WAR-
RANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not
warrant or guarantee that the functions contained in the work will meet your requirements or that its operation
will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for
any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom.
McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no cir-
cumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, conse-
quential or similar damages that result from the use of or inability to use the work, even if any of them has been
advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatso-
ever whether such claim or cause arises in contract, tort or otherwise.

DOI: 10.1036/007222858X

4% Professional

Want to learn more?

We hope you enjoy this McGraw-Hill eBook! If you'd like
more information about this book, its author, or related books
and websites, please click here.

Contents at a Glance

The Java Language

BRR

NRPOOWO~NOOGDWNLER

The Genesisof Javaiiiinini .. 3
AnOverview of Java ...t 17
Data Types, Variables, and Arrays 41
Operators 73
Control Statementsol 99
Introducing Classeso, 129
A Closer Look at Methods and Classes 155
Inheritance 189
Packages and Interfaces 223
Exception Handling 249
Multithreaded Programming 273
I/0, Applets, and Other Topics 313

Vi

Java™ 2: The Complete Reference
The Java Library
13 StringHandling i il 347
14 Exploringjavalang 379
15 java.util Part 1: The Collections Framework 439
16 java.util Part 2: More Utility Classes 505
17 Input/Output: Exploringjavaio 537
18 Networking i 587
19 The AppletClass ..., 627
20 EventHandling 653
21 Introducing the AWT: Working with Windows,
Graphics,and Text 687
22 Using AWT Controls, Layout Managers, and Menus 735
23 IMages ...t 799
24 New I/0O, Regular Expressions, and Other Packages 843
Software Development Using Java
25 JavaBeans e 885
26 ATourofSwing i 921
27 Servlets 949
28 Migrating from C++toJava 981
Applying Java
29 The DynamicBillboard Applet 1011
30 ImageMenu: An Image-Based WebMenu 1047
31 The Lavatron Applet: A Sports Arena Display 1057
32 Scrabblet: A Multiplayer Word Game 1069
A Using Java’s Documentation Comments 1133

Contents

Preface ..o XXV

The Java Language

The Genesisof Javacoo .. 3
Java'sLineage 4
The Birth of Modern Programming: C 4
TheNeed for C++ i 6
The Stage IsSetforJava, 7
The Creation of Javaoouuii et 7
The C#Connection, 9
Why Java Is Important to the Internet 9
Java Applets and Applicationsl 10
Security ... 10
Portability 11
Java’s Magic: The Bytecode 11
The Java Buzzwords 12
Simple ... 13
Object-Oriented i 13

viii

Java™ 2: The Complete Reference

Robust
Multithreaded

Architecture-Neutral
Interpreted and High Performance

Distributed ...
Dynamic

The Continuing Revolution,

2 AnOverviewofJavaouiiiiiiiiiii .

Object-Oriented Program:
Two Paradigms
Abstraction ...

MING ..o

The Three OOP Principles

A First Simple Program
Entering the Pro,
Compiling the P

GTAINL Lottt
TOZGIAML ..ttt ettt

A Closer Look at the First Sample Program

A Second Short Program
Two Control Statements
The if Statement
The for Loop ..
Using Blocks of Code ..
Lexical Issues
Whitespace ...
Identifiers
Literals
Comments ...
Separators

The JavaKeywords

The Java Class Libraries

3 Data Types, Variables, and Arrays
JavaIs a Strongly Typed Language

The Simple Types
Integers

long

float
double
Characters
Booleans
A Closer Look at Literals
Integer Literals

Floating-Point Literals

Boolean Literals

13
14
14
14
15
15
15

17
18
18
18
19
25
25
26
27
29
31
31
33
35
37
37
37
37
38
38
38
39

41
42
42
43
44
44
44
45
45
46
46
47
48
50
50
50
51

Contents

Character Literals, 51

String Literals 52
Variables 52
Declaring a Variable 52
Dynamic Initialization 53

The Scope and Lifetime of Variables 54

Type Conversionand Casting 57
Java’s Automatic Conversionscoiiuiin.... 57

Casting Incompatible Types 57
Automatic Type Promotion in Expressions 59
The Type Promotion Rules 60

ATTAYS Lo 61
One-Dimensional Arrays, 61
Multidimensional Arrays 64
Alternative Array Declaration Syntax 70

A Few Words About Strings 70
A Note to C/C++ Programmers About Pointers 71
Operators i 73
Arithmetic Operators it 74
The Basic Arithmetic Operators 74

The Modulus Operator, 76
Arithmetic Assignment Operators 76
Increment and Decrement il 78

The Bitwise Operators o i 80
The Bitwise Logical Operators 82

The Left Shift 84

The Right Shift 86

The Unsigned Right Shift 87

Bitwise Operator Assignments 89
Relational Operators 90
Boolean Logical Operatorso 92
Short-Circuit Logical Operators 93

The Assignment Operator i ., 94
The? Operator o 95
Operator Precedence i 96
Using Parentheses i i 96
Control Statements o oo 99
Java’s Selection Statements 100
P 100

switch ... 104

Iteration Statements o 109
while ... 109
do-while 111

fOr 114

Some for Loop Variations, 117

Nested Loops 119

X

Java™ 2: The Complete Reference

Jump Statements
Usingbreak il
Usingcontinue i,
TELUIN ...

6 Introducing Classes
Class Fundamentalso i
The General FormofaClass
ASimpleClass
Declaring Objectsc i
A Closer Lookatnew i
Assigning Object Reference Variables
Introducing Methods
Adding a Method to the Box Class
Returninga Value

Adding a Method That Takes Parameters
CONStructors
Parameterized Constructors

The this Keyword
Instance Variable Hiding
Garbage Collection i
The finalize() Method
AStack Class i

7 A Closer Look at Methods and Classes
Overloading Methods i
Overloading Constructors,

Using Objects as Parameters
A Closer Look at Argument Passing
Returning Objects i
Recursion
Introducing Access Control i
Understanding static
Introducing final
Arrays Revisited
Introducing Nested and Inner Classes
Exploring the String Classo
Using Command-Line Arguments

8 Inheritance
Inheritance BasiCscouuuii e
Member Access and Inheritance

A More Practical Example

A Superclass Variable Can Reference a Subclass Object

USING SUPET ...
Using super to Call Superclass Constructors

A Second Use forsupert

119
120
124
126

130
130
131
134
136
137
138
138
140
142
145
147
149
149
150
150
151

156
159
162
165
168
169
172
176
178
179
181
185
188

190
192
193
196
197
197
202

10

11

Contents

Creating a Multilevel Hierarchy 203
When Constructors Are Called 207
Method Overriding i i i 208
Dynamic Method Dispatch, 211
Why Overridden Methods?, 213
Applying Method Overriding 214

Using Abstract Classesciiiiiiiiiiiiiii i, 216
Using final with Inheritance 219
Using final to Prevent Overriding 219

Using final to Prevent Inheritance 220

The Object Classo 220
Packages and Interfaces 223
Packages 224
DefiningaPackage oo i 225

Finding Packages and CLASSPATH 226

A Short Package Example 226

Access Protection 227
An Access Exampleo 229
Importing Packages i 232
Interfaces 235
Defining an Interface 235
Implementing Interfaces 236
Applying Interfaceso 239
Variables in Interfaces 243
Interfaces Can Be Extended 246
ExceptionHandling 249
Exception-Handling Fundamentals 250
Exception Types ... 251
Uncaught Exceptions i i 251
Usingtryandcatch i 253
Displaying a Description of an Exception 254
Multiple catch Clauses i 255
Nested try Statements i 257
IOW Lo 260
hrows ... 261
finally 263
Java’s Built-in Exceptionso 265
Creating Your Own Exception Subclasses 267
Chained Exceptions i i 269
Using EXxceptions ...t 271
Multithreaded Programming 273
The Java Thread Model i, 275
Thread Priorities i i 275

Synchronization i 276

Xii Java™ 2: The Complete Reference

MeSSagingoii i 276

The Thread Class and the Runnable Interface 277

The Main Thread i e 277

CreatingaThread 280

Implementing Runnable 280

Extending Thread 282

Choosing an Approach 284

Creating Multiple Threads 284

Using isAlive()andjoin()l 286

Thread Priorities ...ttt 289

Synchronization L 292

Using Synchronized Methods 292

The synchronized Statement 295

Interthread Communicationt 297

Deadlock 302

Suspending, Resuming, and Stopping Threads 305
Suspending, Resuming, and Stopping Threads Using

Javal.land Earlier 305
Suspending, Resuming, and Stopping Threads Using

Java 2 308

Using Multithreading 311

12 I/0O, Applets, and Other Topics 313

T/O BaSICS ..ottt e e 314

SEreamMS ...t 314

Byte Streams and Character Streams 315

The Predefined Streams, 318

Reading Console Input 318

Reading Characters oo i... 319

Reading Strings i 320

Writing Console Output 322

The PrintWriter Classttt 323

Reading and Writing Files 324

Applet Fundamentals 328

The transient and volatile Modifiers 331

Using instanceof i 332

strictfp ... 335

Native Methods 335

Problems with Native Methods 340

Using asserto 340

Assertion Enabling and Disabling Options 343

The Java Library

13 StringHandling oo oo 347
The String Constructors i 348
String Length 351

14

Contents

Special String Operations i 351
String Literals 351

String Concatenation 352

String Concatenation with Other Data Types 352

String Conversion and toString() 353
Character Extraction i i 355
CharAt() . 355
getChars() i 355
getBytes() 356
toCharArray()ot 356

String Comparison i 356
equals() and equalsIgnoreCase() 357
regionMatches() i 358
startsWith() and endsWith() 358

equals() Versus == il 359
compareTo() 359
Searching Strings i 361
Modifying aString 363
substring() 363

CONECAL() oottt t et e e e e e 364
replace() 364

mM() 365

Data Conversion Using valueOf() 366
Changing the Case of Characters Withina String 367
String Methods Added by Java 2, Version1.4 368
StringBuffer 369
StringBuffer Constructors 369

length() and capacity() 369
ensureCapacity() 370
setLength() 370
charAt() and setCharAt()ot 371
getChars() i 371
append() ... 372

INSEIE() ettt 373

TEVETSE()+ v ettt et e e e e e e 373

delete() and deleteCharAt()ccoviiiiiiiiioo... 374
replace() ... 375
substring() 375
StringBuffer Methods Added by Java 2, Version1.4 376
Exploringjavalang 379
Simple Type Wrappersooiiiiiiiiiii i 380
Number 381
Doubleand Float i 381

Byte, Short, Integer,and Long 387
Characterooiiiiiii 397

Boolean 401

Void .o 402

PrOCESS .ot 402

Xiii

Xiv. Java™ 2: The Complete Reference

Runtime 403
Memory Management i 405
Executing Other Programs 406

SYStem 407
Using currentTimeMillis() to Time Program Execution 410
Using arrayCopy() - vvvvonneenii i 411
Environment Properties 412

Object ... 412

Using clone() and the Cloneable Interface 412

ClaSS ottt e 416

ClassLoaderttt 419

Math o 420
Transcendental Functions, 420
Exponential Functions 420
Rounding Functions o 421
Miscellaneous Math Methods 422

StrictMath 422

Compiler 423

Thread, ThreadGroup, and Runnable 423
The Runnable Interface, 423
Thread 423
ThreadGroup 426

ThreadLocal and InheritableThreadlLocal 432

Package i 432

RuntimePermission 434

Throwable 434

SecurityManager 434

StackTraceElement it 435

The CharSequence Interface 436

The Comparable Interface 436

The java.lang.ref and java.lang.reflect Packages 437
javalangref 437
javalang.reflect il 437

15 java.util Part 1: The Collections Framework 439

Collections OVEIVIEW ...\ttt et ittt et e 441

The Collection Interfacesoouiiiiineiineiineeinennn. 442
The Collection Interface, 443
The ListInterfacet 445
The SetInterfaceot 447
The SortedSetInterfaceccoiiiiiiiineinnna... 447

The Collection ClassSesvvuttiie ettt 448
The ArrayList Class, 449
The LinkedList Classuiiiiineiiineiiinennnn. 452
The HashSet Classcooiiiiiiii i 454
The LinkedHashSet Classc.ciiiiiiinennnn.... 456
The TreeSet Classcvvuei i 456

Accessing a Collection via an Iterator 457

Usinganlterator il 457

16

17

Contents

Storing User-Defined Classes in Collections 460
The RandomAccess Interface, 462
WorkingwithMaps 462
The Map Interfaces, 462
TheMap Classescoiiiiiiiiiiiiii i 466
Comparators 471
Using a Comparatorooiiiiiian. 472
The Collection Algorithms, 475
ATTAYS .o 480
The Legacy Classes and Interfaces 484
The Enumeration Interface 484
VOO oot 485
StACK ot 490
Dictionary 492
Hashtablec. i 494
Properties 498
Using store()and load() 502
Collections SUMMAryouiiiiiiiiii i 504
java.util Part 2: More Utility Classes 505
StringTokenizer 506
BitSet .. 508
Date .o 512
Date Comparison i 514
Calendart 514
GregorianCalendar 519
TIMeZONE . .ottt 521
SimpleTimeZone 522
Locale ... 523
Random 524
Observable 527
The Observer Interfacec.ciiiiiiinena... 528
An Observer Example 528
Timer and TimerTaskiiiiiiii e 531
CUITENCY . oottt 534
Thejava.util.zip Package i 536
The java.utiljar Package i 536
Input/Output: Exploring java.io 537
The Java I/O Classes and Interfacesooiiiieiinoo... 538
File ..o 539
Directories 542
Using FilenameFilter 543
The listFiles() Alternativecoiiiiiiinnneaa.. 544
Creating Directories 545
The Stream Classesouuiiiiie ettt 545

The Byte Streams i 546

XV

Xvi Java™ 2: The Complete Reference

InputStream 546
OutputStream 547
FileInputStream i 548
FileOutputStream 550
ByteArraylnputStream o 552
ByteArrayOutputStream 553

Filtered Byte Streams 555
Buffered Byte Streamso il 555
SequencelnputStream 559
PrintStream 561
RandomAccessFile i 561

The Character Streamsuuiiiiee it 562
Readerot 562

Writer .o 562
FileReaderoiiii e 562
FileWriter 565
CharArrayReader i, 566
CharArrayWriter i 567
BufferedReader it 569
BufferedWriter o i e 570
PushbackReader, 571
PrintWriter 572

Using Stream I/O 572
Improving we() Using a StreamTokenizer 574
Serializationt e 577
Serializable 577
Externalizablet 578
ObjectOutput 578
ObjectOutputStream, 579
ObjectInput 580
ObjectInputStream o 581

A Serialization Example o o 583

Stream Benefits 585
18 Networking il 587
Networking Basics i 588
SOCket OVEIVIEW ..ottt e i i 588
ClHent/Server 589
Reserved Socketsccoiiiiiiiiii 589

Proxy Servers 590

Internet Addressing o 590
Javaand the Net i s 591
The Networking Classes and Interfaces 592
INetAddresst 592
Factory Methods 593

Instance Methods i 594

TCP/IP Client SOcketst 594

Whois ..o 596

19

20

Contents

URL oo 597
Format 597
URLConnectionoiiiiiiiiii i 599
TCP/IP Server SOCKets e 601
A Caching Proxy HTTP Servero .. 602
Source Codeo 602
Datagrams 623
DatagramPacket i 624
Datagram Server and Client 624
Inet4Address and InetbAddress ... 626
The URICIASS . ..vvu e 626
The AppletClass 627
AppletBasics 628
The AppletClass 629

Applet Architecture 632
An Applet Skeleton 632
Applet Initialization and Termination 634
Overriding update() i 635

Simple Applet Display Methods 636
Requesting Repainting i 638
A Simple Banner Applet i 639

Using the Status Window 642
The HTML APPLET Tag it 643
Passing Parameters to Applets 644
Improving the Banner Applet 647
getDocumentBase() and getCodeBase() 648
AppletContext and showDocument() 649
The AudioClip Interface i 651
The AppletStub Interface 652
Outputting tothe Console ... 652
EventHandling 653
Two Event Handling Mechanisms 654
The Delegation Event Model 654
Events 655
EventSources i 655

Event Listeners i 656

Event Classesuuuetteee i 656
The ActionEventClass i .. 658

The AdjustmentEvent Class 659

The ComponentEventClass 660

The ContainerEvent Class ooiiiiiiiii.. 660

The FocusEventClass, 661

The InputEventClass 661

The ItemEvent Class, 662

The KeyEventClass, 663

The MouseEvent Classouiiiiiineiinennnnann. 664

Xvii

Xviii Java™ 2: The Complete Reference

The MouseWheelEvent Classcooiiiieinnn.... 665
The TextEvent Classiiiineiieeiieennn. 666
The WindowEventClassccoviiineiiinennnnnn. 667
Sources Of EVents i 668
Event Listener Interfacest 669
The ActionListener Interface 670
The AdjustmentListener Interface 670
The ComponentListener Interface 670
The ContainerListener Interface 670
The FocusListener Interfacecovviiin.... 670
The ItemListener Interface i, 671
The KeyListener Interface 671
The MouseListener Interface, 671
The MouseMotionListener Interface 671
The MouseWheelListener Interface 672
The TextListener Interface 672
The WindowFocusListener Interface 672
The WindowListener Interface 672
Using the Delegation Event Model 673
Handling Mouse Events 673
Handling Keyboard Events 676
Adapter Classesoiuuiiiiiiiii i 680
INNer Classes ... vvvnie it e 682
Anonymous Inner Classes 684

21 Introducing the AWT: Working with Windows,

Graphics,and Text 687
AWT Classesuinuii e 688
Window Fundamentals 691

Componentt 691
Container 692
Panel 692
Window 693
Frame 693
CanVas ... 693
Working with Frame Windows, 693
Setting the Window’s Dimensions 694
Hiding and Showing a Window 694
Settinga Window’s Title, 694
Closing a Frame Window 694
Creating a Frame Window inan Applet 695
Handling Events in a Frame Window 697
Creating a Windowed Program i 702
Displaying Information Withina Window 704
Working with Graphicsl 705
Drawing Lines 705
Drawing Rectangles 706

Drawing Ellipses and Circles 708

22

Contents

Drawing Arcso 709
Drawing Polygons i 710

Sizing Graphicso i 711
Working withColor 712
ColorMethodsoiiii e 713

Setting the Current Graphics Color 714

A Color Demonstration Applet 714

Setting the PaintModeo 715
Working with Fontsl 717
Determining the Available Fonts 719
Creating and Selectinga Font 720
Obtaining Font Information 722
Managing Text Output Using FontMetrics 723
Displaying Multiple Lines of Text 725
Centering Text 727
Multiline Text Alignment 728
Exploring Text and Graphics i 733
Using AWT Controls, Layout Managers, and Menus 735
Control Fundamentals00t 736
Adding and Removing Controls 736
Responding to Controls 737

Labels ... 737
Using Buttons 739
Handling Buttons i 739
Applying Check Boxes i 743
Handling Check Boxes i, 743
CheckboXGIoup ..ot 745
Choice CONtrOlS . ..ottt e e e e et 748
Handling Choice Lists 748

Using Lists ... 751
Handling Lists i 752
Managing Scroll Bars i 754
Handling Scroll Bars 756

Usinga TextField 758
Handling a TextField 759
UsingaTextArea ...t 761
Understanding Layout Managers 763
FlowLayoutcoiiiiiiiiiiiiiiiii i 764
BorderLayout 766
UsingInsets 768
GridLayout i 770
CardLayout 772

Menu Barsand Menusiiiiiiiiiii e 775
Dialog BOXeS 782
FileDialog 788
Handling Events by Extending AWT Components 790
Extending Button ool 792

Extending Checkbox i i 793

Xix

XX Java™ 2: The Complete Reference

Extending a Check Box Group 794
Extending Choicel 795
Extending List i 795
Extending Scrollbaro 797
Exploring the Controls, Menus, and Layout Managers 798
23 Imageso i 799
File Formats i 800
Image Fundamentals: Creating, Loading, and Displaying 801
Creating an Image Object oo, 801
LoadinganImage 801
DisplayinganImage 802
ImageObserver 803
ImageObserver Example 805

Double Buffering 807
MediaTracker 811
ImageProducer 815
MemorylmageSource il 815
ImageConsumer i 817
PixelGrabber i 818
ImageFilter 821
CropImageFilter i i i 821
RGBImageFilterl 823

Cell Animation ...t 837
Additional Imaging Classeso i 840
24 New I/O, Regular Expressions, and Other Packages 843
The Core Java APIPackages, 844
The New I/OPackagescoouiiiiiiiiiiiiiiiiniinn . 847
NIO Fundamentals, 847
Charsets and Selectors 851

Using the New I/OSystem 851

Is NIO the Future of I/O Handling? 859

Regular Expression Processing i 859
Pattern 859

Matcher 860

Regular Expression Syntax 861
Demonstrating Pattern Matching 861

Two Pattern-Matching Options 868
Exploring Regular Expressions 869
Reflection ... 869
Remote Method Invocation (RMI) oo iii.. 874
A Simple Client/Server Application Using RMI 874

Text Formatting 878
DateFormat Class, 878

SimpleDateFormat Class, 880

25

26

27

Contents
| Part Ill_|
Software Development Using Java

JavaBeans 885
WhatIsaJavaBean? o 886
Advantagesof JavaBeans o oo 887
Application Builder Tools 887
Using the Bean Developer Kit (BDK) 888
Installing the BDK i 888

Starting the BDKl 889
Usingthe BDK i i 889
JARFILES ..t 891
Manifest Files 892

TheJAR Utility 892
Introspection 894
Design Patterns for Properties 894

Design Patterns for Events 896
Methods 897
Developing a Simple Bean Using the BDK 897
CreateaNew Bean i, 898

Using Bound Properties i 902
StePS o 902

Using the BeanInfo Interface, 903
Constrained Properties 905
Persistence 905
CUSTOMUIZETS .+ v vttt ettt e et e et e e e e et e et 906
TheJavaBeans APL 906
Using Bean Builder i 911
Building a Simple Bean Builder Application 913
ATourof Swing i 921
JApplet 923
Iconsand Labels i e 923
TextFieldso 925
BUuttons ... 927
The JButton Classcouiiiiinniiiiiiiiiae e 927

Check BOXES ..ottt e e 930

Radio BUuttonsoiiiiiini i 932

Combo BOXES ...t 934
Tabbed Panescoo i 936
SCroll Panest 939
O ottt 941
Tables ... 946
Exploring Swing 948
Servlets ... 949

Background 950

XXii

Java™ 2: The Complete Reference

28

The Life Cycleof aServlet 951
Using Tomcat For Servlet Development 951
ASimpleServlet 953
Create and Compile the Servlet Source Code 953
Start Tomcat i 954
Start a Web Browser and Request the Servlet 954
The Servlet APT 954
The javax.servlet Packageol 955
The Servlet Interface 955
The ServletConfig Interface 956
The ServletContext Interface 957
The ServletRequest Interface 957
The ServletResponse Interface 957
The SingleThreadModel Interface 957
The GenericServlet Classo, 960
The ServletinputStream Class 960
The ServletOutputStream Class 960
The Servlet Exception Classes 960
Reading Servlet Parameters o 960
The javax.servlethttp Package, 962
The HttpServletRequest Interface 963
The HttpServletResponse Interface 965
The HttpSession Interface 966
The HttpSessionBindingListener Interface 967
The Cookie Class ...t 967
The HttpServlet Class 969
The HttpSessionEvent Class 970
The HttpSessionBindingEvent Class 971
Handling HTTP Requests and Responses 971
Handling HTTP GET Requests 971
Handling HTTP POST Requests 973
Using Cookies i 975
Session Tracking i 977
Security Issues 979
Migrating from C++toJava 981
The Differences Between C++and Javacoovuun..... 982
What Java Has Removed from C++ 982
New Features Added by Java 984
Features That Differ 985
Eliminating Pointers i 985
Converting Pointer Parameters 986
Converting Pointers that Operate on Arrays 988
C++ Reference Parameters Versus Java Reference Parameters 991
Converting C++ Abstract Classes into Java Interfaces 995
Converting Default Arguments 999
Converting C++ Multiple-Inheritance Hierarchies 1001

Destructors Versus Finalization 1003

29

30

31

32

Contents
Applying Java

The DynamicBillboard Applet 1011
The APPLET Tag i 1012
Source Code Overviewo 1014
DynamicBillboardjava 1014
BillDatajavacoiiiiii 1022
BillTransitionjava o i 1024
ColumnTransitionjava, 1026
FadeTransitionjava, 1029
SmashTransitionjava 1033
TearTransitionjava 1036
UnrollTransitionjava, 1040
DynamicCode 1044
ImageMenu: An Image-Based WebMenu 1047
The SourceImage i 1049
The APPLET Tagoovoii e 1050
TheMethods 1051
INHE() Lo 1051
update() ... 1051
lateInit() ... 1051

paint() ... 1051
mouseExited() ... 1052
mouseDragged() 1052
mouseMoved() ... 1052
mouseReleased() 1053
TheCodeo i 1053
SUMMATY ... 1056
The Lavatron Applet: A Sports Arena Display 1057
How Lavatron Works o i 1059
The Source Code 1060
The APPLETTagc.ooviiiiiiii i 1060
Lavatronjava i 1060
IntHash() ..o 1065
HotLavao 1067
Scrabblet: A Multiplayer Word Game 1069
Network Security Concerns i 1070
TheGame 1071
SCOTING ..ot 1074

The Source Code 1076
The APPLETTagooviiiii i 1076
Scrabbletjavao 1077

IntroCanvasjava i 1090

XXiii

XXiv

Java™ 2: The Complete Reference

Boardjava 1091
Bagjava ... 1109
Letterjava ... 1111
ServerConnectionjava, 1117
The Server Code ..ot 1123
SeIVerjavai.iiiiii 1123
ClientConnectionjavaoouuiiiiiiiiiinea.nn. 1127
Enhancing Scrabblet i 1131
Using Java’s Documentation Comments 1133
ThejavadocTagscooiiii i 1134
@author 1135
@deprecated 1135
{@AOCROOL) . oot 1135
@exception 1135
{@InheritDoc)t 1136
{@INK} .. 1136
{@linkplain} 1136
@param 1136
[< D 1136
@SBE . . vt e 1136
@serial 1137
@serialDataoii 1137
@serialField 1137
@SINCE ot ittt e 1137
@ENTOWS .ottt 1138
{@value) ... 1138
@VETSION .\ ottt ettt e e e e e e e 1138
The General Form of a Documentation Comment 1138
WhatjavadocOutputs i 1138
An Example that Uses Documentation Comments 1139

Index .. 1141

Preface

the face of computing and programmers unwilling to master its environment will
be left behind.

The preceding is a strong statement. It is also true. More and more, applications
must interface to the Web. It no longer matters much what the application is, near
universal Web access is dragging, pushing, and coaxing programmers to program for
the online world, and Java is the language that many will use to do it. Frankly, fluency
in Java is no longer an option for the professional programmer, it is a requirement. This
book will help you acquire it.

Aside from being the preeminent language of the Internet, Java is important for
another reason: it has altered the course of computer language development. Many of
the features first mainstreamed by Java are now finding their way into other languages.
For example, the new C# language is strongly influenced by Java. Knowledge of Java
opens the door to the latest innovations in programming. Put directly, Java is one of the
world’s most important computer languages.

The past few years document the following fact: The Web has irrevocably recast

XXV

XXvi Java™ 2: The Complete Reference

| A Book for All Programmers

To use this book does not require any previous programming experience. However,

if you come from a C/C++ background, then you will be able to advance a bit more
rapidly. As most readers will know, Java is similar, in form and spirit, to C/C++. Thus,
knowledge of those langauges helps, but is not necessary. Even if you have never
programmed before, you can learn to program in Java using this book.

___|wnat’s Inside

This book covers all aspects of the Java programming language. Part 1 presents an
in-depth tutorial of the Java language. It begins with the basics, including such things
as data types, control statements, and classes. Part 1 also discusses Java’s
exception-handling mechanism, multithreading subsystem, packages, and interfaces.

Part 2 examines the standard Java library. As you will learn, much of Java’s power
is found in its library. Topics include strings, I/O, networking, the standard utilities,
the Collections Framework, applets, GUI-based controls, and imaging.

Part 3 looks at some issues relating to the Java development environment, including
an overview of Java Beans, Servlets, and Swing.

Part 4 presents a number of high-powered Java applets that serve as extended
examples of the way Java can be applied. The final applet, called Scrabblet, is a complete,
multiuser networked game. It shows how to handle some of the toughest issues involved
in Web-based programming.

_| What’s New in the Fifth Edition

The differences between this and the previous editions of this book mostly involve those
features added by Java 2, version 1.4. Of the many new features found in version 1.4,
perhaps the most important are the assert keyword, the channel-based I/O subsystem,
chained exceptions, and networking enhancements. This fifth edition has been fully
updated to reflect those and other additions. New features are clearly noted in the text,
as are features added by previous releases.

This fifth edition also updates and restores the Sevlets chapter. Previously
this chapter relied upon the now out-dated JSDK (Java Servlets Developers Kit)
to develop and test servlets. It now uses Apache Tomcat, which is the currently
recommended tool.

___| Don’t Forget: Code on the Web

Remember, the source code for all of the examples and projects in this book is available
free-of-charge on the Web at www.osborne.com.

Preface XXVii

___| special Thanks

Special thanks to Patrick Naughton. Patrick was one of the creators of the Java

language. He also helped write the first edition of this book. For example, much of

the material in chapters 17, 18, 23, 29, 30, 31, and 32 was initially provided by Patrick.

His insights, expertise, and energy contributed greatly to the success of this book.
Thanks also go to Joe O'Neil for providing the initial drafts for chapters 24, 25, 26,

and 27. Joe has helped on several of my books and, as always, his efforts are appreciated.

HERBERT SCHILDT
May 25, 2002
Mahomet, Illinois

XXxviii Java™ 2: The Complete Reference

| For Further Study

Java 2: The Complete Reference is your gateway to the Herb Schildt series of programming
books. Here are some others that you will find of interest:

To learn more about Java programming, we recommend the following:
Java 2: A Beginner’s Guide
Java 2 Programmer’s Reference
To learn about C++, you will find these books especially helpful:
C++: The Complete Reference
C++: A Beginner’s Guide
Teach Yourself C++
C++ From the Ground Up
STL Programming From the Ground Up
To learn about C#, we suggest the following Schildt books:
C#: A Beginner’s Guide
C#: The Complete Reference

If you want to learn more about the C language, the foundation of all modern
programming, then the following titles will be of interest:

C: The Complete Reference
Teach Yourself C

When you need solid answers, fast, turn to Herbert Schildt,
the recognized authority on programming.

gl
Part |

The Java Language

This page intentionally left blank.

gl
Chapter 1

The Genesis of Java

4 Java™ 2: The Complete Reference

Bled to C, C evolved into C++, and C++ set the stage for Java. To understand

Java is to understand the reasons that drove its creation, the forces that
shaped it, and the legacy that it inherits. Like the successful computer languages that
came before, Java is a blend of the best elements of its rich heritage combined with the
innovative concepts required by its unique environment. While the remaining chapters
of this book describe the practical aspects of Java—including its syntax, libraries, and
applications—in this chapter, you will learn how and why Java came about, and what
makes it so important.

Although Java has become inseparably linked with the online environment of the
Internet, it is important to remember that Java is first and foremost a programming
language. Computer language innovation and development occurs for two fundamental
reasons:

When the chronicle of computer languages is written, the following will be said:

B To adapt to changing environments and uses

B To implement refinements and improvements in the art of programming

As you will see, the creation of Java was driven by both elements in nearly
equal measure.

__ | Java’s Lineage

Java is related to C++, which is a direct descendent of C. Much of the character of Java

is inherited from these two languages. From C, Java derives its syntax. Many of Java’s
object-oriented features were influenced by C++. In fact, several of Java’s defining
characteristics come from—or are responses to—its predecessors. Moreover, the creation
of Java was deeply rooted in the process of refinement and adaptation that has been
occurring in computer programming languages for the past three decades. For these
reasons, this section reviews the sequence of events and forces that led up to Java. As
you will see, each innovation in language design was driven by the need to solve a
fundamental problem that the preceding languages could not solve. Java is no exception.

The Birth of Modern Programming: C

The C language shook the computer world. Its impact should not be underestimated,
because it fundamentally changed the way programming was approached and thought
about. The creation of C was a direct result of the need for a structured, efficient, high-
level language that could replace assembly code when creating systems programs. As
you probably know, when a computer language is designed, trade-offs are often made,
such as the following:

B Ease-of-use versus power
B Safety versus efficiency

B Rigidity versus extensibility

Chapter 1: The Genesis of Java

Prior to C, programmers usually had to choose between languages that optimized
one set of traits or the other. For example, although FORTRAN could be used to write
fairly efficient programs for scientific applications, it was not very good for systems
code. And while BASIC was easy to learn, it wasn’t very powerful, and its lack of
structure made its usefulness questionable for large programs. Assembly language
can be used to produce highly efficient programs, but it is not easy to learn or use
effectively. Further, debugging assembly code can be quite difficult.

Another compounding problem was that early computer languages such as BASIC,
COBOL, and FORTRAN were not designed around structured principles. Instead, they
relied upon the GOTO as a primary means of program control. As a result, programs
written using these languages tended to produce “spaghetti code”—a mass of tangled
jumps and conditional branches that make a program virtually impossible to
understand. While languages like Pascal are structured, they were not designed for
efficiency, and failed to include certain features necessary to make them applicable to
a wide range of programs. (Specifically, given the standard dialects of Pascal available
at the time, it was not practical to consider using Pascal for systems-level code.)

So, just prior to the invention of C, no one language had reconciled the conflicting
attributes that had dogged earlier efforts. Yet the need for such a language was
pressing. By the early 1970s, the computer revolution was beginning to take hold, and
the demand for software was rapidly outpacing programmers’ ability to produce it.

A great deal of effort was being expended in academic circles in an attempt to create a
better computer language. But, and perhaps most importantly, a secondary force was
beginning to be felt. Computer hardware was finally becoming common enough that a
critical mass was being reached. No longer were computers kept behind locked doors.
For the first time, programmers were gaining virtually unlimited access to their
machines. This allowed the freedom to experiment. It also allowed programmers to
begin to create their own tools. On the eve of C’s creation, the stage was set for a
quantum leap forward in computer languages.

Invented and first implemented by Dennis Ritchie on a DEC PDP-11 running the
UNIX operating system, C was the result of a development process that started with
an older language called BCPL, developed by Martin Richards. BCPL influenced a
language called B, invented by Ken Thompson, which led to the development of C
in the 1970s. For many years, the de facto standard for C was the one supplied with
the UNIX operating system and described in The C Programming Language by Brian
Kernighan and Dennis Ritchie (Prentice-Hall, 1978). C was formally standardized in
December 1989, when the American National Standards Institute (ANSI) standard for
C was adopted.

The creation of C is considered by many to have marked the beginning of the
modern age of computer languages. It successfully synthesized the conflicting
attributes that had so troubled earlier languages. The result was a powerful, efficient,
structured language that was relatively easy to learn. It also included one other, nearly
intangible aspect: it was a programmer’s language. Prior to the invention of C, computer
languages were generally designed either as academic exercises or by bureaucratic
committees. C is different. It was designed, implemented, and developed by real,

6 Java™ 2: The Complete Reference

working programmers, reflecting the way that they approached the job of programming.
Its features were honed, tested, thought about, and rethought by the people who
actually used the language. The result was a language that programmers liked to use.
Indeed, C quickly attracted many followers who had a near-religious zeal for it. As
such, it found wide and rapid acceptance in the programmer community. In short,

Cis a language designed by and for programmers. As you will see, Java has inherited
this legacy.

The Need for C++

During the late 1970s and early 1980s, C became the dominant computer programming
language, and it is still widely used today. Since C is a successful and useful language,
you might ask why a need for something else existed. The answer is complexity.
Throughout the history of programming, the increasing complexity of programs has
driven the need for better ways to manage that complexity. C++ is a response to that
need. To better understand why managing program complexity is fundamental to the
creation of C++, consider the following.

Approaches to programming have changed dramatically since the invention of the
computer. For example, when computers were first invented, programming was done
by manually toggling in the binary machine instructions by use of the front panel. As
long as programs were just a few hundred instructions long, this approach worked.
As programs grew, assembly language was invented so that a programmer could deal
with larger, increasingly complex programs by using symbolic representations of the
machine instructions. As programs continued to grow, high-level languages were
introduced that gave the programmer more tools with which to handle complexity.

The first widespread language was, of course, FORTRAN. While FORTRAN was
an impressive first step, it is hardly a language that encourages clear and easy-to-
understand programs. The 1960s gave birth to structured programming. This is the
method of programming championed by languages such as C. The use of structured
languages enabled programmers to write, for the first time, moderately complex
programs fairly easily. However, even with structured programming methods, once a
project reaches a certain size, its complexity exceeds what a programmer can manage.
By the early 1980s, many projects were pushing the structured approach past its limits.
To solve this problem, a new way to program was invented, called object-oriented
programming (OOP). Object-oriented programming is discussed in detail later in this
book, but here is a brief definition: OOP is a programming methodology that helps
organize complex programs through the use of inheritance, encapsulation, and
polymorphism.

In the final analysis, although C is one of the world’s great programming languages,
there is a limit to its ability to handle complexity. Once a program exceeds somewhere
between 25,000 and 100,000 lines of code, it becomes so complex that it is difficult to
grasp as a totality. C++ allows this barrier to be broken, and helps the programmer
comprehend and manage larger programs.

Chapter 1: The Genesis of Java

C++ was invented by Bjarne Stroustrup in 1979, while he was working at Bell
Laboratories in Murray Hill, New Jersey. Stroustrup initially called the new language
“C with Classes.” However, in 1983, the name was changed to C++. C++ extends C
by adding object-oriented features. Because C++ is built upon the foundation of C,
it includes all of C’s features, attributes, and benefits. This is a crucial reason for the
success of C++ as a language. The invention of C++ was not an attempt to create a
completely new programming language. Instead, it was an enhancement to an already
highly successful one.

The Stage Is Set for Java

By the end of the 1980s and the early 1990s, object-oriented programming using C++
took hold. Indeed, for a brief moment it seemed as if programmers had finally found
the perfect language. Because C++ blended the high efficiency and stylistic elements of
C with the object-oriented paradigm, it was a language that could be used to create a
wide range of programs. However, just as in the past, forces were brewing that would,
once again, drive computer language evolution forward. Within a few years, the World
Wide Web and the Internet would reach critical mass. This event would precipitate
another revolution in programming.

___| The creation of Java

Java was conceived by James Gosling, Patrick Naughton, Chris Warth, Ed Frank, and
Mike Sheridan at Sun Microsystems, Inc. in 1991. It took 18 months to develop the first
working version. This language was initially called “Oak” but was renamed “Java”
in 1995. Between the initial implementation of Oak in the fall of 1992 and the public
announcement of Java in the spring of 1995, many more people contributed to the design
and evolution of the language. Bill Joy, Arthur van Hoff, Jonathan Payne, Frank Yellin,
and Tim Lindholm were key contributors to the maturing of the original prototype.
Somewhat surprisingly, the original impetus for Java was not the Internet! Instead,
the primary motivation was the need for a platform-independent (that is, architecture-
neutral) language that could be used to create software to be embedded in various
consumer electronic devices, such as microwave ovens and remote controls. As you
can probably guess, many different types of CPUs are used as controllers. The trouble
with C and C++ (and most other languages) is that they are designed to be compiled
for a specific target. Although it is possible to compile a C++ program for just about
any type of CPU, to do so requires a full C++ compiler targeted for that CPU. The
problem is that compilers are expensive and time-consuming to create. An easier—
and more cost-efficient—solution was needed. In an attempt to find such a solution,
Gosling and others began work on a portable, platform-independent language that
could be used to produce code that would run on a variety of CPUs under differing
environments. This effort ultimately led to the creation of Java.

Java™ 2: The Complete Reference

About the time that the details of Java were being worked out, a second, and
ultimately more important, factor was emerging that would play a crucial role
in the future of Java. This second force was, of course, the World Wide Web. Had
the Web not taken shape at about the same time that Java was being implemented,
Java might have remained a useful but obscure language for programming consumer
electronics. However, with the emergence of the World Wide Web, Java was propelled
to the forefront of computer language design, because the Web, too, demanded
portable programs.

Most programmers learn early in their careers that portable programs are as
elusive as they are desirable. While the quest for a way to create efficient, portable
(platform-independent) programs is nearly as old as the discipline of programming
itself, it had taken a back seat to other, more pressing problems. Further, because much
of the computer world had divided itself into the three competing camps of Intel,
Macintosh, and UNIX, most programmers stayed within their fortified boundaries,
and the urgent need for portable code was reduced. However, with the advent of the
Internet and the Web, the old problem of portability returned with a vengeance. After
all, the Internet consists of a diverse, distributed universe populated with many types
of computers, operating systems, and CPUs. Even though many types of platforms
are attached to the Internet, users would like them all to be able to run the same
program. What was once an irritating but low-priority problem had become a
high-profile necessity.

By 1993, it became obvious to members of the Java design team that the problems
of portability frequently encountered when creating code for embedded controllers
are also found when attempting to create code for the Internet. In fact, the same problem
that Java was initially designed to solve on a small scale could also be applied to the
Internet on a large scale. This realization caused the focus of Java to switch from
consumer electronics to Internet programming. So, while the desire for an architecture-
neutral programming language provided the initial spark, the Internet ultimately led to
Java’s large-scale success.

As mentioned earlier, Java derives much of its character from C and C++. This is
by intent. The Java designers knew that using the familiar syntax of C and echoing
the object-oriented features of C++ would make their language appealing to the
legions of experienced C/C++ programmers. In addition to the surface similarities,
Java shares some of the other attributes that helped make C and C++ successful. First,
Java was designed, tested, and refined by real, working programmers. It is a language
grounded in the needs and experiences of the people who devised it. Thus, Java is also
a programmer’s language. Second, Java is cohesive and logically consistent. Third,
except for those constraints imposed by the Internet environment, Java gives you, the
programmer, full control. If you program well, your programs reflect it. If you program
poorly, your programs reflect that, too. Put differently, Java is not a language with
training wheels. It is a language for professional programmers.

Chapter 1: The Genesis of Java 9

Because of the similarities between Java and C++, it is tempting to think of Java as
simply the “Internet version of C++.” However, to do so would be a large mistake. Java
has significant practical and philosophical differences. While it is true that Java was
influenced by C++, it is not an enhanced version of C++. For example, Java is neither
upwardly nor downwardly compatible with C++. Of course, the similarities with C++
are significant, and if you are a C++ programmer, then you will feel right at home with
Java. One other point: Java was not designed to replace C++. Java was designed to
solve a certain set of problems. C++ was designed to solve a different set of problems.
Both will coexist for many years to come.

As mentioned at the start of this chapter, computer languages evolve for two
reasons: to adapt to changes in environment and to implement advances in the art
of programming. The environmental change that prompted Java was the need for
platform-independent programs destined for distribution on the Internet. However,
Java also embodies changes in the way that people approach the writing of programs.
Specifically, Java enhances and refines the object-oriented paradigm used by C++.
Thus, Java is not a language that exists in isolation. Rather, it is part of an ongoing
process begun many years ago. This fact alone is enough to ensure Java a place in
computer language history. Java is to Internet programming what C was to systems
programming: a revolutionary force that changed the world.

The C# Connection

The reach and power of Java continues to be felt in the world of computer language
development. Many of its innovative features, constructs, and concepts have become
part of the baseline for any new language. The success of Java is simply too important
to ignore.

Perhaps the most important example of Java’s influence is C#. Recently created by
Microsoft to support the NET Framework, C# is closely related to Java. For example,
both share the same general C++-style syntax, support distributed programming, and
utilize the same object model. There are, of course, differences between Java and C#,
but the overall “look and feel” of these languages is very similar. This “cross-pollination”
from Java to C# is the strongest testimonial to date that Java redefined the way we
think about and use a computer language.

| Why Java Is Important to the Internet

The Internet helped catapult Java to the forefront of programming, and Java, in turn,
has had a profound effect on the Internet. The reason for this is quite simple: Java
expands the universe of objects that can move about freely in cyberspace. In a network,
two very broad categories of objects are transmitted between the server and your
personal computer: passive information and dynamic, active programs. For example,

10

Java™ 2: The Complete Reference

when you read your e-mail, you are viewing passive data. Even when you download a
program, the program’s code is still only passive data until you execute it. However, a
second type of object can be transmitted to your computer: a dynamic, self-executing
program. Such a program is an active agent on the client computer, yet is initiated by
the server. For example, a program might be provided by the server to display properly
the data that the server is sending.

As desirable as dynamic, networked programs are, they also present serious
problems in the areas of security and portability. Prior to Java, cyberspace was
effectively closed to half the entities that now live there. As you will see, Java addresses
those concerns and, by doing so, has opened the door to an exciting new form of
program: the applet.

Java Applets and Applications

Java can be used to create two types of programs: applications and applets. An
application is a program that runs on your computer, under the operating system of that
computer. That is, an application created by Java is more or less like one created using C
or C++. When used to create applications, Java is not much different from any other
computer language. Rather, it is Java’s ability to create applets that makes it important.
An applet is an application designed to be transmitted over the Internet and executed by
a Java-compatible Web browser. An applet is actually a tiny Java program, dynamically
downloaded across the network, just like an image, sound file, or video clip. The
important difference is that an applet is an intelligent program, not just an animation or
media file. In other words, an applet is a program that can react to user input and
dynamically change—not just run the same animation or sound over and over.

As exciting as applets are, they would be nothing more than wishful thinking if
Java were not able to address the two fundamental problems associated with them:
security and portability. Before continuing, let’s define what these two terms mean
relative to the Internet.

Security

As you are likely aware, every time that you download a “normal” program, you
are risking a viral infection. Prior to Java, most users did not download executable
programs frequently, and those who did scanned them for viruses prior to execution.
Even so, most users still worried about the possibility of infecting their systems with
a virus. In addition to viruses, another type of malicious program exists that must be
guarded against. This type of program can gather private information, such as credit
card numbers, bank account balances, and passwords, by searching the contents of
your computer’s local file system. Java answers both of these concerns by providing
a “firewall” between a networked application and your computer.

When you use a Java-compatible Web browser, you can safely download Java
applets without fear of viral infection or malicious intent. Java achieves this protection
by confining a Java program to the Java execution environment and not allowing it

Chapter 1: The Genesis of Java 11

access to other parts of the computer. (You will see how this is accomplished shortly.)
The ability to download applets with confidence that no harm will be done and that
no security will be breached is considered by many to be the single most important
aspect of Java.

Portability

As discussed earlier, many types of computers and operating systems are in use
throughout the world—and many are connected to the Internet. For programs to

be dynamically downloaded to all the various types of platforms connected to the
Internet, some means of generating portable executable code is needed. As you will
soon see, the same mechanism that helps ensure security also helps create portability.
Indeed, Java’s solution to these two problems is both elegant and efficient.

__ | Java’s Magic: The Bytecode

The key that allows Java to solve both the security and the portability problems just
described is that the output of a Java compiler is not executable code. Rather, it is
bytecode. Bytecode is a highly optimized set of instructions designed to be executed
by the Java run-time system, which is called the Java Virtual Machine (JVM). That is,
in its standard form, the JVM is an interpreter for bytecode. This may come as a bit of
a surprise. As you know, C++ is compiled to executable code. In fact, most modern
languages are designed to be compiled, not interpreted—mostly because of
performance concerns. However, the fact that a Java program is executed by the
JVM helps solve the major problems associated with downloading programs over
the Internet. Here is why.

Translating a Java program into bytecode helps makes it much easier to run a
program in a wide variety of environments. The reason is straightforward: only the
JVM needs to be implemented for each platform. Once the run-time package exists
for a given system, any Java program can run on it. Remember, although the details
of the JVM will differ from platform to platform, all interpret the same Java bytecode.
If a Java program were compiled to native code, then different versions of the same
program would have to exist for each type of CPU connected to the Internet. This is,
of course, not a feasible solution. Thus, the interpretation of bytecode is the easiest way
to create truly portable programs.

The fact that a Java program is interpreted also helps to make it secure. Because the
execution of every Java program is under the control of the JVM, the JVM can contain
the program and prevent it from generating side effects outside of the system. As you
will see, safety is also enhanced by certain restrictions that exist in the Java language.

When a program is interpreted, it generally runs substantially slower than it would
run if compiled to executable code. However, with Java, the differential between the
two is not so great. The use of bytecode enables the Java run-time system to execute
programs much faster than you might expect.

12 Java™ 2: The Complete Reference

Although Java was designed for interpretation, there is technically nothing about
Java that prevents on-the-fly compilation of bytecode into native code. Along these
lines, Sun supplies its Just In Time (JIT) compiler for bytecode, which is included in
the Java 2 release. When the JIT compiler is part of the JVM, it compiles bytecode into
executable code in real time, on a piece-by-piece, demand basis. It is important to
understand that it is not possible to compile an entire Java program into executable
code all at once, because Java performs various run-time checks that can be done only
at run time. Instead, the JIT compiles code as it is needed, during execution. However,
the just-in-time approach still yields a significant performance boost. Even when
dynamic compilation is applied to bytecode, the portability and safety features still
apply, because the run-time system (which performs the compilation) still is in charge
of the execution environment. Whether your Java program is actually interpreted in the
traditional way or compiled on-the-fly, its functionality is the same.

___| The Java Buzzwords

No discussion of the genesis of Java is complete without a look at the Java buzzwords.
Although the fundamental forces that necessitated the invention of Java are portability
and security, other factors also played an important role in molding the final form of
the language. The key considerations were summed up by the Java team in the
following list of buzzwords:
B Simple
Secure
Portable
Object-oriented
Robust
Multithreaded
Architecture-neutral
Interpreted
High performance
Distributed

Dynamic

Two of these buzzwords have already been discussed: secure and portable. Let’s
examine what each of the others implies.

Chapter 1: The Genesis of Java 13

Simple
Java was designed to be easy for the professional programmer to learn and use
effectively. Assuming that you have some programming experience, you will not find
Java hard to master. If you already understand the basic concepts of object-oriented
programming, learning Java will be even easier. Best of all, if you are an experienced
C++ programmer, moving to Java will require very little effort. Because Java inherits
the C/C++ syntax and many of the object-oriented features of C++, most programmers
have little trouble learning Java. Also, some of the more confusing concepts from C++
are either left out of Java or implemented in a cleaner, more approachable manner.
Beyond its similarities with C/C++, Java has another attribute that makes it easy
to learn: it makes an effort not to have surprising features. In Java, there are a small
number of clearly defined ways to accomplish a given task.

Object-Oriented

Although influenced by its predecessors, Java was not designed to be source-code
compatible with any other language. This allowed the Java team the freedom to design
with a blank slate. One outcome of this was a clean, usable, pragmatic approach to
objects. Borrowing liberally from many seminal object-software environments of the
last few decades, Java manages to strike a balance between the purist’s “everything is
an object” paradigm and the pragmatist’s “stay out of my way” model. The object
model in Java is simple and easy to extend, while simple types, such as integers, are
kept as high-performance nonobjects.

Robust

The multiplatformed environment of the Web places extraordinary demands on a
program, because the program must execute reliably in a variety of systems. Thus, the
ability to create robust programs was given a high priority in the design of Java. To
gain reliability, Java restricts you in a few key areas, to force you to find your mistakes
early in program development. At the same time, Java frees you from having to worry
about many of the most common causes of programming errors. Because Java is a
strictly typed language, it checks your code at compile time. However, it also checks
your code at run time. In fact, many hard-to-track-down bugs that often turn up in
hard-to-reproduce run-time situations are simply impossible to create in Java.
Knowing that what you have written will behave in a predictable way under diverse
conditions is a key feature of Java.

To better understand how Java is robust, consider two of the main reasons for
program failure: memory management mistakes and mishandled exceptional
conditions (that is, run-time errors). Memory management can be a difficult, tedious

14

Java™ 2: The Complete Reference

task in traditional programming environments. For example, in C/C++, the
programmer must manually allocate and free all dynamic memory. This sometimes
leads to problems, because programmers will either forget to free memory that has
been previously allocated or, worse, try to free some memory that another part of
their code is still using. Java virtually eliminates these problems by managing memory
allocation and deallocation for you. (In fact, deallocation is completely automatic,
because Java provides garbage collection for unused objects.) Exceptional conditions in
traditional environments often arise in situations such as division by zero or “file not
found,” and they must be managed with clumsy and hard-to-read constructs. Java
helps in this area by providing object-oriented exception handling. In a well-written
Java program, all run-time errors can—and should—be managed by your program.

Multithreaded

Java was designed to meet the real-world requirement of creating interactive,
networked programs. To accomplish this, Java supports multithreaded programming,
which allows you to write programs that do many things simultaneously. The Java
run-time system comes with an elegant yet sophisticated solution for multiprocess
synchronization that enables you to construct smoothly running interactive systems.
Java’s easy-to-use approach to multithreading allows you to think about the specific
behavior of your program, not the multitasking subsystem.

Architecture-Neutral

A central issue for the Java designers was that of code longevity and portability. One
of the main problems facing programmers is that no guarantee exists that if you write
a program today, it will run tomorrow—even on the same machine. Operating system
upgrades, processor upgrades, and changes in core system resources can all combine
to make a program malfunction. The Java designers made several hard decisions in the
Java language and the Java Virtual Machine in an attempt to alter this situation. Their
goal was “write once; run anywhere, any time, forever.” To a great extent, this goal
was accomplished.

Interpreted and High Performance

As described earlier, Java enables the creation of cross-platform programs by compiling
into an intermediate representation called Java bytecode. This code can be interpreted
on any system that provides a Java Virtual Machine. Most previous attempts at cross-
platform solutions have done so at the expense of performance. Other interpreted
systems, such as BASIC, Tcl, and PERL, suffer from almost insurmountable performance
deficits. Java, however, was designed to perform well on very low-power CPUs. As
explained earlier, while it is true that Java was engineered for interpretation, the Java
bytecode was carefully designed so that it would be easy to translate directly into native
machine code for very high performance by using a just-in-time compiler. Java run-time
systems that provide this feature lose none of the benefits of the platform-independent
code. “High-performance cross-platform” is no longer an oxymoron.

Chapter 1: The Genesis of Java

Distributed

Java is designed for the distributed environment of the Internet, because it handles
TCP/IP protocols. In fact, accessing a resource using a URL is not much different
from accessing a file. The original version of Java (Oak) included features for intra-
address-space messaging. This allowed objects on two different computers to execute
procedures remotely. Java revived these interfaces in a package called Remote Method
Invocation (RMI). This feature brings an unparalleled level of abstraction to client/
server programming.

Dynamic
Java programs carry with them substantial amounts of run-time type information that
is used to verify and resolve accesses to objects at run time. This makes it possible to
dynamically link code in a safe and expedient manner. This is crucial to the robustness
of the applet environment, in which small fragments of bytecode may be dynamically
updated on a running system.

___| The Continuing Revolution

The initial release of Java was nothing short of revolutionary, but it did not mark the
end of Java’s era of rapid innovation. Unlike most other software systems that usually
settle into a pattern of small, incremental improvements, Java continued to evolve at
an explosive pace. Soon after the release of Java 1.0, the designers of Java had already
created Java 1.1. The features added by Java 1.1 were more significant and substantial
than the increase in the minor revision number would have you think. Java 1.1 added
many new library elements, redefined the way events are handled by applets, and
reconfigured many features of the 1.0 library. It also deprecated (rendered obsolete)
several features originally defined by Java 1.0. Thus, Java 1.1 both added and
subtracted attributes from its original specification.

The next major release of Java was Java 2. Java 2 was a watershed event, marking
the beginning of the “modern age” of this rapidly evolving language! The first release
of Java 2 carried the version number 1.2. It may seem odd that the first release of Java 2
used the 1.2 version number. The reason is that it originally referred to the version of
the Java libraries, but it was generalized to refer to the entire release, itself. Java 2
added support for a number of new features, such as Swing and the Collections
framework, and it enhanced the Java Virtual Machine and various programming tools.
Java 2 also contained a few deprecations. The most important affected the Thread class
in which the methods suspend(), resume(), and stop() were deprecated.

The next release of Java was Java 2, version 1.3. This version of Java was the first
major upgrade to the original Java 2 release. For the most part it added to existing
functionality and “tightened up” the development environment. In general, programs
written for version 1.2 and those written for version 1.3 are source-code compatible.
Although version 1.3 contained a smaller set of changes than the preceding three major
releases, it was nevertheless important.

16

Java™ 2: The Complete Reference

The current release of Java is Java 2, version 1.4. This release contains several important
upgrades, enhancements, and additions. For example, it adds the new keyword assert,
chained exceptions, and a channel-based I/O subsystem. It also makes changes to the
Collections Framework and the networking classes. In addition, numerous small changes
are made throughout. Despite the significant number of new features, version 1.4
maintains nearly 100 percent source-code compatibility with prior versions.

This book covers all versions of Java 2. Of course, most of the material applies to
earlier versions of Java, too. Throughout this book, when a feature applies to a specific
version of Java, it will be so noted. Otherwise, you can simply assume that it applies to
Java, in general. Also, when referring to those features common to all versions of Java 2,
this book will simply use the term Java 2, without a reference to a version number.

gl
Chapter 2

An Overview of Java

A8 Java™ 2: The Complete Reference

Rather, they work together to form the language as a whole. However, this

interrelatedness can make it difficult to describe one aspect of Java without
involving several others. Often a discussion of one feature implies prior knowledge
of another. For this reason, this chapter presents a quick overview of several key
features of Java. The material described here will give you a foothold that will allow
you to write and understand simple programs. Most of the topics discussed will be
examined in greater detail in the remaining chapters of Part 1.

Like all other computer languages, the elements of Java do not exist in isolation.

___| Object-Oriented Programming

Object-oriented programming is at the core of Java. In fact, all Java programs are object-
oriented—this isn’t an option the way that it is in C++, for example. OOP is so integral
to Java that you must understand its basic principles before you can write even simple
Java programs. Therefore, this chapter begins with a discussion of the theoretical aspects
of OOP.

Two Paradigms

As you know, all computer programs consist of two elements: code and data. Furthermore,
a program can be conceptually organized around its code or around its data. That is,
some programs are written around “what is happening” and others are written around
“who is being affected.” These are the two paradigms that govern how a program is
constructed. The first way is called the process-oriented model. This approach characterizes
a program as a series of linear steps (that is, code). The process-oriented model can be
thought of as code acting on data. Procedural languages such as C employ this model to
considerable success. However, as mentioned in Chapter 1, problems with this approach
appear as programs grow larger and more complex.

To manage increasing complexity, the second approach, called object-oriented
programming, was conceived. Object-oriented programming organizes a program around
its data (that is, objects) and a set of well-defined interfaces to that data. An object-oriented
program can be characterized as data controlling access to code. As you will see, by switching
the controlling entity to data, you can achieve several organizational benefits.

Abstraction

An essential element of object-oriented programming is abstraction. Humans manage
complexity through abstraction. For example, people do not think of a car as a set of
tens of thousands of individual parts. They think of it as a well-defined object with its
own unique behavior. This abstraction allows people to use a car to drive to the grocery
store without being overwhelmed by the complexity of the parts that form the car. They
can ignore the details of how the engine, transmission, and braking systems work. Instead
they are free to utilize the object as a whole.

Chapter 2: An Overview of Java

A powerful way to manage abstraction is through the use of hierarchical classifications.
This allows you to layer the semantics of complex systems, breaking them into more
manageable pieces. From the outside, the car is a single object. Once inside, you see
that the car consists of several subsystems: steering, brakes, sound system, seat belts,
heating, cellular phone, and so on. In turn, each of these subsystems is made up of more
specialized units. For instance, the sound system consists of a radio, a CD player, and/or
a tape player. The point is that you manage the complexity of the car (or any other
complex system) through the use of hierarchical abstractions.

Hierarchical abstractions of complex systems can also be applied to computer
programs. The data from a traditional process-oriented program can be transformed
by abstraction into its component objects. A sequence of process steps can become a
collection of messages between these objects. Thus, each of these objects describes its
own unique behavior. You can treat these objects as concrete entities that respond to
messages telling them to do something. This is the essence of object-oriented programming.

Object-oriented concepts form the heart of Java just as they form the basis for human
understanding. It is important that you understand how these concepts translate into
programs. As you will see, object-oriented programming is a powerful and natural
paradigm for creating programs that survive the inevitable changes accompanying the
life cycle of any major software project, including conception, growth, and aging. For
example, once you have well-defined objects and clean, reliable interfaces to those objects,
you can gracefully decommission or replace parts of an older system without fear.

The Three OOP Principles

All object-oriented programming languages provide mechanisms that help you implement
the object-oriented model. They are encapsulation, inheritance, and polymorphism.
Let’s take a look at these concepts now.

Encapsulation

Encapsulation is the mechanism that binds together code and the data it manipulates,
and keeps both safe from outside interference and misuse. One way to think about
encapsulation is as a protective wrapper that prevents the code and data from being
arbitrarily accessed by other code defined outside the wrapper. Access to the code
and data inside the wrapper is tightly controlled through a well-defined interface.

To relate this to the real world, consider the automatic transmission on an automobile.
It encapsulates hundreds of bits of information about your engine, such as how much
you are accelerating, the pitch of the surface you are on, and the position of the shift
lever. You, as the user, have only one method of affecting this complex encapsulation:
by moving the gear-shift lever. You can’t affect the transmission by using the turn signal
or windshield wipers, for example. Thus, the gear-shift lever is a well-defined (indeed,
unique) interface to the transmission. Further, what occurs inside the transmission does
not affect objects outside the transmission. For example, shifting gears does not turn
on the headlights! Because an automatic transmission is encapsulated, dozens of car

20

Java™ 2: The Complete Reference

manufacturers can implement one in any way they please. However, from the driver’s
point of view, they all work the same. This same idea can be applied to programming.
The power of encapsulated code is that everyone knows how to access it and thus

can use it regardless of the implementation details—and without fear of unexpected
side effects.

In Java the basis of encapsulation is the class. Although the class will be examined
in great detail later in this book, the following brief discussion will be helpful now. A
class defines the structure and behavior (data and code) that will be shared by a set of
objects. Each object of a given class contains the structure and behavior defined by the
class, as if it were stamped out by a mold in the shape of the class. For this reason, objects
are sometimes referred to as instances of a class. Thus, a class is a logical construct; an
object has physical reality.

When you create a class, you will specify the code and data that constitute that
class. Collectively, these elements are called members of the class. Specifically, the data
defined by the class are referred to as member variables or instance variables. The code
that operates on that data is referred to as member methods or just methods. (If you are
familiar with C/C++, it may help to know that what a Java programmer calls a method,
a C/C++ programmer calls a function.) In properly written Java programs, the methods
define how the member variables can be used. This means that the behavior and interface
of a class are defined by the methods that operate on its instance data.

Since the purpose of a class is to encapsulate complexity, there are mechanisms for
hiding the complexity of the implementation inside the class. Each method or variable
in a class may be marked private or public. The public interface of a class represents
everything that external users of the class need to know, or may know. The private
methods and data can only be accessed by code that is a member of the class. Therefore,
any other code that is not a member of the class cannot access a private method or variable.
Since the private members of a class may only be accessed by other parts of your program
through the class’ public methods, you can ensure that no improper actions take place.
Of course, this means that the public interface should be carefully designed not to expose
too much of the inner workings of a class (see Figure 2-1).

Inheritance

Inheritance is the process by which one object acquires the properties of another object.
This is important because it supports the concept of hierarchical classification. As
mentioned earlier, most knowledge is made manageable by hierarchical (that is, top-down)
classifications. For example, a Golden Retriever is part of the classification dog, which
in turn is part of the mammal class, which is under the larger class animal. Without the
use of hierarchies, each object would need to define all of its characteristics explicitly.
However, by use of inheritance, an object need only define those qualities that make it
unique within its class. It can inherit its general attributes from its parent. Thus, it is the
inheritance mechanism that makes it possible for one object to be a specific instance of
a more general case. Let’s take a closer look at this process.

Chapter 2: An Overview of Java 21

Public w» A Class

instance variables
(not recommended)

-
==
m
e~
2
>
Z
[2)
(=
>
D
m

Public A \

methods

A
Private A A A ‘ ‘r A
methods / \

Private ‘ »
instance variables

Figure 2-1. Encapsulation: public methods can be used to protect private data

Most people naturally view the world as made up of objects that are related to each
other in a hierarchical way, such as animals, mammals, and dogs. If you wanted to describe
animals in an abstract way, you would say they have some attributes, such as size,
intelligence, and type of skeletal system. Animals also have certain behavioral aspects;
they eat, breathe, and sleep. This description of attributes and behavior is the class
definition for animals.

If you wanted to describe a more specific class of animals, such as mammals, they
would have more specific attributes, such as type of teeth, and mammary glands. This
is known as a subclass of animals, where animals are referred to as mammals’ superclass.

Since mammals are simply more precisely specified animals, they inherit all of the
attributes from animals. A deeply inherited subclass inherits all of the attributes from
each of its ancestors in the class hierarchy.

22

Java™ 2: The Complete Reference

mmal j [Reptile... j

[Ma
/

[Canine j [Feline... j

/

[Domesticusj [Lupus... j

/

[Retrieverj [Poodle...]

\

[Labrador] [Golden j

Inheritance interacts with encapsulation as well. If a given class encapsulates some
attributes, then any subclass will have the same attributes plus any that it adds as part
of its specialization (see Figure 2-2). This is a key concept which lets object-oriented
programs grow in complexity linearly rather than geometrically. A new subclass inherits
all of the attributes of all of its ancestors. It does not have unpredictable interactions
with the majority of the rest of the code in the system.

Polymorphism

Polymorphism (from the Greek, meaning “many forms”) is a feature that allows one
interface to be used for a general class of actions. The specific action is determined by
the exact nature of the situation. Consider a stack (which is a last-in, first-out list). You
might have a program that requires three types of stacks. One stack is used for integer
values, one for floating-point values, and one for characters. The algorithm that
implements each stack is the same, even though the data being stored differs. In a non—
object-oriented language, you would be required to create three different sets of stack
routines, with each set using different names. However, because of polymorphism, in
Java you can specify a general set of stack routines that all share the same names.

More generally, the concept of polymorphism is often expressed by the phrase “one
interface, multiple methods.” This means that it is possible to design a generic interface
to a group of related activities. This helps reduce complexity by allowing the same
interface to be used to specify a general class of action. It is the compiler’s job to select the
specific action (that is, method) as it applies to each situation. You, the programmer, do
not need to make this selection manually. You need only remember and utilize the
general interface.

Chapter 2: An Overview of Java 23

Animal

Sex
Age Weight

-
X
m
e~
2
>
2
(2]
(=
>
@
m

Mammal Gestation)

Period

D Litter Size _J

Canine

(Hunting Skills Tail Length

Leash Trained? »
Indoor/Outdoor

Domesticus

Retriever

‘)uck Hunting Trained?

Labrador AKC Certified?
Labrador
Age Gestation Period Leash Trained?
Sex Hunting Skills Duck Hunting Trained?
Weight Tail Length? AKC Certified?

Litter Size Indoor / Outdoor?

Figure 2-2. Labrador inherits the encapsulation of all of its superclasses

24

Java™ 2: The Complete Reference

Extending the dog analogy, a dog’s sense of smell is polymorphic. If the dog smells
a cat, it will bark and run after it. If the dog smells its food, it will salivate and run to its
bowl. The same sense of smell is at work in both situations. The difference is what is
being smelled, that is, the type of data being operated upon by the dog’s nose! This
same general concept can be implemented in Java as it applies to methods within
a Java program.

Polymorphism, Encapsulation, and Inheritance
Work Together

When properly applied, polymorphism, encapsulation, and inheritance combine to
produce a programming environment that supports the development of far more robust
and scaleable programs than does the process-oriented model. A well-designed hierarchy
of classes is the basis for reusing the code in which you have invested time and effort
developing and testing. Encapsulation allows you to migrate your implementations over
time without breaking the code that depends on the public interface of your classes.
Polymorphism allows you to create clean, sensible, readable, and resilient code.

Of the two real-world examples, the automobile more completely illustrates the power
of object-oriented design. Dogs are fun to think about from an inheritance standpoint,
but cars are more like programs. All drivers rely on inheritance to drive different types
(subclasses) of vehicles. Whether the vehicle is a school bus, a Mercedes sedan, a Porsche,
or the family minivan, drivers can all more or less find and operate the steering wheel,
the brakes, and the accelerator. After a bit of gear grinding, most people can even
manage the difference between a stick shift and an automatic, because they fundamentally
understand their common superclass, the transmission.

People interface with encapsulated features on cars all the time. The brake and
gas pedals hide an incredible array of complexity with an interface so simple you can
operate them with your feet! The implementation of the engine, the style of brakes,
and the size of the tires have no effect on how you interface with the class definition
of the pedals.

The final attribute, polymorphism, is clearly reflected in the ability of car manufacturers
to offer a wide array of options on basically the same vehicle. For example, you can get
an antilock braking system or traditional brakes, power or rack-and-pinion steering, 4-,
6-, or 8-cylinder engines. Either way, you will still press the break pedal to stop, turn
the steering wheel to change direction, and press the accelerator when you want to move.
The same interface can be used to control a number of different implementations.

As you can see, it is through the application of encapsulation, inheritance, and
polymorphism that the individual parts are transformed into the object known as a car.
The same is also true of computer programs. By the application of object-oriented
principles, the various parts of a complex program can be brought together to form
a cohesive, robust, maintainable whole.

Chapter 2: An Overview of Java 25

As mentioned at the start of this section, every Java program is object-oriented.
Or, put more precisely, every Java program involves encapsulation, inheritance, and
polymorphism. Although the short example programs shown in the rest of this chapter
and in the next few chapters may not seem to exhibit all of these features, they are
nevertheless present. As you will see, many of the features supplied by Java are part of
its built-in class libraries, which do make extensive use of encapsulation, inheritance,
and polymorphism.

-
==
m
;
<
>
Z
(]
(=
>
(2]
m

___| A First Simple Program

Now that the basic object-oriented underpinning of Java has been discussed, let’s
look at some actual Java programs. Let’s start by compiling and running the short
sample program shown here. As you will see, this involves a little more work than
you might imagine.

/*
This is a simple Java program.
Call this file "Example.java'".
*/
class Example {
// Your program begins with a call to main().
public static void main(String args[]) {
System.out.println("This is a simple Java program.");
}
}

| The descriptions that follow use the standard Java 2 SDK (Software Development
— Kit), which is available from Sun Microsystems. If you are using a different Java
development environment, then you may need to follow a different procedure

for compiling and executing Java programs. In this case, consult your compiler’s
documentation for details.

Entering the Program

For most computer languages, the name of the file that holds the source code to a
program is arbitrary. However, this is not the case with Java. The first thing that you
must learn about Java is that the name you give to a source file is very important. For
this example, the name of the source file should be Example.java. Let’s see why.

In Java, a source file is officially called a compilation unit. It is a text file that contains
one or more class definitions. The Java compiler requires that a source file use the .java
filename extension. Notice that the file extension is four characters long. As you might

26

Java™ 2: The Complete Reference

guess, your operating system must be capable of supporting long filenames. This means
that DOS and Windows 3.1 are not capable of supporting Java. However, Windows
95/98 and Windows NT/2000/XP work just fine.

As you can see by looking at the program, the name of the class defined by the
program is also Example. This is not a coincidence. In Java, all code must reside inside
a class. By convention, the name of that class should match the name of the file that
holds the program. You should also make sure that the capitalization of the filename
matches the class name. The reason for this is that Java is case-sensitive. At this point,
the convention that filenames correspond to class names may seem arbitrary. However,
this convention makes it easier to maintain and organize your programs.

Compiling the Program

To compile the Example program, execute the compiler, javac, specifying the name of
the source file on the command line, as shown here:

I C:\>javac Example.java

The javac compiler creates a file called Example.class that contains the bytecode version
of the program. As discussed earlier, the Java bytecode is the intermediate representation
of your program that contains instructions the Java interpreter will execute. Thus, the
output of javac is not code that can be directly executed.

To actually run the program, you must use the Java interpreter, called java. To do
so, pass the class name Example as a command-line argument, as shown here:

I C:\>java Example

When the program is run, the following output is displayed:
This is a simple Java program.

When Java source code is compiled, each individual class is put into its own output
file named after the class and using the .class extension. This is why it is a good idea to
give your Java source files the same name as the class they contain—the name of the
source file will match the name of the .class file. When you execute the Java interpreter
as just shown, you are actually specifying the name of the class that you want the
interpreter to execute. It will automatically search for a file by that name that has
the .class extension. If it finds the file, it will execute the code contained in the
specified class.

Chapter 2: An Overview of Java 27

A Closer Look at the First Sample Program

Although Example.java is quite short, it includes several key features which are
common to all Java programs. Let’s closely examine each part of the program.
The program begins with the following lines:

/*

This is a simple Java program.

-
==
m
;
<
>
Z
(]
(=
>
(2]
m

Call this file "Example.java'.
*/

This is a comment. Like most other programming languages, Java lets you enter a remark
into a program’s source file. The contents of a comment are ignored by the compiler.
Instead, a comment describes or explains the operation of the program to anyone who
is reading its source code. In this case, the comment describes the program and reminds
you that the source file should be called Example.java. Of course, in real applications,
comments generally explain how some part of the program works or what a specific
feature does.

Java supports three styles of comments. The one shown at the top of the program is
called a multiline comment. This type of comment must begin with /* and end with */.
Anything between these two comment symbols is ignored by the compiler. As the
name suggests, a multiline comment may be several lines long.

The next line of code in the program is shown here:

I class Example {

This line uses the keyword class to declare that a new class is being defined. Example
is an identifier that is the name of the class. The entire class definition, including all of
its members, will be between the opening curly brace ({) and the closing curly brace (}).
The use of the curly braces in Java is identical to the way they are used in C, C++, and
C#. For the moment, don’t worry too much about the details of a class except to note
that in Java, all program activity occurs within one. This is one reason why all Java
programs are (at least a little bit) object-oriented.

The next line in the program is the single-line comment, shown here:

I // Your program begins with a call to main().

This is the second type of comment supported by Java. A single-line comment begins
with a // and ends at the end of the line. As a general rule, programmers use multiline

28

Java™ 2: The Complete Reference

comments for longer remarks and single-line comments for brief, line-by-line
descriptions.
The next line of code is shown here:

I public static void main(String args[]) {

This line begins the main() method. As the comment preceding it suggests, this is the
line at which the program will begin executing. All Java applications begin execution
by calling main(). (This is just like C/C++.) The exact meaning of each part of this line
cannot be given now, since it involves a detailed understanding of Java’s approach to
encapsulation. However, since most of the examples in the first part of this book will
use this line of code, let’s take a brief look at each part now.

The public keyword is an access specifier, which allows the programmer to control
the visibility of class members. When a class member is preceded by public, then that
member may be accessed by code outside the class in which it is declared. (The opposite
of public is private, which prevents a member from being used by code defined outside
of its class.) In this case, main() must be declared as public, since it must be called
by code outside of its class when the program is started. The keyword static allows
main() to be called without having to instantiate a particular instance of the class. This
is necessary since main() is called by the Java interpreter before any objects are made.
The keyword void simply tells the compiler that main() does not return a value. As
you will see, methods may also return values. If all this seems a bit confusing, don’t
worry. All of these concepts will be discussed in detail in subsequent chapters.

As stated, main() is the method called when a Java application begins. Keep in
mind that Java is case-sensitive. Thus, Main is different from main. It is important
to understand that the Java compiler will compile classes that do not contain a main()
method. But the Java interpreter has no way to run these classes. So, if you had typed
Main instead of main, the compiler would still compile your program. However,
the Java interpreter would report an error because it would be unable to find the
main() method.

Any information that you need to pass to a method is received by variables specified
within the set of parentheses that follow the name of the method. These variables are
called parameters. If there are no parameters required for a given method, you still need
to include the empty parentheses. In main(), there is only one parameter, albeit a
complicated one. String args[] declares a parameter named args, which is an array of
instances of the class String. (Arrays are collections of similar objects.) Objects of type
String store character strings. In this case, args receives any command-line arguments
present when the program is executed. This program does not make use of this
information, but other programs shown later in this book will.

The last character on the line is the {. This signals the start of main()’s body. All of
the code that comprises a method will occur between the method’s opening curly brace
and its closing curly brace.

Chapter 2: An Overview of Java 29

One other point: main() is simply a starting place for your program. A complex
program will have dozens of classes, only one of which will need to have a main()
method to get things started. When you begin creating applets—]Java programs that
are embedded in Web browsers—you won’t use main() at all, since the Web browser
uses a different means of starting the execution of applets.

The next line of code is shown here. Notice that it occurs inside main().

-
==
m
;
<
>
Z
(]
(=
>
(2]
m

I System.out.println("This is a simple Java program.");

This line outputs the string “This is a simple Java program.” followed by a new line on
the screen. Output is actually accomplished by the built-in println() method. In this
case, println() displays the string which is passed to it. As you will see, println() can
be used to display other types of information, too. The line begins with System.out.
While too complicated to explain in detail at this time, briefly, System is a predefined
class that provides access to the system, and out is the output stream that is connected
to the console.

As you have probably guessed, console output (and input) is not used frequently
in real Java programs and applets. Since most modern computing environments are
windowed and graphical in nature, console I/O is used mostly for simple, utility
programs and for demonstration programs. Later in this book, you will learn other
ways to generate output using Java. But for now, we will continue to use the console
I/0 methods.

Notice that the println() statement ends with a semicolon. All statements in Java
end with a semicolon. The reason that the other lines in the program do not end in
a semicolon is that they are not, technically, statements.

The first } in the program ends main(), and the last } ends the Example class
definition.

__| A second Short Program

Perhaps no other concept is more fundamental to a programming language than that of
a variable. As you probably know, a variable is a named memory location that may be
assigned a value by your program. The value of a variable may be changed during the
execution of the program. The next program shows how a variable is declared and how
it is assigned a value. In addition, the program also illustrates some new aspects of
console output. As the comments at the top of the program state, you should call this
file Example2.java.

/*
Here is another short example.
Call this file "Example2.java".
*/

30 Java™ 2: The Complete Reference

class Example2 {
public static void main(String args[]) {
int num; // this declares a variable called num

num = 100; // this assigns num the value 100
System.out.println("This is num: " + num);
num = num * 2;

System.out.print("The value of num * 2 is ");
System.out.println(num);

When you run this program, you will see the following output:

This is num: 100
The value of num * 2 is 200

Let’s take a close look at why this output is generated. The first new line in the
program is shown here:

I int num; // this declares a variable called num

This line declares an integer variable called num. Java (like most other languages)
requires that variables be declared before they are used.
Following is the general form of a variable declaration:

type var-name;

Here, type specifies the type of variable being declared, and var-name is the name of the
variable. If you want to declare more than one variable of the specified type, you may
use a comma-separated list of variable names. Java defines several data types, including
integer, character, and floating-point. The keyword int specifies an integer type.

In the program, the line

I num = 100; // this assigns num the value 100

Chapter 2: An Overview of Java 31

assigns to num the value 100. In Java, the assignment operator is a single equal sign.
The next line of code outputs the value of num preceded by the string “This is num:”.

I System.out.println("This is num: " + num);

In this statement, the plus sign causes the value of num to be appended to the string
that precedes it, and then the resulting string is output. (Actually, num is first converted
from an integer into its string equivalent and then concatenated with the string that
precedes it. This process is described in detail later in this book.) This approach can be
generalized. Using the + operator, you can string together as many items as you want
within a single println() statement.

The next line of code assigns num the value of num times 2. Like most other
languages, Java uses the * operator to indicate multiplication. After this line executes,
num will contain the value 200.

Here are the next two lines in the program:

-
==
m
;
<
>
Z
(]
(=
>
(2]
m

System.out.print("The value of num * 2 is ");
System.out. println (num) ;
Several new things are occurring here. First, the built-in method print() is used to
display the string “The value of num * 2 is ”. This string is not followed by a newline.
This means that when the next output is generated, it will start on the same line. The
print() method is just like println(), except that it does not output a newline character
after each call. Now look at the call to println(). Notice that num is used by itself. Both
print() and printIn() can be used to output values of any of Java’s built-in types.

| Two Control Statements

Although Chapter 5 will look closely at control statements, two are briefly introduced
here so that they can be used in example programs in Chapters 3 and 4. They will also
help illustrate an important aspect of Java: blocks of code.

The if Statement

The Java if statement works much like the IF statement in any other language. Further,
it is syntactically identical to the if statements in C, C++, and C#. Its simplest form is
shown here:

if(condition) statement;

32 Java™ 2: The Complete Reference

Here, condition is a Boolean expression. If condition is true, then the statement is
executed. If condition is false, then the statement is bypassed. Here is an example:

I if(num < 100) println("num is less than 100");

In this case, if num contains a value that is less than 100, the conditional expression
is true, and println() will execute. If num contains a value greater than or equal to 100,
then the println() method is bypassed.

As you will see in Chapter 4, Java defines a full complement of relational operators
which may be used in a conditional expression. Here are a few:

Operator Meaning

< Less than

> Greater than
== Equal to

Notice that the test for equality is the double equal sign.
Here is a program that illustrates the if statement:

/*
Demonstrate the if.

Call this file "IfSample.java".
*/
class IfSample {
public static void main(String args[]) {
int x, y;

x = 10;
y = 20;

if(x < y) System.out.println("x is less than y");

X =X * 2;
if(x == y) System.out.println("x now equal to y");

X =X * 2;
if(x > y) System.out.println("x now greater than y");

Chapter 2: An Overview of Java 33

// this won't display anything
if(x == y) System.out.println("you won't see this");

-
X
m
e~
2
>
2
(2]
(=
>
@
m

The output generated by this program is shown here:

x is less than y
X now equal to y
X now greater than y

Notice one other thing in this program. The line

I int x, y;

declares two variables, x and y, by use of a comma-separated list.

The for Loop

As you may know from your previous programming experience, loop statements are
an important part of nearly any programming language. Java is no exception. In fact,
as you will see in Chapter 5, Java supplies a powerful assortment of loop constructs.
Perhaps the most versatile is the for loop. If you are familiar with C, C++, or C#, then
you will be pleased to know that the for loop in Java works the same way it does in
those languages. If you don’t know C/C++/C#, the for loop is still easy to use. The
simplest form of the for loop is shown here:

for(initialization; condition; iteration) statement;

In its most common form, the initialization portion of the loop sets a loop control
variable to an initial value. The condition is a Boolean expression that tests the loop
control variable. If the outcome of that test is true, the for loop continues to iterate. If it
is false, the loop terminates. The iteration expression determines how the loop control
variable is changed each time the loop iterates. Here is a short program that illustrates
the for loop:

/*
Demonstrate the for loop.

Call this file "ForTest.java".

34

Java™ 2: The Complete Reference

*/
class ForTest {
public static void main(String args[]) {
int x;

for(x = 0; x<10; x = x+1)
System.out.println("This is x: " + x);

This program generates the following output:

This is x: 0
This is x: 1
This is x: 2
This is x: 3
This is x: 4
This is x: 5
This is x: 6
This is x: 7
This is x: 8

x: 9

This is

In this example, x is the loop control variable. It is initialized to zero in the initialization
portion of the for. At the start of each iteration (including the first one), the conditional
test x < 10 is performed. If the outcome of this test is true, the println() statement is
executed, and then the iteration portion of the loop is executed. This process continues
until the conditional test is false.

As a point of interest, in professionally written Java programs you will almost
never see the iteration portion of the loop written as shown in the preceding program.
That is, you will seldom see statements like this:

II X =x + 1;

The reason is that Java includes a special increment operator which performs this
operation more efficiently. The increment operator is ++. (That is, two plus signs back
to back.) The increment operator increases its operand by one. By use of the increment
operator, the preceding statement can be written like this:

Chapter 2: An Overview of Java 35

I xX++;

Thus, the for in the preceding program will usually be written like this:
I for(x = 0; x<10; x++)

You might want to try this. As you will see, the loop still runs exactly the same as it
did before.

Java also provides a decrement operator, which is specified as — —. This operator
decreases its operand by one.

-
X
m
e~
2
>
2
(2]
(=
>
@
m

__ | Using Blocks of Code

Java allows two or more statements to be grouped into blocks of code, also called code blocks.
This is done by enclosing the statements between opening and closing curly braces. Once
a block of code has been created, it becomes a logical unit that can be used any place
that a single statement can. For example, a block can be a target for Java’s if and for
statements. Consider this if statement:

if(x <y) { // begin a block
X =Y
y = 0;

} // end of block

Here, if x is less than y, then both statements inside the block will be executed. Thus, the
two statements inside the block form a logical unit, and one statement cannot execute
without the other also executing. The key point here is that whenever you need to
logically link two or more statements, you do so by creating a block.

Let’s look at another example. The following program uses a block of code as the
target of a for loop.

/*
Demonstrate a block of code.

Call this file "BlockTest.java"
*/
class BlockTest {

36 Java™ 2: The Complete Reference

public static void main(String args[]) {
int x, y;

y = 20;

// the target of this loop is a block
for(x = 0; x<10; x++) {

System.out.println("This is x: " + x);
System.out.println("This is y: " + y);
y=vY-2;

}

The output generated by this program is shown here:

This is x: 0
This is y: 20
This is x: 1
This is y: 18
This is x: 2
This is y: 16
This is x:

This is y: 14
This is x: 4
This is y: 12
This is x: 5
This is y: 10
This is x: 6
This is y: 8
This is x: 7
This is y: 6
This is x: 8
This is y: 4
This is x: 9
This is y: 2

In this case, the target of the for loop is a block of code and not just a single statement.
Thus, each time the loop iterates, the three statements inside the block will be executed.
This fact is, of course, evidenced by the output generated by the program.

Chapter 2: An Overview of Java 37

As you will see later in this book, blocks of code have additional properties and
uses. However, the main reason for their existence is to create logically inseparable
units of code.

| Lexical Issues

Now that you have seen several short Java programs, it is time to more formally
describe the atomic elements of Java. Java programs are a collection of whitespace,
identifiers, comments, literals, operators, separators, and keywords. The operators
are described in the next chapter. The others are described next.

-
==
m
;
<
>
Z
(]
(=
>
(2]
m

Whitespace

Java is a free-form language. This means that you do not need to follow any special
indentation rules. For example, the Example program could have been written all on
one line or in any other strange way you felt like typing it, as long as there was at least
one whitespace character between each token that was not already delineated by an
operator or separator. In Java, whitespace is a space, tab, or newline.

Identifiers

Identifiers are used for class names, method names, and variable names. An identifier
may be any descriptive sequence of uppercase and lowercase letters, numbers, or the
underscore and dollar-sign characters. They must not begin with a number, lest they be
confused with a numeric literal. Again, Java is case-sensitive, so VALUE is a different
identifier than Value. Some examples of valid identifiers are:

AvgTemp count a4 $test this_is_ok
Invalid variable names include:

2count high-temp Not/ok

Literals

A constant value in Java is created by using a literal representation of it. For example,
here are some literals:

100 98.6 X’ “This is a test”

Left to right, the first literal specifies an integer, the next is a floating-point value, the
third is a character constant, and the last is a string. A literal can be used anywhere
a value of its type is allowed.

38 Java™ 2: The Complete Reference

Comments

As mentioned, there are three types of comments defined by Java. You have already
seen two: single-line and multiline. The third type is called a documentation comment.
This type of comment is used to produce an HTML file that documents your program.
The documentation comment begins with a /** and ends with a */. Documentation
comments are explained in Appendix A.

Separators

In Java, there are a few characters that are used as separators. The most commonly
used separator in Java is the semicolon. As you have seen, it is used to terminate
statements. The separators are shown in the following table:

Symbol Name Purpose

() Parentheses Used to contain lists of parameters in method
definition and invocation. Also used for defining
precedence in expressions, containing expressions
in control statements, and surrounding cast types.

{} Braces Used to contain the values of automatically
initialized arrays. Also used to define a block
of code, for classes, methods, and local scopes.

[] Brackets Used to declare array types. Also used when
dereferencing array values.

; Semicolon Terminates statements.

, Comma Separates consecutive identifiers in a variable

declaration. Also used to chain statements together
inside a for statement.

Period Used to separate package names from subpackages
and classes. Also used to separate a variable or
method from a reference variable.

The Java Keywords

There are 49 reserved keywords currently defined in the Java language (see Table 2-1).
These keywords, combined with the syntax of the operators and separators, form the
definition of the Java language. These keywords cannot be used as names for a variable,
class, or method.

Chapter 2: An Overview of Java 39

abstract continue goto package synchronized
assert default if private this
boolean do implements protected throw
break double import public throws
byte else instanceof return transient
case extends int short try
catch final interface static void
char finally long strictfp volatile
class float native super while
const for new switch

Table 2-1. Java Reserved Keywords

The keywords const and goto are reserved but not used. In the early days of Java,
several other keywords were reserved for possible future use. However, the current
specification for Java only defines the keywords shown in Table 2-1. The assert keyword
was added by Java 2, version 1.4

In addition to the keywords, Java reserves the following: true, false, and null.
These are values defined by Java. You may not use these words for the names of
variables, classes, and so on.

___| The Java Class Libraries

The sample programs shown in this chapter make use of two of Java’s built-in methods:
println() and print(). As mentioned, these methods are members of the System class,
which is a class predefined by Java that is automatically included in your programs. In
the larger view, the Java environment relies on several built-in class libraries that contain
many built-in methods that provide support for such things as I/O, string handling,
networking, and graphics. The standard classes also provide support for windowed
output. Thus, Java as a totality is a combination of the Java language itself, plus its
standard classes. As you will see, the class libraries provide much of the functionality
that comes with Java. Indeed, part of becoming a Java programmer is learning to use
the standard Java classes. Throughout Part I of this book, various elements of the standard
library classes and methods are described as needed. In Part II, the class libraries are
described in detail.

This page intentionally left blank.

The

Romplete
Chaoter 3

Data Types, Variables,
and Arrays

42 Java™ 2: The Complete Reference

variables, and arrays. As with all modern programming languages, Java supports
several types of data. You may use these types to declare variables and to create
arrays. As you will see, Java’s approach to these items is clean, efficient, and cohesive.

This chapter examines three of Java’s most fundamental elements: data types,

_ lJavalsa Strongly Typed Language

It is important to state at the outset that Java is a strongly typed language. Indeed, part
of Java’s safety and robustness comes from this fact. Let’s see what this means. First, every
variable has a type, every expression has a type, and every type is strictly defined. Second,
all assignments, whether explicit or via parameter passing in method calls, are checked
for type compatibility. There are no automatic coercions or conversions of conflicting
types as in some languages. The Java compiler checks all expressions and parameters
to ensure that the types are compatible. Any type mismatches are errors that must be
corrected before the compiler will finish compiling the class.

| If you come from a C or C++ background, keep in mind that Java is more strictly typed

than either language. For example, in C/C++ you can assign a floating-point value to
an integer. In Java, you cannot. Also, in C there is not necessarily strong type-checking
between a parameter and an argument. In Java, there is. You might find Java’s strong
type-checking a bit tedious at first. But remember, in the long run it will help reduce the
possibility of errors in your code.

___| The Simple Types

Java defines eight simple (or elemental) types of data: byte, short, int, long, char, float,
double, and boolean. These can be put in four groups:

B Integers This group includes byte, short, int, and long, which are for whole-
valued signed numbers.

B Floating-point numbers This group includes float and double, which represent
numbers with fractional precision.

B Characters This group includes char, which represents symbols in a character
set, like letters and numbers.

B Boolean This group includes boolean, which is a special type for representing
true/false values.

You can use these types as-is, or to construct arrays or your own class types. Thus,
they form the basis for all other types of data that you can create.

Chapter 3: Data Types, Variables, and Arrays

The simple types represent single values—not complex objects. Although Java is
otherwise completely object-oriented, the simple types are not. They are analogous to
the simple types found in most other non—object-oriented languages. The reason for
this is efficiency. Making the simple types into objects would have degraded performance
too much.

The simple types are defined to have an explicit range and mathematical behavior.
Languages such as C and C++ allow the size of an integer to vary based upon the
dictates of the execution environment. However, Java is different. Because of Java’s
portability requirement, all data types have a strictly defined range. For example, an
int is always 32 bits, regardless of the particular platform. This allows programs to be
written that are guaranteed to run without porting on any machine architecture. While
strictly specifying the size of an integer may cause a small loss of performance in some
environments, it is necessary in order to achieve portability.

Let’s look at each type of data in turn.

__ | Integers

Java defines four integer types: byte, short, int, and long. All of these are signed, positive
and negative values. Java does not support unsigned, positive-only integers. Many other
computer languages, including C/C++, support both signed and unsigned integers.
However, Java’s designers felt that unsigned integers were unnecessary. Specifically,
they felt that the concept of unsigned was used mostly to specify the behavior of the
high-order bit, which defined the sign of an int when expressed as a number. As you will
see in Chapter 4, Java manages the meaning of the high-order bit differently, by adding
a special “unsigned right shift” operator. Thus, the need for an unsigned integer type
was eliminated.

The width of an integer type should not be thought of as the amount of storage it
consumes, but rather as the behavior it defines for variables and expressions of that
type. The Java run-time environment is free to use whatever size it wants, as long as
the types behave as you declared them. In fact, at least one implementation stores bytes
and shorts as 32-bit (rather than 8- and 16-bit) values to improve performance, because
that is the word size of most computers currently in use.

The width and ranges of these integer types vary widely, as shown in this table:

Name Width Range

long 64 -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
int 32 —2,147,483,648 to 2,147,483,647

short 16 -32,768 to 32,767

byte 8 ~128 to 127

Let’s look at each type of integer.

44

Java™ 2: The Complete Reference

byte

The smallest integer type is byte. This is a signed 8-bit type that has a range from -128
to 127. Variables of type byte are especially useful when you're working with a stream
of data from a network or file. They are also useful when you’re working with raw
binary data that may not be directly compatible with Java’s other built-in types.

Byte variables are declared by use of the byte keyword. For example, the following
declares two byte variables called b and c:

I byte b, c;

short

short is a signed 16-bit type. It has a range from -32,768 to 32,767. It is probably the
least-used Java type, since it is defined as having its high byte first (called big-endian
format). This type is mostly applicable to 16-bit computers, which are becoming
increasingly scarce.

Here are some examples of short variable declarations:

short s;
short t;

Note | “Endianness” describes how multibyte data types, such as short, int, and long, are

stored in memory. If it takes 2 bytes to represent a short, then which one comes first, the
most significant or the least significant? To say that a machine is big-endian, means that
the most significant byte is first, followed by the least significant one. Machines such as
the SPARC and PowerPC are big-endian, while the Intel x86 series is little-endian.

The most commonly used integer type is int. It is a signed 32-bit type that has a range
from —2,147,483,648 to 2,147,483,647. In addition to other uses, variables of type int are
commonly employed to control loops and to index arrays. Any time you have an integer
expression involving bytes, shorts, ints, and literal numbers, the entire expression is
promoted to int before the calculation is done.

The int type is the most versatile and efficient type, and it should be used most of
the time when you want to create a number for counting or indexing arrays or doing
integer math. It may seem that using short or byte will save space, but there is no
guarantee that Java won’t promote those types to int internally anyway. Remember,
type determines behavior, not size. (The only exception is arrays, where byte is
guaranteed to use only one byte per array element, short will use two bytes, and int
will use four.)

Chapter 3: Data Types, Variables, and Arrays 45

long

long is a signed 64-bit type and is useful for those occasions where an int type is not
large enough to hold the desired value. The range of a long is quite large. This makes
it useful when big, whole numbers are needed. For example, here is a program that
computes the number of miles that light will travel in a specified number of days.

-
X
m
e~
2
>
2
[
(=
>
[2)
m

// Compute distance light travels using long variables.
class Light {
public static void main(String args[]) {
int lightspeed;
long days;
long seconds;
long distance;

// approximate speed of light in miles per second
lightspeed = 186000;

days = 1000; // specify number of days here
seconds = days * 24 * 60 * 60; // convert to seconds
distance = lightspeed * seconds; // compute distance

System.out.print("In " + days);
System.out.print(" days light will travel about ");
System.out.println(distance + " miles.");

This program generates the following output:
In 1000 days light will travel about 16070400000000 miles.

Clearly, the result could not have been held in an int variable.

___ | Floating-Point Types

Floating-point numbers, also known as real numbers, are used when evaluating
expressions that require fractional precision. For example, calculations such as square
root, or transcendentals such as sine and cosine, result in a value whose precision
requires a floating-point type. Java implements the standard (IEEE-754) set of

46

Java™ 2: The Complete Reference

floating-point types and operators. There are two kinds of floating-point types, float
and double, which represent single- and double-precision numbers, respectively. Their
width and ranges are shown here:

Name Width in Bits Approximate Range
double 64 4.9e-324 to 1.8e+308
float 32 1.4e-045 to 3.4e+038

Each of these floating-point types is examined next.

float

The type float specifies a single-precision value that uses 32 bits of storage. Single
precision is faster on some processors and takes half as much space as double precision,
but will become imprecise when the values are either very large or very small. Variables
of type float are useful when you need a fractional component, but don’t require a
large degree of precision. For example, float can be useful when representing dollars
and cents.

Here are some example float variable declarations:

I float hightemp, lowtemp;

double

Double precision, as denoted by the double keyword, uses 64 bits to store a value. Double
precision is actually faster than single precision on some modern processors that have
been optimized for high-speed mathematical calculations. All transcendental math
functions, such as sin(), cos(), and sqrt(), return double values. When you need to
maintain accuracy over many iterative calculations, or are manipulating large-valued
numbers, double is the best choice.

Here is a short program that uses double variables to compute the area of a circle:

// Compute the area of a circle.
class Area {
public static void main(String args[]) {
double pi, r, a;

r = 10.8; // radius of circle
pi = 3.1416; // pi, approximately
a=pi *r *r; // compute area

Chapter 3: Data Types, Variabhles, and Arrays 47

System.out.println("Area of circle is " + a);

}

-
==
m
;
<
>
Z
[2)
(=
>
D
m

___| characters

In Java, the data type used to store characters is char. However, C/C++ programmers
beware: char in Java is not the same as char in C or C++. In C/C++, char is an integer
type that is 8 bits wide. This is not the case in Java. Instead, Java uses Unicode to represent
characters. Unicode defines a fully international character set that can represent all of
the characters found in all human languages. It is a unification of dozens of character
sets, such as Latin, Greek, Arabic, Cyrillic, Hebrew, Katakana, Hangul, and many more.
For this purpose, it requires 16 bits. Thus, in Java char is a 16-bit type. The range of a
char is 0 to 65,536. There are no negative chars. The standard set of characters known as
ASCII still ranges from 0 to 127 as always, and the extended 8-bit character set, ISO-Latin-1,
ranges from 0 to 255. Since Java is designed to allow applets to be written for worldwide
use, it makes sense that it would use Unicode to represent characters. Of course, the
use of Unicode is somewhat inefficient for languages such as English, German, Spanish,
or French, whose characters can easily be contained within 8 bits. But such is the price
that must be paid for global portability.

| More information about Unicode can be found at http:/ /www.unicode.org.

Here is a program that demonstrates char variables:

// Demonstrate char data type.
class CharDemo {
public static void main(String args[]) {
char chl, ch2;

chl = 88; // code for X
ch2 = 'Y';

System.out.print("chl and ch2: ");
System.out.println(chl + " " + ch2);

Java™ 2: The Complete Reference

This program displays the following output:
chl and ch2: X Y

Notice that ch1 is assigned the value 88, which is the ASCII (and Unicode) value that
corresponds to the letter X. As mentioned, the ASCII character set occupies the first
127 values in the Unicode character set. For this reason, all the “old tricks” that you
have used with characters in the past will work in Java, too.

Even though chars are not integers, in many cases you can operate on them as if
they were integers. This allows you to add two characters together, or to increment
the value of a character variable. For example, consider the following program:

// char variables behave like integers.
class CharDemo2 {
public static void main(String args[]) {
char chl;

chl = 'X';
System.out.println("chl contains " + chl);

chl++; // increment chl
System.out.println("chl is now " + chl);

The output generated by this program is shown here:

chl contains X
chl is now Y

In the program, ch1 is first given the value X. Next, ch1 is incremented. This results in
ch1 containing Y, the next character in the ASCII (and Unicode) sequence.

Booleans

Java has a simple type, called boolean, for logical values. It can have only one of two
possible values, true or false. This is the type returned by all relational operators, such
as a <b. boolean is also the type required by the conditional expressions that govern the
control statements such as if and for.

Here is a program that demonstrates the boolean type:

Chapter 3: Data Types, Variahles, and Arrays

// Demonstrate boolean values.
class BoolTest {
public static void main(String args[]) {
boolean b;

b = false;
System.out.println("b is " + b);
b = true;

System.out.println("b is " + b);

// a boolean value can control the if statement
if(b) System.out.println("This is executed.");

b = false;
if(b) System.out.println("This is not executed.");

// outcome of a relational operator is a boolean value
System.out.println("10 > 9 is " + (10 > 9));

The output generated by this program is shown here:

b is false

b is true

This is executed.
10 > 9 is true

There are three interesting things to notice about this program. First, as you can see,
when a boolean value is output by printIn(), “true” or “false” is displayed. Second,
the value of a boolean variable is sufficient, by itself, to control the if statement. There
is no need to write an if statement like this:

I if(b == true) ...

Third, the outcome of a relational operator, such as <, is a boolean value. This is why
the expression 10 > 9 displays the value “true.” Further, the extra set of parentheses
around 10 > 9 is necessary because the + operator has a higher precedence than the >.

49

-
X
m
e~
2
>
2
[
(=
>
@
m

50 Java™ 2: The Complete Reference

| A Closer Look at Literals

Literals were mentioned briefly in Chapter 2. Now that the built-in types have been
formally described, let’s take a closer look at them.

Integer Literals

Integers are probably the most commonly used type in the typical program. Any whole
number value is an integer literal. Examples are 1, 2, 3, and 42. These are all decimal
values, meaning they are describing a base 10 number. There are two other bases which
can be used in integer literals, octal (base eight) and hexadecimal (base 16). Octal values
are denoted in Java by a leading zero. Normal decimal numbers cannot have a leading
zero. Thus, the seemingly valid value 09 will produce an error from the compiler,
since 9 is outside of octal’s 0 to 7 range. A more common base for numbers used by
programmers is hexadecimal, which matches cleanly with modulo 8 word sizes, such
as 8,16, 32, and 64 bits. You signify a hexadecimal constant with a leading zero-x, (0x
or 0X). The range of a hexadecimal digit is 0 to 15, so A through F (or a through f) are
substituted for 10 through 15.

Integer literals create an int value, which in Java is a 32-bit integer value. Since
Java is strongly typed, you might be wondering how it is possible to assign an integer
literal to one of Java’s other integer types, such as byte or long, without causing a type
mismatch error. Fortunately, such situations are easily handled. When a literal value is
assigned to a byte or short variable, no error is generated if the literal value is within the
range of the target type. Also, an integer literal can always be assigned to a long variable.
However, to specify a long literal, you will need to explicitly tell the compiler that the
literal value is of type long. You do this by appending an upper- or lowercase L to
the literal. For example, Ox7ffffffffffffffl. or 9223372036854775807L is the largest long.

Floating-Point Literals

Floating-point numbers represent decimal values with a fractional component. They
can be expressed in either standard or scientific notation. Standard notation consists

of a whole number component followed by a decimal point followed by a fractional
component. For example, 2.0, 3.14159, and 0.6667 represent valid standard-notation
floating-point numbers. Scientific notation uses a standard-notation, floating-point number
plus a suffix that specifies a power of 10 by which the number is to be multiplied. The
exponent is indicated by an E or e followed by a decimal number, which can be positive
or negative. Examples include 6.022E23, 314159E-05, and 2e+100.

Floating-point literals in Java default to double precision. To specify a float literal,
you must append an F or f to the constant. You can also explicitly specify a double literal
by appending a D or d. Doing so is, of course, redundant. The default double type
consumes 64 bits of storage, while the less-accurate float type requires only 32 bits.

Chapter 3: Data Types, Variables, and Arrays

Boolean Literals

Boolean literals are simple. There are only two logical values that a boolean value can
have, true and false. The values of true and false do not convert into any numerical
representation. The true literal in Java does not equal 1, nor does the false literal equal 0.
In Java, they can only be assigned to variables declared as boolean, or used in expressions
with Boolean operators.

Character Literals

Characters in Java are indices into the Unicode character set. They are 16-bit values that
can be converted into integers and manipulated with the integer operators, such as the
addition and subtraction operators. A literal character is represented inside a pair of single
quotes. All of the visible ASCII characters can be directly entered inside the quotes, such
as ‘a’, 'z’, and ‘@’. For characters that are impossible to enter directly, there are several
escape sequences, which allow you to enter the character you need, such as “\"” for the
single-quote character itself, and “\n’ for the newline character. There is also a mechanism
for directly entering the value of a character in octal or hexadecimal. For octal notation
use the backslash followed by the three-digit number. For example, ‘\141" is the letter ‘a".
For hexadecimal, you enter a backslash-u (\u), then exactly four hexadecimal digits. For
example, \u0061" is the ISO-Latin-1 ‘a” because the top byte is zero. \ua432" is a Japanese
Katakana character. Table 3-1 shows the character escape sequences.

Escape Sequence Description
\ddd Octal character (ddd)
\UXXXX Hexadecimal UNICODE character (xxxx)
\’ Single quote
\” Double quote
N\ Backslash
\r Carriage return
\n New line (also known as line feed)
\f Form feed
\t Tab
\b Backspace
Table 3-1. Character Escape Sequences

52 Java™ 2: The Complete Reference

String Literals

String literals in Java are specified like they are in most other languages—by enclosing
a sequence of characters between a pair of double quotes. Examples of string literals are

“Hello World”
“two\nlines”
“\”This is in quotes\””

The escape sequences and octal/hexadecimal notations that were defined for
character literals work the same way inside of string literals. One important thing to
note about Java strings is that they must begin and end on the same line. There is no
line-continuation escape sequence as there is in other languages.

| As you may know, in some other languages, including C/C++, strings are implemented

as arrays of characters. However, this is not the case in Java. Strings are actually object
types. As you will see later in this book, because Java implements strings as objects, Java
includes extensive string-handling capabilities that are both powerful and easy to use.

___|variables

The variable is the basic unit of storage in a Java program. A variable is defined by
the combination of an identifier, a type, and an optional initializer. In addition, all
variables have a scope, which defines their visibility, and a lifetime. These elements
are examined next.

Declaring a Variable

In Java, all variables must be declared before they can be used. The basic form of
a variable declaration is shown here:

type identifier | = value][, identifier [= value] ...] ;

The type is one of Java’s atomic types, or the name of a class or interface. (Class and
interface types are discussed later in Part I of this book.) The identifier is the name of the
variable. You can initialize the variable by specifying an equal sign and a value. Keep
in mind that the initialization expression must result in a value of the same (or compatible)
type as that specified for the variable. To declare more than one variable of the
specified type, use a comma-separated list.

Chapter 3: Data Types, Variahles, and Arrays 53

Here are several examples of variable declarations of various types. Note that some

-

include an initialization. =

=

int a, b, c; // declares three ints, a, b, and c. >

int d = 3, e, £ = 5; // declares three more ints, initializing E

// d and f. g

byte z = 22; // initializes z. s

double pi = 3.14159; // declares an approximation of pi. m
char x = 'x'; // the variable x has the value 'x'.

The identifiers that you choose have nothing intrinsic in their names that indicates
their type. Many readers will remember when FORTRAN predefined all identifiers
from I through N to be of type INTEGER while all other identifiers were REAL. Java
allows any properly formed identifier to have any declared type.

Dynamic Initialization

Although the preceding examples have used only constants as initializers, Java allows
variables to be initialized dynamically, using any expression valid at the time the variable
is declared.

For example, here is a short program that computes the length of the hypotenuse of
a right triangle given the lengths of its two opposing sides:

// Demonstrate dynamic initialization.
class DynInit {
public static void main(String args[]) {
double a = 3.0, b = 4.0;

// ¢ is dynamically initialized
double ¢ = Math.sqrt(a * a + b * b);

System.out.println("Hypotenuse is " + c);

Here, three local variables—a, b,and c—are declared. The first two, a and b, are
initialized by constants. However, c is initialized dynamically to the length of the
hypotenuse (using the Pythagorean theorem). The program uses another of Java’s
built-in methods, sqrt(), which is a member of the Math class, to compute the square
root of its argument. The key point here is that the initialization expression may use
any element valid at the time of the initialization, including calls to methods, other
variables, or literals.

54 Java™ 2: The Complete Reference

The Scope and Lifetime of Variables

So far, all of the variables used have been declared at the start of the main() method.
However, Java allows variables to be declared within any block. As explained in
Chapter 2, a block is begun with an opening curly brace and ended by a closing curly
brace. A block defines a scope. Thus, each time you start a new block, you are creating
a new scope. As you probably know from your previous programming experience, a
scope determines what objects are visible to other parts of your program. It also determines
the lifetime of those objects.

Most other computer languages define two general categories of scopes: global
and local. However, these traditional scopes do not fit well with Java’s strict, object-
oriented model. While it is possible to create what amounts to being a global scope,
it is by far the exception, not the rule. In Java, the two major scopes are those defined
by a class and those defined by a method. Even this distinction is somewhat artificial.
However, since the class scope has several unique properties and attributes that do not
apply to the scope defined by a method, this distinction makes some sense. Because of
the differences, a discussion of class scope (and variables declared within it) is deferred
until Chapter 6, when classes are described. For now, we will only examine the scopes
defined by or within a method.

The scope defined by a method begins with its opening curly brace. However, if
that method has parameters, they too are included within the method’s scope. Although
this book will look more closely at parameters in Chapter 5, for the sake of this discussion,
they work the same as any other method variable.

As a general rule, variables declared inside a scope are not visible (that is, accessible)
to code that is defined outside that scope. Thus, when you declare a variable within a
scope, you are localizing that variable and protecting it from unauthorized access and/or
modification. Indeed, the scope rules provide the foundation for encapsulation.

Scopes can be nested. For example, each time you create a block of code, you are
creating a new, nested scope. When this occurs, the outer scope encloses the inner scope.
This means that objects declared in the outer scope will be visible to code within the
inner scope. However, the reverse is not true. Objects declared within the inner scope
will not be visible outside it.

To understand the effect of nested scopes, consider the following program:

// Demonstrate block scope.
class Scope {
public static void main(String args[]) {
int x; // known to all code within main

x = 10;
if(x == 10) { // start new scope

Chapter 3: Data Types, Variables, and Arrays 55

}
// y = 100; // Error! y not known here

-

==

int y = 20; // known only to this block bl
2

// x and y both known here. >

System.out.println("x and y: " + x + " " + y); E

x=y*2; g

>

@

m

// x is still known here.
System.out.println("x is " + x);

As the comments indicate, the variable x is declared at the start of main()’s scope and
is accessible to all subsequent code within main(). Within the if block, y is declared.
Since a block defines a scope, y is only visible to other code within its block. This is
why outside of its block, the line y = 100; is commented out. If you remove the leading
comment symbol, a compile-time error will occur, because y is not visible outside of its
block. Within the if block, x can be used because code within a block (that is, a nested
scope) has access to variables declared by an enclosing scope.

Within a block, variables can be declared at any point, but are valid only after they
are declared. Thus, if you define a variable at the start of a method, it is available to all
of the code within that method. Conversely, if you declare a variable at the end of a
block, it is effectively useless, because no code will have access to it. For example, this
fragment is invalid because count cannot be used prior to its declaration:

// This fragment is wrong!
count = 100; // oops! cannot use count before it is declared!
int count;

Here is another important point to remember: variables are created when their
scope is entered, and destroyed when their scope is left. This means that a variable
will not hold its value once it has gone out of scope. Therefore, variables declared
within a method will not hold their values between calls to that method. Also, a
variable declared within a block will lose its value when the block is left. Thus, the
lifetime of a variable is confined to its scope.

If a variable declaration includes an initializer, then that variable will be
reinitialized each time the block in which it is declared is entered. For example,
consider the next program.

56

Java™ 2: The Complete Reference

// Demonstrate lifetime of a variable.
class LifeTime {
public static void main(String args[]) {
int x;

for(x = 0; x < 3; x++) {

int y = -1; // y is initialized each time block is entered
System.out.println("y is: " + y); // this always prints -1
y = 100;

System.out.println("y is now: " + y);

The output generated by this program is shown here:

is: -1
is now: 100
is: -1
is now: 100
is: -1
is now: 100

MK KKK

As you can see, y is always reinitialized to -1 each time the inner for loop is
entered. Even though it is subsequently assigned the value 100, this value is lost.

One last point: Although blocks can be nested, you cannot declare a variable to have
the same name as one in an outer scope. In this regard, Java differs from C and C++.
Here is an example that tries to declare two separate variables with the same name. In
Java, this is illegal. In C/C++, it would be legal and the two bars would be separate.

// This program will not compile
class ScopeErr {
public static void main(String args[]) {
int bar = 1;
{ // creates a new scope
int bar = 2; // Compile-time error — bar already defined!

Chapter 3: Data Types, Variables, and Arrays

___| Type Conversion and Casting

If you have previous programming experience, then you already know that it is fairly
common to assign a value of one type to a variable of another type. If the two types are
compatible, then Java will perform the conversion automatically. For example, it is
always possible to assign an int value to a long variable. However, not all types are
compatible, and thus, not all type conversions are implicitly allowed. For instance,
there is no conversion defined from double to byte. Fortunately, it is still possible to
obtain a conversion between incompatible types. To do so, you must use a cast, which
performs an explicit conversion between incompatible types. Let’s look at both automatic
type conversions and casting.

Java’s Automatic Conversions

When one type of data is assigned to another type of variable, an automatic type
conversion will take place if the following two conditions are met:

B The two types are compatible.
B The destination type is larger than the source type.

When these two conditions are met, a widening conversion takes place. For example,
the int type is always large enough to hold all valid byte values, so no explicit cast
statement is required.

For widening conversions, the numeric types, including integer and floating-point
types, are compatible with each other. However, the numeric types are not compatible
with char or boolean. Also, char and boolean are not compatible with each other.

As mentioned earlier, Java also performs an automatic type conversion when
storing a literal integer constant into variables of type byte, short, or long.

Casting Incompatible Types

Although the automatic type conversions are helpful, they will not fulfill all needs. For
example, what if you want to assign an int value to a byte variable? This conversion
will not be performed automatically, because a byte is smaller than an int. This kind of
conversion is sometimes called a narrowing conversion, since you are explicitly making
the value narrower so that it will fit into the target type.

To create a conversion between two incompatible types, you must use a cast. A cast
is simply an explicit type conversion. It has this general form:

(target-type) value

Here, target-type specifies the desired type to convert the specified value to. For
example, the following fragment casts an int to a byte. If the integer’s value is larger

58

Java™ 2: The Complete Reference

than the range of a byte, it will be reduced modulo (the remainder of an integer
division by the) byte’s range.

int a;
byte b;
/] ...
b = (byte) a;

A different type of conversion will occur when a floating-point value is assigned to
an integer type: truncation. As you know, integers do not have fractional components.
Thus, when a floating-point value is assigned to an integer type, the fractional component
is lost. For example, if the value 1.23 is assigned to an integer, the resulting value will
simply be 1. The 0.23 will have been truncated. Of course, if the size of the whole number
component is too large to fit into the target integer type, then that value will be reduced
modulo the target type’s range.

The following program demonstrates some type conversions that require casts:

// Demonstrate casts.
class Conversion {
public static void main(String args[]) {
byte b;
int i = 257;
double d = 323.142;

System.out.println("\nConversion of int to byte.");
b = (byte) i;
System.out.println("i and b " + i + " " + b);

System.out.println("\nConversion of double to int.");
i = (int) d;
System.out.println("d and i " +d + " " + 1i);

System.out.println("\nConversion of double to byte.");

b = (byte) d;
System.out.println("d and b " + d + " " + b);

This program generates the following output:

Chapter 3: Data Types, Variables, and Arrays 59

Conversion of int to byte.
i and b 257 1

Conversion of double to int.
d and i 323.142 323

Conversion of double to byte.
d and b 323.142 67

-
==
m
;
<
>
Z
[2)
(=
>
D
m

Let’s look at each conversion. When the value 257 is cast into a byte variable, the
result is the remainder of the division of 257 by 256 (the range of a byte), which is 1 in
this case. When the d is converted to an int, its fractional component is lost. When d is
converted to a byte, its fractional component is lost, and the value is reduced modulo
256, which in this case is 67.

Automatic Type Promotion in Expressions

In addition to assignments, there is another place where certain type conversions
may occur: in expressions. To see why, consider the following. In an expression, the
precision required of an intermediate value will sometimes exceed the range of either
operand. For example, examine the following expression:

byte a = 40;
byte b 50;
byte ¢ = 100;
intd=a * b/ c;

The result of the intermediate term a * b easily exceeds the range of either of
its byte operands. To handle this kind of problem, Java automatically promotes each
byte or short operand to int when evaluating an expression. This means that the
subexpression a * b is performed using integers—not bytes. Thus, 2,000, the result of
the intermediate expression, 50 * 40, is legal even though a and b are both specified as
type byte.

As useful as the automatic promotions are, they can cause confusing compile-time
errors. For example, this seemingly correct code causes a problem:

byte b = 50;
b =Db * 2; // Error! Cannot assign an int to a byte!

60

Java™ 2: The Complete Reference

The code is attempting to store 50 * 2, a perfectly valid byte value, back into a byte
variable. However, because the operands were automatically promoted to int when the
expression was evaluated, the result has also been promoted to int. Thus, the result of
the expression is now of type int, which cannot be assigned to a byte without the use of
a cast. This is true even if, as in this particular case, the value being assigned would still
fit in the target type.

In cases where you understand the consequences of overflow, you should use an
explicit cast, such as

byte b = 50;
b = (byte)(b * 2);

which yields the correct value of 100.

The Type Promotion Rules

In addition to the elevation of bytes and shorts to int, Java defines several type promotion
rules that apply to expressions. They are as follows. First, all byte and short values are
promoted to int, as just described. Then, if one operand is a long, the whole expression
is promoted to long. If one operand is a float, the entire expression is promoted to float.
If any of the operands is double, the result is double.

The following program demonstrates how each value in the expression gets
promoted to match the second argument to each binary operator:

class Promote {
public static void main(String args[]) {

byte b = 42;
char ¢ = 'a';
short s = 1024;
int i = 50000;
float £ = 5.67f;
double d = .1234;
double result = (£ * b) + (1 / ¢c) - (d * s);
System.out.println((f * b) + "+ " + (i / ¢c) + " =" + (d * 8));
System.out.println("result = " + result);

Let’s look closely at the type promotions that occur in this line from the program:

Chapter 3: Data Types, Variables, and Arrays 61

I double result = (f * b) + (1 / ¢c) - (d * s);

In the first subexpression, f * b, b is promoted to a float and the result of the subexpression
is float. Next, in the subexpression i/ ¢, ¢ is promoted to int, and the result is of type
int. Then, in d * s, the value of s is promoted to double, and the type of the subexpression
is double. Finally, these three intermediate values, float, int, and double, are considered.
The outcome of float plus an int is a float. Then the resultant float minus the last
double is promoted to double, which is the type for the final result of the expression.

__| Arrays

An array is a group of like-typed variables that are referred to by a common name. Arrays
of any type can be created and may have one or more dimensions. A specific element
in an array is accessed by its index. Arrays offer a convenient means of grouping
related information.

| If you are familiar with C/C++, be careful. Arrays in Java work differently than they do

in those languages.

-
==
m
;
<
>
Z
(]
(=
>
(2]
m

One-Dimensional Arrays

A one-dimensional array is, essentially, a list of like-typed variables. To create an array,
you first must create an array variable of the desired type. The general form of a one-
dimensional array declaration is

type var-namel];

Here, type declares the base type of the array. The base type determines the data type
of each element that comprises the array. Thus, the base type for the array determines
what type of data the array will hold. For example, the following declares an array
named month_days with the type “array of int”:

I int month days[];

Although this declaration establishes the fact that month_days is an array variable,
no array actually exists. In fact, the value of month_days is set to null, which represents
an array with no value. To link month_days with an actual, physical array of integers,

62

Java™ 2: The Complete Reference

you must allocate one using new and assign it to month_days. new is a special operator
that allocates memory.

You will look more closely at new in a later chapter, but you need to use it now to
allocate memory for arrays. The general form of new as it applies to one-dimensional
arrays appears as follows:

array-var = new type[size];

Here, type specifies the type of data being allocated, size specifies the number of elements
in the array, and array-var is the array variable that is linked to the array. That is, to use
new to allocate an array, you must specify the type and number of elements to allocate.
The elements in the array allocated by new will automatically be initialized to zero.
This example allocates a 12-element array of integers and links them to month_days.

I month _days = new int[12];

After this statement executes, month_days will refer to an array of 12 integers. Further,
all elements in the array will be initialized to zero.

Let’s review: Obtaining an array is a two-step process. First, you must declare a
variable of the desired array type. Second, you must allocate the memory that will hold
the array, using new, and assign it to the array variable. Thus, in Java all arrays are
dynamically allocated. If the concept of dynamic allocation is unfamiliar to you, don’t
worry. It will be described at length later in this book.

Once you have allocated an array, you can access a specific element in the array by
specifying its index within square brackets. All array indexes start at zero. For example,
this statement assigns the value 28 to the second element of month_days.

I month_days[1l] = 28;
The next line displays the value stored at index 3.
I System.out.println(month days[3]);

Putting together all the pieces, here is a program that creates an array of the
number of days in each month.

// Demonstrate a one-dimensional array.
class Array {

Chapter 3: Data Types, Variahles, and Arrays

public static void main(String args[]) {
int month days|[];
month days = new int[12];
month_days[0] = 31;
month_days[1] = 28;
month_days[2] = 31;
month_days[3] = 30;
month_days[4] = 31;
month_days[5] = 30;
month_days[6] = 31;
month_days[7] = 31;
month_days[8] = 30;
month_days[9] = 31;
month _days[10] = 30;
month days[11] = 31;
System.out.println("April has " + month days[3] + " days.");

When you run this program, it prints the number of days in April. As mentioned, Java
array indexes start with zero, so the number of days in April is month_days[3] or 30.

It is possible to combine the declaration of the array variable with the allocation of
the array itself, as shown here:

I int month days[] = new int[12];

This is the way that you will normally see it done in professionally written Java
programs.

Arrays can be initialized when they are declared. The process is much the same as
that used to initialize the simple types. An array initializer is a list of comma-separated
expressions surrounded by curly braces. The commas separate the values of the array
elements. The array will automatically be created large enough to hold the number of
elements you specify in the array initializer. There is no need to use new. For example,
to store the number of days in each month, the following code creates an initialized
array of integers:

// An improved version of the previous program.
class AutoArray {
public static void main(String args[]) {

63

-
X
m
e~
2
>
2
[
(=
>
@
m

64 Java™ 2.0: The Complete Reference

int month days[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31,
30, 31 };
System.out.println("April has " + month days[3] + " days.");

When you run this program, you see the same output as that generated by the
previous version.

Java strictly checks to make sure you do not accidentally try to store or reference
values outside of the range of the array. The Java run-time system will check to be sure
that all array indexes are in the correct range. (In this regard, Java is fundamentally
different from C/C++, which provide no run-time boundary checks.) For example, the
run-time system will check the value of each index into month_days to make sure that
it is between 0 and 11 inclusive. If you try to access elements outside the range of the
array (negative numbers or numbers greater than the length of the array), you will
cause a run-time error.

Here is one more example that uses a one-dimensional array. It finds the average of
a set of numbers.

// Average an array of values.
class Average {
public static void main(String args[]) {
double nums[] = {10.1, 11.2, 12.3, 13.4, 14.5};
double result =
int i;

{
0

7
for(i=0; i<5; i++)
result = result + nums[i];

System.out.println("Average is " + result / 5);

Multidimensional Arrays

In Java, multidimensional arrays are actually arrays of arrays. These, as you might
expect, look and act like regular multidimensional arrays. However, as you will see,

Chapter 3: Data Types, Variables, and Arrays

there are a couple of subtle differences. To declare a multidimensional array variable,
specify each additional index using another set of square brackets. For example, the
following declares a two-dimensional array variable called twoD.

I int twoD[][] = new int[4][5];

This allocates a 4 by 5 array and assigns it to twoD. Internally this matrix is implemented
as an array of arrays of int. Conceptually, this array will look like the one shown in
Figure 3-1.

Right index determines column.

T R T

[o]fo] |[o][x]|[o][2] | [o][s]|[o][4]

Left index EYKINEN{EN) (BN EXH{EN|EX]|RY|EY

determines
row.

[2][0] |[2][x] | [2][2] | 2] (5] (2] [4]

[3]00] |[s10x] | (3] [2] | (31 0e] =] 04]

Given:inttwoD [] [] = new int [4] [5];

Figure 3-1. A conceptual view of a 4 by 5, two-dimensional array

65

66

Java™ 2: The Complete Reference

The following program numbers each element in the array from left to right, top to
bottom, and then displays these values:

// Demonstrate a two-dimensional array.
class TwoDArray {
public static void main(String args[]) {
int twoD[][]= new int[4][5];
int i, j, k = 0;

for(i=0; i<4; i++)
for(j=0; j<5; j++) {
twoD[1][]j] = k;
k++;

for(i=0; i<4; i++) {
for(j=0; 3<5; Jj++)
System.out.print(twoD[i][]j] + " ");
System.out.println();

This program generates the following output:

01234
56789
10 11 12 13 14
15 16 17 18 19

When you allocate memory for a multidimensional array, you need only specify the
memory for the first (leftmost) dimension. You can allocate the remaining dimensions
separately. For example, this following code allocates memory for the first dimension of
twoD when it is declared. It allocates the second dimension manually.

int twoD[][] = new int[4][];
twoD[0] = new int[5];
twoD[1] new int[5];
twoD[2] new int[5];
twoD[3]

new int[5];

Chapter 3: Data Types, Variahles, and Arrays

While there is no advantage to individually allocating the second dimension arrays
in this situation, there may be in others. For example, when you allocate dimensions
manually, you do not need to allocate the same number of elements for each dimension.
As stated earlier, since multidimensional arrays are actually arrays of arrays, the length
of each array is under your control. For example, the following program creates a two-
dimensional array in which the sizes of the second dimension are unequal.

// Manually allocate differing size second dimensions.
class TwoDAgain ({
public static void main(String args[]) {
int twoD[][] = new int[4][];
twoD[0] = new int[1];
twoD[1] = new int[2];
twoD[2] = new int[3];
twoD[3] = new int[4];

int i, j, k = 0;

for(i=0; i<4; i++)
for(j=0; j<i+l; j++) {
twoD[1][]] = k;
k++;

for(i=0; i<4; i++) {
for(j=0; j<i+l; Jj++)
System.out.print(twoD[i][j] + " ");
System.out.println();
}

This program generates the following output:

o W o
~N BN

5
8 9

The array created by this program looks like this:

67

-
==
m
e~
2
>
Z
[2)
(=
>
(2]
m

68 Java™ 2: The Complete Reference

[o][o]
[lo] ([1][1]
[2][o] (2] (]| [2][2]
[s][o]|[s][x] | [s][2]| (]3]

The use of uneven (or, irregular) multidimensional arrays is not recommended
for most applications, because it runs contrary to what people expect to find when
a multidimensional array is encountered. However, it can be used effectively in some
situations. For example, if you need a very large two-dimensional array that is sparsely
populated (that is, one in which not all of the elements will be used), then an irregular
array might be a perfect solution.

It is possible to initialize multidimensional arrays. To do so, simply enclose each
dimension’s initializer within its own set of curly braces. The following program creates
a matrix where each element contains the product of the row and column indexes. Also
notice that you can use expressions as well as literal values inside of array initializers.

// Initialize a two-dimensional array.
class Matrix {
public static void main(String args[]) {
double m[][] = {
{ 0*0, 1*0, 2*0, 3*0 },
{ 0%1, 1*1, 2*1, 3+*1 },
{ 0%2, 1%2, 2%2, 3%2 },
{ 0*3, 1*3, 2*3, 3%3 }
bi

int i, j;

for(i=0; i<4; i++) {
for(j=0; j<4; j++)
System.out.print(m[i][]j] + " ");
System.out.println();

Chapter 3: Data Types, Variahles, and Arrays

When you run this program, you will get the following output:

0.0 0.0 0.0 0.0
0.0 1.0 2.0 3.0
0.0 2.0 4.0 6.0
0.0 3.0 6.0 9.0

As you can see, each row in the array is initialized as specified in the initialization lists.

Let’s look at one more example that uses a multidimensional array. The following
program creates a 3 by 4 by 5, three-dimensional array. It then loads each element with
the product of its indexes. Finally, it displays these products.

// Demonstrate a three-dimensional array.
class threeDMatrix {
public static void main(String args[]) {
int threeD[][][] = new int[3][4][5];
int i, j, k;

for(i=0; i<3; i++)
for(j=0; j<4; j++)
for(k=0; k<5; k++)
threeD[i][j]1[k] = 1 * j * k;

for(i=0; i<3; i++) {
for(3=0; j<4; Jj++) {
for(k=0; k<5; k++)
System.out.print(threeD[i][j][k] + " ");
System.out.println();
}
System.out.println();
}

This program generates the following output:

000O0O
000O0O
00O0O0O
000O00O

69

-
==
m
e~
2
>
Z
[2)
(=
>
(2]
m

70 Java™ 2: The Complete Reference

o O O o
w N = O
o N O
O o Wwo
= 00 & O

00

4 6 8
8

1

o

12 16
2 18 24

o O © o
o N O

Alternative Array Declaration Syntax

There is a second form that may be used to declare an array:
typel | var-name;

Here, the square brackets follow the type specifier, and not the name of the array
variable. For example, the following two declarations are equivalent:

int al[] = new int[3];
int[] a2 = new int[3];

The following declarations are also equivalent:
char twodl[][]
char[][] twod2

This alternative declaration form is included as a convenience, and is also useful when
specifying an array as a return type for a method.

new char[3][4];
new char([3][4];

| A Few Words About Strings

As you may have noticed, in the preceding discussion of data types and arrays there
has been no mention of strings or a string data type. This is not because Java does not
support such a type—it does. It is just that Java’s string type, called String, is not a
simple type. Nor is it simply an array of characters (as are strings in C/C++). Rather,
String defines an object, and a full description of it requires an understanding of several
object-related features. As such, it will be covered later in this book, after objects are
described. However, so that you can use simple strings in example programs, the
following brief introduction is in order.

The String type is used to declare string variables. You can also declare arrays of
strings. A quoted string constant can be assigned to a String variable. A variable

Chapter 3: Data Types, Variabhles, and Arrays 71

of type String can be assigned to another variable of type String. You can use an object of
type String as an argument to println(). For example, consider the following fragment:

String str = "this is a test";
System.out.println(str);

-
==
m
;
<
>
Z
[2)
(=
>
D
m

Here, str is an object of type String. It is assigned the string “this is a test”. This string
is displayed by the println() statement.

As you will see later, String objects have many special features and attributes that
make them quite powerful and easy to use. However, for the next few chapters, you
will be using them only in their simplest form.

___| A Note to C/C++ Programmers About Pointers

If you are an experienced C/C++ programmer, then you know that these languages
provide support for pointers. However, no mention of pointers has been made in this
chapter. The reason for this is simple: Java does not support or allow pointers. (Or
more properly, Java does not support pointers that can be accessed and/or modified
by the programmer.) Java cannot allow pointers, because doing so would allow Java
applets to breach the firewall between the Java execution environment and the host
computer. (Remember, a pointer can be given any address in memory—even addresses
that might be outside the Java run-time system.) Since C/C++ make extensive use of
pointers, you might be thinking that their loss is a significant disadvantage to Java.
However, this is not true. Java is designed in such a way that as long as you stay within
the confines of the execution environment, you will never need to use a pointer, nor would
there be any benefit in using one. For tips on converting C/C++ code to Java, including
pointers, see Chapter 29.

This page intentionally left blank.

gl
Chapter 4

Operators

74 Java™ 2: The Complete Reference

ava provides a rich operator environment. Most of its operators can be divided
into the following four groups: arithmetic, bitwise, relational, and logical. Java also
defines some additional operators that handle certain special situations. This chapter
describes all of Java’s operators except for the type comparison operator instanceof,
which is examined in Chapter 12.

| If you are familiar with C/C++/C#, then you will be pleased to know that most operators
g in Java work just like they do in those languages. However, there are some subtle differences,

so a careful reading is advised.

| Arithmetic Operators

Arithmetic operators are used in mathematical expressions in the same way that they
are used in algebra. The following table lists the arithmetic operators:

Operator Result

+ Addition

- Subtraction (also unary minus)
* Multiplication

/ Division

% Modulus

++ Increment

+= Addition assignment

—= Subtraction assignment

*= Multiplication assignment
/= Division assignment

Yo= Modulus assignment

- Decrement

The operands of the arithmetic operators must be of a numeric type. You cannot
use them on boolean types, but you can use them on char types, since the char type in
Java is, essentially, a subset of int.

The Basic Arithmetic Operators

The basic arithmetic operations—addition, subtraction, multiplication, and division—
all behave as you would expect for all numeric types. The minus operator also has
a unary form which negates its single operand. Remember that when the division

Chapter 4: Operators 75

operator is applied to an integer type, there will be no fractional component attached to
the result.

The following simple example program demonstrates the arithmetic operators. It
also illustrates the difference between floating-point division and integer division.

// Demonstrate the basic arithmetic operators.
class BasicMath {
public static void main(String args[]) {

// arithmetic using integers
System.out.println("Integer Arithmetic");
int a =1+ 1;
int b = a * 3;
int ¢ = b / 4;
int d = ¢ - a;

-
==
m
e~
2
>
Z
[2)
(=
>
(2]
m

int e = -d;

System.out.println("a = " + a);
System.out.println("b = " + b);
System.out.println("c = " + c);
System.out.println("d = " + d);
System.out.println("e = " + e);

// arithmetic using doubles
System.out.println("\nFloating Point Arithmetic");
double da =1 + 1;

double db da * 3;

double dc = db / 4;

double dd = dc - a;

double de = -dd;

System.out.println("da = " + da);
System.out.println("db = " + db);
System.out.println("dc = " + dc);
System.out.println("dd = " + dd);
System.out.println("de = " + de);

When you run this program, you will see the following output:

Integer Arithmetic
a =2
b =26
c =1

76 Java™ 2: The Complete Reference

d = -1
e =1

Floating Point Arithmetic

da = 2.0
db = 6.0
dc = 1.5
dd = -0.5
de = 0.5

The Modulus Operator

The modulus operator, %, returns the remainder of a division operation. It can be
applied to floating-point types as well as integer types. (This differs from C/C++, in
which the % can only be applied to integer types.) The following example program
demonstrates the %:

// Demonstrate the % operator.
class Modulus {
public static void main(String args[]) {
int x = 42;
double y = 42.25;

System.out.println("x mod 10 = " + x % 10);
System.out.println("y mod 10 = " + y % 10);

When you run this program you will get the following output:

x mod 10 = 2
y mod 10 2.25

Arithmetic Assignment Operators

Java provides special operators that can be used to combine an arithmetic operation
with an assignment. As you probably know, statements like the following are quite
common in programming:

In Java, you can rewrite this statement as shown here:

Chapter 4: Operators

II a += 4;

This version uses the += assignment operator. Both statements perform the same
action: they increase the value of a by 4.
Here is another example,

which can be expressed as

II a %= 2;

In this case, the %= obtains the remainder of a/2 and puts that result back into a.
There are assignment operators for all of the arithmetic, binary operators. Thus,
any statement of the form

var = var op expression;
can be rewritten as
var op= expression;

The assignment operators provide two benefits. First, they save you a bit of typing,
because they are “shorthand” for their equivalent long forms. Second, they are
implemented more efficiently by the Java run-time system than are their equivalent
long forms. For these reasons, you will often see the assignment operators used in
professionally written Java programs.

Here is a sample program that shows several op= operator assignments in action:

// Demonstrate several assignment operators.
class OpEquals {
public static void main(String args[]) {
int a = 1;
int b = 2;
int ¢ = 3;

+
1]
S ou;

o o
*
]

77

-
I
m
e~
2
>
2
[
[=
>
[2)
m

78

Java™ 2: The Complete Reference

c += a * b;

Cc %= 6;

System.out.println("a = " + a);
System.out.println("b = " + b);
System.out.println("c = " + c);

The output of this program is shown here:

a==a6
b =28
c =3

Increment and Decrement

The ++ and the — — are Java’s increment and decrement operators. They were introduced
in Chapter 2. Here they will be discussed in detail. As you will see, they have some
special properties that make them quite interesting. Let’s begin by reviewing precisely
what the increment and decrement operators do.

The increment operator increases its operand by one. The decrement operator
decreases its operand by one. For example, this statement:

can be rewritten like this by use of the increment operator:

B
Similarly, this statement:

R

is equivalent to

I =

Chapter 4: Operators

These operators are unique in that they can appear both in postfix form, where
they follow the operand as just shown, and prefix form, where they precede the
operand. In the foregoing examples, there is no difference between the prefix and
postfix forms. However, when the increment and/or decrement operators are part
of a larger expression, then a subtle, yet powerful, difference between these two forms
appears. In the prefix form, the operand is incremented or decremented before the value
is obtained for use in the expression. In postfix form, the previous value is obtained for
use in the expression, and then the operand is modified. For example:

x = 42;
y = ++x;

In this case, y is set to 43 as you would expect, because the increment occurs before x is
assigned to y. Thus, the line y = ++x; is the equivalent of these two statements:

x =x + 1;
Yy = %X;

However, when written like this,

X = 42;
y = X++;

the value of x is obtained before the increment operator is executed, so the value of
y is 42. Of course, in both cases x is set to 43. Here, the line y = x++; is the equivalent
of these two statements:

y = X%;
X =x + 1;

The following program demonstrates the increment operator.

// Demonstrate ++.
class IncDec {
public static void main(String args[]) {
int a = 1;
int b = 2;
int c;

79

-
X
m
e~
2
>
2
[
(=
>
@
m

80 Java™ 2: The Complete Reference

int d;

c = ++b;

d = at++;

ct++;
System.out.println("a
System.out.println("b
System.out.println("c
System.out.println("d

a);
b);
c);
d);

o
+ 4+ 4+ o+

The output of this program follows:

0Q oo
oS W N

| The Bitwise Operators

Java defines several bitwise operators which can be applied to the integer types, long,
int, short, char, and byte. These operators act upon the individual bits of their operands.
They are summarized in the following table:

Operator Result

~ Bitwise unary NOT

& Bitwise AND

| Bitwise OR

A Bitwise exclusive OR

>> Shift right

>>> Shift right zero fill

<< Shift left

&= Bitwise AND assignment

= Bitwise OR assignment

Chapter 4: Operators

Operator Result

A= Bitwise exclusive OR assignment
>>= Shift right assignment

>>>= Shift right zero fill assignment
<<= Shift left assignment

Since the bitwise operators manipulate the bits within an integer, it is important to
understand what effects such manipulations may have on a value. Specifically, it is

useful to know how Java stores integer values and how it represents negative numbers.

So, before continuing, let’s briefly review these two topics.

All of the integer types are represented by binary numbers of varying bit widths.
For example, the byte value for 42 in binary is 00101010, where each position represents
a power of two starting with 2% at the rightmost b1t The next bit position to the left
would be 2!, or 2, continuing toward the left with 22 or 4, then 8, 16, 32, and so on. So
42 has 1 b1ts set at positions 1, 3, and 5 (counting frorn 0 at the right); thus 42 is the sum
of 2! + 2%+ 2°, which is 2 + 8 + 32.

All of the integer types (except char) are signed integers. This means that they can
represent negative values as well as positive ones. Java uses an encoding known as
two’s complement, which means that negative numbers are represented by inverting
(changing 1’s to 0’s and vice versa) all of the bits in a value, then adding 1 to the result.
For example, —42 is represented by inverting all of the bits in 42, or 00101010, which
yields 11010101, then adding 1, which results in 11010110, or —42. To decode a negative
number, first invert all of the bits, then add 1. 42, or 11010110 inverted yields 00101001,
or 41, so when you add 1 you get 42.

The reason Java (and most other computer languages) uses two’s complement is easy
to see when you consider the issue of zero crossing. Assuming a byte value, zero is
represented by 00000000. In one’s complement, simply inverting all of the bits creates
11111111, which creates negative zero. The trouble is that negative zero is invalid in
integer math. This problem is solved by using two’s complement to represent negative
values. When using two’s complement, 1 is added to the complement, producing
100000000. This produces a 1 bit too far to the left to fit back into the byte value, resulting
in the desired behavior, where -0 is the same as 0, and 11111111 is the encoding for —1.
Although we used a byte value in the preceding example, the same basic principle
applies to all of Java’s integer types.

Because Java uses two’s complement to store negative numbers—and because all
integers are signed values in Java—applying the bitwise operators can easily produce
unexpected results. For example, turning on the high-order bit will cause the resulting
value to be interpreted as a negative number, whether this is what you intended or not.
To avoid unpleasant surprises, just remember that the high-order bit determines the
sign of an integer no matter how that high-order bit gets set.

81

-
==
m
;
<
>
Z
(]
(=
>
(2]
m

82

Java™ 2.0: The Complete Reference

The Bitwise Logical Operators

The bitwise logical operators are &, |, ~, and ~. The following table shows the outcome
of each operation. In the discussion that follows, keep in mind that the bitwise operators
are applied to each individual bit within each operand.

A B AIlB A&B ANB ~A
0 0 0 0 0 1
1 0 1 1 0
0 1 1 0 1 1
1 1 1 1 0 0

The Bitwise NOT

Also called the bitwise complement, the unary NOT operator, ~, inverts all of the bits of
its operand. For example, the number 42, which has the following bit pattern:

00101010
becomes
11010101

after the NOT operator is applied.

The Bitwise AND

The AND operator, &, produces a 1 bit if both operands are also 1. A zero is produced
in all other cases. Here is an example:

00101010 42
&00001111 15

00001010 10

The Bitwise OR

The OR operator, |, combines bits such that if either of the bits in the operandsisa 1,
then the resultant bit is a 1, as shown here:

00101010 42
[00001111 15

00101111 47

Chapter 4: Operators

The Bitwise XOR

The XOR operator, A, combines bits such that if exactly one operand is 1, then the result
is 1. Otherwise, the result is zero. The following example shows the effect of the /. This
example also demonstrates a useful attribute of the XOR operation. Notice how the bit
pattern of 42 is inverted wherever the second operand has a 1 bit. Wherever the second
operand has a 0 bit, the first operand is unchanged. You will find this property useful
when performing some types of bit manipulations.

00101010 42
~00001111 15

00100101 37

Using the Bitwise Logical Operators
The following program demonstrates the bitwise logical operators:

// Demonstrate the bitwise logical operators.
class BitLogic {
public static void main(String args[]) {
String binary[] = {
"o000", "00O1", "OO1l0", "OO11", "Ol100", "O101", "O110", "O111",
*i000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"

bi

int a = 3; // 0 + 2 + 1 or 0011 in binary

int b = 6; // 4 + 2 + 0 or 0110 in binary

int ¢ = a | b;

int d = a & b;

int e = a " b;

int £ = (~a & b) | (a & ~b);

int g = ~a & 0x0f;

System.out.println(" a = " + binary[al);
System.out.println(" b = " + binary[b]);
System.out.println(" alb = " + binary[c]);
System.out.println(" a&b = " + binary[d]);
System.out.println(" a”b = " + binaryle]);
System.out.println("~a&b|a&~b = " + binary[f]);
System.out.println(" ~a = " + binary[g]);

-
X
m
e~
2
>
2
[
(=
>
@
m

84

Java™ 2.0: The Complete Reference

In this example, a and b have bit patterns which present all four possibilities for
two binary digits: 0-0, 0-1, 1-0, and 1-1. You can see how the | and & operate on each
bit by the results in ¢ and d. The values assigned to e and f are the same and illustrate
how the A works. The string array named binary holds the human-readable, binary
representation of the numbers 0 through 15. In this example, the array is indexed to
show the binary representation of each result. The array is constructed such that the
correct string representation of a binary value n is stored in binary[n]. The value of ~a
is ANDed with 0x0f (0000 1111 in binary) in order to reduce its value to less than 16, so
it can be printed by use of the binary array. Here is the output from this program:

a = 0011

b = 0110

alb = 0111

a&b = 0010

a”b = 0101
~a&b|a&~b = 0101
~a = 1100

The Left Shift

The left shift operator, <<, shifts all of the bits in a value to the left a specified number
of times. It has this general form:

value << num

Here, num specifies the number of positions to left-shift the value in value. That is, the
<< moves all of the bits in the specified value to the left by the number of bit positions
specified by num. For each shift left, the high-order bit is shifted out (and lost), and a
zero is brought in on the right. This means that when a left shift is applied to an int
operand, bits are lost once they are shifted past bit position 31. If the operand is a long,
then bits are lost after bit position 63.

Java’s automatic type promotions produce unexpected results when you are shifting
byte and short values. As you know, byte and short values are promoted to int when
an expression is evaluated. Furthermore, the result of such an expression is also an int.
This means that the outcome of a left shift on a byte or short value will be an int, and
the bits shifted left will not be lost until they shift past bit position 31. Furthermore,

a negative byte or short value will be sign-extended when it is promoted to int. Thus,
the high-order bits will be filled with 1’s. For these reasons, to perform a left shift on a
byte or short implies that you must discard the high-order bytes of the int result. For
example, if you left-shift a byte value, that value will first be promoted to int and then
shifted. This means that you must discard the top three bytes of the result if what you
want is the result of a shifted byte value. The easiest way to do this is to simply cast the
result back into a byte. The following program demonstrates this concept:

Chapter 4: Operators

// Left shifting a byte value.
class ByteShift {
public static void main(String args[]) {
byte a = 64, b;
int 1i;

i=a<< 2;
b (byte) (a << 2);

System.out.println("Original value of a: " + a);
System.out.println("i and b: " + 1 + " " + b);

The output generated by this program is shown here:

Original value of a: 64
i and b: 256 0

Since a is promoted to int for the purposes of evaluation, left-shifting the value 64
(0100 0000) twice results in i containing the value 256 (1 0000 0000). However, the value
in b contains 0 because after the shift, the low-order byte is now zero. Its only 1 bit has
been shifted out.

Since each left shift has the effect of doubling the original value, programmers
frequently use this fact as an efficient alternative to multiplying by 2. But you need to
watch out. If you shift a 1 bit into the high-order position (bit 31 or 63), the value will
become negative. The following program illustrates this point:

// Left shifting as a quick way to multiply by 2.
class MultByTwo {
public static void main(String args[]) {
int 1i;
int num = OXFFFFFFE;

for(i=0; i<4; i++) {
num = num << 1;
System.out.println(num);

85

-
I
m
e~
2
>
2
[
[=
>
[2)
m

86

Java™ 2: The Complete Reference

The program generates the following output:

536870908
1073741816
2147483632
-32

The starting value was carefully chosen so that after being shifted left 4 bit positions,
it would produce —-32. As you can see, when a 1 bit is shifted into bit 31, the number is
interpreted as negative.

The Right Shift

The right shift operator, >>, shifts all of the bits in a value to the right a specified number
of times. Its general form is shown here:

value >> num

Here, num specifies the number of positions to right-shift the value in value. That is, the
>> moves all of the bits in the specified value to the right the number of bit positions
specified by num.

The following code fragment shifts the value 32 to the right by two positions,
resulting in a being set to 8:

int a = 32;
a =a > 2; // a now contains 8

When a value has bits that are “shifted off,” those bits are lost. For example, the
next code fragment shifts the value 35 to the right two positions, which causes the two
low-order bits to be lost, resulting again in a being set to 8.

int a = 35;
a =a > 2; // a still contains 8
Looking at the same operation in binary shows more clearly how this happens:

00100011 35
>>2
00001000 8

Chapter 4: Operators 87

Each time you shift a value to the right, it divides that value by two—and discards

-
any remainder. You can take advantage of this for high-performance integer division m
by 2. Of course, you must be sure that you are not shifting any bits off the right end. 5
When you are shifting right, the top (leftmost) bits exposed by the right shift are s
filled in with the previous contents of the top bit. This is called sign extension and serves s
to preserve the sign of negative numbers when you shift them right. For example, -8 3
>> 1 is -4, which, in binary, is %
11111000 -8 =
>>1
11111100 -4

It is interesting to note that if you shift —1 right, the result always remains -1, since
sign extension keeps bringing in more ones in the high-order bits.

Sometimes it is not desirable to sign-extend values when you are shifting them to
the right. For example, the following program converts a byte value to its hexadecimal string
representation. Notice that the shifted value is masked by ANDing it with 0x0f to discard
any sign-extended bits so that the value can be used as an index into the array of hexadecimal
characters.

// Masking sign extension.
class HexByte {
static public void main(String args[]) {
char hex[] = {
‘o', "1, '2', '3', '4', '5', '6', '7",
‘', '9', 'a', 'b', 'c¢', 'd', 'e', 'f'
}i
byte b = (byte) O0xfl;

System.out.println("b = 0x" + hex[(b >> 4) & 0x0f] + hex[b & 0x0£f]);
}
}

Here is the output of this program:

b = 0xfl

The Unsigned Right Shift

As you have just seen, the >> operator automatically fills the high-order bit with its
previous contents each time a shift occurs. This preserves the sign of the value. However,

88

Java™ 2: The Complete Reference

sometimes this is undesirable. For example, if you are shifting something that does
not represent a numeric value, you may not want sign extension to take place. This
situation is common when you are working with pixel-based values and graphics. In
these cases you will generally want to shift a zero into the high-order bit no matter
what its initial value was. This is known as an unsigned shift. To accomplish this, you
will use Java’s unsigned, shift-right operator, >>>, which always shifts zeros into the
high-order bit.

The following code fragment demonstrates the >>>. Here, a is set to —1, which sets
all 32 bits to 1 in binary. This value is then shifted right 24 bits, filling the top 24 bits
with zeros, ignoring normal sign extension. This sets a to 255.

int a = -1;
a = a >>> 24;

Here is the same operation in binary form to further illustrate what is happening:

11111111 11111111 11111111 11111111 -1 in binary as an int
>>>24
00000000 00000000 00000000 11111111 255 in binary as an int

The >>> operator is often not as useful as you might like, since it is only meaningful
for 32- and 64-bit values. Remember, smaller values are automatically promoted to int
in expressions. This means that sign-extension occurs and that the shift will take place
on a 32-bit rather than on an 8- or 16-bit value. That is, one might expect an unsigned
right shift on a byte value to zero-fill beginning at bit 7. But this is not the case, since
it is a 32-bit value that is actually being shifted. The following program demonstrates
this effect:

// Unsigned shifting a byte value.
class ByteUShift {
static public void main(String args[]) {
char hex[] = {
‘O'I '1'1 ‘2'I '3‘1 ‘4'1 '5‘1 ‘6'l '7‘1
‘', '9', 'a', 'b', 'c', 'd', 'e', 'f'

}i

byte b = (byte) 0xfl;

byte ¢ = (byte) (b >> 4);

byte d = (byte) (b >>> 4);

byte e = (byte) ((b & 0xff) >> 4);

Chapter 4: Operators 89

System.out.println(" b = 0x"
+ hex[(b >> 4) & 0x0f] + hex[b & 0x0f]);
System.out.println(" b >> 4 = 0x"
+ hex[(c >> 4) & 0x0f] + hex[c & 0x0f]);
System.out.println(" b >>> 4 = 0x"
+ hex[(d >> 4) & 0x0f] + hex[d & 0x0f]);
System.out.println("(b & 0xff) >> 4 = 0x"
+ hex[(e >> 4) & 0x0f] + hex[e & 0x0f]);

-
==
m
e~
2
>
Z
[2)
(=
>
D
m

The following output of this program shows how the >>> operator appears to do
nothing when dealing with bytes. The variable b is set to an arbitrary negative byte
value for this demonstration. Then c is assigned the byte value of b shifted right by
four, which is Oxff because of the expected sign extension. Then d is assigned the byte
value of b unsigned shifted right by four, which you might have expected to be 0x0f,
but is actually Oxff because of the sign extension that happened when b was promoted
to int before the shift. The last expression sets e to the byte value of b masked to 8 bits
using the AND operator, then shifted right by four, which produces the expected value
of 0x0f. Notice that the unsigned shift right operator was not used for d, since the state
of the sign bit after the AND was known.

b = 0xfl
b > 4 = 0xff
b >>> 4 = 0xff

(b & 0xff) >> 4 0x0f

Bitwise Operator Assignments

All of the binary bitwise operators have a shorthand form similar to that of the algebraic
operators, which combines the assignment with the bitwise operation. For example, the
following two statements, which shift the value in a right by four bits, are equivalent:

a = a > 4;
a >>= 4;

Likewise, the following two statements, which result in a being assigned the
bitwise expression a OR b, are equivalent:

90 Java™ 2: The Complete Reference

The following program creates a few integer variables and then uses the shorthand
form of bitwise operator assignments to manipulate the variables:

class OpBitEquals {
public static void main(String args[]) {
int a = 1;
int b = 2;
int c 3;

|= 4;
>>= 1;
<<= 1;

~

= c;

o QO o

System.out.println("a = + a);
System.out.println("b = " + b);

System.out.println("c = + c);

The output of this program is shown here:

a=3
b=1
c =6

___| Relational Operators

The relational operators determine the relationship that one operand has to the other.
Specifically, they determine equality and ordering. The relational operators are
shown here:

Operator Result
== Equal to

I= Not equal to

> Greater than

Chapter 4: Operators

Operator Result

< Less than

>= Greater than or equal to
<= Less than or equal to

The outcome of these operations is a boolean value. The relational operators are
most frequently used in the expressions that control the if statement and the various
loop statements.

Any type in Java, including integers, floating-point numbers, characters, and Booleans
can be compared using the equality test, ==, and the inequality test, !=. Notice that in
Java (as in C/C++/C#) equality is denoted with two equal signs, not one. (Remember:
a single equal sign is the assignment operator.) Only numeric types can be compared
using the ordering operators. That is, only integer, floating-point, and character operands
may be compared to see which is greater or less than the other.

As stated, the result produced by a relational operator is a boolean value. For
example, the following code fragment is perfectly valid:

int a = 4;
int b = 1;
boolean ¢ = a < b;

In this case, the result of a<b (which is false) is stored in c.
If you are coming from a C/C++ background, please note the following. In C/C++,
these types of statements are very common:

int done;

/7

if(!done) ... // Valid in C/C++
if(done) ... // but not in Java.

In Java, these statements must be written like this:

if(done == 0)) ... // This is Java-style.
if(done != 0)

The reason is that Java does not define true and false in the same way as C/C++.
In C/C++, true is any nonzero value and false is zero. In Java, true and false are
nonnumeric values which do not relate to zero or nonzero. Therefore, to test for zero
or nonzero, you must explicitly employ one or more of the relational operators.

91

-
X
m
e~
2
>
2
[
(=
>
[2)
m

92 Java™ 2: The Complete Reference

| Boolean Logical Operators

The Boolean logical operators shown here operate only on boolean operands. All
of the binary logical operators combine two boolean values to form a resultant

boolean value.

Operator

Result

Logical AND
Logical OR

Logical XOR (exclusive OR)
Short-circuit OR
Short-circuit AND
Logical unary NOT
AND assignment
OR assignment
XOR assignment
Equal to

Not equal to

Ternary if-then-else

The logical Boolean operators, &, |, and #, operate on boolean values in the same
way that they operate on the bits of an integer. The logical ! operator inverts the
Boolean state: !true == false and !false == true. The following table shows the effect

of each logical operation:

A

False
True
False

True

False
False
True

True

AlB A&B AMNB A

False False False True
True False True False
True False True True
True True False False

Here is a program that is almost the same as the BitLogic example shown earlier,
but it operates on boolean logical values instead of binary bits:

Chapter 4: Operators 93

// Demonstrate the boolean logical operators.

class BoolLogic { %
public static void main(String args[]) { s

boolean a = true; §
boolean b = false; ;
boolean ¢ = a | b; =
boolean d = a & b; g
boolean e = a ~ b; o
boolean f = (!a & b) | (a & !b);
boolean g = la;
System.out.println(" a="+a);
System.out.println(" b="+Db);
System.out.println(" alb ="+ ¢);
System.out.println(" agb = " + d);
System.out.println(" a’b =" + e);
System.out.println("!a&b|a&!b = " + £f);
System.out.println(" ta ="+ g);

After running this program, you will see that the same logical rules apply to
boolean values as they did to bits. As you can see from the following output, the
string representation of a Java boolean value is one of the literal values true or false:

a = true

b = false

alb = true

a&b = false

a"b = true
asb|a&!b = true
la = false

Short-Circuit Logical Operators

Java provides two interesting Boolean operators not found in many other computer
languages. These are secondary versions of the Boolean AND and OR operators, and
are known as short-circuit logical operators. As you can see from the preceding table,
the OR operator results in true when A is true, no matter what B is. Similarly, the AND

94 Java™ 2: The Complete Reference

operator results in false when A is false, no matter what B is. If you use the | | and
&& forms, rather than the | and & forms of these operators, Java will not bother to
evaluate the right-hand operand when the outcome of the expression can be determined
by the left operand alone. This is very useful when the right-hand operand depends on
the left one being true or false in order to function properly. For example, the following
code fragment shows how you can take advantage of short-circuit logical evaluation to
be sure that a division operation will be valid before evaluating it:

I if (denom != 0 && num / denom > 10)

Since the short-circuit form of AND (&&) is used, there is no risk of causing a
run-time exception when denom is zero. If this line of code were written using the
single & version of AND, both sides would have to be evaluated, causing a run-time
exception when denom is zero.

It is standard practice to use the short-circuit forms of AND and OR in cases
involving Boolean logic, leaving the single-character versions exclusively for bitwise
operations. However, there are exceptions to this rule. For example, consider the
following statement:

I if(c==1 & e++ < 100) d = 100;

Here, using a single & ensures that the increment operation will be applied to e whether
cis equal to 1 or not.

___ | The Assignment Operator

You have been using the assignment operator since Chapter 2. Now it is time to take
a formal look at it. The assignment operator is the single equal sign, =. The assignment
operator works in Java much as it does in any other computer language. It has this
general form:

var = expression;

Here, the type of var must be compatible with the type of expression.

The assignment operator does have one interesting attribute that you may not be
familiar with: it allows you to create a chain of assignments. For example, consider
this fragment:

Chapter 4: Operators

int x, y, z;
X =y =2z = 100; // set x, y, and z to 100

This fragment sets the variables x, y, and z to 100 using a single statement. This works
because the = is an operator that yields the value of the right-hand expression. Thus, the
value of z = 100 is 100, which is then assigned to y, which in turn is assigned to x. Using
a “chain of assignment” is an easy way to set a group of variables to a common value.

The ? Operator

Java includes a special ternary (three-way) operator that can replace certain types of
if-then-else statements. This operator is the ?, and it works in Java much like it does
in C, C++, and C#. It can seem somewhat confusing at first, but the ? can be used very
effectively once mastered. The ? has this general form:

expressionl ? expression2 : expression3

Here, expression1 can be any expression that evaluates to a boolean value. If expressionl
is true, then expression2 is evaluated; otherwise, expression3 is evaluated. The result of
the ? operation is that of the expression evaluated. Both expression2 and expression3 are
required to return the same type, which can’t be void.

Here is an example of the way that the ? is employed:

I ratio = denom == 0 ? 0 : num / denom;

When Java evaluates this assignment expression, it first looks at the expression to
the left of the question mark. If denom equals zero, then the expression between the
question mark and the colon is evaluated and used as the value of the entire ? expression.
If denom does not equal zero, then the expression after the colon is evaluated and used
for the value of the entire ? expression. The result produced by the ? operator is then
assigned to ratio.

Here is a program that demonstrates the ? operator. It uses it to obtain the absolute
value of a variable.

// Demonstrate 2.
class Ternary {
public static void main(String args[]) {

95

-
==
m
;
<
>
Z
[2)
(=
>
D
m

96 Java™ 2: The Complete Reference

int i, k;

i=10;

k=1<07? -iz: 1i; // get absolute value of i
System.out.print("Absolute value of ");
System.out.println(i + " is " + k);

i=-10;

k=1i<07? -i: i; // get absolute value of i
System.out.print("Absolute value of ");
System.out.println(i + " is " + k);

The output generated by the program is shown here:

Absolute value of 10 is 10
Absolute value of -10 is 10

___| operator Precedence

Table 4-1 shows the order of precedence for Java operators, from highest to lowest.
Notice that the first row shows items that you may not normally think of as operators:
parentheses, square brackets, and the dot operator. Parentheses are used to alter the
precedence of an operation. As you know from the previous chapter, the square
brackets provide array indexing. The dot operator is used to dereference objects and
will be discussed later in this book.

___ | Using Parentheses

Parentheses raise the precedence of the operations that are inside them. This is often
necessary to obtain the result you desire. For example, consider the following
expression:

II a>>b + 3

Chapter 4: Operators

Highest
() [
++ —-— ~ !
* / Y%
+ —_
>> >>> <<
> >= < <=
== !—
&
N
|
&&
I
?:
= Op:
Lowest
Table 4-1. The Precedence of the Java Operators

This expression first adds 3 to b and then shifts a right by that result. That is, this
expression can be rewritten using redundant parentheses like this:

Ia>>(b+3)

However, if you want to first shift a right by b positions and then add 3 to that
result, you will need to parenthesize the expression like this:

I(a>>b)+3

97

-
==
m
e~
2
>
Z
[2)
(=
>
(2]
m

98

Java™ 2: The Complete Reference

In addition to altering the normal precedence of an operator, parentheses can
sometimes be used to help clarify the meaning of an expression. For anyone reading
your code, a complicated expression can be difficult to understand. Adding redundant
but clarifying parentheses to complex expressions can help prevent confusion later. For
example, which of the following expressions is easier to read?

a|4+c>bs&7
(a | (((4+c)>>Db) & 7))

One other point: parentheses (redundant or not) do not degrade the performance of
your program. Therefore, adding parentheses to reduce ambiguity does not negatively
affect your program.

gl
Chaoter 5

Control Statements

100

Java™ 2: The Complete Reference

to advance and branch based on changes to the state of a program. Java’s program

control statements can be put into the following categories: selection, iteration,
and jump. Selection statements allow your program to choose different paths of execution
based upon the outcome of an expression or the state of a variable. Iteration statements
enable program execution to repeat one or more statements (that is, iteration statements
form loops). Jump statements allow your program to execute in a nonlinear fashion. All
of Java’s control statements are examined here.

ﬁ programming language uses control statements to cause the flow of execution

Note | If you know C/C++/C#, then Java’s control statements will be familiar territory. In fact,
' Java’s control statements are nearly identical to those in those languages. However,

there are a few differences—especially in the break and continue statements.

___| Java’s Selection Statements

Java supports two selection statements: if and switch. These statements allow you to
control the flow of your program’s execution based upon conditions known only during
run time. You will be pleasantly surprised by the power and flexibility contained in
these two statements.

The if statement was introduced in Chapter 2. It is examined in detail here. The if
statement is Java’s conditional branch statement. It can be used to route program
execution through two different paths. Here is the general form of the if statement:

if (condition) statementl1;
else statement2;

Here, each statement may be a single statement or a compound statement enclosed in
curly braces (that is, a block). The condition is any expression that returns a boolean value.
The else clause is optional.

The if works like this: If the condition is true, then statement] is executed. Otherwise,
statement? (if it exists) is executed. In no case will both statements be executed. For
example, consider the following:

int a, b;

//

if(a < b) a = 0;
else b = 0;

Chapter 5: Control Statements 101

Here, if a is less than b, then a is set to zero. Otherwise, b is set to zero. In no case are
they both set to zero.

Most often, the expression used to control the if will involve the relational operators.
However, this is not technically necessary. It is possible to control the if using a single
boolean variable, as shown in this code fragment:

boolean dataAvailable;

//

if (dataAvailable)
ProcessData();

else
waitForMoreDatal();

-
X
m
e~
2
>
2
[
(=
>
@
m

Remember, only one statement can appear directly after the if or the else. If you
want to include more statements, you'll need to create a block, as in this fragment:

int bytesAvailable;

//

if (bytesAvailable > 0) {
ProcessData();
bytesAvailable -= n;

} else
waitForMoreData();

Here, both statements within the if block will execute if bytesAvailable is greater
than zero.

Some programmers find it convenient to include the curly braces when using the if,
even when there is only one statement in each clause. This makes it easy to add another
statement at a later date, and you don’t have to worry about forgetting the braces. In
fact, forgetting to define a block when one is needed is a common cause of errors. For
example, consider the following code fragment:

int bytesAvailable;

//

if (bytesAvailable > 0) {
ProcessData();
bytesAvailable -= n;

} else
waitForMoreData();
bytesAvailable = n;

102

Java™ 2: The Complete Reference

It seems clear that the statement bytesAvailable = n; was intended to be executed
inside the else clause, because of the indentation level. However, as you recall,
whitespace is insignificant to Java, and there is no way for the compiler to know what
was intended. This code will compile without complaint, but it will behave incorrectly
when run. The preceding example is fixed in the code that follows:

int bytesAvailable;

//

if (bytesAvailable > 0) {
ProcessData();
bytesAvailable -= n;

} else {
waitForMoreData();
bytesAvailable = n;

Nested ifs

A nested if is an if statement that is the target of another if or else. Nested ifs are very
common in programming. When you nest ifs, the main thing to remember is that an
else statement always refers to the nearest if statement that is within the same block
as the else and that is not already associated with an else. Here is an example:

if(i == 10) {
if(j < 20) a = b;
if(k > 100) ¢ = d; // this if is
else a = c; // associated with this else

}

else a = d; // this else refers to if(i == 10)

As the comments indicate, the final else is not associated with if(j<20), because it is not
in the same block (even though it is the nearest if without an else). Rather, the final else
is associated with if(i==10). The inner else refers to if(k>100), because it is the closest if
within the same block.

The if-else-if Ladder
A common programming construct that is based upon a sequence of nested ifs is the
if-else-if ladder. It looks like this:

if(condition)
statement;
else if(condition)

Chapter 5: Control Statements 103

statement;
else if(condition)
statement;

else
statement;

-
X
m
e~
2
>
2
[
(=
>
@
m

The if statements are executed from the top down. As soon as one of the conditions
controlling the if is true, the statement associated with that if is executed, and the rest
of the ladder is bypassed. If none of the conditions is true, then the final else statement
will be executed. The final else acts as a default condition; that is, if all other conditional
tests fail, then the last else statement is performed. If there is no final else and all other
conditions are false, then no action will take place.

Here is a program that uses an if-else-if ladder to determine which season a particular
month is in.

// Demonstrate if-else-if statements.
class IfElse {
public static void main(String args[]) {
int month = 4; // April
String season;

if(month == 12 || month == 1 || month == 2)
season = "Winter";

else if(month == | month == || month == 5)
season = "Spring";

else if (month == 6 || month == || month == 8)
season = "Summer";

else if(month == | month == 10 || month == 11)
season = "Autumn";

else
season = "Bogus Month";

n

System.out.println("April is in the + season + ".");

Here is the output produced by the program:

April is in the Spring.

104 Java™ 2: The Complete Reference

You might want to experiment with this program before moving on. As you will
find, no matter what value you give month, one and only one assignment statement
within the ladder will be executed.

switch

The switch statement is Java’s multiway branch statement. It provides an easy way to
dispatch execution to different parts of your code based on the value of an expression.
As such, it often provides a better alternative than a large series of if-else-if statements.
Here is the general form of a switch statement:

switch (expression) {
case valuel:
// statement sequence
break;
case value2:
// statement sequence
break;

case valueN:
// statement sequence
break;
default:
// default statement sequence

}

The expression must be of type byte, short, int, or char; each of the values specified
in the case statements must be of a type compatible with the expression. Each case
value must be a unique literal (that is, it must be a constant, not a variable). Duplicate
case values are not allowed.

The switch statement works like this: The value of the expression is compared with
each of the literal values in the case statements. If a match is found, the code sequence
following that case statement is executed. If none of the constants matches the value of
the expression, then the default statement is executed. However, the default statement
is optional. If no case matches and no default is present, then no further action is taken.

The break statement is used inside the switch to terminate a statement sequence.
When a break statement is encountered, execution branches to the first line of code that
follows the entire switch statement. This has the effect of “jumping out” of the switch.

Here is a simple example that uses a switch statement:

Chapter 5: Control Statements

// A simple example of the switch.
class SampleSwitch {
public static void main(String args[]) {
for(int i=0; i<6; i++)
switch(i) {
case 0:
System.out.println("i is zero.");
break;
case 1:
System.out.println("i is one.");
break;
case 2:
System.out.println("i is two.");
break;
case 3:
System.out.println("i is three.");
break;
default:
System.out.println("i is greater than 3.");

The output produced by this program is shown here:

is zero.

is one.

is two.

is three.

is greater than 3.
is greater than 3.

[R R A T TN

As you can see, each time through the loop, the statements associated with the case
constant that matches i are executed. All others are bypassed. After i is greater than 3,
no case statements match, so the default statement is executed.

The break statement is optional. If you omit the break, execution will continue
on into the next case. It is sometimes desirable to have multiple cases without break
statements between them. For example, consider the following program:

// In a switch, break statements are optional.
class MissingBreak {

105

-
==
m
e~
2
>
Z
[2)
(=
>
(2]
m

106

Java™ 2: The Complete Reference

This program generates the following output:

P A N e

public static void main(String args[]) {
for(int i=0; i<12; i++)

is
is
is
is
is
is
is
is
is
is
is
is

switch(i) {

case 0:

case 1:

case 2:

case 3:

case 4:
System.out.println("i is
break;

case 5:

case 6:

case 7:

case 8:

case 9:
System.out.println("i is
break;

default:
System.out.println("i is

less
less
less
less
less
less
less
less
less
less

10 or more
10 or more

than
than
than
than
than
than
than
than
than
than

(G, BC, BNC, BNE, |

10
10
10
10
10

less than 5");

less than 10");

10 or more");

Chapter 5: Control Statements 107

As you can see, execution falls through each case until a break statement (or the end of
the switch) is reached.

While the preceding example is, of course, contrived for the sake of illustration,
omitting the break statement has many practical applications in real programs. To
sample its more realistic usage, consider the following rewrite of the season example
shown earlier. This version uses a switch to provide a more efficient implementation.

-
==
m
e~
2
>
Z
[2)
(=
>
(2]
m

// An improved version of the season program.
class Switch {
public static void main(String args[]) {
int month = 4;
String season;
switch (month) {
case 12:

case 1l:

case 2:
season = "Winter";
break;

case 3:

case 4:

case 5:
season = "Spring";
break;

case 6:

case 7:

case 8:
season = "Summer";
break;

case 9:

case 10:

case 11:
season = "Autumn";
break;

default:
season = "Bogus Month";

}
System.out.println("April is in the

+ season + ".");

108

Java™ 2: The Complete Reference

Nested switch Statements

You can use a switch as part of the statement sequence of an outer switch. This is called a
nested switch. Since a switch statement defines its own block, no conflicts arise between
the case constants in the inner switch and those in the outer switch. For example, the
following fragment is perfectly valid:

switch(count) {
case 1l:
switch(target) { // nested switch
case 0:
System.out.println("target is zero");
break;
case 1l: // no conflicts with outer switch
System.out.println("target is one");
break;
}
break;
case 2: //

Here, the case 1: statement in the inner switch does not conflict with the case 1: statement
in the outer switch. The count variable is only compared with the list of cases at the
outer level. If count is 1, then target is compared with the inner list cases.

In summary, there are three important features of the switch statement to note:

B The switch differs from the if in that switch can only test for equality, whereas
if can evaluate any type of Boolean expression. That is, the switch looks only
for a match between the value of the expression and one of its case constants.

Bl No two case constants in the same switch can have identical values. Of course,
a switch statement enclosed by an outer switch can have case constants
in common.

B A switch statement is usually more efficient than a set of nested ifs.

The last point is particularly interesting because it gives insight into how the Java
compiler works. When it compiles a switch statement, the Java compiler will inspect
each of the case constants and create a “jump table” that it will use for selecting the
path of execution depending on the value of the expression. Therefore, if you need to
select among a large group of values, a switch statement will run much faster than the
equivalent logic coded using a sequence of if-elses. The compiler can do this because it
knows that the case constants are all the same type and simply must be compared for
equality with the switch expression. The compiler has no such knowledge of a long list
of if expressions.

Chapter 5: Control Statements 109

| Iteration Statements

Java’s iteration statements are for, while, and do-while. These statements create what
we commonly call loops. As you probably know, a loop repeatedly executes the same
set of instructions until a termination condition is met. As you will see, Java has a loop
to fit any programming need.

-
X
m
e~
2
>
2
[
(=
>
@
m

while

The while loop is Java’s most fundamental looping statement. It repeats a statement or
block while its controlling expression is true. Here is its general form:

while(condition) {
// body of loop
}

The condition can be any Boolean expression. The body of the loop will be executed as
long as the conditional expression is true. When condition becomes false, control passes
to the next line of code immediately following the loop. The curly braces are unnecessary
if only a single statement is being repeated.

Here is a while loop that counts down from 10, printing exactly ten lines of “tick”:

// Demonstrate the while loop.
class While {
public static void main(String args[]) {
int n = 10;

while(n > 0) {
System.out.println("tick " + n);
n--;

}

When you run this program, it will “tick” ten times:

tick
tick
tick
tick
tick
tick
tick

0

S U1 oY J 00V

110

Java™ 2: The Complete Reference

tick 3
tick 2
tick 1

Since the while loop evaluates its conditional expression at the top of the loop, the
body of the loop will not execute even once if the condition is false to begin with. For
example, in the following fragment, the call to println() is never executed:

int a = 10, b = 20;

while(a > b)
System.out.println("This will not be displayed");

The body of the while (or any other of Java’s loops) can be empty. This is because
a null statement (one that consists only of a semicolon) is syntactically valid in Java. For
example, consider the following program:

// The target of a loop can be empty.
class NoBody {
public static void main(String args[]) {
int i, 3J;

100;
200;

i
]

// find midpoint between i and j
while(++i < --j) ; // no body in this loop

System.out.println("Midpoint is " + 1i);

This program finds the midpoint between i and j. It generates the following output:
Midpoint is 150

Here is how the while loop works. The value of i is incremented, and the value of j
is decremented. These values are then compared with one another. If the new value of
i is still less than the new value of j, then the loop repeats. If i is equal to or greater than
j, the loop stops. Upon exit from the loop, i will hold a value that is midway between
the original values of i and j. (Of course, this procedure only works when i is less than j

Chapter 5: Control Statements 111

to begin with.) As you can see, there is no need for a loop body; all of the action occurs
within the conditional expression, itself. In professionally written Java code, short loops
are frequently coded without bodies when the controlling expression can handle all of
the details itself.

do-while

As you just saw, if the conditional expression controlling a while loop is initially false,
then the body of the loop will not be executed at all. However, sometimes it is desirable
to execute the body of a while loop at least once, even if the conditional expression is
false to begin with. In other words, there are times when you would like to test the
termination expression at the end of the loop rather than at the beginning. Fortunately,
Java supplies a loop that does just that: the do-while. The do-while loop always executes
its body at least once, because its conditional expression is at the bottom of the loop. Its
general form is

-
==
m
e~
2
>
Z
[2)
(=
>
D
m

do {
// body of loop
} while (condition);

Each iteration of the do-while loop first executes the body of the loop and then
evaluates the conditional expression. If this expression is true, the loop will repeat.
Otherwise, the loop terminates. As with all of Java’s loops, condition must be a Boolean
expression.

Here is a reworked version of the “tick” program that demonstrates the do-while
loop. It generates the same output as before.

// Demonstrate the do-while loop.
class DoWhile {
public static void main(String args[]) {
int n = 10;

do {
System.out.println("tick " + n);
n--;

} while(n > 0);

The loop in the preceding program, while technically correct, can be written more
efficiently as follows:

do {
System.out.println("tick " + n);
} while(--n > 0);

Java™ 2: The Complete Reference

In this example, the expression (——n > 0) combines the decrement of n and the test for
zero into one expression. Here is how it works. First, the — —n statement executes,
decrementing n and returning the new value of n. This value is then compared with
zero. If it is greater than zero, the loop continues; otherwise it terminates.

The do-while loop is especially useful when you process a menu selection, because
you will usually want the body of a menu loop to execute at least once. Consider the
following program which implements a very simple help system for Java’s selection
and iteration statements:

// Using a do-while to process a menu selection
class Menu {
public static void main(String args[])
throws java.io.IOException {
char choice;

do {
System.out.println("Help on:");
System.out.println(" 1. if");
System.out.println(" 2. switch");
System.out.println(" 3. while");
System.out.println(" 4. do-while");
System.out.println(" 5. for\n");
System.out.println("Choose one:");
choice = (char) System.in.read();

} while(choice < '1l' || choice > '5');

System.out.println("\n");

switch(choice) {
case 'l':
System.out.println("The if:\n");
System.out.println("if (condition) statement;");
System.out.println("else statement;");
break;
case '2':

Chapter 5: Control Statements 113

System.out.println("The switch:\n");
System.out.println("switch(expression) {");
System.out.println(" case constant:");
System.out.println(" statement sequence");
System.out.println(" break;");
System.out.println(" // ...");
System.out.println("}");
break;

case '3':
System.out.println("The while:\n");
System.out.println("while(condition) statement;");
break;

case '4'
System.out.println("The do-while:\n");
System.out.println("do {");
System.out.println(" statement;");
System.out.println("} while (condition);");
break;

case '5':
System.out.println("The for:\n");
System.out.print("for(init; condition; iteration)");
System.out.println(" statement;");
break;

-
==
m
e~
2
>
Z
[2)
(=
>
(2]
m

.

Here is a sample run produced by this program:

Help on:
1. if
2. switch
3. while
4. do-while
5. for
Choose one:
4
The do-while:
do {
statement;
} while (condition);

114

for

Java™ 2: The Complete Reference

In the program, the do-while loop is used to verify that the user has entered a valid
choice. If not, then the user is reprompted. Since the menu must be displayed at least
once, the do-while is the perfect loop to accomplish this.

A few other points about this example: Notice that characters are read from the
keyboard by calling System.in.read(). This is one of Java’s console input functions.
Although Java’s console I/O methods won’t be discussed in detail until Chapter 12,
System.in.read() is used here to obtain the user’s choice. It reads characters from
standard input (returned as integers, which is why the return value was cast to char).
By default, standard input is line buffered, so you must press ENTER before any
characters that you type will be sent to your program.

Java’s console input is quite limited and awkward to work with. Further, most
real-world Java programs and applets will be graphical and window-based. For these
reasons, not much use of console input has been made in this book. However, it is useful
in this context. One other point: Because System.in.read() is being used, the program
must specify the throws java.io.IOException clause. This line is necessary to handle
input errors. It is part of Java’s exception handling features, which are discussed in
Chapter 10.

You were introduced to a simple form of the for loop in Chapter 2. As you will see, it is
a powerful and versatile construct. Here is the general form of the for statement:

for(initialization; condition; iteration) {
// body
}

If only one statement is being repeated, there is no need for the curly braces.

The for loop operates as follows. When the loop first starts, the initialization portion
of the loop is executed. Generally, this is an expression that sets the value of the loop
control variable, which acts as a counter that controls the loop. It is important to understand
that the initialization expression is only executed once. Next, condition is evaluated. This
must be a Boolean expression. It usually tests the loop control variable against a target
value. If this expression is true, then the body of the loop is executed. If it is false, the
loop terminates. Next, the iteration portion of the loop is executed. This is usually an
expression that increments or decrements the loop control variable. The loop then iterates,
first evaluating the conditional expression, then executing the body of the loop, and
then executing the iteration expression with each pass. This process repeats until the
controlling expression is false.

Here is a version of the “tick” program that uses a for loop:

Chapter 5: Control Statements 115

// Demonstrate the for loop.
class ForTick {
public static void main(String args[]) {
int n;

for(n=10; n>0; n--)
System.out.println("tick " + n);

-
X
m
e~
2
>
2
[
(=
>
[2)
m

Declaring Loop Control Variables Inside the for Loop

Often the variable that controls a for loop is only needed for the purposes of the loop
and is not used elsewhere. When this is the case, it is possible to declare the variable
inside the initialization portion of the for. For example, here is the preceding program
recoded so that the loop control variable n is declared as an int inside the for:

// Declare a loop control variable inside the for.
class ForTick {
public static void main(String args[]) {

// here, n is declared inside of the for loop
for(int n=10; n>0; n--)
System.out.println("tick " + n);

When you declare a variable inside a for loop, there is one important point to
remember: the scope of that variable ends when the for statement does. (That is, the
scope of the variable is limited to the for loop.) Outside the for loop, the variable will
cease to exist. If you need to use the loop control variable elsewhere in your program,
you will not be able to declare it inside the for loop.

When the loop control variable will not be needed elsewhere, most Java programmers
declare it inside the for. For example, here is a simple program that tests for prime
numbers. Notice that the loop control variable, i, is declared inside the for since it is not
needed elsewhere.

// Test for primes.
class FindPrime {

116 Java™ 2: The Complete Reference

public static void main(String args[]) {
int num;
boolean isPrime = true;

num = 14;
for(int i=2; i <= num/2; i++) {

if((num % i) == 0) {
isPrime = false;
break;

}

}
if (isPrime) System.out.println("Prime");
else System.out.println("Not Prime");

Using the Comma
There will be times when you will want to include more than one statement in the
initialization and iteration portions of the for loop. For example, consider the loop
in the following program:

class Sample {
public static void main(String args[]) {
int a, b;

b = 4;

for(a=1l; a<b; a+t+) {
System.out.println("a = " + a);
System.out.println("b = " + b);
b--;

}

As you can see, the loop is controlled by the interaction of two variables. Since the loop
is governed by two variables, it would be useful if both could be included in the for
statement, itself, instead of b being handled manually. Fortunately, Java provides a way
to accomplish this. To allow two or more variables to control a for loop, Java permits
you to include multiple statements in both the initialization and iteration portions of
the for. Each statement is separated from the next by a comma.

Chapter 5: Control Statements 117

Using the comma, the preceding for loop can be more efficiently coded as shown here:

// Using the comma.
class Comma {
public static void main(String args[]) {
int a, b;

-
==
m
e~
2
>
Z
[2)
(=
>
D
m

for(a=1, b=4; a<b; a+t+, b--) {
System.out.println("a = " + a);
System.out.println("b = " + b);

In this example, the initialization portion sets the values of both a and b. The two
comma-separated statements in the iteration portion are executed each time the loop
repeats. The program generates the following output:

oo OO
w N

| If you are familiar with C/C++, then you know that in those languages the comma is

an operator that can be used in any valid expression. However, this is not the case with
Java. In Java, the comma is a separator that applies only to the for loop.

Some for Loop Variations

The for loop supports a number of variations that increase its power and applicability. The
reason it is so flexible is that its three parts, the initialization, the conditional test, and
the iteration, do not need to be used for only those purposes. In fact, the three sections
of the for can be used for any purpose you desire. Let’s look at some examples.

One of the most common variations involves the conditional expression. Specifically,
this expression does not need to test the loop control variable against some target value.
In fact, the condition controlling the for can be any Boolean expression. For example,
consider the following fragment:

boolean done = false;

for(int i=1; !done; i++) {

118

Java™ 2: The Complete Reference

VA
if (interrupted()) done = true;

In this example, the for loop continues to run until the boolean variable done is set
to true. It does not test the value of i.

Here is another interesting for loop variation. Either the initialization or the
iteration expression or both may be absent, as in this next program:

// Parts of the for loop can be empty.
class ForVar {
public static void main(String args[]) {
int i;
boolean done = false;

i=0;

for(; !done;) {
System.out.println("i is " + 1i);
if(i == 10) done = true;
i++;

Here, the initialization and iteration expressions have been moved out of the for. Thus,
parts of the for are empty. While this is of no value in this simple example—indeed, it
would be considered quite poor style—there can be times when this type of approach
makes sense. For example, if the initial condition is set through a complex expression
elsewhere in the program or if the loop control variable changes in a nonsequential
manner determined by actions that occur within the body of the loop, it may be
appropriate to leave these parts of the for empty.

Here is one more for loop variation. You can intentionally create an infinite loop
(a loop that never terminates) if you leave all three parts of the for empty. For example:

for(; ;) {
/...

This loop will run forever, because there is no condition under which it will terminate.
Although there are some programs, such as operating system command processors,

Chapter 5: Control Statements 119

that require an infinite loop, most “infinite loops” are really just loops with special
termination requirements. As you will soon see, there is a way to terminate a loop—
even an infinite loop like the one shown—that does not make use of the normal
loop conditional expression.

Nested Loops

Like all other programming languages, Java allows loops to be nested. That is, one loop
may be inside another. For example, here is a program that nests for loops:

-
X
m
e~
2
>
2
[
(=
>
@
m

// Loops may be nested.
class Nested {
public static void main(String args[]) {
int i, 3J;

for(i=0; i<10; i++) {
for(j=1i; j<10; j++)
System.out.print(".");
System.out.println();

The output produced by this program is shown here:

__ | Jump Statements

Java supports three jump statements: break, continue, and return. These statements
transfer control to another part of your program. Each is examined here.

120

Java™ 2: The Complete Reference

Note | In addition to the jump statements discussed here, Java supports one other way that you
/ can change your program’s flow of execution: through exception handling. Exception

handling provides a structured method by which run-time errors can be trapped and
handled by your program. It is supported by the keywords try, catch, throw, throws,
and finally. In essence, the exception handling mechanism allows your program to
perform a nonlocal branch. Since exception handling is a large topic, it is discussed

in its own chapter, Chapter 10.

Using break

In Java, the break statement has three uses. First, as you have seen, it terminates a
statement sequence in a switch statement. Second, it can be used to exit a loop. Third,
it can be used as a “civilized” form of goto. The last two uses are explained here.

Using break to Exit a Loop

By using break, you can force immediate termination of a loop, bypassing the
conditional expression and any remaining code in the body of the loop. When a break
statement is encountered inside a loop, the loop is terminated and program control
resumes at the next statement following the loop. Here is a simple example:

// Using break to exit a loop.
class BreakLoop {
public static void main(String args[]) {
for(int i=0; i<100; i++) {

if(i == 10) break; // terminate loop if i is 10
System.out.println("i: " + 1i);

}

System.out.println("Loop complete.");

}

This program generates the following output:

[o O S A A SR A S A
00 o0 Ul WN - O

Chapter 5: Control Statements

i: 9
Loop complete.

As you can see, although the for loop is designed to run from 0 to 99, the break
statement causes it to terminate early, when i equals 10.

The break statement can be used with any of Java’s loops, including intentionally
infinite loops. For example, here is the preceding program coded by use of a while
loop. The output from this program is the same as just shown.

// Using break to exit a while loop.
class BreakLoop2 {
public static void main(String args[]) {
int i = 0;

while(i < 100) {

if(i == 10) break; // terminate loop if i is 10
System.out.println("i: " + 1i);
i++;

}

System.out.println("Loop complete.");

When used inside a set of nested loops, the break statement will only break out of
the innermost loop. For example:

// Using break with nested loops.
class BreakLoop3 {
public static void main(String args[]) {
for(int i=0; i<3; i++) {

System.out.print("Pass " + i + ": ");

for(int j=0; j<100; j++) {
if(j == 10) break; // terminate loop if j is 10
System.out.print(j + " ");

}

System.out.println();

}

System.out.println("Loops complete.");

121

-
==
m
e~
2
>
Z
[2)
(=
>
(2]
m

122 Java™ 2: The Complete Reference

This program generates the following output:
Pass 0: 01 2 3456789
Pass 1: 01 2 3 456789
Pass 2: 01 23 456789

Loops complete.

As you can see, the break statement in the inner loop only causes termination of that
loop. The outer loop is unaffected.

Here are two other points to remember about break. First, more than one break
statement may appear in a loop. However, be careful. Too many break statements have
the tendency to destructure your code. Second, the break that terminates a switch
statement affects only that switch statement and not any enclosing loops.

Bl break was not designed to provide the normal means by which a loop is terminated. The
Remember . o . .
loop’s conditional expression serves this purpose. The break statement should be used to
cancel a loop only when some sort of special situation occurs.

Using break as a Form of Goto
In addition to its uses with the switch statement and loops, the break statement can also
be employed by itself to provide a “civilized” form of the goto statement. Java does
not have a goto statement, because it provides a way to branch in an arbitrary and
unstructured manner. This usually makes goto-ridden code hard to understand and
hard to maintain. It also prohibits certain compiler optimizations. There are, however,
a few places where the goto is a valuable and legitimate construct for flow control. For
example, the goto can be useful when you are exiting from a deeply nested set of loops.
To handle such situations, Java defines an expanded form of the break statement. By
using this form of break, you can break out of one or more blocks of code. These blocks
need not be part of a loop or a switch. They can be any block. Further, you can specify
precisely where execution will resume, because this form of break works with a label.
As you will see, break gives you the benefits of a goto without its problems.

The general form of the labeled break statement is shown here:

break label;

Here, label is the name of a label that identifies a block of code. When this form of break
executes, control is transferred out of the named block of code. The labeled block of
code must enclose the break statement, but it does not need to be the immediately
enclosing block. This means that you can use a labeled break statement to exit from a
set of nested blocks. But you cannot use break to transfer control to a block of code that
does not enclose the break statement.

Chapter 5: Control Statements

To name a block, put a label at the start of it. A label is any valid Java identifier
followed by a colon. Once you have labeled a block, you can then use this label as the
target of a break statement. Doing so causes execution to resume at the end of the labeled
block. For example, the following program shows three nested blocks, each with its
own label. The break statement causes execution to jump forward, past the end of the
block labeled second, skipping the two println() statements.

// Using break as a civilized form of goto.
class Break {
public static void main(String args[]) {
boolean t = true;

first: {
second: {

third: {
System.out.println("Before the break.");
if(t) break second; // break out of second block
System.out.println("This won't execute");

}

System.out.println("This won't execute");

}

System.out.println("This is after second block.");

Running this program generates the following output:

Before the break.
This is after second block.

One of the most common uses for a labeled break statement is to exit from nested
loops. For example, in the following program, the outer loop executes only once:

// Using break to exit from nested loops
class BreakLoop4 {
public static void main(String args[]) {
outer: for(int i=0; i<3; i++) {
System.out.print("Pass " + i + ": ");
for(int j=0; 3j<100; j++) {
if(j == 10) break outer; // exit both loops
System.out.print(j + " ");

123

-
X
m
e~
2
>
2
[
(=
>
@
m

124

Java™ 2: The Complete Reference

}
System.out.println("This will not print");

}

System.out.println("Loops complete.");

This program generates the following output:
Pass 0: 01 2 3 456 7 8 9 Loops complete.

As you can see, when the inner loop breaks to the outer loop, both loops have been
terminated.

Keep in mind that you cannot break to any label which is not defined for an enclosing
block. For example, the following program is invalid and will not compile:

// This program contains an error.
class BreakErr {
public static void main(String args[]) {

one: for(int i=0; i<3; i++) {
System.out.print("Pass " + i + ": ");

}

for(int j=0; 3j<100; j++) {
if(j == 10) break one; // WRONG
System.out.print(j + " ");

Since the loop labeled one does not enclose the break statement, it is not possible to
transfer control to that block.

Using continue

Sometimes it is useful to force an early iteration of a loop. That is, you might want to
continue running the loop, but stop processing the remainder of the code in its body
for this particular iteration. This is, in effect, a goto just past the body of the loop, to the
loop’s end. The continue statement performs such an action. In while and do-while
loops, a continue statement causes control to be transferred directly to the conditional
expression that controls the loop. In a for loop, control goes first to the iteration portion

Chapter 5: Control Statements

of the for statement and then to the conditional expression. For all three loops, any
intermediate code is bypassed.

Here is an example program that uses continue to cause two numbers to be printed
on each line:

// Demonstrate continue.
class Continue {
public static void main(String args[]) {
for(int i=0; i<10; i++) {
System.out.print(i + " ");
if (i%2 == 0) continue;
System.out.println("");

This code uses the % operator to check if i is even. If it is, the loop continues without
printing a newline. Here is the output from this program:

0 o N O
O g 0w

As with the break statement, continue may specify a label to describe which
enclosing loop to continue. Here is an example program that uses continue to print
a triangular multiplication table for 0 through 9.

// Using continue with a label.
class ContinueLabel {
public static void main(String args[]) {
outer: for (int i=0; i<10; i++) {
for(int j=0; j<10; j++) {
if(§ > i) {
System.out.println();
continue outer;

}

System.out.print(" " + (i * J));

}
System.out.println();

125

-
==
m
e~
2
>
Z
[2)
(=
>
(2]
m

126 Java™ 2: The Complete Reference

The continue statement in this example terminates the loop counting j and continues
with the next iteration of the loop counting i. Here is the output of this program:

4
6 9

10
12
14
16
18

O O OO O OO o oo
O oo JOoyU & WN -

15
18
21
24
27

8 12 16

20
24
28
32
36

25
30
35
40
45

36
42
48
54

49
56 64
63 72 81

Good uses of continue are rare. One reason is that Java provides a rich set of loop
statements which fit most applications. However, for those special circumstances in
which early iteration is needed, the continue statement provides a structured way to
accomplish it.

return

The last control statement is return. The return statement is used to explicitly return
from a method. That is, it causes program control to transfer back to the caller of the
method. As such, it is categorized as a jump statement. Although a full discussion of
return must wait until methods are discussed in Chapter 7, a brief look at return is
presented here.
At any time in a method the return statement can be used to cause execution to
branch back to the caller of the method. Thus, the return statement immediately terminates
the method in which it is executed. The following example illustrates this point. Here,
return causes execution to return to the Java run-time system, since it is the run-time

system that calls main().

// Demonstrate return.

class Return {

public static void main(String args[]) {

boolean t

true;

Chapter 5: Control Statements 127

System.out.println("Before the return.");
if(t) return; // return to caller

System.out.println("This won't execute.");

-
==
m
e~
2
>
Z
[2)
(=
>
(2]
m

The output from this program is shown here:
Before the return.

As you can see, the final println() statement is not executed. As soon as return is
executed, control passes back to the caller.

One last point: In the preceding program, the if(t) statement is necessary. Without it,
the Java compiler would flag an “unreachable code” error, because the compiler would
know that the last println() statement would never be executed. To prevent this error,
the if statement is used here to trick the compiler for the sake of this demonstration.

This page intentionally left blank.

gl
Chapter 6

Introducing Classes

130

Java™ 2: The Complete Reference

language is built because it defines the shape and nature of an object. As such,
the class forms the basis for object-oriented programming in Java. Any concept
you wish to implement in a Java program must be encapsulated within a class.

Because the class is so fundamental to Java, this and the next few chapters will be
devoted to it. Here, you will be introduced to the basic elements of a class and learn
how a class can be used to create objects. You will also learn about methods, constructors,
and the this keyword.

The class is at the core of Java. It is the logical construct upon which the entire Java

___| class Fundamentals

Classes have been used since the beginning of this book. However, until now, only the
most rudimentary form of a class has been used. The classes created in the preceding
chapters primarily exist simply to encapsulate the main() method, which has been used
to demonstrate the basics of the Java syntax. As you will see, classes are substantially
more powerful than the limited ones presented so far.

Perhaps the most important thing to understand about a class is that it defines a
new data type. Once defined, this new type can be used to create objects of that type.
Thus, a class is a template for an object, and an object is an instance of a class. Because an
object is an instance of a class, you will often see the two words object and instance used
interchangeably.

The General Form of a Class

When you define a class, you declare its exact form and nature. You do this by specifying
the data that it contains and the code that operates on that data. While very simple classes
may contain only code or only data, most real-world classes contain both. As you will
see, a class’ code defines the interface to its data.

A class is declared by use of the class keyword. The classes that have been used up
to this point are actually very limited examples of its complete form. Classes can (and
usually do) get much more complex. The general form of a class definition is shown here:

class classname {
type instance-variablel;
type instance-variable2;
// ..

type instance-variableN;

type methodnamel(parameter-list) {
// body of method

}

type methodname2(parameter-list) {
// body of method

Chapter 6: Introducing Classes 131

}
// ...
type methodnameN (parameter-list) {
// body of method
}
}

The data, or variables, defined within a class are called instance variables. The code
is contained within methods. Collectively, the methods and variables defined within
a class are called members of the class. In most classes, the instance variables are acted
upon and accessed by the methods defined for that class. Thus, it is the methods that
determine how a class’ data can be used.

Variables defined within a class are called instance variables because each instance
of the class (that is, each object of the class) contains its own copy of these variables.
Thus, the data for one object is separate and unique from the data for another. We
will come back to this point shortly, but it is an important concept to learn early.

All methods have the same general form as main(), which we have been using thus
far. However, most methods will not be specified as static or public. Notice that the
general form of a class does not specify a main() method. Java classes do not need to
have a main() method. You only specify one if that class is the starting point for your
program. Further, applets don’t require a main() method at all.

| C++ programmers will notice that the class declaration and the implementation of the
methods are stored in the same place and not defined separately. This sometimes makes
for very large .java files, since any class must be entirely defined in a single source file.

This design feature was built into Java because it was felt that in the long run, having

specification, declaration, and implementation all in one place makes for code that is
easier to maintain.

-
==
m
;
<
>
Z
(]
(=
>
(2]
m

A Simple Class

Let’s begin our study of the class with a simple example. Here is a class called Box that
defines three instance variables: width, height, and depth. Currently, Box does not contain
any methods (but some will be added soon).

class Box {
double width;
double height;
double depth;
}

As stated, a class defines a new type of data. In this case, the new data type is called
Box. You will use this name to declare objects of type Box. It is important to remember

132 Java™ 2: The Complete Reference

that a class declaration only creates a template; it does not create an actual object. Thus,
the preceding code does not cause any objects of type Box to come into existence.
To actually create a Box object, you will use a statement like the following:

I Box mybox = new Box(); // create a Box object called mybox

After this statement executes, mybox will be an instance of Box. Thus, it will have
“physical” reality. For the moment, don’t worry about the details of this statement.

Again, each time you create an instance of a class, you are creating an object that
contains its own copy of each instance variable defined by the class. Thus, every Box
object will contain its own copies of the instance variables width, height, and depth. To
access these variables, you will use the dot (.) operator. The dot operator links the name
of the object with the name of an instance variable. For example, to assign the width
variable of mybox the value 100, you would use the following statement:

I mybox.width = 100;

This statement tells the compiler to assign the copy of width that is contained within
the mybox object the value of 100. In general, you use the dot operator to access both
the instance variables and the methods within an object.

Here is a complete program that uses the Box class:

/* A program that uses the Box class.

Call this file BoxDemo.java
*/
class Box {

double width;

double height;

double depth;
}

// This class declares an object of type Box.
class BoxDemo {
public static void main(String args[]) {
Box mybox = new Box();
double vol;

// assign values to mybox's instance variables
mybox.width = 10;

Chapter 6: Introducing Classes 133

mybox.height = 20;
mybox.depth = 15;

// compute volume of box
vol = mybox.width * mybox.height * mybox.depth;

-
X
m
e~
2
>
2
[
(=
>
@
m

System.out.println("Volume is " + vol);

You should call the file that contains this program BoxDemo.java, because the main()
method is in the class called BoxDemo, not the class called Box. When you compile this
program, you will find that two .class files have been created, one for Box and one for
BoxDemo. The Java compiler automatically puts each class into its own .class file. It is
not necessary for both the Box and the BoxDemo class to actually be in the same source
file. You could put each class in its own file, called Box.java and BoxDemo.java,
respectively.

To run this program, you must execute BoxDemo.class. When you do, you will see
the following output:

Volume is 3000.0

As stated earlier, each object has its own copies of the instance variables. This
means that if you have two Box objects, each has its own copy of depth, width, and
height. It is important to understand that changes to the instance variables of one
object have no effect on the instance variables of another. For example, the following
program declares two Box objects:

// This program declares two Box objects.

class Box {
double width;
double height;
double depth;
}

class BoxDemo2 {
public static void main(String args[]) {
Box myboxl = new Box();
Box mybox2 = new Box();

134

Java™ 2: The Complete Reference

double vol;

// assign values to myboxl's instance variables
myboxl.width = 10;
myboxl.height = 20;
myboxl.depth = 15;

/* assign different values to mybox2's
instance variables */

mybox2.width = 3;

mybox2.height = 6;

mybox2.depth = 9;

// compute volume of first box
vol = myboxl.width * myboxl.height * myboxl.depth;
System.out.println("vVolume is " + vol);

// compute volume of second box
vol = mybox2.width * mybox2.height * mybox2.depth;
System.out.println("Volume is " + vol);

The output produced by this program is shown here:

Volume is 3000.0
Volume is 162.0

As you can see, mybox1’s data is completely separate from the data contained
in mybox2.

Declaring Objects

As just explained, when you create a class, you are creating a new data type. You can
use this type to declare objects of that type. However, obtaining objects of a class is a
two-step process. First, you must declare a variable of the class type. This variable does
not define an object. Instead, it is simply a variable that can refer to an object. Second,
you must acquire an actual, physical copy of the object and assign it to that variable. You
can do this using the new operator. The new operator dynamically allocates (that

is, allocates at run time) memory for an object and returns a reference to it. This
reference is, more or less, the address in memory of the object allocated by new.

Chapter 6: Introducing Classes

This reference is then stored in the variable. Thus, in Java, all class objects must be
dynamically allocated. Let’s look at the details of this procedure.

In the preceding sample programs, a line similar to the following is used to declare
an object of type Box:

I Box mybox = new Box();

This statement combines the two steps just described. It can be rewritten like this to
show each step more clearly:

Box mybox; // declare reference to object
mybox = new Box(); // allocate a Box object

The first line declares mybox as a reference to an object of type Box. After this line
executes, mybox contains the value null, which indicates that it does not yet point to
an actual object. Any attempt to use mybox at this point will result in a compile-time
error. The next line allocates an actual object and assigns a reference to it to mybox.
After the second line executes, you can use mybox as if it were a Box object. But in
reality, mybox simply holds the memory address of the actual Box object. The effect
of these two lines of code is depicted in Figure 6-1.

Statement Effect
Box mybox;
mybox

mybox = new Box(); | —|—> Width

mybox Height
Depth

Box object

Figure 6-1. Declaring an object of type Box

135

-
==
m
;
<
>
Z
[2)
(=
>
D
m

136 Java™ 2: The Complete Reference

Note | Those readers familiar with C/C++ have probably noticed that object references appear
/ to be similar to pointers. This suspicion is, essentially, correct. An object reference is
similar to a memory pointer. The main difference—and the key to Java’s safety—is that

you cannot manipulate references as you can actual pointers. Thus, you cannot cause an
object reference to point to an arbitrary memory location or manipulate it like an integer.

A Closer Look at new

As just explained, the new operator dynamically allocates memory for an object. It has
this general form:

class-var = new classname();

Here, class-var is a variable of the class type being created. The classname is the name of
the class that is being instantiated. The class name followed by parentheses specifies the
constructor for the class. A constructor defines what occurs when an object of a class

is created. Constructors are an important part of all classes and have many significant
attributes. Most real-world classes explicitly define their own constructors within their
class definition. However, if no explicit constructor is specified, then Java will automatically
supply a default constructor. This is the case with Box. For now, we will use the default
constructor. Soon, you will see how to define your own constructors.

At this point, you might be wondering why you do not need to use new for such
things as integers or characters. The answer is that Java’s simple types are not implemented
as objects. Rather, they are implemented as “normal” variables. This is done in the interest
of efficiency. As you will see, objects have many features and attributes that require Java
to treat them differently than it treats the simple types. By not applying the same overhead
to the simple types that applies to objects, Java can implement the simple types more
efficiently. Later, you will see object versions of the simple types that are available for
your use in those situations in which complete objects of these types are needed.

It is important to understand that new allocates memory for an object during run
time. The advantage of this approach is that your program can create as many or as
few objects as it needs during the execution of your program. However, since memory
is finite, it is possible that new will not be able to allocate memory for an object because
insufficient memory exists. If this happens, a run-time exception will occur. (You will
learn how to handle this and other exceptions in Chapter 10.) For the sample programs
in this book, you won’t need to worry about running out of memory, but you will need
to consider this possibility in real-world programs that you write.

Let’s once again review the distinction between a class and an object. A class creates
a new data type that can be used to create objects. That is, a class creates a logical
framework that defines the relationship between its members. When you declare an
object of a class, you are creating an instance of that class. Thus, a class is a logical
construct. An object has physical reality. (That is, an object occupies space in memory.)
It is important to keep this distinction clearly in mind.

Chapter 6: Introducing Classes 137

| Assigning Object Reference Variables

Object reference variables act differently than you might expect when an assignment
takes place. For example, what do you think the following fragment does?

Box bl = new Box();
Box b2 bl;

You might think that b2 is being assigned a reference to a copy of the object referred
to by b1. That is, you might think that b1 and b2 refer to separate and distinct objects.
However, this would be wrong. Instead, after this fragment executes, b1 and b2 will
both refer to the same object. The assignment of b1 to b2 did not allocate any memory
or copy any part of the original object. It simply makes b2 refer to the same object as
does b1. Thus, any changes made to the object through b2 will affect the object to
which b1 is referring, since they are the same object.

This situation is depicted here:

-
I
m
;
<
>
2
[2)
[=
>
(2]
m

Height Box object
IZ/ Depth
b2

Although b1 and b2 both refer to the same object, they are not linked in any other
way. For example, a subsequent assignment to b1 will simply unhook b1 from the
original object without affecting the object or affecting b2. For example:

Box bl = new Box();
Box b2 = bl;

/1 ...

bl = null;

Here, b1 has been set to null, but b2 still points to the original object.

Bl When you assign one object reference variable to another object reference variable, you
Remember . . :
are not creating a copy of the object, you are only making a copy of the reference.

138

Java™ 2: The Complete Reference

__ | Introducing Methods

As mentioned at the beginning of this chapter, classes usually consist of two things:
instance variables and methods. The topic of methods is a large one because Java gives
them so much power and flexibility. In fact, much of the next chapter is devoted to
methods. However, there are some fundamentals that you need to learn now so that
you can begin to add methods to your classes.

This is the general form of a method:

type name(parameter-list) {
// body of method
)

Here, type specifies the type of data returned by the method. This can be any valid type,
including class types that you create. If the method does not return a value, its return
type must be void. The name of the method is specified by name. This can be any legal
identifier other than those already used by other items within the current scope. The
parameter-list is a sequence of type and identifier pairs separated by commas. Parameters
are essentially variables that receive the value of the arquments passed to the method when
it is called. If the method has no parameters, then the parameter list will be empty.

Methods that have a return type other than void return a value to the calling routine
using the following form of the return statement:

return value;

Here, value is the value returned.
In the next few sections, you will see how to create various types of methods,
including those that take parameters and those that return values.

Adding a Method to the Box Class

Although it is perfectly fine to create a class that contains only data, it rarely happens. Most
of the time you will use methods to access the instance variables defined by the class.
In fact, methods define the interface to most classes. This allows the class implementor
to hide the specific layout of internal data structures behind cleaner method abstractions.
In addition to defining methods that provide access to data, you can also define methods
that are used internally by the class itself.

Let’s begin by adding a method to the Box class. It may have occurred to you
while looking at the preceding programs that the computation of a box’s volume was
something that was best handled by the Box class rather than the BoxDemo class. After

Chapter 6: Introducing Classes

all, since the volume of a box is dependent upon the size of the box, it makes sense to
have the Box class compute it. To do this, you must add a method to Box, as shown here:

// This program includes a method inside the box class.

class Box {
double width;
double height;
double depth;

// display volume of a box

void volume() {
System.out.print("Volume is ");
System.out.println(width * height * depth);

class BoxDemo3 {
public static void main(String args[]) {
Box myboxl = new Box();
Box mybox2 = new Box();

// assign values to myboxl's instance variables
myboxl.width = 10;
myboxl.height = 20;
mybox1l.depth = 15;

/* assign different values to mybox2's
instance variables */

mybox2.width = 3;

mybox2.height = 6;

mybox2.depth = 9;

// display volume of first box
myboxl.volume();

// display volume of second box
mybox2.volume();

This program generates the following output, which is the same as the previous version.

139

-
==
m
e~
2
>
Z
[2)
(=
>
(2]
m

140

Java™ 2: The Complete Reference

Volume is 3000.0
Volume is 162.0

Look closely at the following two lines of code:
myboxl.volume();
mybox2.volume();

The first line here invokes the volume() method on mybox1. That is, it calls volume()
relative to the mybox1 object, using the object’s name followed by the dot operator.
Thus, the call to mybox1.volume() displays the volume of the box defined by mybox1,
and the call to mybox2.volume() displays the volume of the box defined by mybox2.
Each time volume() is invoked, it displays the volume for the specified box.

If you are unfamiliar with the concept of calling a method, the following discussion
will help clear things up. When mybox1.volume() is executed, the Java run-time system
transfers control to the code defined inside volume(). After the statements inside
volume() have executed, control is returned to the calling routine, and execution
resumes with the line of code following the call. In the most general sense, a method
is Java’s way of implementing subroutines.

There is something very important to notice inside the volume() method: the
instance variables width, height, and depth are referred to directly, without preceding
them with an object name or the dot operator. When a method uses an instance variable
that is defined by its class, it does so directly, without explicit reference to an object and
without use of the dot operator. This is easy to understand if you think about it. A method
is always invoked relative to some object of its class. Once this invocation has occurred,
the object is known. Thus, within a method, there is no need to specify the object a second
time. This means that width, height, and depth inside volume() implicitly refer to the
copies of those variables found in the object that invokes volume().

Let’s review: When an instance variable is accessed by code that is not part of the
class in which that instance variable is defined, it must be done through an object, by
use of the dot operator. However, when an instance variable is accessed by code that is
part of the same class as the instance variable, that variable can be referred to directly.
The same thing applies to methods.

Returning a Value

While the implementation of volume() does move the computation of a box’s volume
inside the Box class where it belongs, it is not the best way to do it. For example, what
if another part of your program wanted to know the volume of a box, but not display
its value? A better way to implement volume() is to have it compute the volume of the
box and return the result to the caller. The following example, an improved version of
the preceding program, does just that:

Chapter 6: Introducing Classes

// Now, volume() returns the volume of a box.

class Box {
double width;
double height;
double depth;

// compute and return volume
double volume() {
return width * height * depth;

class BoxDemo4 {
public static void main(String args[]) {
Box myboxl = new Box();
Box mybox2 = new Box();
double vol;

// assign values to myboxl's instance variables
myboxl.width = 10;
myboxl.height = 20;
myboxl.depth = 15;

/* assign different values to mybox2's
instance variables */

mybox2.width = 3;

mybox2.height = 6;

mybox2.depth = 9;

// get volume of first box
vol = myboxl.volume();
System.out.println("Volume is " + vol);

// get volume of second box
vol = mybox2.volume();
System.out.println("Volume is " + vol);

141

-
==
m
e~
2
>
Z
[2)
(=
>
(2]
m

142

Java™ 2: The Complete Reference

As you can see, when volume() is called, it is put on the right side of an assignment
statement. On the left is a variable, in this case vol, that will receive the value returned
by volume(). Thus, after

I vol = myboxl.volume();

executes, the value of mybox1.volume() is 3,000 and this value then is stored in vol.
There are two important things to understand about returning values:

B The type of data returned by a method must be compatible with the return type
specified by the method. For example, if the return type of some method is
boolean, you could not return an integer.

B The variable receiving the value returned by a method (such as vol, in this case)
must also be compatible with the return type specified for the method.

One more point: The preceding program can be written a bit more efficiently
because there is actually no need for the vol variable. The call to volume() could have
been used in the println() statement directly, as shown here:

I System.out.println("Volume is " + myboxl.volume());

In this case, when println() is executed, mybox1.volume() will be called automatically
and its value will be passed to println().

Adding a Method That Takes Parameters

While some methods don’t need parameters, most do. Parameters allow a method to be
generalized. That is, a parameterized method can operate on a variety of data and/or
be used in a number of slightly different situations. To illustrate this point, let’s use

a very simple example. Here is a method that returns the square of the number 10:

int square()
{

return 10 * 10;

}

While this method does, indeed, return the value of 10 squared, its use is very
limited. However, if you modify the method so that it takes a parameter, as shown
next, then you can make square() much more useful.

Chapter 6: Introducing Classes 143

int square(int i)

{

return i * i;

Now, square() will return the square of whatever value it is called with. That is,
square() is now a general-purpose method that can compute the square of any integer
value, rather than just 10.

Here is an example:

-
X
m
e~
2
>
2
[
(=
>
[2)
m

int x, y;

= square(5); // x equals 25
= square(9); // x equals 81
2;

= square(y); // x equals 4

MY M
I

In the first call to square(), the value 5 will be passed into parameter i. In the second
call, i will receive the value 9. The third invocation passes the value of y, which is 2 in
this example. As these examples show, square() is able to return the square of whatever
data it is passed.

It is important to keep the two terms parameter and argument straight. A parameter
is a variable defined by a method that receives a value when the method is called.
For example, in square(), i is a parameter. An argument is a value that is passed to
a method when it is invoked. For example, square(100) passes 100 as an argument.
Inside square(), the parameter i receives that value.

You can use a parameterized method to improve the Box class. In the preceding
examples, the dimensions of each box had to be set separately by use of a sequence
of statements, such as:

myboxl.width = 10;
myboxl.height = 20;
myboxl.depth = 15;

While this code works, it is troubling for two reasons. First, it is clumsy and error prone.
For example, it would be easy to forget to set a dimension. Second, in well-designed
Java programs, instance variables should be accessed only through methods defined by
their class. In the future, you can change the behavior of a method, but you can’t change
the behavior of an exposed instance variable.

144

Java™ 2: The Complete Reference

Thus, a better approach to setting the dimensions of a box is to create a method
that takes the dimension of a box in its parameters and sets each instance variable
appropriately. This concept is implemented by the following program:

// This program uses a parameterized method.

class Box {
double width;
double height;
double depth;

// compute and return volume
double volume() {
return width * height * depth;

// sets dimensions of box
void setDim(double w, double h, double d) {

width = w;

height = h;

depth = d;
}

class BoxDemo5 {
public static void main(String args[]) {
Box myboxl = new Box();
Box mybox2 = new Box();
double vol;

// initialize each box
myboxl.setDim(10, 20, 15);
mybox2.setDim(3, 6, 9);

// get volume of first box
vol = myboxl.volume();
System.out.println("Volume is " + vol);

// get volume of second box
vol = mybox2.volume();
System.out.println("Volume is " + vol);

Chapter 6: Introducing Classes

As you can see, the setDim() method is used to set the dimensions of each box. For
example, when

I myboxl.setDim(10, 20, 15);

is executed, 10 is copied into parameter w, 20 is copied into h, and 15 is copied into d.
Inside setDim() the values of w, h, and d are then assigned to width, height, and depth,
respectively.

For many readers, the concepts presented in the preceding sections will be familiar.
However, if such things as method calls, arguments, and parameters are new to you,
then you might want to take some time to experiment before moving on. The concepts
of the method invocation, parameters, and return values are fundamental to Java
programming.

Constructors

It can be tedious to initialize all of the variables in a class each time an instance is created.
Even when you add convenience functions like setDim(), it would be simpler and more
concise to have all of the setup done at the time the object is first created. Because the
requirement for initialization is so common, Java allows objects to initialize themselves
when they are created. This automatic initialization is performed through the use of

a constructor.

A constructor initializes an object immediately upon creation. It has the same name
as the class in which it resides and is syntactically similar to a method. Once defined,
the constructor is automatically called immediately after the object is created, before the
new operator completes. Constructors look a little strange because they have no return
type, not even void. This is because the implicit return type of a class’ constructor is the
class type itself. It is the constructor’s job to initialize the internal state of an object so
that the code creating an instance will have a fully initialized, usable object immediately.

You can rework the Box example so that the dimensions of a box are automatically
initialized when an object is constructed. To do so, replace setDim() with a constructor.
Let’s begin by defining a simple constructor that simply sets the dimensions of each
box to the same values. This version is shown here:

/* Here, Box uses a constructor to initialize the
dimensions of a box.

*/

class Box {
double width;
double height;

145

-
==
m
;
<
>
Z
(]
(=
>
(2]
m

146 Java™ 2: The Complete Reference

double depth;

// This is the constructor for Box.

Box() {
System.out.println("Constructing Box");
width = 10;
height = 10;
depth = 10;

}

// compute and return volume
double volume() {
return width * height * depth;

class BoxDemo6 {
public static void main(String args[]) {
// declare, allocate, and initialize Box objects
Box myboxl = new Box();
Box mybox2 = new Box();

double vol;

// get volume of first box
vol = myboxl.volume();
System.out.println("Volume is " + vol);

// get volume of second box
vol = mybox2.volume();
System.out.println("Volume is " + vol);

When this program is run, it generates the following results:

Constructing Box
Constructing Box
Volume is 1000.0
Volume is 1000.0

Chapter 6: Introducing Classes 147

As you can see, both mybox1 and mybox2 were initialized by the Box() constructor
when they were created. Since the constructor gives all boxes the same dimensions,
10 by 10 by 10, both mybox1 and mybox2 will have the same volume. The printIn()
statement inside Box() is for the sake of illustration only. Most constructors will not
display anything. They will simply initialize an object.

Before moving on, let’s reexamine the new operator. As you know, when you
allocate an object, you use the following general form:

-
I
m
;
<
>
2
[2)
[=
>
(2]
m

class-var = new classname();

Now you can understand why the parentheses are needed after the class name. What is
actually happening is that the constructor for the class is being called. Thus, in the line

I Box myboxl = new Box();

new Box() is calling the Box() constructor. When you do not explicitly define a constructor
for a class, then Java creates a default constructor for the class. This is why the preceding
line of code worked in earlier versions of Box that did not define a constructor. The
default constructor automatically initializes all instance variables to zero. The default
constructor is often sufficient for simple classes, but it usually won’t do for more
sophisticated ones. Once you define your own constructor, the default constructor

is no longer used.

Parameterized Constructors

While the Box() constructor in the preceding example does initialize a Box object, it
is not very useful—all boxes have the same dimensions. What is needed is a way to
construct Box objects of various dimensions. The easy solution is to add parameters
to the constructor. As you can probably guess, this makes them much more useful. For
example, the following version of Box defines a parameterized constructor which sets
the dimensions of a box as specified by those parameters. Pay special attention to how
Box objects are created.

/* Here, Box uses a parameterized constructor to
initialize the dimensions of a box.
*/
class Box {
double width;
double height;
double depth;

Java™ 2: The Complete Reference

// This is the constructor for Box.
Box(double w, double h, double d) {

width = w;

height = h;

depth = d;
}

// compute and return volume
double volume() {
return width * height * depth;

class BoxDemo7 {
public static void main(String args[]) {
// declare, allocate, and initialize Box objects
Box myboxl = new Box(10, 20, 15);
Box mybox2 = new Box(3, 6, 9);

double vol;

// get volume of first box
vol = myboxl.volume();
System.out.println("Volume is " + vol);

// get volume of second box
vol = mybox2.volume();
System.out.println("Volume is " + vol);

The output from this program is shown here:

Volume is 3000.0
Volume is 162.0

As you can see, each object is initialized as specified in the parameters to its
constructor. For example, in the following line,

Chapter 6: Introducing Classes 149

I Box myboxl = new Box(10, 20, 15);

the values 10, 20, and 15 are passed to the Box() constructor when new creates the
object. Thus, mybox1’s copy of width, height, and depth will contain the values 10,
20, and 15, respectively.

-
==
m
;
<
>
Z
(]
(=
>
(2]
m

| The this Keyword

Sometimes a method will need to refer to the object that invoked it. To allow this, Java
defines the this keyword. this can be used inside any method to refer to the current object.
That is, this is always a reference to the object on which the method was invoked. You
can use this anywhere a reference to an object of the current class’ type is permitted.
To better understand what this refers to, consider the following version of Box():

// A redundant use of this.
Box(double w, double h, double d) {
this.width = w;
this.height = h;
this.depth = d;
}

This version of Box() operates exactly like the earlier version. The use of this is redundant,
but perfectly correct. Inside Box(), this will always refer to the invoking object. While
it is redundant in this case, this is useful in other contexts, one of which is explained in
the next section.

Instance Variable Hiding

As you know, it is illegal in Java to declare two local variables with the same name
inside the same or enclosing scopes. Interestingly, you can have local variables,
including formal parameters to methods, which overlap with the names of the class’
instance variables. However, when a local variable has the same name as an instance
variable, the local variable hides the instance variable. This is why width, height, and
depth were not used as the names of the parameters to the Box() constructor inside the
Box class. If they had been, then width would have referred to the formal parameter,
hiding the instance variable width. While it is usually easier to simply use different
names, there is another way around this situation. Because this lets you refer directly
to the object, you can use it to resolve any name space collisions that might occur
between instance variables and local variables. For example, here is another version of

150

Java™ 2: The Complete Reference

Box(), which uses width, height, and depth for parameter names and then uses this to
access the instance variables by the same name:

// Use this to resolve name-space collisions.
Box(double width, double height, double depth) {
this.width = width;
this.height = height;
this.depth = depth;

A word of caution: The use of this in such a context can sometimes be confusing,
and some programmers are careful not to use local variables and formal parameter
names that hide instance variables. Of course, other programmers believe the contrary—
that it is a good convention to use the same names for clarity, and use this to overcome
the instance variable hiding. It is a matter of taste which approach you adopt.

Although this is of no significant value in the examples just shown, it is very useful
in certain situations.

__ | carbage Collection

Since objects are dynamically allocated by using the new operator, you might be
wondering how such objects are destroyed and their memory released for later
reallocation. In some languages, such as C++, dynamically allocated objects must

be manually released by use of a delete operator. Java takes a different approach; it
handles deallocation for you automatically. The technique that accomplishes this is
called garbage collection. It works like this: when no references to an object exist, that
object is assumed to be no longer needed, and the memory occupied by the object can
be reclaimed. There is no explicit need to destroy objects as in C++. Garbage collection
only occurs sporadically (if at all) during the execution of your program. It will not
occur simply because one or more objects exist that are no longer used. Furthermore,
different Java run-time implementations will take varying approaches to garbage
collection, but for the most part, you should not have to think about it while writing
your programs.

___| The finalize() Method

Sometimes an object will need to perform some action when it is destroyed. For
example, if an object is holding some non-Java resource such as a file handle or
window character font, then you might want to make sure these resources are freed
before an object is destroyed. To handle such situations, Java provides a mechanism

Chapter 6: Introducing Classes 151

called finalization. By using finalization, you can define specific actions that will occur
when an object is just about to be reclaimed by the garbage collector.

To add a finalizer to a class, you simply define the finalize() method. The Java run
time calls that method whenever it is about to recycle an object of that class. Inside the
finalize() method you will specify those actions that must be performed before an
object is destroyed. The garbage collector runs periodically, checking for objects that
are no longer referenced by any running state or indirectly through other referenced
objects. Right before an asset is freed, the Java run time calls the finalize() method on
the object.

The finalize() method has this general form:

protected void finalize()
{

// finalization code here

}

Here, the keyword protected is a specifier that prevents access to finalize() by code
defined outside its class. This and the other access specifiers are explained in Chapter 7.

It is important to understand that finalize() is only called just prior to garbage
collection. It is not called when an object goes out-of-scope, for example. This means
that you cannot know when—or even if—finalize() will be executed. Therefore, your
program should provide other means of releasing system resources, etc., used by the
object. It must not rely on finalize() for normal program operation.

| If you are familiar with C++, then you know that C++ allows you to define a destructor
' for a class, which is called when an object goes out-of-scope. Java does not support this
idea or provide for destructors. The finalize() method only approximates the function

of a destructor. As you get more experienced with Java, you will see that the need for
destructor functions is minimal because of Java’s garbage collection subsystem.

___| A stack Class

While the Box class is useful to illustrate the essential elements of a class, it is of little
practical value. To show the real power of classes, this chapter will conclude with

a more sophisticated example. As you recall from the discussion of object-oriented
programming (OOP) presented in Chapter 2, one of OOP’s most important benefits

is the encapsulation of data and the code that manipulates that data. As you have seen,
the class is the mechanism by which encapsulation is achieved in Java. By creating

a class, you are creating a new data type that defines both the nature of the data being
manipulated and the routines used to manipulate it. Further, the methods define a
consistent and controlled interface to the class” data. Thus, you can use the class
through its methods without having to worry about the details of its implementation

152

Java™ 2: The Complete Reference

or how the data is actually managed within the class. In a sense, a class is like a “data
engine.” No knowledge of what goes on inside the engine is required to use the engine
through its controls. In fact, since the details are hidden, its inner workings can be
changed as needed. As long as your code uses the class through its methods, internal
details can change without causing side effects outside the class.

To see a practical application of the preceding discussion, let’s develop one of the
archetypal examples of encapsulation: the stack. A stack stores data using first-in, last-out
ordering. That is, a stack is like a stack of plates on a table—the first plate put down
on the table is the last plate to be used. Stacks are controlled through two operations
traditionally called push and pop. To put an item on top of the stack, you will use push.
To take an item off the stack, you will use pop. As you will see, it is easy to encapsulate
the entire stack mechanism.

Here is a class called Stack that implements a stack for integers:

// This class defines an integer stack that can hold 10 values.
class Stack {

int stck[] = new int[10];

int tos;

// Initialize top-of-stack
Stack() {
tos = -1;

}

// Push an item onto the stack
void push(int item) {

if (tos==9)

System.out.println("Stack is full.");
else

stck[++tos] = item;

// Pop an item from the stack
int pop() {
if(tos < 0) {
System.out.println("Stack underflow.");
return 0;
}
else
return stck[tos--];

Chapter 6: Introducing Classes

As you can see, the Stack class defines two data items and three methods. The stack
of integers is held by the array stck. This array is indexed by the variable tos, which
always contains the index of the top of the stack. The Stack() constructor initializes
tos to -1, which indicates an empty stack. The method push() puts an item on the
stack. To retrieve an item, call pop(). Since access to the stack is through push() and
pop(), the fact that the stack is held in an array is actually not relevant to using the
stack. For example, the stack could be held in a more complicated data structure, such
as a linked list, yet the interface defined by push() and pop() would remain the same.

The class TestStack, shown here, demonstrates the Stack class. It creates two
integer stacks, pushes some values onto each, and then pops them off.

class TestStack {
public static void main(String args[]) {
Stack mystackl = new Stack();
Stack mystack2 = new Stack();

// push some numbers onto the stack
for(int i=0; i<10; i++) mystackl.push(i);
for(int i=10; i<20; i++) mystack2.push(i);

// pop those numbers off the stack

System.out.println("Stack in mystackl:");

for(int i=0; i<10; i++)
System.out.println(mystackl.pop());

System.out.println("Stack in mystack2:");

for(int i=0; i<10; i++)
System.out.println(mystack2.pop());

This program generates the following output:

Stack in mystackl:

N WD U1y d 0O

153

-
X
m
e~
2
>
2
[
(=
>
@
m

154 Java™ 2: The Complete Reference

1
0
Stack in mystack2:
19
18
17
16
15
14
13
12
11
10

As you can see, the contents of each stack are separate.

One last point about the Stack class. As it is currently implemented, it is possible
for the array that holds the stack, stck, to be altered by code outside of the Stack class.
This leaves Stack open to misuse or mischief. In the next chapter, you will see how to
remedy this situation.

The

Romplete
Chapoter 7

A Closer Look at
Methods and Classes

156

Java™ 2: The Complete Reference

preceding chapter. It examines several topics relating to methods, including

overloading, parameter passing, and recursion. The chapter then returns to the
class, discussing access control, the use of the keyword static, and one of Java’s most
important built-in classes: String.

This chapter continues the discussion of methods and classes begun in the

Overloading Methods

In Java it is possible to define two or more methods within the same class that share
the same name, as long as their parameter declarations are different. When this is
the case, the methods are said to be overloaded, and the process is referred to as
method overloading. Method overloading is one of the ways that Java implements
polymorphism. If you have never used a language that allows the overloading

of methods, then the concept may seem strange at first. But as you will see, method
overloading is one of Java’s most exciting and useful features.

When an overloaded method is invoked, Java uses the type and/or number of
arguments as its guide to determine which version of the overloaded method to
actually call. Thus, overloaded methods must differ in the type and/or number of
their parameters. While overloaded methods may have different return types, the
return type alone is insufficient to distinguish two versions of a method. When Java
encounters a call to an overloaded method, it simply executes the version of the
method whose parameters match the arguments used in the call.

Here is a simple example that illustrates method overloading:

// Demonstrate method overloading.
class OverloadDemo {
void test() {
System.out.println("No parameters");

}

// Overload test for one integer parameter.
void test(int a) {
System.out.println("a: " + a);

// Overload test for two integer parameters.
void test(int a, int b) {
System.out.println("a and b: " + a + " " + b);

}

// overload test for a double parameter
double test(double a) {

Chapter 7: A Closer Look at Methods and Classes 157

System.out.println("double a: " + a);
return a*aj;

class Overload {
public static void main(String args[]) {
OverloadDemo ob = new OverloadDemo();
double result;

-
X
m
e~
2
>
2
[
(=
>
@
m

// call all versions of test()

ob.test();

ob.test(10);

ob.test (10, 20);

result = ob.test(123.25);

System.out.println("Result of ob.test(123.25): " + result);

This program generates the following output:

No parameters

a: 10

a and b: 10 20

double a: 123.25

Result of ob.test(123.25): 15190.5625

As you can see, test() is overloaded four times. The first version takes no parameters,
the second takes one integer parameter, the third takes two integer parameters, and the
fourth takes one double parameter. The fact that the fourth version of test() also returns
a value is of no consequence relative to overloading, since return types do not play a role
in overload resolution.

When an overloaded method is called, Java looks for a match between the
arguments used to call the method and the method’s parameters. However, this match
need not always be exact. In some cases Java’s automatic type conversions can play a
role in overload resolution. For example, consider the following program:

// Automatic type conversions apply to overloading.
class OverloadDemo {
void test() {

158 Java™ 2: The Complete Reference

System.out.println("No parameters");

// Overload test for two integer parameters.
void test(int a, int b) {
System.out.println("a and b: " + a + " " + b);

// overload test for a double parameter
void test(double a) {
System.out.println("Inside test(double) a: " + a);

class Overload {
public static void main(String args[]) {
OverloadDemo ob = new OverloadDemo();
int i = 88;

ob.test();
ob.test (10, 20);

ob.test(i); // this will invoke test(double)
ob.test(123.2); // this will invoke test(double)

This program generates the following output:

No parameters

a and b: 10 20

Inside test(double) a: 88
Inside test(double) a: 123.2

As you can see, this version of OverloadDemo does not define test(int). Therefore,
when test() is called with an integer argument inside Overload, no matching method
is found. However, Java can automatically convert an integer into a double, and this
conversion can be used to resolve the call. Therefore, after test(int) is not found, Java
elevates i to double and then calls test(double). Of course, if test(int) had been defined,

Chapter 7: A Closer Look at Methods and Classes 159

it would have been called instead. Java will employ its automatic type conversions only
if no exact match is found.

Method overloading supports polymorphism because it is one way that Java
implements the “one interface, multiple methods” paradigm. To understand how,
consider the following. In languages that do not support method overloading, each
method must be given a unique name. However, frequently you will want to
implement essentially the same method for different types of data. Consider the
absolute value function. In languages that do not support overloading, there are
usually three or more versions of this function, each with a slightly different name.
For instance, in C, the function abs() returns the absolute value of an integer, labs()
returns the absolute value of a long integer, and fabs() returns the absolute value of a
floating-point value. Since C does not support overloading, each function has to have
its own name, even though all three functions do essentially the same thing. This
makes the situation more complex, conceptually, than it actually is. Although the
underlying concept of each function is the same, you still have three names to
remember. This situation does not occur in Java, because each absolute value method
can use the same name. Indeed, Java’s standard class library includes an absolute value
method, called abs(). This method is overloaded by Java’s Math class to handle all
numeric types. Java determines which version of abs() to call based upon the type of
argument.

The value of overloading is that it allows related methods to be accessed by use
of a common name. Thus, the name abs represents the general action which is being
performed. It is left to the compiler to choose the right specific version for a particular
circumstance. You, the programmer, need only remember the general operation being
performed. Through the application of polymorphism, several names have been
reduced to one. Although this example is fairly simple, if you expand the concept,
you can see how overloading can help you manage greater complexity.

When you overload a method, each version of that method can perform any
activity you desire. There is no rule stating that overloaded methods must relate to
one another. However, from a stylistic point of view, method overloading implies a
relationship. Thus, while you can use the same name to overload unrelated methods,
you should not. For example, you could use the name sqr to create methods that return
the square of an integer and the square root of a floating-point value. But these two
operations are fundamentally different. Applying method overloading in this manner
defeats its original purpose. In practice, you should only overload closely related
operations.

Overloading Constructors

In addition to overloading normal methods, you can also overload constructor
methods. In fact, for most real-world classes that you create, overloaded constructors
will be the norm, not the exception. To understand why, let’s return to the Box class
developed in the preceding chapter. Following is the latest version of Box:

160

Java™ 2: The Complete Reference

class Box {
double width;
double height;
double depth;

// This is the constructor for Box.
Box(double w, double h, double d) {
width = w;
height = h;
depth = d;

// compute and return volume
double volume() {
return width * height * depth;

As you can see, the Box() constructor requires three parameters. This means that
all declarations of Box objects must pass three arguments to the Box() constructor. For
example, the following statement is currently invalid:

I Box ob = new Box();

Since Box() requires three arguments, it’s an error to call it without them. This
raises some important questions. What if you simply wanted a box and did not care (or
know) what its initial dimensions were? Or, what if you want to be able to initialize a
cube by specifying only one value that would be used for all three dimensions? As the
Box class is currently written, these other options are not available to you.

Fortunately, the solution to these problems is quite easy: simply overload the Box
constructor so that it handles the situations just described. Here is a program that
contains an improved version of Box that does just that:

/* Here, Box defines three constructors to initialize
the dimensions of a box various ways.
*/
class Box {
double width;
double height;
double depth;

Chapter 7: A Closer Look at Methods and Classes 161

-

x

// constructor used when all dimensions specified E
Box(double w, double h, double d) { =
width = w; >
height = h; E
depth = d; g
>

©

m

// constructor used when no dimensions specified

Box () {
width = -1; // use -1 to indicate
height = -1; // an uninitialized
depth = -1; // box

}

// constructor used when cube is created
Box(double len) {
width = height = depth = len;

// compute and return volume
double volume() {
return width * height * depth;

class OverloadCons {
public static void main(String args[]) {
// create boxes using the various constructors
Box myboxl = new Box(10, 20, 15);
Box mybox2 = new Box();
Box mycube = new Box(7);

double vol;

// get volume of first box
vol = myboxl.volume();
System.out.println("Volume of myboxl is " + vol);

// get volume of second box
vol = mybox2.volume();
System.out.println("Volume of mybox2 is " + vol);

162

Java™ 2: The Complete Reference

// get volume of cube
vol = mycube.volume();
System.out.println("Volume of mycube is " + vol);

The output produced by this program is shown here:

Volume of myboxl is 3000.0
Volume of mybox2 is -1.0
Volume of mycube is 343.0

As you can see, the proper overloaded constructor is called based upon the parameters
specified when new is executed.

__ | Using Objects as Parameters

So far we have only been using simple types as parameters to methods. However, it is
both correct and common to pass objects to methods. For example, consider the following
short program:

// Objects may be passed to methods.
class Test {
int a, b;

Test(int i, int j) {
a = 1i;
b = j;

// return true if o is equal to the invoking object
boolean equals(Test o) {

if(o.a == a && o.b == b) return true;

else return false;

class PassOb {
public static void main(String args[]) {

Chapter 7: A Closer Look at Methods and Classes 163

Test obl new Test (100, 22);
Test ob2 new Test (100, 22);
Test ob3 = new Test(-1, -1);

System.out.println("obl == ob2: " + obl.equals(ob2));

-
X
m
e~
2
>
2
[
(=
>
@
m

System.out.println("obl == ob3: " + obl.equals(ob3));

This program generates the following output:

obl == ob2: true
obl == ob3: false

As you can see, the equals() method inside Test compares two objects for equality
and returns the result. That is, it compares the invoking object with the one that it is
passed. If they contain the same values, then the method returns true. Otherwise,
it returns false. Notice that the parameter o in equals() specifies Test as its type.
Although Test is a class type created by the program, it is used in just the same way
as Java’s built-in types.

One of the most common uses of object parameters involves constructors.
Frequently you will want to construct a new object so that it is initially the same as
some existing object. To do this, you must define a constructor that takes an object of its
class as a parameter. For example, the following version of Box allows one object to
initialize another:

// Here, Box allows one object to initialize another.

class Box {
double width;
double height;
double depth;

// construct clone of an object

Box(Box ob) { // pass object to constructor
width = ob.width;
height = ob.height;
depth = ob.depth;

164 Java™ 2.0: The Complete Reference

// constructor used when all dimensions specified
Box(double w, double h, double d) {

width = w;
height = h;
depth = d;
}
// constructor used when no dimensions specified
Box () {
width = -1; // use -1 to indicate
height = -1; // an uninitialized
depth = -1; // box
}

// constructor used when cube is created
Box(double len) {
width = height = depth = len;

// compute and return volume
double volume() {
return width * height * depth;

class OverloadCons2 {
public static void main(String args[]) {
// create boxes using the various constructors
Box myboxl = new Box(10, 20, 15);
Box mybox2 = new Box();
Box mycube = new Box(7);

Box myclone = new Box(myboxl);
double vol;
// get volume of first box

vol = myboxl.volume();
System.out.println("Volume of myboxl is " + vol);

Chapter 7: A Closer Look at Methods and Classes 165

// get volume of second box
vol = mybox2.volume();
System.out.println("Volume of mybox2 is " + vol);

// get volume of cube
vol = mycube.volume();
System.out.println("Volume of cube is " + vol);

-
==
m
e~
2
>
Z
[2)
(=
>
D
m

// get volume of clone
vol = myclone.volume();
System.out.println("Volume of clone is " + vol);

As you will see when you begin to create your own classes, providing many forms
of constructor methods is usually required to allow objects to be constructed in a
convenient and efficient manner.

A Closer Look at Argument Passing

In general, there are two ways that a computer language can pass an argument to a
subroutine. The first way is call-by-value. This method copies the value of an argument
into the formal parameter of the subroutine. Therefore, changes made to the parameter
of the subroutine have no effect on the argument. The second way an argument can be
passed is call-by-reference. In this method, a reference to an argument (not the value of
the argument) is passed to the parameter. Inside the subroutine, this reference is used
to access the actual argument specified in the call. This means that changes made to the
parameter will affect the argument used to call the subroutine. As you will see, Java
uses both approaches, depending upon what is passed.

In Java, when you pass a simple type to a method, it is passed by value. Thus, what
occurs to the parameter that receives the argument has no effect outside the method.
For example, consider the following program:

// Simple types are passed by value.
class Test {
void meth(int i, int j) {
i *= 2;
j/=2;

166

Java™ 2: The Complete Reference

class CallByValue {
public static void main(String args[]) {
Test ob = new Test();

int a = 15, b = 20;

System.out.println("a and b before call: " +
a+ " " +Db);

ob.meth(a, b);

System.out.println("a and b after call: " +
a+ " " +b);

The output from this program is shown here:

a and b before call: 15 20
a and b after call: 15 20

As you can see, the operations that occur inside meth() have no effect on the values
of a and b used in the call; their values here did not change to 30 and 10.

When you pass an object to a method, the situation changes dramatically, because
objects are passed by reference. Keep in mind that when you create a variable of a class
type, you are only creating a reference to an object. Thus, when you pass this reference
to a method, the parameter that receives it will refer to the same object as that referred
to by the argument. This effectively means that objects are passed to methods by use of
call-by-reference. Changes to the object inside the method do affect the object used as
an argument. For example, consider the following program:

// Objects are passed by reference.

class Test {
int a, b;

Test(int i, int j) {
a = 1ij;
b = 3j;

Chapter 7: A Closer Look at Methods and Classes

// pass an object
void meth(Test o) {
o.a *= 2;

class CallByRef {
public static void main(String args[]) {
Test ob = new Test(15, 20);

System.out.println("ob.a and ob.b before call: " +
ob.a + " " + ob.b);

ob.meth(ob);

System.out.println("ob.a and ob.b after call: " +
ob.a + " " + ob.b);

This program generates the following output:

ob.a and ob.b before call: 15 20
ob.a and ob.b after call: 30 10

As you can see, in this case, the actions inside meth() have affected the object used
as an argument.

As a point of interest, when an object reference is passed to a method, the reference
itself is passed by use of call-by-value. However, since the value being passed refers to
an object, the copy of that value will still refer to the same object that its corresponding
argument does.

| When a simple type is passed to a method, it is done by use of call-by-value. Objects are
— passed by use of call-by-reference.

167

-
X
m
e~
2
>
2
[
(=
>
@
m

168 Java™ 2: The Complete Reference

___| Returning Objects

A method can return any type of data, including class types that you create. For
example, in the following program, the incrByTen() method returns an object in
which the value of a is ten greater than it is in the invoking object.

// Returning an object.
class Test {
int a;

Test(int i) {
a = 1ij;

Test incrByTen() {
Test temp = new Test(a+10);
return temp;

class RetOb {
public static void main(String args[]) {
Test obl = new Test(2);
Test ob2;

ob2 = obl.incrByTen();
System.out.println("obl.a: " + obl.a);
System.out.println("ob2.a: " + ob2.a);

ob2 = ob2.incrByTen();
System.out.println("ob2.a after second increase:
+ ob2.a);

The output generated by this program is shown here:

obl.a: 2
ob2.a: 12
ob2.a after second increase: 22

Chapter 7: A Closer Look at Methods and Classes

As you can see, each time incrByTen() is invoked, a new object is created, and a
reference to it is returned to the calling routine.

The preceding program makes another important point: Since all objects are
dynamically allocated using new, you don’t need to worry about an object going
out-of-scope because the method in which it was created terminates. The object will
continue to exist as long as there is a reference to it somewhere in your program.
When there are no references to it, the object will be reclaimed the next time garbage
collection takes place.

Recursion

Java supports recursion. Recursion is the process of defining something in terms of
itself. As it relates to Java programming, recursion is the attribute that allows a method
to call itself. A method that calls itself is said to be recursive.

The classic example of recursion is the computation of the factorial of a number.
The factorial of a number N is the product of all the whole numbers between 1 and N.
For example, 3 factorial is 1 x 2 x 3, or 6. Here is how a factorial can be computed by
use of a recursive method:

// A simple example of recursion.
class Factorial {
// this is a recursive function
int fact(int n) {
int result;

if(n==1) return 1;
result = fact(n-1) * n;
return result;

class Recursion {
public static void main(String args[]) {
Factorial f = new Factorial();

System.out.println("Factorial of 3 is " + f.fact(3));
System.out.println("Factorial of 4 is " + f.fact(4));
System.out.println("Factorial of 5 is " + f.fact(5));

169

-
X
m
e~
2
>
2
[
(=
>
[2)
m

170

Java™ 2: The Complete Reference

The output from this program is shown here:

Factorial of 3 is 6
Factorial of 4 is 24
Factorial of 5 is 120

If you are unfamiliar with recursive methods, then the operation of fact() may
seem a bit confusing. Here is how it works. When fact() is called with an argument of
1, the function returns 1; otherwise it returns the product of fact(n-1)*n. To evaluate
this expression, fact() is called with n-1. This process repeats until n equals 1 and the
calls to the method begin returning.

To better understand how the fact() method works, let’s go through a short
example. When you compute the factorial of 3, the first call to fact() will cause a
second call to be made with an argument of 2. This invocation will cause fact() to
be called a third time with an argument of 1. This call will return 1, which is then
multiplied by 2 (the value of n in the second invocation). This result (which is 2) is
then returned to the original invocation of fact() and multiplied by 3 (the original
value of n). This yields the answer, 6. You might find it interesting to insert println()
statements into fact() which will show at what level each call is and what the
intermediate answers are.

When a method calls itself, new local variables and parameters are allocated
storage on the stack, and the method code is executed with these new variables
from the start. A recursive call does not make a new copy of the method. Only
the arguments are new. As each recursive call returns, the old local variables and
parameters are removed from the stack, and execution resumes at the point of the
call inside the method. Recursive methods could be said to “telescope” out and back.

Recursive versions of many routines may execute a bit more slowly than the
iterative equivalent because of the added overhead of the additional function calls.
Many recursive calls to a method could cause a stack overrun. Because storage for
parameters and local variables is on the stack and each new call creates a new copy of
these variables, it is possible that the stack could be exhausted. If this occurs, the Java
run-time system will cause an exception. However, you probably will not have to
worry about this unless a recursive routine runs wild.

The main advantage to recursive methods is that they can be used to create clearer
and simpler versions of several algorithms than can their iterative relatives. For
example, the QuickSort sorting algorithm is quite difficult to implement in an iterative
way. Some problems, especially Al-related ones, seem to lend themselves to recursive
solutions. Finally, some people seem to think recursively more easily than iteratively.

When writing recursive methods, you must have an if statement somewhere to
force the method to return without the recursive call being executed. If you don’t do
this, once you call the method, it will never return. This is a very common error in
working with recursion. Use println() statements liberally during development so that

Chapter 7: A Closer Look at Methods and Classes 171

you can watch what is going on and abort execution if you see that you have made
a mistake.

Here is one more example of recursion. The recursive method printArray() prints
the first i elements in the array values.

// Another example that uses recursion.

-
==
m
e~
2
>
Z
[2)
(=
>
(2]
m

class RecTest {
int values[];

RecTest(int 1) {
values = new int[i];

// display array -- recursively
void printArray(int i) {
if(i==0) return;
else printArray(i-1);
System.out.println("[" + (i-1) + "] " + values[i-1]);

class Recursion2 {
public static void main(String args[]) {
RecTest ob = new RecTest(10);
int i;

for(i=0; i<10; i++) ob.values[i] = i;

ob.printArray(10);

This program generates the following output:

[0]
[1]
[2]
[3]
[4]
[5]
[6]

AUl WN = O

172

Java™ 2: The Complete Reference

[71 7
[8] 8
[9] 9

___ | Introducing Access Control

As you know, encapsulation links data with the code that manipulates it. However,
encapsulation provides another important attribute: access control. Through
encapsulation, you can control what parts of a program can access the members of a
class. By controlling access, you can prevent misuse. For example, allowing access to
data only through a well-defined set of methods, you can prevent the misuse of that
data. Thus, when correctly implemented, a class creates a “black box” which may be
used, but the inner workings of which are not open to tampering. However, the classes
that were presented earlier do not completely meet this goal. For example, consider the
Stack class shown at the end of Chapter 6. While it is true that the methods push() and
pop() do provide a controlled interface to the stack, this interface is not enforced. That
is, it is possible for another part of the program to bypass these methods and access the
stack directly. Of course, in the wrong hands, this could lead to trouble. In this section
you will be introduced to the mechanism by which you can precisely control access to
the various members of a class.

How a member can be accessed is determined by the access specifier that modifies its
declaration. Java supplies a rich set of access specifiers. Some aspects of access control
are related mostly to inheritance or packages. (A package is, essentially, a grouping of
classes.) These parts of Java’s access control mechanism will be discussed later. Here,
let’s begin by examining access control as it applies to a single class. Once you
understand the fundamentals of access control, the rest will be easy.

Java’s access specifiers are public, private, and protected. Java also defines a
default access level. protected applies only when inheritance is involved. The other
access specifiers are described next.

Let’s begin by defining public and private. When a member of a class is modified
by the public specifier, then that member can be accessed by any other code. When a
member of a class is specified as private, then that member can only be accessed by
other members of its class. Now you can understand why main() has always been
preceded by the public specifier. It is called by code that is outside the program—that
is, by the Java run-time system. When no access specifier is used, then by default the
member of a class is public within its own package, but cannot be accessed outside of
its package. (Packages are discussed in the following chapter.)

In the classes developed so far, all members of a class have used the default access
mode, which is essentially public. However, this is not what you will typically want
to be the case. Usually, you will want to restrict access to the data members of a
class—allowing access only through methods. Also, there will be times when you
will want to define methods which are private to a class.

Chapter 7: A Closer Look at Methods and Classes

An access specifier precedes the rest of a member’s type specification. That is, it
must begin a member’s declaration statement. Here is an example:

public int i;
private double j;

private int myMethod(int a, char b) { // ...

To understand the effects of public and private access, consider the following
program:

/* This program demonstrates the difference between
public and private.
*/
class Test {
int a; // default access
public int b; // public access
private int c; // private access

// methods to access c

void setc(int i) { // set c's value
c = 1i;

}

int getc() { // get c's value
return c;

class AccessTest {
public static void main(String args[]) {
Test ob = new Test();

// These are OK, a and b may be accessed directly
ob.a = 10;
ob.b = 20;

// This is not OK and will cause an error
// ob.c = 100; // Error!

// You must access c through its methods
ob.setc(100); // OK

173

-
I
m
e~
2
>
2
[
[=
>
[2)
m

174

Java™ 2: The Complete Reference

System.out.println("a, b, and c: " + ob.a + " " +
ob.b + " " + ob.getc());

As you can see, inside the Test class, a uses default access, which for this example
is the same as specifying public. b is explicitly specified as public. Member c is given
private access. This means that it cannot be accessed by code outside of its class. So,
inside the AccessTest class, ¢ cannot be used directly. It must be accessed through its
public methods: setc() and getc(). If you were to remove the comment symbol from
the beginning of the following line,

I // ob.c = 100; // Error!

then you would not be able to compile this program because of the access violation.
To see how access control can be applied to a more practical example, consider the
following improved version of the Stack class shown at the end of Chapter 6.

// This class defines an integer stack that can hold 10 values.
class Stack {
/* Now, both stck and tos are private. This means
that they cannot be accidentally or maliciously
altered in a way that would be harmful to the stack.
*/
private int stck[] = new int[10];
private int tos;

// Initialize top-of-stack
Stack() {
tos = -1;

// Push an item onto the stack
void push(int item) {

if(tos==9)

System.out.println("Stack is full.");
else

stck[++tos] = item;

Chapter 7: A Closer Look at Methods and Classes

// Pop an item from the stack
int pop() {
if(tos < 0) {
System.out.println("Stack underflow.");
return 0;
}
else
return stck[tos--];

As you can see, now both stck, which holds the stack, and tos, which is the index of
the top of the stack, are specified as private. This means that they cannot be accessed or
altered except through push() and pop(). Making tos private, for example, prevents
other parts of your program from inadvertently setting it to a value that is beyond the
end of the stck array.

The following program demonstrates the improved Stack class. Try removing the
commented-out lines to prove to yourself that the stck and tos members are, indeed,
inaccessible.

class TestStack {
public static void main(String args[]) {
Stack mystackl = new Stack();
Stack mystack2 = new Stack();

// push some numbers onto the stack
for(int i=0; i<10; i++) mystackl.push(i);
for(int i=10; i<20; i++) mystack2.push(i);

// pop those numbers off the stack

System.out.println("Stack in mystackl:");

for(int i=0; i<10; i++)
System.out.println(mystackl.pop());

System.out.println("Stack in mystack2:");
for(int i=0; i<10; i++)
System.out.println(mystack2.pop());

// these statements are not legal
// mystackl.tos = -2;

// mystack2.stck[3] 100;

175

-
X
m
e~
2
>
2
[
(=
>
@
m

176 Java™ 2: The Complete Reference

Although methods will usually provide access to the data defined by a class, this
does not always have to be the case. It is perfectly proper to allow an instance variable to
be public when there is good reason to do so. For example, most of the simple classes in
this book were created with little concern about controlling access to instance variables
for the sake of simplicity. However, in most real-world classes, you will need to allow
operations on data only through methods. The next chapter will return to the topic of
access control. As you will see, it is particularly important when inheritance is involved.

___| Understanding static

There will be times when you will want to define a class member that will be used
independently of any object of that class. Normally a class member must be accessed
only in conjunction with an object of its class. However, it is possible to create a
member that can be used by itself, without reference to a specific instance. To create
such a member, precede its declaration with the keyword static. When a member is
declared static, it can be accessed before any objects of its class are created, and without
reference to any object. You can declare both methods and variables to be static. The
most common example of a static member is main(). main() is declared as static
because it must be called before any objects exist.

Instance variables declared as static are, essentially, global variables. When objects
of its class are declared, no copy of a static variable is made. Instead, all instances of the
class share the same static variable.

Methods declared as static have several restrictions:

B They can only call other static methods.
B They must only access static data.
B They cannot refer to this or super in any way. (The keyword super relates to

inheritance and is described in the next chapter.)

If you need to do computation in order to initialize your static variables, you can
declare a static block which gets executed exactly once, when the class is first loaded.
The following example shows a class that has a static method, some static variables,
and a static initialization block:

// Demonstrate static variables, methods, and blocks.
class UseStatic {

Chapter 7: A Closer Look at Methods and Classes 177

-
static int a = 3; E
static int b; :
>
static void meth(int x) { E
System.out.println("x = " + x); g
System.out.println("a = " + a); s
System.out.println("b = " + b); (]
}
static {
System.out.println("Static block initialized.");
b =a * 4;
}

public static void main(String args[]) {
meth(42);
}

As soon as the UseStatic class is loaded, all of the static statements are run. First,
a is set to 3, then the static block executes (printing a message), and finally, b is
initialized to a * 4 or 12. Then main() is called, which calls meth(), passing 42 to x.
The three println() statements refer to the two static variables a and b, as well as
to the local variable x.

| It is illegal to refer to any instance variables inside of a static method.

Here is the output of the program:

Static block initialized.

X = 42
a=3
b =12

Outside of the class in which they are defined, static methods and variables can be
used independently of any object. To do so, you need only specify the name of their
class followed by the dot operator. For example, if you wish to call a static method
from outside its class, you can do so using the following general form:

178

Java™ 2: The Complete Reference

classname.method()

Here, classname is the name of the class in which the static method is declared.
As you can see, this format is similar to that used to call non-static methods through
object- reference variables. A static variable can be accessed in the same way—by use
of the dot operator on the name of the class. This is how Java implements a controlled
version of global methods and global variables.

Here is an example. Inside main(), the static method callme() and the static
variable b are accessed outside of their class.

class StaticDemo {
static int a = 42;
static int b = 99;
static void callme() {
System.out.println("a = " + a);

class StaticByName {
public static void main(String args[]) {
StaticDemo.callme();
System.out.println("b = " + StaticDemo.b);

Here is the output of this program:

a = 42
b = 99

__ | Introducing final

A variable can be declared as final. Doing so prevents its contents from being
modified. This means that you must initialize a final variable when it is declared.
(In this usage, final is similar to const in C/C++/C#.) For example:

final int FILE NEW = 1;
final int FILE OPEN = 2;
final int FILE SAVE = 3
final int FILE SAVEAS = 4;
final int FILE QUIT = 5;

’

Chapter 7: A Closer Look at Methods and Classes 179

Subsequent parts of your program can now use FILE_OPEN, etc., as if they were
constants, without fear that a value has been changed.

It is a common coding convention to choose all uppercase identifiers for final
variables. Variables declared as final do not occupy memory on a per-instance basis.
Thus, a final variable is essentially a constant.

The keyword final can also be applied to methods, but its meaning is substantially
different than when it is applied to variables. This second usage of final is described in
the next chapter, when inheritance is described.

-
==
m
;
<
>
Z
[2)
(=
>
D
m

Arrays Revisited

Arrays were introduced earlier in this book, before classes had been discussed. Now
that you know about classes, an important point can be made about arrays: they are
implemented as objects. Because of this, there is a special array attribute that you will
want to take advantage of. Specifically, the size of an array—that is, the number of
elements that an array can hold—is found in its length instance variable. All arrays
have this variable, and it will always hold the size of the array. Here is a program that
demonstrates this property:

// This program demonstrates the length array member.
class Length {
public static void main(String args[]) {
int al[] = new int[10];
int a2[] = {3, 5, 7, 1, 8, 99, 44, -10};
int a3[] = {4, 3, 2, 1};

System.out.println("length of al is " + al.length);
System.out.println("length of a2 is " + a2.length);
System.out.println("length of a3 is " + a3.length);

This program displays the following output:

length of al is 10
length of a2 is 8
length of a3 is 4

As you can see, the size of each array is displayed. Keep in mind that the value of
length has nothing to do with the number of elements that are actually in use. It only
reflects the number of elements that the array is designed to hold.

180 Java™ 2: The Complete Reference

You can put the length member to good use in many situations. For example, here
is an improved version of the Stack class. As you might recall, the earlier versions of
this class always created a ten-element stack. The following version lets you create
stacks of any size. The value of stck.length is used to prevent the stack from
overflowing.

// Improved Stack class that uses the length array member.
class Stack {

private int stck[];

private int tos;

// allocate and initialize stack
Stack(int size) {

stck = new int[size];

tos = -1;

// Push an item onto the stack
void push(int item) {
if (tos==stck.length-1) // use length member
System.out.println("Stack is full.");
else
stck[++tos] = item;

// Pop an item from the stack
int pop() {
if(tos < 0) {
System.out.println("Stack underflow.");
return 0;
}
else
return stck[tos--];

class TestStack2 {
public static void main(String args[]) {
Stack mystackl = new Stack(5);
Stack mystack2 = new Stack(8);

Chapter 7: A Closer Look at Methods and Classes 181

// push some numbers onto the stack
for(int i=0; i<5; i++) mystackl.push(i);
for(int i=0; i<8; i++) mystack2.push(i);

// pop those numbers off the stack

System.out.println("Stack in mystackl:");

for(int i=0; i<5; i++)
System.out.println(mystackl.pop());

-
==
m
;
<
>
Z
(]
(=
>
(2]
m

System.out.println("Stack in mystack2:");
for(int i=0; i<8; i++)
System.out.println(mystack2.pop());

Notice that the program creates two stacks: one five elements deep and the other
eight elements deep. As you can see, the fact that arrays maintain their own length
information makes it easy to create stacks of any size.

Introducing Nested and Inner Classes

It is possible to define a class within another class; such classes are known as nested classes.
The scope of a nested class is bounded by the scope of its enclosing class. Thus, if class B is
defined within class A, then B is known to A, but not outside of A. A nested class has access
to the members, including private members, of the class in which it is nested. However, the
enclosing class does not have access to the members of the nested class.

There are two types of nested classes: static and non-static. A static nested class is one
which has the static modifier applied. Because it is static, it must access the members of
its enclosing class through an object. That is, it cannot refer to members of its enclosing
class directly. Because of this restriction, static nested classes are seldom used.

The most important type of nested class is the inner class. An inner class is a
non-static nested class. It has access to all of the variables and methods of its outer class
and may refer to them directly in the same way that other non-static members of the
outer class do. Thus, an inner class is fully within the scope of its enclosing class.

The following program illustrates how to define and use an inner class. The class
named Outer has one instance variable named outer_x, one instance method named
test(), and defines one inner class called Inner.

// Demonstrate an inner class.
class Outer {
int outer_x = 100;

182 Java™ 2: The Complete Reference

void test() {
Inner inner = new Inner();
inner.display();

}

// this is an inner class
class Inner {
void display() {
System.out.println("display: outer x =

}

+ outer_x);

class InnerClassDemo {
public static void main(String args[]) {
Outer outer = new Outer();
outer.test();

Output from this application is shown here:
display: outer x = 100

In the program, an inner class named Inner is defined within the scope of class
Outer. Therefore, any code in class Inner can directly access the variable outer_x. An
instance method named display() is defined inside Inner. This method displays
outer_x on the standard output stream. The main() method of InnerClassDemo
creates an instance of class Outer and invokes its test() method. That method creates
an instance of class Inner and the display() method is called.

It is important to realize that class Inner is known only within the scope of class
Outer. The Java compiler generates an error message if any code outside of class Outer
attempts to instantiate class Inner. Generalizing, a nested class is no different than any
other program element: it is known only within its enclosing scope.

As explained, an inner class has access to all of the members of its enclosing class,
but the reverse is not true. Members of the inner class are known only within the scope
of the inner class and may not be used by the outer class. For example,

Chapter 7: A Closer Look at Methods and Classes 183

// This program will not compile.
class Outer {
int outer_x = 100;

void test() {
Inner inner = new Inner();
inner.display();

-
I
m
e~
2
>
2
[
[=
>
[2)
m

// this is an inner class
class Inner {
int y = 10; // y is local to Inner
void display() {
System.out.println("display: outer x =

+ outer_ x);

void showy() {
System.out.println(y); // error, y not known here!

class InnerClassDemo {
public static void main(String args[]) {
Outer outer = new Outer();
outer.test();

Here, y is declared as an instance variable of Inner. Thus it is not known outside of
that class and it cannot be used by showy().

Although we have been focusing on nested classes declared within an outer class
scope, it is possible to define inner classes within any block scope. For example, you
can define a nested class within the block defined by a method or even within the body
of a for loop, as this next program shows.

// Define an inner class within a for loop.
class Outer {
int outer x = 100;

184

Java™ 2: The Complete Reference

void test() {
for(int i=0; i<10; i++) {

class Inner {

void display() {
System.out.println("display: outer_x = " + outer_x);

}

}

Inner inner = new Inner();

inner.display();

}

class InnerClassDemo {
public static void main(String args[]) {
Outer outer = new Outer();
outer.test();

The output from this version of the program is shown here.

display: outer x = 100

display: outer x = 100
display: outer x = 100
display: outer x = 100

display: outer x = 100

display: outer x = 100
display: outer_x = 100
display: outer x = 100

display: outer x = 100
display: outer x = 100

While nested classes are not used in most day-to-day programming, they are
particularly helpful when handling events in an applet. We will return to the topic
of nested classes in Chapter 20. There you will see how inner classes can be used to
simplify the code needed to handle certain types of events. You will also learn about
anonymous inner classes, which are inner classes that don't have a name.

One final point: Nested classes were not allowed by the original 1.0 specification for
Java. They were added by Java 1.1.

Chapter 7: A Closer Look at Methods and Classes 185

___| Exploring the String Class

Although the String class will be examined in depth in Part II of this book, a short
exploration of it is warranted now, because we will be using strings in some of the
example programs shown toward the end of Part I. String is probably the most
commonly used class in Java’s class library. The obvious reason for this is that strings
are a very important part of programming.

The first thing to understand about strings is that every string you create is actually
an object of type String. Even string constants are actually String objects. For example,
in the statement

-
==
m
;
<
>
Z
(]
(=
>
(2]
m

I System.out.println("This is a String, too");

the string “This is a String, too” is a String constant. Fortunately, Java handles String
constants in the same way that other computer languages handle “normal” strings, so
you don’t have to worry about this.

The second thing to understand about strings is that objects of type String are
immutable; once a String object is created, its contents cannot be altered. While this
may seem like a serious restriction, it is not, for two reasons:

B If you need to change a string, you can always create a new one that contains
the modifications.

B Java defines a peer class of String, called StringBuffer, which allows strings to
be altered, so all of the normal string manipulations are still available in Java.
(StringBuffer is described in Part II of this book.)

Strings can be constructed a variety of ways. The easiest is to use a statement like this:
I String myString = "this is a test";

Once you have created a String object, you can use it anywhere that a string is
allowed. For example, this statement displays myString:

I System.out.println(myString);

Java defines one operator for String objects: +. It is used to concatenate two strings.
For example, this statement

I String myString = "I" + " like " + "Java.";

results in myString containing “I like Java.”
The following program demonstrates the preceding concepts:

186 Java™ 2: The Complete Reference

// Demonstrating Strings.
class StringDemo {
public static void main(String args[]) {
String strObl = "First String";
String strOb2 = "Second String";
String strOb3 = strObl + " and " + strOb2;

System.out.println(strObl);
System.out.println(strOb2);
System.out.println(strOb3);

The output produced by this program is shown here:

First String
Second String
First String and Second String

The String class contains several methods that you can use. Here are a few. You can
test two strings for equality by using equals(). You can obtain the length of a string by
calling the length() method. You can obtain the character at a specified index within a
string by calling charAt(). The general forms of these three methods are shown here:

boolean equals(String object)
int length()
char charAt(int index)

Here is a program that demonstrates these methods:

// Demonstrating some String methods.
class StringDemo2 {
public static void main(String args[]) {

String strObl = "First String";

String strOb2 = "Second String";

String strOb3 = strObl;
System.out.println("Length of strObl: " +

strObl.length());

System.out.println("Char at index 3 in strObl: " +
strObl.charAt(3));

Chapter 7: A Closer Look at Methods and Classes 187

-
X
m
e~
if (strObl.equals(str0b2)) =
System.out.println("strObl == strOb2"); =
else E
System.out.println("strObl != strOb2"); g
5
if(strObl.equals(strOb3)) [
System.out.println("strObl == strOb3");
else
System.out.println("strObl != strOb3");

This program generates the following output:

Length of strObl: 12

Char at index 3 in strObl: s
strObl != strOb2

strObl == strOb3

Of course, you can have arrays of strings, just like you can have arrays of any other
type of object. For example:

// Demonstrate String arrays.
class StringDemo3 {
public static void main(String args[]) {
String str[] = { "two", "three" };

one",

for(int i=0; i<str.length; i++)
System.out.println("str[" + i + "]: " +
str[(i]);

Here is the output from this program:

str[0]: one
str[l]: two
str[2]: three

As you will see in the following section, string arrays play an important part in
many Java programs.

188

Java™ 2: The Complete Reference

__ | using Command-Line Arguments

Sometimes you will want to pass information into a program when you run it. This

is accomplished by passing command-line arquments to main(). A command-line
argument is the information that directly follows the program’s name on the command
line when it is executed. To access the command-line arguments inside a Java program
is quite easy—they are stored as strings in the String array passed to main(). For
example, the following program displays all of the command-line arguments that it

is called with:

// Display all command-line arguments.
class CommandLine {
public static void main(String args[]) {
for(int i=0; i<args.length; i++)
System.out.println("args[" + 1 + "]: " +
args[i]);

Try executing this program, as shown here:
java CommandLine this is a test 100 -1

When you do, you will see the following output:

args[0]: this
args[l]: is
args[2]: a
args[3]: test
args[4]: 100
args[5]: -1

Bl All command-line arguments are passed as strings. You must convert numeric values to
Remember e L
their internal forms manually, as explained in Chapter 14.

gl
Chapter 3

Inheritance

190

Java™ 2: The Complete Reference

allows the creation of hierarchical classifications. Using inheritance, you can create a

general class that defines traits common to a set of related items. This class can then
be inherited by other, more specific classes, each adding those things that are unique to
it. In the terminology of Java, a class that is inherited is called a superclass. The class that
does the inheriting is called a subclass. Therefore, a subclass is a specialized version of a
superclass. It inherits all of the instance variables and methods defined by the
superclass and adds its own, unique elements.

Inheritance is one of the cornerstones of object-oriented programming because it

Inheritance Basics

To inherit a class, you simply incorporate the definition of one class into another

by using the extends keyword. To see how, let’s begin with a short example. The
following program creates a superclass called A and a subclass called B. Notice how
the keyword extends is used to create a subclass of A.

// A simple example of inheritance.

// Create a superclass.
class A {
int i, 3;

void showij() {
System.out.println("i and j: " + i + " " + j);

// Create a subclass by extending class A.
class B extends A {
int k;

void showk() {
System.out.println("k: " + k);
}
void sum() {
System.out.println("i+j+k: " + (i+j+k));

class SimpleInheritance {
public static void main(String args[]) {
A superOb = new A();

Chapter 8: Inheritance 191

B subOb = new B();

// The superclass may be used by itself.
superOb.i = 10;

superOb.j = 20;

System.out.println("Contents of superOb: ");
superOb.showij();

System.out.println();

-
==
m
e~
2
>
Z
[2)
(=
>
(2]
m

/* The subclass has access to all public members of
its superclass. */

subOb.i = 7;

subOb.j = 8;

subOb.k 9;

System.out.println("Contents of subOb: ");

subOb.showij();

subOb.showk () ;

System.out.println();

System.out.println("Sum of i, j and k in subOb:");
subOb.sum();

The output from this program is shown here:

Contents of superOb:
i and j: 10 20

Contents of subOb:
i and j: 7 8
k: 9

Sum of i, j and k in subOb:
i+j+k: 24

As you can see, the subclass B includes all of the members of its superclass, A. This
is why subOb can access i and j and call showij(). Also, inside sum(), i and j can be
referred to directly, as if they were part of B.

192

Java™ 2: The Complete Reference

Even though A is a superclass for B, it is also a completely independent,
stand-alone class. Being a superclass for a subclass does not mean that the superclass
cannot be used by itself. Further, a subclass can be a superclass for another subclass.

The general form of a class declaration that inherits a superclass is shown here:

class subclass-name extends superclass-name {
// body of class
}

You can only specify one superclass for any subclass that you create. Java does not
support the inheritance of multiple superclasses into a single subclass. (This differs
from C++, in which you can inherit multiple base classes.) You can, as stated, create a
hierarchy of inheritance in which a subclass becomes a superclass of another subclass.
However, no class can be a superclass of itself.

Member Access and Inheritance

Although a subclass includes all of the members of its superclass, it cannot access those
members of the superclass that have been declared as private. For example, consider
the following simple class hierarchy:

/* In a class hierarchy, private members remain
private to their class.

This program contains an error and will not
compile.
*/

// Create a superclass.

class A {
int i; // public by default
private int j; // private to A

void setij(int x, int y) {
i=x;

j =y
}

// A's j is not accessible here.
class B extends A {
int total;

Chapter 8: Inheritance 193

void sum() {
total = i + j; // ERROR, j is not accessible here

class Access {
public static void main(String args[]) {
B subOb = new B();

-
X
m
e~
2
>
2
[
(=
>
@
m

subOb.setij (10, 12);

subOb.sum() ;
System.out.println("Total is " + subOb.total);

This program will not compile because the reference to j inside the sum() method
of B causes an access violation. Since j is declared as private, it is only accessible by
other members of its own class. Subclasses have no access to it.

Bl A class member that has been declared as private will remain private to its class. It is not
Remember) i N
accessible by any code outside its class, including subclasses.

A More Practical Example

Let’s look at a more practical example that will help illustrate the power of inheritance.
Here, the final version of the Box class developed in the preceding chapter will be
extended to include a fourth component called weight. Thus, the new class will contain
a box’s width, height, depth, and weight.

// This program uses inheritance to extend Box.
class Box {

double width;

double height;

double depth;

// construct clone of an object

Box(Box ob) { // pass object to constructor
width = ob.width;
height = ob.height;

194 Java™ 2: The Complete Reference

depth = ob.depth;

// constructor used when all dimensions specified
Box(double w, double h, double d) {

width = w;
height = h;
depth = d;
}
// constructor used when no dimensions specified
Box() {
width = -1; // use -1 to indicate
height = -1; // an uninitialized
depth = -1; // box
}

// constructor used when cube is created
Box(double len) {
width = height = depth = len;

// compute and return volume
double volume() {
return width * height * depth;

// Here, Box is extended to include weight.
class BoxWeight extends Box {
double weight; // weight of box

// constructor for BoxWeight
BoxWeight (double w, double h, double d, double m)

width = w;
height = h;
depth = d;
weight = m;

Chapter 8: Inheritance 195

class DemoBoxWeight {
public static void main(String args[]) {
BoxWeight myboxl = new BoxWeight (10, 20, 15, 34.3);
BoxWeight mybox2 = new BoxWeight(2, 3, 4, 0.076);
double vol;

-
X
m
e~
2
>
2
[
(=
>
@
m

vol = myboxl.volume();

System.out.println("Volume of myboxl is " + vol);
System.out.println("Weight of myboxl is + myboxl.weight);
System.out.println();

vol = mybox2.volume();
System.out.println("Volume of mybox2 is " + vol);
System.out.println("Weight of mybox2 is " + mybox2.weight);

The output from this program is shown here:

Volume of myboxl is 3000.0
Weight of myboxl is 34.3

Volume of mybox2 is 24.0
Weight of mybox2 is 0.076

BoxWeight inherits all of the characteristics of Box and adds to them the weight
component. It is not necessary for BoxWeight to re-create all of the features found in
Box. It can simply extend Box to meet its own purposes.

A major advantage of inheritance is that once you have created a superclass that
defines the attributes common to a set of objects, it can be used to create any number
of more specific subclasses. Each subclass can precisely tailor its own classification. For
example, the following class inherits Box and adds a color attribute:

// Here, Box is extended to include color.
class ColorBox extends Box {
int color; // color of box

ColorBox(double w, double h, double d, int c) {
width = w;

196 Java™ 2: The Complete Reference

height = h;

depth = d;

color = c;
}

Remember, once you have created a superclass that defines the general aspects of
an object, that superclass can be inherited to form specialized classes. Each subclass
simply adds its own, unique attributes. This is the essence of inheritance.

A Superclass Variable Can Reference a Subclass Object

A reference variable of a superclass can be assigned a reference to any subclass derived
from that superclass. You will find this aspect of inheritance quite useful in a variety of
situations. For example, consider the following:

class RefDemo {
public static void main(String args[]) {
BoxWeight weightbox = new BoxWeight(3, 5, 7, 8.37);
Box plainbox = new Box();
double vol;

vol = weightbox.volume();

System.out.println("Volume of weightbox is " + vol);

System.out.println("Weight of weightbox is " +
weightbox.weight);

System.out.println();

// assign BoxWeight reference to Box reference
plainbox = weightbox;

vol = plainbox.volume(); // OK, volume() defined in Box
System.out.println("Volume of plainbox is " + vol);

/* The following statement is invalid because plainbox
does not define a weight member. */
// System.out.println("Weight of plainbox is

+ plainbox.weight);

Chapter 8: Inheritance 197

Here, weightbox is a reference to BoxWeight objects, and plainbox is a reference to
Box objects. Since BoxWeight is a subclass of Box, it is permissible to assign plainbox
a reference to the weightbox object.

It is important to understand that it is the type of the reference variable—not the
type of the object that it refers to—that determines what members can be accessed. That
is, when a reference to a subclass object is assigned to a superclass reference variable,
you will have access only to those parts of the object defined by the superclass. This is
why plainbox can’t access weight even when it refers to a BoxWeight object. If you
think about it, this makes sense, because the superclass has no knowledge of what
a subclass adds to it. This is why the last line of code in the preceding fragment is
commented out. It is not possible for a Box reference to access the weight field,
because it does not define one.

Although the preceding may seem a bit esoteric, it has some important practical
applications—two of which are discussed later in this chapter.

__ | Using super

In the preceding examples, classes derived from Box were not implemented as
efficiently or as robustly as they could have been. For example, the constructor for
BoxWeight explicitly initializes the width, height, and depth fields of Box(). Not only
does this duplicate code found in its superclass, which is inefficient, but it implies that
a subclass must be granted access to these members. However, there will be times
when you will want to create a superclass that keeps the details of its implementation
to itself (that is, that keeps its data members private). In this case, there would be no
way for a subclass to directly access or initialize these variables on its own. Since
encapsulation is a primary attribute of OOP, it is not surprising that Java provides
a solution to this problem. Whenever a subclass needs to refer to its immediate
superclass, it can do so by use of the keyword super.

super has two general forms. The first calls the superclass’ constructor. The second
is used to access a member of the superclass that has been hidden by a member of a
subclass. Each use is examined here.

Using super to Call Superclass Constructors

A subclass can call a constructor method defined by its superclass by use of the
following form of super:

super(parameter-list);

Here, parameter-list specifies any parameters needed by the constructor in
the superclass. super() must always be the first statement executed inside a
subclass’ constructor.

198

Java™ 2: The Complete Reference

To see how super() is used, consider this improved version of the
BoxWeight() class:

// BoxWeight now uses super to initialize its Box attributes.
class BoxWeight extends Box {
double weight; // weight of box

// initialize width, height, and depth using super()

BoxWeight (double w, double h, double d, double m) {
super(w, h, d); // call superclass constructor
weight = m;

Here, BoxWeight() calls super() with the parameters w, h, and d. This causes the
Box() constructor to be called, which initializes width, height, and depth using these
values. BoxWeight no longer initializes these values itself. It only needs to initialize the
value unique to it: weight. This leaves Box free to make these values private if desired.

In the preceding example, super() was called with three arguments. Since
constructors can be overloaded, super() can be called using any form defined by the
superclass. The constructor executed will be the one that matches the arguments. For
example, here is a complete implementation of BoxWeight that provides constructors
for the various ways that a box can be constructed. In each case, super() is called using
the appropriate arguments. Notice that width, height, and depth have been made
private within Box.

// A complete implementation of BoxWeight.
class Box {

private double width;

private double height;

private double depth;

// construct clone of an object

Box(Box ob) { // pass object to constructor
width = ob.width;
height = ob.height;
depth = ob.depth;

Chapter 8: Inheritance 199

-

x

// constructor used when all dimensions specified E
Box(double w, double h, double d) { =
width = w; >
height = h; E
depth = d; g
>

©

m

// constructor used when no dimensions specified

Box () {
width = -1; // use -1 to indicate
height = -1; // an uninitialized
depth = -1; // box

}

// constructor used when cube is created
Box(double len) {
width = height = depth = len;

// compute and return volume
double volume() {
return width * height * depth;

// BoxWeight now fully implements all constructors.
class BoxWeight extends Box {
double weight; // weight of box

// construct clone of an object

BoxWeight (BoxWeight ob) { // pass object to constructor
super (ob) ;
weight = ob.weight;

// constructor when all parameters are specified
BoxWeight (double w, double h, double d, double m) {
super(w, h, d); // call superclass constructor

weight = m;

200 Java™ 2: The Complete Reference

// default constructor
BoxWeight () {

super();

weight = -1;

// constructor used when cube is created
BoxWeight (double len, double m) {
super(len);
weight = m;

class DemoSuper {

public static void main(String args[]) {
BoxWeight myboxl = new BoxWeight (10, 20, 15, 34.3);
BoxWeight mybox2 = new BoxWeight(2, 3, 4, 0.076);
BoxWeight mybox3 = new BoxWeight(); // default
BoxWeight mycube = new BoxWeight(3, 2);
BoxWeight myclone = new BoxWeight (myboxl);
double vol;

vol = myboxl.volume();

System.out.println("Volume of myboxl is + vol);
System.out.println("Weight of myboxl is " + myboxl.weight);
System.out.println();

vol = mybox2.volume();

System.out.println("Volume of mybox2 is + vol);
System.out.println("Weight of mybox2 is + mybox2.weight);
System.out.println();

vol = mybox3.volume();

System.out.println("Volume of mybox3 is " + vol);
System.out.println("Weight of mybox3 is " + mybox3.weight);
System.out.println();

vol = myclone.volume();

System.out.println("Volume of myclone is " + vol);
System.out.println("Weight of myclone is " + myclone.weight);
System.out.println();

Chapter 8: Inheritance 201

vol = mycube.volume();

System.out.println("Volume of mycube is " + vol);
System.out.println("Weight of mycube is " + mycube.weight);
System.out.println();

-
X
m
e~
2
>
2
[
(=
>
@
m

This program generates the following output:

Volume of myboxl is 3000.0
Weight of myboxl is 34.3

Volume of mybox2 is 24.0
Weight of mybox2 is 0.076

Volume of mybox3 is -1.0
Weight of mybox3 is -1.0

Volume of myclone is 3000.0
Weight of myclone is 34.3

Volume of mycube is 27.0
Weight of mycube is 2.0

Pay special attention to this constructor in BoxWeight():

// construct clone of an object

BoxWeight (BoxWeight ob) { // pass object to constructor
super(ob);
weight = ob.weight;

}

Notice that super() is called with an object of type BoxWeight—not of type Box.
This still invokes the constructor Box(Box ob). As mentioned earlier, a superclass
variable can be used to reference any object derived from that class. Thus, we are able
to pass a BoxWeight object to the Box constructor. Of course, Box only has knowledge
of its own members.

Let’s review the key concepts behind super(). When a subclass calls super(), it is
calling the constructor of its immediate superclass. Thus, super() always refers to the
superclass immediately above the calling class. This is true even in a multileveled

202 Java™ 2: The Complete Reference

hierarchy. Also, super() must always be the first statement executed inside a subclass
constructor.

A Second Use for super

The second form of super acts somewhat like this, except that it always refers to
the superclass of the subclass in which it is used. This usage has the following
general form:

super.member

Here, member can be either a method or an instance variable.

This second form of super is most applicable to situations in which member names
of a subclass hide members by the same name in the superclass. Consider this simple
class hierarchy:

// Using super to overcome name hiding.
class A {
int i;

// Create a subclass by extending class A.
class B extends A {
int i; // this i hides the i in A

B(int a, int b) {
super.i = a; // i in A
i=Db; // 1iin B

}

void show() {
System.out.println("i in superclass: " + super.i);
System.out.println("i in subclass: " + 1i);

class UseSuper {
public static void main(String args[]) {
B subOb = new B(1l, 2);

subOb.show();

Chapter 8: Inheritance 203

This program displays the following;:

i in superclass: 1
i in subclass: 2

Although the instance variable i in B hides the i in A, super allows access to the i
defined in the superclass. As you will see, super can also be used to call methods that
are hidden by a subclass.

-
==
m
;
<
>
Z
[2)
(=
>
D
m

Creating a Multilevel Hierarchy

Up to this point, we have been using simple class hierarchies that consist of only a
superclass and a subclass. However, you can build hierarchies that contain as many
layers of inheritance as you like. As mentioned, it is perfectly acceptable to use a
subclass as a superclass of another. For example, given three classes called A, B,

and C, C can be a subclass of B, which is a subclass of A. When this type of situation
occurs, each subclass inherits all of the traits found in all of its superclasses. In this
case, C inherits all aspects of B and A. To see how a multilevel hierarchy can be useful,
consider the following program. In it, the subclass BoxWeight is used as a superclass to
create the subclass called Shipment. Shipment inherits all of the traits of BoxWeight
and Box, and adds a field called cost, which holds the cost of shipping such a parcel.

// Extend BoxWeight to include shipping costs.

// Start with Box.

class Box {
private double width;
private double height;
private double depth;

// construct clone of an object

Box(Box ob) { // pass object to constructor
width = ob.width;
height = ob.height;
depth = ob.depth;

}

// constructor used when all dimensions specified
Box(double w, double h, double d) {

width = w;

height = h;

204 Java™ 2: The Complete Reference

depth = d;
}
// constructor used when no dimensions specified
Box () {
width = -1; // use -1 to indicate
height = -1; // an uninitialized
depth = -1; // box
}

// constructor used when cube is created
Box(double len) {
width = height = depth = len;

// compute and return volume
double volume() {
return width * height * depth;

// Add weight.
class BoxWeight extends Box {
double weight; // weight of box

// construct clone of an object

BoxWeight (BoxWeight ob) { // pass object to constructor
super(ob);
weight = ob.weight;

}

// constructor when all parameters are specified

BoxWeight (double w, double h, double d, double m) {
super(w, h, d); // call superclass constructor
weight = m;

// default constructor
BoxWeight () {

super();

weight = -1;

Chapter 8: Inheritance 205

// constructor used when cube is created
BoxWeight (double len, double m) {
super(len);
weight = m;

-
==
m
e~
2
>
Z
[2)
(=
>
(2]
m

// Add shipping costs
class Shipment extends BoxWeight {
double cost;

// construct clone of an object

Shipment (Shipment ob) { // pass object to constructor
super (ob) ;
cost = ob.cost;

// constructor when all parameters are specified
Shipment (double w, double h, double d,
double m, double c) {
super(w, h, d, m); // call superclass constructor
cost = c;

// default constructor
Shipment () {

super();

cost = -1;

// constructor used when cube is created
Shipment (double len, double m, double c) {
super(len, m);
cost = c;

class DemoShipment {
public static void main(String args[]) {
Shipment shipmentl =

206 Java™ 2: The Complete Reference

new Shipment(10, 20, 15, 10, 3.41);
Shipment shipment2 =
new Shipment(2, 3, 4, 0.76, 1.28);

double vol;

vol = shipmentl.volume();
System.out.println("Volume of shipmentl is " + vol);
System.out.println("Weight of shipmentl is "

+ shipmentl.weight);
System.out.println("Shipping cost: $" + shipmentl.cost);
System.out.println();

vol = shipment2.volume();

System.out.println("Volume of shipment2 is " + vol);

System.out.println("Weight of shipment2 is
+ shipment2.weight);

System.out.println("Shipping cost: $" + shipment2.cost);

"

The output of this program is shown here:

Volume of shipmentl is 3000.0
Weight of shipmentl is 10.0
Shipping cost: $3.41

Volume of shipment2 is 24.0
Weight of shipment2 is 0.76
Shipping cost: $1.28

Because of inheritance, Shipment can make use of the previously defined classes of
Box and BoxWeight, adding only the extra information it needs for its own, specific
application. This is part of the value of inheritance; it allows the reuse of code.

This example illustrates one other important point: super() always refers to the
constructor in the closest superclass. The super() in Shipment calls the constructor
in BoxWeight. The super() in BoxWeight calls the constructor in Box. In a class
hierarchy, if a superclass constructor requires parameters, then all subclasses must pass
those parameters “up the line.” This is true whether or not a subclass needs parameters
of its own.

Chapter 8: Inheritance

| In the preceding program, the entire class hierarchy, including Box, BoxWeight, and
Shipment, is shown all in one file. This is for your convenience only. In Java, all three
classes could have been placed into their own files and compiled separately. In fact, using
separate files is the norm, not the exception, in creating class hierarchies.

| When Constructors Are Called

When a class hierarchy is created, in what order are the constructors for the classes that
make up the hierarchy called? For example, given a subclass called B and a superclass
called A, is A’s constructor called before B’s, or vice versa? The answer is that in a class
hierarchy, constructors are called in order of derivation, from superclass to subclass.
Further, since super() must be the first statement executed in a subclass’ constructor,
this order is the same whether or not super() is used. If super() is not used, then the
default or parameterless constructor of each superclass will be executed. The following
program illustrates when constructors are executed:

// Demonstrate when constructors are called.

// Create a super class.
class A {

A() {
System.out.println("Inside A's constructor.");

// Create a subclass by extending class A.
class B extends A {

B() {

System.out.println("Inside B's constructor.");

// Create another subclass by extending B.
class C extends B {

cO) {

System.out.println("Inside C's constructor.");

class CallingCons {
public static void main(String args[]) {

207

-
==
m
e~
2
>
Z
[2)
(=
>
D
m

208

Java™ 2: The Complete Reference

C c = new C();

The output from this program is shown here:

Inside A’'s constructor
Inside B’s constructor
Inside C'’'s constructor

As you can see, the constructors are called in order of derivation.

If you think about it, it makes sense that constructors are executed in order of
derivation. Because a superclass has no knowledge of any subclass, any initialization it
needs to perform is separate from and possibly prerequisite to any initialization
performed by the subclass. Therefore, it must be executed first.

Method Overriding

In a class hierarchy, when a method in a subclass has the same name and type
signature as a method in its superclass, then the method in the subclass is said to
override the method in the superclass. When an overridden method is called from
within a subclass, it will always refer to the version of that method defined by the
subclass. The version of the method defined by the superclass will be hidden. Consider
the following;:

// Method overriding.
class A {
int i, j;
A(int a, int b) {
i= a;
j = b;
}

// display i and j
void show() {
System.out.println("i and j: " + i + " " + j);

class B extends A {

Chapter 8: Inheritance 209

int k;

B(int a, int b, int c) {
super(a, b);
k =c;

}

-
==
m
e~
2
>
Z
[2)
(=
>
(2]
m

// display k — this overrides show() in A
void show() {

System.out.println("k: " + k);
}

class Override {
public static void main(String args[]) {
B subOb = new B(1l, 2, 3);

subOb.show(); // this calls show() in B

The output produced by this program is shown here:
k: 3

When show() is invoked on an object of type B, the version of show() defined
within B is used. That is, the version of show() inside B overrides the version
declared in A.

If you wish to access the superclass version of an overridden function, you can do
so by using super. For example, in this version of B, the superclass version of show() is
invoked within the subclass” version. This allows all instance variables to be displayed.

class B extends A {
int k;

B(int a, int b, int c) {
super(a, b);
k =c;

210 Java™ 2: The Complete Reference

void show() {
super.show(); // this calls A's show()
System.out.println("k: " + k);

If you substitute this version of A into the previous program, you will see the
following output:

i and j: 1 2
k: 3

Here, super.show() calls the superclass version of show().

Method overriding occurs only when the names and the type signatures of the two
methods are identical. If they are not, then the two methods are simply overloaded. For
example, consider this modified version of the preceding example:

// Methods with differing type signatures are overloaded — not
// overridden.
class A {

int i, 3;

A(int a, int b) {
i=a;
j = b;

// display i and j
void show() {
System.out.println("i and j: " + 1 + " " + Jj);

// Create a subclass by extending class A.
class B extends A {
int k;

B(int a, int b, int c) {
super(a, b);
k = c;

Chapter 8: Inheritance 211

}

// overload show()
void show(String msg) {
System.out.println(msg + k);

-
==
m
e~
2
>
Z
[2)
(=
>
D
m

class Override {
public static void main(String args[]) {
B subOb = new B(1l, 2, 3);

subOb.show("This is k: "); // this calls show() in B
subOb.show(); // this calls show() in A

The output produced by this program is shown here:

This is k: 3
i and j: 1 2

The version of show() in B takes a string parameter. This makes its type signature
different from the one in A, which takes no parameters. Therefore, no overriding (or
name hiding) takes place.

___| bynamic Method Dispatch

While the examples in the preceding section demonstrate the mechanics of method
overriding, they do not show its power. Indeed, if there were nothing more to method
overriding than a name space convention, then it would be, at best, an interesting
curiosity, but of little real value. However, this is not the case. Method overriding
forms the basis for one of Java’s most powerful concepts: dynamic method dispatch.
Dynamic method dispatch is the mechanism by which a call to an overridden method
is resolved at run time, rather than compile time. Dynamic method dispatch is
important because this is how Java implements run-time polymorphism.

Let’s begin by restating an important principle: a superclass reference variable can
refer to a subclass object. Java uses this fact to resolve calls to overridden methods at
run time. Here is how. When an overridden method is called through a superclass
reference, Java determines which version of that method to execute based upon the

212

Java™ 2: The Complete Reference

type of the object being referred to at the time the call occurs. Thus, this determination
is made at run time. When different types of objects are referred to, different versions
of an overridden method will be called. In other words, it is the type of the object being
referred to (not the type of the reference variable) that determines which version of an
overridden method will be executed. Therefore, if a superclass contains a method that
is overridden by a subclass, then when different types of objects are referred to through
a superclass reference variable, different versions of the method are executed.

Here is an example that illustrates dynamic method dispatch:

// Dynamic Method Dispatch
class A {
void callme() {
System.out.println("Inside A's callme method");

class B extends A {
// override callme()
void callme() {
System.out.println("Inside B's callme method");

class C extends A {
// override callme()
void callme() {
System.out.println("Inside C's callme method");

class Dispatch {
public static void main(String args[]) {
A a = new A(); // object of type A

B b = new B(); // object of type B
C c = new C(); // object of type C
A r; // obtain a reference of type A

r = a; // r refers to an A object
r.callme(); // calls A's version of callme

r = b; // r refers to a B object
r.callme(); // calls B's version of callme

Chapter 8: Inheritance 213

r = c; // r refers to a C object
r.callme(); // calls C's version of callme
}
}

-
==
m
;
<
>
Z
(]
(=
>
(2]
m

The output from the program is shown here:

Inside A’'s callme method
Inside B’s callme method
Inside C’'s callme method

This program creates one superclass called A and two subclasses of it, called B
and C. Subclasses B and C override callme() declared in A. Inside the main() method,
objects of type A, B, and C are declared. Also, a reference of type A, called r, is declared.
The program then assigns a reference to each type of object to r and uses that reference to
invoke callme(). As the output shows, the version of callme() executed is determined by
the type of object being referred to at the time of the call. Had it been determined by the
type of the reference variable, r, you would see three calls to A’s callme() method.

Note | Readers familiar with C++ or C# will recognize that overridden methods in Java are
' similar to virtual functions in those languages.

Why Overridden Methods?

As stated earlier, overridden methods allow Java to support run-time polymorphism.
Polymorphism is essential to object-oriented programming for one reason: it allows a
general class to specify methods that will be common to all of its derivatives, while
allowing subclasses to define the specific implementation of some or all of those
methods. Overridden methods are another way that Java implements the “one
interface, multiple methods” aspect of polymorphism.

Part of the key to successfully applying polymorphism is understanding that the
superclasses and subclasses form a hierarchy which moves from lesser to greater
specialization. Used correctly, the superclass provides all elements that a subclass can
use directly. It also defines those methods that the derived class must implement on
its own. This allows the subclass the flexibility to define its own methods, yet still
enforces a consistent interface. Thus, by combining inheritance with overridden
methods, a superclass can define the general form of the methods that will be used
by all of its subclasses.

214 Java™ 2: The Complete Reference

Dynamic, run-time polymorphism is one of the most powerful mechanisms that
object-oriented design brings to bear on code reuse and robustness. The ability of
existing code libraries to call methods on instances of new classes without recompiling
while maintaining a clean abstract interface is a profoundly powerful tool.

Applying Method Overriding

Let’s look at a more practical example that uses method overriding. The following
program creates a superclass called Figure that stores the dimensions of various
two-dimensional objects. It also defines a method called area() that computes the area
of an object. The program derives two subclasses from Figure. The first is Rectangle
and the second is Triangle. Each of these subclasses overrides area() so that it returns
the area of a rectangle and a triangle, respectively.

// Using run-time polymorphism.
class Figure {

double diml;

double dim2;

Figure(double a, double b) {
diml = a;
dim2 b;

double area() {
System.out.println("Area for Figure is undefined.");
return 0;

class Rectangle extends Figure {
Rectangle(double a, double b) {
super(a, b);

// override area for rectangle

double area() {
System.out.println("Inside Area for Rectangle.");
return diml * dim2;

class Triangle extends Figure {

Chapter 8: Inheritance 215

Triangle(double a, double b) {
super(a, b);

// override area for right triangle

double area() {
System.out.println("Inside Area for Triangle.");
return diml * dim2 / 2;

-
==
m
e~
2
>
Z
[2)
(=
>
(2]
m

class FindAreas {
public static void main(String args[]) {
Figure f = new Figure(10, 10);
Rectangle r = new Rectangle(9, 5);
Triangle t = new Triangle(10, 8);

Figure figref;

figref = r;
System.out.println("Area is + figref.area());
figref = t;
System.out.println("Area is + figref.area());
figref = f;

System.out.println("Area is + figref.area());

The output from the program is shown here:

Inside Area for Rectangle.
Area is 45

Inside Area for Triangle.
Area 1is 40

Area for Figure is undefined.
Area is 0

Through the dual mechanisms of inheritance and run-time polymorphism, it is
possible to define one consistent interface that is used by several different, yet related,

216

Java™ 2: The Complete Reference

types of objects. In this case, if an object is derived from Figure, then its area can be
obtained by calling area(). The interface to this operation is the same no matter what
type of figure is being used.

Using Abstract Classes

There are situations in which you will want to define a superclass that declares the
structure of a given abstraction without providing a complete implementation of every
method. That is, sometimes you will want to create a superclass that only defines a
generalized form that will be shared by all of its subclasses, leaving it to each subclass
to fill in the details. Such a class determines the nature of the methods that the
subclasses must implement. One way this situation can occur is when a superclass

is unable to create a meaningful implementation for a method. This is the case with
the class Figure used in the preceding example. The definition of area() is simply a
placeholder. It will not compute and display the area of any type of object.

As you will see as you create your own class libraries, it is not uncommon for a
method to have no meaningful definition in the context of its superclass. You can
handle this situation two ways. One way, as shown in the previous example, is to
simply have it report a warning message. While this approach can be useful in certain
situations—such as debugging—it is not usually appropriate. You may have methods
which must be overridden by the subclass in order for the subclass to have any meaning.
Consider the class Triangle. It has no meaning if area() is not defined. In this case, you
want some way to ensure that a subclass does, indeed, override all necessary methods.
Java’s solution to this problem is the abstract method.

You can require that certain methods be overridden by subclasses by specifying
the abstract type modifier. These methods are sometimes referred to as subclasser
responsibility because they have no implementation specified in the superclass. Thus,

a subclass must override them—it cannot simply use the version defined in the
superclass. To declare an abstract method, use this general form:

abstract type name(parameter-list);

As you can see, no method body is present.

Any class that contains one or more abstract methods must also be declared
abstract. To declare a class abstract, you simply use the abstract keyword in front of the
class keyword at the beginning of the class declaration. There can be no objects of an
abstract class. That is, an abstract class cannot be directly instantiated with the new
operator. Such objects would be useless, because an abstract class is not fully defined.
Also, you cannot declare abstract constructors, or abstract static methods. Any subclass
of an abstract class must either implement all of the abstract methods in the superclass,
or be itself declared abstract.

Here is a simple example of a class with an abstract method, followed by a class
which implements that method:

Chapter 8: Inheritance 217

// A Simple demonstration of abstract.
abstract class A {
abstract void callme();

// concrete methods are still allowed in abstract classes
void callmetoo() {
System.out.println("This is a concrete method.");

-
X
m
e~
2
>
2
[2
[=
>
@
m

class B extends A {
void callme() {
System.out.println("B's implementation of callme.");

class AbstractDemo {
public static void main(String args[]) {
B b = new B();

b.callme();
b.callmetoo();

Notice that no objects of class A are declared in the program. As mentioned, it is
not possible to instantiate an abstract class. One other point: class A implements a
concrete method called callmetoo(). This is perfectly acceptable. Abstract classes can
include as much implementation as they see fit.

Although abstract classes cannot be used to instantiate objects, they can be used
to create object references, because Java’s approach to run-time polymorphism is
implemented through the use of superclass references. Thus, it must be possible to
create a reference to an abstract class so that it can be used to point to a subclass object.
You will see this feature put to use in the next example.

Using an abstract class, you can improve the Figure class shown earlier. Since
there is no meaningful concept of area for an undefined two-dimensional figure, the
following version of the program declares area() as abstract inside Figure. This, of
course, means that all classes derived from Figure must override area().

// Using abstract methods and classes.
abstract class Figure {

218 Java™ 2: The Complete Reference

double diml;
double dim2;

Figure(double a, double b) {
diml = a;
dim2 = b;

// area is now an abstract method
abstract double area();

class Rectangle extends Figure {
Rectangle(double a, double b) {
super(a, b);

// override area for rectangle

double area() {
System.out.println("Inside Area for Rectangle.");
return diml * dim2;

class Triangle extends Figure {
Triangle(double a, double b) {
super(a, b);

// override area for right triangle

double area() {
System.out.println("Inside Area for Triangle.");
return diml * dim2 / 2;

class AbstractAreas {
public static void main(String args[]) {
// Figure f = new Figure(10, 10); // illegal now
Rectangle r = new Rectangle(9, 5);
Triangle t = new Triangle(10, 8);

Chapter 8: Inheritance 219

Figure figref; // this is OK, no object is created

figref = r;

System.out.println("Area is + figref.area());

figref = t;
System.out.println("Area is

-
==
m
;
<
>
Z
[2)
(=
>
D
m

+ figref.area());

As the comment inside main() indicates, it is no longer possible to declare objects
of type Figure, since it is now abstract. And, all subclasses of Figure must override
area(). To prove this to yourself, try creating a subclass that does not override area().
You will receive a compile-time error.

Although it is not possible to create an object of type Figure, you can create a
reference variable of type Figure. The variable figref is declared as a reference to
Figure, which means that it can be used to refer to an object of any class derived from
Figure. As explained, it is through superclass reference variables that overridden
methods are resolved at run time.

__ | Using final with Inheritance

The keyword final has three uses. First, it can be used to create the equivalent of a
named constant. This use was described in the preceding chapter. The other two uses
of final apply to inheritance. Both are examined here.

Using final to Prevent Overriding

While method overriding is one of Java’s most powerful features, there will be times
when you will want to prevent it from occurring. To disallow a method from being
overridden, specify final as a modifier at the start of its declaration. Methods declared
as final cannot be overridden. The following fragment illustrates final:

class A {
final void meth() {
System.out.println("This is a final method.");

class B extends A {
void meth() { // ERROR! Can't override.

220 Java™ 2: The Complete Reference

System.out.println("Illegal!");
}
}

Because meth() is declared as final, it cannot be overridden in B. If you attempt to
do so, a compile-time error will result.

Methods declared as final can sometimes provide a performance enhancement: The
compiler is free to inline calls to them because it “knows” they will not be overridden by
a subclass. When a small final method is called, often the Java compiler can copy the
bytecode for the subroutine directly inline with the compiled code of the calling method,
thus eliminating the costly overhead associated with a method call. Inlining is only an
option with final methods. Normally, Java resolves calls to methods dynamically, at run
time. This is called late binding. However, since final methods cannot be overridden, a
call to one can be resolved at compile time. This is called early binding.

Using final to Prevent Inheritance

Sometimes you will want to prevent a class from being inherited. To do this, precede
the class declaration with final. Declaring a class as final implicitly declares all of its
methods as final, too. As you might expect, it is illegal to declare a class as both
abstract and final since an abstract class is incomplete by itself and relies upon its
subclasses to provide complete implementations.

Here is an example of a final class:

final class A {
/] ...
}

// The following class is illegal.

class B extends A { // ERROR! Can't subclass A
/] ...

}

As the comments imply, it is illegal for B to inherit A since A is declared as final.

___| The Object Class

There is one special class, Object, defined by Java. All other classes are subclasses of
Object. That is, Object is a superclass of all other classes. This means that a reference

Chapter 8: Inheritance 221

variable of type Object can refer to an object of any other class. Also, since arrays are

-
implemented as classes, a variable of type Object can also refer to any array. =
Object defines the following methods, which means that they are available in 5
every object. s
5
Method Purpose =
>
Object clone() Creates a new object that is the same as R
the object being cloned.
boolean equals(Object object) Determines whether one object is equal to
another.
void finalize() Called before an unused object is
recycled.
Class getClass() Obtains the class of an object at run time.
int hashCode() Returns the hash code associated with the
invoking object.
void notify() Resumes execution of a thread waiting on
the invoking object.
void notifyAll() Resumes execution of all threads waiting
on the invoking object.
String toString() Returns a string that describes the object.
void wait() Waits on another thread of execution.

void wait(long milliseconds)
void wait(long milliseconds,
int nanoseconds)

The methods getClass(), notify(), notifyAll(), and wait() are declared as final.
You may override the others. These methods are described elsewhere in this book.
However, notice two methods now: equals() and toString(). The equals() method
compares the contents of two objects. It returns true if the objects are equivalent, and
false otherwise. The toString() method returns a string that contains a description of
the object on which it is called. Also, this method is automatically called when an object
is output using println(). Many classes override this method. Doing so allows them to
tailor a description specifically for the types of objects that they create. See Chapter 13
for more information on toString().

This page intentionally left blank.

gl
Chapter 9

Packages and
Interfaces

224

Java™ 2: The Complete Reference

interfaces. Packages are containers for classes that are used to keep the class name
space compartmentalized. For example, a package allows you to create a class
named List, which you can store in your own package without concern that it will
collide with some other class named List stored elsewhere. Packages are stored in a
hierarchical manner and are explicitly imported into new class definitions.
In previous chapters you have seen how methods define the interface to the data in
a class. Through the use of the interface keyword, Java allows you to fully abstract the
interface from its implementation. Using interface, you can specify a set of methods
which can be implemented by one or more classes. The interface, itself, does not
actually define any implementation. Although they are similar to abstract classes,
interfaces have an additional capability: A class can implement more than one
interface. By contrast, a class can only inherit a single superclass (abstract or
otherwise).
Packages and interfaces are two of the basic components of a Java program. In
general, a Java source file can contain any (or all) of the following four internal parts:

This chapter examines two of Java’s most innovative features: packages and

B A single package statement (optional)
B Any number of import statements (optional)
B A single public class declaration (required)

B Any number of classes private to the package (optional)

Only one of these—the single public class declaration—has been used in the
examples so far. This chapter will explore the remaining parts.

Packages

In the preceding chapters, the name of each example class was taken from the same
name space. This means that a unique name had to be used for each class to avoid
name collisions. After a while, without some way to manage the name space, you
could run out of convenient, descriptive names for individual classes. You also need
some way to be assured that the name you choose for a class will be reasonably
unique and not collide with class names chosen by other programmers. (Imagine

a small group of programmers fighting over who gets to use the name “Foobar” as a
class name. Or, imagine the entire Internet community arguing over who first named
a class “Espresso.”) Thankfully, Java provides a mechanism for partitioning the class
name space into more manageable chunks. This mechanism is the package. The
package is both a naming and a visibility control mechanism. You can define classes
inside a package that are not accessible by code outside that package. You can also
define class members that are only exposed to other members of the same package.
This allows your classes to have intimate knowledge of each other, but not expose
that knowledge to the rest of the world.

Chapter 9: Packages and Interfaces 225

Defining a Package

To create a package is quite easy: simply include a package command as the first
statement in a Java source file. Any classes declared within that file will belong to the
specified package. The package statement defines a name space in which classes are
stored. If you omit the package statement, the class names are put into the default
package, which has no name. (This is why you haven’t had to worry about packages
before now.) While the default package is fine for short, sample programs, it is
inadequate for real applications. Most of the time, you will define a package for
your code.

This is the general form of the package statement:

-
==
m
;
<
>
Z
(]
(=
>
(2]
m

package pkg;

Here, pkg is the name of the package. For example, the following statement creates a
package called MyPackage.

I package MyPackage;

Java uses file system directories to store packages. For example, the .class files for
any classes you declare to be part of MyPackage must be stored in a directory called
MyPackage. Remember that case is significant, and the directory name must match the
package name exactly.

More than one file can include the same package statement. The package statement
simply specifies to which package the classes defined in a file belong. It does not exclude
other classes in other files from being part of that same package. Most real-world packages
are spread across many files.

You can create a hierarchy of packages. To do so, simply separate each package
name from the one above it by use of a period. The general form of a multileveled
package statement is shown here:

package pkg1[.pkg2[.pkg3ll;
A package hierarchy must be reflected in the file system of your Java development
system. For example, a package declared as

I package java.awt.image;

needs to be stored in java/awt/image, java\awt\image, or java:awt:image on your
UNIX, Windows, or Macintosh file system, respectively. Be sure to choose your
package names carefully. You cannot rename a package without renaming the
directory in which the classes are stored.

226 Java™ 2: The Complete Reference

Finding Packages and CLASSPATH

As just explained, packages are mirrored by directories. This raises an important

question: How does the Java run-time system know where to look for packages that

you create? The answer has two parts. First, by default, the Java run-time system uses

the current working directory as its starting point. Thus, if your package is in the current

directory, or a subdirectory of the current directory, it will be found. Second, you can

specify a directory path or paths by setting the CLASSPATH environmental variable.
For example, consider the following package specification.

I package MyPack;

In order for a program to find MyPack, one of two things must be true. Either the
program is executed from a directory immediately above MyPack, or CLASSPATH
must be set to include the path to MyPack. The first alternative is the easiest (and
doesn’t require a change to CLASSPATH), but the second alternative lets your
program find MyPack no matter what directory the program is in. Ultimately, the
choice is yours.

The easiest way to try the examples shown in this book is to simply create the
package directories below your current development directory, put the .class files into
the appropriate directories and then execute the programs from the development
directory. This is the approach assumed by the examples.

A Short Package Example

Keeping the preceding discussion in mind, you can try this simple package:

// A simple package
package MyPack;

class Balance {
String name;
double bal;

Balance(String n, double b) {
name = n;
bal = b;

}

void show() {
if(bal<0)
System.out.print("--> ");

Chapter 9: Packages and Interfaces 227

System.out.println(name + ": $" + bal);

class AccountBalance {
public static void main(String args[]) {
Balance current[] = new Balance[3];

-
==
m
;
<
>
Z
[2)
(=
>
D
m

current[0] = new Balance("K. J. Fielding", 123.23);
current[l] = new Balance("Will Tell", 157.02);
current[2] = new Balance("Tom Jackson", -12.33);

for(int i=0; i<3; i++) current[i].show();

Call this file AccountBalance.java, and put it in a directory called MyPack.
Next, compile the file. Make sure that the resulting .class file is also in the MyPack
directory. Then try executing the AccountBalance class, using the following command line:

I java MyPack.AccountBalance

Remember, you will need to be in the directory above MyPack when you execute this
command, or to have your CLASSPATH environmental variable set appropriately.

As explained, AccountBalance is now part of the package MyPack. This means that
it cannot be executed by itself. That is, you cannot use this command line:

I java AccountBalance

AccountBalance must be qualified with its package name.

___| Access Protection

In the preceding chapters, you learned about various aspects of Java’s access control
mechanism and its access specifiers. For example, you already know that access to a
private member of a class is granted only to other members of that class. Packages add
another dimension to access control. As you will see, Java provides many levels of
protection to allow fine-grained control over the visibility of variables and methods
within classes, subclasses, and packages.

Classes and packages are both means of encapsulating and containing the name
space and scope of variables and methods. Packages act as containers for classes and

228

Java™ 2: The Complete Reference

other subordinate packages. Classes act as containers for data and code. The class is
Java’s smallest unit of abstraction. Because of the interplay between classes and
packages, Java addresses four categories of visibility for class members:

B Subclasses in the same package
B Non-subclasses in the same package
B Subclasses in different packages

B Classes that are neither in the same package nor subclasses

The three access specifiers, private, public, and protected, provide a variety of
ways to produce the many levels of access required by these categories. Table 9-1 sums
up the interactions.

While Java’s access control mechanism may seem complicated, we can simplify it as
follows. Anything declared public can be accessed from anywhere. Anything declared
private cannot be seen outside of its class. When a member does not have an explicit
access specification, it is visible to subclasses as well as to other classes in the same
package. This is the default access. If you want to allow an element to be seen outside
your current package, but only to classes that subclass your class directly, then declare
that element protected.

Table 9-1 applies only to members of classes. A class has only two possible access
levels: default and public. When a class is declared as public, it is accessible by any
other code. If a class has default access, then it can only be accessed by other code
within its same package.

Private No modifier Protected Public

Same class Yes Yes Yes Yes
Same package No Yes Yes Yes
subclass

Same package No Yes Yes Yes
non-subclass

Different No No Yes Yes
package

subclass

Different No No No Yes
package

non-subclass

Table 9-1. Class Member Access

Chapter 9: Packages and Interfaces 229

An Access Example

The following example shows all combinations of the access control modifiers. This
example has two packages and five classes. Remember that the classes for the two
different packages need to be stored in directories named after their respective
packages—in this case, p1 and p2.

The source for the first package defines three classes: Protection, Derived, and
SamePackage. The first class defines four int variables in each of the legal protection
modes. The variable n is declared with the default protection, n_pri is private, n_pro is
protected, and n_pub is public.

Each subsequent class in this example will try to access the variables in an instance
of this class. The lines that will not compile due to access restrictions are commented
out by use of the single-line comment //. Before each of these lines is a comment listing
the places from which this level of protection would allow access.

The second class, Derived, is a subclass of Protection in the same package, p1. This
grants Derived access to every variable in Protection except for n_pri, the private one.
The third class, SamePackage, is not a subclass of Protection, but is in the same package
and also has access to all but n_pri.

This is file Protection.java:

-
==
m
e~
2
>
Z
[2)
(=
>
D
m

package pl;

public class Protection {
int n = 1;
private int n_pri = 2;
protected int n_pro = 3;
public int n_pub = 4;

public Protection() {
System.out.println("base constructor");

System.out.println("n = " + n);

System.out.println("n pri = " + n_pri);
System.out.println("n _pro = " + n_pro);
System.out.println("n_pub = " + n_pub);

This is file Derived.java:

package pl;

class Derived extends Protection {
Derived() {

230 Java™ 2: The Complete Reference

System.out.println("derived constructor");
System.out.println("n = " + n);

// class only

// System.out.println("n pri = " + n_pri);
System.out.println("n_pro = " + n_pro);
System.out.println("n_pub = " + n_pub);

}

}

This is file SamePackage.java:

package pl;

class SamePackage {
SamePackage() {

Protection p = new Protection();
System.out.println("same package constructor");
System.out.println("n = " + p.n);

// class only

// System.out.println("n_pri + p.n_pri);
System.out.println("n_pro + p.n_pro);
System.out.println("n pub = " + p.n_pub);

Following is the source code for the other package, p2. The two classes defined in
p2 cover the other two conditions which are affected by access control. The first class,
Protection2, is a subclass of p1.Protection. This grants access to all of p1.Protection’s
variables except for n_pri (because it is private) and n, the variable declared with the
default protection. Remember, the default only allows access from within the class or
the package, not extra-package subclasses. Finally, the class OtherPackage has access
to only one variable, n_pub, which was declared public.

This is file Protection2.java:

package p2;

class Protection2 extends pl.Protection {

Protection2() {
System.out.println("derived

// class or package only

// System.out.println('n = " +

// class only
// System.out.println("n_pri =

System.out.println("n_pro =
System.out.println("n_pub =

This is file OtherPackage.java:

package p2;

class OtherPackage {
OtherPackage() {

Chapter 9:

other package constructor");

n);

+ n_pri);

+ n_pro);
" + n _pub);

pl.Protection p = new pl.Protection();
System.out.println("other package constructor");

// class or package only
// System.out.println("n = "
// class only

// System.out.println("n pri =

+ p.n);

" + p.n_pri);

// class, subclass or package only

// System.out.println("n pro =

System.out.println("n_pub =

If you wish to try these two packages, here are two test files you can use. The one

for package p1 is shown here:

// Demo package pl.
package pl;

+ p.n_pro);

+ p.n_pub);

Packages and Interfaces

-
I
m
e~
2
>
2
[
[=
>
[2)
m

232

Java™ 2: The Complete Reference

// Instantiate the various classes in pl.
public class Demo {
public static void main(String args[]) {
Protection obl = new Protection();
Derived ob2 = new Derived();
SamePackage ob3 = new SamePackage();

The test file for p2 is shown next:

// Demo package p2.
package p2;

// Instantiate the various classes in p2.
public class Demo {
public static void main(String args[]) {
Protection2 obl = new Protection2();
OtherPackage ob2 = new OtherPackage();

___| Importing Packages

Given that packages exist and are a good mechanism for compartmentalizing diverse
classes from each other, it is easy to see why all of the built-in Java classes are stored in
packages. There are no core Java classes in the unnamed default package; all of the
standard classes are stored in some named package. Since classes within packages
must be fully qualified with their package name or names, it could become tedious to
type in the long dot-separated package path name for every class you want to use.
For this reason, Java includes the import statement to bring certain classes, or entire
packages, into visibility. Once imported, a class can be referred to directly, using only
its name. The import statement is a convenience to the programmer and is not
technically needed to write a complete Java program. If you are going to refer to a
few dozen classes in your application, however, the import statement will save a lot
of typing.

In a Java source file, import statements occur immediately following the package
statement (if it exists) and before any class definitions. This is the general form of the
import statement:

import pkg1[.pkg2].(classname|*);

Chapter 9: Packages and Interfaces 233

Here, pkg1 is the name of a top-level package, and pkg? is the name of a subordinate
package inside the outer package separated by a dot (.). There is no practical limit on
the depth of a package hierarchy, except that imposed by the file system. Finally, you
specify either an explicit classname or a star (*), which indicates that the Java compiler
should import the entire package. This code fragment shows both forms in use:

-
==
m
;
<
>
Z
[2)
(=
>
D
m

import java.util.Date;
import java.io.*;

. The star form may increase compilation time—especially if you import several large
Caution : ey ; .
packages. For this reason it is a good idea to explicitly name the classes that you want
to use rather than importing whole packages. However, the star form has absolutely
no effect on the run-time performance or size of your classes.

All of the standard Java classes included with Java are stored in a package called
java. The basic language functions are stored in a package inside of the java package
called java.lang. Normally, you have to import every package or class that you want
to use, but since Java is useless without much of the functionality in java.lang, it is
implicitly imported by the compiler for all programs. This is equivalent to the following
line being at the top of all of your programs:

I import java.lang.*;

If a class with the same name exists in two different packages that you import
using the star form, the compiler will remain silent, unless you try to use one of the
classes. In that case, you will get a compile-time error and have to explicitly name
the class specifying its package.

Any place you use a class name, you can use its fully qualified name, which
includes its full package hierarchy. For example, this fragment uses an import
statement:

import java.util.*;
class MyDate extends Date {

}

The same example without the import statement looks like this:

I class MyDate extends java.util.Date {
}

234 Java™ 2: The Complete Reference

As shown in Table 9-1, when a package is imported, only those items within the
package declared as public will be available to non-subclasses in the importing code.
For example, if you want the Balance class of the package MyPack shown earlier to be
available as a stand-alone class for general use outside of MyPack, then you will need
to declare it as public and put it into its own file, as shown here:

package MyPack;

/* Now, the Balance class, its constructor, and its
show() method are public. This means that they can
be used by non-subclass code outside their package.

*/

public class Balance {

String name;
double bal;

public Balance(String n, double b) {
name = n;
bal = b;

public void show() {
if (bal<0)
System.out.print("--> ");
System.out.println(name + ": $" + bal);

As you can see, the Balance class is now public. Also, its constructor and its
show() method are public, too. This means that they can be accessed by any type of
code outside the MyPack package. For example, here TestBalance imports MyPack
and is then able to make use of the Balance class:

import MyPack.*;

class TestBalance {
public static void main(String args[]) {

/* Because Balance is public, you may use Balance
class and call its constructor. */
Balance test = new Balance("J. J. Jaspers", 99.88);

Chapter 9: Packages and Interfaces 235

test.show(); // you may also call show()

}

As an experiment, remove the public specifier from the Balance class and then try
compiling TestBalance. As explained, errors will result.

| Interfaces

Using the keyword interface, you can fully abstract a class’ interface from its imple-
mentation. That is, using interface, you can specify what a class must do, but not how
it does it. Interfaces are syntactically similar to classes, but they lack instance variables,
and their methods are declared without any body. In practice, this means that you can
define interfaces which don’t make assumptions about how they are implemented.
Once it is defined, any number of classes can implement an interface. Also, one class
can implement any number of interfaces.

To implement an interface, a class must create the complete set of methods defined
by the interface. However, each class is free to determine the details of its own
implementation. By providing the interface keyword, Java allows you to fully utilize
the “one interface, multiple methods” aspect of polymorphism.

Interfaces are designed to support dynamic method resolution at run time.
Normally, in order for a method to be called from one class to another, both classes
need to be present at compile time so the Java compiler can check to ensure that the
method signatures are compatible. This requirement by itself makes for a static and
nonextensible classing environment. Inevitably in a system like this, functionality gets
pushed up higher and higher in the class hierarchy so that the mechanisms will be
available to more and more subclasses. Interfaces are designed to avoid this problem.
They disconnect the definition of a method or set of methods from the inheritance
hierarchy. Since interfaces are in a different hierarchy from classes, it is possible for
classes that are unrelated in terms of the class hierarchy to implement the same
interface. This is where the real power of interfaces is realized.

| Interfaces add most of the functionality that is required for many applications which
' would normally resort to using multiple inheritance in a language such as C++.

Defining an Interface

An interface is defined much like a class. This is the general form of an interface:

access interface name {
return-type method-namel(parameter-list);
return-type method-name2(parameter-list);
type final-varnamel = value;

236

Java™ 2: The Complete Reference

type final-varname2 = value;

return-type method-nameN(parameter-list);
type final-varnameN = value;

}

Here, access is either public or not used. When no access specifier is included, then
default access results, and the interface is only available to other members of the
package in which it is declared. When it is declared as public, the interface can be used
by any other code. name is the name of the interface, and can be any valid identifier.
Notice that the methods which are declared have no bodies. They end with a semicolon
after the parameter list. They are, essentially, abstract methods; there can be no default
implementation of any method specified within an interface. Each class that includes
an interface must implement all of the methods.

Variables can be declared inside of interface declarations. They are implicitly final
and static, meaning they cannot be changed by the implementing class. They must also
be initialized with a constant value. All methods and variables are implicitly public if
the interface, itself, is declared as public.

Here is an example of an interface definition. It declares a simple interface which
contains one method called callback() that takes a single integer parameter.

interface Callback {
void callback(int param);

}

Implementing Interfaces

Once an interface has been defined, one or more classes can implement that interface.
To implement an interface, include the implements clause in a class definition, and
then create the methods defined by the interface. The general form of a class that
includes the implements clause looks like this:

access class classname [extends superclass]
[implements interface [interface...]] {
// class-body
}

Here, access is either public or not used. If a class implements more than one interface,
the interfaces are separated with a comma. If a class implements two interfaces that
declare the same method, then the same method will be used by clients of either
interface. The methods that implement an interface must be declared public. Also, the
type signature of the implementing method must match exactly the type signature
specified in the interface definition.

Chapter 9: Packages and Interfaces 237

Here is a small example class that implements the Callback interface shown earlier.

class Client implements Callback {
// Implement Callback's interface
public void callback(int p) {

System.out.println("callback called with " + p);

-
==
m
;
<
>
Z
[2)
(=
>
D
m

Notice that callback() is declared using the public access specifier.

Remember | When you implement an interface method, it must be declared as public.

It is both permissible and common for classes that implement interfaces to define
additional members of their own. For example, the following version of Client
implements callback() and adds the method nonIfaceMeth():

class Client implements Callback {
// Implement Callback's interface
public void callback(int p) {
System.out.println("callback called with " + p);

void nonIfaceMeth() {
System.out.println("Classes that implement interfaces " +
"may also define other members, too.");

Accessing Implementations Through Interface References

You can declare variables as object references that use an interface rather than a class
type. Any instance of any class that implements the declared interface can be referred
to by such a variable. When you call a method through one of these references, the
correct version will be called based on the actual instance of the interface being referred
to. This is one of the key features of interfaces. The method to be executed is looked up
dynamically at run time, allowing classes to be created later than the code which calls
methods on them. The calling code can dispatch through an interface without having
to know anything about the “callee.” This process is similar to using a superclass
reference to access a subclass object, as described in Chapter 8.

238 Java™ 2: The Complete Reference

. Because dynamic lookup of a method at run time incurs a significant overhead when
Caution)) o
compared with the normal method invocation in Java, you should be careful not to use
interfaces casually in performance-critical code.

The following example calls the callback() method via an interface reference
variable:

class TestIface {
public static void main(String args[]) {
Callback ¢ = new Client();
c.callback(42);

The output of this program is shown here:
callback called with 42

Notice that variable c is declared to be of the interface type Callback, yet it was
assigned an instance of Client. Although ¢ can be used to access the callback()
method, it cannot access any other members of the Client class. An interface reference
variable only has knowledge of the methods declared by its interface declaration.
Thus, ¢ could not be used to access nonIfaceMeth() since it is defined by Client but
not Callback.

While the preceding example shows, mechanically, how an interface reference
variable can access an implementation object, it does not demonstrate the polymorphic
power of such a reference. To sample this usage, first create the second implementation
of Callback, shown here:

// Another implementation of Callback.
class AnotherClient implements Callback {
// Implement Callback's interface
public void callback(int p) {
System.out.println("Another version of callback");
System.out.println("p squared is " + (p*p));

Now, try the following class:

class TestIface2 {
public static void main(String args[]) {
Callback ¢ = new Client();

Chapter 9: Packages and Interfaces 239

AnotherClient ob = new AnotherClient();
c.callback(42);

c = ob; // c now refers to AnotherClient object
c.callback(42);

}

-
==
m
;
<
>
Z
[2)
(=
>
D
m

The output from this program is shown here:

callback called with 42
Another version of callback
p squared is 1764

As you can see, the version of callback() that is called is determined by the type of
object that c refers to at run time. While this is a very simple example, you will see
another, more practical one shortly.

Partial Implementations
If a class includes an interface but does not fully implement the methods defined by
that interface, then that class must be declared as abstract. For example:

abstract class Incomplete implements Callback {
int a, b;
void show() {
System.out.println(a + " " + b);
}
/] ...

Here, the class Incomplete does not implement callback() and must be declared as
abstract. Any class that inherits Incomplete must implement callback() or be declared
abstract itself.

Applying Interfaces

To understand the power of interfaces, let’s look at a more practical example. In earlier
chapters you developed a class called Stack that implemented a simple fixed-size stack.
However, there are many ways to implement a stack. For example, the stack can be of a
fixed size or it can be “growable.” The stack can also be held in an array, a linked list,

a binary tree, and so on. No matter how the stack is implemented, the interface to the
stack remains the same. That is, the methods push() and pop() define the interface to
the stack independently of the details of the implementation. Because the interface to a

240

Java™ 2: The Complete Reference

stack is separate from its implementation, it is easy to define a stack interface, leaving it
to each implementation to define the specifics. Let’s look at two examples.

First, here is the interface that defines an integer stack. Put this in a file called
IntStack.java. This interface will be used by both stack implementations.

// Define an integer stack interface.
interface IntStack {
void push(int item); // store an item
int pop(); // retrieve an item

The following program creates a class called FixedStack that implements a
fixed-length version of an integer stack:

// An implementation of IntStack that uses fixed storage.
class FixedStack implements IntStack {

private int stck[];

private int tos;

// allocate and initialize stack
FixedStack(int size) {

stck = new int[size];

tos = -1;

// Push an item onto the stack
public void push(int item) {
if (tos==stck.length-1) // use length member
System.out.println("Stack is full.");
else
stck[++tos] = item;

// Pop an item from the stack
public int pop() {
if(tos < 0) {
System.out.println("Stack underflow.");
return 0;
}
else
return stck[tos--];

Chapter 9: Packages and Interfaces

class IFTest {
public static void main(String args[]) {
FixedStack mystackl = new FixedStack(5);
FixedStack mystack2 = new FixedStack(8);

// push some numbers onto the stack
for(int i=0; i<5; i++) mystackl.push(i);
for(int i=0; i<8; i++) mystack2.push(i);

// pop those numbers off the stack

System.out.println("Stack in mystackl:");

for(int i=0; i<5; i++)
System.out.println(mystackl.pop());

System.out.println("Stack in mystack2:");
for(int i=0; i<8; i++)
System.out.println(mystack2.pop());

Following is another implementation of IntStack that creates a dynamic stack by
use of the same interface definition. In this implementation, each stack is constructed
with an initial length. If this initial length is exceeded, then the stack is increased in
size. Each time more room is needed, the size of the stack is doubled.

// Implement a "growable" stack.
class DynStack implements IntStack {
private int stck[];
private int tos;

// allocate and initialize stack
DynStack(int size) {

stck = new int[size];

tos = -1;

// Push an item onto the stack
public void push(int item) {
// if stack is full, allocate a larger stack
if (tos==stck.length-1) {
int temp[] = new int[stck.length * 2]; // double size
for(int i=0; i<stck.length; i++) temp[i] = stck[i];

241

-
X
m
e~
2
>
2
[
(=
>
@
m

242 Java™ 2: The Complete Reference

stck = temp;

stck[++tos] = item;
}
else

stck[++tos] = item;

// Pop an item from the stack
public int pop() {
if(tos < 0) {
System.out.println("Stack underflow.");
return 0;
}
else
return stck[tos--];

class IFTest2 {
public static void main(String args[]) {
DynStack mystackl = new DynStack(5);
DynStack mystack2 = new DynStack(8);

// these loops cause each stack to grow
for(int i=0; i<12; i++) mystackl.push(i);
for(int i=0; i<20; i++) mystack2.push(i);

System.out.println("Stack in mystackl:");
for(int i=0; i<12; i++)
System.out.println(mystackl.pop());

System.out.println("Stack in mystack2:");
for(int i=0; i<20; i++)
System.out.println(mystack2.pop());

The following class uses both the FixedStack and DynStack implementations.
It does so through an interface reference. This means that calls to push() and pop()
are resolved at run time rather than at compile time.

Chapter 9: Packages and Interfaces 243

/* Create an interface variable and

access stacks through it.
*/
class IFTest3 {

public static void main(String args[]) {
IntStack mystack; // create an interface reference variable
DynStack ds = new DynStack(5);
FixedStack fs = new FixedStack(8);

-
==
m
;
<
>
Z
[2)
(=
>
D
m

mystack = ds; // load dynamic stack
// push some numbers onto the stack
for(int i=0; i<12; i++) mystack.push(i);

mystack = fs; // load fixed stack
for(int i=0; i<8; i++) mystack.push(i);

mystack = ds;

System.out.println("Values in dynamic stack:");

for(int i=0; i<12; i++)
System.out.println(mystack.pop());

mystack = fs;

System.out.println("Values in fixed stack:");

for(int i=0; i<8; i++)
System.out.println(mystack.pop());

In this program, mystack is a reference to the IntStack interface. Thus, when it refers to
ds, it uses the versions of push() and pop() defined by the DynStack implementation.
When it refers to fs, it uses the versions of push() and pop() defined by FixedStack.
As explained, these determinations are made at run time. Accessing multiple
implementations of an interface through an interface reference variable is the most
powerful way that Java achieves run-time polymorphism.

Variables in Interfaces

You can use interfaces to import shared constants into multiple classes by simply
declaring an interface that contains variables which are initialized to the desired
values. When you include that interface in a class (that is, when you “implement” the
interface), all of those variable names will be in scope as constants. This is similar to
using a header file in C/C++ to create a large number of #defined constants or const
declarations. If an interface contains no methods, then any class that includes such an
interface doesn’t actually implement anything. It is as if that class were importing the

244 Java™ 2: The Complete Reference

constant variables into the class name space as final variables. The next example uses
this technique to implement an automated “decision maker”:

import java.util.Random;

interface SharedConstants {
int NO = 0;
int YES = 1;
int MAYBE = 2;
int LATER = 3;
int SOON = 4;
int NEVER = 5;

class Question implements SharedConstants {
Random rand = new Random();
int ask() {
int prob = (int) (100 * rand.nextDouble());
if (prob < 30)

return NO; // 30%
else if (prob < 60)

return YES; // 30%
else if (prob < 75)

return LATER; // 15%
else if (prob < 98)

return SOON; // 13%
else

return NEVER; // 2%

class AskMe implements SharedConstants {
static void answer(int result) {
switch(result) {

case NO:
System.out.println("No");
break;

case YES:
System.out.println("Yes");

Chapter 9: Packages and Interfaces

break;

case MAYBE:
System.out.println("Maybe");
break;

case LATER:
System.out.println("Later");
break;

case SOON:
System.out.println("Soon");
break;

case NEVER:
System.out.println("Never");
break;

public static void main(String args[]) {
Question g = new Question();
answer (g.ask());
answer (qg.ask());
answer (qg.ask());
answer (g.ask());

Notice that this program makes use of one of Java’s standard classes: Random. This
class provides pseudorandom numbers. It contains several methods which allow you
to obtain random numbers in the form required by your program. In this example, the
method nextDouble() is used. It returns random numbers in the range 0.0 to 1.0.

In this sample program, the two classes, Question and AskMe, both implement the
SharedConstants interface where NO, YES, MAYBE, SOON, LATER, and NEVER are
defined. Inside each class, the code refers to these constants as if each class had defined
or inherited them directly. Here is the output of a sample run of this program. Note
that the results are different each time it is run.

Later
Soon
No
Yes

245

-
X
m
e~
2
>
2
[
(=
>
@
m

246 Java™ 2: The Complete Reference

Interfaces Can Be Extended

One interface can inherit another by use of the keyword extends. The syntax is the
same as for inheriting classes. When a class implements an interface that inherits
another interface, it must provide implementations for all methods defined within
the interface inheritance chain. Following is an example:

// One interface can extend another.
interface A {

void methl();

void meth2();

// B now includes methl() and meth2() -- it adds meth3().
interface B extends A {
void meth3();

// This class must implement all of A and B
class MyClass implements B {
public void methl() {
System.out.println("Implement methl().");

public void meth2() {
System.out.println("Implement meth2().");

public void meth3() {
System.out.println("Implement meth3().");

class IFExtend {
public static void main(String arg[]) {
MyClass ob = new MyClass();

Chapter 9: Packages and Interfaces 247

ob.methl();
ob.meth2();
ob.meth3();
}
}

-
==
m
e~
2
>
Z
[2)
(=
>
(2]
m

As an experiment you might want to try removing the implementation for meth1()
in MyClass. This will cause a compile-time error. As stated earlier, any class that
implements an interface must implement all methods defined by that interface,
including any that are inherited from other interfaces.

Although the examples we’ve included in this book do not make frequent use of
packages or interfaces, both of these tools are an important part of the Java programming
environment. Virtually all real programs and applets that you write in Java will be
contained within packages. A number will probably implement interfaces as well.

It is important, therefore, that you be comfortable with their usage.

This page intentionally left blank.

gl
Chapter 10

Exception Handling

250

Java™ 2: The Complete Reference

abnormal condition that arises in a code sequence at run time. In other words,

an exception is a run-time error. In computer languages that do not support
exception handling, errors must be checked and handled manually—typically through
the use of error codes, and so on. This approach is as cumbersome as it is troublesome.
Java’s exception handling avoids these problems and, in the process, brings run-time
error management into the object-oriented world.

For the most part, exception handling has not changed since the original version

of Java. However, Java 2, version 1.4 has added a new subsystem called the chained
exception facility. This feature is described near the end of this chapter.

This chapter examines Java’s exception-handling mechanism. An exception is an

__ | Exception-Handling Fundamentals

A Java exception is an object that describes an exceptional (that is, error) condition
that has occurred in a piece of code. When an exceptional condition arises, an object
representing that exception is created and thrown in the method that caused the error.
That method may choose to handle the exception itself, or pass it on. Either way, at
some point, the exception is caught and processed. Exceptions can be generated by the
Java run-time system, or they can be manually generated by your code. Exceptions
thrown by Java relate to fundamental errors that violate the rules of the Java language
or the constraints of the Java execution environment. Manually generated exceptions
are typically used to report some error condition to the caller of a method.

Java exception handling is managed via five keywords: try, catch, throw, throws,
and finally. Briefly, here is how they work. Program statements that you want to
monitor for exceptions are contained within a try block. If an exception occurs within
the try block, it is thrown. Your code can catch this exception (using catch) and handle
it in some rational manner. System-generated exceptions are automatically thrown by
the Java run-time system. To manually throw an exception, use the keyword throw.
Any exception that is thrown out of a method must be specified as such by a throws
clause. Any code that absolutely must be executed before a method returns is put in
a finally block.

This is the general form of an exception-handling block:

try {
/ / block of code to monitor for errors

}

catch (ExceptionTypel exOb) {

/ / exception handler for ExceptionTypel
}
catch (ExceptionType2 exODb) {

// exception handler for ExceptionType2
}
// ..

Chapter 10: Exception Handling 251

finally {
/ / block of code to be executed before try block ends
}

Here, ExceptionType is the type of exception that has occurred. The remainder of this
chapter describes how to apply this framework.

-
==
m
;
<
>
Z
(]
(=
>
(2]
m

| Exception Types

All exception types are subclasses of the built-in class Throwable. Thus, Throwable

is at the top of the exception class hierarchy. Inmediately below Throwable are two
subclasses that partition exceptions into two distinct branches. One branch is headed
by Exception. This class is used for exceptional conditions that user programs should
catch. This is also the class that you will subclass to create your own custom exception
types. There is an important subclass of Exception, called RuntimeException.
Exceptions of this type are automatically defined for the programs that you write

and include things such as division by zero and invalid array indexing.

The other branch is topped by Error, which defines exceptions that are not expected
to be caught under normal circumstances by your program. Exceptions of type Error
are used by the Java run-time system to indicate errors having to do with the run-time
environment, itself. Stack overflow is an example of such an error. This chapter will
not be dealing with exceptions of type Error, because these are typically created in
response to catastrophic failures that cannot usually be handled by your program.

__ | Uncaught Exceptions

Before you learn how to handle exceptions in your program, it is useful to see what
happens when you don’t handle them. This small program includes an expression that
intentionally causes a divide-by-zero error.

class Exc0 {
public static void main(String args[]) {
int d = 0;
int a = 42 / d;
}
}

When the Java run-time system detects the attempt to divide by zero, it constructs a
new exception object and then throws this exception. This causes the execution of Exc0
to stop, because once an exception has been thrown, it must be caught by an exception
handler and dealt with immediately. In this example, we haven’t supplied any exception
handlers of our own, so the exception is caught by the default handler provided by the

252

Java™ 2: The Complete Reference

Java run-time system. Any exception that is not caught by your program will ultimately
be processed by the default handler. The default handler displays a string describing
the exception, prints a stack trace from the point at which the exception occurred, and
terminates the program.

Here is the output generated when this example is executed.

java.lang.ArithmeticException: / by zero
at Exc0O.main(Exc0.java:4)

Notice how the class name, Exc0; the method name, main; the filename, Exc0.java;
and the line number, 4, are all included in the simple stack trace. Also, notice that the
type of the exception thrown is a subclass of Exception called ArithmeticException,
which more specifically describes what type of error happened. As discussed later in
this chapter, Java supplies several built-in exception types that match the various sorts
of run-time errors that can be generated.

The stack trace will always show the sequence of method invocations that led up to
the error. For example, here is another version of the preceding program that introduces
the same error but in a method separate from main():

class Excl {
static void subroutine() {
int d = 0;
int a = 10 / d;
}
public static void main(String args[]) {
Excl.subroutine();

}

The resulting stack trace from the default exception handler shows how the entire
call stack is displayed:

java.lang.ArithmeticException: / by zero
at Excl.subroutine(Excl.java:4)
at Excl.main(Excl.java:7)

As you can see, the bottom of the stack is main’s line 7, which is the call to
subroutine(), which caused the exception at line 4. The call stack is quite useful for
debugging, because it pinpoints the precise sequence of steps that led to the error.

Chapter 10: Exception Handling 253

__ | Using try and catch

Although the default exception handler provided by the Java run-time system is useful
for debugging, you will usually want to handle an exception yourself. Doing so
provides two benefits. First, it allows you to fix the error. Second, it prevents the
program from automatically terminating. Most users would be confused (to say the
least) if your program stopped running and printed a stack trace whenever an error
occurred! Fortunately, it is quite easy to prevent this.

To guard against and handle a run-time error, simply enclose the code that you
want to monitor inside a try block. Immediately following the try block, include a catch
clause that specifies the exception type that you wish to catch. To illustrate how easily
this can be done, the following program includes a try block and a catch clause which
processes the ArithmeticException generated by the division-by-zero error:

-
==
m
;
<
>
Z
[2)
(=
>
D
m

class Exc2 {
public static void main(String args[]) {
int d, a;
try { // monitor a block of code.
d = 0;
a =42 / 4d;
System.out.println("This will not be printed.");
} catch (ArithmeticException e) { // catch divide-by-zero error
System.out.println("Division by zero.");

}

System.out.println("After catch statement.");

This program generates the following output:

Division by zero.
After catch statement.

Notice that the call to println() inside the try block is never executed. Once an
exception is thrown, program control transfers out of the try block into the catch block.
Put differently, catch is not “called,” so execution never “returns” to the try block from
a catch. Thus, the line “This will not be printed.” is not displayed. Once the catch
statement has executed, program control continues with the next line in the program
following the entire try/catch mechanism.

254

Java™ 2: The Complete Reference

A try and its catch statement form a unit. The scope of the catch clause is restricted
to those statements specified by the immediately preceding try statement. A catch
statement cannot catch an exception thrown by another try statement (except in the
case of nested try statements, described shortly). The statements that are protected by
try must be surrounded by curly braces. (That is, they must be within a block.) You
cannot use try on a single statement.

The goal of most well-constructed catch clauses should be to resolve the
exceptional condition and then continue on as if the error had never happened.

For example, in the next program each iteration of the for loop obtains two random
integers. Those two integers are divided by each other, and the result is used to divide
the value 12345. The final result is put into a. If either division operation causes a
divide-by-zero error, it is caught, the value of a is set to zero, and the program
continues.

// Handle an exception and move on.
import java.util.Random;

class HandleError {
public static void main(String args[]) {
int a=0, b=0, c=0;
Random r = new Random();

for(int i=0; i<32000; i++) {
try {
b = r.nextInt();
= r.nextInt();
a = 12345 / (b/c);
} catch (ArithmeticException e) {
System.out.println("Division by zero.");
a = 0; // set a to zero and continue
}

System.out.println("a: " + a);

Q
[

Displaying a Description of an Exception

Throwable overrides the toString() method (defined by Object) so that it returns a
string containing a description of the exception. You can display this description in a
println() statement by simply passing the exception as an argument. For example, the
catch block in the preceding program can be rewritten like this:

Chapter 10: Exception Handling 255

catch (ArithmeticException e) {
System.out.println("Exception: " + e);
a = 0; // set a to zero and continue

When this version is substituted in the program, and the program is run, each
divide-by-zero error displays the following message:

-
X
m
e~
2
>
2
[
(=
>
[2)
m

Exception: java.lang.ArithmeticException: / by zero

While it is of no particular value in this context, the ability to display a description
of an exception is valuable in other circumstances—particularly when you are
experimenting with exceptions or when you are debugging.

Multiple catch Clauses

In some cases, more than one exception could be raised by a single piece of code. To
handle this type of situation, you can specify two or more catch clauses, each catching
a different type of exception. When an exception is thrown, each catch statement is
inspected in order, and the first one whose type matches that of the exception is
executed. After one catch statement executes, the others are bypassed, and execution
continues after the try/catch block. The following example traps two different
exception types:

// Demonstrate multiple catch statements.
class MultiCatch {
public static void main(String args[]) {

try {
int a = args.length;
System.out.println("a = " + a);

int b = 42 / a;
int c[] = { 1 };
c[42] = 99;

} catch(ArithmeticException e) {
System.out.println("Divide by 0: " + e);

} catch(ArrayIndexOutOfBoundsException e) {
System.out.println("Array index oob: " + e);

}
System.out.println("After try/catch blocks.");

256

Java™ 2: The Complete Reference

This program will cause a division-by-zero exception if it is started with no command-
line parameters, since a will equal zero. It will survive the division if you provide a
command-line argument, setting a to something larger than zero. But it will cause an
ArrayIndexOutOfBoundsException, since the int array c has a length of 1, yet the
program attempts to assign a value to c[42].

Here is the output generated by running it both ways:

C:\>java MulticCatch

a=20

Divide by 0: java.lang.ArithmeticException: / by zero
After try/catch blocks.

C:\>java MultiCatch TestArg

a=1

Array index oob: java.lang.ArrayIndexOutOfBoundsException
After try/catch blocks.

When you use multiple catch statements, it is important to remember that
exception subclasses must come before any of their superclasses. This is because a
catch statement that uses a superclass will catch exceptions of that type plus any of
its subclasses. Thus, a subclass would never be reached if it came after its superclass.
Further, in Java, unreachable code is an error. For example, consider the following
program:

/* This program contains an error.

A subclass must come before its superclass in
a series of catch statements. If not,
unreachable code will be created and a
compile-time error will result.
*/
class SuperSubCatch {
public static void main(String args[]) {
try {
int a = 0;
int b = 42 / a;
} catch(Exception e) {
System.out.println("Generic Exception catch.");
}
/* This catch is never reached because
ArithmeticException is a subclass of Exception. */
catch(ArithmeticException e) { // ERROR - unreachable
System.out.println("This is never reached.");

Chapter 10: Exception Handling 257

If you try to compile this program, you will receive an error message stating that
the second catch statement is unreachable because the exception has already been
caught. Since ArithmeticException is a subclass of Exception, the first catch statement
will handle all Exception-based errors, including ArithmeticException. This means
that the second catch statement will never execute. To fix the problem, reverse the
order of the catch statements.

-
==
m
e~
2
>
Z
[2)
(=
>
D
m

| Nested try Statements

The try statement can be nested. That is, a try statement can be inside the block of
another try. Each time a try statement is entered, the context of that exception is
pushed on the stack. If an inner try statement does not have a catch handler for a
particular exception, the stack is unwound and the next try statement’s catch handlers
are inspected for a match. This continues until one of the catch statements succeeds, or
until all of the nested try statements are exhausted. If no catch statement matches, then
the Java run-time system will handle the exception. Here is an example that uses
nested try statements:

// An example of nested try statements.
class NestTry {
public static void main(String args[]) {

try {
int a = args.length;

/* If no command-line args are present,
the following statement will generate
a divide-by-zero exception. */

int b = 42 / a;

System.out.println("a = " + a);

try { // nested try block
/* If one command-line arg is used,
then a divide-by-zero exception
will be generated by the following code. */
if(a==1) a = a/(a-a); // division by =zero

258

Java™ 2: The Complete Reference

/* If two command-line args are used,
then generate an out-of-bounds exception. */

if(a==2) {
int c[] = { 1 };
c[42] = 99; // generate an out-of-bounds exception
}
} catch(ArrayIndexOutOfBoundsException e) {
System.out.println("Array index out-of-bounds: " + e);
}
} catch(ArithmeticException e) {
System.out.println("Divide by 0: " + e);
}

As you can see, this program nests one try block within another. The program
works as follows. When you execute the program with no command-line arguments, a
divide-by-zero exception is generated by the outer try block. Execution of the program
by one command-line argument generates a divide-by-zero exception from within the
nested try block. Since the inner block does not catch this exception, it is passed on
to the outer try block, where it is handled. If you execute the program with two
command-line arguments, an array boundary exception is generated from within
the inner try block. Here are sample runs that illustrate each case:

C:\>java NestTry
Divide by 0: java.lang.ArithmeticException: / by zero

C:\>java NestTry One
a=1
Divide by 0: java.lang.ArithmeticException: / by zero

C:\>java NestTry One Two

a =2

Array index out-of-bounds:
java.lang.ArrayIndexOutOfBoundsException

Nesting of try statements can occur in less obvious ways when method calls are
involved. For example, you can enclose a call to a method within a try block. Inside
that method is another try statement. In this case, the try within the method is still
nested inside the outer try block, which calls the method. Here is the previous program
recoded so that the nested try block is moved inside the method nesttry():

Chapter 10: Exception Handling

/* Try statements can be implicitly nested via
calls to methods. */
class MethNestTry {
static void nesttry(int a) {
try { // nested try block
/* If one command-line arg is used,
then a divide-by-zero exception
will be generated by the following code. */
if(a==1) a = a/(a-a); // division by zero

/* If two command-line args are used,
then generate an out-of-bounds exception. */

if(a==2) {

int c[] = { 1 };

c[42] = 99; // generate an out-of-bounds exception
}

} catch(ArrayIndexOutOfBoundsException e) {
System.out.println("Array index out-of-bounds: " + e);

public static void main(String args[]) {

try {
int a = args.length;

/* If no command-line args are present,
the following statement will generate
a divide-by-zero exception. */

int b = 42 / a;

System.out.println("a = " + a);

nesttry(a);

} catch(ArithmeticException e) {
System.out.println("Divide by 0: " + e);

The output of this program is identical to that of the preceding example.

259

-
I
m
e~
2
>
2
[
[=
>
[2)
m

260

Java™ 2: The Complete Reference

throw

So far, you have only been catching exceptions that are thrown by the Java run-time
system. However, it is possible for your program to throw an exception explicitly,
using the throw statement. The general form of throw is shown here:

throw Throwablelnstance;

Here, Throwablelnstance must be an object of type Throwable or a subclass of
Throwable. Simple types, such as int or char, as well as non-Throwable classes, such
as String and Object, cannot be used as exceptions. There are two ways you can obtain
a Throwable object: using a parameter into a catch clause, or creating one with the new
operator.

The flow of execution stops immediately after the throw statement; any subsequent
statements are not executed. The nearest enclosing try block is inspected to see if it has
a catch statement that matches the type of the exception. If it does find a match, control
is transferred to that statement. If not, then the next enclosing try statement is
inspected, and so on. If no matching catch is found, then the default exception handler
halts the program and prints the stack trace.

Here is a sample program that creates and throws an exception. The handler that
catches the exception rethrows it to the outer handler.

// Demonstrate throw.
class ThrowDemo {
static void demoproc() {
try {
throw new NullPointerException("demo");
} catch(NullPointerException e) {
System.out.println("Caught inside demoproc.");
throw e; // rethrow the exception

public static void main(String args[]) {
try {
demoproc () ;
} catch(NullPointerException e) {
System.out.println("Recaught: " + e);

Chapter 10: Exception Handling

This program gets two chances to deal with the same error. First, main() sets up an
exception context and then calls demoproc(). The demoproc() method then sets up
another exception-handling context and immediately throws a new instance of
NullPointerException, which is caught on the next line. The exception is then
rethrown. Here is the resulting output:

Caught inside demoproc.
Recaught: java.lang.NullPointerException: demo

The program also illustrates how to create one of Java’s standard exception objects.
Pay close attention to this line:

I throw new NullPointerException('"demo");

Here, new is used to construct an instance of NullPointerException. All of Java’s
built-in run-time exceptions have at least two constructors: one with no parameter
and one that takes a string parameter. When the second form is used, the argument
specifies a string that describes the exception. This string is displayed when the object
is used as an argument to print() or println(). It can also be obtained by a call to
getMessage(), which is defined by Throwable.

throws

If a method is capable of causing an exception that it does not handle, it must specify
this behavior so that callers of the method can guard themselves against that exception.
You do this by including a throws clause in the method’s declaration. A throws clause
lists the types of exceptions that a method might throw. This is necessary for all
exceptions, except those of type Error or RuntimeException, or any of their subclasses.
All other exceptions that a method can throw must be declared in the throws clause. If
they are not, a compile-time error will result.

This is the general form of a method declaration that includes a throws clause:

type method-name(parameter-list) throws exception-list

{
// body of method

}

Here, exception-list is a comma-separated list of the exceptions that a method can throw.

261

-
==
m
;
<
>
Z
[2)
(=
>
D
m

262 Java™ 2: The Complete Reference

Following is an example of an incorrect program that tries to throw an exception
that it does not catch. Because the program does not specify a throws clause to declare
this fact, the program will not compile.

// This program contains an error and will not compile.
class ThrowsDemo {
static void throwOne() {
System.out.println("Inside throwOne.");
throw new IllegalAccessException("demo");
}
public static void main(String args[]) {
throwOne();

To make this example compile, you need to make two changes. First, you need to
declare that throwOne() throws IllegalAccessException. Second, main() must define
a try/catch statement that catches this exception.

The corrected example is shown here:

// This is now correct.
class ThrowsDemo {
static void throwOne() throws IllegalAccessException {
System.out.println("Inside throwOne.");
throw new IllegalAccessException("demo");

}
public static void main(String args[]) {
try {
throwOne();
} catch (IllegalAccessException e) {
System.out.println("Caught " + e);
}
}

Here is the output generated by running this example program:

inside throwOne
caught java.lang.IllegalAccessException: demo

Chapter 10: Exception Handling 263

__ | finally

When exceptions are thrown, execution in a method takes a rather abrupt, nonlinear
path that alters the normal flow through the method. Depending upon how the
method is coded, it is even possible for an exception to cause the method to return
prematurely. This could be a problem in some methods. For example, if a method
opens a file upon entry and closes it upon exit, then you will not want the code that
closes the file to be bypassed by the exception-handling mechanism. The finally
keyword is designed to address this contingency.

finally creates a block of code that will be executed after a try/catch block has
completed and before the code following the try/catch block. The finally block will
execute whether or not an exception is thrown. If an exception is thrown, the finally
block will execute even if no catch statement matches the exception. Any time a
method is about to return to the caller from inside a try/catch block, via an uncaught
exception or an explicit return statement, the finally clause is also executed just before
the method returns. This can be useful for closing file handles and freeing up any other
resources that might have been allocated at the beginning of a method with the intent
of disposing of them before returning. The finally clause is optional. However, each try
statement requires at least one catch or a finally clause.

Here is an example program that shows three methods that exit in various ways,
none without executing their finally clauses:

-
I
m
;
<
>
2
[
[=
>
D
m

// Demonstrate finally.
class FinallyDemo {
// Through an exception out of the method.
static void procA() {
try {
System.out.println("inside procA");
throw new RuntimeException("demo");
} finally {
System.out.println("procA's finally");

}

// Return from within a try block.
static void procB() {
try {
System.out.println("inside procB");
return;
} finally {

264 Java™ 2: The Complete Reference

System.out.println("procB's finally");

}
// Execute a try block normally.
static void procC() {
try {
System.out.println("inside procC");
} finally {
System.out.println("procC's finally");

public static void main(String args[]) {
try {
procA();
} catch (Exception e) {
System.out.println("Exception caught");
}
procB();
procC();

In this example, procA() prematurely breaks out of the try by throwing an
exception. The finally clause is executed on the way out. procB()’s try statement is
exited via a return statement. The finally clause is executed before procB() returns. In
procC(), the try statement executes normally, without error. However, the finally
block is still executed.

| If a finally block is associated with a try, the finally block will be executed upon
emtall| conclusion of the try.

Here is the output generated by the preceding program:

inside procA
procA’s finally
Exception caught
inside procB
procB’'s finally
inside procC
procC’s finally

Chapter 10: Exception Handling 265

__| Java’s Built-in Exceptions

Inside the standard package java.lang, Java defines several exception classes. A few
have been used by the preceding examples. The most general of these exceptions

are subclasses of the standard type RuntimeException. Since java.lang is implicitly
imported into all Java programs, most exceptions derived from RuntimeException
are automatically available. Furthermore, they need not be included in any method’s
throws list. In the language of Java, these are called unchecked exceptions because the
compiler does not check to see if a method handles or throws these exceptions. The
unchecked exceptions defined in java.lang are listed in Table 10-1. Table 10-2 lists those
exceptions defined by java.lang that must be included in a method’s throws list if that
method can generate one of these exceptions and does not handle it itself. These are
called checked exceptions. Java defines several other types of exceptions that relate to its
various class libraries.

Exception Meaning
ArithmeticException Arithmetic error, such as
divide-by-zero.
ArrayIndexOutOfBoundsException Array index is out-of-bounds.
ArrayStoreException Assignment to an array element of an
incompatible type.
ClassCastException Invalid cast.
Illegal ArgumentException Illegal argument used to invoke a
method.
IllegalMonitorStateException Illegal monitor operation, such as
waiting on an unlocked thread.
IllegalStateException Environment or application is in
incorrect state.
IllegalThreadStateException Requested operation not compatible
with current thread state.
IndexOutOfBoundsException Some type of index is out-of-bounds.
NegativeArraySizeException Array created with a negative size.

Table 10-1. Java’'s Unchecked RuntimeException Subclasses

266

Java™ 2: The Complete Reference

Exception

NullPointerException

NumberFormatException

SecurityException

StringIndexOutOfBounds

UnsupportedOperationException

Meaning

Invalid use of a null reference.

Invalid conversion of a string to a
numeric format.

Attempt to violate security.

Attempt to index outside the bounds of
a string.

An unsupported operation was
encountered.

Table 10-1.

Java’s Unchecked RuntimeException Subclasses (continued)

Exception

ClassNotFoundException
CloneNotSupportedException

Illegal AccessException

InstantiationException
InterruptedException

NoSuchFieldException
NoSuchMethodException

Meaning

Class not found.

Attempt to clone an object that does not
implement the Cloneable interface.

Access to a class is denied.

Attempt to create an object of an
abstract class or interface.

One thread has been interrupted by
another thread.

A requested field does not exist.

A requested method does not exist.

Table 10-2.

Java’s Checked Exceptions Defined in java.lang

Chapter 10: Exception Handling 267

___| creating Your Own Exception Subclasses

Although Java’s built-in exceptions handle most common errors, you will probably want
to create your own exception types to handle situations specific to your applications.
This is quite easy to do: just define a subclass of Exception (which is, of course, a subclass
of Throwable). Your subclasses don’t need to actually implement anything—it is their
existence in the type system that allows you to use them as exceptions.

The Exception class does not define any methods of its own. It does, of course,
inherit those methods provided by Throwable. Thus, all exceptions, including those
that you create, have the methods defined by Throwable available to them. They are
shown in Table 10-3. Notice that several methods were added by Java 2, version 1.4.
You may also wish to override one or more of these methods in exception classes that
you create.

Method Description

Throwable filllnStackTrace() Returns a Throwable object that contains
a completed stack trace. This object can be
rethrown.

Throwable getCause() Returns the exception that underlies the
current exception. If there is no underlying
exception, null is returned. Added by Java 2,
version 1.4.

String getLocalizedMessage() Returns a localized description of the
exception.

String getMessage() Returns a description of the exception.

StackTraceElement| | getStackTrace() Returns an array that contains the stack
trace, one element at a time as an array of
StackTraceElement. The method at the top
of the stack is the last method called before
the exception was thrown. This method
is found in the first element of the array.
The StackTraceElement class gives your
program access to information about each
element in the trace, such as its method
name. Added by Java 2, version 1.4

Throwable initCause(Throwable Associates causeExc with the invoking
causeExc) exception as a cause of the invoking exception.
Returns a reference to the exception. Added
by Java 2, version 1.4

Table 10-3. The Methods Defined by Throwable

268

Java™ 2: The Complete Reference

Method Description
void printStackTrace() Displays the stack trace.
void printStackTrace(PrintStream Sends the stack trace to the specified stream.
stream)
void printStackTrace(PrintWriter Sends the stack trace to the specified stream.
stream)
void setStackTrace(StackTraceElement Sets the stack trace to the elements passed
elements|) in elements. This method is for specialized
applications, not normal use. Added by Java 2,
version 1.4
String toString() Returns a String object containing a

description of the exception. This method
is called by println() when outputting a
Throwable object.

Table 10-3. The Methods Defined by Throwable (continued)

The following example declares a new subclass of Exception and then uses that
subclass to signal an error condition in a method. It overrides the toString() method,
allowing the description of the exception to be displayed using printIn().

// This program creates a custom exception type.
class MyException extends Exception {
private int detail;

MyException(int a) {
detail = a;

public String toString() {
return "MyException[" + detail + "]1";

class ExceptionDemo {
static void compute(int a) throws MyException {
System.out.println("Called compute(" + a + ")");

Chapter 10: Exception Handling 269

if(a > 10)
throw new MyException(a);
System.out.println("Normal exit");

}

public static void main(String args[]) {
try {
compute(1l);
compute(20);
} catch (MyException e) {
System.out.println("Caught " + e);
}

-
==
m
;
<
>
Z
(]
(=
>
(2]
m

This example defines a subclass of Exception called MyException. This subclass
is quite simple: it has only a constructor plus an overloaded toString() method that
displays the value of the exception. The ExceptionDemo class defines a method
named compute() that throws a MyException object. The exception is thrown when
compute()’s integer parameter is greater than 10. The main() method sets up an
exception handler for MyException, then calls compute() with a legal value (less
than 10) and an illegal one to show both paths through the code. Here is the result:

Called compute(1l)
Normal exit

Called compute(20)
Caught MyException[20]

Chained Exceptions

Java 2, version 1.4 added a new feature to the exception subsystem: chained exceptions.
The chained exception feature allows you to associate another exception with an exception.
This second exception describes the cause of the first exception. For example, imagine a
situation in which a method throws an ArithmeticException because of an attempt to
divide by zero. However, the actual cause of the problem was that an I/O error occurred,
which caused the divisor to be set improperly. Although the method must certainly throw
an ArithmeticException, since that is the error that occurred, you might also want to let
the calling code know that the underlying cause was an I/O error. Chained exceptions
let you handle this, and any other situation in which layers of exceptions exist.

To allow chained exceptions, Java 2, version 1.4 added two constructors and two
methods to Throwable. The constructors are shown here.

Throwable(Throwable causeExc)
Throwable(String msg, Throwable causeExc)

270

Java™ 2: The Complete Reference

In the first form, causeExc is the exception that causes the current exception. That is,
causeExc is the underlying reason that an exception occurred. The second form allows
you to specify a description at the same time that you specify a cause exception. These
two constructors have also been added to the Error, Exception, and RuntimeException
classes.

The chained exception methods added to Throwable are getCause() and initCause().
These methods are shown in Table 10-3, and are repeated here for the sake of discussion.

Throwable getCause()
Throwable initCause(Throwable causeExc)

The getCause() method returns the exception that underlies the current exception.
If there is no underlying exception, null is returned. The initCause() method associates
causeExc with the invoking exception and returns a reference to the exception. Thus, you
can associate a cause with an exception after the exception has been created. However, the
cause exception can be set only once. Thus, you can call initCause() only once for each
exception object. Furthermore, if the cause exception was set by a constructor, then you
can’t set it again using initCause().

In general, initCause() is used to set a cause for legacy exception classes which
don’t support the two additional constructors described earlier. At the time of this
writing, most of Java’s built-in exceptions, such as ArithmeticException, do not define
the additional constructors. Thus, you will use initCause() if you need to add an
exception chain to these exceptions. When creating your own exception classes you
will want to add the two chained-exception constructors if you will be using your
exceptions in situations in which layered exceptions are possible.

Here is an example that illustrates the mechanics of handling chained exceptions.

// Demonstrate exception chaining.
class ChainExcDemo {
static void demoproc() {
// create an exception
NullPointerException e =
new NullPointerException("top layer");

// add a cause
e.initCause(new ArithmeticException("cause"));

throw e;

public static void main(String args[]) {

try {
demoproc () ;

Chapter 10: Exception Handling 271

} catch(NullPointerException e) {
// display top level exception
System.out.println("Caught: " + e);

// display cause exception
System.out.println("Original cause: " +
e.getCause());

-
-
m
;
<
>
Z
[2
[=
>
[2
m

The output from the program is shown here.

Caught: java.lang.NullPointerException: top layer
Original cause: java.lang.ArithmeticException: cause

In this example, the top-level exception is NullPointerException. To it is added
a cause exception, ArithmeticException. When the exception is thrown out of
demoproc(), it is caught by main(). There, the top-level exception is displayed,
followed by the underlying exception, which is obtained by calling getCause().

Chained exceptions can be carried on to whatever depth is necessary. Thus, the
cause exception can, itself, have a cause. Be aware that overly long chains of exceptions
may indicate poor design.

Chained exceptions are not something that every program will need. However, in
cases in which knowledge of an underlying cause is useful, they offer an elegant solution.

Using Exceptions
Exception handling provides a powerful mechanism for controlling complex programs
that have many dynamic run-time characteristics. It is important to think of try, throw,
and catch as clean ways to handle errors and unusual boundary conditions in your
program’s logic. If you are like most programmers, then you probably are used to
returning an error code when a method fails. When you are programming in Java, you
should break this habit. When a method can fail, have it throw an exception. This is a
cleaner way to handle failure modes.

One last point: Java’s exception-handling statements should not be considered a
general mechanism for nonlocal branching. If you do so, it will only confuse your code
and make it hard to maintain.

This page intentionally left blank.

gl
Chapter 11

Multithreaded
Programming

274

Java™ 2: The Complete Reference

multithreaded programming. A multithreaded program contains two or more

parts that can run concurrently. Each part of such a program is called a thread,
and each thread defines a separate path of execution. Thus, multithreading is a
specialized form of multitasking.

You are almost certainly acquainted with multitasking, because it is supported
by virtually all modern operating systems. However, there are two distinct types
of multitasking: process-based and thread-based. It is important to understand the
difference between the two. For most readers, process-based multitasking is the more
familiar form. A process is, in essence, a program that is executing. Thus, process-based
multitasking is the feature that allows your computer to run two or more programs
concurrently. For example, process-based multitasking enables you to run the Java
compiler at the same time that you are using a text editor. In process-based multitasking,
a program is the smallest unit of code that can be dispatched by the scheduler.

In a thread-based multitasking environment, the thread is the smallest unit of
dispatchable code. This means that a single program can perform two or more tasks
simultaneously. For instance, a text editor can format text at the same time that it is
printing, as long as these two actions are being performed by two separate threads.
Thus, process-based multitasking deals with the “big picture,” and thread-based
multitasking handles the details.

Multitasking threads require less overhead than multitasking processes. Processes
are heavyweight tasks that require their own separate address spaces. Interprocess
communication is expensive and limited. Context switching from one process to
another is also costly. Threads, on the other hand, are lightweight. They share the same
address space and cooperatively share the same heavyweight process. Interthread
communication is inexpensive, and context switching from one thread to the next is
low cost. While Java programs make use of process-based multitasking environments,
process-based multitasking is not under the control of Java. However, multithreaded
multitasking is.

Multithreading enables you to write very efficient programs that make maximum
use of the CPU, because idle time can be kept to a minimum. This is especially
important for the interactive, networked environment in which Java operates, because
idle time is common. For example, the transmission rate of data over a network is
much slower than the rate at which the computer can process it. Even local file system
resources are read and written at a much slower pace than they can be processed by the
CPU. And, of course, user input is much slower than the computer. In a traditional,
single-threaded environment, your program has to wait for each of these tasks to finish
before it can proceed to the next one—even though the CPU is sitting idle most of the
time. Multithreading lets you gain access to this idle time and put it to good use.

If you have programmed for operating systems such as Windows 98 or Windows 2000,
then you are already familiar with multithreaded programming. However, the fact that
Java manages threads makes multithreading especially convenient, because many of
the details are handled for you.

Unlike most other computer languages, Java provides built-in support for

Chapter 11: Multithreaded Programming 275

| The Java Thread Model

The Java run-time system depends on threads for many things, and all the class libraries
are designed with multithreading in mind. In fact, Java uses threads to enable the
entire environment to be asynchronous. This helps reduce inefficiency by preventing
the waste of CPU cycles.

The value of a multithreaded environment is best understood in contrast to its
counterpart. Single-threaded systems use an approach called an event loop with polling.
In this model, a single thread of control runs in an infinite loop, polling a single event
queue to decide what to do next. Once this polling mechanism returns with, say, a
signal that a network file is ready to be read, then the event loop dispatches control
to the appropriate event handler. Until this event handler returns, nothing else can
happen in the system. This wastes CPU time. It can also result in one part of a program
dominating the system and preventing any other events from being processed. In
general, in a singled-threaded environment, when a thread blocks (that is, suspends
execution) because it is waiting for some resource, the entire program stops running.

The benefit of Java’s multithreading is that the main loop/polling mechanism is
eliminated. One thread can pause without stopping other parts of your program. For
example, the idle time created when a thread reads data from a network or waits for
user input can be utilized elsewhere. Multithreading allows animation loops to sleep
for a second between each frame without causing the whole system to pause. When a
thread blocks in a Java program, only the single thread that is blocked pauses. All other
threads continue to run.

Threads exist in several states. A thread can be running. It can be ready to run as
soon as it gets CPU time. A running thread can be suspended, which temporarily
suspends its activity. A suspended thread can then be resumed, allowing it to pick up
where it left off. A thread can be blocked when waiting for a resource. At any time, a
thread can be terminated, which halts its execution immediately. Once terminated, a
thread cannot be resumed.

Thread Priorities

Java assigns to each thread a priority that determines how that thread should be
treated with respect to the others. Thread priorities are integers that specify the relative
priority of one thread to another. As an absolute value, a priority is meaningless; a
higher-priority thread doesn’t run any faster than a lower-priority thread if it is the
only thread running. Instead, a thread’s priority is used to decide when to switch from
one running thread to the next. This is called a context switch. The rules that determine
when a context switch takes place are simple:

B A thread can voluntarily relinquish control. This is done by explicitly yielding,
sleeping, or blocking on pending I/O. In this scenario, all other threads are
examined, and the highest-priority thread that is ready to run is given the CPU.

276

Java™ 2: The Complete Reference

W A thread can be preempted by a higher-priority thread. In this case, a lower-priority
thread that does not yield the processor is simply preempted—no matter what
it is doing—by a higher-priority thread. Basically, as soon as a higher-priority
thread wants to run, it does. This is called preemptive multitasking.

In cases where two threads with the same priority are competing for CPU cycles, the
situation is a bit complicated. For operating systems such as Windows 98, threads of
equal priority are time-sliced automatically in round-robin fashion. For other types of
operating systems, threads of equal priority must voluntarily yield control to their peers.
If they don't, the other threads will not run.

| Problems can arise from the differences in the way that operating systems context-switch
i threads of equal priority.

Synchronization

Because multithreading introduces an asynchronous behavior to your programs, there
must be a way for you to enforce synchronicity when you need it. For example, if you
want two threads to communicate and share a complicated data structure, such as a
linked list, you need some way to ensure that they don’t conflict with each other. That
is, you must prevent one thread from writing data while another thread is in the
middle of reading it. For this purpose, Java implements an elegant twist on an age-old
model of interprocess synchronization: the monitor. The monitor is a control mechanism
first defined by C.A.R. Hoare. You can think of a monitor as a very small box that can
hold only one thread. Once a thread enters a monitor, all other threads must wait until
that thread exits the monitor. In this way, a monitor can be used to protect a shared
asset from being manipulated by more than one thread at a time.

Most multithreaded systems expose monitors as objects that your program must
explicitly acquire and manipulate. Java provides a cleaner solution. There is no class
“Monitor”; instead, each object has its own implicit monitor that is automatically entered
when one of the object’s synchronized methods is called. Once a thread is inside a
synchronized method, no other thread can call any other synchronized method on
the same object. This enables you to write very clear and concise multithreaded code,
because synchronization support is built in to the language.

Messaging

After you divide your program into separate threads, you need to define how they will
communicate with each other. When programming with most other languages, you
must depend on the operating system to establish communication between threads.
This, of course, adds overhead. By contrast, Java provides a clean, low-cost way for two
or more threads to talk to each other, via calls to predefined methods that all objects

Chapter 11: Multithreaded Programming 277

have. Java’s messaging system allows a thread to enter a synchronized method on an
object, and then wait there until some other thread explicitly notifies it to come out.

The Thread Class and the Runnable Interface

Java’s multithreading system is built upon the Thread class, its methods, and its
companion interface, Runnable. Thread encapsulates a thread of execution. Since
you can’t directly refer to the ethereal state of a running thread, you will deal with it
through its proxy, the Thread instance that spawned it. To create a new thread, your
program will either extend Thread or implement the Runnable interface.

The Thread class defines several methods that help manage threads. The ones
that will be used in this chapter are shown here:

Method Meaning

getName Obtain a thread’s name.

getPriority Obtain a thread’s priority.

isAlive Determine if a thread is still running.
join Wait for a thread to terminate.

run Entry point for the thread.

sleep Suspend a thread for a period of time.
start Start a thread by calling its run method.

Thus far, all the examples in this book have used a single thread of execution. The
remainder of this chapter explains how to use Thread and Runnable to create and
manage threads, beginning with the one thread that all Java programs have: the
main thread.

___| The Main Thread

When a Java program starts up, one thread begins running immediately. This is
usually called the main thread of your program, because it is the one that is executed
when your program begins. The main thread is important for two reasons:

B Itis the thread from which other “child” threads will be spawned.

B Often it must be the last thread to finish execution because it performs various
shutdown actions.

278

Java™ 2: The Complete Reference

Although the main thread is created automatically when your program is started, it
can be controlled through a Thread object. To do so, you must obtain a reference to it
by calling the method currentThread(), which is a public static member of Thread. Its
general form is shown here:

static Thread currentThread()

This method returns a reference to the thread in which it is called. Once you have a
reference to the main thread, you can control it just like any other thread.
Let’s begin by reviewing the following example:

// Controlling the main Thread.
class CurrentThreadDemo {
public static void main(String args[]) {
Thread t = Thread.currentThread();

System.out.println("Current thread: " + t);

// change the name of the thread
t.setName("My Thread");
System.out.println("After name change: " + t);

try {
for(int n = 5; n > 0; n--) {
System.out.println(n);
Thread.sleep(1000);
}
} catch (InterruptedException e) {
System.out.println("Main thread interrupted");

In this program, a reference to the current thread (the main thread, in this case) is
obtained by calling currentThread(), and this reference is stored in the local variable t.
Next, the program displays information about the thread. The program then calls
setName() to change the internal name of the thread. Information about the thread is
then redisplayed. Next, a loop counts down from five, pausing one second between
each line. The pause is accomplished by the sleep() method. The argument to sleep()
specifies the delay period in milliseconds. Notice the try/catch block around this loop.
The sleep() method in Thread might throw an InterruptedException. This would
happen if some other thread wanted to interrupt this sleeping one. This example just

Chapter 11: Multithreaded Programming 279

prints a message if it gets interrupted. In a real program, you would need to handle

-
this differently. Here is the output generated by this program: m
2
Current thread: Thread[main,5,main] >
After name change: Thread[My Thread,5,main] E
5 (2]
" s
3 m
2
1

Notice the output produced when t is used as an argument to println(). This displays,
in order: the name of the thread, its priority, and the name of its group. By default, the
name of the main thread is main. Its priority is 5, which is the default value, and main
is also the name of the group of threads to which this thread belongs. A thread group is
a data structure that controls the state of a collection of threads as a whole. This process
is managed by the particular run-time environment and is not discussed in detail here.
After the name of the thread is changed, t is again output. This time, the new name of
the thread is displayed.

Let’s look more closely at the methods defined by Thread that are used in the
program. The sleep() method causes the thread from which it is called to suspend
execution for the specified period of milliseconds. Its general form is shown here:

static void sleep(long milliseconds) throws InterruptedException

The number of milliseconds to suspend is specified in milliseconds. This method may
throw an InterruptedException.

The sleep() method has a second form, shown next, which allows you to specify
the period in terms of milliseconds and nanoseconds:

static void sleep(long milliseconds, int nanoseconds) throws InterruptedException

This second form is useful only in environments that allow timing periods as short
as nanoseconds.

As the preceding program shows, you can set the name of a thread by using
setName(). You can obtain the name of a thread by calling getName() (but note
that this procedure is not shown in the program). These methods are members
of the Thread class and are declared like this:

final void setName(String threadName)
final String getName()

Here, threadName specifies the name of the thread.

280 Java™ 2: The Complete Reference

__| creating a Thread

In the most general sense, you create a thread by instantiating an object of type Thread.
Java defines two ways in which this can be accomplished:

B You can implement the Runnable interface.
B You can extend the Thread class, itself.

The following two sections look at each method, in turn.

Implementing Runnable

The easiest way to create a thread is to create a class that implements the Runnable
interface. Runnable abstracts a unit of executable code. You can construct a thread on
any object that implements Runnable. To implement Runnable, a class need only
implement a single method called run(), which is declared like this:

public void run()

Inside run(), you will define the code that constitutes the new thread. It is
important to understand that run() can call other methods, use other classes, and
declare variables, just like the main thread can. The only difference is that run()
establishes the entry point for another, concurrent thread of execution within your
program. This thread will end when run() returns.

After you create a class that implements Runnable, you will instantiate an object of
type Thread from within that class. Thread defines several constructors. The one that
we will use is shown here:

Thread(Runnable threadOb, String threadName)

In this constructor, threadOb is an instance of a class that implements the Runnable
interface. This defines where execution of the thread will begin. The name of the new
thread is specified by threadName.

After the new thread is created, it will not start running until you call its start()
method, which is declared within Thread. In essence, start() executes a call to run().
The start() method is shown here:

void start()

Here is an example that creates a new thread and starts it running:

Chapter 11: Multithreaded Programming 281

// Create a second thread.
class NewThread implements Runnable {
Thread t;

NewThread() {
// Create a new, second thread
t = new Thread(this, "Demo Thread");
System.out.println("Child thread: " + t);
t.start(); // Start the thread

-
==
m
e~
2
>
Z
[2)
(=
>
(2]
m

// This is the entry point for the second thread.
public void run() {

try {
for(int i = 5; 1 > 0; i--) {
System.out.println("Child Thread: " + i);
Thread.sleep(500);
}

} catch (InterruptedException e) {
System.out.println("Child interrupted.");

}
System.out.println("Exiting child thread.");

class ThreadDemo {
public static void main(String args[]) {
new NewThread(); // create a new thread

try {
for(int i = 5; 1 > 0; i--) {
System.out.println("Main Thread: " + 1i);
Thread.sleep(1000);
}
} catch (InterruptedException e) {
System.out.println("Main thread interrupted.");
}

System.out.println("Main thread exiting.");

282 Java™ 2: The Complete Reference

Inside NewThread’s constructor, a new Thread object is created by the following
statement:

I t = new Thread(this, "Demo Thread");

Passing this as the first argument indicates that you want the new thread to call the
run() method on this object. Next, start() is called, which starts the thread of execution
beginning at the run() method. This causes the child thread’s for loop to begin. After
calling start(), NewThread’s constructor returns to main(). When the main thread
resumes, it enters its for loop. Both threads continue running, sharing the CPU, until
their loops finish. The output produced by this program is as follows:

Child thread: Thread[Demo Thread,5,main]
Main Thread: 5

Child Thread: 5
Child Thread: 4

Main Thread: 4

Child Thread: 3
Child Thread: 2

Main Thread: 3

Child Thread: 1
Exiting child thread.
Main Thread: 2

Main Thread: 1

Main thread exiting.

As mentioned earlier, in a multithreaded program, often the main thread must
be the last thread to finish running. In fact, for some older JVMs, if the main thread
finishes before a child thread has completed, then the Java run-time system may
“hang.” The preceding program ensures that the main thread finishes last, because
the main thread sleeps for 1,000 milliseconds between iterations, but the child thread
sleeps for only 500 milliseconds. This causes the child thread to terminate earlier than
the main thread. Shortly, you will see a better way to wait for a thread to finish.

Extending Thread

The second way to create a thread is to create a new class that extends Thread,
and then to create an instance of that class. The extending class must override the
run() method, which is the entry point for the new thread. It must also call start()
to begin execution of the new thread. Here is the preceding program rewritten to
extend Thread:

Chapter 11: Multithreaded Programming 283

// Create a second thread by extending Thread
class NewThread extends Thread {

NewThread() {
// Create a new, second thread
super ("Demo Thread");
System.out.println("Child thread: " + this);
start(); // Start the thread

-
==
m
e~
2
>
Z
[2)
(=
>
(2]
m

// This is the entry point for the second thread.
public void run() {

try {
for(int i = 5; 1 > 0; i--) {
System.out.println("Child Thread: " + i);
Thread.sleep(500);
}

} catch (InterruptedException e) {
System.out.println("Child interrupted.");

}
System.out.println("Exiting child thread.");

class ExtendThread {
public static void main(String args[]) {
new NewThread(); // create a new thread

try {
for(int i = 5; 1 > 0; i--) {
System.out.println("Main Thread: " + 1i);
Thread.sleep(1000);
}
} catch (InterruptedException e) {
System.out.println("Main thread interrupted.");
}

System.out.println("Main thread exiting.");

284 Java™ 2: The Complete Reference

This program generates the same output as the preceding version. As you can see, the
child thread is created by instantiating an object of NewThread, which is derived
from Thread.

Notice the call to super() inside NewThread. This invokes the following form of
the Thread constructor:

public Thread(String threadName)

Here, threadName specifies the name of the thread.

Choosing an Approach

At this point, you might be wondering why Java has two ways to create child threads,
and which approach is better. The answers to these questions turn on the same point.
The Thread class defines several methods that can be overridden by a derived class.
Of these methods, the only one that must be overridden is run(). This is, of course, the
same method required when you implement Runnable. Many Java programmers feel
that classes should be extended only when they are being enhanced or modified in
some way. So, if you will not be overriding any of Thread’s other methods, it is
probably best simply to implement Runnable. This is up to you, of course. However,
throughout the rest of this chapter, we will create threads by using classes that
implement Runnable.

___| creating Multiple Threads

So far, you have been using only two threads: the main thread and one child thread.
However, your program can spawn as many threads as it needs. For example, the
following program creates three child threads:

// Create multiple threads.

class NewThread implements Runnable {
String name; // name of thread
Thread t;

NewThread(String threadname) {
name = threadname;
t = new Thread(this, name);
System.out.println("New thread:
t.start(); // Start the thread
}

"+ t);

// This is the entry point for thread.
public void run() {

Chapter 11: Multithreaded Programming 285

try {
for(int i = 5; 1 > 0; i--) {
System.out.println(name + ": " + 1i);
Thread.sleep(1000);
}
} catch (InterruptedException e) {
System.out.println(name + "Interrupted");

}

System.out.println(name +

n

exiting.");

class MultiThreadDemo {
public static void main(String args[]) {
new NewThread("One"); // start threads
new NewThread("Two");
new NewThread("Three");

try {
// wait for other threads to end
Thread.sleep(10000);

} catch (InterruptedException e) {
System.out.println("Main thread Interrupted");

System.out.println("Main thread exiting.");

The output from this program is shown here:

New thread: Thread[One,5,main]
New thread: Thread[Two,5,main]
New thread: Thread[Three,5,main]
One: 5

Two: 5

Three: 5

One: 4

Two: 4

Three: 4

One: 3

Three: 3

Two: 3

-
I
m
e~
2
>
2
[
[=
>
[2)
m

286 Java™ 2: The Complete Reference

One: 2

Three: 2

Two: 2

One: 1

Three: 1

Two: 1

One exiting.

Two exiting.

Three exiting.

Main thread exiting.

As you can see, once started, all three child threads share the CPU. Notice the call to
sleep(10000) in main(). This causes the main thread to sleep for ten seconds and
ensures that it will finish last.

1 Using isAlive() and join()

As mentioned, often you will want the main thread to finish last. In the preceding
examples, this is accomplished by calling sleep() within main(), with a long enough
delay to ensure that all child threads terminate prior to the main thread. However,
this is hardly a satisfactory solution, and it also raises a larger question: How can one
thread know when another thread has ended? Fortunately, Thread provides a means
by which you can answer this question.

Two ways exist to determine whether a thread has finished. First, you can call
isAlive() on the thread. This method is defined by Thread, and its general form is
shown here:

final boolean isAlive()

The isAlive() method returns true if the thread upon which it is called is still running.
It returns false otherwise.

While isAlive() is occasionally useful, the method that you will more commonly
use to wait for a thread to finish is called join(), shown here:

final void join() throws InterruptedException

This method waits until the thread on which it is called terminates. Its name comes
from the concept of the calling thread waiting until the specified thread joins it.
Additional forms of join() allow you to specify a maximum amount of time that
you want to wait for the specified thread to terminate.

Here is an improved version of the preceding example that uses join() to ensure
that the main thread is the last to stop. It also demonstrates the isAlive() method.

Chapter 11: Multithreaded Programming

// Using join() to wait for threads to finish.
class NewThread implements Runnable {

String name; // name of thread

Thread t;

NewThread(String threadname) {
name = threadname;
t = new Thread(this, name);
System.out.println("New thread: " + t);
t.start(); // Start the thread

// This is the entry point for thread.
public void run() {
try {
for(int i = 5; i > 0; i--) {
System.out.println(name + ": " + 1i);
Thread.sleep(1000);
}
} catch (InterruptedException e) {
System.out.println(name + " interrupted.");

}

System.out.println(name +

exiting.");

class DemoJoin {
public static void main(String args[]) {
NewThread obl = new NewThread("One");
NewThread ob2 = new NewThread("Two");
NewThread ob3 = new NewThread("Three");

System.out.println("Thread One is alive:
+ obl.t.isAlive());
System.out.println("Thread Two is alive:
+ ob2.t.isAlive());
System.out.println("Thread Three is alive:
+ ob3.t.isAlive());
// wait for threads to finish
try {
System.out.println("Waiting for threads to finish.");
obl.t.join();

287

-
I
m
e~
2
>
2
[
[=
>
[2)
m

288 Java™ 2: The Complete Reference

ob2.t.join();
ob3.t.join();

} catch (InterruptedException e) ({
System.out.println("Main thread Interrupted");

System.out.println("Thread One is alive:
+ obl.t.isAlive());

System.out.println("Thread Two is alive:
+ ob2.t.isAlive());

System.out.println("Thread Three is alive:
+ ob3.t.isAlive());

System.out.println("Main thread exiting.");

Sample output from this program is shown here:

New thread: Thread[One,5,main]
New thread: Thread[Two,5,main]
New thread: Thread[Three,5,main]
Thread One is alive: true
Thread Two is alive: true
Thread Three is alive: true
Waiting for threads to finish.
One: 5

Two: 5

Three: 5

One: 4

Two: 4

Three: 4

One: 3

Two: 3

Three: 3

One: 2

Two: 2

Three: 2

One: 1

Two: 1

Three: 1

Chapter 11: Multithreaded Programming 289

Two exiting.

Three exiting.

One exiting.

Thread One is alive: false
Thread Two is alive: false
Thread Three is alive: false
Main thread exiting.

As you can see, after the calls to join() return, the threads have stopped executing.

| Thread Priorities

Thread priorities are used by the thread scheduler to decide when each thread should
be allowed to run. In theory, higher-priority threads get more CPU time than lower-
priority threads. In practice, the amount of CPU time that a thread gets often depends
on several factors besides its priority. (For example, how an operating system implements
multitasking can affect the relative availability of CPU time.) A higher-priority thread
can also preempt a lower-priority one. For instance, when a lower-priority thread is
running and a higher-priority thread resumes (from sleeping or waiting on I/0O, for
example), it will preempt the lower-priority thread.

In theory, threads of equal priority should get equal access to the CPU. But you need
to be careful. Remember, Java is designed to work in a wide range of environments.
Some of those environments implement multitasking fundamentally differently than
others. For safety, threads that share the same priority should yield control once in
a while. This ensures that all threads have a chance to run under a nonpreemptive
operating system. In practice, even in nonpreemptive environments, most threads
still get a chance to run, because most threads inevitably encounter some blocking
situation, such as waiting for I/O. When this happens, the blocked thread is suspended
and other threads can run. But, if you want smooth multithreaded execution, you are
better off not relying on this. Also, some types of tasks are CPU-intensive. Such threads
dominate the CPU. For these types of threads, you want to yield control occasionally,
so that other threads can run.

To set a thread’s priority, use the setPriority() method, which is a member of
Thread. This is its general form:

final void setPriority(int level)

Here, level specifies the new priority setting for the calling thread. The value of level
must be within the range MIN_PRIORITY and MAX_PRIORITY. Currently, these
values are 1 and 10, respectively. To return a thread to default priority, specify
NORM_PRIORITY, which is currently 5. These priorities are defined as final
variables within Thread.

290

Java™ 2: The Complete Reference

You can obtain the current priority setting by calling the getPriority() method of
Thread, shown here:

final int getPriority()

Implementations of Java may have radically different behavior when it comes to
scheduling. The Windows XP/98/NT /2000 version works, more or less, as you would
expect. However, other versions may work quite differently. Most of the inconsistencies
arise when you have threads that are relying on preemptive behavior, instead of
cooperatively giving up CPU time. The safest way to obtain predictable, cross-platform
behavior with Java is to use threads that voluntarily give up control of the CPU.

The following example demonstrates two threads at different priorities, which do
not run on a preemptive platform in the same way as they run on a nonpreemptive
platform. One thread is set two levels above the normal priority, as defined by
Thread.NORM_PRIORITY, and the other is set to two levels below it. The threads
are started and allowed to run for ten seconds. Each thread executes a loop, counting
the number of iterations. After ten seconds, the main thread stops both threads. The
number of times that each thread made it through the loop is then displayed.

// Demonstrate thread priorities.
class clicker implements Runnable {
int click = 0;
Thread t;
private volatile boolean running = true;

public clicker(int p) {
t = new Thread(this);
t.setPriority(p);

}

public void run() {
while (running) {
click++;
}
}

public void stop() {
running = false;

}

public void start() {
t.start();

}

Chapter 11: Multithreaded Programming

class HiLoPri {
public static void main(String args[]) {
Thread.currentThread().setPriority(Thread.MAX PRIORITY);
clicker hi = new clicker(Thread.NORM PRIORITY + 2);
clicker lo = new clicker(Thread.NORM PRIORITY - 2);

lo.start();
hi.start();
try {
Thread.sleep(10000);
} catch (InterruptedException e) {
System.out.println("Main thread interrupted.");

lo.stop();
hi.stop();

// Wait for child threads to terminate.

try {
hi.t.join();
lo.t.join();

} catch (InterruptedException e) {
System.out.println("InterruptedException caught");

System.out.println("Low-priority thread: " + lo.click);
System.out.println("High-priority thread: " + hi.click);

The output of this program, shown as follows when run under Windows 98,
indicates that the threads did context switch, even though neither voluntarily yielded
the CPU nor blocked for I/O. The higher-priority thread got approximately 90 percent
of the CPU time.

Low-priority thread: 4408112
High-priority thread: 589626904

Of course, the exact output produced by this program depends on the speed of your
CPU and the number of other tasks running in the system. When this same program
is run under a nonpreemptive system, different results will be obtained.

One other note about the preceding program. Notice that running is preceded
by the keyword volatile. Although volatile is examined more carefully in the next

291

-
X
m
e~
2
>
2
[
(=
>
@
m

292

Java™ 2: The Complete Reference

chapter, it is used here to ensure that the value of running is examined each time the
following loop iterates:

while (running) {
click++;

Without the use of volatile, Java is free to optimize the loop in such a way that a local
copy of running is created. The use of volatile prevents this optimization, telling Java
that running may change in ways not directly apparent in the immediate code.

Synchronization

When two or more threads need access to a shared resource, they need some way to
ensure that the resource will be used by only one thread at a time. The process by
which this is achieved is called synchronization. As you will see, Java provides unique,
language-level support for it.

Key to synchronization is the concept of the monitor (also called a semaphore). A
monitor is an object that is used as a mutually exclusive lock, or mutex. Only one thread
can own a monitor at a given time. When a thread acquires a lock, it is said to have
entered the monitor. All other threads attempting to enter the locked monitor will be
suspended until the first thread exits the monitor. These other threads are said to
be waiting for the monitor. A thread that owns a monitor can reenter the same monitor
if it so desires.

If you have worked with synchronization when using other languages, such as C or
C++, you know that it can be a bit tricky to use. This is because most languages do not,
themselves, support synchronization. Instead, to synchronize threads, your programs
need to utilize operating system primitives. Fortunately, because Java implements
synchronization through language elements, most of the complexity associated with
synchronization has been eliminated.

You can synchronize your code in either of two ways. Both involve the use of the
synchronized keyword, and both are examined here.

Using Synchronized Methods

Synchronization is easy in Java, because all objects have their own implicit monitor
associated with them. To enter an object’s monitor, just call a method that has been
modified with the synchronized keyword. While a thread is inside a synchronized
method, all other threads that try to call it (or any other synchronized method)
on the same instance have to wait. To exit the monitor and relinquish control of
the object to the next waiting thread, the owner of the monitor simply returns
from the synchronized method.

Chapter 11: Multithreaded Programming

To understand the need for synchronization, let’s begin with a simple example that
does not use it—but should. The following program has three simple classes. The first
one, Callme, has a single method named call(). The call() method takes a String
parameter called msg. This method tries to print the msg string inside of square
brackets. The interesting thing to notice is that after call() prints the opening bracket
and the msg string, it calls Thread.sleep(1000), which pauses the current thread for
one second.

The constructor of the next class, Caller, takes a reference to an instance of the
Callme class and a String, which are stored in target and msg, respectively. The
constructor also creates a new thread that will call this object’s run() method. The
thread is started immediately. The run() method of Caller calls the call() method on
the target instance of Callme, passing in the msg string. Finally, the Synch class starts
by creating a single instance of Callme, and three instances of Caller, each with a unique
message string. The same instance of Callme is passed to each Caller.

// This program is not synchronized.
class Callme {
void call(String msg) {
System.out.print("["
try {
Thread.sleep(1000);
} catch(InterruptedException e) {
System.out.println("Interrupted");

}
System.out.println("1");

+ msqg);

class Caller implements Runnable {
String msg;
Callme target;
Thread t;

public Caller(Callme targ, String s) {
target = targ;
msg = s;
t = new Thread(this);
t.start();

public void run() {
target.call(msg);

293

-
X
m
e~
2
>
2
[
(=
>
[2)
m

294

Java™ 2: The Complete Reference

class Synch {

public static void main(String args[]) {

Callme target = new Callme();

Caller obl = new Caller(target, "Hello");
Caller ob2 = new Caller(target, "Synchronized");
Caller ob3 = new Caller(target, "World");

// wait for threads to end
try {
obl.t.join();
ob2.t.join();
ob3.t.join();
} catch(InterruptedException e) {
System.out.println("Interrupted");

Here is the output produced by this program:

Hello[Synchronized[World]

]
]

As you can see, by calling sleep(), the call() method allows execution to switch to
another thread. This results in the mixed-up output of the three message strings. In
this program, nothing exists to stop all three threads from calling the same method, on
the same object, at the same time. This is known as a race condition, because the three
threads are racing each other to complete the method. This example used sleep() to
make the effects repeatable and obvious. In most situations, a race condition is more
subtle and less predictable, because you can’t be sure when the context switch will
occur. This can cause a program to run right one time and wrong the next.

To fix the preceding program, you must serialize access to call(). That is, you must
restrict its access to only one thread at a time. To do this, you simply need to precede
call()’s definition with the keyword synchronized, as shown here:

class Callme {
synchronized void call(String msg) {

Chapter 11: Multithreaded Programming 295

This prevents other threads from entering call() while another thread is using it.
After synchronized has been added to call(), the output of the program is as follows:

[Hello]
[Synchronized]
[World]

Any time that you have a method, or group of methods, that manipulates the
internal state of an object in a multithreaded situation, you should use the synchronized
keyword to guard the state from race conditions. Remember, once a thread enters any
synchronized method on an instance, no other thread can enter any other synchronized
method on the same instance. However, nonsynchronized methods on that instance
will continue to be callable.

-
==
m
;
<
>
Z
(]
(=
>
(2]
m

The synchronized Statement

While creating synchronized methods within classes that you create is an easy and
effective means of achieving synchronization, it will not work in all cases. To understand
why, consider the following. Imagine that you want to synchronize access to objects of
a class that was not designed for multithreaded access. That is, the class does not use
synchronized methods. Further, this class was not created by you, but by a third party,
and you do not have access to the source code. Thus, you can’t add synchronized to
the appropriate methods within the class. How can access to an object of this class be
synchronized? Fortunately, the solution to this problem is quite easy: You simply put
calls to the methods defined by this class inside a synchronized block.

This is the general form of the synchronized statement:

synchronized(object) {
// statements to be synchronized

}

Here, object is a reference to the object being synchronized. A synchronized block
ensures that a call to a method that is a member of object occurs only after the current
thread has successfully entered object’s monitor.

Here is an alternative version of the preceding example, using a synchronized block
within the run() method:

// This program uses a synchronized block.
class Callme {
void call(String msg) {
System.out.print("[" + msg);
try {

296 Java™ 2: The Complete Reference

Thread.sleep(1000);
} catch (InterruptedException e) {
System.out.println("Interrupted");
}
System.out.println("]");

class Caller implements Runnable {
String msg;
Callme target;
Thread t;

public Caller(Callme targ, String s) {
target = targ;
msg = s;
t = new Thread(this);
t.start();

// synchronize calls to call()
public void run() {
synchronized(target) { // synchronized block
target.call(msg);

class Synchl {
public static void main(String args[]) {
Callme target = new Callme();

Caller obl = new Caller(target, "Hello");
Caller ob2 = new Caller(target, "Synchronized");
Caller ob3 = new Caller(target, "World");

// wait for threads to end
try {
obl.t.join();
ob2.t.join();
ob3.t.join();
} catch(InterruptedException e) {

Chapter 11: Multithreaded Programming 297

System.out.println("Interrupted");
}
}
}

Here, the call() method is not modified by synchronized. Instead, the synchronized
statement is used inside Caller’s run() method. This causes the same correct output as
the preceding example, because each thread waits for the prior one to finish before
proceeding.

| Interthread Communication

The preceding examples unconditionally blocked other threads from asynchronous
access to certain methods. This use of the implicit monitors in Java objects is powerful,
but you can achieve a more subtle level of control through interprocess communication.
As you will see, this is especially easy in Java.

As discussed earlier, multithreading replaces event loop programming by dividing
your tasks into discrete and logical units. Threads also provide a secondary benefit:
they do away with polling. Polling is usually implemented by a loop that is used to
check some condition repeatedly. Once the condition is true, appropriate action is
taken. This wastes CPU time. For example, consider the classic queuing problem,
where one thread is producing some data and another is consuming it. To make the
problem more interesting, suppose that the producer has to wait until the consumer is
finished before it generates more data. In a polling system, the consumer would waste
many CPU cycles while it waited for the producer to produce. Once the producer was
finished, it would start polling, wasting more CPU cycles waiting for the consumer to
finish, and so on. Clearly, this situation is undesirable.

To avoid polling, Java includes an elegant interprocess communication mechanism
via the wait(), notify(), and notifyAll() methods. These methods are implemented
as final methods in Object, so all classes have them. All three methods can be called
only from within a synchronized context. Although conceptually advanced from
a computer science perspective, the rules for using these methods are actually
quite simple:

B wait() tells the calling thread to give up the monitor and go to sleep until some
other thread enters the same monitor and calls notify().
B notify() wakes up the first thread that called wait() on the same object.

B notifyAll() wakes up all the threads that called wait() on the same object.
The highest priority thread will run first.

298 Java™ 2: The Complete Reference

These methods are declared within Object, as shown here:

final void wait() throws InterruptedException
final void notify()
final void notifyAll()

Additional forms of wait() exist that allow you to specify a period of time to wait.

The following sample program incorrectly implements a simple form of the
producer/consumer problem. It consists of four classes: Q, the queue that you're
trying to synchronize; Producer, the threaded object that is producing queue entries;
Consumer, the threaded object that is consuming queue entries; and PC, the tiny
class that creates the single Q, Producer, and Consumer.

// An incorrect implementation of a producer and consumer.
class Q {
int n;

synchronized int get() {
System.out.println("Got: " + n);
return n;

synchronized void put(int n) {
this.n = n;
System.out.println("Put: " + n);

class Producer implements Runnable {
Q q;

Producer(Q q) {
this.q = q;
new Thread(this, "Producer").start();

public void run() {
int i = 0;

while(true) {
g.put(i++);

Chapter 11: Multithreaded Programming 299

class Consumer implements Runnable {
Q g;

-
==
m
e~
2
>
Z
[2)
(=
>
(2]
m

Consumer (Q q) {
this.q = q;
new Thread(this, "Consumer").start();

public void run() {
while(true) {
g.get();
}

class PC {
public static void main(String args[]) {
0 g = new Q();
new Producer(q);
new Consumer(q);

System.out.println("Press Control-C to stop.");

Although the put() and get() methods on Q are synchronized, nothing stops the
producer from overrunning the consumer, nor will anything stop the consumer from
consuming the same queue value twice. Thus, you get the erroneous output shown
here (the exact output will vary with processor speed and task load):

Put:
Got:
Got:
Got:
Got:
Got:

)

300 Java™ 2: The Complete Reference

Put:
Put:
Put:
Put:
Put:
Put:
Got:

N N0 s W

As you can see, after the producer put 1, the consumer started and got the same 1 five
times in a row. Then, the producer resumed and produced 2 through 7 without letting
the consumer have a chance to consume them.

The proper way to write this program in Java is to use wait() and notify() to signal
in both directions, as shown here:

// A correct implementation of a producer and consumer.
class Q {

int n;

boolean valueSet = false;

synchronized int get() {
if (!valueSet)
try {
wait();

} catch(InterruptedException e) {
System.out.println("InterruptedException caught");

System.out.println("Got: " + n);
valueSet = false;

notify();

return n;

synchronized void put(int n) {
if (valueSet)
try {
wait();
} catch(InterruptedException e) {
System.out.println("InterruptedException caught");

this.n = n;

Chapter 11: Multithreaded Programming

valueSet = true;
System.out.println("Put: " + n);
notify();

class Producer implements Runnable {
Q g;

Producer(Q q) {
this.q = q;
new Thread(this, "Producer").start();

public void run() {
int i = 0;

while(true) {
g.put(it++);

class Consumer implements Runnable {
Q q;

Consumer (Q q) {
this.qg = q;
new Thread(this, "Consumer").start();

public void run() {
while(true) {
qg.get();

class PCFixed {
public static void main(String args[]) {
Q0 g = new Q();
new Producer(q);
new Consumer(q);

301

-
I
m
e~
2
>
2
[
[=
>
[2)
m

302

Java™ 2: The Complete Reference

System.out.println("Press Control-C to stop.");
}

Inside get(), wait() is called. This causes its execution to suspend until the Producer
notifies you that some data is ready. When this happens, execution inside get()
resumes. After the data has been obtained, get() calls notify(). This tells Producer that
it is okay to put more data in the queue. Inside put(), wait() suspends execution until
the Consumer has removed the item from the queue. When execution resumes, the
next item of data is put in the queue, and notify() is called. This tells the Consumer
that it should now remove it.

Here is some output from this program, which shows the clean synchronous behavior:

Put:
Got:
Put:
Got:
Put:
Got:
Put:
Got:
Put:
Got:

G U D WWNN R &

Deadlock

A special type of error that you need to avoid that relates specifically to multitasking
is deadlock, which occurs when two threads have a circular dependency on a pair of
synchronized objects. For example, suppose one thread enters the monitor on object X
and another thread enters the monitor on object Y. If the thread in X tries to call any
synchronized method on Y, it will block as expected. However, if the thread in Y, in
turn, tries to call any synchronized method on X, the thread waits forever, because to
access X, it would have to release its own lock on Y so that the first thread could
complete. Deadlock is a difficult error to debug for two reasons:

B In general, it occurs only rarely, when the two threads time-slice in just the
right way.
B It may involve more than two threads and two synchronized objects. (That is,

deadlock can occur through a more convoluted sequence of events than just
described.)

Chapter 11: Multithreaded Programming

To understand deadlock fully, it is useful to see it in action. The next example creates
two classes, A and B, with methods foo() and bar(), respectively, which pause briefly
before trying to call a method in the other class. The main class, named Deadlock, creates
an A and a B instance, and then starts a second thread to set up the deadlock condition.
The foo() and bar() methods use sleep() as a way to force the deadlock condition
to occur.

// An example of deadlock.
class A {
synchronized void foo(B b) {
String name = Thread.currentThread().getName();

"

System.out.println(name + entered A.foo");

try {
Thread.sleep(1000);

} catch(Exception e) {
System.out.println("A Interrupted");

"

System.out.println(name +
b.last();

trying to call B.last()");

synchronized void last() {
System.out.println("Inside A.last");

class B {
synchronized void bar (A a) {
String name = Thread.currentThread().getName();
System.out.println(name + " entered B.bar");

try {
Thread.sleep(1000);

} catch(Exception e) {
System.out.println("B Interrupted");

System.out.println(name + " trying to call A.last()");
a.last();

303

-
X
m
e~
2
>
2
[
(=
>
@
m

304

Java™ 2: The Complete Reference

synchronized void last() {
System.out.println("Inside A.last");

}

}

class Deadlock implements Runnable {
A a = new A();
B b = new B();

Deadlock() {
Thread.currentThread().setName("MainThread");
Thread t = new Thread(this, "RacingThread");
t.start();

a.foo(b); // get lock on a in this thread.
System.out.println("Back in main thread");

public void run() {
b.bar(a); // get lock on b in other thread.
System.out.println("Back in other thread");

public static void main(String args[]) {
new Deadlock();

When you run this program, you will see the output shown here:

MainThread entered A.foo
RacingThread entered B.bar
MainThread trying to call B.last()
RacingThread trying to call A.last()

Because the program has deadlocked, you need to press CTRL-C to end the program.
You can see a full thread and monitor cache dump by pressing CTRL-BREAK on a PC . You
will see that RacingThread owns the monitor on b, while it is waiting for the monitor
on a. At the same time, MainThread owns a and is waiting to get b. This program will
never complete. As this example illustrates, if your multithreaded program locks up
occasionally, deadlock is one of the first conditions that you should check for.

Chapter 11: Multithreaded Programming 305

___| suspending, Resuming, and Stopping Threads

Sometimes, suspending execution of a thread is useful. For example, a separate thread
can be used to display the time of day. If the user doesn’t want a clock, then its thread
can be suspended. Whatever the case, suspending a thread is a simple matter. Once
suspended, restarting the thread is also a simple matter.

The mechanisms to suspend, stop, and resume threads differ between Java 2 and
earlier versions. Although you should use the Java 2 approach for all new code, you
still need to understand how these operations were accomplished for earlier Java
environments. For example, you may need to update or maintain older, legacy code.
You also need to understand why a change was made for Java 2. For these reasons, the
next section describes the original way that the execution of a thread was controlled,
followed by a section that describes the approach required for Java 2.

-
==
m
;
<
>
Z
(]
(=
>
(2]
m

Suspending, Resuming, and Stopping Threads Using
Java 1.1 and Earlier

Prior to Java 2, a program used suspend() and resume(), which are methods defined by
Thread, to pause and restart the execution of a thread. They have the form shown below:

final void suspend()
final void resume()

The following program demonstrates these methods:

// Using suspend() and resume().

class NewThread implements Runnable {
String name; // name of thread
Thread t;

NewThread(String threadname) {
name = threadname;
t = new Thread(this, name);
System.out.println("New thread: " + t);
t.start(); // Start the thread

}

// This is the entry point for thread.
public void run() {

try {
for(int i = 15; i > 0; i--) {
System.out.println(name + ": " + i);

Thread.sleep(200);

306 Java™ 2: The Complete Reference

}
} catch (InterruptedException e) {
System.out.println(name + " interrupted.");
}

System.out.println(name + " exiting.");

class SuspendResume {
public static void main(String args[]) {
NewThread obl = new NewThread("One");
NewThread ob2 = new NewThread("Two");

try {
Thread.sleep(1000);
obl.t.suspend();
System.out.println("Suspending thread One");
Thread.sleep(1000);
obl.t.resume();
System.out.println("Resuming thread One");
ob2.t.suspend();
System.out.println("Suspending thread Two");
Thread.sleep(1000);
ob2.t.resume();
System.out.println("Resuming thread Two");

} catch (InterruptedException e) {
System.out.println("Main thread Interrupted");

// wait for threads to finish

try {
System.out.println("Waiting for threads to finish.");
obl.t.join();
ob2.t.join();

} catch (InterruptedException e) {
System.out.println("Main thread Interrupted");

}

System.out.println("Main thread exiting.");

Chapter 11: Multithreaded Programming 307

Sample output from this program is shown here:

New thread: Thread[One,5,main]
One: 15

New thread: Thread[Two,5,main]
Two: 15

One: 14

Two: 14

One: 13

Two: 13

One: 12

Two: 12

One: 11

Two: 11

Suspending thread One

Two: 10

Two: 9

Two: 8

Two: 7

Two: 6

Resuming thread One
Suspending thread Two

One: 10

One: 9

One: 8

One: 7

One: 6

Resuming thread Two

Waiting for threads to finish.
Two: 5

One:
Two:
One:
Two:
One:
Two:
One:
Two:
One: 1

Two exiting.

One exiting.

Main thread exiting.

-
==
m
e~
2
>
Z
[2)
(=
>
(2]
m

H NN WWDD &O,

308

Java™ 2: The Complete Reference

The Thread class also defines a method called stop() that stops a thread. Its signature
is shown here:

final void stop()

Once a thread has been stopped, it cannot be restarted using resume().

Suspending, Resuming, and Stopping Threads Using
Java 2

While the suspend(), resume(), and stop() methods defined by Thread seem to be a
perfectly reasonable and convenient approach to managing the execution of threads,
they must not be used for new Java programs. Here’s why. The suspend() method

of the Thread class is deprecated in Java 2. This was done because suspend() can
sometimes cause serious system failures. Assume that a thread has obtained locks on
critical data structures. If that thread is suspended at that point, those locks are not
relinquished. Other threads that may be waiting for those resources can be deadlocked.

The resume() method is also deprecated. It does not cause problems, but cannot be
used without the suspend() method as its counterpart.

The stop() method of the Thread class, too, is deprecated in Java 2. This was done
because this method can sometimes cause serious system failures. Assume that a thread
is writing to a critically important data structure and has completed only part of its
changes. If that thread is stopped at that point, that data structure might be left in a
corrupted state.

Because you can’t use the suspend(), resume(), or stop() methods in Java 2 to
control a thread, you might be thinking that no way exists to pause, restart, or terminate
a thread. But, fortunately, this is not true. Instead, a thread must be designed so that the
run() method periodically checks to determine whether that thread should suspend,
resume, or stop its own execution. Typically, this is accomplished by establishing a flag
variable that indicates the execution state of the thread. As long as this flag is set to
“running,” the run() method must continue to let the thread execute. If this variable is
set to “suspend,” the thread must pause. If it is set to “stop,” the thread must terminate.
Of course, a variety of ways exist in which to write such code, but the central theme will
be the same for all programs.

The following example illustrates how the wait() and notify() methods that are
inherited from Object can be used to control the execution of a thread. This example is
similar to the program in the previous section. However, the deprecated method calls
have been removed. Let us consider the operation of this program.

The NewThread class contains a boolean instance variable named suspendFlag,
which is used to control the execution of the thread. It is initialized to false by the
constructor. The run() method contains a synchronized statement block that checks
suspendFlag. If that variable is true, the wait() method is invoked to suspend the
execution of the thread. The mysuspend() method sets suspendFlag to true. The

Chapter 11: Multithreaded Programming 309

myresume() method sets suspendFlag to false and invokes notify() to wake up the
thread. Finally, the main() method has been modified to invoke the mysuspend() and
myresume() methods.

// Suspending and resuming a thread for Java 2
class NewThread implements Runnable {

String name; // name of thread

Thread t;

boolean suspendFlag;

-
I
m
e~
2
>
2
[
[=
>
[2)
m

NewThread(String threadname) {
name = threadname;
t = new Thread(this, name);
System.out.println("New thread: " + t);
suspendFlag = false;
t.start(); // Start the thread

// This is the entry point for thread.
public void run() {
try {
for(int i = 15; i > 0; i--) {
System.out.println(name + ": " + 1i);
Thread.sleep(200);
synchronized(this) {
while(suspendFlag) {
wait();

}
} catch (InterruptedException e) {
System.out.println(name + " interrupted.");
}

System.out.println(name +

"

exiting.");

void mysuspend() {
suspendFlag = true;

synchronized void myresume() {
suspendFlag = false;

310

Java™ 2: The Complete Reference

notify();

class SuspendResume {
public static void main(String args[]) {
NewThread obl = new NewThread("One");
NewThread ob2 = new NewThread("Two");

try {
Thread.sleep(1000);
obl.mysuspend();
System.out.println("Suspending thread One");
Thread.sleep(1000);
obl.myresume();
System.out.println("Resuming thread One");
ob2.mysuspend();
System.out.println("Suspending thread Two");
Thread.sleep(1000);
ob2.myresume();
System.out.println("Resuming thread Two");

} catch (InterruptedException e) {
System.out.println("Main thread Interrupted");

// wait for threads to finish

try {
System.out.println("Waiting for threads to finish.");
obl.t.join();
ob2.t.join();

} catch (InterruptedException e) {
System.out.println("Main thread Interrupted");

System.out.println("Main thread exiting.");

The output from this program is identical to that shown in the previous section.
Later in this book, you will see more examples that use the Java 2 mechanism of thread
control. Although this mechanism isn’t as “clean” as the old way, nevertheless, it is the
way required to ensure that run-time errors don’t occur. It is the approach that must be
used for all new code.

Chapter 11: Multithreaded Programming 311

__ | Using Multithreading

If you are like most programmers, having multithreaded support built into the language
will be new to you. The key to utilizing this support effectively is to think concurrently
rather than serially. For example, when you have two subsystems within a program

that can execute concurrently, make them individual threads. With the careful use of
multithreading, you can create very efficient programs. A word of caution is in order,
however: If you create too many threads, you can actually degrade the performance

of your program rather than enhance it. Remember, some overhead is associated with
context switching. If you create too many threads, more CPU time will be spent changing
contexts than executing your program!

-
==
m
e~
2
>
Z
[2)
(=
>
(2]
m

This page intentionally left blank.

gl
Chapter 12

/0, Applets, and
Other Topics

314 Java™ 2: The Complete Reference

io package supports Java’s basic I/O (input/output) system, including file I/O.

The applet package supports applets. Support for both I/O and applets comes
from Java’s core API libraries, not from language keywords. For this reason, an
in-depth discussion of these topics is found in Part II of this book, which examines
Java’s API classes. This chapter discusses the foundation of these two subsystems, so
that you can see how they are integrated into the Java language and how they fit into
the larger context of the Java programming and execution environment. This chapter
also examines the last of Java’s keywords: transient, volatile, instanceof, native,
strictfp, and assert.

This chapter introduces two of Java’s most important packages: io and applet. The

__l1/0 Basics

As you may have noticed while reading the preceding 11 chapters, not much use has
been made of I/O in the example programs. In fact, aside from print() and printin(),
none of the I/O methods have been used significantly. The reason is simple: most real
applications of Java are not text-based, console programs. Rather, they are graphically
oriented applets that rely upon Java’s Abstract Window Toolkit (AWT) for interaction
with the user. Although text-based programs are excellent as teaching examples, they
do not constitute an important use for Java in the real world. Also, Java’s support for
console I/0 is limited and somewhat awkward to use—even in simple example
programs. Text-based console I/0O is just not very important to Java programming.

The preceding paragraph notwithstanding, Java does provide strong, flexible
support for I/O as it relates to files and networks. Java’s I/O system is cohesive and
consistent. In fact, once you understand its fundamentals, the rest of the I/O system is
easy to master.

Streams

Java programs perform I/0O through streams. A stream is an abstraction that either
produces or consumes information. A stream is linked to a physical device by the Java
I/0O system. All streams behave in the same manner, even if the actual physical devices
to which they are linked differ. Thus, the same I/O classes and methods can be applied
to any type of device. This means that an input stream can abstract many different
kinds of input: from a disk file, a keyboard, or a network socket. Likewise, an output
stream may refer to the console, a disk file, or a network connection. Streams are a
clean way to deal with input/output without having every part of your code
understand the difference between a keyboard and a network, for example. Java
implements streams within class hierarchies defined in the java.io package.

| If you are familiar with C/C++/C#, then you are already familiar with the concept of the

stream. Java’s approach to streams is loosely the same.

Chapter 12: 1/0, Applets, and Other Topics 315

Byte Streams and Character Streams

Java 2 defines two types of streams: byte and character. Byte streams provide a
convenient means for handling input and output of bytes. Byte streams are used, for
example, when reading or writing binary data. Character streams provide a convenient
means for handling input and output of characters. They use Unicode and, therefore,
can be internationalized. Also, in some cases, character streams are more efficient than
byte streams.

The original version of Java (Java 1.0) did not include character streams and, thus,
all I/O was byte-oriented. Character streams were added by Java 1.1, and certain
byte-oriented classes and methods were deprecated. This is why older code that
doesn’t use character streams should be updated to take advantage of them, where
appropriate.

One other point: at the lowest level, all I/O is still byte-oriented. The
character-based streams simply provide a convenient and efficient means for handling
characters.

An overview of both byte-oriented streams and character-oriented streams is
presented in the following sections.

The Byte Stream Classes
Byte streams are defined by using two class hierarchies. At the top are two abstract
classes: InputStream and OutputStream. Each of these abstract classes has several
concrete subclasses, that handle the differences between various devices, such as disk
files, network connections, and even memory buffers. The byte stream classes are
shown in Table 12-1. A few of these classes are discussed later in this section. Others
are described in Part II. Remember, to use the stream classes, you must import java.io.
The abstract classes InputStream and OutputStream define several key methods
that the other stream classes implement. Two of the most important are read() and
write(), which, respectively, read and write bytes of data. Both methods are declared
as abstract inside InputStream and OutputStream. They are overridden by derived
stream classes.

The Character Stream Classes

Character streams are defined by using two class hierarchies. At the top are two
abstract classes, Reader and Writer. These abstract classes handle Unicode character
streams. Java has several concrete subclasses of each of these. The character stream
classes are shown in Table 12-2.

The abstract classes Reader and Writer define several key methods that the other
stream classes implement. Two of the most important methods are read() and write(),
which read and write characters of data, respectively. These methods are overridden
by derived stream classes.

316

Java™ 2: The Complete Reference

Stream Class

BufferedInputStream
BufferedOutputStream
ByteArraylnputStream
ByteArrayOutputStream

Meaning

Buffered input stream
Buffered output stream
Input stream that reads from a byte array

Output stream that writes to a byte array

DatalnputStream An input stream that contains methods for
reading the Java standard data types

DataOutputStream An output stream that contains methods for
writing the Java standard data types

FileInputStream Input stream that reads from a file

FileOutputStream Output stream that writes to a file

FilterInputStream Implements InputStream

FilterOutputStream Implements OutputStream

InputStream Abstract class that describes stream input

OutputStream Abstract class that describes stream output

PipedInputStream Input pipe

PipedOutputStream Output pipe

PrintStream Output stream that contains print() and
println()

PushbackInputStream Input stream that supports one-byte “unget,”
which returns a byte to the input stream

RandomAccessFile Supports random access file I/O

SequencelnputStream Input stream that is a combination of two or
more input streams that will be read
sequentially, one after the other

Table 12-1. The Byte Stream Classes

Chapter 12: 1/0, Applets, and Other Topics
Stream Class Meaning
BufferedReader Buffered input character stream
BufferedWriter Buffered output character stream
CharArrayReader Input stream that reads from a character array
CharArrayWriter Output stream that writes to a character array
FileReader Input stream that reads from a file
FileWriter Output stream that writes to a file
FilterReader Filtered reader
FilterWriter Filtered writer
InputStreamReader Input stream that translates bytes to characters
LineNumberReader Input stream that counts lines
OutputStreamWriter Output stream that translates characters
to bytes
PipedReader Input pipe
PipedWriter Output pipe
PrintWriter Output stream that contains print() and
println()
PushbackReader Input stream that allows characters to be
returned to the input stream
Reader Abstract class that describes character
stream input
StringReader Input stream that reads from a string
StringWriter Output stream that writes to a string
Writer Abstract class that describes character
stream output
Table 12-2. The Character Stream I/0 Classes

317

-
==
m
=
<
>
Z
[2)
(=
>
D
m

318 Java™ 2: The Complete Reference

The Predefined Streams

As you know, all Java programs automatically import the java.lang package. This
package defines a class called System, which encapsulates several aspects of the
run-time environment. For example, using some of its methods, you can obtain the
current time and the settings of various properties associated with the system. System
also contains three predefined stream variables, in, out, and err. These fields are
declared as public and static within System. This means that they can be used by

any other part of your program and without reference to a specific System object.

System.out refers to the standard output stream. By default, this is the console.
System.in refers to standard input, which is the keyboard by default. System.err refers
to the standard error stream, which also is the console by default. However, these
streams may be redirected to any compatible I/O device.

System.in is an object of type InputStream; System.out and System.err are objects
of type PrintStream. These are byte streams, even though they typically are used to
read and write characters from and to the console. As you will see, you can wrap these
within character-based streams, if desired.

The preceding chapters have been using System.out in their examples. You can use
System.err in much the same way. As explained in the next section, use of System.in is
a little more complicated.

___| Reading Console Input

In Java 1.0, the only way to perform console input was to use a byte stream, and older
code that uses this approach persists. Today, using a byte stream to read console input
is still technically possible, but doing so may require the use of a deprecated method,
and this approach is not recommended. The preferred method of reading console input
for Java 2 is to use a character-oriented stream, which makes your program easier to
internationalize and maintain.

| Java does not have a generalized console input method that parallels the standard C
function scanf() or C++ input operators.

In Java, console input is accomplished by reading from System.in. To obtain
a character-based stream that is attached to the console, you wrap System.in in a
BufferedReader object, to create a character stream. BuffereredReader supports a
buffered input stream. Its most commonly used constructor is shown here:

BufferedReader(Reader inputReader)

Chapter 12: 1/0, Applets, and Other Topics 319

Here, inputReader is the stream that is linked to the instance of BufferedReader

that is being created. Reader is an abstract class. One of its concrete subclasses is
InputStreamReader, which converts bytes to characters. To obtain an InputStreamReader
object that is linked to System.in, use the following constructor:

InputStreamReader(InputStream inputStrean)

-
==
m
e~
2
>
Z
[2)
(=
>
D
m

Because System.in refers to an object of type InputStream, it can be used for
inputStream. Putting it all together, the following line of code creates a BufferedReader
that is connected to the keyboard:

BufferedReader br = new BufferedReader (new
InputStreamReader (System.in));

After this statement executes, br is a character-based stream that is linked to the
console through System.in.

Reading Characters

To read a character from a BufferedReader, use read(). The version of read() that we
will be using is

int read() throws IOException

Each time that read() is called, it reads a character from the input stream and returns it
as an integer value. It returns -1 when the end of the stream is encountered. As you can
see, it can throw an IOException.

The following program demonstrates read() by reading characters from the console

‘.,

until the user types a “q”:

// Use a BufferedReader to read characters from the console.
import java.io.*;

class BRRead {
public static void main(String args[])
throws IOException

char c;
BufferedReader br = new

BufferedReader (new InputStreamReader (System.in));
System.out.println("Enter characters, 'q' to quit.");

320 Java™ 2: The Complete Reference

// read characters
do {
c = (char) br.read();
System.out.println(c);
} while(c != 'q');

Here is a sample run:

Enter characters, 'q' to quit.
123abcqg
1

Qoo wN

o

This output may look a little different from what you expected, because System.in is
line buffered, by default. This means that no input is actually passed to the program
until you press ENTER. As you can guess, this does not make read() particularly
valuable for interactive, console input.

Reading Strings
To read a string from the keyboard, use the version of readLine() that is a member of
the BufferedReader class. Its general form is shown here:

String readLine() throws IOException

As you can see, it returns a String object.
The following program demonstrates BufferedReader and the readLine() method;
the program reads and displays lines of text until you enter the word “stop”:

// Read a string from console using a BufferedReader.
import java.io.*;

class BRReadLines {

Chapter 12: 1/0, Applets, and Other Topics 321

public static void main(String args[])
throws IOException

// create a BufferedReader using System.in
BufferedReader br = new BufferedReader (new

InputStreamReader (System.in));
String str;

-
X
m
e~
2
>
2
[
(=
>
@
m

System.out.println("Enter lines of text.");
System.out.println("Enter 'stop' to quit.");
do {
str = br.readLine();
System.out.println(str);
} while(!str.equals("stop"));

The next example creates a tiny text editor. It creates an array of String objects and
then reads in lines of text, storing each line in the array. It will read up to 100 lines or
until you enter “stop”. It uses a BufferedReader to read from the console.

// A tiny editor.
import java.io.*;

class TinyEdit {
public static void main(String args[])
throws IOException

// create a BufferedReader using System.in
BufferedReader br = new BufferedReader (new

InputStreamReader (System.in));
String str[] = new String[100];

System.out.println("Enter lines of text.");
System.out.println("Enter 'stop' to quit.");
for(int i=0; i<100; i++) {
str[i] = br.readLine();
if(str[i].equals("stop")) break;

System.out.println("\nHere is your file:");

322 Java™ 2: The Complete Reference

// display the lines

for(int i=0; 1<100; i++) {
if(str[i].equals("stop")) break;
System.out.println(str[i]);

Here is a sample run:

Enter lines of text.

Enter 'stop' to quit.

This is line one.

This is line two.

Java makes working with strings easy.
Just create String objects.

stop

Here is your file:

This is line one.

This is line two.

Java makes working with strings easy.
Just create String objects.

___| Writing Console Output

Console output is most easily accomplished with print() and println(), described
earlier, which are used in most of the examples in this book. These methods are defined
by the class PrintStream (which is the type of the object referenced by System.out).
Even though System.out is a byte stream, using it for simple program output is still
acceptable. However, a character-based alternative is described in the next section.

Because PrintStream is an output stream derived from OutputStream, it also
implements the low-level method write(). Thus, write() can be used to write to the
console. The simplest form of write() defined by PrintStream is shown here:

void write(int byteval)

This method writes to the stream the byte specified by byteval. Although byteval is
declared as an integer, only the low-order eight bits are written. Here is a short example
that uses write() to output the character “A” followed by a newline to the screen:

Chapter 12: 1/0, Applets, and Other Topics 323

// Demonstrate System.out.write().
class WriteDemo {
public static void main(String args[]) {
int b;

b='a';
System.out.write(b);
System.out.write('\n');

}

-
==
m
;
<
>
Z
[2)
(=
>
D
m

You will not often use write() to perform console output (although doing so might be
useful in some situations), because print() and println() are substantially easier to use.

| The PrintWriter Class

Although using System.out to write to the console is still permissible under Java,
its use is recommended mostly for debugging purposes or for sample programs, such
as those found in this book. For real-world programs, the recommended method of
writing to the console when using Java is through a PrintWriter stream. PrintWriter
is one of the character-based classes. Using a character-based class for console output
makes it easier to internationalize your program.

PrintWriter defines several constructors. The one we will use is shown here:

PrintWriter(OutputStream outputStream, boolean flushOnNewline)

Here, outputStream is an object of type OutputStream, and flushOnNewline controls
whether Java flushes the output stream every time a println() method is called. If
flushOnNewline is true, flushing automatically takes place. If false, flushing is not
automatic.

PrintWriter supports the print() and println() methods for all types including
Object. Thus, you can use these methods in the same way as they have been used with
System.out. If an argument is not a simple type, the PrintWriter methods call the
object’s toString() method and then print the result.

To write to the console by using a PrintWriter, specify System.out for the output
stream and flush the stream after each newline. For example, this line of code creates a
PrintWriter that is connected to console output:

I PrintWriter pw = new PrintWriter(System.out, true);

324

Java™ 2: The Complete Reference

The following application illustrates using a PrintWriter to handle console output:

// Demonstrate PrintWriter
import java.io.*;

public class PrintWriterDemo {
public static void main(String args[]) {

PrintWriter pw = new PrintWriter(System.out, true);
pw.println("This is a string");
int i = -7;
pw.println(i);
double d = 4.5e-7;
pw.println(d);

The output from this program is shown here:

This is a string
-7
4.5E-7

Remember, there is nothing wrong with using System.out to write simple text
output to the console when you are learning Java or debugging your programs.
However, using a PrintWriter will make your real-world applications easier to
internationalize. Because no advantage is gained by using a PrintWriter in the
sample programs shown in this book, we will continue to use System.out to write
to the console.

Reading and Writing Files

Java provides a number of classes and methods that allow you to read and write files.
In Java, all files are byte-oriented, and Java provides methods to read and write bytes
from and to a file. However, Java allows you to wrap a byte-oriented file stream within
a character-based object. This technique is described in Part II. This chapter examines
the basics of file I/O.

Two of the most often-used stream classes are FileInputStream and
FileOutputStream, which create byte streams linked to files. To open a file, you simply
create an object of one of these classes, specifying the name of the file as an argument to
the constructor. While both classes support additional, overridden constructors, the
following are the forms that we will be using:

Chapter 12: 1/0, Applets, and Other Topics 325

FileInputStream(String fileName) throws FileNotFoundException
FileOutputStream(String fileName) throws FileNotFoundException

Here, fileName specifies the name of the file that you want to open. When you create
an input stream, if the file does not exist, then FileNotFoundException is thrown. For
output streams, if the file cannot be created, then FileNotFoundException is thrown.
When an output file is opened, any preexisting file by the same name is destroyed.

| In earlier versions of Java, FileOutputStream() threw an IOException when an
' output file could not be created. This was changed by Java 2.

When you are done with a file, you should close it by calling close(). It is defined
by both FileInputStream and FileOutputStream, as shown here:

-
==
m
;
<
>
Z
[2)
(=
>
D
m

void close() throws IOException

To read from a file, you can use a version of read() that is defined within
FileInputStream. The one that we will use is shown here:

int read() throws IOException

Each time that it is called, it reads a single byte from the file and returns the byte as an
integer value. read() returns -1 when the end of the file is encountered. It can throw an
IOException.

The following program uses read() to input and display the contents of a text file,
the name of which is specified as a command-line argument. Note the try/catch blocks
that handle the two errors that might occur when this program is used—the specified
file not being found or the user forgetting to include the name of the file. You can use
this same approach whenever you use command-line arguments.

/* Display a text file.
To use this program, specify the name
of the file that you want to see.
For example, to see a file called TEST.TXT,
use the following command line.
java ShowFile TEST.TXT

*/

import java.io.*;

326 Java™ 2: The Complete Reference

class ShowFile {
public static void main(String args[])
throws IOException

{

int i;

FileInputStream fin;

try {
fin = new FileInputStream(args[0]);

} catch(FileNotFoundException e) {
System.out.println("File Not Found");
return;

} catch(ArrayIndexOutOfBoundsException e) {
System.out.println("Usage: ShowFile File");
return;

}

// read characters until EOF is encountered

do {

i = fin.read();
if(i != -1) System.out.print((char) i);
} while(i != -1);
fin.close();
}

To write to a file, you will use the write() method defined by FileOutputStream.
Its simplest form is shown here:

void write(int byteval) throws IOException

This method writes the byte specified by byteval to the file. Although byteval is declared
as an integer, only the low-order eight bits are written to the file. If an error occurs
during writing, an IOException is thrown. The next example uses write() to copy a
text file:

/* Copy a text file.

To use this program, specify the name
of the source file and the destination file.

Chapter 12: 1/0, Applets, and Other Topics 327

For example, to copy a file called FIRST.TXT
to a file called SECOND.TXT, use the following
command line.

java CopyFile FIRST.TXT SECOND.TXT
*/

-
I
m
e~
2
>
2
[
[=
>
[2)
m

import java.io.*;

class CopyFile {
public static void main(String args[])
throws IOException

int i;
FileInputStream fin;
FileOutputStream fout;

try {
// open input file
try {
fin = new FileInputStream(args[0]);
} catch(FileNotFoundException e) {
System.out.println("Input File Not Found");
return;

// open output file

try {
fout = new FileOutputStream(args[1l]);

} catch(FileNotFoundException e) {
System.out.println("Error Opening Output File");
return;

}

} catch(ArrayIndexOutOfBoundsException e) {

System.out.println("Usage: CopyFile From To");

return;

// Copy File

try {
do {
i = fin.read();

328

Java™ 2: The Complete Reference

if(i !'= -1) fout.write(i);
} while(i != -1);
} catch(IOException e) {
System.out.println("File Error");

}

fin.close();
fout.close();

Notice the way that potential I/O errors are handled in this program and in the
preceding ShowFile program. Unlike some other computer languages, including C
and C++, which use error codes to report file errors, Java uses its exception handling
mechanism. Not only does this make file handling cleaner, but it also enables Java to
easily differentiate the end-of-file condition from file errors when input is being
performed. In C/C++, many input functions return the same value when an error
occurs and when the end of the file is reached. (That is, in C/C++, an EOF condition
often is mapped to the same value as an input error.) This usually means that the
programmer must include extra program statements to determine which event actually
occurred. In Java, errors are passed to your program via exceptions, not by values
returned by read(). Thus, when read() returns -1, it means only one thing: the end of
the file has been encountered.

Applet Fundamentals

All of the preceding examples in this book have been Java applications. However,
applications constitute only one class of Java programs. Another type of program is the
applet. As mentioned in Chapter 1, applets are small applications that are accessed on an
Internet server, transported over the Internet, automatically installed, and run as part of a
Web document. After an applet arrives on the client, it has limited access to resources, so
that it can produce an arbitrary multimedia user interface and run complex computations
without introducing the risk of viruses or breaching data integrity.

Many of the issues connected with the creation and use of applets are found in Part
II, when the applet package is examined. However, the fundamentals connected to the
creation of an applet are presented here, because applets are not structured in the same
way as the programs that have been used thus far. As you will see, applets differ from
applications in several key areas.

Let’s begin with the simple applet shown here:

Chapter 12: 1/0, Applets, and Other Topics 329

import java.awt.*;
import java.applet.*;

public class SimpleApplet extends Applet {
public void paint(Graphics g) {
g.drawString("A Simple Applet", 20, 20);
}
}

-
==
m
;
<
>
Z
(]
(=
>
(2]
m

This applet begins with two import statements. The first imports the Abstract Window
Toolkit (AWT) classes. Applets interact with the user through the AWT, not through the
console-based I/O classes. The AWT contains support for a window-based, graphical
interface. As you might expect, the AWT is quite large and sophisticated, and a complete
discussion of it consumes several chapters in Part II of this book. Fortunately, this simple
applet makes very limited use of the AWT. The second import statement imports the
applet package, which contains the class Applet. Every applet that you create must be a
subclass of Applet.

The next line in the program declares the class SimpleApplet. This class must be
declared as public, because it will be accessed by code that is outside the program.

Inside SimpleApplet, paint() is declared. This method is defined by the AWT
and must be overridden by the applet. paint() is called each time that the applet
must redisplay its output. This situation can occur for several reasons. For example,
the window in which the applet is running can be overwritten by another window and
then uncovered. Or, the applet window can be minimized and then restored. paint() is
also called when the applet begins execution. Whatever the cause, whenever the applet
must redraw its output, paint() is called. The paint() method has one parameter of
type Graphics. This parameter contains the graphics context, which describes the
graphics environment in which the applet is running. This context is used whenever
output to the applet is required.

Inside paint() is a call to drawString(), which is a member of the Graphics class.
This method outputs a string beginning at the specified X,Y location. It has the
following general form:

void drawString(String message, int x, int y)

Here, message is the string to be output beginning at x,y. In a Java window, the upper-left
corner is location 0,0. The call to drawString() in the applet causes the message “A Simple
Applet” to be displayed beginning at location 20,20.

Notice that the applet does not have a main() method. Unlike Java programs, applets
do not begin execution at main(). In fact, most applets don’t even have a main() method.
Instead, an applet begins execution when the name of its class is passed to an applet viewer
or to a network browser.

330

Java™ 2: The Complete Reference

After you enter the source code for SimpleApplet, compile in the same way that
you have been compiling programs. However, running SimpleApplet involves a
different process. In fact, there are two ways in which you can run an applet:

B Executing the applet within a Java-compatible Web browser.

B Using an applet viewer, such as the standard SDK tool, appletviewer. An
applet viewer executes your applet in a window. This is generally the fastest
and easiest way to test your applet.

Each of these methods is described next.

To execute an applet in a Web browser, you need to write a short HTML text file
that contains the appropriate APPLET tag. Here is the HTML file that executes
SimpleApplet:

<applet code="SimpleApplet" width=200 height=60>

</applet>

The width and height statements specify the dimensions of the display area used
by the applet. (The APPLET tag contains several other options that are examined more
closely in Part II.) After you create this file, you can execute your browser and then
load this file, which causes SimpleApplet to be executed.

To execute SimpleApplet with an applet viewer, you may also execute the HTML

file shown earlier. For example, if the preceding HTML file is called RunApp.html,
then the following command line will run SimpleApplet:

C:\>appletviewer RunApp.html

However, a more convenient method exists that you can use to speed up testing.
Simply include a comment at the head of your Java source code file that contains the
APPLET tag. By doing so, your code is documented with a prototype of the necessary
HTML statements, and you can test your compiled applet merely by starting the applet
viewer with your Java source code file. If you use this method, the SimpleApplet
source file looks like this:

import java.awt.*;

import Jjava.applet.*;

/*

<applet code="SimpleApplet" width=200 height=60>
</applet>

*/

public class SimpleApplet extends Applet {
public void paint(Graphics g) {

Chapter 12: 1/0, Applets, and Other Topics

g.drawString("A Simple Applet", 20, 20);
}
}

In general, you can quickly iterate through applet development by using these
three steps:
1. Edit a Java source file.
2. Compile your program.

3. Execute the applet viewer, specifying the name of your applet’s source file. The
applet viewer will encounter the APPLET tag within the comment and execute
your applet.

The window produced by SimpleApplet, as displayed by the applet viewer, is
shown in the following illustration:

E‘%Applel Viewer: Simp... M=l E3

Applet

A Simple Applet

Applet started.

While the subject of applets is more fully discussed later in this book, here are the
key points that you should remember now:

B Applets do not need a main() method.

B Applets must be run under an applet viewer or a Java-compatible browser.

B User I/0O is not accomplished with Java’s stream I/O classes. Instead, applets
use the interface provided by the AWT.

| The transient and volatile Modifiers

Java defines two interesting type modifiers: transient and volatile. These modifiers are
used to handle somewhat specialized situations.

When an instance variable is declared as transient, then its value need not persist
when an object is stored. For example:

class T {
transient int a; // will not persist

331

-
==
m
;
<
>
Z
[2)
(=
>
D
m

332 Java™ 2: The Complete Reference

int b; // will persist
}

Here, if an object of type T is written to a persistent storage area, the contents of a
would not be saved, but the contents of b would.

The volatile modifier tells the compiler that the variable modified by volatile can
be changed unexpectedly by other parts of your program. One of these situations
involves multithreaded programs. (You saw an example of this in Chapter 11.) In a
multithreaded program, sometimes, two or more threads share the same instance
variable. For efficiency considerations, each thread can keep its own, private copy of
such a shared variable. The real (or master) copy of the variable is updated at various
times, such as when a synchronized method is entered. While this approach works
fine, it may be inefficient at times. In some cases, all that really matters is that the
master copy of a variable always reflects its current state. To ensure this, simply specify
the variable as volatile, which tells the compiler that it must always use the master
copy of a volatile variable (or, at least, always keep any private copies up to date with
the master copy, and vice versa). Also, accesses to the master variable must be executed
in the precise order in which they are executed on any private copy.

| volatile in Java has, more or less, the same meaning that it has in C/C++/C#.
___| Using instanceof

Sometimes, knowing the type of an object during run time is useful. For example, you
might have one thread of execution that generates various types of objects, and another
thread that processes these objects. In this situation, it might be useful for the processing
thread to know the type of each object when it receives it. Another situation in which
knowledge of an object’s type at run time is important involves casting. In Java, an
invalid cast causes a run-time error. Many invalid casts can be caught at compile time.
However, casts involving class hierarchies can produce invalid casts that can be detected
only at run time. For example, a superclass called A can produce two subclasses, called B
and C. Thus, casting a B object into type A or casting a C object into type A is legal, but
casting a B object into type C (or vice versa) isn’t legal. Because an object of type A can
refer to objects of either B or C, how can you know, at run time, what type of object is
actually being referred to before attempting the cast to type C? It could be an object of
type A, B, or C. If it is an object of type B, a run-time exception will be thrown. Java
provides the run-time operator instanceof to answer this question.

The instanceof operator has this general form:

object instanceof type

Chapter 12: 1/0, Applets, and Other Topics

Here, object is an instance of a class, and type is a class type. If object is of the specified
type or can be cast into the specified type, then the instanceof operator evaluates to
true. Otherwise, its result is false. Thus, instanceof is the means by which your
program can obtain run-time type information about an object.

The following program demonstrates instanceof:

// Demonstrate instanceof operator.
class A {
int i, J;

class B {
int i, 3;

class C extends A {
int k;

class D extends A {
int k;

class InstanceOf {
public static void main(String args[]) {

A a = new A();

B b new B();

C c = new C();

D d = new D();

if(a instanceof A)

System.out.println("a is instance of A");
if(b instanceof B)

System.out.println("b is instance of B");
if(c instanceof C)

System.out.println("c is instance of C");
if(c instanceof A)

System.out.println("c can be cast to A");

if(a instanceof C)
System.out.println("a can be cast to C");

333

-
I
m
e~
2
>
2
[
[=
>
[2)
m

334

Java™ 2: The Complete Reference

System.out.println();

// compare types of derived types

A ob;

ob = d; // A reference to d

System.out.println("ob now refers to d");

if(ob instanceof D)

System.out.println("ob is instance of D");

System.out.println();

ob = ¢c; // A reference to c

System.out.println("ob now refers to c");

if(ob instanceof D)

System.out.println("ob can be cast to D");

else

System.out.println("ob cannot be cast to D");

if(ob instanceof A)

System.out.println("ob can be cast to A");

System.out.println();

// all objects can be cast to Object

if(a instanceof Object)
System.out.println("a may be
if(b instanceof Object)
System.out.println("b may be
if(c instanceof Object)
System.out.println("c may be
if(d instanceof Object)
System.out.println("d may be

The output from this program is shown here:

Q Qoo

is instance of A
is instance of B
is instance of C
can be cast to A

cast to

cast to

cast to

cast to

Object");
Object");
Object");

Object");

Chapter 12: 1/0, Applets, and Other Topics 335

ob now refers to d
ob is instance of D

ob now refers to c
ob cannot be cast to D
ob can be cast to A

-
==
m
;
<
>
Z
(]
(=
>
(2]
m

a may be cast to Object
b may be cast to Object
c may be cast to Object
d may be cast to Object

The instanceof operator isn’t needed by most programs, because, generally, you know
the type of object with which you are working. However, it can be very useful when you're
writing generalized routines that operate on objects of a complex class hierarchy.

__ | strictfp

Java 2 added a new keyword to the Java language, called strictfp. With the creation
of Java 2, the floating point computation model was relaxed slightly to make certain
floating point computations faster for certain processors, such as the Pentium.
Specifically, the new model does not require the truncation of certain intermediate
values that occur during a computation. By modifying a class or a method with
strictfp, you ensure that floating point calculations (and thus all truncations) take
place precisely as they did in earlier versions of Java. The truncation affects only the
exponent of certain operations. When a class is modified by strictfp, all the methods in
the class are also modified by strictfp automatically.

For example, the following fragment tells Java to use the original floating point
model for calculations in all methods defined within MyClass:

I strictfp class MyClass { //...

Frankly, most programmers never need to use strictfp, because it affects only a very
small class of problems.

| Native Methods

Although it is rare, occasionally, you may want to call a subroutine that is written in a
language other than Java. Typically, such a subroutine exists as executable code for the
CPU and environment in which you are working—that is, native code. For example,
you may want to call a native code subroutine to achieve faster execution time. Or, you
may want to use a specialized, third-party library, such as a statistical package.

336

Java™ 2: The Complete Reference

However, because Java programs are compiled to bytecode, which is then interpreted
(or compiled on-the-fly) by the Java run-time system, it would seem impossible to call
a native code subroutine from within your Java program. Fortunately, this conclusion
is false. Java provides the native keyword, which is used to declare native code methods.
Once declared, these methods can be called from inside your Java program just as you
call any other Java method.

To declare a native method, precede the method with the native modifier, but do
not define any body for the method. For example:

I public native int meth() ;

After you declare a native method, you must write the native method and follow a
rather complex series of steps to link it with your Java code.

Most native methods are written in C. The mechanism used to integrate C code
with a Java program is called the Java Native Interface (JNI). This methodology was
created by Java 1.1 and then expanded and enhanced by Java 2. (Java 1.0 used a
different approach, which is now completely outdated.) A detailed description of the
JNI is beyond the scope of this book, but the following description provides sufficient
information for most applications.

| The precise steps that you need to follow will vary between different Java environments
' and versions. This also depends on the language that you are using to implement the

native method. The following discussion assumes a Windows 95/98/XP/NT/2000
environment. The language used to implement the native method is C.

The easiest way to understand the process is to work through an example. To
begin, enter the following short program, which uses a native method called test():

// A simple example that uses a native method.
public class NativeDemo {
int i;
public static void main(String args[]) {
NativeDemo ob = new NativeDemo();

ob.i = 10;

System.out.println("This is ob.i before the native method:" +
ob.i);

ob.test(); // call a native method

System.out.println("This is ob.i after the native method:" +
ob.i);

Chapter 12: 1/0, Applets, and Other Topics 337

// declare native method
public native void test() ;

// load DLL that contains static method
static {
System.loadLibrary("NativeDemo") ;

}

-
X
m
e~
2
>
2
[
(=
>
[2)
m

Notice that the test() method is declared as native and has no body. This is the method
that we will implement in C shortly. Also notice the static block. As explained earlier in
this book, a static block is executed only once, when your program begins execution
(or, more precisely, when its class is first loaded). In this case, it is used to load the
dynamic link library that contains the native implementation of test(). (You will see
how to create this library soon.)

The library is loaded by the loadLibrary() method, which is part of the System
class. This is its general form:

static void loadLibrary(String filename)

Here, filename is a string that specifies the name of the file that holds the library. For the
Windows environment, this file is assumed to have the .DLL extension.

After you enter the program, compile it to produce NativeDemo.class. Next, you
must use javah.exe to produce one file: NativeDemo.h. (javah.exe is included in the
SDK.) You will include NativeDemo.h in your implementation of test(). To produce
NativeDemo.h, use the following command:

javah -jni NativeDemo

This command produces a header file called NativeDemo.h. This file must be included in
the C file that implements test(). The output produced by this command is shown here:

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
/* Header for class NativeDemo */

#ifndef _Included_NativeDemo
#define _Included_NativeDemo
#ifdef _ _cplusplus

extern "C" {

#endif

/*

338 Java™ 2: The Complete Reference

* Class: NativeDemo
* Method: test

* Signature: ()V

*/

JNIEXPORT void JNICALL Java_NativeDemo_test
(JNIEnv *, jobject);

#ifdef _ _cplusplus
}

#endif

#endif

Pay special attention to the following line, which defines the prototype for the
test() function that you will create:

I JNIEXPORT void JNICALL Java_NativeDemo_test(JNIEnv *, jobject);

Notice that the name of the function is Java_NativeDemo_test(). You must use this as the
name of the native function that you implement. That is, instead of creating a C function
called test(), you will create one called Java_NativeDemo_test(). The NativeDemo
component of the prefix is added because it identifies the test() method as being part of the
NativeDemo class. Remember, another class may define its own native test() method that
is completely different from the one declared by NativeDemo. Including the class name in
the prefix provides a way to differentiate between differing versions. As a general rule,
native functions will be given a name whose prefix includes the name of the class in which
they are declared.

After producing the necessary header file, you can write your implementation of
test() and store it in a file named NativeDemo.c:

/* This file contains the C version of the
test () method.
*/

#include <jni.h>
#include "NativeDemo.h"
#include <stdio.h>

JNIEXPORT void JNICALL Java NativeDemo test(JNIEnv *env, jobject obj)
{

jclass cls;

jfieldID fid;

jint 1i;

Chapter 12: 1/0, Applets, and Other Topics

printf("Starting the native method.\n");
cls = (*env)->GetObjectClass(env, obj);
fid = (*env)->GetFieldID(env, cls, "i", "I");

if(fid == 0) {
printf("Could not get field id.\n");
return;
}
i = (*env)->GetIntField(env, obj, fid);
printf("i = %d\n", 1i);
(*env)->SetIntField(env, obj, fid, 2*i);
printf("Ending the native method.\n");

Notice that this file includes jni.h, which contains interfacing information. This file is
provided by your Java compiler. The header file NativeDemo.h was created by
javah, earlier.

In this function, the GetObjectClass() method is used to obtain a C structure that
has information about the class NativeDemo. The GetFieldID() method returns a C
structure with information about the field named “i” for the class. GetIntField()
retrieves the original value of that field. SetIntField() stores an updated value in that
field. (See the file jni.h for additional methods that handle other types of data.)

After creating NativeDemo.c, you must compile it and create a DLL. To do this by
using the Microsoft C/C++ compiler, use the following command line. (You might
need to specifiy the path to jni.h and its subordinate file jni_md.h.)

Cl /LD NativeDemo.c

This produces a file called NativeDemo.dll. Once this is done, you can execute the Java
program, which will produce the following output:

This is ob.i before the native method: 10
Starting the native method.

i=10

Ending the native method.

This is ob.i after the native method: 20

R M| The specifics surrounding the use of native are implementation- and environment-
emember b e . .
dependent. Furthermore, the specific manner in which you interface to Java code is
subject to change. You must consult the documentation that accompanies your Java
development system for details on native methods.

339

-
I
m
;
<
>
2
[
[=
>
D
m

340 Java™ 2: The Complete Reference

Problems with Native Methods

Native methods seem to offer great promise, because they enable you to gain access to
your existing base of library routines, and they offer the possibility of faster run-time
execution. But native methods also introduce two significant problems:

B Potential security risk Because a native method executes actual machine code, it
can gain access to any part of the host system. That is, native code is not confined
to the Java execution environment. This could allow a virus infection, for example.
For this reason, applets cannot use native methods. Also, the loading of DLLs can
be restricted, and their loading is subject to the approval of the security manager.

B Loss of portability Because the native code is contained in a DLL, it must be
present on the machine that is executing the Java program. Further, because each
native method is CPU- and operating-system-dependent, each DLL is inherently
nonportable. Thus, a Java application that uses native methods will be able to run
only on a machine for which a compatible DLL has been installed.

The use of native methods should be restricted, because they render your Java
programs nonportable and pose significant security risks.

__ | Using assert

Java 2, version 1.4 added a new keyword to Java: assert. It is used during program
development to create an assertion, which is a condition that should be true during the
execution of the program. For example, you might have a method that should always
return a positive integer value. You might test this by asserting that the return value is
greater than zero using an assert statement. At run time, if the condition actually is true,
no other action takes place. However, if the condition is false, then an AssertionError is
thrown. Assertions are often used during testing to verify that some expected condition
is actually met. They are not usually used for released code.

The assert keyword has two forms. The first is shown here.

assert condition;

Here, condition is an expression that must evaluate to a Boolean result. If the result is
true, then the assertion is true and no other action takes place. If the condition is false,
then the assertion fails and a default AssertionError object is thrown.

The second form of assert is shown here.

assert condition : expr;

In this version, expr is a value that is passed to the AssertionError constructor. This
value is converted to its string format and displayed if an assertion fails. Typically, you
will specify a string for expr, but any non-void expression is allowed as long as it
defines a reasonable string conversion.

Chapter 12: 1/0, Applets, and Other Topics

Here is an example that uses assert. It verifies that the return value of getnum()
is positive.

// Demonstrate assert.
class AssertDemo {
static int val = 3;

// Return an integer.
static int getnum() {
return val--;

}
public static void main(String args[])
{
int n;
for(int i=0; i < 10; i++) {
n = getnum();
assert n > 0; // will fail when n is 0
System.out.println("n is " + n);
}
}

Programs that use assert must be compiled using the -source 1.4 option. For example,
to compile the preceding program, use this line:

I javac -source 1.4 AssertDemo.java

To enable assertion checking at run time, you must specify the -ea option. For example,
to enable assertions for AssertDemo, execute it using this line.

I java -ea AssertDemo

After compiling and running as just described, the program creates the following
output.

n is 3
n is 2
n is 1

341

-
==
m
e~
2
>
Z
[2)
(=
>
(2]
m

342

Java™ 2: The Complete Reference

Exception in thread "main" java.lang.AssertionError
at AssertDemo.main(AssertDemo.java:1l7)

In main(), repeated calls are made to the method getnum(), which returns an integer
value. The return value of getnum() is assigned to n and then tested using this assert
statement.

I assert n > 0; // will fail when n is 0

This statement will fail when n equals 0, which it will after the fourth call. When this
happens, an exception is thrown.

As explained, you can specify the message displayed when an assertion fails. For
example, if you substitute

I assert n > 0 : "n is negative!";
for the assertion in the preceding program, then the following ouptut will be generated.

n is 3

n is 2

n is 1

Exception in thread "main" java.lang.AssertionError: n is negative!
at AssertDemo.main(AssertDemo.java:l7)

One important point to understand about assertions is that you must not rely on
them to perform any action actually required by the program. The reason is that
normally, released code will be run with assertions disabled. For example, consider
this variation of the preceding program.

// A poor way to use assert!!!
class AssertDemo {
// get a random number generator
static int val = 3;

// Return an integer.

static int getnum() {
return val--;

public static void main(String args[])

Chapter 12: 1/0, Applets, and Other Topics 343

{ =
X
int n = 0; m
L
>
<
for(int i=0; i < 10; i++) { E
2
assert (n = getnum()) > 0; // This is not a good idea! g
>
(2]
System.out.println("n is " + n); (]

}

}

In this version of the program, the call to getnum() is moved inside the assert statement.
Although this works fine if assertions are enabled, it will cause a malfunction when
assertions are disabled because the call to getnum() will never be executed! In fact, n
must now be initialized, because the compiler will recognize that it might not be
assigned a value by the assert statement.

Assertions are a good addition to Java because they streamline the type of error
checking that is common during development. For example, prior to assert, if you
wanted to verify that n was positive in the preceding program, you had to use a
sequence of code similar to this:

if(n < 0) {
System.out.println("n is negative!");
return; // or throw an exception

With assert, you need only one line of code. Furthermore, you don’t have to remove
the assert statements from your released code.

Assertion Enabling and Disabling Options

When executing code, you can disable assertions by using the -da option. You can
enable or disable a specific package by specifying its name after the -ea or -da option.
For example, to enable assertions in a package called MyPack, use

I —ea:MyPack
To disable assertions in MyPack use

I -da:MyPack

344 Java™ 2: The Complete Reference

To enable or disable all subpackages of a package, follow the package name with three
dots. For example,

I -ea:MyPack...

You can also specify a class with the -ea or -da option. For example, this enables
AssertDemo individually.

I —-ea:AssertDemo

gl
Part 1l

The Java Library

This page intentionally left blank.

gl
Chapter 13

String Handling

348

Java™ 2: The Complete Reference

chapter, it is described in detail. As is the case in most other programming

languages, in Java a string is a sequence of characters. But, unlike many other
languages that implement strings as character arrays, Java implements strings as
objects of type String.

Implementing strings as built-in objects allows Java to provide a full complement
of features that make string handling convenient. For example, Java has methods to
compare two strings, search for a substring, concatenate two strings, and change the
case of letters within a string. Also, String objects can be constructed a number of
ways, making it easy to obtain a string when needed.

Somewhat unexpectedly, when you create a String object, you are creating a string
that cannot be changed. That is, once a String object has been created, you cannot change
the characters that comprise that string. At first, this may seem to be a serious restriction.
However, such is not the case. You can still perform all types of string operations. The
difference is that each time you need an altered version of an existing string, a new String
object is created that contains the modifications. The original string is left unchanged. This
approach is used because fixed, immutable strings can be implemented more efficiently
than changeable ones. For those cases in which a modifiable string is desired, there is a
companion class to String called StringBuffer, whose objects contain strings that can be
modified after they are created.

Both the String and StringBuffer classes are defined in java.lang. Thus, they are
available to all programs automatically. Both are declared final, which means that neither
of these classes may be subclassed. This allows certain optimizations that increase
performance to take place on common string operations. Beginning with Java 2,
version 1.4, both String and StringBuffer implement the CharSequence interface.

One last point: To say that the strings within objects of type String are
unchangeable means that the contents of the String instance cannot be changed after it
has been created. However, a variable declared as a String reference can be changed to
point at some other String object at any time.

ﬁ brief overview of Java’s string handling was presented in Chapter 7. In this

___| The String Constructors

The String class supports several constructors. To create an empty String, you call the
default constructor. For example,

I String s = new String();

will create an instance of String with no characters in it.

Frequently, you will want to create strings that have initial values. The String class
provides a variety of constructors to handle this. To create a String initialized by an
array of characters, use the constructor shown here:

String(char chars]])

Chapter 13: String Handling 349

Here is an example:
char chars[] = { 'a', 'b', 'c' };
String s = new String(chars);

This constructor initializes s with the string “abc”.
You can specify a subrange of a character array as an initializer using the
following constructor:

String(char chars[], int startIndex, int numChars)

Here, startindex specifies the index at which the subrange begins, and numChars
specifies the number of characters to use. Here is an example:

[

char chars[] = { 'a', 'b', 'c', 'd', 'e', "f' };
String s = new String(chars, 2, 3);

-
==
m
e~
2
>
=
o
X
>
X
=3

This initializes s with the characters cde.
You can construct a String object that contains the same character sequence as
another String object using this constructor:

String(String strObj)

Here, strObj is a String object. Consider this example:

// Construct one String from another.
class MakeString {
public static void main(String args[]) {
char c[] = {'J', 'a', 'v', 'a'};
String sl = new String(c);
String s2 = new String(sl);

System.out.println(sl);
System.out.println(s2);

The output from this program is as follows:

Java
Java

As you can see, s1 and s2 contain the same string.

350

Java™ 2: The Complete Reference

Even though Java’s char type uses 16 bits to represent the Unicode character set, the
typical format for strings on the Internet uses arrays of 8-bit bytes constructed from the
ASCII character set. Because 8-bit ASCII strings are common, the String class provides
constructors that initialize a string when given a byte array. Their forms are shown here:

String(byte asciiChars|])
String(byte asciiChars[], int startIndex, int numChars)

Here, asciiChars specifies the array of bytes. The second form allows you to specify a
subrange. In each of these constructors, the byte-to-character conversion is done by
using the default character encoding of the platform. The following program illustrates
these constructors:

// Construct string from subset of char array.
class SubStringCons {
public static void main(String args[]) {
byte ascii[] = {65, 66, 67, 68, 69, 70 };

String sl = new String(ascii);
System.out.println(sl);

String s2 = new String(ascii, 2, 3);
System.out.println(s2);

This program generates the following output:

ABCDEF
CDE

Extended versions of the byte-to-string constructors are also defined in which you
can specify the character encoding that determines how bytes are converted to
characters. However, most of the time, you will want to use the default encoding
provided by the platform.

| The contents of the array are copied whenever you create a String object from an array.
/ If you modify the contents of the array after you have created the string, the String will

be unchanged.

Chapter 13: String Handling 351

___| string Length

The length of a string is the number of characters that it contains. To obtain this value,
call the length() method, shown here:

int length()

The following fragment prints “3”, since there are three characters in the string s:

[

char chars[] = { 'a', 'b', 'c¢' };
String s = new String(chars);
System.out.println(s.length());

___| Special String Operations

Because strings are a common and important part of programming, Java has added
special support for several string operations within the syntax of the language. These
operations include the automatic creation of new String instances from string literals,
concatenation of multiple String objects by use of the + operator, and the conversion of
other data types to a string representation. There are explicit methods available to
perform all of these functions, but Java does them automatically as a convenience for
the programmer and to add clarity.

-
=
m
I~
:
>
-
o
X
>
£
=<

String Literals

The earlier examples showed how to explicitly create a String instance from an array of
characters by using the new operator. However, there is an easier way to do this using
a string literal. For each string literal in your program, Java automatically constructs a
String object. Thus, you can use a string literal to initialize a String object. For example,
the following code fragment creates two equivalent strings:

1

char chars[] = { 'a', 'b', 'c' };
String sl = new String(chars);

String s2 = "abc"; // use string literal

Because a String object is created for every string literal, you can use a string literal
any place you can use a String object. For example, you can call methods directly on a
quoted string as if it were an object reference, as the following statement shows. It calls
the length() method on the string “abc”. As expected, it prints “3”.

I System.out.println("abc".length());

352

Java™ 2: The Complete Reference

String Concatenation

In general, Java does not allow operators to be applied to String objects. The one
exception to this rule is the + operator, which concatenates two strings, producing a
String object as the result. This allows you to chain together a series of + operations.
For example, the following fragment concatenates three strings:

String age = "9";

String s = "He is " + age + "

System.out.println(s);

years old.";

This displays the string “He is 9 years old.”

One practical use of string concatenation is found when you are creating very long
strings. Instead of letting long strings wrap around within your source code, you can
break them into smaller pieces, using the + to concatenate them. Here is an example:

// Using concatenation to prevent long lines.
class ConCat {
public static void main(String args[]) {
String longStr = "This could have been " +
"a very long line that would have " +
"wrapped around. But string concatenation " +
"prevents this.";

System.out.println(longStr);

String Concatenation with Other Data Types

You can concatenate strings with other types of data. For example, consider this
slightly different version of the earlier example:

int age = 9;
String s = "He is " + age + " years old.";
System.out.println(s);

In this case, age is an int rather than another String, but the output produced is the
same as before. This is because the int value in age is automatically converted into its
string representation within a String object. This string is then concatenated as before.
The compiler will convert an operand to its string equivalent whenever the other
operand of the + is an instance of String.

Chapter 13: String Handling 353

Be careful when you mix other types of operations with string concatenation
expressions, however. You might get surprising results. Consider the following:

String s = "four: " + 2 + 2;
System.out.println(s);

This fragment displays
four: 22

rather than the
four: 4

that you probably expected. Here’s why. Operator precedence causes the concatenation of
“four” with the string equivalent of 2 to take place first. This result is then concatenated
with the string equivalent of 2 a second time. To complete the integer addition first, you
must use parentheses, like this:

-
=
m
I~
:
>
-
o
X
>
£
=<

I String s = "four: " + (2 + 2);

Now s contains the string “four: 4”.

String Conversion and toString()

When Java converts data into its string representation during concatenation, it does so
by calling one of the overloaded versions of the string conversion method valueOf()
defined by String. valueOf() is overloaded for all the simple types and for type Object.
For the simple types, valueOf() returns a string that contains the human-readable
equivalent of the value with which it is called. For objects, valueOf() calls the
toString() method on the object. We will look more closely at valueOf() later in this
chapter. Here, let’s examine the toString() method, because it is the means by which
you can determine the string representation for objects of classes that you create.

Every class implements toString() because it is defined by Object. However, the
default implementation of toString() is seldom sufficient. For most important classes
that you create, you will want to override toString() and provide your own string
representations. Fortunately, this is easy to do. The toString() method has this
general form:

String toString()

To implement toString(), simply return a String object that contains the human-
readable string that appropriately describes an object of your class.

Java™ 2: The Complete Reference

By overriding toString() for classes that you create, you allow them to be fully
integrated into Java’s programming environment. For example, they can be used in
print() and println() statements and in concatenation expressions. The following
program demonstrates this by overriding toString() for the Box class:

// Override toString() for Box class.
class Box {

double width;

double height;

double depth;

Box(double w, double h, double d) {

width = w;

height = h;

depth = d;
}

public String toString() {
return "Dimensions are " + width + " by " +
depth + " by " + height + ".";

class toStringDemo {
public static void main(String args[]) {
Box b = new Box(10, 12, 14);
String s = "Box b: " + b; // concatenate Box object

System.out.println(b); // convert Box to string
System.out.println(s);

The output of this program is shown here:

Dimensions are 10.0 by 14.0 by 12.0
Box b: Dimensions are 10.0 by 14.0 by 12.0

As you can see, Box’s toString() method is automatically invoked when a Box
object is used in a concatenation expression or in a call to println().

Chapter 13: String Handling 355

___| character Extraction

The String class provides a number of ways in which characters can be extracted from
a String object. Each is examined here. Although the characters that comprise a string
within a String object cannot be indexed as if they were a character array, many of the
String methods employ an index (or offset) into the string for their operation. Like
arrays, the string indexes begin at zero.

charAt()

To extract a single character from a String, you can refer directly to an individual
character via the charAt() method. It has this general form:

char charAt(int where)

Here, where is the index of the character that you want to obtain. The value of where
must be nonnegative and specify a location within the string. charAt() returns the
character at the specified location. For example,

char ch;
ch = "abc".charAt(1l);

assigns the value “b” to ch.

getChars()

If you need to extract more than one character at a time, you can use the getChars()
method. It has this general form:

-
=
m
I~
2
>
-
o
X
>
£
=<

void getChars(int sourceStart, int sourceEnd, char target|], int targetStart)

Here, sourceStart specifies the index of the beginning of the substring, and sourceEnd
specifies an index that is one past the end of the desired substring. Thus, the substring
contains the characters from sourceStart through sourceEnd-1. The array that will receive
the characters is specified by target. The index within target at which the substring will
be copied is passed in targetStart. Care must be taken to assure that the farget array is
large enough to hold the number of characters in the specified substring.

The following program demonstrates getChars():

class getCharsDemo {
public static void main(String args[]) {

356 Java™ 2: The Complete Reference

String s = "This is a demo of the getChars method.";
int start = 10;

int end = 14;

char buf[] = new char[end - start];

s.getChars(start, end, buf, 0);
System.out.println(buf);

Here is the output of this program:

demo

getBytes()

There is an alternative to getChars() that stores the characters in an array of bytes. This
method is called getBytes(), and it uses the default character-to-byte conversions
provided by the platform. Here is its simplest form:

byte[] getBytes()

Other forms of getBytes() are also available. getBytes() is most useful when you
are exporting a String value into an environment that does not support 16-bit Unicode
characters. For example, most Internet protocols and text file formats use 8-bit ASCII
for all text interchange.

toCharArray()

If you want to convert all the characters in a String object into a character array, the
easiest way is to call toCharArray(). It returns an array of characters for the entire
string. It has this general form:

char|] toCharArray()

This function is provided as a convenience, since it is possible to use getChars() to
achieve the same result.

___| string Comparison

The String class includes several methods that compare strings or substrings within
strings. Each is examined here.

Chapter 13: String Handling

equals() and equalsignoreCase()

To compare two strings for equality, use equals(). It has this general form:
boolean equals(Object str)

Here, str is the String object being compared with the invoking String object. It
returns true if the strings contain the same characters in the same order, and false
otherwise. The comparison is case-sensitive.

To perform a comparison that ignores case differences, call equalsIgnoreCase().
When it compares two strings, it considers A-Z to be the same as a-z. It has this
general form:

boolean equalsIgnoreCase(String str)

Here, str is the String object being compared with the invoking String object. It,
too, returns true if the strings contain the same characters in the same order, and
false otherwise.

Here is an example that demonstrates equals() and equalsIgnoreCase():

// Demonstrate equals() and equalsIgnoreCase().
class equalsDemo {
public static void main(String args[]) {

357

-
=
m
I~
2
>
=
[~
X
>
£
=<

String sl = "Hello";

String s2 = "Hello";

String s3 = "Good-bye";

String s4 = "HELLO";

System.out.println(sl + " equals " + s2 + " -> " +
sl.equals(s2));

System.out.println(sl + " equals " + s3 + " -> " +
sl.equals(s3));

System.out.println(sl + " equals " + s4 + " -> " +
sl.equals(s4));

System.out.println(sl + " equalsIgnoreCase " + s4 + " -> " +

sl.equalsIgnoreCase(s4));

The output from the program is shown here:

Hello
Hello
Hello
Hello

equals Hello -> true

equals Good-bye -> false
equals HELLO -> false
equalsIgnoreCase HELLO -> true

358 Java™ 2: The Complete Reference

regionMatches()

The regionMatches() method compares a specific region inside a string with another
specific region in another string. There is an overloaded form that allows you to ignore
case in such comparisons. Here are the general forms for these two methods:

boolean regionMatches(int startIndex, String str2,
int str2StartIndex, int numChars)

boolean regionMatches(boolean igroreCase,
int startIndex, String str2,
int str2Startindex, int numChars)

For both versions, startIndex specifies the index at which the region begins within
the invoking String object. The String being compared is specified by str2. The index
at which the comparison will start within str2 is specified by str2StartIndex. The length
of the substring being compared is passed in numChars. In the second version, if
ignoreCase is true, the case of the characters is ignored. Otherwise, case is significant.

startsWith() and endsWith()

String defines two routines that are, more or less, specialized forms of
regionMatches(). The startsWith() method determines whether a given String begins
with a specified string. Conversely, endsWith() determines whether the String in
question ends with a specified string. They have the following general forms:

boolean startsWith(String str)
boolean endsWith(String str)

Here, str is the String being tested. If the string matches, true is returned. Otherwise,
false is returned. For example,

I "Foobar".endsWith("bar")
and
I "Foobar".startsWith("Foo")

are both true.
A second form of startsWith(), shown here, lets you specify a starting point:

boolean startsWith(String str, int startIndex)

Here, startIndex specifies the index into the invoking string at which point the search
will begin. For example,

Chapter 13: String Handling 359

I "Foobar".startswWith("bar", 3)

returns true.

equals() Versus ==

It is important to understand that the equals() method and the == operator perform
two different operations. As just explained, the equals() method compares the
characters inside a String object. The == operator compares two object references to
see whether they refer to the same instance. The following program shows how two
different String objects can contain the same characters, but references to these objects
will not compare as equal:

// equals() vs ==
class EqualsNotEqualTo {
public static void main(String args[]) {
String sl = "Hello";
String s2 = new String(sl);

-
=
m
I~
2
>
-
o
X
>
£
=<

System.out.println(sl + " equals " + s2 + " -> " +
sl.equals(s2));
System.out.println(sl + " == " + s2 + " -> " + (sl == s2));

The variable s1 refers to the String instance created by “Hello”. The object
referred to by s2 is created with s1 as an initializer. Thus, the contents of the two
String objects are identical, but they are distinct objects. This means that s1 and s2
do not refer to the same objects and are, therefore, not ==, as is shown here by the
output of the preceding example:

Hello equals Hello -> true
Hello == Hello -> false

compareTo()

Often, it is not enough to simply know whether two strings are identical. For sorting
applications, you need to know which is less than, equal to, or greater than the next. A
string is less than another if it comes before the other in dictionary order. A string is
greater than another if it comes after the other in dictionary order. The String method
compareTo() serves this purpose. It has this general form:

int compareTo(String str)

360 Java™ 2: The Complete Reference

Here, str is the String being compared with the invoking String. The result of the
comparison is returned and is interpreted as shown here:

Value Meaning

Less than zero The invoking string is less than str.
Greater than zero The invoking string is greater than str.
Zero The two strings are equal.

Here is a sample program that sorts an array of strings. The program uses
compareTo() to determine sort ordering for a bubble sort:

// A bubble sort for Strings.
class SortString {
static String arr[] = {
"Now", "is", "the", "time", "for", "all", "good", "men",
"to", "come", "to", "the", "aid", "of", "their", "country"
}i
public static void main(String args[]) {
for(int j = 0; j < arr.length; j++) {
for(int i = j + 1; i < arr.length; i++) {
if(arr[i].compareTo(arr[j]) < 0) {
String t = arr[]j];

arr[j] = arr[i];
arr[i] = t;
}
}
System.out.println(arr[j]);

The output of this program is the list of words:

Now
aid

all
come
country
for
good

is

men

Chapter 13: String Handling 361

of
the
the
their
time
to

to

As you can see from the output of this example, compareTo() takes into account
uppercase and lowercase letters. The word “Now” came out before all the others
because it begins with an uppercase letter, which means it has a lower value in the
ASCII character set.

If you want to ignore case differences when comparing two strings, use
compareTolgnoreCase(), shown here:

int compareTolgnoreCase(String str)

-
=
m
I~
2
>
-
o
X
>
£
=<

This method returns the same results as compareTo(), except that case differences are
ignored. This method was added by Java 2. You might want to try substituting it into
the previous program. After doing so, “Now” will no longer be first.

Searching Strings

The String class provides two methods that allow you to search a string for a specified
character or substring:

B indexOf() Searches for the first occurrence of a character or substring.

B lastIndexOf() Searches for the last occurrence of a character or substring.

These two methods are overloaded in several different ways. In all cases, the methods
return the index at which the character or substring was found, or -1 on failure.
To search for the first occurrence of a character, use

int indexOf(int ch)
To search for the last occurrence of a character, use
int lastIndexOf(int ch)

Here, ch is the character being sought.
To search for the first or last occurrence of a substring, use

int indexOf(String str)
int lastIndexOf(String str)

Here, str specifies the substring.

362 Java™ 2: The Complete Reference

You can specify a starting point for the search using these forms:

int indexOf(int ch, int startIndex)
int lastindexOf(int ¢/, int startIndex)

int indexOf(String str, int startIndex)
int lastIndexOf(String str, int startIndex)

Here, startIndex specifies the index at which point the search begins. For indexOf(),
the search runs from startIndex to the end of the string. For lastindexOf(), the search
runs from startIndex to zero.

The following example shows how to use the various index methods to search
inside of Strings:

// Demonstrate indexOf() and lastIndexOf().
class indexOfDemo {
public static void main(String args[]) {
String s = "Now is the time for all good men " +
"to come to the aid of their country.";

System.out.println(s);
System.out.println("indexOf(t) = " +
s.indexOf('t'));
System.out.println("lastIndexOf(t) = " +
s.lastIndexOf('t'));
System.out.println("indexOf(the) = " +
s.indexOf("the"));
System.out.println("lastIndexOf(the) = " +
s.lastIndexOf ("the"));
System.out.println("indexOf(t, 10) = " +
s.indexOf('t', 10));
System.out.println("lastIndexOf(t, 60) = " +
s.lastIndexOf('t', 60));
System.out.println("indexOf(the, 10) = " +
s.indexOf ("the", 10));
System.out.println("lastIndexOf(the, 60) = " +
s.lastIndexOf("the", 60));

Here is the output of this program:

Now is the time for all good men to come to the aid of their country.
indexOf(t) = 7

Chapter 13: String Handling 363

lastIndexOf(t) = 65
indexOf (the) = 7
lastIndexOf (the) = 55
indexOf(t, 10) = 11
lastIndexOf(t, 60) = 55
indexOf (the, 10) = 44
lastIndexOf(the, 60) = 55

___| Modifying a String

Because String objects are immutable, whenever you want to modify a String, you
must either copy it into a StringBuffer or use one of the following String methods,
which will construct a new copy of the string with your modifications complete.

substring()

You can extract a substring using substring(). It has two forms. The first is

-
=
m
I~
2
>
-
o
X
>
£
=<

String substring(int startIndex)

Here, startIndex specifies the index at which the substring will begin. This form returns a
copy of the substring that begins at startIndex and runs to the end of the invoking string.

The second form of substring() allows you to specify both the beginning and
ending index of the substring:

String substring(int startIndex, int endIndex)

Here, startIndex specifies the beginning index, and endIndex specifies the stopping
point. The string returned contains all the characters from the beginning index, up to,
but not including, the ending index.

The following program uses substring() to replace all instances of one substring
with another within a string:

// Substring replacement.
class StringReplace {
public static void main(String args[]) {

String org = "This is a test. This is, too.";
String search = "is";
String sub = "was";
String result = "";
int i;

do { // replace all matching substrings
System.out.println(org);

364 Java™ 2: The Complete Reference

i = org.indexOf(search);

if(i 1= -1) {
result = org.substring(0, 1i);
result = result + sub;
result = result + org.substring(i + search.length());
org = result;

}

} while(i != -1);

The output from this program is shown here:

This is a test. This is, too.
Thwas is a test. This is, too.
Thwas was a test. This is, too.
Thwas was a test. Thwas is, too.
Thwas was a test. Thwas was, too.

concat()

You can concatenate two strings using concat(), shown here:
String concat(String str)

This method creates a new object that contains the invoking string with the contents
of str appended to the end. concat() performs the same function as +. For example,

String sl = "one";
String s2 = sl.concat("two");

puts the string “onetwo” into s2. It generates the same result as the following sequence:

String sl = "one";
String s2 = sl + "two";

replace()

The replace() method replaces all occurrences of one character in the invoking string
with another character. It has the following general form:

Chapter 13: String Handling

String replace(char original, char replacement)

Here, original specifies the character to be replaced by the character specified by
replacement. The resulting string is returned. For example,

I String s = "Hello".replace('l', 'w');

puts the string “Hewwo” into s.

trim()

The trim() method returns a copy of the invoking string from which any leading and
trailing whitespace has been removed. It has this general form:

String trim()

Here is an example:
I String s = " Hello World ".trim();

This puts the string “Hello World” into s.

The trim() method is quite useful when you process user commands. For example,
the following program prompts the user for the name of a state and then displays that
state’s capital. It uses trim() to remove any leading or trailing whitespace that may
have inadvertently been entered by the user.

// Using trim() to process commands.
import java.io.*;

class UseTrim {
public static void main(String args[])
throws IOException

// create a BufferedReader using System.in
BufferedReader br = new

BufferedReader (new InputStreamReader (System.in));
String str;

System.out.println("Enter 'stop' to quit.");
System.out.println("Enter State: ");
do {

365

-
=
m
e~
2
>
=
[~
X
>
£
=<

366 Java™ 2: The Complete Reference

str br.readLine();

str = str.trim(); // remove whitespace

if(str.equals("Illinois"))
System.out.println("Capital is Springfield.");

else if(str.equals("Missouri"))
System.out.println("Capital is Jefferson City.");

else if(str.equals("California"))
System.out.println("Capital is Sacramento.");

else if(str.equals("Washington"))
System.out.println("Capital is Olympia.");

/...

} while(!str.equals("stop"));

___ | Data Conversion Using valueOf()

The valueOf() method converts data from its internal format into a human-readable
form. It is a static method that is overloaded within String for all of Java’s built-in types,
so that each type can be converted properly into a string. valueOf£() is also overloaded
for type Object, so an object of any class type you create can also be used as an argument.
(Recall that Object is a superclass for all classes.) Here are a few of its forms:

static String valueOf(double num)
static String valueOf(long num)
static String valueOf(Object ob)
static String valueOf(char chars[])

As we discussed earlier, valueOf() is called when a string representation of some
other type of data is needed—for example, during concatenation operations. You can call
this method directly with any data type and get a reasonable String representation. All
of the simple types are converted to their common String representation. Any object that
you pass to valueOf() will return the result of a call to the object’s toString() method. In
fact, you could just call toString() directly and get the same result.

For most arrays, valueOf() returns a rather cryptic string, which indicates that it
is an array of some type. For arrays of char, however, a String object is created that
contains the characters in the char array. There is a special version of valueOf() that
allows you to specify a subset of a char array. It has this general form:

static String valueOf(char chars[], int startIndex, int numChars)

Chapter 13: String Handling

Here, chars is the array that holds the characters, startIndex is the index into the array of
characters at which the desired substring begins, and numChars specifies the length of
the substring.

Changing the Case of Characters
Within a String

The method toLowerCase() converts all the characters in a string from uppercase to
lowercase. The toUpperCase() method converts all the characters in a string from
lowercase to uppercase. Nonalphabetical characters, such as digits, are unaffected.
Here are the general forms of these methods:

String toLowerCase()
String toUpperCase()

Both methods return a String object that contains the uppercase or lowercase
equivalent of the invoking String.
Here is an example that uses toLowerCase() and toUpperCase():

// Demonstrate toUpperCase() and toLowerCase().

class ChangeCase {
public static void main(String args[])

{
String s = "This is a test.";
System.out.println("Original: " + s);
String upper = s.toUpperCase();
String lower = s.toLowerCase();
System.out.println("Uppercase: " + upper);
System.out.println("Lowercase: " + lower);
}

The output produced by the program is shown here:

Original: This is a test.
Uppercase: THIS IS A TEST.
Lowercase: this is a test.

367

-
=
m
I~
2
>
-
o
X
>
£
=<

368

Java™ 2: The Complete Reference

Method

boolean contentEquals(StringBuffer str)

CharSequence
subSequence(int startIndex,
int stopIndex)

boolean matches(string regExp)

String
replaceFirst(String regExp,
String newStr)

String
replaceAll(String regExp,
String newStr)

String][] split(String regExp)

String|] split(String regExp, int max)

String Methods Added by Java 2, Version 1.4

Java 2, version 1.4 adds several methods to the String class. These are summarized in
the following table.

Description

Returns true if the invoking string contains
the same string as str. Otherwise, returns
false.

Returns a substring of the invoking string,
beginning at startIndex and stopping at
stopIndex. This method is required by the
CharSequence interface, which is now
implemented by String.

Returns true if the invoking string matches
the regular expression passed in regExp.
Otherwise, returns false.

Returns a string in which the first substring
that matches the regular expression
specified by regExp is replaced by newStr.

Returns a string in which all substrings that
match the regular expression specified by
regExp are replaced by newStr.

Decomposes the invoking string into parts
and returns an array that contains the
result. Each part is delimited by the regular
expression passed in regExp.

Decomposes the invoking string into parts
and returns an array that contains the
result. Each part is delimited by the regular
expression passed in regExp. The number
of pieces is specified by max. If max is
negative, then the invoking string is fully
decomposed. Otherwise, if max contains

a non-zero value, the last entry in the
returned array contains the remainder

of the invoking string. If max is zero, the
invoking string is fully decomposed.

Chapter 13: String Handling

Notice that several of these methods work with regular expressions. Support for
regular expression processing was added by Java 2, version 1.4 and is described in
Chapter 24.

___| stringBuffer

StringBuffer is a peer class of String that provides much of the functionality of strings.
As you know, String represents fixed-length, immutable character sequences. In contrast,
StringBuffer represents growable and writeable character sequences. StringBuffer
may have characters and substrings inserted in the middle or appended to the end.
StringBuffer will automatically grow to make room for such additions and often has
more characters preallocated than are actually needed, to allow room for growth. Java
uses both classes heavily, but many programmers deal only with String and let Java
manipulate StringBuffers behind the scenes by using the overloaded + operator.

StringBuffer Constructors

StringBuffer defines these three constructors:

StringBuffer()
StringBuffer(int size)
StringBuffer(String str)

The default constructor (the one with no parameters) reserves room for 16
characters without reallocation. The second version accepts an integer argument that
explicitly sets the size of the buffer. The third version accepts a String argument that
sets the initial contents of the StringBuffer object and reserves room for 16 more
characters without reallocation. StringBuffer allocates room for 16 additional
characters when no specific buffer length is requested, because reallocation is a costly
process in terms of time. Also, frequent reallocations can fragment memory. By
allocating room for a few extra characters, StringBuffer reduces the number of
reallocations that take place.

length() and capacity()

The current length of a StringBuffer can be found via the length() method, while the
total allocated capacity can be found through the capacity() method. They have the
following general forms:

int length()
int capacity()

369

370 Java™ 2: The Complete Reference

Here is an example:

// StringBuffer length vs. capacity.
class StringBufferDemo {
public static void main(String args[]) {
StringBuffer sb = new StringBuffer("Hello");

System.out.println("buffer = " + sb);
System.out.println("length = " + sb.length());
System.out.println("capacity = " + sb.capacity());

Here is the output of this program, which shows how StringBuffer reserves extra
space for additional manipulations:

buffer = Hello
length =5

capacity 21

Since sb is initialized with the string “Hello” when it is created, its length is 5. Its
capacity is 21 because room for 16 additional characters is automatically added.

ensureCapacity()

If you want to preallocate room for a certain number of characters after a StringBuffer
has been constructed, you can use ensureCapacity() to set the size of the buffer. This is
useful if you know in advance that you will be appending a large number of small
strings to a StringBuffer. ensureCapacity() has this general form:

void ensureCapacity(int capacity)

Here, capacity specifies the size of the bulffer.

setLength()

To set the length of the buffer within a StringBuffer object, use setLength(). Its general
form is shown here:

void setLength(int len)

Here, len specifies the length of the buffer. This value must be nonnegative.

When you increase the size of the buffer, null characters are added to the end of
the existing buffer. If you call setLength() with a value less than the current value
returned by length(), then the characters stored beyond the new length will be lost.

Chapter 13: String Handling 371

The setCharAtDemo sample program in the following section uses setLength() to
shorten a StringBuffer.

charAt() and setCharAt()

The value of a single character can be obtained from a StringBuffer via the charAt()
method. You can set the value of a character within a StringBuffer using setCharAt().
Their general forms are shown here:

char charAt(int where)
void setCharAt(int where, char ch)

For charAt(), where specifies the index of the character being obtained. For
setCharAt(), where specifies the index of the character being set, and ch specifies the
new value of that character. For both methods, where must be nonnegative and must
not specify a location beyond the end of the buffer.

The following example demonstrates charAt() and setCharAt():

-
=
m
I~
2
>
-
o
X
>
£
=<

// Demonstrate charAt() and setCharAt().
class setCharAtDemo {
public static void main(String args[]) {
StringBuffer sb = new StringBuffer("Hello");
System.out.println("buffer before = " + sb);
System.out.println("charAt(l) before = " + sb.charAt(l));
sb.setCharAt (1, 'i');
sb.setLength(2);
System.out.println("buffer after = " + sb);
System.out.println("charAt(1l) after = " + sb.charAt(1l));
}
}

Here is the output generated by this program:

buffer before = Hello
charAt(1l) before = e
buffer after = Hi
charAt(1l) after = i

getChars()

To copy a substring of a StringBuffer into an array, use the getChars() method. It has
this general form:

void getChars(int sourceStart, int sourceEnd, char target[],
int targetStart)

372

Java™ 2: The Complete Reference

Here, sourceStart specifies the index of the beginning of the substring, and sourceEnd
specifies an index that is one past the end of the desired substring. This means that the
substring contains the characters from sourceStart through sourceEnd-1. The array that
will receive the characters is specified by target. The index within target at which the
substring will be copied is passed in targetStart. Care must be taken to assure that the
target array is large enough to hold the number of characters in the specified substring.

append()

The append() method concatenates the string representation of any other type of data
to the end of the invoking StringBuffer object. It has overloaded versions for all the
built-in types and for Object. Here are a few of its forms:

StringBuffer append(String str)
StringBuffer append (int num)
StringBuffer append(Object obj)

String.valueOf() is called for each parameter to obtain its string representation.
The result is appended to the current StringBuffer object. The buffer itself is returned
by each version of append(). This allows subsequent calls to be chained together, as
shown in the following example:

// Demonstrate append().
class appendDemo {
public static void main(String args[]) {
String s;
int a = 42;
StringBuffer sb = new StringBuffer(40);

s = sb.append("a = ").append(a).append("!").toString();
System.out.println(s);
}

The output of this example is shown here:
a = 42!

The append() method is most often called when the + operator is used on String
objects. Java automatically changes modifications to a String instance into similar
operations on a StringBuffer instance. Thus, a concatenation invokes append() on a
StringBuffer object. After the concatenation has been performed, the compiler inserts a
call to toString() to turn the modifiable StringBuffer back into a constant String. All of
this may seem unreasonably complicated. Why not just have one string class and have
it behave more or less like StringBuffer? The answer is performance. There are many
optimizations that the Java run time can make knowing that String objects are

Chapter 13: String Handling 373

immutable. Thankfully, Java hides most of the complexity of conversion between
Strings and StringBuffers. Actually, many programmers will never feel the need to
use StringBuffer directly and will be able to express most operations in terms of the
+ operator on String variables.

insert()

The insert() method inserts one string into another. It is overloaded to accept values of
all the simple types, plus Strings and Objects. Like append(), it calls String.valueOf()
to obtain the string representation of the value it is called with. This string is then
inserted into the invoking StringBuffer object. These are a few of its forms:

StringBuffer insert(int index, String str)
StringBuffer insert(int index, char ch)
StringBuffer insert(int index, Object oby)

-
=
m
I~
2
>
=
o
X
>
£
=<

Here, index specifies the index at which point the string will be inserted into the
invoking StringBuffer object.
The following sample program inserts “like” between “I” and “Java”:

// Demonstrate insert().
class insertDemo {
public static void main(String args[]) {
StringBuffer sb = new StringBuffer("I Java!");

sb.insert (2, "like ");
System.out.println(sb);
}
}

The output of this example is shown here:

I like Javal!

reverse()

You can reverse the characters within a StringBuffer object using reverse(), shown here:
StringBuffer reverse()

This method returns the reversed object on which it was called. The following program
demonstrates reverse():

// Using reverse() to reverse a StringBuffer.
class ReverseDemo {

374 Java™ 2: The Complete Reference

public static void main(String args[]) {
StringBuffer s = new StringBuffer("abcdef");

System.out.println(s);
s.reverse();
System.out.println(s);
}
}

Here is the output produced by the program:

abcdef
fedcba

delete() and deleteCharAt()

Java 2 added to StringBuffer the ability to delete characters using the methods
delete() and deleteCharAt(). These methods are shown here:

StringBuffer delete(int startIndex, int endIndex)
StringBuffer deleteCharAt(int loc)

The delete() method deletes a sequence of characters from the invoking object.
Here, startIndex specifies the index of the first character to remove, and endIndex
specifies an index one past the last character to remove. Thus, the substring deleted
runs from startIndex to endIndex—1. The resulting StringBuffer object is returned.

The deleteCharAt() method deletes the character at the index specified by loc.
It returns the resulting StringBuffer object.

Here is a program that demonstrates the delete() and deleteCharAt() methods:

// Demonstrate delete() and deleteCharAt()
class deleteDemo {
public static void main(String args[]) {
StringBuffer sb = new StringBuffer("This is a test.");

sb.delete(4, 7);
System.out.println("After delete: " + sb);

sb.deleteCharAt(0);
System.out.println("After deleteCharAt: " + sb);

Chapter 13: String Handling 375

The following output is produced:

After delete: This a test.
After deleteCharAt: his a test.

replace()

Another method added to StringBuffer by Java 2 is replace(). It replaces one set of
characters with another set inside a StringBuffer object. Its signature is shown here:

StringBuffer replace(int startIndex, int endIndex, String str)

The substring being replaced is specified by the indexes startIndex and endIndex. Thus,
the substring at startIndex through endlndex-1 is replaced. The replacement string is
passed in str. The resulting StringBuffer object is returned.

The following program demonstrates replace():

-
=
m
I~
2
>
-
[~
X
>
£
=<

// Demonstrate replace()
class replaceDemo {
public static void main(String args[]) {
StringBuffer sb = new StringBuffer("This is a test.");

sb.replace(5, 7, "was");
System.out.println("After replace: " + sb);

}

Here is the output:

After replace: This was a test.

substring()

Java 2 also added the substring() method, which returns a portion of a StringBuffer. It
has the following two forms:

String substring(int startIndex)
String substring(int startIndex, int endIndex)

The first form returns the substring that starts at startIndex and runs to the end of the
invoking StringBuffer object. The second form returns the substring that starts at
startIndex and runs through endIndex—1. These methods work just like those defined for
String that were described earlier.

376 Java™ 2: The Complete Reference

StringBuffer Methods Added by Java 2, Version 1.4

Java 2, version 1.4 added several new methods to StringBuffer. They are summarized

in the following table.

Method

CharSequence

subSequence(int startindex,

int stopIndex)

int indexOf(String str)

int indexOf(String str, int startIndex)

int lastIndexOf(String str)

int lastIndexOf(String str, int startIndex)

Description

Returns a substring of the invoking
string, beginning at startIndex and
stopping at stopIndex. This method is
required by the CharSequence interface,
which is now implemented by
StringBuffer.

Searches the invoking StringBuffer for
the first occurrence of str. Returns the
index of the match, or -1 if no match is
found.

Searches the invoking StringBuffer for
the first occurrence of str, beginning at
startIndex. Returns the index of the
match, or -1 if no match is found.

Searches the invoking StringBuffer for
the last occurrence of str. Returns the
index of the match, or —1 if no match is
found.

Searches the invoking StringBuffer for
the last occurrence of str, beginning at
startIndex. Returns the index of the
match, or -1 if no match is found.

Aside from subSequence(), which implements a method required by the
CharSequence interface, the other methods allow a StringBuffer to be searched for an
occurrence of a String. The following program demonstrates indexOf() and

lastIndexOf().

class IndexOfDemo {

public static void main(String args[]) {
StringBuffer sb = new StringBuffer("one two one");

int i;

Chapter 13: String Handling 377

i = sb.indexOf("one");
System.out.println("First index: " + 1i);

i = sb.lastIndexOf("one");
System.out.println("Last index: " + 1i);

The output is shown here.

First index: 0
Last index: 8

-
==
m
e~
2
>
-
o
X
>
X
<

This page intentionally left blank.

gl
Chapter 14

Exploring java.lang

380

Java™ 2: The Complete Reference

know, java.lang is automatically imported into all programs. It contains classes
and interfaces that are fundamental to virtually all of Java programming. It is
Java’s most widely used package.
java.lang includes the following classes:

This chapter discusses those classes and interfaces defined by java.lang. As you

Boolean Long StackTraceElement (Java 2,1.4)
Byte Math StrictMath (Java 2,1.3)
Character Number String

Class Object StringBuffer

ClassLoader Package (Java 2) System

Compiler Process Thread

Double Runtime ThreadGroup

Float RuntimePermission (Java2) ThreadLocal (Java 2)
InheritableThreadLocal (Java 2) SecurityManager Throwable

Integer Short Void

In addition, there are two classes defined by Character: Character.Subset and
Character.UnicodeBlock. These were added by Java 2.
java.lang also defines the following interfaces:

H Cloneable

B Comparable
H Runnable

B CharSequence

The Comparable interface was added by Java 2. CharSequence was added by Java 2,
version 1.4.

Several of the classes contained in java.lang contain deprecated methods, most
dating back to Java 1.0. These deprecated methods are still provided by Java 2, to
support an ever-shrinking pool of legacy code, and are not recommended for new code.
Most of the deprecations took place prior to Java 2 and these deprecated methods are not
discussed here. Deprecations that occurred because of Java 2, however, are mentioned.

Java 2 also added several new classes and methods to the java.lang package. The
new additions are so indicated.

___| simple Type Wrappers

As we mentioned in Part I of this book, Java uses simple types, such as int and char, for
performance reasons. These data types are not part of the object hierarchy. They are

Chapter 14: Exploring java.lang 381

passed by value to methods and cannot be directly passed by reference. Also, there is
no way for two methods to refer to the same instance of an int. At times, you will need
to create an object representation for one of these simple types. For example, there are
enumeration classes discussed in Chapter 15 that deal only with objects; to store a
simple type in one of these classes, you need to wrap the simple type in a class. To
address this need, Java provides classes that correspond to each of the simple types. In
essence, these classes encapsulate, or wrap, the simple types within a class. Thus, they
are commonly referred to as fype wrappers.

Number

The abstract class Number defines a superclass that is implemented by the classes that
wrap the numeric types byte, short, int, long, float, and double. Number has abstract
methods that return the value of the object in each of the different number formats.
That is, doubleValue() returns the value as a double, floatValue() returns the value
as a float, and so on. These methods are shown here:

-
=
m
I~
:
>
-
o
X
>
£
=<

byte byteValue()
double doubleValue()
float floatValue()

int intValue()

long longValue()
short shortValue()

The values returned by these methods can be rounded.
Number has six concrete subclasses that hold explicit values of each numeric type:
Double, Float, Byte, Short, Integer, and Long.

Double and Float

Double and Float are wrappers for floating-point values of type double and float,
respectively. The constructors for Float are shown here:

Float(double num)
Float(float num)
Float(String str) throws NumberFormatException

As you can see, Float objects can be constructed with values of type float or double.
They can also be constructed from the string representation of a floating-point number.
The constructors for Double are shown here:

Double(double num)
Double(String str) throws NumberFormatException

Double objects can be constructed with a double value or a string containing a
floating-point value.

382 Java™ 2: The Complete Reference

The methods defined by Float are shown in Table 14-1. The methods defined by
Double are shown in Table 14-2. Both Float and Double define the following constants:

MAX_VALUE Maximum positive value

MIN_VALUE Minimum positive value

NaN Not a number

POSITIVE_INFINITY Positive infinity

NEGATIVE_INFINITY Negative infinity

TYPE The Class object for float or double

Method Description

byte byteValue() Returns the value of the invoking object as

a byte.

static int compare(float numl, Compares the values of num1 and num?.

float num?2) Returns 0 if the values are equal. Returns a

negative value if num1 is less than num?2.
Returns a positive value if num1 is greater
than num?2. (Added by Java 2, version 1.4)

int compareTo(Float f) Compares the numerical value of the
invoking object with that of f. Returns 0 if
the values are equal. Returns a negative
value if the invoking object has a lower
value. Returns a positive value if the
invoking object has a greater value.
(Added by Java 2)

int compareTo(Object obj) Operates identically to compareTo(Float)
if obj is of class Float. Otherwise, throws a
ClassCastException. (Added by Java 2)

double doubleValue() Returns the value of the invoking object as
a double.
boolean equals(Object FloatObj) Returns true if the invoking Float object is

equivalent to FloatObj. Otherwise, it
returns false.

Table 14-1. The Methods Defined by Float

Chapter 14: Exploring java.lang

Method

static int floatToIntBits(float num)

float floatValue()

int hashCode()

static float intBitsToFloat(int num)
int intValue()

boolean isInfinite()

static boolean isInfinite(float num)

boolean isNaN()

static boolean isNaN(float num)
long longValue()

static float parseFloat(String str)
throws NumberFormatException

short shortValue()
String toString()
static String toString(float numz)

static Float valueOf(String str)
throws NumberFormatException

Description

Returns the IEEE-compatible,
single-precision bit pattern that
corresponds to the num.

Returns the value of the invoking object as
a float.

Returns the hash code for the invoking object.

Returns float equivalent of the
IEEE-compatible, single-precision bit
pattern specified by num.

Returns the value of the invoking object as
an int.

Returns true if the invoking object contains
an infinite value. Otherwise, it returns false.

Returns true if num specifies an infinite
value. Otherwise, it returns false.

Returns true if the invoking object
contains a value that is not a number.
Otherwise, it returns false.

Returns true if num specifies a value that is
not a number. Otherwise, it returns false.

Returns the value of the invoking object as
along.

Returns the float equivalent of the number
contained in the string specified by str
using radix 10. (Added by Java 2)

Returns the value of the invoking object as
a short.

Returns the string equivalent of the
invoking object.

Returns the string equivalent of the value
specified by num.

Returns the Float object that contains the
value specified by the string in str.

Table 14-1.

The Methods Defined by Float (continued)

383

384

Java™ 2: The Complete Reference

Method
byte byteValue()

static int compare(double num1,
double num?2)

int compareTo(Double d)

int compareTo(Object obj)

double doubleValue()

boolean equals(Object DoubleObj)

float floatValue()

int hashcode()

static long doubleToLongBits(double numn)

Description

Returns the value of the invoking
object as a byte.

Compares the values of num1 and
num?2. Returns 0 if the values are
equal. Returns a negative value if
num1 is less than num2. Returns a
positive value if num1 is greater than
num?. (Added by Java 2, version 1.4)

Compares the numerical value of
the invoking object with that of d.
Returns 0 if the values are equal.
Returns a negative value if the
invoking object has a lower value.
Returns a positive value if the
invoking object has a greater value.
(Added by Java 2)

Operates identically to
compareTo(Double) if obj is of
class Double. Otherwise, throws
a ClassCastException. (Added
by Java 2)

Returns the IEEE-compatible,
double-precision bit pattern that
corresponds to the num.

Returns the value of the invoking
object as a double.

Returns true if the invoking
Double object is equivalent
to DoubleObj. Otherwise, it
returns false.

Returns the value of the invoking
object as a float.

Returns the hash code for the
invoking object.

Table 14-2. The Methods Defined by Double

Chapter 14: Exploring java.lang 385

Method Description

int intValue() Returns the value of the invoking
object as an int.

boolean isInfinite() Returns true if the invoking object
contains an infinite value.
Otherwise, it returns false.

static boolean isInfinite(double num) Returns true if num specifies an
infinite value. Otherwise, it
returns false.

boolean isNaN() Returns true if the invoking object
contains a value that isnot a
number. Otherwise, it returns false.

-
=
m
I~
:
>
-
o
X
>
£
=<

static boolean isNaN(double num1) Returns true if num specifies a
value that is not a number.
Otherwise, it returns false.

static double longBitsToDouble(long num) Returns double equivalent of the
IEEE-compatible, double-precision
bit pattern specified by num.

long longValue() Returns the value of the invoking
object as a long.
static double parseDouble(String str) Returns the double equivalent of
throws NumberFormatException the number contained in the string
specified by str using radix 10.
(Added by Java 2)
short shortValue() Returns the value of the invoking
object as a short.
String toString() Returns the string equivalent of the
invoking object.
static String toString(double num) Returns the string equivalent of the
value specified by num.
static Double valueOf(String str) Returns a Double object that
throws NumberFormatException contains the value specified by the

string in str.

Table 14-2. The Methods Defined by Double (continued)

386

Java™ 2: The Complete Reference

The following example creates two Double objects—one by using a double value
and the other by passing a string that can be parsed as a double:

class DoubleDemo {
public static void main(String args[]) {
Double dl = new Double(3.14159);
Double d2 = new Double("314159E-5");

System.out.println(dl + " = " + d2 + " -> " + dl.equals(d2));

As you can see from the following output, both constructors created identical Double
instances, as shown by the equals() method returning true:

3.14159 = 3.14159 — true

Understanding isInfinite() and isNaN()
Float and Double provide the methods isInfinite() and isNaN(), which help when
manipulating two special double and float values. These methods test for two unique
values defined by the IEEE floating-point specification: infinity and NaN (not a
number). isInfinite() returns true if the value being tested is infinitely large or small
in magnitude. isNaN() returns true if the value being tested is not a number.

The following example creates two Double objects; one is infinite, and the other is
not a number:

// Demonstrate isInfinite() and isNaN()
class InfNaN {
public static void main(String args[]) {
Double dl = new Double(1/0.);
Double d2 = new Double(0/0.);

System.out.println(dl + ": " + dl.isInfinite() + ", " + dl.isNaN());
System.out.println(d2 + ": " + d2.isInfinite() + ", " + d2.isNaN());

This program generates the following output:

Infinity: true, false
NaN: false, true

Chapter 14: Exploring java.lang

Byte, Short, Integer, and Long

The Byte, Short, Integer, and Long classes are wrappers for byte, short, int, and long
integer types, respectively. Their constructors are shown here:

Byte(byte num)
Byte(String str) throws NumberFormatException

Short(short num)
Short(String str) throws NumberFormatException

Integer(int num)
Integer(String str) throws NumberFormatException

Long(long num)
Long(String str) throws NumberFormatException

As you can see, these objects can be constructed from numeric values or from strings
that contain valid whole number values.

The methods defined by these classes are shown in Tables 14-3 through 14-6. As
you can see, they define methods for parsing integers from strings and converting
strings back into integers. Variants of these methods allow you to specify the radix,
or numeric base, for conversion. Common radixes are 2 for binary, 8 for octal, 10 for
decimal, and 16 for hexadecimal.

The following constants are defined:

MIN_VALUE Minimum value
MAX_VALUE Maximum value
TYPE The Class object for byte, short, int, or long
Method Description
byte byteValue() Returns the value of the invoking
object as a byte.
int compareTo(Byte b) Compares the numerical value of

the invoking object with that of b.
Returns 0 if the values are equal.
Returns a negative value if the
invoking object has a lower value.
Returns a positive value if the
invoking object has a greater value.
(Added by Java 2)

Table 14-3. The Methods Defined by Byte

387

388

Java™ 2: The Complete Reference

Method

int compareTo(Object obj)

static Byte decode(String str)
throws NumberFormatException

double doubleValue()

boolean equals(Object ByteOby)

float floatValue()
int hashCode()
int intValue()
long longValue()

static byte parseByte(String str)
throws NumberFormatException

static byte parseByte(String str, int radix)
throws NumberFormatException

short shortValue()

Description

Operates identically to
compareTo(Byte) if obj is of class
Byte. Otherwise, throws a
ClassCastException. (Added

by Java 2)

Returns a Byte object that contains
the value specified by the string
in str.

Returns the value of the invoking
object as a double.

Returns true if the invoking Byte
object is equivalent to ByteObj.
Otherwise, it returns false.

Returns the value of the invoking
object as a float.

Returns the hash code for the
invoking object.

Returns the value of the invoking
object as an int.

Returns the value of the invoking
object as a long.

Returns the byte equivalent of the
number contained in the string
specified by str using radix 10.

Returns the byte equivalent of
the number contained in the
string specified by str using the
specified radix.

Returns the value of the invoking
object as a short.

String toString() Returns a string that contains
the decimal equivalent of the
invoking object.

Table 14-3. The Methods Defined by Byte (continued)

Chapter 14: Exploring java.lang

Method

static String toString(byte num)

static Byte valueOf(String str)
throws NumberFormatException

static Byte valueOf(String str, int radix)

throws NumberFormatException

Description

Returns a string that contains the
decimal equivalent of num.

Returns a Byte object that contains
the value specified by the string
in str.

Returns a Byte object that contains
the value specified by the string in
str using the specified radix.

Table 14-3. The Methods Defined by Byte (continued)

Method
byte byteValue()

int compareTo(Short s)

int compareTo(Object obj)

static Short decode(String str)
throws NumberFormatException

Description

Returns the value of the invoking
object as a byte.

Compares the numerical value of
the invoking object with that of s.
Returns 0 if the values are equal.
Returns a negative value if the
invoking object has a lower value.
Returns a positive value if the
invoking object has a greater value.
(Added by Java 2)

Operates identically to
compareTo(Short) if obj is of
class Short. Otherwise, throws
a ClassCastException. (Added
by Java 2)

Returns a Short object that
contains the value specified by
the string in str.

Table 14-4. The Methods Defined by Short

389

390

Java™ 2: The Complete Reference

Method
double doubleValue()

boolean equals(Object ShortObyj)

float floatValue()
int hashCode()
int intValue()
long longValue()

static short parseShort(String str)
throws NumberFormatException

static short parseShort(String str, int radix)
throws NumberFormatException

short shortValue()

String toString()

static String toString(short num)

static Short valueOf(String str)
throws NumberFormatException

static Short valueOf(String str, int radix)
throws NumberFormatException

Description

Returns the value of the invoking
object as a double.

Returns true if the invoking
Integer object is equivalent
to ShortObj. Otherwise, it
returns false.

Returns the value of the invoking
object as a float.

Returns the hash code for the
invoking object.

Returns the value of the invoking
object as an int.

Returns the value of the invoking
object as a long.

Returns the short equivalent of the
number contained in the string
specified by str using radix 10.

Returns the short equivalent
of the number contained in the
string specified by str using
the specified radix.

Returns the value of the invoking
object as a short.

Returns a string that contains
the decimal equivalent of the
invoking object.

Returns a string that contains the
decimal equivalent of num.

Returns a Short object that contains
the value specified by the string in
str using radix 10.

Returns a Short object that contains
the value specified by the string in
str using the specified radix.

Table 14-4.

The Methods Defined by Short (continued)

Chapter 14: Exploring java.lang 391

Method Description

byte byteValue() Returns the value of the invoking
object as a byte.

int compareTo(Integer i) Compares the numerical value of
the invoking object with that of i.
Returns 0 if the values are equal.
Returns a negative value if the
invoking object has a lower
value. Returns a positive value if
the invoking object has a greater
value. (Added by Java 2)

int compareTo(Object obj) Operates identically to
compareTo(Integer) if obj is of
class Integer. Otherwise, throws
a ClassCastException. (Added

-
=
m
I~
2
>
-
o
X
>
£
=<

by Java 2)
static Integer decode(String str) Returns an Integer object that
throws NumberFormatException contains the value specified by

the string in str.

double doubleValue() Returns the value of the invoking
object as a double.

boolean equals(Object IntegerObj) Returns true if the invoking
Integer object is equivalent
to IntegerObj. Otherwise, it
returns false.

float floatValue() Returns the value of the invoking
object as a float.

static Integer getInteger(String propertyName) Returns the value associated
with the environmental property
specified by propertyName. A
null is returned on failure.

static Integer getInteger(String propertyName, — Returns the value associated
int default) with the environmental property
specified by propertyName.
The value of default is returned
on failure.

Table 14-5. The Methods Defined by Integer

392

Java™ 2: The Complete Reference

Method

static Integer getInteger(String propertyName,
Integer default)

int hashCode()
int intValue()
long longValue()

static int parseInt(String str)
throws NumberFormatException

static int parselnt(String str, int radix)
throws NumberFormatException

short shortValue()

static String toBinaryString(int num)
static String toHexString(int numz)
static String toOctalString(int num)

String toString()

static String toString(int nun1)

Description

Returns the value associated
with the environmental property
specified by propertyName.

The value of default is returned
on failure.

Returns the hash code for the
invoking object.

Returns the value of the invoking
object as an int.

Returns the value of the invoking
object as a long.

Returns the integer equivalent
of the number contained in

the string specified by str using
radix 10.

Returns the integer equivalent of
the number contained in the
string specified by str using the
specified radix.

Returns the value of the invoking
object as a short.

Returns a string that contains the
binary equivalent of num.

Returns a string that contains the
hexadecimal equivalent of num.

Returns a string that contains the
octal equivalent of num.

Returns a string that contains the
decimal equivalent of the
invoking object.

Returns a string that contains the
decimal equivalent of num.

Table 14-5.

The Methods Defined by Integer (continued)

Chapter 14: Exploring java.lang 393

Method Description

static String toString(int num, int radix) Returns a string that contains the
decimal equivalent of num using
the specified radix.

static Integer valueOf(String str) Returns an Integer object that
throws NumberFormatException contains the value specified by
the string in str.
static Integer valueOf(String str, int radix) Returns an Integer object that
throws NumberFormatException contains the value specified by

the string in str using the
specified radix.

Table 14-5. The Methods Defined by Integer (continued)

Method Description

byte byteValue() Returns the value of the invoking
object as a byte.

int compareTo(Long /) Compares the numerical value of
the invoking object with that of .
Returns 0 if the values are equal.
Returns a negative value if the
invoking object has a lower
value. Returns a positive value if
the invoking object has a greater
value. (Added by Java 2)

int compareTo(Object obj) Operates identically to
compareTo(Long) if obj is of
class Long. Otherwise, throws a
ClassCastException. (Added by
Java 2)

Table 14-6. The Methods Defined by Long

394 Java™ 2: The Complete Reference

Method

static Long decode(String str)
throws NumberFormatException

double doubleValue()

boolean equals(Object LongObj)

float floatValue()

static Long getLong(String propertyName)

static Long getLong(String propertyName,
long default)

static Long getLong(String propertyName,
Long default)

int hashCode()
int intValue()

long longValue()

Description

Returns a Long object that
contains the value specified by
the string in str.

Returns the value of the invoking
object as a double.

Returns true if the invoking long
object is equivalent to LongObj.
Otherwise, it returns false.

Returns the value of the invoking
object as a float.

Returns the value associated
with the environmental property
specified by propertyName. A
null is returned on failure.

Returns the value associated
with the environmental property
specified by propertyName.

The value of default is returned
on failure.

Returns the value associated
with the environmental property
specified by propertyName.

The value of default is returned
on failure.

Returns the hash code for the
invoking object.

Returns the value of the invoking
object as an int.

Returns the value of the invoking
object as a long,.

Table 14-6. The Methods Defined by Long (continued)

Chapter 14: Exploring java.lang 395

Method Description
static long parseLong(String str) Returns the long equivalent of
throws NumberFormatException the number contained in the
string specified by str in radix 10.
static long parseLong(String str, int radix) Returns the long equivalent of
throws NumberFormatException the number contained in the

string specified by str using the
specified radix.

short shortValue() Returns the value of the invoking
object as a short.

static String toBinaryString(long num) Returns a string that contains the
binary equivalent of num.

-
=
m
I~
2
>
-
o
X
>
£
=<

static String toHexString(long num) Returns a string that contains the
hexadecimal equivalent of num.

static String toOctalString(long num) Returns a string that contains the
octal equivalent of num.

String toString() Returns a string that contains the
decimal equivalent of the
invoking object.

static String toString(long num) Returns a string that contains the
decimal equivalent of num.
static String toString(long num, int radix) Returns a string that contains the
decimal equivalent of num using
the specified radix.
static Long valueOf(String str) Returns a Long object that
throws NumberFormatException contains the value specified by
the string in str.
static Long valueOf(String str, int radix) Returns a Long object that
throws NumberFormatException contains the value specified by

the string in str using the
specified radix.

Table 14-6. The Methods Defined by Long (continued)

396

Java™ 2: The Complete Reference

Converting Numbers to and from Strings
One of the most common programming chores is converting the string representation
of a number into its internal, binary format. Fortunately, Java provides an easy way to
accomplish this. The Byte, Short, Integer, and Long classes provide the parseByte(),
parseShort(), parselnt(), and parseLong() methods, respectively. These methods
return the byte, short, int, or long equivalent of the numeric string with which they are
called. (Similar methods also exist for the Float and Double classes.)

The following program demonstrates parseInt(). It sums a list of integers entered
by the user. It reads the integers using readLine() and uses parselnt() to convert these
strings into their int equivalents.

/* This program sums a list of numbers entered
by the user. It converts the string representation
of each number into an int using parseInt().

*/

import java.io.*;
class ParseDemo {

public static void main(String args[])
throws IOException

{
// create a BufferedReader using System.in
BufferedReader br = new
BufferedReader (new InputStreamReader (System.in));
String str;
int i;
int sum=0;
System.out.println("Enter numbers, 0 to quit.");
do {
str = br.readLine();
try {
i = Integer.parselnt(str);
} catch(NumberFormatException e) {
System.out.println("Invalid format");
i=0;
}
sum += 1ij;
System.out.println("Current sum is: " + sum);
} while(i != 0);
}

Chapter 14: Exploring java.lang 397

To convert a whole number into a decimal string, use the versions of toString()
defined in the Byte, Short, Integer, or Long classes. The Integer and Long classes also
provide the methods toBinaryString(), toHexString(), and toOctalString(), which
convert a value into a binary, hexadecimal, or octal string, respectively.

The following program demonstrates binary, hexadecimal, and octal conversion:

/* Convert an integer into binary, hexadecimal,
and octal.

*/

class StringConversions {
public static void main(String args[]) {
int num = 19648;
System.out.println(num + " in binary: " +
Integer.toBinaryString(num));

-
=
m
e~
2
>
=
[~
X
>
£
=<

System.out.println(num + in octal: " +

Integer.toOctalString(num));

System.out.println(num + " in hexadecimal: " +
Integer.toHexString(num));

The output of this program is shown here:

19648 in binary: 100110011000000
19648 in octal: 46300
19648 in hexadecimal: 4cc0

Character

Character is a simple wrapper around a char. The constructor for Character is
Character(char ch)

Here, ch specifies the character that will be wrapped by the Character object
being created.

To obtain the char value contained in a Character object, call charValue(),
shown here:

char charValue()

It returns the character.

398

Java™ 2: The Complete Reference

The Character class defines several constants, including the following:

MAX_RADIX The largest radix
MIN_RADIX The smallest radix
MAX_VALUE The largest character value
MIN_VALUE The smallest character value
TYPE The Class object for char

Character includes several static methods that categorize characters and alter their
case. They are shown in Table 14-7. The following example demonstrates several of
these methods.

// Demonstrate several Is... methods.

class IsDemo {
public static void main(String args[]) {
char a[] = {'a', 'b', '5', '2', 'A', ' '};

for(int i=0; i<a.length; i++) {
if (Character.isDigit(a[i]))
System.out.println(a[i] + " is a digit.");
if (Character.isLetter(a[i]))
System.out.println(a[i] +
if (Character.isWhitespace(a[i]))

"

is a letter.");
System.out.println(a[i] + " is whitespace.");
if (Character.isUpperCase(a[i]))
System.out.println(a[i] + " is uppercase.");
if (Character.isLowerCase(a[i]))

"

System.out.println(a[i] + is lowercase.");

}

The output from this program is shown here:

is a letter.
is lowercase.
is a letter.
is lowercase.
is a digit.
is a letter.
is uppercase.
is whitespace.

b2 I I o 2 o s VI)

Chapter 14: Exploring java.lang 399

Method Description

static boolean isDefined(char ch) Returns true if ch is defined by
Unicode. Otherwise, it returns false.

static boolean isDigit(char ch) Returns true if ch is a digit.
Otherwise, it returns false.

static boolean isIdentifierIgnorable(char ch) Returns true if ¢k should be
ignored in an identifier.
Otherwise, it returns false.

static boolean isISOControl(char ch) Returns true if ch is an ISO control
character. Otherwise, it returns
false.

static boolean isJavaldentifierPart(char ch) Returns true if ch is allowed as
part of a Java identifier (other than
the first character). Otherwise, it
returns false.

-
=
m
I~
:
>
-
o
X
>
£
=<

static boolean isJavaldentifierStart(char ch) Returns true if ch is allowed
as the first character of a
Java identifier. Otherwise,
it returns false.

static boolean isLetter(char ch) Returns true if ch is a letter.
Otherwise, it returns false.

static boolean isLetterOrDigit(char ch) Returns true if ch is a letter or a
digit. Otherwise, it returns false.

static boolean isLowerCase(char ch) Returns true if chis a
lowercase letter. Otherwise,
it returns false.

static boolean isMirrored(char ch) Returns true if ch is a mirrored
Unicode character. A mirrored
character is one that is reversed for
text that is displayed right-to-left.
(Added by Java 2, version 1.4)

static boolean isSpaceChar(char ch) Returns true if ch is a Unicode
space character. Otherwise, it
returns false.

Table 14-7. Various Character Methods

400 Java™ 2: The Complete Reference

Method Description

static boolean isTitleCase(char ch) Returns true if ch is a Unicode
titlecase character. Otherwise,
it returns false.

static boolean isUnicodeldentifierPart(char ch) Returns true if ch is allowed as
part of a Unicode identifier (other
than the first character).
Otherwise, it returns false.

static boolean isUnicodeldentifierStart(char ch) Returns true if ch is allowed
as the first character of a Unicode
identifier. Otherwise,
it returns false.

static boolean isUpperCase(char ch) Returns true if ch is an uppercase
letter. Otherwise, it returns false.

static boolean isWhitespace(char ch) Returns true if ch is whitespace.
Otherwise, it returns false.

static char toLowerCase(char ch) Returns lowercase equivalent of ch.

static char toTitleCase(char ch) Returns titlecase equivalent of ch.

static char toUpperCase(char ch) Returns uppercase equivalent of ch.

Table 14-7. Various Character Methods (continued)

Character defines the forDigit() and digit() methods, shown here:

static char forDigit(int num, int radix)
static int digit(char digit, int radix)

forDigit() returns the digit character associated with the value of num. The radix of the
conversion is specified by radix. digit() returns the integer value associated with the
specified character (which is presumably a digit) according to the specified radix.

Another method defined by Character is compareTo(), which has the following
two forms:

int compareTo(Character c)
int compareTo(Object obj)

The first form returns 0 if the invoking object and ¢ have the same value. It returns a
negative value if the invoking object has a lower value. Otherwise, it returns a positive
value. The second form works just like the first if obj is a reference to a Character.
Otherwise, a ClassCastException is thrown. These methods were added by Java 2.

Chapter 14: Exploring java.lang

Java 2, version 1.4 adds a method called getDirectionality() which can be used to
determine the direction of a character. Several new constants have been added which
describe directionality. Most programs will not need to use character directionality.

Character also defines the equals() and hashCode() methods.

Two other character-related classes are Character.Subset, used to describe a subset
of Unicode, and Character.UnicodeBlock, which contains Unicode character blocks.

Boolean

Boolean is a very thin wrapper around boolean values, which is useful mostly when
you want to pass a boolean variable by reference. It contains the constants TRUE and
FALSE, which define true and false Boolean objects. Boolean also defines the TYPE
field, which is the Class object for boolean. Boolean defines these constructors:

Boolean(boolean boolValue)
Boolean(String boolString)

In the first version, boolValue must be either true or false. In the second version, if
boolString contains the string “true” (in uppercase or lowercase), then the new Boolean
object will be true. Otherwise, it will be false.

Boolean defines the methods shown in Table 14-8.

Method

boolean booleanValue()

boolean equals(Object boolObj)

static boolean
getBoolean(String propertyName)

int hashCode()
String toString()

static String toString(boolean boolVal)
static Boolean valueOf(boolean boolVal)

static Boolean valueOf(String boolString)

Description

Returns boolean equivalent.

Returns true if the invoking object is equivalent
to boolObj. Otherwise, it returns false.

Returns true if the system property specified
by propertyName is true. Otherwise, it returns
false.

Returns the hash code for the invoking object.

Returns the string equivalent of the invoking
object.

Returns the string equivalent of boolVal.
(Added by Java 2, version 1.4)

Returns the Boolean equivalent of boolVal.
(Added by Java 2, version 1.4)

Returns true if boolString contains the string
“true” (in uppercase or lowercase).
Otherwise, it returns false.

Table 14-8.

The Methods Defined by Boolean

401

402 Java™ 2: The Complete Reference

___|void

The Void class has one field, TYPE, which holds a reference to the Class object for type
void. You do not create instances of this class.

| Process

The abstract Process class encapsulates a process—that is, an executing program. It is
used primarily as a superclass for the type of objects created by exec() in the Runtime
class described in the next section. Process contains the abstract methods shown in

Table 14-9.

Method Description

void destroy() Terminates the process.

int exitValue() Returns an exit code obtained
from a subprocess.

InputStream getErrorStream() Returns an input stream that
reads input from the process’ err
output stream.

InputStream getInputStream() Returns an input stream that
reads input from the process’ out
output stream.

OutputStream getOutputStream() Returns an output stream that
writes output to the process’ in
input stream.

int waitFor() Returns the exit code returned by

throws InterruptedException the process. This method does not
return until the process on which
it is called terminates.
Table 14-9. The Abstract Methods Defined by Process

Chapter 14: Exploring java.lang 403

| Runtime

The Runtime class encapsulates the run-time environment. You cannot instantiate a
Runtime object. However, you can get a reference to the current Runtime object by
calling the static method Runtime.getRuntime(). Once you obtain a reference to the
current Runtime object, you can call several methods that control the state and
behavior of the Java Virtual Machine. Applets and other untrusted code typically
cannot call any of the Runtime methods without raising a SecurityException.

The methods defined by Runtime are shown in Table 14-10. Java 2 deprecates
the method runFinalizersOnExit(). This method was added by Java 1.1 but was
deemed unstable.

Method Description

void addShutdownHook(Thread thrd) Registers thrd as a thread to be run when
the Java virtual machine terminates.
(Added by Java 2, version 1.3)

Process exec(String progName) Executes the program specified by
throws IOException progName as a separate process. An object
of type Process is returned that describes
the new process.

Process exec(String progName, Executes the program specified by
String environment|) progName as a separate process with the
throws IOException environment specified by environment. An

object of type Process is returned that
describes the new process.

Process exec(String comLineArrayl]) Executes the command line specified by

throws IOException the strings in comLineArray as a separate
process. An object of type Process is

returned that describes the new process.

Process exec(String comLineArray|], Executes the command line specified by
String environment]]) the strings in comLineArray as a separate
throws IOException process with the environment specified by

environment. An object of type Process is
returned that describes the new process.

Table 14-10. The Commonly Used Methods Defined by Runtime

404

Java™ 2: The Complete Reference

Method

void exit(int exitCode)

long freeMemory()

void gc()

static Runtime getRuntime()

void halt(int code)

void load(String libraryFileName)

void loadLibrary(String libraryName)

void runFinalization()
long totalMemory()

void tracelnstructions(boolean traceOn)

void traceMethodCalls(boolean traceOn)

boolean removeShutdownHook(Thread thrd)

Description

Halts execution and returns the value of
exitCode to the parent process. By
convention, 0 indicates normal
termination. All other values indicate
some form of error.

Returns the approximate number of bytes
of free memory available to the Java
run-time system.

Initiates garbage collection.
Returns the current Runtime object.

Immediately terminates the Java virtual
machine. No termination threads or
finalizers are run. The value of code is
returned to the invoking process.
(Added by Java 2, version 1.3)

Loads the dynamic library whose file is
specified by libraryFileName, which must
specify its complete path.

Loads the dynamic library whose name is
associated with libraryName.

Removes thrd from the list of threads

to run when the Java virtual machine
terminates. It returns true if
successful—that is, if the thread was
removed. (Added by Java 2, verison 1.3)

Initiates calls to the finalize() methods of
unused but not yet recycled objects.

Returns the total number of bytes of
memory available to the program.

Turns on or off instruction tracing,
depending upon the value of traceOn. If
traceOn is true, the trace is displayed. If it
is false, tracing is turned off.

Turns on or off method call tracing,
depending upon the value of traceOn. If
traceOn is true, the trace is displayed. If it
is false, tracing is turned off.

Table 14-10.

The Commonly Used Methods Defined by Runtime (continued)

Chapter 14: Exploring java.lang 405

Let’s look at two of the most common uses of the Runtime class: memory
management and executing additional processes.

Memory Management

Although Java provides automatic garbage collection, sometimes you will want to
know how large the object heap is and how much of it is left. You can use this
information, for example, to check your code for efficiency or to approximate how
many more objects of a certain type can be instantiated. To obtain these values, use the
totalMemory() and freeMemory() methods.

As we mentioned in Part I, Java’s garbage collector runs periodically to recycle
unused objects. However, sometimes you will want to collect discarded objects prior to
the collector’s next appointed rounds. You can run the garbage collector on demand by
calling the ge() method. A good thing to try is to call gc() and then call freeMemory()
to get a baseline memory usage. Next, execute your code and call freeMemory() again
to see how much memory it is allocating. The following program illustrates this idea:

-
I
m
I~
2
>
-
o
F
>
F
=<

// Demonstrate totalMemory(), freeMemory() and gc().

class MemoryDemo {
public static void main(String args[]) {
Runtime r = Runtime.getRuntime();
long meml, mem2;
Integer someints[] = new Integer[1000];

System.out.println("Total memory is: " +
r.totalMemory());

meml = r.freeMemory();

System.out.println("Initial free memory: " + meml);

r.gc();

meml = r.freeMemory();

System.out.println("Free memory after garbage collection:
+ meml);

for(int i=0; i<1000; i++)
someints[i] = new Integer(i); // allocate integers

mem2 = r.freeMemory();

System.out.println("Free memory after allocation:
+ mem2);

406 Java™ 2: The Complete Reference

"

System.out.println("Memory used by allocation:
+ (meml-mem2));

// discard Integers
for(int i=0; i<1000; i++) someints[i] = null;

r.gc(); // request garbage collection

mem2 = r.freeMemory();
System.out.println("Free memory after collecting" +
" discarded Integers: " + mem2);

Sample output from this program is shown here (of course, your actual results
may vary):

Total memory is: 1048568

Initial free memory: 751392

Free memory after garbage collection: 841424

Free memory after allocation: 824000

Memory used by allocation: 17424

Free memory after collecting discarded Integers: 842640

Executing Other Programs

In safe environments, you can use Java to execute other heavyweight processes (that is,
programs) on your multitasking operating system. Several forms of the exec() method
allow you to name the program you want to run as well as its input parameters. The
exec() method returns a Process object, which can then be used to control how your
Java program interacts with this new running process. Because Java can run on a
variety of platforms and under a variety of operating systems, exec() is inherently
environment-dependent.

The following example uses exec() to launch notepad, Windows’ simple text
editor. Obviously, this example must be run under the Windows operating system.

// Demonstrate exec().
class ExecDemo {
public static void main(String args[]) {
Runtime r = Runtime.getRuntime();
Process p = null;

Chapter 14: Exploring java.lang 407

try {
p = r.exec('"notepad");

} catch (Exception e) {
System.out.println("Error executing notepad.");

There are several alternate forms of exec(), but the one shown in the example is the
most common. The Process object returned by exec() can be manipulated by Process’
methods after the new program starts running. You can kill the subprocess with the
destroy() method. The waitFor() method causes your program to wait until the
subprocess finishes. The exitValue() method returns the value returned by the
subprocess when it is finished. This is typically 0 if no problems occur. Here is the
preceding exec() example modified to wait for the running process to exit:

-
=
m
I~
2
>
-
[~
X
>
£
=<

// Wait until notepad is terminated.
class ExecDemoFini {
public static void main(String args[]) {
Runtime r = Runtime.getRuntime();
Process p = null;

try {

p = r.exec("notepad");

p.waitFor();
} catch (Exception e) {

System.out.println("Error executing notepad.");
}

System.out.println("Notepad returned " + p.exitValue());

While a subprocess is running, you can write to and read from its standard input and
output. The getOutputStream() and getInputStream() methods return the handles to
standard in and out of the subprocess. (I/O is examined in detail in Chapter 17.)

__ | system

The System class holds a collection of static methods and variables. The standard input,
output, and error output of the Java run time are stored in the in, out, and err variables.
The methods defined by System are shown in Table 14-11. Many of the methods throw a

408 Java™ 2: The Complete Reference

SecurityException if the operation is not permitted by the security manager. One other
point: Java 2 deprecated the method runFinalizersOnExit(). This method was added by
Java 1.1, but was determined to be unstable.

Let’s look at some common uses of System.

Method Description

static void arraycopy(Object source, Copies an array. The array to
int sourceStart, be copied is passed in source,
Object target, and the index at which point
int targetStart, the copy will begin within
int size) source is passed in sourceStart.

The array that will receive the
copy is passed in target, and
the index at which point the
copy will begin within target
is passed in targetStart.

size is the number of elements
that are copied.

static long currentTimeMillis() Returns the current time in
terms of milliseconds since
midnight, January 1, 1970.

static void exit(int exitCode) Halts execution and returns
the value of exitCode to the
parent process (usually the
operating system). By
convention, 0 indicates normal
termination. All other values
indicate some form of error.

static void gc() Initiates garbage collection.

static Properties getProperties() Returns the properties
associated with the Java
run-time system. (The
Properties class is described
in Chapter 15.)

Table 14-11. The Methods Defined by System

Chapter 14:

Exploring java.lang

Method

static String getProperty(String which)

static String getProperty(String which,
String default)

static SecurityManager getSecurityManager()

static int identityHashCode(Object obyj)

static void load(String libraryFileName)

static void loadLibrary(String libraryName)

static String mapLibraryName(String lib)

static void runFinalization()

static void setErr(PrintStream eStream)
static void setIn(InputStream iStrean)

static void setOut(PrintStream oStream)

Description

Returns the property
associated with which. A null
object is returned if the desired
property is not found.

Returns the property
associated with which. If the
desired property is not found,
default is returned.

Returns the current security
manager or a null object if no
security manager is installed.

Returns the identity hash code
for obj.

Loads the dynamic library
whose file is specified by
libraryFileName, which must
specify its complete path.

Loads the dynamic library
whose name is associated with
libraryName.

Returns a platform-specific
name for the library named Iib.
(Added by Java 2)

Initiates calls to the finalize()
methods of unused but not yet
recycled objects.

Sets the standard err stream
to eStream.

Sets the standard in stream
to iStream.

Sets the standard out stream
to oStream.

Table 14-11.

The Methods Defined by System (continued)

409

-
=
m
I~
2
>
-
o
X
>
£
=<

410 Java™ 2: The Complete Reference

Method Description
static void Sets the current system
setProperties(Properties sysProperties) properties as specified
by sysProperties.

static String setProperty(String which, String v) ~ Assigns the value v to the
property named which.

(Added by Java 2)
static void setSecurityManager(Sets the security manager to
SecurityManager secMar) that specified by secMan.

Table 14-11. The Methods Defined by System (continued)

Using currentTimeMillis() to Time Program Execution

One use of the System class that you might find particularly interesting is to use

the currentTimeMillis() method to time how long various parts of your program
take to execute. The currentTimeMillis() method returns the current time in terms of
milliseconds since midnight, January 1, 1970. To time a section of your program, store
this value just before beginning the section in question. Immediately upon completion,
call currentTimeMillis() again. The elapsed time will be the ending time minus the
starting time. The following program demonstrates this:

// Timing program execution.

class Elapsed {
public static void main(String args[]) {
long start, end;

System.out.println("Timing a for loop from 0 to 1,000,000");
// time a for loop from 0 to 1,000,000

start = System.currentTimeMillis(); // get starting time
for(int i=0; i < 1000000; i++) ;

end = System.currentTimeMillis(); // get ending time

System.out.println("Elapsed time: " + (end-start));

Chapter 14: Exploring java.lang 411

Here is a sample run (remember that your results probably will differ):

Timing a for loop from 0 to 1,000,000
Elapsed time: 10

Using arraycopy()

The arraycopy() method can be used to copy quickly an array of any type from one
place to another. This is much faster than the equivalent loop written out longhand in
Java. Here is an example of two arrays being copied by the arraycopy() method. First,
a is copied to b. Next, all of a’s elements are shifted down by one. Then, b is shifted up
by one.

// Using arraycopy()-.

-
=
m
e~
:
>
=
[~
X
>
£
=<

class ACDemo {
static byte a[] = { 65, 66, 67, 68, 69, 70, 71, 72, 73, 74 };
static byte b[] {77, 77, 77, 77, 77, 77, 77, 77, 77, 77 };

public static void main(String args[]) {
System.out.println("a = " + new String(a));
System.out.println("b = " + new String(b));
System.arraycopy(a, 0, b, 0, a.length);
System.out.println("a = " + new String(a));
System.out.println("b = + new String(b));
System.arraycopy(a, 0, a, 1, a.length - 1);
System.arraycopy(b, 1, b, 0, b.length - 1);
System.out.println("a = " + new String(a));
System.out.println("b = + new String(b));

As you can see from the following output, you can copy using the same source and
destination in either direction:

= ABCDEFGHIJ
= MMMMMMMMMM
= ABCDEFGHIJ
= ABCDEFGHIJ
= AABCDEFGHI
= BCDEFGHIJJ

oo oo OO
|

412 Java™ 2: The Complete Reference

Environment Properties

The following properties are available in Java 2, version 1.4:

file.separator java.specification.version java.vm.version
java.class.path java.vendor line.separator
java.class.version java.vendor.url os.arch
java.compiler java.version os.name
java.ext.dirs java.vm.name os.version
java.home java.vm.specification.name path.separator
java.io.tmpdir java.vm.specification.vendor user.dir
java.library.path java.vm.specification.version user.home
java.specification.name java.vm.vendor user.name

java.specification.vendor

You can obtain the values of various environment variables by calling the
System.getProperty() method. For example, the following program displays the path
to the current user directory:

class ShowUserDir {
public static void main(String args[]) {
System.out.println(System.getProperty("user.dir"));
}
}

___ | object

As we mentioned in Part I, Object is a superclass of all other classes. Object defines the
methods shown in Table 14-12, which are available to every object.

___| Using clone() and the Cloneable Interface

Most of the methods defined by Object are discussed elsewhere in this book. However,
one deserves special attention: clone(). The clone() method generates a duplicate copy
of the object on which it is called. Only classes that implement the Cloneable interface
can be cloned.

The Cloneable interface defines no members. It is used to indicate that a class
allows a bitwise copy of an object (that is, a clone) to be made. If you try to call clone()
on a class that does not implement Cloneable, a CloneNotSupportedException is

Chapter 14: Exploring java.lang 413
Method Description
Object clone() Creates a new object that is the same as the
throws invoking object.

CloneNotSupportedException
boolean equals(Object object)

void finalize()

throws Throwable overridden by subclasses. %
final Class getClass() Obtains a Class object that describes the E
invoking object. >

=

int hashCode() Returns the hash code associated with the =
>

)

=2

final void notify()

Returns true if the invoking object is
equivalent to object.

Default finalize() method. This is usually

invoking object.

Resumes execution of a thread waiting on
the invoking object.

final void notify All() Resumes execution of all threads waiting
on the invoking object.
String toString() Returns a string that describes the object.

final void wait()
throws InterruptedException

final void wait(long milliseconds)
throws InterruptedException

final void wait(long milliseconds,
int nanoseconds)
throws InterruptedException

Waits on another thread of execution.

Waits up to the specified number of
milliseconds on another thread of execution.

Waits up to the specified number of
milliseconds plus nanoseconds on another
thread of execution.

Table 14-12. The Methods Defined by Object

thrown. When a clone is made, the constructor for the object being cloned is not called.
A clone is simply an exact copy of the original.

Cloning is a potentially dangerous action, because it can cause unintended side
effects. For example, if the object being cloned contains a reference variable called
obRef, then when the clone is made, obRef in the clone will refer to the same object as
does obRef in the original. If the clone makes a change to the contents of the object

414 Java™ 2: The Complete Reference

referred to by obRef, then it will be changed for the original object, too. Here is another
example. If an object opens an I/O stream and is then cloned, two objects will be
capable of operating on the same stream. Further, if one of these objects closes the
stream, the other object might still attempt to write to it, causing an error.

Because cloning can cause problems, clone() is declared as protected inside Object.
This means that it must either be called from within a method defined by the class that
implements Cloneable, or it must be explicitly overridden by that class so that it is
public. Let’s look at an example of each approach.

The following program implements Cloneable and defines the method
cloneTest(), which calls clone() in Object:

// Demonstrate the clone() method.

class TestClone implements Cloneable {
int a;
double b;

// This method calls Object's clone().
TestClone cloneTest() {
try {
// call clone in Object.
return (TestClone) super.clone();
} catch(CloneNotSupportedException e) {
System.out.println("Cloning not allowed.");
return this;

class CloneDemo {
public static void main(String args[]) {
TestClone x1 = new TestClone();
TestClone x2;

xl.a = 10;
x1l.b = 20.98;

x2 = xl.cloneTest(); // clone x1

System.out.println("x1l: " + xl.a + " " + xl.b);
System.out.println("x2: " + x2.a + " " + x2.b);

Chapter 14: Exploring java.lang 415

Here, the method cloneTest() calls clone() in Object and returns the result. Notice
that the object returned by clone() must be cast into its appropriate type (TestClone).

The following example overrides clone() so that it can be called from code outside
of its class. To do this, its access specifier must be public, as shown here:

// Override the clone() method.

class TestClone implements Cloneable {
int a;
double b;

// clone() is now overridden and is public.
public Object clone() {
try {
// call clone in Object.
return super.clone();
} catch(CloneNotSupportedException e) {
System.out.println("Cloning not allowed.");
return this;

-
==
m
e~
:
>
-
o
X
>
X
=3

class CloneDemo2 {
public static void main(String args[]) {
TestClone x1 = new TestClone();
TestClone x2;

xl.a = 10;
x1.b 20.98;

// here, clone() is called directly.

x2 = (TestClone) xl.clone();
System.out.println("xl: " + xl.a + " " + x1.b);
System.out.println("x2: " + x2.a + " " + x2.b);

The side effects caused by cloning are sometimes difficult to see at first. It is easy to
think that a class is safe for cloning when it actually is not. In general, you should not
implement Cloneable for any class without good reason.

416

Java™ 2: The Complete Reference

__lclass

Class encapsulates the run-time state of an object or interface. Objects of type Class are
created automatically, when classes are loaded. You cannot explicitly declare a Class
object. Generally, you obtain a Class object by calling the getClass() method defined
by Object. Some of the most commonly used methods defined by Class are shown in

Table 14-13.

Method

static Class forName(String name)
throws ClassNotFoundException

static Class forName(String name,
boolean how,
ClassLoader Idr)
throws ClassNotFoundException

Class[] getClasses()

ClassLoader getClassLoader()

Constructor[] getConstructors()
throws SecurityException

throws SecurityException

Field[] getDeclaredFields()
throws SecurityException

Method[] getDeclaredMethods()
throws SecurityException

Constructor[] getDeclaredConstructors()

Description

Returns a Class object given its
complete name.

Returns a Class object given its
complete name. The object is
loaded using the loader specified
by Idr. If how is true, the object is
initialized; otherwise it is not.
(Added by Java 2)

Returns a Class object for each of
the public classes and interfaces that
are members of the invoking object.

Returns the ClassLoader object that
loaded the class or interface used to
instantiate the invoking object.

Returns a Constructor object for all
the public constructors of this class.

Returns a Constructor object for all
the constructors that are declared by
this class.

Returns a Field object for all the
fields that are declared by this class.

Returns a Method object for all the
methods that are declared by this
class or interface.

Table 14-13.

Some Methods Defined by Class

Chapter 14: Exploring java.lang 417

Method Description

Field][] getFields() Returns a Field object for all the
throws SecurityException public fields of this class.

Class[] getInterfaces() When invoked on an object, this

method returns an array of the
interfaces implemented by the class
type of the object. When invoked on

an interface, this method returns g

an array of interfaces extended by -

the interface. :<:

Method[] getMethods() Returns a Method object for all the E
throws SecurityException public methods of this class. =
String getName() Returns the complete name 2

of the class or interface of the
invoking object.

ProtectionDomain getProtectionDomain() Returns the protection domain
associated with the invoking object.
(Added by Java 2)

Class getSuperclass() Returns the superclass of the
invoking object. The return value
is null if the invoking object is of
type Object.

boolean isInterface() Returns true if the invoking object
is an interface. Otherwise, it
returns false.

Object newlInstance() Creates a new instance (i.e., a new
throws Illegal AccessException, object) that is of the same type as
InstantiationException the invoking object. This is

equivalent to using new with the
class’ default constructor. The new
object is returned.

String toString() Returns the string representation of
the invoking object or interface.

Table 14-13. Some Methods Defined by Class (continued)

418

Java™ 2: The Complete Reference

The methods defined by Class are often useful in situations where run-time type
information about an object is required. As Table 14-13 shows, methods are provided
that allow you to determine additional information about a particular class, such as its
public constructors, fields, and methods. This is important for the Java Beans
functionality, which is discussed later in this book.

The following program demonstrates getClass() (inherited from Object) and
getSuperclass() (from Class):

// Demonstrate Run-Time Type Information.

class X {
int a;
float b;

class Y extends X {
double c;

class RTTI {
public static void main(String args[]) {
X x
Yy new Y();
Class clObj;

new X();

clObj = x.getClass(); // get Class reference
System.out.println("x is object of type: " +
clObj.getName());

clobj = y.getClass(); // get Class reference

System.out.println("y is object of type: " +
clObj.getName());

clObj = clObj.getSuperclass();

System.out.println("y's superclass is " +
clObj.getName());

The output from this program is shown here:

Chapter 14: Exploring java.lang 419

x is object of type: X
y is object of type: Y
y's superclass is X

___| classLoader

The abstract class ClassLoader defines how classes are loaded. Your application can
create subclasses that extend ClassLoader, implementing its methods. Doing so allows
you to load classes in some way other than the way they are normally loaded by the

Java run-time system. Some of the methods defined by ClassLoader are shown in %
Table 14-14. =
<
>
=
]
Method Description E
final Class defineClass(String str, byte b[], Returns a Class object. The =
int index, name of the class is in str
int numBytes) and the object is contained
throws ClassFormatError in the array of bytes
specified by b. The object
begins within this array at
the index specified by index
and is numBytes long. The
data in b must represent a
valid object.
final Class findSystemClass(String name) Returns a Class object given
throws ClassNotFoundException its name.
Class loadClass(String name, An implementation of this
boolean callResolveClass) abstract method must load a
throws ClassNotFoundException class given its name and call
resolveClass() if
callResolveClass is true.
final void resolveClass(Class obj) The class referred to by
obj is resolved (i.e., its name
is entered into the class
name space).
Table 14-14. Some of the Methods Defined by ClassLoader

420 Java™ 2: The Complete Reference

| Math

The Math class contains all the floating-point functions that are used for geometry and
trigonometry, as well as several general-purpose methods. Math defines two double
constants: E (approximately 2.72) and PI (approximately 3.14).

Transcendental Functions

The following three methods accept a double parameter for an angle in radians and

return the result of their respective transcendental function:

Method

static double sin(double arg)
static double cos(double arg)

static double tan(double arg)

Description

Returns the sine of the angle specified
by arg in radians.

Returns the cosine of the angle specified
by arg in radians.

Returns the tangent of the angle
specified by arg in radians.

The next methods take as a parameter the result of a transcendental function and
return, in radians, the angle that would produce that result. They are the inverse of

their non-arc companions.

Method

static double asin(double arg)
static double acos(double arg)

static double atan(double arg)

static double atan2(double x, double y)

Exponential Functions

Description
Returns the angle whose sine is specified
by arg.

Returns the angle whose cosine is
specified by arg.

Returns the angle whose tangent is
specified by arg.

Returns the angle whose tangent is x/y.

Math defines the following exponential methods:

Method

static double exp(double arg)
static double log(double arg)

Description

Returns e to the arg.

Returns the natural logarithm of arg.

Method

static double pow(double y, double x)

static double sqrt(double arg)

Rounding Functions

The Math class defines several methods that provide various types of rounding

Chapter 14: Exploring java.lang

Description

Returns y raised to the x; for example,

pow(2.0, 3.0) returns 8.0.

Returns the square root of arg.

operations. They are shown in Table 14-15.

Method

static int abs(int arg)
static long abs(long arg)
static float abs(float arg)

static int max(int x, int y)

static int min(int x, int y)

static int round(float arg)

static double abs(double arg)
static double ceil(double arg)

static double floor(double arg)

static long max(long x, long v)
static float max(float x, float v)

static double max(double x, double y)

static long min(long x, long v)

static float min(float x, float y)

static double min(double x, double y)
static double rint(double arg)

static long round(double arg)

Description

Returns the absolute value of arg.
Returns the absolute value of arg.
Returns the absolute value of arg.

Returns the absolute value of arg.

Returns the smallest whole number greater

than or equal to arg.

Returns the largest whole number less than

or equal to arg.

Returns the maximum of x and y.
Returns the maximum of x and y.
Returns the maximum of x and y.
Returns the maximum of x and y.
Returns the minimum of x and y

Returns the minimum of x and y.
Returns the minimum of x and y.

Returns the minimum of x and y.

Returns the integer nearest in value to arg.
Returns arg rounded up to the nearest int.

Returns arg rounded up to the nearest long.

Table 14-15. The Rounding Methods Defined by Math

421

422 Java™ 2: The Complete Reference

Miscellaneous Math Methods
In addition to the methods just shown, Math defines the following methods:

static double IEEEremainder(double dividend, double divisor)
static double random()

static double toRadians(double angle)

static double toDegrees(double angle)

IEEEremainder() returns the remainder of dividend /divisor. random() returns a
pseudorandom number. This value will be between 0 and 1. Most of the time, you will
use the Random class when you need to generate random numbers. The toRadians()
method converts degrees to radians. toDegrees() converts radians to degrees. The last
two methods were added by Java 2.

Here is a program that demonstrates toRadians() and toDegrees():

// Demonstrate toDegrees() and toRadians().
class Angles {
public static void main(String args[]) {
double theta = 120.0;

System.out.println(theta + " degrees is " +
Math.toRadians(theta) + " radians.");

theta = 1.312;
System.out.println(theta + "+
Math.toDegrees(theta) + " degrees.");

radians is

The output is shown here.

120.0 degrees is 2.0943951023931953 radians.
1.312 radians is 75.17206272116401 degrees.

___| strictMath

Java 2, version 1.3 added the StrictMath class. This class defines a complete set

of mathematical methods that parallel those in Math. The difference is that the
StrictMath version is guaranteed to generate precisely identical results across all Java
implementations whereas the methods in Math are given more latitude in order to
improve performance.

Chapter 14: Exploring java.lang

___ | compiler

The Compiler class supports the creation of Java environments in which Java bytecode
is compiled into executable code rather than interpreted. It is not for normal
programming use.

___| Thread, ThreadGroup, and Runnable

The Runnable interface and the Thread and ThreadGroup classes support
multithreaded programming. Each is examined next.

Note | An overview of the techniques used to manage threads, implement the Runnable
interface, and create multithreaded programs is presented in Chapter 11.

The Runnable Interface

The Runnable interface must be implemented by any class that will initiate a separate
thread of execution. Runnable only defines one abstract method, called run(), which is
the entry point to the thread. It is defined like this:

abstract void run()

Threads that you create must implement this method.

Thread

Thread creates a new thread of execution. It defines the following commonly
used constructors:

Thread()

Thread(Runnable thread Ob)

Thread(Runnable threadOb, StringthreadName)

Thread(String threadName)

Thread(ThreadGroup groupOb, Runnable thread Ob)
Thread(ThreadGroup groupOb, Runnable threadOb, String threadName)
Thread(ThreadGroup groupOb, String threadNamie)

threadOb is an instance of a class that implements the Runnable interface and defines
where execution of the thread will begin. The name of the thread is specified by
threadName. When a name is not specified, one is created by the Java Virtual Machine.
groupOb specifies the thread group to which the new thread will belong. When no thread
group is specified, the new thread belongs to the same group as the parent thread.

The following constants are defined by Thread:

MAX_PRIORITY
MIN_PRIORITY
NORM_PRIORITY

423

424

Java™ 2: The Complete Reference

As expected, these constants specify the maximum, minimum, and default

thread priorities.

The methods defined by Thread are shown in Table 14-16. In versions of Java
prior to 2, Thread also included the methods stop(), suspend(), and resume().
However, as explained in Chapter 11, these have been deprecated by Java 2 because
they were inherently unstable. Also deprecated by Java 2 is countStackFrames(),

because it calls suspend().

Method

static int activeCount()

void checkAccess()

static Thread currentThread()

void destroy()
static void dumpStack()

static int enumerate(Thread threads]])

ClassLoader getContextClassLoader()

final String getName()
final int getPriority()
final ThreadGroup getThreadGroup()

static boolean holdsLock(Object ob)

Description

Returns the number of threads in the
group to which the thread belongs.

Causes the security manager to verify
that the current thread can access
and/or change the thread on which
checkAccess() is called.

Returns a Thread object that
encapsulates the thread that calls
this method.

Terminates the thread.
Displays the call stack for the thread.

Puts copies of all Thread objects in the
current thread’s group into threads. The
number of threads is returned.

Returns the class loader that is used to
load classes and resources for this
thread. (Added by Java 2)

Returns the thread’s name.
Returns the thread’s priority setting.

Returns the ThreadGroup object of
which the invoking thread is a member.

Returns true if the invoking thread
owns the lock on ob. Returns false
otherwise. (Added by Java 2, version 1.4)

Table 14-16.

The Methods Defined by Thread

Chapter 14: Exploring java.lang

Method

void interrupt()
static boolean interrupted()
final boolean isAlive()

final boolean isDaemon()

boolean isInterrupted()

final void join()
throws InterruptedException

final void join(long milliseconds)
throws InterruptedException

final void join(long milliseconds,
int nanoseconds)
throws InterruptedException

void run()
void setContextClassLoader(ClassLoader c/)
final void setDaemon(boolean state)

final void setName(String threadName)

final void setPriority(int priority)

Description

Interrupts the thread.

Returns true if the currently executing
thread has been scheduled for
interruption. Otherwise, it returns false.

Returns true if the thread is still active.
Otherwise, it returns false.

Returns true if the thread is a daemon
thread (one that is part of the Java
run-time system). Otherwise, it returns
false.

Returns true if the thread is interrupted.
Otherwise, it returns false.

Waits until the thread terminates.

Waits up to the specified number of
milliseconds for the thread on which it
is called to terminate.

Waits up to the specified number of
milliseconds plus nanoseconds for the
thread on which it is called to terminate.

Begins execution of a thread.

Sets the class loader that will be used
by the invoking thread to cl. (Added
by Java 2)

Flags the thread as a
daemon thread.

Sets the name of the thread to that
specified by threadName.

Sets the priority of the thread to that
specified by priority.

Table 14-16.

The Methods Defined by Thread (continued)

425

-
=
m
I~
:
>
-
o
X
>
£
=<

426 Java™ 2: The Complete Reference

Method Description
static void sleep(long milliseconds) Suspends execution of the
throws Interrupted Exception thread for the specified
number of milliseconds.
static void sleep(long milliseconds, Suspends execution of the thread for
int nanoseconds) the specified number of milliseconds
throws InterruptedException plus nanoseconds.
void start() Starts execution of the thread.
String toString() Returns the string equivalent of
a thread.
static void yield() The calling thread yields the CPU to

another thread.

Table 14-16. The Methods Defined by Thread (continued)

ThreadGroup

ThreadGroup creates a group of threads. It defines these two constructors:

ThreadGroup(String groupName)
ThreadGroup(ThreadGroup parentOb, String groupName)

For both forms, groupName specifies the name of the thread group. The first version
creates a new group that has the current thread as its parent. In the second form, the
parent is specified by parentOb.

The methods defined by ThreadGroup are shown in Table 14-17. In versions of Java
prior to 2, ThreadGroup also included the methods stop(), suspend(), and resume().
These have been deprecated by Java 2 because they were inherently unstable.

Thread groups offer a convenient way to manage groups of threads as a unit. This
is particularly valuable in situations in which you want to suspend and resume a
number of related threads. For example, imagine a program in which one set of threads
is used for printing a document, another set is used to display the document on the
screen, and another set saves the document to a disk file. If printing is aborted, you
will want an easy way to stop all threads related to printing. Thread groups offer this

Chapter 14: Exploring java.lang 427

Method Description

int activeCount() Returns the number of threads in
the group plus any groups for
which this thread is a parent.

int activeGroupCount() Returns the number of groups
for which the invoking thread
is a parent.

final void checkAccess() Causes the security manager to
verify that the invoking thread
may access and/or change the
group on which checkAccess()
is called.

-
=
m
I~
2
>
-
o
X
>
£
=<

final void destroy() Destroys the thread group
(and any child groups) on which
it is called.

int enumerate(Thread groupl]) The threads that comprise the
invoking thread group are put into
the group array.

int enumerate(Thread group[], boolean all) The threads that comprise the
invoking thread group are put into
the group array. If all is true, then
threads in all subgroups of the
thread are also put into group.

int enumerate(ThreadGroup group| 1) The subgroups of the invoking
thread group are put into the
group array.

int enumerate(ThreadGroup group] |, The subgroups of the invoking
boolean all) thread group are put into the group
array. If all is true, then all
subgroups of the subgroups (and
so on) are also put into group.

final int getMaxPriority() Returns the maximum priority
setting for the group.

Table 14-17. The Methods Defined by ThreadGroup

428 Java™ 2: The Complete Reference

Method Description
final String getName() Returns the name of the group.
final ThreadGroup getParent() Returns null if the invoking

ThreadGroup object has no parent.
Otherwise, it returns the parent of
the invoking object.

final void interrupt() Invokes the interrupt() method of
all threads in the group. (Added
by Java 2)

final boolean isDaemon() Returns true if the group is a

daemon group. Otherwise, it
returns false.

boolean isDestroyed() Returns true if the group has
been destroyed. Otherwise, it
returns false.

void list() Displays information about
the group.

final boolean parentOf(ThreadGroup group) Returns true if the invoking thread
is the parent of group (or group,
itself). Otherwise, it returns false.

final void setDaemon(boolean isDaemon) If isDaemon is true, then the
invoking group is flagged as a
daemon group.

final void setMaxPriority(int priority) Sets the maximum priority of the
invoking group to priority.
String toString() Returns the string equivalent of
the group.
void uncaughtException(Thread thread, This method is called when an
Throwable ¢) exception goes uncaught.

Table 14-17. The Methods Defined by ThreadGroup (continued)

Chapter 14: Exploring java.lang 429

convenience. The following program, which creates two thread groups of two threads
each, illustrates this usage:

// Demonstrate thread groups.
class NewThread extends Thread {
boolean suspendFlag;

NewThread(String threadname, ThreadGroup tgOb) {
super (tgOb, threadname);
System.out.println("New thread: " + this);
suspendFlag = false;
start(); // Start the thread

// This is the entry point for thread.
public void run() {
try {
for(int i = 5; 1 > 0; i--) {
System.out.println(getName() + ": " + i);
Thread.sleep(1000);
synchronized(this) {
while(suspendFlag) {
wait();

-
X
m
L
2
>
=
w
ol
>
X
3

}
} catch (Exception e) {
System.out.println("Exception in

}

System.out.println(getName() + " exiting.");

+ getName());

void mysuspend() {
suspendFlag = true;

synchronized void myresume() {
suspendFlag = false;
notify();

430 Java™ 2: The Complete Reference

class ThreadGroupDemo {
public static void main(String args[]) {
ThreadGroup groupA = new ThreadGroup("Group A");
ThreadGroup groupB = new ThreadGroup("Group B");

NewThread obl = new NewThread("One", groupA);
NewThread ob2 = new NewThread("Two", groupA);
NewThread ob3 = new NewThread("Three", groupB);
NewThread ob4 = new NewThread("Four", groupB);

System.out.println("\nHere is output from list():");
groupA.list();

groupB.list();

System.out.println();

System.out.println("Suspending Group A");

Thread tga[] = new Thread[groupA.activeCount()];

groupA.enumerate(tga); // get threads in group

for(int i = 0; i < tga.length; i++) {
((NewThread)tga[i]).mysuspend(); // suspend each thread

try {
Thread.sleep(4000);

} catch (InterruptedException e) {
System.out.println("Main thread interrupted.");

System.out.println("Resuming Group A");
for(int i = 0; i < tga.length; i++) {
((NewThread)tga[i]).myresume(); // resume threads in group

// wait for threads to finish
try {
System.out.println("Waiting for threads to finish.");
obl.join();
ob2.join();
ob3.join();

Chapter 14: Exploring java.lang

ob4.join();
} catch (Exception e) {
System.out.println("Exception in Main thread");

System.out.println("Main thread exiting.");

Sample output from this program is shown here:

New thread: Thread[One,5,Group A]

New thread: Thread[Two,5,Group A]

New thread: Thread[Three,5,Group B]

New thread: Thread[Four,5,Group B]

Here is output from list():

java.lang.ThreadGroup[name=Group A,maxpri=10]
Thread[One,5,Group A]
Thread[Two,5,Group A]

java.lang.ThreadGroup[name=Group B,maxpri=10]
Thread[Three,5,Group B]
Thread[Four,5,Group B]

Suspending Group A

Three: 5

Four: 5

Three: 4

Four: 4

Three: 3

Four: 3

Three: 2

Four: 2

Resuming Group A

Waiting for threads to finish.

One: 5

Two: 5

Three: 1

Four: 1

One: 4

Two: 4

Three exiting.

Four exiting.

One: 3

431

-
X
m
e~
2
>
=
w
ol
>
X
=<

432 Java™ 2: The Complete Reference

Two:
One:
Two:
One:
Two: 1

One exiting.

Two exiting.

Main thread exiting.

= NN W

Inside the program, notice that thread group A is suspended for four seconds. As
the output confirms, this causes threads One and Two to pause, but threads Three and
Four continue running. After the four seconds, threads One and Two are resumed.
Notice how thread group A is suspended and resumed. First, the threads in group A
are obtained by calling enumerate() on group A. Then, each thread is suspended
by iterating through the resulting array. To resume the threads in A, the list is
again traversed and each thread is resumed. One last point: this example uses the
recommended Java 2 approach to suspending and resuming threads. It does not rely
upon the deprecated methods suspend() and resume().

| ThreadLocal and InheritableThreadLocal

Java 2 added two thread-related classes to java.lang:

B ThreadLocal Used to create thread local variables. Each thread will have its
own copy of a thread local variable.

B InheritableThreadLocal Creates thread local variables that may be inherited.

IPackage

Java 2 added a class called Package that encapsulates version data associated with a
package. Package version information is becoming more important because of the
proliferation of packages and because a Java program may need to know what version
of a package is available. The methods defined by Package are shown in Table 14-18.
The following program demonstrates Package, displaying the packages about which
the program currently is aware.

// Demonstrate Package
class PkgTest {
public static void main(String args[]) {
Package pkgs[];

Chapter 14: Exploring java.lang

pkgs = Package.getPackages();

for(int i=0; i < pkgs.length; i++)
System.out.println(
pkgs[i].getName() + " " +

pkgs[i].getImplementationTitle() +
pkgs[i].getImplementationVendor () +

oy
oy

pkgs[i].getImplementationVersion()

Method

String getiImplementationTitle()

String getiImplementationVendor()

String getImplementationVersion()
String getName()
static Package getPackage(String pkgName)

static Package][] getPackages()

String getSpecificationTitle()

String getSpecificationVendor()

Description

Returns the title of the
invoking package.

Returns the name of
the implementor of the
invoking package.

Returns the version number of
the invoking package.

Returns the name of the
invoking package.

Returns a Package object with
the name specified by pkgName.

Returns all packages about
which the invoking program is
currently aware.

Returns the title of the invoking
package’s specification.

Returns the name of the owner
of the specification for the
invoking package.

Table 14-18. The Methods Defined by Package

433

-
=
m
e~
:
>
=
[~
X
>
£
=<

434 Java™ 2: The Complete Reference

Method Description

String getSpecificationVersion() Returns the invoking
package’s specification
version number.

int hashCode() Returns the hash code for the
invoking package.

boolean isCompatibleWith(String verNumn1) Returns true if verNum is less
throws NumberFormatException than or equal to the invoking
package’s version number.

boolean isSealed() Returns true if the invoking
package is sealed. Returns
false otherwise.

boolean isSealed(URL url) Returns true if the invoking
package is sealed relative to
url. Returns false otherwise.

String toString() Returns the string equivalent
of the invoking package.

Table 14-18. The Methods Defined by Package (continued)

| RuntimePermission

RuntimePermission was added to java.lang by Java 2. It relates to Java’s security
mechanism and is not examined further here.

___| Throwable

The Throwable class supports Java’s exception-handling system, and is the class from
which all exception classes are derived. It is discussed in Chapter 10.

___| securityManager

SecurityManager is an abstract class that your subclasses can implement to create a
security manager. Generally, you don’t need to implement your own security manager.
If you do, you need to consult the documentation that comes with your Java
development system.

___| stackTraceElement

Chapter 14: Exploring java.lang

Java 2, version 1.4 adds the StackTraceElement class. This class describes a single
stack frame, which is an individual element of a stack trace when an exception occurs.
Each stack frame represents an execution point, which includes such things as the
name of the method, the name of the file, and the source-code line number. An array
of StackTraceElements is returned by the getStackTrace() method of the Throwable
class. The methods supported by StackTraceElement are shown in Table 14-19. These
methods give you programmatical access to a stack trace.

Method

boolean equals(Object ob)

String getClassName()

String getFileName()

int getLineNumber()

String getMethodName()

int hashCode()

boolean isNativeMethod()

String toString()

Description

Returns true if the invoking
StackTraceElement is the same as the one
passed in ob. Otherwise, it returns false.

Returns the class name of the execution point
described by the invoking StackTraceElement.

Returns the file name of the execution point
described by the invoking
StackTraceElement.

Returns the source-code line number of the
execution point described by the invoking
StackTraceElement. In some situations the
line number will not be available, in which
case a negative value is returned.

Returns the method name of the execution
point described by the invoking
StackTraceElement.

Returns the hash code for the invoking
StackTraceElement.

Returns true if the invoking
StackTraceElement describes a native
method. Otherwise, returns false.

Returns the String equivalent of the invoking
sequence.

Table 14-19. The Methods Defined by StackTraceElement

435

436 Java™ 2: The Complete Reference

Method Description

char charAt(int idx) Returns the character at the index
specified by idx.

int length() Returns the number of characters in

the invoking sequence.

CharSequence Returns a subset of the invoking
subSequence(int startldx, int stopldx) sequence beginning at startldx and
ending at stopldx-1.

String toString() Returns the String equivalent of the
invoking sequence.

Table 14-20. The Methods Defined by CharSequence

___| The CharSequence Interface

Java 2, version 1.4 adds the CharSequence interface. CharSequence defines methods
that grant read-only access to a sequence of characters. These methods are shown

in Table 14-20. This interface is implemented by String and StringBuffer. It is also
implemented by CharBuffer, which is in the new java.nio package (described later
in this book).

___| The Comparable Interface

Objects of classes that implement Comparable can be ordered. In other words, classes
that implement Comparable contain objects that can be compared in some meaningful
manner. The Comparable interface declares one method that is used to determine what
Java 2 calls the natural ordering of instances of a class. The signature of the method is
shown here:

int compareTo(Object obj)

This method compares the invoking object with obj. It returns 0 if the values are equal.
A negative value is returned if the invoking object has a lower value. Otherwise, a
positive value is returned.

This interface is implemented by several of the classes already reviewed in this
book. Specifically, the Byte, Character, Double, Float, Long, Short, String, and Integer
classes define a compareTo() method. In addition, as the next chapter explains, objects
that implement this interface can be used in various collections. Comparable was
added by Java 2.

Chapter 14: Exploring java.lang

| The java.lang.ref and java.lang.reflect
Packages

Java defines two subpackages of java.lang: java.lang.ref and java.lang.reflect. Each is
briefly described here.

java.lang.ref

You learned earlier that the garbage collection facilities in Java automatically determine
when no references exist to an object. The object is then assumed to be no longer
needed and its memory is reclaimed. The classes in the java.lang.ref package, which
was added by Java 2, provide more flexible control over the garbage collection process.
For example, assume that your program has created numerous objects that you want to
reuse at some later time. You can continue to hold references to these objects, but that
may require too much memory.

Instead, you can define “soft” references to these objects. An object that is “softly
reachable” can be reclaimed by the garbage collector, if available memory runs low.

In that case, the garbage collector sets the “soft” references to that object to null.
Otherwise, the garbage collector saves the object for possible future use.

A programmer has the ability to determine whether a “softly reachable” object has
been reclaimed. If it has been reclaimed, it can be re-created. Otherwise, the object is
still available for reuse. You may also create “weak” and “phantom” references to
objects. Discussion of these and other features of the java.lang.ref package are beyond
the scope of this book.

java.lang.reflect

Reflection is the ability of a program to analyze itself. The java.lang.reflect package

provides the ability to obtain information about the fields, constructors, methods,

and modifiers of a class. You need this information to build software tools that enable

you to work with Java Beans components. The tools use reflection to determine

dynamically the characteristics of a component. This topic is considered in Chapter 25.
In addition, the java.lang.reflect package includes a class that enables you to create

and access arrays dynamically.

This page intentionally left blank.

The

Romplete
Chapter 15

java.util Part 1: The
Collections Framework

440

Java™ 2: The Complete Reference

Collections were added by the initial release of Java 2, and enhanced by Java 2,

version 1.4. A collection is a group of objects. The addition of collections caused
fundamental alterations in the structure and architecture of many elements in java.util.
It also expanded the domain of tasks to which the package can be applied. Collections
are a state-of-the-art technology that merits close attention by all Java programmers.

In addition to collections, java.util contains a wide assortment of classes and
interfaces that support a broad range of functionality. These classes and interfaces are
used throughout the core Java packages and, of course, are also available for use in
programs that you write. Their applications include generating pseudorandom numbers,
manipulating date and time, observing events, manipulating sets of bits, and tokenizing
strings. Because of its many features, java.util is one of Java’s most widely used packages.

The java.util classes are listed here.

The java.util package contains one of Java’s most powerful subsystems: collections.

AbstractCollection (Java 2) EventObject PropertyResourceBundle
AbstractList (Java 2) GregorianCalendar Random

AbstractMap (Java 2) HashMap (Java 2) ResourceBundle
AbstractSequentialList (Java 2) HashSet (Java 2) SimpleTimeZone
AbstractSet (Java 2) Hashtable Stack

ArrayList (Java 2) IdentityHashMap (Java 2, v1.4) StringTokenizer
Arrays (Java 2) LinkedHashMap (Java 2, v1.4) Timer (Java 2, v1.3)
BitSet LinkedHashSet (Java 2,v1.4) TimerTask (Java 2, v1.3)
Calendar LinkedList (Java 2) TimeZone

Collections (Java 2) ListResourceBundle TreeMap (Java 2)
Currency (Java 2, v1.4) Locale TreeSet (Java 2)

Date Observable Vector

Dictionary Properties WeakHashMap (Java 2)

EventListenerProxy (Java 2, v1.4) PropertyPermission (Java 2)

java.util defines the following interfaces. Notice that most were added by Java 2.

Collection (Java 2) List (Java 2) RandomAccess (Java 2, v1.4)
Comparator (Java 2) Listlterator (Java 2) Set (Java 2)

Enumeration Map (Java 2) SortedMap (Java 2)
EventListener Map.Entry (Java 2) SortedSet (Java 2)

Iterator (Java 2) Observer

Chapter 15: java.util Part 1: The Collections Framework

The ResourceBundle, ListResourceBundle, and PropertyResourceBundle classes
aid in the internationalization of large programs with many locale-specific resources.
These classes are not examined here. PropertyPermission, which allows you to grant
a read /write permission to a system property, is also beyond the scope of this book.
EventObject, EventListener, and EventListenerProxy are described in Chapter 20. The
remaining classes and interfaces are examined in detail.

Because java.util is quite large, its description is broken into two chapters. This
chapter examines those members of java.util that relate to collections of objects.
Chapter 16 discusses the other classes and interfaces.

Collections Overview

The Java collections framework standardizes the way in which groups of objects are
handled by your programs. Prior to Java 2, Java provided ad hoc classes such as
Dictionary, Vector, Stack, and Properties to store and manipulate groups of objects.
Although these classes were quite useful, they lacked a central, unifying theme. Thus,
the way that you used Vector was different from the way that you used Properties, for
example. Also, the previous, ad hoc approach was not designed to be easily extensible
or adaptable. Collections are an answer to these (and other) problems.

The collections framework was designed to meet several goals. First, the framework
had to be high-performance. The implementations for the fundamental collections
(dynamic arrays, linked lists, trees, and hash tables) are highly efficient. You seldom, if
ever, need to code one of these “data engines” manually. Second, the framework had to
allow different types of collections to work in a similar manner and with a high degree of
interoperability. Third, extending and/or adapting a collection had to be easy. Toward this
end, the entire collections framework is designed around a set of standard interfaces.
Several standard implementations (such as LinkedList, HashSet, and TreeSet) of these
interfaces are provided that you may use as-is. You may also implement your own
collection, if you choose. Various special-purpose implementations are created for your
convenience, and some partial implementations are provided that make creating your own
collection class easier. Finally, mechanisms were added that allow the integration of
standard arrays into the collections framework.

Algorithms are another important part of the collection mechanism. Algorithms
operate on collections and are defined as static methods within the Collections class.
Thus, they are available for all collections. Each collection class need not implement its
own versions. The algorithms provide a standard means of manipulating collections.

Another item created by the collections framework is the Iterator interface. An
iterator gives you a general-purpose, standardized way of accessing the elements
within a collection, one at a time. Thus, an iterator provides a means of enumerating the
contents of a collection. Because each collection implements Iterator, the elements of any
collection class can be accessed through the methods defined by Iterator. Thus, with
only small changes, the code that cycles through a set can also be used to cycle through
a list, for example.

441

442

Java™ 2: The Complete Reference

In addition to collections, the framework defines several map interfaces and classes.
Maps store key/value pairs. Although maps are not “collections” in the proper use of
the term, they are fully integrated with collections. In the language of the collections
framework, you can obtain a collection-view of a map. Such a view contains the elements
from the map stored in a collection. Thus, you can process the contents of a map as a
collection, if you choose.

The collection mechanism was retrofitted to some of the original classes defined by
java.util so that they too could be integrated into the new system. It is important to
understand that although the addition of collections altered the architecture of many
of the original utility classes, it did not cause the deprecation of any. Collections simply
provide a better way of doing several things.

One last thing: If you are familiar with C++, then you will find it helpful to know
that the Java collections technology is similar in spirit to the Standard Template Library
(STL) defined by C++. What C++ calls a container, Java calls a collection.

The Collection Interfaces

The collections framework defines several interfaces. This section provides an overview of
each interface. Beginning with the collection interfaces is necessary because they determine
the fundamental nature of the collection classes. Put differently, the concrete classes simply
provide different implementations of the standard interfaces. The interfaces that underpin
collections are summarized in the following table:

Interface Description

Collection Enables you to work with groups of objects; it is at the top of the
collections hierarchy

List Extends Collection to handle sequences (lists of objects)
Set Extends Collection to handle sets, which must contain unique elements

SortedSet Extends Set to handle sorted sets

In addition to the collection interfaces, collections also use the Comparator, Iterator,
ListIterator and RandomAccess interfaces, which are described in depth later in this
chapter. Briefly, Comparator defines how two objects are compared; Iterator and
ListIterator enumerate the objects within a collection. By implementing RandomAccess,
a list indicates that it supports efficient, random access to its elements.

To provide the greatest flexibility in their use, the collection interfaces allow some
methods to be optional. The optional methods enable you to modify the contents of a
collection. Collections that support these methods are called modifiable. Collections that
do not allow their contents to be changed are called unmodifiable. If an attempt is made

Chapter 15: java.util Part 1: The Collections Framework

to use one of these methods on an unmodifiable collection, an

UnsupportedOperationException is thrown. All the built-in collections are modifiable.

The following sections examine the collection interfaces.

The Collection Interface

The Collection interface is the foundation upon which the collections framework is
built. It declares the core methods that all collections will have. These methods are
summarized in Table 15-1. Because all collections implement Collection, familiarity
with its methods is necessary for a clear understanding of the framework. Several of
these methods can throw an UnsupportedOperationException. As explained, this
occurs if a collection cannot be modified. A ClassCastException is generated when
one object is incompatible with another, such as when an attempt is made to add an

incompatible object to a collection.

Method
boolean add(Object obyj)

boolean add All(Collection c)

void clear()

boolean contains(Object obj)
boolean containsAll(Collection c)
boolean equals(Object obyj)

int hashCode()

Description

Adds obj to the invoking collection. Returns
true if obj was added to the collection. Returns
false if obj is already a member of the
collection, or if the collection does not allow
duplicates.

Adds all the elements of ¢ to the invoking
collection. Returns true if the operation
succeeded (i.e., the elements were added).
Otherwise, returns false.

Removes all elements from the invoking
collection.

Returns true if 0bj is an element of the
invoking collection. Otherwise, returns false.

Returns true if the invoking collection contains
all elements of c. Otherwise, returns false.

Returns true if the invoking collection and obj
are equal. Otherwise, returns false.

Returns the hash code for the invoking
collection.

Table 15-1. The Methods Defined by Collection

444

Java™ 2: The Complete Reference

Method
boolean isEmpty()

Iterator iterator()

boolean remove(Object obj)

boolean removeAll(Collection c)

boolean retainAll(Collection c)

int size()

Object]] toArray()

Object[] toArray(Object array]])

Description

Returns true if the invoking collection is
empty. Otherwise, returns false.

Returns an iterator for the invoking collection.

Removes one instance of obj from the invoking
collection. Returns true if the element was
removed. Otherwise, returns false.

Removes all elements of ¢ from the invoking
collection. Returns true if the collection
changed (i.e., elements were removed).
Otherwise, returns false.

Removes all elements from the invoking
collection except those in c. Returns true if the
collection changed (i.e., elements were
removed). Otherwise, returns false.

Returns the number of elements held in the
invoking collection.

Returns an array that contains all the elements
stored in the invoking collection. The array
elements are copies of the collection elements.

Returns an array containing only those
collection elements whose type matches that
of array. The array elements are copies of the
collection elements. If the size of array equals
the number of matching elements, these are
returned in array. If the size of array is less
than the number of matching elements, a new
array of the necessary size is allocated and
returned. If the size of array is greater than the
number of matching elements, the array
element following the last collection element
is set to null. An ArrayStoreException is
thrown if any collection element has a type
that is not a subtype of array.

Table 15-1. The Methods Defined by Collection (continued)

Chapter 15: java.util Part 1: The Collections Framework

Objects are added to a collection by calling add(). Notice that add() takes an
argument of type Object. Because Object is a superclass of all classes, any type of
object may be stored in a collection. However, primitive types may not. For example, a
collection cannot directly store values of type int, char, double, and so forth. Of course,
if you want to store such objects, you can also use one of the primitive type wrappers
described in Chapter 14. You can add the entire contents of one collection to another by
calling addA11().

You can remove an object by using remove(). To remove a group of objects, call
removeAll(). You can remove all elements except those of a specified group by calling
retainAll(). To empty a collection, call clear().

You can determine whether a collection contains a specific object by calling
contains(). To determine whether one collection contains all the members of another, call
containsAll(). You can determine when a collection is empty by calling isEmpty(). The
number of elements currently held in a collection can be determined by calling size().

The toArray() method returns an array that contains the elements stored in the
invoking collection. This method is more important than it might at first seem. Often,
processing the contents of a collection by using array-like syntax is advantageous. By
providing a pathway between collections and arrays, you can have the best of both worlds.

Two collections can be compared for equality by calling equals(). The precise
meaning of “equality” may differ from collection to collection. For example, you can
implement equals() so that it compares the values of elements stored in the collection.
Alternatively, equals() can compare references to those elements.

One more very important method is iterator(), which returns an iterator to a
collection. As you will see, iterators are crucial to successful programming when using
the collections framework.

The List Interface

The List interface extends Collection and declares the behavior of a collection that
stores a sequence of elements. Elements can be inserted or accessed by their position
in the list, using a zero-based index. A list may contain duplicate elements.

In addition to the methods defined by Collection, List defines some of its own,
which are summarized in Table 15-2. Note again that several of these methods will
throw an UnsupportedOperationException if the collection cannot be modified, and
a ClassCastException is generated when one object is incompatible with another,
such as when an attempt is made to add an incompatible object to a collection.

To the versions of add() and addAll() defined by Collection, List adds the methods
add(int, Object) and addAll(int, Collection). These methods insert elements at the
specified index. Also, the semantics of add(Object) and addAll(Collection) defined by
Collection are changed by List so that they add elements to the end of the list.

To obtain the object stored at a specific location, call get() with the index of the
object. To assign a value to an element in the list, call set(), specifying the index of the
object to be changed. To find the index of an object, use indexOf() or lastIndexOf().

446

Java™ 2: The Complete Reference

Method
void add(int index, Object oby)

boolean add All(int index, Collection c)

Object get(int index)

int indexOf(Object obj)

int lastindexOf(Object oby)

Listlterator listIterator()
ListIterator listIterator(int index)

Object remove(int index)

Object set(int index, Object obyj)

List subList(int start, int end)

Description

Inserts obj into the invoking list at the
index passed in index. Any preexisting
elements at or beyond the point of
insertion are shifted up. Thus, no
elements are overwritten.

Inserts all elements of c into the invoking
list at the index passed in index. Any
preexisting elements at or beyond the
point of insertion are shifted up. Thus,
no elements are overwritten. Returns
true if the invoking list changes and
returns false otherwise.

Returns the object stored at the specified
index within the invoking collection.

Returns the index of the first instance of
obj in the invoking list. If obj is not an
element of the list, -1 is returned.

Returns the index of the last instance of
obj in the invoking list. If obj is not an
element of the list, —1 is returned.

Returns an iterator to the start of the
invoking list.

Returns an iterator to the invoking list
that begins at the specified index.

Removes the element at position index from
the invoking list and returns the deleted
element. The resulting list is compacted.
That is, the indexes of subsequent elements
are decremented by one.

Assigns obj to the location specified by
index within the invoking list.

Returns a list that includes elements
from start to end-1 in the invoking list.
Elements in the returned list are also
referenced by the invoking object.

Table 15-2.

The Methods Defined by List

Chapter 15: java.util Part 1: The Collections Framework

You can obtain a sublist of a list by calling subList(), specifying the beginning and
ending indexes of the sublist. As you can imagine, subList() makes list processing
quite convenient.

The Set Interface

The Set interface defines a set. It extends Collection and declares the behavior of a
collection that does not allow duplicate elements. Therefore, the add() method returns
false if an attempt is made to add duplicate elements to a set. It does not define any
additional methods of its own.

The SortedSet Interface

The SortedSet interface extends Set and declares the behavior of a set sorted in ascending
order. In addition to those methods defined by Set, the SortedSet interface declares the
methods summarized in Table 15-3. Several methods throw a NoSuchElementException
when no items are contained in the invoking set. A ClassCastException is thrown when an
object is incompatible with the elements in a set. A NullPointerException is thrown if an
attempt is made to use a null object and null is not allowed in the set.

SortedSet defines several methods that make set processing more convenient. To
obtain the first object in the set, call first(). To get the last element, use last(). You can
obtain a subset of a sorted set by calling subSet(), specifying the first and last object in
the set. If you need the subset that starts with the first element in the set, use
headSet(). If you want the subset that ends the set, use tailSet().

Method Description

Comparator comparator() Returns the invoking sorted set’s
comparator. If the natural ordering is
used for this set, null is returned.

Object first() Returns the first element in the
invoking sorted set.

SortedSet headSet(Object end) Returns a SortedSet containing those
elements less than end that are
contained in the invoking sorted set.
Elements in the returned sorted set
are also referenced by the invoking
sorted set.

Object last() Returns the last element in the
invoking sorted set.

Table 15-3. The Methods Defined by SortedSet

448 Java™ 2: The Complete Reference

Method Description

SortedSet subSet(Object start, Object end) Returns a SortedSet that includes
those elements between start and
end-1. Elements in the returned
collection are also referenced by the
invoking object.

SortedSet tailSet(Object start) Returns a SortedSet that contains
those elements greater than or equal
to start that are contained in the
sorted set. Elements in the returned
set are also referenced by the
invoking object.

Table 15-3. The Methods Defined by SortedSet (continued)

| The Collection Classes

Now that you are familiar with the collection interfaces, you are ready to examine the
standard classes that implement them. Some of the classes provide full implementations
that can be used as-is. Others are abstract, providing skeletal implementations that
are used as starting points for creating concrete collections. None of the collection
classes are synchronized, but as you will see later in this chapter, it is possible to obtain
synchronized versions.

The standard collection classes are summarized in the following table:

Class Description
AbstractCollection Implements most of the Collection interface.
AbstractList Extends AbstractCollection and implements most of

the List interface.

AbstractSequentialList ~ Extends AbstractList for use by a collection that uses
sequential rather than random access of its elements.

LinkedList Implements a linked list by extending
AbstractSequentialList.

ArrayList Implements a dynamic array by extending AbstractList.

Chapter 15: java.util Part 1: The Collections Framework

Class Description

AbstractSet Extends AbstractCollection and implements most of
the Set interface.

HashSet Extends AbstractSet for use with a hash table.

LinkedHashSet Extends HashSet to allow insertion-order iterations.

TreeSet Implements a set stored in a tree. Extends AbstractSet.

Note | In addition to the collection classes, several legacy classes, such as Vector, Stack, and

Hashtable, have been reengineered to support collections. These are examined later in
this chapter.

The following sections examine the concrete collection classes and illustrate their use.

The ArrayList Class

The ArrayList class extends AbstractList and implements the List interface. ArrayList
supports dynamic arrays that can grow as needed. In Java, standard arrays are of a
fixed length. After arrays are created, they cannot grow or shrink, which means that
you must know in advance how many elements an array will hold. But, sometimes,
you may not know until run time precisely how large of an array you need. To handle
this situation, the collections framework defines ArrayList. In essence, an ArrayList is
a variable-length array of object references. That is, an ArrayList can dynamically
increase or decrease in size. Array lists are created with an initial size. When this size is
exceeded, the collection is automatically enlarged. When objects are removed, the array
may be shrunk.

| Dynamic arrays are also supported by the legacy class Vector, which is described later
' in this chapter.

ArrayList has the constructors shown here:

ArrayList()
ArrayList(Collection c)
ArrayList(int capacity)

The first constructor builds an empty array list. The second constructor builds an array
list that is initialized with the elements of the collection c. The third constructor builds
an array list that has the specified initial capacity. The capacity is the size of the
underlying array that is used to store the elements. The capacity grows automatically
as elements are added to an array list.

450 Java™ 2: The Complete Reference

The following program shows a simple use of ArrayList. An array list is created,
and then objects of type String are added to it. (Recall that a quoted string is translated
into a String object.) The list is then displayed. Some of the elements are removed and
the list is displayed again.

// Demonstrate ArrayList.
import java.util.*;

class ArrayListDemo {
public static void main(String args[]) {
// create an array list
ArrayList al = new ArrayList();

System.out.println("Initial size of al: " +
al.size());

// add elements to the array list
al.add("Cc");

al.add("A");

al.add("E");

al.add("B");

al.add("D");

al.add("F");

al.add(1l, "A2");

System.out.println("Size of al after additions: " +
al.size());

// display the array list
System.out.println("Contents of al: " + al);

// Remove elements from the array list
al.remove("F");
al.remove(2);

System.out.println("Size of al after deletions: " +
al.size());
System.out.println("Contents of al: " + al);

The output from this program is shown here:

Initial size of al: 0
Size of al after additions: 7

Chapter 15: java.util Part 1: The Collections Framework

Contents of al: [C, A2, A, E, B, D, F]
Size of al after deletions: 5
Contents of al: [C, A2, E, B, D]

Notice that a1 starts out empty and grows as elements are added to it. When elements
are removed, its size is reduced.

In the preceding example, the contents of a collection are displayed using
the default conversion provided by toString(), which was inherited from
AbstractCollection. Although it is sufficient for short, sample programs, you seldom
use this method to display the contents of a real-world collection. Usually, you provide
your own output routines. But, for the next few examples, the default output created
by toString() will continue to be used.

Although the capacity of an ArrayList object increases automatically as objects are
stored in it, you can increase the capacity of an ArrayList object manually by calling
ensureCapacity(). You might want to do this if you know in advance that you will be
storing many more items in the collection that it can currently hold. By increasing its
capacity once, at the start, you can prevent several reallocations later. Because
reallocations are costly in terms of time, preventing unnecessary ones improves
performance. The signature for ensureCapacity() is shown here:

void ensureCapacity(int cap)

Here, cap is the new capacity.

Conversely, if you want to reduce the size of the array that underlies an ArrayList
object so that it is precisely as large as the number of items that it is currently holding,
call trimToSize(), shown here:

void trimToSize()

Obtaining an Array from an ArrayList

When working with ArrayList, you will sometimes want to obtain an actual array that
contains the contents of the list. As explained earlier, you can do this by calling toArray().
Several reasons exist why you might want to convert a collection into an array such as:
B To obtain faster processing times for certain operations.
B To pass an array to a method that is not overloaded to accept a collection.
B To integrate your newer, collection-based code with legacy code that does not
understand collections.

Whatever the reason, converting an ArrayList to an array is a trivial matter, as the
following program shows:

// Convert an ArrayList into an array.
import java.util.*;

451

-
=
m
I~
:
>
-
o
X
>
£
=<

452

Java™ 2: The Complete Reference

class ArrayListToArray {
public static void main(String args[]) {
// Create an array list
ArrayList al = new ArrayList();

// Add elements to the array list
al.add(new Integer(l));
al.add(new Integer(2));
al.add(new Integer(3));
al.add(new Integer(4));

System.out.println("Contents of al: " + al);

// get array
Object ia[] = al.toArray();
int sum = 0;

// sum the array
for(int i=0; i<ia.length; i++)
sum += ((Integer) ia[i]).intValue();

System.out.println("Sum is: " + sum);

The output from the program is shown here:

Contents of al: [1, 2, 3, 4]
Sum is: 10

The program begins by creating a collection of integers. As explained, you cannot store
primitive types in a collection, so objects of type Integer are created and stored. Next,
toArray() is called and it obtains an array of Objects. The contents of this array are cast
to Integer, and then the values are summed.

The LinkedList Class

The LinkedList class extends AbstractSequentialList and implements the List interface.
It provides a linked-list data structure. It has the two constructors, shown here:

LinkedList()
LinkedList(Collection c)

Chapter 15: java.util Part 1: The Collections Framework

The first constructor builds an empty linked list. The second constructor builds a linked
list that is initialized with the elements of the collection c.

In addition to the methods that it inherits, the LinkedList class defines some useful
methods of its own for manipulating and accessing lists. To add elements to the start of
the list, use addFirst(); to add elements to the end, use addLast(). Their signatures are
shown here:

void addFirst(Object obyj)
void addLast(Object obj)

Here, obj is the item being added.
To obtain the first element, call getFirst(). To retrieve the last element, call
getLast(). Their signatures are shown here:

Object getFirst()
Object getLast()

To remove the first element, use removeFirst(); to remove the last element, call
removeLast(). They are shown here:

Object removeFirst()
Object removeLast()

The following program illustrates several of the methods supported by LinkedList:

// Demonstrate LinkedList.
import java.util.*;

class LinkedListDemo {
public static void main(String args[]) {
// create a linked list
LinkedList 11 = new LinkedList();

// add elements to the linked list
11.add("F");

11.add("B");

1l.add("D");

1l.add("E");

11.add("c");

1l.addLast("z2");

1l.addFirst("A");

11.add(1, "A2");

453

-
=
m
e~
:
>
=
[~
X
>
£
=<

454 Java™ 2: The Complete Reference

System.out.println("Original contents of 11: " + 11);

// remove elements from the linked list
ll.remove("F");
ll.remove(2);

System.out.println("Contents of 11 after deletion: "
+ 11);

// remove first and last elements
ll.removeFirst();
ll.removeLast();

System.out.println("1ll after deleting first and last: "
+ 11);

// get and set a value
Object val = 1ll.get(2);
ll.set(2, (String) val + " Changed");

System.out.println("1ll after change: " + 11);

The output from this program is shown here:

Original contents of 11: [A, A2, F, B, D, E, C, Z]
Contents of 11 after deletion: [A, A2, D, E, C, 2]
11 after deleting first and last: [A2, D, E, C]

11 after change: [A2, D, E Changed, C]

Because LinkedList implements the List interface, calls to add(Object) append
items to the end of the list, as does addLast(). To insert items at a specific location,
use the add(int, Object) form of add(), as illustrated by the call to add(1, “A2”) in
the example.

Notice how the third element in 11 is changed by employing calls to get() and set().
To obtain the current value of an element, pass get() the index at which the element is
stored. To assign a new value to that index, pass set() the index and its new value.

The HashSet Class

HashSet extends AbstractSet and implements the Set interface. It creates a collection
that uses a hash table for storage. As most readers likely know, a hash table stores

Chapter 15: java.util Part 1: The Collections Framework

information by using a mechanism called hashing. In hashing, the informational content
of a key is used to determine a unique value, called its hash code. The hash code is
then used as the index at which the data associated with the key is stored. The
transformation of the key into its hash code is performed automatically—you never see
the hash code itself. Also, your code can’t directly index the hash table. The advantage
of hashing is that it allows the execution time of basic operations, such as add(),
contains(), remove(), and size(), to remain constant even for large sets.

The following constructors are defined:

HashSet()

HashSet(Collection c)

HashSet(int capacity)

HashSet(int capacity, float fillRatio)

The first form constructs a default hash set. The second form initializes the hash

set by using the elements of c. The third form initializes the capacity of the hash set to
capacity. The fourth form initializes both the capacity and the fill ratio (also called load
capacity) of the hash set from its arguments. The fill ratio must be between 0.0 and 1.0,
and it determines how full the hash set can be before it is resized upward. Specifically,
when the number of elements is greater than the capacity of the hash set multiplied by
its fill ratio, the hash set is expanded. For constructors that do not take a fill ratio, 0.75
is used.

HashSet does not define any additional methods beyond those provided by its
superclasses and interfaces.

Importantly, note that a hash set does not guarantee the order of its elements,
because the process of hashing doesn’t usually lend itself to the creation of sorted sets.
If you need sorted storage, then another collection, such as TreeSet, is a better choice.

Here is an example that demonstrates HashSet:

// Demonstrate HashSet.
import java.util.*;

class HashSetDemo {
public static void main(String args[]) {
// create a hash set
HashSet hs = new HashSet();

// add elements to the hash set
hs.add("B");
hs.add("A");
hs.add("D");
hs.add("E");
hs.add("C");
hs.add("F");

455

-
=
m
I~
2
>
-
o
X
>
£
=<

456 Java™ 2: The Complete Reference

System.out.println(hs);
}
}

The following is the output from this program:
(A, ¥, E, D, C, B]

As explained, the elements are not stored in sorted order, and the precise output may vary.

The LinkedHashSet Class

Java 2, version 1.4 adds the LinkedHashSet class. This class extends HashSet, but adds
no members of its own. LinkedHashSet maintains a linked list of the entries in the set,
in the order in which they were inserted. This allows insertion-order iteration over the
set. That is, when cycling through a LinkedHashSet using an iterator, the elements will
be returned in the order in which they were inserted. This is also the order in which
they are contained in the string returned by toString() when called on a LinkedHashSet
object. To see the effect of LinkedHashSet, try substituting LinkedHashSet For HashSet
in the preceding program. The output will be

[B, A, D, E, C, F]

which is the order in which the elements were inserted.

The TreeSet Class

TreeSet provides an implementation of the Set interface that uses a tree for storage.
Objects are stored in sorted, ascending order. Access and retrieval times are quite fast,
which makes TreeSet an excellent choice when storing large amounts of sorted
information that must be found quickly.

The following constructors are defined:

TreeSet()
TreeSet(Collection c)
TreeSet(Comparator cormp)
TreeSet(SortedSet ss)

The first form constructs an empty tree set that will be sorted in ascending order
according to the natural order of its elements. The second form builds a tree set that
contains the elements of c. The third form constructs an empty tree set that will be
sorted according to the comparator specified by comp. (Comparators are described later
in this chapter.) The fourth form builds a tree set that contains the elements of ss.

Chapter 15: java.util Part 1: The Collections Framework 457

Here is an example that demonstrates a TreeSet:

// Demonstrate TreeSet.
import java.util.*;

class TreeSetDemo {
public static void main(String args[]) {
// Create a tree set
TreeSet ts = new TreeSet();

// Add elements to the tree set
ts.add("C");
ts.add("A");
ts.add("B");
ts.add("E");
ts.add("F");
ts.add("D");

-
=
m
I~
2
>
=
o
X
>
£
=<

System.out.println(ts);

The output from this program is shown here:
[A, B, C, D, E, F]

As explained, because TreeSet stores its elements in a tree, they are automatically
arranged in sorted order, as the output confirms.

| Accessing a Collection via an Iterator

Often, you will want to cycle through the elements in a collection. For example, you
might want to display each element. By far, the easiest way to do this is to employ an
iterator, an object that implements either the Iterator or the ListIterator interface.
Iterator enables you to cycle through a collection, obtaining or removing elements.
ListIterator extends Iterator to allow bidirectional traversal of a list, and the
modification of elements. The Iterator interface declares the methods shown in

Table 15-4. The methods declared by ListIterator are shown in Table 15-5.

Using an lterator

Before you can access a collection through an iterator, you must obtain one. Each of
the collection classes provides an iterator() method that returns an iterator to the start
of the collection. By using this iterator object, you can access each element in the

458

Java™ 2: The Complete Reference

Method

boolean hasNext()
Object next()

void remove()

Description

Returns true if there are more elements. Otherwise,
returns false.

Returns the next element. Throws
NoSuchElementException if there is not a next element.

Removes the current element. Throws
IllegalStateException if an attempt is made to call
remove() that is not preceded by a call to next().

Table 15-4. The Methods Declared by Iterator

Method
void add(Object obyj)

boolean hasNext()
boolean hasPrevious()

Object next()

int nextIndex()

Object previous()

int previousIndex()

void remove()

void set(Object obj)

Description

Inserts obj into the list in front of the element that will
be returned by the next call to next().

Returns true if there is a next element. Otherwise,
returns false.

Returns true if there is a previous element. Otherwise,
returns false.

Returns the next element. A
NoSuchElementException is thrown if there is not a
next element.

Returns the index of the next element. If there is not a
next element, returns the size of the list.

Returns the previous element. A
NoSuchElementException is thrown if there is not a
previous element.

Returns the index of the previous element. If there is
not a previous element, returns -1.

Removes the current element from the list. An
IllegalStateException is thrown if remove() is called
before next() or previous() is invoked.

Assigns obj to the current element. This is the element
last returned by a call to either next() or previous().

Table 15-5. The Methods Declared by Listlterator

Chapter 15: java.util Part 1: The Collections Framework

collection, one element at a time. In general, to use an iterator to cycle through the
contents of a collection, follow these steps:

1. Obtain an iterator to the start of the collection by calling the collection’s
iterator() method.

2. Set up a loop that makes a call to hasNext(). Have the loop iterate as long as
hasNext() returns true.

3. Within the loop, obtain each element by calling next().

For collections that implement List, you can also obtain an iterator by calling
ListIterator. As explained, a list iterator gives you the ability to access the collection in
either the forward or backward direction and lets you modify an element. Otherwise,
ListIterator is used just like Iterator.

Here is an example that implements these steps, demonstrating both Iterator and
Listlterator. It uses an ArrayList object, but the general principles apply to any type of
collection. Of course, ListIterator is available only to those collections that implement
the List interface.

// Demonstrate iterators.
import java.util.*;

class IteratorDemo {
public static void main(String args[]) {
// create an array list
ArrayList al = new ArrayList();

// add elements to the array list
al.add("c");
al.add("a");
al.add("E");
al.add("B");
al.add("D");
al.add("F");

// use iterator to display contents of al
System.out.print("Original contents of al: ");
Iterator itr = al.iterator();
while(itr.hasNext()) {
Object element = itr.next();
System.out.print(element + " ");
}
System.out.println();

// modify objects being iterated
ListIterator litr = al.listIterator();
while(litr.hasNext()) {

459

-
=
m
e~
2
>
=
[~
X
>
£
=<

460

Java™ 2: The Complete Reference

Object element = litr.next();
litr.set(element + "+");

}

System.out.print("Modified contents of al: ");
itr = al.iterator();
while(itr.hasNext()) {
Object element = itr.next();
System.out.print(element + " ");

}
System.out.println();

// now, display the list backwards
System.out.print("Modified list backwards: ");
while(litr.hasPrevious()) {
Object element = litr.previous();
System.out.print(element + " ");

}
System.out.println();

The output is shown here:

Original contents of al: CAE B D F
Modified contents of al: C+ A+ E+ B+ D+ F+
Modified list backwards: F+ D+ B+ E+ A+ C+

Pay special attention to how the list is displayed in reverse. After the list is modified,
litr points to the end of the list. (Remember, litr.hasNext() returns false when the end
of the list has been reached.) To traverse the list in reverse, the program continues to
use litr, but this time it checks to see whether it has a previous element. As long as it
does, that element is obtained and displayed.

Storing User-Defined Classes in Collections

For the sake of simplicity, the foregoing examples have stored built-in objects, such as
String or Integer, in a collection. Of course, collections are not limited to the storage of
built-in objects. Quite the contrary. The power of collections is that they can store any
type of object, including objects of classes that you create. For example, consider the
following example that uses a LinkedList to store mailing addresses:

// A simple mailing list example.
import java.util.*;

Chapter 15: java.util Part 1: The Collections Framework 461

class Address {
private String name;
private String street;
private String city;
private String state;
private String code;

Address(String n, String s, String c,
String st, String cd) {
name = n;
street = s;
city = c;
state = st;
code = cd;

-
X
m
L
2
>
=
w
ol
>
X
3

public String toString() {
return name + "\n" + street + "\n" +
city + " " + state + " " + code;

class MailList {
public static void main(String args[]) {
LinkedList ml = new LinkedList();

// add elements to the linked list

ml.add(new Address("J.W. West", "11 Oak Ave",
"Urbana", "IL", "61801"));

ml.add(new Address("Ralph Baker", "1142 Maple Lane",
"Mahomet", "IL", "61853"));

ml.add(new Address("Tom Carlton", "867 Elm St",
"Champaign", "IL", "61820"));

Iterator itr = ml.iterator();
while(itr.hasNext()) {
Object element = itr.next();
System.out.println(element + "\n");

}
System.out.println();

462

_

Java™ 2: The Complete Reference

The output from the program is shown here:

J.W. West
11 Oak Ave
Urbana IL 61801

Ralph Baker
1142 Maple Lane
Mahomet IL 61853

Tom Carlton
867 Elm St
Champaign IL 61820

Aside from storing a user-defined class in a collection, another important thing to
notice about the preceding program is that it is quite short. When you consider that it
sets up a linked list that can store, retrieve, and process mailing addresses in about 50
lines of code, the power of the collections framework begins to become apparent. As
most readers know, if all of this functionality had to be coded manually, the program
would be several times longer. Collections offer off-the-shelf solutions to a wide variety
of programming problems. You should use them whenever the situation presents itself.

The RandomAccess Interface

Java 2, version 1.4 adds the RandomA ccess interface. This interface contains no members.
However, by implementing this interface, a collection signals that it supports efficient
random access to its elements. Although a collection might support random access, it
might not do so efficiently. By checking for the RandomAccess interface, client code
can determine at run time whether a collection is suitable for certain types of random
access operations—especially as they apply to large collections. (You can use instanceof
to determine if a class implements an interface.) RandomAccess is implemented by
ArrayList and by the legacy Vector class.

Working with Maps

A map is an object that stores associations between keys and values, or key/value pairs.
Given a key, you can find its value. Both keys and values are objects. The keys must be
unique, but the values may be duplicated. Some maps can accept a null key and null
values, others cannot.

The Map Interfaces

Because the map interfaces define the character and nature of maps, this discussion of
maps begins with them. The following interfaces support maps:

Chapter 15: java.util Part 1: The Collections Framework

Interface Description

Map Maps unique keys to values.

Map.Entry Describes an element (a key/value pair) in a map. This is an inner
class of Map.

SortedMap Extends Map so that the keys are maintained in ascending order.

Each interface is examined next, in turn.

The Map Interface

The Map interface maps unique keys to values. A key is an object that you use to
retrieve a value at a later date. Given a key and a value, you can store the value

in a Map object. After the value is stored, you can retrieve it by using its key.

The methods declared by Map are summarized in Table 15-6. Several methods

throw a NoSuchElementException when no items exist in the invoking map. A
ClassCastException is thrown when an object is incompatible with the elements

in a map. A NullPointerException is thrown if an attempt is made to use a null object
and null is not allowed in the map. An UnsupportedOperationException is thrown
when an attempt is made to change an unmodifiable map.

Method Description

void clear() Removes all key/value pairs from the
invoking map.

boolean containsKey(Object k) Returns true if the invoking map contains k as
a key. Otherwise, returns false.

boolean containsValue(Object v) Returns true if the map contains v as a value.
Otherwise, returns false.

Set entrySet() Returns a Set that contains the entries in the
map. The set contains objects of type
Map.Entry. This method provides a set-view
of the invoking map.

boolean equals(Object obyj) Returns true if obj is a Map and contains the
same entries. Otherwise, returns false.

Table 15-6. The Methods Defined by Map

463

464 Java™ 2: The Complete Reference

Method Description

Object get(Object k) Returns the value associated with the key k.
int hashCode() Returns the hash code for the invoking map.
boolean isEmpty() Returns true if the invoking map is empty.

Otherwise, returns false.

Set keySet() Returns a Set that contains the keys in the
invoking map. This method provides a
set-view of the keys in the invoking map.

Object put(Object k, Object v) Puts an entry in the invoking map,
overwriting any previous value associated
with the key. The key and value are k and v,
respectively. Returns null if the key did not
already exist. Otherwise, the previous value
linked to the key is returned.

void putAll(Map m) Puts all the entries from m into this map.

Object remove(Object k) Removes the entry whose key equals k.

int size() Returns the number of key/value pairs in
the map.

Collection values() Returns a collection containing the values

in the map. This method provides a
collection-view of the values in the map.

Table 15-6. The Methods Defined by Map (continued)

Maps revolve around two basic operations: get() and put(). To put a value into a
map, use put(), specifying the key and the value. To obtain a value, call get(), passing
the key as an argument. The value is returned.

As mentioned earlier, maps are not collections because they do not implement the
Collection interface, but you can obtain a collection-view of a map. To do this, you
can use the entrySet() method. It returns a Set that contains the elements in the map.
To obtain a collection-view of the keys, use keySet(). To get a collection-view of the
values, use values(). Collection-views are the means by which maps are integrated
into the collections framework.

Chapter 15: java.util Part 1: The Collections Framework

The SortedMap Interface

The SortedMap interface extends Map. It ensures that the entries are maintained
in ascending key order. The methods declared by SortedMap are summarized in
Table 15-7. Several methods throw a NoSuchElementException when no items are in
the invoking map. A ClassCastException is thrown when an object is incompatible
with the elements in a map. A NullPointerException is thrown if an attempt is made
to use a null object when null is not allowed in the map.

Sorted maps allow very efficient manipulations of submaps (in other words, a
subset of a map). To obtain a submap, use headMap(), tailMap(), or subMap(). To
get the first key in the set, call firstKey(). To get the last key, use lastKey().

Method Description

Comparator comparator() Returns the invoking sorted
map’s comparator. If the natural
ordering is used for the invoking
map, null is returned.

Object firstKey() Returns the first key in the
invoking map.

SortedMap headMap(Object end) Returns a sorted map for those
map entries with keys that are
less than end.

Object lastKey() Returns the last key in the
invoking map.

SortedMap subMap(Object start, Object end) ~ Returns a map containing those
entries with keys that are greater
than or equal to start and less
than end.

SortedMap tailMap(Object start) Returns a map containing those
entries with keys that are greater
than or equal to start.

Table 15-7. The Methods Defined by SortedMap

465

466 Java™ 2: The Complete Reference

The Map.Entry Interface

The Map.Entry interface enables you to work with a map entry. Recall that the
entrySet() method declared by the Map interface returns a Set containing the map
entries. Each of these set elements is a Map.Entry object. Table 15-8 summarizes the
methods declared by this interface.

The Map Classes

Several classes provide implementations of the map interfaces. The classes that can be
used for maps are summarized here:

Class Description

AbstractMap Implements most of the Map interface.

HashMap Extends AbstractMap to use a hash table.

TreeMap Extends AbstractMap to use a tree.

WeakHashMap Extends AbstractMap to use a hash table with weak keys.
LinkedHashMap Extends HashMap to allow insertion-order iterations.
IdentityHashMap Extends AbstractMap and uses reference equality when

comparing documents.

Method Description

boolean equals(Object oby) Returns true if obj is a Map.Entry whose key and
value are equal to that of the invoking object.

Object getKey() Returns the key for this map entry.

Object getValue() Returns the value for this map entry.

int hashCode() Returns the hash code for this map entry.

Object setValue(Object v) Sets the value for this map entry to v. A

ClassCastException is thrown if v is not

the correct type for the map. An
IllegalArgumentException is thrown if there is
a problem with v. A NullPointerException is
thrown if v is null and the map does not permit
null keys. An UnsupportedOperationException
is thrown if the map cannot be changed.

Table 15-8. The Methods Defined by Map.Entry

Chapter 15: java.util Part 1: The Collections Framework 467

Notice that AbstractMap is a superclass for all concrete map implementations.
WeakHashMap implements a map that uses “weak keys,” which allows an element
in a map to be garbage-collected when its key is unused. This class is not discussed
further here. The others are described next.

The HashMap Class

The HashMap class uses a hash table to implement the Map interface. This allows the
execution time of basic operations, such as get() and put(), to remain constant even for
large sets.

The following constructors are defined:

HashMap()

HashMap(Map m)

HashMap(int capacity)
HashMap(int capacity, float fillRatio)

-
=
m
I~
2
>
-
o
X
>
£
=<

The first form constructs a default hash map. The second form initializes the hash map
by using the elements of m. The third form initializes the capacity of the hash map to
capacity. The fourth form initializes both the capacity and fill ratio of the hash map by
using its arguments. The meaning of capacity and fill ratio is the same as for HashSet,
described earlier.

HashMap implements Map and extends AbstractMap. It does not add any
methods of its own.

You should note that a hash map does not guarantee the order of its elements.
Therefore, the order in which elements are added to a hash map is not necessarily the
order in which they are read by an iterator.

The following program illustrates HashMap. It maps names to account balances.
Notice how a set-view is obtained and used.

import java.util.*;

class HashMapDemo {
public static void main(String args[]) {

// Create a hash map
HashMap hm = new HashMap();

// Put elements to the map

hm.put ("John Doe", new Double(3434.34));
hm.put("Tom Smith", new Double(123.22));
hm.put("Jane Baker", new Double(1378.00));
hm.put("Todd Hall", new Double(99.22));
hm.put("Ralph Smith", new Double(-19.08));

468

Java™ 2: The Complete Reference

// Get a set of the entries
Set set = hm.entrySet();

// Get an iterator
Iterator i = set.iterator();

// Display elements

while(i.hasNext()) {
Map.Entry me = (Map.Entry)i.next();
System.out.print(me.getKey() + ": ");
System.out.println(me.getValue());

}
System.out.println();

// Deposit 1000 into John Doe's account

double balance = ((Double)hm.get("John Doe")).doublevValue();

hm.put("John Doe", new Double(balance + 1000));
System.out.println("John Doe's new balance: " +
hm.get ("John Doe"));

Output from this program is shown here (the precise order may vary).

Todd Hall: 99.22
Ralph Smith: -19.08
John Doe: 3434.34
Jane Baker: 1378.0
Tom Smith: 123.22

John Doe'’s current balance: 4434.34

The program begins by creating a hash map and then adds the mapping of names
to balances. Next, the contents of the map are displayed by using a set-view, obtained
by calling entrySet(). The keys and values are displayed by calling the getKey() and
getValue() methods that are defined by Map.Entry. Pay close attention to how the deposit
is made into John Doe’s account. The put() method automatically replaces any preexisting
value that is associated with the specified key with the new value. Thus, after John Doe’s

account is updated, the hash map will still contain just one “John Doe” account.

The TreeMap Class

The TreeMap class implements the Map interface by using a tree. A TreeMap provides

an efficient means of storing key/value pairs in sorted order, and allows rapid

Chapter 15: java.util Part 1: The Collections Framework

retrieval. You should note that, unlike a hash map, a tree map guarantees that its
elements will be sorted in ascending key order.
The following TreeMap constructors are defined:

TreeMap()
TreeMap(Comparator cormp)
TreeMap(Map m)
TreeMap(SortedMap sm)

The first form constructs an empty tree map that will be sorted by using the natural order
of its keys. The second form constructs an empty tree-based map that will be sorted by
using the Comparator comp. (Comparators are discussed later in this chapter.) The third
form initializes a tree map with the entries from 1, which will be sorted by using the
natural order of the keys. The fourth form initializes a tree map with the entries from sm,
which will be sorted in the same order as sm.

TreeMap implements SortedMap and extends AbstractMap. It does not define any
additional methods of its own.

The following program reworks the preceding example so that it uses TreeMap:

import java.util.*;

class TreeMapDemo {
public static void main(String args[]) {

// Create a tree map
TreeMap tm = new TreeMap();

// Put elements to the map

tm.put("John Doe", new Double(3434.34));
tm.put("Tom Smith", new Double(123.22));
tm.put("Jane Baker", new Double(1378.00));
tm.put("Todd Hall", new Double(99.22));
tm.put("Ralph Smith", new Double(-19.08));

// Get a set of the entries
Set set = tm.entrySet();

// Get an iterator
Iterator i = set.iterator();

// Display elements
while(i.hasNext()) {
Map.Entry me = (Map.Entry)i.next();

469

-
I
m
e~
:
>
=
o
F
>
F
=<

470 Java™ 2: The Complete Reference

System.out.print(me.getKey() + ": ");
System.out.println(me.getValue());

}
System.out.println();

// Deposit 1000 into John Doe's account
double balance = ((Double)tm.get("John Doe")).doublevValue();
tm.put("John Doe", new Double(balance + 1000));
System.out.println("John Doe's new balance: " +

tm.get("John Doe"));

The following is the output from this program:

Jane Baker: 1378.0
John Doe: 3434.34
Ralph Smith: -19.08
Todd Hall: 99.22
Tom Smith: 123.22

John Doe'’s current balance: 4434.34

Notice that TreeMap sorts the keys. However, in this case, they are sorted by first
name instead of last name. You can alter this behavior by specifying a comparator
when the map is created, as described shortly.

The LinkedHashMap Class
Java 2, version 1.4 adds the LinkedHashMap class. This class extends HashMap.
LinkedHashMap maintains a linked list of the entries in the map, in the order in which
they were inserted. This allows insertion-order iteration over the map. That is, when
iterating a LinkedHashMap, the elements will be returned in the order in which they
were inserted. You can also create a LinkedHashMap that returns its elements in the
order in which they were last accessed.

LinkedHashMap defines the following constructors.

LinkedHashMap()

LinkedHashMap(Map m)

LinkedHashMap(int capacity)

LinkedHashMap(int capacity, float fillRatio)
LinkedHashMap(int capacity, float fillRatio, boolean Order)

Chapter 15: java.util Part 1: The Collections Framework 471

The first form constructs a default LinkedHashMap. The second form initializes
the LinkedHashMap with the elements from . The third form initializes the capacity.
The fourth form initializes both capacity and fill ratio. The meaning of capacity and fill
ratio are the same as for HashMap. The last form allows you to specify whether the
elements will be stored in the linked list by insertion order, or by order of last access. If
Order is true, then access order is used. If Order is false, then insertion order is used.

LinkedHashMap adds only one method to those defined by HashMap. This
method is removeEldestEntry() and it is shown here.

protected boolean removeEldestEntry(Map.Entry e)

This method is called by put() and putAll(). The oldest entry is passed in e. By default, this
method returns false and does nothing. However, if you override this method, then you
can have the LinkedHashMap remove the oldest entry in the map. To do this, have your
override return true. To keep the oldest entry, return false.

The IdentityHashMap Class

Java 2, version 1.4 adds the IdentityHashMap class. This class implements AbstractMap.
It is similar to HashMap except that it uses reference equality when comparing elements.
The Java 2 documentation explicitly states that IdentityHashMap is not for general use.

| Comparators

Both TreeSet and TreeMap store elements in sorted order. However, it is the
comparator that defines precisely what “sorted order” means. By default, these classes
store their elements by using what Java refers to as “natural ordering,” which is
usually the ordering that you would expect. (A before B, 1 before 2, and so forth.) If
you want to order elements a different way, then specify a Comparator object when
you construct the set or map. Doing so gives you the ability to govern precisely how
elements are stored within sorted collections and maps.

The Comparator interface defines two methods: compare() and equals(). The
compare() method, shown here, compares two elements for order:

int compare(Object obj1, Object 0bj2)

obj1 and obj2 are the objects to be compared. This method returns zero if the objects are
equal. It returns a positive value if obj1 is greater than obj2. Otherwise, a negative value
is returned. The method can throw a ClassCastException if the types of the objects are
not compatible for comparison. By overriding compare(), you can alter the way that
objects are ordered. For example, to sort in reverse order, you can create a comparator
that reverses the outcome of a comparison.

472 Java™ 2: The Complete Reference

The equals() method, shown here, tests whether an object equals the invoking
comparator:

boolean equals(Object oby)

obj is the object to be tested for equality. The method returns true if obj and the
invoking object are both Comparator objects and use the same ordering. Otherwise, it
returns false. Overriding equals() is unnecessary, and most simple comparators will
not do so.

Using a Comparator

The following is an example that demonstrates the power of a custom comparator. It
implements the compare() method so that it operates in reverse of normal. Thus, it
causes a tree set to be stored in reverse order.

// Use a custom comparator.
import java.util.*;

// A reverse comparator for strings.
class MyComp implements Comparator {
public int compare(Object a, Object b) {
String aStr, bStr;

aStr = (String) a;
bStr (String) b;

// reverse the comparison
return bStr.compareTo(aStr);

// no need to override equals

class CompDemo {
public static void main(String args[]) {
// Create a tree set
TreeSet ts = new TreeSet(new MyComp());

// Add elements to the tree set
ts.add("Cc");
ts.add("A");

Chapter 15: java.util Part 1: The Collections Framework

ts.add("B");
ts.add("E");
ts.add("F");
ts.add("D");

// Get an iterator
Iterator i = ts.iterator();

// Display elements
while(i.hasNext()) {
Object element = i.next();
System.out.print(element + " ");

}
System.out.println();

As the following output shows, the tree is now stored in reverse order:
FEDCBA

Look closely at the MyComp class, which implements Comparator and overrides
compare(). (As explained earlier, overriding equals() is neither necessary nor
common.) Inside compare(), the String method compareTo() compares the two
strings. However, bStr—not aStr—invokes compareTo(). This causes the outcome of
the comparison to be reversed.

For a more practical example, the following program is an updated version of
the TreeMap program shown earlier that stores account balances. In the previous
version, the accounts were sorted by name, but the sorting began with the first name.
The following program sorts the accounts by last name. To do so, it uses a comparator
that compares the last name of each account. This results in the map being sorted by
last name.

// Use a comparator to sort accounts by last name.
import java.util.*;

// Compare last whole words in two strings.
class TComp implements Comparator {
public int compare(Object a, Object b) {
int i, j, k;
String aStr, bStr;

473

-
=
m
e~
2
>
=
[~
X
>
£
=<

474 Java™ 2: The Complete Reference

astr
bStr

(String) a;
(String) b;

// find index of beginning of last name
i = aStr.lastIndexOf(' ');
j = bStr.lastIndexOf(' ');

k = aStr.substring(i).compareTo(bStr.substring(j));
if(k==0) // last names match, check entire name
return aStr.compareTo(bStr);
else
return k;

// no need to override equals

class TreeMapDemo2 {
public static void main(String args[]) {
// Create a tree map
TreeMap tm = new TreeMap(new TComp());

// Put elements to the map

tm.put("John Doe", new Double(3434.34));
tm.put("Tom Smith", new Double(123.22));
tm.put("Jane Baker", new Double(1378.00));
tm.put("Todd Hall", new Double(99.22));
tm.put("Ralph Smith", new Double(-19.08));

// Get a set of the entries
Set set = tm.entrySet();

// Get an iterator
Iterator itr = set.iterator();

// Display elements
while(itr.hasNext()) {
Map.Entry me = (Map.Entry)itr.next();
System.out.print(me.getKey() + ": ");
System.out.println(me.getValue());

}
System.out.println();

Chapter 15: java.util Part 1: The Collections Framework 475

// Deposit 1000 into John Doe's account
double balance = ((Double)tm.get("John Doe")).doubleValue();
tm.put("John Doe", new Double(balance + 1000));
System.out.println("John Doe's new balance: " +

tm.get("John Doe"));

Here is the output; notice that the accounts are now sorted by last name:

Jane Baker: 1378.0
John Doe: 3434.34
Todd Hall: 99.22
Ralph Smith: -19.08
Tom Smith: 123.22

-
=
m
I~
:
>
=
o
X
>
£
=<

John Doe’s new balance: 4434.34

The comparator class TComp compares two strings that hold first and last names.
It does so by first comparing last names. To do this, it finds the index of the last space
in each string and then compares the substrings of each element that begin at that
point. In cases where last names are equivalent, the first names are then compared.
This yields a tree map that is sorted by last name, and within last name by first name.
You can see this because Ralph Smith comes before Tom Smith in the output.

___| The Collection Algorithms

The collections framework defines several algorithms that can be applied to collections
and maps. These algorithms are defined as static methods within the Collections
class. They are summarized in Table 15-9. Several of the methods can throw a
ClassCastException, which occurs when an attempt is made to compare incompatible
types, or an UnsupportedOperationException, which occurs when an attempt is made
to modify an unmodifiable collection.

Notice that several methods, such as synchronizedList() and synchronizedSet(),
are used to obtain synchronized (thread-safe) copies of the various collections. As
explained, none of the standard collections implementations are synchronized. You
must use the synchronization algorithms to provide synchronization. One other point:
iterators to synchronized collections must be used within synchronized blocks.

The set of methods that begins with unmodifiable returns views of the various
collections that cannot be modified. These will be useful when you want to grant some
process read—but not write—capabilities on a collection.

476

Java™ 2: The Complete Reference

Method

static Object max(Collection c,

static Object max(Collection c)

static int binarySearch(List list, Object value,
Comparator c)

static int binarySearch(List list, Object value)

static void copy(List list1, List list2)

static Enumeration enumeration(Collection c)

static void fill(List /ist, Object obj)

static int indexOfSubList(List /ist,
List subList)

static int lastindexOfSubList(List list,
List subList)

static ArrayList list(Enumeration enum)

Comparator comp)

Description

Searches for value in list ordered
according to c. Returns the
position of value in list, or -1 if
value is not found.

Searches for value in list. The list
must be sorted. Returns the
position of value in list, or -1 if
value is not found.

Copies the elements of Iist2 to list1.

Returns an enumeration over c.
(See “The Enumeration
Interface,” later in this chapter.)

Assigns obj to each element of list.

Searches list for the first
occurrence of subList. Returns
the index of the first match, or -1
if no match is found. (Added by
Java 2, v1.4)

Searches list for the last
occurrence of subList. Returns
the index of the last match, or -1
if no match is found. (Added by
Java 2, v1.4)

Returns an ArrayList that
contains the elements of enum.
(Added by Java 2, v1.4)

Returns the maximum element
in ¢ as determined by comp.

Returns the maximum element
in ¢ as determined by natural
ordering. The collection need
not be sorted.

Table 15-9. The Algorithms Defined by Collections

Chapter 15:

java.util Part 1: The Collections Framework

Method
static Object min(Collection c,
Comparator comp)

static Object min(Collection c)

static List nCopies(int num, Object obj)

static boolean replaceAll(List [ist,
Object old,
Object new)

static void reverse(List list)

static Comparator reverseOrder()

static void rotate(List /ist, int)

static void shuffle(List list, Random r)

static void shuffle(List list)

static Set singleton(Object obj)

Description

Returns the minimum element
in c as determined by comp. The
collection need not be sorted.

Returns the minimum element
in ¢ as determined by natural
ordering.

Returns num copies of obj
contained in an immutable list.
num must be greater than or
equal to zero.

Replaces all occurrences of old
with new in list. Returns true if at
least one replacement occurred.
Returns false, otherwise. (Added
by Java 2, v1.4)

Reverses the sequence in [ist.

Returns a reverse comparator
(a comparator that reverses the
outcome of a comparison
between two elements).

Rotates list by n places to
the right. To rotate left, use a
negative value for n. (Added
by Java 2, v1.4)

Shuffles (i.e., randomizes) the
elements in [ist by using r as a
source of random numbers.

Shuffles (i.e., randomizes) the
elements in list.

Returns obj as an immutable set.
This is an easy way to convert a
single object into a set.

Table 15-9.

The Algorithms Defined by Collections (continued)

477

-
=
m
I~
2
>
-
o
X
>
£
=<

478

Java™ 2: The Complete Reference

Method

static List singletonList(Object obj)

static Map singletonMap(Object k, Object v)

static void sort(List list, Comparator comp)

static void sort(List list)

static void swap(List list, int idx1, int idx2)

static Collection
synchronizedCollection(Collection c)

static List synchronizedList(List list)
static Map synchronizedMap(Map m)
static Set synchronizedSet(Set s)

static SortedMap
synchronizedSortedMap(SortedMap sim1)

static SortedSet
synchronizedSortedSet(SortedSet ss)

static Collection
unmodifiableCollection(Collection c)

static List unmodifiableList(List /ist)

Description

Returns obj as an immutable list.
This is an easy way to convert a
single object into a list. (Added
by Java 2, v1.3)

Returns the key/value pair k/v
as an immutable map. This is an
easy way to convert a single
key/value pair into a map.
(Added by Java 2, v1.3)

Sorts the elements of list as
determined by comp.

Sorts the elements of list as
determined by their natural
ordering.

Exchanges the elements in ist at
the indices specified by idx1 and
idx2. (Added by Java 2, v1.4)

Returns a thread-safe collection
backed by c.

Returns a thread-safe list backed
by list.

Returns a thread-safe map
backed by m.

Returns a thread-safe set
backed by s.

Returns a thread-safe sorted set
backed by sm.

Returns a thread-safe set
backed by ss.

Returns an unmodifiable
collection backed by c.

Returns an unmodifiable list
backed by list.

Table 15-9.

The Algorithms Defined by Collections (continued)

Chapter 15: java.util Part 1: The Collections Framework 479

Method Description
static Map unmodifiableMap(Map 1) Returns an unmodifiable map
backed by m.
static Set unmodifiableSet(Set s) Returns an unmodifiable set
backed by s.
static SortedMap Returns an unmodifiable sorted
unmodifiableSortedMap(SortedMap sm) map backed by sm.
-
static SortedSet Returns an unmodifiable sorted =
unmodifiableSortedSet(SortedSet ss) set backed by ss. s
<
>
Table 15-9. The Algorithms Defined by Collections (continued) E
2
]
=<

Collections defines three static variables: EMPTY_SET, EMPTY_LIST, and
EMPTY_MAP. All are immutable. EMPTY_MAP was added by Java 2, version 1.3.

The following program demonstrates some of the algorithms. It creates and
initializes a linked list. The reverseOrder() method returns a Comparator that reverses
the comparison of Integer objects. The list elements are sorted according to this
comparator and then are displayed. Next, the list is randomized by calling shuffle(),
and then its minimum and maximum values are displayed.

// Demonstrate various algorithms.
import java.util.*;

class AlgorithmsDemo {
public static void main(String args[]) {

// Create and initialize linked list
LinkedList 11 = new LinkedList();
ll.add(new Integer(-8));

ll.add(new Integer(20));

ll.add(new Integer(-20));

ll.add(new Integer(8));

// Create a reverse order comparator
Comparator r = Collections.reverseOrder();

// Sort list by using the comparator
Collections.sort(1ll, r);

480 Java™ 2: The Complete Reference

// Get iterator
Iterator 1i = ll.iterator();

System.out.print("List sorted in reverse: ");
while(li.hasNext())
System.out.print(li.next() + " ");

System.out.println();
Collections.shuffle(1ll);

// display randomized list

1i = 1ll.iterator();

System.out.print("List shuffled: ");

while(li.hasNext())
System.out.print(li.next() + " ");

System.out.println();

System.out.println("Minimum: " + Collections.min(1ll));
System.out.println("Maximum: " + Collections.max(ll));

Output from this program is shown here:

List sorted in reverse: 20 8 -8 -20
List shuffled: 20 -20 8 -8
Minimum: -20

Maximum: 20

Notice that min() and max() operate on the list after it has been shuffled. Neither
requires a sorted list for its operation.

__ | Arrays

The Arrays class provides various methods that are useful when working with arrays.
Although these methods technically aren’t part of the collections framework, they help
bridge the gap between collections and arrays. Arrays was added by Java 2. Each
method defined by Arrays is examined in this section.

The asList() method returns a List that is backed by a specified array. In other words,
both the list and the array refer to the same location. It has the following signature:

static List asList(Object[] array)

Here, array is the array that contains the data.

Chapter 15: java.util Part 1: The Collections Framework

The binarySearch() method uses a binary search to find a specified value. This
method must be applied to sorted arrays. It has the following forms:

static int binarySearch(byte[] array, byte value)

static int binarySearch(char[] array, char value)

static int binarySearch(double][] array, double value)

static int binarySearch(float[] array, float value)

static int binarySearch(int[] array, int value)

static int binarySearch(long][] array, long value)

static int binarySearch(short[] array, short value)

static int binarySearch(Object[] array, Object value)

static int binarySearch(Object|] array, Object value, Comparator c)

Here, array is the array to be searched and value is the value to be located. The last two
forms throw a ClassCastException if array contains elements that cannot be compared
(for example, Double and StringBuffer) or if value is not compatible with the types in
array. In the last form, the Comparator c is used to determine the order of the elements
in array. In all cases, if value exists in array, the index of the element is returned.
Otherwise, a negative value is returned.

The equals() method returns true if two arrays are equivalent. Otherwise, it
returns false. The equals() method has the following forms:

static boolean equals(boolean array1[], boolean array?2][])
static boolean equals(byte array1][], byte array?2[])

static boolean equals(char arraylI[], char array2[])

static boolean equals(double array1[], double array?2[])
static boolean equals(float array1[], float array2[])

static boolean equals(int array1[], int array2[])

static boolean equals(long array1[], long array2[])

static boolean equals(short array1[], short array?2[])
static boolean equals(Object array1[], Object array2|])

Here, arrayl and array2 are the two arrays that are compared for equality.

The fill() method assigns a value to all elements in an array. In other words, it fills
an array with a specified value. The fill() method has two versions. The first version,
which has the following forms, fills an entire array:

static void fill(boolean array[], boolean value)
static void fill(byte arrayl], byte value)

static void fill(char array[], char value)

static void fill(double array[], double value)
static void fill(float arrayl], float value)

static void fill(int arrayl[], int value)

static void fill(long array[], long value)

static void fill(short array[], short value)
static void fill(Object arrayl], Object value)

Here, value is assigned to all elements in array.

481

-
=
m
I~
:
>
-
o
X
>
£
=<

482 Java™ 2: The Complete Reference

The second version of the fill() method assigns a value to a subset of an array. Its
forms are shown here:

static void fill(boolean array|], int start, int end, boolean value)
static void fill(byte arrayl], int start, int end, byte value)

static void fill(char array[], int start, int end, char value)

static void fill(double array[], int start, int end, double value)
static void fill(float arrayl], int start, int end, float value)

static void fill(int array[], int start, int end, int value)

static void filllong array[1, int start, int end, long value)

static void fill(short array[], int start, int end, short value)
static void fill(Object arrayl], int start, int end, Object value)

Here, value is assigned to the elements in array from position start to position end-1.
These methods may all throw an Illegal ArgumentException if start is greater than end,
or an ArrayIndexOutOfBoundsException if start or end is out of bounds.

The sort() method sorts an array so that it is arranged in ascending order. The
sort() method has two versions. The first version, shown here, sorts the entire array:

static void sort(byte array[])

static void sort(char arrayl])

static void sort(double arrayl])

static void sort(float arrayl])

static void sort(int array[])

static void sort(long array[])

static void sort(short array[])

static void sort(Object array|])

static void sort(Object array[], Comparator c)

Here, array is the array to be sorted. In the last form, c is a Comparator that is used to
order the elements of array. The forms that sort arrays of Object can also throw a
ClassCastException if elements of the array being sorted are not comparable.

The second version of sort() enables you to specify a range within an array that
you want to sort. Its forms are shown here:

static void sort(byte array|], int start, int end)

static void sort(char arrayl], int start, int end)

static void sort(double array[], int start, int end)

static void sort(float array|], int start, int end)

static void sort(int array[], int start, int end)

static void sort(long array[], int start, int end)

static void sort(short array[], int start, int end)

static void sort(Object array|], int start, int end)

static void sort(Object array|], int start, int end, Comparator c)

Here, the range beginning at start and running through end-1 within array will be
sorted. In the last form, ¢ is a Comparator that is used to order the elements of array.

Chapter 15: java.util Part 1: The Collections Framework 483

All of these methods can throw an Illegal ArgumentException if start is greater than
end, or an ArrayIndexOutOfBoundsException if start or end is out of bounds. The last
two forms can also throw a ClassCastException if elements of the array being sorted
are not comparable.

The following program illustrates how to use some of the methods of the Arrays class:

// Demonstrate Arrays
import java.util.*;

class ArraysDemo {
public static void main(String args[]) {

// allocate and initialize array

int array[] = new int[10];

for(int i = 0; i < 10; i++)
array[i] = -3 * i;

-
I
m
e~
:
>
=
o
F
>
F
=<

// display, sort, display
System.out.print("Original contents: ");
display(array);

Arrays.sort(array);
System.out.print("Sorted: ");
display(array);

// £ill and display
Arrays.fill(array, 2, 6, -1);
System.out.print("After £ill(): ");
display(array);

// sort and display

Arrays.sort(array);
System.out.print("After sorting again: ");
display(array);

// binary search for -9
System.out.print("The value -9 is at location ");
int index =

Arrays.binarySearch(array, -9);
System.out.println(index);

static void display(int array[]) {
for(int i = 0; i < array.length; i++)
System.out.print(array[i] + " ");

484 Java™ 2: The Complete Reference

System.out.println("");
}

The following is the output from this program:

Original contents: 0 -3 -6 -9 -12 -15 -18 -21 -24 -27
Sorted: -27 -24 -21 -18 -15 -12 -9 -6 -3 0

After £ill(): -27 -24 -1 -1 -1 -1 -9 -6 -3 0

After sorting again: -27 -24 -9 -6 -3 -1 -1 -1 -1 0
The value -9 is at location 2

___| The Legacy Classes and Interfaces

As explained at the start of this chapter, the original version of java.util did not include
the collections framework. Instead, it defined several classes and an interface that
provided an ad hoc method of storing objects. With the addition of collections by Java
2, several of the original classes were reengineered to support the collection interfaces.
Thus, they are fully compatible with the framework. While no classes have actually
been deprecated, one has been rendered obsolete. Of course, where a collection
duplicates the functionality of a legacy class, you will usually want to use the collection
for new code. In general, the legacy classes are supported because there is still code
that uses them.

One other point: None of the collection classes are synchronized, but all the legacy
classes are synchronized. This distinction may be important in some situations. Of
course, you can easily synchronize collections, too, by using one of the algorithms
provided by Collections.

The legacy classes defined by java.util are shown here:

Dictionary Hashtable Properties Stack Vector

There is one legacy interface called Enumeration. The following sections examine
Enumeration and each of the legacy classes, in turn.

The Enumeration Interface

The Enumeration interface defines the methods by which you can enumerate (obtain
one at a time) the elements in a collection of objects. This legacy interface has been
superceded by Iterator. Although not deprecated, Enumeration is considered obsolete
for new code. However, it is used by several methods defined by the legacy classes
(such as Vector and Properties), is used by several other API classes, and is currently
in widespread use in application code.

Chapter 15: java.util Part 1: The Collections Framework 485

Enumeration specifies the following two methods:

boolean hasMoreElements()
Object nextElement()

When implemented, hasMoreElements() must return true while there are still

more elements to extract, and false when all the elements have been enumerated.
nextElement() returns the next object in the enumeration as a generic Object reference.
That is, each call to nextElement() obtains the next object in the enumeration. The
calling routine must cast that object into the object type held in the enumeration.

Vector

Vector implements a dynamic array. It is similar to ArrayList, but with two differences:
Vector is synchronized, and it contains many legacy methods that are not part of
the collections framework. With the release of Java 2, Vector was reengineered to
extend AbstractList and implement the List interface, so it now is fully compatible
with collections.

Here are the Vector constructors:

-
=
m
I~
:
>
-
o
X
>
£
=<

Vector()

Vector(int size)
Vector(int size, int incr)
Vector(Collection ¢)

The first form creates a default vector, which has an initial size of 10. The second form
creates a vector whose initial capacity is specified by size. The third form creates a
vector whose initial capacity is specified by size and whose increment is specified by
incr. The increment specifies the number of elements to allocate each time that a vector
is resized upward. The fourth form creates a vector that contains the elements of
collection c. This constructor was added by Java 2.

All vectors start with an initial capacity. After this initial capacity is reached, the
next time that you attempt to store an object in the vector, the vector automatically
allocates space for that object plus extra room for additional objects. By allocating more
than just the required memory, the vector reduces the number of allocations that must
take place. This reduction is important, because allocations are costly in terms of time.
The amount of extra space allocated during each reallocation is determined by the
increment that you specify when you create the vector. If you don’t specify an
increment, the vector’s size is doubled by each allocation cycle.

Vector defines these protected data members:

int capacitylncrement;
int elementCount;
Object elementDatal];

Java™ 2: The Complete Reference

The increment value is stored in capacityIncrement. The number of elements currently
in the vector is stored in elementCount. The array that holds the vector is stored in
elementData.

In addition to the collections methods defined by List, Vector defines several legacy
methods, which are shown in Table 15-10.

Method

void addElement(Object element)

int capacity()
Object clone()

boolean contains(Object element)

void copyInto(Object arrayl])

Object elementAt(int index)
Enumeration elements()
void ensureCapacity(int size)
Object firstElement()

int indexOf(Object element)

int indexOf(Object element, int start)

Description

The object specified by element is
added to the vector.

Returns the capacity of the vector.

Returns a duplicate of the
invoking vector.

Returns true if element is
contained by the vector, and
returns false if it is not.

The elements contained in the
invoking vector are copied into
the array specified by array.

Returns the element at the
location specified by index.

Returns an enumeration of the
elements in the vector.

Sets the minimum capacity of the
vector to size.

Returns the first element in
the vector.

Returns the index of the first
occurrence of element. If the object
is not in the vector, -1 is returned.

Returns the index of the first
occurrence of element at or after
start. If the object is not in that
portion of the vector, -1 is
returned.

Table 15-10.

The Methods Defined by Vector

Chapter 15:

java.util Part 1: The Collections Framework

Method

void insertElementAt(Object element,
int index)

boolean isEmpty()

Object lastElement()

int lastIndexOf(Object element)

int lastIndexOf(Object element,
int start)

void removeAllElements()

boolean removeElement(Object element)

void removeElementAt(int index)

void setElementAt(Object element,
int index)

void setSize(int size)

Description

Adds element to the vector at the
location specified by index.

Returns true if the vector is empty
and returns false if it contains one
or more elements.

Returns the last element in the
vector.

Returns the index of the last
occurrence of element. If the object
is not in the vector, -1 is returned.

Returns the index of the last
occurrence of element before start.
If the object is not in that portion
of the vector, -1 is returned.

Empties the vector. After this
method executes, the size of the
vector is zero.

Removes element from the vector.
If more than one instance of the
specified object exists in the
vector, then it is the first one that
is removed. Returns true if
successful and false if the object is
not found.

Removes the element at the
location specified by index.

The location specified by index is
assigned element.

Sets the number of elements in the
vector to size. If the new size is
less than the old size, elements are
lost. If the new size is larger than
the old size, null elements are
added.

Table 15-10.

The Methods Defined by Vector (continued)

487

-
=
m
I~
:
>
-
o
X
>
£
=<

488 Java™ 2: The Complete Reference

Method Description

int size() Returns the number of elements
currently in the vector.

String toString() Returns the string equivalent of
the vector.

void trimToSize() Sets the vector’s capacity equal to
the number of elements that it
currently holds.

Table 15-10. The Methods Defined by Vector (continued)

Because Vector implements List, you can use a vector just like you use an ArrayList
instance. You can also manipulate one using its legacy methods. For example, after you
instantiate a Vector, you can add an element to it by calling addElement(). To obtain
the element at a specific location, call elementAt(). To obtain the first element in the
vector, call firstElement(). To retrieve the last element, call lastElement(). You can
obtain the index of an element by using indexOf() and lastIndexOf(). To remove an
element, call removeElement() or removeElementAt().

The following program uses a vector to store various types of numeric objects. It
demonstrates several of the legacy methods defined by Vector. It also demonstrates the
Enumeration interface.

// Demonstrate various Vector operations.
import java.util.*;

class VectorDemo {
public static void main(String args[]) {

// initial size is 3, increment is 2
Vector v = new Vector(3, 2);

System.out.println("Initial size: + v.size());
System.out.println("Initial capacity: " +

v.capacity());

Chapter 15: java.util Part 1: The Collections Framework 489

v.addElement (new Integer(1l));
v.addElement (new Integer(2));
v.addElement (new Integer(3));
v.addElement (new Integer(4));

System.out.println("Capacity after four additions: " +
v.capacity());

v.addElement (new Double(5.45));

System.out.println("Current capacity: " +
v.capacity());

v.addElement (new Double(6.08));

v.addElement (new Integer(7));

System.out.println("Current capacity: " +
v.capacity());

v.addElement (new Float(9.4));

v.addElement (new Integer(10));

-
I
m
e~
2
>
=
w
X
>
X
=<

System.out.println("Current capacity: " +
v.capacity());

v.addElement (new Integer(11l));

v.addElement (new Integer(12));

System.out.println("First element: " +
(Integer)v.firstElement());
System.out.println("Last element: " +

(Integer)v.lastElement());

if(v.contains(new Integer(3)))
System.out.println("Vector contains 3.");

// enumerate the elements in the vector.
Enumeration vEnum = v.elements();

System.out.println("\nElements in vector:");
while (vEnum.hasMoreElements())

System.out.print(vEnum.nextElement() + " ");
System.out.println();

490 Java™ 2: The Complete Reference

The output from this program is shown here:

Initial size: 0

Initial capacity: 3

Capacity after four additions: 5
Current capacity: 5

Current capacity: 7

Current capacity: 9

First element: 1

Last element: 12

Vector contains 3.

Elements in vector:
123 45.45 6.08 7 9.4 10 11 12

With the release of Java 2, Vector added support for iterators. Instead of relying on
an enumeration to cycle through the objects (as the preceding program does), you now
can use an iterator. For example, the following iterator-based code can be substituted
into the program:

// use an iterator to display contents
Iterator vItr = v.iterator();

System.out.println("\nElements in vector:");
while(vItr.hasNext())

System.out.print(vItr.next() + " ");
System.out.println();

Because enumerations are not recommended for new code, you will usually use an
iterator to enumerate the contents of a vector. Of course, much legacy code exists that
employs enumerations. Fortunately, enumerations and iterators work in nearly the
same manner.

Stack

Stack is a subclass of Vector that implements a standard last-in, first-out stack. Stack
only defines the default constructor, which creates an empty stack. Stack includes all
the methods defined by Vector, and adds several of its own, shown in Table 15-11.

To put an object on the top of the stack, call push(). To remove and return the top
element, call pop(). An EmptyStackException is thrown if you call pop() when the
invoking stack is empty. You can use peek() to return, but not remove, the top object.
The empty() method returns true if nothing is on the stack. The search() method
determines whether an object exists on the stack, and returns the number of pops that

Chapter 15: java.util Part 1: The Collections Framework 491

Method Description

boolean empty() Returns true if the stack is empty, and returns false
if the stack contains elements.

Object peek() Returns the element on the top of the stack, but
does not remove it.

from the top of the stack is returned. Otherwise, -1
is returned.

Object pop() Returns the element on the top of the stack,
removing it in the process. o
Object push(Object element) Pushes element onto the stack. element is also i
returned. E
int search(Object element) Searches for element in the stack. If found, its offset E
3
>
T
=<

Table 15-11. The Methods Defined by Stack

are required to bring it to the top of the stack. Here is an example that creates a stack,
pushes several Integer objects onto it, and then pops them off again:

// Demonstrate the Stack class.
import java.util.*;

class StackDemo {
static void showpush(Stack st, int a) {
st.push(new Integer(a));
System.out.println("push(" + a + ")");
System.out.println("stack: " + st);

static void showpop(Stack st) {
System.out.print("pop -> ");
Integer a = (Integer) st.pop():;
System.out.println(a);
System.out.println("stack: " + st);

public static void main(String args[]) {

492 Java™ 2: The Complete Reference

Stack st = new Stack();

System.out.println("stack: " + st);

showpush(st, 42);

showpush(st, 66);

showpush(st, 99);

showpop(st);

showpop(st);

showpop(st);

try {
showpop(st);

} catch (EmptyStackException e) {
System.out.println("empty stack");

The following is the output produced by the program; notice how the exception
handler for EmptyStackException is caught so that you can gracefully handle a
stack underflow:

stack: []
push(42)

stack: [42]
push(66)

stack: [42, 66]
push(99)

stack: [42, 66, 99]
pop -> 99

stack: [42, 66]
pop -> 66

stack: [42]

pop -> 42

stack: []

pop -> empty stack

Dictionary

Dictionary is an abstract class that represents a key/value storage repository and
operates much like Map. Given a key and value, you can store the value in a Dictionary

Chapter 15: java.util Part 1: The Collections Framework

object. Once the value is stored, you can retrieve it by using its key. Thus, like a map,
a dictionary can be thought of as a list of key/value pairs. Although not actually
deprecated by Java 2, Dictionary is classified as obsolete, because it is superceded by
Map. However, Dictionary is still in use and thus is fully discussed here.

The abstract methods defined by Dictionary are listed in Table 15-12.

To add a key and a value, use the put() method. Use get() to retrieve the value of a
given key. The keys and values can each be returned as an Enumeration by the keys()
and elements() methods, respectively. The size() method returns the number of key/
value pairs stored in a dictionary, and isEmpty() returns true when the dictionary is
empty. You can use the remove() method to delete a key/value pair.

Method Purpose

Enumeration elements() Returns an enumeration of the values
contained in the dictionary.

Object get(Object key) Returns the object that contains the value
associated with key. If key is not in the
dictionary, a null object is returned.

boolean isEmpty() Returns true if the dictionary is empty, and
returns false if it contains at least one key.

Enumeration keys() Returns an enumeration of the keys
contained in the dictionary.

Object put(Object key, Object value) Inserts a key and its value into the
dictionary. Returns null if key is not already
in the dictionary; returns the previous
value associated with key if key is already
in the dictionary.

Object remove(Object key) Removes key and its value. Returns the
value associated with key. If key is not in
the dictionary, a null is returned.

int size() Returns the number of entries in the
dictionary.

Table 15-12. The Abstract Methods Defined by Dictionary

493

494 Java™ 2: The Complete Reference

| The Dictionary class is obsolete. You should implement the Map interface to obtain
= key/value storage functionality.

Hashtable

Hashtable was part of the original java.util and is a concrete implementation of a
Dictionary. However, Java 2 reengineered Hashtable so that it also implements the
Map interface. Thus, Hashtable is now integrated into the collections framework. It is
similar to HashMap, but is synchronized.

Like HashMap, Hashtable stores key/value pairs in a hash table. When using a
Hashtable, you specify an object that is used as a key, and the value that you want
linked to that key. The key is then hashed, and the resulting hash code is used as the
index at which the value is stored within the table.

A hash table can only store objects that override the hashCode() and equals()
methods that are defined by Object. The hashCode() method must compute and
return the hash code for the object. Of course, equals() compares two objects.
Fortunately, many of Java’s built-in classes already implement the hashCode()
method. For example, the most common type of Hashtable uses a String object as
the key. String implements both hashCode() and equals().

The Hashtable constructors are shown here:

Hashtable()

Hashtable(int size)
Hashtable(int size, float fillRatio)
Hashtable(Map m)

The first version is the default constructor. The second version creates a hash table that
has an initial size specified by size. The third version creates a hash table that has an
initial size specified by size and a fill ratio specified by fillRatio. This ratio must be
between 0.0 and 1.0, and it determines how full the hash table can be before it is resized
upward. Specifically, when the number of elements is greater than the capacity of the
hash table multiplied by its fill ratio, the hash table is expanded. If you do not specify
a fill ratio, then 0.75 is used. Finally, the fourth version creates a hash table that is
initialized with the elements in m. The capacity of the hash table is set to twice the
number of elements in m. The default load factor of 0.75 is used. The fourth constructor
was added by Java 2.

In addition to the methods defined by the Map interface, which Hashtable now
implements, Hashtable defines the legacy methods listed in Table 15-13.

Chapter 15: java.util Part 1: The Collections Framework 495

Method Description

void clear() Resets and empties the hash table.

Object clone() Returns a duplicate of the invoking object.
boolean contains(Object valize) Returns true if some value equal to value

exists within the hash table. Returns false
if the value isn’t found.

boolean containsKey(Object key) Returns true if some key equal to key
exists within the hash table. Returns false
if the key isn’t found.

boolean containsValue(Object value) Returns true if some value equal to value
exists within the hash table. Returns false
if the value isn’t found. (A non-Map
method added by Java 2, for consistency.)

-
=
m
I~
2
>
-
o
X
>
£
=<

Enumeration elements() Returns an enumeration of the values
contained in the hash table.

Object get(Object key) Returns the object that contains the value
associated with key. If key is not in the
hash table, a null object is returned.

boolean isEmpty() Returns true if the hash table is empty;
returns false if it contains at least one key.

Enumeration keys() Returns an enumeration of the keys
contained in the hash table.

Object put(Object key, Object value) Inserts a key and a value into the hash
table. Returns null if key isn’t already in
the hash table; returns the previous value
associated with key if key is already in the
hash table.

void rehash() Increases the size of the hash table and
rehashes all of its keys.

Table 15-13. The Legacy Methods Defined by Hashtable

496 Java™ 2: The Complete Reference

Method Description

Object remove(Object key) Removes key and its value. Returns the
value associated with key. If key is not in
the hash table, a null object is returned.

int size() Returns the number of entries in the
hash table.

String toString() Returns the string equivalent of a
hash table.

Table 15-13. The Legacy Methods Defined by Hashtable (continued)

The following example reworks the bank account program, shown earlier, so that it
uses a Hashtable to store the names of bank depositors and their current balances:

// Demonstrate a Hashtable

import java.util.*;

class HTDemo {

public static void main(String args[]) {

Hashtable balance = new Hashtable();
Enumeration names;
String str;
double bal;

balance.put("John Doe", new Double(3434.34));
balance.put("Tom Smith", new Double(123.22));
balance.put("Jane Baker", new Double(1378.00));
balance.put("Todd Hall", new Double(99.22));
balance.put("Ralph Smith", new Double(-19.08));

// Show all balances in hash table.
names = balance.keys();
while(names.hasMoreElements()) {
str = (String) names.nextElement();
System.out.println(str + ": " +
balance.get(str));

System.out.println();

Chapter 15: java.util Part 1: The Collections Framework

// Deposit 1,000 into John Doe's account

bal = ((Double)balance.get("John Doe")).doubleValue();

balance.put("John Doe", new Double(bal+1000));

System.out.println("John Doe's new balance: " +
balance.get("John Doe"));

The output from this program is shown here:

Todd Hall: 99.22
Ralph Smith: -19.08
John Doe: 3434.34
Jane Baker: 1378.0
Tom Smith: 123.22

John Doe’s new balance: 4434.34

One important point: like the map classes, Hashtable does not directly support
iterators. Thus, the preceding program uses an enumeration to display the contents
of balance. However, you can obtain set-views of the hash table, which permits the
use of iterators. To do so, you simply use one of the collection-view methods defined
by Map, such as entrySet() or keySet(). For example, you can obtain a set-view of the
keys and iterate through them. Here is a reworked version of the program that shows
this technique:

// Use iterators with a Hashtable.
import java.util.*;

class HTDemo2 {
public static void main(String args[]) {
Hashtable balance = new Hashtable();
String str;
double bal;

balance.put("John Doe", new Double(3434.34));
balance.put("Tom Smith", new Double(123.22));
balance.put("Jane Baker", new Double(1378.00));
balance.put("Todd Hall", new Double(99.22));
balance.put("Ralph Smith", new Double(-19.08));

// show all balances in hashtable

497

-
=
m
e~
:
>
=
[~
X
>
£
=<

498

Java™ 2: The Complete Reference

Set set = balance.keySet(); // get set-view of keys

// get iterator
Iterator itr = set.iterator();
while(itr.hasNext()) {
str = (String) itr.next();
System.out.println(str + ": " +
balance.get(str));

System.out.println();

// Deposit 1,000 into John Doe's account

bal = ((Double)balance.get("John Doe")).doublevalue();

balance.put("John Doe", new Double(bal+1000));

System.out.println("John Doe's new balance: " +
balance.get("John Doe"));

Properties

Properties is a subclass of Hashtable. It is used to maintain lists of values in which the
key is a String and the value is also a String. The Properties class is used by many other
Java classes. For example, it is the type of object returned by System.getProperties()
when obtaining environmental values.

Properties defines the following instance variable:

Properties defaults;

This variable holds a default property list associated with a Properties object.
Properties defines these constructors:

Properties()
Properties(Properties propDefault)

The first version creates a Properties object that has no default values. The second
creates an object that uses propDefault for its default values. In both cases, the property
list is empty.

In addition to the methods that Properties inherits from Hashtable, Properties
defines the methods listed in Table 15-14. Properties also contains one deprecated
method: save(). This was replaced by store() because save() did not handle errors
correctly.

Chapter 15:

java.util Part 1: The Collections Framework

Method
String getProperty(String key)

String getProperty(String key,
String defaultProperty)

void list(PrintStream streamQOut)
void list(PrintWriter streamQut)
void load(InputStream streamlIn)

throws IOException

Enumeration propertyNames()

Object setProperty(String key, String value)

void store(OutputStream streamOut,

Description

Returns the value associated with
key. A null object is returned if key
is neither in the list nor in the
default property list.

Returns the value associated with
key. defaultProperty is returned if key
is neither in the list nor in the
default property list.

Sends the property list to the
output stream linked to streamOut.

Sends the property list to the
output stream linked to streamOut.

Inputs a property list from the
input stream linked to streamlIn.

Returns an enumeration of the
keys. This includes those keys
found in the default property
list, too.

Associates value with key. Returns
the previous value associated with
key, or returns null if no such
association exists. (Added by Java 2,
for consistency.)

After writing the string specified

String description) by description, the property list is
written to the output stream linked
to streamOut. (Added by Java 2.)
Table 15-14. The Legacy Methods Defined by Properties

One useful capability of the Properties class is that you can specify a default
property that will be returned if no value is associated with a certain key. For example,
a default value can be specified along with the key in the getProperty() method—such
as getProperty(“name”, “default value”). If the “name” value is not found, then
“default value” is returned. When you construct a Properties object, you can pass

499

500

Java™ 2: The Complete Reference

another instance of Properties to be used as the default properties for the new instance.
In this case, if you call getProperty(“foo”) on a given Properties object, and “foo” does
not exist, Java looks for “foo” in the default Properties object. This allows for arbitrary
nesting of levels of default properties.

The following example demonstrates Properties. It creates a property list in which
the keys are the names of states and the values are the names of their capitals. Notice
that the attempt to find the capital for Florida includes a default value.

// Demonstrate a Property list.
import java.util.*;

class PropDemo {
public static void main(String args[]) {
Properties capitals = new Properties();
Set states;
String str;

capitals.put("Illinois", "Springfield");
capitals.put("Missouri", "Jefferson City");
capitals.put("Washington", "Olympia");
capitals.put("California", "Sacramento");
capitals.put("Indiana", "Indianapolis");

// Show all states and capitals in hashtable.
states = capitals.keySet(); // get set-view of keys
Iterator itr = states.iterator();

while(itr.hasNext()) {
str = (String) itr.next();
System.out.println("The capital of " +
str + " is " +
capitals.getProperty(str)

Y
}

System.out.println();

// look for state not in list -- specify default

str = capitals.getProperty("Florida", "Not Found");
System.out.println("The capital of Florida is "
+ str + ".");

Chapter 15: java.util Part 1: The Collections Framework

The output from this program is shown here:

The capital of Missouri is Jefferson City.
The capital of Illinois is Springfield.
The capital of Indiana is Indianapolis.
The capital of California is Sacramento.
The capital of Washington is Olympia.

The capital of Florida is Not Found.

Since Florida is not in the list, the default value is used.

Although it is perfectly valid to use a default value when you call getProperty(), as
the preceding example shows, there is a better way of handling default values for most
applications of property lists. For greater flexibility, specify a default property list
when constructing a Properties object. The default list will be searched if the desired
key is not found in the main list. For example, the following is a slightly reworked
version of the preceding program, with a default list of states specified. Now, when
Florida is sought, it will be found in the default list:

// Use a default property list.
import java.util.*;

class PropDemoDef {
public static void main(String args[]) {
Properties defList = new Properties();
defList.put("Florida", "Tallahassee");
defList.put("Wisconsin", "Madison");

Properties capitals = new Properties(defList);
Set states;
String str;

capitals.put("Illinois", "Springfield");
capitals.put("Missouri", "Jefferson City");
capitals.put("Washington", "Olympia");
capitals.put("California", "Sacramento");
capitals.put("Indiana", "Indianapolis");

// Show all states and capitals in hashtable.
states = capitals.keySet(); // get set-view of keys
Iterator itr = states.iterator();

while(itr.hasNext()) {
str = (String) itr.next();

501

-
I
m
I~
2
>
=
o
F
>
F
=<

502

Java™ 2: The Complete Reference

System.out.println("The capital of " +
str + " is " +
capitals.getProperty(str)
TNOY

System.out.println();

// Florida will now be found in the default list.

str = capitals.getProperty("Florida");

System.out.println("The capital of Florida is
+ str + ".");

"

Using store() and load()

One of the most useful aspects of Properties is that the information contained in a
Properties object can be easily stored to or loaded from disk with the store() and
load() methods. At any time, you can write a Properties object to a stream or read

it back. This makes property lists especially convenient for implementing simple
databases. For example, the following program uses a property list to create a simple
computerized telephone book that stores names and phone numbers. To find a
person’s number, you enter his or her name. The program uses the store() and load()
methods to store and retrieve the list. When the program executes, it first tries to load
the list from a file called phonebook.dat. If this file exists, the list is loaded. You can
then add to the list. If you do, the new list is saved when you terminate the program.
Notice how little code is required to implement a small, but functional, computerized
phone book.

/* A simple telephone number database that uses
a property list. */

import java.io.*;

import java.util.*;

class Phonebook {
public static void main(String args[])
throws IOException

Properties ht = new Properties();
BufferedReader br =

Chapter 15: java.util Part 1: The Collections Framework 503

new BufferedReader (new InputStreamReader (System.in));
String name, number;
FileInputStream fin = null;
boolean changed = false;

// Try to open phonebook.dat file.
try {

fin = new FileInputStream("phonebook.dat");
} catch(FileNotFoundException e) {

// ignore missing file

/* If phonebook file already exists,
load existing telephone numbers. */
try {
if(fin != null) {
ht.load(fin);
fin.close();
}
} catch(IOException e) {
System.out.println("Error reading file.");

-
X
m
e~
2
>
=
w
ol
>
X
=<

// Let user enter new names and numbers.
do {
System.out.println("Enter new name" +
" ('quit' to stop): ");
name = br.readLine();
if(name.equals("quit")) continue;

System.out.println("Enter number: ");
number = br.readLine();

ht.put(name, number);
changed = true;
} while(!name.equals("quit"));

// 1f phone book data has changed, save it.
if(changed) {

FileOutputStream fout = new FileOutputStream("phonebook.dat");

ht.store(fout, "Telephone Book");

504 Java™ 2: The Complete Reference

fout.close();

// Look up numbers given a name.
do {
System.out.println("Enter name to find" +
" ('"quit' to quit): ");
name = br.readLine();
if(name.equals("quit")) continue;

number = (String) ht.get(name);
System.out.println(number);
} while(!name.equals("quit"));

| Collections Summary

The collections framework gives you, the programmer, a powerful set of well-engineered
solutions to some of programming’s most common tasks. Consider using a collection the
next time that you need to store and retrieve information. Remember, collections need
not be reserved for only the “large jobs,” such as corporate databases, mailing lists, or
inventory systems. They are also effective when applied to smaller jobs. For example, a
TreeMap would make an excellent collection to hold the directory structure of a set of
files. A TreeSet could be quite useful for storing project-management information.
Frankly, the types of problems that will benefit from a collections-based solution are
limited only by your imagination.

The

Romplete
Chapoter 16

java.util Part 2: More
Utility Classes

506

Java™ 2: The Complete Reference

interfaces that are not part of the collections framework. These include classes

that tokenize strings, work with dates, compute random numbers, and observe
events. Also, the java.util.zip and java.util.jar packages are briefly mentioned at the
end of this chapter.

This chapter continues our discussion of java.util by examining those classes and

StringTokenizer

The processing of text often consists of parsing a formatted input string. Parsing is the
division of text into a set of discrete parts, or tokens, which in a certain sequence can
convey a semantic meaning. The StringTokenizer class provides the first step in this
parsing process, often called the lexer (lexical analyzer) or scanner. StringTokenizer
implements the Enumeration interface. Therefore, given an input string, you can
enumerate the individual tokens contained in it using StringTokenizer.

To use StringTokenizer, you specify an input string and a string that contains
delimiters. Delimiters are characters that separate tokens. Each character in the delimiters
string is considered a valid delimiter—for example, “,;:” sets the delimiters to a comma,
semicolon, and colon. The default set of delimiters consists of the whitespace characters:
space, tab, newline, and carriage return.

The StringTokenizer constructors are shown here:

StringTokenizer(String str)
StringTokenizer(String str, String delimiters)
StringTokenizer(String str, String delimiters, boolean delimAsToken)

In all versions, str is the string that will be tokenized. In the first version, the default
delimiters are used. In the second and third versions, delimiters is a string that specifies
the delimiters. In the third version, if delimAsToken is true, then the delimiters are also
returned as tokens when the string is parsed. Otherwise, the delimiters are not returned.
Delimiters are not returned as tokens by the first two forms.

Once you have created a StringTokenizer object, the nextToken() method is used
to extract consecutive tokens. The hasMoreTokens() method returns true while there
are more tokens to be extracted. Since StringTokenizer implements Enumeration, the
hasMoreElements() and nextElement() methods are also implemented, and they act
the same as hasMoreTokens() and nextToken(), respectively. The StringTokenizer
methods are shown in Table 16-1.

Here is an example that creates a StringTokenizer to parse “key=value” pairs.
Consecutive sets of “key=value” pairs are separated by a semicolon.

// Demonstrate StringTokenizer.
import java.util.StringTokenizer;

Chapter 16: java.util Part 2: More Utility Classes 507

class STDemo {
static String in = "title=Java: The Complete Reference;" +
"author=Schildt;" +
"publisher=0Osborne/McGraw-Hill;" +
"copyright=2002";

public static void main(String args[]) {

StringTokenizer st = new StringTokenizer(in, "=;");
=
while(st.hasMoreTokens()) { E
String key = st.nextToken(); :<’
String val = st.nextToken(); ,::
System.out.println(key + "\t" + val); E
} >
)
} =<
}
Method Description
int countTokens() Using the current set of delimiters, the
method determines the number of tokens left
to be parsed and returns the result.
boolean hasMoreElements() Returns true if one or more tokens remain in
the string and returns false if there are none.
boolean hasMoreTokens() Returns true if one or more tokens remain in
the string and returns false if there are none.
Object nextElement() Returns the next token as an Object.
String nextToken() Returns the next token as a String.
String nextToken(String delimiters) Returns the next token as a String and
sets the delimiters string to that specified
by delimiters.
Table 16-1. The Methods Defined by StringTokenizer

508 Java™ 2: The Complete Reference

The output from this program is shown here:

title Java: The Complete Reference

author Schildt

publisher Osborne/McGraw-Hill

copyright 2002

___ | Bitset

A BitSet class creates a special type of array that holds bit values. This array can
increase in size as needed. This makes it similar to a vector of bits. The BitSet

constructors are shown here:

BitSet()
BitSet(int size)

The first version creates a default object. The second version allows you to specify its
initial size (that is, the number of bits that it can hold). All bits are initialized to zero.

BitSet implements the Cloneable interface and defines the methods listed in
Table 16-2. Notice that several were added by Java 2, version 1.4.

Method
void and(BitSet bitSet)

void andNot(BitSet bitSet)
int cardinality()

void clear()
void clear(int index)

void clear(int startIndex,
int endIndex)

Object clone()
boolean equals(Object bitSet)

Description

AND:s the contents of the invoking BitSet
object with those specified by bitSet. The result
is placed into the invoking object.

For each 1 bit in bitSet, the corresponding bit in
the invoking BitSet is cleared. (Added by Java 2)

Returns the number of set bits in the invoking
object. (Added by Java 2, version 1.4)

Zeros all bits. (Added by Java 2, version 1.4)
Zeros the bit specified by index.

Zeros the bits from startIndex to endIndex—1.
(Added by Java 2, version 1.4)

Duplicates the invoking BitSet object.

Returns true if the invoking bit set is
equivalent to the one passed in bitSet.
Otherwise, the method returns false.

Table 16-2. The Methods Defined by BitSet

Chapter 16: java.util Part 2: More Utility Classes
Method Description
void flip(int index) Reverses the bit specified by index. (Added by

void flip(int startIndex,
int endIndex)
boolean get(int index)

BitSet get(int startindex,
int endIndex)

int hashCode()
boolean intersects(BitSet bitSet)

boolean isEmpty()

int length()

int nextClearBit(int startIndex)

int nextSetBit(int startIndex)

void or(BitSet bitSet)

void set(int index)

Java 2, version 1.4)

Reverses the bits from startIndex to endIndex—1.
(Added by Java 2, version 1.4)

Returns the current state of the bit at the
specified index.

Returns a BitSet that consists of the bits from
startIndex to endIndex—1. The invoking object is
not changed. (Added by Java 2, version 1.4)

Returns the hash code for the invoking object.

Returns true if at least one pair of corresponding
bits within the invoking object and bitSet are 1.
(Added by Java 2, version 1.4)

Returns true if all bits in the invoking object
are zero. (Added by Java 2, version 1.4)

Returns the number of bits required to hold
the contents of the invoking BitSet. This value
is determined by the location of the last 1 bit.
(Added by Java 2)

Returns the index of the next cleared bit, (that
is, the next zero bit), starting from the index
specified by startIndex. (Added by Java 2,
version 1.4)

Returns the index of the next set bit (that is, the
next 1 bit), starting from the index specified by

startIndex. If no bit is set, —1 is returned. (Added
by Java 2, version 1.4)

ORs the contents of the invoking BitSet object
with that specified by bitSet. The result is
placed into the invoking object.

Sets the bit specified by index.

Table 16-2.

The Methods Defined by BitSet (continued)

509

510

Java™ 2: The Complete Reference

Method Description

void set(int index, boolean v) Sets the bit specified by index to the value
passed in v. true sets the bit, false clears the
bit. (Added by Java 2, version 1.4)

void set(int startIndex, Sets the bits from startIndex to endIndex—1.
int endIndex) (Added by Java 2, version 1.4)

void set(int startIndex, Sets the bits from startIndex to endIndex—1, to
int endIndex, boolean v) the value passed in v. true sets the bits, false
clears the bits. (Added by Java 2, version 1.4)

String toString() Returns the string equivalent of the invoking

int size() Returns the number of bits in the invoking
BitSet object.
BitSet object.

void xor(BitSet bitSet) XORs the contents of the invoking BitSet

object with that specified by bitSet. The result
is placed into the invoking object.

Table 16-2.

Here is an example that demonstrates BitSet:

// BitSet Demonstration.
import java.util.BitSet;

class BitSetDemo {

public static void main(String args[]) {

BitSet bitsl = new BitSet(16);
BitSet bits2 = new BitSet(16);

// set some bits

for(int i=0; i<16; i++) {
if((1i%2) == 0) bitsl.set(i);
if((1i%5) != 0) bits2.set(i);

}

The Methods Defined by BitSet (continued)

Chapter 16: java.util Part 2: More Utility Classes 511

System.out.println("Initial pattern in bitsl: ");
System.out.println(bitsl);
System.out.println("\nInitial pattern in bits2: ");
System.out.println(bits2);

// AND bits

bits2.and(bitsl);
System.out.println("\nbits2 AND bitsl: ");
System.out.println(bits2);

// OR bits

bits2.or(bitsl);
System.out.println("\nbits2 OR bitsl: ");
System.out.println(bits2);

-
X
m
e~
2
>
=
w
ol
>
X
=<

// XOR bits

bits2.xor(bitsl);
System.out.println("\nbits2 XOR bitsl: ");
System.out.println(bits2);

The output from this program is shown here. When toString() converts a BitSet object
to its string equivalent, each set bit is represented by its bit position. Cleared bits are
not shown.

Initial pattern in bitsl:
{0, 2, 4, 6, 8, 10, 12, 14}

Initial pattern in bits2:
{1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14}

bits2 AND bitsl:
{2, 4, 6, 8, 12, 14}

bits2 OR bitsl:
{0, 2, 4, 6, 8, 10, 12, 14}

bits2 XOR bitsl:
{}

512 Java™ 2: The Complete Reference

| Date

The Date class encapsulates the current date and time. Before beginning our
examination of Date, it is important to point out that it has changed substantially from
its original version defined by Java 1.0. When Java 1.1 was released, many of the
functions carried out by the original Date class were moved into the Calendar and
DateFormat classes, and as a result, many of the original 1.0 Date methods were
deprecated. Java 2 added a few new methods to the time and date classes, but
otherwise implemented them in the same form as did 1.1. Since the deprecated 1.0
methods should not be used for new code, they are not described here.

Date supports the following constructors:

Date()
Date(long millisec)

The first constructor initializes the object with the current date and time. The second
constructor accepts one argument that equals the number of milliseconds that have
elapsed since midnight, January 1, 1970. The nondeprecated methods defined by Date
are shown in Table 16-3. With the advent of Java 2, Date also implements the
Comparable interface.

Method Description

boolean after(Date date) Returns true if the invoking Date object contains a
date that is later than the one specified by date.
Otherwise, it returns false.

boolean before(Date date) ~ Returns true if the invoking Date object contains a
date that is earlier than the one specified by date.
Otherwise, it returns false.

Object clone() Duplicates the invoking Date object.

int compareTo(Date date) Compares the value of the invoking object with
that of date. Returns 0 if the values are equal.
Returns a negative value if the invoking object is
earlier than date. Returns a positive value if the
invoking object is later than date. (Added by Java 2)

int compareTo(Object obj) Operates identically to compareTo(Date) if obj is of
class Date. Otherwise, it throws a
ClassCastException. (Added by Java 2)

Table 16-3. The Nondeprecated Methods Defined by Date

Chapter 16: java.util Part 2: More Utility Classes

Method Description

boolean equals(Object date) Returns true if the invoking Date object contains
the same time and date as the one specified by date.
Otherwise, it returns false.

long getTime() Returns the number of milliseconds that have
elapsed since January 1, 1970.

int hashCode() Returns a hash code for the invoking object.

void setTime(long time) Sets the time and date as specified by time, which

represents an elapsed time in milliseconds from
midnight, January 1, 1970.

String toString() Converts the invoking Date object into a string and
returns the result.

Table 16-3. The Nondeprecated Methods Defined by Date (continued)

As you can see by examining Table 16-3, the Date features do not allow you to
obtain the individual components of the date or time. As the following program
demonstrates, you can only obtain the date and time in terms of milliseconds or in its
default string representation as returned by toString(). To obtain more-detailed
information about the date and time, you will use the Calendar class.

// Show date and time using only Date methods.
import java.util.Date;

class DateDemo {
public static void main(String args[]) {
// Instantiate a Date object
Date date = new Date();

// display time and date using toString()
System.out.println(date);

// Display number of milliseconds since midnight, January 1, 1970 GMT

513

-
=
m
I~
2
>
-
o
X
>
£
=<

514 Java™ 2: The Complete Reference

long msec = date.getTime();
System.out.println("Milliseconds since Jan. 1, 1970 GMT = " + msec);

}

Sample output is shown here:

Mon Apr 22 09:51:52 CDT 2002
Milliseconds since Jan. 1, 1970 GMT = 1019487112894

Date Comparison

There are three ways to compare two Date objects. First, you can use getTime() to
obtain the number of milliseconds that have elapsed since midnight, January 1, 1970,
for both objects and then compare these two values. Second, you can use the methods
before(), after(), and equals(). Because the 12th of the month comes before the 18th,
for example, new Date(99, 2, 12).before(new Date (99, 2, 18)) returns true. Finally, you
can use the compareTo() method, which is defined by the Comparable interface and
implemented by Date.

___| calendar

The abstract Calendar class provides a set of methods that allows you to convert a time
in milliseconds to a number of useful components. Some examples of the type of
information that can be provided are: year, month, day, hour, minute, and second. It is
intended that subclasses of Calendar will provide the specific functionality to interpret
time information according to their own rules. This is one aspect of the Java class
library that enables you to write programs that can operate in several international
environments. An example of such a subclass is GregorianCalendar.

Calendar provides no public constructors.

Calendar defines several protected instance variables. areFieldsSet is a boolean
that indicates if the time components have been set. fields is an array of ints that holds
the components of the time. isSet is a boolean array that indicates if a specific time
component has been set. time is a long that holds the current time for this object.
isTimeSet is a boolean that indicates if the current time has been set.

Some commonly used methods defined by Calendar are shown in Table 16-4.

Chapter 16: java.util Part 2: More Utility Classes 515

Calendar defines the following int constants, which are used when you get or set
components of the calendar:

AM FRIDAY PM
AM_PM HOUR SATURDAY
APRIL HOUR_OF_DAY SECOND
AUGUST JANUARY SEPTEMBER
DATE JULY SUNDAY 3
DAY_OF_MONTH JUNE THURSDAY ;
DAY_OF_WEEK MARCH TUESDAY S
DAY_OF_WEEK_IN_MONTH MAY UNDECIMBER E
DAY_OF_YEAR MILLISECOND WEDNESDAY E
DECEMBER MINUTE WEEK_OF_MONTH
DST_OFFSET MONDAY WEEK_OF_YEAR
ERA MONTH YEAR
FEBRUARY NOVEMBER ZONE_OFFSET
FIELD_COUNT OCTOBER

Method Description

abstract void add(int which, int val) Adds val to the time or date

component specified by which. To

subtract, add a negative value. which
must be one of the fields defined by
Calendar, such as Calendar. HOUR.

boolean after(Object calendarObj) Returns true if the invoking Calendar
object contains a date that is later
than the one specified by calendarObj.
Otherwise, it returns false.

boolean before(Object calendarObyj) Returns true if the invoking Calendar
object contains a date that is earlier
than the one specified by calendarObj.
Otherwise, it returns false.

Table 16-4. Commonly Used Methods Defined by Calendar

516

Java™ 2: The Complete Reference

Method

final void clear()
final void clear(int which)
Object clone()

boolean equals(Object calendarObj)

int get(int calendarField)

static Locale[] getAvailableLocales()

static Calendar getInstance()

static Calendar getInstance(TimeZone tz)

static Calendar getInstance(Locale locale)

static Calendar getInstance(TimeZone ¢z,
Locale locale)

Description

Zeros all time components in the
invoking object.

Zeros the time component specified
by which in the invoking object.

Returns a duplicate of the invoking
object.

Returns true if the invoking Calendar
object contains a date that is equal to
the one specified by calendarObj.
Otherwise, it returns false.

Returns the value of one component
of the invoking object. The
component is indicated by
calendarField. Examples of the
components that can be requested are
Calendar.YEAR, Calendar. MONTH,
Calendar.MINUTE, and so forth.

Returns an array of Locale objects
that contains the locales for which
calendars are available.

Returns a Calendar object for the
default locale and time zone.

Returns a Calendar object for the
time zone specified by tz. The default
locale is used.

Returns a Calendar object for the
locale specified by locale. The default
time zone is used.

Returns a Calendar object for the
time zone specified by tz and the
locale specified by locale.

final Date getTime() Returns a Date object equivalent to
the time of the invoking object.
Table 16-4. Commonly Used Methods Defined by Calendar (continued)

Chapter 16: java.util Part 2: More Utility Classes 517

Method Description

TimeZone getTimeZone() Returns the time zone for the
invoking object.

final boolean isSet(int which) Returns true if the specified time
component is set. Otherwise, it
returns false.

void set(int which, int val) Sets the date or time component
specified by which to the value
specified by val in the invoking object.
which must be one of the fields
defined by Calendar, such as
Calendar.HOUR.

-
=
m
I~
2
>
-
o
X
>
£
=<

final void set(int year, int month, Sets various date and time
int dayOfMonth) components of the invoking object.

final void set(int year, int month, Sets various date and time
int dayOfMonth, int hours, components of the invoking object.
int minutes)

final void set(int year, int month, Sets various date and time
int dayOfMonth, int hours, ~ components of the invoking object.
int minutes, int seconds)

final void setTime(Date d) Sets various date and time
components of the invoking object.
This information is obtained from the
Date object d.

void setTimeZone(TimeZone tz) Sets the time zone for the invoking
object to that specified by tz.

Table 16-4. Commonly Used Methods Defined by Calendar (continued)

The following program demonstrates several Calendar methods:

// Demonstrate Calendar
import java.util.Calendar;

518 Java™ 2: The Complete Reference

class CalendarDemo {
public static void main(String args[]) {
String months[] = {
"Jan", "Feb", "Mar", "Apr",
"May", "Jun", "Jul", "Aug",
"Sep", "Oct", "Nov", "Dec"};

// Create a calendar initialized with the
// current date and time in the default

// locale and timezone.

Calendar calendar = Calendar.getInstance();

// Display current time and date information.
System.out.print("Date: ");
System.out.print(months[calendar.get(Calendar.MONTH)]);
System.out.print(" " + calendar.get(Calendar.DATE) + " ");
System.out.println(calendar.get(Calendar.YEAR));

System.out.print("Time: ");
System.out.print(calendar.get(Calendar.HOUR) + ":");
System.out.print(calendar.get(Calendar.MINUTE) + ":");

System.out.println(calendar.get(Calendar.SECOND));

// Set the time and date information and display it.
calendar.set(Calendar.HOUR, 10);
calendar.set(Calendar .MINUTE, 29);
calendar.set(Calendar.SECOND, 22);

System.out.print("Updated time: ");
System.out.print(calendar.get(Calendar.HOUR) + ":");
System.out.print(calendar.get(Calendar.MINUTE) + ":");
System.out.println(calendar.get(Calendar.SECOND));

Sample output is shown here:

Date: Apr 22 2002
Time: 11:24:25
Updated time: 10:29:22

Chapter 16: java.util Part 2: More Utility Classes 519

___ | GregorianCalendar

GregorianCalendar is a concrete implementation of a Calendar that implements the
normal Gregorian calendar with which you are familiar. The getInstance() method of
Calendar returns a GregorianCalendar initialized with the current date and time in the
default locale and time zone.

GregorianCalendar defines two fields: AD and BC. These represent the two eras
defined by the Gregorian calendar.

There are also several constructors for GregorianCalendar objects. The default,
GregorianCalendar(), initializes the object with the current date and time in the
default locale and time zone. Three more constructors offer increasing levels of
specificity:

GregorianCalendar(int year, int month, int dayOfMonth)

GregorianCalendar(int year, int month, int dayOfMonth, int hours,
int minutes)

GregorianCalendar(int year, int month, int dayOfMonth, int hours,
int minutes, int seconds)

-
=
m
I~
:
>
-
o
X
>
£
=<

All three versions set the day, month, and year. Here, year specifies the number of years
that have elapsed since 1900. The month is specified by month, with zero indicating
January. The day of the month is specified by dayOfMonth. The first version sets the
time to midnight. The second version also sets the hours and the minutes. The third
version adds seconds.

You can also construct a GregorianCalendar object by specifying either the locale
and/or time zone. The following constructors create objects initialized with the current
date and time using the specified time zone and/or locale:

GregorianCalendar(Locale locale)
GregorianCalendar(TimeZone timeZone)
GregorianCalendar(TimeZone timeZone, Locale locale)

GregorianCalendar provides an implementation of all the abstract methods in
Calendar. It also provides some additional methods. Perhaps the most interesting is
isLeapYear(), which tests if the year is a leap year. Its form is

boolean isLeapYear(int year)

This method returns true if year is a leap year and false otherwise.
The following program demonstrates GregorianCalendar:

// Demonstrate GregorianCalendar
import java.util.*;

520 Java™ 2: The Complete Reference

class GregorianCalendarDemo {
public static void main(String args[]) {
String months[] = {
"Jan", "Feb", "Mar", "Apr",
"May", "Jun", "Jul", "Aug",
"Sep", "Oct", "Nov", "Dec"};
int year;

// Create a Gregorian calendar initialized

// with the current date and time in the

// default locale and timezone.

GregorianCalendar gcalendar = new GregorianCalendar();

// Display current time and date information.
System.out.print("Date: ");

System.out.print (months[gcalendar.get(Calendar.MONTH)]);
System.out.print(" " + gcalendar.get(Calendar.DATE) + " ");
System.out.println(year = gcalendar.get(Calendar.YEAR));

System.out.print("Time: ");
System.out.print(gcalendar.get(Calendar.HOUR) + ":");
System.out.print(gcalendar.get(Calendar .MINUTE) + ":");
System.out.println(gcalendar.get(Calendar.SECOND)) ;

// Test if the current year is a leap year
if (gcalendar.isLeapYear(year)) {
System.out.println("The current year is a leap year");
}
else {
System.out.println("The current year is not a leap year");

Sample output is shown here:

Date: Apr 22 2002
Time: 11:25:27
The current year is not a leap year

Chapter 16: java.util Part 2: More Utility Classes

| TimeZone

Another time-related class is TimeZone. The TimeZone class allows you to work with
time zone offsets from Greenwich mean time (GMT), also referred to as Coordinated
Universal Time (UTC). It also computes daylight saving time. TimeZone only supplies
the default constructor.

Some methods defined by TimeZone are summarized in Table 16-5.

Method Description

Object clone() Returns a TimeZone-specific

version of clone().

static String[] getAvailablelDs() Returns an array of String
objects representing the names

of all time zones.

static String[| getAvailableIDs(int timeDelta) ~Returns an array of String objects
representing the names of all time
zones that are timeDelta offset
from GMT.

static TimeZone getDefault() Returns a TimeZone object that
represents the default time zone

used on the host computer.

String getID() Returns the name of the invoking

TimeZone object.

abstract int getOffset(int era, int year,
int month,

int dayOfMonth,

int dayOfWeek,
int millisec)

abstract int getRawOffset()

Returns the offset that should be
added to GMT to compute local
time. This value is adjusted for
daylight saving time. The
parameters to the method
represent date and time
components.

Returns the raw offset that should

be added to GMT to compute local
time. This value is not adjusted for
daylight saving time.

Table 16-5. Some of the Methods Defined by TimeZone

521

522 Java™ 2: The Complete Reference

Method Description

static TimeZone getTimeZone(String tzName) Returns the TimeZone object for
the time zone named tzName.

abstract boolean inDaylightTime(Date d) Returns true if the date
represented by d is in daylight
saving time in the invoking
object. Otherwise, it returns false.

static void setDefault(TimeZone tz) Sets the default time zone to be
used on this host. ¢z is a reference
to the TimeZone object to be used.

void setID(String tzName) Sets the name of the time zone
(that is, its ID) to that specified
by tzName.

abstract void setRawOffset(int millis) Sets the offset in milliseconds
from GMT.

abstract boolean useDaylightTime() Returns true if the invoking

object uses daylight saving time.
Otherwise, it returns false.

Table 16-5. Some of the Methods Defined by TimeZone (continued)

___ | simpleTimeZone

The SimpleTimeZone class is a convenient subclass of TimeZone. It implements
TimeZone’s abstract methods and allows you to work with time zones for a Gregorian
calendar. It also computes daylight saving time.

SimpleTimeZone defines four constructors. One is

SimpleTimeZone(int timeDelta, String tzName)

This constructor creates a SimpleTimeZone object. The offset relative to Greenwich
mean time (GMT) is timeDelta. The time zone is named tzNarme.
The second SimpleTimeZone constructor is

SimpleTimeZone(int timeDelta, String tzId, int dstMonth0,
int dstDayInMonth0, int dstDayo0, int time0,
int dstMonth1, int dstDayInMonth1, int dstDay1,
int timel)

Chapter 16: java.util Part 2: More Utility Classes 523

Here, the offset relative to GMT is specified in timeDelta. The time zone name is passed
in tzId. The start of daylight saving time is indicated by the parameters dstMonth0,
dstDayInMonth0, dstDay0, and time0. The end of daylight saving time is indicated by
the parameters dstMonthl, dstDaylnMonth1, dstDay1, and timel.

The third SimpleTimeZone constructor is

SimpleTimeZone(int timeDelta, String tzId, int dstMonth0,
int dstDayInMonth0, int dstDay0, int time0,
int dstMonth1, int dstDayInMonth1, int dstDay1,
int timel, int dstDelta)

Here, dstDelta is the number of milliseconds saved during daylight saving time.
The fourth SimpleTimeZone constructor is:

SimpleTimeZone(int timeDelta, String tzId, int dstMonth0,
int dstDayInMonth0, int dstDay0, int time0,
int timeOmode, int dstMonth1, int dstDayInMonth1,
int dstDay1, int timel, int timelmode, int dstDelta)

-
=
m
I~
:
>
-
o
X
>
£
=<

Here, timeOmode specifies the mode of the starting time, and timelmode specifies the
mode of the ending time. Valid mode values include

STANDARD_TIME WALL_TIME UTC_TIME

The time mode indicates how the time values are interpreted. The default mode used
by the other constructors is WALL_TIME. This constructor and the mode values were
added by Java 2, version 1.4.

___|Locale

The Locale class is instantiated to produce objects that each describe a geographical or
cultural region. It is one of several classes that provide you with the ability to write
programs that can execute in several different international environments. For example,
the formats used to display dates, times, and numbers are different in various regions.

Internationalization is a large topic that is beyond the scope of this book.
However, most programs will only need to deal with its basics, which include
setting the current locale.

The Locale class defines the following constants that are useful for dealing with
the most common locales:

CANADA GERMAN KOREAN
CANADA_FRENCH GERMANY PRC
CHINA ITALIAN SIMPLIFIED_CHINESE

CHINESE ITALY TAIWAN

524

Java™ 2: The Complete Reference

ENGLISH JAPAN TRADITIONAL_CHINESE
FRANCE JAPANESE UK
FRENCH KOREA UsS

For example, the expression Locale. CANADA represents the Locale object for Canada.
The constructors for Locale are

Locale(String language)
Locale(String language, String country)
Locale(String language, String country, String data)

These constructors build a Locale object to represent a specific language and in the
case of the last two, country. These values must contain ISO-standard language and
country codes. Auxiliary browser and vendor-specific information can be provided in
data. The first constructor was added by Java 2, version 1.4.

Locale defines several methods. One of the most important is setDefault(),
shown here:

static void setDefault(Locale localeObj)

This sets the default locale to that specified by localeObj.
Some other interesting methods are the following:

final String getDisplayCountry()
final String getDisplayLanguage()
final String getDisplayName()

These return human-readable strings that can be used to display the name of the
country, the name of the language, and the complete description of the locale.
The default locale can be obtained using getDefault(), shown here:

static Locale getDefault()

Calendar and GregorianCalendar are examples of classes that operate in a locale-
sensitive manner. DateFormat and SimpleDateFormat also depend on the locale.

| Random

The Random class is a generator of pseudorandom numbers. These are called
pseudorandom numbers because they are simply uniformly distributed sequences.
Random defines the following constructors:

Random()
Random(long seed)

The first version creates a number generator that uses the current time as the starting,
or seed, value. The second form allows you to specify a seed value manually.

If you initialize a Random object with a seed, you define the starting point for the
random sequence. If you use the same seed to initialize another Random object, you will

Chapter 16: java.util Part 2: More Utility Classes

Method Description

boolean nextBoolean() Returns the next boolean random number.
(Added by Java 2)

void nextBytes(byte vals[]) Fills vals with randomly generated values.

double nextDouble() Returns the next double random number.

float nextFloat() Returns the next float random number.

double nextGaussian() Returns the next Gaussian random number.

int nextInt() Returns the next int random number.

int nextInt(int n) Returns the next int random number within
the range zero to n. (Added by Java 2)

long nextLong() Returns the next long random number.

void setSeed(long newSeed) Sets the seed value (that is, the starting

point for the random number generator) to
that specified by newSeed.

Table 16-6. The Methods Defined by Random

extract the same random sequence. If you want to generate different sequences, specify
different seed values. The easiest way to do this is to use the current time to seed a
Random object. This approach reduces the possibility of getting repeated sequences.

The public methods defined by Random are shown in Table 16-6.

As you can see, there are seven types of random numbers that you can extract
from a Random object. Random Boolean values are available from nextBoolean().
Random bytes can be obtained by calling nextBytes(). Integers can be extracted via
the nextInt() method. Long integers, uniformly distributed over their range, can be
obtained with nextLong(). The nextFloat() and nextDouble() methods return a
uniformly distributed float and double, respectively, between 0.0 and 1.0. Finally,

nextGaussian() returns a double value centered at 0.0 with a standard deviation of 1.0.

This is what is known as a bell curve.

Here is an example that demonstrates the sequence produced by nextGaussian().
It obtains 100 random Gaussian values and averages these values. The program also
counts the number of values that fall within two standard deviations, plus or minus,
using increments of 0.5 for each category. The result is graphically displayed sideways
on the screen.

525

526 Java™ 2: The Complete Reference

// Demonstrate random Gaussian values.
import java.util.Random;

class RandDemo {

public static void main(String args[]) {
Random r = new Random();

double val;
double sum = 0;

int bell[] = new int[10];

for(int i=0; i<100; i++) {
val = r.nextGaussian();

sum += val;

double t = -2;

for(int x=0; x<10; x++, t += 0.5)

if(val < t) {

bell[x]++;
break;
}
}
System.out.println("Average of values: " +

(sum/100));

// display bell curve, sideways
for(int i=0; i<10; i++) {
for(int x=bell[i]; x>0; x--)
System.out.print("*");
System.out.println();

Here is a sample program run. As you can see, a bell-like distribution of numbers

is obtained.

Average of values:
* %

*khkkkkk*k

*kkkkk*k
khkkkkhhkkhhrkkhhkk*k
*khkkkkdkhkkdkxhkdkxhkdkhrhhkx
*khkkkdkhkhkdkxkhkdkxhhxkhk
*kkkkdkkkdkrkkxk
*khkkkkhkkhkkx
*khkxkkkkk

k

0.0702235271133344

Chapter 16: java.util Part 2: More Utility Classes 527

___| observable

The Observable class is used to create subclasses that other parts of your program can
observe. When an object of such a subclass undergoes a change, observing classes are
notified. Observing classes must implement the Observer interface, which defines the
update() method. The update() method is called when an observer is notified of a
change in an observed object.

Observable defines the methods shown in Table 16-7. An object that is being
observed must follow two simple rules. First, if it has changed, it must call
setChanged(). Second, when it is ready to notify observers of this change, it must call
notifyObservers(). This causes the update() method in the observing object(s) to be
called. Be careful—if the object calls notifyObservers() without having previously
called setChanged(), no action will take place. The observed object must call both
setChanged() and notifyObservers() before update() will be called.

Method Description

void addObserver(Observer obj) Add obj to the list of objects observing the
invoking object.

protected void clearChanged() Calling this method returns the status of the
invoking object to “unchanged.”

int countObservers() Returns the number of objects observing the
invoking object.

void deleteObserver(Observer obj) Removes obj from the list of objects
observing the invoking object.

void deleteObservers() Removes all observers for the invoking object.

boolean hasChanged() Returns true if the invoking object has been
modified and false if it has not.

void notifyObservers() Notifies all observers of the invoking object
that it has changed by calling update(). A
null is passed as the second argument to
update().

void notifyObservers(Object obj) Notifies all observers of the invoking object
that it has changed by calling update(). obj
is passed as an argument to update().

protected void setChanged() Called when the invoking object has changed.

Table 16-7. The Methods Defined by Observable

528 Java™ 2: The Complete Reference

Notice that notifyObservers() has two forms: one that takes an argument and
one that does not. If you call notifyObservers() with an argument, this object is
passed to the observer’s update() method as its second parameter. Otherwise, null
is passed to update(). You can use the second parameter for passing any type of
object that is appropriate for your application.

The Observer Interface

To observe an observable object, you must implement the Observer interface.
This interface defines only the one method shown here:

void update(Observable observOb, Object arg)

Here, observODb is the object being observed, and arg is the value passed by
notifyObservers(). The update() method is called when a change in the
observed object takes place.

An Observer Example

Here is an example that demonstrates an observable object. It creates an observer class,
called Watcher, that implements the Observer interface. The class being monitored is
called BeingWatched. It extends Observable. Inside BeingWatched is the method
counter(), which simply counts down from a specified value. It uses sleep() to wait a
tenth of a second between counts. Each time the count changes, notifyObservers() is
called with the current count passed as its argument. This causes the update() method
inside Watcher to be called, which displays the current count. Inside main(), a
Watcher and a BeingWatched object, called observing and observed, respectively, are
created. Then, observing is added to the list of observers for observed. This means that
observing.update() will be called each time counter() calls notifyObservers().

/* Demonstrate the Observable class and the
Observer interface.
*/

import java.util.*;

// This is the observing class.
class Watcher implements Observer {
public void update(Observable obj, Object arg) {
System.out.println("update() called, count is " +
((Integer)arg).intvalue());

Chapter 16: java.util Part 2: More Utility Classes 529

/ This is the class being observed.
class BeingWatched extends Observable {
void counter(int period) {

for(; period >=0; period--) {
setChanged();
notifyObservers(new Integer(period));
try {

Thread.sleep(100);
} catch(InterruptedException e) {
System.out.println("Sleep interrupted");

-
==
m
e~
2
>
=
o
X
>
X
=3

class ObserverDemo {
public static void main(String args[]) {
BeingWatched observed = new BeingWatched();
Watcher observing = new Watcher();

/* Add the observing to the list of observers for
observed object. */

observed.addObserver (observing) ;

observed.counter(10);

The output from this program is shown here:

o

update() called, count is
update() called, count is
update() called, count is
update() called, count is
update() called, count is
update() called, count is
update() called, count is
update() called, count is
update() called, count is
update() called, count is
update() called, count is

O N W®H U OV 0V -

530

Java™ 2: The Complete Reference

More than one object can be an observer. For example, the following program
implements two observing classes and adds an object of each class to the
BeingWatched observer list. The second observer waits until the count reaches
zero and then rings the bell.

/* An object may be observed by two or more
observers.

*/
import java.util.*;

// This is the first observing class.
class Watcherl implements Observer {
public void update(Observable obj, Object arg) {
System.out.println("update() called, count is " +
((Integer)arg).intvValue());

// This is the second observing class.
class Watcher2 implements Observer {
public void update(Observable obj, Object arg) {
// Ring bell when done
if(((Integer)arg).intvalue() == 0)
System.out.println("Done" + '\7");

// This is the class being observed.
class BeingWatched extends Observable {
void counter(int period) {
for(; period >=0; period--) {
setChanged();
notifyObservers(new Integer(period));
try {
Thread.sleep(100);
} catch(InterruptedException e) {
System.out.println("Sleep interrupted");

Chapter 16: java.util Part 2: More Utility Classes

class TwoObservers {
public static void main(String args[]) {
BeingWatched observed = new BeingWatched();
Watcherl observingl = new Watcherl();
Watcher2 observing2 = new Watcher2();

// add both observers
observed.addObserver (observingl);
observed.addObserver (observing2);

observed.counter(10);

The Observable class and the Observer interface allow you to implement
sophisticated program architectures based on the document/view methodology. They
are also useful in multithreaded situations.

Timer and TimerTask

Java 2, version 1.3 added an interesting and useful feature to java.util: the ability to
schedule a task for execution at some future time. The classes that support this are
Timer and TimerTask. Using these classes you can create a thread that runs in the
background, waiting for a specific time. When the time arrives, the task linked to
that thread is executed. Various options allow you to schedule a task for repeated
execution, and to schedule a task to run on a specific date. Although it was always
possible to manually create a task that would be executed at a specific time using
the Thread class, Timer and TimerTask greatly simplify this process.

Timer and TimerTask work together. Timer is the class that you will use to
schedule a task for execution. The task being scheduled must be an instance of
TimerTask. Thus, to schedule a task, you will first create a TimerTask object and
then schedule it for execution using an instance of Timer.

TimerTask implements the Runnable interface; thus it can be used to create a
thread of execution. Its constructor is shown here:

TimerTask()

TimerTask defines the methods shown in Table 16-8. Notice that run() is abstract,
which means that it must be overridden. The run() method, defined by the Runnable
interface, contains the code that will be executed. Thus, the easiest way to create a timer
task is to extend TimerTask and override run().

531

-
=
m
I~
:
>
-
o
X
>
£
=<

532 Java™ 2: The Complete Reference

Method Description

boolean cancel() Terminates the task. It returns true if
an execution of the task is prevented.
Otherwise, false is returned.

abstract void run() Contains the code for the timer task.

long scheduledExecutionTime() Returns the time at which the last
execution of the task was scheduled to
have occurred.

Table 16-8. The Methods Defined by TimerTask

Once a task has been created, it is scheduled for execution by an object of type
Timer. The constructors for Timer are shown here.

Timer()
Timer(boolean DThread)

The first version creates a Timer object that runs as a normal thread. The second
uses a daemon thread if DThread is true. A daemon thread will execute only as long as
the rest of the program continues to execute. The methods defined by Timer are shown
in Table 16-9.

Method Description
void cancel() Cancels the timer thread.
void schedule(TimerTask TTask, TTask is scheduled for execution after
long wait) the period passed in wait has elapsed.
The wait parameter is specified in
milliseconds.
void schedule(TimerTask TTask, TTask is scheduled for execution after
long wait, long repeat) the period passed in wait has elapsed.

The task is then executed repeatedly at
the interval specified by repeat. Both
wait and repeat are specified in
milliseconds.

Table 16-9. The Methods Defined by Timer

Chapter 16:

java.util Part 2: More Utility Classes

void schedule(TimerTask TTask,
Date targetTime)

void schedule(TimerTask TTask,
Date targetTime,
long repeat)

void scheduleAtFixedRate(
TimerTask TTask,
long wait, long repeat)

void scheduleAtFixedRate(
TimerTask TTask,
Date targetTime,
long repeat)

TTask is scheduled for execution at the
time specified by targetTime.

TTask is scheduled for execution at the
time specified by targetTime. The task is
then executed repeatedly at the interval
passed in repeat. The repeat parameter is
specified in milliseconds.

TTask is scheduled for execution after
the period passed in wait has elapsed.
The task is then executed repeatedly at
the interval specified by repeat. Both wait
and repeat are specified in milliseconds.
The time of each repetition is relative to
the first execution, not the preceding
execution. Thus, the overall rate of
execution is fixed.

TTask is scheduled for execution at the
time specified by targetTime. The task is
then executed repeatedly at the interval
passed in repeat. The repeat parameter is
specified in milliseconds. The time of
each repetition is relative to the first
execution, not the preceding execution.
Thus, the overall rate of execution

is fixed.

Table 16-9. The Methods Defined by Timer (continued)

Once a Timer has been created, you will schedule a task by calling schedule()
on the Timer that you created. As Table 16-9 shows, there are several forms of
schedule() which allow you to schedule tasks in a variety of ways.

If you create a non-daemon task, then you will want to call cancel() to end the task
when your program ends. If you don’t do this, then your program may “hang” for a
period of time.

The following program demonstrates Timer and TimerTask. It defines a timer
task whose run() method displays the message “Timer task executed.” This task is
scheduled to run once very half second after an intial delay of one second.

533

534 Java™ 2: The Complete Reference

// Demonstrate Timer and TimerTask.
import java.util.*;

class MyTimerTask extends TimerTask {
public void run() {
System.out.println("Timer task executed.");

class TTest {
public static void main(String args[]) {
MyTimerTask myTask = new MyTimerTask();
Timer myTimer = new Timer();

/* Set an initial delay of 1 second,
then repeat every half second.

*/

myTimer.schedule(myTask, 1000, 500);

try {
Thread.sleep(5000);
} catch (InterruptedException exc) {}

myTimer.cancel();

___ | currency

Java 2, version 1.4 adds the Currency class. This class encapsulates information about a
currency. It defines no constructors. The methods supported by Currency are shown in
Table 16-10. The following program demonstrates Currency.

// Demonstrate Currency.
import java.util.*;

class CurDemo {
public static void main(String args[]) {
Currency c;

Chapter 16: java.util Part 2: More Utility Classes 535

c = Currency.getInstance(Locale.US);
System.out.println("Symbol: " + c.getSymbol());

System.out.println("Default fractional digits: " +
c.getDefaultFractionDigits());

The output is shown here.

Symbol: §$
Default fractional digits: 2

-
=
m
I~
2
>
-
o
X
>
£
=<

Method Description

String getCurrencyCode() Returns the code (as defined by ISO 4217)
that describes the invoking currency.

int getDefaultFractionDigits() Returns the number of digits after the
decimal point that are normally used by
the invoking currency. For example, there
are 2 fractional digits normally used for

dollars.
static Currency Returns a Currency object for the locale
getInstance(Locale localeObyj) specified by localeObj.
static Currency Returns a Currency object associated
getInstance(String code) with the currency code passed in code.
String getSymbol() Returns the currency symbol (such as $)

for the invoking object.

String getSymbol(Locale localeObj) Returns the currency symbol (such as $)
for the locale passed in localeObj.

String toString() Returns the currency code for the
invoking object.

Table 16-10. The Methods Defined by Currency

536 Java™ 2: The Complete Reference

| The java.util.zip Package

The java.util.zip package provides the ability to read and write files in the popular ZIP
and GZIP file formats. Both ZIP and GZIP input and output streams are available.
Other classes implement the ZLIB algorithms for compression and decompression.

___| The java.util.jar Package

The java.util.jar package provides the ability to read and write Java Archive (JAR)
files. You will see in Chapter 25 that JAR files are used to contain software components
known as Java Beans and any associated files.

gl
Chapter 17

Input/Qutput:
Exploring java.io

538 Java™ 2: The Complete Reference

Chapter 12, we presented an overview of Java’s I/O system. Here, we will
examine the Java I/O system in greater detail.

As all programmers learn early on, most programs cannot accomplish their goals
without accessing external data. Data is retrieved from an input source. The results of
a program are sent to an oufput destination. In Java, these sources or destinations are
defined very broadly. For example, a network connection, memory buffer, or disk file
can be manipulated by the Java I/O classes. Although physically different, these
devices are all handled by the same abstraction: the stream. A stream, as explained in
Chapter 12, is a logical entity that either produces or consumes information. A stream
is linked to a physical device by the Java I/O system. All streams behave in the same
manner, even if the actual physical devices they are linked to differ.

| Java 2, version 1.4 includes some additional 1/O capabilities which are contained in the
/ java.nio package. These are described in Chapter 24.

This chapter explores java.io, which provides support for I/O operations. In

| The Java 1/0 Classes and Interfaces

The I/0 classes defined by java.io are listed here:

BufferedInputStream FileWriter PipedInputStream
BufferedOutputStream FilterInputStream PipedOutputStream
BufferedReader FilterOutputStream PipedReader
BufferedWriter FilterReader PipedWriter
ByteArrayInputStream FilterWriter PrintStream
ByteArrayOutputStream InputStream PrintWriter
CharArrayReader InputStreamReader PushbackInputStream
CharArrayWriter LineNumberReader PushbackReader
DatalnputStream ObjectInputStream RandomAccessFile
DataOutputStream ObjectInputStream.GetField Reader

File ObjectOutputStream SequencelnputStream
FileDescriptor ObjectOutputStream.PutField SerializablePermission
FileInputStream ObjectStreamClass StreamTokenizer
FileOutputStream ObjectStreamField StringReader
FilePermission OutputStream StringWriter

FileReader OutputStreamWriter Writer

Chapter 17: Input/Output: Exploring java.io

The ObjectInputStream.GetField and ObjectOutputStream.PutField inner classes
were added by Java 2. The java.io package also contains two classes that were deprecated
by Java 2 and are not shown in the preceding table: LineNumberInputStream and
StringBufferInputStream. These classes should not be used for new code.

The following interfaces are defined by java.io:

Datalnput FilenamekFilter ObjectOutput
DataOutput ObjectInput ObjectStreamConstants
Externalizable ObjectInputValidation Serializable

FileFilter

The FileFilter interface was added by Java 2.

As you can see, there are many classes and interfaces in the java.io package. These
include byte and character streams, and object serialization (the storage and retrieval of
objects). This chapter examines several of the most commonly used I/O components,
beginning with one of the most unique: File.

___| File

Although most of the classes defined by java.io operate on streams, the File class does
not. It deals directly with files and the file system. That is, the File class does not
specify how information is retrieved from or stored in files; it describes the properties
of a file itself. A File object is used to obtain or manipulate the information associated
with a disk file, such as the permissions, time, date, and directory path, and to navigate
subdirectory hierarchies.

Files are a primary source and destination for data within many programs.
Although there are severe restrictions on their use within applets for security reasons,
files are still a central resource for storing persistent and shared information. A
directory in Java is treated simply as a File with one additional property—a list of
filenames that can be examined by the list() method.

The following constructors can be used to create File objects:

File(String directoryPath)

File(String directoryPath, String filename)
File(File dirObj, String filename)
File(URI uriObj)

Here, directoryPath is the path name of the file, filename is the name of the file, dirObj is a
File object that specifies a directory, and uriObj is a URI object that describes a file. The
fourth constructor was added by Java 2, version 1.4.

The following example creates three files: f1, f2, and £3. The first File object is
constructed with a directory path as the only argument. The second includes two
arguments—the path and the filename. The third includes the file path assigned to f1
and a filename; £3 refers to the same file as f2.

540 Java™ 2: The Complete Reference

File f1
File f2

new File("/");
new File("/","autoexec.bat");

File f3 = new File(fl,"autoexec.bat");

| Note |

Java does the right thing with path separators between UNIX and Windows

conventions. If you use a forward slash (/) on a Windows version of Java, the path
will still resolve correctly. Remember, if you are using the Windows convention
of a backslash character (\), you will need to use its escape sequence (\\) within a
string. The Java convention is to use the UNIX- and URL-style forward slash for
path separators.

File defines many methods that obtain the standard properties of a File object. For
example, getName() returns the name of the file, getParent() returns the name of the
parent directory, and exists() returns true if the file exists, false if it does not. The File class,
however, is not symmetrical. By this, we mean that there are many methods that allow you
to examine the properties of a simple file object, but no corresponding function exists to
change those attributes. The following example demonstrates several of the File methods:

// Demonstrate File.

import java.io.File;

class FileDemo {

static void p(String s) {

System.out.println(s);

public static void main(String args[]) {

File f1 = new File("/java/COPYRIGHT");
p("File Name: " + fl.getName());
p("Path: " + fl.getPath());

p("Abs Path: " + fl.getAbsolutePath());

p("Parent: " + fl.getParent());

p(fl.exists() ? "exists" : "does not exist");
p(fl.canWrite() ? "is writeable" : "is not writeable");
p(fl.canRead() ? "is readable" : "is not readable");

p("is " + (fl.isDirectory() ? "" : "not" + " a directory"